National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontano
K1A ON4

Bibliothéque nationale
du Canada

Direction des acquisitions ot
des services bibliographiques

395, re Wellington
Oftawa (Ontano)
K1A ONg

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

F.eproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la these soumise au
microfiimage. Nous avons tout
fait pour assurer une qualite
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont ete
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



Formal Specification of C++ Class Interfaces
for Software Reuse

Picero Colagrosso

A Thesis
n
The Departiment
of

C'ompnter Science

Presented in Partial Fulfilment of the Requirements for
the Degree of Master of Computer Science at
(‘foncordia University

Montréal. Québec, (‘anada

March 1993

©  Piero Colagrosso, 1993



B+l

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A ON4

Bibliothéque nationale
du Canada

Direction des acquisttions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontano)
K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Ol e AMore et ene

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protéege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrenient reproduits sans son
autorisation.

ISBN 0-315-87256-X

Canada



ABSTRACT

Forinal Specification of C4++4 Class Interfaces

for Software Reuse

Piero Colagrosso

Software rense is widely believed to have the potential of greatly improving soft-
ware development, productivity and quality. One of the much touted and elusive
promises of the object-oriented development approach has been its great support
for reuse and the potential productivity and quality increases which could result
from this. Unfortunately, these promises do not seem to have materialized yet and
widespread software reuse still remains an enduring dream.

In this thesis we argue that to provide hetter support for software reuse. object-
oriented programming languages must be supplemented with a specification language
which can provide precise semantic specifications of reusable components. We identify
the properties which a component specification language should have in order that
it can best promote reuse and capitalize on the advantages of the object-oriented
paradigm.

As a lirst step towards the realization of such a specification language for the pro-
gramming language ('4+4, we show that the formal specification language Larch/C++
has many of the desired properties and can be used to specify the behavior of (‘++
class interfaces. We also present a formal definition of class behavior and we use
this definition to develop a criterion for evaluating the completeness of class inter-
face specifications. We then present a methodology for applying this criterion to
Larch /('++ specifications. Finally, we present a proposal for extending Larch/C++
with a proof theoretic semantics for determining subtyping relations and a mechanism

for specification inheritance.
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Chapter 1

Introduction

It has been widely believed for some time now that software reuse has the potential
of greatly improving software development productivity and quality [HM84, Sta84,
Jon&4, LGRT, BR87, Kru92]. This view is based on the observation that considerable
savings can be realized by assembling software systems using reusable components
rather than by building them entirely from scratch. Underlying this view is the as-
sumption that reusable components can be located. understood aund integrated within
an application much more economically than by writing the components entirely from
scratch.

Proponents of the object-oriented programming approach have argued very con-
vineingly that the data abstraction, encapsulation, inheritance and polymorphism
mechanisms provided by object-oriented (00) languages are very conducive to soft-
ware rense [Cox86. Mey87, Mey8s, KM90, G.B91]. Despite this, widespread large-
scale software reuse still remains an clusive dream [Cox90].

One of the principal hurdles which must be overcome before this dream can he-
come a reality is the speeification of the abstractions provided by classes in a suce-
cinet, implementation independent. and complete manner. If programmers are to
reuse classes effectively, they must be able to develop a precise understanding of the
abstractions implemented by classes with a minimum of effort.

It is the premise of this thesis that the principal reason that OO languages have
failed to promote widespread, successful software reuse until now is that they have
failed to address the issue of specifying the abstractions implemented by classes.
The mechanisms provided by the OO paradigm address only the syntactic support
required for effective reuse but fail to address semantic support issues. In this thesis,
we deseribe how this void can be filled by supplementing OOPLs (object-oriented
programming, languages) with a specification language which can provide a precise

semantic deseription of components. We will refer to such a specification language



as a ROOCSL (Reusable Object-Oriented Component Specification Language).

Most OOPLs rely on natural langunage specifications to document the semantics
of class interfaces.! Because of their informal nature. these specitications may he
ambiguous. incomplete, and not sufliciently precise. This makes them inadequate for
the purposes of describing the behavior of reusable classes to potential rensers.

The reuser of a class needs a precise mental model of a class’s behavior o order 1o
reuse it correctly. If the informal specification does not provide such a model, then o
developer must often turn to the implementation of a class to really nuderstand the
class’s behavior. This effort can offset part or all of the productivity increases which
should have been obtained by reusing a class rather than rewriting it. Much of the
advantage of reuse is lost if it is necessary to understand and test a class as careully
as if it had been writven from scratch.

The eflort required to understand the behavior of a class by reading its imple
mentation code should not be underestimated. Some studies snggest that program
understanding time may be the dominaunt time in the entire software life evele and
thus the dominant cost [Sta84]. In view of this, it might be construed that software
reuse will be effective in increasing productivity only so far as it will he elfective in
reducing or eliminating the need for programmers to read and understand the sonrce
code of modules which they reuse.

Researchers in the area of software reuse have recognized the aritical tole whicly
the ability to specify abstractions and to make these casily understandable to reusers
plays in ensuring a successful software reuse methodology [HMS1, BRS7. Cox9i0}. In
[Kru92] it is emphasized that any activity of software reuse involves fonr dimensions
of abstracting, sclecting. speeializing and intcgrating software components. Amaone,
these, abstraction plays a key role in reusing a software component, since abstraction
is necessary for easy selection, specialization and integration.

An abstraction for a software component is a succinet. deseription that is frece of i
relevant details but generalizes and emphasizes the information that is important.
is our view that the most suitable medium for deseribing module abstractions is a for

mal specification language accompanied by an informal natural langnage explanatony

IThe one notable exception is Eiffel However, for reasons discussed 10 section 31 we do not fed |
the specification style used in Eiffel is adequate for speaifying reusable eliasses



text. 'The formal specification provides the necessary precision and formal semantics
v ile the explanatory text improves the understandability of the specification.

Formal specification langnages such as Larch [GHWS3L, Win87. GHM91, GH91].
7 [Hav87. Spiss. Spisg). VDM [Jon90]. and OBJ [FGIM84, GW8S] are precise and
unambignous. They are bhased on mathematics and have a formal syntax and se-
mantics. They remove any area of doubt in a specification. Because of their declar-
ativeness and lack of concern fer implementation details, formal specifications can
describe a elass abstraction far more suceinetly than an informal specification or the
implementation code itself,

In this thesis, we focus on the identification of a ROOCSL for the programming
langnage C4+4 [Str91]. C++ is a superset of (" providing suppert for data abstrac-
tion. encapsulation. polymorphism, and inheritance while retaining the efficiency and
pottability of ', Because of its characteristies. ("++ has become the object-oriented
language of choice in industry for the implementation of large production software
svstem. Although there are no known statistics to support this claim. it is sup-
ported by anecdotal evidenee such as the volume of traflic on the comp.lang.c++
usenet news group as well as by the author’s involvement wit . software development
projects in industry, As a result of the widespread use of ('++ in industry. any
approach intended to promote software reuse amongst practitioners is most likely
to suceeed if it is targeted at C'++4. For these reasons. we have chosen to focus on
("++ as a conerete example. However: most of the analysis and results discussed in
this thesis are suflicient]ly general to be adapted and applied to other object-oriented
programming languages.

In order to identify an appropriate ROOCSL for ('++. we first identify the proper-
ties which a general ROOCSL should have in order that it can best promote reusahil-
ity and capitalize on the advantages of the object-oriented paradigm. We then survey
existing work aimed at providing semantic descriptions of object-oriented components
and assess to what extent these proposals satisfy the properties we have identified.
As a fivst step towards the realization of a ROOCSL for ("+4, we show that the for-
mal specification language Larch/C'+4 has many of the desired properties and can

be used to specify the behavior of ("+4 class interfaces for software reuse.



Having selected a formal specification langnage. it is also necessary to detine pre
cisely what needs to be specified as part of a class interface specification. Without such
a definition. there can be no systematic methodology for evaluating the completeness
of a specification. Such an evaluation is required to ensure that a specilication pro
vides a developer with all the information required to reuse a class in a truly black
box fashion.

In the absence of a systematic method for evaluating the completeness of a
class specification, the evaluation becomes a subjective matter, leaving it to the de
signer/implementor’s discretion what the specification should and should not state.
This, in turn, can very adversely affect the quality of a reusable class. Poor documen
tation may confuse, or worse, mislead a prospective reuser as to how a class should
be used. From the reuser’s point of view, having an incomplete specification is just
as undesirable as attempting to reuse a class whose implementation is defective.

In order to develop a criterion for evaluating the completeness of a class interface
specification. it is necessary to formalize the notion of behavior of a class which the
specification is intended to capture. In this thesis, we present a formal definition of
the behavior of a class and we use this definition to develop a eriterion for evaluating,
the completeness of a class interface specification. We also use some examples to
show how this criterion can be applied to evalnate the completeness of some €'} 4
interface specifications written in Larch/C4+.

The organization of the remainder of this thesis is as follows. In chapter 2 we
survey the critical issues involved with the formal specification of classes and deline
the scope for the remainder of this thesis by identifving which of these issues will
be treated. In chapter 3 we survey existing specification langnages for specifying,
classes (modules) and we justify our choice of using Larch/C++4 for the specification
of reusable C++ class interfaces.

In chapter 4 we present our formal definition of class hehavior and use this def
inition to develop a criterion for determining when a class interface specification is
complete. In chapter 5 we present a methodology for applying this completeness i
terion to Larch/C++ specifications. In chapter 6 we present a proposal for extending

Larch/C'4+4 with a proof theoretic semantics for determining subtyping relations and



a mechanism for specification inheritance.
Finally. in seetion 7 we conclude by giving our assessment of the potential useful-
ness and impact of the work deseribed in this thesis. summarizing the contributions

of this thesis and identifying future work.



Chapter 2

Survey of Critical Issues and
Scope of This Thesis

In this chapter we survey the critical issues involved with the formal specification of
class interfaces for reuse and we define the scope of this thesis by identifying which
of these issues will be addressed herein.

In subsections (2.1 to 2.4) we consider various aspects relating to the object-
oriented paradigm (data abstraction and encapsulation. inheritance, polymorphism,
and subsystems and frameworks) and identify how QO programming langnages fail
to provide semantic support for reuse in the context of cach of these aspeets. We also
describe how the use of a formal specification langnage conld help overcome these
shortcomings for each of these aspects.

In section 2.5 we discuss the need to evaluate the completeness of elass interface
specifications and in section 2.6 we discuss the need to verify the correctness ol
candidate class implementations with respect to these specifications.

Based on all these observations. in section 2.7 we smmmarize the properties which
an ideal ROOCSL should have. Finally. in section 2.8 we define the seope of this

thesis and identify which of the eritical issnes will be tackled herein.

2.1 Data Abstraction and Encapsulation

In object-oriented programming languages, the basie software module is the elass and
it is used to implement an abstract data type [Mey88, KMY0, Bud91]. One of the
cornerstones of object-oriented programming is data abstraction and refers to the fact
that a class’s interface is completely independent from its implementation. Classes
implemented by one programmer (the producer or implamnentor) can be used by othe
programmers (the clients) without these clients having to concern themselves with

understanding a class’s implementation details.

6



The elient of a class needs only to understand the behavior of the class as spec-
ificd by the method interfaces and may view the method implementations as being
contained in a black bor hidden from view. This approach is conducive to rense. as
a module can be used by a client without concern for the implementation details of
this module; much less effort is required than to write a module from scratch or to
rense an existing module by understanding its implementation details.

However to reuse code, one must understand its behavior precisely. The black
box approach to reuse assumes that a class’s behavior can be described succinctly
and without having to refer to an implementation. Object-oriented programming
languages offer no support for this ability. Instead, programmers must rely on the
informal comments in class interface files to understand the semantics of a class.

00 languages provide support for encapsulation, i.e. the ability to make data
accessible only to a specified set of operations. This provides the syntactic support
required for ereating rensable black boxes. However, the semantic support required
to deseribe the hehavior of these black boxes is not provided in most object-oriented
languages.

Informal documents and program comments may be something of a relief. How-
ever, theirimprecise, verbose, and potentially ambiguous and incomplete nature often
prevents them from being much help [Mey85, Win90, 1A90]. A natural language such
as English is not sufficiently precise to describe the exact functioning of a software
module as a black box, and leads to ambiguities and differences of interpretation from
one programmer to the next. What appears obvious to the implementor of a class
may not be so obvious to a client that is supposed to rely on nothing more than the
class’s method signatures and informal comments to learn how to use it.

The result of this inability to adequately specify the behavior of reusable com-
ponents is that programmers are forced to turn to the implementation of a class to
fully understand its behavior. However, the sheer volume of existing classes, their
complex interactions, and their implementation details frustrate programmers who,
by inspecting the code, must try to understand the behavior of potentially useful
classes.

The net effect of all these problems is that a client may ultimately make improper

-1



use of a class, resulting in a defective program. The client’s only avenue to solve the
program defect is then often to “debug™ the code by tracing its execution to try to
determine the cause of the interfacing (i.e. usage) problem. As a result, a substantial
amount of time is spent trying to learn how to use a class correctly, All this wasted
effort offsets part or all of the productivity increases which should have vesulted by
reusing the module rather than rewriting it.

The above observations indicate the need for a formal semantic definition of
reusable OO component interfaces. Because of its precision and conciseness, a formal
specification language has the potential of overcoming the problems associated with
the use of natural languages for specifying the semantics of rensable OO components,

Formal specifications also have another advantage over natural langnage in that
they can be automatically processed. This opens the door for such things as auto
matic searching in component libraries, specification syntax chechers, and partially
automated semantic analysis of specifications [Som89, Win90, dCACH 9], Because
formal specifications are mathematical objects, it is also possible to develop formal
criteria and algorithms to evaluate properties of these specilications such as com
pleteness and consistency.

Using a formal specification language to specify reusable components also has the
advantage of providing the precision required to be able to distingnish easily between
incidental and intended features of a reusable component [Wil91].

Intended features of a reusable component are those which are intrinsic to the
component and which are guaranteed not to change in subsequent versions of a con
ponent. In contrast, the incidental features of a module are those which are merely
the byproduct of a specific implementation of the component and which may change
in future versions of the component. For example, in the case of a list nnion method,
the fact that the resulting list will contain all the items in the two original lists is an
intended feature and is guaranteed not to change in future versions of the component.
However, the fact that the items in the resulting list retain their original order can be
either an incidental or an intended feature of the module. If the specilication states
that the order is preserved then the feature is intended. However, if the specification

does not make any reference to the order of the items then the feature is incidental



and should not be assumed in client code. If updated versions of a component are
to he distributed and incorporated into systems which use it, the systems’ designers
must, be able to make the distinction between incidental and intended features to
avoid becoming dependent on “features” which are nothing more than artifacts of a
given version of a component.

Based on the above observations, it is apparent that a ROOCSL should be able
to specify the behavior of an OO0 component independently of its implementation.
In other words, such a specification should never refer to any of the implementation
variables of a component. There are several other reasons why this is important, and

we summarize these here:

(i) Implementation Updates, Fast Prototyping:

One of the benefits of the OO approach is that it makes it possible to mod-
ify the implementation of a class (e.g. for efficiency reasons, for porting to
a new platform, for fast prototyping) without modifying its interface. This
means that the clients of a class will not be affected by such an implemen-
tation change. This is very practical, as it means that the implementations
of classes can be modified with very minimal impact to the system in which
these classes are embedded. This approach accounts for the good support which
OO0P offers for the rapid prototyping of systems and the ability to evolve such
prototypes rapidly. It also accounts for the ease of maintenance and modifica-
tion attributed to the OO approach. During the maintenance and modification
phases of a system, data structures and representations are likely to change.
cither to improve performance or to accommodate changing requirements. The
data abstraction mechanism provided by the OO approach localizes the changes
to the implementation of a class. Clients should not be affected by the change

of implementation of the classes they use.

If the specification of a component refers to its implementation and if this
implementation is updated, then the specification will likely also have to be
updated. This is very impractical for both the reusers and maintainers of

reusable classes:



(iii)

e reusers: For the reusers of the class it means they have to understand a
new description of the class (i.e. change their mental model of the class),

even if the semantics of that class have not changed.

e implementors: For implementors, this means that it is now necessary
to update the specification, in addition to the suurce code, when the im
plementation is modified. In addition to being error-prone, this task also
imposes the additional burden of ensuring that the two specifications are

equivalent. This is by no means a trivial problem [Cox90].

As a result, all the benefits of the OQ approach relating to fast prototyping,
ease of maintenance, ease of modification, and evolvability are lost unless im

plementation independent specifications are used.
Abstract Classes:

For abstract classes [WBJ90, KM90], there is usually no implementation to he
described. This means that the specification of abstract classes cannot possibly
refer to their implementation. However, as we will diseuss in section 2.3, for
the purposes of polymorphic code it is important to document what constraints
the types associated with abstract classes impose on their subtypes. Without

an implementation independent specification, this cannot he accomplished.
Ease of Understanding:

The principal reason that software reuse can lead to inereased productivity
is that it provides a higher level of abstraction for a software developer. It
permits a developer to benefit from the services of a software module without
having to concern himself with the implementation details of this module. To
be consistent with this philosophy, the specification of such modules should not

refer to implementation details.

Behavioral specifications (i.e. those that do not refer to an implementation)
have the advantage of fully preserving the encapsulation of a class. Becanse

such specifications can he made highly declarative, they have the potential of

10




(iv)

(v)

heing much more concise and of more readily conveying the precise semantics

of a class interface than informal comments or implementation code.

Separation of concerns:

From a software design point of view, the description of the behavior of a class
and the description of the implementation of a class represent two different
concerns. The former corresponds to a high-level design while the latter corre-

sponds tu a dclailed design.

For ease of reuse, it is important to keep these two concerns separate. While
the high-level design of an QO system is being developed, it is necessary to
identify the required classes and the functionality which they provide (i.e. their
behavior). To maximize opportunities for reuse, a designer should attemj-t to
identify potentially useful classes from a reusable library at this stage so that
they can be included as part of the high-level design. Since the designer is
only interested in the functionalities provided by reusable classes, it would be

unreasonable to refer to the implementation in the specification.

At the later stages of detail design, a developer will be interested in “sketching”
the implementation of the objects identified in the high-level. At this stage.
there is also potential for identifving classes from a reusable library which can
he useful in this context. However, once again. a developer is interested in the

services provided by the reusable classes and not in their implementation.
Design:

Implementation independent specifications are also a useful design tool. The
data abstraction mechanism provided by the OO paradigm makes it possible
to defer decisions about data structures until the uses of the data are fully
understood. Instead of defining data structures in the high-level design, it is
possible to focus on classes and their operations. Implementation independent
specifications provide a powerful way to document the behavior of operations
without committing to a particular implementation. Decisions about how to

implement a class can be made later, when all its uses are well understood.

11



It is important to note that although behavioral specifications are required for
specifying the semantics of class interfaces for reuse, specifications which refer to the

implementation, called implementational specifications, are useful in other contexts:

e Such specifications are useful for clarifying the intentions of the implementor
of the class, so that maintainers of the class can understand and modify the

implementation more casily.

o They can be useful in the development of debugging aids. For example, as-
sertions (pre/post conditions) in Eiffel [Mey88] refer to the implementation
of classes and can be automatically tested at run-time. A4+, a specilication
language for C++4, also provides debugging tools based on implementational
specifications [(CL90a, ("LYOD).

o Finally, such specifications are useful in constructing formal proofs of correet
ness of the implementation with respect to its specification. In Freseo [Wil91],
both behavioral and implementational specifications are used. The latter are
used to prove that the implementation of a class correctly implements the for-

mer.
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2.2

Inheritance and Subtyping

It has now become clear in the object oriented research community that the original

ohject-oriented concept informally known as inheritance actually encompasses two
distinet, orthogonal concepts [Sny86, Ame87, Lisg8, DT88, WZ88, Ame89, CHC90,
Cus9l]:

(i) Implementation Inheritance: This is a mechanism for the incremental def-

(ii)

inition of new classes based on existing ones. It can be defined as the carrying
of features (methods and instance variables) from a parent class definition to

its child class and the possible overriding of methods in the child class.

By sharing implementation code which describes the internal representation
of classes, the total amount of code in a system can sometimes be reduced
drastically. In general, this form of inheritance does not provide any guarantees
that a newly-derived class will be a specialization of its parent class. This is
hecanse a method may be overridden in the derived class in a way which is not

consistent. with the parent class.

Subtype Inheritance (conformance): This is a relationship between the
specification of two classes and characterizes the informal is-A relation between
classes.  That is, subtyping captures the notion of behavioral compatibility
between two classes by requiring that members of a subtype are also members

of the supertype.

The subtyping property ensures that a subtype can be reliably substituted for
a supertype in a specification or program. This notion, which we will refer to as
the substitutivity principle, is especially crucial in the context of polymorphism

(as discussed further in section 2.3).

We emphasize that the subtyping which we are referring to corresponds to
semantic subtyping based on specifications. This is in sharp contrast to the
notions of subtyping or conformance which are determined based on purely
svintactic cousiderations, (i.e. the signatures of a class’s methods). in many

tvped object-oriented languages (e.g. Eiffel, C4++). In the remainder of this
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thesis, we will always take the term subtyping to refer to semantic subty ping,

Implementation and subtype inheritance each define a different elass hierarchy.
Implementation inheritance defines an implementation hierarchy which is based on
the incremental sharing of code. It describes the construction of the internal strue-
ture of objects and is useful to the implementors of classes {Cox90, DTSS, Ameny).
The implementation hierarchy says nothing, or worse misleads, about the class’s be
havioral specification — the properties that the class offers its consumers [Cox90).
Subtype inheritance, in contrast, defines a conceptual hicrarchy amongst the hehav
ioral specifications of classes. This hierarchy is useful to reusers of classes since it is
based on the externally observable behavior of objects (i.e. the behavior which can
be observed by sending messages to objects) [Cox90. DTSS. AmesY).

For a long time, the prevailing view in the object-oriented commumnity was that
the implementation and subtype hierarchies were in fact the same [Amesd]. Fhis
belief was based on the intuitive idea that if a class B inherits from a class A, cach
instance of class B will have at least all the variables and methods that instances of
class A have. This seems to suggest that whenever an objeet of class A is required,
an instance of class B would do equally well so that instances of class B can be
regarded as specialized versions of the instances of elass A. However, within the past
few years many researchers have pointed out that the two hicrarchies are distinet
and that confusing them can lead to several problems [Sny86, Ame87, D'ISS]. i
fact, researchers have also advocated that OQOPLs should explicitly separate the two
hierarchies [Sny86, Ame87, DT88]. POOL [Ame90], a recently designed QOOP'L lias
adopted this approach.

The above observations suggest that the classes in a reusable library should he
organized according to the specification hierarchy, to make explicit the hehavioral
relationships between classes to reusers. However, just the opposite is currently tre
since reusable class libraries are arranged in such a way as to give a high degree
of code sharing among the classes in the library, not according to their coneeptual
relationships [LTP86, DT88, Lalg9, Coxy0].

Brad Cox was co-founder and chief technical officer of Stepstone, a company

which spent the past nine years developing and marketing reusable object-oriented
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components and promoting the mass scale reuse of such components. While relating
his company’s experiences in [Cox90], Cox concluded, after seven years of operation.
that one of the major stumbling blocks in making the behavior of reusable classes
understandable to clients was the fact that class libraries were arranged according
to the implementation hierarchy rather than the specification hierarchy. Cox now
advocates the organization of reusable class libraries according to the specification
hierarchy [Cox90].

Cox also reported that the inability to provide precise specifications of the be-
havior of classes, or making classes tangible as Cox describes it, was the most serious
problem faced by the company. The marketing department experienced the problem
when trying to explain the value of a component to potential customers. The devel-
opment team, on the other hand, experienced the problem when changing a released
component in any fashion such as porting it to a new machine, repairing a defect, or
extending it with new functionality. Without a mechanism for precisely describing
the bhehavior of classes, it became difficult to make the commercial sale of reusable

classes viable:

“Without tools to express the old specification independently from the
new and then determine if the old specification is intact while indepen-
dently testing the new one, development quickly slows to a crawl. All

available resources hecome consumed in quality assurance.” [Cox90]

Organizing, reusable classes according to the subtype hierarchy provides a view of
the classes which is more logical and much more useful to clients. However, hehavioral
subt vping relations hetween classes cannot be deduced without a precise specification
of the behavior of these classes [Sny86]. Only a formal semantic specification of
behavior affords the necessary precision.

Several formal definitions of subtyping based on the formal specification of classes
have been proposed [BWST, Ame89, Lea90, Wil91, DL92]. A ROOCSL should provide
a suitable semantics for subtyping and it should distinguish between the notions of
subtvping and inheritance. Ideally, the semantics should be simple enough to permit
programmers to formally or rigorously verifv whether a given specification defines a

subtype of another.



OOP provides the constructs for the reuse of implementation code and for the
specification of behavioral relationships (i.e. subtyping) but does not provide se
mantic or syntactic support to distinguish between these two notions. Subtype re
lationships in many statically typed OODPLs such as Eiffel are based on inheritance
relationships. From a reuse perspective this is undesirable because the implementa
tion hierarchy is not, in general, useful in helping to infer behavioral relationships
which exist between classes and may actually mislead programmers about the actiual
behavior of a class.

In the context of inheritance, the lack of semauntic support for effective black boy
reuse in OOPLs can be remedied, once again, by using a formal specification language
to specify the hehavior of classes. The formal specifications can be used as a hasis
for organizing the classes according to a specification (i.e. subtvpe) hierarchy. The
specification language iisell can also incorporate the coneept of hierarchy in such a
way that the specifications of a supertype are inherited by a subtype and need not he
repeated in the subtype. This allows reuse at the level of specifications, in addition to
reuse at the level of code, so that new specifications can be developed inerementally

based on existing specifications.
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2.3 Polymorphism and Message Passing

One of the key features of OOP which facilitates software reuse is the support for poly-
morphisin, as provided by it message-passing (or late binding) paradigm. The type
of polymorphisin provided in OOP has been extensively studied and characterized as
tnelusion polymorphism (CW85) or sublype polymorphism [LW90, Lea91]. It has been
shown that this type of polymorphism, popularized by its ability to support code
rense in Smalltalk-80 ((GR83], is fundamentally different from the universal paramet-
rie polymorphism found in functional languages such as ML [CW85, DT88, Lea90].

Subtype polymorphism is distinguished from other kinds of polymorphism by two
features: (1) the dynamic binding of operation names to operations based on the run-
time types of their arguments. and (ii) the possibility that a given expression may
denote objects with different types (i.e. different subtypes) at run-time [LW90]. These
properties allow programs which make use of subtype polymorphism to abstract over
a set of heterogeneous objects that have similar behavior. This makes it possible to
extend, or customize, an existing program by introducing new types of objects on
which the program can operate. In turn, this ability to easily extend a program is
very conducive to software reuse: when such an extension is made the existing code of
a program is entirely reused, without modification, and only the code implementing
new types needs to be added.

Polvmorphic code in QOP can manipulate objects of several different types, pro-
vided that the actual (dynamic) type of an object conformsto the static (or nominal)
tvpe of the expression which denotes it. This capability has important consequences
on the ability to support reuse. It means that new subtypes can be easily added to
a system without wodifying existing generic (polymorphic) modules. This is to be
contrasted with non-polymorphic typed languages (e.g. C, Pascal, Modula) where
the addition of new types typically involves the addition of a “type tag” on the new
data type, and the verification of this type tag in a “case” statement. This latter
approach is very dangerous and error-prone, as it is easy to forget updating one of
the potentially many case statements. This leads to software that is difficult to reuse
and maintain [Cox84].

In fact, it has been argued very convincingly that subtype polymorphism is essen-
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tial for the development of extensible, reusable software components [Cox84, Cox8,
Mey88]. The uon-polymorphic approach to code reuse makes black-box reuse of code
impossible, since to make an extension to a system (i.e. to add a new type) it is
necessary to modify existing code as well as to add new code [Cox81]. In the subtype
polymorphic OO approach, existing polymorphic code can be left intact sinee it is
sufficiently generic to accommodate extensions.

However, polymorphic programs that use message passing can be diflicult to rea-
son about, because the effect of a message send depends upon the type of the receiving
object. There may be many different operations that could be executed by a mes-
sage send and the same piece of code may result in the execution of different method
implementations during different executions. One approach to reasoning abonut poly
morphic programs would be to perform an exhaustive case analysis by considering
all possible object types that a message selector can involve. However, this approach
is impractical in large systems. This approach also has the severe disadvantage that
adding a new type of object to a system can require additional case analysis of message
invocations in existing polymorphic code. To obtain the advantage of extensibility
promised by object-oriented methods, unchanged program modules should not have
to be respecified or reverified when new types of objects are added to a program.
Since one does not have to update the code (because of late binding), it wonld he
tiresome if one had to reverify the implementation of existing polymorphic code,

In the object-oriented culture, programmers have traditionally dealt with this
problem by reasoning about polymorphic programs informally. Subelass relationships
are used to classify the hbehavior of objects of different classes and a superelass acts
as a representative for all its subclasses. Intuitively, programmers reason that the
correctness of a polymorphic construct is dependent on the requirement that “an
instance of a subclass B can be substituted for an instance of the parent elass A
provided that B behaves like A .

In other words, if the static type of some polymorphic expression is A, then the
intended behavior of A imposes some restrictions on the hehavior of the objects whichs
can be handled correctly by the polymorphic construct, These latter objects mnst

conform to the static type’s behavior. However, since OOPLs provide no means
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to specify precisely what the behavior of a class is, programmers must rely on in-
formal comments or on the implementation code to determine the behavior which
must be conformed to. Moreover, the static type of a polymorphic expression of-
ten corresponds to an abstract class [WB.J90, KM90, Bud91] for which there is no
implementation. In such a case, the programmer must rely exclusively on informal
comments since there is no implementation code to fall back on.

In a small, closed system which is written entirely by one designer, it may be
acceptable to document these restrictions informally or not at all. However for the
purposes of black box software reuse, this approach is unacceptable. If polymorphic
code is to be distributed and reused with subclasses its designers have never conceived
of, it is imperative that the precise constraints on client-subclasses be documented,
and that the code be guaranteed to work with any client subclass which conforms to
those constraints. Otherwise, the polymorphic code cannot be reused in a black box
fashion and much of the incentive for reusing this code, rather than writing it from
scrateh, is lost.

As discussed in section 2.2, there is no guarantee that a subclass B will be be-
haviorally compatible to its superclass A, unless B is also a semantic subtype of A.
If a message is sent to an object whose actual type is not a semantic subtype of
its nominal [Lea91] type, then there is no guarantee that the message will have the
intended behavior. If an instance of subclass is used where instances of a superclass
are expected, and the subclass is not a subtype, then the resulting program may
behave in unexpected ways. This is further evidence that the distinction between
subtypes and subclasses is not just an academic curiosity; this distinction is crucial
in understanding whether a piece of polymorphic code will behave as intended for a
given subtype or when a new subtype is added.

Formal specifications of the semantics of class behavior hold much potential for
coping with all these problems. They make it possible to specify precisely the prop-
erties of the objects which a piece of polymorphic code is capable of working with,
allowing this code to be reused in a black box fashion. As we have noted in section
2.2, subtype relationships cannot be deduced without a formal semantic description

of the classes involved. However, the key to being able to reuse polymorphic code in



a black-box fashion is based on the observation that the informal notion B behaves
like A (or B is substitutable for A) can be formally charactenzed by requiring that B
be a semantic subtype of A.

Using this approach, it is possible to realize the advantages of extensibility promised
by OOP. Leavens [Lea90, LW90, Lea91] has done work in this direction and has ar-
rived at a modular specification and verification technique for OO programs which
makes it unnecessary to respecify and reverify unchanged polymorphic code when
new types are added. His verification technique is sound and complete and can bhe
used to formally verify the correctness of an implementation involving polymorphic
code with respect to its specification. However, Leaven’s formal results are limited
to applicative QO languages involving immutable types.

Ideally, a ROOCSL should permit modular verification, even for imperative OO
languages with mutable objects such as C+4+4. The existence of such a technique
would be evidence that the underlying specification framework is sound and precise.
In practice, such techniques would also enable developers to reason rigorously about
the behavior of polymorphic programs, without having to resort to a fully formal

verification approach.
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2.4 Subsystems and Frameworks

“The big lie of object-oriented programming is that objects provide en-
capsulation. In order to accomplish anything, objects must interact with
cach other in complex ways, and understanding these interactions can be

difficult.” [Hog91]

Subsystems. Recent literature on object-oriented software development has be-
gun to recognize the importance of inter-object behavior in OO systems and this
has been expressed in terms of subsystems and collaborations, responsibilities and
mechanisms [BC89, WBJ90, WBWW90, G.BI1]. It is clear that an understanding
of inter-object behavior is necessary to understand the design of an object-oriented
system. In all hut the simplest cases (e.g. ADTs such as stacks, lists. and tables)
uhjeets do not act in isolation from one another but are part of a subsystem [WBJ90)
of classes which cooperate to fulfill a larger purpose. The behavior of classes involved
in such cooperations can be fully understood only in the context of their relationship
to the other classes in the subsystem to which they belong.

From the point of view of reuse, subsystems are a very attractive concept since
they represent a higher level unit of reuse in comparison to stand-alone classes.
Reusing a subsystem implies reusing the design and implementation of a group of
classes and their interactions, rather than just reusing the implementation of a single
class. In fact, hecause of the central imvortance of groups of cooperating objects in
00 systems it can be argued that a class, in general, represents too fine grained a
construct to adequately serve the purposes of a reusable object-oriented component
[WRBJY0].

Interobject interactions between the classes in a subsystem must be well under-
stood before a subsystem can be reused. Current OOPLs provide no support for the
specification and abstraction of the interactions between objects; they only provide
the syntactic mechanism for implementing subsystems. The existence of inter-object
behavior in a system, and in particular the behavioral dependencies [HHG90] which
they imply, cannot be easily inferred. Instead, they are spread across many class

definitions in method implementations.



For the same reasons discussed in section 2.1, it is desirable to use formal spec-
ifications, rather than informal specifications or the implementation code itself, to
describe the inter-object behavior in a subsystem. It is also important that the inter-
actions be described in a black-box manner, for the same reasons as it is necessary
to describe class behavior in a black-box manner.

[HHGI0] presents pioneering work on the specification of inter-object behavior,
The approach presented in (HHG90] appears promising but no formal syntax and
semantics has been given for the specification language used to specify contraets. In
addition, the work does not consider the specification of the hehavior of individual
classes, but only class interactions.

To obtain an integrated specification language which can specify hoth the behavio
of individual classes as well as inter-object behavior, it would he necessary to adapt
the approach of [HHG90], or another approach capable of achieving, the same tesult,
and appropriately combine it with a specification language capable of specilying the
behavior of individual classes. An ideal ROOCSL should provide suelt an integrated

capability.

Frameworks. Frameworks are similar to subsystems and go a step further in the
direction of promoting reusability in OO [Deu87, Deusy, WRIN0, HHGY0] They
are an attempt at providing a means to rense entire designs and implementations
for a given application domain (e.g. user interfaces [JMS8Y], VLSI routing, algorithms
[SAB9). and operating systems [RC89]). Frameworks not only provide all the hasic
functionality required for a given application domain. but also the flexibility of heing,
able to customize and refine most of this functionality to suit the needs of a particulin

application.

Frameworks are characterized by the following properties [WEBJ90]:

e They consist of a collection of abstract and concrete classes. Part of the defin

tion of each abstract class is its responsibilities.

o They contain a description of the collaborations between the objects in ity

abstract classes.




e They are designed to be refined. This is the principle difference between frame-

works and subsystems.

e They are more than a collection of classes, but include instructions for making

new subclasses and for configuring applications.

o They are used by writing a program which configures together a set of objects
belonging to the classes in the framework. This is accomplished by creating a

set of objects and performing operations to interconnect them.

o A framework can be refined by changing the configuration of its components or

by creating new kinds of components (i.e. new subclasses of existing classes).

o Even when new subclasses are needed, these are very easy to produce because

the abstract superclasses provide their design and much of their code.

Because of their ability to be refined and customized. frameworks offer further
opportunities for reuse. However, this comes at a price. Reusing frameworks intro-
duces new complications not associated with the reuse of subsystems. To obtain a

given behavior it is necessary to determine:
o From which existing classes should new classes be derived ?
e Which methods should be overridden in those new classes ?
o Which new objects should be created ?

e low should objects be initially interconnected ?

For the effective reuse of frameworks, it is necessary to be able to answer such
questions with minimal effort and without having to inspect source code. The work
presented in [HHGI0] shows how this can be accomplished. Contracts are introduced
to specify behavioral compositions and the obligations on participating objects. Con-
Jormance declarations are used to specify how specific classes, and thus their instances,
support the role and obligations of participants in a contract. These two mechanisms

combined allow for the explicit representation of application frameworks. An ideal

23



ROOCSL should provide such capabilities for specifying frameworks as part of its

integrated specification approach.
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2.5 Evaluating Completeness of Specifications

We have already stated repeatedly that a ROOCSL must be able to specify the
hehavior of classes. However, up to now we have side-stepped the issue of defining
what we mean by the behavior of a class. Without a precise definition of class
behavior, there can be no systematic methodology for evaluating the completeness
of a class interface specification. Such an evaluation is required to ensure that a
specification provides a developer with all the information required to reuse a class
in a truly black box fashion.

In the absence of a systematic method for evaluating the completeness of a
class specification, the evaluation becomes a subjective matter, leaving it to the de-
signer/implementor’s discretion what the specification should and should not state.
This, in turn, can very adversely affect the ability with which a class can be reused.
Incomplete documentation may confuse, or worse, mislead a prospective reuser as to
how a class should be used. From the reuser’s point of view, having to refer to an
incomplete specification is just as undesirable as attempting to reuse a class whose
implementation is defective.

The availability of a methodology for evaluating the completeness of a specification
also makes it possible to formally assess the expressiveness of a candidate ROOCSL.
Ideally, a ROOCSL should be able to provide a complete specification of any arbitrary

class.



2.6 Verifying Correctness

With reusable components acquired from many different places, a designer must bhe
especially careful not only to have a precise, unambiguous understanding of what cach
component is supposed to do, but also some assurance that it will do that. Much of
the advantage of reuse is lost if it is necessary to test each component as carefully
as if it had been developed from scratch. In this context also, formal specitications
provide an advantage over natural language specifications since they provide a very
precise description of the intended behavior of a given module against which the
implementation can be verified.

The correctness of a class’s implementation with respect to its specification can
be formally demonstrated using the approach described in [Hoa72, Ame89]. The
ease with which such a formal proof of correctness can be developed depends on
the complexity of the semantics of the programming language, the semanties of the
specification language, and the complexity of the class’s implementation.

In an industrial context, it may not always be feasible or practical to develop
formal proofs of correctness for class implementations.  The availability of com-
plete formal behavioral specifications can still lead to significant iinprovements in
the correctness, and hence the quality, of such classes. Black box testing aund code
walkthroughs can be used to verify the correctness of the implementations of elasses
against these formal specifications. This represents a pragmatic engineering compro-
mise for industry and could be used to “certify” that the implementation of a class is
correct within a certain tolerance using statistical quality control techniques [('M90)].
A useful compromise between these two approachies would be to formally prove the
correctness of certain critical components of a system and then nse inspection, hlack
box testing and statistical quality control for the remaining components.

Testing or inspecting the implementation of a class against a formal specification
is much more meaningful than it is against an informal specification. The formal
specification provides a precise, unambignous description of the hehavior which 4
candidate implementation should satisfy. In contrast, an informal specification does
not provide an adequate gauge against which an implementation can be evaluated.

The specification is potentially vague, incomplete and ainbiguous, leaving it up to
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the tester to interpret just what the behavior of a class should be. This later impacts
the effectiveness with which developers can correctly reuse such a class. Without a
precise specification of a component’s intended behavior, determining whether or not
a certain class hehavior is a “bug” can be quite a subjective matter. It is difficult to
tell what is and isn't an error when it isn’t clear what is being said in the specification.
As a result, the correctness or reliability of a component can only be as good as its

specification.



2.7

Desirable Properties of a ROOCSL

In summary, an ideal ROOCSL should have the following properties:

It should have a formal syntax.
It should have a formal semantics.

It should provide the capability to write specifications which are implementation

independent (2.1).

It should define an appropriate semantics for determining subtype relations and

make a distinction between subtyping and implementation inheritance (2.2).
It should permit inheritance of specifications (2.2).
It should permit modular specification (2.3).

It should provide a methodology or proof procedure to verily the correctness of

a candidate implementation in a modular fashion (2.6,2.3).

(viil) It should be able to specify interobject hehavior so as to permit the specification

(ix)

(x)

of reusable subsystems and frameworks (2.4).

It should provide a methodology for evaluating the completeness of specifica

tions (2.95).

It should be sufliciently expressive to write complete specifications of any arbi

trary class (2.5).



2.8 Scope of This Thesis

For the remainder of this thesis, we will deal with the identification and adaptation
of a suitable formal ROOCSL for C+4 as well as with the evaluation of the com-
pleteness of specifications written in the selected ROOCSL. However, we will restrict
our attention to class designs which do not involve interobject behavior.

We will consider the distinction between subtyping and implementation inheri-
tance and define an appropriate semantics for determining subtyping relationships
for the ROOCSL of our choice. This permits modular specification but not modular
verification since we do not consider formal verification in this thesis.

For code rense through inheritance, we assume a disciplined approach in which
heirs cannot directly access the instance variables of their parent classes and access
them only through the use of methods. This paradigm is supported in languages
such as CommonObjects, Self, and Trellis/Owl and can also be enforced in C++ by
using privale data members exclusively. As it has been explained in [WBW89], this
disciplined approach makes code reuse more effective because directly referring to the
variables of a class severely limits the ability to refine subclasses. This behavioral
approach to reuse via inheritance also preserves a black box approach to reuse where
it is unnecessary to read the source code of a class to reuse it.

The issues we have chosen to consider in this thesis constitute a first logical step
towards the larger goal of developing a ROOCSL having all the properties identified
in the previous section. These issues must be tackled before the problem of providing

the remaining properties can be addressed.



Chapter 3

Choice of A Specification
Language

3.1 Survey of Module Specification Languages

In this section we survey different formal specification languages which have heen
proposed for the specification of object-oriented modules and assess to what extent
each of the approaches satisfies the requirements we have ontlined in seetion 2.7, The
results of this analysis are summarized in the table of figure 3.1 Fach row in the
table corresponds to a property identified in section 2.7, Fach column in the table

refers to one of the the specification approaches deseribed helow.

3.1.1 Fresco

Fresco [Wil91, Wil92h, Wil92¢] is a Smalltalk-based interactive environment suppor
ing the specification and proven development of rensable Smalltalk software compo
nents. Fresco specifications are model-oriented and based on VDM, The verification
of components is accomplished using a mixture of formal proofs and informal argn
ments.

In Fresco, no strong distinction is made hetween type specifications (hehavioral
descriptions of classes) and class specifications (specifications which describe the i
plementations of classes). One syntactic framework, the type felass deseription (1D
serves both purposes. A TCD can describe a specification or an implementition o
most commonly, a mixture of the two. As a result, model variables may be hypothet
ical (i.e. abstract) or they may correspond to actual program vanables. Specification
assertions may also be interweaved within the implementation code. The code i
written in a variant of Smalltalk which has been modified for a more convemen
integration with specification constructs.

According to the designer of Fresco. the lack of a elean separation between specihy
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cations and implementations increases the flexibility and ease of program specification
and verification. However, this lack of separation also has the very undesirable effect

that specifications are implementation dependent, making them ill-suited for reuse.

3.1.2 Eiffel

The object-oriented language Eiffel [Mey88] provides constructs for writing assertions
which attempt to specify the behavior of Eiffel classes. The assertions in each class
consist of boolean expressions written using the same syntax as program statements.
and are used to write pre- and post-conditions as well as a class invariant.

Since there are no abstract values in the Eiffel specification sublanguage, speci-
fications refer to the instance variables and operations of a class. Implementational
specifications are used because the emphasis is more on providing runtime checks
for debugging and on providing a precise description of a class’s implementation.
Unlortunately. this makes the resulting specifications implementation dependent and
unsuitable for describing reusable classes in a black box fashion.

Strictly speaking, it is possible to write specifications which are implementation
independent i Eiffel. This involves referring only to the methods of a class in a
specification. The use of this technigue is advocated for the specification of deferred
(i.e. abstract) classes bat, unfortunately. as Meyer himself acknowledges [Mey88. p.
239] this style of specification is not even sufficiently expressive to specify a stack
class. This is due to the absence of universal quantification and model variables in

the Eiffel assertion language.

3.1.3 Anna

Anna [Luc9l, LST91]. is an extension to the Ada language which adds facilities that
are useful for specifving the intended behavior of Ada programs. The extensions
to Ada take the form of annotations which appear as formal comments within the
Ada source text. The textual position of formal comments is used to relate the
specifications written in the formal comments to program fragments.

Anna annotations can be used to specify both the interfaces and implementations

of Ada packages (modules). There are two principal styles for specifying the behavior
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of Ada packages using Anna. The first involves the use of functions, called basie
concepts, which are used to define the behavior of the visible operations in a package.
These operators are assumed to be so basic that their semantics can be informally
understood with clarity, and hence no specification is provided for them. This as-
sumption has the severe disadvantage that the specification is not completely formal,
although deemed acceptable to the designers of Anna because the implementation of
these functions can be executed to “debug” the specifications. For the purposes of
specifying the interface of reusable module interfaces this approach is not adequate.
Such specifications do not provide all the information required to reuse the module
in a black box fashion.

The second approach for specifying the behavior of Ada packages involves the use
of virtual theory packages. This is almost identical to the Larch [GHWSA/a] approach
to module specification. Theory packages consist of equational axioms, as in an
algebraic specification, which define the properties of types. The specification of an
actual package imports theory packages which provide a precise semanties lor the
basic concepts required in the specification. This is analogous to inclusion of LSL
traits in Larch interface specifications.

Because Ada does not support inheritance, Anna does not provide any features

relating to semantic subtyping and inheritance of specifications.

3.14 A4+

A++ (annotated C++) [CLY0a, ('L90L] is both an annotation formalism aud a pro
posed C++ CASE tool supporting object-oriented annotations for C44. The anno
tation formalism contains features inspired by Auna and Eiffel, but with constiets
specifically designed around C++. Some of the goals of A4+ are: (i) To inerease
code safety, by formally verifying code fragments against their annotations (i) To
increase code clarity by replacing explicit error checks in the code with higher-level
annotations which automatically generate the corresponding checks at ran-time when
necessary. (iii) To increase code performance hy using the annotations as an aid 1o
optimization.

As in Anna, annotations are used to specify hoth elass implementations and inter
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faces. Class interfaces are specified by giving pre- and post-conditions for each of the
methods. Also as in Anna and Eiffel abstract model variables are not used and the
assertions can refer only to the operators and variables of the class. As in Anna, the
semantics of “basic concepts” need not be explicitly provided by the specification and
can be left undefined resulting in a specification which is not semantically complete.

A++ also provides some support to assist one in attempting to fully characterize
the semantics of “basic concepts”. However, A4+ differs from Anna in the manner
in which this support is provided. Rather than following the Larch approach, A++
provides constructs to emulate an algebraic specification style in addition to the
available axiomatic specification style.

Both specification styles can be used within the same specification. There is no
clean two-tiered separation as in Larch or Anna. There is no distinction between
algebraic operators and methods, these are taken to be one and the same. Moreover,
the emulation of the algebraic style is very limited. Relationships amongst methods
are specified by giving axioms which apply to a sequence of operators. This approach
lacks the ability to functionally compose operators, as methods of a class are typically
not functions since they mutate the receiving object. As in Eiffel, this specification
approach appears unable to fully characterize the behavior of certain simple classes

like Stack.

3.1.5 Larch/C++

Larch/C4++ [LC92] is part of the Larch [GHW85b, Win83, Win87] family of specifi-
cation langnages. Larch languages are formal specification languages geared towards
the specification of the observable effects of program modules, particularly modules
which implement abstract data types. Larch provides a two-tiered approach to spec-

fication:

e In one tier, a Larch Interface Language (LIL) is used to describe the seman-
tics of a program module written in a particular programming language. LIL
specifications provide the information needed to understand and use a module
interface. LIL doesn™t refer to a single specification language but to a fam-

ily of specification languages. Each specification language in the LIL family
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is designed for a specific programming language. The LIL for ("+4 is called

Larch/('++.

LIL specifications are used to specify the abstract state transformations result-
ing from the invocation of the operations of a module. These specitication are

written in a predicative language using pre- and post-conditions,

e In the other tier, the Larch Shared Language (LSL) is nsed to specify state-
independent, mathematical abstractions which can be referred to in LIL spec
ifications. These underlying abstractions, called frails, are written in the style

of an equational algebraic specification.

LSL is programming language independent and is shared by all LILs.

Thus, a Larch specification of a program module consists of two distinet specifi-
cation components: an LIL interface specification and one or more LSL traits which
describe the underlying traits. The philosophy behind this two-tiered approach is

summarized in [Win87] as:

We believe that for specifications of program modules, the environment
in which a module is embedded. and hence the nature of its observable
behavior, is likely to depend in fundamental ways on the semantic prim-
itives of the programming languages. ... Thus we intentionally make
an interface langnage dependent on a target programming langnage, and
keep the shared language independent of any programming langnage. ‘lo
capitalize on our separation of a specification into two tiers, we isolated
programming language dependent issues — such as side effects, error han-
dling, and resource allocation — into the interface langnage component

of a specification.

As a result of this philosophy, Larch’s two-tiered approach makes it possible to
express programming language dependent module properties using a syntax and se-
mantics which reflects the underlying programming language. This is achieved by
providing constructs for expressing programming langnage dependent module prop

erties such as parameter passing, side effects, exceptions, and conenrreney nsing the
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syntax and semantics of the underlying programming language.

The syntax and semantics of each LIL also takes into account the syntax and
semantics of the type system and the memory model of the underlying programming
language. For example, the syntax and semantics of C pointers, arrays, structs and

™ and

other basic data types are built into Larch/C++ and C operators such as
=" are also built-in. As a result, the formal parameters in the specification of an
operation can be referenced using the same syntax and semantics as in the underlying
language. This built-in support facilitates the task of writing formal specifications
for class interfaces.

Like other Larch languages, Larch/C++ has the advantage that interface specifi-
cations are implementation independent. This is because they do not need to refer to
the instance variables of a class to specify the semantics of its interface. Instead, the

interface specifications refer to abstract sorts whose properties are defined axiomati-

cally in traits.

3.1.6 Larch/Smalltalk

Larch/Smalltalk {Che91] is a Larch interface specification language for Smalltalk. It
follows the same two-tiered approach as other Larch languages, but the interface
langnage has been tailored to Smalltalk.

The design for Larch/Smalltalk presented in [Che91] provides a formal syntax
for the language but the semantics is presented informally. Subtype relations are in-
cluded as part of the design of Larch/Smalltalk, but these are based ouly on syntactic
conditions. No semantic definition of subtyping is provided. As well, no mechanism
for specification inheritance is clearly defined.

Like other Larch languages, Larch/Smalltulk has the important benefit of provid-

ing abstract, implementation independent specifications.

3.1.7 LM3

LM3 [Jou91]is a Larch interface specification language for the Modula-3 programming
language [CDG*89]. The design of LM3 described in [Jon91] provides a formal syntax

but no formal semantics. Inheritance of specifications and a semantic definition of
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subtyping are not treated either. Like other Larch languages, LM3 has the important

benefit of providing abstract, implementation independent specitications.

3.2 Justification for Choosing Larch/C++

Based on the considerations discussed in the previous section, the data in table 3.1,
and the design principles presented in section 2.7, Larch/('+4 can be seen to be the
preferred choice for specifying the behavior of ("++4 class interfaces. In this section,
we provide a detailed analysis justifying this choice.

In section 2.1 it was emphasized that the ability to provide implementation inde-
pendent specifications is of utmost importance for a ROOCSL. The ability to write im-
plementation independent specifications is one of the most important considerations
in selecting a ROOCSL for C++. In contrast to the Fresco and Eiffel approaches,
Larch/C++4 can be used to write implementation independent specifications,  Al-
though A++ and Eiffel can be used to write implementation independent specili-
cations, they are not sufficiently expressive to express even simple examples like a
Stack class. The Larch two-tiered approach as used in Larch/C'++4, Larch/Smalltalk,
LM3 and Anna which satisfies the implementation independent requirement while
providing a sufliciently expressive language.

Larch/C4++ and A++ are the languages which provides built-in syntactic and
semantic support for specifying C++ class interfaces. Using one of the other ap
proaches (e.g. Eiffel, Fresco) to specify C++4 class interfaces would require extending,
and adapting the syntax and semantics of these approaches for C44. Suchan adap
tation is by no means trivial and would require a considerable amount of effort, almaost
as much as designing a specification language for C++ from seratch.

An alternative to using one of the langnages discussed in the previous section on
which to base a ROOCSL would have been to use a general purpose specification
language such as Z or VDM. In contrast to Larch/C4+4, such univcrsal specification
languages do not offer the built-in support for C4++4 syntax and semantics. 'The
result is that Larch module interface specifications have the potential of being shorter
than specifications written in a universal specification langnage. They can also be

generally clearer and more natural to developers who are acenstomed to the syntax
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Larch/ | Larch/
feature Fresco | Eiffel | Anna | A++ | C++ | Smalltalk { LM3

Formal Syntax Y Y Y
Formal Semantics N N P
Impl. Indep. Pt Pe Y
Subtyping -
Inher. of Specs
Modular Spec.
Modular Verif.
Interobj. Beh.
Completeness

N
N
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[Expressiveness

Y : Feature is supported N : Feature is not supported
P’ : Feature is partially supported ~ : Feature is not applicable

The formal semantics is currently being defined.

Only the package interface component of nna is implementation independent.

Only the behavioral specification portion of A++ is implementation independent.

Excluding the portion of Larch/C++4 used to generate implementation header files

(i.e. private member and function declarations).

No specifie formal semantacs for subtyping was provided in the preliminary

design of Larch/C+4 [LC92] The extensions proposed in this thesis (chapter 6) provide one.
Because specifications may refer to instance variables in Fresco, the inheritance of specifications will not
be well defined in cases where the instances variables are not used by overriden methods of a subclass
1he work presented in this thesis (chapter 6) extends the specification inheritance

mechanism presented in the preliminary design of Larch/C++ [LC92] and remedies several

problems identified with that preliminary proposal.

The work presented in this thesis (chapter 3 and 4) provides a methodology for evaluating the
completeness of Larch/C++ specifications.

This is only a conjecture It would be necessary to prove it formally to make this

a definite claim. However, to state the negative can be done with certainty since some examples

eaist which disprove this.

Applies only to the Anna approach which uses theory packages

to define basic concepts.

Figure 3.1: Support for Properties in Different Specification Approaches




and semantics of ("++. This avoids having to learn an entirely new syntax.

One of the advantages which has been attributed to model-oriented languages such
as Z and VDM is their ease of use. intuitiveness, and expressiveness, Experience in
the formal methods community suggests that model-oriented specifications are easier
to read and write than other types of specifications such as algebraic specitications
[Wil91]. Strictly speaking, Larch is a definitional language with equational axioms in
the LSL-tier and Hoare-style axiomatic specifications in the interface tier. However,
its two-tiered approach makes it as intuitive and expressive as other model-oriented
specification languages such as Z and VDM. The abstractions defined by traits play
the same role as the abstract models (e.g. sets, maps) in these langnages.  From
this point of view, the interface tier of Larch is very similar to a model-oriented
specification language such as VDM,

The Larch two-tiered approach also has the important advautage of providing a
useful separation of concerns between the two tiers. Mathematical abstractions are
defined in the LSL tier while programming language specific issues are specitied i the
LIL tier. This makes it possible to reuse LSL specifications in different LIL module
specifications. Many common traits are available in the LSL Handbook [GHWSAD).
Larch also has a powerful theorem prover, LP (Larch Prover), which can be used to
perform semantic analysis of LSL traits [GG8Y, GGY0, GGHI0, GGHY0).

In addition to the many advantages of Larch/C4++4 discussed above, the work
presented in this thesis also proposes the following extensions so as to further inerease

the usefulness of Larch/C++ as a ROOCSL for C++:

(i) A definition of completeness for class interface specifications and a method for

evaluating the completeness of Larch/C++ specifications.

(i) A proof-theoretic definition for verifying subtyping relations as well as & method

ology for applying the definition.

(iii) A mechanism which permits the inheritance of specifications.
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3.3 A Larch/C++ Tutorial

In this seetion we provide a brief introduction to LSL and to Larch/C++. Instead of
presenting a formal description of Larch, we focus on providing an intuitive under-
standing of Larch/C++ specifications through some simple examples without going
through an exhaustive description of LSL and Larch/C++. We present only the fea-
tures which are required to understand the examples discussed in this thesis. For a
more thorough and rigourous treatment of the semantics of Larch interface languages
and of LSL the interested reader is referred to [Win83, Win87, GHM91, GH91] and
for more information on Larch/C++ the reader is referred to [LC92]. The summary
below is based primarily on [Wing7] and [LC92].

As we mentioned in the previous section, Larch is a property-oriented specification
language that combines both axiomatic and algebraic specifications into a two-tiered
specification. The axiomatic component (LIL) specifies the state-dependent behavior
(for example, side effects and exceptional termination) of programs. The algebraic
component specifies state-independent properties of the data accessed by programs.

The unit of encapsulation in LSL is the trait. Figure 3.2 shows an LSL trait
which specifies the properties of a set. This example is similar to a conventional
algebraic specification in the style of [EM85, GH78, Bid88]. A trait contains a set of
operator declaratious, or signatures; which follows the introduces keyword, and a
set. of equational axioms, which follows the asserts keyword. A signature consists of
the sorts and the domain and range of an operator. The equational axioms specifies
a set of constraints on the defined operators.

There are a few notable differences between Larch traits and conventional alge-

braie specifications:

(1) The name of a trait (e.g. SetTrait) is distinct from the name of all sort and

operator identifiers defined in the trait (e.g. Set).

(i1) The names of sorts are not explicitly declared. They are implicitly declared by

appearing in a signature.

(1i1) Larch makes use of the clauses partitioned by and generated by to increase
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the expressive power of traits.

(iv) The semantics of = and == are exactly the same in LSL; only their syntac
tic precedence differs to ensure that expressions parse in an expected manner
without having to use parentheses. The operator = binds more tightly than

the operator ==,

(v) Equations of the form term == true can be abbreviated to ferm; thus the third
equation in figure 3.2 is an abbreviation for subsel(emplyscl, s) == true and
the first equation is an abbreviation for not(member(r,cmptyset)) == true.

(vi) The semantics of Larch traits is based on multisorted first order logic with
equality rather than on an initial, final or loose algebra semanties used by other
algebraic specification languages [EMS5, GTWTS, STS87, BidSs]. Fach trait
denotes a theory! in multisorted first-order logic with equality.  The theory
contains each of the trait’s equations, the conventional axioms of first order
logic with equality, everything which follows from them, and nothing else. T'his
means that the formulas in the theory follow only from the presence of assertions
in the trait — never from their absence. The theory of a trait can also be

strengthened by adding a generated by or a partitioned by clause,

(vii) A trait definition nced not correspond to an abstract data type (ADT) definition
since an LSL trait can define any arbitrary theory of multisorted first-order
equational logic. For example, a trait can be used to define the fiest order
theory of mathematical abstractions such as equivalence relations whicl do not

correspond to abstract data types.

(viii) LSL traits can be augmented with checkable redundancies in order to verify
whether intended consequences actually follow from the axioms of a trait. These
checkable redundancies are specified in the form of assertions which are included

in the implies clause of a trait and can be verified using LP.

In the trait of figure 3.2, the generated by clause states that all values of the

sort Set can be represented by terms composed solely of the two operator symbaols

YA theory 15 a set of logic formulas having no free variables
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cmplyscl and inserl. In other words, saying that sort S is generated by a set of
operators, Ops, asserts that each term of sort S is equal to a term whose outermost
operators is in Ops. The operators in the set Ops are referred to as the generators
of the sort S. A generated by clause strengthens the theory of a trait by adding an
inductive rule of inference which can be used to prove properties which hold for all
Set values.

For LSL traits which define an ADT, there is a sort referred to as the distinguished
sort, sometimes also called the principal sort or data sort. For example, for the trait
of figure 3.2 the distingnished sort is Set, which is the sort corresponding to the set
ADT.

The partitioned by clause provides additional equivalences between terms. In-
tnitively, it states that two terms are equal if they cannot be distinguished by any of
the functions listed in the clause. For the Set example, this property could be used
to show that order of insertion in the set is commutative. That is, it could be shown
that the terms fusert (i, insert(j, s)) and insert(3, insert(i, s)) are equal for all values
of i, j: Int and s: Int.

The exempting clause documents the absence of right-hand sides of equations for
delete(x, emptyset); this incompleteness is dealt with in the interface specification.
The converts and exempting clauses together provide a way to state that this
algebraic specification is sufticiently complete [GH78]. Intuitively, what the converts
and exempting clauses are saying is the following: “tie specification of the operators
ddete, unionn?, delcte, inter, member, subsct, size, isEmpty is complete in the sense
that any terms involving these operators can be reduced to terms not involving these
operators. The only exception to this rule is for terms which involve a subterm of
the form delete(r, emptyset). For example, any term { whose outermost operator
is unionn or inler can be reduced to a term s involving only emplyset and inscrt,
provided that ¢ has no subterms of the form delete(z, emptyset).

LSL also provides a ways of putting traits together, one of which is through an
includes clause. A trait that includes another trait is textually expanded to contain

all operator declarations. constrains clauses, generated by clauses, and axioms of

9eqr . ogs . .
“We use the identifier unionn rather than union because union is a reserved LSL word.
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the included trait. The meaning of the including trait is the meaning of the textually
expanded trait. In the Set example, the signature and meaning of the '+ operator
comes from the Integer trait. Boolean operators (true, false, not, V. A, =, and
—) as well as some heavily overloaded operators (if-then-else. =) are built into the
language; that is, traits defining these operators are implicitly included in every trait.

Figures 3.3 and 3.4 show a Larch/C++ interface specification for IntSet, a class
which implements set of integers. For each IntSet operation, the specification consists
of a header and a body. The header specifies the name of the operation, the names
and types of the parameters, as well as the return type, and uses exactly the same
notation as in C+4. The body of the specification consists of an ensures clause as
well optional requires and modifies clauses.

The requires and ensures clauses specify the pre- and post-condition respee
tively. For each IntSet operation, the requires and ensures clanses specify the pre-
and post-condition respectively. The identifier self in the pre- and post-condition
assertions denotes the object which receives the message corresponding to the speci-
fied method. The modifies clause lists those objects whose value may change as the
result of executing the operation. Hence, for example, add and ranove are allowed to
change the state of an IntSet object but size and isln are not. An omitted requires
clause is interpreted to mean “requires lruc” and an omitted modifies clause is in-
terpreted to mean that no objects are modified by the corresponding method (neither
self, nor any parameter objects).

The link between the IntSet interface specification and the SetTrait LSL specifi
cation is indicated by the clause uses StackTrait(IntSct for Sct, int for Iv). The used
trait IntSet provides the names and meaning of the operators cmplyscl, wscrl, delet e,
unionn, intersect, member, subsel, size, and iskmply as well as the meaning of the
equality symbol, =, which are referred to in the pre- and post-conditions of IntSet”s
method specifications. The uses clause also specifies the type to sort mapping which
indicates which abstract values the objects involved in the specification (e.g. sdf and
parameter objects) can range over. For example, the abstract values of IntStack

objects are represented by terms of the sort Set.
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Associated with cach member function specification is the predicate over two

states,

Pre — (Modifies A Post)

where Pre and Post are the assertions in the requires and ensures clauses, respec-

tively, and Modifies is the implicit assertion associated with the modifies clause.

The clanse modifies ry, ..., r, implicitly asserts that the method changes the value

of no object in the environment of the caller except possibly some subset of [zy, ...,

I

It. is important to note the following points about a Larch/C++ class interface

specification:

(i)

(if)

(i)

self is an abbreviation for (*this). In C++, this represents a pointer to the
receiving object so that self = (*this) is a name representing the receiving

object itself.

A distinction is made between an object and its value by using a plain object
identifier (e.g. s) to denote an object, and a superscripted object identifier (e.g.

!

s' or s*) to denote its value in a state.

The operators * aud ' are used to extract values from objects. An object

identilier superseripted by * denotes an object’s initial value and an object su-
perseripted by ' denotes its final value. This is similar to the use of superscripts
and decorations in VDM and Z. Thus. the assertion self’ = self* says that the

value of the object self is left unchanged.

The headers of a Larch/C4++ member function specification are deliberately

chosen to be exactly the same as C++ member function prototypes.

The modifies clause is an assertion whose meaning is given by considering it
to be conjoined to the postcondition. It is syntactically separated from the
postcondition to highlight a procedure’s potential side effect on the values of
objects. Tt is an example of a special assertion. Each Larch interface language
comes equipped with its own set of special assertions. For example, in Larch/C

and Larch /C++, there is a keyword trashed which is used to indicate dealloca-
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tion of component objects in the destructor of a class®. These special assertions

can be regarded as syntactic sugar for first-order assertions about state.

3.3.1 Inheritance in Larch/C++

For the purposes of type checking in ('++, each class name is the name of a type. The
only way to make S a subtype of T is to declare the class 8 a public subelass of T. Tt s
possible to have a purely implementation relationship between S and T by declaring S
to be a private or protected subelass of T. However. it is not possible to have a subtype
relationship without a subclass relationship. As a result, the designers of Lareh /Oy
decided to equate the notions of public subclass and subtvpe.  Svatactically. this
dectsion makes sense because the ('+4 type system allows a public subelass instanee
to be substituted anywhere a base class instance is expected. However, semantically,
there is no guarantee that a public subelass will actually be behaviorally compatible
to its superclass. The use of precise specifications and of a semantic subtyping relation

based on these specifications can be used to ensure such behavioral compatibility,

3Unlike in Larch/CLYU where all special assertions have been given a fully formal semantics
[Win83], the formal semantics for the trashed keyword has not heen given a formal scmantees vt
in Larch/C and Larch/C4-+.
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It Set'Trait(S, F): trait
includes Integer
introduces
emptyset: — Set
insert: k. Set — Set
delete: E, Set — Set
unionn: Set, Set — Set
inter: Set, Set. — Set
member: B, Set — Bool
snbset: Set, Set — Bool
size: Set — Int
isEmpty: Set — Bool
asserts
Set generated by emptyset. insert
Set partitioned by member
Vx.y: Eosot: Set
not (member(x. emptyset))

member(x. insert(v.s)) == if (x = v) then true else member(x,s)
subset(emptyset, s)

subset(s, emptyset) == (size(s) = 0)

subset(insert(x.s). t) == if member(x.t) then subset(s.t) else false
size(emptyset) == )

size(insert(x.s)) == if member(x.s) then size(s) else 1 + size(s)

size{unionn(s, t‘) == (» uv( ) + size(t)) - size(inter(s.))

delete(x. insert(v.s)) == if (x = v) then s else insert(y. delete(x.s))

unionn(s. emptyset) ==

nmonn{emptyset, s) =

unionn(insert(x.s). lu.so.t(_\.l)) == if (x = y) then insert(x. unionn(s.t))
else insert(x. insert(y. unionn(s.t)))

mter(s, emptyset) == emptyset
inter (s, insert(y.t)) == if member(v.s) then insert(yv, inter(s.t)) else inter(s.t)
ismpty(s) == size(s) =0

implies

converts delete, unionn. intersect, member. subset. size, isEmpty
exemptingVi: E
delete(i, emptyset)

Figure 3.2: LSL Trait for Set



class IntSet

{
uses IntSetTrait(IntSet for S):
public:
IntSet()
{
modifies self;
ensures self’= emptysect:

}
~IntSet()

{

modifies self;
ensures trashed(self):

}

int size()

{
}

void add(int i)

{

ensures result = size(sel*):

modifies self;

ensures self’= insert(i. self”):
void remove(int i)

requires ~isEmpty(sell”);

modifies self:

ensures self’= delete(i, self”);

Figure 3.3: Larch/C++ Specification for Set (Part T of 11)
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IntSet” intersect(IntSet” pS)

{
J

IntSet* unionn(lntSet” ps)

{
}

hool isln(int %)

{
}
bool isEmpty()

{
}

ensures (*result) = inter(self®, (*pS)*);

ensures (*resuit) = unionn(self*, (*pS)”");

ensures result = member(x, self*);

ensures result = isEmpty(self*);
b

Figure 3.4: Larch/C++ Specification for Set (part II of 11)
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Chapter 4

Formal Definition of Class
Behavior and Complete
Specification

As we have mentioned previously, the availability of a completc class interface spee-
ification is of utmost importance in ensuring the effective reuse of a class. However,
there are many possible sources and types of incomplcteness in a specification [AKY2).
We have stated informally that a complete specification should provide a developer
with all the information required to reuse a class in a black-box fashion. Tn this see-
tion, we will make precise and formalize this notion of completeness in the context of
software reuse. This will then make it possible to develop a criterion for evalnating
the completeness of class interface specifications.

For the purposes of software reuse, the principal type of incompleteness which
is important to avoid is partial specification [AK92]. Such bhehavior results when
a specification does not fully characterize the behavior of the entity which is heing,
specified. For a class interface specification, the specificand of interest is the heliavior
of a class. As a result, we need to formalize the notion of behravior of a class in ordes
to formalize the notion of completeness in the context of software reuse.

The definition of class behavior presented here is inspired by the trace assertion
specification technique of [BP86]. Our approach makes it possible to define the be
havior of a class in a manner which is both independent of a class’s implementation
and independent of the choice of a particular specification language.

For clarity of exposition, we motivate the definition by appealing to the reader’s
intuition. Starting from an informal definition, we successively refine the definition

until a concise and precise formalization of class behavior is obtained.
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4.1 Informal Definition of Class Behavior

In accordance with the philosophy of the object-oriented paradigm, we define the
behavior of a class independently of its implementation details. We view a class as a
black box whose behavior can be perceived only by sending messages corresponding
to methods defined in the public interface. Operations and data structures which are
internal to the class implementation are not the client’s concern and should not be
referred to when describing the class behavior.

Informally, the externally observable behavior of a class is perceived by an object’s
response to messages and by the constraints which apply to messages which can be

sent to this object. In formalizing this notion, the following questions arise:
e How does an object respond to messages 7
e llow are these responses perceived ?

e What constraints apply to the invocation of methods ?

Informally, these questions can be answered as follows:

e An object responds to a message by performing one or more of the following

actions:
- Modifying its internal state variables.

- Modifying the state of the external environment (e.g. graphical display.

database, communication network).
~ Returning a value.

It should be noted that there is another possible action which an object can
perform in response to a message. In response to a message my, an object a of

class A may send a message m, to some other object b of a class B.

In many cases, the invocation of m, will be an implementation detail of class A
which should be transparent to the user of m; to preserve the encapsulation of
A. In such cases. the invocation of m, is not externally observable and so is of

no concern when discussing the externally observable behavior of A.
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In some cases, it will be necessary to consider the invocation of m, to deseribe
the externally observable behavior of A. In such instances the user of class A
must know about class B to fully understand the semantics of method ney. This

corresponds to the case of interobject behavior [HHG90].

As we do not treat interobject behavior in this thesis, we assume that all be-

havior which is observable by the client is limited to the receiving object,

Each type of response is perceived as follows:

~ Modifications to the internal state of an object cannot be directly per

ceived.

— Modifications to the external environment can be pereeived through direct
observation (e.g. a graphical screen) or by probing (c.p. a database) to

inspect it.
— A returned value can be perceived by manipulating it in a program.

Thus, an object’s observable behavior can he perceived in two distinet ways
by a client: by noting changes in the state of the external enviromment or by

invoking inspector methods defined in the public interface,

We will refer to the former behavior as envirenmental behavior and the latter as
interfacc behavior. Thus, an object’s total bebavior consists of the combination
of its environmental behavior and its interface hehavior. Some classes define
objects which exhibit only environmental behavior. only interface hehavior, or

both.

The constraints which apply to methods are such that some methods can he
invoked only when the object has a particular internal state.  An alternate
behavioral characterization of this is that certain methods can be invoked only

when the sequence of methods which precedes it satisfies a given property.

Based on these considerations, and assuming a sequential, deterininistic mode] of
computation, we can informally define a complcte specification of class behamor to he

a specification which satisfies the following properties:
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e For any sequence of messages sent to a class, it is possible to deduce from
the specification whether the sequence of messages is legal (i.e. respects con-

straints).

e For any legal sequence of messages sent to a class, it is possible to deduce the
effect (i.e. change in state) caused in the object’s external environment (e.g.

graphical display, database, communication network).

e lor any legal sequence of messages sent to a class which terminates in a message
returning a value, it is possible to determine the value returned based on the
specification. We will make precise our notion of value of an object in the

following section.

4.2 Towards a Formal Definition

In this section we make more precise our definition of complete specification of class

behavior. First, we require the following definitions.

Abstract Value of an Object. In the previous section, we remarked that it is
necessary to refer to the values of objects returned by methods. This poses the
problem of deciding how we wish to represent object values. It is undesirable to
represent. the values of objects by their concrete values (i.e. the values of their instance
variables). This would compromise object encapsulation and would provide too low
a level of abstraction. Instead, we use a technique which is very common in dealing
with abstract data types [Hoa72, Ame89]. We model the abstract conceptual state
of an objeet by an element of some mathematical domain.

The use of such abstract values to represent object values is consistent with the
approach used in most formal specification languages. For example, our abstract ob-
jeet values correspond to the values of the abstract models of specification languages
such as Z and VDM or to the values of sorts of specification languages such as Larch
or OBJ. As we will show later, this correspondence is very useful in evaluating the
completeness of a class interface specification written in such a formal specification
language.

For convenience, we can also use literal values to represent the abstract values of
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“basic” objects such as integers and real numbers. For example, 1" can be used to

denote the abstract value of the integer whose value is L.

Trace of a Class. A trace of a class (7 represents a sequence of message sends on
an object of class (7, starting in the initial state. In the context of trace elements,
we will refer to the method corresponding to a message m simply as *the method m”
where this is convenient.

Informally, a trace of a class (" is a sequence where each element is the name of a
method of € along with its parameters. In addition. we make the requirement that
the first element of the sequence be the name of a constructor of (7 and that the
other elements be any method name except the constructor.

Formally, we define a trace of a class (" to be any sequence whose items are
elements of [PAMN(C), whose first item is an element of ICN(C'), and whose other
items are elements of IPMN(C) \ TCN(C). IPMN(C) and TCN(C') are defined as

follows:

IPMN(C): An IPAMN (instantiated public method name) of a class (" is the name
of a public method defined in ' or inherited from an ancestor of ', where the
abstract values of actnal parameters have been substituted for the formal parameters.

IPMN(C) is the set of all IPMNs of (.

ICN(C): Similarly, an JC'N (instantiated constructor name) of a class ("is defined as
the name of a constructor of (" where the abstract valne of actual parameter values
have been substituted for all the formal parameters of the constructor, and we denote

the sct of all JCON of a class C' by ICN ((').

Out of all the possible traces of a class, only a certain subset of these correspond
to a correct usage of the class’s methods. We call this subset the legal traces ol a
class. The legal traces of a class cannot be determined from the implementation of
a class alone and must necessarily be based on a faithful specification of the class’s
behavior. The failure of a client to respect the correct sequence and parameters valies
will typically result in an error condition or in unpredictable hehavior.

The set of all traces of a class (7 is denoted by trace(C), the set of all legal traces of

(" is denoted by Legal Tr(("), and the set of all illegal traces is denoted by legal'Tr(C).



Any given trace t € trace(C) is either legal or illegal: either t € LegalTr(C) or t €
MegalTr(C).
V-action, S-action, O-action. Iuspired by the work presented in [BP86]. we use

the following categories to characterize the possible actions of a method.

e V-action: A method which returns a value belongs to this category.

e S-action: A method which produces an observable side eflect in the object’s
external environment (e.g. display a window, emit a beep, write to a file.

transmit a packet on a network) belongs to this category.

e O-action: A method which changes the abstract state of an object belongs to

this category.

Our V-action and OQ-action categories correspond to the V-function and O-function
categories of [BP86]. However, our characterization differs from that of [BP86] in
many important ways: (i) We use this characterization as a means to define what
the behavior of a module is rather than to write a specification of the behavior of
a particular module, (i1) We use abstract values to denote the values of method
parameters and return values. This makes it possible to consider methods that take
as parameters or return values of complex objects rather than just basic values like
integers and floating point numbers. (i11) In addition to considering methods which
modify the internal state of an object, we also consider methods which modify the
state of the external environment. This makes it possible to provide a more precise
definition of class behavior.

We use the above categories to classify the methods of a class. For example, a
method which belongs to the O-action and V-action categories is referred to as an
0-V method.

We assume that a method which belongs to the S category must always also
belong to the O category so that any change in the environmental state of an object
will be reflected by a change in the abstract state of the object. Therefore, there can
be no S methods, only O-S methods or O-S-V methods.

This assumption is motivated by pragmatic concerns. In existing specification



languages (e.g. Larch, Z. VDM) there is only one abstract state which is identified
with the object or module being specified. There is no distinction between those
abstract states which correspond to the object state and those abstract states which
correspond to environmental states. Moreover, in practice, a modification to the
external environment is usually mirrored by a modification to the computer memory.
For example, modifying the contents of the graphics display involves modifying the
contents of the display buffer. The abstract state of an object is an abstraction {fo
the computer memory used, directly or indirectly, to implement an object. It is only
natural that this abstract state reflect such changes which result in a modification of
the environmental state.

The remaining possible combinations for a method are O, O-V, O-5, V', and O
S-V. Intuitively, it is clear that these can be reduced to the canonical combinations
0, 0O-S, and V. This is because it can be shown that any method which belongs
to any other combination (i.e. O-V, O-S-V) can be reduced to two methods each
belonging to a canonical combination. That is, any method which belongs to the V
category and to some other category can be split into two methods one which is a
pure function (the V portion) and another which is a procedure (the remaining O or
0-S portion). Details of a formal proof of this would require delining the semanties of
the object-oriented programming language heing considered. To cireamvent this and
to avoid having to commit to a specific programming language, we choose to aceept
the validity of our assumption as an axiom.

For simplicity. we therefore assume that all the methods which we must deal with
are of the canonical combinations O. 0-S and V. In view of the above comments, this

results in no essential loss of generality.
Complete Specification of Class Behavior. A specification of a class™s externally
observable behavior is complcte iff the following conditions are satisfied:

(i) For any given trace of a class, it is possible to determine whether or ot the

trace is legal.

(ii) For every legal trace ending with a call to a V-method, the abstract value

returned can be derived from the specification.
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(i1) For every legal trace ending with a call to an S-method, the side effect which

will occur as a result of this last method can be derived from the specification.

This definition assnmes that the specification is a faithful description of the imple-

mentation, i.e. that the implementation is correct with respect to the specification.

4.3 Formalizing the Definition

To make the definition fully formal, it is necessary to postulate the existence of two

sets. Given a class C, we assume that the following sets are available:

RVALg: the set of all abstract object values which can be returned by the methods of
(’. For each return type of the V-methods of C, it is assumed that the corresponding
classes have been assigned abstract value representations for each of their possible

objects.

EXTe: the set of all possible abstract states of the external environment. We use the
elements of a mathematical domain to model the abstract state of the external envi-
ronment, in the same manner as we have done for modeling the abstract conceptual

values of objects.,

The clements of EX T are assumed to be determined a priori and will depend
on the level of abstraction which is relevant to a particular application. For example,
in the case of a database update, it will be necessary to decide if updates should
be deseribed in terms of modifications to relations, to physical files which store the
relations, or to the bytes on the disk which stores the physical files.

We can now formally define the behavior of a class as a triple (Lega TH{("), As,

A,), called the behavior-triple, where A; and A, are partial functions:
Ay LegdTr(C) H (EXTe — EXTe )
defined by:

A1) : { envState  if isOSMethod(last(t))

undefined otherwise

where last, envState, and isOSMethod have the following interpretations:

ot
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last: The function last takes as argument a trace of length > 1 and returns the last

element of the trace.

envState: The function envState : EXTe — EXTe is defined by envState(S,) =
S’ where S, is the initial environmental state (before any methods of the trace were
executed) and S’ represents the current environmental state (after all methods in the

trace, including the final S-method, have been executed).

isOSMethod: The predicate isOSMethod takes a method name as input and returns

true if this method is an S-method and false otherwisc.

A, is a partial function
A,: LegalT{ (') 4 RVAL(
defined by:

A(t) - { val il isVMethod(last(t ))

undefined otherwise
In the above definitions val and isVMethod have the following interpretations:

val: The abstract value val represents the value returned by the final V-method of

the trace.

isVMethod: The predicate isVMcthod takes a method name as input and returns

true if this method is an V-method and false otherwise.

We provide examples involving the above operators in section 5 where we intio
duce some example class interfaces from which traces can he derived.
We now define a complete specification of the hehavior of a class (7 to he a

specification S such that for all traces t € trace((’) the following hold:

(i) Sc can be used to determine whether { € LegalTi(C) or £ € HllegalTr(C).

(ii) If t € Legal Tr(C), then Se can be used to compute the value of A,(t) and A,(t).



4.4 Applying the Definition in Practice

In the absence of a specification for a given class C, the behavior triple (LegalTr(C),
A,y Ay) which formally characterizes the class’s behavior is not explicitly available
but, rather, can be determined by exercising the class’s implementation. This triple
represents the hehavior of a class’s implementation, or of any equivalent implemen-
tation. A class interface specification attempts to describe this behavior.

To evalnate the completeness of the formal specification of a class’s behavior, we
need to show that S.. can be used to derive the behavior-triple. We will refer to this
as the compleieness eriterion. This criterion is sufficient to determine completeness

because we have assumed that the implementation of C is correct with respect to Se..

<
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Chapter 5

Evaluating the Completeness of
Larch/C++ Specifications

In this chapter, we present a methodology for evaluating the completeness of a (44
class interface specification written in Larch/C4++. This methodology is based on
the completeness criterion described in section 4.4 and is intended to verify that a
class interface specification fully captures class behavior as we have defined it
Although the methodology we present in this section is tailored to Laveh/C4+
the reader should have no difficulty in seeing how it could he adapted aud extended

to other programming languages and specification languages.

5.1 The Methodology

To evaluate the completencss of a Larch/C+4 interface specification S, Tor a class
C, it is necessary to show that S. can be used to construct the behavior triple
(Legal TH(C), Ay, Ag). We can decompose this process into three separate steps, one
for each component of the behavior triple. Each step constitutes a proof obligation
which demonstrates that the corresponding component of the behavior triple can he

derived from S..

STEP I. The first step consists in showing that S, is used to construet Legal T{(").
This is shown by proving that for any arbitrary trace t, we can determine whether
€ LegalTr(C) or t € lllegalTr(C) based on Se. If this cannot he shown for all possible
traces, then S is incomplete.

To formally demonstrate the required result for ail traces, we use a procf by
induction on the length of traces. In order to do this, it is necessary to “link™ the
traces of a class to the specification S,..

This is achieved by defining a recursive function Absval whose domainis LigalTr{ (")

and whose range is VAL, the set of all abstract values for the objects of elass €
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Given a particular trace t, Absval returns the abstract value of the state which
results after executing all the methods of the trace on an object. These methods are
applied in the order aud with the parameters specified by the trace.

In Laichy the abstract values of the objects of a class (U are represented by the
terms which denote the values of the sort SORT ¢ corresponding to class C. Therefore.
the range of Absval will he SORT¢:. SORT¢ corresponds to the distinguished sort
[GHM91] of the trait used in the specification of C.

In a Larch/C++ interface specification, the postconditions of methods describe.
among other things, how the abstract state of self! is modified by the execution of
methods. The definition of Absval is based on these postconditions so as to determine
the state changes of self resulting from the various messages.

Absval is written in such a way as to simply emulate the effect of the postcondi-
tions in the interface specification of (C. For the O-methods and OS-methods of (’,
this means that Absval must transform the current statc in the manner specified by
the posteondition of the last method of the trace. The current state is the abstract
state resulting from the execution of all the previous operations. For V-methods,
Absval does not need to transform the abstract state: it remains the same as befor. .

Based on the definition of the function Absval. a given trace f can be inductively
tested for legality. This is accomplished by determining whether the precondition in
the Larch/C4+4 interface specification corresponding to each message in the trace is
satisfied. This process is deseribed by the steps in figure 5.1.

It should be noted that the decision to use the preconditions of the interface
specification to determine the legality of traces in this methodology is specific to the
needs of Lareh/C+4. If some other formal specification langnage were used. then
the legality of traces could be defined according to some other criterion appropriate
to that formalism.

In the inductive proof we do not actually make use of the steps described in
Figure 5.1, but the proof is motivated by an understanding of those steps. Given a
trace of length n we can suppose, by induction, that the legality of the subtrace of

length n — 1 is determined. In the inductive step, it is then necessary to show that

"In Larch/C'++ self is syntactic sugar for (*this), whicl. represents the current object in C++



FOR 1:=1 to length(t) -1 DO
BEGIN
let st be the subtrace of 1
consisting of the first 1 elements;
let AV be the abstract value Absval(st);
let m be method corresponding to t{I+1);
Evaluate the precondition of m using AV and the
values of the parameters specified for m in #
END
IF each precondition above could be evaluated
THEN
IF each precondition evaluated above was satisfied
THEN trace t is legal
ELSE trace ¢ is illegal
ELSE it is not possible to determine whether tis legal
and the specification is incomplete

Figure 5.1: Steps for Verifying Legality of a Trace
g ! ymg Legaint)

th

the precondition corresponding to the n' message in the trace is evaluated,

This is accomplished by considering all possible cases for the n'™

message and
proving that, in each case, the precondition is evaluated. This, in turn, is accom
plished by making use of the fact that the abstract value of self, the object bheing

considered, is evaluated using Absval.

STEP II1. The second step consists in showing that S, can be used to constinet
A,. This is shown by proving that for any trace | € LegalTr{C') which ends in a
V-method, S, is used to determine the value of A, (1).

The proof involves a case analysis on the V-methods of (', For each case. it
is necessary to show that for all traces which end in the particular V-method, the
abstract value representing the returned value is determined using 5,..

This requires using the postcondition of the method being considered to determine
the returned value. Typically, the postcondition will refer to self, in which case the
function Abswval is used to determine the abstract value of self. The abstract value of

self can theu be used to evaluate the abstract value of result, in the posteondition,
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It is also necessary to ensure that the value of result so obtained does not
correspond to a term which is identified as exempted (i.e. not convertible) in the cor-
responding trait. This corresponds to the notion of protective specification described

in [Win83].

STEP III. The third step consists in showing that S can be used to construct
A,. This is shown by proving that for any trace 1 € LegalTr(C) which ends in an
OS-method, S is used to determine the value of Ay(t).

The method here is similar to Step 11, except that the case analysis is done on

OS-methods rather than on V-methods.

5.2 A Stack Example

The first example we consider is a class which implements a stack of integers. Fig. 5.2
shows the LSL trait for the sort Stack and Fig. 5.3 shows the Larch/C++ interface
specification for class IntStack. We will refer to the entire stack specification, con-
sisting of both the trait and the interface specification, as S}, s We have prefixed
the C4+4 member function names in figure 5.3 with *I' to distinguish them from the
corresponding LSL trait operators in figure 5.2. This is not strictly necessary, as
the context in which an identifier appears can be used to unambiguously determine
whether an LSL operator or member function name is being referred to. However.
this convention will make the ensuing discussion more clear.

The methods of IntStack are categorized as follows: the V-methods are {ltop.
lisEmpty}. the O-methods are {IntStack, Ipush, Ipop} and there are no OS-methods.

The abstract values of the class IntStack, VAL, s, are represented by values of
the sort SORT inestaer = Stack. These values are equivalence classes of terms denoted
by canonical terms of the form:

new, push(new, i), push(push(new, i), j),...

where 1 and j are arbitrary integers.

The set of abstract values for the return types of IntStack, RVAL,,, ci.c. consists
of the abstract values representing integers and booleans. Abstract values for these
are defined using LSL traits. However, for simplicity we will denote integer values

using the standard literal symbols *1°, *2°, and booleans using the values ‘true' and
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StackTrait(E, Stack) : trait
introduces
new: — Stack
push: Stack. E — Stack
top: Stack — E
pop: Stack — Stack
isEmpty: Stack — Bool
asserts
Stack generated by new, push
Stack partitioned by top, pop, isEmpty
V s: Stack,e: E
top(push(s,e)) == e
pop(push(s,e)) == s
isEmpty(new)
= isEmpty(push(s.e))
implies
converts top, pop. isEmpty
exempting top(new). pop(new)

Figure 5.2: LSL Trait for Stack

“false’.

The set of abstract values for the environmental state, EXT it is the eimpty
set since IntStack does not interact with the environment.

Intuitively, the legal traces of IntStack are those for which cach occurrence of pop
and each occurrence of top is preceded by a subtrace where the nnmber of oceurrences
of push exceeds the number of occurrences of pop.

We can use also an example trace of IntStack to exemplify the operator val in
troduced in section 4.3. For a trace { = ( IntStack, push(1), push(2), pop, top ) we
have val(t) = 1.

We now proceed to show that the specification S, ...« is complete hy applying

the above methodology.

STEP I Given any t € trace(IntStack), 81, saen can be used to determine whether
t € LegalT{IntStack) or t € lllegal Tr(IntStack).

Proof: The proof of this property is by induction on the length of the tace
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Basis Step: Consider traces of length 1. The only legal trace of length one is
( IntStack }. Siuce the precondition of any constructor is ¢rue, this trace is legal. All
other traces of length 1 arc illegal.
Inductive Hypothesis: Suppose, that the property is true for all traces of length
k—1.
Inductive Step: We must now show that the property is true for all traces ¢ of
length k. By the inductive hypothesis, for the subtrace composed of the first k — |
elements of it is possible to determine whether or not this trace is legal. If this
subtrace is illegal, then the entire trace ¢ is illegal.

If on the other hand the subtrace is legal, then we must consider the different
possible cases for the last (i.e. &) element of the trace t. The possible choices in
our example are: Ipush(int), Itop, Ipop, and IisEmpty.

Figure 5.4 shows the definition of the function
Absval: LegalTr(IntStack) — Stack

which is needed to prove this inductive step. Notice that this function is based on
the postconditions of the IntStack operations and updates the abstract state of the
IntStack (i.e. self) hased on these postconditions.

We now consider the following cases for the final element of #:

Ipush, IisEmpty: For these cases, the precondition is always satisfied hence making

{ legal.

Itop: Iu this case the precondition is not (isEmpty (self”)). This precondition is
evaluated by substituting Abseval(front(t)) for self* in the precondition predicate?.
This yields the expression not (isEmpty(Absval(front(t)))). If this condition evaluates
to true, then the precondition is satisfied and so t is legal. Otherwise, the precondition
is not satisfied and so f is not legal. Here, front is a function which takes as argument

a trace of length > 1 and returns a trace with the last element removed.
Ipop: This case is exactly same as for Itop.

STEP II. Given any t € Legal Tr{IntStack) which ends in a V-method, 5, suc

*More precisely, we are actually substituting the value denoted by the term which the expression
Absval(front(t)) evaluates to.
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can be used to determine the value of A.(t).
Proof: We need to consider only legal IntStack traces which end in a V-method.

There are only two such methods. Itop and IisEmpty.
Itop: In this case, the value of A,(t) is defined to be top(Absval(froni(t))).

IisEmpty: Here, the value of A,(t) is defined to be isEmpty(Absval(front(t))).

It is also straightforward to prove that the values returned by A, are all well
defined in the sense that they do not correspond to terms involving exempted values.
For example, A, will never return a term of the form top(new). To prove this it is only
necessary to recall that the input trace t is assumed to be legal. By construction, this
means that it satisfies the preconditions of the corresponding methads of the trace. A
case analysis of the possible exempted terms easily demonstrates that a contradiction

results if it is assumed that any one of these exemptable values could be veturned by

A..

STEP III. Since there is no OS-method in the above example this step is trivially

satisfied.

5.3 A Screen Example

We now present an example involving a Screen class. Oue notable differenee
between this example and the previous is that it involves environmental helavior.
The Screen class provides methods to move the cursor on a textual sereen. The LSI,
and interface specification for the Screen class® are defined in Fig. 5.5 and 5.6,

The methods of Screen are categorized as follows: the OS-methods are {movelelt,
moveRight, movellp, moveDown} aud there are no O-methods or V-methods.

The abstract values of the class Screen, VAL,,, ..., arc represented by valnes of

the sort SORT screen = Scrn.

The set of abstract values for the return types of Sereen, RVAL ..., is the empty
set since there are no return values.

The state of the physical screen can be modelled by an integer whieli records

3Adapted from a specification obtained through personal commumention with Gary Leavens
November 1992.
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the current position of the cursor on the screen. The addressable locations on the
screen are numbered from 0 to (length x width) - 1. Hence, the set of abstract
values for the environmental state, EXTscreen, is the set of integers in the range
O0,...,length x width — 1

Intuitively, the legal traces of Screen are those which keep the cursor within the
screen.,

We can also use an example trace of Screen to exemplify the operator envState
introduced in section 4.3. For a trace t = ( Screen(5,5), moveRight, moveDown,
moveRight, moveDown, ) in the screen example, envState(t) = 12.

We now proceed to show that the specification Si,.., is complete by applying the

methodology.

STEP 1. Given any { € trace(Screen) the specification Sg.,... can be used to
determine whether t € LegalTr(Screen) or t € [llegalTr(Screen).
Proof The proof of this property is by induction on the length of the trace.
Basis Step: Counsider traces of length 1. The only legal trace of length one is
{ Screen(x,y) ). Since the precondition of any constructor is true, this trace is legal.
Inductive Hypothesis: Suppose that the property is true for all traces of length
h—1.
Inductive Step: We must now show that the property is true for all traces 1 of
length A. By the inductive hypothesis, for the subtrace composed of the first & — 1
clements of 1 it is possible to determine whether or not this trace is legal. If this trace
is illegal, then the entire trace t is illegal.
If on the other hand the subtrace is legal, then we must consider the different possible -
cases for the last (i.e. k") element of the trace t. The possible choices are: moveLeft,
moveRi1ght, movelp, and moveDown.

The definition of the function
Absval: LegalTr(Screen) — Scrn

1s in figure 5.7. As in the previous example, the function Absval is based on the
pustcondition of the interface specification operations. It returns the abstract value

denoting the state of the resulting object.



We now consider the possible cases for the last element of .
moveLeft: In this case the precondition is getCursor(self®) > 0. This precon-
dition is evaluated by substituting Absval(front(t)) for self" in the precondition
predicate. This yields the expression getCursor ((Absval (front(t)))) > 0 which
is evaluated using the trait axioms for Screen, as the resulting term Absval(front(t))
has sort Scrn. If this condition evaluates to true, then the precondition is satisfied
and so t is legal. Otherwise, the precondition is not satisfied and so ¢ is illegal.

The proofs for the remaining cases (moveRight, moveUp, and moveDown) are similar

to the proof for moveLeft.
STEP II Since there is no V-method in this example this step is trivially satisticd.

STEP III. Given any { € Legal Tr{Screen) which ends in an OS-method. we nist
show that Ss,.., can be used to determine the value of A,.
Proof: We need to consider only legal Screen traces which end in a OS-methaod.

For all these cases, we can define the function

As(t):
Legal Tr(Screen) /A (EXTsqeen — EXTyrein)

to be given by A,(t) = getCursor(Absval(t))
Here, the definition of Absval provides an explicit link between the environmental
state and the abstract state of Screen objects.

Hence Seqee, is complete with respect to the definition of class behavior,
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class IntStack
{
uses StackTrait(IntStack for Stack, int for E);
public:
IntStack()
{
modifies self;
ensures scli'= new;

}
~ImStack()

{

modifies self;
ensures trashed(self);

}

void Ipush(int i)

{

modifies self;
ensures sclf'= push(sell®, i);

}

hool lisEmpty()

{
}

int Hop()

{

ensures result = isEmpty(self*):

requires not(isEmpty (sellf*));
ensures result = top(sell”);

}

void Ipop()

{
requires not(isEmpty(self*));
modifies self;
ensures sclf'= pop(self*);

Figure 5.3: Larch/C++ Interface Specification for IntStack



new if L{t) =1

push(Absval(front(t)),;) if £(t) > 1 and
last(t) = Ipush())

Absval(t) : { pop(Absval(front(t))) if £(t) > 1 and
last(t) = Ipop

Absval(front(t)) otherwise
(if isVMethod(last(1)))

\

where L(t) is the length of the trace t

Figure 5.4: The function Absval for Stack

ScreenTrait: trait

introduces

includes Integer
newScreen: Int, Int -=» Sern
height, width: Sern — Int
setCursor: Scrn, Int — Sern
getCursor: Scrn — Int

asserts
Scrn generated by newScreen, set.Cursor
Scrn partitioned by getCursor, height, width
V s: Scrn, h,w,i:Int

height(newScreen(h,w)) == 1

width(newScreen(h,w)) == w

height(setCursor(s,i)) == height(s)

width(setCursor(s,1)) == width(s)

getCursor(newScreen(h,w)) == ()

getCursor(setCursor(s,i)) == i
implies

converts height, width, getCursor

Figure 5.5: LSL Trait for Sereen

68



class Sereen

{

uses ScreenTrait(Scereen for Sern);
public:

Sereen(int b, int w)

modifies self;

ensures self'= newScreen(h,w);
}
~Sereen()

modifies self;

ensures trashed(self);

}

void moveLeft()
{
requires getCursor(self*) > 0;
modifies self;
ensures scl{’ = setCursor(self®, getCursor(self") - 1)
}
void moveRight()
{
requires getCursor(self*) < height(self®) * width(self");
modifies self;
ensures sclf’ = set Cursor(self”, getCursor(self*) + 1)
}
void movellp()
{
requires getCursor(self®) > width(self") ;
modifies self;
ensures sell” = setCursor(self”, getCursor(self*) - width(self"))
}
void moveDown()
{
requires getCursor(self") < (height(self*) - 1) * width(self");
modifies self;
ensures self’ = set('ursor(self”, get Cursor(self") + width(self*))

}

Figure 5.6: Larch/C++ Interface Specification for Screen
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newScreen(h,w) il L) =1

setCursor(A, getCursor(A) - 1) L L) > Fand last(t) = movel.eft
Absval(t) : | setCursor(A, get(tursor(A) + 1) i L(1) > 1 and last(t) = moveRight
setCursor(A, getCursor(A) - width(A)) il £(t1) > | and last(1) = movelip

setCursor(A, getCursor(A)+ width(A)) if L(t) > | and last(t) = moveDown

\

where A is an abbreviation for Absval(front(t))
L(t) is the length of the trace t
h,w are the parameters of the first element of the trace

Figure 5.7: The function Absval for Sereen
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Chapter 6

Dealing With Inheritance in
Larch/C++

In section 2.2 we discussed the importance of distinguishing between subtype inher-
itance and implementation inheritance. We mentioned that it was important for a
ROOCSL to distinguish between the notions of subclassing (implementation inheri-
tance) and subtyping (subtype inheritance). A subtype relationship is a behavioral
relationship which could be proven by examining the specifications of the types in-
voived, while a subclass relationship is purely an implementation relationship.

In section 2.2 we also discussed the importance of permitting inheritance of speci-
fications. Specification inheritance avoids having to re-specify the methods inherited
from superclasses by making it possible to construct larger specifications from smaller
specifications.

[t is important to note that although determining subtyping relations and inher-
itance of specifications are somewhat related concepts, they can exist independently
of one another. It is possible to define a semantics for determining whether subtype
relations hold between classes even if the specification language does not support
inheritance of specifications. Conversely, it is possible to provide inheritance of spec-
ifications without defining a semantics for determining subtype relationships between
classes.

There is some interaction between the semantics which we propose for determining
subtype relations and the mechanism we propose for dealing with inheritance of
specifications. However, to maintain a clear distinction between the two proposals
we first present the two concepts separately and then discuss how they interact.

In section 6.1 we present a proof theoretic semantics for determining subtyping
relations between Larch/C++ class specifications. In section 6.2 we describe a mech-

anism which permits inheritance of specifications. Although some preliminary work
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on this was described in [LC92], many questions were left unanswered. Our proposal
attempts to answer these questions as well as to solve some new problems which have

been identified with the preliminary proposal described in [L('92].
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6.1 Proof Theoretic Semantics for Subtyping Relations

Although several semantics for subtyping have already been proposed [BW87, Ame39,
L 200 Lea%1, Dha92], none has been selected yet in the preliminary design for
I .eh/C4+4 [LCY2). The semantics we propose is based on that of America [Ame89),
which we have adapted for Larch/C++.

America’s approach is much simpler than other approaches which have been pro-
posed, being based on a very simple proof-theoretic definition rather than on the com-
plex model-theoretic definitions used in the other approaches (e.g. [Lea90, DL92}).
The manner in which we have adapted the approach to the LSL tier of Larch/C++
also considerably simplifies the process of demonstrating the existence of subtyping
relationships. These factors make the use of our approach viable and practical by
developers in industry. Also, because the semantics is proof-theoretic, the verification
process can be partially automated and we describe how this can be achieved using
the theorem prover LP [GG8Y, GGI0, GGIL).

Given the Larch/C++ class interface specifications I; and I, for some classes ()
and (7, where (') is a public subelass of (7}, we wish to determine when Cy is actually
1 semantic subtype of 7). Let us denote the interface specification of a method m in
I by

{Preguper } m { Postsyer }
where Pregy,,., and Post,,,., denote the assertion of the corresponding requires and
ensures clauses respectively. Similarly, let us denote the interface specification of a
method moin 7, hy
{Pregus} m { Postg,}

where Preg,, and Postg,, denote the assertion of the corresponding requires and
ensures clauses respectively. The interface specification /; makes use of a trait 7'r,
to define the LSL terms referred to in the assertions of Pregy,., and Postgy,., while
I, makes use of a trait Tr, to define the LSL terms referred to in the assertions of
Preg,, and Postg,. This situation is depic d in figure 6.1. We now wish to develop
a definition for specifving when class (7, is a semantic subtype of class C}.

Following the approach of America [Ame89]. for (*; to be a semantic subtype of

("ywe require that for every public method specification
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{Pre } m{ Post ) i
supes Saper i
I, —= TR,
E (disinguished sont §,)

subtype?

¥
1, —> TR,

{ Prem) m { P"““h) (disanguished sort )

Figure 6.1: Defining A Subtyping Relation

{Pregyer} m {Postgp, }
in I; there should be a method specification
{Pregp} m {Postg,}
in I such that the former implies the latter, which can be e pressed as:
Pregyper — Presy, and Post g — Post g, (1)
It should be noted that this requirement is the same as that used in Fitfel's aa-
sertion redefinition rule for preserving conformance relations between a subelass and

a supercla s [Mey88]. It appears that the requirement was developed independently

by America and Meyer. The requirement ensures that we can indeed use an objedt of

class (" wherever a1 object of class (' is expected: when we send an object of class
(', a message m, using it as an object of class 7y gnarantees that the precondition
Preguper will hold (since we must respect the specification Iy to use a (') objeet cop
rectly). By the implication Pregy,, — Preg, we can conclude that the precondition
Preg in Cy’s specification [, will also hold. After the execution of method e the
postcondition Postg,, will hold since the precondition Preg,, was respected and the
implementation of ('} is assumed to be correct with respeet to I, By the implication
Postsup — Postguper, we can conclude that Postg,,, also holds as required by the
specification I; for an object of class ().

Although the above requirement provides an adequate definition of when a class €

is a subtype of a class ("1, it fails to take into account the fact that the specifications
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1) and 1, might be expressed using different mathematical domains (i.e. different
sorts). In general, we must assume that J; is expressed using a sort Sy while I is
expressed using a different sort 9.

Following [Ame8Y), we solve this problem by requiring the existence of a coercion
function ¢ which maps the mathematical domain associated with 72 to the domain
associated with /. In [Ame89], America uses abstract mathematical models like sets
and sequences Lo represent the abstract values in the class interface specifications.
He associates a mathematical domain I with the supertype specification and a math-
ematical domain £ with the subtype specification and then requires the existence of
a function ¢: ¥ — T to coerce ¥ values to I' values .

In the case of Larch/C'++, the abstract values are represented by the values of
sorts defined in LSL traits. Thus, it is necessary to require the existence of a function
¢: Sq — S1.

Before proceeding further, it is necessary to discuss how such a function can be
defined in the context of the LSL traits which are used to define the abstract models
of Larch/C++41 terface specifications. To address this problem, we note the following

observations regarding LSL sorts and traits:

o Values of the sorts S} and S, are represented by algebraic terms defined in the
LSL traits used by the interface specifications I; and I,. Therefore, a mapping
between the sorts Sy and S; can be defined by establishing a mapping between

the LSL terms denoting the sort values.

e Each value of the sort S, and S; corresponds to an equivalence class of LSL
terms defined in the corresponding trait. All these equivalence classes, and
hence sort values, can be denoted by terms involving only the generators of
a sort. Hence, to establish a mapping from values of 5, to values of S, it is
suflicient to establish a mapping between the terms involving generators of the

iraits.

e In LSL, the generators of a trait are explicitly identified by the generated by
clause. Let us denote the trait which defines sort Sy by T'ry and the trait which

defines sort Sy by T'r,. Then the function é can be defined by considering only
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t ms which involve only the operators identified in the generated by clause
of T'r, and mapping these to terms involving only the operators identified in

the generated by clause of T'ry.

We can now illustrate the process of defining the coercion function ¢ using an
example. Figure 6.2 is an LSL trait which defines the propertics of Table an abstract
data type in which (key, value) pairs can be inserted, removed, and retrieved. The
distinguished sort of trait Table is Tab. Figure 6.3 is an LSL trait which defines
the properties of OrdTable, an ordered table abstract data type. OrdTable is the
same as Table except that it incorporates a notion of ordering based on the order of
insertion. It provides additional operations to retrieve the n'* key of value from the
table.

Note that we have repeated all the definitions of the operations defined in the
Table trait of figure 6.2 in the DrdTable Trait of figure 6.3. For clarity of expo
sition, we have renamed all the repeated operators by prefixing them with an Q'
in the OrdTable trait. This renaming is not strictly necessary as LSL operators
can be overloaded, permitting several operators having the same name but differ-
ent signatures. Usually, no ambiguity results from such overloading as the context
in which an operator is being used is sufficient to unambig-ously determine which
of the overloaded operators is being referred to. In the cases where ambiguity can
still result regardless of the context, it is possible to disambiguate an operator name
by appending the suffix “:<sig>", where <sig> is the full signature of the uperator,
For example, delete:Tab,Key->Key provides a more precise nanie for the operator
delete defined in the Table trait and can be used to disambignate it from another
operator having the same name.

In view of all the above observations concerning the definition of the coercion
function ¢ in the context of LSL traits, we can define ¢ for this example to be given
by the trait operator toTable defined in figure 6.4.

Having shown how a coercion function ¢ can be defined hetween the sorts used
by two different class interface specifications, we can now show how this function is
useful in determining subtyping relations. We modify the requirement (1) 1o handle

interface specifications in which two different distinguished sorts are used hy requiring
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Table : trait
includes Integer
introduces
empty: — Tab
insert: Tab, Key, Val — Tab
delete: Tab, Key — Tab
hasKey: Key, Tah — Bool
lookUp: Tab, Key — Val
asserts
Taly generated by empty, insert
Tal, partitioned by haskey, lookUp
Vk, ky: Key .v,vl: Val,t : Tab, n : Int
lookUp(insert(t,k,v), k&) == if k = &, then v else lookUp(t, &)
not(haskey(k, empty))
haskey(k. insert(t. &y, v)) == if k = & then true else haskey(k, t)
delete(insert(t,k.wv), &) == if k = Ly then t else insert(delete(t. &), k. v)
implies
converts delete. haskey, lookUp
exempting V i: Key lookUp(empty, i)

Figure 6.2: LSL Trait for Table

~1
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OrdTable : trait
includes Table
introduces
Oempty: — OTab
Oinsert: OTab, Key, Val — OTab
Odelete: OTab, Key — OTab
OhasKey: Key, OTab — Bool
OlookUp: OTab, Key — Val
size: OTab — Int
getNthVal: Int, OTab — Val
getNthKey: Int, OTab — Key
asserts
OTab generated by Qempty, Qinsert
Vk: Key,v: Val,t : OTab, n : Int
OlookUp(insert(t,k,v), k1) == if k = k) then v else OlookUp(t, &)
not(OhasKey(k, Oempty))
OhasKey(k. Oinsert(t. k;, v)) == if k = &; then truc else Ohaskey(k, t)
Odelete(insert(t,k,v), &) == if k = &, then t else Oinsert(Odelete(t, &) K, v)
size(Oempty) =0
size(Oinsert(t,k,v)) = 1 + size(t)
getNthVal(n, Oinsert(t,k,v)) == if n = size(t) + 1 then v else getNthVal(n. t)
getNthKey(n, Oinsert(t,k,v)) == if n = size(t) + 1 then k else get Nthikey(n, t)

Figure 6.3: LSL Trait for OvdTable

CoerceTrait : trait
includes Table
includes OrdTable
introduces
toTable: OTab — Tab
asserts
Vk: Key,v: Val,t : OTab, n: Int
toTable(Oempty) = empty
toTable(Oinsert(t,k,v)) = insert(toTable(t), k, v)

Figure 6.4: LSL Trait for coercion funetion toTable
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that for every method specification

{Preguper } m {Postgyper }
occurring in [; there should be a method specification

{ Pre, s} m { Post,.}
in I, such that:
Pregype. © ¢ = Pregy, (2)

Postsuy = Postyper 0 ¢ (3)
Here, Pregyper 0 ¢ stands for the formula in which each occurrence of a variable z of
sort ) is replaced by the expression ¢(z'), where «' is a fresh variable of sort S;. We
emphasize that the sorts S; and S, are the distinguished sorts of the traits and are
those which self gets mapped to in the interface specifications /; and I, respectively.

The intuition behind this definition is that we wish to evaluate the truth value of
the expressions Preg,pe — Pregs and Postg,e — Postyper for some arbitrary value of
sort S,. The motivation for doing this is that given an arbitrary value of sort S;, we
want to determine if it is also a value of sort S;. Since the expressions Presype, and
Post e refer to values of sort S we must first coerce the .S, value to an .5, value
before we can evaluate the truth value of the expression. Since Preg,, and Postgu,
are already referring to S, values, no coercion is necessary and the predicates can be
evaluated “as is” for the given value of sort .5,.

We now proceed to apply this definition to an example which involves the traits
Table and OrdTable discussed previously. Figure 6.5, 6.6 and 6.7 show Larch/C++
interface specifications for the classes Dict and 0rdDict which implement a table
and ordered table abstract data type respectively. We can determine whether class
OrdDict is a subtype of class OrdDict according to our definition by applying (2)
and (3) to the common methods of these classes (i.e. add, retrieve, remove, and
includesKey). Doing so, we obtain the following proof obligations which must be

discharged to prove that a subtype relationship between Dict and OrdDict class

holds:
add: 1. true = true

2, s = Oinsert(t, k, v) = toTable(s) = insert(toTable(t), k, v)
retrieve: 3. hasKey(k. toTable(s)) = OhasKey(k, s)
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class Dict

{

uses Table(dict for Tab, char* for Key, void* for Val);

Dict()
{
modifies self;
ensures self’= empty;
}
~Dict()
{
modifies self;
ensures trashed(self);
}
void add(char* key, void* pVal)
{
modifies self;
ensures self = insert(self", key, pVal);
)
void™ retrieve(char* key)
{
requires hasKey(key, self*);
ensures result = lookUp(self, key);
}
void remove(char” key )
{
requires hasKey(key, sell");
modifies self;
ensures self’ = delete(self®, key);
}

bool includeskey(char* key)

{
}

void clear(char* key)

{

ensures result = hasKey(key, sell®);

modifies self;
ensures self’ = empty;

Figure 6.5: Larch/C++ specification for Dict
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class OrdDict : public Dict
{
uses Table(OrdDict for OTab, char* for Key, void* for Val);
OrdDict()
{
modifies sclf;
ensures self’ = Oempty;
}
~QOrdDict()
{
modifies self;
ensures trashed(sclf);
}
void add(char* key, void* pVal)
{
modifies self;
ensures self’ = Oinsert(self*. key, pVal);
}
void? retrieve(char” key)
{
requires QhasKey(key, self");
ensures result = OlookUp(selfl’, key);

Figure 6.6: Larch/C++ specification for OrdDict (Part 1 of 11)



1

void remove(char* key )

{
requires OhasKey(key. self*);
modifies self;
ensures self’ = Odelete(self", key);

bool includesKey(char* key)

requires true;

ensures result = OhasKey(key, self™):
void clear()

modifies self;

ensures self’ = empty;
char™ retrieveNthKey(int n)

requires size(self") > u;

ensures result = getNthKkey(n, self*);

}

void” retrieveNthVal(int n)

requires size(self") > n;
ensures result = getNthVal(u, sell*);

Figure 6.7: Larch/C ++ specification for OrdDict (Part I of 11)
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4. r = Olookup(s, k) = r = lookup(toTable(s), k)

remove: 5. hasKey(k. toTable(s)) = OhasKey(k, s)

6. s = Odelete(t, k) = toTable(s) = delete(toTable(t), k)
includesKey: 7. true = true

K. r = OhasKey(k, s) = r = hasKey(k, toTable(s))

All the variables in the above expressions are implicitly universally quantified.
These proof obligations can be discharged using the usual axioms and rules of in-
ference of first-order predicate calculus with equality. This includes the rules for

equational reasoning:

Re flerivity:
For all terms £, 1 =1t.
Symmeltry:
For all terms #) and 15,0, =1, =1, = ;.
Transitivity:
For all terms 1y, f, and 15,1, = 1, A1, =13 =1, = 3.
Substitutivity:
For all functions, f of n arguments, if 1 = ¢’ then,
Tty = f(te )
Instantiation:
If t; =1, and «x is a variable, then ;[t for x] = t,[t for x],
where t'[t for r] stands for the term ¢’ with all free occurrences of the

variable @ repraced by the term .

For example, the second proof obligation for the add method (proof obligation (2))

can be proved as follows:

l. s = Oinsert(t, k, v) (assume antecedent)

2. toTable(s) = toTable(Oinsert(t.k,v))  (by substitutivity)

3. toTable(s) = insert(toTable(t), k. v))  (by transitivity with axiom 2 of CoerceTrait)
L s = Olnsert(t,k,v) =

toTable(s) = insert(toTable(t), k, v))  (discharge antecedent assumption
by implication inference rule)
5. qed



The proof for the other obligations, although somewhat more involved in some
cases, are similar. To simplify the process of discharging the proof obligations, we
can use a slightly more stylized format for the trait OrdTable. Figure 6.8 shows how
this can be accomplished. In this trait, we define the trait operator toTable and
use it to provide the definitions of the operators Odelete, DhasKey, and 0lookUp.
The resulting axiomatizations for these operations are equivalent to those specified
in figure 6.3. However, the new style of definition considerably simplifies the process
of discharging some of the proof obligations. As well, as it will be discussed in the
following section, this new style of trait definition will facilitate the inheritance of
interface specifications.

The fact that the process of discharging the proof obligations is simplificd can
be verified by considering proof obligations 3, 4, 5. and 8 above. In these cases, the
required proof is much simpler. As an illustration, consider proof obligation 3, i.c.

hasKey(k, toTable(s)) = OhasKey(k, s). This can be discharged as follows:

1. hasKey(k, toTable(s)) (assume antecedent)
2. OhasKey(k,s) (by 4% axiom of figure 6.8)
3. haskey(k, toTable(s)) = OhasKey(k.s) (discharge antecedent assamption

by implication inference rule)

4. qed

As the reader can verify, this proof is considerably simpler than the one that
would be required using the trait axioms of figure 6.3. For obligations | and 6, the
same proof applies for either set of axioms (i.e. figure 6.3 and 6.8). As for obligations
2 and 7, they are so trivial that no proof is required in either case,

It should be noted that although our dictionary example does not involve any
method overriding, the semantics for subtyping presented in this section is not lim
ited to strict inheritance, where subtypes can only add methods. The approach is
sufficiently general to handle cases where method overriding occurs, and ensures that,
methods are overridden in a subclass in @ manner which is consistent with the def-
inition of the method in the superclass. In other words, the approach ensures a

monotonic redefinition of methods.
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The proofs of the various obligations above can be automated using LP (Larch
Prover) [GGRY, GGY0, GGHY0, GGIL]. LP is a theorem prover based on equational
term-rewriting, for a fragment of first order logic. It has been used to analyze formal
specifications written in Larch, to reason about algorithms involving concurrency,
and to establish the correctness of hardware designs [{GG89).

Appendix A shows a transcript of an LP session in which proof obligation (2)
above is automatically discharged. Appendix B shows a transcript of an LP session
in which all the above (nontrivial) proof obligations (i.e. 2-6 and 8) are automatically
discharged. The ability to automate these proofs makes the use of the definition for
verifying subtype relations viable by practitioners.

The ability to automate the discharging of the proof obligations results from
the adaptation of America’s approach to the LSL tier of Larch/C++4. The proofs
required to discharge the obligations can be carried out in a strictly formal manner
since they involve only the manipulation of formulas of first order predicate calculus
with equality. This is in contrast to the proofs used by America which make use of
rigourous arguments, but which are not formal. The lack of a formal axiomatization
of the abstract values used by America precludes the proofs from being fully formal,
and hence from being automated. The axiomatization of the abstract values used in
Larch/C+4 (by LSL traits) overcomes this problem and thus offers a considerable
advantage.

Another notable advantage of applying America’s definition of subtyping in the
context of LSL, as opposed to the mathematical models used by America, is that the
process of defining the coercion function ¢ becomes much more straightforward. In
the context of LSL, the coercion function can be defined by considering all the genera-
tors of a sort and writing the appropriate axiom. In the context of the abstract values
used by America, there is no systematic manner for defining the coercion function
¢. This depends on the nature of the mathematical models used as abstract values
of the subtype and supertype and may sometimes require considerable ingenuity to

define.



OrdTable : trait
includes Table

introduces
toTable: OTab — Tab
Oempty: — OTab
Oinsert: OTab, Key, Val — OTab
Odelete: OTab, Key — OTab
OhasKey: Key, OTab — Bool
OlookUp: OTab, Key — Val
size: OTab — Int
getNthVal: Int, OTab — Val
getNthKey: Int, OTab — Key

asserts

OTab generated by Oempty, Oinsert
Vk: Key,v: Val, t : OTab, n: Int

toTable(Oempty) = empty
toTable(Oinsert(t, k. v)) = insert(toTable(t), k, v)
toTable(Odelete(t, k)) = delete(toTable(t), k)
ObasKey(k,t) = hasKey(k,toTable(t))
lookUp(t,k) = lookUp(toTable(t), k)
size(Oempty) = 0
size(Oiusert(t,k,v)) = 1 + size(t)
getNthVal(n, Oinsert(t,k,v)) == if n = size(t) + 1 then v
else getNthVal(n, 1)
getNthKey(n, Oinsert(t,k,v)) == if n = size(1) + | then k)
else petNthKey(n, t)

Figure 6.8: Stylized LSL Trait for OrdTable
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6.2 Mechanism for Inheritance of Specifications

In the dictionary example which we discussed in the previous seetion, the specihi
cations for the >ublic member functions add. retrieve, remove, and i1ncludesKey
defined in class Dict were repeated in the specification for class 0rdDict. This is
undesirable, as the implementation of these operations are inherited from elass Dict
by class OrdDict and the specifications are almost exactly the same. It should not be
necessary to have to repeat the specifications. Ideally, it should be possible for the
specification of class OrdDict to inherit the specification of the inherited operations
from Dict. In this section, we describe a mechanisim for accomplishing this in genetal.

For clarity of exposition, we will develop the mechanism incrementally. At each
step, we identifv some limitations and propose modifications to overcome them. This
approach will more clearly highlight all the subtle 1ssues involved with inheritance of
specifications.

If we consider the Dict / OrdDict example, the first problem preventing inheri
tance of the specifications for the inherited operations (i.c. add, retrieve, remove,
and includesKey) is that the interface specifications in Dact and OrdDict are not
even syntactically compatible. For example, the specification for the add member
function in the Dict interface specification refers to the trait operator 1nsert hnt
in the OrdDict interface specifications it refers to Qinsert. This problem can be
overcome simply by using the same names in traits Table and OrdTable for “com
mon” trait operators. By “common™ trait operators, we mean operators like 1nsert.,
lookUp, delete and hasKey which are defined in trait Table and then simply e
defined in trait OrdTable using a different name bhut in a semantically cquivalent
manner.

Figure 6.9 shows the modified trait OrdTable in which common trait operator
are given the same names as in trait Table. Asexplained in the previous seetion. this
is possible as LSL trait operators can be overloaded. This results in no ambignity as
far as the formal syntax and semantics of LSL are concerned. The particular operator
being referred to can be determined from the context it is usced. For example, in the
fourth axiom of the trait, the occurrence of the operator hasKey on the left hand side

of the equation refers to hasKey:0Tab,Key->Bool while the occurrence on the right
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OrdTable : trait
includes Table
introduces
toTable: OTab — Tab
Ocmpty: — OTab
Oinsert: OTab, Key, Val — OTab
delete: O'Tab. Key — Tab
hasKey: Key, OTabh — Bool
lookUp: OTab, Key — Val
stze: O'fah — Int
getNthVal: Int, OTab — Val
getNLthKey: Int, OTaly — Key
asserts
OTab generated by Oempty. Oinsert
Vk: Key,v:Val.t: OTab.n @ It
toTable(Oempty) = empty
toTable(Oinsert(t, k, v)) = insert{toTable(t), k. v)
toTable(delete(t, k)) = delete(toTable(t), k)
hasKey(k,t) = hasKey (k,toTable(t))
lookUp(t,k) = lookUp(toTable(t), k)
size(Oempty) = 0
size(Oinsert(t k,v)) = 1 + size(t)
getNLhVal(n, insert(t.k.v)) == if n = size(t) + 1 then v else get NthVal(n. t)
getNthIsey(n, insert(t.k.v)) == if n = size(t) + 1 then k else getNthhey (n, t)

IFigure 6.9: LSL Trait for OrdTable with Overloaded Operators

refers to hasKey : Tab, Key->Bool.

In general, given Larch/ C4+ interface specifications I; and I, for classes (7y and
("». where (7 is a public subelass of (77, we wish to determine under what conditions
the operation specifications in Iy can be inherited by /,. The assertions in the pre- and
post-conditions of those operations are expressed in the language defined by the used
trait of Try. They may not be syntactically valid if self’ and self" correspond to

(i.e. are mapped to) some sort other than the distinguished sort of T'ry. To allow for

inheritance of specification in general, it is necessary to determine conditions under
which operation specifications defined in J; will be syntactically valid when inherited

l)}' l_r.

o 7]
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To illustrate this point. let us consider the dictionary example once again. In the
interface specification of Dict. self* and self’ are mapped to the sort Tab while in
the interface specification of OrdDict, self” and self’ are mapped to the sort 0Tab.
In order for the specification of a Dict operation like retrieve to be “inheritable™ by
the interface specification of 0rdDact, it is necessary for all the LSL terms used in the
assertions of the pre- and post-condition of retrieve's specification (i.c. hasKey and
lookUp) to be defined for sort 0Tab. In [L('92], it is suggested that this problem can
be solved by requiring that trait operators be overloaded so as to accept arguments
of the sort corresponding to self” and self’ (i.c. the distinguished sort of the used
trait). As we will illustrate below. this condition does not seem suflicient.

The first problem we identify with the condition stated above can be illustrated
through an example. Cousider the operation remove of class Dict. The ensures
clause of the operation’s specification refers to the LSL operator delete. When the
specification of remove is to be inherited by the interface specification for OrdDict
it is necessary to overload the LSL operator delete appropriately in OrdTable (the
used trait of the interface specification of 0rdDact). The signature for the operaton
delete is

delete: Tab, Key — Tah,
In [LC'92]. it is mentioned that trait operators must be overloaded to allow arguments
of the subtype’s sort. However. no mention is made of whether the tesalt sort must
he overloaded and none of the examples involve overloading of the return sort. In
the examples presented in [Lea91]. the result sort is not overloaded. However, some
reflection indicates that it is indeed necessary to overload the result sort. ‘To reahize
this, consider the operator delete. If it is overloaded only for the arguments in the
trait OrdTable then we obtain:

delete: QOTal, Key — Tabh.
However, this overloading is not adequate to guarantee syntactic compatiblity of the
inherited assertions. For example, consider the assertion

self'= delete(self®, key).

When this assertion is inherited by OrdDict, the sort corresponding to self” and sell’

is 0Tab. This requires the return sort of deleteto be 0Tab. As a resnltl it is necessary
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to overload trait operators in such a way that a return sort which corresponds to the
distinguished sort of a trait be modified to correspond to the distinguished sort of
the new tiait.

In [LCY92). it is mentioned that one has to be very careful with the treatment of
equality in the context of subtyping and inheritance of specifications. It is snggested
that the use of = should be prohibited and that assertions should use a user-defined
trait, function, called \eq, rather than =, to prevent potential problems that can
arise with the use of =. Intutively, the problem with the operator = is that it is
not always clear whether it should actually refer to equality of the abstract values
of the supertype or of the subtype. Using a user-defined trait function \eq has the
advantage that it can always be redefined in the traits used by a subclass, and thus
can provide hetter constraints on subtypes.

However, recent experience with Larch/C++ suggests that prohibiting the use
of = is unnatural and difficult to enforce!. As a result, it is necessary to find some
satisfactory semantics for =. In [LCY2] it is mentioned that an alternative to using
\eq is to interpret “=" as cquality of the coerced abstract values. where the values
are coerced to the nominal type used in an assertion. This approach forces “=" to be
interpreted as equality at the level of the supertype’s abstract values. In many cases.
this is not what is required and does not provide the same flexibility for redefining
the meaning of equality as when \eq was used. We find it simpler and more natural
to take the defanlt interpretation of = to be the standard meaning defined by the
LSL trait which defines the sorts involved in the expression where “=" is used. This
uscage is consistent with the standard semantics of = in LSL. and assumes that all
uses of = are “well sorted™, in the sense that both arguments of = will be of the
same sort [GHMO1, p. 11]. Below. we will introduce some requirements which will
puarantee that this requirement on *="is always satisfied in the context of inheritance
of specifications. It should also be noted that our suggested approach still provides
the freedom of introducing a \eq operator whenever it is necessary to override the
“default™ semantics of equality which we suggest.

To summarize and state the new requirements more precisely, it is necessary

Private conununications with (Gary Leavens, March 1993.
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to introduce a classification for the operators of LSL traits. Following [LGSG], the
operators in a trait which defines an ADT can be categorized as basie constructors,

cexira (‘OIISfI‘Zl(‘fOI'S, b(ISI.(‘ Obb‘('l‘l‘fl‘s. ﬂll(l crtra 01)5(‘]'(‘( I's.

— Basic Contructors: A constructor is an operator whose range is the distin
guished sort. The basic constructors are a minimal set of constructors which
produce all values of the distinguished sort. In LSL, they are identified by
the generated by clause. The basic constructors are also referred to as the

generators of the distingnished sort.

~ FErtra Constructors: Remaining uperators whose range is the distingnished sort.

These are also referred to as the crfensions of the trait.

~ Basic Qbservers, Extra Obscrvers: QOperators whose domain is the distinguished
sort and whose range is some other sort are called observers. The basic observers
form a minimal set of such observers; all other observers (the extra observers)
can be defined in terms of the basic observers.

The basic constructors and extra constructors are colleetively referred to as the
constructors of the trait while the hasic observers and extra observers are collectively
referred to as the observers of the trait.

Having introduced the above classification for trait operators, we can now give a
more precise set of requirements for permitting inheritance of specifications. To do

so, let us introduce the following notation:

o Let I; and I, be the Larch/C4+ interface specifications for elasses (' and (75,

where (U5 is a public subclass of (.
e Let T be the used trait of /; and let Sy be the distinguished sort of T'ry.

e Let T'r, be the used trait of I, and let S, he the distinguished sort of Tr,.

Then, the requirements for permitting inheritance of the operation specifications

of I, by I, are as follows:

(i) Each observer operator obs0p defined in trait Try is overloaded in trait 17, 10

accept input arguments of sort .5, rather than sort Sy, Usnally, the definition
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of obsOp in T'r, is of the form:

obsOpley. o ry o) = 0bsOp(ay. oo toUpper(e,) oooory,)

where oy is a variable of sort S, and toUpper is the trait operator which imple-
ments the coercion function ¢: S; — 512, This ensures that obs0p is redefined
in a consistent manner, so as to satisfy the semantic subtyping requirements of

the previous section.

It should he noted that in this equation the two instances of the operator obs0Op
denote operators having different signatures. The instance on the left hand side
of the equation denotes the operator which accepts an S, input argument, while
the instance of the right hand side of the equation denotes the operator which

aceepts an Sy input arguments.

(it) Sinlarly. cach extra constructor operator cons0p defined in trait Try is over-
loaded in trait T'r, to accept input arguments of sort Sy rather than sort Sy(if
any). In addition. it must also be overloaded to return values of sort S, rather

than sort Sy.
Usually. the definition of cons0p in T'r; is of the form:
tollpper(consOp(ary. oo &y oo y)) = consOp(ay. ..., toUpper(r,) o..ory,)

where iy is a variable of sort S, and toUpper is the trait operator which imple-
ments the coercion function ¢: 5, — S7. This ensures that cons0Op is redefined
in a consistent manner, so as to satisfy the semantic subtyping requirements of

the previous section.

It should be noted that in this equation the two instances of the operator
consOp denote operators having different signatures. The instance on the left
hand side of the equation denotes the operator which returns an S, value, while
the instance of the right hand side of the equation denotes the operator which

returns an S, value.

*There may be several argument variable r, of sort S». The operator toUpper is applied to all
such variables
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(11i)

The names of basic constructor operators defined in Ty do not appear in ['r,.
This is because the basic constructors of a sort arve those operators which detine
the basic abstract values of a sort. Because of their distinguishing, charvacteristic,

these must be different for cach sort.

These requirements correspond to the process used to obtain the trait UrdTable o

figure 6.9 from the trait Table of figure 6.2. However, the requirements still fall a little

short of the final requirements, This can be realized by considering the specification

for the OrdTable operator clear. The specification for this operator references the

operator empty defined in trait Table. This is a problem becanse empty is a basic

constructor for Table. According to the requirements above, this operator should

not be redefined in trait OrdTable. This 1s intuitively clear, as OrdTable has its

own basic constructors: Oempty and Oinsert. However, this example shows us that

it is sometimes necessary to refer to LSL operators which are basic construetors in

interface specifications. There are two ways to solve this problen:

(i)

Override the basic constructors defined in Try in Tr,. This approach is nn
desirable as it will cause an unnecessary proliferation of generators for a given
sort, making the resulting trait specifications difficult to nnderstand. For exam
ple, using this approach for 0OrdTable would result in the sort 0Tab having as
constructors Oempty, Oinsert, Odelete. empty. and 1nsert. 'Flhie "new™ extia
constructors empty and insert do not serve a useful purpose in this trait. Such
overloading should be avoided if possible, as it makes the resulting trait more

cluttered and more difficult to understand.
Do not. permit. the use of basic constructors in interface specilications.

This is not as stringent a requirement as it may seem. Suppose it is desired to
use some basic constructor bOp in an interface specification. Then, it is always
possible to define in 77 a new extra constructor b0p2, equivalent to bOp, which
can be used in the interface specification instead. It is possible to define b0p2
to be an operator equivalent to b0p by using an axiom of the form:

bOp2(£y, o vy &y 5oy 1) = bOP(ay, ooy r oy
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which states that the definition of bOp2 is exactly the same as the definition of

hOp.

The advantage of this approach is that additional generators are added only
when they are really necessary (i.e. when the interface specification needs to
refer to it). In other cases, the proliferation of constructor operators can be

avorded.

The second approach is clearly more desirable and we choose to add it to the other
requirements. To illustrate the nuse of this, we can consider the dictionary example
once again, We add a new constructor new, equivalent to empty to the trait Table.
as shown in figure 6.10. We then override new just as we would any other extra
constriuctor in OrdTable, as shown in figure 6.11. The specification of clear can now
refer to new instead of empty. and thus provide syntactic consistency even when the
specification is inherited by OrdTable.

With this final modification, we now have a complete set of requirements to ensure
svitactic compatibility of trait operators when inheritance of interface specifications
takes place.  We emphasize that this mechanism of inheritance for specifications
which we have deseribed can be sensibly used only in the case of public inheritance.
where the subelass implements a subtype of its superclass. Qur interpretation of the
inheritance of operation specifications is based on the overloading of trait operators.

and this overloading is really meaningful only in the case of subtypes.

6.3 Extensions for Multiple Levels of Inheritance

For simplicity. the semantics for determining subtyping relations and the mechanism
for inheritance of specifications described in the previous sections only considered the
case where one class A is the subclass of another class B.

However, both notions can easily be extended to cases where the inheritance
hicrarchy is arbitrarily deep. For the case of subtyping relations, we can define a
general subtyping relation <' which is the transitive closure of the subtyping relation
< which is determined using the proof theoretic semantics we have described. So.

for example, to prove that a given class z is a subtype of another class x. where z is

o
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Table : trait
includes Iuteger
introduces
empty: — Tab
new: — Tab
insert: Tab, Kev, Val — Tab
delete: Tab. Key — Tab
haskey: Key, Tab — Bool
lookUp: Tab. Key — Val
asserts
Tab generated by empty, insert
Tab partitioned by hasKey. looklp
Vk, kl: Key,v,vl: Val t,tl: Tab, n: Int
new == empty
lookUp(insert(t,k,v), k1) == if k = kI then v else lookUp(1. ki)
not(haskey(k, empty))
hasKev(k, insert(t, k1, v)) == if k = kI then true else haskey(k, t)
delete(insert(t.k.v), k1) == if k = kI then t else insert (delete(t, k1), k. v)
implies
converts delete. haskey, lookUp
exempting V i: Key lookUp(empty, 1)

Figure 6.10: LSL Trait for Table with operator new



OrdTable : trait
includes Table
intreduces
to'Table: O'Tab — Tab
Oecmpty: — OTab
Oinsert: OTab, Key, Val — OTab
delete: OTab, Key — OTab
hasKey: Key, OTab — Bool
lookUp: OTabl. Key — Val
new: — OTab
size: OTab — Int
getNthVal: Int, QOTab — Val
getNthKev: Int. OTab — Key
asserts
OTab generated by Oempty, Oinsert
¥V k: Key,v: Val,t: OTab, n: Int
101‘11)1( (()( mpty) = empty
toTable(Qinsert(t, k. v)) = insert(toTable(t), k, v)
toTable(delete(t, k)) = delete(toTable(t), k)
toTable(new) = new
hasKey(k.t) = hasKey(k,toTable(t))
lookUp(t.k) = lookUp(toTable(t), k)
size(OQempty) = 0
size(Oinsert(t.kw)) = 1 + size(t)
getNthVal(n. insert(t.k.v)) == if n = size(t) + | then v else get NthVal(n. t)
getNthKey(n, insert(t.k,v)) == if n = size(t) + | then k else getNthKkey(n. t)

Figure 6.11: LSL Trait for OrdTable with operator new
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a public subclass of y and y is a public subelass of x. it is necessary to prove that
y <rand :z<y.

Similarly, for the inheritance of spectfications. the mechanism can be extended to
the more general case by incrementally constructing the specification of a class one
level at a time. starting from the topmost ancestor in the hicrarchy, At cach level,
the trait defining the abstract values of a class overloads the trait operators ol its

immediate superclass as described in the previous section.

97



Chapter 7

Conclusion

7.1 Summary

In this thesis, we have argued that to provide better support for software reuse,
object-oriented languages must be supplemented with a ROOCSL. We have provided
the design for an ideal ROOCSL by identifying all the properties which it should
have. In hight of our design goals, our comparative survey of existing approaches
for specifying interfaces of rensable classes indicates that Larch languages are the
preferred choice. Specifically, for C4+4 we have selected Larch /C4+.

As well, we have presented a proposal for extending Larch/C4++ with a proof-
theoretie semantics for verifving subtype relations and a mechanism for inheritance
of specifications. We have also shown how discharging the proof obligations result-
ing, from our semantics for verifying subtype relations can be automated nsing the
theorem prover L.

Although several approaches have heen proposed for formally specifying the be-
havior of classes [CL90a. Mey®3, LST91. Wil91. Ame89, LC92], none of these propos-
als has provided a formal definition of what class behavior is. The work presented in
this thesis attempts to bridge this gap and. in so doing, demonstrates how a formal
definition of class behavior can be used to evaluate the completeness of class interface
specifications.

Irom a theoretical standpoint, an advantage of the formal definition of class he-
havior and completeness of behavioral specifications presented in this thesis is that
they are not dependent on any specific formalism. As a result, the completeness eval-
uation criterion can be successfully applied to most of the existing formal specification
languages.

In summary, the contributions of this thesis are:
e ldentification of the critical issues involved with the reuse of classes and design
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of an ideal ROOCSI..

¢ Survey and comparative evaluation of existing class intetface specitication lan

guages and selection of Lareh/C4 4 as an appropriate ROOCSL for ¢4y
e Formal definition of class behavior.
e Formal definition of complete class interface specification.

o lllustration of hiow the completeness of Larch/C4+ class specilications can be

evaluated using the formal definition of complete class interface specilication.

e Pioposal for extending Larch /C+4 with a proof-theoretic semantics for subtype

inheritance and a mechanisim {or inheritance of specifications.

7.2 Comparisons to Related Work

The work most closely related to the one presented in this thesis is Larch /€4 p0 The
model-theoretic subtyping semantics being developed by the developersof Lavch /O
[Lea90, Lea9l. DLY2] are very complex and do not ofler the possibility of heing an
tomatable and usable by practitioners. Our adaptation of Ametica’s proot theoreti
subtyping semantics remedies this problem,

Fresco [Wil91, Wil92h, Wil92e, Wil92a] is another approach aimed at promoting,
the reuse of object-oriented software components throngh the nse of formal methods
However. the focus of Fresco is more on proving the corvectness of elass tmplementa
tions. Specifications in Fresco can be both implementational or behavioval dependine
on the context. and no essential distinction is made between the classes and tvpes
of Fresco’s T('Ds. In contrast, our emphasis is on the development of behaviopal
specifications and on the use of such specifications to promote software rense,

The work presented in [AP92] uses VDM specifications to derive an object
oriented design.  In contrast, we use Laveh/C4++ specifications to docament the
design of the interfaces of reusable classes. Whereas implications elating, the pre
and post-conditions of operations are used to infer relationships between the fune
tional requirements expressed in VDM, we nse implications relating the preand

post-conditions of operations to define subtyping relations hetween classes,
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7.3 Assessment and Relevance to Industry

The work presented in this thesis has the potential of improving the effectiveness
wit's which C4+4 classes can be rensed by practitioners.

First. of all, this thesis has argued that Larch/C++4 has many of the features
reguired to formally document the behavior of (44 class interfaces and has demon-
strated this using several examples. Such formal documentation is necessary to pro-
vide users with a precise understanding of the class’s behavior. Moroever, this formal
documentation provides a solid basis for testing or verifying the implementation of
tensable classes, to provide potential reusers some assurance that classes will indeed
hehave as specified.

Although Larch/C++ does not provide support for the specification of inter-
objeet behavior, the work presented in this thesis has extended Larch/C++ to pro-
vide support for subtype inheritance. This provides Larch/C'+4 with the expres-
sive power required to specify commercially available ('++4+ ADT classes such as the
Rogue Wave library. thereby increasing the effectiveness with which such libraries
can be reused.

The eharacterization of class bhehavior introduced i this thesis closely matches
a user's intuitive understanding, making it appealing to practitioners. Moreover.
the level of mathematies required to apply the completeness evaluation methodology
should be quite accessible to software developers. This makes the use of our approach
appealing and viable in an industrial context.

FEven if completely informal specifications are used to document reusable class
interfaces, the work presented in this paper can still be used to improve the ability
to identify instances of incompleteness in the specifications. Understanding the for-
mal details presented in this paper can help guide one to reason informally about
the completeness of these specifications. ldentifying end removing instances of in-
completeness in informal specifications improves the quality of these specifications.
thereby improving the effectiveness with which classes can be reused.

An important feature of our definition of class behavior is that it enforces an
explicit distinction between the abstract states of an object and the abstract states

of the object™s external environment. Existing specification languages do not make a
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distinction between these two states. making the effect of a class on its environment
unclear. Our methodology for evaluating the completeness of a class interface speci-
fication provides a way to make explicit and document this distinetion using existing,

specification languages.

7.4 Future Work

As it was stated in section 2.8, the work in this thesis does not address all the desirable
properties of an ideal ROOCSL. The property which is currently most lacking is the
ability to specify inter-object behavior using the ROOCSL. The approach of [HHGY0],
briefly descibed in section 2.4, presents some promising ideas for the specitication of
inter-object behavior but these ideas are not fully formalized. Morcover, these ideas
do not make use of a model-oriented approach and violate the encapsulation of elasses.
Extending Larch/C++ with an approach based on a full formalization and model
oriented adaptation of the ideas presented in [HHGY0], or some equivalent approach,
will make it possible to specify more sizeable and complex reusable components,

Another area which this thesis has not addressed is the verification of the cor-
rectness of a class with respect to its specification. Towards that end, an interesting,
research problem would be to investigate the use of the characterization of class he-
havior described in this thesis as a means for testing class correctness. This could
possibly be accomplished by the automatic generation of test suites (i.e. test traces)
based on class interface specifications. Ideally, it could be shown that it is sullicient
to concentrate on certain canonical traces to obtain full coverage. Failing that, ofa
tistical quality control technigues could be used to determine the test suites required
for guaranteeing a predetermined quality target.

To handle a broader range of classes, the formal definition of elass behavior also
needs to be extended to deal with inter-object behavior [HHGYH0] and exceptions.
The ability to deal with inter-object behavior will make it possible to investigate the
feasibility of applying the completeness evaluation approach presented in this thesis

to subsystems and frameworks [JF88, WB.J90] of classes.
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Appendix A

Using LP To Discharge One
Sample Subtyping Proof
Obligation

In this appendix we demonstrate how the Larch theorem prover LP can be used to
discharge the subtyping obligations for the proof obligation s = Oinsert(t, k, v) =
toTable(s) = insert(toTable(t), k, v) discussed in section 6.1.

The LP command file which can be used to successfully accomplish is shown
below. This is followed hy the LP log file which results from the execution of the
commands. The log file indicates that the required proof obligations were successfully
discharged by LP.

LP command file:

set script OTable
set log OTable

declare sorts
Tab, Key, Val, 0Tab

declare operators
\neq: Bool, Bool -> Bool
\neq: Tab, Tab -> Bool
\neq: Key, Key ~> Bool
\neq: Val, Val -> Bool
\neq: OTab, OTab -> Bool
Oempty: -> 0OTadb
Oinsert: OTab, Key, Val -> QOTab
Odelete: OTab, Key -> OTab
OhasKey: Key, OTab ~> Bool
0lookUp: OTab, Key ~> Val
toTable: O0Tab -> Tab
empty: ~> Tab
insert: Tab, Key, Val -> Tab
delete: Tab, Key -> Tadb
hasKey: Key, Tab -> Bool
lookUp: Tab, Key -> Val

set automatic-ordering off

declare variables
k: Key
k1: Key
v: Val



vli: Val
t: OTab
t: Tab
t1: 0Tab
t1: Tab

% main trait: OTable
set name 0OTable

assext
0Tab generated by Oempty, Oinsert

assert
0Tab partitioned by OhasKey, 0lookUp

assert
toTable(Oempty) = empty
toTable{Oinsert(t:0Tab, k, v)) = insert(toTable{t:0Tab), k, v)
toTable (Odelete(t:0Tab, k)) = delete(toTable(t:0Tab), k)
OhasKey{(k, t:0Tab) = hasKey(k, toTable(t:0Tab))
0lookUp{t:0Tab, k) = lookUp(toTable(t:0Tab), k)

% subtrait 1: Table
set name Table

assert
Tab generated by empty, insert
assert
Tab partitioned by hasKey, lookUp
assert
lookUp(insert(t:Tab, k, v), k1) =
hasKey(k, empty) == false
hasKey(k, insert(t:Tab, k1, v)) =

delete(insert(t:Tab, k, v), k1) =
x1), k, v))

if(k = X1, v, lookUp(t:Tab, k1))

if(kx
if(k

k1, true, hasKey(k, t.Tab))
k1, t:Tab, insert(delete(t:Tab,

set automatic-orxdering on

%% End of input from file ‘/users/piero/thesis/myThesis/app/proof#8/0Table_Axioms 1lp’.

declare variables
k: Key

: Val

: OTab

: DTab

: Bool

X B«

% main trait: OTable
set name OTableTheorem

prove
s = Oinsert(x, k, v) => toTable(s) = insert(toTable(x), k, v)
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resume by =>
<> 1 subgoal for proof of =>
complete
[] => Bubgoal
[] conjecture
qed

Log File:

Larch Prover (27 November 1991) logging on 11 March 1993 19:47:42 to
‘/users/piero/thesis/myThesis/app/proofs3/0Table.lplog’.

LP1.3:
LP1.4:

LP1.5: declare sorts
Tab, Key, Val, OTab

LP1.6:

LP1.7: declare operators
\neq: Bool, Bool -> Bool
\neq: Tab, Tab -> Bool
\neq: Key, Key -> Bool
\neq: Val, Val -> Bool
\neq: OTab, 0Tab -> Bool
Qempty: -> OTadb
Oinsert: OTab, Key, Val ~> 0Tab
Ddelete: OTab, Key -> OTab
OhasKey: Key, 0Tad -> Bool
OlookUp: OTab, Key -> Val
toTable: OTab -> Tab
empty: -> Tab
ingert: Tadb, Key, Val -> Tad
delete: Tab, Key -> Tab
hasKey: Key, Tab -> Bool
lookUp: Tab, Key => Val

Lr1.8:

LP1.9- set automatic-ordexing off
Automatic-ordering is now ‘off’.
LP1.10:

LP1.11:

LP1.12: declare variables

k: Key

k1: Key

v: Val

vi: Val

t: OTab

t: Tab

ti: 0Tadb

t1: Tadb
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LP1.13:

LP1.14:

LP1.15: % main trait: 0Table
LP1.16:

LP1.17: set name OTable

The name-prefix is now ‘OTable’.
LP1.18:

LP1.19: assert
OTab generated by Oempty, Oinsert

Added 1 induction rule named 0Table.1 to the system.

LP1.20: assert
OTab partitioned by OhasKey, OlookUp

Added 1 deduction rule named (Table.2 to the system.

The system now contains 1 deduction rule.

LP1.21: assert
toTable(Oempty) = empty
toTable(Dinsert(t:0Tab, k, v)) = insert(toTable(t:0Tab), k, v)
toTable(Odelete(t:0Tab, k)) = delete(toTable(t:0Tab), k)

OhasKey(k, t:0Tab) = hasKey(k, toTable(t:0Tab))
OlookUp(t:0Tab, k) = lookUp(toTable(t:0Tadb), k)

Added 5 equations named 0Table.3, ..., OTable.7 to the system.
The system now contains 5 equations and 1 deduction rule.
LP1.22:

LP1.23: % subtrait 1: Table

LP1.24:

LP1.25: set name Table

The name-prefix is now ‘Table’.

LP1.26:

LP1.27: assert
Tab generated by empty, insert

Added 1 induction rule named Table.1 to the system

LP1.28: assert
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Tab partitioned by hasKey, lookUp

Added 1 deduction rule named Table.2 to the system.

The system now contains 5 equations and 2 neduction rules.

LP1.29: assert
lookUp(insert(t.Tab, k, v), k1) == if(k = k1, v, lookUp(t:Tab, k1))
hasKey(k, empty) == false
hasKey(k, insert(t:Tab, k1, v)) == if(k = k1, true, hasKey(k, t:Tab))

delete(insert(t:Tab, k, v), ki) == if(k = k1, t:Tab, insert(delete(t:Tab,
k1), k, v))

Added 4 equations named Table.3, ..., Table.6 to the system.
The system now containg 9 equations and 2 deduction rules.
LP1.30.

LP1.31: set automatic-ordering on

Automatic-ordering is nov ‘on’.

The system now contains 9 rewrite rules and 2 deduction rules.

A1l equations have been oriented into rewrite rules. The rewriting system is
NOT guaranteed to terminate.

LP1.32:
LP1.33:
LP1.34:

LP1.35: declare variables

k: Key
v: Val
s. 0Tad
x: 0Tadb
b. Bool
LP1.36:
LP1.37:

LP1.38: % main trait: OTable

LP1 39:

LP1.40: set name OTableTheorem

The name-prefix is now ‘OTableTheorenm’.
LP1.41:

LP1.42: prove
s = Oinsert(x, k, v) => toTable(s) = insert{toTable(x), k, v)
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The current conjecture is OTableTheorem.1.
Conjecture OTableTheorem.1:
(Dinsert(x, k, v) = s5) => (insert(toTable(x), k, v) = toTable(s)) == true
Proof suspended.
LP1.43: resume by =>
Conjecture OTableTheorem.1: Subgoal for proof of =>
Jew constants: xc, ke, vc, sc
Bypothesis:
OTableTheoremImpliesByp.1: Oinsert(xc, kc, vc) = sc == true
Subgoal -
OTableTheorem.1.1: insert(toTable(xc), kc, vc) = toTable(sc) == truae
The current conjecture is subgoal OTableTheorem.1.1.
Added hypothesis OTableTheoremImpliesHyp.1 to the system.
Deduction rule lp_equals_is_true has been applied to equation
OTableTheoremImpliesHyp.1 to yield equation OTableTheoremImpliesllyp 1.1,
Oinsert(xc, kc, vc) == sc,
which implies OTableTheoremImpliesHyp.1.

The system now contains 10 rewrite rules and 2 deduction rules.

Subgoal OTableTheorem.1.1: insert(toTable(xc), kc, vc) = toTable(sc) == true
Proof suspended.

LP1.44: <> 1 subgoal for proof of =>
LP1.45: complete
The following equations are critical pairs between rewrite rules
OTableTheoremImpliesHyp.1.1 and OTable.4.
0TableTheorem.2: toTable(sc) == insert{toTable(xc), kc, vc)

The system now contains 1 equation, 10 rewrite rules, and 2 deduction rules

Subgoal OTableTheorem.1.1: insert(toTable(xc), kc, vc) = toTable(sc) == true
[] Proved by normalization.

The current conjecture is OTableTheorem.1.
Conjecture 0TableTheorem.1:
(Oinsert(x, k, v) = s8) => (insert(toTable(x), k, v) = toTable(s)) == true
[] Proved =>.
The system now contains 10 rewrite rules and 2 deduction rules.
LP1.46: [J => subgoal
LP1.47: [] conjecture
LP1.48: qud

411 conjectures have been proved.

End of input from file
‘/users/piero/thesis/myThesis/app/proofs3/0Table.1p’.

LP2: quit
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Appendix B

Using LP To Discharge All Sample
Subtyping Proof Obligations

In this appendix we demonstrate how the Larch theorem prover LP can be used to
discharge the subtyping obligations for the proof obligations 2-6 and 8 discussed in
section 6.1. These proof obligations are:

2. s = Oinsert(t, k, v) = toTable(s) = insert(toTable(t), k, v)
3. hasKey(k, toTable(s)) = OhasKev(k, s)

4. r = Olookup(s, k) = r = lookup(toTable( s), k)

5. hasKey(k, toTable(s)) = OhasKey(k, s)

6. s = Odelete(t, k) = toTable(s) = delete(toTable( t), k)

8. r = OhasKey(k, s) = r = hasKey(k, toTable(s))

The LP command file which can be used to successfully accomplish is shown
below. This is followed by the LP log file which results from the execution of the

commands. The log file indicates that the required proof obligations were successfully
discharged by LP.

LP command file:

set script OTable
set log OTable

declare sorts
Tab, Key, Val, OTab

declare operators
\neq: Bool, Bool -> Bool
\neq: Tab, Tab -> Bool
\neq: Key, Key -> Boo)
\neq: Val, Val -> Bool
\neq: 0Tab, O0Tab -> Bool
Oempty: -> 0Tad
pinsert: 0Tab, Key, Val -> 0Tab
Odelete: 0Tab, Key -> OTab
OhasKey: Key, OTab -> Bool
DlookUp: O0Tab, Key => Val
toTable: 0Tab -> Tab
empty: -> Tab
insert: Tab, Key, Val -> Tad
delete: Tab, Key -> Tab
hasKey: Key, Tab -> Bool
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lookUp: Tab, Key => Val
set automatic-ordering off

declare variables
k: Key
k1- Key
v: Val
vl: Val
t: OTadb
t: Tab
t1- OTab
ti: Tadb

% main trait: OTable
set name OTable

asgert
0Tab generated by Oempty, Oinsert
assart
0Tab partitioned by OhasKey, 0locokUp
assert
toTable(lempty) = empty
toTable(0insert(t:0Tab, k, v)) = insert(toTable(t:0Tab), k, v)
toTable(0Odelete(t:0Tab, k)) = delete(toTable(t:0Tab), k)

ODhasKey(k, t:0Tab) = hasKey(k, toTable(t:0Tab))
0lookUp(t:0Tab, k) = lookUp(toTable(t:0Tab), k)

% subtrait 1: Table
set name Table

asgert
Tab generated by empty, insert
assert
Tab partitioned by hasKey, lookUp
assert
lookUp(insert (t:Tab, k, v), ki) == if(k = k1, v, lookUp(t:Tab, k1))
hasKey(k, empty) == false
hasKey(k, insert(t:Tab, ki, v)) == if(k = ki, true, hasKey(k, t:Tab))

delete(insert(t:Tab, k, v), k1) == if(k = k1, t:Tab, insert(delete(t:Tab,
k1), k, v))

set automatic-ordering on

%% End of input from file ‘/users/piero/thesis/myThesis/app/proofs2/0Table._Axioms.1p’.

declare variables
k: Key

Val

OTab

0Tab

Bool

T H A«
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% main trait: OTable
set name OTableTheorem

prove
s = Oinsert(x, X, v) => toTable(s) = insert{(toTable(x), k, v)

resume by =>
<> 1 subgoal for proof of =>
complete
[] => subgoal
[1 conjecture
qed

prove
hasKey(k, toTable(s)) => OhasKey(k, s)

{1 conjecture
qed

prove
v = DlookUp(s, k) => v = lookUp(toTable(s), k)

[] conjecture
qed
% duplicate of equation in main trait: OTable
prove
8 = (Odelete(x, X) => toTable(s) = delete(toTable(x), k)
resume
resume by =>
<> 1 subgoal for proof of =>
complete
[] => subgoal
[] conjecture
% quit

prove
b = OhasKey(k, s) => b = hasKer(k, toTable(s))

qed
Log File:

Larch Prover (27 November 1991) logging on 28 February 1993 12:12:00 to
¢/users/piero/thesis/myThesis/app/proofs2/0Table.1lplog’.

LP1.3:
LP1.4:

LP1.5: declare sorts
Tab, Key, Val, 0OTab

LP1.6:

LP1.7: declare operators
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\neq: Bool, Bool -> Bool
\neq: Tab, Tab -> Bool

\neq: Key, Xey -> Bool

\neq: Val, Val -> Bool

\neq. 0Tab, OTab -> Bool
Oempty: -> 0Tab

Oinsert: 0Tab, Key, Val -> OTab
Odelete  0Tab, Key -~> 0Tab
OhasKey: Key, 0Tab ~> Bool
0lookUp: OTadb, Key ~> Val
toTable: 0Tab -> Tab

empty: -> Tab

insert: Tab, Key, Val -> Tab
delete: Tab, Key -> Tad
hasKey: Key, Tab -> Bool
lookUp: Tab, Key => Val

LP1.8:
LP1.9: set automatic-ordering off
Automatic-ordering 18 now ‘off’
LP1.10:
LP1.11"
LP1.12: declare variables

k: Key

k1 Key

v: Val

vi: Val

t: OTab

t Tab

t1: OTad
t1- Tab

LP1.13:

LP1 14.

LP1.15: % main trait: OTable
LP1.16:

LP1.17: set name 0Table

The name-prefix is now ‘OTable’.
LP1.18:

LP1.19: assert
O0Tab generated by Oempty, Oinsert

Added 1 induction rule named OTable.1 to the system.

LP1.20: assert
0Tab partitioned by OhasKey, 0lookUp
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Added 1 deduction rule named OTable.2 to the system.

The system now contains 1 deduction rule.

LP1.21: assert
toTable(Dempty) = empty
toTable(Oinsert(t:0Tab, k, v)) = insert(toTable(t:0Tab), k, v)
toTable(Odelete(t:0Tab, k)) = delete(toTable(t:0Tab), k)

OhasKey(k, t:0Tab) = hasKey(k, toTable(t:0Tab))
0lookUp(t:0Tab, X) = lookUp(toTable(t:0Tad), k)

Added § equations named OTable.3, ..., OTable.7 to the system.
The system now contains 5 equations and 1 deduction rule.
LP1.22:

LP1.23: % subtrait 1: Table

LP1.24:

LP1.25: set name Table

The name-prefix is now ‘Table’.

LP1.26:

LP1.27: assert
Tab generated by empty, insert

Added 1 induction rule named Table.l to the system.

LP1.28: assert
Tab partitioned by hasKey, lookUp

Added 1 deduction rule named Table.2 to the system.
The system new contains 5 equations and 2 deduction rules.

LP1.29: assert

lookUp(insert(t:Tab, k, v), k1) == if(k = k1, v, lookUp(t:Tab, k1))
hasKey(k, empty) == false

hasKey(k, insert(t:Tab, k1, v)) == if(k = k1, true, hasKey(k, t:Tab))
delete(insert(t:Tab, k, v), k1) == 1f(k = k1, t:Tab, insert{(delete(t.Tad,

k1), k, v))

Added 4 equations named Table.3, ..., Table.6 to the system.
The system now contains 9 equations and 2 deduction rules.
LP1.30:

LP1.31: set automatic-ordering on

Automatic-ordering is now ‘on’.

119



The system now contains 9 revrite rules and 2 deduction rules.

A1l equations have been oriented into rewrite rules. The rewriting system is
BOT guaranteed to terminate.

LP1 32:
LP1.33:
LP1.34:

LP1.35: declare variables

k: Key
v: Val
s: 0Tab
x. OTad
b. Bool
LP1.36:
LP1.37:

LP1.38: Y% main trait: OTable

LP1.39:

LP1.40: sot name 0TableTheorem

The name-prefix is now ‘0TableTheorem’.
LP1.41:

LP1.42: prove
g = Oinsert(x, k, v) => toTable(s) = insert(toTable(x), k, v)

The current conjecture is 0TableTheorem.1.

Conjecture O0TableTheorem.1:
(0insert(x, k, v) = 8) => (insert(toTable(x), k, v) = toTable(s)) == true
Proof suspended.

LP1.43: resume by =

Conjecture O0TableTheorem.1: Subgoal for proof of =>
New constants: xc, kc, vc, sc
Hypothesis:
OTableTheoremImpliesByp.1: Oinsert(xc, kc, vc) = sc == true
Subgoal:
0TableTheorem.1.1: insert(toTable(xc), kc, vc) = toTable(sc) == true

The current conjecture is subgoal OTableTheorem.1.1.

Added hypothesis (TableTheoremlmpliesHyp.1 to the system.

Deduction rule lp_equals_is_true has been applied to equation
0TableTheoremImpliesHyp.1 to yield equation OTableTheoremImpliesHyp.1.1,

Oinsert(xc, kc, vc) == sc,
vhich implies OTableTheoremlImpliesHyp.1.
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The system now contains 10 rewrite rules and 2 deduction rules.

Subgoal OTableTheorem.1.1: insert(toTable(xc), kc, vc) = toTable(sc) == true
Proof suspended.

LP1.44: <> 1 sudbgoal for proof of =>
LP1.45: complete
The following equations are critical pairs between rewrite rules
0TableTheoremImpliesilyp.1.1 and OTable.4.
OTableTheorem.2: toTable(sc) == insert(toTable(xc), kc, vc)

The system now contains 1 equation, 10 rewrite rules, and 2 deduction rules

Subgoal OTableTheorem.1.1: insert(toTable(xc), kc, vc) = toTable(sc) == true
[] Proved by normalization.

The current conjecture is (TableTheorem.1.
Conjecture OTableTheorem.1:
(Dinsert(x, k, v) = s) => (insert(toTable(x), k, v) = toTable(s)) == true
[] Proved =>.
The system now contains 10 rewrite rules and 2 deduction rules.
LP1.46: [J => subgoal
LP1.47: [J conjecture
LP1.48: qed
411 conjectures have been proved.

LP1.49:

LP1.50: prove
hasKey(k, toTable(s)) => OhasKey(k, s)

The current conjecture is OTableTheorem.3.

Conjecture OTableTheorem.3: hasKey(k, toTable(s)) => OhasKey(k, 8) == true
[] Proved by normalization.

Deleted equation OTableTheorem.3, which reduced to an identity
LP1.51: [] conjecture

LP1.52: qed

A1l conjectures have been proved.

LP1.53:

LP1.54: prove
v = 0lookUp(s, k) => v = lookUp(toTable(s), k)

The current conjecture is OTableTheorem.4.

Conjecture 0TableTheorem.4:
(0lookUp(s, k) = v) => (lookUp(toTable(s), k) = v) == true
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[] Proved by normalization.

Deleted equation OTableTheorem.4, vhich reduced to an identity.
LP1.56: [] conjecture

LP1.566: qed

All conjectures have been proved.

LP1.57:

LP1.58: % duplicate of equation in main trait: OTable

LP1.59: prove
s = Odelete(x, k) => toTable(s) = delete(toTable(x), k)

The current conjecture is O0TableTheorem.5.
Conjecture OTableTheorem.5:

(0delete(x, k) = 5) => (delete(toTable(x), k) = toTable(s)) == true
Proof suspended.
LP1.60: resuns
Conjecture OTableTheorem.5:

(0delete(x, k) = s) => (delete(toTable(x), k) = toTable(s)) == true
Proof suspended.

LPi.61: resume by =>

Conjecture OTableTheorem.5: Subgoal for proocf of =>
Bew constants: xc, kc, sc
Hypothesis:
O0TableTheoremImpliesHyp.2: Odeleta(xc, kc) = sc == true
Subgoal:
DTableTheorem.5.1: delete(toTuble(xc), k¢) = toTable(sc) == true

The current conjecture is subgoal 0TableTheorem.5.1.

Added hypothesis O0TableTheoremImpliesHyp.2 to the system.

Deduction rule lp.equals_is_true has been applied to equation

OTableTheoremImpliesHyp.2 to yield equation OTableTheoremlmpliesHyp.2.1,
Odelete(xc, kc) == s¢c,

vwhich implies OTableTheoremImpliesHyp.2.

The system now contains 11 rewrite rules and 2 deduction rules.

Subgoal OTableTheorem.5.1: delete(toTable(xc), kc) = toTable(sc) == true
Proof suspended.

LP1.62: <> 1 subgoal for proof of =>
LP1.63: complete
The following equations are critical pairs between rewrite rules
OTableTheoremImpliesHyp.2.1 and 0Table.5.
0TableTheorem.6: toTable(sc) == delete(toTable(xc), kc)

The system now contains 1 equation, 11 rewrite rules, and 2 deduction rules.

122



Subgoal OTableThecrem.5.1: delete(toTable(xc), kc) = toTable(sc) == true
[] Proved by normalization.

The current conjecture is OTableTheorem.5.
Conjecture 0TableTheorem.5:

(0delete(x, k) = 8) => (delete(toTable(x), k) = toTable(s)) == true
[] Proved =>.
The system nov contains 11 rewrite rules and 2 deduction rules.
LP1.64: {1 => subgoal
LP1.65: [] conjecture

LP1.66:

LP1.67: prove
b = OhasKey(k, s) => b = hasKey(k, toTable(s))

The current conjecture is 0TableTheorem.7.
Conjecture O0TableTheorem.7:
(OhasKey(k, s) = b) => (hasKey(k, toTable(s)) = b) == true
[] Proved by normalization.
Deleted equation OTableTheorem.7, which reduced to an identity.
LP1.68: qed

A11 conjectures have been proved.

End of input from file
‘/users/piero/thesis/myThesis/app/proofs2/0Table.1p’.
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