Fractal Block Based Image Coding Algorithms

Branka Dzerdz

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal. Québec, Canada

August 1996

(© Branka Dzerdz, 1996

ional Lib
Il i

Acquisitions and

Bibliothéque nationale
du Canada

Ditoction des acquisitions et

Bibliographic Services Branch des services bibliogr=phiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

385, rue Welhington
Ottawa (Ontario)

Your lile Volre rélérence

Qur file Noire référence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d’auteur qui protége sa
theése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18387-4

Canada

CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By: Branka Dzerdz

Entitled: Fractal Block Based Image Coding Algorithms

and submitted in partial fulfilment of the requirements for the degree of
Master of Applied Science

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. O. Schwelb

Dr. M. N. S. Swamy
Dr. E. L. Plotkin
Dr. T. Fancott

Dr. M. O. Ahmad

Approved by

19

Dean of Faculty

ABSTRACT

Fractal Block Based Image Coding Algorithms

Branka Dzerdz

The application of fractal theory to image encoding problems has seen a significant
development in the past couple of years. However, there are still numerous questions
about practical implementations that make this field interesting for rescarch. This work

is an attempt to address some of these problems.

In the first part of this investigation, the effect of different image block partitioning
schemes to the performance of the existing fractal algorithms is analyzed. A new adaptive
fractal coding algorithm is proposed. The algorithm is based on the partitioning of an
image into rectangular blocks. The partitioning is done in an adaptive manner, aimed to
increase the probability of finding the similarities between the resulting partitioned image
blocks. The partitioned image thus obtained is used to build both the range and the
domain libraries. The performance of the proposed algorithm is compared to that of the
standard fractal coding schemes. Significant improvements are achicved both in terms of

encoding time and the quality of the encoded images.

The thesis also introduces a new, hierarchical interpretation for fractal image coding
techniques. Fractal coding is presented as a refinement of details on a fine scale from the
information obtained on a coarse scale. This approach can be applied to practically any of
the existing fractal block coding schemes. An hierarchical encoding algorithm is developed
to illustrate the concept. It has been shown that the encoding time can be improved by
first performing a full range-domain search on a coarse image representation only, and

then propagating the information thus obtained to finer scales.

iii

Mami i tati

v

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Dr. M. O. Ahmad,
for providing support and guidance that made this work possible. T am grateful for his
paticnce and devotion to his students. I feel privileged for having the opportunity to work
with him. I would also like to thank the members of the examination committee, Dr. Q.
Schwelb, Dr. E. 1. Plotkin, Dr. M. N. S. Swamy and Dr. T. Fancott for their most helpful

comments and suggestions.

I would also like to express my gratitude to my family, for their indisputable love
and support. Pod familijom podrazumevam sve divie, neschicne ljude koji su ugradili u

mene deo sebe i pratili me na mom putu.

This work was supported by a scholarship from the Natural Sciences and Engineering

Rerearch Council of Canada and by a Concordia University Graduate Fellowship.

TABLE OF CONTENTS

LIST OF SYMBOLS e e
LIST OF ACRONYMS s
LIST OF FIGURES i e e v
1 Introduction
L1 General o0 0 e e e
1.2 Mathematical Background o oL
1.2.1 Fractals e e
1.2.2 HNerated Function Systems oo o oL L
1.2.3 Partitioned Herated Function Systems
1.3 Encoding thelmages o o o
1.4 Scope and Organization of the Thesis
2 Partitioning Schemes for Image Encoding
2.1 Quad-Tree Partitioningo o oo
2.1.1 Encoding Images with Quad-Tree Partitioning
21.2 Decoding e e
2.1.3 Resultsand Analysis
2.1.1 Efficient Storage o L oL
2.1.5 Speeding up the Encoding 0oL
2.2 HV Partitioning for Image Coding
2.2.1 HV Partitioning Scheme
2.2.2 Encodingthelmages
2.2.3 Resultsand Analysis,
23 SUMMATY . . o o e e e e e e e e e e e e e e e e
3 An Adaptive HV Algorithm
3.1 Introduction e e e e e e
3.2 The Proposed Adaptive HV Algorithm
3.3 Efficient Storage. e
34 Resultsand Analysis
3.5 Summary ... e e e e e e

vi

4 Hierarchical Interpretation of Fractal Coding
4.1 Image Encoding/Decoding Review
4.2 Hierarchical Interpretation
4.2.1 Scale down
4.2.2 Scale up
4.3 Hierarchical Encoding
44 Resultsand Analysis L L L

4.5 Summary

..........................

.................................

....................................

5 Conclusions and Suggestions for Future Investigation

5.1 Concluding Remarks L
5.2 Scope for Future Work oo oo oL
REFERENCES e

vii

70
il
g
7l

o

it
Sl
83
87

90
90
9l

93

LIST OF SYMBOLS

di-,) Metric (distance) Function

hal,-) Hausdorfl metrics

(X.,d) Metric space

inf Infimum

sup Supremum

arg Argument

dyuy Supremum metric

Lrons RMS metric

12 Unit square; I? = {(z.y) | 0<z,y <1}

w, Single contractive transformation

D, Domain block for the transformation w,

i, Range block for the transformation w,

D Domain library

wen n-th iterate of transformation w

s Clontractivity factor for a transformation or for a map
sy Scaling factor

Smaxr Maximum allowed value for s;

0y Offset factor

W Contractive map

f An image represented as a 2D function

Jorg Original image

Jue. Decoded image

Omas Maximum gray-llevel value within an image

rw. fw Fixed-point of the contractive map W

ro, fo Arbitrary initial image

R. Vertical size of a range block

Ry Horizontal size of a range block

h, Grey level difference between two consecutive rows

v, Grey level difference between two consecutive columns
hd, Difference between average grey levels in two areas in a

horizontally divided image

viil

Difference between average grey levels in two areas in a
vertically divided image

Range block size at a scale on which PIFS code has been
obtained

Size of a range block at ¢ times reduced original scale
Fixed-point of a PIF'S at q times reduced origin~! scale
Contractive map for a PIFS code at g times reduced orig-
inal scale

Scaling function

DCT
HE
HV
IFS
JPEG
MPEG
PIFS
PSNR
QD
RMS

LIST OF ACRONYMS

Discrete Cosine Transform
Hierarchical fncoding

Horizontal Vertical

Iterated Function System

Joint Photographic Experts Group
Moving Pictures Expert Group
Partitioned Iterated Function System
Peak Signal to Noise Ratio
Quad-tree

Root Mean Square

—_—
—

t

—
V)

— = = e

NN N NN
Sy Ov b W I

bl }

N - O

-~ O Ot

— el b et bk e e ek = = O OO
oL w

DO RN RN N NN

©

o~

3.3

LIST OF FIGURES

Sierpinski Gasket: a classical deterministic fractal object. .

Iterative generation of Sierpinski Gasket.o 0L
Similar regions within an real gray-level image.

A graph generated from a real image. 0 o L

The map w, maps the graph above D, to the graph above R,.

Use of the simplest encoding algorithm.,

Quad-Tree partitioning. Lo
QD-tree partitioned image Lenna. oo 0oL
Range-domain distance. o000
PSNR dependence on error threshold.,

Dependence of ¢ompression ratio on error threshold.

Effect of varying smqr on decoding speed and PSNR.

Images encoded (a) with s, = 0.5, giving PSNR=28.88 dl, (h) with
Smar = 1.5, giving PSNR=3454dB.
Distribution of scaling factor. L0000

Distribution of offset factor.

Distribution of scaling factor with (a) Syer = 0.8, (b) spar = 1.5

Ordering for range partition. 0.
The QD encoded Lena image.,
The QD encoded Columbiaimage.,

HV partitioned image Lenna. oo oo

PSNR dependence on RMS error threshold.

Compression ratio dependence on RMS error threshold.
Statistics on range block sizes. o0
The HV encoded Lena image.
The HV encoded Columbiaimage..

The effect of reducing the domain library size in an arbitrary fashion. .
Fully partitioned image.

Image partitioning tree.o L oo

Xi

3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.1
4.9
4.0
4.7
4.8
1.9

PSNR vs. compression ratio. oo oL 65
Fncoding time vs. compression ratio. Lo oL 65
The Adaptive HV encoded Lenna image. oL L. 66
The Adaptive HV encoded Columbiaimage. 67
Index mapping. L e e 73
Calculating clements of f% from fl. 75
Calculating clements of f! from f% 77
Limited domain-search area. 0L, 82
Compressionratiovs, PSNR. o 0. 83
Compression ratio vs. the encoding time. 84
The HE encoded Lenna image.. 85
The HE encoded Columbiaimage. o .o oo o0 o L. 86
Iimages encoded at very high compression ratio. 87

x1i

Chapter 1

Introduction

1.1 General

Bandwidth compression remains one of the most important issues when considering, the
problems of data storage and transmission. Ever increasing roles of audio and video sig-
nals in our daily lives is the main motivation for the research and development of new

and more efficient data compression techniques.

Standardization of the block-coding techniques for image and video data that utilize
discrete cosine transformation (DCT) closes a period in which millions of working hours
of researchers have been devoted to optimize the performance of these methods. Although
they are already accepted as industry standards (JPEG for still images and MPEG for
video), there is ongoing research in alternative methods, which are aiming to overcome
some of the limitations that are imposed to block-based DCT methods. Image coding

motivated by the fractal theory is one of them.

The initial ideas for the fractal image coding were presented in the visionary work of
M. Barnsley (3, 4. 2], which was entirely of a theoretical nature. These ideas did not lead
to any automated algorithms, they were rather more suitable for interactive computer

programs requiring an intelligent human operator. This was the rain source of the initial

skepticism for the Barnsley’s theory, which was expressed in a famous anecdote about a
graduate student assignment. The anecdote goes like this: to solve the difficult problem of
finding self-similarities in an image (which is the central point of the fractal-based coding

algorithms) one proceeds as follows:
I. Find a quict room with nothing inside but a workstation.
2. Get a graduate student.
3. Lock the student in.
4. Do not allow him/her to go out until he/she comes up with a solution.

Ironically. it was the work of Barnsley’s former graduate student A. Jacquin, that
gave some answers regarding the practical application of the fractal coding theory to the
real gray-level images [15),(16]. This first algorithm is considered to be generic, since
it commenced the whole new branch in image coding techniques. Since then numer-
ous improvements and variations of the basic algorithm have been reported, such as in

[23, 22, 9, 11] to mention just a few.

The basis of all these algorithms is the so called self-similarity property observed in
deterministic fractal objects. Deterministic fractals are objects of huge visual complexity
and infinite resolution. Magnification of a part of a fractal ol.ject, gives an exact copy
of the whole object. In other words, parts of the object are similar to the whole object.
Thus, we say that the whole fractal is composed of the scaled copies of itself. However, this
highly structured object can be fully described by a single set of equations. or generating
rules. These rules describe relations between the building blocks that form the fractal
object, i.e., they describe the observed regularity in the object. When the generating
rules are applied recursively to an arbitrarily chosen initiator object, a unique, complex
object, an attractor is produced. The attractor is an exact copy of the fractal. Since the
result (attractor) of this generating process does not depend on the initiator, the set of
the generating rules contains sufficient information about the fractal object and can be

used as a compact description for it.

The problem of finding the generating rules, is called the inverse problem. The ob-

tive here is to find similarities in the object and describe them with a minimal number

jec

.

of relations.

asket.,

1
1¢

Figure 1.1. shows a classical deterministic fractal object called Sierpinski (

This object can be characterized by a set of three basic transformations, cach including

scaling by a factor 0.5 and a translation, as given below. Iterative process for constructing

1.2.

>

this object is illustrated in Figure

0.25
0.5

T
Yy

0 05

05 0

Figure 1.1: Sierpinski Gasket: a classical deterministic fractal object.

A
A
AA

A L
AAL

Figure 1.2: Iterative generation of Sierpinski Gasket.

I'ractal image coding algorithms assume that real images posses some form of the
self-similarity and that they as well can be described by some sets of generating rules,
analogically to deterministic fractals. Finding strict self-similarity in real-world images
represented by the gray levels is too much to hope for. What is more realistic is to find
restricted sclf-similarities: instead of viewing the image as a composition of the scaled
copies of itself, we can try to find similarities between the restricted parts of the image.
In this case, the generating rules include the similarity relations between distinct parts
of the image. These relations are not restricted to spatial relations only, but also include
transformations performed in the gray-level domain. Figure 1.3 shows some similar parts
in a real gray-level image. All three marked regions are alike, and can be transformed
in a way that enhances the similarity. Transformations would also include spatial scaling
(resizing), which could be done by pixel averaging or simply by sub-sampling, and some
form of nonlincar modification in the gray-level domain. The transformations obtained
would form a part of the fractal code (generating rules) for the image. 'f our goal is to
achicve compression, we have to assure that storing the generating rules for the image

will require less memory space than storing the image itself.

Recovering the image from the generating rules, in this case, will be identical to the
same process as for deterministic fractals: we start with an arbitrary initiator image, and
apply all the transformations to it. We proceed iteratively, and apply the transformations

to the resulting image. Every iteration adds up some more detail. We stop when further

refinement in detail becomes too small for a given discrete grid.

Figure 1.3: Similar regions within an real gray-level image.

The recovery process, i.e., generating the image from the rules, is fairly straight
forward. Itis the inverse problem, i.e., finding the generating rules, which is challenging. 1t
is easy for a human to detect the similarities between different objects, but this problem is
very difficult to be solved by a machine in an automated manner. Furthermore, detecting
similarities is not the only task here, it is just one part in the coding algorithm. Thus, we
cannot afford complicated and time consuming procedures from the pattern recognition or
computer vision techniques. The next section gives some basic mathematicai background
and notations that will be used throughout this thesis.

1.2 Mathematical Background

1.2.1 Fractals

There is no strict definition of the term fractal. There is rather a set of properties that
an object is expected to have in order for it to be considered a fractal. These properties

are:

1. The object has details at every scale.

2. The object is (strictly, approximately or statistically) self-similar.
3. There is an algorithmic description of the object.

From the above stated properties of fractals, in image coding applications we con-
centrate on the first three, with the third property constituting as the main motivation
behind using the fractal techniques. In the fractal-based image coding scnemes, as it was
mentioned in the previous section, we view an image as a fractal object. The main coding

problem is to find a simple description of the regularities that exist within the image.

Most of the fractal-based image coding techniques are based on the iterated function
systems theory (IFS) and its generalizations. The IFS was introduced by M. Barnsley in
[3]. This is a general theory. applicable to sets and was initially applied to binary images
viewed as sets of points in a plane. The following section gives a review of the IFS theory,
constituting the necessary mathematical background for the fractal-based image coding

applications.

1.2.2 Iterated Function Systems

First, we introduce the necessary concepts that form the foundations of the IFS theory.

Let X be a set that is a vector space.

Definition 1.1 A real valued function d : X x X = R is called a metric on X if and
only if the following conditions are satisfied:

(1) Va,y€ X : d(z,y) 20, d(z,z) =0,
(2) Yx,y € X : d(z,y) = d(y, z).

(3) Vr,y,z € X :d(z,2) < d(z,y) + d(y, 2).
(4) d(z,y) =0=>z=y.

The pair (X,d) is called the metric space.

Definition 1.2 A sequencc of points {x,} in a metric space (X,d) is called Cauchy se-

quence if for any real £ > 0, there erist an integer N such that:

VYm.,n> N:d(r,,r.) < €.

Definition 1.3 A sequence of points {z,} in a metric space (X, d) is said to have a limit

a,a € X, if for any real £ > 0, there erists an integer N such that:

Vn > N:d(z,,a)<e.

Definition 1.4 A metric space (X, d) is complete if every Cauchy sequence in X con-

verges to a limil point in X.

Definition 1.5 Let S C X be « subset of a metric space (X,d). A poinl v € X is
called a limit point of S if there is a sequence {z,} of points {x,} € S\ {x} such that

IMpoeo Tn = T.

Definition 1.6 Let S C X be a subsct of a metric space (X,d). The closure of S, denoted
by S is defined as S = SU { limit points of S }. S is closed if it contains all of the limit
points, i.e., S =S.

Definition 1.7 Let S C X be a subset of a metric spacc (X,d). S is bounded if there is
a point a € X and a number T > 0 so that

Ve e S:d(a,z)<T.
Definition 1.8 A metric space (X, d) is compact if X is closed and bounded.

Let H(X) denote the set of all compact subsets of X, ie., H(X) = {5 C
X|S is compact}. For a A € H(X), we construct a set of points that are of maximal dis-
tance € from A, as measured by the distance function d : A4(e) = {z|d(z,y) < €,y € A}.
We now introduce a new distance function that measures the distance between two sets
A, B, which are elements of H(X) (that is they are compact subsets of the X) as:

he(A, B) = maz{inf{ec|B C A4le)},inf{e|A C Ba(e)}}

The metric hy(A, B) is called the Hausdor[f distance between A and B. Index d indicates
that hy depends on the choice of the metric d in the space X.

Theorem 1.1 (H(X),hy) is a metric space.

The proof of this can be found in [3].

Since H(X) consists of the compact subsets of X, (H(X), ha) is a complete metric
space. This is important, since our goal is to describe a given image (subset of the plane)
as the limit point of a sequence of images that result from a iterated application of some
map defined in the space of images. By having that space (H(X),hq) complete, we are
guaranteed that the limit point of the sequence of images will also be an image, given
that the sequence is a Cauchy sequence. There is another important requirement for the
limit point for a sequence of images to exist: the maps that describe images should be

contractive.

Definition 1.9 Let (X,d) be a metric space. A map w: X — X is Lipschitz with
Lipschitz factor s € R,5> 0 if

Vz,y € X : d(w(r), w(y)) < sd(z,y)

If the Lipschitz factor s < 1, then the map w is contractive with contractivity factor s.

All Lipschitz maps are continuous, since if d(w(z),w(y)) £ sd(x,y) and as z,y get closer

(d(x,y) — 0), then d(w(z),w(y)) also becomes small.

Theorem 1.2 The Contractive Mapping Fixed-Point Theorem: Let (X,d) be a
complete metric space and w : X — X be a contractive mapping. Then there erists a
unique point x, € X such that for everyz € X

Ty = W(Ty) = limyqe wo(2)

The unique point z,, is called the fixed-point of the mapping w. In the theorem above,

w (x) = w(w(... w(:r)))}

—

ntimes

Proof: First we prove the existence of the fixed-point. For anr € X and for n.m € N
such that n > m

d(w°™(2),w°™(z)) < sd(w°™(z), W™ H(x))

< "d(z, 0™ () (1.1)

Using the triangle inequality for the metric d(:,-), forany k € N

d(z,w**(z)) < d(z,0* () + d(w™* ' (), v (x))
< d(z,w(z)) 4+ dw(r)ww(x))+.. . +dw*(r) w0k (r))
< (14s+s8%2+..., 4+ Nd(x,uv(r))
< isd(:r,w(r)) (1.2)
Now, (1.1) becomes
A (2),u”(x)) € T dlr, () (1)

Since s < 1, for sufficiently large 2, n, the right side of (1.3) can be as small as necessary,
i.e., the sequence z,uw(z), w(w(z)),...,w°™(z)is a Cauchy sequence. Since X is complete,
the limit point of that sequence is also in X. Denote this limit point by r,,. Since w is
Lipschitz, it is continuous and therefore the following holds:

W(Tyw) = wlimp 0 W (2)) = limy 40w+ (z) = z,,.

To prove the uniqueness of the fixed-point, we assume that therc are two fixed-pointy
for w, z, and z,. Then, d(w(zu),w(zy2)) = d(Tw1,zuw2). On the other hand,

d(w(Tyw1), w(Tw2)) € 8d(Ty1,202), s < 1. This can hold only for z,, = z,,2.

From (1.2), as k — o0, we have

1
1-s

d(z,2.) < d(z,w(z)) = (14)

Also, the result given by (1.4) is called the Collage Theorem.

From the proof of Theorem 1.2, it can be observed that it is not necessary for w
to be contractive in order to have a fixed-point. It is sufficient that some iterate of w
he contractive to guarantee the existence of the fixed-point. This would lead us to the

definition of eventually contractive map and to the generalization of the Theorem 1.2.

Definition 1.10 Let w be a Lipschitz function. If there is a number n such that v
is contractive, then w is said to be eventually contractive. n is called the ezponent of

cventual contractivity.

Theorem 1.3 Generalized Contractive Mapping Fixed-Point Theorem: Let w
be cventually contractive with an exponent n. Then, there erists a unique fized-point
ry € X such that for anyz € X

Tw = w(Ty) = limg_, e w** ()

and

where s is the contractivity of w®™ and o is the Lipschitz factor of w.

The proof of Theorem 1.3 can be found in 13].

Usually a map W that represents an image consists of a collection of simple maps:
N
W(-) = wi() (15)
i=1
where w; : R? — R%,i = 1,...,Nand W : H(R?) - H(R?). For W so defined , the
contractivity condition is determined by the following theorem.

Theorem 1.4 Ifw, : R* = R? is contractive with the contractivity factor s; for i =
Lo.ow N, then W = U w; : H(R?) > H(R?) is contractive in the Hausdorff metric with

the contractivity s = maxi=,. . N{s:}.

10

Proof: Let 4,B € H(R?). and ¢ = hq(A, B). Then, AC By(¢)and B C Aa(¢). Let

S = ma.r,:;,...,N{Sz}

A, =w,(A)

B, = w,(B)
A'=W(A)=U,= ywi(A)
B' = W(B) = U,z1,..vw.(B).

We want to show that ha(W(A), W (B)) £ shy(A, B), or in other words B’ C A/(se) and
A’ C Bj(se). We have

B C A4(e) and w, is contractive = B, C w,(A4l€)),
and
w,(Ad(e)) C Aia(s,e) C Aa(se) = B; C A,a(se).

In the same manner, A, C B,4(s¢). Thus.

A" =UN, Aic UX, Bu(se) = B se),
and
B’ =UY, Bic UL, Aulse) = Al se). =)

Definition 1.11 An iterated function system (IFS) consists of a completc metric space
(X. d) and a finite set of contractive mappings w,,t = 1,..., N with respective contractivity

factors s,. The contractivity factor for the IFS is given by maxz,,. .n{s}.

We can now summarize the results of Theorems 1.2 and 1.4. For a given II'S with

the contractivity factor s, the map W : H(X) — H(X) defined by

W (8) = UL, wi(S), S € H(X)

is a contractive mapping on the complete metric space (H(X'), ha), with the contractivity

factor s, i.e.,

11

ha(W(A), W(B)) < shs(A, B),YA, Be H(X).
There exists a unique fixed-point for W, zw € H(X), such that

zw = W(zw) = UY, w(zw)
Tw = liMseo WOk(S)

for any S € H(X). This fixed-point is also called the attractor.

The uniqueness of the attractor guarantees that it is completely specified by the map
W. It is clear that being given a map W, the corresponding attractor can be constructed.
The more interesting question, however, is the inverse one. That is, weather it is always
possible to find a map W for a given attractor. This question has direct bearing on image
coding applications, but a specific answer to it does not yet exist. However, there are two
pointers emerging from our discussion, that are useful in image coding applications. The

first is that the fixed-point equation

aw = Waw) = wi(zw)U,...,Uwn(zw)

says that the attractor is composed of the transformed copies of itself. Thus, our goal in
searching for the map W should be that of determining the contractive transformations
w, such that the union of the images w;(.S) yields the initial image S. The second pointer
is that the Collage Theorem

d(S,2w) < T—d(SW(S)) (L6)

gives an estimate (unfortunately a very conservative one) for the distance between the
initial image, and the actual attractor for the map W determined, that is, the distance

between the image we want to code and the one that we can reconstruct from the map

W. The estimate is conservative, since the factor ;- makes the right side of (1.6) large,

even though W has been chosen so that d(S,W(S))is small.

12

1.2.3 Partitioned Iterated Function Systems

The IF'S theory is well suited to the coding of binary images: a binary image can he seen
as a collection of transformed copies of itself. However, the theory does not specify ecither
the type of the transformations or the number of the transformed copies of the image that
have to be constructed in order to cover the whole image. In the case of real gray-level
images, it would be too optimistic to expect that the whole image can be constructed
by using the transformed copies of the whole image itself. Even if such a collection of
contractive mappings exists for a given image, it would have to include a large number of
mappings, each described by a large number of parameters, which would make the whole

process practically of little use for the purpose of coding.

To allow encoding of gray-level images, we have to modify the mappings given in
Definition 1.11, so that they include the following features.

1. Each contractive transformation w, includes transformingin the gray-level domain

as well.
2. Each w; be restricted to a part of the original image only.

The second feature is a significant modification as it suggests a partitioning of an
image into regions each of which is transformed separately. In this case, the set of map-
pings w,,z = 1,...,N is called partitioned iterative function system (PIF'S), which is

formally defined as follows.

Definition 1.12 Let X be a complele metric space, and let D, C X,i= 1,....,N. A

partitioned ilerated function system is a collection of contractive mappings w, : D, —» X

fori=1,...,N.

We model an image as a graph of a two dimensional function f(z,y), whose domain
is the unit square in the plane!, and its value is equal to the gray-level at every point
(z,9), (z,y) € {(u,v): 0 <wu,v< 1} =1? and f(z,y) € R. Figure 1.4 shows the graph
of a two dimensional function f(z,y). This graph is gencrated by plotting the gray-level
of a pixel at position (x,y) as the height of the graph at (z.y).

lie., the image dimensions are normalized to 1.

13

With this model of an image, the space of all possible images is defined as
the graphs of all (measurable) functions over the unit square I?, with values in R:
F = {f:1* - R}. We associatc with the space F' the supremum metric dsup(f,9) =

supg, pere 1 f(o,y) = glz,y)| so that (F,d,,,) represents a complete metric space.

«9, \~, Qn'“

N5 \
A

, .
£ :.‘\ ,‘n‘.‘ N

(573 “q~ " .‘,-.
] ’M..,. % 'v«\ m‘l
' A

Figure 1.4: A graph generated from a real image.

We define two groups of subsets of 1% D; C I?, and R; Cc I%,i =1,...,N. They
are called the domains (where the transformation maps from) and the ranges (where the
transformation maps to), respectively. Each map w; is then restricted so that it maps
S N (D, x R) (the portion of image above the D;) onto the f N (R; x R) (the portion of
image above the R,). These maps, together with D;,i = 1,..., N, form a PIFS. There is

another requirement on the maps w,’s that they tile the region 72, as defined below.

14

Definition 1.13 The maps w;,i = 1,...,N are said to tile I? if for all f € F,
Ul w(f) € F.

Thus, the requirement of tiling implies that when w, is applied to the part fN (D, x R) of
the image above D,, the result must be a graph of a function over R,, and U,’\;,R. =]2
It also implies that the union UY.,w,(f) yields a graph of a function over I? and that R,'s
are non-overlapping. The tiling condition is necessary so that we can apply W recursively
(since W requires a function over I? as an input). Contractivity of W in F' then guaran-

tees a unique fixed-point for W in F.

The image model used here, represents an image in three dimensional vector space.
However, the supremum metric dsup(f,9) = sup(; yer |f(2,¥) — g(x,y)| depends on the
gray-scale value only (the z-coordinate), and not on the spatial coordinates. For this

reason we define contractivity in that one dimension only.

Definition 1.14 If w: R® = R® is a map with w(z,y,z) = (2',y, 2}) and w(e,y, z2) =
(2'.y',z5), with 'y’ being independent of z or z3, for all x,y,z), 25, ten w is called
z-contractive if there exists a positive real number s < 1, such that

|21 — 23] < s8]z = 22

Theorem 1.5 If w,,i = 1,..., N are z-contractive, then
W =UN,w,

is contractive in the metric space (F,dqy,) [13].

Given a collection of z-contractive mappings w,,i = 1,..., N that tile I?, we have
seen that W = U, w; defines a unique attractor zw in the space of images. We have also
seen that the attractor can be easily reconstructed from W by simply iteratively applying
W to any initial image. What is left to be shown is weather a map W can b« found for
a given image f, such that f = zw. The general solution to this problem does not exist,
and it is unrealistic to believe that it can be found. Instead, we accept something more
reasonable. We try to find a mi;: W that describes some image fw which is close enough

(in the sense of metric d) to image f. We seek D,’s i = 1,..., N and the corresponding

w,’s such that
N
1= W) = Jwilf)

and we hope that fy looks similar to f. Our goal is to minimize d(f, W(f)) and to have
a small s. In that case the Collage Theorem (Eq. 1.4) guarantees that fi will be very
close to f. Unfortunately, the bound for d(fw, f) given by this theorem is not very good

in practice, since the empirical results show that restricting s to be small results in larger

error d(fw, f).

In practice, we first determine R, C I?, i = 1,...,N by partitioning /? into non-
overlapping regions. Then, for each R,, we try to find D, and w,, w,: D, x R = R, x R,

such that
d(f 0 (R x R),wi(f))

is minimized. The map W is specified by the collection of w;’s. We have to assure that
W is at least eventually contractive for it to have the fixed-point. The m-th iterate of the

map W, W on an image region D,,i =1,2,..., N, is composed as

W™ D,) = wim(Wim=1(. .. w2 (wn(D,))...)) (1.7)

The contractivity of the composition of the maps given by (1.7) is determined by the
product of contractivity factors for the maps wy;, w,2, . . ., w,m. Thus, it is sufficient to have
~nough of contractive wi,’s 7 = 1,2,...,m in (1.7), so that the overall W is contractive

while some of the factors w;,’s are allowed to be non-contractive.

1.3 Encoding the Images

We have seen that the major characteristic of the PIFS is the partitioning of the image

into regions each of which is transformed separately. In this section we describe a method

16

for encoding the images that uses the simplest partitioning scheme.

In order to evaluate the contractivity of a map, as well as to determine the distance
between two images, we introduce a metric that will be used in the space of images. There

are many metrics to chose from, the simplest one being the supremum metric:

doup(f,9) = sup |f(z,¥)—g(x,y)l,
(z.y)el?

and the most practically used one being the root-mean-square (rms) metric:

drms(f.9) = \//P(f(axy) —g(z,y))?

The supremum metric is convenient to use for the mathematical analysis, while the rms
metric has advantage in practical applications, as it will be seen in the succeeding chap-

ters.

To encode a given image f, we have to find a collection of transformations w,,
i=1,...,N, with the map W defined as W = U, ,w, and image f = fu. In other words,
we want f to be the fixed-point of the map W, as given by

f=lw=W({)=wi(f)Vw(f)U...Uwn(/)

This equation also suggests as how to find the map W. We should find a partition of
the image f into regions to which the transformations w;’s are applied, and the results
are added up to get f. For majority of real images, it is generally not possible to find a
partition so that the transformed parts of an image exactly match to some other parts of
the same image. What is more realistic, is to find a map W whose fixed-point fi is close
to f, that is, drms(/f, fw) is small, yielding

f=fw=W(w)=W(f)

In the encoding process, we approximate the parts of the image f N (R, x) by
the result obtained by transforming f N (D; x R) (see the Figure 1.5)2 . To find the

2For simplicity, we will say that we map block D, to R;, although we map the part of the function f
that is above D, (i.e., f N (D; x R)) to the part of the function f above R, (i.c.,f N (R, x R))

17

transformation w,, we optimize the distance:
d(R,,w,(D;)),1=1,..., N, (1.8)

that is. we minimize the distance between R, and w;(D,) for the chosen metric d. Finding

the image parts R,’s and corresponding D,’s is the central point in the encoding process.

A

Figure 1.5: The map w, maps the graph above D, to the graph above R,.

We will now present the simplest way to encode an image by using these concepts.
We chose d.,,.s for the metric. and assume that w,,i = 1,..., N, are affine transformations
(the simplest possible nonlinear transformation). This means that a w, consists of contrast

and brightness adjustment in the gray-level domain, as given by

wi(f(z,y)) = si- f(z,y) + 0;

Furthermore, w,’s include geometrical scaling by two in both horizontal and vertical di-
rections: surface of the D, blocks will be four times larger than that of the R; blocks. For

illustration, we take R,’s to be square blocks of size 8 x 8 and D;’s square blocks of size

18

16 x 16. We divide the image into non-overlapping 8 x 8 blocks, and try to approximate
each block by some of the transformed larger blocks. As for the candidates among which
we search for the best fit (that is for the corresponding D,). we construct the set of all
possible 16 x 16 blocks that overlap by one-half of their size. We denote this set of larger
blocks by D and call it the domain pool.

For each R,, we search through the whole set D to find a block and the transfor-
mation which make the best approximation for R,. In order to do this, for every R,.
we have to first rescale each of the blocks from D - this requires either sub-sampling, or
averaging the groups of four pixels. The next step is to find the coefficients s, and o, of
the transformation w, for every pair of blocks consisting of R, and a larger block from).
After this, we evaluate the closeness of the transformed larger block and I, in the rms
sense. Finally. we memorize the transformation and the position of the larger block from

D that gave the best approximation for R,.

Figure 1.6 illustrates the reconstruction of an image that was cncoded by this
method. The initial image is one shown at the upper left corner of Figure 1.6, 'The
image obtained after the first iteration (upper right) still shows some textures from the
initial image. After the third iteration, no texture from the initial image is visible, and
the details have already begun to appear (bottom left). The final image (bottom right) is
obtained after 8§ iterations. The original image required 65536 bytes to encode. The frac-
tal code for the image required only 3584 bytes® yiclding a compression ratio of 18.28:1.

The quality of the decoded image is good, given the simplicity of the encoding algorithm,

3For every block we need 16 bits to encode position of D,, 5 bits for the s, and 7 bits for o,. In total,
this is 1024 x 28 = 28672 bits which is 3584 bytes

19

SEEENANEEANEEEEENEREEE
I=IlI=IIIIIII-IIIIIIIIII
|] NEEENN -]
| HEEEEE ERVYE
] SEERN AVE
T
|] IIII=II |
[[1] HEEENNE]
|=I | IIII=]

] NEEEEN]
L[]] HEEEN]
L]] IIIEI]
1 LT]
= nENnn]
il ==-==IIIIII=
: T
!l IIIIIIIEIIEI
] HEN NEEEN
H SEESSRESSa
an EENEERREEEE

~
2%}
N’

(d)

Figure 1.6: Use of the simplest encoding algorithm.
(a) The initial image and images after (b) first, (c) third and (d) eighth iteration of the
decoding process.

In the above example, for an image of size 256 x 256, there are a total 1024 range
blocks R,,1=1,...,1024 and 241 x 241 = 58081 possible larger blocks in D). We have to
compare each of the 1024 range blocks to each of the 58081 larger blocks. Each comparison
includes resizing the larger block by averaging four pixels, calculating the coefficients of

the transformation, and finally, measuring the distance between two blocks. All this is

20

time consuming. The time performance of this technique represents a large weakness of
the algorithm. Nevertheless, this is basically the generic algorithm that was first proposed
by Jacquin* in [15], and it gives an idea as how the fractal-coding schemes work. It also

suggests some possible schemes for further improvement.

1.4 Scope and Organization of the Thesis

One of the ways researches have approached the fractal image coding has been based
on choosing particular image partitioning schemes [14, 12, 7]. All these schemes attempt
to partition images into range blocks whose sizes vary according to the image activity,
thus allowing better distribution of the allocated bit resources. However, none of these
schemes has applied any form of image-content analysis in order to determine the posi-
tion of the domain blocks. This leads to a large number of possible domain blocks in the
domain pool. which increases the encoding time and does not necessarily guarantee an
improvement in the quality of the coded image quality. In this thesis, a new adaptive
fractal image coding algorithm is proposed. The algorithm includes a simple analysis
of the image-block contents in image partitioning process. The partitioning information
is used to determine both the range and domain blocks in an adaptive manner, which
enables a reduction in the domain pool size. It is shown that the proposed algorithm
provides a significant improvement in the encoding speed, with the quality of the coded

images compared with that obtained by using the existing fractal-based algorithimns.

One of the main characteristics of fractal objects is their richness in the detail at
every scale. Similarity of the fractal objects’ representations on diflerent scales has heen
one of the initial motivations behind the use of the fractal theory in the image coding
applications. However, the relations between the image representations at different scales
are not clearly outlined and utilized in any of the existing fractal coding schemes. This
thesis introduces a new, hierarchical interpretation of the fractal image coding techniques,
The relationship between the fixed-points of a given PIFS, obtained on different scales,

is derived. Fractal coding is presented as a refinement of the fine-scale details from the

4Jacquin’s algorithm introduces some simple classification of the blocks in order to reduce the number
of block comparisons.

21

information obtained on the coarse-scale. Based on this pyramid-like representation of

the fixed-points, a hierarchical image coding algorithm is developed.

The thesis is organized as follows. In Chapter 2, two existing fractal coding algo-
rithms are presented. Effect of the type of the image block partitioning on the quality
of the fractal-coded images is investigated. Various parameters that are included in the
design of a specific coder are considered. In Chapter 3, a new adaptive fractal-based
image coding algorithm is proposed. It is shown that a higher level of similarity between
the image blocks, resulting from the proposed partitioning, can be achieved by including
an analysis of the image-block contents into the partitioning scheme itself. This allows a
reduction in the size of the domain pool, and consequently a reduction in the encoding
time. Performance of the algorithm is compared to that of the existing algorithms pre-
sented in Chapter 2. In Chapter 4, decoding of a fractal-encoded image is looked at on
different scales, and relationships between the fixed-points of the same PIFS are obtained.
Based on these relationships, a hierarchical image coding algorithm is developed and its
performance compared with that of a more “standard” fractal-coding method [14]. Fi-
nally, in Chapter 5 the main results of this thesis are summarized and some suggestions

for the future continuation of this work are given.

Chapter 2

Partitioning Schemes for Image

Encoding

In the previous chapter some theoretical background that supports the idea of using
simple maps to describe complex images has been presented. An example on how a
fractal-based coding can be done has also been given. The method used in this example
is rudimentary to be considered as a serious coding technique. However, the example has
pointed out the main issues in the design and implementation of a fractal image coding

system. These issues are:
1. The partitioning of an image into nonoverlapping ranges.
2. The choice of a measure of distortion between two images.
3. The type of nonlinear contractive mappings applied to image blocks.
4. The efficient method for quantization and coding of the mapping parameters.
5. The speed of coding.

Each issue brings its own trade-offs that have to be properly addressed and balanced. For
example, the partitioning of an image should follow the image content and take advantage
of the local similarities within the image. On the other hand, the partitioning algorithm
should be as simple as possible, as we need to store the partitioning information and we

want it to be compactly describable. If we want the algorithm to apply to any type of

23

itnages and not just to a set of specific images, partitioning should be robust and flexible.

In this chapter we will present two existing fractal image coding techniques, the
quad-tree (QD) [14] and the HV algorithm [12], that are based on two different partitioning
schemes. Both the partiticning schemes result in very simple range and domain sets of
image blocks. We will describe the basic algorithms and give analysis of the results these

algorithms bring.

2.1 Quad-Tree Partitioning

The encoding algorithm described in the Chapter 1 has used a very simple scheme for
partitioning an image into nonoverlapping range blocks. A 256 x 256 image has been
divided into 1024 square blocks of size 8 x 8. Such a partitioning scheme does not depend
on the image content. It uses the same block size for the smooth and the textured areas as
well as the areas that contain edges in the image. In this way, the smooth image areas are
well approximated, and we can even say that the bit allocation for these areas is abundant.
On the other hand. the textured areas and the areas with edges lack good approximation.
The way to remedy this situation is to introduce a partitioning scheme that allows use of
range blocks of varying sizes. One solution is to use the so called quad-tree partitioning,

A description of the quad-tree image block partitioning can be found in [10].

A quad-tree partitioning allows a few different sizes for the range blocks. Generally,
the attempt is to cover the smooth image arcas by the square blocks as large as possible,
while using the smaller blocks to cover the areas of the image with more activity. The
benefit of allowing larger blocks for the smooth image areas is that a single transformation

is used to describe a large block. thus saving on the final size of the coded image.

Figure 2.1 illustrates the way the quad-tree partitioning is performed. The left part
of this figure shows an image divided into 16 squares of four different sizes. First, the
image is divided into four squared blocks of size one-half the original image size. This

24

process continues for the upper left sub-block. The right part of figure 2.1 shows an anal-
ogv of the partition with a tree. The root of the tree is the whole image. Fach division
of a block corresponds to branching of a node into four new branches. Every squared

block of the image is a node in the tree. The final block partition is marked by squar .

Figure 2.1: Quad-Tree partitioning.
Filled circles denote nodes in the partition tree, the squares denote final block partition.

The decision weather to split a block into four smaller blocks is based on the activ-

ity of the block. While in [13] the decision is done on the basis of the block’s variance
variance being measure of the block’s activity, we chose to base the decision on the
existence of a good approximation. That is, a block is split only if it is not possible to
find a good cover for it, so we try to cover its four sub-blocks instead. This is justified
by the fact that the textured areas in the image have high activity, but still can be well
covered by some other textured regions of the image, not necessarily having to be divided

into smaller blocks. Figure 2.2 shows the final quad-tree partition for a real image.

For the image coding purposes, we need to keep information about the final partition.
The quad-tree method makes it simple and efficient to code this information. Usually for
an image, we specify in advance the maximum and minimum size for a block in the final

partition. Since the partition follows a simple rule - always divide into four squares, the

25

size of a final block can be coded by simply specifying how many levels down in the parti-
tion tree the block is located. The position of the block can be stored implicitly by speci-
fying the ordering of the blocks (for example, from the upper left corner to the lower right

corner). Efficient storage of the partitioning information is elaborated in the Section 2.1.4.

] B i
it }
1 HiH
T teen F
1 H T
H i
os
as
-4
bttt
-4
b-4-4-4 1
1
H H
]
1
+ H 11
- T . . r .
aes H
e
H in .e
+ 1 HH

(b)

Figure 2.2: QD-tree partitioned image Lenna.
(a) Original image, (b)Segmented image.

2.1.1 Encoding Images with Quad-Tree Partitioning

We have described so far how to obtain the range blocks. The collection of the domain
blocks consists of sub-blocks of the image that are twice the range size. Since the sizes of
the ranges vary, there is a corresponding set D of possible domain blocks for every range

size.

The ranges are selected as follows. First we start with the whole image and diviae
it into four squares. We continue to divide each resulting square into four smaller squares

until some predetermined maximum range size allowed (minimum depth in the partition

26

tree) is reached. Then, a square block in the image thus partitioned is compared with
the domain blocks from the corresponding domain library D. Comparison consists of the

following two steps:

1. average the domains’ pixels in groups of four - so that the domain is reduced to the

size of the range, and

[S)

. calculate the parameters of an affine transformation for the domain block so that

the rms distance between the transformed domain and the range is minimized.

If the resulting distance is smaller than some preselected threshold, the range-domain pair
is saved together with the transformation parameters. If the rms difference is above the
threshold, the search continues until a dornain is found such that the rms distance is within
the threshold or the set of domains D is completely exhausted. If the set D is exhausted,
the range block is further split into four smaller blocks and search continues for each of
of these blocks. If the minimal allowed range size is reached (the bottomn of the tree), no
further split can be done, and the best range-domain pair found is saved, regardless of
the calculated rms distance. Each range-domain pair, together with the transformation
parameters, constitutes one map w,. The collection of all such maps W = UN.w, forms

the code of the entire image.

An affine transformation applied to a domain block is of the form sy - diy + oy,
where sy is a scaling factor (the contrast adjustment), oy is an offset term (the average
brightness adjustment), and di, is a pixel value at the relative position (k,!) in the domain
block. For a range-domain pair, sy and oy factors are calculated so as to minimize the
cost function F' given by

M-1M-1

F=73 3 (sgdis+ 05 —rip)’ (2.1)

k=0 (=0
where 7 is a pixel value in the range block at “he relative position (k,!) and M is the
size of the range block. Minimizing F' leads to expressions for s; and oy for a given

range-domain pair, as given by

0 it M? - d2sum — (dsum)? = 0

M?.rdsum-—rsum-dsum

Sj =
M?.d2sum—(dsum)? otherwise

(2.2)

27

rsumn — sy - dsum

oy = M2) (2.3)
where
M-1M-1
rsum = Z Tkl
k=0 (=0
M-1M-=1
rdsum = Z rL,l‘dk,l
ltl_—ol Alf-ol (2.4)
dsum = Z de.l
k=0 (=0
M~1M-1
d2sum = z (dk‘l)z.
k=0 |=

The value of s obtained from (2.2) is in addition truncated, so that Iss] € $maz, wWhere
Smar is @ maximum allowed value for the s;. The goal is to assure that the final map W
is eventually contractive. The parameter smar is optimized experimentally, as it will be

shown in the analysis that follows.

The values f the s; and oy as calculated from (2.2) and (2.3) have to be quantized
for an efficient storage. Since the stored values are those that are available at the decoder.

we use the quantized values of s; and oy when we calculate the rms distance between two

blocks:
drms = 1/52d2sum + 2s70;dsum + 0% — 2syrdsum — 205 rsum + r2sum 2.5
J 104 f J !
with
M-1M-1
r2sum = Z Z rz',
k=0 =0

The domain library for a given size of a range block, consists of square blocks that
are of twice the size of the range block. The spacing between the upper left corners of two
adjacent domain blocks is chosen to be one-half of their size, meaning that the domain
blocks overlap. Some researchers additionally enrich the domain library by applying the
isometrics on the domain blocks, so that every domain block represents actually 8 blocks:
four obtained by rotations of the original block taken from the image plus the four ob-
tained by a flip and rotations [14]. However, our experimental results show that these

transformations seldom provide any advantage in the image coding. Since they introduce

28

significant increase in encoding time, with little visible improvement in the quality of
the coded images, we have decided not to use them. Thus, a domain library for a given
range size consists of all possible squared blocks of twice the range size, whose upper left
corners are spaced on a square grid over the image, where the spacing between the points
on the grid is equal to the size of the range. There is a technical detail for determining
the domains. We have mentioned that, before the purameters of the transformation can
be determined, the domain pixels should be averaged in groups of four in order to reduce
the domain size to that of the range size. This can be done in an equivalent way by first
resizing the whole image by factor of two, and then defining the domain block library
as the set of all blocks of size equal to that of the range blocks , with the spacing of
one-half the range size between them. This way, the averaging is done only once, instead
of doing it for every domain each time a new range block is to be compared to it. Now,

the encoding algorithm we have discussed is presented more formally using pscudo codes,
The Quad-Tree Encoding Algorithm

Quadtree(x_pos,y-pos,hsize,vsize,depth){
If (depth<min_depth) {

Quadtree(x_pos,y-pos,hsize/2,vsize/2,depth+1);

Quadtree

(x

Quadtree(x_pos+hsiz-2,y_poshsize/2,vsize/2,depth+1);
(x-pos,y-pos . vsize/2 hsize/2,vsize/2,depth+1);
(

Quadtree(x_pos+hsize/ ,y_pos+vsize/2,hsize/2,vsize/2.depth+1);
}

While(there_are_domains_inlibrary) {

rms_crror=comparc(Range_block,Domain_block);

If (error < thres_error) {
write_pair(Range_block,Domain.block, Transformation);

Return;

29

Else if (error < min.error) {
min.error=error;

Best.Domain=Domain_block;

}

If (bottom.reached) {
write_pair(Range_block,Best Domain, Transformation);
Return;

}

Else {
Quadtree(x_pos,y-pos,hsize/2 vsize/2,depth+1);
Quadtree(x_pos+hsize/2,y_pos,hsize/2,vsize/2,depth+1);
Quadtree(x_pos,y_pos+vsize/2,hsize/2,vsize/2,depth+1);
Quadtree(x_pos+hsize/2,y_pos+vsize/2,hsize/2,vsize/2,depth+1);

}
2.1.2 Decoding

Decoding of an image from the stored code (map W) consists of iterating the map W on
any initial image. The partitioning information from the code is used to determine the
positions of the range blocks. For each range R,,i = 1,..., N, the corresponding domain
block D, from the initial image is resized (or equivalently, the domain is taken from the
resized initial image), and transformed by s;, - D; + o;,. The resulting block is placed
at the position of the range R,. This constitutes one decoding iteration. The decoding
process is iterated until no further refinement in the decoded image can be obtained by

the current iteration.

30

2.1.3 Results and Analysis

There are many parameters that can affect the encoding: maximum and minimum range
block size, the rms error threshold to which we compare the calculated d,,,, distance for
two blocks, choice of the quantization levels for s; and oy, maximum allowed scaling factor
Smar and number of iterations in the decoding process. In this section we try to optimize
the choice of some of these parameters and give an analysis of the results obtained from
the algorithm described. All the results presented here are obtained using images of size

256 x 256, with the following parameters fixed (unless otherwise stated):
e Maximum and minimum allowed range block size 32 and 4, respectively.
o Five bits used to quantize the scaling factors and seven for the offset factors.
® Spar = 1.9

Range-domain distance

The first thing we look at is whether there is some local self-similarity in images.
In other words, how close geometrically is a range to the corresponding domain block.
Typical results for an image of size 256 x 256 are presented in Figure 2.3. Irom this
figure, it is clear that we cannot benefit from some “local similarity” to restrict the

domain search to an area close to the range, since such local similarity does not exist.
120

80r n 11 -
60
40

201

[50 100 150 200 250 300 350
Range~domasn distance

Figure 2.3: Range-domain distance.

31

Maximum error allowed

The rms error threshold parameter at the encoder is used to indirectly influence the
quality of the encoded images. Whenever a range block is compared to a domain, the
dyms distance (Equation (2.5)) is calculated for the two blocks. The value calculated for
dyms is compared to the value specified for the rms error threshold, and if the calculated
error is bellow the threshold value, the domain block is accepted as a good approximation
for the range. Otherwise, the range-domain search is continued. Figure 2.4 shows how
the objective quality of a decoded image is affected by varying the rms error threshold
parameter As a measure of the objective quality, we have used the standard peak signal-

to-noise ratio (PSNR)

92
PSNR = 10! - ’
oglOZ(fzdec - fzorg)2

where gnq, denotes maximum grey-level in the original image and Y fidec — f7org)? is the

squared rms distance between the original and the decoded image.

36 1 ¥ T ¥ ¥ 1 i Ll T

34

w
N
T

PSNR (dB)
w
=

26

T

2 4 6 8 10 12 14 16 18 20
RMS error threshold

24
0
Figure 2.4: PSNR dependence on error threshold.

Figure 2.5 shows the relationship between the error threshold and the compression ratio

32

achieved. Allowing larger threshold for the error results in fewer ranges to encode, and
this higher compression is achieved at the expense of the quality of coded image. On
the other hand, for smaller error threshold, we need to encode more ranges, and thus
the encoding time increases inversely proportional to decrement of the error threshold

parameter.

20 T L)) 1 L T T T T

Compression
- - -
N H [
T T 1

-t
(=]
T

I

1 1 1 1 i
0 2 4 6 8 10 12 14 16 18 20
RMS error threshold

Figure 2.5: Dependence of compression ratio on error threshold.

Effect of Varying S,z

We have already mentioned in Section 2.1.1 that in addition to calculating the scal-
ing factors for the domain-range transformations according to (2.2), there is a need to
limit the |s;| factors by some maximum value Smaz, in order to ensure the eventual con-
tractivity of the map W. Here, we investigate the effect of the different values of this
parameter. Figure 2.6 shows that this effect is twofold. Allowing smaller $;,, generally
results in faster convergence of the iterative decoding process. For spq. = 0.5 we see

that after only 6 iterations, the improvement in the decoded image quality hetween two

33

successive iterations is less thaa 0.05 dB, while for s,,,, = 10, 10 iterations are needed to
satisfy the same criterion. One can also observe from the same figure that the quality of
the encoded images varies for different values of s;,.. The initial trend is that the PSNR
of the encoded images increases with increasing smqr. Further increase in s, leads to a
slight decrease in the image quality. Finally, a steady state is achieved, when the quality
of encoded images does not depend on further increase in spmq-. The subjective quality
of images encoded with s, = 0.5 and ;.. = 1.5 can be judged from Figure 2.7. It is
interesting to note that even with the s, much larger than 1, the convergence in the

decoding is achieved.

35

30

PSNR (dB)
n
>

N
(=]
T

151

10 L 1 L A
0 2 4 6 8 10 12 14

Number of iterations

Figure 2.6: Effect of varying sm., on decoding speed and PSNR.

34

(b)

Figure 2.7: Images encoded (2) with sy, = 0.5, giving PSNR=28.88 dB,
(b) with spmqsr = 1.5, giving PSNR=34.54 dB.

35

Scaling and Offset factors

Figures 2.8 and 2.9 show a typical distribution for the scaling and offset factors. It
can be observed from these figures that the distributions for both s; and o; show sig-
nificant structure, so that some kind of adaptive coding of these parameters can yield
improvement in the total bit allocation for storing the transformations. In all the experi-
ments, we have used 5 bits for s; and 7 bits for oy, as suggested by the analysis carried

out in [13] and (17).

Figure 2.10 shows another interesting aspect of having the parameter s, > 1. In
this figure, the distribution for the scaling factors when sm,. = 0.8 and spgr = 1.5 is
given. It can be scen that smex = 0.8 yields an almost uniform distribution for scaling
factor, thus no benefit can be obtained by adaptive coding of sy, unlike the case for the

. —1r
Smas = 1.0

450 T Y v . . x —
400} 1

350+

250}

200t

o 1 11 .
-0 -8 -6 -4 -2 0 2 4 6 8 10
scaling factor

Figure 2.8: Distribution of scaling factor.

36

600

5001

400}

3001

200}

100+

0
-1500

Figure 2.9: Distribution of offset factor.

-1000

=500

0

§00

offset lactor

1000

1500

2000

180 v T 140 v : - v
160} i

120}
140} 1

100} r
1201

| n
. 1N N
100} 8o W
il 11

80H _ 60 1 I
60 s

40t
AQH

20 I
201

8 ;04 0 S 0 '
-08 -06 -04 -02 0 02 04 06 o8 -15 -1 -08 [+] 05 1 18
Scaling factor sf Scaling factor !
(a) (b)

Figure 2.10: Distribution of scaling factor with (a) s;maz = 0.8, (b) Spar = 1.5.

37

2.1.4 Efficient Storage

A quad-tree based scheme particularly allows efficient storage of the range parti-
tioning information. If we agree in advance about the general rule for ordering the
ranges in the final code, then due to the simple square shape of the range blocks,
the range partition can be reconstructed from the information about the range sizes
only. For example, if the ordering is from the upper left corner of the image to the
lower right corner (as shown in the Figure 2.11 (a)), we can reconstruct the partition-
ing for the configuration presented in Figure 2.11 (b) from the sequence of range sizes,
{Tmazs T2y T2y T2 Trans Tman s Tmins Trminy Tmazs Tmaz)} Lhus, to code the position of a range,
we need to store the information about its size only. If four sizes are allowed (for example,
32,16, 8 and 4 for a 256 x 256 image), this information can be coded by two bits only.

(a) (b)

Figure 2.11: Ordering for range partition.

The position of a domain block is coded by indexing all possible domains for the
given range size, since the potential domains are known in advance. For the smallest
range of size 4 x 4, there are a total of 249 x 249 possible domains, thus, this information
can be coded with 16 bits. The transformation parameters s; and o; are quantized and
coded with 5 bits and 7 bits, respectively. Thus, for one range-domain pair, we need to
store a total of 24164 :2=30 bits in the most conservative case.!

"In the case £y = 0, we don’t need the information about the domain, but only about the offset factor

38

In the following pages we provide examples of the QD coded images. We present two
types of images, so that the performance of the algorithm can be evaluated with different
input image characteristics. We can say that, in general, the algorithm gives images of
satisfactory quality - no visible artifacts - for the compression ratios hellow 10. Above
this compression ratio, blockiness in large smooth areas (such as sky in Figure 2.13(d))
becomes too visible, and non-horizontal or non-vertical edges (such as girl’s shoulder in
Figure 2.12(d)) lose smoothness. In Figure 2.12(d), it can be observed that cven some of
the horizontal or vertical edges are not perfectly reconstructed (upper right corner). This
effect is mainly due to the range block boundaries not coinciding with the real edges in

the image.

2.1.5 Speeding up the Encoding

Searching for the range-domain match is computationally very intensive. This was vecog-
nized even from the early works in fractal coding techniques. One of the ways to speed up
the encoding is to classify range and domain blocks into several classes and then compare
blocks from the same class only. Many classification schemes are possible. In [16] three
classes have been used and blocks are classified as flal, edge and texture, while in [13] 72

classes have been proposed based on the energy content of the blocks.

Before encoding, all the domains in the domain library are classified. During the
encoding, a range block is classified following the same criterion as for the domains and
only the domains from the same class are compared with the range. This significantly
reduces the number of range-domain comparisons, which is the most time consuming part

of the algorithm.

We outline here one possible classification scheme. To classify a block, we divide it

into four quadrants, and then calculate the average pixel value for each quadrant.

oy. Thus, on the average, we require less than 30 bits/range

39

Figure 2.12: The QD encoded Lena image.

(a) Compression ratio 4.33, PSNR=34.57 dB.
(b) Compression ratio 6.44, PSNR=33.29 dB.
(c) Compression ratio 9.72, PSNR=32.50 dB.
(d) Compression ratio 14.49, PSNR=29.85 dB.

40

1

R e O

|
T
{
%

(d)

Figure 2.13: The QD encoded Columbia image.

(a) Compression ratio 5.60, PSNR=34.30 dB.
(b) Compression ratio 7.10, PSNR=32.12 dB.
(c) Compression ratio 10.12, PSNR=29.40 dB.
(d) Compression ratio 14.52, PSNR=28.65 dB.

41

This gives us four numbers, A;, A2, A3 and As. We classify blocks according to the
ordering of these four numbers, so that all the blocks for which A; < A; < Az < 44
form one class, the blocks with A, < Az < Ay < A, constitute the second class, and so
on. There are 4! possible classes defined this way. The criterion for classification works
because of the type of the transformation used. Since we use the affine transformations,
the ordering of the average intensities for quadrants does not change after applying the
transformation to a domain block, so that the blocks from a good range-domain pair
belong to the same class. This type of classification can significantly improve the time

performance of the algorithm, with quality of coded images preserved.

2.2 HYV Partitioning for Image Coding

The main advantage of the quad-tree (QD) based image partitioning over the partition
into equal size square blocks has been its ability to generally follow the activities of the
image content. However, once the decision for dividing a block into four smaller blocks
is made, the division is always performed the same way, without taking into account the
actual content of the block. All blocks are divided into four quadrants. The partitioning
scheme that we present in this section is another step towards achieving a greater flexi-

bility in image partitioning.

The partitioning scheme is called the HV (abbreviated for Horizontal-Vertical)
scheme. The partitioning is always carried cn in either a horizontal or a vertical di-
rection. A block division is not done at an apriori known position as in the QD case, but
it is rather determined based on the block content. The goal is to divide a block along
the strongest horizontal or vertical edge present within the block. This results in a final
partitioning in which most of the blocks do not contain edges (at least horizontal and

vertical). Such blocks are easier to cover.

2.2.1 HYV Partitioning Scheme

The main motivation for choosing the HV partitioning scheme over the quad-trees is that

of having a greater adaptivity of the range partition to the image content. The goal is not

42

only to generally capture the image activity, but also to adapt to the information content
of the image. It is well known that human visual system is very sensitive to faithful
preservation of edges in the image representation. Dividing the blocks at positions known
in advance, makes it difficult to approximate well all the edges, as they may occur at any
position within the block. Dividing the blocks along the strongest edges, as it is done
in the HV partitioning, results in the blocks that do not contain edges, which increases

probability of finding good approximations for them.

The partition of an image is done recursively in horizontal or vertical direction
to form two new rectangular sub-images, generally of different sizes. The orientation
(horizontal or vertical) and the position of the partition for every image block tend to
follow the contents of the block: partitioning is attempted along the strongest horizontal
or vertical edge present in the block. If a block of size R,xI?, contains the pixel values
r.,’s, then for every row 7,7 =0,1,..., R, — 1, and every column j, j = 0,1,...,ft), — 1,

the following parameters are calculated

min(i, R, — 1) ! !
hl = (R Z r:.] Z 7‘l+l,])
1=0 1=0

Ry~1

min(j R;, -7 !
o = PRI - 3),
i=0

These parameters measure the difference (in gray-level domain) between two adjacent,
rows (columns), thus detecting a strong variation in the grey-levels between them (edges).
Partitioning is done at the location of maximum value: if one of the A’s (v,’s}) is found
to be maximum among all the k,’s and v,’s, partitioning is done in horizontal (vertical)
direction at this row (column) position. We keep the information about the cut position

as the horizontal (vertical) direction and the offset from the left (top) side of the block.
mm%fu—tl and mm(.;}’:h"J)

The purpose of the factors in (2.6) is to prevent the occurrence

of the blocks that are large in one direction but small in the other.

Compared to the QD method in which the positions of the block division positions

43

are known in advance, in the case of the HV partitioning, there is an additional com-
putational load introduced for determining the position for the division for every block.
However, this is not so critical, since it can be argued (and the results show) that the HV
partition generallv produces a smaller number of range blocks for the same image, than
the QD method does. Since the most time consuming part in a block-based coding aigo-
rithm is the range-domain matching, computing the direction and the position for division
is compensated by having to make less range-domain comparisons. The smaller number
of range blocks comes from the way the division of a block is done: in the case a block
cannot be covered, it is divided into two blocks only, instead of four as in the QD case.
There is a tree representation for the HV partitioning scheme, similar to that described for
the QD case. The only difference is that in the HV case, the nodes split into two branches

instead of four. An image partitioned using the HV scheme is shown in Figure 2.14.

HT 1H
bt H lll
" 211Z e]
.J: I Se—
T [ﬁ—' E
_5 - .| L
| == q_ -
- T -
= TR L
A i =
-] 1 -{ [L-
_l" ‘J
I HET |
I =
1 I
H [T T

(b)

Figure 2.14: HV partitioned image Lenna.
(a) Original image. (b)Segmented image.

44

2.2.2 Encoding the Images

Encoding images with the HV partitioning follows the same basic concept as the one in
encoding with the quad-trees. To obtain the range partition of an image, we start with
the whole image, and divide it into two rectangular sub-images according to calculated
parameters using (2.6). We first divide an image into rectangles until some predetermined
minimum depth is reached. Then, the node blocks are compared with the domains from
the corresponding domain library (these are all possible rectangular blocks that are of
twice the size of the range block). For each range-domain pair, the transform parameters
are found, blocks compared, and the error (distance) between two blocks calculated. If the
resulting difference is smaller than some preselected threshold, the range-domain pair is
saved together with the transformation parameters. Otherwise, the node block is further
divided either vertically or horizontally, according to the parameters given by (2.6). The
search then continues for both the resulting rectangular blocks. If the minimal allowed
range size is reached (the bottom of the tree), no furthor split can be done, and the best
range-domain pair found is saved. Each range-domain pair together with the transfor-
mation parameters constitutes one map w,. The collection of all such maps W = UN
represents the coding for the image. Now, we present the HV Algorithm more formally
in the form of pseudo codes.

The HV Algorithm

HV (x.pos,y.-pos,hsize,vsize,depth){
If (depth<min_depth) {

get offset_and_direction(x_pos,y_pos,hsize, vsize);

If (direction == HORIZONTAL)

HYV (x-position,y_position+offset,h_size, y_size-offset,dept+1);
Else

HV (x-position+offset,y_position,x_size-offset, y size,depth+1);

}

While(there_are_domains) {

error=compare(Range_block,Domain_block);

45

If (error < thres_error) {

write_pair(Range_block,Domain_block,Transformation);

Return;

}

Else if (error < minerror) {
minerror=error;

best_Domain=Domain _block;

}

If (bottom_reached)

write_pair(Range_block,best_Domain,Transformation);

Return;
}
Else {
zet _offset_and _direction(x_pos,y_pos,hsize, vsize);
If (direction == HORIZONTAL)
HV (x_position,y_position+offset,h _size, y_size-offset,dept+1);
Else
HV (x_position+offset,y_position,x_size-offset, y_size,depth+1);
}

The transformation parameters (the scaling and offset factors) are calculated in a way
similar to the QD case. The only difference is that we have to take into account two differ-
ent dimensions for the rectangular blocks. For a range block with vertical and horizontal

sizes R, and Ry, respectively, (2.2) and (2.3) can be rewritten as

0 if RyR,, - d2sum — (dsum)®* =0
sy = (2.7)
RyRy-rdsum—~rsum.dsum otherwise

RpRy-d2sum— (dsum)?

46

rsum — sy - dsum

RuR,

Oj=

with rsum.dsum,rdsum and d2sum changed appropriately as well.

The domain library is built from the blocks that are twice the size of the range
blocks, that is from the blocks of size 2- R, x 2- R,. The domain blocks overlap, and they
are chosen so that the positions of upper left corners of the domain blocks form the grid

with spacing R, (Rx) in the vertical (horizontal) direction.

Large number of different sizes for the range blocks has the advantage of allowing
more flexible partitioning, but it has a disadvantage as well. Since the dimensions It, and
R;, of a block are not known in advance. it is not possible to know apriori the positions of
the domain blocks as well. Thus, it is not possible to classify all the domain blocks before
comparisons are made. The result is that the encoding cannot be speeded up as much by

domain classification as it was possible in the QD case.

2.2.3 Results and Analysis

Most of the results in this section are obtained with the similar parameter setting as that
in the Section 2.1.3:

e Maximum and minimum allowed range block size 32 and 4, respectively.
e Five bits used to quantize the scaling factors and seven for the offset.
® S0z = 1.5

Maximum error allowed
Figure 2.15 shows the dependence of PSNR objective quality measure on the rms
error threshold for the HV and QD partitioning cases. For the high quality images

(low compression ratios), the two algorithms have approximately the same performance.

However, for higher compression ratios, the HV algorithm outperforms the algorithm

47

based on QD the partitioning. Dependance of the compression ratio on the RMS er-
ror, for the HV and QD algorithms is shown in Figure 2.16. It can be observed that
the HV algorithm gives slightly higher compression ratio in the range in which the
objective image quality is approximately the same. For the RMS threshold over 15,

the QD éxlgorithm gives higher compression, but at the expense of worse image quality.

36 L3 T L Ll L L T L
—— HV Algorithm
34} ---- QD Algorithm 1
3z}
g
« 30
4
7]
o
28} .)
~
\
\
A}
26} YA
\
\
\
\
24 1 i 1 A 1 1 L 1 X
0 2 4 6 8 10 12 14 16 18 20

RMS error threshold

Figure 2.15: PSNR dependence on RMS error threshold.
Efficient Storage

An image is coded as information about the range partition and corresponding
transformations that map domain blocks to a range blocks. Since the size and shape of
range blocks vary, and consequently, their positions are not known in advance, storing
the information about the ranges’ dimensions only would not be sufficient to reconstruct
the partitioning, as it was the case for the QD scheme. The information about the par-
titioning tree has to be stored instead, which means that starting from the image as
whole, we have to store the direction (horizontal or vertical) and the offset from the
top (in the case of a horizontal cut) or the offset from the left (in the case of a vertical
cut). Some of the range blocks in the final partition are larger than the minimum size

allowed, so we need to store information about terminating further branching in the tree.

48

20 T T T T T T T T T

—— HV Algorithm, |
---- QD Algoritifm

18}

Py
o
T

- Py
N o
T T

Compression
-
=
T

0 2 4 6 8 10 12 14 16 18 20
RMS error thre nnid

Figure 2.16: Compression ratio dependence on RMS error threshold.

2 I 1 1 " 1

We need one bit to encode the direction, seven bits to encode the offset (for 256 x 256
images) and two bits for the information about the terminating further branching. This
information is needed for every branching node in the partitioning tree. However, if a
division of a block results in two blocks that are of the order of the minimum size al-
lowed. we only need to indicate that there is not any further branching. Positions of the
range biocks are implicitly defined by this partitioning information. Figure 2.17 shows
the statistics on the sizes of the resulting range blocks, for a partitioned image shown on
the left. It can be seen that there are a lot more small blocks then the large ones? in the
final partition. An conservative estimation is that we need to store six bits per range to

encode the partitioning information.

2By small blocks we mean those that are of sizes of the order determined by the minimmum size allowed,

49

Block type | Number of range blocks

Small blocks 1765
Larger blocks 930
Total 2695

Figure 2.17: Statistics on range block sizes.

The position of a domain block is coded as an absolute position of the upper left
corner of the domain block. For the image size 256 x 256, 16 bits are needed to code the
domain position. The transformation parameters s; and oy are quantized and coded with
5 bits and 7 bits, respectively. For one range-domain pair, a total of 6+16412=34 bits

are needed.

In Figures 2.18 and 2.19 we provide examples of the images coded by the HV Algo-
rithm. They are the same example images as those used to illustrate the QD algorithm,
so that the two algorithms can be compared. Performance of the two algorithms is fairly
similar in the range of compression ratios less then 10. Comparing Figures 2.12(d) and
2.13(d) to Figures 2.18(d) and 2.19(d), respectively, it can be seen that the HV algorithm
performs better than the QD in the case of the high compression ratios. The blockiness
is less visible, and the edges are smoother in the case of the HV algorithm. All horizontal

and vertical edges are very well preserved, even for very high compression ratios.

2.3 Summary

In this chapter, we have presented two algorithms that are considered to be the state
of the art of the fractal applications to image coding. It has been shown how the image
block partitioning scheme, that is part of the encoding process, affects the performance
of the coder. The partitioning schemes better adapted to the image content, result in
superior quality of the coded images. However, the higher degree of adaptivity in the
image partitioning schemes comes at the expense of the increased encoding time. The
scheme that applies the HV partiticning achieves higher quality encoded images than those
obtained by using the scheme based on the QD partitioning. However, the encoding time
of the HV algorithm is increased, compared to the QD case. Moreover, the possibility to
improve the encoding time, by classifying the blocks in the domain library, is lost in the
case of the HV algorithm, due to a large variation in the sizes of the resulting domain
blocks. In the following chapter, we propose a new algorithm, that provides this increased
flexibility of the HV partitioning without increasing the encoding time.

51

Figure 2.18: The HV encoded Lena image.

(a) Compression ratio 6.5, .PSNR=34.34 dB.
(b) Compression ratio 8.3, PSNR=33.81 dB.
(c) Compression ratio 10.2, PSNR=32.83 dB.
(d) Compression ratio 14.1, PSNR=31.57 dB.

52

Figure 2.19: The HV encoded Columbia image.

(a) Compression ratio 5.82, PSNR=34.43 dB.
(b) Compression ratio 7.48, PSNR=33.56 dB.
(c) Compression ratio 9.78, PSNR=32.85 dB.
(d) Compression ratio 12.7, PSNR=30.86 dB.

53

Chapter 3

An Adaptive HV Algorithm

3.1 Introduction

The basic fractal block image coding algorithm with the HV range block partition-
ing scheme, as described in the previous chapter, has shown an improved performance
compared to the algorithm with the QD scheme. In the HV scheme, the range block
distribution adapts to the image content to a greater extent than it does in the QD case.
However, there is no change in the way the domain blocks are chosen. While there is an
image analysis included in the process of determining the range blocks, no such analysis
is used to determine which potential domains could be good candidates for covering a
particular range. Once a range block is fixed, the domain library for it gets determined
as well. For a given range block, in both HV and QD cases, the domain block library
consists of all possible image blocks of twice the range size, regularly placed over the
image area, so that their upper left corners coincide with a grid with the horizontal and
vertical spacing equal to the size corresponding to the range block. Choosing the domain
blocks in such a deterministic fashion results in a large possible set of domains (domain
library) and does not necessarily guarantee an improvement in the quality of the coded
image. A large domain library for a given range implies a large number of range-domain

comparisons, thus requiring large encoding time.

Encoding speed is one of the most important concerns in the design of a coder, and

54

it may be one of the main weaknesses of the fractal block-based image coding algorithms.
However, there are ways to improve the performance of these algorithms. One of them
has been presented for the QD algorithm in the Section 2.1.5. In the QD scheme, all
possible domain block positions are known prior to determining the ranges, which makes
it fairly simple and effective to classify the domain blocks in certain number of classes,
thus reducing the encoding time by a significant factor. With such a classification scheme
included in the fractal block-based image coder, the time performance of the fractal image

coding algorithm approaches to that of the standard image coding techniques.

In the HV case, the number of allowed range block sizes is large and not known in
advance. Consequently, there is a large number of different domain libraries, cach corre-
sponding to a range size. In this case, any possible benefit derived from a domain library
classification scheme is lost, since the classification information can be applied for one

particular range size only and canrot be used for other range blocks.

While one of the solutions for speeding up the encoding might be simply reducing the
domain library size, this may have very negative effect on the coded image quality. If the
domain library size is reduced arbitrarily (for example, by increasing the distance hetween
two consecutive potential domain blocks), there might not be enough good domain block
candidates, and thus a poor approximation of the coded image may result. The effect
of reducing the domain block library by increasing the distances between the adjacent
domain candidates is shown in Figure 3.1. In this chapter, an adaptive fractal block based
image coding algorithm which tends to overcome the problem of the encoding speed of

the HV scheme is proposed [8].

3.2 The Proposed Adaptive HV Algorithm

The proposed adaptive algorithm uses an HV partitioning for an image, taking advantage
of its flexibility. Unlike the basic HV algorithme, in which the partitioning information is
used to determine the range blocks only, in this algorithm the partitioning information

is used in the encoding process for determining both the range and the domain blocks

93

of an image. Neither the ranges nor the domains are determined in advance. Instead,
the image is first fully partitioned into rectangular blocks, as shown in Figure 3.2. Both
the ranges and domains are selected from this partitioned image. Performing the full
image partitioning first, and choosing the domain blocks from the partitioning tree, gives
an odvantage of knowing the exact positions of the domain blocks niior to any range-
domain comparison. This makes it possible te include a block classification scheme into
the encoding algorithm itself, thus allowing improvement of the time performznce of the
proposed algorithm.

Figure 3.1: The effect of reducing the domain library size in an arbitrary fashion.

56

Figure 3.2: Fully partitioned image.

The range blocks are chosen as follows. Starting at some level in the partitioning
tree, a rectangular block (potential range) is compared to other rectangular blocks [:omn
the partitioning tree that cover an area that is at least two times larger than that of the

potential range (see Figure 3.3).

We search among all those larger blocks (potential domains), for the one that best
approximates the potential range. If a sufficiently good match for a range is found , the
range is marhed as covered, and all its descendants in the trece are discarded from the set
of possible ranges. But they are still kept as candidates for domains to be compared with
other possible ranges. If all larger blocks in the partitioning tree are exhausted and no
match for the potential range is found, the algorithm proceeds to the next lower level in
the tree and repeats the matching process for a new range candidate. If the bottom of
the tree is reached and no satisfactory match is found, the best match found is accepted.

57

Figure 3.3: Image partitioning tree.
The empty nodz in the tree represents a range block candidate that is currently being
compared with all the blocks (filled square blocks on the figure) from the partitioning tree
that are of zt least twice its size.

There is a modification in the partitioning scheme used in this algorithm over that
in the basic HV scheme. The modification is in determining the position of the division
point and the orientation of the partition. The partitioning is done along the strongest
horizontal or vertical edge, according to (2.6), if a horizon*al or vertical edge is detected in
the block. However, in the case when there is no such an edge, the partitioning is done in
such a way as to result in two blocks, where the edge runs diagonally in one of them (see
Figure 3.4). This additional detail tends to make the blocks from different levels in the
partitioning tree to be more similar, so that better matches between them are possible.

Since we do not know in advance if a block does or does not have a horizontal or
vertical ¢ Ige, we calculate, at the same time, the parameters of (2.6) as well as the even-

tual partitioning position in the case of a diagonal edge.

58

partition line

Figure 3.4: Partitioning of a block with no horizontal or vertical edge.

The position for the partition in the presence of a diagonal edge, as shown in Figure
3.4, is calculated on the basis of variations of the average pixel values over an image
block. If a block of size R,xR; contains the pixel values r,,’s then for every row i,
i =0,1,...,Ry, — 1, and every column j, j = 0,1,..., R, — 1, the following parameters
are calculated:

hd: = szmo Tt i _ bt g ! Tkt
' (i+1)-Ra (Ry—i—1)- Ry
(3.1)

Ry~=1—j Ry-1 ¢ Rp-1
k= Zz:o Tkl k=0 I=3+1 Tk
vd_,' = I - I

(J+1)-R, (Rh—j—1)- R~

If a horizontal or vertical edge is found, i.e., parameters h; and v, from (2.6) are above

some threshold value, we proceed as in the original HV algorithm. Otherwise, we assume
that the block is of the type shown in Figure 3.4. In that case, we determine the overall
maximum of the parameters hd,’s and vd,’s from (3.1). If the overall maximum found
corresponds to one of the parameters hd,’s, the partitioning is done in the horizontal di-
rection at a position equal to ¢ that gives the maximum hd;; otherwise, the partitioning
is done in the vertical direction at a position that is equal to 5 that gives the maximum
vd,.

In order to minimize the additional computational load introduced due to the cal-
culation of the partitioning position according to the two criteria, we need to optimize the

computational complexity for evaluating the parameters given by (2.6) and (3.1). The

59

hest way to achieve this is to use only one block scan, when calculating both h, and hd;

(v, and vd,), instead of using two separate ones. To calculate an h, from (2.6), we need

to calculate the difference hetween the sums of the pixel values over the two consecutive

rows. To determine an hd, from (3.1), we need to calculate the average of the pixel values

in the portions of the block above and below row 7. We illustrate the the method for cal-

culating the parameters for the possible horizontal partition. For the vertical partition,

similar solution is used.

o

At the beginning, we define the following variables:

. sum.up - variable used to store the sum of the pixel values in the portion of the

block above row 7. It is initially set to 0.

sum_down - variable used to store the sum of the pixel values in the portion of the
block below row i. It is initially set to the sum of all pixel values in the block.

sum. - variable used to store the sum of the pixel values in row i. Initially set to 0.

. sum_(i + 1) - variable used to store the sum of the pixel values in the row i + 1 of

the block. Initially set to the sum of all pixel values in the first row of the block.

We scan over the block rows (2 = 1,..., R,-), and for every i we do the following:

1.

2.

6.

Store sum_(i + 1) into the sum.

Calculate the sum of all the pixels in row ¢ and store it into sum_(i + 1)
Add sum_i to the sum_up variable

Subtract sum_(i + 1) from the sum_down variable

Use sum and sum_(i + 1) to determine h; frora 2.6:
min(i, Ry, — 1)

h, = 5

<|sum.i — sum_(i + 1)|

Use sum_up (sum_down) variable to determine the average value of the pixel values
over the portion of the block above (below) the row 2

sumup sumdown

Ry -1 _Rh-(R,,—z')I

hd, = |

60

The range and domain blocks are determined from the same partitioned image (par-
titioning tree). This results in a large number of different range-domain size ratios. For
the QD and the basic HV algorithms, this was not the case. The dct.ains were always
chosen to be of exactly twice the range block size. Comparing the blocks with wide range
of size ratios is an important problem that must be considered in designing the coding
algorithm. In our study, experiments with different solutions have been made. Resizing
(by pixel averaging) of the domain blocks to the size of a range block is the most straight-
forward solution, but it has been found tc be very time consuming. However, a much
simpler solution also gives very good results. In this solution, we allow certain number
of size ratios only. That is, the possible domzin blocks are resized by some predefined
factors only, even though these may not be the exact ratios of the range-domain blocks.
We have chosen four different ratios: (H/ky,V/ks), k1,ke = 2,4. Thus, H/2, for example,

denotes a resizing by a factor of two in horizontal direction.

We now present the proposed Adaptive HV Algorithm using pseudo codes.
Adaptive HV Algorithm
1. Make full partition

partition(Block,x_position,y_position,x_size,y size) {
If (Blocksize > threshold) {
get_offset_and_direction(Block);
If (direction == HORIZONTAL)
partition(Block,x_position,y_position+offset,x_size,y size-offset);
Else

partition(Block,x_position+offset,y_position,x size-offset,y sizc);

}

Return;

61

2. Parse the tree and do comparison:

While(there.are_uncovered _blocks) {
get_Range_block();
get_Domain_pool();

While(there.are.domains) {
crror=compare(Range_block,Domain._block);
If (error < thres_error) {
write_pair(Range_block,Domain_block,Transformation);

Return;

}

Else if (error < minerror) {

Mminerror=error;

best.Domain=Domain_block;

}

If (bottom_reached) {
write_pair(Range_block,best_Domain,Transformation);

Return;

}
3.3 Efficient Storage

A fractal code for the image should contain information necessary to reconstruct the
partitioning tree. Since the same partitioning tree is used to determine both the positions
of the domain and the range blocks, information about the partitioning tree is sufficient

to determine the positions of both the range and the domain block. This information is

62

stored in a way similar to one described in the Section 2.1.4. What is different is that we
know that partitioning will be done until the block size reaches minimum size allowed, so
we do not need to code information about possible termination of branching. We store
the direction (horizontal or vertical) and the offset from the top (in the case of a hori-
zontal cut) or the offset from the left (in the case of a vertical cut). We need one bit to
encode the direction, and seven bits to encode the offset (assuming 256 x 256 images).
The partitioning information is stored per node in *he tree and, on average, we need to
store eight bits per range block to d ‘termine its position. Once the partitioning tree is
known, a domain block position can be stored as an index in the list of all possible blocks
in the partitioning tree. To encode a doinain block, we need 12 bits.

The transformation parameters sy and oy are quantized and coded with § bits and
7 bits, respectively. In addition, the domain-range size ratio used has to be coded as well,
which for the proposed scheme requires 2 bits. In order to store the information about

one range-domain pair, a total of 34 bits are needed.

3.4 Results and Analysis

Before presenting the results, it should be pointed out that the proposed algorithm has
not been trained for specific types of the images. A total of ten different images, other than
those used for testing the performance, were used for this purpose. For a fair comparison
of the performance of the proposed algorithm, with those of the QD and HV algorithn ,
the same set of images were presented to all the three algorithms. Although the results
presented in chis section concern only two images, a large set of different images were
used for testing, and the results were found to be approximately the same as those given

in this section.

Figure 3.5 compares performance of the proposed adaptive HV algorithm to that of
the original HV and the QD algorithms. In the range of low compression ratios (less than
5), QD and HV algorithms achieve slightly better quality of encoded images for the same
compression ratio. For the compression ratios above 8, the adaptive algorithm

63

Encoding time {3)

36

34t

w
N
T

PSNR (dB)
w
=)

T T T ¥ T T T T

— Adaptive HV
= HV Algorithm
RN - -'-QD Algorithm

20

28+
26
\

24 1 1 1 1 Il 1 l L \

2 4 6 8 10 12 14 16 18

Compression ratio
Figure 3.5: PSNR vs. compression ratio.
800 L] 1 T T T L4 ! R
— Adaptive HV
700 HV Algorithm]|
- =" ~QD Algorithm
600 -
500 . .
\
A\

400 \ -
300
200
100

0 L 11 [} Y 1) 1 Il

2 4 6 8 10 12 14 16 18

Compression ratio

Figure 3.6: Encoding time vs. compression ratio.

64

20

outperforins both the original HV and QD scheme. Figure 3.6 shows the comparison
of performance of the three algorithms as measured by the encoding times. The encoding
time is given in terms of the execution times of the algorithims on the Silicon Graphics
Indigo machine. Adaptive HV algorithm has performed slightly better than the QD, and
significantly better than the original HV scheme. Better time performance of the Adap-
tive HV Algorithm is achieved due to the reduced number of the domain blocks in the
domain library. Reduction in the number of range-domain comparisons compensates for
the additional encoding time in determining the position of the block partition according
to the two criteria, (namely, one for the blocks with the horizontal/vertical edges and
another for the blocks with the diagonal edges), and in the resizing operations with dif-
ferent ratios. The examples of encoded images can be scen in Figures 3.7 and 3.8. It can
be observed that the reduction in the domain library size, had little effect on the quality
of the encoded images. There is no visible difference between the images presented in

Figures 3.7 and 3.8 and those presented in Figures 2.18 and 2.19, respectively.

It would be interesting to note the quality of the images encoded using the proposed
adaptive HV algorithm at very high compression ratios. From the results already pre-
sented we see that in this range of compression ratio the adaptive HV algorithm results in
the encoded images of higher quality than that of the images encoded by using the QD or
the original HV algorithm. From Figure 3.9 can be observed that an imare encoded with
very high compression ratio using the proposed algorithm, still retains enough information
about the image for it to be useful for some applications, in comparison with the images

encoded using the other two algorithms.

As mentioned before, there is another advantage of the Adaptive HV Algorithm over
the original HV scheme. Before any domain-range comparison is done, the image is fully
partitioned and the domains and ranges are selected from that partition. Thus, all the
domains are known in advance, and a classification scheme similar to the one explained

in the Section 2.1.5 can be applied, yielding a further improvement in the encoding time.

65

(b)

(d)

Figure 3.7: The Adaptive HV encoded Lenna image.

(a) Compression ratio 6.30, PSNR=33.56 dB.
(b) Compression ratio 8.74, PSNR=32.91 dB.
(¢) Compression ratio 9.83, PSNR=32.66 dB.
(d) Compression ratio 14.35, PSNR=31.18 dB.

66

ke e,
g
T

Dl reanem.

Prmr s

' .
» P ST g

Aevemraaz:
e e

Figure 3.8: The Adaptive HV encoded Columbia :.nage.

(a) Compression ratio 6.80, PSNR=33.75 dB.
(b) Compression ratio 8.50, PSNR=33.60 dB.
(c) Compression ratio 10.2, PSNR=32.98 dB.
(d) Compression ratio 15.04, PSNR=29.0 dB.

67

B raraeme.

.rtm;':
—

:

%

K

=

4

Figure 3.9: Images encoded at very high compression ratio.

(a) QD encoded - compression ratio 28, PSNR=25.6 dB.
(b) HV encoded - Compression ratio 30, PSNR=21.4 dB.
(b) AD encoded - Compression ratio 30, PSNR=24.71 dB.

68

3.5 Summary

In this chapter, we have proposed an adaptive HV algorithm that tends to utilize the
strength of the HV partitioning scheme for fractal block-based image coding, while over-
coming its weaknesses. The original algorithm with the HV block partitioning scheme,
achieves higher quality coded images, compared to the images obtained using the QD
technique, due to a better adaptivity of the range partition to the image conient. How-
ever, higher quality of the coded images is achieved at the expense of increased coding
time. The proposed algorithm has managed to balance these two aspects with a unique
approach. The time performance concern has been addressed by reducing the size of the
domain library and by performing a full image partition prior to range-domain compar-
ison. The quality of the encoded images has been preserved to that of the original IV
scheme by introducing an additional analysis ¢n the block contents in the partitioning
algorithm. This has ensured a greater similarity between the partitioned image blocks,
and thus, has provided good range-dornain candidates within the Partitioned image.

69

Chapter 4

Hierarchical Interpretation of

Fractal Coding

As mentioned in the Chapter 1, fractals are objects that contain detail at every scale and
a high degree of self-similarity at different resolutions. S.if-similarity is understood in the
sense that the whole fractal object is composed of scaled copies of itself. This means that
a magnified portion of the fractal looks identical to the whole object, as viewsd at the

original scale.

i * ese fascinating observations, among the others, were the initial motivation for
investigating the use of fractal concepts in image coding applications. However, in the
fractal coding schemes that we have presented in this thesis, relations between image
representations at different scales have not been clearly outlined, even though they have

been implicitly implemented.

All fractal coders give representatior of an image in terms of a map. This map
usually consists of a set of nonlinear transformations. Each transformation is represented
by a set of parameters and implicitly defined position of the transtormation domain and
range. However, the map does not contain information about the scale at which it was

initially obtainad. This information has to be added in the form of a header in the coded

70

file. At the decoder, the image size is read from the header, and the mapping parameters
are used with an initial image of this size. Experiments have been carried out to omit the
header information and to use some different size of initial image [3]. The set of transfor-
mations obtained are applied to this init.al image. This process results in an image which
is the fixed-point for the map in the space of images of the new size. In other words, the
same set of transformations applied to two initial images of different sizes would result.
in two representations of the original image. This particular fact has often been a source
of initial misinterpretation o the performance of fractal code=rs. Spectacular results of
the order of 200:1 compression ratios have been claimed, based on the reasoning thet if
a code obtained on original image of size N x N, is decoded as a 2N x 2N image, the
compression ratio would be four times the itial one, since the decoded image would

contain four times more pixels [11].

In this chapter, we present a hierarchical interpretation of fractal image coding.
First, we give a short review of fractal image coding /decoding from which the grestion
about decoding at different scales naturally arises. Relationship between image represen-
tations at different scales is given. Fractal-based coding algorithms are interpreted as a
refinement of fine-scale details from coarse-scale information. Based on these results, a

practical implementation of a hierarchical coder is proposed.

4.1 Image Encoding/Cecoding Review

The goal of a fractal coder is to find a representatios of a given image fy in the forrs of
a contractive mapping W, such that the fixed-point of W is as close as possible to fo. A
metric function d is defined on the space of all images and it measures the closeness of
two images. In the disciete case, an image is represented as a two-dimensional function,
where value of the function at every point on the discreet grid corresponds to the grey

value of the image at that point.

At the encoder side, we seek a mapping W such that the following requirements are
fulfilled:

71

1. W maps the space of images to itself:
W:I*xR—I*xR
veEl)xR=>u=W(w)elI*xR

2. W is a contractive transformation:

Js€[0,1) | VYu,wel*xR, dW(u),W(v)) <s-d(u,v)
These two requirements define the set of all allowed mappings W € W.
3. W is chosen from W in such a way as to minimize the distance between fiv, the
fixed-point of W, and original image fo:
W = argminvewd(fv, fo)

Finding such a mapping W is a very complex problem, since the set W is extremely
large. A suboptimal solution is to limit the number of possible mappings in W by re-
stricting the type of mapping W. In our work, we have restricted each allowed mapping
W to be a set of the transformations w;, ¢ = 1,2,..., N2 where each w, is restricted only
to a region D, of the image. The number of possikle mappings is further reduced so that

every transformation w, is of the form
w; : Dy, = Ry = wi(Dp,) =85, - S(Dm,) + 0y, (4.1)
where

Dy, - is the m;-th domain block in a list of all specified possible blocks in fy, the subscript

m, emphasizing the fact that w; maps the doma.n D,,, to R,.

R; - denotes a range block. There are N2 range blocks in the image, and they form a

nonoverlapping partition of image fo.

S(+) - denotes spatial contraction, i.e., function that resizes a domain block to the size

of a range.

sq,.04, - are scaling and offset factors, respectively.

72

In the analysis contained in this chapter, we consider a domain to be a square portion of
the image fo of size M. In addition, the range blocks are considered to be square blocks
of size B = M/2. We also assume the distance between che adjacent domains to be %
Such a choice for the range and the domain blocks simplifies the analysis, but should not

be taken as a general restriction.

It is clear that the three parameters, sj,,0y,,m;, deiine entirely one transformation
w,. These parameters should be such that as to minimize d(fw, fo), where fo is the original
image and fw is the fixed-point of the mapping W sought. By the Collage Theoren, we
have

dfw, o) < T—dCfo, W(Jo)). (12)

Instead of minimizing the d(fw, fo), we actually try to minimize the upper bound for it
- the right side of the (4.2) - by minimizing d(fo, W(fo)). Though this method does not
necessarily minimize d(fw, fu), it is the most practical way of coding, known presently
[14]. The minimization of d(fo, W (fo)) consists of finding W so that fo = W(fo). Thus,
fo is approximately the fixed-point of W. Since W uniquely defines its fixed-point, storing
W defines a lossy code for fo.

The decoding process simply involves finding the fixed-point fiv for the coded con-
tractive mapping W. This is done, as mentioned in the Section 1.1, by iterating W on
any initial image until the fixed-point is reached. The only requirement for the initial

image is that it has to be of the same size as the size of the original fo.

There is, however, an interesting observation here. Starting with an initial image of
size equal to that of the original image, and iteratively constructing its range blocks of size
B yields an approximation of the original image. But if we reduce the size of initial image
by a factor of 2, that is, we use the size of range blocks equal to B/2 (and accordingly
reduce the size of the domain blocks to M/2), and keep the same values for the scaling
and offset factors, we create a new mapping W3. The mapping W is also contractive

in the space of all images of one-half of the original image size. Decoding process for wi

73

1 . , .
leads to the fixed-point f%,. The conclusion we reach is that the given PIFS code can
be decoded in different image spaces, yielding a different fixed-point in each space. We
will see that these different fixed-points are indeed representations of the original image

at different scales.

Throughout this chapter, we will use the notation W7 and f? to denote, respectively,
the mapping and the fixed-point which result from the PIFS code when using the range
block size B = ¢B,, where B is the size of range blocks used in calculating the original
PIFS code that resulted in W!, and the corresponding fixed-point f!. The following

section gives relations lretween these different fixed-points and their interpretations.

4.2 Hierarchical Interpretation

We have seen that the coding information (the set of stored triplets (s, 07, m;) for every
range block) is scale independent. It is the size of the range blocks B that determines
the scale of the dccoded image. In this section, we derive a relationship between the
fixed-point of a given PIFS, obtained by decoding an image at the original scale, and
the fixed-points of the same PIFS, obtained by decoding the image at a scale reduced

(increased) by a factor of two. Similar analysis for the one-dimensional case is given in

[1].

4.2.1 Scale down

Given a PIFS code, the fixed-points f! and f% of the maps W! and Wi, respectively,
are uniquely defined. If we have already reconstructed f!, then f can be calculated

according to the following theorem.

Theorem 4.1 For a given PIFS code, a function g, defined as

| —

glk.l) = Z{f1(2k,20) + f1(2k, 20 = 1) + fU2% — 1,20 + f'(2k — 1,21 - 1)} (4.3)

—

Jor kA =1,2,... NpB is the fized-point for the W3, i.c., g(k,l) = fi(k,1).

74

Proof:
To prove this theorern, we need to show that g(k,!) given by the (4.3) satisfies the equation

for the fixed-point of W3. The fixed-point of the W3, is characterized by the

& =WHf). (4.1)

First, we introduce a mapping of indices to simplify the notations. We express & and [in

Fi(k,) as
k = (s—l)%‘+m, s=1,2,...,Np; m=1,2....,%1 (4.5)

4.5
! (t-1)8 +n, t=12...,N;; n=12,....8

which emphasizes that the element f%(k,l) is actually the element (m,n) in the (s,1)

range block of f2. This is illustrated in Figure 4.1.

......... (s,t) range block
‘ : : 7 s=2.23; =T, B,=4,

! ' 1

S M t----| f2(k,I) orelement
; ' E— : > (m,n) in the block (s,1):

’ : : : k=4,1=6,m=2,n=2;

)
..
.

(m,,m)domain block e
mg=5. m=2, m =23,

‘ '
.......................................
'

Figure 4.1: Index mapping.

The mapping W is composed of N} transformations w,, 7 = 1,2,..., N, each acting
only in a limited region Dy, of the image. Therefore,

W (g(k. 1) = 5,S(D3.)(m,n) + oy, (4.6)

1
where S(Dr’i,)(m,n) denotes the element (m,n) in the resized block D#, of the imag
1
g(k,!). In order to derive S(D#,)(m,n), four pixels in g are averaged, as given bellow

! &+2m,(m¢—l)%+2n)

S(DA)(m,n) = 7-lg((m,=1) 5
75

B B
+g((my — 1) = 4 2m,(my — 1) == +2n —1)

) 2
B B
+g((ms = 1)5 +2m -1, (me = 1) 2t + 2n)

+g((m,—-1)%+2m-—l,(m,—l) -1—32-1-+2n—1)] (4.7)

where my and m, denote the positions of the upper left corner of the domain block D,,,,

i.e.,

m, = (my,— 1) Nr + m,.

Now, by substituting (4.7) into (4.6), regrouping the resulting terms and expressing each
of the four terms using the corresponding elements from f*, as suggested by (4.3), we

obtain

Wi(g(k,1)) = -z]i-[f‘((s—l)Bl+2m,(t—l)Bl+2n)+
(s =1)By +2m,(t —1)B, +2n — 1) +
s =1)By+2m—1,(t =1)B; 4+ 2n) +
MT(s=1)Bi+2m—-1,(t-1)B, +2n —1)]. (4.8)

By substituting back m and n from (4.5) into (4.8), we have
Wi(g(k,l)) = ZII [FH2k.20) + F1(2K,20 = 1) + fY(2k — 1,20) + f}(2k - 1,20 - 1)]. (4.9)
The right side of (4.3) and (4.9) are the same, so we conclude
W(g(k,1)) = g(k, 1) (410)

Thus, we have shown that g(k,!) defined by (4.3) indeed satisiies the equation of the
fixed-point of the mapping W 2. Since the fixed-point is unique, g(k,l) = f3,ie., wecan

write

FHE) = S{f(2k,20) + f1(2k,20 = 1)+ f1(2k = 1,10) + f(2k - 1,21 = 1)} (4.11)

o | o=

O

In the derivation of (4.11), we have used the same “trick” as in the practical imple-

mentations of our fractal algorithms. An intuitive understanding of the process can be

76

reached by observing that the domain blocks for f!, after contraction, are actually the
blocks contained in f%. Thus, instead of resizing every potential domain block, we resize
the whole image just once before we start the encoding. When selecting possible domains,
we simply choose them from the resized version of the orig:nal image instead of choosing

them from the original image itself and then resizing them.

: ; 1.
f! : 2 - {2

_E

A\

Figure 4.2: Calculating elements of f7 from f.

The interpretation of (4.11) is simple: in order to compute each element of [i
from a given f!, we average those four adjacent clements from f! that cover the same

proportional area in f! as does a single element from f%. This is illustrated in Figure 4.2,

4.2.2 Scale up

The relationship between already calculated fixed-point of Wz, [, for a given PIFS, and

the corresponding fixed-point of W, f!, is governed by the foliowing theorem.

Theorem 4.2 For a given PIFS code, a function g dcfined oy

B B
glls = 1)By +k,(t = VBy + 1) = sy, fH{(me = DS+ £, (me = D)=L+ 1) 4oy, (4.12)

s=1,2,...,Np; t=1,2,...,Ny;
k=1,2,...,B; {=12,...,By;
i=(s=1)Nr+1t; my=(m;,—1)Ny+m
is the fired-point of W?, that is, g(k,l) = f'(k,!).

77

Proof:

The right side of (4.12) can be rewritten by using (4.11), as

l

spfi((my = 1B 4k (me=1) B +1) + 0y,

Equation (4.13) can be rewritten by using the mapping W' applied to f', giving

spfi((my = DB 4k (my = 1)B 24) 40, = WHfY((s—1)B) +k,(t = 1)Bi +1)).
(4.14)

By definition, f! is the fixed-point of the W', Thus,
WY (s = 1)Bi+ k,(t = 1)Bi+1)) = fH{{s =)By + k, (t - 1)B1 +) (4.15)
Finally. from (4.12), (4.14) and (4.15), we have
g(s = 1)By + k,(t = 1)By +1) = f{((s = 1)By + k, (1 — 1)B; + 1). (4.16)
Thus, we conclude that

Sf(s=1)B+k,(t=1)B, + 1) = sf‘-f%((m,- 1)%+k‘(mt—])—B;)l +1) +oy,. (4.17)

<~

0O

From the above theorem, in order to calculate the elements of a given range in f!, one
takes the elements from the corresponding domain block at the scale of f * and applies
the corresponding transformation w, to them. This is similar to calculating W! itself,
by applying the “trick” mentioned above. Figure 4.3 illustrates the process described by
(4.17).

Equations (4.11) and (4.17) establish relationships between the pair f! and f3. The

o . .l 1ol 1 .
same relation is carried over to the pairs fz and f7, f4 and f#, and so on. The collection

78

sp. S ((my = 1)BL + 2k, (m — 1)BL +21)
fA((my = 1)B + 2k, (m - 1)B + 21 - 1

+)

+ f((my = 1B +2k =1, (m — 1)5 +21)

+ fU(my—1)B 42k —1,(m~1)B + 20— 1)}
(4.13)

of the fixed-points for a given PIFS can be described in terms of a hierarchical structure of

a pyramid of the fixed-points. The fixed-point f W comprises the p-th level of the pyramid

and it is of size év—,, X ;V—,,. The level on the cozrsest scale is called the top level.

Ny
N

/

Figure 4.3: Calculating elements of f! from f%.

Generalized versions of (4.11) and (4.17) for the fixed-points at levels p and p + 1 aie,

respectively, given by

FF (k) = L(f (2k,20) + [7(2k,20— 1)+ [(2 — 1,20) + f*? (2% — 1,20 = 1))

k=1,2,.... 028, 1=12, .., BB -
(4.18)

1 1
- ‘1 — = . f2r¥T - s -
f7P ((s l)Bz_lﬁ+k, 't 1)B§1ﬁ+l)_ sy, - far¥T((m, l)B;#r-i-k, (mn,])Bg_y!l»'f+l)+0!'
s=12,...,.Np, t=12,...,Np
k=1'2""BEIP” l=1,2,...B_pp_

2

(4.19)

In order to apply PIFS code at the top level, every range block at that level has to
be represented by at least one element. This implies that there is a limited number of

79

levels in the pyramid of PIFS fixed-points. This number is [= log, By + 1.

One straight-forward application of the above hierarchical interpretation would be
decoding images from the stored PIFS code. In the previous chapters, we have done de-
coding by iteratively applying a set of transformations to any initial image of size equal to
that of the original image. However fast the decoding might be, compared to the encoding
process, it includes iterative application of a large number of operations. This number of
operations is proportional to the image size. In hierarchical decoding method, we begin
by computing the top level (the coarsest representation of the image). This is done in the
same manner as before, by iteratively repeating the transformations from the PIFS code.
However, this time the image size is much smaller, and the range block size is equal to
1. This leads to a much shorter time until the fixed-point is reached. Then, we follow
(4.19) to advance to a higher scale. The process of advancing to a higher scale is repeated
until the desired image size is reached. Computational savings are more significant when
a large number of iterations is required or the initial size of the range block, used when

computing the original PIFS, is large.

Similar approach can be used for increasing the resolution of an image. Namely,
(4.19) can be viewed as a means for function interpolation. While linear interpolation
tends to smoothen the image, PIFS code interpolation preserves the so called fractal di-
mension, which ensures the richness of details even at high resolutions. This feature is
most evident when dealing with the textures. The linear interpolation typically results
in a blurred texture, while the PIFS code interpolation preserves the appearance of the

texture,

Both the hierarchical decoding and the PIFS code intetpolation assume thay the
PIFS code is already given. In the following section we intend to use the hierarchical
interpretation for the encoding purposes. Our objective is to decrease the encoding time
by coding an image at a lower scale first, and then using the coding information thus

obtained as a starting point for the encoding at the original image scale.

80

4.3 Hierarchical Encoding

Motivated by the ideas governing the relations given by (4.11) and (4.17), we propose in
this section a hierarchical encoding (HE) algorithm. Our goal is to increase the encoding
speed by propagating the relations between the image blocks (for the range-domain pairs

determined) from coarser scales to finer scales.

In this algorithm an original image is represented by a set of its versions at several
scales. We encode each of these images starting with the largest scale (smallest image).
The transformations obtained at a scale (range-domain pairs) are used to limit the domain
search for the corresponding ranges at the subsequent finer scales. Qur assumption is that
if two image areas are found to be similar at one image scale, then their corresponding
areas at a finer scale would also be similar. We successively advance to the finer scales
until the original image size is reached. In this algorithm, a full range-domain search
is done only at the largest scale (the smallest image) while at other scales the search is
limited to certain regions only. The benefit of this approach is that block sizes are small
at the largest scale, and therefore, the calculation time for each transformation in this

and succeeding scales is reduced.

To encode the image at the coarsest resolution, we use a quad-tree method, similar
to the one described in Chapter 2. Three scale levels are used: the original image 1, and
the two scaled versions of the original image, l% and 1%, scaled by factors of two and four,

respectively.

First, a list £ of the triplets: range, domain and transformation between the two is
formed: L= {(r,(‘:—),d,(-%),wf%)),i = 1,2,...,N%}. The superscript (%) denotes that these
triplets are obtained by coding the image 1%. The next step is to encode the image l%.
A range-domain pair for I% is obtained from the list £. It is chosen in such a way that it
covers in I% the same proportional area as does the pair from the list in l%. If the match

betweer; the range and the domain in 1;_ is not satisfactory, the position of the domain

81

is adjusted. This is done by searching a limited area that surrounds the original domain
position. If this limited search does not result in a good match, then a full search for the
domain is performed. If, however, this step also does not give a satisfactory result, the
range block is split into four sub-ranges, number of transformations is enlarged by four

and for each sub-range a full search for the domain is performed. The coding of I will

L ()
result in a possibly enlarged new set of triplets £ = {(rf’),df’).w,!’)), = 1,2,...,N%}.
Now, the same process is repeated to encode the original image,I;, by using the informa-
tion from the code list £. The proposed algorithm is now formally presented using the

pseudo codes.
The HE Algorithm

image.1/2=resize(image_1);
image_1 /4=resize(image_1/2);
Quadtree_encode(image-1/4);
Create initial list of range-domain pairs with the corresponding

transformations: £ = {{r,,d,.w;) | i=1,2,...,N}
tmp.image=image-1/2;
start For i=1to N {
Form r, and d, blocks in tmp._image that correspond to the
r, and d, from the list (formed at previous scale);
Compare w;(d,) to r;;
If error < Threshold
Keep the triplet (r,,d;, w;) on the list £;
Else {
Search for a better match, look for a new domain in

the restricted area around d;; Find the best d,;

82

Compare w,(d,) to ri;
If error < Threshold
Save the new triplet (r;,d,,w;) in the list C;
Else {
Split the range r, into four sub-ranges;
N=N+4;
Search for the best domain for each sub-range
(full search);
Add four new triplets to the list £;

}

If tmp.image#image1 {
tmpdmnage=image.l;
go to start;

}
End;

4.4 Results and Analysis

The training and testing environment for the HE algorithm introduced in this chapter,

has been the same as that discussed in section 3.4.

The HE Algorithm includes a large number of parameters that influence the coding
results. Apart from the standard parameters that were investigatea for the QD and HV

schemes (84, maximum and minimum block sizes, allowed block sizes, error thresholds)

83

there is a number of parameters inherent to the HE Algorithm. One such parameter to
determine is the number of levels up in the pyramid of image representations one ought
to go from the original image, i.e. what should be the size of the smallest image that
has to be encoded with a full-search QD algorithin. In the implementation of the the
algorithm described in the previous secticn, we have chosen to go two levels up, i.e., to
use a full-search QD algorithm on an image of size four times smaller than that of the
original image. This choice has becn simply empirically based and it has heen used to

illustrate a practical implementation of the algorithm.

An important characteristic of the HE encoding is the effect of specifying the limited
area, surrounding the original domain position, in which the domain search is performed.
In our work, we have experimented with different domain search arcas. Allowing larger
search area results in a slightly smaller number of range blocks. This is due to the fact
that larger domain pnol yields larger number of good range-domain matches at a coarser
scale, so that there is no need to split the block. However, the improvement in the time
performance is not significant since longei search is required. We have chosen the lim-
ited search area as in Figure 4.4. The domain search area is specified by a square frame
of width equal to the size of the domain. The spacing between two adjacent domain
candidates within the search area is equal to onc-quarter of the domain size both in the
horizontal and vertical directions. Thus, for every original domain position, 81 possible

domain candidates are compared to the range block.

84

Figure 4.4: Limited domain-search area.
Grid of the domain search area indicates the positions of the upper left corners of all the
domain candidate blocks corresponding to the original domain.

Figure 4.5 gives the peiformance of the HE Algorithm in comparison with that
of the QD Algorithm Chapter (2). It can be seen that the HE Algorithm has a bet-
ter PSNR by more than 1 dB over the whole range of compression ratios. In Fig-
ure 4.6, the encoding time for the HE Algorithm is compared to that of the QD Al-
gorithm for the same range of compression ratios. It can be observed that the HE

Algorithm has a better time performance for the entire range of compression ratios.

85

36 T — T T v +

—— HE Algorithm
QD Algorithm

PSNR (dB)

29

281 h

S i I

6 8 10 12 14 16 18
Compression ratio

27
4

Figure 4.5: Compression ratio vs. PSNR.

In Figures 4.7 and 4.8, we provide examples of images encoded by the HIE Algo-
rithm. Since our implementation is based on the quad-tree partitioning on the coarsest
scale, these images should be compared with those presented in Figures 2.12 and 2.13,
respectively. It can be seen that the images encoded by the I1E Algorithm not only have
higher PSNR, but their subjective quality is also improved compared to the images en-
coded by the QD Algorithm.

86

as0h —— HE Algorithm
QD Algorithm

400}

K} 350(-

£

o

.,§ 300

&

250+

2001

150F

! 004 6 8 10 12 14 16
Compression ratio

Figure 4.6: Compression ratio vs. the encoding time.

4.5 Summary

In this chapter, we have introduced a hierarchical interpretation of fractal coding algo-
rithms. The strength of the proposed approach is that it can be applied to practically
any of the existing fractal-based coding algorithms. In this chapter, we have developed an
application based on the quad-tree image block partitioning scheme. It has been shown
that the encoding time can be improved by performing a full range-domain search on a
coarse image representation only, and by propagating the information thus obtained to
the finer scales. The quality of the HE encoded images is also improved compared to that
of the standard QD Algorithm. The proposed algorithm, although based on a very simple

concept, has been found to provide very encouraging results.

87

Figure 4.7: The HE encoded Lenna image.

(a) Compression ratio 6.16, PSNR=35.28 dB.
(b) Compression ratio 7.85, PSNR=34.61 dB.
(c) Compression ratio 9.83, PSNR=33.48 dB.
(d) Compression ratio 14.5, PSNR=30.57 dB.

88

Figure 4.8: The HE encoded Columbia image.

(a) Compression ratio 6.73, PSNR=34.32 dB.
(b) Compression ratio 8.51, PSNR=34.10 dB.
(c) Compression ratio 10.17, PSNR=33.12 dB.
(d) Compression ratio 14.90, PSNR=29.80 dB.

89

Chapter 5

Conclusions and Suggestions for

Future Investigation

5.1 Concluding Remarks

This thesis has been concerned with the development of an adaptive approach to the
problem of finding similarity relations between the image blocks, and of a hierarchical,

multi-scale fractal-based image coding scheme.

In the first part of the contribution, it has been shown that the partitioning schemes
that are more adapted to the image content, result in betier quality coded images. How-
ever, the higher degree of adaptivity in the imnage partitioning schemes comes at the
expense of an increased encoding time. This has been illustrated by the analysis of the
two existing fractal block-based image coding algorithms, namely the Quad-Tree and the
HV algorithms. The original algorithm with the HV block partitioning scheme, achicves
higher quality coded images, compared to the images obtained using the QD technique,
due to a better adaptivity of the range partition to the image content in the former.
However, the encoding time is increased for the HV algorithm. In the proposed adaptive
HV scheme. 2 balance is achieved between preserving the image quality and maintaining

a reasonable encoding time. It has been observed that a selective reduction of the domain

90

library size may be beneficial to improving the encoding time performance. The proposed
adaptive HV algorithm introduces a mechanism of simple block contents analysis into
the partitioning scheme itself, which results in a higher degree of similarity between the
hlocks at different levels in the partitioning tree, thus providing a good choice of domain
blocks within the image partition itself. Consequently, the size of the domain library is
reduced in a manner adapted to the image content. It has been shown that the proposed
algorithm gives encoded images of quality comparable to that of the existing state of the
art HV fractal encoding scheme, with the encoding times significantly reduced. Moreover,
the proposed algorithm allows application of simple classification schemes to the domain

library, thus making further decrease in the encoding times possible.

In the second part of the contribution, a multi-scale fractal coding interpretation has
been introduced. The relationships between the fixed-points of a given PIFS, obtained on
different scales, have been derived and applied to the image coding problem. The strength
of this approach is that it can be applied to practically any of the existing fractal-based
coding algorithms. A practical implementation of this hierarchical approach has been
proposed. It has been shown that the encoding time can be improved by performing a
full range-domain search on a coarse image representation only, and by propagating the
information thus obtained to the finer scales. The results obtained by an implementation
of the proposed approach to a quad-tree based image coding scheme, has shown a sig-
nificant improvement in both the coded image quality and the encoding time. Although
the proposed approach is based on a very simple concept, it has provided some very

encouraging results.

5.2 Scope for Future Work

One of the possible directions for future work on the topic of block-based fractal im-
age coding would be that of implementing some of the partitioning schemes that include
orientations for the block boundaries other than the horizontal or vertical. The imple-
mentation may be based on a triangular or a polygonal image partitioning similar to that
described in [29]. It can be expected that introduction of new orientations for the block

boundaries would result in increased compression ratios, since there would be less range

91

blocks required to weli approximate the non-horizontal or non-vertical edges. However, a
solution would have to be found for the increase in the encoding time, as more compli-

cated partitioning schemes could be expected to be more time consuming.

Multi-scale fractal coding opens new challenges that can also be investigated in
possible future work. Experiments with using different types of filters for building the
pyramidal representation for an image can be performed. Filters that have better edge
preserving properties are expected to give images of even higher fidelity than that of the

images obtained by the scheme proposed in this work.

92

References

(1] Z. Barahav, D. Malah, and E. Kernin. Hierarchical interpretation of fractal image
coding and its application to fast decoding. In International Conference on Digital

Signal Processing, Cyprus, July 1993.

[2] Michael F. Barnsley. Fractal modelling of real world images. In Heinz-Otto Peitgen
and Dietmar Saupe, editors, The Science of Fractal Images, chapter 5, pages 219-239.
Springer-Verlag, 1988.

(3] Michael F. Barnsley. Fractals Everywhere. Academic Press, San Diego, 1988.

[4] Michael F. Barnsley, Arnaud Jacquin, Francois Malassenet, Laurie Reuter, and
Alan D. Sloan. Harnessing chaos for image synthesis. Computer Graphics, 22(4):131-
140, August 1988.

[5] Geoff Davis. Adaptive self-quantization of wavelet subtrees: A wavelet-based theory
of fractal image comression. In SPIE Conference on Mathematical Imaging: Wavelet
Applications in Signal and Image Processing, July 1995.

(6] Geoff Davis. A wavelet-based analysis of fractal image compression. JEEE Transac-
tions on Image Processing, 1996. submitted.

[7] F. Davoine and J-M. Chassery. Adaptive delaunay triangulation for attractor image
coding. In 12th International Conference on Pattern Recognition, October 1994.

(8] Branka Dzerdz and M.O Ahmad. An adaptive fractal-based algorithm for image
compression. In Proceedings of the Canadien Conference in Electrical and Computer
Engineering, September 1995.

93

[9] R. D. Boss E. W. Jacobs, Y. Fisher. Image compression: A study of the iterated
transform method. Signal Processing, 29:251-263, 1992,

[10] Paul Michael Farrelle. Recursive block coding for image data compression. Springer-
Verlag, New York, 1990.

[11] Yuval Fisher. A discussion of fractal image compression. In Heinz-Otto Peitgen,
Hartmut Jurgens, and Dietmar Saupe, editors, Chaos and Fractals: New Fronticrs
of Science, chapter Appendix A, pages 903-919. Springer-Verlag, New York, 1992.

[12] Yuval Fisher. Fractal encoding with hv partitions. In Yuval Fisher, editor, Fractal
Image Compression: Theory and Application, chapter 6, pages 119-136. Springer-
Verlag, 1995.

[13] Yuval Fisher. editor. Fractal Image Compression: Theory and Application. Springer-
Verlag, New York, 1995.

[14] Yuval Fisher. Fractal image compression with quadtrees. In Yuval Fisher, edi-
tor, Fractal Image Compression: Theory and Application, chapter 3, pages 55 77.
Springer-Verlag, 1995.

[15] Arnaud Jacquin. A novel fractal block-coding technique for digital images. In Pro-
ceedings of ICASSP, volume 4, pages 2225-2228, 1990.

[16] Arnaud E. Jacquin. Image coding based on a fractal theory of iterated contractive
image transformations. IEEE Transactions on Iinage Processing, 1(1):18-30, January

1992.

[17] Arnaud E. Jacquin. Fractal image coding: A review. Proccedings of the 1EEL,
81(10):1451-1465, October 1993.

(18] Michael S. Lazar. Applications of multiresolution analysis in inultidimensional signal
processing. PhD thesi., The University of Calgary, 1994.

[19] S.G. Mallat. Multifrequency channel decompositions of images and wavelet models.
IEEE Transaction on Accoustic, Speech, and Signal Processing, 37(12):2091-2110,
December 1987.

94

[20]

[21])

[22]

[23]

[24]

[25]

[26]

(27]

28]

[29)

S.G. Mallat. A theory for multiresolution signal decomposition: The wavc'at
representation. JEEE Transaction on Pattern Analysis and Machine Intelligence,
11(7):674-693, July 1989.

D.M. Monro and F. Dudbridge. Fractal approximation of image blocks. In IEEE
Proceedings of ICASSP, volume IIl, pages 485-488, 1992.

D.M. Monro and F. Dudbridge. Fractal block coding of images. Electronics Letters,
28(11):1053-1055, May 1992.

Geir E. Qien, Skjalg Lepssy, and Tor A. Ramstad. An inner product space approach
to image coding by contractive transformations. In International Conference on

Accoustics, Speech and Signal Processing, pages 2773-2776, 1991.

H.-O. Peitgen, D. Saupe, and H. Jurgens. Fractals for the Classroom. Springer-Verlag,
New York, 1991.

Heinz-Otto Peitgen, Hartmut Jirgens, and Dietmar Saupe. Encoding images by
simple transformations. In Chaos and Fractals: New Frontiers of Science, chapter 5,
pages 229-296. Springer-Verlag, New York, 1992.

Heinz-Otto Peitgen and Dietmar Saupe, editors. The Science of Fractal Images.
Springer-Verlag. New York, 1988.

B. Ramamurthi and A. Gersho. Classified vector quantization of images. IEEE
Transaction on Communications, 34(11):1105-1115, November 1986.

Dietmar Saupe. Breaking the time complexity of fractal image compression. Technical

report, Institut fiir Informatik, Universitat Freiburg, 19%4.

Xiaolin Wu and Yonggang Fang. A segmentation-based predictive multiresolution
image coder. IEEE Transactions on Image Processing, 4(1):34—47, January 1995.

95

