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ABSTRACT

Fracture Analysis of Concrete Dams by Boundary Element Method

Lingmin Feng, Ph. D.
Concordia University, 1994

Static and dynamic cracking problems in concrete dams are studied by a new procedure
employing linear elastic fracture mechanics theory, discrete crack modelling and the
boundary element method (BEM).

This procedure is first implemented for static fracture analysis of gravity dams,
followed by a detailed evaluation of the fracture process of concrete gravity dams during
strong earthquakes. In the latter, the impact effect of crack closing is simulated by impulse
and force rather than by change in stiffness, thus the mode superposition technique is still
in effect within each stage of constant crack length. To verify the accuracy of the
procedure, results are compared with rupture tests of a cantilever beam and a model of
Koyna dam performed previously at Tsinghua University. The good correlation between
the numerical predictions and test results indicates that the proposed procedure is relevant
for evaluation of the seismic fracture process in concrete structures.

The above 2-D procedure is also applied in a case study of the Koyna prototype gravity
dam under the 1967 earthquake. The results confirm the validity of the procedure for
modelling crack propagation in concrete gravity dams during strong earthquakes.

This BE approach is then extended to analyze the 3-D cracking of arch dams using a
simplified criterion for crack extension. The accuracy of the approach in computing 3-D
stress intensity factors is verified by two examples. The first upstream cracking which
occurred in the Kolnbrein arch dam is then studied in detail under various conditions

conceming the foundation interface, location of initial cracking, water level and load




iv
combination. The good agreement between the numerical results and the reported field
observations in terms of crack trajectory and crack trace on the upstream face demonstrates

that the proposed approach can effectively be employed to predict the propagation of
existing cracks in arch dams also.
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CHAPTER 1

INTRODUCTION

1.1 LITERATURE REVIEW OF PAST CRACKING PROBLEMS
IN CONCRETE DAMS

Most concrete dams including gravity, buttress and arch types experience varying
degrees of cracking during the construction stage. Usually, this cracking is attributed to
internal and external temperature variations, shrinkage of the concrete and, in some cases,
differential foundation settlement. For example, the Revelstoke gravity dam in Canadall],
the Dragon arch dam in Romanial2], the Buffalo Bill arch dam in U.S.A.[3], the Salas
buttress dam in Spainl4), the Zhaxi buttress daml!53), the Dong Jiang[6] and the Jinshui
Tanl(7] arch dams in China have reportedly experienced cracking during the construction
stage due primarily to differential temperature and concrete shrinkage. On the other hand,
the cracking discovered in the Daniel Johnson multiple arch dam in Canadal8], the
Zervreila(9] and the Zeuzier(10] arch dams in Switzerland and, the Glen Canyon and the
Hoover arch dams!3) in U.S.A. was reportedly due to nonlinear, permanent deformation of
the foundation. Although the scales and depths of these cracks are relatively small and
shallow, whether the cracks remain stable or not under varying loading conditions during
the operation phase becomes a source of concern for the safety of these structures.
Furthermore, if the cracks are unstable, what kinds of trajectories will they develop? These
problems are crucial for the normal operation of such structures.

For example, under hydrostatic pressure and temperature variation, one of the small
vertical surface cracks on the upstream face of the 104 m high Zhaxi diamond-head buttress
dam propagated 43 m into the dam in 1969 after eight years of normal operation, and in
1977 another vertical crack experienced similar extension with 16 m depth into the daml(S),



Detailed studies by 2-D and 3-D finite element models and photoelastic experiment were
performed to determine the causes of the crack propagations, and various measures
including anchoring the cracked buttress by prestressed cables, sealing the cracks with
epoxy mortar, drilling holes to release high uplift pressure in the crack and placing concrete
plugs to support the buttress were taken to strengthen the dam.

Cracking damage as, in the above Zhaxi dam, severely hampers normal operation and
may also endanger the safety of the dam; thus it is imperative to study the stability and
extension of existing cracks in concrete dams to improve the method for designing new
dams and identifying remedial measures to reinforce existing dams.

The behaviour of concrete dams exposed to strong carthquake has also been studied for
decades. Since the Hsinfengkiang buttress dam in Chinall1] and the Koyna gravity dam in
Indial12] experienced very similar severe cracking damage during strong earthquakes in
1962 and 1967, considerable attention has focused on evaluating the safety of existing
dams and predicting the dynamic performance of newly designed concrete dams subjected
to strong earthquakes. Finite element analysis related to dynamic behaviour of the Koyna
and Hsinfengkiang dams has demonstrated that very large tensile stresses occurred on the
downstream face of the upper part of the dams, at the point of slope change consistent with
the general location of observed cracking. From a number of publications related to
numerical and experimental studies of the aforementioned dams, it is recognized that strong
amplification of the motion in the upper part of the dam and an intensive stress
concentration at the point of slope change were largely responsible for initiating the
cracking damage.

A number of 2-D linear analyses have been made to determine the dynamic response of
Koyna dam when subjected to the recorded accelerations, while others attempted to include
the nonlinear features of cracking. A seismic study(13] by the finite element method
considered cracking with stress release once the tensile stress reached a critical value which

included a factor to account for strain rate effects. Ayari and Saoumal14] used fracture



mechanics and a contact/impact model for crack closure within a finite element formulation
to analyze the seismic performance of the Koyna dam. Recently, Bhattacharjee and
Legerl15] performed the cracking analysis of Koyna dam by a non-linear smeared fracture
energy conservation model using finite element method. All these studies revealed that
formation of cracks on both faces was to be expected during the 1967 earthquake.

Another study(16) of the Koyna dam has attempted to model the formation and
propagation of cracks based on the maximum tensile strength criterion and a discrete crack
approach. The cracks were simulated by separation of originally adjacent finite elements;
however, the cracking pattern obtained was totally different depending on the mesh
refinement.

Experiments have also been conducted to study the dynamic response and cracking
pattern. In an investigation of damage causes and strengthening measures for the
Hsinfengkiang dam in 1964, a 4.5 m high model was built near the dam site and explosives
were used to generate ground motions as the input. In these tests the acceleration
amplification ratio reached 6.5 at the crest of the model and finally caused cracking rupture
at a location very similar to that observed in the prototype(17).

A similar experiment for Koyna dam was conducted at the University of California at
Berkeley(18], A 1:150 scale model was constructed of a plaster material containing lead
powder. During the test run at 1.21 g of the shaking table a crack was initiated on the
downstream face at the point of slope change, which then propagated through the dam to
the upstream face. Even though the excitation applied to the model was not actual Koyna
ground motion and improper gravity scaling for rupture similarity was employed, the
results still gave valuable insight into the cracking pattern and location under the test
conditions.

A recent study of concrete gravity dam under dynamic load by shaking table tests was
carried out by Donlon and Hall(19), A series of tests on three small-scale models of the Pine

Flat dam monolith under simulation of earthquake shaking were conducted to examine the




characteristics of crack formation and the overall stability after the crack penetrated the dam.
It was found that the neck region of a gravity dam is most vulnerable to cracking and no
failures occurred in the three models due to the favorable orientations of the developed
crack profiles for resisting sliding failure.

As indicated in Reference [20], for a sharp slope change at the dam face a point of
singularity occurs and the maximum tensile stress becomes infinite if the linear elastic
idealization for concrete is maintained. Thus, the crack formation and propagation process
should be analyzed by fracture mechanics theory in which stress intensity factors need to be
evaluated.

Due to the complexity of evaluating crack propagation in concrete gravity dams under
strong earthquakes, sophisticated mathematical models for dealing with the cracking
process of concrete structures are needed and model tests for either verification of the
mathematical models or simulation of the prototype performance remain imperative.

In comparison to the 2-D case of gravity dams, the 3-D cracking problem in arch dams
is even more complicated. Since an arch dam is a highly indeterminate 3-D structure, the
distribution of stresses under sustained loadings is sensitive to the shape of the canyon as
well as to the dam itself, and also to nonuniform deformation of the foundation. Thus,
small initial cracks caused by excessive thermal strains or foundation settlement may
become severe following filling of the reservoir, as was the case for the Kolnbrein arch
dam in Austrial2!],

At present, the traditional trial load method for cracking analysis of arch dams uses
the maximum tensile stress(3], i.. if at any point the computed tension exceeds the tensile
strength, cracking will occur and develop to the point of zero stress. The resulting changes
in stiffness of the dam accompanying crack propagation must be recomputed until
convergence is achieved. Evidently, this criterion has the drawback of not considering the
stress singularity at the crack tip. When the finite element method is employed for taking

the effect of this stress concentration into account with the tensile strength still in use, the



propagation of the crack will depend on the mesh size of the elements near the crack tip,
and objective results cannot be obtained unless the energy criterion of fracture mechanics is
incorporated.

Because of the analytical challenge posed by the complexity of the 3-D crack
propagation problem related to arch dams, few publications have appeared to-date in the
literature. To the author’s knowledge, Linsbauer and Ingraffea et al.[22], (23] were the first
to apply LEFM in the cracking analysis of arch dams, employing a 2-D finite element
model of the Kolnbrein arch dam. Although the results identified several possible
explanations for the cracking of this dam, it is obvious that their 2-D simulation of a doubly
curvated arch dam cannot consider the redistribution of the external loads between arch and
cantilever actions of the dam during the crack propagation process.

More recently, Martha et al.[24] developed a new system for interactive analysis of
crack initiation and propagation in arch dams by 3-D modelling. An example arch dam was
employed to demonstrate the capability of the system to simulate 3-D crack extension. It
was assumed that each point along the crack propagates within a plane perpendicular to the
crack front and in the direction of the local maximum circumferential tensile stress.
Additionally, the length of the crack extension was assumed proportional to the value of
Kp2 at the point. However, no data were reported to verify the validity of these assumptions

for crack propagation in arch dams.

1.2 OUTLINE OF PRESENT STUDY

For crack analysis of structures, both linear elastic fracture mechanics (LEFM) and
nonlinear fracture mechanics (NLFM) may be considered. The latter includes the fictitious
crack model presented by Hillerborg{25] and the blunt crack band model by Bazant{26], both

taking the effects of strain softening into account by different assumptions. Since the



characteristic dimension of a dam is much greater than the micro~cracking or process zone,
and considering that mass concrete is basically a brittle material with no significant
softening characteristics, LEFM is deemed applicable to the analysis of cracking in concrete
dams.

There are two approaches of modelling cracks in numerical analysis of concrete
structures(27: (i) the discrete crack model in which a crack is modelled by an inter-element
discontinuity between adjacent elements; and (ii) the smeared crack model in which the
crack is distributed over entire elements. The smeared crack approach can easily include the
non-linear effects associated with cracking, the closing and reopening of the cracks by
internal material behaviour of the elements under consideration. However, this model only
considers the overall effect of cracking — the exact location of an individual crack is not
determined, and the procedure is sensitive to mesh size and alignment unless the energy
criterion of fracture mechanics is employed. For structures with normal amounts of
reinforcing steel and reasonablie level of stress, the smeared crack approach is well suited to
model the behaviour during and after cracking, as the reinforcement tends to give the
structure a smeared crack pattern, i.e. with many small cracks distributed in a banded
region. However, for unreinforced concrete structures such as concrete dams, the cracking
will lead to a release of tensile stresses in the zone of the crack resulting in single, discrete
crack pattern. Therefore, for unreinforced structures, the discrete crack approach represents
suitable method of modelling cracking. Furthermore, this model can easily apply uplift
pressure on the crack surfaces which has significant effect on the stability of the crack in
concrete dams. Thus, the discrete crack approach is a physically more realistic model for
concrete dams.

As noted before, the finite element method (FEM) has been employed extensively in
previous analyses on fracture of concrete dams because it can easily include the nonlinear
behaviour of concrete cracking. Due to its apparent versatility, the FEM can deal with such

problems as nonlinear or anisotropic material behaviours and irregular body forces. Recent




examples of such applications are the analysis of the progressive cracking in gravity dams
due to the combined effects of water intrusion and concrete expansion by Cervera et al. (28]
and the poroplastic analysis of concrete dam cracking including the pore pressure effect
inside the dam body(29]. However, the boundary element method (BEM)[30] has
increasingly gained popularity among numerical methods recently as an aliernative
technique to treat cracking problems in concrete. In this application, it has the following
advantages over the FEM: (i) reducing the dimension of the problem by one; (ii) much less
data preparation and easier remeshing of the crack tip discretization; and (iii) valuable
representation for stress concentration resulting in better accuracy for computation of stress
intensity factors (SIFs). Due to these inherent benefits, the BEM is particularly suitable for
solving crack problems using discrete crack model.

Based on the above considerations, the boundary element method, linear elastic fracture
mechanics theory and discrete crack model are employed herein to study the cracking
problems in concrete dams.

In Chapter 2, in order to obtain the appropriate length for the crack tip elements when
using the BEM to calculate the stress intensity factors, a rectangular plate having an edge
crack was analyzed with different Lo/a (where L is the length of the crack tip element and
"a" is the crack length) in a parametric study. It is found that highest accuracy is achieved
when L is about 10% of the crack length. To compare the efficiency and accuracy petween
BEM and FEM, the stress intensity factors for the same plate were computed by both
methods. It is revealed that BEM has the benefits of less data preparation and CPU time but
better accuracy than FEM. Employing the maximum tensile strain criterion of crack
extension, the stability and propagation process of cracks near the heel of a gravity dam
under static loadings of hydrostatic pressure and self-weight of the dam is examined as an
application example. For this example, it is concluded that the horizontal cracks near the
heel of the dam will develop rapidly downwards to the interface between the dam and the

foundation. The distribution pattern of uplift pressure on the crack surfaces has a



significant effect on the stability of the cracks and the effective drainage system near the
heel of the dam plays an important role in resisting crack extension.

Chapter 3 presents the extension of the preceding 2-D static formulation to the cracking
process of concrete gravity dams during strong earthquakes(31) and the corresponding
specialized software FAPGD (Fracture Analysis Program for Gravity Dams) is developed.
In this procedure the boundary element technique, dynamic modal analysis and linear
elastic fracture mechanics theory are combined. Two alternative methods, namely the
impulse and the force methods, are presented to simulate the behaviour of crack closing
during earthquake response. The force method is developed to prevent the hypothetical
overlap phenomenon which is originally assumed in the modelling of crack closure by the
impulse method. During the nonlinear process of crack extension, the computation is
divided into discrete stages having different natural frequencies and mode shapes.
However, it remains linear within each stage of constant crack length provided that the
dynamic stress intensity factor is lower than the fracture toughness of the concrete. Since
the impact effect of crack closing is simulated by impulse and force rather than by change in
stiffness, the mode superposition technique, which is efficient for linear seismic analysis,
is still in effect within each stage. The maximum strain criterion is employed for predicting
the orientation of crack extension, whereas the propagation process itself is simulated in a
stage by stage procedure. Generally, the proposed method is efficient for the analysis of
seismic crack propagation under earthquake loadings, due primarily to simplification of the
nonlinear dynamic problem resulting from the linearized nature of the present formulation
comt ned with the computational advantages of BE modal analysis.

The accuracy of the above 2-D formulation for seismic fracture is confirmed by
comparing with previously obtained results for tests of a cantilever beam and a model of
Koyna dam both made of gypsum under excitation of a shaking table. The very good
agreement obtained between the numerical predictions and the experimental data in aspects

of natural frequencies, time histories of stress intensity factors and final crack profiles



indicates that the proposed procedure is relevant for evaluation of the 2-D seismic fracture
process in concrete gravity dams.

Chapter 4 applies the above 2-D procedure to the case study of Koyna prototype dam in
India under the 1967 earthquakel32), Crack propagation analyses of the dam are first
performed under only seismic loading in a parametric study to obtain the magnitude of time
step and the number of modes required for the convergence of the computation of crack
propagation. The extension process of the crack is then, analyzed, by both impulse and
force methods for simulation of crack closure under the actual load conditions including the
hydrostatic pressure, the self-weight of the dam, the 1967 Koyna earthquake comprising
both the stream and vertical components, and the hydrodynamic pressure of the reservoir.
The results show that the final rupture profiles obtained from the two methods are in
excellent agreement for both the prototype and a model of the Koyna dam, thy - indicating
that the crack closure mechanism has no significant effect on the crack propagation
trajectories. Since the numerical results and the model test for the Koyna dam show very
similar patterns of rupture, also consistent with the prototype measurements after the 1967
earthquake, it is concluded that the present boundary element procedure based on LEFM is
suitable for modelling crack propagation in concrete gravity dams during strong
carthquakes.

The foregoing Z-D BE and fracture mechanics based formulation is extended in Chapter
S to the analysis of the stability and propagation of 3-D static cracking for the much more
complex case of arch dams and the associated software FAPAD (Fracture Analysis
Program for Arch Dams) is developed. In order to improve the accuracy in computing 3-D
stress intensity factors by BEM, special crack front elements are employed and the
appropriate coordinate transformation technique is performed to evaluate accurately the
singular integral associated with the special crack front element by standard Gaussian
quadrature formulae. The accuracy of the procedure to compute 3-D stress intensity factors

is verified for a horizontal and an inclined circular crack within a cylinder. Because of the
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great difficulties in dealing with 3-D crack propagation in arch dams using LEFM, certain
simplifying assumptions are introduced in the computational modelling of the crack
propagation process.

Finally, in Chapter 6 the preceding 3-D procedure is applied to the case study of the
Kolnbrein arch dam in Austria{33), The first upstream crack which occurred in this dam is
studied in detail under various conditions concerning the foundation interface, location of
crack initiation, reservoir water level and load combination. Crack trajectories close to the
observed one are obtained with water level at 1850-1860 m, which agrees with the
prototype experience. It is found that the hydrostatic load and associated uplift pressure on
the crack surfaces are the key factors for causing an initial crack at the dam base to
propagate to the upstream face. It is also noted that the bonded condition at the interface
between the dam and the upstream elevated foundation is responsible for producing the
distinctive profile of the observed crack which daylights on the upstream face at an acute
angle. The good agreement between the numerical results and the observations in respect to
crack trajectory and crack trace on upstream face confirms that the current fracture
mechanics based boundary element procedure can also be employed to predict crack

extension in arch dams wherein using a simplified model for 3-D crack propagation.
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CHAPTER 2
FORMULATION OF 2-D STATIC CRACK PROBLEMS

Before undertaking detailed studies of static and dynamic fraciure of dams, the
boundary element (BE) formulation for two-dimensional elastostatic crack problems is
presented and the accuracy of the procedure in computing stress intensity factors is
examined. Also presented is an example application consisting of the crack propagation

analysis of a gravity dam under static loading.

2.1 BOUNDARY ELEMENT FORMULATION OF 2-D ELASTOSTATICS

By making use of the residual approximation and utilizing the 2-D Kelvin fundamental
solution as the weighting function, the governing static equilibrium equation for a

homogeneous isotropic elastic domain Q can be transformed to the following boundary

integral equation(30)
cij(P)uj(P)"'Irp*ij(P: Q)uj(Q)dr=fru*ij(P, Q)t;(Q)dI

+fwe. @1
r

where u; (j=1, 2 ) are the displacements, t; the tractions at the boundary I" of the domain
Q; P is the source point, Q the integration point, both on the boundary;

Cij =§_m.ofrtp'ijdre
in which I'¢ is the circular arc within the domain with radius € and centre P.

u*;; (P, Q) and p*;; (P, Q) are the 2-D Kelvin fundamental solution given by(30]
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w2, Q=—)_(3-av)in(l )8+ 2R 2R,

4xE(1-v) X 9%,
(22)

1 3R 3R

. (7, Q)=— (1-2v)§+22R R

P ! Q 4R(1-V)R(8n[ ) axian]

+(1-2v) (2R n-2R 1)

an axi

where R is the distance from P to Q, 8;j the Kronecker delta, n; the unit outward normal at
Q, E the clastic modulus, v the Poisson's ratio, and x ; is the Cartesian coordinate;
W; (P, Q) in equation (2.1) corresponds to the body force of self-weight and is given by

LR - 112N -—L 5 2Ry 3
aj 2(1-v) an

Wi(P,Q)=
4nE X
in which b is the constant gravitational force.

It should be noted that equations (2.2) and (2.3) are only valid for plane strain
problems. They are valid for plane stress if E and v are replaced by E' = (142v)E/(1+Vv )2
and v' = v/(1+V), respectively.

Discretizing the boundary I" into m elements and on each r-node element, the
displacements and tractions are expressed in terms of nodal values through the r

interpolation functions ¢4, (§) and ¢, (§), respectively, leading equation (2.1) to become

cyPuy(p+ S H =S Y aE s S 3 Br @.4)

Els=1 Els=1 Els=1

where the source point P has been taken to coincide with the discretization node p. The

coefficients H;;P1s, G;;P1% and B;P!* are given by

H‘i’jh=_£_P"‘aj(P,Q'(é))%.(&)ll(i)dﬁ (2.5)
¢
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Gh'~ ]; u%;;(P, Q'(£))0,,(8)J'(8)d5 2.6)
t

B}"'- f Wi(P, Q'(§))'(§)dE @)
L

where J(E) = dI'/d€ is the Jacobian of transformation § to x.

Applying equation (2.4) to nodal point p and adding the terms relating to the same node

q, we obtain
< Pq..9 . P - Pq
P SATHED N AT (2.8)
q=1 q=1 q=l

in which n is the total number of nodes in the mesh.

When all the n nodes are considered, with the proper boundary conditions applied and
the terms reordered, equation (2.8) leads to a non-symmetric fully-populated system of 2n
equations with 2n unknowns which can be solved by Gauss elimination scheme. When the
domain is divided into subdomains, from the conditions of compatibility and equilibrium

on the interface between the subdomains a and p, we have

u @z y® (@ _(®

To avoid directly evaluating c;; and the strongly singular integral in equation (2.5)
when the node s of the element 1 coincides with point p, the coefficients H* ;PP can be

obtained by applying the rigid body motion condition to equation (2.8):

n
HP=-Y H?  (q#p)
q=1

All the other integrals in equations (2.5) - (2.7) are numerically computed by Gaussian
quadrature formula. In order to obtain a roughly uniform precision of integration, the order
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of the Gaussian formula is determined according to the rapidity of variation of the integrand
within the element.

2.2 COMPUTATION OF STRESS INTENSITY FACTORS

It is recognized that the BEM has the advantages of better accuracy in solving stress
concentration problems and greater efficiency in remeshing an extended crack surface in
comparison with the FEM. If BEM is applied directly to cracking problems, the coefficient
matrix of the equation becomes singular{34] because it cannot distinguish between the two
coincident surfaces of a crack within one domain. Cruise modelled the crack with a small
width between the two surfaces{35] which requires very fine discretization on the crack
surfaces and yields poor accuracy. The so-called "Multi-domain Method"[36] has been
shown to be effective for cracked structures and is therefore adopted in the present study.
It treats the cracked structure as two separate subregions artificially divided by the crack
surface and its prolonged line, but requires that continuity and equilibrium conditions be
satisfied along the latter.

For the coordinate system at the crack tip shown in Figure 2.1(b), the displacement and
stress fields near the tip for a combined opening (type I) and sliding (type II) crack

mechanism (with r << a, where 'a’ represents the length of the crack) are given by(37]

2 o 30 .9 .. 30
u,=-£; -n-' {K,[(2k-1)cosz—cos 5 1+ Kyl (2k-1)sin 5 ~3sin 5]}
2.9)
u9=--l— r {Kj[-(2k+1 )sin-g+sin37e-]+l(|[(2k+l )cosg—3cos§22]}
8u R

and
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c = 1 [K(3-—cos9)cos9-+l((3cose—l)sing]

Y 2 2
Cg= - [K,(l+cos6)cosg-—l(n(3sin0)cosg—] (2.10)
242m
t,°=-——l——[K,sinﬂcos-g—-kl(.(BcosO-l)cos-:l]

2V

in which

n= E k_{(3—4v) , plane strain

2(1+v) (3-v)/(1+v), plane stress

where E is the modulus of elasticity; v is Poisson's ratio; K and K are the stress intensity

factors for types I and II crack mechanisms, respectively.

Crack tip clement
Based on the r1/2 displacement variation and r-1/2 stress variation near the crack tip as

shown in equations (2.9) and (2.10), one can define the displacement and boundary

traction of the crack tip element as follows:

3
u=ag+ 31“/E+32§= Y Ni(E)y;
i=1
2.11)
3
t=(ag+8,VE +8,€)/VE = E#Ni(é)ti
i=1

in which u;, t; are the nodal displacement and traction at point i, respectively; ag, a,, a5

are coefficients; and N ; (§) are interpolation functions taken as

N, (8)=1-34E+2E
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Ny (&)=4 (VE-E) (2.12)
Na(&)=—+vE+2¢

where £ is the local coordinate of the quarter point crack tip element shown in Figure
2.1(a).

Stress intensity £ (SIFs)

(i) Crack in one material

According to Reference [38], better accuracy can be achieved by employing the ‘one-
point' rather than the ‘two-point' formula to compute the stress intensity factors. Thus, for
the combined opening and sliding cracking mechanism (i.e. types I and II, respectively),
the stress intensity factors are determined from the relative displacements at element quarter
points B and D [shown in Figure 2.1(b)] by substituting 6 =x and —xt into equation

(2.9), resulting in the following 'one-point’ expressions:

2u n
= —_— -V
I (k+1) ¥Y2r Vp B)

e ‘fi -
Ki = & V2r Uo7 %)

where Ug, Up, Vg, Vp represent nodal displacements in the U and V directions; r

(2.13)

corresponds to the radial coordinate of nodal points D and B.

(ii) Crack on the interface of two different materials

When the crack is located on the interface of two different materials, the stress intensity
factors can be computed using the displacements of the crack surfaces near the crack tip as
proposed by Smelser(39],
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Employing the coordinate system shown in Figure 2.2, the complex relative

displacement of the crack surfaces is defined as:
AU=U;lg-x-Ujlo=x

the norm of AU can be expressed as
1 Ko
jJAU|= (Aj+A))—1r (2.14)
avan | ° Ao
where

A ={ 4(1-vy)/u, , plane sirain

« a=1,2

4/[pg(14vy)], plane stress

in which o, v are the shear modulus and Poisson's ratio of material a, respectively; K o

is the norm of the complex stress intensity factor K which is defined by

K= Koeip-'—' Kr“i Kn

2 1 m(u‘ﬂl’x’)

1
Avo: —+E ’ E£E=
4 2n W+ | K,y

in which
{ (3—-4v,) , plane strain

K,= a=1,2
(3-v, )/ (1+v,) , plane stress

The argument of AU can be expressed as
¢=elnr—B-5+n2 (2.15)
in which

8 =tan"1 (2¢)
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From equations (2.14) and (2.15) we have:

av2r2g1A U]
Ko= (2.16)
(A +A)TT
B=elnr-5-¢+mw2 (2.17)

Thus, the stress intensity factors are obtained by

Ky=Kocosp (2.18)

K =Kgsin

in which K j and P are determined by equations (2.16) and (2.17), respectively.

2.3 CRITERION FOR CRACK PROPAGATION

To predict the orientation of the crack development, there are alternative criteria to be
considered. The criterion of maximum tensile stress, or alternatively the maximum rate of
energy release theory, is commonly used for metal and resin type materials. For brittle
material such as concrete, experiments(40] have shown that the maximum tensile strain
criterion41] is more appropriate and is therefore adopted herein. The circumferential strain

factor €g(0) for plane stress is employed; namely

29(0)=%'[(3—5v)cos-g-+(1+v)oos§i9-1
--1;—"[(3-5v)sing+3(1+v)sin¥1 2.19)

The hypotheses of the maximum tensile strain criterion are: (a) crack extension is
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initiated at the tip in the radial direction 8, for which the circumferential strain factor is
maximum, i.e. .

€9(05)>0 ; €g(05)=0 ; &g (6y)<0
and (b) the crack extends when K; and K ; increase to cause the combined stress fntensity

factor K [defined by equation (2.23)] to reach the critical value representing the material
fracture toughness. From equation (2.19), the extremum condition &g (8)=0 is equivalent

to
2vK, p>+2(3+4v)Ky p>-(3+V)K p—(3+V)Ky; =0 (2.20)
where
e0
p =tan 5~

With K = 0 and 0 = 0 for the opening type crack mechanism, equation (2.19) leads to

~ 4(1-v
€0, =—('E—2K1c 2.21)

where K 1 ¢ represents the fracture toughness of the concrete. Thus, the existing crack will

propagate if

~ ~ 4 -
€9 (0y) 2 €9, = —Q-E—v)' Kic (2.22)

or, employing equation (2.19), the propagation criterion may also be written as

1

0 36,
=—-———-[KI[(3-5v)cos—2—+(l+v)cos—7—]
4(1-v)

K

. O . 36,
-Kl[(3-SV)sm7-+3(l+v)smT-]}2ch (2.23)
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in which O, is given by equation (2.20) and K represents the stress intensity factor for the

combined crack mechanism.

2.4 COMPARISON OF BEM WITH FEM FOR ACCURACY IN COMPUTING SIFS

In order to verify the accuracy of the BEM and study the appropriate length adopted for
the crack tip elements, the stress intensity factors of a rectangular plate with a 3.5 m long
edge crack shown in Figure 2.3 are computed for different L o/a (where L ¢ is the length of
the crack tip element and "a" is the crack length) by BEM and the results are plotted in
Figure 2.4 (compared with collocation method whose error is within 1% [42]), It is seen
from Figure 2.4 that K has better accuracy than K, and good accuracy (within 2% and
6% of error for K; and Ky, respectively) is obtained when the length of the crack tip
clement is about 10% of the crack length.

To compare the efficiency and accuracy between BEM and FEM, the stress intensity
factors of the plate are calculated by both methods. The BE and FE discretizations of the
plate are shown in Figure 2.5 and the results obtained from DPS-8 computer are listed in
Table 2.1. In the FEM, 8 node quadrilateral isoparametric elements are employed and the
mid-node of those elements adjacent to the crack tip is moved to quarter point in order to
improve accuracy(43],

It is seen from Table 2.1 that the input data and CPU time of FEM are 4.4 and 2.3
times those of BEM, respectively, whereas the accuracy is poorer than that of BEM,
indicating that BEM is an efficient method having the advantages of higher accuracy, less

CPU time and input data in computing stress intensity factoss.
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2.5 EXAMPLE ANALYSIS OF CRACK PROPAGATION FOR GRAVITY DAM

The swability and propagation of the crack near the heel of a 165 m high gravity dam
under the loads of reservoir water pressure and the self-weight of the dam were analyzed
by the proposed boundary element method. The cross-section of the dam ard the
coordinate system are shown in Figure 2.6 . The material properties of the dam and its base
rock are listed in Table 2.2, and the dam is treated as a plane strain problem. Since accurate
distribution pattern of the uplift pressure on the crack surfaces is not available at present,
the rectangular distribution with full water head on the crack surfaces is assumed in the
analysis. After the crack extends to the drainage of the dam located at x=15.0 m as shown
in Figure 2.7(a), two cases are considered for the uplift pressure on the crack surfaces
shown in Figure 2.7(b): (i) the drainage works well, thus the uplift pressure at the point of
the drainage is zero, resulting in the triangular distribution of the uplift pressure on the
crack surfaces; (ii) the drainage is blocked, and the distribution pattern remains rectangular.
The former is a usual case in practical engineering, whereas the latter is an extreme case
used herein to study the effect of the uplift pressure on the stability of the crack. The
fracture toughness of the concrete Kjc is taken as 0.64 MPa-m1/2 based on the
experiments of Reference [44].

Horizontal initial cracks of 2 m length are assumed on the upstream face of the dam at
two elevations 15.0 m and 20.0 m, respectively, as shown in Figure 2.7(a) for parameter
study. The BE discretization of the dam and its foundation for crack 2 is shown in Figure
2.8 where the infinite boundary elements were employed te model the remote region of the
foundationl45], The propagation process is analyzed stage by stage for the two cracks,
respectively. During these crack extensions, the dam is remeshed automatically by the
program. The crack profiles are shown in Figure 2.9 and the stress intensity factors during
the crack propagation are illustrated in Figure 2.10. It is evident from Figure 2.9 that the
horizontal crack near the heel of the dam propagates rapidly downwards to the interface
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between the dam and the base. From Figure 2.10, it is seen that: (i) Ky is much smaller
than K, resulting in the almost identical K with the combined stress intensity factor K; (ii)
K and K increase monotonically as the crack develops forward, indicating that the crack
will extend all the way down to the dam-foundation interface once it becomes unstable.
Usually the interface is relatively weak, and if the base rock is intact, one can assume
that the crack will propagate along the weak interface after it reaches there. From the
computation results shown in Table 2.3, it is seen that the crack becomes a compression-
shear type (negative K;) quickly after it develops along the interface. No further
investigation is performed since the criterion for compression-shear type crack propagation
is not well established and the example here is employed only to demonstrate the feasibility
of the present approach in simulating tension-shear type crack propagation. Comparing the
two cases in Table 2.3, it is seen that the K| at x=15.0 m in case 1 is less than the K; at
x=40.0 m in case 2, indicating that the distribution pattern of the uplift pressure on the
crack surfaces has a significant effect on the stress intensity factor K and that the effective
drainage system near the heel of the dam plays an important role in resisting crack

propagation.

2.6 CONCLUDING REMARKS

Based on the foregoing good accuracy and high efficiency of the BE approach in
solving 2-D static cracking problems, the above procedure is extended to treat 2-D dynamic

crack problems in concrete gravity dams in the following Chapter.
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Table 2.1 Comparison of BEM with FEM

Method BEM FEM
K; (kPa m!2) 340 318
Emor (% ) 20 4.7
Ky (kPa m!?2) 415 39.0
Error (%) 7.0 12.5
CPU time (second) 12.2 27.7
No. of Input data 381 1671
Discretization NE=20, NP=43 NE=48, NP=177
Note: NE and NP represent the number of elements and the number
of nodes respectively.

Table 2.2 Material properties of gravity dam

Property | Elastic modulus | Poisson ratio | Specific weight
Material (MPa) (kN/m3)
Dam concrete 26, 000 0.17 23.5
Foundation rock 39, 000 0.20 259

Table 2.3 Crack propagation along the interface for crack 1

Crack-tip coordinates K| Ky
Case
x (m) ym) | MPaml?2)| (MPam!?2)
1 15.0 100 -8.00 4.37
5 20.0 10.0 1.68 5.56
40.0 10.0 -6.39 11.09

Note: Case 1 and 2 correspond to triangular and rectangular
distribution of uplift pressure in crack, respectively.
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Figure 2.1 BE crack tip discretization
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Figure 2.4 Accuracy of BEM in computing SIFs
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Figure 2.9 Crack profiles of the dam
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CHAPTER 3

2-D FRACTURE ANALYSIS OF GRAVITY DAMS
UNDER STRONG EARTHQUAKES

This Chapter extends the 2-D static fracture analysis presented in Chapter 2 to the
detailed evaluation of the fracture process of concrete gravity dams during strong
ecarthquakes. The boundary element technique for seismic cracking is formulated, based
also on the principles of linear elastic fracture mechanics. The technique takes advantage of
both the high accuracy of the BEM in the computation of stress intensity factors and the
case in remeshing the crack tip discretization. The nonlinear process of crack extension is
modelled in a stage by stage procedure. Since the impact effect of crack closing is simulated
by impulse and force rather than by change in stiffness, the mode superposition technique
is still in effect within each stage of constant crack length. Generally, the proposed method
is efficient for the analysis of seismic crack propagation‘undcr carthquake loadings, due
primarily to simplification of the nonlinear dynamic problem resulting from the linearized
nature of the present formulation combined with the computational advantages of BE modal
analysis.

To study the feasibility and accuracy of the procedure, comparisons are made with
previously obtained experimental data from rupture tests at Tsinghua University of a
cantilever beam and a model of Koyna dam both made of gypsum and under excitation of a
shaking table. The very good agreement obtained between the numerical predictions and
test results indicates that the proposed procedure is suitable for evaluation of the 2-D

seismic fracture process in concrete gravity dams.
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3.1 BOUNDARY ELEMENT FORMULATION OF 2-D ELASTODYNAMICS

Without taking the constant body forces into account, the dynamic equilibrium equation
for a 2-D linear elastic system is given by

Gyj,j= Pl =0 (j.1=1,2) 3.1

where p is the mass density and (i, is the acceleration component in the I-direction.

For solving equation (3.1) by the BEM, one of the simplified methods was developed
by Nardini and Brebbial46] and subsequently extended to treat seismic input problems in
Reference [47]. By using the Kelvin fundamental solution for static problems as the
weighting function and making use of the residual approximation the integral form of

equation (3.1) becomes

L%(Q)U“u(l’. Q)dQ (Q)—pfniil(Q)u*u(P, Q)dQ(Q)=0 (3.2)

in which P and Q represent the source and ficld points, respectively. The first integral of

equation (3.2) is related to the static part of the problem as follows:
fno,,-,,.(Q)u*uw,Q)dn<Q>=—cu<P>u.(P)
-Irp*u(l’- Q)“1(Q)dl'(Q)+Iru‘k1(P,Q)P|(Q)d rQ @3

where C,, are coefficients related to the geometry of the boundary; u*,, and p*,,
constitute the Kelvin solution pair given by equation (2.2); and u, and p, are displacements
and tractions on the boundary. For the second integral of equation (3.2), a linear
combination of a class of functions £i(Q) can be used to describe the acceleration field in

the domain(46], i.e.



(1, Q=0 (1) F(Q) (3.4)

in which @ ;(t) is a group of coefficients depending on time t. Applying equation (3.4) to
all nodal points yields the vector expression

(i)=[Fl{a)

or, if the functions i (Q) are linearly independent and their number is chosen to be equal to
the number of nodes

. -1 §
{a}=[F] {u)=[E]{u} @3.5)

The selection of functions £i(Q) involves several alternatives. One of the simplest set is
given by: fi(Q =C—-R (P j» Q) where R (P;, Q) is the distance between source point P,
and ficld point Q and C is a constant. From the experience of References [46] and [47], this
approximation for fi (Q) to depict the inertial field provides reasonable accuracy in the
structural response. For practical ranges of distance R, the role of C is not particularly
important; thus C = 1.0 is assumed (indeed C = 0 would also have been a suitable choice).

To reduce the second domain integral of equation (3.2) to a boundary integral, one can
define a displacement field {J;, and related stress field Ti; 1, such that

Tim.m= 81 £1(Q) (3.6

in which §;, is the Kronecker delta.
From equations (3.4) and (3.6), the second integral of equation (3.2) can be derived as
the boundary integral

fnﬁl(Q)“*kl(PoQ)dQ(Q)=aij];5ufj(Q)u"u(P- Q)dN(Q)
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-0 fn . m (Q)U* (P, Q) R(Q)
=I§:i,-[-c,‘l c’;,(p)+j;u*k,(P,Q)nf.(Q)d rQ)
- fr P*(P, Q)5 (Q)AT(Q)] a7

where ni;)=1i;;,n, represents the boundary traction related to the displacement field
§J;; and np, is the direction cosine of the boundary normal. Substituting equations (3.3)

and (3.7) into equation (3.2) leads to the following integral expression for dynamic

problems:
Cu(P)“l(P)"‘IrP*u(P' Q) (Q)dI(Q)
—fr“"'n(P.Q)pn(Q)dI‘(Q)+P;s,-(t)[-Cu(P)§:.(P)
+fru*u<P.Q)n§.(Q)dr(Q)—frp*u(P,Q)d.(Q)dr(Q)1=o )
By discretizing boundary I" and using interpolation functions, equation (3.8) can be
transformed to the matrix form

(H){u}+[M](i})=[{G](p) 3.9)

where [H], [G] are coefficient matrices related to elasto-static problems; {u}, (i} are
vectors of displacement and acceleration, respectively; (p} represents tractions on the
boundary expressed as two global quantitic: per node; and [M] denotes an inertial matrix
which has the form

[MI=p([G]I[n]-[HII{])IE] (3.10)




K

With {Q} defined as the vector of nodal forces, the relation between {Q) and (p)
becomes

{(Q)=[N]1(p) (3.11)

where [N] is the transformation matrix derived from element interpolation functions. After

pre-multiplying equation (3.9) by [N] [G] !, one obtains
[(kl1{u}+[m](u)}=(Q) 3.12)
where

[k]1=[N][G]'[H]
(3.13)

[m]=[N][G][M]

Partitioning equation (3.12) and letting (u,}, {ii,} denote the unknown and (u,}, {ii,})

the known displacements and accelerations lead to

kyq kyal fuy myy myp ] f 8 =] 3.14
[k21 kzz]{uZ} * [m21 mzz]{iiZ} {QZ} 19

The first of equations (3.14) is for the displacement response
[kygd{u ) +lkyad{uy)+[my 1 {t;}+[m;,]1{H;}=(Q,]) (3.15)

while the second equation is for unknown nodal forces (Q,} on the input boundary. The
reservoir dynamic pressure can be modelled(48]-(50]) by adding mass to matrix [m,].
Since it is a normal procedure, it will not be described here.

From equation (3.15), the free vibration equation has the form

[k ]1{X)-02[m;](X])=0 (3.16)
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[Al(X)=A(X) (3.17)

where
[Al=[ky;]'[my;,] ; A=1l/w2 (3.18)

The subspace iteration method can be employed to obtain the eigenvalues and
eigenvectors of equation (3.17), which represent the natural frequencies and mode shapes
of the structure.

For the earthquake input mechanism, either rigid foundation input or base rock input
(Figure 3.1) can be considered. The latter assumes uniform earthquake motion along base
rock boundary ABC as the input with the foundation rock itself treated as massless.

Assuming that {i°,,; and {i° . ; represent base rock accelerations in the x; and x2

directions, and letting {u°) ={ u°,; u°52)7T leadto

{ug)=(u, }+[B'](u°}
{uy)=[B]{u°)}

3.19)
where (u, ] is the relative displacement vector with reference to ground motion and

(B1=|

Matrix [B'] of the first of equations (3.19) has the same form as [ B] but its size is
different due to the partitioning of the degrees of freedom separating the base rock
boundary from the remainder of the system. Substituting equation (3.19) into equation

(3.15) and noting that the rigid displacement does not produce internal forces yields
[my,J(8, )+ [k J{u }=[F']{t°}+(Q,) (3.20)

in which




[F']==([m,;,][B']+[m,][B]) (3.21)
Pre-multiplying equation (3.20) by [k, ]! gives
[Al{G, )+ (u, )=k 7N [F'1{8°) +[ky 171 (Q,) (3.22)
Displacement {u, } can be expressed as the sum of the modal components
(Ul ={01 1Y 1 +{02] Yo+t {0 ) Y =[0]{ Y] (3.23)

in which [¢] is the mode shape matrix and (Y} represents the generalized coordinates.
Substituting equation (3.23) into equation (3.22) and applying the relation

[All¢]1=[0]1[A]
yields
. -1 -1 T .0 -1 T
(Y)Y+[A] (Y)}=[A] [y] [F'1(u }+[A) [v) {Q) (3.24)
where
[VIT=([¢1T[¢1) [$]1T [k, ]! (3.25)

The new symbol 1y is now defined as the modal participation factor, i.e.(n} T = w2
(yx ) T[F'). Setting A, = 1/, 2 and introducing damping ratio & , provide the following
generalized equation of motion for mode k:

s 2 T .o 2 T
Yi+28 0, Yi+o Yi={n} (v }+o.{y,} {Q]) (3.26)

When static loads consisting of the self-weight of the structure and the hydrostatic

pressure are included, equation (3.26) becomes

. . 2 T .o 2 T 2 T
Yi+2860, Y +0, Yy={n,} (v }+o,{v,} {Q)+o,{wv.} {Q]) (3.27)
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where {Q, ) represents the nodal forces caused by the static loads. It is a vector of constant
clements for each stage of the crack length obtained from BE static analysis. Substituting
the initial conditions

¥,=Y,= (i )={Q;}=0 (3.28)

into equation (3.27) leads to the following generalized coordinate for the initial

displacements:
Y, = (w7 Q) (3.29)

Since only the lowermost modes suffice to obtain accurate estimates of stresses in
gravity dams subjected to earthquake excitation, this transformation to generalized
coordinates is computationally more efficient than the alternative of direct integration of the
coupled equations of motion. Even though a new eigenvalue problem must be solved each

time the crack extends, subspace iteration minimizes this effort.

3.2 SIMULATION OF CRACK CLOSURE DURING EARTHQUAKES

The crack opening and closing process of a dam structure during earthquake excitation
poses a problem of a complicated nonlinear nature. The nonlinearity is due not only to the
stiffness variation accompanying progressive crack extension but also to the alternate
opening and closing of the crack. In modeling a discrete crack by a numerical technique
such as the BE method used in this study, the two crack surfaces are represented as traction
free boundaries. Thus, correct representation of the opening phase of the crack is inherent
in the numerical model. For simulation of the behaviour during crack closing two

alternative methods, namely the impulse and the force methods, are developed.
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Modelling of crack ¢l by imoul hod

For simplification of the problem, Reference (51] used a load pulse to simulate the
effect of impact at the instant of closing of the crack for finite element discretization.
Described below is the extension of this concept to the present BE formulation.

Consider the cracked dam structure shown in Figure 3.2. A partial crack exists at a
certain elevation on the downstream face. Points i and j belong to the upper and lower
banks of the crack, respectively, and represent a pair of adjacent nodes along the crack.
When the structure deforms in the upstream direction, the crack opens; on the other hand,
when the structure deforms in the downstream direction an idealized structure is assumed to
replace the real system. This idealized structure has exactly the same parameters as the
cracked dam but allows the crack surfaces to overlap, with a load pulse acting at all those
points i and j which touch each other during closing of the crack. Thus, the cracked system
and its stiffness characteristics remain unchanged. By using this approximation, the system
remains linear and the mode superposition technique is still in effect within each stage of
constant crack length. By dividing the process of crack extension into suitably small stages
and re-evaluating the system frequencies and mode shapes at each stage, the complicated
nonlinear problem can be solved by linear techniques.

When impact occurs between nodal points i and j, the load at these nodes due to the

impact can be expressed as

N
(Qi)=2 (P)8(t—ty) (3.30)
n=1
where (P, } is the nth amplitude vector of the load pulse and only has values at points i and
j; t, is the arrival instant of the nth pulse; N represents the number of pulses; and 8 (t-t,)
is the Dirac delta function. Here it should be noted that, although a general boundary
element formulation would require the use of tractions along the crack surfaces, the present

formulation permits the direct application of the nodal forces of equation (3.30). This is
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possible without causing analytical singularities because governing (discretized) equation
(3.9) has been transformed to the nodal force form given by equation (3.20).
Substituting equation (3.30) into equation (3.27) yields

. . 2 T ..o 2 T
Yi+280, Y+, Yy={n,} {1 }+o {y,} {Q,)

N 2
+ Y o [V, (1)-v () IPa(t)8(t-ty)  (3.31)

n=1

where ¥, (1), ¥, (j) are component values of Y, at points i and j in the r-direction and

®y, &y, N are the frequency, damping ratio and participation factor of the kP mode

related to the hypothetical linear system.
Equation (3.31) can be solved by employing the Duhamel integral to give

t
T T..o 2 T
Yi={y,} {QJ +:o—l— f g (u @) +ofy} {QJ]expl=, w, ¢t-1)) sinfw,, ¢t-)) dv
L]

2
+ i Snltn) O ¥y, (1) -, (G )]

n=1 Dyq

sinfo,; (¢,)] expl-&, @, (-t HE—t,)  (3.32)

where

2
Opg=0,V 1~-§,

t
s,,(t,,)=f P,5(t-t,)dt (3.33)
t.
1, t-t,>0
H(t-t,)= {0’ -t <0 (3.34)

in which t,~ and t,* are the time instants before and after impact. The criterion for



specifying the time instant of impact t, is represented by

u[il(ta)=u[j1(ty)

) . (3.35)

u [i)(t,) <u,[j1(ty)
where u,[i] and u,[j] are displacements and u,[i] and 0,[j] are velocities of points i
and j in the r-direction. The first of equations (3.35) represents the condition of incipient
contact between two nodes, whereas the second indicates that impact will take place only if
the two crack surfaces are moving toward each other, rather than apart. During the closing
process, all pairs of nodes along the crack need to be examined t each time step. If both
criteria of equation (3.35) are satisfied for a nodal pair, a load pulse is applied at that
location. Thus the criteria for crack closure are applied continuously along the length of the
crack. It is also to be noted that these criteria pertain only to the direction normal to the
crack; shear displacements along the crack occur but do not govern crack closure.

To determine the expression for the impulse magnitude S, (t,, ), the principles of both
impulse-momentum and conservation of energy are employed.

First, integrating equation (3.31) over time t,™ to t;* and noting that the generalized
coordinate Y is assumed not to change within this infinitesimal period allows the
corresponding increment of generalized velocity A Yy to be represented in terms of
impulse S ,(t, ), thus implying the application of the impulse-momentum principle. This

yields

2
AYy=Sp(t) o [y, (1)-y,, ()] (3.36)

To next establish the relationship between A Y and the velocity field Yy~ just prior
to impact, energy conservation is assumed as follows.
For a linear clastic system where neither material damage nor friction is assumed to

occur along the crack surfaces, the energy loss during the instant of impact of nodal pair i
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and j may be ignored. Total energy thus remains constant during impact of individual nodal
pairs. This approximation applies only at the times of impact of node pairs and not during
the total time the crack remains closed; during the latter energy loss is not negligible and is
accounted for through the viscous damping mechanism.

The total energy comprising strain and kinetic energies is thus assumed to be
unchanged before and after the occurrence of each impact. Assuming the structure be an
idealized elastic system, the deformation due to impact will be completely restored during a
finite time interval At, =t,t—t,~. As At, approaches zero, the impulse acting at the
contact nodes approaches a 8 function, thus implying that deformation around the crack
region due to impact will occur only after the time of the idealized impulse. From this, it is
clear that the strain energy may be assumed constant during these intervals. The latter leads
to the total kinetic energy of the system unchanged also during the time of impact when a

node pair along the crack comes into contact; thus
E(t;)-E(t;)=0 (3.37)

where

E(G)=5 (Y ) (01 Imy106D(Y )
(3.38)

+, 1

E(6)=g (1Y T +(AY)) (6T [my )6 DAY }+{AY))

in which E (t,~) and E (t,*) are the kinetic energies of the structure before and after
impact.
Combining equations (3.36) - (3.38) yields

(MU0 Imy 1161+ 101 (my 1 1 [ODIY )

— (3.39)
{(7) ({¢] [my,1[¢ D (7]

Sn(ty)=—




where

CAEIE R ey

2
Y% =0 W (1) -, (§))

(AY ) =(AY,,AY,,...,AY_ ) =S, (t) (¥ )

Hence, by using equations (3.32) and (3.39) the response of the cracked structure can be

evaluated by the mode superposition technique within one stage of crack extension.

Modelling of crack closure by force method

Whereas the impulse method relies on load pulses to simulate the effect of crack closure
while permitting hypothetical overlap, in the force method nodal forces are applied on the
two crack surfaces in order to bring these back into contact. The magnitudes of the required
forces are obtained by an iteration process.

Let i and j represent the two banks of the crack which have opposite nodes on the upper
and lower surfaces, respectively, as shown in Figure 3.2. With r denoting the direction

normal to the crack sarface, the relative normal displacement Au;; between any pair of

nodes at time t can be written as

Ay;;(t)=u,(t)—uy(t) (3.40)

where u,;(t) and u,;(t) are the components of displacement of these nodes in the normal

directionr. For the convention used, the nodes overlap if

u, () < O (3.41)

At every time step, this relative normal displacement is determined for all the node pairs
situated along the length of the crack. When overlap occurs at any of these nodal pairs, the

response calculations are repeated over this time step with corrective forces applied to bring
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the nodes together. Letting i, and j, represent the nth pair of the nodes where overlap

occurs, say attime t = t, = ty + At, a first estimation of the corrective force Fy, can be

assumed as
Fo=—Aujj(ty) [ky+kpl/2 (3.42)

where k®,; and k»; are the components of the stiffness at node pair n in the normal
direction. This force is assumed to act linearly over time step At as shown in Figure 3.3.
In this re-calculation, the dynamic load at nodes i , and j, within time step At is given

by
Q) = (F) (t—;t-tﬁ) (b st s t) (3.43)

where (F} is the amplitude vector of the nodal force at time t;. Substituting load {Q;} into
generalized equation (3.27) yields

. . 2 T .o 2 T
Yo +28 0, YV+o, Y={n} (v )+o, {v,} {Q,)

m 2 F
z (tt tO)[\ng(in)_Wk,(jn)] (344)

where Wi, (in), Wkr(jn) are components of y, at nodes iy and j,, respectively, and m

denotes the number of node pairs that are overlapped.

Integrating equation (3.44) by the Runge-Kutta method from time tg to t; provides the
generalized coordinates and the corresponding displacements at time t;. At this stage, the
relative displacements of all node pairs are re-evaluated. If overlap is still detected, the
nodal forces F, are increased by an arbitrary amount and the process is repeated until the
overlap is corrected or the crack is forced to become open. In the present calculations, this

increase was assumed equal to one-half of the force in the preceding cycle and the
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convergence criterion is based on a prescribed overlap tolerance of 0.02, i.e. the ratio of the
current overlap to the initial overlap before imposing corrective forces. If, however, the
crack is found to be open at some node pairs under the above cyclic application of
corrective forces F p, the bisection algorithm is employed to determine the forces required
to satisfy the overlap tolerance. In this algorithm, the subsequent corrective nodal forces are
given by Fpn =(Fp,o + Fy c)/2, where Fy, oand Fy . are the force magnitudes
corresponding to the most recent cy. 'es at the end of which the crack was open and closed,
respectively, at the nodes in question.

Although 10 to 30 corrective load cycles were usually found necessary 1o model crack
closure for the above overlap tolerance of 0.02, the procedure proved to be very efficient
nonetheless. This is due to the overall computational efficiency of the present mode
superposition analysis which requires only a small number of modes to achieve good

accuracy as shown later in Chapter 4.

3.3 MODELLING THE PHYSICAL PROCESS OF CRACK EXTENSION

To prevent the singularity problems associated with cracked structures due to identical
coordinates of node pairs on the two surfaces of the crack, the multi-domain boundary
clement method is employed in this study. The latter requires the two surfaces of the crack
to belong to two different subdomains. To achieve this, the domains on either side of the
crack are separated by the so-called "prolonged line" which is an arbitrary boundary drawn
from the crack tip to a node on the opposite side of the full boundary element model. For
convenience, it is initially assumed to be horizontal.

For seismic response analysis, the expressions for the dynamic modal stress intensity

factors may, by analogy to equation (2.13), be written as
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(k+1)‘V > [6;y(D)-¢;y(B)]
Kuj= (k+1)‘V [¢u(D) ;u(B)]

where Ky, K ; are stress intensity factors of the j th mode related to the crack opening

(3.45)

mechanism (type I) and the crack sliding mechanism (type I), respectively; and ¢;y (D),
v (B), ¢;y (D), ¢;y (B) are amplitudes of the j» mode shape at points D and B in the
V and U-directions respectively as shown in Figure 2.1(b).

The time histories of the stress intensity factors during seismic loading can be obtained

by mode superposition, which yields

Ki (1) = 2 Ky; Y;(t)
j=1
(3.46)

m
Ky(t) = Y, K1 Yj(t)
j=1
where m represents the number of modes considered.
The maximum tensile strain theory adopted in Chapter 2 is also employed to determine
the orientation of crack development under dynamic loads. The criterion for crack extension

may, by analogy to equation (2.23), be expressed as

K=——I——(K,[(3—5v)cos-ezi)+(l +v)cos-3-26—°]

4(1-v)
. 9 . 30,
-—Kn[(B-Sv)sm-i-+3(l+v)sm—2-—]]ZKM (3.47)

where K4 is the dynamic fracture toughness, 0, is determined by equation (2.20) and K
is defined as the combined stress intensity factor for the mixed type crack mechanism.
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At the time when the dynamic fracture toughness is found to be exceeded, the angle at
which the crack propagates is determined from equation (2.20). The crack length is now
extended in this direction arbitrarily by a certain fraction of the existing crack length. In this
regard, the determination of the amount of crack extension is always a limitation of the
discrete crack approach. Indeed, the available finite element studies of dynamic crack
propagation extend the crack by moving the tip to the nearest node in the appropriate
direction.

Since equation (2.20) gives only the direction of crack propagation, it is important that
the crack be extended in this direction by a suitably small amount at a time in order to avoid
forcing the development of the crack profile. Because extremely small increments in length
are computationally inefficient, extensions of approximately 10 to 20 per cent of the
existing crack length are assumed in the present study.

Once the crack has been extended in the appropriate direction, the two subdomains on
either side of the crack are again separated by arbitrarily relocating the nodes of the
previous prolonged line but in such a way that the revised line emanates from the new crack
tip. Thus, the nodes on the revised prolonged line are neither related to the crack increment
nor does the new line affect the propagation of the crack in any manner.

Following the above crack extension and remeshing, the natural frequencies and mode
shapes of the cracked structure are re-calculated. Since it is assumed that no time elapses
during each stage of crack extension, the generalized coordinates are assumed to remain
unchanged. Thus, the response of the structure after cach stage of crack extension is based
on the new mode shapes and the generalized coordinates before the extension. Noting that
the mode shapes do not change significantly for each stage of extension, this initial
discrepancy in the displacements following crack propagation will vanish after a few

integration time steps because of the damping mechanism.
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3.4 VERIFICATION OF NUMERICAL MODEL BY COMPARING WITH
TEST OF CANTILEVER BEAM

To enhance confidence in the foregoing procedure for exammmg the cracking process
of concrete dam structures, the basic hypotheses underlying the formulation need to be
verified by experimental data. This involves primarily the impact simulation of crack
closing and the maximum tensile strain criterion for crack extension. For this purpose,
numerical predictions are compared with experimental data of a cantilever beam model
made of gypsum tested at Tsinghua University on a shaking table subjected to dynamic
excitation. Test data and numerical results obtained by impulse method were generated for
three conditions of the model structure: (1) uncracked; (2) initially cracked without
extension; and (3) initially cracked leading to rupture. To simulate the initially cracked
condition, a 50 mm long cut was made in the beam model using a steel blade.

Details of tests

Figure 3.4 shows the experimental set-up which had a force capacity of 490 kN and a
frequency range of 5-2000 Hz. The size of the gypsum beam was 800 x 200 x 100 mm
with the following material properties: specific gravity = 7.65 kN/1n3; dynamic modulus
of elasticity E 4 = 1.77 x 103 MPa (converted from frequency tests); damping ratio = 0.02;
and Poisson's ratio = 0.2,

Two accelerometers were employed, one located on the table and the other at the top of
the model. Strain gauges were located at 5 and 12 mm in front of the crack tip on both
sides of the beam to measure the stress intensity factor and to monitor extension of the
crack. With strain measured in the y-direction, the stress intensity factor K | (opening type

mechanism) was evaluated employing the expression

K, = E €, V2nr (3.48)
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wherc 1 represents the distance between the crack tip and the strain gauge.

Accuracy

The above locations of the strain gauges were based on the following considerations of
accuracy. Equation (3.48) is the first-term expansion of a complete series in which the
truncation error depends on the finite distance between the crack tip and the measuring
point. According to the accuracy study of intensity factor around the crack tip reported in
Reference [52], the error is of the orde1 of 6.5 per cent if the distance r is chosen to be 1/10
of the crack length. Thus the first gauge, located at this distance, should theoretically give
realistic results although other factors, such as the average strain over the gauge length
rather than that at a point, lead to experimental measurements of Ky which should be

viewed as approximations only.

C . f ical results and i

The BE discretization of the beam used to obtain the numerical results is shown in
Figure 3.5. Table 3.1 compares the measured and computed frequencies for the first six
modes of vibration for both the initially cracked and uncracked states of the beam. Very
good agreement (within 10 per cent) is observed for the first four modes, while the
discrepancy between the test and numerical results is appmximply 30 per cent for the fifth
and sixth modes. It is worth noting that the frequency decrease due to the existence of the
initial 50 mm crack is not significant, except for the first mode where frequency decreases
by approximately 11 per cent. The corresponding measured frequency response curves are
presented in Figure 3.6.

Figure 3.7 shows the results of the initially cracked beam for harmonic excitation at
frequency f = 10 Hz. Shown are the acceleration time histories of the shaking table and top
of the model, as well as of the stress intensity factor K. The BE numerical results are also

plotted in these figures. It is evident that the beam vibrated essentially as a rigid body; thus,
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the amplification effects were not significant since the excitation frequency was much lower
than even the fundamental frequency f, = 64.7 Hz of the beam. The accelerations at the top
of the beam obtained in the test are very close to the BE numerical results, while the
measured values of stress intensity factor K; are somewhat smaller than those computed.
Nevertheless, there is still good correlation between the numerical and experimental values.

The capacity of the shaking table was not sufficient to conduct a harmonic crack
extension test to rupture, but the latter was nevertheless attempted by gradually increasing
the initially harmonic force of the table in stages. Due to this mechanical limitation of the
equipment, the table acceleratic.. curve became distorted from harmonic as seen in Figure
3.8(a). From Figure 3.8(b), it is interesting to note that this distoried acceleration input
excited response of the model structure primarily at two frequencies, namely the
fundamental frequency of 64.7 Hz as well as the forcing frequency (f = 7 Hz) itself. The
associated resonant effect resulted in an amplification factor of more than 2.0 at the top of
the model, causing the crack to extend to the rupture phase. In Figures 3.8(b) and 3.8(c)
one can clearly see that the crack began to propagate at time t = 0.96 sec following a series
of strong response cycles. The dynamic fracture toughness of the gypsum material Ky is
approximately 41 kPa-m!/2 as evident in Figure 3.8(c).

Whereas the extension of the crack in the beam for the BE calculation took place over a
number of cycles of vibration, in the experiment the propagation of the crack was too rapid
to be observed. However, in both cases the crack breaks through when the beam is
deflected to the left, namely when the crack is open. In this position, the left edge is in
compression and it is the shear acting on the small connecting portion that accounts for final
breakthrough in the experiment. In the present analysis, on the other hand, this final phase
is not modelled. Rather, breakthrough is assumed if, after extending the crack, it is found
that the distance between the new crack tip and the edge of the structure is smaller than
needed to accommodate new boundary elements. The compression and sliding in the

remaining phase could be handled by the BEM but is beyond the scope of the present
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analysis. Thus, the formulation is limited to behaviour of the cracked structure up to, but
not including, final penetration. Behaviour following rupture also involves sliding and is
similarly not modelled herein.

Figure 3.9 shows the time history of combined stress intensity factor K for the rupture
test table excitation of Figure 3.8(a). It is worth noting that the initial crack was predicted to
extend once the computed value of K first reached the critical magnitude of 41 kPam'2 at t
= (.27 sec (see also Table 3.3), whereas in the test the crack began to propagate only at t =
0.96 sec as previously noted. This departure from expected behaviour is probably
attributable to weakening of the gypsum material due to the effect of cyclic fatigue, with the
actual (initial) fracture toughness at t = 0.27 sec being higher than its value at the time of
failure.

Table 3.2 lists the natural frequencies of the model for the different stages of crack
development. It is seen that the first mode frequency decreases significantly as the crack
extends; however, crack extension has progressively smaller relative effect on the
frequencies of the higher modes. Table 3.3 documents the computed development of the
crack in terms of orientation, tip coordinates and stress intensity factors.

Finally, Figure 3.10 shows the profile when the crack has finally penetrated through
the model. Here also, very close agreement is observed between the numericel predictions
and test results.

The numerical results in this section are obtained by impulse method for which the
formulation is based on use of a hypothetical structure to model the behaviour of the actual
cracked system. In this idealization, impulses act at the nodes along the closed portion of
the crack to simulate the effect of change in stiffness due to crack closure, but overlap of
the crack surfaces is not prevented. To confirm that this hypothetical violation of the
physical situation is not an actual limitation of the proposed method, comparison has been
made with force method for modelling crack closure. Figure 3.11 shows that both the
impulse method and the force method predict identical crack profiles for the rupture test of
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the cantilever beam model structure.
More detailed comparison between the two methods for crack closure is presented in

Section 3.5 and Chapter 4.

3.5 CORRELATION ANALYSIS WITH MODEL TEST OF KOYNA DAM

The objectives of this correlation analysis are: (1) to provide, in addition to the
preceding comparison with the cantilever beam test data, further verification of the accuracy
of the proposed numerical procedure for seismic fracture analysis; and (2) to obtain a
qualitative evaluation of the cracking process of the Koyna dam under simplified loading
conditions. The model scale of the Koyna dam section is 1:200; namely 515 mm in height,
351 mm wide at the base and 80 mm thick. The specific gravity yof the gypsum material is
4.71 kN/m3 and the dynamic modulus of elasticity E = 600 MPa.

Accelerometers werc installed on the table and at the crest of the model and strain
gauges were located on both sides of the model at 5 and 12 mm from the crack tip. Thus,
with strain €, measured in the y-direction the stress intensity factor K| was determined
from equation (3.48).

As shown in Figure 3.12, the model was fixed to the shaking table, with no reservoir
water included. Harmonic sweeping tests were first conducted to obtain the frequency
components of the model. To cause the dam model to rupture, a lead block weighing 27.1
N was attached at the crest. An initial crack 10 mm in length was cut at the location of slope
change on the downstream face. Because of the capacity limitation of the shaking table, the
input excitation for the rupture test comprised a series of load pulses which was
approximately periodic but not harmonic.

For the numerical predictions, two per cent damping (€ = 0.02) was assumed for the

six modes considered and the Poisson's ratio v was assumed equal to 0.2. As shown in
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Figure 3.13, the test model was divided into three BE subregions. The lead block having
an elastic modulus E = 1.0 x 105 MPa and specific gravity y = 75.3 kN/m3 was also
represented by a subregion. The initial crack and its arbitrarily prolonged line form a
horizontal interface between dam subregions II and III. This interface will change shape as
the crack progresses stage-wise in orientation and length. Fifty nine quadratic elements
were employed in the discretization of the model assuming the condition of a rigid
foundation to simulate the shaking table. An unequal distribution of elements, with a much
denser mesh near the crack tip and also at the slope change location on the downstream
face, was employed in order to refine the calculation of stress intensity factors and to permit
case of remeshing the crack surfaces following crack extension.

The process of crack extension was divided into 8 stages, each of which extended the
crack length by a predetermined amount. In each stage of constant crack length, the first six
frequencies and mode shapes were obtained and step-by-step time integration was
employed to obtain the structural response and the stress intensity factors at the crack tip.
Time step At = 0.001 sec was used in the calculation. Once the combined stress intensity
factor exceeds the dynamic fracture toughness K14 = 11.0 kPa-m!/2, crack propagation
occurs perpendicular to the maximum circumferential strain direction with infinite velocity.
The foregoing value of K4 is obtained directly from the test measurements shown in
Figure 3.14(b), where sudden rupture of the model is seen to occur at time 0.728 sec. It
should be noted that different kinds of plaster were used in the tests of the previous
canti!ever beam of Seciion 3.4 and the current model dam, resulting in very different values
of K14 as well as modulus E (600 MPa for the model dam and 1770 MPa for the beam). It
was assumed that the crack length extends by 10-20 per cent and the structural frequencies
and related stress intensity factors were re-evaluated for each new stage of crack length.
This procedure was repeated until either the crack reached the opposite face of the model or
the excitation stopped.

For the initially cracked model, the measured and calculated frequencies are listed in
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Table 3.4. The results from the test and calculation are seen to be close. For the rupture test
the table excitation frequency was 6.1 Hz, with the input acceleration exceeding the table
capacity and causing a distortion of the intended harmonic motion as evident in Figure
3.14(a). The time histories of the measured and calculated (force method and assuming no
crack extension) crack tip stress intensity factor K; are compared in Figure 3.14(b). I« is
noted that the BE results and the test measurements are in good agreement in general.
Figure 3.14(b) also shows that rupture of the model dam occurred at t = 0.728 sec, when
the strain gauges suddenly broke during the test.

A comparison of the time histories of stress intensity factors for the impulse and force
methods for crack closure modelling is shown in Figure 3.15, assuming no extension of
the initial crack before time t = 0.728 sec. Figure 3.15(a) demonstrates that K; shows very
similar patterns for both methods , thus indicating that the crack closure modelling does not
have much influence on the crack opening behaviour. However, Figure 3.15(b) shows that
K exhibits a significant dependence on the modelling of the closure mechanism. Whereas
a vivid oscillation is observed for the impulse model, the force approach yields similar
negative values but with all the positive peaks cut out. The explanation for this is that the
former allows an additional positive tangential deformation (toward downstream) to occur
due to the hypothetical overlap, thus causing positive peaks in K. Since the combined
stress intensity factor K is influenced mainly by Kj, it is to be expected that the time
histories of K are similar for the two methods as evident in Figure 3.15(c).

Figure 3.16 shows the results from crack extension analysis in terms of the time
histories of stress intensity factors up to t = 0.260 sec. At this time the first major peak in
the excitation occurred, causing rupture at this instant rather than at t = 0.728 sec as
observed in the test. The probable explanation for the time discrepancy is the effect of
cyclic fatigue. It is postulated that the gypsum material actually possessed a higher initial
fracture toughness which was subsequently reduced under the effect of load reversals until
rupture finally occurred when the shaking table experienced another major acceleration peak
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att = 0.728 sec. A detailed comparison of stress intensity factors for both the impulse and
force methods during the extension process is shown in Table 3.5. The results indicate
very good agreement between the two models for crack closure. They also confirm that K;
plays a dominant role in the process of crack extension because the magnitudes of the
combined stress intensity factor are close to those of K. It is interesting to note that the
crack of the model dam propagates much faster than that of the previous cantilever beam.
This is probably due to the heavy lead block attached at the model's crest, resulting in large
amplifying inertial force during the rupture process and causing the crack to break through
during one peak in the excitation.

Figure 3.17 shows the crack profiles at rupture observed in the test and those obtained
by both the impulse and force methods. The agreement between the three is outstanding,
thereby confirming that the two models for closure simulation are applicable to practical

problems.

3.6 CONCLUDING REMARKS

The BE numerical procedure for 2-D seismic cracking analysis has been formulated
employing a stage by stage crack development. Since the process of crack closure is
simulated by impulse and force rather than change in stiffness, the mode superposition is
still in effect within each stage of crack growth, resulting in a linear solution to the
otherwise complex nonlinear problem. The accuracy of the proposed procedure is verified
by comparing numerical predictions with data from rupture tests of a cantilever beam and a
model of Koyna gravity dam. The excellent agreement between the numerical predictions
and the experimental measurements confirms that the 2-D dynamic procedure for fracture
analysis is valid for application to practical problems.

In the following Chapter, this BE procedure is applied to a detailed evaluation of the
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seismic crack propagation for the Koyna prototype gravity dam. The cracking process of
the dam under the 1967 earthquake is studied by both impulse and force methods for the
crack closure mechanism. The computed results are compared with data from both the
model test of Koyna dam and reported field observations to further confirm the engineering
application of the proposed 2-D seismic fracture analysis procedure.
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Figure 3.1 Seismic input boundary
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Figure 3.2 Cracked dam structure
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Figure 3.3 Force applied at overlapped node pair n
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Figure 3.4 Shaking table and cantilever beam model structure
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Figure 3.6 Test frequency response of model: (a) uncracked; (b) with initial crack
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Figure 3.12 Koyna dam model with lead block on crest
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CHAPTER 4

CASE STUDY - 2-D FRACTURE ANALYSIS OF KOYNA GRAVITY DAM
UNDER 1967 EARTHQUAKE

4.1 KOYNA EARTHQUAKE AND DAMAGE TO KOYNA DAM

The Koyna dam is a 103 m high gravity structure located on the Koyna River in the
western part of the Indian peninsula. The dam started impounding water in 1962 and
experienced a magnitude 6.5 earthquake, probably reservoir induced, on December 11,
1967(53] when the reservoir elevation was only 11 m below the dam crest. The
accelerations of the ground at the site were: 0.49 g in the stream direction, 0.63 g in the
cross-stream direction and 0.34 g in the vertical direction. The most important structural
damage consisted of horizontal cracking on both the upstream and downstream faces of a
number of the non-overflow monoliths as shown in Figure 4.1. Substantial water leakage
was observed on the downstream face of monolith 26 near elevation 66.5 m and traces of
water seepage were detected on monoliths 18, 19, 28, 29, and 31. Soon after the
carthquake, the major cracks were sealed by epoxy resin and the taller non-overflow
monoliths were reinforced along the height from the top of the dam down to elevation 45.0
m which is 21.5 m below the major cracks(12],

In spite of the limited field measurements of the pattern of cracking, the Koyna dam
experience has provided the most complete information to-date on seismic cracking damage
of concrete gravity dams. Since the cracking of the Koyna dam occurred in the upper part
of the dam, near the point of slope change where high stress concentration is to be found,
initial cracking would be expected to occur at this location even during the early stages of
the ground shaking during the 1967 earthquake. Once the initial crack has formed, it is

evident that fracture mechanics theory should be employed to evaluate the crack
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propagation process and the resulting pattern of cracking.

Based on the above considerations, the cracking process of the Koyna prototype dam
during the 1967 earthquake is analyzed using the numne: il procedure proposed in Chapter
3.

4.2 ANALYSIS OF CRACK PROPAGATION FOR KOYNA DAM
UNDER THE 1967 EARTHQUAKE

The Koyna dam cross-section and its BE discretization are shown in Figure 4.2. To
improve accuracy by limiting the difference in element size encountered over a domain, a
transition subregion is introduced in the BE discretization of Figure 4.2(b). The
characteristics of the Koyna concrete are listed in Table 4.1(12], The elastic modulus of the
foundation rock (7 x 104 M Pa) is approximately twice that of the concrete. Considering
the high stiffness of the foundation rock and the fact that the ground acceleration was
obtained directly at the dam base, a rigid foundation and earthquake input applied directly at
the base were assumed. The corresponding accelerograms of the ground motion are shown
in Figure 4.3. The component in the cross-stream direction was assumed not to affect crack
development and was therefore neglected. In the results to follow, seismic loading refers
only to the effects of the components of the 1967 Koyna earthquake in both the horizontal
stream-wise and the vertical directions, whereas static and dynamic loading includes the
former as well as the hydrostatic force, the dam’s self-weight and also the added mass
hydrodynamic effect.

According to the field measurements taken after the 1967 earthquake as shown in
Figure 4.1(12], most of the downstream cracks occurred at, or near, the location of slope
change where the effect of stress concentration is expected to be significant. Accordingly,

an initial crack was assumed to exist at elevation 66.5 m on the downstream face.
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Results from many experiments!54] on the fracture toughness K. of concrete with
various specimen sizes show that K, increases with increasing specimen size, and it is
concluded that only those obtained by tests of large specimens are valid for concrete dams.
The magnitude of K. obtained from large test specimens ranges from 1.1 to 3.6
MPa-m!”2, It is also found that the fracture toughness increases with increasing rate of
loading, indicating that the dynamic fracture toughness K4 should exceed K. Based on
these considerations, K4 = 2.0 MPa-m1/2 was employed in the present computations for
the Koyna dam.

Time histories of the dam's response were computed considering contributions from up
to six modes. As the crack extends, the frequencies and mode shapes of the dam structure
change accordingly. Damping ratio & = 0.05 for all six modes was assumed. Based on the

foregoing assumptions, the following behaviour was predicted for the Koyna dam

prototype.

Pre-cracki lysi
The first four modal frequencies of the initially uncracked Koyna dam-reservoir system
are compared with FE analysis(12] in Table 4.2. It is seen from Table 4.2 that BEM results
are very close to those from FEM and thus serve to verify the accuracy of the present BE
discretization. For load combination consisting of static and dynamic components, time
step integration was performed with At = 0.005 sec and an earthquake duration of 6.0 sec.
The response of the dam in terms of the crest displacement and acceleration, and also
the stresses on both upstream and downstream faces, was examined. The results may be
summarized as follows: The horizontal displacement of the dam crest reached 43.6 mm in
the downstream direction. The maximum accelerations at the crest were 22.8 my/sec2 and
22.6 m/sec? in the horizontal and vertical directions, respectively, with corresponding
amplification factors of 4.8 and 6.6. The computed maximum tensile stress of 6.69 MPa

shown in Figure 4.4 occurred near the point of slope change on the downstream face and
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already itself far exceeds the tensile strength of the concrete, thus confirming that first

cracking is indeed to be expected at the point of slope change.

E lsis wit I .

The process of crack propagation from the downstream toward the upstream face was
analyzed next. As for the model dam, in these analyses it was assumed that the crack
extends in increments 10-20 per cent of the existing length, but not greater than 1.0 m (0.5
m increment was also examined with very similar results ). During these crack extensions
remeshing of the dam is performed automatically by the program and nc user intervention
is needed. The CPU time to complete a typical fracture analysis requires approximately 85
minutes on a PC 486/50 computer.

To study the magnitude of the time step required for convergence in the computation of
crack propagation, the cracking process under seismic load only was calculated for time
steps At = 0.001 and 0.002 sec using both the force and impulse methods for simulation of
crack closure. Since the convergence trends of the crack profile for the two methods are
very similar, only the results from the force method are shown in Figure 4.5(a). It is seen
that the cracking patterns obtained with At = 0.001 and 0.002 sec are extremely close.
Nevertheless, in the following calculations At = 0.001 sec was adopted.

It is known that, for mode superposition analysis, use of the first four to five modes is
sufficiently accurate to determine stresses in gravity dams under earthquake loading when
crack propagation is not involved. To study convergence when fracture is of interest, the
crack profiles were also computed using different numbers of modes N. The results for N
=5 and 6 are shown in Figure 4.5(b), from which it is noted that both profiles are in good
agreement. To ensure accurate results, the first 6 modes were used in the remainder of the
calculations.

To examine the performance of both the impulse and the force methods for modelling

crack closure for the Koyna dam, Figure 4.6(a) compares the crack profiles considering
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only the seismic loading, whereas Figure 4.6(b) represents the practical case of static and
dynamic loads combined. The time histories of the displacement at the crest and the stress
intensity factors at the crack tip corresponding to Figure 4.6(b) are also compared in
Figures 4.7 - 4.9. From these results, the following observations are noteworthy:

(1) The crack profiles of Figure 4.6 obtained by the two methods of modelling crack
closure are in excellent agreement. The trajectories show an inclined downward orientation
from the downstream to upstream faces. It appears that the crack closure models with or
without the overlap assumption produce very similar crack configurations, thus implying
that the crack closure mechanism does not have significant effect on the cracking process.
From comparing Figures 4.6(a) and 4.6(b), it is also evident that the static loads do not
affect the final crack pattern although they may delay the initiation of the extension.

(2) Comparing the crack profiles of Figure 4.6 with that of the model test shown in
Figure 3.17, it is surprising that the profiles are nearly identical. Although the input of the
shaking table in the model test is totally different from the earthquake excitation of the
Koyna dam prototype and also since the effects of the self-weight and hydrostatic pressure
were not properly included in the test, the crack profiles are still very similar. Since
concrete and gypsum are brittle materials it appears that the crack extension, once it occurs,
is so rapid that complete rupture accompanies the peak in the response, thus resulting in
very similar profiles under different conditions.

(3) As shown in Figure 4.7, the overall trend of the time histories of the crest
displacement is also similar for the two methods, although a significant discrepancy in the
magnitude appears after the initial crack first opens at t = 0.78 sec. This is clearly due to the
spurious overlap displacement permitted in the impulse method, since a shift of the solid
curve toward the negative side (upstream direction) to remove the overlap would produce
good agreement with the dashed curve representing the force model.

(4) Comparing Figures 4.8(a) and 4.9(a), it is evident that the stress intensity factor Kj

for the opening mode behaves quite similarly in terms of peak response for both closure
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simulations, particularly at the final stage. However, there are two main differences which
need to be mentioned. First, small peaks are seen during the entire history for the force
model while nothing appears between 1.1 - 1.7 sec for the impulse model. This difference
is also due to the hypothetical overlap permitted in the impulse model for crack closure, in
which no opening will occur during the small peaks in the excitation because of the initial
overlap due to static loads. Secondly, many small irregular peaks occur for the force model
due to displacement pulses imposed at the crack surfaces to adjust the overlap, whereas
only velocity changes are imposed in the impulse model. Reganding stress intensity factors
Ky for the sliding mode, similar differences as observed in the test of the model dam
(Figure 3.15) are seen in Figures 4.8(b) and 4.9(b). As noted previously, the overlap
assumption is again the cause of these differences. It is also seen that the time instants of
rupture are 2.10 and 2.16 sec for the force and impulse methods, respectively. This slight
time discrepancy between the two models arises because the latter needs more time steps to
restore the overlap displacement. The patterns of the peak values of the combined stress
intensity factor K which functions as the critical factor for crack propagation are also
similar, especially at the instants of extension; thus very close crack profiles can still be
obtained for the two methods as shown in Figure 4.6. As already noted for the model dam
(Table 3.5), it is clear that the dominant trait in seismic crack propagation of gravity dams is
fracture due to the opening mode, while the closing mechanism does not have a significant
influence on the problem.

For the accelerograms shown in Figure 4.3, it is worth noting that the dam ruptures at
the time which corresponds to ground accelerations 0.2 g and -0.25 g in the horizontal and
vertical directions, respectively. Although these accelerations are smaller than the
subsequent maximum values, the corresponding stress intensity factors already exceed the
assumed fracture toughness causing the initial crack to propagate. From the prototype
performance of the Koyna dam during the 1967 earthquake, the actual cracks were

observed to be concentrated at elevation 60 - 65 m both on the upstream and downstream




faces. On the other hand, all the current results for the crack profiles in both the model and
prototype dams predict that the upstream Koyna cracks would have appeared at elevation

62 - 63 m. This is consistent with the aforementioned field observations.

4.3 CONCLUDING REMARKS

Employing the 2-D seismic fracture procedure presented in Chapter 3, the cracking
process of the Koyna prototype dam under 1967 earthquake has been studied in detail.
Results obtained by both impulse and force methods for simulation of crack closure
mechanism are compared with previously obtained data from the rupture test of a model of
the Koyna dam. Since the numerical results and the model test data show very similar
patterns of rupture, also consistent with the prototype measurements after the 1967
carthquake, it is concluded that the proposed boundary element procedure based on fracture
mechanics is suitable for modelling crack propagation in concrete gravity dams during
strong carthquakes.

The foregoing 2-D BE procedure is extended in the following Chapter to treat 3-D static
cracking in arch dams.




Table 4.1 Concrete properties of Koyna dam

Elastic modulus | Poisson ratio | Specific weight | Damping ratip
(MPa) (kN/m3)
31,000 259 0.05

Table 4.2 Frequencies (Hz) of Koyna dam

Method f, £, 4 f4
BEM 3.07 7.98 11.2 16.5
FEM 3.07 8.20 10.8 159
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Figure 4.1 Observed pattern of cracking on faces of Koyna
dam after 1967 carthquake, after Ref. 12
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Figure 4.3 Ground acceleration of Koyna earthquake, December 11, 1967




Figure 4.4 Maximum tensile stresses (MPa) in Koyna damn
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Figure 4.7 Comparison of time history of crest displacement for
Koyna dam under different crack closure modelling
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Figure 4.8 Time histories of stress intensity factors for Koyna dam
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CHAPTER 5§
3-D STATIC CRACKING ANALYSIS OF ARCH DAMS

With the objective of demonstrating the current BE based fracture mechanics
formulation for the 3-D cracking problem posed by arch dams, this Chapter presents a
simplified numerical procedure for these complex structures under static loading. The BE
formulation for three-dimensional elastostatic fracture is derived with special crack front
elements to improve the precision in computing 3-D stress intensity factors (SIFs). In order
to evaluate accurately the singular integral corresponding to the special crack front element
by standard Gaussian quadrature formulae, appropriate coordinate transformation is
performed. The accuracy of the procedure in computing the 3-D stress intensity factors is
verified by two examples. Finally, a simplified model for crack extension is proposed and
its applicability to arch dams is discussed.

5.1 BOUNDARY ELEMENT FORMULATION OF 3-D ELASTOSTATICS

The 2-D static formulation presented in Chapter 2 is repeated in the following for the 3-
D case since the fundamental solution and the meaning of subscripts are different.

Employing the residual approximation and using the 3-D Kelvin fundamental solution
as the weighting function, the governing static equilibrium equation for a homogeneous

isotropic elastic body Q can be transformed to the following boundary integral equation(30]
ci,-(P)uj(P)+fsTij(P.Q)uj(Q)dS=fsU;j(P.Q)tj(Q)dS

+fan,-(P.Q)b,-(Q)dﬂ 5.1)
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where u; (j=1, 2, 3 ) are the displacements, t; the tractions at the surface § of the body €2,
b; the body forces; P is the source point, Q the integration point, both on the boundary

surface

hmj'r

e—0° S

in which S is the spherical surface enclosed in the domain with radius € and centre P; U ;;
(P,Q) and T;; (P, Q) are the 3-D Kelvin fundamental solution given by(30)

U P Q=—3Y)_((3-4v)5,+ 2R 2R
8nE(1-v)R ax; 9x;
(5.2)
TP, Q) =-———— (2R [(1-2v)5,+3 2R 2R,
8x(1-v)R? on 9x; 0x;
+(1- 2v)(§{-n—-a—RnJ)]
Xj 0x;

where R is the distance from P to Q, 3 ; the Kronecker delta, n; the unit outward normal at
Q, E the elastic modulus, v the Poisson's ratio, and x is the Cartesian coordinate.

If the surface S is discretized into m elements with r nodes each and if the
displacements and tractions are represented in terms of nodal values through the r

interpolation functions ¢ 4. () and ¢, (§), respectively, equation (5.1) becomes

ey p+3 Suul=3 Y ant (5.3)

1=1s=1 1=1s=1

where body forces are disregarded and the source point P has been taken to coincide with

the discretization node p. The coefficients H;;P1® and G;;P1* are given by

HY’ - fs;l‘a,-(l’.Q'(&))%.(C)J'(é)dé (.4)
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Gl - ];Ui,-(P.Q'(am..(a)l‘(é)d& (5.5)
3

where J(E) = dS/dE is the Jacobian of transformation & to x.

If we apply equation (5.3) to nodal point p and add the terms relating to the same node

q, we have
v 114P9 0 _ N ~Paq
ZH*ij L) =26ij Y (5.6)
q=1 q=1

where n is the total number of nodes in the discretization.

After we apply equation (5.3) to all the n nodes, prescribe properly the boundary
conditions and reorder the terms, equation (5.6) leads to a non-symmetric fully-populated
system of 3n equations with 3n unknowns. When the body is divided into subdomains,
from the conditions of compatibility and equilibrium on the interface between the

subdomains o and f3, we obtain

a{® =y ® (@) __ (B

’

When the node s of the element 1 coincides with point p, to avoid calculating directly cj;
and the strongly singular integral in equation (5.4), the coefficients H*;;PP can be

evaluated by applying the rigid body motion condition to equation (5.6):

1
wiP=-SE (asp)
q=1
All the other integrals in equations (5.4) and (5.5) are numerically calculated by
Gaussian quadrature formula. In order to achieve a roughly uniform precision of
integration, the order of the Gaussian formula is determined according to the rapidity of

variation of the integrand within the element. When node p belongs to element 1, the
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element is split into 2 or 3 triangles with a common vertex at p (see Figure 5.1). Each

triangle is then transformed into a square in space &' so that the singularity 1/R in the

kemel-interpolation function product is eliminated by the Jacobian of the transformation &'

to & which is proportional to (1+ &' )[55],

Body forces

For the self-weight and steady-state thermal loadings encountered in arch dams, the

domain integral of the body force term in equation (5.1) can be suitably transformed into a

surface integral, thus avoiding the need for the domain of the problem to be divided into

internal cells for integration[36), The body force term of equation (5.1) is represented as

.= uyp. Qb (@)e0

(1) For the constant self-weight b; , we have

B, =W, (P,Q)ds

where

1 2R JR
Wi(P, Q)= (b, 2R 15 20R
4n ax; 2(1-v) ax

(2) For the steady-state temperature load, it can be shown that

aT(Q)n-]dS
i

Xj

B;=] [D;(P,Q)T(Q)-Fi(P,Q)

where

6.7

(5.8)

(5.9)

(5.10)
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pp.Qy=1¥V)E (.  IRIR
8x(1-v)R axian
(5.11)
Fi(p,Q)=.(_l_+.Y_)_‘l‘.93
8n(1-v) 9x;

in which a is the coefficient of thermal expansion and T represents the change in

temperature from the time when the construction joints are grouted.

5.2 COMPUTATION OF STRESS INTENSITY FACTORS FOR 3-D CRACKS

A great deal of work has dealt with the computation of SIFs for 3-D crack problems. In
carly days, FEM was employed for this purpose. Raju and Newman(57] used thousands of
degrees of freedom (up to 6900 DOF) to calculate the SIF of a wide range of semi-elliptical
surface cracks in finite-thickness plates and obtained satisfactory results. However, for 3-D
crack problems, FEM has been found to be very costly because the refining of the mesh in
the vicinity of the crack front requires extensive computing resources and data preparation
effort.

The boundary element method is a successful alternative and has been found to be
partcularly suitable for 3-D crack problems!(58]-62) because it avoids the discretization of
the interior region of the structure, thus leading to better accuracy and much less data
preparation.

Several strategies have been used to improve the accuracy in computing SIFs by BEM.
The quarter-point element, which is extensively employed in FEM and is the simplest one,
can be directly applied in BEM. However, this method is less accurate since it only
correctly models the displacement behaviour in the vicinity of the crack front. For elliptical

cracks, Luo et al.[61] employed the parametric form of the equation for an ellipse to
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represent the contour of the crack exactly so that the error resulting from the quadratic
interpolation function for an ellipse can be reduced. The most popular method is to employ
special crack front elements to model the behaviour of both the displacement and stress
fields around the crack front. Results obtained by Luchi et al.[58] and Tanaka et al.[59]
show that this method improves accuracy significantly. Since the method of using special
crack front elements yields better accuracy and is easy to be incorporated into BEM code, it
is adopted herein.

Special crack front element

In the immediate vicinity of the crack front, by utilizing only the first term of the power
series given by Irwin{63) and Williams[64), the displacements uy, u, and u, in directions
X 1, X and x 3 (respectively parallel to the normal, binormal and tangent to the crack edge)
can be expressed in polar co-ordinates as { see Figure 5.2(a) for ¢=0]:

1’ {K,[(5- 8v)cos9——cos 5 J+ K, [(9- 8v)sm9+sm 5 1}

u =
YaE

1+v 2r 0 30 0 30
Uy=—A[l — {K,[(7-8v)sin5~sin 5 1=K, [(3-8v)cosz+cos=-1} (5.12)
=2V . z-sn7 1=Ky 3 +cos3-1}

2(1+v 0
u3= ——E-—l'v . Ky siny

where K, K5, Kjjj denote the stress intensity factors in the opening, sliding and tearing

modes, respectively; and E, v are the elastic modulus and Poisson's ratio, respectively. The
stress components are given by

1 0 . 30 0 36
0y, =—=[K;cos5 (l sin = sin = ) - K, sin 5 (2+cos cos5-)]
NV 272 2

g i 326 )+K; sin = 9 coso cos

[K,cos (1+sin 7 €083 2]

022 = f——




033=2v(o“ +0,,)

0 6
——=[K;sin> 5 €087 €O

G12= J_

—Ky coso

G23= r——

1 0
~Kmsn2

V2nr

O3 =~

Method 1

If the displacements near the crack front are expressed in the form of

u =a1+a2rm+a3r
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(5.13)

s32—0 +K"cos-g-(l-s'ngs'n2)]

272

Based on both r1/2 displacement variation and r—172 traction variation around the crack
front as shown in equations (5.12) and (5.13), two kinds of interpolation functions are

compared.

(5.14)

where a; (i=1, 2, 3) are coefficients to be determined and r denotes the distance from the

crack front, then we have the following interpolation functions for the displacements

proposed by Luchi et al.[58] when letting nodes 1, 5 and 2 be on the crack front [, =-1in
Figure 5.2(b):

bdl(é)——(l E-§,—( l——&,)w/1+§2+——(1+§2)]

1

V2

¢42(E)=;(1+§1)[§1—(1+"2—§1) v l+§2+[—(l+§2)]

¢.,3©=%(1+§,)[«/5(§,—2-«5)~/ T+E,+(2+42)(1+4E,)]
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¢M©=-41-(1-§,)[-«/5(§,+2+~/E)~/1+§,+(2+«/5)(1+§2)1
(5.15)
2
bss®= (1 -§1)(1 -1/22 V l+§2)

¢“©=%u+§.)uz+«/§)\/ 1+5,~(1+¥2 ) (1+&))]
2
¢.,,©=—‘;§<1-§,)~/1+62

¢“©=§(1—§,)[(2+~/5)w/ 148~ (1442 )(1+8,)]

The corresponding interpolation functions for tractions ¢ ,; (€) (i=1, 2, ..., 8) are cbtained
from ¢ 4; (§) by dividing by (1+& )12 and, additionally, multiplying ¢ 43, $44 and ¢ 47
by V2.

Method 2
On the other hand, if the displacements near the crack front are expressed in the form of
u=a,rm+a2r+a3r3n (5.16)

the following interpolation functions for the displacements suggested by Tanaka et al.[59)
can be derived:

¢d.©=%(l-¢,m/ 148, -V2) [V2 E+VZ (1 +E,)]

%@%(nc,)(«/ [+8,-VZ) [-V2 &, +42 (14E,)]
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¢¢3©=%(1+§1)‘/ 145, (V2 E,-2 (14+V2) V148, + (2+V2) (1 +8)]

0u®=1 1=V, V252DV TG + 4D (48]
5.17)
2
0s®=2(1-4)[2-V2(13E))]

¢d6®=§(1+§,)~/1+§,[(2+«/E)1/1+§,—(1+~/5)(1+§,)1

2
¢d7©=-‘/22(1-§1)«/1+§,
¢d8©=—;-(1-§,)w/1+§2[(2+«/5)w/ 148, — (1442 ) (1+£,)]

The corresponding interpolation functions ¢ ;(E) (i=1, 2, ..., 8) for tractions are derived

from ¢ 4; (§) by dividing by (1+&2) and, in addition, multiplying ¢ 43, ¢ 44 and ¢ 47 by 2.

I . fures f ial crack f I

Whenever an integration is performed over a special crack front element and the source
point does not belong to the element, the singularity (1+&2)-12 in ¢,(§) leads to
evaluating a singular integral. In order to accurately evaluate the integral by standard

Gaussian quadrature formulae, the following transformation is employed:

* *
8i=8 -15§, <1
{ . for { . (5.18)
(1+§2)=%(1+§2) -1s§,<1

Thus, the Jacobian
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di’dg: —(1+8)=V2V1+E, (5.19)
dt, d&,

removes the singularity (1+&,)~12 in ¢, (§).

When the source point belongs to the crack element, the integration over such an
element can be accurately evaluated by a double mapping transformation. The details of the
procedure are available in Reference [58] and not repeated here.

S . ity
Substituting 6= % x into equation (5.12) and employing the displacements on the crack
surfaces near the crack front as shown in Figure 5.2(a), lead to the following expressions

for the stress intensity factors (SIFs):

ki E ﬁ[Zﬁ(u:—ug')—(ug-u:')]
1= 2 2 "L-

4(1-v)

K E ’\/','t_[21/—2_(u?-u?')—(u?-u?.)] (5.20)
=43 T -

4(1-v)

’J—IZI(U3—US ) (U3—U3 )]
K=
4(1+ )

where superscripts A, B, A', B' denote the node points of the crack-front elements and L

represents the length of the clement in the normal direction at point C [see Figure 5.2(a)}.
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5.3 CRITERION OF 3-D CRACK PROPAGATION

Fracture mechanics theory for 2-D problems is well established and has been verified
by a number of experiments. However, due to the much greater complexity, the
corresponding theory for 3-D problems is still in the developmental stage. Although the
stress intensity factors for an arbitrary 3-D crack can now be determined by numerical
methods, the available criteria to predict the orientation of the crack extension are, in
practice, not applicable for arbitrary crack geometry. Two criteria, namely the maximum
energy release rate theory and the strain energy density factor (S-theory hereafter), are valid
for three-dimensional crack problems. The S-theoryl65] is adopted herein. This theory
assumes that the direction of crack propagation is toward the minimum region of strain
energy density factor S and that the crack extends when Sy, reaches the critical value S,
which is a material constant. The length rg of the crack extension is assumed to be
proportional to Sy, The strain energy density factor itself is represented by the quadratic

form
2 2 2
S=a;; Kj+2a,; K[ K +a2; Kjp +a33Kjyg (5.21)

where ay, a1, a3, a33 are cocfficients depending on the spherical angles @ and ¢ of

Figure 5.2(a) as follows:
ay=— 21 -2v)+ 1]
16 uAx cos® K
ap=— [ (1-2v)]
SHAxK cosd
(5.22)
an= 12 [4(l—v)(x—l)+-1—(x+1)(3—x)]
'

16 uAx cos®
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1

apy=—-———
4 ulxcosd

in which u is the shear modulus. For an elliptical crack, with major and minor semi-axes a
and b, respectively, and given by

x=acosf
(5.23)

y=bsinf

the parameters A and x in Equation (5.22) are defined by the following expressions in

terms of spherical angles 6, ¢, parametric angle f§ and the ratio b/a:

2 2

A.=cos¢+—al-)9—sin ¢ sin B cosP
(5.24)

2
x.—_:t’\/l+(tan0/l)

The minimum of § is obtained by letting the derivatives of S with respect to 0 and ¢

vanish, i.e.
-a—§ =0 , a_s_ =0 (5.25)
200 a0

The difficulty in dealing with a 3-D crack is the reason few, if any, experiments
involving 3-D crack propagation have been conducted to verify the S-theory. Although this
theory applies, in principle, to any 3-D crack, the displacement or stress fields near the
front of an arbitrary crack geometry are too complicated to derive the minimum of S. Thus
the S-theory can, in reality, only be applied to plane elliptical cracks, for which Sy,;, is
available at present. Sih{65] applied the theory to the propagation of a flat elliptical crack in
an infinite medium under an inclined, remote uniform load as shown in Figure 5.3.

However, it is found that after one step of extension the new crack surface becomes
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distorted and no longer elliptical, thus rendering it impossible to consider further

propagation.

5.4 VERIFICATION OF ACCURACY IN COMPUTING 3-D SIFS

The foregoing crack-front element and the corresponding integration procedures are
incorporated into the developed software FAPAD (Fracture Analysis Program for Arch
Dams). To model the infinite region of the foundation of an arch dam efficiently, the
infinite boundary element technique presented by Zhang et al.[66] is also coded into
FAPAD. Two examples are studied to verify the accuracy of the proposed method in
computing 3-D stress intensity factors. In the following computations, 4 to 8 node
isoparametric quadrilateral elements are employed for all the boundary except the adjacent

region connecting the crack front where the special crack front elements are adopted.

Example 1
The opening mode SIF for a solid cylinder with an embedded horizontal circular crack

subjected to unit uniform axial tension at both ends is computed. Because of the symmetry,
only one-eighth of the cylinder and its dimension are shown in Figure 5.4 and the BEM
discretization is illustrated in Figure 5.5. The numerical results for K1 are compared with
the analytical solutionf67) for homogeneous extension of an infinite body with a disk-shape
slit which is given by: 26(a/r)!/2, where @ is the uniform tensile stress applied at infinity
and 'a' is the radius of the crack. Table 5.1 shows the percentage error of Kj by the two
methods presented in Section 5.2 for different meshes and lengths of crack front element,
where mesh 1 has 34 elements and mesh 2 is refined around the crack front with a total of
42 elements. It is seen from Table 5.1 that method 1 has better accuracy than method 2 and,
with L/a = 0.1~0.2 and appropriate mesh (i.. L/a = 0.1 by mesh 2 and L/a = 0.2 by
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meshes 1 and 2), good accuracy (within 3% error) is achieved for method 1.

Example 2
The second example is also a solid cylinder subjected to unit uniform axial tension at

both ends, but with an inclined embedded circular crack as shown in Figure 5.6. Figure
5.7 shows the BE discretization of the problem. The length/radius ratio L/a = 0.2 is
adopted and a total of 244 elements are employed for this test example. Since method 1 has
better accuracy than method 2, hereafter all numerical analyses are performed by method 1.
The numerical results in terms of the three stress intensity factors K, Ky and Ky along

the crack front are shown in Figure 5.8 and compared with the following analytical solution
for an embedded circular crack in an infinite medium derived from Reference [68]:

Ki=2 cos’ (E) ,JT
6 3

4sin(£)cos(£)
Ky =——0 o~ 8L /2 cosp (5.26)

(2- T

K=

a1 -v)sin(f)cos L

6 6 f .

Zsnp
(2-v) n

where v denotes Poisson's ratio; 'a’ represents the radius of the crack, and P is the angle

shown in Figure 5.6. It is seen from Figure 5.8 that the BEM results are in excellent

agreement with the analytical solutions, thus confirming the high accuracy of the present

method in computing 3-D stress intensity factors.
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5.5 SIMPLIFIED MODEL OF CRACK EXTENSION FOR ARCH DAMS

Since the S-theory can only be applied to plane elliptical cracks, even in the simple case
of an infinite medium and uniform loading, only a single step of crack extension is
possible, as noted in Section 5.3. Obviously this rules out rigorous application of this
theory to arch dams for simulation of multi-step crack propagation at the present time. The
following two hypotheses are therefore made, in order to obtain a simplified model of the
3-D crack propagation criterion for arch dams:

(i) Instead of an elliptical crack geometry, a through-crack is assumed in the dam, i.e.
the crack front is a straight line, equivalent to the extreme case of the a/b ratio approaching
infinity for an elliptical curve.

(ii) The direction of crack extension at all points along the crack front is the one
determined at the center point of the front, implying that the entire crack front will extend in
the direction determined by S-theory at the center point, and with the same predetermined
length. Thus, the new crack front remains straight.

The above two assumptions are elaborated in Figure 5.9. An initial through-crack is
assumed on upstream face near the foundation of an arch dam at location 1" and the SIFs
are calculated by 3-D BEM under the relevant loading conditions. After the direction of
crack propagation at the center point of the crack front is determined by the S theory, the
whole crack front extends along this direction to the location "2" with the new crack front
retaining straight line. Repeating the above step by step procedure until the extension of the
crack stops. In this way, the trajectories of the crack propagation in arch dams can be traced
by multi-step crack extensions.

Although the foregoing assumptions reduce the criterion for crack propagation to that of
2-D computed at the centre point, this simplified 3-D model represents important
improvements over a pure 2-D procedure for arch dams with regard to the following

aspects: (i) Taking the geometrical conditions of the dam and foundation into account, the
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redistribution of the stress fields associated with arch and cantilever actions can be
simulated accurately during the entire crack extension process; and (ii) The lateral extension
of the through-crack can be prescribed according to either the topography of the dam-
foundation interface if the crack is located near the foundation, or to the geometry of the
dam surface when it occurs across the upstream or downstream faces. It should be noted
that these advantages over a 2-D model have significant effects on crack development in
arch dams, especially when the cracking extends from the upstream face into the dam body
which leads to a significant increase in arch action.

To examine the validity of assuming a constant direction along the crack front for crack
growth, a horizontal through-crack 2.0 m in depth is assumed on the upstream face near the
foundation of the 102 m high three-centered Jinshui Tan arch daml(7}, as shown in Figure
5.10. The material properties of the dam and its foundation are listed in Table 5.2. The
loadings include the self-weight of the dam and the hydrostatic pressure of the reservoir,
with full water head on the crack surfaces. The BE discretization of the cracked dam and
the foundation is shown in Figure 5.11, where infinite boundary elements are employed to
model the remote regions of the foundation. The variation of propagation direction 0 along
the crack front according to the S-theory is presented in Figure 5.12 for the first two steps
of crack propagation. Due to the symmetry of the dam, only the results for half of the crack
are shown. It is seen that 0 is nearly constant over more than half of the central portion of
the crack front, indicating use of 0 determined at only the center point produces sufficient
accuracy for more than half the crack front. Beyond this region, boundary restraint is seen
to affect direction 0 rather strongly.

Concerning the straight-line assumption for the crack geometry, the following
observations should be noted. All the horizontal surface cracks which occurred on the
Dragan arch dam{?] during the constructio;n stage spread over the whole widths of the
blocks, with depth ranging from 0.2 to 1.2 m. This suggests that the small initial surface

cracks resemble a through-type crack. The lateral extent of the trace of the crack on the
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upstream face of the Kolnbrein arch dam covers a central span of 100 m{22), implying also
that the cracking in this dam extends approximately in the fashion of a through-crack.
These observations thus provide justification for the hypothesis of a through-crack as

introduced in the present simplified model for crack propagation in arch dams.

5.6 CONCLUDING REMARKS

A simplified model for 3-D crack extension in arch dams under static loading has been
presented. The validity of the assumptions introduced in this model was examined by using
an example arch dam. The good accuracy of the BE procedure in computing 3-D SIFs was
verified by two examples of cylinders with embedded cracks.

The above 3-D static BE procedure is applied, in the following Chapter, to a detailed
study of the cracking of the Kolnbrein arch dam.




Table 5.1 Percentage error of K for example 1

Method L/a Mesh Error (%)
1 8.2
0.1
1 2 1.0
1 1.2
0.2
2 2.6
1 8.2
0.1
2 1.7
2
1 2.8
0.2
2 7.1

Table 5.2 Material properties of Jinshui Tan arch dam

Property | Elastic modulus [ Poisson ratio | Specific weight
Material (MPa) (kN/m3)
Dam concrete 21, 600 0.2 23.5
Foundation rock 16, 000 0.2 25.0
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(a) Coordinate system for crack front
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Figure 5.2 Coordinate system and special crack element
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Figure 5.5 BE discretization for example 1
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Figure 5.12 Variation of crack propagation angle 0 along through-crack front
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CHAPTER 6

CASE STUDY - CRACKING OF KOLNBREIN ARCH DAM

The general procedure for cracking analysis in arch dams proposed in Chapter 5 is now
applied to the case study of the Kolnbrein arch dam in Austria. A detailed study of the first
upstream cracking in this dam during the reservoir impounding stage is presented, based on
three models for the possible causes of the observed damage.

6.1 PROTOTYPE BEHAVIOUR AND NUMERICAL SIMULATION

Observed cracking

The Kolnbrein dam in Austria is a 200 m high, double curvature arch structure situated
in the Tauern Mountain rangel21], As shown in Figure 6.1, the dam is situated in a U-
shaped valley with a canyon width/height ratio of 3.1 and bottom thickness/height ratio of
0.18. The right bank consists of massive gneisses and the left abutment of bedded gneisses
with some intercalations of schistose gneisses. The construction of the dam was completed
in 1977 and water began to be impounded in 1976.

During the first two partial fillings, beginning in 1976 and reaching a level of 1852 min
1977 while construction was still under way, the dam and its foundation behaved in an
expected manner, with nothing unﬁsual about deformation of the dam, uplift at the base or
drainage flow. However, during the reservoir filling in the autumn of 1978 when the water
level exceeded 1860 m, the water leakage from drainage holes increased suddenly, surging
to 200 I/s when reservoir elevation reached 1890 m. The uplift and joint water pressure at
the dam base of the highest blocks soared to 100 % of the reservoir head at this time. After
emptying and extensive exploration by core drilling, a steeply inclined cracking system was
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discovered, daylighting on the upstream face. This cracking system also penetrated the dam
foundation, breaking the grout curtain as seen in Figure 6.1(b). Two horizontal
downstream cracks near the dam base were also detected. These are believed to have been
created at the end of the construction stage, due to vertical tensile stresses produced by self-
weight of the dam and the grouting pressure in the construction joints, but which closed
during the subsequent reservoir filling. Following two years during which various remedial
work was undertaken, extremely large water leakage (more than 400 /s in 1982 when
reservoir level reached 1890 m) indicated the formation of the second upstream cracking
shown in Figure 6.1(C). For more details concerning the behaviour of the Kolnbrein dam,
readers may refer to the References [21], [69]-[73].

'The unique pattern of the first upstream crack daylighting at an acute angle on the
upstream face has previously been investigated in a 2-D finite element analysis by
Linsbauer et al.[23], who employed four models to predict the initiation and trajectories of
this crack. Due to the complexities of the problem, definitive conclusions were not reached.
Thus, the simplified 3-D fracture model proposed herein is also applied to this crack as a

case study.

Loadings

The three basic loads, namely hydrostatic, temperature and self-weight, are considered
in the present analysis. The most important is the upstream hydrostatic pressure and the
associated uplift acting on the crack surfaces. Since the increased leakage was first
discovered in the autumn of 1978 when the reservoir elevation exceeded 1860 m, the
upstream water level is assumed to be in the range 1850-1860 m. Temperature loading is
based on the following considerations: (i) Water temperature variation along the upstream
face; (ii) Air temperature change on the downstream side based on the locai dam site record
shown in Figure 6.2(b); and (iii) The thickness of the cross sections at different elevations.

A refined procedure{74] taking these factors into account is employed to obtain the induced
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thermal stresses (see Appendix II for details). Rigorously, the stresses caused by the self-
weight of the dam are related to construction procedure and the grouting process of the
contraction joints. Herein, a global self-weight stress field is adopted for simplicity, i.e. the
self-weight loading is resisted by arch and cantilever actions of the dam in the same manner
as is the hydrostatic load.

Assumed crack models

Considering the possible locations of crack initiation and the question of bonding
between the dam and the elevated foundation on the upstream side, the three crack models
shown in Figure 6.3 are studied. The first two are based on cracks initiating at, and
propagating upward from, the interior point of the detectcd damage, namely point C on the
dam base. In the third model, the crack is assumed to propagate downward from corner
point A, where stress concentration may have been the cause of crack initiation. Perfect
bond condition between the dam and foundation interface AB is assumed in crack models 1
and 3, while the model 2 is bond-free. The crack initiating on the dam base of models 1 and
2 could have resulted from the high concrete temperature of 29°Creached during
construction{21], compared to the stable concrete temperature of approximately 5°C. This
24°C difference, together with the restraint provided by the foundation rock, may have
produced tensile stresses in the concrete above the foundation sufficient to create minor
cracks at the dam base. Secondly, nonuniform foundation deformation caused by
difference in geological conditions of the rock could also have resulted in small cracks in
the concrete at the base. Alternate explanations for possible causes of a crack propagating

upward from the base have been presented by Linsbauer et al.[23],

Analvsis of crach .
The crack trajectories are computed by the aforementioned program FAPAD for the

three crack models under appropriate range of the reservoir water level (WL). The BE
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discretization of the dam and foundation rock for crack model 1 is shown in Figure 6.4.
The mesh around the initial crack at the dam base is refined and infinite boundary elements
are employed to model the remote regions of the foundation. The cracking region of the
dam and base needs to be remeshed to accommodate the new crack front after each step of
crack extension. The CPU time for each step of crack extension requires approximately 7
hours on a IBM PC 486/50 computer.

The properties of the concrete and rock material adopted in this study are listed in Table
6.1 and cited from Linsbauer et al.[22], As noted in Reference [22], fracture toughness K¢
is difficult to determine and the typical value 2.0 MPa-m!/2 is assumed for the Kolnbrein
concrete. The corresponding critical strain energy density factor Scr is given by: S¢r=K;c?
(14v) (1-2v)/(2E) = 0.08 kN/m.

6.2 RESULTS FOR FIRST UPSTREAM CRACKING

Crack model 1
Since the first upstream cracking was not detected until the water level reached 1860 m,

WL=1850, 1855, 1860 m is employed as a parameter. During the reservoir filling in 1978,
an upstream tension zone (Figure 6.5) may have developed in the foundation rock at the
heel of the dam{71), causing opening of rock joints in this area which allowed the water in
the reservoir to permeate to the grout curtain and build up the full water pressure. Since the
observed crack is located near the region of the grout curtain, it is assumed that this
pressure acts also on the crack surfaces of this model. Since Figure 6.2(b) shows that
WL=1850-1860 m is accompanied by close to peak temperature, loading corresponding to
this temperature is also imposed on the dam. A small initial crack inclined at 45 degrees is
assumed at the base.

The trajectories in the highest cantilever section obtained by numerical analysis for
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crack model 1 are compared in Figure 6.6 witl: the observed cracking of the dam. This
comparison of the crack profiles leads to the following conclusions: (i) The computed crack
profile is sensitive to the reservoir water level; it is seen that a 10 m difference in WL
results in an 8 m difference in elevation where the crack penetrates the upstream surface; the
higher the water level, the lower the point where the crack reaches the upstream surface;
and (ii) When the water level is somewhere between 1850-1855 m, the computed crack
trajectory is predicted to daylight at the comer point elevation of 1720 m, which is close to
the actual location of the crack mouth.

The three-dimensional crack surface for the case of Figure 6.6(a) is shown in Figure
6.7(b) and its corresponding trace on the upstream face of the dam is compared with the
observed pattern of cracking in Figure 6.7(a). Good agreement of the lateral extent of the
crack trace on the upstream face is evident in Figure 6.7(a), further confirming the
adequacy of the through-crack assumption in modelling 3-D crack extension in arch dams.
| To evaluate post-cracking safety, the stress redistribution in the dam following crack
propagation was also studied. The stress distributions along the crown cantilever, top and
elevation 1750 m arch sections corresponding to Figure 6.6(a) were compared at the first
and final steps of crack propagation in Figure 6.8. As expected, tension stress in and
around the upstream cracked region of the dam is released once the crack has approached
the upstream face. Since the redistribution becomes negligible above elevation 1750 m, the
effect on the entire structure of such relatively shallow cracking (approximately one-quarter
the dam width at the base) is limited and overall safety of the dam is not impaired.

To examine the proportion contributed to the stress intensity factors by each of the load
components, Ky and K; computed separately for each component are plotted in Figure 6.9
for the case of Figure 6.6(a) (K is not reported since it is very small and has no influence
on crack propagation angle © for a through-crack). The data indicate that: (i) The reservoir
water plays the most important role with the temperature load the least; and (ii) The
contributions to Ky made by water pressure and self-weight predominate but nearly offset
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each other, resulting in K  caused by temperature to be close to that of the total loading.
Since the magnitude of the resultant K ; remains small regardless of the crack length, the
direction of the crack extensions changes very little during the propagation process.

Although the temperature load apparently plays only a minor role, it nevertheless does
influence the crack profile developed. The results of crack propagation analysis excluding
the temperature load, performed for WL=1860, 1865 and 1870 m as shown in Figure
6.10, indicate that temperature affects the propagation direction of the crack imaated on the
dam base in such a way that the crack reaches the upstream face at a lowered elevation.
Comparison of the crack profiles in Figure 6.10 with those of Figure 6.6 leads to the
conclusion that including temperature is equivalent to the effect of an upward shift by 10 m
in the reservoir water level. For example, without temperature load the computed crack path
will daylight near the corner point when the reservoir elevation is close to 1865 m, with a
corresponding crack profile [ Figure 6.10(b)] very similar to that of Figure 6.6(b) for
WL=1855 m.

The minimum strain energy density factors Spin for each step of crack extension
corresponding to Figures 6.6 and 6.10 are plotted in Figure 6.11 from which it is seen that
the general trend of Spin becomes larger as the crack propagates forward, and the higher of
the reservoir level, the larger of the Spin.

In order to study the effect of uplift pressure on the stability of the assumed initial
crack, analysis was performed for the initial crack without uplift pressure on the crack
surfaces. Under WL=1860 m and with temperature load included: Ky = 0.16 MPa-m!/2;
Ky = 0.064 MPa'm!/2; and Spmip = 0.011 kN/m. Since Spin is much smaller than S¢r,
without uplift on its surfaces the initial crack is stable and therefore will not propagate.
Thus, uplift pressure in the crack plays a kcy role in affecting the stability of a crack

propagating from the dam base.
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Crack model 2

As noted earlier, unlike model 1 this model assumes no bond along the interface
between the dam and the foundation on the upstream face from A to B [ Figure 6.3(b)].
The crack profiles under the loads of reservoir water, self-weight and temperature variation
for WL=1850 and 1860 m, with and without uplift pressure in the crack, are shown in
Figure 6.12 and the corresponding Smin in Figure 6.13. It is seen that: (i) The orientation
of the crack changes sharply toward horizontal daylighting on the upstream face at a much
lower elevation (approximately 1709 m) than obtained previously for crack model 1. Such
a nearly horizontal trajectory is a common pattern in concrete dams generally, but is
inconsistent with the steeply inclined ornz observed in the Kolnbrein dam; (ii) The uplift
pressure in the crack has little effect on the shape of the crack profile although it does
increase the values of Spin substantially as evident in Figure 6.13. The explanation for
such trajectories daylighting horizontally at the upstream face is that the direction of the
tensile principal stress is almost vertical near the upstream face. Since this pattern of
cracking is obviously not similar to the observed one, crack model 2 can safely be

discarded as applicable to the first upstream cracking in the Kolnbrein dam.

Crackmodel 3

As is the case in model 1, this model is also based on assuming a small initial crack,
steeply inclined as the observed one but now originating at the upstream corner point A as
previously discussed and shown in Figure 6.3(c). Full water pressure acts on the crack
surfaces, because the crack is connected directly to the reservoir. Interface AB is assumed
to possess perfect bond. The computed crack profiles are shown in Figure 6.14 for
WL=1850 and 1860 m, with and without temperature load. The corresponding values of
Smin are illustrated in Figure 6.15. Raising of the reservoir level by 10 m and including
temperature are seen to cause the crack trajectory to propagate downward less steeply in

this crack model.
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Although the computed crack profile in Figure 6.14 for WL=1850 m is quite close to
the observed one, the magnitude of Spin corresponding to the initial crack is very much
greater than material property Scr (Figure 6.15) of the concrete. This implies that the crack
in this model would have propagated at a much lower water level than 1850 m, which is
contradicted by the field experience wherein, during the second filling of the reservoir in
1977, the highest water level reached 1852 m [Figure 6.2(a) ] evidently without cracking.
On the other hand, this model would be the applicable one if the tensile stress at the
upstream corner point was smaller than the tensile strength of the concrete itself, thus
precluding the existence of an initial crack before the reservoir water reached 1850 m. It is
also interesting to note from Figure 6.15 that Spin decreases as the crack extends
downward, which differs from the 2-D finite element results of Linsbauer et al.[23], who
obtained a monotonic increase of K as the crack develops downward. This difference is
attributable to the lateral restraint provided by  canyon to the dam, which becomes larger
as the crack approaches the base of the dam and which is included in the present 3-D

analysis, while a 2-D model cannot consider this effect.

6.3 ASSESSMENT OF PERFORMANCE OF CRACK MODELS

Comparing the predicted crack trajectories with the observed one, the most probable
model for the actual cracking of the Kolnbrein dam is represented by the model 1, i.e. the
crack initiated on the dam base and propagated steeply upward, daylighting on the upstream
face under reservoir elevation 1850-1855 m (with temperature load) or 1860-1865 m
(without temperature load). In this modelling of the prototype damage, small cracks existed
inside the concrete at the dam base, and a tensional region developed in the heel region and
opened the joints of the rock in this region, causing full uplift pressure to act on the crack

surfaces. The upstream interface between the dam and elevated foundation is needed to be
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well bonded. Under these conditions, the distinctive pattern of the first upstream crack
which occurred in the Kolnbrein arch dam is predicted quite accurately. It is found that the
daylighting elevation of this crack is rather sensitive to the reservoir water level. It is also
worth noting that the existence of the uplift pressure along the crack surfaces plays a key
role in causing the pre-existing crack to propagate, especially in the early stage of crack
development. The well-bonded condition assumed for the upstream interface between the
dam and the elevated foundation is necessary to explain the acute angle of crack profile.
Otherwise, the crack would have followed a much flatter trajectory and daylighted at
considerably lower elevation on the upstream face, as associated with model 2.

The plots of Smin versus crack growth, shown in Figures 11, 13 and 15 for crack
model 1, 2 and 3, respectively, confirm that the initial crack of model 1 becomes unstable at
water level consistent with the prototype behaviour. Crack model 2, already inconsistent in
terms of the crack trajectory, is also seen to require a much lower reservoir level than the
field experience in order to induce initial crack instability; this bond-free model has
therefore been precluded.

Model 3, wherein the crack may have initiated at the upstream face at, or near, the
corner of the dam-elevated foundation interface due to stress concentration, also predicts
steeply inclined and downward propagation of the initial crack of this model. The well-
bonded condition on the upstream interface needs to be assumed. Under these conditions, a
crack profile similar to that of model 1 and in similar accordance with the prototype
observation is obtained. Compared to the model 1, however, the major difference is that
strain energy density factor Sp,;,, obtained with this model (Figure 6.15) is much greater
than the magnitude of S¢r of the concrete, especially at the early stage of crack
development. This means that no initial crack existed until the reservoir impounding
reached elevation around 1850 m, otherwise the crack would have propagated much earlier
than it really happened. Also, the upstream interface should be well-bonded, otherwise it is

almost impossible to develop such an acute angle of crack profile.
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Comment on the second upstream crack

The analysis of the second upstream cracking needs more information such as
boundary and geometrical conditions of the first cracking, especially its lateral extension
and the effectiveness of the various remedial treatments between 1979 and 1983. All these
conditions have effects on the development of the second cracking. Since this information

is not available at present, it requires further investigation in the future.

6.4 CONCLUDING REMARKS

Applying the simplified BE procedure for 3-D static crack propagation in arch dams
proposed in Chapter 5, the first upstream cracking occurred in the Kolnbrein arch dam has
been analyzed in detail under various conditions concerning the foundation interface,
location of crack initiation, reservoir water elevation and load combinations. The good
agreement between the computed results and the field observations in the aspects of crack
trajectory and crack trace on the upstream face confirms the applicability of the present
procedure in predicting 3-D crack propagation in arch dams under static loading.

The advantages of the 3-D procedure proposed here, as well as of the one based on
different assumptions proposed previously by Martha et al.[24], over the 2-D method
cmployed by Linsbauer et al.122): [23] include the capability of considering the redistribution
of the external loads between the horizontal arch and vertical cantilever actions of arch
dams, resulting in more accurate stress fields during the crack propagation process. In
addition, the lateral extent of the cracking can be prescribed according to the geometrical
shape of the 3-D structure or to the topography of the structure-foundation interface, while
in a 2-D model an infinite extent in the lateral direction must be assumed, which normally

would overestimate the cracking in 3-D structures.
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CHAPTER 7

CONCLUSIONS AND FUTURE STUDY

7.1 CONCLUSIONS

A new procedure for analysis of static and dynamic cracking problems in concrete dams
has been presented in this thesis. The LEFM theory, the discrete crack modelling and the
BEM are combined in this procedure. Comprehensive analyses including 2-D static and
dynamic and 3-D static problems have been conducted using the proposed approach. The
innovative points of the approach and the corresponding findings from the analysis are
summarized as follows:

1. In a parametric study in computing the 2-D SIFs by BEM, it was found that the best
accuracy can be achieved by choosing the length of the crack tip element to be about 10%
of the crack length. Comparing BEM and FEM in evaluating stress intensity factors, it was
shown that BEM is an efficient method with better accuracy, less computer time and data
prenaration. As an application example, the stability and propagation process of the cracks
arcund the heel of a typical gravity dam were analyzed. It was found that the horizontal
cracks near the heel of the dam will propagate rapidly downwards to the interface between
the dam and the foundation once they become unstable. The distribution pattern of uplift
pressure on the crack surfaces has a significant effect on the stability of the cracks.

2. A detailed formulation of the 2-D approach for fracture analysis of gravity dams
under earthquake loading was presented. Two methods, namely the impact and the force
methods, were proposed to simulate the impact process of crack closing during
carthquakes. Crack trajectories are obtained by multi-step crack extensions and the BE

mode superposition technique is employed in each step of constant crack length. Thus, the
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complicated nonlinear problem of crack propagation under dynamic loading is solved by a
stepwise linear approach. The accuracy of the procedure was verified by comparison of the
computed results with the data of rupture experiments of a cantilever beam and a model of
Koyna dam tested on a shaking table, thus confirming the suitability of the 2-D procedure
in cracking analysis of concrete gravity dams under dynamic loading.

3. Applying the 2-D dynamic fracture procedure to the case study of the Koyna
prototype dam, the behaviour of this dam under the 1967 earthquake was analyzed by both
impulse and force methods for simulation of the crack closure mechanism. The comparison
between the two models for this mechanism shows expected discrepancies in the time
histories of crest displacements and stress intensity factors, but only a slight difference in
the instant in time at which rupture is predicted. Furthermore, since crack propagation
occurs only during the crack opening phase, the results show that the final rupture profiles
obtained from the two methods are in excellent agreement for both the model and prototype
dams, thus indicating that the crack closure mechanism has no significant effect on the
crack propagation trajectories. The numerical predictions concerning the penetration of the
initial crack on the downstream face of Koyna dam through to the upstream face and the
clevation at which the crack reaches the upstream surface are consistent with the field
measurements after the 1967 earthquake.

4. Extending the 2-D procedure to solving 3-D static cracking problems, a simplified
model for crack propagation in arch dams is proposed. The strain energy density factor
theory, or so-called S-theory, has been employed to study the crack growth pattern inside
the dam body. A through-crack, characterized by a straight line as the crack front, is
assumed and the failure orientation at the center point of the front is taken as the common
direction of propagation. Numerical examinations have been performed to verify the
accuracy of the procedure and its adequacy for arch dams.

5. Employing the 3-D static fracture procedure, propagation of the first upstream
cracking incurred in the Kolnbrein arch dam has been analyzed in detail based on three
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crack models and different load combinations. The results show that both crack models 1
and 3 predict the observed first upstream cracking, fitting the field data with regard to the
relevant reservoir level, temperature and pattern of cracking. Whether small initial cracks
were due to stress concentration at the corner point of the dam - foundation interface as in
model 3, or due to other factors having caused them to occur on the dam base as in model
1, is not known at present because of the limited information on ficld measurements. Thus
the upward or downward propagation of this otherwise nearly identical cracking pattemn is
beyond the scope of the present study.

From the above results, it is concluded that the proposed BE procedure based on LEFM
can be employed to predict the crack extensions in gravity dams under static and earthquake
loadings, and in arch dams under static loading.

7.2 RECOMMENDATIONS FOR FUTURE STUDY

Since fracture in concrete dams is a relatively new field of research, a great deal of
study needs to be conducted before the fracture mechanics theory can be applied to the
practical design of new concrete dams and the safety evaluation of existing dams.

First, comparison study between the LEFM approach and the NLFM approach is
necessary to clarify which theory is more relevant for predicting the cracking hehaviour in
concrete dams. To achieve this, more experiments on the concrete fracture mechanism and
field measurements on existing concrete dams are nceded to verify the analytical
predictions. Concerning the material parameters such as fracture toughness of mass
concrete especially under dynamic loading, little work is available on this topic. More
experiments relating to different loading rates are necessary.

Secondly, the post-cracking behaviour of gravity dams after break-through of the crack
needs to be studied in order to examine the safety of the dams, In the post-cracking
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analysis, the frictional forces on the crack surfaces must be incorporated into the present 2-
D seismic procedure to provide the critical sliding resistance after the crack penetrates
through the dam.

Thirdly, the fracture mechanics theory is not well estabiished for 3-D cracking
problems. The most serious limitation of the simplified procedure presented in Chapter § is
the simulation of 3-D crack propagation by a piece-wise plane through-crack.
Investigations by experiments are needed to determine the geometrical shapes of cracks
inside 3-D structures and to verify the orientation of crack extension as predicted by theory.
In particular, for the S-theory employed here, the algorithm to obtain Smin for an arbitrary
crack geometry needs to be studied, since it is only available for plane elliptical cracks at
present.

Finally, to the author's knowledge, few, if any, fracture analyses of arch dams under
seismic loading have appeared in the literature. Experiments on fracture toughness of
concrete under multi-axial stresses for both static and dynamic conditions have to be
performed in order to obtain more realistic values of the material properties governing
fracture of the dam concrete. In addition, the analytical challenge posed by 3-D arch dams
under dynamic loading will be much greater than the 2-D case of gravity dams. Thus, there
is a great deal of future work to be done concerning 3-D dynamic fracture related to arch

dams.
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APPENDIX I

GEOMETRY OF KOLNBREIN ARCH DAM

The Tauernplan Consulting GMBH in Austria is gratefully acknowledged for
providing the following geometry data of the Kuinbrein arch dam.

NOTATION FOR THE GEOMETRY OF THE DAM

PART 1

Ys

Equation of the axis: y
2
x*+(1-€2)(y~y,)’~2 p,(y ~y,)=0
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(m)

197.0
195.0
190.0
185.0
180.0
175.0
170.0
165.0
160.0
155.0
150.0
145.0
140.0
135.0
130.0
125.0
120.0
115.0

65.0

N"‘NNNW&&MM%

ORNOUNOMNOUNOSUNO AL
oococooooooooDD

GEOMETRY DATA OF PART 1 (WEST) OF KOLNBREIN DAM

Ys
(m)
30.976
30.000
27.713
25.633
23.745
22.036
20.496
19.115
17.883
16.791
15.832
14.999
14.286
13.685
13.192
12.802
12.509
12.309
12.199
12.173
12.229
12.363
12.572
12.853
13.203
13.619
14.099
14.641
15.242
15.900
16.613
17.380
18.197
19.065
19.980
20.942
21.949
23.000
24.093
25.227
26.400

Ps
(m)
250.944
250.000
247.617
245.200
242.749
240.262
237.738
235.175
232.572
229,927
227.239
224.506
221,727
218.901
216.025
213.098
210.118
207.085
203.997
200.851
197.648
194,385
191.061
187.675
184.225
180.712
177.133
173.489
169.778
166.000
162.155
158.241
154.260
150.211
146.095
141911
137.660
133.342
128.959
124,512
120.000

g2

1.74635
1.69975
1.58365
1.45888
1.35637
1.24708
1.14180
1.04105
0.94529
0.85497
0.77042
0.69134
0.61730
0.54787
0.48260
0.42108
0.36291
0.30769
0.25506
0.20461
0.15610
0.10977
0.06600
0.02517
-0.01233
-0.04599
-0.07477
-0.09748
-0.11295
-0.12000
-0.11762
-0.10553
-0.08363
-0.05182
-0.00960
0.04507
0.11464
0.20154
0.30722
0.42905
0.56176

xd
(m)

260.80
257.94
250.80
243.66
236.51
229.35
222.19
215.02
207.85
200.69
193.54
186.40
179.27
172.13
164.99
157.84
150.68
143.50
136.31
129.09
121.85
114.60
107.36
100.14
92.95
85.81
78.75
71.79
64.97
58.30
51.82
45.59
39.65
34.07
28.87
24.04
19.53
15.31
11.31
147
3.70

Xk
(m)

260.80
258.95
254.30
249.58
244.73
239.70
234.48
229.16
223.83
218.60
213.54
208.64
203.87
199.21
194.63
190.10
185.62
181.19
176.81
172.47
168.17
163.91
159.70
155.54
151.43
147.34
143.18
138.82
134.13
129.00
123.38
117.58
111.98
106.98
102.66
97.87
91.13
81.00
66.73
45.00
0.00

dg
(m)

7.600

7.999

8.993

9.976
10.940
11.878
12.782
13.655
14.498
15.310
16.094
16.850
17.579
18.282
18.960
19.613
20.243
20.853
21.446
22.023
22.587
23.142
23.689
24.233
24.776
25.322
25.873
26.435
27.009
27.600
28.211
28.845
29.505
30.194
30.915
31.671
32.465
33.300
34.176
35.081
36.000

168

dy
(m)

7.600

8.061

9.210
10.348
11.468
12.563
13.629
14.674
15.710
16.744
17.786
18.838
19.903
20.984
22.081
23.197
24.322
25.448
26.565
27.665
28.741
29.803
30.866
31.942
33.046
34.180
35.308
36.384
37.360
38.190
38.849
39.402
39.932
40.525
41.202
41.714
41.751
41.000
39.545
38.000
36.000
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Ys
(m)
30.976
30.000
27.713
25.633
23.745
22.036
20.496
19.115
17.883
16.791
15.832
14.999
14.286
13.685
13.192
12.802
12.509
12.309
12.199
12.173
12.229
12.363
12.572
12.853
13.203
13.619
14.099
14.641
15.242
15.900
16.613
17.380
18.197
19.065
19.980
20.942
21.949
23.000
24.093
25.227
26.400

Ps
(m)
250.944
250.000
247.617
245.200
242.749
240.262
237.738
235.175
232.572
229.927
227.239
224.506
221.727
218.901
216.025
213.098
210.118
207.085
203.997
200.851
197.648
194.385
191.061
187.675
184.225
180.712
177.133
173.489
169.778
166.000
162.155
158.241
154.260
150.211
146.095
141.911
137.660
133.342
128.959
124.512
120.000

2

1.08300
1.05119
0.97214
0.89474
0.82016
0.74958
0.68373
0.62244
0.56539
0.51225
0.46270
0.41635
0.37281
0.33167
0.29254
0.25510
0.21936
0.18540
0.15330
0.12314
0.09500
0.06879
0.04442
0.02180
0.00083
-0.01856
-0.03636
-0.05255
-0.06711
-0.08000
-0.09121
-0.10077
-0.10872
-0.11511
-0.11993
-0.12305
-0.12429
-0.12349
-0.12056
-0.11587
-0.11000

Xd
(m)
253.22
250.01
241.98
233.95
225.92
217.90
209.89
201.89
193.92
185.97
178.06
170.19
162.34
154.51
146.70
138.90
131.15
123.47
115.90
108.48
101.24
94.22
87.47
81.02
74.91
69.19
63.79
58.65
53.73
48.94
44.26
39.67
35.21
30.90
26.74
22.73
18.82
15.00
11.22

7.47
3.72

Xk
(m)
266.40
264.48
259.65
254.75
249.73
244.55
239.19
233.73
228.26
222.87
217.63
212.53
207.55
202.66
197.82
193.02
188.24
183.47
178.72
173.96
169.19
164.40
159.55
154.64
149.64
144.55
139.35
134.07
128.72
123.30
117.84
112.40
107.05
101.89
96.77
90.82
82.93
72.00
57.50
37.00
0.00

dg
(m)

7.600

7.999

8.993

9976
10.940
11.878
12.782
13.655
14.498
15.310
16.094
16.850
17.579
18.282
18.960
19.613
20.243
20.853
21.446
22.023
22.587
23.142
23.689
24.233
24.776
25.322
25.873
26.435
27.009
27.600
28.211
28.845
29.505
30.194
30915
31.671
32.465
33.300
34.176
35.081
36.000

169

(m)

7.600

8.161

9.558
10.938
12.288
13.596
14.859
16.093
17.317
18.551
19.809
21.094
22.402
23.733
25.084
26.449
27.814
29.159
30.467
31.717
32.896
34.005
35.049
36.033
36.963
37.843
38.667
39.430
40.126
40.750
41.297
41.773
42,185
42.541
42.808
42.794
42.269
41.000
39.078
37.200
36.000
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APPENDIX II
TEMPERATURE LOAD IN ARCH DAM

The procedure to compute the temperature load in arch dams during the operation stage
proposed by Zhul74] is briefly described below.

According to the assumption in mechanics of materials that the transverse sections of a
beam remain plane after bending, the temperature distribution T(x) along the thickness
direction x of an arch section at any time can be decomposed into three parts Ty, Tq and Ty,

as shown in Figure 1.

T T 1T
L L
T(

X)

b

X '

5

_/"' __/f""
(@) (b) © d)

Figure 1 Decomposition of temperature distribution along thickness direction of an arch
section: (a) Real temperature; (b) Mean temperature Ty, ; (c) Equivalent linear
temperature difference Tq; (d) Nonlinear temperature difference T,

The mean temperature along thickness Ty, , the equivalent linear temperature difference
between the downstream and upstream faces Ty and the nonlinear temperature difference Ty

are defined by the following equations:

L

2

Ty = %j T(x)dx )]
-k

2
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2

Tq = ]1} I:T(x)xdx @)
2

Ta = T(x)-Tg x/L 3

where L denotes the thickness of the arch section.

The nonlinear temperature difference T, is usually neglected since it does not create
axial force and bending moment in arch dam. Thus, only T, and T4 need to be evaluated.

The temperature field in arch dams varies with time. The following three temperature
fields are important in determining temperature load.

(i) Temperature field at the time when the construction joints are grouted To(x ) -- the
corresponding mean temperature along the thickness and the equivalent linear temperature
difference are denoted as Ty and T g, respectively.

(ii) Yearly mean temperature field T (x) in operation stage -- the corresponding mean
temperature along the thickness and the equivalent linear temperature difference are
represented by Ty and Tq, respectively.

(iii) Varying temperature field T2(x,t) at time t during operation stage -- the
corresponding mean temperature along the thickness and the equivalent linear temperature
difference are denoted as T, 2 and T g2, respectively.

Thus, the temperature change in an arch dam at any time with respect to the temperature
when the construction joints are grouted are obtained by

ATpm = Tl =Tmo +Tm2
@)
ATg4 = Tq1 =Tgo +Ta2
where AT, and ATq4 denote the temperature changes of mean temperature along the
thickness and the equivalent linear temperature difference, respectively.

Thus, the temperature load in an arch dam, i.e. the temperature change ATy and ATp
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on the upstream and downstream faces, respectively, are obtained by

ATy = ATn -%ATd
5
ATp = ATn +%AT¢

Determination of Tnoy, Td0s Tm1y Td1y Tm28nd Tq2
(a) Tmoand Tao

In practice, the construction joints are grouted at the yearly medn temperature before the

filling of reservoir. Thus, we have

Tmo = Tm1
©)
Tao=0
(b) Tm1and Tg)

Since T (x) is distributed linearly along the thickness direction, T 1 and T4, are

obtained by

Tmi1=(Tum +TpMm)/2
8)

Tg1 = Tom -Tum

where TpMm denotes the yearly mean temperature on the downstream face of the dam,
equaling the yearly mean air temperature plus the effect of sunlight radiation; Tym
represents the yearly mean temperature on the upstream face, i.c. the yearly mean water

temperature in the reservoir which can be determined by the following empirical formulae:

Tum=c+(T,—C)C'°'04y )]

where
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c

(To-T,g)/(1-8)

g = e-004H

H denotes the depth of the reservoir; T, and T, are the yearly mean water temperatures at

the surface and the bottom of reservoir, respectively; y represents the water depth at the

considered elevation.
() Tm2and Ty2
(i) Above water level
Tm2a=tp1tAp, Ta2=0 (10)
(ii) Below water level
P1 131Aw0
Tmz—:i: —(Ap +145+ ) (1)
= - 131
Taz = £p3[ A= Awo(§+ o) (12)
where

Ap -- amplitude of temperature variation in a year on downstream face, equaling to the
amplitude of air temperature variation in a year plus the effect of sunlight radiation.

Ao -- amplitude of surface water temperature variation in a year. In tropical and
temperate zones, A wo =(T7 =T )/2; In frigid zone, Ay o =T7 /2 + 1.5; in which
T and T are monthly mean air temperature in January and July, respectively.

y -- depth of water at considered elevation.

The coefficients p 1, p 3 and € are determined by the following equations:

(i) WhenL 210 m,

p1 =4.66/(L—-090)
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p3 =18.76 /(L + 12.6) (13)
E=(380e-002y ~238¢-0081y )/(L-4.50)
(1i) WhenL S 10 m,
p1 = ¢-000067L>
p3 = e~ 0.00186 L2 (14)

E=(0.069 e-0022y — 00432 ¢-0081y ) L,
where L represents the dam thickness (m).






