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Abstract

Membrane structures play an important role in a wide variety of applications, ranging
from solar sails, satellites and aircraft, to pneumatic structures, lightweight temporary
constructions and biological tissues.

In this research project a numerical model has been developed for stress analysis in
isotropic elastic membranes undergoing finite deformations, while partly or totally
subjected to pressure loading of the hydrostatic type. The possibility of wrinkling is
accounted for by employing a Relaxed Strain Energy Density. The numerical procedure
is based on the Dynamic Relaxation Method. This is an explicit, iterative technique in
which the static solution is obtained as the steady state part of the damped dynamic
response of the structure. The numerical scheme is constructed by applying Green'’s
theorem differencing method for the spatial discretization of the partial differential
equations describing the damped motion of the membrane. The resulting system of
ordinary differential equations is further integrated in time by a central difference time
integrator. Solutions of typical boundary value problems are obtained and analyzed. The
effects of various loading and boundary conditions on the response of the membrane are
examined. The predictions of the numerical method are in good agreement with the

results obtained with experimental models.
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Chapter 1

Introduction

Membrane structures play an important role in a wide variety of applications, ranging
from solar sails, satellites and aircraft, to pneumatic structures, lightweight temporary
constructions and biological tissues. The deformations occurring in such structures are
generally of the large -rotation or large strain type, and are therefore inherently nonlinear.
Partial or total wrinkling of the membrane may be observed in many equilibrium
configurations. The problems of static analysis associated with membrane structures are
of two types: (i) form (shape) finding, (ii) response (deformation and/or stress) analysis.
In this work, the second type of problems is considered.

A numerical model has been developed for the static analysis of isotropic elastic
membranes subjected to pressure loading of hydrostatic type and different displacement
boundary conditions. The membranes may have arbitrary planar stress-free reference
configurations and may undergo finite deformations. The possibility of wrinkling is taken
into account.

This numerical model is based on the Dynamic Relaxation (DR) method (Frankel,
1950, Otter, 1965, Day, 1965, Underwood, 1983). DR is an explicit iterative method

developed to solve static problems in structural mechanics. The static problem is



transformed into an equivalent dynamic problem by adding inertia and damping terms.
The static solution is then obtained as the steady state part of the transient response of the
structure.

The numerical model is obtained from the spatial and temporal discretization of the
partial differential equations (PDEs) describing the damped motion of the structure. The
spatial discretization technique used here is a finite difference technique derived from
Green's theorem (Wilkins, 1964, Silling, 1985). In addition to its simplicity, this method
is suitable to any shape of the boundary. Uniform or irregular meshes may be used. The
resulting system of ordinary differential equations (ODEs) is then integrated in time by
employing a central difference time integrator.

The DR method has been introduced and applied to engineering problems since the
1960's. It has been successfully used for plates and shell problems, especially the large
deflection cases, for form-finding as well as nonlinear static analysis of lightweight
tensile structures, such as networks and membranes. Many researchers contributed to
improve this method. Welsh (1967) introduced fictitious mass densities. The convergence
of the damped solution towards the static solution may be accelerated by using a fictitious
mass. Underwood (1983) presented an adaptive DR method. In the adaptive method, the
damping coefficient and the fictitious mass de.nsities are computed in every iteration to
obtain the least time step. Tangential and local stiffness matrices have to be computed in
the adaptive DR method in order to calculate the damping coefficient and the mass
matrices. Zhang and Yu (1989) introduced a modified adaptive DR method. They used a
different approach to calculate the damping coefficient, and avoided the computation of

the local stiffness matrix. Zhang, Kadkhodayan and Mai (1994) improved the modified



adaptive DR method. They showed a way to choose the initial displacement in order to
save computation time. The DR method is of interest to many researchers due to its
explicit formulation. DR is appropriate to the type of problems considered in this work
since it does not involve the computation and inversion of the stiffness matrix, which is
ill-conditioned when wrinkling is present. Ordinary stiffness based iterative methods such
as Newton-Raphson cannot be used in the presence of wrinkling, since such methods lead
to ill-conditioned systems of equations. The solutions obtained with DR are
asymptotically dynamically stable, which is another advantage of the method.

Some equilibrium configurations may exhibit partial or total wrinkling. Analysis of
wrinkling is important for prediction of structural response. Wrinkling occurs due to the
loss of prestress and appearance of compressive stresses, under the action of certain loads
and/or certain boundary conditions. The small bending stiffness of the material
determines the configuration of the wrinkled region. When wrinkling occurs, membrane
theory can not be applied, since the bending stiffness is neglected in this theory, and
compressive stresses are obtained. Solutions with compressive stresses are unstable
(Steigmann, 1986) and therefore not observable as equilibrium states. Shell theory may
be used in the wrinkled regions to get solutions, but it is more complicated in comparison
to membrane theory. Wagner (1929) introduced tension field theory to analyze wrinkled
membranes. This theory is much simpler from the point of view of analysis. Pipkin
(1986) showed that tension field theory can be incorporated into ordinary membrane
theory by replacing the strain energy function by a Relaxed Strain Energy Density. The
stress-strain relations derived from the relaxed strain energy deliver stresses that are never

compressive. [n the wrinkled region, a state of uniaxial stress is obtained, one principal



stress being zero. However only the average deformation in a wrinkled region results
from this theory. A relaxed strain energy density is used in this work.

A brief description of the following chapters of the thesis is given in the next
paragraphs.

In chapter 2, membrane theory and the relaxed strain energy density are introduced.
The global and the local equilibrium equations are presented. The way of incorporating
the relaxed strain energy within the membrane theory is shown. The stress-strain relation
is derived from the relaxed strain energy density. The stresses and the strains considered
here are given by the Piola stress tensor and the Cauchy-Green strain tensor respectively.

In chapter 3, the DR method is presented. The origination of the DR method, the
theory of DR, the algorithm and different approaches to choose the iteration parameters in
order to obtain a fast stable solution, can be found in this chapter. A finite difference
technique derived from Green's theorem for the spatial discretization of the PDEs
governing the damped motion of the membrane is also presented. The method to
approximate the internal forces which are needed in the DR formulation is shown.

In chapter 4, the algorithm developed to analyze the response of the membrane
partially or totally subjected to pressure loading of the hydrostatic type is presented.

In chapter 5, applications of this numerical method are discussed. The reference
configuration of the membrane is plane, but the deformed configurations may be three
dimensional. A variety of equilibrium problems involving membranes subjected to
different displacement boundary conditions and pressure loading of the hydrostatic type

are considered. Solutions for the shapes of the deformed configurations, the distribution



of the principal stresses, as well as the principal stretches are obtained, and graphs of
these solutions indicating the presence of wrinkling are presented.

In chapter 6, an experimental investigation of the problem involving a square
membrane subjected to shear and stretch is described. The experimental results are shown
to validate the solution obtained with the numerical model.

Chapter 7 presents a summary, conclusions and future work directions.



Chapter 2

Membrane Theory

2.1 Introduction

The direct theory of elastic membranes is considered (Naghdi, 1972; Steigmann,
1990). In this theory, a membrane is regarded as a two dimensional elastic continuum,
endowed with a strain energy W(F) measured per unit area of a reference surface, where
F is the deformation gradient. The membrane is assumed to be perfectly flexible, thus its
bending stiffness is considered to be negligible. Assumptions are also made that the
membrane material is isotropic, homogeneous and incompressible. The case of finite
deformations is treated.

Under the action of specific loads or certain boundary conditions, wrinkling of the
membrane may occur. This represents a localized buckling phenomenon. The
configuration of the wrinkled region depends on the small bending stiffness of the
material. Membrane theory in its usual form neglects the bending stiffness and cannot
give details of the deformation in the wrinkled region. Moreover, it delivers compressive

stresses in the wrinkled region, making the solution unstable (Steigmann, 1986) and



therefore physically meaningless. To obtain a solution, shell theory may be used in the
wrinkled regions, or tension field theory, which is much simpler from the point of view of
analysis. Pipkin (1986) introduced the concept of a relaxed strain energy density. By
employing this strain energy, tension field theory is automatically incorporated into
ordinary membrane theory, leading to stresses that are never compressive and therefore to

deformations that satisfy this necessary condition of stability.

2.2 Kinematics of Deformation

Suppose an elastic membrane has a plane stress-free reference configuration and
occupies a bounded region Q with boundary dQ. Let {e,} be the basis in the reference
configuration, where a Greek letter indicates 1 to 2. A material particle of the membrane
may be identified by x in the reference configuration, where the position vector x is
represented by: x = x_e,. Here the repetition of a Greek letter indicates a summation over
the index from 1 to 2 (x =xe, +x,e,). A deformation carries the membrane to a three
dimensional surface. Let {e;} be the basis in the deformed configuration, where a Latin
letter indicates 1 to 3, and e, =e, Xe,. The material particle of the membrane identified
by x in the reference configuration is carried to a new position r(x), which is in three-
dimensional space. In the deformed configuration, the position vector r(x) may be
represented by r(x) =r; (x)e,, where the repetition of a Latin letter indicates a summation
over the index from 1 to 3. In the direct theory the basic kinematical variable is the
deformation gradient F. F maps the material line element dx at x in the reference

configuration onto the material line element dr at ~ in the deformed configuration,



tangential to the deformed surface. Taking the differential of r(x) =r,(x)e,, one obtains

dr, =dr, /0x,dx,, or in the invariant form dr(x)=Fdx. Thus the deformation

gradient F is defined by
F=F_(x)e,®e,, (2.1a)

where F_ is represented by:

2

=9 9x * Of Fo=r.. (2.10)

a

F,

o

If Fdx=0 for dx =0, it implies that at least one line element of material in the
reference configuration has its length reduced to zero by the deformation, which is
impossible. Thus Fdx # 0 for all dx # 0, F is a non-singular tensor.

The Cauchy-Green strain tensor is defined by
C=F"F =C, e, ®e,. (2.2a)
The components of the Cauchy-Green strain tensor may be obtained by substituting

(2.1a) into (2.2a), which gives

C=F"F=(F_e ®ea)T(Fll3el.®eﬁ)

[{- 3]

= (F.e, ®e)(Fpe ®ey)

@oa

=F F_ &.e ®e[3

e’ BYi"e

=F, Fge, Qe

a” i

where §,; is the Kronecker delta symbol defined by
1 i=j
5, ={ =/
0 i#j
So the components of the Cauchy-Green strain tensor are given by:

Coo = FuF, (2.2b)

ia” i3



For (FTF)T =F"(FT)T =F"F, the Cauchy-Green strain tensor C is a symmetric
second order tensor. By using the definition of the transpose tensor: v- (TTu) =u-(Tv),
where T is a tensor and v and « are any vectors, the transpose Cauchy-Green strain tensor

CT may be written as: v-(C"v) =v-(Cv). Substituting (2.2a) into the above eguation,

leads to v-(FTFv) =v-(FT(Fv) = (F-(Fv =|F’ >0 for all v#0. Thus C is a
positive definite second order tensor according to the definition.

For a symmetric second-order tensor, the eigenvectors of this tensor are mutually
orthogonal and the eigenvalues are real. Let {L(x), M(x)} be the orthonormal pair of
eigenvectors of the Cauchy-Green tensor C, with representations L =L, (x)e, and
M = M_(x)e,. L(x) and M(x) are the two principal vectors of strain at x in the reference
configuration. Let {/(x), m(x)} be an orthonormal pair of eigenvectors of C with respect
to the deformed configuration, then /(x) and m(x) are the two principal vectors of strain at
r which are tangential to the deformed surface at the material point x with respect to
deformed configuration. Let dx and dr be along the principal directions L and [
respectively, then from d r(x) = F d x, one obtains:

l|dr(x)|=FLd x|. (2.3)
The vector products of the both hand sides of (2.3) give

l|dr(x)|-f|dr(x)| = FLd x| FL|d x|. (2.4a)
Simplifying (2.4a) gives:

ldr()|* =|FLld x|". (2.4b)

and (2.4b) may be rewritten as:



(2.4¢)
ld[;(:l)l =|FL| = A (x),

where A (x) is one of the principal stretches along the principal direction L at x. By using
the definition of the transpose it can be obtained that

|FL|={L-(FTFD)}'* = {L-CL}". (2.5
Thus the non-negative scalars A(x) may be defined as

Mx) =|FL={L-CL}". (2.6a)
Then equation (2.6a) gives:

CL-)(x)L=0, (2.6b)
where A% (x) is one of the eigenvalues of the Cauchy-Green strain tensor.

By the same procedure, let w(x) be the other principal stretch along the other principal
direction M at x, defined as

uix) =|FM|=(M-CM}". (2.7a)
From equation (2.7a) one can get

CM -y’ (x)M =0, (2.7b)
where p?(x) is the other eigenvalue of the Cauchy-Green strain tensor C.

The two eigenvalues of C can be obtained by solving the eigenvalue problem. The
characteristic equation for C may be written as:

det(Cpg ~A8,4) =0 det(C,5 —ud,,) =0. (2.8)

By solving (2.8), A and p can be expressed as
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A = {—;— [trC + (discrC) "2 ]} ,
(2.9)

1 172
n= {E frc - (iscrc) 2 ]} .

where trC=C,, =C,,+C,, and discrC =(trC)* —4detC are the invariants of C.

Substituting A and p into equation (2.6b) and (2.7b), the components of L and M can be

obtained:
C A -cC
[ = 12 ' L, = 11 L
M = Cp M. = u’ -, M
l \/(MZ -C,\) +C} ' : Cp, l

In the case of C,, =0, according to the definition, C;, and C,, are the two scalar
values of the two principal strains and the two principal directions are along the x, and x,
axes. The components of L and M are:

L =1, L,=0, (2.11)

M, =0, M, =1.

The unit vectors / and m can be defined as:

[(x) =\"'FL, m(x) =pu”'FM (2.12)
Substituting (2.1b) into (2.12), one obtains:

[(x) =X"r e ®e, Lye, =N"r,,Lde, =271, . Lee, (2.13)

fa™ai?

t

m(x) =u'r e, O, - Mgeg =p"'r, , MBge, =p7r Mee,.

Thus the components of / and m are given by:

I1



L=N L+ Ln,).  m=pT (M, +Mon,)

L=A" Ly, +Ln,).,  m=p (Mg, +Mr,,), (2.14)

L=AN"Lry, +L,r,), my = (M, + M,rs;,).

The unit tensor I may be represented in the form I =A+e; ®e;, where A=¢, Qe,.
Considering the orthonomality of {L, M}, A canbe expressedas A=LQ@L+M®M for
any x € Q.Then F can be written as

F=FA=FL®L+FMQM. (2.15)
Substituting (2.12) into (2.15), one obtains:

F=M®L+um®M. (2.16)

Then the Cauchy-Green strain is

C=F'F
=(MOL+um®M)" (ML +um@M)
=(AIQL)T +um®M) T} (MO L+un®M) (2.17)
=MLOL+u /' MOM+ 2l -m(LOM+MQL).

Since / and m are orthonormal vectors, /-m =0. Thus the spectral form of C may be
written as:

C=NLOL+u’MOM. (2.18)

The Jacobian J which is the ratio of the elemental area of the deformed surface to the

elemental area of the reference configuration, J =da/d 4, is:

J=+/detC =hAp. (2.19)

12



2.3 Stress and Equilibrium

The existence of a strain energy W(F) per unit area of reference configuration €2
represents the basic constitutive hypothesise of elastic membrane theory (e.g. Cohen and
Wang, 1984).

The total potential energy due to a deformation x - r(x) is

E(r)= ”W(F )dA — P[r]. where d4 =dx,dx, and P[r] is the load potential associated

Q

with the particular type of pressure loading. The values of W(F) should not be affected by
superposed rotations, and therefore W(F) = W(C) . For isotropic elastic membranes the
strain energy can be expressed as a symmetric function of the principal stretches A and
w: W(C) =wk,p) =w(uw,A).

If only normal forces are applied to a unit square of membrane material, the membrane
will be stretched into a rectangle of dimensions A and u. Let w, and w, be the two
principal forces, they can be obtained from the strain energy by using variational
principle:

w, =dw(i.u) /0A, (2.20)

w, =dw(k,u)/ou.

The two principal stresses which are the forces per unit length measured in the deformed
configuration can be expressed as:

g, =w, /u, (2.21)

Gzzwp/}».
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Then the Cauchy stress tensor o = g e; ® e, may be written in the sprectal form:
o=(w, /Wl +(w, /A )m®m. (2.22)
Let T be the nominal stress tensor, also called the Piola or first Piola-Kirchhoff stress
tensor. The components of this stress tensor are measured as the force per unit length of
the arc in the reference configuration. T may be represented in the form T' =Te, ®e,. It
can be shown that T, =W /9F,, and in spectral form, T can be expressed as
T=w,I®L+wm®M, (2.23)
where w, and w, are the two principal Piola stresses. The components of the Piola stress

can be obtained from

T, =e, Te,. (2.24)

¢4

Substituting (2.23) into (2.24), gives

T,=e (wle ®Lie, +wme, ®Me, Je, (2.25)

i [t
=w, L, +wum,.Ma

Therefore the components of the Piola stress are given by:
T, =LLw, +m1M1wu, T, =L Lw, +mM,w,,
T, =LLw, +m,Mw,, T, =LL,w, +m,M,w,, (2.26)
T, =LLiw, +mM\w,, Ty, =LL,w, +mM,w,.
The two tensor fields are related by
o=J"TF", (2.27)
where J and F are given by (2.19) and (2.1a).

Consider a membrane occupying the region Q in the undeformed state. The membrane

is in equilibrium under the pressure pn per unit of deformed area, the body forces are
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neglected. The unit vector n which is externally normal to the deformed surface at r can
be expressed as
n=I[xm, (2.28)
since / and m are the two principal vectors which are tangential to the deformed surface.
The force transmitted across an element of the arc that has length ds is tds, where ¢ =Tv
is the traction vector and v is the unit vector normal to the arc in the undeformed state.
For the case of pressure loading, and neglecting the body force (Fig. 2.1), the

equilibrium of an arbitrary part DcQ of the membrane, requires that

$1vas + [[ pInda =0. (2.29)
aD D

By using the divergence theorem, the contour integral in (2.29) may be transformed to an

area integral:

$7vas = [[ DivTas (2.30)
[:12] D

where the Divergence of T is given by DivT =T, e . Substituting (2.30) into (2.29)

yields the global form of the equilibrium equation of region D

[[pivrda+ [ pimda=0. (2.31)

D D
By using the localization theorem, the local (pointwise) equilibrium equation may be
obtained from (2.31):

Divl +p/n=0 (2.32)
In component form, (2.32) can be rewritten as:

T,.+pJn =0. (2.33)
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In case of zero pressure and in the absence of point loads, the local equilibrium
equations become

DivT =0, T,.=0. (2.34)

In order for the equilibrium equations to deliver stable solutions, there are certain
necessary conditions to be satisfied by the strain energy density W(F). The energy
criterion of elastic stability (Knops, Wilkens, 1973) states that an equilibrium
configuration r(x) is stable if it minimizes the potential energy of deformation:
E(r) < E(r+Ar), for all small perturbations Ar(x). Further, according to Graves
theorem (Graves, 1939), a deformation r(x) minimizes the energy E(r) only if its
gradient F(x) is a point of rank one convexity of the strain energy W(F) at every point
x € Q. This statement leads to necessary conditions of stability requiring the principal
stresses be non-negative (Steigmann, 1991): w, 20, w, 20, Vx €.

The global equation of motion of an arbitrary part D of Q2. in the presence of pressure

loading may be written as

§Tvds + ” pJndA = ” Q,7dA . (2.35)
D D P

where @, is the mass density per unit initial area, and 7 is the acceleration.
Two types of conservative pressure loading have been considered in this work:

uniform pressure (p = constant ) and pressure loading of the hydrostatic type, having the

magnitude p =|Q,g(h,, "'3)" where o, is the density of liquid, g is the gravitational

acceleration and A, is the height of liquid measured along the e; direction.
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REFERENCE CONFIGURATION

Fig. 2.1 Equilibrium of the region D < Q of the membrane
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2.4 Relaxed Strain Energy Density

In membrane theory, the bending stiffness is neglected, but real membranes often
exhibit wrinkled regions, in which the size and configuration of the wrinkles is
determined by the bending stiffness. Membrane theory delivers solutions with
compressive stresses in the wrinkled regions. This happens because ordinary strain
energies do not satisfy the rank one convexity condition. Since states with compressive
stresses are unstable, such solutions are not physically meaningful. Instead of using plate
theory in the wrinkled regions, tension field theory can be used (Wagner, 1929), which is
much simpler from the point of view of analysis. However, when a membrane is partially
wrinkled, it is not simple to decide which theory to use in a given part of the membrane.
Pipkin (1986) introduced the concept of a relaxed strain energy density. If the relaxed
strain energy density is used, tension field theory is automatically incorporated into
ordinary membrane theory. The relaxed strain energy satisfies the rank one convexity
condition, thus the stress-strain relation obtained from a relaxed strain energy function
gives stresses that are never compressive. Such deformations satisfy the necessary
conditions for stability. A wrinkled region is simply defined as a region in which the
stress is uniaxial at each point in the membrane. In the wrinkled regions, the relaxed
strain energy destiny represents the average energy per unit initial area over a region
containing numerous wrinkles.

Consider a unit square membrane in simple tension. In the deformed configuration, the
sides of the square become A and p. Assume A as the larger (A >1) and p as the

smaller ( p < 1) principal stretches. Since the square is in simple tension the principal
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stress w, is strictly positive (w, >0) and w, is equal to zero (w, =0). The
corresponding smaller principal stretch p is a function of A and was named by Pipkin
(1986) the natural width in simple tension v(A). For isotropic incompressible material in

3D, A A,A; =1. For the case of simple tension A, =4, A, =A; =u, leading to Al =1.

=172

Thus for the unit square membrane in simple tension p =A""". But p is the natural

width v(}), thus v(X) = A™2 for incompressible materials.

Wrinkling occurs if the smaller principal stretch u <v(A) for A >1. In this instance,
ordinary strain energy functions deliver compressive stresses. For the case of the unit
square, in order for u to be smaller than v(A), a compressive stress w, <0 would be
required, violating the stability conditions.

The relaxed strain energy density is defined to be equal to the value of the original
strain energy at the natural width:

we (A, = wlri.viM)]=w(r). (2.36)
The relaxed strain energy can be obtained from the original strain energy by constructing
a sequence of finely wrinkled configurations, with closely spaced discontinuities in the
deformation gradient. The limit of the sequence is a smooth deformation that is achieved
without compressive stress and at no expense in the strain energy (Pipkin, 1986).

Therefore, in the wrinkled region, where p <v(XA), the relaxed strain energy delivers

w, >0 and w, =0, satisfying the requirement that the principal stresses be non-
negative, whereas the original strain energy delivers w, >0 and w, <0, violating the

necessary conditions for stability.
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Similarly, for u>1and A <1, let v(u) be the natural width in simple tension, and the
relaxed strain energy becomes a function of yu only.

When the membrane is deformed with A <1 and p <1, double wrinklings might be
achieved such that no stress at all is present, and the relaxed strain energy density is taken
to be zero.

we (A, u) =0. (2.37)

So the relaxed strain energy is defined by

w(h,w); A>v(w), u>v(d),

W, (F (A, p) wih): Aol usvi), (2.38)
e L T TS R WY '
0; A<l usl

The principal stresses furnished by the relaxed strain energy automatically satisfy the
necessary conditions for all (A,u) =20. For example for the case of deformation with

A>1 and p <Vv(A), the principal stresses are w, =0 and w, =dw(A) /dA, where w,

is a function of A alone. The associated state of stress is given by:

T=w,[®L, (2.39)
and is called a tension field. The unit vectors L and [ are tangential to the tension
trajectories (wrinkles) in the reference configuration, respectively in the deformed one.

Thus by using the relaxed strain energy in the equilibrium equations, tension field
theory is automatically included into ordinary membrane theory, extending its range of
applicability to the case of wrinkled membranes.

A solution within this theory only gives the average deformation in a wrinkled region.

To predict the details of the distribution, spacing and amplitude of the wrinkles, a theory
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that accounts for the strain energy due to bending must be employed (Hilgers and Pipkin,

1992).
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Chapter 3
Numerical Method

3.1 Introduction

The nonlinear static analysis and form-finding of tension structures is usually carried
out by employing standard stiffness-based iterative methods, such as Newton-Raphson
(Haug and Powell, 1971, and many others). However, in the presence of wrinkling, the
element stiffness matrix becomes ill-conditioned and the iterations may not converge.
Modifications of these methods to account for the sudden stiffness changes that occur at
the transition from tense to wrinkled states have been developed by Miller and Hedgepeth
(1982), and other researchers. But these modifications involve complex iterative
algorithms.

The numerical model developed in this work is based on the Dynamic Relaxation
Method (DR). This is an explicit iterative technidue developed to solve structural
mechanics problems. This technique does not require the construction and inversion of
the stiffness matrix, which in presence of wrinkling is ill-conditioned, and is therefore
particularly well suited for the class of problems considered here. Wrinkling is accounted

for by employing a relaxed strain energy density. The approximation of the internal
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forces is obtained by applying Green’'s theorem differencing method. Besides its
simplicity, this method has the advantage to be applicable to problems involving any
shape of the boundary.

The DR method has been already used for form-finding of membrane structures

(Barnes, 1974), however without considering the possibility of wrinkling.

3.2 Dynamic Relaxation

3.2.1 Introduction

Dynamic relaxation (DR) is an explicit iterative method used to solve static problems
in structural mechanics. The static problem is transformed into an equivalent dynamic
problem by adding inertia and damping terms, and by allowing the structure to vibrate
under critical damping. The displacements in the static structure may be obtained when
the vibration dies out. Thus, this numerical technique is based on the fact that the static
solution can be considered as the steady state part of the transient response of the
structure.

The DR method originates from the 2™ order Richardson method developed by
Frankel (1950). The Richardson Method is an explicit iterative technique, which is using

o' =¢" +ale”, (interior points)

"' =¢", (boundary points) G.1

to solve PDEs of the form
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L$=0, (3.2
where L is a linear difference operator. Frankel (1950) introduces a modified operation

method by transforming (3.2) into

2 3.3
a—?+A—82—L4)=0. (3.3)
at dat

He uses an iteration process based on

o' =¢" +aly" +B(¢" —¢"").  (interior points)

o™t =¢" (boundary points). (3.4)
Frankel first makes the connection with dynamics, so the second-order Richardson
method is also known as Frankel's method.

The DR technique was first applied by Day and Otter (1965) in connection with
reactor pressure vessel computations. Day (1965) named the method Dynamic
Relaxation. Day and Otter's papers in the mid-60's represent the beginning of the
engineer's interest in DR and introduce the idea of obtaining a static solution from a
dynamic transient analysis method. After Day and Otter, important improvements of the
DR method have been made. Welsh (1967) introduced the fictitious mass densities into
the DR method. The use of the fictitious mass densities accelerates the convergence of
the DR method, since the oscillations are not of interest in the final solutions to the
equilibrium equations. Cundall (1976) suggested an effective damping procedure, termed
“kinetic damping", which has been frequently applied in the context of form-finding and
static analysis of cable networks and membranes. Underwood (1983) presented an
adaptive DR method for nonlinear structural analysis. Zhang and Yu (i989) first

introduced a modified adaptive dynamic relaxation (maDR) method, based on the
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adaptive DR method of Underwood, and applied the maDR method to the bending and
wrinkling of circular plates problems as well. Zhang, Kadkhodayan and Mai (1994) made
an improvement of the maDR method. The improved method (DXDR) is developed from
the modified adaptive dynamic relaxation, which is more efficient than the maDR
method. Other improvements of DR such as the automatic evaluation of the DR iteration
parameters were made by Papadrakakis (1981). Zienkiewicz and Lohner (1985), also
Tarakanov (1984), accelerated the convergence of DR method. Silling (1985). introduced
a versatile spatial discretization method based on Green's theorem in the context of a DR
analysis in finite elastostatics. In addition to introducing the adaptive DR method,
Underwood did more important work regarding the DR method: in 1983 he published a
detailed review of the DR method.

The DR technique was first used to solve linear structural problems, but it is especially
attractive for the problems with highly nonlinear geometric and material behavior, which
include limit points or regions of very soft stiffness characteristics. This is due to the
following features of the DR method: (1) the explicit form of DR makes this method
easily to be programmed, (2) since all quantities may be treated as vectors, matrix
manipulation is avoided and low computer storage is required. The low storage
requirement makes it possible to solve complicated problems using a personal computer.

Rushton made the first application of DR to a nonlinear problem in connection with
the large deflection of variable-thickness plates in 1968. Since 1970 researchers have
done a large number of studies on nonlinear structural analysis, especially on large
deflection of plates and shells (Salehi and Shahidi, 1994, Kommineni and Kant, 1995).

This DR technique has also been successfully used to form-finding and nonlinear static
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analysis of lightweight tensile structures, such as cable networks and membranes
(Haseganu and Seigmann, 1994a,b, Liu and Haseganu, 1997, 1998), tensegrity systems
analysis (Motro, 1984, Motro, Najari and Jouanna, 1986), incompressibility in large
deformations (Silling, 1987), phase changes and localization in elasticity (Silling,
1988a,b, 1989), elasto-plastic response (Zhang, Yu, Wang, 1989), nonlinear viscoelastic
response (French and Jensen, 1991), and materially nonlinear problems in geomechanics
(Siddiquee, Tanaka and Tatsuoka, 1995).

The following description of the dynamic relaxation method draws mainly from

Underwood's work.

3.2.2 Structural Analysis

The equilibrium equation of a structure may be discretized by using finite difference or
finite element discretization techniques. The discretized equilibrium equation of a
structure can be written in the general form:

P =F, (3.5)
where P is the vector of internal forces, u is the solution vector (the displacement vector),

F is the vector of the external forces (point loads, body forces, forces due to distributed
loads and forces prescribed on the boundaries).
In general P is obtained from variational principles:

OE (u) (3.6)

Plu) = PR
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where E is the internal energy. Equation (3.6) is suitable for both linear and nonlinear
problems to obtain the internal forces. For the linear problem, P may be written in the
general form:

P(u) = Ku, (3.7
where K is the stiffness matrix. For the nonlinear problem, P is commonly in the

incremental form:
AP (10)="K (u) Aue, (3.8)
where ‘K (u) is the tangential stiffness matrix. This may be obtained from:

K () = dP (u) . (3.9)
du

Equation (3.5) may be solved by various methods such as Gauss-elimination,
Newton-Raphson, or matrix methods. When the element stiffness obtained from equation
(3.9) becomes ill-conditioned, which happens for example when wrinkling is present in
the equilibrium configurations of the membranes, the standard stiffness-based iterative
methods such as Newton-Raphson may not converge, and solutions can not be obtained
by using these methods. Solutions cannot be obtained from matrix methods either, since
the element stiffness matrix is singular. This problem can be avoided by using the DR

method.

3.2.3 Transient Response

[n the DR method, the equilibrium equations are transformed into equivalent equations
of motion by adding acceleration and damping terms to the equilibrium equations. The

transient response described by the equation of motion is in the from:
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Mi" +Ca" +P(u") =F", (3.10)
where M is the mass matrix, C is the damping matrix, n indicates the n® time increment,
and a superimposed dot indicates a temporal derivative (& is the acceleration vector, & is
the velocity vector).

The DR algorithm (2™ order Richardson) developed by Frankel (1950) is obtained by
using the following central difference expression for the temporal derivatives:

dn—llz = (un __un—l) /h , (3.11)

iin - (‘-anl/Z _l-‘n—lIZ) /h ) (3.12)

where 4 is a fixed time increment. The expression for «" is obtained by the average

value:

(3.13)

A |

ut = (-n—ll’ -n+llZ) .

@
5 u
Substituting (3.11)-(3.13) into equation (3.10), the pair of equations used to advance to

the next velocity and displacement are given by:

1
MIh—=-C = n n
a2 = ( 2 : Qv (F" —P")
1 1.7
M/Ih+=C) M/h+=C)
2 2
un+l — un +hun+l/2, (3.14)

where P" =P (u").
Since the oscillation is not of interest, the mass matrix and the damping matrix need

not to represent the physical structure. However P and F must represent the physical

problem. A diagonal mass matrix and mass proportional damping is chosen. So
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C=cM, (3.15)
where ¢ is the damping coefficient. Substituting (3.15) into (3.14), equation (3.14)
becomes:

l-l:u-uz _ (2—ch) - n-1/2 2h

= ——M(F"-P"),
(2 +ch) “ * (2 +ch) ( )

un+l - un +han+l/2 (316)

where M~ indicates the inverse of M. Since (3.16) is algebraic, each solution vector
component may be computed individually from:
G (2-ch) . 2h S _ pry

neuz e (F
' Giem % Tmaem T E

Ll;[-bl - llln +hd'n?l/2 , (3.17)

where the subscript  is the /” vector component and m; is the /" diagonal element of
M. Since M is diagonal, equations (3.17) are decoupled. This algorithm doesn't involve
matrix manipulation, it is in explicit form, it is easily to program, it requires low storage,
and it may be used to solve problems which have ill-conditioned element stiffness
matrices.
For starting the DR algorithm, the initial conditions are of the form:
0

wW=0: @’ =0. (3.18)

Equation (3.13) and the second of (3.18), give

Qv = gv2, (3.19)

Substituting (3.19) into the first expression of (3.16), considering n =0 as well, the

velocity at the time step 1/2 can be obtained:
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@' =hM(F°-P°) /2. (3.20)
It can be noted that the damping coefficient ¢ dose not enter the starting procedure. So the

central difference time integrator for diagonal mass and mass proportional damping has

the form:
"> =hM™ (F° -P°) /2 forn=0,
ez _ 2=Ch) p 2R e pey for n #0, 3.21)
(2 +ch) (2 +ch)
Wt =ut + "M for all n.

To obtain a static solution from the transient response equation, the mass matrix M,
the damping coefficient ¢, and the time increment & have to be determined. These
parameters are chosen for the purpose of obtaining the fastest convergence.

Once a displacement vector «# which is a solution vector of (3.5) is obtained, the
oscillations die out and the structure reaches the equilibrium configuration. This
displacement vector is the final solution of the equilibrium equation of the static

structural problem.

3.2.4 DR Algorithm for Linear Problems and Properties

Formally, the DR algorithm may be written as suggested by Underwood (1983):
(a) choose ¢, # and M; u® is given; &° =0,
b R"=F"-P(u"),

(c) if R" =0 stop, otherwise continue,
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(d) for n=0, &> =hM™R°/2,

cntli2 _ (2—ch) U2 2h -l pn

for n %0, - R 3.22
orn Z+eh) - 2 +ch) (3.22)

(e) un+l =un +hﬂn+l/2,

(f) n=n+1; return to (b).

It can be observed that step (d) and the step (e) are identical to the central difference
time integrator. The only difference is that the parameters M and ¢ in the DR method
need not to represent the physical structure, M and c are fictitious values. The mass
matrix M and the damping coefficient c are chosen to obtain the static solution R =0 in
a minimum number of steps. Also, the choice of 4 must ensure stability and accuracy of
the iterations.

Since the DR algorithm seems quite simple, it has been used for various analyses of
structural mechanics problems. The optimum convergence rate of the solution is of
interest. For the linear problem, the presentation of Underwood (1983) gives the residual
R:

R=F—Ku, (3.23)
where P (u) = Ku. Substituting (3.23) into (3.22d), and using (3.22e) and the expression
of (3.11), the equation (3.22d) can be rewritten in the form:

W =u" +BW —u") —adu" +ab”,

a=2h?/(2+ch), B=(2-ch)/(2+ch), (3.24)
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where A=M'K, b=M™"F . The general equation for n# 0 is considered here. In
order to obtain the convergence, the error in the iteration at the n™ step must be smaller
than the error at the last step. The error in the iteration at the n” step is defined as:

e"=u"-u, (3.25)
where & is the solution vector for R =0 . Substituting (3.25) into (3.24) gives the error
equation:

e =e" —ode” +Ble” —e"). (3.26)
Equation (3.26) shows the relationship between successive error vectors. A solution of
(3.26) may be obtained by assuming

e =ke”, (3.27)
where |k =0 is the spectral radius (Strang, 1976). The fastest convergence is obtained
for the smallest possible |k| < 1. Substituting (3.27) into (3.26) gives a quadratic equation
in k:

k- (1+B-ad)k+B =0, (3.28)
where A denotes any eigenvalue of 4. The minimum value of &, which produces uniform

convergence over the entire range of eigenvalues A, < A< 4,. is desirable for fast

convergence. The optimum convergence condition, k , is obtained when the roots of
(3.28) are real and equal. This condition is achieved by the expression (Paradrakakis,
1981, Underwood, 1983):

1+ —ad) = £23", (3.29)

which gives
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Ik‘l=9~=|3uz.

(3.30)

Since (3.29) holds for all possible eigenvalues of A4, the two equations that satisfy the

optimum convergence condition for o are:

1+ —ad, = 23",

and
1+B-a4, = —2p"2.

Adding (3.31) and (3.32) leads to
ald, +4,)=201+fp).

Equation (3.31) can be rewritten as:

2

ad, = (R -1°.

Equation (3.33) and (3.34) give

A
1—2J—1.
Am

where 4, << 4,, has been assumed.

Q‘__:Bl/?. =

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

The value of 4 and ¢ may be chosen to satisfy the condition of optimum convergence

(3.29). Equations (3.15) and (3.34), the definitions of a and (3 and the assumption of

Ay << A4, give

<21 A, =2/0,,.

and

C=2\/Zo—=zw0v
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where w, and w,,, are the lowest and highest circular frequencies of the undamped

equation (3.10). Equation (3.35) can be written in terms of w, and w,, as

Wy

)

@

max

oo
(3.38)

To produce more rapid convergence, the minimum o is expected. This can be realized
by scaling 4 to maximize the ratio 4, /A, or maximizing the ratio w, /w, through a
judicious choice for M. They are the same.

Equation (3.36) obtained for the optimum convergence condition expresses the
stability limit for the central difference time integrator (Leech, 1965). The relationship of
the stability limit to the transit time for information between two adjacent nodes in the
discrete elements (Courant, Friderichs and Lewy, 1928) has been exploited to develop the
idea of a “fictitious mass" (Welsh, 1967), which minimizes ¢ while retaining stability.
The expression of critical damping of the lowest natural frequency (3.37) is obtained by
considering the optimum convergence condition as well. The critical damping property

has been used in the choice of ¢ (Rushton, 1968).

3.2.5 Choice of Iteration Parameters

Choice of M and A2

Since the beginning of the application of the DR technique, many methods have been
used to determine the iteration parameters. The real mass was used before Welsh (1967)
introduced the fictitious mass densities. Day (1965) used the real mass and adjusted the

time increment 4 by trial and error, until a suitable value which satisfies the stability
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conditions was found. Otter (1965) also used the real mass, but calculated the time
increment # from the Courant-Friedrichs-Lewy condition (1928). Using the real mass is
simple and straight forward, but it is not an efficient method, unless the damping
coefficient ¢ satisfies the optimum convergence condition.

A general method based on the'Courant-Friedrichs-Lewy condition, introduces a
fictitious diagonal mass matrix, whose diagonal elements m, are chosen such that the
transit times for information transfer for degree of freedom i to adjacent and like degrees
of freedoms is a constant. Welsh (1967) first proposed this approach. This method is
suitable for both linear and nonlinear problems, and both finite element or finite
difference discretization technique may be used (Silling, 1988a). For convenience this
constant is typically chosen, such that A =1. It has been found that evaluating m for
h=11 and iterating with A =1 provides a sufficient margin to ensure stability
(Underwood, 1983).

Another commonly used method is based on Gerschgorin's theorem. This theorem

states ( Strang, 1976):

Every eigenvalue of A lies in at least one of the circles C ,....C, where C. has its

center at the diagonal entry a, and its radius r, = Z,-:nlafi equal to the absolute sum

along the rest of the row.

Gerschgorin's theorem shows that all circles will be coincident for equal mesh spacing,
and they will be nearly coincident for unequal mesh spacing, if every row is scaled such
that the absolute sum along every row is identical (Underwood, 1983). As well it shows

that the largest eigenvalue is less than or equal to the sum of the moduli of the elements
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along any row. Using (3.36) and Gerschgorin's theorem give the following general

expression for m, :

(3.39)
m, Z%hZEI:'K”l. 3.39

where K; are the elements of the stiffness matrix K, j=1,...N,i=1.... N. Here N is

the total number of DOF of the structure.

Papadrakakis (1981) proposed an approach by assuming m; ~k,. An automatic
procedure is presented for the evaluation of the iteration parameters, and trial runs or
eigenvalue analysis of the modified stiffness matrix are avoided. This method may be
applied to geometrically and material nonlinear problems. However, this approach is not
suitable for partialiy wrinkled membrane structures, since the regions of very soft
stiffness may lead to a singular stiffness matrix and to a singular mass matrix as well

(Hasegnu and Steigmann, 1994).

Choice of ¢

There are several approaches for determining the damping coefficient ¢ as well. The
choice of ¢ should be near the critical value for optimum convergence of the solution.

Day (1965) used a trial and error procedure to find the suitable value of c. Most the
researchers (Rushton, 1968, Cassel, 1970) determine ¢ from a numerical experiment
when using DR method. This experiment consists of forming the fictitious mass matrix

by using one of the previous methods and then computing the response for a number of
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iterations with ¢ =0. The number of iterations must be sufficient to observe the lowest
frequency w,. The damping coefficient c is determined from (3.37), after obtaining the
lowest frequency w,. Rushton (1968) and other researchers determined a distinct
damping coefficient for each intrinsic coordinate. Bunce (1972) introduced an approach
based on Rayleigh's quotient, to evaluate the lowest natural frequency. Alwar (1975)
proposed an approach in which a small value is chosen for ¢ so that the solution will
oscillate about the true solution, but the oscillations will be decaying. The time solution is
estimated from the envelope of the decaying oscillations. Papadrakakis (1981) proposed

the following approach. He calculated a series of approximations to the dominant

eigenvalue from Ay, =[u*" —u*|/u* —u*~|. When A, has converged to almost a

constant value, then this gives the minimum eigenvalue. This minimum eigenvalue may
be used to evaluate c¢. Underwood (1983) developed a similar approach based on the
Rayleigh's quotient. Details of this approach are presented in the introduction of the
adaptive DR method (Underwood. 1983) in the next section. Zhang and Yu (1989)
introduced an approach for the choice of ¢ based on of Underwood's method. Details

regarding this approach are given in the next section.

3.2.6 DR Algorithms for Nonlinear Problems

An adaptive DR method

An adaptive DR method for the solution of nonlinear problems was proposed by

Underwood in 1983. The difference from the linear DR algorithm is that Underwood used
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an updated fictitious mass matrix, since the initial fictitious mass matrix may not satisfy
the conditions for stability throughout the analysis, due to increases in the stiffness for the
nonlinear problem. Underwood evaluatc_ed h=11 and performed the iterations with
h =10, since this provided a safety margin for stability. Then he used ‘K, for the
nonlinear problem, which represents the tangential stiffness, and obtained the fictitious
mass from (3.39). ‘K, was determined from (3.9).

To determine the damping coefficient ¢, Underwood developed an approach based on
the Rayleigh's quotient. The damping coefficient is computed from (3.37) at each

iteration from Rayleigh's quotient as

(un ) T lKn un (3.40)
=2 |-
cn (un ) TMun

where the superscript T indicates the transpose, ‘K" is a diagonal local stiffness matrix,
and it is given by
gr = - P @) + ) | i (3.41)
Equation (3.40) gives an estimate of the critical damping for the current deformation
mode u«", based on an estimate of the local tangent stiffness. This approach gives the
critical damping based on the final solution, avoids the overshoot of the solution vector
and requires no unproductive iterations (Underwood, 1983). The adaptive DR algorithm
may be generally written as (Underwood, 1983):
(a) «° is given; &° =0; n=0,

(b) compute M form (3.39) with A =h , where h >h
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and ‘K; is determined from (3.9),
) R" =F" —Pu"),

(d) if R™ = 0 stop, otherwise continue,

() forn=0, a"*=mM'R°/2, (3.42)
(2-ch) .. 2h
f % 0' - n+l/2 - . n=-112 -an
orn 2+ch) (2 +ch)

0 "t =u" +ha""?,
(g) evaluate error and reform M if necessary; repeat (c)-(f),

(h) n=n+1; retumn to (b).

n TIKn n
D)c, =2 ') Riu” . where ‘K" = |- P(u"™") + P (u") |/ hu"™""2,
n (un)TMun 13 i

(j) return to (c).

If in step (i) the value of ¢, is not positive, c, is set to zero. ‘K" is an estimate and does

not always satisfy the physics of the problem. This approach has been successfully used

by Zhang and Yu (1989), Haseganu and Steigmann (1994).

A modified adaptive DR algorithm

A modified adaptive DR method is proposed by Zhang and Yu (1989), which is based

on the adaptive DR method by Underwood (1983).

This maDR method is similar to the adaptive DR method. The difference is the choice

of the damping coefficient of ¢, and the initial displacement «°. The damping
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coefficient ¢, is calculated by ¢, = 2l K ()T M 17, where M is
calculated from (3.39). It eliminates the need to calculate the local stiffness matrix from
(3.41). This approach of choice of ¢ has been used by Haseganu and Steigmann (1994a,b)
for the analysis of wrinkled membranes. The initial displacement u’ in the maDR
method is determined from u? = (u +u”) /2, where w and u; are the values of two
neighboring but opposite peaks of the locus ; detected with ¢=0.

This method has been applied to the analysis of elastic-plastic bending and wrinkling

of circular plates by Zhang and Yu (1989), and Zhang, Yu and Wang (1989) as well.

Obviously, the computing time needed to obtain u® is substantial, compared with the
computing time needed to solve the original problem. The algorithm of the maDR
method is omitted here.

Zhang, Kadkhodayan and Mai (1994) have improved the maDR method, which is
called DXDR. They find that «,” isn't necessary. The initial displacement u°® is obtained

form «® = (2° +u") /2, which saves half of the computation time of the method before.

The algorithm of this method is omitted here as well.

3.3 Spatial Discretization

3.3.1 Introduction

The spatial discretization needed in the DR method is obtained by using a finite

element or finite difference technique.
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In the beginning the finite difference method was employed for the spatial
discretization needed in the DR method. Otter (1965) and others used central differences
with interlacing meshes to approximate partial derivatives. Rushton (1968) used central
differences without interlacing meshes to approximate partial derivatives. Interlacing
meshes give better approximation for the shear stresses.

The finite element method was first used in DR by Lynch, Kelsey and Saxe (1968).
Comparing with the finite difference method, the finite element method has a number of
advantages (Otter and Cassell, 1966) such as: (a) each element or subregion could be of
an arbitrary shape, it could follow the boundary as closely as possible, (b) an irregular
subdivision to economize on the number of unknowns could be used. This technique has
been used for solving plates and shells problems (Sauve and Badie, 1993), for form-
finding and static analysis of light weight tensile structures (Lewis and Gosling, 1993),
and other nonlinear structural analysis (Oakley, David, Knight, and Norman, Warner,
1995a,b.c).

The finite difference method, is still used by many researchers (Turvey and Osman,
1993, Haseganu and Steigmann, 1994, Kodkhodayan and Zhang, 1995), due to its
simplicity. A spatial finite difference discretization technique is developed by Wilkins
(1969). This technique is called Green's theorem differencing method since it is based on
Green's theorem. Silling (1989) describes this theory in detail. This method is suitable for
problems involving loss of ellipticity (Silling, 1987) and has also been successfully used
for the analysis of wrinkled membranes (Haseganu and Steigmann, 1994a). This
discretization technique is of interest in the analysis of wrinkled membranes. Finite

difference approximations are applied directly to the field equations of continuum

41



mechanics in this method. Quadrilateral or non quadrilateral meshes; uniform or irregular
meshes may be used. Besides being simple, this method is suitable to any shape of
boundary, avoiding the inconvenience of mapping techniques. Silling (1985) describes

the theory behind this method in details.

3.3.2 Green's Theorem Differencing Method

This spatial finite difference discretization technique is based on the Green's theorem.

The Green's theorem states that
” 3¢, dA =e,, §¢dx o (3.43)
D eD

where ¢ is any piecewise differentiable field in the plane, e,, is the two dimensional

alternator symbol (e, = —e, =1, e,, =e,, =0), and D is the closed piecewise smooth
boundary of D.

The reference configuration Q is assumed to be a plane configuration here, but this
spatial finite difference discretization method may be adjusted to curved reference
configuration as well. The plane region Q is discretized into a QxS meshes of nodes.

Each node is labeled by a pairs of integers (k, /). The location of the node (&, /) is
indicated by the position vector x*/. In Cartesian coordinates the components of the
position vector may be written as x, , where a = 1,2. The quadrilateral region between

each set of four adjacent nodes is called a zone. Zones are labeled by half-integer indices
(k+1/2, [+1/2). The zone (k+1/2, [+1/2) may be identified with the shaded area (Fig. 3.1).

After deformation, the plane configuration &2 is changed to a 3 dimensional curved

42



configuration. The location of the node (k, /) in the deformed configuration at time step n

is indicated by the time-dependent position vector r“**. The time-dependent position

vector r**" may be obtained from r*" =x*"+u*"" where «*" is the nodal

displacement vector at time step n. In Cartesian coordinates the components of the time-

dependent position vector may be written in the form r*" = x/*" +u/"", where i =1,2,3.

The variables identified with nodes are called node-centered variables, others,

identified with zones are called zone-centered variables. Node-centered variables include

! n

position x*/ and r**", displacement u*"", velocity &*", acceleration &, fictitious

node mass m*”, internal forces P**" and external forces F*' which include body forces,
points loads, and forces due to pressure acting on a surface. Zone-centered variables

Tk +/24+/2.n

include the Piola stress tensor and the deformation gradient tensor

I}kﬂ/z.lﬂ/z.n )

In the DR method, the solution of a static structural problem is obtained by assuming
the structure is undergoing a damped vibration. The spatial discretized version of the
damped equation of motion of a structure at the node (&, /) of the mesh may be written in
components form as:

ml_k.'ai/c.u _*_Cdiuﬂ + P’_k.u. — F‘;k.l.n. (3.44)
For a membrane (3.44) may be obtained by discretizing the global equilibrium equation

(2.31) and then adding the acceleration and the viscous damping terms or by discretizing

the global equation of motion (2.35) and then adding the viscous damping term.

For the membrane, the internal force is given by (2.31) as P=”T dA.

iax
D
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Fig. 3.1 Mesh for spatial discretization, with integration paths used in Green’s theorem

differencing method
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Fig. 3.2 Mesh for the nodal area
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The approximation of the internal force 2 may be obtained by using Green'’s theorem. For
the left hand side of (3.43), let the stress gradient T, , be the integrand, let the area 24"

enclosed by the dashed contour be the integral area D as shown in Fig. 3.1. Then,

applying the one point integration rule, T, is set equal to its value at the node k, 1) ie.

T%!*  For the right hand side of (3.43), let the stress T, be the integrand and let the

a.x
dashed contour be the integral curve as shown in Fig. 3.1. Then, using the one point

k+12.1+1/2.n
Ty

integration rule, 7, is set equal to the zone-centered stress value , SO the

components of the stress 7, are zone-centered value. Thus the Green’s theorem applied

{4

to the internal force P may be written as:

J[ 7iaadt =g $Tiudtxy
aD

D

Finally, one obtains the following equation:

klpk.l k+1/2,0+1/2, k.~ k+LI k-1/2.0+/2 k=11 ka+l
2AMTE = e ATEVH VA (g —xg T T T g (3.45)

k-2.1-V2.n k.f-1 k-1 k+1/721-V2.n k+11 k-1
+ T:a (xﬂ - xB ) + T;a (xﬂ - x[3 ) }

The area 24*’ enclosed by the dashed quadrilateral in Fig. 3.1 equals the difference

between the total area of the node (£, [) A%’ and the four triangular areas 44,", or the

total

difference between the four triangular areas 44" and the internal area 4., shown in Fig.

in *

3.2. Thus the area 2A4** may be written with respect to the total area A4, and the internal

total
area A’ as:

1 (3.46)
ZAk.l =__(Ak.[ +Ai:.[).

2 total

The total area A%

total

is a rectangle and its area is given by
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ksid —xf'”)(x“" _x;.l-l) . (3_47)

AEJ =(x| 2

total
AL' is also a rectangle, thus its area is given by

Aiij - (xluu __xlk.l-l)(x;-u _x?u) ) (3.48)

Substituting (3.47) and (3.48) into (3.46), gives the area of 24*' with respect to the two

coordinates:

1 (3.49)
ZAk.I - _é.{(xg-l.l _xg*l.l)(xlk.hl _xlk.l-l) _ (xlk'l.l __xlk-v-l.l)(x;l«-l _xg.l-l)}.

Let A" be the equivalent nodal area (Herrmann and Bertholf, 1983), so it is equal to one

half of the area enclosed by the dashed quadrilateral in Fig. 3.1, thus A*' is given by

(3.50)

1 .
Ahl = Z{(xzk-l.l _x§+l.1)(xlk.l+l _xlkl-l) _ (xllt |84 _xlko-l.l)(xfld-l _xg./—i ) }‘

Since the repetition of a Greek symbol indicates the summation over the index from 1 to

2, the components form of (3.45) may be written as:

kel

- d. kd. k+l/2.1+172, k+1d k-1/2, k-1.1 k
F0r1=1 Ttln +7-;Z'2n ={T“+ 21+1/2.n xz _x2+ )+Tu v2i+l/2n xZ —x]_

A+l
[Q I} )

k-1/2.0-1/2. A - k-1 k+t/21- LI ki-1
+7v” i/2.n x;:l t —xz )+7—v“+ 1-/2.n (xlkq- _xz )}

E+l2104112 et k+ld E-U2.1+1/2 k-1t kl+t
-0 e =) + T T )
E-1/21-172, - E-l. E+l/20- . kl-1y.
+T[2 V2n xlhl l_x[ ll)_i_TlZ-r- [VZJl(xlk+l1_xl )}’
- kil.n Eln _ k+1/2,1+1/2,n b1t k+ll k-1/21+V2n k-1 k+l
Fori=2 T, " + 1,5 ={T,, (x, —=x,"")+T, (x; 7 =x37) (3.51)
k-1/21-1/2. El-1 k-1t E+1/20-1/2 £+t kl-1
+7, Ty T mx, ) T ! T = xT
k+1120+1/2 &= k+id k-1/2.0+1/2 k-1t El+1
-{T, Tl —x )+, " (g —x )
E-l/21-1/2. [ k-1t E+L/20-1/2 E+ld Ef-1y.
+ Ty VIR e =T + Tyt O S F
. k.ln kla _ E+1/21+1/2,n pret E+11 E-/24+/2.n k-1.f k41
Fori=3 T;\" + T, ={T, (x, —x,7)+Ty (x;7" =x,77)
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-r2.1-v2. {-1 k-1 k -2 k+ii I-1
+T3k1 2. VZ"(X;' _xz )+T33:-VZJ .n(xl+ :_xzk )}

1/2,4+1/2 Lt k+l E-21+1/2 E-Lt 1+1
—{T? (e, —x +1)+T;z YR (x) _xll”

+ T;Z-Vz.l-vz.n (xlu-l _xlk-u) + 7;k2+V2.1—l/Z.n (xlh-l.l _x!u-x)}-
There is a relation between the Piola stress tensor T and the Cauchy-Green strain tensor
C, which may be obtained by using the variational principle. For a membrane, the
Cauchy-Green strain tensor C is a function of the deformation gradient. So the stress
components 7,, depend on the zone-centered components of the deformation gradient F,.

The components of the deformation gradient F,, may be approximated by applying

Green's formula (3.43). For the left hand side of (3.43), let F,, be the integrand and let the
shaded zone in Fig. 3.1 be the integral area. Notice that F,, =7, let r;(x,t") be the

integrand and let the contour which encloses the shade zone be the integral curve. Then

set the integrand equal to the average of its end-point values along the zone edge, and

/2. 2 .
FET2% may be obtained as

E+1d+1 keld 3.52a
Kel/2 612 GRS L2 _ £ +7 E+L41 keld ( )
k.+1 k+1/+1
rt i
+ i 21 (x‘;./ l_x’§+l.l+l
Ed EL+1
L5 tr (et — by
2 B B
k1t kd
a +r keld €l
+————2 (g™ —xp )}

After some simplifications from (3.52a), the zone-centered components of the

deformation gradient at time step n may be rewritten as:

(3.52b)

e
Eel/2leVi2n __ afd EJ+1 - k+ld keldel _ [ ¥ — k+ll+l — k4 kf+1 _ k+ld
£, YR {Cg x5 Wy ) —(xg x5 ) (g rs e
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where A**2/*V2 is the area of the shaded zone. By employing the same procedure used to

obtain 24%*, A**V?*'2 s given by

(3.53)
.1+ '] -+ -
Ak+|/2.l+l/2 - = {(xkh-l k+l[)(xlc LI+1 xlk. ) ~ (x“ 1 +|1)( st ;,1)}
The component form of (3.52b) may be written as:
1
. Tkel/2.1+1/2, kd+1 k+ll E+L+1 kd
Fori=1 f‘“ i "=W{( * x7+ )("1+ +_"1 )
(xh-lh-l x;.l)(rlkl#l _,,IL-H,I)}' (3.54)
-1
E+1/2. 14172, Ed+l kvld Eviid+l EJ
F, "= YR O™ =27 -rn)
_(xllu-l.lo-l x[ .l)( kd+1 _erl,I)}:
1
. k17214172, Ed+l E+Ll+l kd
Fori=2 Eyria s =_———2A“""'“"I’ {5 =YY (R =)
_(xk+l.1+l —t 1)( k+l -~11)}
l ‘ _ L]
. -1
k172, 2, Iy kv kd
F 172 1+1/2.n . 2 _——__Ak..l/z. 3 {(x +1 -rl ll)(rzlc*l.lﬁ-l —'rz )
__(xllu-l.lfl Ll)( k.l+l ~ll)}‘
. kel/2,140/2.0 _ 1 kJ+l 1:4-11 Eeld+t kJd
Fori =3 Fj —_——ZA"‘”Z""” {(x; ) (ry ~r;")
(xk+u+l 1)( kd+l k+l.1)}'
-1
k4172051720 _ Ed+l +u Erlsel _ Lk
Fy 5 AV I+172 {( )(ry ry)
— (xllu-l.lﬂ .l)( kd+l L-+IJ) }

The same approximations (3.45) or (3.52) may be obtained by using Taylor series

expansions (Herrmann and Bertholf, 1983). They show that the local truncation error is

O(g?) for an uniform mesh and O(e?) for other types of meshes, where € is a typical
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zone width. When calculating the approximation of the stress gradient difference by using
the deformation gradient approximation, their truncation errors combine. Therefore the
local truncation error for the method is O(g?) for uniform rectangular meshes and O (g)

for the other types of meshes (Silling, 1985).

3.3.3 Internal and External Forces

The /-th internal force component on the node (k, /) at time step n due to internal

stresses is given by:

Rk.tn = A Tkl (3.56)

Using (3.45) gives

win _ S miiuaiiu: EL+t E+Lt k-V20+V2n (k=L kl+l (3.57)
- t+l/20+U2.n _ kL =1/ 2.0+1/2.n - -

+ Z:-vz_l—vzﬁ (x;.l-l _xé—u) + 7;:+V2.1-V2.n (x;«u _x;./-l)}.

[n order to obtain the internal forces from the above equation, the components of the
Piola stress tensor have to be determined first. In the DR algorithm, the initial position
vector with respect to the deformed configuration r**° is known since the position vector
with respect to the reference configuration is known and the displacement vector «° at the
zero time step is given. The position vector r*** at time step n may be obtained from the
previous time step. For all the variables are known in (3.52b), this gives the
approximation of the zone-centered deformation gradient F. Since the Cauchy-Green
strain tensor is only a function of F in (2.2a), (2.2c) gives the approximation of the

Cauchy-Green strain tensor C, which is a zone-centered variable. The square of the
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principal stretches are the two eigenvalues of the Cauchy-Green strain tensor. Equation
(2.9) gives the two principal stretches A and p respectively. Obviously, the principal
stretches A and p are two zone-centered variables. The principal directions with respect
to the reference configuration L and M are the two eigenvalue vectors. Equation (2.10)
gives the components of L and M as a function of the Cauchy-Green tensor C, and the
principal stretches A and p. From the definition of the unit vectors / and m, (2.14) gives
the components of the / and m respectively, as a function of the principal stretches A and
u, the principal direction with respect to the reference configuration L and M, and the
deformation gradient F. So, the principal direction with respect to the reference
configuration L and M, and the principal directions with respect to the deformed
configuration / and m are the zone-centered variables. The spectral form of the Piola
stress T is a function of the principal stresses w, and w, which may obtained by using
the variational principle, and the principal directions with respect to the reference or the
deformed configuration L, M and [/, m. Thus the components of the Piola stress may be
given by (2.26).

The external forces considered in this work may be due to the uniform pressure
loading or to pressure loading of the hydrostatic type. Body forces are neglected. In the

presence of pressure loading of any kind, the external forces may be obtained by

discretizing the term ” pJndA in (2.29). The Jacobian J is a function of the principal
D

stretches A and w, which are zone-centered variables, so J is also a zone-centered

variable. The outward unit normal vector n is given by n=1[Xm, since [ and m are zone-
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centered variables, n determined by / and m is also a zone-centered variable, and the
components of n may be expressed as:

n, =e,lm,, (3.58a)
where ¢, is the three dimensional alternator symbol. In the presence of uniform pressure

loading, the discretized zone-centered external force may be written as:

(3.59)

v

E+1/21+1/2 k+1121412.0 4 k+1121+112 k+1/21+02n 4k+1I2{+1/2n
Errvatsiea = pn! Nevzdeiny At

where the pressure p = constant . In the presence of a pressure loading of the hydrostatic

type, the zone-centered p is obtained as the average:

(3.60)

E+U24+42.0 _1_ (pk+l.lﬁ E+li+ln kdn

4

k.l+l.n)
’

+p +p+p

where the magnitude of the node-centered pressure p is given by

k k.n 121+1/2.n

Pt = g,glnt" —rt*|. Then, the discretized zone-centered external force F*“"'
can be obtained by substituting equation (3.60) into equation (3.59). Since the external
force should be a node-centered variable, the node-centered external forces due to the
pressure are taken to the average value of the zone-centered external force values whose

zones are adjacent to the node. Thus, the node-centered external force is given by:

1 i} uae (3.61)
Z(F-'_Ic+1IZJ-0—l/Z.n +[7il:+l/2.1-l/2,n +F:-k /21+1/2n +F'ik /2.4 l/Z_n).

FAkJ.II =
The node-centered external force may be obtained with another approach as
Ek!n =pk.l.nAk.1 , (362)

k.t
_rl A

where p*‘" =constant for uniform pressure loading and p*’" = 0.8t | for

pressure loading of the hydrostatic type. The nodal area A’ is given by equation (3.50).
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These two approaches of computing the node-centered external force give the same

solution.

3.3.4 Boundary Conditions

There are three kinds of boundary conditions: displacement boundary condition,
traction boundary condition and mixed boundary condition (both displacement and
traction boundary conditions exist). In order to enforce the boundary conditions, the mesh
is arranged such that the boundary contains nodal points.

For displacement boundary condition, the displacements at the nodes on the boundary
are imposed. In order to obtain the zone-centered deformation gradient from (3.52b) or
(3.54), the position vectors with respect to the reference and deformed configuration on
the boundary of the zone need to be known at every iteration. This can be automatically
satisfied in the DR method. Thus the zone-centered deformation may be obtained. The
internal forces at the nodes which are located on the boundary need not to be calculated,
since the displacement of these nodes are already given. The internal forces at the interior
nodes may be obtained from (3.57), since the variables of the equations are all determined
from the previous time step in DR.

Only the case of displacement boundary conditions is studied in this work.
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Chapter 4

DR Algorithm for Analysis of Membranes
Subjected to Hydrostatic Pressure Loading

4.1 Introduction

A DR algorithm has been developed in this work for the static analysis of isotropic
elastic membranes undergoing finite deformations, while subjected to pressure loading of
the hydrostatic type. The possibility of wrinkling is taken into account by employing a
relaxed strain energy density. The case of planar reference configurations and arbitrary
displacement boundary conditions is considered.

This algorithm is based on the DR method which is suitable to the analysis of wrinkled
membrane problems. The spatial discretization of the equation of motion at node (&, /)

was obtained by using the Green's theorem differencing method:

4.1)

I .
m .lun +ka.luk.l.n +Pk.1ﬁ =Fk.1ﬁ .

The static response of the membrane structure is obtained when the internal force P*'" is

in equilibrium with the external force F*'.
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4.2 The DR Algorithm

Parameters have to be chosen to start this algorithm. In this algorithm, the elements of
the diagonal mass matrix are approximated by using the real mass density of elastic
materials. The time step 4 is kept constant during the computation after it is selected by
trail and error. The damping coefficient ¢ is obtained from a numerical experiment: the
program is run initially with ¢ =0, and the total kinetic energy of the whole membrane
structure is calculated. Since the kinetic energy varies at twice of the fundamental
frequency of the system, the fundamental frequency can be estimated, then from equation
(3.37) the value of a damping coefficient which insures rapid convergence can be
obtained.

The original DR method. instead of an adaptive DR method is used in this work,
because of the following reasons: The difference between the original DR method and the
adaptive DR method is that the fictitious mass matrix M and the damping coefficient ¢
are evaluated at each iteration for the adaptive DR method. These two parameters are
modified during the computation in order to maintain optimum convergence. The
fictitious mass matrix M can be evaluated from equation (3.39), and the damping
coefficient ¢ can be evaluated from equation (3.40). Thus the stiffness matrix of the
elements and the local stiffness matrix have to be calculated at each time step. These
computations are very time consumming. Since the original DR version is simpler and
reasonably efficient, it has been chosen in the present work. But this version may be

easily modified to the adaptive DR version by adding a subroutine to calculate the
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stiffness and the local stiffness, then compute M and ¢ from (3.39) and (3.40)
respectively, at each iteration.

Since the deformations occurring in membrane structures are mostly of the large
rotation and/or large strain type, the internal force has to be obtained by using the
variational principles, and the strain energy of the membrane material has to be given.
The approximated internal force can be obtained from the membrane theory and the
Green's theorem differencing method.

At step (), described on the following page, the initial conditions «® and @° are
required to be given, and the iteration parameters which are the time step h, the damping
coefficient ¢, and the elements of the diagonal mass matrix m, need to be chosen. The
expression of the strain energy density of the material used is also needed. Only
displacement boundary conditions are considered and have to be indicated. Steps (II),
(I1) and (IV) are the computational steps corresponding to the internal forces. At step (II)
the zone centered variables deformation gradient and Cauchy-Green strain tensor are
computed. At step (I[) the zone centered variable Piola stress tensor is computed by
using the relaxed strain energy density, and wrinkling is checked. At step (IV) the
approximated internal forces are computed by using the Green's theorem differencing
technique. At step (V) the external forces are computed, thus the density and the amount
of liquid are needed in the case of a hydrostatic pressure loading, or the magnitude of the
pressure in the case of a uniform pressure loading. At step (VI) the residual is computed.
If the residual is approximately equal to zero (i.e. g <107®), it is considered that the

equilibrium is satisfied, so the program stops. Otherwise, the velocity and displacement
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are computed using the central difference time integrator at step (VIII) and (IX), and the
next iteration is stated from step (II) to step(X).
Formally, this DR algorithm may be written as:
(D initial conditions:

choose A, c and M,
u® given; 4®=0,n=0,
w(h,u) given.
(I  compute zone-centered quantities:
deformation gradient F",
Cauchy-Green strain C”,
principal stretches A", u", orderA” > p”,
principal vectors of strain L, M"; [", m",
(III)  check for wrinkling; compute zone centered Piola stress T":
if A" > (u") ™%, u" > (M) ™2, tense zone;
we (A", u") =w(d,u"),
Tr =wil'L, +wym!M7;
if A" >1,u" < (\")™"?, wrinkled zone (tension field);
we (A", u") =w(@"),
Tr =w")'L,

if u" >1,A" < (u")™%, wrinkled zone;



we (A", u") =w(u"),
To =wu"Im'M_
if A" <1,u" <1, slack zone;
we (A", u") =0,
T, =0;
(IV)  compute internal forces P,
(V)  compute external forces F",
magnitude of pressure p given (uniform pressure loading)
mass density o and total volume of liquid given (hydrostatic
pressure loading)
(VD) compute residual R" = F" - P",
(VI) If R" = 0 stop; otherwise continue

(VIII) compute velocity at time step n+1/2:

n=0, u'? =h(M'?)"r,.° /2

1

cn+li2 _ (2-ch) <n=lR

=0 ; = ;
" i 2 +ch)

+2h(m)7'r" [ (2 +ch)

(IX) compute displacement at time step n+1:

un+l _ un _*_hurn-l/z
(X)  n=n+l, return to (II).
The superscripts representing labels of nodes or labels of zone centers have been

omitted to simplify the notation. The zone centered variables which are involved at steps

(I) and (III) have been specified. the variables involved at the other steps are node-

58



centered variables. The superscripts used in this algorithm represent the time step. As the
specified in other chapters, / indicates the range over {1,2,3}, ¢ indicates the range over
{1,2}.

The displacements, the principal stretches and the principal stresses and their
directions may be obtained from the output files, as well as the presence and delimitation

of the wrinkled regions.
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Chapter 5

Applications for Rubber-like Materials

5.1 Introduction

The DR method developed in this work is applied to membranes made of rubber-like
materials, with various boundary conditions and subjected to pressure loading of the
hydrostatic type. The material is assumed as isotropic., homogenous, and incompressible.
Four strain energy functions for rubber-like incompressible materials are considered:
Varga, Mooney-Rivlin, neo-Hookean and Ogden strain energy functions, but results are
presented only for the Ogden and the Mooney-Rivlin strain energies. Various
displacement boundary conditions and total or partial pressure loading of the hydrostatic
type as well as loading by uniform pressure and combined loading are used in the
applications. The mesh is refined based on convergence considerations, but also to obtain
a continuous deformed surface and a reasonably accurate delimitation of the wrinkled
regions. The reference configuration of the membranes used here are square, circular and
cylindrical. The deformed shapes, the principal stretches, the principal stresses and their
directions are obtained. Graphs including numerical values of the results are presented

and discussed. The presence of wrinkled regions as well as their delimitation is indicated.
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5.2 Rubber-like Membrane Materials

The membrane materials used in the applications are rubber-like materials. It is
assumed that these materials are isotropic, homogenous, and incompressible. Four strain
energy functions are considered: Varga, Mooney-Rivlin, neo-Hookean and Ogden strain
energy function.

For the Vagar material, the strain energy per unit of initial volume has the form
(Varga, 1966):

2 (5.1)
U\, 0) =—3‘E(}», +A +A-3),

where A are the principal stretches and £ is Young's modules. For infinitesimal strain
E =12kg /cm? =1.076 x10°kN /m* (Varga, 1966). For incompressible material, it is

required that A AA, =1. If A, =A and A, =, then A, =1/Au. The corresponding

strain energy function per unit initial area of membrane may be expressed as

2 -1, -1 (5.2)
w()\.u)='§E(k+p.+)\. us =3.

The two principal Piola stresses which are the forces per unit length in the reference

configuration may be obtained for tense region as:

2
w, (A, ) =§E(1—>\‘Zu“).
(5.3)

2
w, (A, u) = EE(I— u .
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When wrinkling occurs, the relaxed strain density is used in the wrinkled region. For
A>1 and pw<v(A)=A"%, the relaxed strain density in uniaxial tension may be

expressed as

4
w(l) =%E(A+2A‘”2 -3, 5-4)

and the principal Piola stresses at this area which represents a tension field are obtained

by the partial derivatives of (5.4)

w, (A) = %E(l— A%y,
(5.5)

For p>1 and A <v(u)=pu™"?, the relaxed strain density in uniaxial tension may be

expressed as

2 (5.6)
w(p) = EE(p. + 2[.1._”2 -3,
and the principal Piola stresses are:
-~ _ _2_ -312
(5.7)

w, =0.

For A <1 and u <1, a slack area is obtained, and the two principal stresses are both zero:

(5.8)

For the Mooney-Rivlin material, the strain energy per unit of initial volume has the

form (Ogden, 1984):
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UGy hy) =cio 2 +0,2 + 057 = 3) 0 (707 #1707 +4°0,2 -3) . (5.9)
where c,, and c,, are coefficients independent of the deformation. For a incompressible
membrane, let A, =A, A, =u and A; =1/Au, then the strain energy becomes

W()L,p,) =%()‘_2 _*.ul +A-ZU_Z —3) __Gz_z(}‘-z _*_u-z +)"le2 ~3), (5.10)

where G, ~G, =G, G is the shear modules for infinitesimal strain. For incompressible
material, G = E /3 =4kg/cm? = 358%x10°kN /m* (Varga, 1966). G, and G, may be
determined when applying the relaxed strain density.

As for the Varga material, the principal Piola stress can be obtained from the above
equation:

w, (A1) =G, (A =22p ) + G, (A7 —au’),

wp(l,p)=Gl(p-—u"3)\2)+02(u_3—;.LAZ). (5-11)
From the definition of the natural width, when p=v(A)=A""%, w, =0. Thus from

equation (5.11):

w, (A, v(R) =G, (A = A7) + G, (A =A%) (5.12)
= G[ ()\.-”2 _ k7/2).

Since A™"2 =272 £0, G, should be zero. Therefore G, =—G . Thus, the relaxed strain

density and the stresses may be expressed as:

For A >v(uw) and p>v(A)
G -2 -2 2 2
w()\,p.)=;:(). +ut + A u-3),

w, (A, p) =-G(A™ -ap?),
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w, (A, ) = G(u™ —ur?);

For A >1 and pu <v(A) (wrinkled zone)
« G, .
w{i,v(L)) =E(}. +2A—-3),

w, (A) = G(=17 +1),
w, (1) =0;

For u>1 and A <v(w) (wrinkled zone)
. G,
w(w,v(u)) =?(“ +2u -3,

w, (1) = G(-u=+1),
w, (A,u) =0;
For A <1 and p <1 (slack zone)
w(i,p) =0; w, (A,p) =0: w, (A,u) =0.
For the neo-Hooken material, the strain energy per unit of initial volume has the form

(Ogden, 1984):

(5.13)
Ul dy i) = 2007 432 #47 =3

For an incompressible membrane, the strain energy may be expressed as

G (5.14)
w(k,p) = E(}»Z +ul +A7%u?=3).

The relaxed strain density and the stresses are then:

For A >v(u) and p>v(A)
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G
w(k,p) =?(k2 +ul+1%u?-3),

w, (A,u) =G —17u™?),
w, (h,p) =G —p~A?);

For A >1 and u <v(A) (wrinkled zone)
G
w(k,v(})) = 3(}3 -217"-3),

w, M) =G(A-17),
w, () =0.

For u>1 and A <v(u) (wrinkled zone)
. G, .
(v (W) == (u +2u-3),

w, (u) = G(-u~+1),
w, (A,n) =0;
For A <1 and pn <1 (slack zone)
w(k,u) =0; w, (A,p) =0; w, (A, u) =0.
For the Ogden material, the strain energy per unit of initial volume has the form

(Ogden, 1984):

2 (5.15)
U Ay A) =GO g, (A +0% +A% =3) /a,
r=1

where a, =13, a, =50, a, =-20;

g, =1491, g, =0003, g, =00237
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The membrane strain energy may be expressed as

3
wh, W) =G g, (A% +u* + (A\pw) ™ =3 /a,.

r=i
The relaxed strain density and the stresses are then:

For A >v(u) and u >v(})

3
wh,w =G g (A% +u™ + )™ =3 /a,,

r=I1

w, () =G Y g, (A% —a ') e,

r=1

3
w, (hu) =G g, la,u* " —a A" u™") /a, ;
r=1

For A >1 and p < v(A) (wrinkled zone)

3
W u) =Gy g, (A% +20%"% =3) /a,,

r=1

3
w(k,u) = ngr (arka,-l __ar)\--a,lz—l) /e,

r=1
W, (W) =0;

For u>1 and A <v(u) (wrinkled zone)

3
wih,u) =G g (> +2u™"% -3 /a,,

r=1

3
\,‘{;(}\,'“) = ngr (arua,—l _aru—a,/z-l) /ar )
r=1

w, (A,u) =0;

For A<1 and p <1 (slack zone)
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w(i,u) =0; w, (A,n) =0; w, (A,u) =0.

For a cylindrical membrane, four strain energy functions were considered. The
reference configuration of the membrane is a planar square membrane, then it is curled
into a cylinder with the top and the bottom boundaries fixed. Next the membrane is
subjected to an uniform non dimensional pressure. The lager principal stretch A at a
certain node varies with the pressures and the variation is shown in Fig. 5.1. From the
Fig.5.1e it can be observed that the solutions for the four strain energies give very similar
results under low pressure values, however the solutions have bigger differences when the
membrane is subjected to higher pressures. For the case considered here, only the Varga
material gives convergent solutions when the membrane is subjected to low pressures, the
maximum non-dimensional pressure is near 0.4; the Mooney-Rivlin material gives
convergent solutions when the non-dimensional pressures are lower than 2.0, the curve in
Fig. 5.1b changes smoothly; the maximum non-dimensional pressure for which the neo-
Hooken material gives convergent solutions is 0.45; Ogden material can also give
convergent solutions when the non-dimensional pressures are lower than 2.0, but
comparing with the solutions which are obtained by using the Moony-Rivlin material, the
curve changes sharply when the membrane is subjected to non-dimensional pressures
which are between 0.425 to 2.0. All these strain energy functions give faster convergence
when the membrane is subjected to lower pressures, the Moony-Rivlin material gives the
fastest convergence among these four materials and still gives convergent solutions when

the pressure is increased and the other three materials won't give convergent solutions.
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Figures 5.2 to 5.5 show that Mooney-Rivlin gives the largest strain energy and relaxed
strain density when the stretches are over certain values, Ogden gives the second largest

value, neo-Hooken gives the third largest, Varga gives the smallest.
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Fig. 5.1a Dimensionless pressure vs principal stretch A, Varga material
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Fig. 5.1b Dimensionless pressure vs principal stretch A, Mooney-Rivlin material
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Fig. 5.1c Dimensionless pressure vs principal stretch A, neo-Hooken material
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Fig. 5.1d Dimensionless pressure vs principal stretch A, Ogden material
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Fig. 5.1e Dimensionless pressure vs principal stretch A,

Varga, Mooney-Rivlin, neo-Hooken, Ogden material
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Fig. 5.2a Original Varga strain energy function,

for 0.02< A, u<100
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Fig. 5.2b Relaxed Varga strain energy function,

for 0.02<A, u<100
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Fig. 5.4b Relaxed neo-Hooken strain energy function,

for 0.02< A, p<100

79



wR (la /‘)

A
AR

N
\
N\-.
A
Al

\\\\\\‘
N
Q

N
N
N
N
Q

JRR
W
R
I
R \

NN

N

0

=
i
N
a

—
—1
)

Fig. 5.5a Original Ogden strain energy function,

for 0.02< A, n <100

80



774
Ii;/

7777/

777/

£L/

774

/Y 7

7777

7//

7
7

Z
.

24
4
4

7
4

2
2

77
&7
27

77
247

%@
Z

7
2

/
Ty

oy

\

V.
7
¢

N
WO
%%::: :

/%/////M////W/w

\
.
//////////

\

tion,
func
ergy

den strain en

Og

ed

Relax

Fig.

0
<10.
p 3
<\,

002<

for

81



5.3 Solutions to Problems Involving Ogden and Mooney-

Rivlin Circular Membranes Subjected to Hydrostatic Pressure

A circular membrane with unit radius is considered. The reference configuration is
shown in Fig. 5.6a. Ogden material is used first. The boundary is decreased from its
initial value of 1.0 to 0.5, leading to a 50% contraction of the circumference, which is
subsequently maintained fixed. Then, the entire membrane is subjected to pressure
loading of the hydrostatic type. The hydrostatic pressure considered in this work is
assumed as axisymmetic. Figure 5.6 shows the deformed configuration, which is nearly
axisymmetric. Total wrinkling occurs in a region of constant width immediately adjacent
to the boundary, followed by a partly wrinkled region. The tension trajectories are
represented by dashed lines at the zone centered points, the lower part of the membrane is
tense. Figure 5.6c shows the distribution of the principal stretch A . The maximum
computed value of A is 1.1.6, and occurs at the zone-centered points situated in the
vicinity of the parallel of maximum diameter. The principal direction of strain [ is tangent
to the meridian passing through each zone center. Fig. 5.6d shows the distribution of the
principal stretch . The maximum computed value of p is 1.15, and occurs at zone-
centered points situated on a parallel immediately adjacent to the apex of the deformed
surface. The principal direction of strain m is tangent to the parallel passing through zone
centers. The distributions of the principal Cauchy stresses w,u™' and w,A~ along a
meridian passing through zone-centered points are shown in Fig. 5.6e and Fig. 5.6f. The

direction of w,u™' is along [/, tangent to the meridian. The maximum
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Fig. 5.6a Circular membrane;

meshed reference configuration
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Fig. 5.6b Circular Ogden membrane
totally subjected to hydrostatic pressure,

combined with a 50% contraction of the boundary
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Fig. 5.6¢ Distribution of principal stretch A

along a meridian passing through zone-centered points

85



Fig. 5.6d Distribution of principal stretch p

along a meridian passing through zone-centered points
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Fig. 5.6e Distribution of principal Cauchy stress w, u™'

along a meridian passing through zone-centered points
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Fig. 5.6f Distribution of principal Cauchy stress w, A~

along a meridian passing through zone-centered points
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Fig. 5.6g Distribution of principal Piola stress w,

along a meridian passing through zone-centered points;

reference configuration
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Fig. 5.6h Distribution of principal Piola stress w,

along a meridian passing through zone-centered points;

reference configuration
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non-dimensional value of w,u” is 0.840, and occurs at the zone-centered points situated

along the parallel near the boundary. The direction of WH)\'—I is along m, tangent to the

parallel. The maximum non-dimensional value of wu}»" is 0.598, and occurs at the zone-

centered points situated along the parallel immediately adjacent to the apex of the
deformed surface. Fig. 5.6g and Fig. 5.6h show the distribution of the principal Piola

stresses w, and w, along a meridian passing through zone-centered points. The
direction of w, is along L, tangent to the meridian (in the reference configuration), and
the maximum non-dimensional value of w, is 0.695, occurring at the zone-centered

points on the parallel immediately adjacent to the center of the undeformed configuration.

The direction of w, is along M, tangent to the parallel (in the reference configuration).
The maximum non-dimensional value of w, is 0.693, occurring at the same zone-

centered points as w; .

Next, the membrane is only partially subjected to a pressure loading of the hydrostatic
type, while the boundary conditions remain unchanged. The non-dimensional volume of
the liquid is 0.01. Fig. 5.7a shows the deformed configuration, which is almost
axisymmetric, and Fig. 5.7b shows the liquid level. The unloaded region is completely
wrinkled, whereas the loaded region is almost completely tense. The tension trajectories
are represented by dashed lines at zone-centered points. Fig. 5.7c shows the distribution
of the principal stretch A along a meridian passing through zone centered points. The
maximum computed stretch A is 1.05, occurring at the zone-centered points situated

along a parallel in the vicinity of the liquid level. The principal direction of strain /
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Fig. 5.7a Circular Ogden membrane
partly subjected to hydrostatic pressure,

combined with a 50% contraction of boundary
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Fig. 5.7b Cross-section through a meridian of the deformed configuration;

liquid level shown
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Fig. 5.7c Distribution of principal stretch A

along a meridian passing through zone-centered points
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Fig. 5.7e Distribution of principal Cauchy stress w, ™'

along a meridian passing through zone-centered points
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Fig. 5.7f Distribution of principal Cauchy stress w, A

along a meridian passing through zone-centered points
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Fig. 5.7g Distribution of principal Piola stress w,

along a meridian passing through zone-centered points;

reference configuration
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Fig. 5.7h Distribution of principal Piola stress w,

along a meridian passing through zone-centered points;

reference configuration
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is tangent to the meridian passing through each zone center. Fig. 5,7d shows the
distribution of the principal stretch p along a meridian passing through zone-centered
points. The maximum computed stretch p is 1.04, and occurs at the zone-centered points
situated along a parallel immediately adjacent to the apex of the deformed surface. The
principal direction of strain m is tangent to the parallel passing through each zone center.
The maximum non-dimensional values of the principal stresses w,u”' and wu).“ are
0.244 and respectively 0.233. Fig. 5.7e and Fig. 5.7f show their distributions along a
meridian passing through zone-centered points. Both of the maximum non-dimensional
values occur at the zone-centered points situated along the parallel immediately adjacent
to the center of the reference configuration. The maximum non-dimensional intensity of

the principal stresses w, and w, are 0.255 and respectively 0.246, and they both occur at

zone centered points situated along the parallel immediately adjacent to the apex of the

deformed surface. Fig. 5.7g and Fig. 5.7h show the distributions of w, and w, along a
meridian passing through zone-centered points. The direction of w, is along L, tangent
to the meridian, and the direction of w, is along M, tangent to the parallel (in the

reference configuration).

Next, the Mooney-Rivlin material is used. For the same reference configuration, the
radius of the boundary is reduced to zero. This model may be used to simulate the
behavior of the biological tissues of a bladder. The deformed configuration is shown in
Fig. 5.8a. Total wrinkling occurs in a region of constant width immediately adjacent to
the boundary, whereas partly wrinkling occurs in the rest of the membrane surface. The

deformation is not axisymmetric. The tension trajectories are represented by dashed
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Fig. 5.8a Circular Mooney-Rivlin membrane
totaly subjected to hydrostatic pressure,

combined with a 100% contraction of boundary

101



Fig. 5.8b Distribution of principal Cauchy stress w, T

along a meridian passing through zone-centered points
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Fig. 5.8c Distribution of principal Cauchy stress w, A"

along a meridian passing through zone-centered points
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Fig. 5.8d Distribution of principal Piola stress w,

along a meridian passing through zone-centered points;

reference configuration
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Fig. 5.8e Distribution of principal Piola stress w,,

along a meridian passing through zone-centered points;

reference configuration
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lines at zone-centered points. The principal directions are not shown in the tense regions.

1

The maximum non-dimensional principal Cauchy stress w,u” occurs at the zone-

centered points situated along the parallel immediately adjacent to the boundary, and is

much larger than the principal stresses at the other zone-centered points. The maximum
non-dimensional value of w,A™ is 3.291. The direction of w,A™" is along /, tangent to
the meridian passing through the zone-centered points. The maximum non-dimensional
value of the principal stress w, A" is much smaller than the maximum non-dimensional

' is 0.377, and occurs at

values of w, ™. The maximum non-dimensional value of w; u
the zone-centered points situated along the parallel immediately adjacent to the apex. The
direction of w,p™ is along M, tangent to the parallel. The distributions of w,u™ and
w, A" along a meridian passing through zone-centered points are shown in Fig. 5.8b and

Fig. 5.8c. The maximum Piola stresses w, and w, occur at the same zone-centered

points situated along the parallel that is immediately adjacent to the apex. The

distributions of w, and w, along a meridian passing through zone-centered points are
shown in Fig. 5.8d and Fig. 5.8e. The maximum non-dimensional stress w, is 0.425 and
the maximum non-dimensional stress w, is 0.411. The direction of w, is along L,
tangent to the meridian, and the direction of w, is along M, tangent to the parallel (in the

reference configuration).
The numerical results show a periodic non-axisymmetric structure of the deformation,

corresponding to pleats in the membrane. The deformation contains regions of self
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penetration of the membrane, which would not occur in practice. To model this behavior

properly, the effects of self contact would need to be taken into consideration.
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5.4 Solutions to the Ponding Problem

Planar inflatable membranes may be used as large-scale roof coverings. If an initial
depression occurs at the apex, the Ponding Phenomenon may be observed to appear after
rain or snow. This will cause geometric changes. In the present work, only axisymmetric
liquid loading is considered. For safety considerations, the response of the structure to the
overloading caused by hydrostatic pressure is of major importance.

An Ogden circular membrane with unit radius is considered. The reference
configuration is plane, as shown in Fig 5.9a. A graded mesh is used in this application.
The boundary conditions require that the radius of the membrane is reduced to 0.5 and
then kept fixed. An uniform non-dimensional pressure p =2 is applied upwards, and the
configuration becomes spheroidal, as shown in Fig 5.9b. The deformed configuration is
almost axisymmetric, wrinkling only occurring in the region near the boundary. The
tension trajectories are represented by dashed lines at zone-centered points. The rest of
the membrane is tense, and the principle directions of stress are not shown in the tense
region. Next, if a depression occurs at the apex of the membrane structure and
axisymmetric liquid loading is added into the depression, the Ponding Phenomenon can
be observed. The response depends on the density of the liquid, the internal pressure and
the geometric parameters of the membrane structure (Szyszkowski and Glockner, 1984).
For the given internal pressure, the initial geometry and the displacement boundary
conditions, the liquid density used here is such as to fill up to the depression's capacity

with little additional deflection taking place. The deformed configuration is as
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Fig. 5.9a Circular membrane;

meshed reference configuration
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Fig. 5.9b Circular Ogden membrane

totally subjected to a uniform pressure,

combined with a 50% contraction of the boundary
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Fig. 5.9c Circular Ogden membrane simultaneously subjected to
internal uniform pressure and external pressure loading of a hydrostatic type,

combined with a 50% contraction of the boundary
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Fig. 5.9d Crosse-section through a meridian of the deformed configuration,

liquid level shown
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Fig 5.9e Distribution of principal Cauchy stress w, i

along a meridian passing through zone-centered points
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Fig. 5.9f Distribution of principal Cauchy stress w, A"

along a meridian passing through zone-centered points
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shown in Fig 5.9c. The wrinkling occurs at almost the same zone-centered points as in the
case of the internal pressure loading only. The deformed configuration is almost
axisymmetric. The tension trajectories are represented by dashed lines at zone-centered
points. The principal directions of stresses are not shown in the tense region. Fig. 5.9d

shows the liquid level. Fig. 5.9e shows the distribution of the principal Cauchy stress
w, u™" along a meridian passing through zone-centered points. The direction of w, ™ is
along /, tangential to the meridian. The maximum non-dimensional value of w, ™ is
1.22, and occurs at the zone-centered points situated along the parallel near the boundary.
Fig. 5.9f shows the distribution of wp)\“ along a meridian passing through zone-centered

points, and the maximum non-dimensional value is 0.8543, which occurs at the zone-

centered points situated along the parallel adjacent to the apex of the deformed surface.
The direction of wu}»" is along m, tangent to the parallel. Figure 5.9g shows the
distribution of the principal Piola stress w, , with the maximum non-dimensional value of
1.13. Figure 5.9h shows the distribution of w, , and the maximum non-dimensional value
is 1.12. The maximum values of w, and w, both happen at the zone-centered points
situated along the parallel adjacent to the apex. The direction of w, is along L, tangent to
the meridian, and the direction of w, is along M, tangent to the parallel (in the reference

configuration).
If too much liquid is accumulated in the depression at the apex of the membrane, the
structure will fail. The quantity of the liquid corresponding to this critical situation can be

easily predicted with this model.
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5.5 Solutions to Problems Involving Mooney-Rivlin

Cylindrical Membranes Totally Subjected to Pressure Loading

A cylindrical membrane with unit radius and a height of 2x is shown in Fig.5.10a.
Since the numerical model developed in this work is suitable to membrane structures with
plane reference configurations, the cylindrical membrane is developed into a square
membrane, by cutting it along a generatrix. The resulting square has a side length of 2x.
The meshed square membrane is shown in Fig. 5.10b. A graded mesh is used. To impose
the boundary conditions, the cylindrical configuration is considered again. Then, while
the radius of the top boundary is kept fixed, the radius of the bottom boundary is reduced
to zero. First a non-dimensional uniform pressure of 1.0 is applied in order to compare
the response with the one for the same boundary conditions but for a membrane subjected
to hydrostatic pressure loading. The deformed configuration of the membrane subjected
to the uniform pressure is shown in Fig. 5.10c. This is almost axisymmetric. Total
wrinkling occurs in a region immediately adjacent to the bottom boundary, followed by a
partly wrinkled region. The tension trajectories are presented by dashed lines at zone-
centered points. The remaining part of the membrane is tense. The principal directions of

the stress are not shown in the tense region. Fig. 5.10d shows the distribution of the
principal Cauchy stress w, u™ along a generatix passing through zone-centered points,

the maximum non-dimensional value being 2.8265, and occurring at the zone-centered

points situated along the parallel adjacent to the bottom boundary. The direction of

w, " is along /, tangent to the generatrix. Fig. 5.10e shows the distribution of w, u™
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Fig. 5.10a Cylindrical Mooney-Rivlin membrane;

meshed reference configuration
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Fig. 5.10b Square Mooney-Riviin membrane;

meshed reference configuration
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Fig. 5.10c Cylindrical Mooney-Rivlin membrane,
subjected to uniform pressure,

with fixed upper boundary and a 100% contraction of the lower boundary
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Fig. 5.10d Distribution of principal Cauchy stress w, ™

along a generatrix passing through zone-centered points
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Fig. 5.10e Distribution of principal Cauchy stress w A~

along a generatrix passing through zone-centered points
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Fig. 5.10f Distribution of principal Piola stress w,

along a generatrix passing through zone-centered points;

reference configuration
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Fig. 5.10g Distribution of principal Piola stress w,,

along a generatrix passing through zone-centered points;

reference configuration
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along a generatrix passing through zone-centered points. The maximum non-dimensional

value is 1.7423, and occurs at zone-centered points situated in the vicinity of the parallel
of maximum diameter of the membrane. The direction of w,u'is along m, which is
tangent to the parallel. For the Piola stresses, the distribution of w, along a generatrix

passing through zone-centered points is shown in Fig. 5.10f. The maximum non-

dimensional value of w, is 1.7423, and occurs at the zone-centered points situated in the
vicinity of the parallel of the maximum diameter of the membrane. The direction of w, is
along L, tangent to the generatrix. The maximum non-dimensional value of w, occurs at
the same zone-centered points as w, , its value being 1.4092. Fig. 5.10g shows the
distribution of w, along a generatrix passing through zone-centered points. The direction
of w, is along M, tangent to the parallel (in the reference configuration).

Then the membrane is totally subjected to hydrostatic instead of uniform pressure.
Figure 5.11a shows the deformed configuration. which is almost axisymmetric.

Wrinkling also occurs only at the bottom of the membrane, as shown in Fig. 5.11b,
representing the bottom view. The distribution of the principal Cauchy stress w,

along a generatrix passing through zone-centered points presented in Fig. 5.11c. The

maximum non-dimensional value is 2.667, and occurs at the zone-centered points situated
along the parallel adjacent to the bottom. The direction of w, ™ is along /, tangent to the
generatrix. Figure 5.11d shows the distribution of w, 1~ along a generatrix passing

through zone-centered points. The maximum non-dimensional value is 1.4625, and

occurs at zone-centered points situated in the vicinity of the parallel of maximum
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Fig. 5.11a Cylindrical Mooney-Rivlin membrane
with fixed upper boundary and a 100% contraction of the lower boundary,

totally subjected to hydrostatic pressure
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Fig. 5.11b Bottom view
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Fig. 5.11c Distribution of principal Cauchy stress w, pu™'

along a generatrix passing through zone-centered points
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Fig. 5.11d Distribution of principal Cauchy stress w, A

along a generatrix passing through zone-centered points
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Fig. 5.11e Distribution of principal Piola stress w,

along a generatrix passing through zone-centered points;

reference configuration
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Fig. 5.11f Distribution of principal Piola stress w,

along a generatrix passing through zone-centered points;

reference configuration
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diameter. The direction of wp}»"‘ is along m, tangent to the parallel. The distribution of
the principal Piola stress w, is shown in Fig. 5.11e. Its maximum non-dimensional value
is 1.0813, and occurs at the zone-centered points situated in the vicinity of the parallel to
the maximum diameter. The direction of w, is along L, tangent to the generatrix. Figure
5.11f shows the distribution of w, along a generatrix passing through zone-centered
points. The maximum non-dimensional value is 1.0574, and occurs at the same zone-
centered points as w, . The direction of w, is along M. tangent to the parallel (in the

reference configuration).

From the above figures it can be observed that the deformed configurations of the
cylindrical membrane with similar boundary conditions but subjected first to uniform
pressure and subsequently to hydrostatic pressure are very different. The distributions of

the principal Cauchy stresses and of the Piola stresses are also different.
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Chapter 6

Experimental Validation

6.1 Introduction

Numerical solutions of static problems involving isotropic elastic membranes
undergoing finite deformations can be obtained by using the numerical technique based
on the DR method. All the membranes considered here started with plane reference
configurations and ended with 3D surfaces as deformed configurations. An experiment
has been designed with the objective to verify the numerical model developed in this
work. It would be desirable to design an experiment and obtain experimental results for
one of the problems given in Chapter 5, but there are technical difficulties to achieve this.
Pressure loading of the hydrostatic type on an elastic membrane with displacement
boundary conditions is challenging to model experimentally. Therefore the validation of a
simple problem with numerical as well as exact solutions already given by Haseganu
(1994) is chosen. Also due to the limitations of the measuring equipment, only the trend

of the experimental results is presented in this work.
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6.2 Numerical Model

For the numerical model, the reference configuration is a square membrane with sides
of unit length. Fig. 6.1a shows the meshed reference configuration. The mesh density is
21x21. The Ogden strain energy function is employed. The following displacement
boundary conditions are imposed: the boundary of the square is deformed into a rhombus
while maintaining the lower boundary fixed until the left boundary forms an angle of 35°
and then 45° with the vertical. The deformed configuration is shown in Fig. 6.1b,
respectively Fig. 6.1c. The trajectories of tensile stress are represented by dashed lines at
zone-centered points, indicating wrinkling over the entire membrane. Computed
numerical results for the displacement of every node, the principal stretches and the

principal directions at every zone-centered point were obtained.

6.3 Experimental Model

Strain gages are generally used to measure the strain at a material particle of an elastic
material, then the stress may be obtained from the constitutive equation. But the common
strain gages cannot be used here, since by mounting the gages a substantial variation in
the local stiffness of the membrane material would occur, and this would considerably
alter the response of the membrane. Also these gages are used for infinitesimal strain.
Thus in this work, the principal stretches A and p and the principal direction [ were

obtained from an experiment by measuring the coordinates at chosen testing point.
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Fig. 6.1a Square membrane;

meshed reference configuration
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Fig. 6.1b Square membrane subjected to shearing (35°)
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Fig. 6.1c Square membrane subjected to shearing (45°)
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For the experimental model, a square wooden frame is used to clamp the membrane.
The membrane material used in this experimental is polyethylene material. Before the
square membrane was mounted on the frame, four dots were plotted on the membrane.
The dimensions of this frame and the locations of the dots are shown in Fig. 6.1d. Dots 1
to 4 are the dots situated at four zone-centered points. The 48 dots around each zone-
centered dot were plotted to find the maximum and the minimum stretches and their
directions. The same mesh density as for the numerical model was chosen, but only the
dots were plotted on the sheet, the mesh was omitted. Fig. 6.le shows the reference
configuration of the square membrane having all four margins attached to the frame by 20
C-clamps. Fig. 6.1f and Fig. 6.1g show the deformed configurations for a shear angle of
35° and 45° respectively. The strain energy employed in the numerical model is suitable
for some biological materials (biomembranes) as well as polyethylene material
(Humphrey, 1990). To get the experimental results for the principal stretches and the
principal directions, three photographs were taken, the first one is the picture of the
reference configuration, the other two are the pictures of the deformed configurations
with the two shear angles. Coordinates of every dot plotted on the membrane shéet were

measured by digitizing the photographs.
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Fig. 6.1d Experimental model of square membrane;

location of testing dots shown
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Fig. 6.1e Experimental model of square membrane;

initial configuration
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Fig. 6.1f Experimental model of square membrane

subjected to shearing (35°)
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Fig. 6.1g Experimental model of square membrane

subjected to shearing (45°)
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6.4 Results

For the case of a shear angle equal with 35° the comparison of the experimental
results and the numerical solutions obtained with the numerical model developed in this
work are shown in Fig. 6.1h. At point 1, the difference between the computed A and the
measured A is 0.23, for p the difference is 0.05, and for the direction of / the difference
is 2.5°. At point 2, the difference between the numerical solution and the experimental
one is 0.007 for A, 0.04 for p, and 5° for the direction of /. At point 3, the difference
between the experimental results and the numerical solutions is 0.17 for 4, 0.01 for u,
and 2.5° for the direction of I. At point 4, the difference between the experimental results
and the numerical solution is 0.02 for A, 0.07 for w, and 5.5° for the direction of /.

For the case of a shear angle equal with 45°, the comparison of the numerical solutions
and the experimental results are shown in Fig. 6.1i. At point 1, the difference between the
experimental results and the numerical solution is 0.25 for A, 0.03 for u, and 2.5° for
the direction of /. At point 2, the difference between the experimental results and the
numerical solution is 0.15 for A, 0.03 for p, and 2.5° for the direction of /. At point 3,
the difference between the experimental results and the numerical solution is 0.11 for A,
0.08 for w, and 1.5° for the direction of [. At point 4, the difference between the
experimental results and the numerical solution is 0.07 for A, 0.08 for wu , and 2° for the

direction of /.
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Fig. 6.1h Comparison of numerical results and experimental solutions;

shearing angle of 35°
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Fig. 6.1i Comparison of numerical results and experimental solutions;

shearing angle of 45°
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The inconsistencies in the measured results come from the mounting of the membrane
and from the measurement technique. Twenty C-clamps were used to clamp the edges of
the membrane to the frame. Although two intermediate wooden lamellae were employed
to uniformly distribute the pressure on each clamped side of the membrane, load
variations in pressure would still occur. Thus not every material particle of the membrane
on the boundary got the exact displacement boundary conditions. The errors also come
from the measurement technique, which is primitive. Due to lack of appropriate
equipment, the way the coordinates were measured from the photographs cannot give
very accurate results. In order to get more accurate experimental results, better
instruments, such as laser measurement instruments should be used.

Although causes for errors exist in the experiment, the experimental results still
indicate the same trend as the numerical solution. Wrinkling occurs in the whole
membrane, as the numerical model shows and the stretches increase with increasing shear
angle. It is concluded that, for available equipment the experimental results agree

sufficiently well with the numerical solution.
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Chapter 7

Summary, Conclusions and Future Work

7.1 Summary and Conclusions

A numerical model has been developed for stress analysis in isotropic elastic
membranes undergoing finite deformations, while partly or totally subjected to pressure
loading of the hydrostatic type. The possibility of wrinkling is taken into account. The
presence of tension fields generated by wrinkling is a problem of concern in the design
and analysis of membrane structures. Wrinkling occurs due to the loss of prestress and
appearance of compressive stresses, under the action of certain loads and/or certain
boundary conditions. [t represents a local bucking phenomenon. The configuration of the
wrinkled region depends on the small bending stiffness of the material. Membrane theory
cannot be applied directly to the wrinkled region, since the bending stiffness is neglected
in this theory, and compressive stresses are obtained. Solutions with compressive stresses
are unstable, and therefore not observable as equilibrium states. Shell theory may be used
in the wrinkled region to get solutions, but it is more complicated in comparison to
membrane theory. Tension field theory may also be used to analyze the wrinkled region,

and this is much simpler from the point of view of analysis. However tension field theory
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can be automatically incorporated into ordinary membrane theory by replacing the strain
energy function by a relaxed stain energy. In this work, a Relaxed Strain Energy Density
is used in the modeling process, in order to consider the wrinkling effect while retaining
the analytical simplicity of membrane theory.

This numerical model is based on the Dynamic Relaxation (DR) method. This is an
explicit iterative method developed to solve static structural mechanics problems. The
static problem is transformed into an equivalent dynamic problem by adding inertia and
damping terms. The static solution may be then obtained as the steady state part of the
transient response of the structure. The numerical model is obtained from the spatial and
temporal discretization of the PDEs describing the damped motion of the structure. The
spatial discretization technique used here is a finite difference technique derived from
Green's theorem (Wilkins, 1964, Silling, 1985). In addition to its simplicity, this method
is suitable to any shape of the boundary. Uniform or irregular meshes may be used. The
resuiting system of ODEs is then integrated in time by employing a central difference
time integrator. This numerical technique is particularly well suited for the class of the
problems considered here, since it does not require the construction or inversion of the
stiffness matrix, which in the presence of wrinkling is ill-conditioned. DR also has these
advantages:

« itis an explicit, iterative technique with low storage;

e it is easy to program;

 fictitious mass and damping characteristics may be chosen for rapid convergence

in time;
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« it is simple, reliable and flexible with regard to constitutive equations;

« it delivers asymptotically dynamically stable solution.

This numerical model has been used to analyze the response of isotropic elastic
membranes subjected to pressure loading of hydrostatic type for various planar reference
configurations and different boundary conditions. The deformed shapes, the principal
stretches, the principal stresses and their directions and the delimitation of the wrinkled
regions were obtained form the output files.

An experimental model consisting of a square membrane subjected to shear and
stretch was investigated in order to validate this numerical technique. The principal
stretches, the principal stresses and their directions were determined. The numerical
results obtained with the experimental model were in good agreement with the numerical
solution.

This method can be used for stress analysis of in lightweight constructions, it can be
applied to the problems involving ponding of inflatables, a condition frequently
encountered in large scale roof coverings, such as protective enclosures for recreational
facilities or exposition pavilions. The method is also applicable to biomembranes as well

as to membranes used in prosthetics.

7.2 Future Work

The DR algorithm used in this work may be modified to an adaptive one, by adding

subroutines to calculate the fictitious mass matrix and the damping coefficient at each
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time step. This would lead to a faster convergence of the damped dynamic response
toward the static solution.

This numerical model can be further adapted to analyze problems involving initially
curved surfaces, the case of orthtropic materials as well as anisotropic materials.
Temperature effects may be also included.

Improved experimental techniques, based on better equipment, such as measurements
with laser instruments, may be chosen to improve the accuracy of the experimental

results.
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