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A’ ' ABSTRACT

Generation, Design and Optimization of
Stray Insensitive SC Networks

ro H
¢

Jose Carlos Moreira Bermudez, Ph.D.
Concordia University, 1985.

{ | . n
A systematic and comprehensive Spproach foru the
generation!, design and optimization of stray insensitive
switched.capacitor networks is proposed in this thesis.
Special emphasis is given to circuits employing one §nd two
operational amplifiers (0OAs). Towards éhis end, the
parasitic insensitivity conditions reported ea;lier in the
literature are exploited in develobing the generation
procedure, The study of single” OA networks leads to a
step-by-step gene}ation and design procedure gpich allows,
mény times, considerable improvements in already existing
designs. The investigation of second order networks (two
OAs) yields 23 new biqﬁads, some of which allow designs with
minimum number of capacitors. The five parasitic
insensitive general biquads reported so: far in the
literature are also derived in the process. Finally, a
computer-aided procedure to reduce-<wmhe integrated circﬁit
area required to realize a given discrete transfer function
by a switched capacitor network is proposed. fhe method
minimizes the total ! capacitance of the final network

implementation. Tradeoffs between total capacitance and
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network sensitivities are discugseﬂ. Examples are given K to

demonstrate the possibiiity of design improvement b& using

the techniques introduced in this thesis. Extengive

" laboratory tests confjirm the validity of the techniques

presented in ‘this thesis, \ J
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CHAPTER I .

INTRODUCTION

>

1.1 PRELIMINARY CONSIDERATIONS

Metal-Oxide-Semiconductor (MOS) integrated circuit
technology is unique in its ability to store signal carrying
charge packages for relatively long periods of time, to move

such packages under clock control and to continuously sense

the charge without destroying the information (high input

impedances). This inherent analog memory capability has
been widely exploited in the design of dynamic logic
circuits énd dynamic random access memories. Another
attraction Sf MOS technologies 1is the fact that its
transistor structure is much simpler than the bipolar
structure, 'allowing higher integrated circuit densities.
Furthermore, MOS circuits consume much less power than their

bipolar counterparts.

% As a result of continuous advances in MOS
technology, increasingly'powerful digital signal processors
have replaced analog circuttry in many application areas.
However, the electrical signals on.which these processors
operate are usually continuous-time analog quantities, such
as 8speech, to gquote one example. Cénsequently, interface
circuits are required to interconnect the analog and digital

environments. Typical | interface functions are

Al
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amplification, filtering and analog to digital -ras well as
digital to analog conversions. It is highly desirable from
economic standpbint to have these interfaces incorporated
with the digital circuitry in a single large scale
integration (LSI) chi%. ‘It has also "been shown that, by
slightly modifying the MOS technology to include precision
MOS capacitors, the same inherent technological capabilities
of the original MOS processes can be used to realize analog
funcFions in a form compatiblg with the high density,

low-cost digital LSI circuitry.

About a decade a ’analog to digital conversion
was first implemented by - i?i-MOS circuits using charge
redistribution techniques [1,2]. It was foundbthat with
proper design, the monolithic MOS capacitor possessed
remarkably stable characteristics in terms of its Qoltage
and temperature coeffici%nts (typically 10-50 'ppm/oc and
20-200 ppm/V, respectively [3]). The absolute value of the
capacitance, however, exhibited random processing variations

of the order of 10 to 20 percent, This limitation was, soon

overcome by the development of design techniqﬁes in which.

the precision analog ‘quantities were defined by .ratios oﬁ

MOS capacitors, instead of by their absolute values. 'With

proper layout techniques ratios of monolithic MOS capacitors .

are reproduciblé with accuracies of 0.1% {3,4,5]. Also, by

the same time, an internally compensated MOS 6perationa£3

amplifier (OA) was developed [6]. e

-
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One of the areas of application which has benefited \

. ' )
most from the development of MOS technology for the

’tation of analog circuits is telephony, through the

R N S5 s TR

implemen

k)

utilization of switched capacitor (SC) filters.

PRRCINCIS

&
SC circuits are sampled-data analog systems, and as

-~ ~w»sSuch they occupy an intermediate position between * fully -
analog (continuous time/continuous :;tmplitude) and fully
digital (discrete time/discrete amplitude) systems. For i
filtering applications,” in particular, they offer several
advantages over fully analog ci;:cuits. They can be
completely integrated yielding compact, reliable and : $
inexpensive (for large volume applications) filters. Their
frequency responseg are controlléd by clock signals. Henge,
these filters can’ be easiiy synchronize‘d,' multiple'xed and

I3

'iSrogrammed .

Compared to an equivalent digital filter, the SC

vk RO xS e -

realization usually reguires a Yess complicated structure
and often much less chip area on an integrated circuit. On
the other hand, its ad¢curacy is limited to the equivalent of
about 10 bits (0.1% accuracy in the capacitance ratios).
‘This may prevent the use of SC filters in applications where

very high accuracy is critically important. Therefore, SC

P
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and aigital fiters tend to have complementary applications ~

and are usually not directly competitive in any situation.’
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1.1.1 Introduction to SC Filters 4
!

\ S

High quality analog filters had been _,historigaliy
realized as passive RLC circuits. However, ;’.nductors are ’
physically large, electrically loésy ‘ar‘fd noisy, . and
u@uitablek{miniaturization. Consaquently,.'an effort to
replace' them by active elements began in the sixties with
the appea‘rance of the RC-active filters. This- type\ of
filter has gained -wide acceptance since then, spec;'.ally for
applications in the voice frequency range (0 - 4kHz). In
orderj to reduce their physical siz‘e, R(?-active filters are
often implemented in a hybrid form, by using thickai}.m or
thin-film technold¥ies. THiek f£ilm circuits consist of
resistive inks fused onto the surface of a ceramic subsvti'a e‘
and monolithic operational amplifiers (OAs) bonded onto the
substrate. Since-good quality thick-film capacitors are not
easily obtained, usually discrete c’apacitors\‘are externally
soldered to the circuit. Thin-£ilm cii‘cui;\s consist of
Uresistors ;'and" capacitors deposited on a ceramic or alumina
subétrate. The £ilm thickness useci is considerably less*

-than in the thick—-film process. As in thick film circuits,”

monolithic OAs are soldered onto the substrate.

The next s'tep towards.MTRiaturization is to realize
fully integrated (monolithic) filters. For the advantages
previously discussed, MOS technology is usually ‘preferred ,
over the bipolar technology for filtering applications. The

[

integration of\RC-active filters, however, presents some

e
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difficulties. Due to ‘the area they occupy in the chip, MOS )

h capacitors are seldom made larger than about 100pF (a 1pF

capacitor oécupies an area of about 200um2). Since for
filtering applications in the voice frequency range time
constants of the order of rRcz10™7%s are required, a
reasonably large capacitor (say, C=10pF) would require a

resistor R of the order of 1079. Such a resistor would

occupy an area around 106um2' which is approximately 10% of
the average chip area of an entire analog MOS integrated
circuit [(7]. Furthermore, MOS resistors tend " to be
nonlinear. Also, since both capacitors a;'ad resistors have,
at present, absoclute accuracies of only\S‘\t‘o* 10 percent, and
their errors are not correlated, the overall error of a RC

time constant can be as high as 20%. _This error will also

vary with the temperature and the signal level
s

(2
\

Switched cabacitor techniques offer an elegant

" solution to this problem in MOS technology. The basic

7

principle of operation is very simple.” Early researchers in

.she area of S}: filter's visualized the possibility of
simulating the chéracteristics of a resistor by switching a
capaci tor betweoen two circuit nodes using a high frequency
clock signal. Consider, for example, the circuit of
Fig. l.l’(a). This circuit- is composed by a capacitor C and
two anglog switches. The switches are «closed (short

circuited) and open (open circuited) alternately, according

to the clock signal represented in Fig. 1l.2.
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Figure l.1: Resistor equivalent
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When the even phase of the clock signal is "ON"
(high voltage level), the even switch is closed and, because
of the non—bverlappiﬁg nature of the two clock Bhases, the
odd switch (o) is opén {odd phase is “OFF"). In the next
clock phase (odd), the positions are reversed - The even
swiﬁch is open and the ogd switch is closed. This operation

is repeated at the clock rate fs=l/T, T being the entire

. clock period, as shown in Fig. 1.2. The clock rate £ is

s
also -often referred as the sampling rate or the sampling

frequency in the SC literature.

a

During the even phase, capacitor C 1is charged to

‘the voltage vy and, during the odd phase, é is charged to

l

the voltage v The amount of chargé that 1is transferred

2'
between the two nodes is then given by

40 = C(Vl - v2) (1.1)

Since the switching operation is‘repeated at frequency fs’
the average current paésing from‘vl to v, can be calculated

as
I = AQf = CE_(v) = V,) o (1.2).

If the switching rate is much higher than the signal
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frequencies of interest, the time sampling effect can be
ignored in a first-order analysis and the switched capacitor

C can be considered as a direct replacement of

a
conventional resistor R with the value ¢
R = 1 . 1.3
Ct_ . : %

For example, a resistance of 1MQ can be obtained by
. .
switching a 10pF capacitor at 100kHz.

The switches are implemented by, two  MOS
transistors, as shown in Fig. 1.1(b). Note that now very
little silicon area 1is needed té implement signdficant
resistance values. As a matter of fact, the ;rea (which is
pfoportional to the capacitance value) decreases as the

required resistance increases.'

This resistor equivalence arrangement was used in , -
the early stages of the devélopmeht of SC filters. The idea

¢
was to replace directly the resistors used in the well known

st

{
RC-active structures [7,8!9].' Consider, for example, . the

PRI

inteqrator «circuit shown 1in Figqg. 1.3(a).v The s-domain

voltage transfer function of this network, considering ideal

3
i
%

elements, is given by ' '

\p

-—-—a-._l_

V1 sRC ‘ (1.4)
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Now, consider the arrangement in Fig. 1.3fb). Here the
/resistor has been replaced by the switched- capacitor

Cr=l/(Rfs), - according to (1.3). Then, by the resistance ,,
. eéuivalence concept, the switched capacitor integrator has

the same transfer fynction with the new time constant

C . t
£ 1
% RC ='== _ ' (1.5)
‘? C r s . ) ’ .

Hence,"’ ﬁhe in;egrator response is now determined by the
capacitor ratio Cf/Cr. This result is vital for the success
of = the SC technique. it implies " that the frequency
responsés of filters composed by such integrators are
determined solély as functions of capacitan;e ratios, Since
capacitance ratios can be obtdined with high precision in

»

the MOS fabrication process, very compact and highly

z

reliable circuits can be realized. .

It soon became clear, however, that the time' delay
through the switched capacitor integrators,; when employed in _
a larger network, could lead to significant errors (even
'compromising the circu}t stabiliéy) ,in predicting the
neEwork behaviour [10,11]. Thus, the idea of direct
resistor equivalences hag been gradually abandoned.
Nevertheless, the'potential ability of the SC networks in

realizing highfﬁrecision monolithic integrated analog MOS

'

.
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circuits was, in the process, .revealed.

At present, SC networks are regarded as a dis;inct
class of discrete-time networks and got as an alternative
implementation for continuous-time counterparts. Exact
analysis methods employing ’;he z-Transform have been
developed in ofder to predict correctly the network

B <]
behaviour (12,13]. Thus, with proper z-domain based

[} .
‘designs, SC techniques allow precision filters to be

produced in monolithic form @ithout the need for trimming or

. recalibration. They represent the latest design techniques

for filter networks over the RC-active techniques oﬁ the

sixties ‘and seventies.

Since the late seventies, various design procedures
and new structures have.peen proposéd for the éynthesis of
SC filters. The development of these design .methodologies
followed very closely ﬁhe paths used £for the deéign of

RC-active networks. Large majority of the designs proposed

so far are based on component simulations (resistances and

indﬁctances), operational simulation of passive RLC ladder
networks or on the interconnection (mainly in cascade form)
of first and second order (bigquads) building blocks. Again,
as in the RC-active case, while the ladder network designs
tend to yield realizations with very low sensitivities at
thé cost of more complicated synthesis procedures, the

building blocks approach offer high modularity and easy to

design networks at ff}~ expense of a degradation on the)

N

P
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1

sensitivity pefformance. However, for SC networks, ;he
inperent capacitance rétio accuracy reduces considerably the
effects of the increased sensitivities to element variations
on the realized transfer function. This fact allows the
designer of SC networks to be more tolerant with respect to
acceptable sensitivity performances in the design process.
Sensitivity values which would ~ be considered unacceptable
for a RC-active network Are, many times, routinely tolerable
in a 8C network. Consequently, as it should be expected,
the simpler and mééjlar approach of filter design using
first and second o;der building blocks has enjoyed 1large

popularity on the synthesis of high order SC filters.

Any technology, no matter how good it might be, has
its own inherent drawbacks for a  specific .type of
implementation. These drawbacks have to be overcome by

improving the fabrication process and/or by using special

circuit theory techniques in the generation of the network i

topologies to be employed. Switched capacitor networks are
no exception to this rule. Technological problems such as
noise generated by the different components, leakage
currents of the MOS transistors, low open-loop gain aﬁd poor
power supplycpoise rejection of the MOS OAs, among others,
must be considered in the design of the final chip layout in

q
order to guarantee a good filter performance [3,5]. Among

* the problems inherent to the SC technology which should be

considered during the network topology generation stép, one
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of the most important ones is, undoubtedly, the influence of
the various parasitic capacitances created in the
fabrication process on the frequency pefﬁormance of the
. filter. Their effects and the solution to the problem are
the subject of the next section.

1.2 -STRAY INSENSITIVITY CONDITIONS
3

In the analysis of an actual SC network, parasit%c
éapacitances to the substrate (ac ground) from the various
switch terminals (specially drain and source), from the
routing lines interconnecting the network elements and from
the capacitor plates will provide an error in the definition
of the transfer function coefficients if not properly
considered [4,5]. Since capacitances of the order of 1pF
(often as small as 0.1pF) are currently employed in
integrated SC circuits, the parasitic.capacitances from the
va}ious nodes of the circuit to the ground node cannot be
neglected or even conéidered to be small. Furthermore, the
values of the parasitic capacitances in a MOS circuit are
strongly dependent on the specifics of the fabrication

technology employed and, many times, on the operating points

of the different MOS devices within the same circuit [3].:

Moreover, the stray capacitance associated with a given node
is typically nonlinear in nature [3,4,5] and its value will
depend on the number and types of the circuit elements
connected to that node. Therefore, the values of the

various parasitic capacitors of a SC circuit should be

Bt L NNTI AL AU S
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regarded as completely independent of each other.

In order to illustrate better the influence of the
stray capacitances on the electrical behaviour of the
network, consider again the SC integrator of Fig. 1.3(b).
The analysis of this network (analysis procedures are
reviewed in the next section) reveals that thé ratio of the
output voltage V, to the input voltage V,, both sampled in

the even phase of the clock signal, is given by

-

e .
X& = - SE z ! (1.6)
e C _ -1 '
vy £f1 z

Now, if the parasitic capacitance, say Cp' existing from

node 3 to ground is considered, it would be always in

pérallel with Cr' Consequently, the actual voltage transfer

.

function of the integrator is given by

(1.7)

Since typical values for Cp, which includes all the

stray capacitances from that node to ground, can be

considered to reach around 5% of the value of Cr’ a

corresponding error will exist for each gain constant within

any network containing the integrators if they are designed

according to equation (1.6). Such design inaccuracies may

N
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.
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lead to intolerable errors “in the netﬁofk frequency
response, Fortunately, the errors due to parasitic
capacitances may be eliminated through proper circuit design
techniques,

In what follows, we will be dealing with the most

popular type of SC networks, namely the biphase SC networks,

in which the clock signal is provided by two non-overlapping

phases (here termed even and odd) with a 50% duty cygle

f4,5], as per Fig. 1l.2. fhe 50% duty cycle condition can be
relaxed most of the times and is used only for the sake of
simplicity of exbgessions. Moreover, for all purposes,
capacitors, switches and OAs "will be considered ideal,

except for their parasitic capacitances which cannot be

disregarded for any operating frequency range or signal

amplitude levels. Ideal capacitors are lossless elements,
with no "leakage current associated with them. Ideal
switches are considered .to be perfect short-circuits when

closed (zero "ON" resistance) and perfect open circuits when

open (infinite "OFF" resistance). Ideal OAs are

differential amplifiers with infinite DC open-loop gain,

L d

infinite input impedance, zero output impedance and infinite

bandwidth. As a consequence of these considerations, the

main application of the circuits studied in this thesis will -

be in the area of voice band signal filﬁeiing. However, the'

majority of SC filters are, at present, used in this area.
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A set of copditions which guarantees the stréy
insensitivity‘of a biphase SC network for applications in
this frequency range has been proposed by Hasier in [14].
Since these conditions are extensively used in this thesis,

they are reviewed here for the sake of continuity.

(,/’

A parasitic insensitive network is defined as a
network whose any z-domain voltage transfer function,
regardless of which are the input and output variables, is
independent of the parasitic capacitances of the
network elements. The network formed when all "even
switches"™ are closed (open)’ and all "Qdd switches" are open
(closgdl will be called "even (odd) . circuit". As an
example, Fig. 1.4 shows the even and odd circuits

corresponding to the integrators of Fig. 1.3(b).

The parasitic insensitivity conditions formulated

"in [14] for a typical node, say n, of a biphase SC* network

are:

Condition 1 - Every node in both the even and odd
circuits of a SC network must be a V-node (input voltage

source or an OA output), a virtual ground (I-node) or the

ground node.

Condition 2 - The switching of any node n between a

»

V-node and an I-node in consecutive phases is permitted only

if the voltage of the V-node is set to zero during the phase
[}
in which it is connected to node n.
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ax

, " (b)

Figure 1.4: (a) Even circuit associated with the

integrator in Fig. 1.3(b).

(b) Corresponding odd circuit.
. :
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]

<%learly, the integrator of Fig. 1.3(b) is not stray

[} -’ [ 1 » [] 4 3
insensifive since node 3 violates condition 2 above.
]

’

Due to wide applicability of the first "and second
order SC building blocks, it appears desirable to have a

systematic and efficient method to generate such networks.

*It 1is also interesting to generate them in such a way that

their parésitic insensitivity is guaranteed. The usual .

approach to such generation procedures has been to build the
nétworks as interconnections of simpler blocks which are

already known to be stray insensitive [15,16,17,18,19].

Even though thi's kind of approach has led to networks with.

good performénce, it clearly does - not exploit the full

potential of the available technology. Recently [20], the

parasitic insensitivity conditions just discussed have been

used to obtain general building blocks for first and second
order networks. Unfortunately, however, the method proposed

in [20] leads to oversized general networks containing

- redundant elements which have to be deleted by inspection,

an extremely laborious process, specially in the case of

’

second order networks. Moreover, no practical procedure has

been proposed in order to reduce the universal biquad to
structures of manageable sizes. Further, the simplest
possible connection of a.capacitive terminal to any network
noée, namely by a short-circuit, has to be iﬁplied by the

parallel combination of an even switch and an odd switch.
)

Finally, the possibility of a switch placed across the OA in

S EMEE S A
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, single OA networks (commonly used in the designs of

,amplifiers and delay networks) [21,22,23] can be obtained
from the proposed formulation only as a limiting case, where

a capacitance value is made infinitely large.

3

%
further the generation of parasitic insensitive networks in

order to explore the possibilities of obtaining systematic
précedures that yield practical and simple networks. Such a
method should lead directly to the minimum size of the most

general parasitic insensitive structure for a givén number

of OaAs. At this stage, it is worthwhile to review briefly

some analysis techniques which are used extensively in this

thesis.

1.3 ANALYSIS OF SC NETWORKS

s

The avéilable literature . in the analysis of'SC

networks is very extensive. However, in order to understand

'and' reproduce all the network analyses performed in this

thesis, only 'bery simple techniques are nécessary.
Therefore, in what followé, a summary of the analysis

/concepts used in this work is presented.

1.3.1 Analysis of SC Networks by Inspection

o

All networks discussed in this thesis (and most of

the SC networks available in the literature) can be viewed
i
as a combination of first order circuits. Thus, by means of

R

It therefore appears desirable to investiéate,
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an example, we illustrate here how these cirquits can be
analyzed by inspection. Once the analysis of each building
block is performed, the analysis of the complete network is

merely a question of solving a system of equations.

Consider the network in Fig. 1.5. The charges 94
and d, stored in the capacitors C; and C,, respectively,
have been assigned' arbitrary polarities. In order to

determine the z-domain voltage transfer functions of this

netwbrk, it is enough to determine the Charge Congervation

Equations (CCEs) at the virtual ground (node 3) for both
'clock phases. The CCEs associated with a given node are
nothing but the charge equivalents of the Kirchoff Current
Law (KCL) equations or, in other words, they express kthe
same principle of energy conservation in 'terms of the
charges stored in the capacitors. Since SC networks operate
with discrete charge transfers (and‘ not with continuous
current flows), the solution of the network CCEs represents

the natural analysis approach to this type of networks. The

CCEs state that, for every network node and for each clock

phase, the sum of the charge variations of all capacitances

connected to that node equals zero.

The general equation for the variation of the

charge stored in a capacitor C between two time instants tl

and t, (ty>tg) is given by

e R AL s A b e



e
S gt

BTl e MBI SR AR e s

. R 2 P“ ¢
. ) N R ) . ,
1 ..._m. ~ -
: - . b
. . . o N
K 8 c ) . .
- - ‘ o~ L cm v
o O o
: v | .
- - . B 0 . .
+ . - R
- .m -
" + - .
. g} m. o - -
. X i 0 w ) . 3 .
n i . ) N R - nw T .
N B =
- - 1 i :....dl_ 9
- ~ i R al .
: 5 6= 5 ,
+ N - . ~ )
< b . -
3 Mu& - 0 -
E - o N L
N S . :
N - : .
- “ord ¢ -, "
- > _— [ ) -
° -t . - . n
> . S .
_ N - " i .
. A ] o ) t ; . - ' 4
) " - T N . .
B - } : .
. -~ : B T R o e T



7

4

-

22

Aq = q(ty) - g(ty).= Clv (ty) = v (ty)]

. *

where Ve stands for the voltage across capacitor

c.

{(1.8) .

Thus,

considering t=nT the sampling instants of the even phase and

t=nT+kT/2 the sampling instants of the odd phase,

the CCE

relative to 'node 3 in the even phase (t=nT) can be written

as

Cz[-vz(nT) + v2(nT-T/2)] = 0

(1.9)

since only Cz’is connected to node 3 in the- even phase and

zero. The CCE for the odd‘phase (t=nT+b/2) yields

Cy 10 + vy (0T)] + Cy[-v,(AT+T/2) + v,(nT)], = O

"the voltage ' at node 3 (virtual ground) is always equal to

{(1.10)

Note that the final voltage across Cl is zero. because the

capacitor is short-circuited by the virtual ground in the

odd phase. Equation~(1.9) leads to:.the conclusion that
. Y ;

)

vz(nT) = vz(nT—T/Z)

and, cansequently, from (l.lbh and (1.1l)

(1.11) . .
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c2[v2(6T+T/2) - v,(nT-T/2)] = Cyv, (nT) (1.12)

i

: Q 4
Applying the z-Transform [24,25] to (1.12) yields, in the

z~domain, .

¢, 1zY W (z) - YW (2)] = vz o (1.13)

»

where the superscripts e and ' o are used to identify the

specific-phase in which the voltage signal is being taken.

- Equation (1.13) can be re-arranged as .

-

c¥o(z) (L - z7h = ¢ 27 (a) ° (1.14)

. Similarly, the application of the =z-Transform to (1.11)

yields - | “d

v(z) = 2 VG (2) N . . (1.15)

[ ' e
meaning that v2(t) changes its amplitude only during the odd
pﬁasa. Such amplitude is then held constant for the even

phase. Equations (1.14) and (1.15) combined lead to

-~
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. Vo(z)' ¢, -1/2 T
e =T 1 S Tl e
vilz) T21-z . S -
and )
vi(z) ¢, -1 4 \
. Al Ce o (La7)

c Gl o
Vl(z) 21 z

"Note that, in general, a biphase SC network with one input
.and- one output will have four possible.yoitage transfer
functiong, depending on the sampiing,instantS'chosen for the
input and Butpui é&%}ages.

1.3.2 Switching Matrices
N

The ”séitcﬁing scheme"®of a SC network is defined

“as the circuit obtained from the original network when all

the éapacitors are removed. Consequently, the switéhing

scheme determines how each of the network ' nodes,

independently of any capacitive connection, is switched to
" the other existing nodes during both the even and the -odd
phases. According to the conditions discussed in the last

section, the ways in which a given node is. switched

‘determine the parasitic insensitivity of the network. Hence

- o

it is important to have a way of mathematically representing
the switching scheme, of '§C Tetwork. To this end, the
switching matrices Se (even phase) and So (oad phase)

defined in [12] are used in this work. The definition of

.

o
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their entries for .a biphase circuit is given here for

re
conveniencé. ) i

° .
-

Consider the "even (0odd) closed switch network®™ as
the network 'x{gsuiting from the original one- when all the
elements, ' exceptihg the closed even (odd‘) switches are

removed. The entries of Se (So)‘ are defirned as foliows:

: (1, if i is the lowest numbered node of a
sebarate part of the even A(‘odd) closed
iy = 4 switch network and j belongs to that

separate part.

\ 0, otherwise.

Even théugh this definitic;n may be Hard _to understand, it
turl:xs : dut to be very easy to apply. Two examples are
pres‘ented here in order to clarify the definition of. the
switching matrices since they are‘of major importance in the
development of the present hotk.: Cénside'r, as a first
example, the network in Fig. 1.3. Note th‘at the ground node
is numbered zero. This is usually done because a row in Se
(So) correponding to the reference node. is not necessary.
Fig. 1.6 shows the two graphs termed even closed and odd
closed switcp networks ‘cor.responding to this circuit. * Note
that the graphs are obtained by placing all network nodes
and . the.n simply connecting, by means of branches, the nodes

which are connected by the even or o0dd switched in the

original.network‘, depending on the case. The separate parts
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o

mentioned in the definitionfare then readily available.

.Now, the lowest numbered node of each separate part

'is identified, namely 0, 1, 2 and 4 for the \even closed

switch network and 0, 1, 2 and 3 for the odd closed switch

network. Thus, only those rows of Se (Sg) corresponding to

‘these numbers (excepting the 2zero) will have nonzero

elements. These 1's will appear in the position of a given

l row corresponding to the main diagonal of the matrix

., (position (i,i)) and in the positiohs corresponding to the

other nodes connected to the same separate part. ‘Then[ from

Fig. 1.6 one obtains

'

Se® 300 0 0 o :

a4 {0 0o 01
and . s * \ . - . ‘ ' ' ’\~" . . . "'
1 2 3 4 -

1{1 0 o0 o0 .
210 1 0

So®'310 0 1 1
alo 0 0o o ’ .

I
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As a second example, let us consider the integrator 2\
in Fig. 1.5. The even closed and odd closed switch networks
are shown in Fig. 1.7, where the different separate parts
can be easily identified. The use of the definition of the

switching matrices yields

11 0 o 1 o0
20 1 0 0 o0 u
s,=3|0 0 10 0
4/0 0 0 0 o
&
5 {0 0 ¢ o o
and
1 2 3 4 5
11 0o o o o
210 1 0 0 o
| S,=3(0 0,1 0 1 ,
4o o 0 o0 o
5[0 a" 0 o 0]

Note that a node switched to ground gives rise to a row and
a column of zeros in the switching- - matrix of the
corresponding phase (e.g., node 5 in the even phase and node

4 in the odd phase).

¢

4

A very important  feature of these switching

matrices is that they uniquely determine- the switching
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Figure 1.7: Graphs used to determine Sa and So (Ex. 2).
(a) Even cloéed switch ‘network.
(b) 0dd clo8ed switch network.
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scheme of the network. It is this property that makes such

matrices attractive for use in a synthesis procedure.

1.3.3 Pole Placements .

Whenever a new network topology is devised for the
implemenﬁationlof a given type of transfer function,. it is
appropriate to consider the stability and realizability of
the proposed circuit. If the new topology is intended to be
useful ‘in any application, it is expected to be able to
realize all stable pole positions. A For sampled-data
networks this means the realization of poles anywhere within
the unit circle iﬁ the 2z-domain [24,25]. Since in this
thesis the design of biquadratic transfer functions is
emphasized, the study of the realizable pole positions by a
given second order network is reviewed here. A similar
study for the cases of first order transfer functions, which

" are also studied in this thesis, is trivial and can be done

by inspection.

. The stability. conditions for a biquad whose

transfer function H(z) is written in the form

-1 -2
H(z) = XY + €z _ + 82 . (1.18)

1 +az L 2

+ Bz ‘

can be conveniently expressed [26] in the a, B parameter

space by means of the area within the triangle shown in

#
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Fig. 1.8. The upper parabolic area of the triangle
represents the values of o and B for stable, complex poles.

The remainder of the upper triangular area, where 8>0,

corresponds to pairs of real poles which lie either to the

left or to the right of z=0.. The lower portion of the .

triangle, where B<0, cérresponds to real poles which lie on
alternate sides of z=0. Clearly, the upper portion of the
triangle (B>0) represents the most useful pole locations for

frequency selective filters.

Therefore, in order for a biguad to be considered
as a general structure in terms of pole placement
realizations it should, at least, be able to realize any

pole positions within the upper parabolic area of the

triangle in Fig. 1.8 (complex poles). The inequalities

describing the stability triangle are given by

B <1 {1.19)
a+ B> -1 (1.20)
a-8<1 (1.21)

These inequalitieé can “be used to easily determine the pole

placement capabilities of a given structure.
i - ,
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1.4 -SCOPE OF THE THESIS

The aim of this thesis is to develop systematic and
comprehensive procedures for th? generétion of stray
insensitive biphase SC networks. Single OA and biquadratic
(second order) networks are given special attention due to
their wide applicability. Further, a method is proposed for
the optimization of SC networks. The .method aims at the
minimization of the total silicon chip area requiréd in the

realization of a given transfer function.

Towards this end, the pafasitic insensitivity

¢

conditions presented in [l4], in conjunction with the

"definition of the switching matrices for biphase SC networks

[12], are employed in order to obtain the most general .
1

switching scheme of a stray insensitive SC network with a

given .number of OAs.

The method 1is introduced 1in Chapter II for the
géneration of single OA networks. Then, the obtainable
networks are classified and, for each class, a complete
study is performed in order to determine all possibly
realizable transfer functions along with the necessary
conditions for'their realizapility. Then, the application
of the different types of input éignal waveforms and the
ways to guarantee.the desired voltage waveform at the output
are studied. The possible ways to realizegthe various
transfér functions without any matching conaitions on the

A
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netwdrk elements are then determined.

\

In Chapter III, the network generation procedure is

extended to the case of second order networks. Then, the

concept of "capacitor .switching networks" (CSNs) is

introduced. This éoncept allows the generatibn of canonic
(minimum number @f elements) or quasi-canonic biguad
building biocks b§ manipulating only small subnetworks of
the most general biquad without, howevgr, losing any
generality on the generation process. A total of 28
networks 1is derived. The complete set includes the 5 stray
i;sensitive biquads presented 'so far in the literature. The
remaining 23 networks are completely new. Design equations

are provided and dynamic range scaling as well as spread and

total capacitance-minimization are discussed,

In Chapter IV, a new optimization algorithm is

proposed to minimize the chip area necessary for the
/ G
realization of a discrete transfer function. By alld®ing a

" controlled increase.in the number of elements, the total

-

capacitance is miniﬁized by an algorithm which is partly
numerical and partly analytical. The proposed method allows

the optimization to be performed with a variable network

'topolégy without the need for a large computational effort.

The network sensitivities and dynamic range are accounted

- for during the optimization process.
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The possibility of design improvement by using the

newly obtained networks is demonsfrqted in all the:

appropriate chapters by means of detailed examples. In

4

-

order to test the validity of the theory presented, various

SC filters were designed‘and tested in laboratory. Due to

. the lack of proper MOS fabrication facilities, the;filters‘

were implemented using discrete components.
¥
Chapter V summarizes the various theoretical and

experimental results presented in this thesis. The~chapter'

concludes with suggestions‘for further research work.
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CHAPTER II

SINGLE OA SC NETWORKS

¢

2.1 INTRODUCTION

This chapter deals with the generation,
classification and design of single OA SC networks. Most of
the SC network implementations make use of certain basic
building blocks or cellg. These are combined in many
different ways fo generate a final structure that satisfies
~ the prescribed specifications, Literature survey reveals
that sing;e OA building blocks are the most used of these
basic cells. They are widely employed in filtering as well
as in nonfiltering applications., 1In SC filters these cells
have been extensively used in the realization of first as
well as second order and even higher order filters
[3,7,15,21,%7]. In nonfiltering applications they have Séen
exploited to perform a wide variety of functions such as in
A/D and D/A conversions [1,2,21,28,29], sample-and-hold
circuits [23,29,30], amplifiers [21,22], unit delays
[21,31], modulators (21,32], analog multipliers {23,33],

oscillators [34] and amplitude detectors [35].

It thus appearé desirable to have a systematic and
efficient method to generate single OA SC networks. It is
also of interest to generate them in such a fashion that
they are su;table for given applications starting from the

desired input/output relationships.
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A new approach is presented here which exploits the

stray insepsitivitybconditions discussed in Chapter I in. the

L4

generation ‘of SC networks. The proposed procedure 1is

-

systematic and comprehensive. It - is based on the

determination of ‘the most general

switching scheme which

will guarantee the stray insensitivity of the final network.
Thén, only those capacitors that contribute to the transfer

function are employed along with the derived switching

scheme. This automatically leads to the minimum size of the

most general parasitic. insensitive SC structure for a given
number of operational amplifiers

(OAs) .. Although . the

proposed network generation method can be applied to systems
of any order, this chapfér deals exclusively'with single OA
networks f36,37].¢ In Chapter III the method is extended for
the geneta£ion of SC biquads. After the generation
procedure, a pcomprehensive ‘sﬁudy_ on the reduction of thé

general network to” a -practical

(and most - of the times

canonical) structure is presented. . :

LY

R Towards this end, the most general switching matrix

for a single OA SC network satisfying . the ‘'stray
insensitivity conditions Yis first determined. Then the
existing networks are separated in two distinct classes.

3

Fér each of these classes the most general switching scheme
is established and the appropriate capacitor locations are
discussed. This study leads to the geheral single OA SC

networks for the two classes. Then, for "both classes the

s
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M
. N

investigation progeeds in the following steps:

step 1: Analysis' of the general network and the
determination of the general output equations.

step 2: Det;rmination of all transfer functions realizable
by the genéral ngtw@;k, algng with the sets of
necessary conditions for their realizability. In
this study.differenﬁ types of input.signal waveforms

are considered.

_ Step 3: Determination of"agqitional' sets of restrictions

which should be imposed on the general structures if
. ) :
sampled and held outpit or a delay from inpﬁt to

output are required.

sfeg 4: Study of the possible ways to realize the transfer o

. functions determined in step 2 without the
requirement of any matching conditions for the
network elements. The concluding results are
tabulﬁted.

' b

Finally, a comprehensive section on how to apply
the results obt:&ned in this chapter to gen;rate practical
structures 1is presented. Some techﬁiques to imérove the
final design are also discussed. A detailegﬂéﬁi?ple of an
. o , R — T T

all-pass filter design is given in order to illustraép the
usefulness of the prop?séd method. The resulting circuits.

are compared with previously- reported realizations. A

second example on the generation of biquad building "blocks

%
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is also presented. N

2.2 GENERAL SWITCHING MATRIX

We now apply the parasitic insensftivity conditions
discussed in Chapter I to a general network wusing one OA.
It can be easily verified by inspection that, in order to
satisfy Condition 1 without comprom;sing the ircuit
stﬁbility, the genéral network must assume, during/zach of
the phases, 'a topology of the type shown in, Fig. 2.1 where
the white blocks represent either capacitors or open
circuits aﬁd the shaded feedback block may represent a
capacitPr, an open circuit or a ého;t circuit. The
possibiaity of a voltagé follower from input to output 1is
not considered (even though a buffer alone would be stray
insensitive) for the reasons explained below, Two options
are ghssible here: . ‘

(1) The even and -odd circuits are edqual (voltage
follower): This is a trivial case.

(2) The network assumes the buffer confiquration during
one phase, say even, anq a topology dérived from Fig. 2.1
during the next phase (odd). Hence, for the odd phase the
noninverting input of the OA must be disconnected from the
input signal (where it was connected in the buffer
configuration) and switched to éround. Therefore, the
inverting input of the OA is connected to a V-node (output

of the OA) in one phase (even) and becomes an I-node in the

next phase (odd). This situation cleariy violates Condition

-]
.
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2 for\\stray insensitivity unless the output is made zero

during both phases. This, of course, is not a useful case.

Consequently, in what follows, the set of networks
which asséﬁe, for each of the phases, the topology shown in
Fig. 2.1 is’ studied. Such networks have some topologicdl
properties which will be used in the derivations that
follow. In these networks the noninverting OA input

~terminal 1is always dgrounded and the inverting one’is an
' I-node for-both phases. Also, since I-nodes must Ee OA
Ainpu& terminals and V-nodes must be either input voltag;
sources or OA output terminals, boﬁn the even and odd
circuits will have. always the same four nodes (and.only
them), namely, the input node, the output and inverting

input terminals of the OA and the ground node. All other

nodes must be connected to one of these in each phase such

)

i

that Condition 1 for parasitic insensitivity is satisfied.
In the remainder of this chapter, the following node

numbering scheme is always used:

node 0: gfound node.

node l: input voltage source.
node 2: output of the OA. a e
node 3: virtual grouhd of thé OA.

The remaining network nodes are numbered from 4 to n.

To represent the network switch;ng' scheme, the
switching matrices S. (even phase) and So (odd phase)

%
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defined in [12] and briefly disgussed in Chapter I are used,

e
Using this ~ definition and the proposed node

numbering scheme, the matrices Se and S ‘assume the form

1 2 3 4 -+« n
B ' e,0 . .. 8,0
1|1 o 0 : 52 sy
B,O | e,O « o e elo
2 10 1 S5 | Sy San
|
e,0 e,0 . .. €0
310 0 s3!Sy San
s =4 | T v T T ]
e,o I
. 1
]
. 0 | 0
_ |
. i |
|
Al | |

is grounded during a given phase, all the entries in the
corresponding column will be zero. Here it is assumed that
a connection between the input éode‘(independent voltage
source) and tgé output or the wvirtual ground of' the OA
cannot be made. Also, it should be clear tﬁat only one of

the entries 823 and S33 corresponding to a given phase can

be egqual to 1. More specifically, two cases ‘may happen:

13
(1) Nodes 2 and 3 are never connected together. 1In this
~. r
" case S33=1 and §,,=0 for both S, and S_.

(2) Nodes 2 and 3 are connected through a switch during

where 0 is the matrix whose entries are all zero. If a node

R T A T IrY L

e
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one of the phases (say the even phase). 1In this

0, and because the connection cannot

.be permanen (voltage~ follower caseé), S§3=1 and
o) ’ .

323 0. >
In order to facilitate subsequent derivations, the

complete set of networks will, from now on, be classified

into two distinct classes, namely:

Class I- Networks included in case 1 above.

Class II- Networks included in case 2 above.

Obviously, these two classes are mutually
exclusive, Class 1, which includes most of the useful

structures, will be studied first.
2.3 . GENERAL SINGLE OA NETWORK (CLASS I)

Considering the form of the switching matrices ée
and So as well as the conditions to be satisfied by the
networks in this class (S§§°=l ;nd S§3°=0), the first three
rows of both Se and So can be combined in a single switching
matrix SI (6xn) which contains all the informations ‘about
the switching scheme of a biphase network belonging to Class

I. The matrix S; will have the following form:

N TR
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where I stands for the (3x3) identity matrix.

It is interesting to note that there is a
one-to-oné correspondence between a given matrix S; and the
network switching scheme associated with it. Each column .of
SI (J>3) determines how a given node is connected to the
four basic ones in both the . even and  the odd phases.
Therefore, Ehe study of all possible patterns for a typical
column (say kth column) will deter@ine tﬁe ways in which an
internal hode k can be connected during each one of, the two
phases. Also, by considering some theoretical and practical

restrictions which can be imposed on the switching scheme

g %
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N

without any loss of generality, many redundancies and
impractical cases can be avoided. These restrictions are

cay

the following:

(1) Each node can be connected to at most one of the V,
I and ground nodes during \each phase. Otherwise, two
volt?ge sources or | a boltage source and a
zero-valued-vol tage node will be' connected in paraliel
during a phase. Consequently, only one nonzero element may
appear in each portion (even and odd) of‘a column of SI'

(2) Each node must be connected to at least one of the
V-nodes or I-nodes during at least one phase. Otherwise,
this node will rémain either permanently disconnected or
ﬁepmanently grounded. This eliminates the possibility of a
column of zeros in g}.

B) No node can be connneéted to another node in both

phases. In such a case, the nodes would be coincident.

Hche, the even and the odd. portions of a column of S; can

,ne&er be equal.

(4) Two nodes with exactly the same switching scheme for
both phases are not allowed. It would characterize a
redundancy. This eliminates the possibility of two

identical columns in SI'

Note also that for this class of netwokks,

Condition 2 for parasitic“ insensitivity requires that

‘S?&Oxsgﬁesb for i=1,2 and j=3 because none of the voltage

* sources Vl or v, is set to zero in any one of the clock

B S L1 L S
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phases (no switch across the OA and Vl is an independent

soulce).

The application of these restrictions to a typical

2

column of the switching matrix S. leads to the 8 distinct

I
[]

switching patterns shown in Fig. 2.2. Due to restriction 4

above, we can state that any SC network belonging to Class I

will have at most 1l nodes, excepting the ground node. In

Fig. 2.2 ea%h possible pattern has been assigned a number

from 4 to 11 that refers to a specific node in the general

SC network for Class I. Fig. 2.3 shows the most general
switching scheme for the networks of this cl;ss with }ts 11
nodes numbered,accordiﬁg to the table in Fig. 2.2. 1In Figq.
2.3, capacitors can be connected between any pair of nodes
without affecting the pargsitic insensitivity of the
network. Once, however, the switching scheme is fixed, the

capacitor placements will determine the contributions of

each voltage $ourfe to the network CCEs.

In principle, a capacitor can be placed between any
two of the 12 nodes (including the ground node). However,
depeﬁding on its location, it does or does not ‘affect the
network behaviour. The CCEs (in terms of tﬁe node voltages)
written for the even. and odd - circuits at node 3 will
completely determine all voltage transfer functions for‘any
network in this class, for this is th? only node for which
the CCEs form a linearly independent set. It can be easily

verified by inspection that in the following cases these

R N
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Figure 2.3:
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CCEs will not depend on the corresponding capacitors:

(a) A capacitor permanently connected from aniwﬁodéfto
‘ grbund.
(b) A capacitor placed between two nodes which are
connected to v-nodes in both phases.
{c) A capacitog placed between two nodes which are
connected to zero-valued-voltage nodes (I-node or

ground) in both phases.

o

The remainder are capacitors linking a node which
is switghgq at least once to a V—nqde, to another node thch
is switched at least once to an I-node. All these cases are
. shown in Fig. 2.4 where an asterisk at position (i,3])
characterizes a possible capacitive connection fro& node i
to node j. Consequently, a maximum of 24 capacitors will be
necessary to realize any possible transfer function
realizable by a network in Class 1I. The most general
network for this class is shown in Fig. 2.5. It should be
observed that the number of switches in this figqure is
excessively large. This is because each node switching
scheme of Fig. 2.3 is repeated several times in Fig. 2.5,
This is done in order to allow the effect of each one of the
24 capacitors in the final transfer function to be easily
determined. Actually, in any implementation no more than 16
switches (Fig. 2.3) are necessary since each node sQitching
scheme 1is used only once and all capaci;or terminals

connected to the same type of node are placed together.

I4

e i 4

ey any



o

DR ASTI XI L ST M T AR

e
L]

50 ‘
v}
o -
.
N
, ‘e
. [= R
_—-owmvmtov\cncu-u-c
1 * * * A
2 * * k 4
_3.** * * * * * *
4 * * * |
5 . s
6| * * * % * * *
7 * * *
8 * * *
g |*x * d * % * *
11L * * * i
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This point will be more clearly illustrated by an example

later on. -

s

The _analysis of the generals block in Fig. 2,5, .

. B
assuming ideal elements, leads to the following CCEs:

~

Even phase:

e _ e, -1/2 o0, -1/2 .o ' °
a5V2 -alvl+z a3V1+z a7V2 (2.1)
.0dd phase: . . ' -
5 VO = 0,,~1/2, y&,,~1/2, €
. ?GVZ = -a2V1+F. a4Vl+z ’ aBV2 (2.2) .,

. s B
where zmexp(joT), T being the /sampling period and

- N

N @1 %€ +C3+ G+ G+ Cyp+Cyy | ‘2(3}9‘
a, =/ci'+ Cq + Cg + Crg + Cpp +°Cyy « (2.3b)
ay = Clj* Cy + Cg #Cg + Cp3 + Cyy {(2.3¢)
;4 =€y +C+Cg+Cy+ c19.+~c21 : (2.34)

. g Cy + Cpg + Crp + Crg +Ch3 ¥ Gy S (2.3e)

] ag 7 Gy + Cpp + Cyj+ Cpy + Cy Ay (2.3£)
a& =ac2~+ Cipg * Cy3 + Cyg + €59 + Cyy . (2.39)
ag = Cy + Cpy + Cpp + ci7 +Cyp + czéfa -" (2.3hf

V-
At this stage some remarks abéut the values of ai'

>
LY

i=1,...,8 are in order: TN
; [ : 4
- g‘

“(a) The values of ui, i=1,...,8 are always. greater or

equal to zero. K ' ’ : \
, . . ,
. (b) In order to guarantee the stabi}ity of the network,
~ . - 4
N N 4 n
B - A :
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a negatlve feedback path must exlst across thew”_ OA during

bot:h the phases, - Looklng at eqﬁQ ions (2.1) and (2.2) this

fact can be translated into the necessity for the %r\ésence\

. n \
of o in (2.d) and %e in (2.2). The existence of nonzero

5
ag and 0ogc.guarantees that some charge is flbwing froM the

output node to: the virtual ground of the OA during each

phase since these are the fréquency independent ‘coefficients

of Vg and Vg for the éven 'and odd CCEs at node 3,
respectively. Therefore, in what follows aS and “6 are

not allowed to be zero. This is, most of the times, *

accompl ished by"the use of capacitor C2‘. never possible,
the presence " of C2 is adv:.sable for stabilnty reasons, due

° to “the non-overlapping nature of the clock s:.gnél [4,7, .3’.‘1{]

Solving the CCEs (2.1) and (2.2) for v$ and V) as

fu‘ tions of the input s&gnal(yields

-1 -1/2,
O"la6 2 a4a7 z (a3a

-050,) .
ve = - ve 4 6 277 v° (2.4) \
2 e~z taa, T Gea,-Z Ta.a 1 .
5%6 7%8 = Gglg 7%8
and, ‘ ‘ o . . SR
. _~1 ~1/2 e
o | %% Te3ag oz " Tlagag-ajag) o )
A I w S 1 V1 y
5%7% %78 %5%g™2 1 %9%

Considering the four possible transfer functions of

P . 4

"\\ a biphase SC network, equations (2.4) "and (2.5) -can be
e e T -
t . . .
rewritten as ( . T 4 ' .
) a h A /‘,”-&61
.. & o
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‘ ‘ F”
e,  .nee e, '\ 0l o e ' ‘
VZQZ) H (z)Vl(z_)*'ﬁ (Z)Yl(z) ‘ . (2.6)
- , Vg(z)=H°°(z)Vg(z)tHeo(z)Vi(z) e B (2.7) -
* ‘where / , ‘ ; oL
. : A 0, =2 N\ ,Cn N .
. ee, . _ 176 \4 7 -
. - e = - -1 o ‘ (2.8a)
s L QAgc-2z Ta,0g . -
. B )
. ’ - B : ) ~ Y
. ' , . v _=1/2 .
Lo R (a0 ~a,a,) . .
HO® (2) = .36 27 . " v . (2.8b)
Cgle=2Z, TQa0g ,
o : ‘ -1/2 ’ . > v
’ . - z (a,ac~—a 0q) O
. ) ' . , ) : Heo(z) = 4_]5- - 1 8 (2.8¢)
- G502 g% o
. aja.~z Lo g, + (2.8d) . -
00 _ 275 3°8 . TR
. H . (z) - = v l . . 4
N - - . - :
’ : L % gOe=Zi a0y . -
L ] —————
4 2.4 REALIZABLE TRANSFER FUNCTIONS (CLASS I)
¢ In this.f'secti:on, all the voltage tran_sfer,'functibns
. ) reg}izable by a network of Class I as well as the hecessary-
. . . ]
conditions for their realizability- are ‘determi‘n'ed as
B . functions of the ‘&i's, i=1,..78, defined in -the .last
: ¥ settion. The varioys possibilities of choosing .the
[ P > T T S
P . . o different a;'s in order 'to satisfy these realizability
/: ‘ , . conditions are also determined. The possible ways of
Fe . 1 .
. . } |
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‘ . | .
practical implementation of the transfer functions are

discussed in section 2.6.°

From equations (2.4) and (2.5) one can easily
verify that the general form. of the obtainable transfer
functions will be completei} modified if the input signal I;
sampled and held for a full clock period (e.g.,Vgiz-l/zvi).
Hénce, in what follows, this possibiiity will be treated as
a special case. We start with the case of a general input

signal waveform.

n

2.4.1 General Input

In this case, the input voltage vi(t) can be either
a continuously time-varying signal (e.g., a sinewave) or a
sampled-data signal "with‘\ a staircase waveform whose
amplitude is not kept constant for the entire sampling
period (both phases). Consequently, for staircase input
waveform the amplitudes of v,(t) for the even and odd phases
will be considered independent of each other. As far as
continuously time-varying input waveforms are concerned, it
mus€ be emphasized.that, due tg»£he discrete-time nature of
the z-domain analysis emplbyéd, tﬁe transfeg functionf
obtained will relate the inp&t and output amplitudes only at

o

the sampling instants t=nT/2. “Also, in order to -quarantee

_the acéuracy of the results, these sampling instants should

be rconsidered to4occuir at the end of each phase. The

capacitor voltages at these instants of time are the initial

-
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conditions for the next phase. If, however, one is

interested in determining z-domain transfer functions lthat

1

describe the network behavioug betwéenmtwo sampling insﬂants
?ue to a‘contiﬁUOUSly time va£§ing input sigﬁal, the netLork
anélys}s should be carried out using the Modified
z-Transform [24] instead. of the conventioAal z-Transfprm.

In this work, the SC networks are treated as discrete-time

network§ and the conventional z-Transform is employed.

the sampling instants and the equations (2.4) and (2.5) are

valid for any’type of input signal.

The detailed study of equations . (2.6), (2.7) and

(2.8) leads to all realizable voltage transfer functions.

The final results afe presented in Table 2.1 using the four
basic  transfer fupctions (eqs.2.8). The four transfer
functions in Table 2.1 are the only possible ways to relate
the 1input and ouﬁgut voltages in the different phases.
Here, whenever the input s{gnal is saﬁpled oniy once per
period, ther sampling .is assumed, without any 1loss of

generality, to be done 'during the even phase. -The output, .

equations (2.6) and (2.7). By . dding so, all possible
transfer ﬁunctions can be obtained. The ent:ieﬁ in column ZV
are obtained by bdetermining the necessary .conditions .to
eliminate the terms in (2.6) ahd (2.7) which are not part ofi

the desired transfer function. Column 3 1lists all the

R

Consequently, we are interested in the network voltages at .

- [
however, 1is always considered for both phases, according to |

!
\
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Table 2.1: Realizable transfer functions (general input)~

.
[ (N N O NS

Transfer Necessary Different
Functione Conditions Possibilities
1.1 | 1.1.1- a,=a,=0
ve - . H9%z0 1.1.2 2- 3-o
2 yee i.67 Gg%0,
e Qal,=0lyQa=20
Vli 376 277 1.1.3- az#O,u3f0,u7f0
030 %%
1.2 H%%=0 1.2.1- a,=a,=0
Vg eo azas-z-‘a308=0 1.2.2- a,=ag=0
“£- H ;
e LY
)
1
1.3 1 4982499z
v @g0-0pey=0 7, /
_2.yee, €0 a,=d,=0
vi a2a5=0 2 73 »
a3a8=0
1.4 HEELyOO
Heo . yoe
v QA Q3,0 }
_2_pee,ye0 ) "176 T275 2]
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possible ways  to achieve such eliminations. ‘The complete -
%::dy is extensive but straightforward.‘ Consequently, it is
not presented here in detail.

The transfer functions V?/Yl and Vg/Vl are not

obtainable since for their realization it is required that

H®®aH%® and H®°=H9?, leading to identically zero numerators

{see egs. 2.6 to 2.8).

2.4.2 Sampled and Held Input

. . We now sﬁudy the case where vl(t) is a sampled:dét;'
signal’ with a Stair$§se waveform, and with thé:spec;al
featﬂ%éfbf—being'kept;~constane— over the ehti£é~ éampling-
period.

o

Again without 1loss of any generality, it can be
assumed that the input signal changes its amplitude only in

the even pﬁasé.‘ Hence,’;he sample and hold condition can be

expressed,'in the z-domain, by the equality ‘

V9 = z‘l/zvf (2.9)

Substituting (2.9) into (2.6) and (2.7), the following new

set of qet&ork equations can be obtained:

L]

v = (u%® 4 z’1/25°e)v§ | (2.10a)

v3 = (8% + 271/25%%v8 (2.10b)

’
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This system of equations leads to the voltage
transfer functions shown in Table 2.2, The transfer
functions vg/vl, V‘;/V_l and V@/V1 do not apply in this case

since Vi and V? are no longer independent.

It is interesting to observe that the condition of
sampled and held input not only leads to transfer functions
not realizable otherwise (check the signs of the numerator
coefficients) but also eliminates the need for any extra

Q
realizability conditions, allowing a greater design

flexibility.

2.5 SPECIAL RESTRICTIONS

7

The two cases (Table/s 2.1 and 2.2) discussed in the
last section account for all possibly realizable z-domain
transfer functions using, a network from Class I.
Nevertheless, sometimes it may be necessary to impose
further .restrictions on the network behaviour due to.
external conditions. The two most commonly ‘ imposed
restrictions are the avoidance of a continuous bath from the
input to the output .(specially if the input signal does not
have a staircase waveform) and/or the requirement for an

output sampled and held over a full clock period. These

"conditions are sometimes necessary (or convenient) to allow

the interconnection of distinct blocks in a large system
(e.g., a high order filter). They can also be dpplied in

order to avoid the need for sample and hold »,circuits at the
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Table 2.2: Realizable transfer functions(vi=z'l/2ve
necessary
Transfer Function ' conditions
2.1
ve i
—i- Hee 4+ z-'ty0e NONE
Vi
2.2
vo
2. 4O 4 27Ry00 NONE
Vl .
2.3
e . ,0
Vo, V2 Vo
e e
Vl - Vll s ’
' NONE
«(HEC+HEO) z'%(H°e+H°°)
»

- e
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[N

input and/or at the output of the system. Therefore, it is

worthwhile to determine the necessary conditions to be

imposed on the general network in order to guarantee each of .

these properties. Such study is the objective of this

section,

\

2.5.1 No Continuous Path from Input to Output

Consider equations (2.4) and (2.5). In the time
domain, these equations.cah'be written, respectively, in the

following forms:

/
. asasvz(nT).- -alasvl‘nT)+Hlvl(mT-T)+H2vl(nT-T/2)+ (2.11)
H3V2 (nT-T)
and ’
asasvz(nffT/Z) = -azasvl(nT—T/Z)+H4vl(nT—3T/2)+
h S
HSVl(nT-T) +H6V2(nT-3T/2‘) (2.12)

where Hi, i=1,..,6 are time independent constants (functions

of the various ai's).

If a continuous patﬁ cannot exist from the input
(vl)" to the output (vé) during any phase, vz(nT) must be
(] \
independent of vl(WT) in (2.11) and, 1likewise, vz(nT-T/Z)
should not be a function of vl(gTHT/z) in (2.12). Since as
and'a6 cannot be zero for stability reasons . (see section

2.3), one can feadily verify from qugtions,(Z.ll) and

(2.12) that the necessary conditions for.- a “broken" path

AT m el SNa Y m e o
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y - +

from input to output in both pha;seé are given by

4 ='a2 =‘O (2.13)

-
v I

With  these conditions satisfied, only delayed
versions of the input signal can influence the output

voltage at any time.

We now determine the necessary conditiqns for a
fully held output. It is important to note that the
following study is ’completelir independent of the one in this
subsection. Condition (2.3.3) and the ones to be derived

next constityte independent sets.

The sampled and held output éroperty can be

accomplished (for biphase networks) in two ‘different ways,

-l/ZVO 1-1/2Ve

namely, ve= 2 or Vo= 2 . These two options are
2 2 2

2
investigated in what follows.

2.5.2 Sampled and Held Output (V5= Y 2y9)

Whene§er some output condition is imposed, the two
different cases of input voltage waveform discussed in
section 2.4 should be considered separately since they lead
to distinct z-domain equations. We first deal with the case
of a general ‘J'.nput signal.

+

VDU IEWINDP IS
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General Input (Vi and Vg independent)

.

In order to guarantee Vgiz"l/zvg we must have, from

equations (2.6) and (2.7)

w3 ALl d e e

| neé(z)vi(z) + B%%(2)V9 (2) =

z’l/2H°°(z)v§(z) + z'¥/2ne°(z)v§(z)

Ry

or, more specifically, “from (2.8)

-1 e -1/2
(-ala6+z a4a7)V%(z)+z : (a3

2-1/2(-a

O =
.as"aza-l) Vl (z) =

2a5+z'la3a8)vi(z)+z-1(q4d5—alq8)vi(z) (2.13). -

Since this ‘'equation must hold for any frequénc&,

o

EYCESNE SCE NSNS SHPC. PSSP, JUPCAIE IR U e

the coefficients of equal powers of z2~1/2 npust be equal for

any values of v® anda V9. Therefore, the following
A § 1 .

conditions must be satisfiedé o

R L R

#

g

al =0

G40 = G425

a3a8 =90

The study of all possible ways of satisfying these

equalities (for ashand ae not zero) yields the conditions

shown in Table 2.3 (top left). We now consider the:case of

sampled and held inputs. i

. (,( [ ‘ ' "”




FrE

- ez s e Sy o

-
.

64

- Table 2.3: Conditions for S/H output.

o, -%, e
Vl#z V1

o_,-%,e
V1 z V1

e, -kyo0"
Va=z "V,

ag=oy
(1) a1=a4=a8=0
u3#0

ap(ag-ag)=ajag

(1) ai=a3=0
@2%%
(i1) alta3-0 

'as-a7“
(1ii)a1=u8=0

a3f0

(0g-0;)(ag-a7) =030

(1) a2=a4P0

%6*%g
(i1) a2=a3=a7=0

a4#0

o) (ag-ag)a,a;

(1) az;a4
Gg g
(id) ayta,
aG#dB

i . ‘
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Sampled and Held Input (Vi- z-l/zvi)

For this case, the set of equations“(2:10) must be
considered. From these equations, fn order to guarantee

Vga z-l/ZVg’ we should have

gee + ;-l/ZHoeo_ 2~ 1/2ye0 1. .00

+ z "H
or substituting here the expressioné in (2.8)

-1
-a1a6+z (a4a7+a3a6-u2a7)

z-l(a Q=0 )+;-2

4%57%2%57% % ®3%g , (2.15)

Equating the coefficients of the same powers of 2"1/2 yields

©
¢

oy =0 ‘ ;:
[ 3% = 0 |
(ay=a,) (ag-a,) = g0
) ’ . . >
The possible ways  of satisfying tlese equalities
are also présented in Table 2.3 (top ri'ht). Next,  we
consider the second possibility for a. sampled and held'
Sutpué. " ) ) : | : .

2.5.3 Sampled and Held Output (V3= z‘l/zvg)

Using the same procedure presented in the last

: . - a0
subsection (for Vg- z 1/ZV‘;), the ‘'sets of necessary

‘conditions to guarantee Vo= z-l/zve for both types of input

2 2

. signal can be determined. Théoresults of this investigation

N

—
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are shown in Qa le 2.3 (bottom). \
N . e ) . '

@ ¢

It shoulﬂ be noted at this‘point that any one ‘of
the conditions (iL, (ii), ete. in each section of Téble 2. 3
will guarantee the desired results at the output. 1tt§s not

necessary that all conditions be satisfied simultaneously.

[N

! { 4 ~
2.6 NETWORK REALIZATIONS (qﬁass 1) '
’ Te .

\
ey

-

! : ¢ N
So ' %ar, we have determined all types of voltage .

L

transfer functions which can be realized by a network from
' 1} ’ . 5

S, . .t s
Class I. Also, the necessary conditions. for these

. ,
realizations were determined as functions of the

various ai's. We now study the possible uays ofhsatisfying

these oonditions such that the resulting networks can

* N ‘ \
realize{j the desired transfer pfunctions without the

requiremea% of any matching condition (tracking) for the
capaciﬁors employed. gor each set of“necessary condit}ons,
the realizable transfer ﬁunctypns (avoiding the necessity of

capacitor tracking) <as well.as the network tonstraints are
determined. The special cases‘ of sﬁggled and held output

b 4
voltages and networks withoft a continuous path from input

&

to output are also s:’died. ) b

-
- f N '

f ’ . 4 .

In order to‘save spaceﬁ only ‘one case will be

studied*%ﬁ detail. The particular case to be presented here

w3s chosen in order to -1llustrate the complete development.a
The remaining cases can be - ‘etudied following the same

procedure in a straiqhtforward manner,/} L
. ! §

’ ) B LI ¥
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Let us consider the transfer function Vi/vi for a

general input signal (case ‘1.1 in Table 2.1). Fraom the

- thrée possible ways to guananteé’ the ‘realizability we

choose,  -for instance, the first ope , subcase (1l.1.1) in
v . -

Table 2.1. Therefore, the necessary conditions are given by
' ‘ ~ N o
' @, = 0y = 0 . ) : | {2.16)

Since a, and a; are .sums of 'nonegatiye‘ entries

il

gccordﬁnq to (2.3b) lpd (2.3¢c ] . , .
' L - \

r—ﬁm' m<m

=1 S, . {2.18)
agle-z 13708 - y o

of

where the new values for the nonzero o;'s are given by

; Gy = Cg o+ Cg - Czo‘ + ‘;1 : P T "('2\‘19a)1 '
G, = C+ Cp + Crg + Coyr o T;;!ga)
ag = Cy + §1c + Cyg + Cpp L T (2.19¢)

1% =Gyt c11‘ + c1.3‘+ Ciqy + Cpg * 'czl . ’(2.19d)
@y 2Cy #Cy, +Cyy+ Cg +Cyg +Cyy "'.‘ o (2.19e) .
ag = C, +4C14 + Cyg t (.:i7 " i (2.19€)

) * ' ' “ . . B
” , P

S .
. The 'general network ‘has- beep reduged to 15

o~

capacitors. Now, 1let us consider the other possible
» ' - . \ . \ﬂ i .
r ° ’ ’ ‘ (
LI

¢

[ . Vud .
(capacitor values)  the only  solution for this equation,

. 1= Cy=CymCgdCymCyymCyym Coy = Cpy = 0(2.17)
© , and the(reali ble transfer function H™~ will be
' 0,q 2 a0, ﬂ
gee = 2 . _ ~aje 4%7 .

v

e 7 T RSt o Ak AR o BN
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restrictions which might be necegsa}y ‘in  a given

}pplication: ‘ T -
»

<«

(a) No Direct Path from Input to Output
. v . . i

[y

If this condition is required, equation (2.13) must

be satisfied, i.e., @)= 0, =0. Th “value of e, is already

zero from (2.16)."For 'al-o, we.add the constraints

Cs = C¢ = Cz0 = Cy = 0 . (2.20)
5 )

-

As expected, the realizable transfer function is

‘modified to | L . -

~ where the" ui'e are modified to satisfy (2.20). -,

(b) Sampled and geld Output

Since the transfer function being realized 15 V2/V1

13

(the output is sampled at the even phase) a sampled and held
_output is qharacterized by the conditlon 9 2(z)mz l/zve(z).

Therefore, we now investigate the .two possible ways to

satisfy this condition, accordingn to Table 2.3 (bottohl
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“y i
(1) First Option o "
@y = 8g= 0 ' e (2422)
2 = %
and . ‘ag = ag (2.23)

[

In ordgr' to satisfy (2¢22) we should have ( o, is

already zero by eq.(2.16) from (2.19b)

w ‘ : / ’
CS - C., = C19 = C21 (2'24).
ahd for a = o, expressions (19d), (19f) and (2.24) yield
C2 + C11 + c13 + c17 - c2 + c14 + C16 + cI7 (2.25)
v k]
If this equality is to be guaranteed independently of
matching conditions,'we must have
) B &
Cll = C13 = Cl4 = C16 = 0 (2.26)
and the realizable transfer function is given by
: ?
e .
v -0, - ) “
s _é = ———-—_—3‘_—- . for 0.6..;! 0 \ (2.27)
where y >
/ [} / Y
@, = C. + C . ‘
/,\§\> 1h 6 ' 20 ) »
( L Gg = C2 + ClS + clB . ‘
G = C2 + Ci?
a, = &Z-f Cio + Cig f C50., . o ]
ag = Cz + C17 S o ) ' .
¥ ? L} A ¢ Pl \
) b
. \ . ’ , .
. ) ! L,

3
- e T o
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The general network 18 bhen reduced to:a circuit

employing at most 6° capacitors,

(ii) Second option _ ’

@ % %3 T %9
and al(as—as) = a,ag for a, £0 - (2.29)

=0 o (2.28)

From (2.28) and (19¢) we have
[
21 " 0 (?.30)

}

= C 18-

C2 = C12 =C C20 = C
-

and from (2.19), (2,29) and (2.30), after some simple

13

algebraic manipulations, ‘the folloJ{?g equation must hold
A £\
(C5+Cq) (C147C117C19)+C6C16™ (C7*+C19) (C15%C16)*C5C15 - (2-31)
=

In order to satisfy this eéuation'without matching
conditions, one of the following regstrictions should be

applied to the general network:

a

or ,
. b g
(b)'C6 = C7 = cll .‘C14 = Cls" Cl9 = 0 (2.33)°

«

and, for any of these ‘cases, the realizable transfer

L3

function is

. »

ve o .

-2 - l L for o = c., #0 2.34
e o 6 17 . (2.34)

Vl 5 . r
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in Table 2.4. Since

1:, o 71

v

The network in this case ‘employs at most 3 capacitors.

‘This concludes the investigation of this specific
case. All ,the‘ other possibilifies were studied following
the sameiproceduée and the fesulgg are presented in Table
2.4. In this table, the sets of capacitprs which are made

zero in order to realize a transfer function or to satisfy a

¥

given restriction were initiaily determined by the necessary
conditions obtained‘ previously. Then, those capacitors’
which wouldz not affect, regardless of their values, the
stability of the nétwork ornany of the ‘transfer function
coeféicienté were deleted. By.'doing so, the génergl

structure for a specific case will‘no%gﬁinclude Lunngcessary
e ¥

elements. ( .. /7 .
. -~ . \

i 1
For an effective use of Table 2.4, some

‘observations are in order, namely:

¥

{a) The transfer function Vz/Vi is implicitly ‘included

e o
2 Y2 0
ve ve ve (2.35)
1 1 1,.5 , N
. 2 E

the referred transfer function can be readily obtained by
adding the other two. The necessary conditions are then

'3 ¢

derived gﬁ the union of the sets available for Vg/vi and
O ny8
v2/vlc }
(b) The transfer vz/v is not included in Table 2.4

since the only network that can be obtained is an unswitched

[
)

R e

p s
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‘capacitive amplifier, which constitutes a trivial case.

(c) In order to determine a transfgi function f&ﬁ’ which
the input is sampled during the odd phase (vg/vg for
instance) one has only to interchange the qgmés~of the even

and odd phases. In terms of the various ai's, i=1,...,8,

this interchange can be accomplished by performing the

following variable substitutions:

’

-

A simpler solution would be to realize the transfer
' s

function with the original clock phases interchanged (ngvi

+ B
in the above example)_ and, after the whole design is

performed, exchange the names of the eQencand odd phases.
2.7 GENERAL SINGLE OA NETWORK (CLASS II‘)

In thig section we study the <class of: networks

which have a switch placed across the OA input and output -

)

terminals during one phase, say even. We start from the
general form of the switching matrices discussed in section

2.2, .considering this time the case 2. In this case (which

' charatterizes the networks in Clags II) the general form of

. the, combined switching matrix Sry is:

6 o . .
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' 1 2 3 R n_
\ e [ ‘ | e e e
" N 1 1 0 .0 : 814 e Slk ee e Sln
e e Y e
2 0 1 1 ; 524 “se SZk cee s2n
, 3¢ 0 0 ‘O Lt D eee D ses 0
S ® @ pmmeme—e-eomea—- (o= oo o o e o oam e o e . -
II o o ¢ s 0 o LAY o
-1 1 0 0 : sl4 s}k Sln
= o - 1 &0 o - o
. 2 o 1 0 " s24 e szk%;:. SZn
° ' ! g0 0 ... a°
) 3 0 0 1 : S..?’4 S3k s3n :

Some particular 'prdperties of SII should be

emphasized, namély: -

)

(1) S =s€ =1, characterizes

22 723
'(through'a switch) between nodes 2 and 3 during the

This the connection

even,

X

€ . -~ phase. Note that this connection is not allowed for the odd

phase _since it would lead to the case of the

voltage

foi&p]er, already discussed in section 2.2,

: (2/) ‘Th

qhoice~/of the even phase for the connection of
nodes 2 and 3 was arbitrary and without any loss of
generality, since. for this class of networks, the sampling

:oﬁ the input and output voltages will be considered ﬁbr both .

L

~
*
3

1 o s et et
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phases, . -
' (3) The third row of SIi is always zero. This happens
because, during the even phase, node 3 belongs to a separate

part including node 2 which is, of coursé,hthe lowest

numbered node in that subdraph.

The next step is to investigate all possible
patterns for a column of S;y corresponding to an internal
node, say k. Like in>theicas? of Class I, the redundancies
and impractical cises can be avoided‘by the consideration of
the four restrictions discussed in section 2.3. The study
of ‘all possibilities leads to the 8 distinct switching
patterns shown in Fig. 2.6. ' In this figure, each pattern
has been assigned a number which will correspond to a given
node in tpe general network of Class II. It can be verified
from Fig. 2.6 that the maximum number of nédes for a network
in Class II wilIlbé~ll. Nevertheless, in order to] maintain
an one-to-one correspondence with the node numbering of the
general switqhing scheme for the networks in Class I, we
have introduced the node number 12 to realize the 8th
possible pattern. Comparing Fig. 2.2 and Fig. 2.6 one can
readily verify th;t the node G‘JCIasé I) ha; been supp;essed
and the new possible switching scheme has been added as node

v12, Such new node switching pattern is possible because,
fdrb;his ciass of networks, veaveag, Therefore, accoréing

2 '3
, to Condition 2 for parasitic insénsitivity, a node can be

switched to V2 (V-node) in the ‘even phase and then to V )

3.
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evir., t L -
W!. »

‘(I-node) in the odd phase, 5 R -

T

Fig. 2.7 .shows the most general switching schéme
for the networks of Class Il with its nodes rumbered

according to the table in Fig. 2.6.

The capacitor placements' within this structure were

investigated using the same procedure described in section

2.3 and the useful cases " are shown in Fig, 2.8 where an

asterisk at the position (i,j) means a possible capacitive
connection between nodes i and j. It is interesting to

observe that node 5 in Fig.-2.7 is completely useless. Any

- capacitor with a terminal connected to it will not affect

any of the network CCEs, This fact should be expected since
node 5 behaves exactly as the already eliminated node 6 (see

Fig. 2.3) as the switch across the OA transforms node 2 into

.a virtual ground during the even phase. Fig. 2.9 shows the

most general SC network of Class 1II. Here again the

~ one-to-one correspondence with the capacitors of Fig. 2.5

was maintﬁinqd for convenience. Therefore,ﬂeven though the
capacitors are numbered up to C31 in Fig., 2.9, only 21
capacitors are actually employed. The number of switches
shown in this figure‘ is npt the minimum so that the
contributions of each capacitor can be readily visualized.
From Fig. 2.7 it can be verified that at most 15 switches
are needed for such networks (node 5 - is ' alreadf

disregarded). . : .
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The analysis of the general network in Fig. 2.9

" consists of the determination of theprE at node‘3 for™ the

odd phase, .with the previous knowledge’ that VSsO. By doing

»

so, the following charge equation is obtained:

a ] .
o___1.0 -1/2 “2 _e ‘ :
V2 = Vl + 2 = Yl (2.36)
3 3 . .
“Where
L ’ ' _

ayf Cl+C4+C8+C10+C22+C24+C25+C28+C30 (2.37a)
0,2 = C]‘.+C4+C5+C7+C19+C21+C25+C27"_"C3l _ (2.37b)

-~ k3
ag = C2+Cll+Cl3+C17+C19-.i-C21+C29+C31 ' ‘ (2.37¢)

‘ Ik

? .
Since a continuous feedback path must always exist

from the output to the input of the OA to guarantee network

stability, the coefficient of Vg(z) in (2.36), namely 53,

can never be equal to zero if the network is not embedded in

a larger negative feedback loop.

A very interesting property can be visualized 1if
g .
the  terms in (2.36) are grouped in a particular way. Let us

write (2.36) as ) .

o o
(C8+C16*C22+C24+C28+C30)Vl + (C2+C11+C13+C17+C26+C29)V2 +
o__*1/2,e o__-1/2,e
(C1+C4+C25)(Vl 2 Vl) + (C19+C21+C3l)(V2 z Vl)

-1/2,e_
(Cg+CqatCya)z 7 V=0 (2.383

With the CCE written in this form, the contributions of each

et

T e v Ut e A Y S AR e o 4 o T
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. . f‘
capacitor as functions of the Joltage sources ;;;>clearly

l’ '
shown. Note that each capacitor appears onl{ once in

(2.38) . Consider now the following capacitor sets:

>

set 1: Cgr Cygr C22r Caqr Ca2gv €30

set 2: Cpr C11v C137 G170 Ca6r Co /

set

w N

€17 Car C25
set 4: c19’ C21’ C31
(z

Each of these sets is composed of exactly the capacitancesg

- which are withih each of the five parenthesis in (2.38).

. . ¢ .
Furthermore, the sets are mutually exclusive. Consequently,

only one capacitor from each set is necessary to realize any

possible transfer function, since all capacitors within the

-

same set perform exactly the same function in the network.

The choice of which capacitor will be used from each set is
irrelevant in terms of the realizable transfer functions and
therefore a reasonable approach is to to choose the one(s)

which would employ less switches to perform a given

function. By doing so, the 5 sets are reduced to

set 1l: C8 or C24 ‘ \
set 2: C, } ’
set 3: C . ;

1 /'*\\u,
set 4: C21 .
set 5: C5

»

This choice leads to the 2 general building blocks shown in

r .

o

A,
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Fig. 2.10 for Class II. For the circuit in Fig. 2.10a

) _ T €m0 “ T
. , ‘ ”
o - <
P v = - __‘_:_]:_C_S_\Vo vz 1/2 Sﬁ_s.:.c.:__ v o (2.39)
) . Cp*Cyy 1 Ca*Ca1 1 "
and for Fig. 2.10b (Cg=0)
Cc,+C C +C_+C
o _ 1'%24 o, -1/2 Z1 "5°721 ‘
Vo g, 1t e U1 (2.40)

2 721 . 2 721
Therefore, at most 5 capacitors and»? switches are required

to implement any transf%r functzon realizable by a. network

of Class II. ] A

s Y

“) The study of sampléq and .held input 51gnal can be

| performed as done for Class i.u ;ﬁé study is qulte simple

_ and is omitted, here. Sampl;d and held outputs, however,

~ cannot be obtained from’ a netaark);é this class since the
“u,}#’ o

output voltage is always made %qualw;o zero durlng ong of
the phases. In order to av01d ‘a conplnuous path from input

. to qutput, Cl' C8 and‘C24 shoﬁ;d be made zero in Fig. 2.10.

AN -

If the output is 'desired at the eveh phase, one can

A

(as suggested in section 2.6) .petform the: design with the
phases interchanged and, afterwards, substitute the even
L) switches by odd switches and vice~versa in the final

network.

Sttt > ancmrat S . e s
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2.8 DESIGN CONSIDERATIONS

~

: V ]
A look at the values of ayy i=1,...,8, reveals that

each of these coefficients has a single capacitor which does

——

not  appear in any other &i. The " list. of exclusive

-

capacitors is as follows:

4, » C .

Y17 % 57 715, (2.41)
3 * Cyg % * Cir

u3 <> c9 4 u7 hd Clz

a4 -+ C7 GB + C14 /t

1 ' J

Each‘og the‘£Qmaining 15 capacitors are shared b§ 2 or more
of the a coeéficients. Thereforé: if we consider each of
the a;'s realized only by its exd;usive capacitor, it is
clear that agy realizable transfer function can be obtained.

Nevertheless, the price paid by this simplification will be,

most of the times, the use of more capag}ﬁors ‘than the

minimum necessary, leading to an increase in the total
capacitance. and many times to an increase in the capacitance
\

spread of the final network.
{

Consequently, it would be very useful to have a
procedure that takes advantage of the extra 16 capacitors in
obtaining better designs. We propose here’ a method to
explore this possibility ‘without increasing the complexity

of the networks.




e

had ]

5.

'The idea.is to use,. a?‘the %egining, only Ye 8

' ba ic’ elements plus unswitched cabécitors to obtain the

general transfer functjon for a given case, i.e.,. to

X |
substitute each o, in Table 2.4 by the vaiues of their

exclusive capacitors plus Cl or C2 depending on the case.

. In this way, the expression of the general transfer fgﬁéfion

-

becomes much simpler to.deal with and, as explained before,
no generality is lost in,ihe realizability of the various
'Saéfficients. From this simplified t;an;fér function one
can easiiy determine, by inspectioni the possible ways to
implement‘the final network employingE a relatively small
‘numbgr of" cap&citors (in general 4 or 5).- Then, we try to-

employ the remaining capacitors in o#dér to improve the

design. This can be accomplished in two basic ways:

{a) Reduction of the Number of Capacitors with the Same
/

Spread and Less Total Cagacitaﬁce

By studying the general expressions for the
various ai's fn_(2.3) one can easilg verify that some sets
of 2 or 4 of the basic éapacitors, whenever equal in value,
can be replaced by a single capacitor. All these
suSstitgtions are listed in Table 2.5, For instance, if in

a given design, capaciéors C7 and Cll (case 6 in Table 2.5)

.are employed and tﬂeit values happen fo be equal (or can be

forced to be), a single capacitor Clgi of the same value
4

could be used to substitute both C, and Cy;- This procedure

maintains the spread of the initial de#ign and decreases the

\//




Table 2.5: Capacitor equivalences.

88

L]

numerically equal | equivalent

‘ capacitors ‘capacitor |
1. Cg» Cg. C
2. C: C; C
|3 %> C12 C20
4. | Cgy G Cyps Cp Ca1
5. ¢ Cyg Cy
6. C7s Cpy C19
T~ €g Gy Cg’
8. Cgs Cy5 Co3
9.1 Cgs G100 C1gs Cy5 Caa
10. Cyo0 C14 C22
11. Cyqs Cip Ci3
12. ‘110 14 €17
113. Crps 15 Cig
14, a0 Cgs 16

s, A e abe TR s (TR
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total capecitance by the value of C7.

(b) Reduction of the Total Capacitance with the Same

Number ef1Capacitors

In this case, Table 2.5 is used in an alternative
way. Let us take the same example with the difference that
now C7 and Cll are not equal in order to satisfy the design
equations. Again from expressions (2.3) and table 2.5 we

see that, whatever function can be performed by C7 and C11

may be 1f&ewise performed by C7 and Cyg OF by C and C

11 19’

as follows:

(i) If C7>Cll' use C 11 and C7-C7—C11 where c, is the
value of the initial design and C7 is the new value to be

employed in the network. Y

=C_ and C

(1§)If C11>C7, use C19 7

1176117°% -

It is clear that Eﬁese substitutions reduce the
total capacitapce of the final network if 67(611) §s geeater
than the smallest capacitance value of the original network.
The component spread is increased enly if the capacitance
value generated by a difference becomes smaller than the
least valued element of the initial design. Then the ratio
of maximum to minimum capacitance values within the network
is increased.

‘s
+

The use of these design techniques is better

illustrated by means of examples.

o

.
S E U - ST D
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2.9 EXAMPLES «
Example 1
We také as an example a first order bilinearly

transformed all pass filter used in (39] as a building block

in a Qpectral line enhancer. , The s-domain transfer function

7

..is"given by

H(s) = Bo-5 ' (2.42)

which bilinearly transformed yields

o

T Al . 2.43
S v 1y e
1+0

N s

According to the specifications in {39], the transfer

function H(z) is to be realized as

O
v

H(z) = —% where Vi = z'l/zvi (2.44)
v
.1

‘In order to use Table 2.4 we rewrite (2.43) and (2.44) as

[

.
e Y R e

PRV




ﬂ{‘ |

, - . 9l
“ ’ v
¥ - (Ao m1/2, %372 ‘
_ 2 I+08 o_. -1/2.e
H(z) = —= = 15 , Vi = 2 v
' Ve l_z- ( - ' 1 1
‘ s 1 1+8

Now, according to Table 2.4, we want to realize

H4(z) =

-1/2 -3/2
[(a4-a2)a5-ala832 +a3asz
=1

536=% O,%g

a

'

Considering the simplified forms of “i' i=1,...,8 as

€

a, = C.+C . a. = C,+C

1 = ©1*Ce 5 = C2*C1s

a3 = C1*C10 ag = Cp*Cy1

) a3 = €1#C @9 = Ca*C1y
ay = C+Cy ag = Cy*Cyy4

' | -1/2
£(Cy=Cyg) (1#C 5 =(C *Cq) (14Cyg)dz ™ 74

Hylz) = T
{1+C 1+C (l+c12)(l+cl4)

11) (1*+C35) -2

provide positive feedback. Also, from (2.47) we

{

-3/2
(C,+Cq) (14Cy,) 2
1 -9 4%

(2.45)

(2.46)

and normalizing a%l capacitors with respect to C2 yields
(2.47) .

; - We now eliminate, arbitrarily, C12 and Cy, since they only

that

o P toraat e s




. . f .
- - . , |

11 ‘and C,5 are not necessary at the same time in the same

e

design. Equivalen;‘}aésoning eliminates the simultaneous

use of C, and C

1 9° . L
' f

)

Let us consideér a first possibility where g 15-0.
Theh ‘.
. (CymCy=C - Clo)z /24»clz'3/2 .
Hy(2) = =7 , (2.48)
., — . . (1+C11)"z ) ’
\{:\
Comparing coefficienta with (2. 43) yieldi/ . '
’ o e 20 '
11° 1-8 R (:“ "
_ 1+Q
€1 7 1= o
_ 28
¢ % 1-a o
and | C6 = Cio =0

The network obtained L;(exactly the one proposed {? [39]:
We now apply the simplificétion procedures, Sinée C7-Cll in
the final design, the improvement technique (a) can bev
empioyed: We -use case 6 in Table 2.5 ané substitute both
capacitors by C19;29/(1-9). "The final network (which is

canonic) is presented as network I in Table 2.6. Proceeding

a4

N
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i

in the same way}for the other possible choices 6&f Clr Cqr

°11 and C15 the remaining canonic networks in Table 2.6 can

‘be easily obtained.

-~

The application of the improvement technique (b) is
not shown here since it can be carried out in the same way
and because the final results will depend on the numerical

values of the transfer function coefficients. " .

At this point one can_ easily verify the advantages
of usingi &, systematic generation and design procedure.
Three new distinct networks were derived from the
application of the ézoposgd method which realize the desired
transfer function with the £following advantages over the

version reported earlier [39]: g&k

(i) The capacitance spread is maintained.
(ii)°  The number of components is brought to a canonie
count,

(iii) The total %apaciganée is reduced by 2Q/(1-Q).
‘(ivf No one of the three new designs requires
capacitor tracking (equa; values) in o;der %ol realize the
desired transfer function. ’ ’
‘ (v) The three networks emplgy at most 6 switches,
which is the number used in the oriéinal one. Furthermore,

)

one of the new structures (I) employs only 4 switches.

'
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Example 2 .

N

o Another important applicatidn for the first order

blocks is in the generation of second order networks.

Suppose we are interested in the realization of a biquad for
. \

which both outputs are held for a° full clock period

0 L. ~l/2,e
Vout=2 Vout) *

general second order denominator is shown in Fig. 2.1l where

A flow graph capable of realizing a

the input is considered to be sampled only during the even

phase. Thé transfer functions of the two first order blocks
;re then determined, compared with the transfer functions in
Table 2.4 and fealized by following the generation and
design procedure just d25cribed. Fﬁrthermore, .from the
general expression of the denominator bolynomia% it can be

verified that if K2=K the final network will still be able

4
to realize any pole location within the unit ciégle. " This

observatiqn allqzs the use of case 8 in Table 2.5 and design
improveme;t technique (a), resulting in the reduction of the
final network to the form shown in Fig. 2.12 (this is
already the minimum switch realization). The input
capacitors were chosen arbitrarily so that a general
numerator could also be realized. For any applicdation at

most 3 of these capacitors are necessary. The transfer

functions for the general biquad in Fig. 2.12 are

-
‘

.

*

M et e e s
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<

.

v

e ; -1 _ ~2 _
V3 ) -K7(1+K2) + z EK8(1+K2)+K7 KlKSJ + z (KlK6 K8)
o -1 _ -2,

.V (1+4K,) + 2z (K K3-K,=2) + z (1-K;K,)
ve (K. K-K_) + z"l(K +K _-K K‘-K K,) + z'2(K K.-K,)
‘2 377775 5 6 277 38 278 76
vi D(z) o

Depending on the design values for the input capacitors some
further structural simplification or design improvement can
be obtained by using the capacitor sets in Table 2.5 to

combine feedforward and feedback capacitors.
"2.10. SUMMARY

A systematic study of the generation and design of
stray insensitive single OA SC networks has been presented.
Towagds this end, the parasitic insensitivity conditions
reported earlier in the literature are exploited in such a
way that redundant elements are automatically excluded from
the resulting general networks. - The networks thus obtained
are seﬁarated in two classes. For each class, all
realizable transfer functions are determined along with the
necessary conditions for their realizabilitv. Then all the
possible ways to implement such transfer functions without
the requirement of any matching conditions on the netwofk

elements are studied. The final results are tabulated in a

ready-to-use format. The different types of input and
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output voltage waveforms are considered. Finally, a

compréhensive section on how to apply the  derived results to

generate practical structures is presented. \Some techniques
1

to 'improve the final results for smaller tafal capacitance

|
and element spread are discussed.

w

—_—

\

A detailed example of an ‘all-pass filt%r design is
- presented to’ illustrate the. application of the proposed
'method. The results obtained compare very favorably with a
previously reported structure. - A second example on the
generation of a general biqu;dratic building'block‘~is also

presented.

A

In this chapter, we have considered syskematic’

generation and design procedures for parasitic insensitive,

single OA networks. The resulting networks are at most of

«

the first order. In the next chapter, 'we extend the

. . \
developments of this chapter for systematic generation and
. a \
design of parasitic insensitive second order networks. y
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CHAPTER III

’ SECOND ORDER SC NETWORKS

kY

W
.
[ ]

INTRODUCTION

A gréat deal of effort has been spent in the past
decade in the generation of good building blocks that can be

used to implement high order filtérs, one of the most

important blocks being the biquad. This chapter deals with

the generation and design of such networks.

In order for a biquad to be generally useful as a
building block, it should possess the following properties:
(1) Should be parasitic insensitive.

(2) Should be capable of realizing any stable z-domain

°

transfer function.
. }

(3) Should have low sensitivity Qith respect to the

capacitance wvalues. -

¢

(4) Should provide an area efficient realization.

Some structures satisfying the above mentioned

“properties have been presented [15,18;26] and extensively

- _applied in the synthesis of SC networks. Usually the final

\decision in the selection of a structure to implement a

given set of specifications is based on performance measures

L]

such as the total capacitance, capaci tance spread,
sensitivity, etc. Even though several SC structures may

A
realize the same frequency response, they can vary widely

-
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with respect to su;:h figures of merit. Therefore, it ig not
uncommon  to synthesi,ze different networks JBrom a
pre-stablished library and then compare them for a final
decision [40]. Consequently, it would be desirable to
expand the exiétiné set of good performance biquads in order

to provide a wider design choice,

This chapter presents a systematic and
comprehensive approach to exploit the stray insensitivity
. conditions proposed earlier in the literature [l4] (see
Chapter I) in ‘the generation of SC biquads. The steps to
obtain the 'most general stray insensitive second order
network follow closely the development used. in Chapter 1T

for the single OA net‘works. As a consequencé,  many
properties and definitions are borrowed directly from that
chapter. Nevertheless, whenever the comprehension and/or
the natural continuation of the text appear likely to be
compromised by their omission, some of these properties ana
definitions are repeated for clarity of presentation.
However, after the general sSecond order SC network is
obtained, this chapter takes on a completely different

approach in comparison with the one followed in the previous

chapter [42,43].

In order to provide easy to design building blocks,
only canonic or quasi-canonic realizations are derived in
this chapter. 4 total of 28 networks is obtained. The

complete set includes the five parasitic insensitive biquad

bt s S by e
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building blocks presented so far in the Jliterature

[15,18,26]. The remaining 23 networks are complefely new.

The canonic structures obtained allow the realization of

biquads with fewer capacitors than the ones presented in the

literature. Sensitivity values areadﬁzérmined as functions-

of the parameters of a bilinearly transformed transfer

function. Design equations are provided for all networks.

Algorithms -are given for dynamic range scaling. Also, -

spread and . total capacitance minimization techniques are
dicussed. Detailed examples are given; ‘along with
experimental results in order to illustrate ;the possibility

: . . \
of design improvement using the new structuresj.

3.2 SOME DESIGN CONSIDERATIONS

The results of Chapter II show (see Table 2.4) that
biquads satisfying the parasitic insensitivity{conditions 1
and 2 cannot be realized using only one [OA. Thus,

henceforth only 2 OA realizations will be considered.

At this stage, some practical considerations are in
order. Due to their periodic time-varying nature, SC
filters are better‘ analyzed by wusing the z-transform
(z-domain; instead of the Laplace transform (s;domain).
However, during each clock phase the network is a
time-invariant.analog circuit and as such must be stable so

that the outputs of the OAs will not saturate.

Consequently, in what follows a reliable SC biquad will lbe.

PP PR
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AN

required to have its overall feedback loop "broken" for both

phases [4%l;,j;f such a loop occurs, the biquad wqﬁka‘“‘ﬂ

behave, within that phase, as an active~C circuit wi an
overall feedback and therefore would have 1its ility
dependent on the frequency responses of the OAs, f courée;

due to the broken feedback loop condition, a cal negative

feedback path must exist for both QAs duri

7‘
n that a 2 OA biquad

each phase.

It can be verified by inspecti
which satisfies the fq;egoing stability requirements along
with the stray insensitivity conditions 1 and 2 discussed in
Chapter I must assume in any phase, even or odd, the
topology shown in Fig. 3.1. The boxes shown betggen various

nodes may be open-circuits or capacitors.

.3.3 GENERAL BIQUAD

4

The next step in the generation process 1is the
application of the parasitic insensitivity conditions to the
class of networks which assume, for each of the even and odd

phasés7 a topology of the type shown in Fig. 3.1.

"The networks in this class have some topological -

properties which will be useful for the derivations that
follow. The noninverting OA input terminals are always
érounded and the inverting ones are I-nodes (virtual gounds)

for both phases. Also, both the even and the odd circuits,

.as defined in Chapter I, will always reduce to a network

containing only the following six nodes:

'

P

e i
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node 0: Ground node. ‘

node 1l: Inpqt voltage source,

node 2: Output of the.OA#l (OAl) .

node 3: Output of the OA#2 (OA2).

node 4: Virtual ground of the OAl.

node 5:1Virtuai ground of the OA2.
Consequently, all other nodes must be switched to one of
these six nodes in each phase ‘to satisfy the parasitic
insensitivity cohditions. Henceforth, this node numbering
assignment'is always used. The remaining network nodes are
numbered from 6 to n. Note from Fig. 3.1 that any two of

the six basic nodes can never be connected'together.

3.3.1 General Switching Schemé ' »

As done in Chapter II, the network switching scheme
will be represented by the sditching matriceg Se (even
phase) and So ‘(odd phase) defined in [12].‘ with this
definition and the proposed node numbering scheme, the (nxn)

matrices Se and So assume the form

e,o B I .e,0 e;,0 e,g
1 :Sls e o WSyp e . S1h
L] I ' L ] L] -
|
e,o | «©,0 e,0 we,0
. ) 5 |556 .- . .SSk '_:_:?iﬂ_
e,o PLT1-] R - - - = - ==
' I
|
. 0 | 0
I L]
nero |
e J -
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)

where I stands for the (5x5) identity matrix and 0 for the

matrix whose entries are all zero. The term Sik (S?k)

denotes the (i,k)th element of se (). If .a node is

o
grounded 1in the even (odd) phase, all the entries in the

correspnnding column of S, (8,) will be zero.

The first five rows of .both S, and S, can be

" combined in a single switching matrix S (10xn)' which

contains all the informations about the switching scheme of

¢

the biphase SC network. ,The matrix S will- have the

following form

l *» e o 5 6 e e @ k e « o N
B ]
e | qe e e
1 " slso - oslko . .Sln
|
. I . . .
e \ e e e
|
N 2556w Bsic c_Fsn
lo { o L) . -So . . -So
' ®16 1k 1n
- I i . . .
I
, o ) o) °
Il 5 ° " 856. . .SSK' . 'Ssn

o,

Each column of S determines uniqueiy how a given -node is
connected to ‘the six basic nodes.in both the éven and odd
gpa&es. Therefore,“the'study of all possible patterns for a
typical coiumn (say kth column) will determine in which ways

9 . ¢
an internal node k can be connected during each one of the

two phases. The number of possibilities for a given column

E—

gy o ok At A
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is, however, excessively large. Nevertheless, by
considering for S the four restrictions on the switching
scheme discussed in section 2.3 for SI’ many redundancies

and impractical cases can be avoided. .

-

’ Note also that the switching of a V-node to an’
I-node or vice-versa in consecutive phases 1is not allowed
(Condition 2 for stray insensitivity). The only way to
allow such a switching would be by making V2 ér V3 (Vl'is an
independent sourcef equal to zero in one of the phases.
Such voltage setting could only be accomplished by placing a
switch across one of the OAs during that phase (voltage
'follower). However, this‘>would eliminaté the "memory"
capacity of one of the integrators by discharging‘the
continuous feedﬁack capacitor and, as a conséquence, no|
second order transfer function denominator c9uld be obtained
from the network. Thisi}s, in fact, the reason why such a
switch does not appear in Fig. 3.1. Hence, for any column k

~\ . .
of S it is required that

|
¥
s§;° X sgée =0 for i=1,2,3 and j=4,5

« -

The application of these restrictions to a typical
column of S leads to the 18 possible distinct switching

AN

_‘\fatterns shown in Fig. 3.2. Due to restriction 4 above we

L . < ,
| ) can state that any SC network belonging to this class will

{ . _have at most 23 nodes, plus the ground node. Fig. 3.3 shows

]
!
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the resulting most general switéhing scheme for this class
of SC biquads with its 23 nodes numbered arcording:  to the

table in Fig. 3.2.

"3.3.2 Capacitor Locations

i

In principle, a capacitor can be placed between any
two of the 24 nodes of Fig. 3.3 without affecting the stray
ingsensitivity of the resulting network. However, as already
discussed in section 2.3, it can be easily verified that the
network transfer functions will not be dependent on the
following capacitors: (a) a capacitor permanently connected
from any node to ground, (b) a capacitor placed between two

nodes which are connected to V—nodes (voltage sources) in

both phases, (c) a capacitor placed between two nodes which -

are connected to zero-valued-voltage nodes (I-nodes or

ground) in both phases.

The remaining 120 capacitor locations are shown in
Fig 3.4 where an asterisk at position (i,j) characterizes a
possible capacitive connection from node i to node j.

Y

A circuit with 120 elements, however, is still too
complex to be handled in a, useful manner for design
purposes, Fortunately, further reduction is possible
without restricting in any way the degrees of freedom
desired in a design process. To proceed further, we need
the following definition.

Definition: The “capacitor switching network" (CSN) of a

ke -

- e
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Ls

given capacitor C-is the subnetwork formed by C'and all the

' switches and nodes which are connected to C during at least

one éhase. An allowable external node of a CSN is one of

the folloying three types: V-node, I~node or ground. Hence,

- hereafter such a node will be referred only by its type.

The CSN is then the minimum subnetwork required to
determine thé éontribution of a given capacitor C to the
chargé _conservation equations (CCEs) of the network. Since
the CSNs are dependent only on the switching patterns of the
nodes connected ., to each of the capacitor terminals,
different capacitors may have the same CSN, Thgy can be
differentiated only by the identification of the V-nodes and

I-nodes of the CSN with the network nodes for each case.

The CSNs of the capacitors in Fig 3.4 were obtained
by inserting them (one at a time) in the switching scheme of

Fig 3.3 and then applying the definition given above. Any

" one of these CSNs belongs to the set of 16 distinct

catégories shown in Table 3.1 if the network nodes are
referred only by their types. In Table 3.1, V stands for
the voltage of a V-node and I represents a virtual ground.

The contributions of the corresponding capacitors to the

CCEs evaluated at the virtual grounds are presented. The

particular case of’a voltage sfgnal sampled and held (S/H)

over a full clock period is also considered.




Table 3.1:

Different poséible capacitor switch networks.

113

V0. e T
CSN EVEN PHASE 000 PHASE ~ |  EVEN PHASE 000 PHASE
1.
e c
;,’;F o{} c(v®) 0 - .C(ve) 0
2. .
7T 0 c-2"w®) 0 cl-2"W8
of
¢
",/f[q Q'I' Cl-z7W0) 0 c(-z"1v) 0
el o .
a.
Co
v Hf’-f 0 C(vO) 0 Clz'we)
ef e -
5.
C cvez7w0) | c(vo-z7%ve) | cr1-zlyve 0
i
6.
c .
e | cve-rv 0 cl1-z-hyve 0
°f
7.
[
— A 0 CvO-z-%ve) 0 0
¥ .
8. .
FT c(ve) C-z7'%®) cve) Cl-%®)
of
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Table 3.1: continued.
vo , z“’y! -vo - z"’ve
: CSN EVEN PHASE 000 PHASE EVEN PHASE 000 PHASE
‘ 3.
) - ?__.
Ve 1 C(-z7'v0) (Vo) cl-z-1lve) clz-'ve)
10.
e T_. ,
:’f]" Il ocvgev | covg-z'w | cvg-alvg) | covgvhzt
v VBO 4
. ¢
a [ \
A tFI Cvg-z"'wd) 0 civg-z-1v§) 0
&
VB
12. oo
;,g" t?‘l' ' 0 cvg-z'w§) 0 clvg-vgiz™
‘\b\\\ a
3. G . CLve-z'W0). 1, 0. I,f cl1-z-b)veug, 0+ 1,
2 0+ Iyf ClVO-z7 'We)ary a1, -y
. o
G_/_F“_Eﬁ C(v®) » I, 0 Il cive) » l& Q- l‘
°of 2 0s If cl-z"%®) « 1y 0+ Iy [ Cl-z"W) » 1y
15. v,_c‘qc - Cl-z7%0% . 1, 0+ 1| cl-zlvey « 1, 0.1,
X Y4 fE 0. Iyl vy . gy 0+ Iy | Clz™W®) ~ 1y
. 16. ,
o ¢ ‘. C(v§-2"le 1, 0~ 1,] cv§-z"lvgre1, 01,
"&:T 1'86 0 Iyf C(V-2"Wg)ely 0+ Iy | c(vg-vhrzery
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a

By inspection of Table 3.1 it can be verified that

all possible contributions can be obtained from the.

following 4 basic ones: CVe, and -z-1/2cv® for the even

phase, and CV° and -2"1/2cy® for the odd phase.

Note that each of these basic contributions can be

independently provided by (and only by) a capacitor among

those with CSNs of the types 1, 2, 3, and 4. Consequentiy,"

the remaining CSNs can be viewed as combinations of two or
-

* more of the basic CSNs. Of course, this observgtion is also

valid for the case of S/H voltage sources. Therefore, the

subnetwork formed by Ehe capacitors' whose CSNs are among the
‘four basic ones is. able to realjze any voltage Eranfefﬁ
_function realizable by the general'network. )Also, since
" ‘each distinct contribution is pfovided‘ by a ‘differght

- capacitor, every coefficient of the reéultiﬁg CCEs can be

independently controlled, yielding maximum .design

flexibility.

The network shown in Fig. 3.5 is. the subnetwork’ .

mentioned above with four additional unswitched capacitors.
Capacitors B and D are necessary to guéranﬁee the linear
operation of the network due to the non-overlapping nature
of the clock signals [38]. With such clock signal, a period
of time will always‘exist, after the end 6f one phase and

the begining of the next one, during which all the switches

" will be open. Consequently, during these periods of time

‘the OAs will operate without feedback if caﬁacitors B and D

Rt S
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are not employed. Capacitors E and W have beeﬂ included for
the following reasons. They belong to the set of useful
capacitive connections in Fig 3.4. Also, they are
attraétive féom the design point of view since they
represent the simplest form of connection between two nodes
and are equivalent to the use of all four basic Csﬁs at'the
same time (see Table 3.1). Since we  will be mostly
concerned with the realizations.of the poles of the transfer
function, unswitched cdbacitors from node 1 to nodes 4 and 5

will not be included at this point. Their use as well as

the use of the other CSNs will be considered later on.

In what follows, the network of Fig. 3.5 will be-
studied in detail. oClea;ly, this network has many redundant
switches. However, they are retained so that one can
readily identify the different CSNs. Besides, as discussed
in Chapter +1I, the realization with.the minimum number of
switches can be easily derived from this one by identifying
each node with the corresponding node type in Fig.t3.3 and
then substituting all nodes of the same type by a single

one.

'

3.3.3 Input and Qutput Conditions

" In order to ensure automatic input-output
compatibility of the different blocks in an interconnected
network, the outputs of the biquads will be required to be

S/H over a full clock.period for inputs of the same type.
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Hence, Vg ='z_l/2V§ for Vi = z—l/zvi. The output at node 3
and the even phase were chosen arbitrarily without any loss
of generality. Consequently, the transfer function ngvi

provides all the necessary information about the voltage V3.

With these inpu; and output conditions satisfied,
all the biquads generated in this chapter can be éasily
- interconnected since the output of one block will be
automatically compatible with the input conditions of any
other. Furthermore, at most one sample and hold circuit
will be required (at the input), independently of which
biquad output is chosen‘as the network output since all of
them will automatically have a fully held sampled data

voltage waveform.

The necessary and sufficient conditions  to
guarantee such output waveform afe determined, by analyéis,
to be (i) W=O=K=0, (ii) Z=Q, and (iii) 22=QQ. No assumption
was made on the waveform of VZ' Also, it can be shown that
if conditions (ii) and (iii) are fulfilled, V3(z)'is no
longer dependent on the values of 2, Q, ZZ‘ or QQ.
Therefore, in an actual.circuit these capacitors can be set
equal to zero. When this is done, Fig. 3.5 'yields the

N\

transfer functions: \\

\
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Capacitors' B and D have been nofﬁalized to unity

without any loss of generality '[26]. '.This‘ can be done
.begause they belong to distinct géoups, namely (A, B, P, F,
N, I, J) and (G, H, X, ¥, D, L, S, M, V,C, T, R, U, E),
‘whigh can be independently scaled without affecting the

network transfer functions. These groups are identified by

+ the wvirtual ground to which their capacitors are connected

in at least one phase [5]. If ? and D are not normalized,
then each’ element value in (3.1), (3.2) and (3.3) must be
substituted by the ratio of that capacitance to the value of
the feedback capacitor (B or D) which is connéated to the

same virtual ground.
3.4 BIQUAD BUILDING BLOCKS

Even though the network in Fig. 3.5 1is able to

.realize any second order discrete transfer function, it is

N

clear that it contains an unnecessarily large number of

. capacitors. Too many elements in a ,network tend to

cbmplicate the design prbcedﬁre. Consequehtly, it " is
natural to look  for canonical or quasi-canonical
realizations. If these realizations cannot satisfy somé
design requirements such as low toia& capacitance, spread or

sensitivity, then a configuration employing an increased

. number of elements should be tried. However, if the final

»

objective is the réﬁuction'°of, the area required for

integratibn, this increaseqin-the number of elements should

be exercised with care. The conséguent increase in the




< .~
- ak

Y T RS ST beign

P

121

number of interconnections will require extra area in the
chip and may overcome the advantages obtained in terms of

total capacitance.

A general biquad employing 2 OAs will/require at
least seven capacitors (including the reference capacitors B

and D) since the transfer function coefficients yield a
. ¢

~systemn of five equations in terms of the network capacitance

ratios. Since the number of elements necessary to implement

the numerator will depend on the specific transfer function

realized, we seek to minimize only the number of capacitors.

employed to‘?galize a general denominator.

A biquadratic transfer function can be written in
N
the form ‘

4

. R .
H(z) = Lt €z + 8z ©(3.4)

1+ az7 !l + g2™2

The coefficients o and B in (3.4) are completely determined
by the capacitances in the feedback loop and, theoretically,
four of these capacitors (including B and D) should be
sufficient. However, it can be verified by inspection that
a general and stable biquadratic transfer function cannoé be

obtained from the network in Fig. 3.5 using less than five

/5gpacit9rs in the feedback loop. Since at least one
cap

acitor from each of the sets (C, T, R, U, E) and (P, A)

must be present to guarantee the realizability of comglex

poles, the five capacitors are to be chosen in the following

- R
H

.

e
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way:
(a) capacitors B and p;
(b) one ?r two caﬁécitofs from (P,A).
(c) one or two cégacitors from.(C,T,B,U,E).

(d) none or one capacitor from (L,S,M,V,N,F).

Besides, P and E as well as P and C are not allowed
© {

to appear in the same network since they would close the

feedback loop in the even phase and the network could become

unstable in the corresponding configuration. Also, any two

networks with identical feedback loops except for the

interchange of the OAs are considered the same. . After this
first step in the generation process, the networks obtained

must have their denominators derived from (3.1) and

analyzed. This procedure eliminates those which are !

unstable or do not realize all possible complex pole pairs
inside the unit'circle. The study of stability and possible
pole locations may be carried out as explained in Chapter I

[26].

0

Following this ﬁrocedure,‘the first 14 biquads in
Table 3.2 are obtained, where' the boxes represent the
feedforward CSNs in Fig. 3.5. The name of each nétwork is
g{ven by the capacitors employed in the feedback loop. Onlj
networks PTL [26], PTF [15], ACF [15,26], AUE [18] and ACE
[26] from Table 3.2 have been .previously reported in the
literature. The tr]nsfer functions are provided for the

outputs which are fully held over a clock period. If only

i Bt B e T




123

Table 3.2: Biquad building blocks.

NETWORK TRANSFER FUNCTIONS
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Table 3.2: Continued.

NETWORK TRANSFER FUNCTIONS
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-Table 3.%: Continue'd.

NETWORK TRANSFER FUNCTIONS |
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Table 3.2: Continued.

. (4
’ NETWORK TRANSFER FUNCTIONS
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Table 3.2: Continued.
NETUORK TRANSFER FUNCTIONS ‘
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Table 3.2: Continued.

TRANSFER FUNCTIONS:

PTFF (T = 0)

or PTIF (F = p)
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Table 3.2: Continued.

' NETWORK TRANSFER FUNCTION
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V, is desired as output, capacitors QQ and ZZ in Fig. 3.5
can be restored wiﬁhout affecting the fully held character
of the output. The only exception is the ngtworﬁ ACE. In
this case the capacitor E would transfer an amount of charge

-1/2

proportional to v? to capacitor D, making Vg#z ve if

3 2
“l72ge g £ h twork ACE 22 i
3 ence, or the networ ¢ QQ= is an

Vg#z
absolutely necessary condition for a S/H v, Otherwise, the
presence of these two capacitors can be exploited in:
realizing the zeros of the transfer function. Therefore,
their contributions are considered in the transfér functions

e ne
val.

' Looking at certain pairs of networks in Table 3.2,
(networks PTF and AUV, for instahce) the reader might be
tempted to identify them as the same network except for the
interchange of the even and odd phases. However, one should

keep in mind that, by hypothesis, the input voltage is

‘always changing its value at the even sampling instants and

that, with this condition fixed, even and odd switches
cannot have their names simply exchanged without modifying
the network characteristics. Therefore, such networks are,
in fact, distinct. Also, it can be verified that some sets
of networks in Table 3.2 have very similar transfer
functioné (ACF and AUF for instance). However, despite of
the transfer function similarities, their feedback loop
capacitors are switched in different phases. Since ‘the

switching scheme (d&N) ca& affect considerably the ways in
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which the various CSNs from the feedforward or feedback loop

.capacitors can interact, all netwgrks are presented -

separately. This point will become more eVident on the

examples at the end of this chapter. .

We now turrn our attention to the remaining CSNs in
Table 3.1. Though it has been shown that the CSNs of types
5 to 16 are not necessary .for realizing any pole-zero
pattern, they can be used to generate new network topolégieg

with very interesting properties. Since each of these CSNs

may be thought as a combination of 2 or more CSNs among -

types 1 to 4, we can substitute some sets of CSNs from the

* feedback loops of tBe 14 already éenerated biquads by other

sets employing the new CSNs such that the same kind of

contributions from each voltage to each of the CCEs can be

K
- obtained (qualitatively speaking) without increasing the

number of capacitors. The procedure is better illustrated
by an éxample. Consider, * for instance, the network PTV.
The virtual ground of OAMshas the two feedback loop switched
capacitors T and V connected to it. These capacitors have
CSNs of types 2 and 4« respectively. Therefore, their

contributions to the corresponding CCEs can be summarized as

follows: .
- even phase _ odd phase
T ' 0 . -z-l/2V§
v ‘ 0 vg -

POV S
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total 0 vg - 2‘1/2v§ | (3.5)

From Table 3.1, we collect all - CSNs which
contribute to the CCEs of a single virtual ground with the

terms Vg or -z‘1/2v§ in the odd phase and zero in the even

‘phase, for a voltage V3 held over a full clock period. Here
we ére not interested in cancellation of the contributions

]

since this would 1lead tco the use of redundant elements.

.

;nd C12'

This search yields

0 for even phasg: C2, C4, C7

V9 for oda phase:r C4, CS' C7, C and C

2 9’ C10 12°

_ ;1/2 e .
z V3 for odd phase: C2, Ca, C10 and le.

. where C, stands for a’capacitor with CSN of type i. We then
determine by inspection how the types of contribution in
(3.5) can be obtained by using at most two of these

capacitors. The following sets satisfy this condition:

CCE in odd phase

(@) (C,, C,): | c,v5 - z‘l/zczvg _ (3.6)
(b) Cyp8, | ’clz(vg - z'l/évg) : (3.7)
(e) (CpuCyy)t c, V5 - z'l/z(c2 +C VS (3.8)
(@) (C,, Cp,p): | (€, + C;,)V9 -z'l/quzvg (3.9)

TR S e N
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Option (a) leads to the same nepwdrk PTV. The others will-

give us the networks RPVV, PTVV and PTTV,. respecﬁively, in

Table 3.2.

The transfer functions of the networks generated-in

this way must be checked for stability and realization of

second order transfer functions with arbitrary complex pole’

locations since the contributions to the CCEs were

gaaranteed only qualitatively, not gquantitatively. Also, it
is useful to note that even though these networks are not
directly derived from the biquad'in Fig. 3.5, their transfer
functions can be easily determined without the need of a new

analysis. Let us return to our example. The transfer

<

‘function of the network PVV (case b) can-be directly derived

from the transfer function of PTV (case a)' by making
C2=C4-C12 or, equivalently, T=V. 1In ordér to obtain the
- . .

trandéfer function for thée network PTVV (case c), on the

n

other hand, one must substitute C4 (capacitor V) by'C12 (new
CSN) and C2 (capacitor T) by C2+C12 'in the original
funct%pn. Now, renaming C12=V thgs is equivalent to the
simple éubstitution of T by T+V in the transfer funeiion of

PTV. Likewise, for case 4 (PTTV) one must substitute V by

T+V. Indeed, a closer look at these bigquads reveals that

, network PVV, for instance, could have been obtained from PTV

with T=V by application of the superposition principle. If

V2 and V3 are alternately considered =zero in PVV, the

original CSNs for T and V can be immediately visualized.

3

L}

a
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The same reasoning is valid for networks PTVV and PTIV.
.- ' Nevertheless, the “Dférmal apprgach just presented is

advisable in order to avoid missipg any case. ’

Repeating this process for all 14 networks from PTL

LN

o

to ACE the remaining biguads in Table 3.2 can be obtained.
’Ailhthe\tkansfgr functions listed are no:malized for B=D=],
Special : care must be  taken, however: in evaluating tﬁe
cﬁefficients of the‘denormalized lransfer function for the
networks marked with an asteriskl(*). In these cases th:
‘same cépaci£or‘is‘ponnec}ed to both virtual grounds and its
value has to be divided by B or D depending on its position
. in the transfer function. fo avoid mistakes, £he notation
(C,8) has .been introduced in Table 3.2. Of course, if B=D
then G=C. The last 6 biquads in Table 3.2 are canoﬂiq
netwoﬁké since they employ only 4 capacitors in tﬁgir

" feedback loops. These canonic hetworks are, in  fact,

subnetworks of some of the others (see Table 3.2), where one

L

capacitor has been made zero. Nevertheless, they are -

presentedq here separately because they constitute the only
"existing particular cages of these 28 biquads in. which a
. general second ‘orde} transfer function can 'Se obtained
empléyingnthé minimum possible number of'capacitors in the
‘féedback loop. Consequently, for comparable dynamic ranges,

spreads and total capacitances, these designs should be,

‘preferred over the others since they employ less components.

C.
~3

ry
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» The ' CSN eq&ivalences just discussed can also be
applied af ter synthésis procedure to combine the

) feed-forward and féedbagk loop "capacitors. It should be
‘mengioned that the CSN equivalence techn{que was first
sliygested in [26]. However, in [26] this was done only for

a particular case - the combination of CSNs of types 1 and 3

for a fully held voltage source. The procedure proposed ,

here is general.

~

+ 8.5 SENSITIVITIES

]
. In evaluating ﬁhs,pole frequency (w,) and Q-factor

sensitivities with respect to capacitor variations for a

bigquad, conditions such as high sampling rates and high

Q-factors are usually imposed [17,26]. However, in
designing SC filters, the z-domain transfer function is,
most of the times, obtained from the desirea analog
‘specification via the bilineqr transformation {4,5] so that
lower clock +to cutoff frequency ratios can be used. Also,
althbugh it is usu\ally believed that €he sensitivity is
‘proportional to: the Q-factor'by aq@logy to the continuous
case, this does not always happens in SC filters [44].

Furthermore, low Q sections are quite pften necessary in the

synthesis of high order cascade filters [4,40].

In this chapter we make the onlf assumption that

the z-domain transfer function H(z) has been obtained by'the

" . > bilinear transformation of a s-domain specification H(s).

L ! o
- ~(‘ N
owol
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Since the bilinear transformation ,is the most frequently .

. \ ' N
used technique in synthesis of bigquads, this assumption is

) '
clearly a reascnable one, °

For simplicity, we shail evaluate the bandwidth
(wb) sensitivities. The Q sensitivities can always be

obtained by‘noting that Q-mo/wb. Hence

Q W, _ QW F _Xx
Sy = Sg0 - S,b for S _ =X (3F/dx) /

Since we’ use the bilinear ‘transformétién in
obtaining H(z) from H(s8), thé inverse transfo;métion must be
used to recover the original design parameéers as functions
of the SC network elements. Applying the ’inéérse biliﬂear

transformation

=l 1 - (sT/2) .
z T+ (37/2) . (3.10)

ﬁo a H(z) as 1in (3.4) and comparing the resulping,

a
*

denominator with ) ' ,

) ' i D(s) = s + mbs + o.\oz

yields
ogr = 2[bt-g 2 g1 (3:11)
g7 = LB (3.12)

Y i w2

e et s o
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where T is considered invariant * because, in general, the

clock signal is ‘taken from a very stable source. Also, ©,

and ®), can be evaluated taking into account the warping

v 1 \
effects of the bilinear transformation [4,5,25].

Determining and from Table 3.2 for each biquad as

functions of the capacitance values, the evaluation of the

b

sensitivities is straightforward. Here it is important to
include explicitly the capacitors B and D in the analytical

expressions of the transfer function coefficients.

In order to clarify the results, thew 28 biquads
were grouped in 6 subclasses., A subclass is defined‘by the
property that the denominator in the transfer function of a
network within the given subclass can be obtained from that
of another one in the same subclass simply by substituting

one set of variables by another.

“ﬁﬁThe ﬁalues obtained for the sensitivities can be
expressed as functionstof ®, and @) by back subsfituting the

\ 4
values of a and B and using the expressions (3.11) and

(3.12), Table 3.3 shows the 'sensitivities for the different
classes where the nature of the -variable substitutions
within each class are clearly indicated. Note that the

s s b
sensitivities are presented in a very convenient form.

Having these expressions and the desired s-domain transfer
f » ~

function one can discard the high sensitivity networks even

before the design starts. Only for subclasses E and F some

capacitor values are required to determine the weighting

Tem
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Table 3.3: Sensitivities.

NETWORKS SUBCLASS A
: w. T ubT
PTLIPTVIACLJACY |AUV]ACF|PTF } AUF Q{ Sx
uoT uoT 2°
PIPIAJA]JALALP A Il « (—2—) (—z—)
‘“OT w oT 2
T]Tjiclecjufec]ritu i1 « (T) (—z—)
ubT ubT
L Y{L]V YIFIF F "i(—z—) 1- -
OT 2 uoT 2
g8 ;8{8,/]B)8|DJ0]D <gil « (—z—) - (—z—)
"bT on 2 . ubT uoT 2
] piolo _D 8|8 B i -T‘(T) - I-T*(T)
SUBCLASS B
T T
PRV | AUL s:° s:"
T2 w, T2
Pl a | k[u(-g—)] ) -
' uoT 3 uoT 2
R WU |1 + (T) (—z-)
T w. T 2 w, T2
T |1 - o=+ =9 wT| 2=
it T | T2 ¥ T etz !
- 1+ 4o 1 420
T '\ e ol
uoT uoT 2
sle| " -‘I[l + (—2—) e a
" T2
e 1o
plo ubT “nT 2 ubT uoT 2
ubT 1- - 0(—2—) uoT 2 1- - *(T)
2l s a1 1| R S Ll sy
I+ — H—) 1+ = )
e
K
’ %
AN

i,
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Table 3.3: Continued.

NETWORKS SUBCLASS €
uoT ubT
ACR|ARU 5, 5,
T T 2 T .wl2
‘| Jou-o | et
o 2wyt ol w2
¢lu ) ”T[I“E%Szjl} 23
ubT 1 1 ubT
R R e - T;';T"Z 1+ =
()
wnT w2 w. T wT
8|8 -a[u-g_o(_g_)] -[1+.‘z>_+(..g..)z]
T T wnt « 7
ak e IR
N
‘ SUBCLASS D
AUE | ACE | ARRU | ARRC sm°T smbr
13 X
T wT2 T T2
Alafa | k[u‘:‘z’-ﬂﬁ—'g-)] 1o 2oy
uoT uoT 2
yictu c ki1 + (T) (T’
ubT ubT
mbT uoT 2 an aoT
B|B|8 8 -h1+-z-+(_2_) 14»_2..4-(_2..)
n( 1. 1, _H[“ ol (uoT)Z] :{1 Lol (..or)z]
T NT i

)—-"‘/’m‘
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Table 3.3: Continued.

b L. S v me
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factors T/(T+V) and V/(V+T). However, these factors are

'Eounded between 0 and 1 :and hence a worst case analysis can

;//give a reasonable idea about the final seqsitivities. Note

that, in th;se terms, T represents a c;pacitance value and

should not be confused with the T in w,T and @, T which

stands for the sampling period. Also, note that T and V in

f such factors should be replaced by other variables if a
-network other than PTVV or E?TV is being analyzed. From

this table it can also be verified that by incteasing the

. Q-factor and the sampling rate (MOTL>O and © T->0) one may

in fact decrease the network sensitivities.
) 3.6 SYNTHESIS PROCEDURE

Tables 3.4, 3.5 and l3.6 provide the m;cessary
informatién for the synthesis of the 34 networks in Table
3.2 which allow 41 different designs since 7 of these
biéuads‘ may have both outputs fully held over a sampling

period.

In order to condense the deéign requétion the
denominator and numerator polynomials of the trlpsfer
functions were grouged into 7 (Table 3.4) and lOE(Tabl \3.5)
different types respectively. All 41 transfer f&nctio\é can

. be:realized by combining these polynomigls and b& ap
some elementary variable tr;nsformations.< The step b#‘

o

synthesis procedure can be outlined as follows: '

(a) Table 3.2- Choose the network to be synthesizéd.

B}

{
. | | |
|
|

4 bt — © o at e
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Table 3.6: Initial design procedure.

NETWORK {OENOMINATOR O, (2} |VARIABLE TRANSF.|NUMERATOR M, (z)|VARIABLE TRANS.
FOR D4 (z) i FOR My (2)
i k
PTL 1 —_ 1 —
IV 1 Vel 2 —
PIF 1 Fal 3 _
PRY 2 - — 2 —
ACL 1 CoT , AeP 4 —
ACY 1 Vel , AP , CeT 6 L —
ACF 1 Fol , AP , CsT 7 —
AUL 2 - L=V , AsP , U=R 4 —
AUY 1 Vel . AP , UeT 6 —_
AUF 1 Fal | A=P , UsT 7 —
ACR 3 — 7 FeQ
ARU 3 UsC 7 Fe0 .
AUE s — 7 F=0
ACE 4 CeU 7 Fe0
ARRU 4 ReE 7 FeQ
ARRC 4 CeU , ReE 7 F=0
PTVY 6 — 2 —_—
PTTY 7 — 2 YaveT
PTTF 7 FeV 3 FeF+T
PIFF 6 Fay 3 - —_
ACYY | 6 AST , Cop 6 A=AsY
MCY | 7 A=T , CeP 6 Vy+A
NACF | 7 AST , C=P , Fo¥ 7 FeF+A
ACFF - 6 AsT | CeP , FaY 7 A=A+F
AUVY 6 CAST , Usp’ 6§ A=A+
MUY 7 A<T , U=p 6 Yay+h
AMUF 7 AsT , UsP , Fay 7 FeF+A
AUFF 6 AsT | Usp , Fay 7 AsA+F
pYY 5 —_— 2 —
PFF 5 Fev 3 -
cw 5 Cep 6 AsY
CFF 5 CoP , Fay 7 AsF
U 5 ysp 6 A=Y
UFF 5 P , Fay 7 AsF
ACL/2 1 CeT , AsP 5 —_
ACF /2 1 Fal , AsP , CaT 8 —
- |acrr2 3 —_— 9 _
ACES2 4 CsU 10 J—
MCF/2 7 AsT , CoP , Fay 8 FeF+A
ACFF/2 6 AsT , Cp , Fay 8. —_
CFF/2- 5 Cop , Fay 8 —_
/
ﬁ v

B T A e

S P R U e 1
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.(b) Table 3.6 (lst column)- With the name of the network,

obtain ‘the 'subindex i corresponding to the respéctive
denominator D (z). T
(c) Table 3.4- Determine the values of the feedback léop

capacitors to realize Di(z) using the coefficients a and 8

of the transfer function H(z) written as in (3.4).

(d) Table 3.6 (3rd column)- Apply the ~  variable

transformations in order to obtain the values of the

capacitors actually employed in the network.

(e) Table 3.6 (4th column)- With the name of the network,
obtain the subindex k corresbonding to the -reSpective
numerator Nk(z). |

(f) Tabie 3.6 (5th column)- Perform the necessary
modifications in the capacitor values for this network.

(3) Table 3.5~ Determine the values of the feedforward

capacitors for the case in hand.

At this stage, some observations are in order:
(l)_If the output at V2 is degsired, the network's name

followed by "/2" (for instance, ACL/2) must be.used in Table

3.6. Also, in these cases X=Y=() has been assumed in Table

3.5 to_guarantee a fully held output.

(2) Network designs ACR/2 and ACE/2 allow both positlve
and negative gain constants. The others have this property
only .forl some transfer functions. However, in most of the
cases the sign of the gain constant is a triviai constraint.

(3) The design equations presented are not unidue but a.

o el n e e s
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‘set of feasible solutions. It can be readily verified that

at most 3 feedforward capacitors are necessary to realize

any biquadratic transfer function with, any of these -

networks.

3.6.1 Dynamic Range Scaling

.

The synthesis equatibns presented so far result in

unscaled capacitor values, After this initial design,;

capacitor scaling can be used to improve the network
performénce without affecting thé‘final transfer function.
An important‘f%%tor to be considered in this regard is the

dynamic range of the network. The voltage level of the main

output is usually cqontrolled in the approximation steb by

scaling the . original transfer function. However, the-

secondary output voltage level cannot be easily controlled
during' the approximation or initial design steps. If such

output voltage level is too high, overloads may occur. On

'the other hand, if it is very low, additional noise might be

involved. Therefore, it is desirable to have a procedure

which allows the scaling of this output for a synthesized

' network. In Table 3.7 two distinct methods which were

derived from simple flow graph techniques are given for the

networks in Table 3.2.

Out of the 41 possible designs, 29 can always be

scaled. From the remaining 12, 8 can be scaled if -certain

3
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Table 3.7: Dynamic range scaling.

on. ¥

NETWORK METHOO 1 METHOD 2 CONDITIONS
" V2,3 ka3 + V2,30 KVz 3 K
PTL to ARRC, T&.X,H,Y,C,1,R,U,E) » x K
PFF,CYV,UVV ' ‘
SCALING Y, (AD.LHP,S, V) » ¢ K (PA) » ¢k _
(NOT POSSIBLE FOR PFF,
CYV, UVY)
PTL to ARRC . (1,d,00,22,P,A) + » k
SCALING V3 - (BFMLTRAE = ¢ K (C.T.RULE) » + K -
PEEY [ 3 .
(0,P) » + k (6.H,X,¥) » x K s =l
PTVY T+ T+V(1-1/k) T e K(THV(1-1/K)] 1+l
Ve VK 2 S v
oot (0,P) » ¢ k (G,H,X,¥) » x k
V+ ¥eT(1-k)
P Ve d [veT(1k)] T+ kT k< 1*%
ck ‘ P P/k
(GHX,Y)» x K ce1+k
F + F+T(1-k)
PTTF (an) hd .’ k s "T + kT FOR
\ P Pk METHOO 2
* . K> b
. (GHX,Y) o x'k - L e 1
on PTFR “(DP) & + K T » k[T+F(1-1/K)] F
. P+ P/ FOR
] METHOD 2
R _ (GHXMN s x k- | pcqed
* AW (D.V.A) » + & A+ b wvii-n) PR -
C+KC METHOO 2 .
(G H.X,Y) » x k K> —to
’ Y+ V#A(1-1/K) 1+X
AACY (o,v.A) LR k' . As AR A
A
, € XC FOR
- METHOO 2 °
. ’ i
..0,-, [
& ° < -
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' Table 3.7:; Contigued.
y '
NETWORK METHOD 1 METHOD 2 CONDITIONS
' Fa F*k-l/kl (G,H4,X,Y,C) *,l} K> ~d
MLF (0,40 + + F'e FeA(1=1/k) P TLE
A A/ ) R
’/_’A i Pl
, ' 0+ D/k C(GHYLE) - x K 1l
ACFF A+ L e A % (A+F(1-K)) F
]
- (G.H XY, U) » x K ke1+h
AUvY (D,V,A) + ¢ k Q A« L [aev(1k)) FOR
\ k METHOD 2
k> ~L .
: (G, H,X,Y,U) + x & 1+
AAUY (0,V,A) «~+ K ¥+ YeA(1-1/K) B
A+ Ak FOR
METHOD 2
F e FeA(l-1/k (G H,X,Y,U) » x k K>l
AUF (0.A) fl‘l,{ ’ o Fe FAA(L-1/K) T E
' Ae A/K
,7“...
D+ O/k (G,H,X,Y,U) » 'x Kk
F o ; kel+d
AUFF 4 A {_ (A (1-k)] A % [AsF(1-k)] 5
\ Ty : (1,9,00.22) + x &
F o L [Fea(1-k)) £ .ngu-n kc1+E
MCF/2 k
. (B,C) » ¢ k L+ C/k
’ A+ kA
a.‘ , \ .
(Iol,o lzz) ‘= k .
AFE/2 A+ AeF(1-1/K) - e v Tf_i
. ) (I.C,F) st k e Ae t[‘#(l'ln’] .
L. % : , - —.
4 r
.y - .
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not Fulfilled, ‘they scan still be scaled to a
closer-to-desired condition. Only the remaining 4 .{ﬁV,
CFF, CFF/2 and UFF) cannpt be svaled at all.

Since a very’ poaPlat method of scaling for optimum
dynamic range is to equalize the maximum OA output voltage
values for a fixed input level [17,18,26], we present here
the analytical 'expressions to determine the  maximum

magnitude of a second order z-domain transfer function.
. .

.Given an ﬁ(zl expres%ed as’ in (3.4), it can be

shown that théf’aximum value of its magnitude occurs-at’' one.
of the following’frequencies:

ER ’ N
. , . : AR
(a) o = 0 (z=1).
(b) of = 7 ‘(2=-1). :
_ -1,-4(af-cd)t/16(af- cd) 28 (bf-ec) [(a-c)et (£-0)b]
fe) w,T =cos { I(bf—ec) }
. N . , . ’ »
where ‘ ) . 3 P
Ny . Lot ‘ -*
) \
any24e24 82 : 2 |
b=2€ (Y+8) , a o B A (,»35
c=2y$ - o
a=l + a2 + 2 r
em20(l + 8) o
|, E=28 : " “
- ' ‘ 1
hence
. ._ . “. ' . ’ jm T o
|8 (e39) | 0y = max] ln(l)\ [B-1) [, ¢[Be” T (Vo -
ﬁ"‘ ‘ ' ‘ - ’ Av
N R v
. - . »
. s N .
\\ Ay L) w_ ‘ % /
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These formulas in dopjcunct'ion,,with (3.1), (3.2),
(3.3) and Table 3.7 brovide an analytical and

straight‘forwa:d dynamic f:ange scaling ’pfrocedure.

3.6.2 Spread and Total Capacitance Scaling

\ Typically, the capacitance scaling di':scussed in the’
last subsection is going to modify the totallcapac'i't'an‘ce and
the capacitance spread needed for a given realization. The

next step in thg design process in then to qdjus’t‘ these two

zquanvtities to their minimum values wi thout affecting the

.

already established network. characteristics, There are
basically two procedures to perform this last element

scaling. The first approach is éimply to scale all the

network elements so that the minimum capacitance value inmw,

[

the” network becomes un{ty. ‘We - assume here, .- for

normalization purposes, the unit capacitance as the minimum

' capacitance value that can be implemented using a given
e : ' : ‘

H

'i'hé second ‘ approach is to écale‘ separately
different groups of capacitors. ' The capacitors “n each

[

group are identified, as discussed in section 3.4 by the

virtual ground to which they are _connected. Since  these
Pl

. ; ” i . L.
groups . can be independently scaled, a minimum capacitance -

(with unity value) can be defined for each group. '

13

" -In generai, the second approach is optimal (leads

to minimum spread and total capacitance) whenever it is

1

o tLarh e
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possible to identify the different groups of capacitors. It

is important to note, however, that this approach cannot be

'applied if a given capacitor terminal is switched to virtual

grounds of two distinct OAs in different phases (e.g.
capacitor F in PTFF). From Table 3.2 one cah readily verify

[
that the nine networks marked with an asterisk cannot be
N

. L
scaled by following the second approach. Nevertheless, such
networks should not be diregarded since 'they still mayﬁ
result in the best design for a given case.

8

3.7 APPLICATIONS

All networks proposed' so far can realize eny
biquadratic z-domain voltage transfer function. Therefoge,
performance criteria such as total capacitance, capacitance
spread and sensitivity among others will determine the
recommended circuit for a given application. 'In practice,
these values depend on factors such es'the type of transfer
function, the pole Q, the gain constant and the sempling
rate employed. In order to Lllustrate the possibillty of
design improvement using the new networks proposed, we give
here two examples where a teduction in the area required for
integration may be achieved. The examples are‘presenﬁed in

Table. 3.8 where the best design obtained from all networks.

in Table 3.2 is compared*with the best result among thée

structures previously reported. The figure ¢f merit used
for this comparison was the sum of the normalized total

capaci tance and the component spread (Chax/C Maximum
- r .

min

e

S 2on 2t
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Table 3.8: Examples'of,design improvement‘:

| NuMBER OF
' NETWORK |..C. | SPREAD | CAPACITORS
Ex.1 - HPN
fp= 2.5kHz
Qp= 2 ACR/2 33.3 21.7 8
f,= 2.0kHz
f= 250kHz AUE 72.5 28.1 -7
high freq. gain =] '
Ex.2 - LPN- )
fp- 2.0kHz 3
Qp' 10 PFF 33.9 11.5 6
,~ 2.5kHz ‘
fs- 12.5kHz ACF 34.9 11.5 < 7
0C gain =1 4 . ™
' 7
A ) \\
k]
it

“ e e i an by En -
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dynamic range was also considered as a requirement.

Example 1 is a highpass notch (HPN) secﬁion. The
final network is shown in Fig. 3.6. 1In this design, the CSN
of type 11 (Table 3.1) has been empléyed twice to combine
eieménts from thé feedback loop'(capacitors C and R) with
the feedforwara capacitors G and H, as anticipated " in
section 3.4. The use of such combinat%on has led to a
reduction in the total capécitance ﬂecessapy for the
realization. Also, it 1is clear that this final network
could not have been obtained by starting with network ARU,
As a matter of faét,‘in ARU the output voltage Vz'is_not
even S/H. Substantial improvements in the total capacitance
(53%) and in the capacitance spread (21.8%)Ware obtained at:
the expense of an increase in the network séhsitivity (Table
3.3). However, due to the high capacitance ratio accuracy
obt?inable in MOS circuitg, q%is is not a major drawback.

In fact, a Monte Carlo s}mulation, éonsidering.capacitance

ratio tolerances of +0.1% (Gaussian distribution) shows

maximum variations of ‘9.62% (6 = standard deviation =

5.14Hz) .in @, and 0.69% (0 = 0.0064) in Q.- Therefore, the
frequency performance of ‘the filter ‘sh?uld lie within‘
practically acceptable limits'. Clearly, in this case, the
use of one more capacitor will not overcome the advantages

obtained by the total capacitance minimization.

In example 2 we illustrate the use of canonical

structures, Since both realizations present about the same -

v
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total ° capacitance, spread and sensitivity, the

implementation employing fewer capacitors should be

. preferred. This choice would decrease the area required for

interconnections within the chip. Example 2 is discussed in

more details in the next section.
3_.‘8 EXPERIMENTAL RESULTS

In order to verify the  theoretical results,(most of
the - networks proposed in this chapter were constructed in
discrete form to realize several differentﬂ transfer
functions. In all cases the experimental results agree

closely with the theoretical predictions. However, in order

to préserve space, only one example is presented in detail.

The lowpass notch filter (LPN) of example 2 has the

prewarped bilinearly transformed z-domain transfer function’

’

ufl) = —0:6445473083905(1 - 0.61803 9885z L + 272

1 - 1.028244799797z- L + 0.91898727228363z 2 '

The final realization of the network PFF (biquad pno,30 in

~

Table 3.2) is shown in Fig. 3.7.

Also, it should be noted that since capacitors I
and J are equal, they can be substituted by . an unswitched .
capacitor. This simplificaéion is equivalent to the
replacement qf CSNs of types 1 ;nd >3 by a CSN of type 5 (see
Table 3.1). Consequently,  the LPN filter can be realized
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using only 6 capacitors and with better performance than the
7 capaéitor version ‘since now the transfer function

coefficients Yy and § are exactly equal due to the  perfect

L

matching of capacitors I and J. As mentioned in subsection

3.6.2, even though network PFF cannot; be scaled for minimum
total capacitance by indeée'ndently scaling different groups
of capacitors, it has yielded the design with the smallest
totai‘ capacitance. The theoretical frequency résponse énd
the experimental measurements are pt;esented in Fig. 3.8

which shows a close agreement between theory and ptaci:ical

results. ’

The laboratory tests were performed using LF347 OAs
and MC14066B MOS analog switches. Capacit;n:s of 2%
tolerance with respect to their nominal values were chosen
and no tun'ing was used. The clock was generated by a TTL
circ:uitry and the sample and hold input circuit was the same

employed in [45- Fig 3.4(a)].
3.9 SUMMARY

A systematic method of generating stray insensitive

biquadratic SC networks has been presented. Towards this

end, the conditions for parasitic ingensitivity repo‘rted
earlier in the literature are exploited. The‘ pr oposed
method is employed to generate biquads with about the lowest
necessary number of capacitors (at most 8) for general

transfer -function realizations. As a consequence, 23 new

>
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general biquads as well as the five presented so far in ‘the

literature have . been obtained. Some of the new structures ]

have subnetworks which are canonic with respect "to the
number of capacitorg and are, themselves,'genetallbiquads.
This permits, in some cases where dynamic range, total
capacitance. and/or capacitance spread properties are
accéptable, further reduction in the number of capaciiors
necessary to realize a biquadratic transfer functioﬁ.. The

biquads obtained are completely - interchangeable and

-'input-output ,compatible. These properties make them a

valuable'tool, attractive for use as a network library in a -

general computer-aided design and optimization package [40].
’ ' k]

. Détaileé Enalysis and design procedures for the

biquﬁés have been provided.

4
SRR

i%he,possibility of design improvement by using the

novel séructures has been illustrated by means of examples.

Extensive experimental tests have been conducted on most of
/

the proposed'networks.' In all cases, the test results agree

¢losely with the theoretical predictioeg.

}

So far, the number: of 4£lements allowed ‘in the
network has been limited so that easy to design structures

could be obtained. It would be interesting, however, to

investigate the possibilities of design.imprbvement if the

number of capacitors is n& longer limited byh considerations

. - L - .
.of design complexity. In the next chapter, an optimization

\
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I ‘ ’ 8
algorithm is developed which allows the. designer to
rationally use the degrees of freedom available ‘in the most
general stray insensitive SC network with. a given rumber of

OAs leading to structures with reduced total capacitance and

component- spread. ‘ .
)
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" CHAPTER IV

OPTIMIZATION OF SC BIQUADS , T

4.1 IN:I‘RODUCTION

9

- 2

"In the last two chapters, canonic or quasi-canonic
networks were sought for the realization of SC netw £ks.
This is a naéural appioach if one is looking for a design

. * 2 '
procedure which can be carried out withpencil and paper.’

Canonic structures usually lead -to economical and practical-

realizations. However, 4in MOS integrated circuit
implementations the total éapacftance is more directly

associated with :hq area °“needed for integration than the

number'pf capacitors employed. Therefore, it is desirable

" to investigate the possibility of improving the final

2

realization in some sense by allowing more-capacitors in thg
network. Sénce increasing the nuﬁber of network el;ments
wili rﬂcreasejﬁﬁe number of degrees  of ‘fteedom in the
design, most probably some 'performanée measure can _be
improved if more elements are used. JHowevet,'the pficé paid
"for such"iﬁézovement is the ngcessitg of more cpmpleﬁ.design

tools, usually involving.optimization techniques [46,47,58].

- In this‘chapter a new technique 1is proposed to
optimize the desigh of SC netho?k%; The technique .seeks to

minimize the total capacitance anauspread necessary, for a

¢ 1

given .transfer function, in the .resulting SC network. Even

Il

sthough the proposed method can be extended to structures of

4

.
ot
SRR R St
.

ey
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‘quite general,

any order, its development is bresentedg here for the

-

particular case of second order negﬁbbks. The technique can

also be applied, in a stnifghtforward manner, o the design

of single OA networks. Sirnce any transfer function can be
realized by comblnlng first and second ‘order buifding

'P&ocks, the method, in its present form, can be regarded ‘as

¢ . -

J
4.2 OPTIMIZATION OF SC BIQUADS -
” . . o o
B T > N
In ‘optimizing the design of §C biquads, the main

objectlve will be the minlmxzation of the total capacitance

3

.requlred for a given reallzat1on (transfer function). .- Such

¢
"objective has been chosen due to the close relati&nship

between ® total capacitance . ahd the" area needed \for
/

integration. ' ' . o :
* Lo . L ‘
S
& Some methods using numerical opt imizat ion
techniques and/or  tradeoff curves have recently been
.

propose@xgin the literature [46,47, 58]. . Most of them

cjnsider 'a previously ‘established structure w1th a fixed

number of‘components. Others-start from a large network and

v

seeié to minimize the number of elements by numerically

genlrating a series -of continuously equ1valent networks

(47]. Each newly obtained structure has one component less

than the previous one. Then, fotr each element elimination,

i

a cdmplete}numerical optinization procedure is applied.

-
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- wbuld be interesting to have a method which to -

*

avoids_ the necessity of a fixed structure while, at the sape

time, possessing the capability of generating networka o:ﬁ;//»

maﬁageable size without requiring e;cessiVe computer ti

It also appears desirable* that the degtees of freedom

inherent to the mcst general ‘stray insensitive biquad (120

capacitors) determined in Chapter III,beAavailable to the

designer. C |

f"

fﬂowever, any Attempt at optimizing this generai

biquad directly, by-quwerical methods, will lead td several
p

‘difficulties, such -as: T

(a) an exeeLsively large\?umber of variables. It is riot

L

"practical to use 120 variables in the process of optimizing P

¢d single second order network. ;

(b) since'fdf;sc "networks all the transfer function

t

coefficients are dependent oniylupon caéacitanceﬂratios, any

» . ‘ . 13
realization could be arbitrarily scaled down to decrease the

. .total casgcitance. h:;s;z:é' the'technological linit for

".the minimum capacitance value (say C min 1) has ’to' be

included in the optimization ptoéess. This consideration

one does not ant to fix the network topdlogy a priori:

¢
&

conditien such as

!
s

'Ci?_l,or ‘.ci:o X

"introduces a major difficulty in numerical optimizations if e

A..

e et
-
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cannot be easily implemented in. a continﬁous optimization
. %
process, Therefore, . a numerical optimization applied

directly to the genetSl biquad (with Ciil) would lead' to
" full networks [46] since it ?ill not be possible to4

eliminate any elem;nt. Then, if a 120 capacitor ‘network is

used, thé optimized network wi;l -employ all the 120

capacitors. N

wr . -

In the optimization of RC-active networks, the

ltheory of equivalence transformations such as the Howitt

transformation has been suécesstully used to reduce “the
number of variables (48]. . However, in ordsr to keep the
number of elements at a;teqfonable count; ‘some gptimizatioﬁ
variables are usually forced- to be zero. This is dene

either in an arbitrary manner or by evaluating gnalytically

»

the transformed ﬂetworﬁ matrix in order to detetminé a new

get of equality constraints to be incérpotated into the

¢ ¢

optimization problem. Fuftﬁermpre, a necessary step in the
ben;ration of egquivalent ﬁetwgrks is to determine the new

values for  the transformed network from a given,

element
. 7

_say, nodal admitﬁance matrix. Howeyer, in the case of SC.

networks;, such éetermination of the element values from the -

‘entries of Eheﬂadmiétance matrix is not unique due to,-thé
= M :

ﬂxtimérvarying nature of the circuit. In the *analysis
: _ ) \ ]
process, a switch closed in;a given phase results in the

contrgctian (addition) of two }oqs and -two columﬁa of thé’

v network admittance matrrxo[;al. The ipterprgtation of .- 'such- N

" - . (. . N
R e . Q\ . . .
13 A . . '
A
. < .
»
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a contraction in, the reverse direction (design) is not,

" however, unique [47,49].

+

On the other hapd, the concepts of _CSN . and C§N
‘equivslencesi introduced in the.previoua chapters allow the
optimization to be performed by parts. By doing so, at each
9ptimization step a reduced number of variables is required.
and, at the end, the number of elements in the optdmized

network ~ has an upper bound which is .ususally quite

~
acceptable for practical purposes.

aF

. In what follows it is assumed for convenience (as
done in Chapter III) that the output signal of the biquad is
required to be sampled and held (S/H) over a full clock

-

period. . a

i \‘ ‘. ’
The optimization 'ghthod proposed here [60] is *

subdivided into two iﬁdependenj steps, namely: )A
o 2

.’ (1) start with the network consisting of only the
. J
capacitors whose CSNs are among the four: basic ones (types

1, 2, 3 and 4 in Table 3.1). Also,  the S/H output‘
requirement  is imposed. Hence, thefstartipg network is the
one in Fig. 3.5 with K-o-w-oiz-oé-zz-d: as shown in
Eig.'4.1; Recall ‘that by uéing only these four basic CSNs, .

‘one has the ‘maximum ' degree of freedoh ' in choosing- the

numerical values of the coefficients of the network CCES.

“

The total capacitance qf such a network is then” minimizea

- with .the transfer function goefficients used as equality.

]
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constraints [50]. ' This step will determine the best way to
distribute numerically the coefficients of the CCEs in order
to obtain a reduced total capacitance. o
(2) Apply the remaining CSNs to the optimized biquad.

v 4

The new CSNs are éhployed in order to decrease the total
capacitance (and most of the times the spread and the nuﬁbez\
of capacitors) necessary to realize the numerical values

determined in step (1) for the coefficients of the CCEs.

, o '
This method has been found to have the following

W

features: ) ’
) /
?

(i) Leads to networks ﬁith reaéonably few components.

(ii) Few I.‘:nd éasy jéy/handl? constraints in th; numer i cal
optimization. I ‘

(iii) Few optimization variables (£20).
(iv) Reasonable computational times for. optimizations with a
variable structure.- . )
(v) The designer alwiys deals with a network_bf manageigle

size.
4.3 . STHp I - NUMERICAL QPTIMIZATION '

‘Using the network in Fig. 4.1, for a‘given : set of
transfer function coefficients vy, ¢, §, a and B, the problem

can ‘be stated as follows:

minimize ! .
P
20 X '
L X,, x,=valwe of the ith capacitance ‘(4.1)
jep 174 - ,

-
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subject’ to:

s

(R) Equality.cénstraints given by the analytical

expressions for the transfer function coefficients.
S t
- (b) inequality constraints*:

xi.il i'l,-..‘,zf], i#p'c "?(402)
if C=x =0, make ngcgfifa and xpgl (4.3)
L Pux =0, make ‘oixpglo'a Cand x21 (4.4)

;%his optimization protedure leads to a network with reduced

total capacitance and employing at most 19 capacitors.

>

4.3.1 Modificatioﬁs on the Basic Algorithm

o
L&

© So far,, we have been solely concerned with the

minimizati?n of the'total capacitance required to rgalize a
givéh secénd ordér transfer function. Though this will be
alw&ys our main objegtive; it is desirable, if possible, to
take into account sdome other network performance.measdres

during the optimization process. d

It is known that, in general, total capacitance and

network sensitivity minimizations are competing objectives

[58]. If some improvement is obtained. in the total

capacitance required for a given realiiation, the price th;t

e

(*)Here, as previously, capacitors P and C are not allowed
to appear in the same network for stabilftx reasons. .

.
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is usually paid is a corresponding increase in the -network

sengitivities to element variations. Consequeptly, any

_ realistic design should, somehow, take into aécount these

sengitivities, Another aspect which is not as crucial as
the sensitivity but shoqld not be completely diregarded 1is
the dynamic rangg of the ?etwork. Usually, for practical
purposes (specially in signal filtering applications),
m;ximum dynam}c range is not absolutely necessary. However,
if %he maximﬁm signal levels at the outputs of the different
OAs in a SC network are severely mismatched, the usefulness
of the network might be 'affected. Hence, the basic
algorithm pfoposed in the last section should be modified t

account for the network sensitivities as well as dynamic

range control. Tﬁe modifications are included as follows:

G,

(a) The Sensitivity Measure i

'
% \

Polloﬁing the approach used in Chapter III, the 60

and Q sensitivities are used as figures of merit to.

. determine the 'network sensitivity performance. Also, the

bilinear transformation” is used to obtain the discrete

transfer function H(z) from the analog counterpart. The

reasons for using the bilinear transformation were mentioned

in Chapter IlI,

X

Recall that, for a H(i) of the form

v~a('z)-Y+jeLl*¥Sz'2' '
S | +.gz-lm+'Bz-2 . -“(4‘5)
L -

e




r

e slosy s s e e < i
i

-

]

¢ .

the apélication ~of: the inverse bilinear ' transformation

yields
* 2
£ = moT -l ta+ B 4.6
o "\ 2~ T-<%=+8 . (4.6)
’ w T £ v |
-l g l-=-8 .
and R fb 3 T =% 7 o . (4.7)
Consequently, ;
) w £ W £ . )
5,° = 35 ° and sxb =5 P . (4.8)
where x stands for any network element.

These sensitivities can be written as [51].

1 * -

£ . £ f )
o o O o B
sx - sa. sx * SB sx ' . - . (4.9)
£ £ - f . , .
s PesPsl+sPsl (4.10)

which, after some algebraic manipulation yield

£ : ' .
°'z 2x a 38
Sx (T=a+B) (Trasp) C(1*8) 33 - o 53] (4.11)
£ : : : ‘
‘o b X 2 3 ' ,
esx' = = ey E‘l(l—B) % + (a=2) 5%3 . (‘.12)
I." .' ’ * .V R
{ ' ! " -

b s WA T A
v

- 4 e e 5
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a'which usualiy leads to good practical results in dynamic

172 ‘ ‘ .

Since the values of @ and B aré constants determined by the

desired transfer function, the sensitivity function

20 Wy
- foens = i . {|(1+a+3)(1-a+s)sxk| + .
(4.13)
: — \ @
) I(l—B)(l-MB)}S;(kU
\
or, equivalently, ' ) i
20 %
_ oa g
~fsens © i 1 {‘xk|[|(l+g) 9%y e axkl ¥
) N (4.1‘)
da B 1A
(1-8) 2= + (a-2) 7|1}
| axk axk

3
o

should © provide a. good measure for the sensitiiity

performance of the network. ‘

(b) Dynamic Range Scaling

+

In the general biquad of Fig. 4.1, the voitage at
node 2 is not gua¥anteed to- have a sampled and held
waveform, The:eforg, in general, the maximum amplitudes for
; and Vg‘should be assumed independent of each other. This
assumption makes the dynamic range scaling a very difficult
task. However, it has been verified by various examples
that most of the times, (and independently of the sampling ‘
rate eﬁployed), these maiima are reasonabl} close to each
other. Hence, in this optimization a Fechnique is employeé

- .

range .scaling.

%
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Let us compare~theApeak'amplitude of Vg with the

peak amplitude of Vg. The transfer, functions frpm'the input

to both outputs can be written as

L PR |
H.(z) = Nplz) V3l vy tEiz v 62 .16
1 D(z)  vi(a) 1+az7l4pz”2 - T

.and

, k]
{
Ny(z) Vy(z) v, ¢+ ezz—l + 622-2
H, (z) = = = = =T =5 (4.16)
D(z) Vl(z) 1 +az ~ .+ 82 .
. ‘ ¥ 4
Then
2 2
ve Yo + €0z L 4 8,272 %
21 . Y 2 2° b 4.17
-E. o —1 6 —2 ( L4 )
V3 Yl + elz + lz

po;e's Q-factor 1is larger or equal to 5, the maximum value
éf the magnitude function occurs at a frequency élose\td the
pole ftequency* f52]. This is not true only in the case“of
a frequency rejection network (with finite Q for the zero).
- In this case the maximum will be given by the magnitude at

‘DC aqd the algorithm ‘can be easily adapted. Hence, for

» . . -
\ o .

(*)In practice, such assulption usually leads .to good
- results even for Q factors close to one.

t

For most second drder transfer functiopé, if the

PR ORI

e

Kaote ™
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’ E

'practical. purposes,- it . ’'is reasonable to compare . thé,

"

.amplitudes at the pole frequency. We therefore include two

moré inequality cdnstraiﬁts‘ in the optimization problem

)

(4.1) in order to guarantee the conditions ".. : -

¢

!
jo T 2 a

|vote” O .
3 {v3(e ) ' ’

whére Kl and Kz are parameters chosen by the designer. 'For
designs using the bilinear transfofmation, the value of «

is the actually desired value (not prewarped) in the analog

' transfer function if prewarping was employéd to obtafn‘H(z).“

Otherwise, ohe should use the modified value
(2/T)tan'1(an/2) for oy (25,26]. The two constraints ate.
‘then given by - ' :

e 2 . e 2
!“2‘"’0” < K INJ(8) ] . (4_.1%)
and ¢
PIORTEES AT USTE e A
~ . / ’ i ‘ Ct - N . -
co e ) ’
where ! . ;
| "" »"
v o ,
., PR
. o . .

o,

i3

IS,
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e

e 2 2.2
lNi(mo)l = (Yi+ei+6
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2 » ! -~ ‘» -'> R . ‘." * . . .
1)+ 28 (Yi"'ai)c”“’o'r‘.*_',, _‘ .
' . A h Ry

for 'i=1,2 and T=sampling period.z,

4.3.2 Multiple Criteria Optimization (MCO) '

We now describe the modified algorithm which is
actually used in the numerical optimization procedure. The

coﬁplete expressions for the "consttaints and . their

-derivatives are presented in the appendix.-at the end of the .

chapter. The basic algorithm dicusséd in section 4.3.1 has

been modified. as follows: . ) o

(a) Objective Function: The new objective funbtién:is - given

‘by‘ 3

f°Pt-‘w1 fcap * W3 fsens . o . (4.22)

where v, and w, are arbitrary wgigthé, fcap'is_given~by

(4.1) &nd £ by (4.14).

sens

”

(b) New Constraints: The constraints givén by (4.19) " and

(4.20), as per eq. (4.21), are addgd to control the

k]

. network's dynamic range. , - e

‘

The modified objective. function tfbnsfb;ms the
‘simple inikiaf opéimiiation‘problem into a Multipie Ciitéfia |
.Optimizhtion (MCO) problem. _This is. . péqgusbi _total

capacitance ~ and ! network 5enkitiyigyf ‘are 'éompot}ng

\
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“minimization objectives. ' : . "

Q o« . . t 3 Q
v

The minimization of fopt as in  (4.22) subject to
equality and inequality constraints characterizes a weigthed
. 8um MCO problem. To proceed further, it is useful to recall
' some definitions commonly used in the MCO literatute

[53,54].' Henceforth, a ‘Bar is used telo? " letters

. a

representing ' vectors ' in order to indicate their<

multidimensional nature. Our MCO problem can be stuted as
L

minimize

o

£lx) = (5. (%), £

cap'= sens (X)) , o .23

v
Q

subject to’  g(x)>0 = (ifequality cofistraints)
and h(x)=0 ‘ (equality constraints) -

, : L n

where 5-(xl,x2,...,k20) is .the wvector ©of designable
.parameters (capacitance values). The fonlbuing definitions

then apply [53]: ’ - ‘ - \\ ..

. Definition 1: The "feasible region", Q., . in ' tHe parameter

space is the set of all designable parameters that satisfy

the constraints. ) L e .

!

Definition 2: The “feasible region” in \the objective
function space ‘is the image by £ of the feasible region in

-the parameter space. ;

3 3
[ ) "&ﬂ!ﬁ, ~‘}';.

I . , » . hd ?

S




Definition 3: A point x e Q s a local noninferior point if-

' | * e et o
and only if for some neighborhoed of x )there does not exist
» ’ .

a Ax such as (5*+A§) € 2 and . > . -
S ) 1 "
- * * . -
® . fi(x + bx) < f,(x) , i=cap, sens
- * - AY * .
and fj(g + Ax) < fj(ﬁ ) , for some j
‘ \

»
In general, there are an infinite number of

noninferior points for a given MCO problem. The collection’

of noninferior points is ;he noninferiér set. The image of
the noninferior sét by £ is called the noninferior solution
set or the tradeoff surface. Note that a noninferior poiqt
is ‘the same as an opt%mgy tradeoff solution. A.desigh is

noninferior if an improvement 1in any objective function

requires a degradation in at -least one of the other

.

objectives.
' s

As mentioned before, we have chosen to use the

weighted sum. method to convert the MCO problem (4.23) into

the §calar objective function problem (4.22). The next
problem :is how to choose the weights w, and w, in order to
achieve good tradeoff points in an ;fficienf manner. Since
in our case fhere aré only two competing objective

functions, a very simple Qeight selection heuristic can be

chosen [53,54].

YRR R SN

-~




wé firét ﬁinimize each objective’ function
separately in order to f&nd the bquﬁdaries of the
noninferior surface in the objective function space (points
E; and 5; in‘Fig. 4.2). Then, these points are )used to
define a straight line (in general a“plane) in the objective

function space by solving the following set of equations in

w1 and Wy [53,54]):

1 S g

w +
£ T Walsgens

1 cap
(4.24)

. ) _
wlfcap + w2fsens 1

The straight line detquined by this set of equations and
the noninferior solution E; found by using these weights are
shown in %ig. 4.5; Such a Jgiution is found by numerically
optimizing ¢4.22) with the values of Wy and w, given by the

. solution of (4.24).

Now if one wishes, for instance, to determine

- another noninferior solution with smaller f the set of

cap’
* »
equations given by £, and j; is solved to determine the new
4 '
set of weights. On the other hand f; and ;; should be used

.

to further deprease f_.. .. This process continues until a

tradeoff point b%ained-which—is——satisﬁae%efy——ﬁfém——the—— —

designer'’s point o@ view,

L 4

4
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4.4 STEP II -\USé OF THE REMAINING CSNs

[y

At this point qf the optimization procéss we have a
sc biquéd with 19 capacitors (Fig..4.1), reduced total
capaditance and acceptable sensitivity and dynamic range.
fhe‘next step iahto use the extra degrees of freedom given
by the rehaining- elements of , the general biquad (120
capacitors) in order to further improve the present design.
This can be done by using the CSNs of types 5 to 16 in Table
3.1. Such a procedure was briefly discussed in Chapters II
and III. In this chapter the idea is going to be used in
the same way it was préseﬂted in Chapter II. i However,
single OA networks employ only part of the CSNs in Table 3.1
and the natural simplicity of the resulting networks
required no furthéfqurmalization of tﬁe method. In Chapter
III, on the other hand, the CSN eqﬁivalences were used only
analytically in .order to obtain new stfuctures'for the
realization ofba general second'order transfer function. It
was of no concern” at that time if the wuse of these
equivalences would lead to a reduced total, capacitance or
component spread. Also, only ohe or two equivalences could
be QSed in each network due to the reduced number of
components and no generalization was necessary. Only in the
examples at the end of the chapter, the use of 'equivalent
CSNs to improve the final implementation was hinted. Now,
since the complete network in Fig. 4.1 is beiné\,used, all

possible CSN combinations must be determined. Also, one
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should know a priori how much can be gainéd~ in total '

~

capacitanc$ by the application of a particular ' CSN
equivalence and what ig happening with the Tnetwork
sensitivities when the modifications in the structure are

performed.
A

Hence, in what follows, a generalization of the use
tof the CSN equivalences and their application tbprgduce the
total capacitance:of the network is presented. The methoé
can be applied to any network derived from the genera{

parasitic insensitive biquad- with 120 capacito}s.
)
4.4.1 Generalization of the CSN Equivalences

Consider the CSNs shown in Table 3.1. This is the
complete set of possible CSNs %E a'stray insensitive SC
biquad according to the parasitic. insensitivity conditions

discussed in Chapter I [14].

Suppose that we have a network (such as 1in
"Fig. 4.1; which contains only switched capacgitors with CSNs
of types 1, 2, 3 and 4. We wish to determine how the CSNs 5

-

through 16 i; Table 3.1 can be employed Fo su?stitute
combinations of these four ::sic CSNs. By inspectioﬁ\cf the
contributions of such CSNs to the network CCEs in Table 3.1
one can easily detérmine the equivalent sets shown in Table
4.1, where C; stands for a capacitor Qith CSN of type 1.
Each of these sets can be substituted by a single CSN as

listed in the first column of Table 4.1 i{ the values of all

¥ "
“

fe R—




—
n

" Table 4.1: Equivalent sets of CSNs for a general Biéuad.*

e

-,

. EQUIVALENT SETS !
CSN "not S/H V—no?e S/H
-?3’\ %’ Csn 7 €127 /C3r Cy Cir F3 |- .
£ <
C_ . C C C C
O 6 1’ 3 1’ -3
PG & 4
2 % C, - ?2, Cy (*)
g 0 C C C
3 1’ €2 same
r -
'c9, C3, C4 same o
clo‘i ;s C, (V-node A) ’ same
0 ' ’ LA ;
% % Cys C4 gv-node B) e e
g £ i
C C, (V-node Aa) same
4] 11 1 . R
W oo Cy (V-node B) g
“ s : o
od ™
9o Cia c, (V-node A) 'same
c, (V-node B) Pt Y
. ‘1 TN f
c €y, C, (I-node a) LSamE, i |
. 13 '3 EA ‘;@’%"i;,“,, i
e g p 5
c C, (I-node a) same
O 14 1 :
O C, (I-node:b). | :
g5 4 > o
o o Cig C, (I-node a) | same
.C, (I-node b)
§ § C16 VA {::::}Ia.’ C1 same '
= 2 nin o
> -
- W VB ':}Ia* C3
oo
= vs {3 C

(*)If the capacitors are not equal in value,
drop the smallest one and make the other
equal to the difference.
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capacitances in the set are equal. If this is not the case,

-

still the capacitor set may be substituted by another set
with at most. the same number of elements but with feduced

total capacitance, as explained below.

A
2

Suppqse that Ca has an equivalent set composed by

Cb and Cc. Then, whenever Cb and Cc appear;}n the network

they can be substituted by equivalent CSNs in one of the -

following ways:

{(a) if Cbacc, substitute the set by ca-cbyc . P

(b) if C,>C_, substitute the set by C,=C_ and Cb Cp=Ce-

(c) if Cc>C substitute the set by C.=Cp and Cc-Cc

b’ b*

P—
< IS =

At this point an illustrative example would be
instrqctive._ Consider the SC network shown in Fig. 4.3(a).
Capacitor Cb .has CSN of type 1 and capaciior Cc has CSN qf
type 2. According to Table 4.1, they form a set wh{ch would
be exactly equivalent to a CSN of type 8 if they were
numerically equal. Even though Cb and Cc are numerically
distinct, the CSN of type 8 can still be used to reduce both
the spread and the total capacitance of the network. Since
Cc>Cb (option ¢ above) we substitute C, by a capaci tance Ca
of the same value but with CSN of type 8 '(see Table 3.1).
Also, Cc\ is’ replaced by Ec with the same CSN but with a
numerical value equal to the difference Cc-Cb (Fig. 4.3(b})).
Note that now Ca ;s equivalent to a CSN of type 1 and a CSN

~

of type 2, both with unity capacitances. Therefore, Cc is

®

EOP
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Figure 4.3:

Illustrative example.

(a) Initial network.
(b} Network modified by

CSN equivalences,

.
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hecessary only to complete the contribution given by Ce in
Fig. 4.3(a) to the CCE evaluated at- the virtual ground.
Both networks can be easily verified to have exactly the
same CCEs. However, network (b) is clearly a better design
in éerms of total cgpacitance and element spread. / |

i

The procedure just presented guarantees that:
[

(1) The network equStions (CCEs) remain unchanged.
(ii) All capacitance values remain greater or equal to zero

after the modification is performed.

Nevertheless, in qﬁder to improve the final design
acéording to our main objective function (total
¢apacitance), we must guarantee that the total sum of
capacitor values is reduced after the new capacitors have
been scaled so that Cminil' i.e., the normalized value of
the minimum—capacitance allowed bf the technology. Sincé
the CSNs can‘be,combined eit;er 2 at a time or 4 at a time,

only these two cases have to be studied, as follows.

{1) Case 1 - Combination of 2 CSNs

y

Let Cl,cz,c3,...,cn, Cigl for al% i,’ be the
capacitors of one stage of the bigquad if the 2 stages can be
scaled separately or, otherwise, the capacitors "of the
complete network. Let (Ci,Cz) be a set of capacitors whose

C§Ns can‘ be combined. Also, suppose without any loss of

géne:ality, that C1>C2. The total capacitance CT of the

¢

v

e e e 5 St ol A A s



initial network is given by

.
+ C, + C3 oo+ C

Cp=C +Cy

4 -

(4.25)

~

After the network transformation, the new values for C, and

/
C2 will be

Cl - cl - C2 (with the sam? CSN)

. C2 - 02 (with a different CSN)

Then, depending on the numerical values of C, and C2'

(4.26)

three

T T distinct types of transformation may be performed, namely:’

! 4

Transformation type 1: If C1-C2.

Then the new total capacitance CT will be given by

-~

Cp=Cr+Cy+ e+ C =G -G

(4.27)

and the total capacitance is reduced as well as the number

of capacitors in the network (Cy=0).

Transformation type 2: If Cl—c >1.

Then

I
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C'r = (cilfc—zf + C2'+ c3 + ... + cn = C.r*-*c2 (4.28)

>

and again the total capacitaﬁce is reduced. The numbker of

elements, however, remains uncﬁanged.

7]

Transformation type 3: If 0<C1-C2<1.
In this case all capacitor values must be scaled so that

Cmin'l' Then
™~

c.r-a-l-f—c-;(cl-c2+c2+c3+...+cn)  (4.29)

X <

or

A C - C /7
T 2
- — (4.30)
T C1 C2 .
Hence, the total capacitance will be reduced only if
k] C2
Cl - C2 > 1 -~ E'-r- . (4.31)

The\:ransformations of types 1 and 2 are usually

preferable over 'the transformatigns of type 3 for the

following two reasons reasons:

. (1) They allow more reduction in total capacitance.

L)

——
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(ii) Each transformation of types 1 and 2 QE completely
i;dependent of any other circuit modification. On the othér‘
hand, if a transformation of type 3 1is performed, it
modifies at least all capacitance values within the same
stage (connected to the sam% virtual étound). Consequently,
the effect (total capaci.ance reduction) of a subsequent
‘transformation'can only be determined after‘the first one is
performed and the network elements re-scaled. Hence, if a

given capacitor {s involved in any one of the three types of

transformation, types 1 and 2 should be given preference.

B

(2) Case 2 - Combination of 4 CSNs K -

Let (Cl,Cz,C3,C4) be a set of cabacitors~whose CSNs
can be combined. Remember that Cigl, for all i, by
. hipothesis. Suppose, ' without any loss of generality, that
€12C,2C43>C,. Then

A}

4+ C,+Cy+C, +C#oue +C. (4.32)

Cp =Gt C2*C3+ G+ G n

T
and the new values of the four capacitors after the

transformation will be

1 -1

(4.33)

> O> O
~
[
(@]
]
0

)

Again, depending on their numerical values, three types of




. capacitors are reduced (C,=C =C.=0).

‘Ci-C4 for the remaining capacitors in the set. ’ i

. will be reduced by the number of capacikors'among'clf Cz and

i ! - \
| : ‘189 ~ . | i
transformation are possible, namely: ‘ ot ’ ‘
[] '. - . r' ' . ' % .
Transformation t?pe l: If Cy=C, C3y=C,- \
Then . B
' ° ;1
A . R ﬁ. . ' 4)
Cp = Cqg + C5 .}. +ac" = Cp - 3C, ] —~7(4.34) é
. . - 5
. ! ) 1
and the total. capacitance as well ‘as the number of \

2 73

v

Trangformation type 2: 1If Ciré431 for some i=1, 2 or 3 and :

Then . )

. ¥
< i
]

) : s . . .
Cp (:cl‘+ Cp+ Cy =20, + Cg+ .o+ C = Cp=3C, (4.35)

and the total capacitance is reduced. The element count

!

e e A Y A i

C3 which are equal to C4. ' ’
" ‘ o
. : , -
Transformation type 3: If 0<Ci-C4<1 for some i=1,2 or 3.
Then, suppose that . -
kY . - q
i
Cl - C4 = min{cl - C4' c2 - c4"’c3 - C4} , // .
o. N . | .
The new value of the total capacitance {after scaling) will '.3
be -
‘ |
/
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CT -C_—T- (Cl C +C -C +%+C +C +...+Cn) ‘
r A g

¢ . '
CT - 3C45 -

- ‘ , : . ‘(4.36)
“ | )

Hence, a reduction in the total capacitance will be obtained

.Looking at expressions (4.34)othrough (4.37) 6ne - can reach

the same conclusions as in case 1. ° /

4.4.2 Analytical Optimization

.We are ‘now in the position to suggest an

o
optimization strategy for the analytical part of the total

capacitance minimization of a SC biquad. Recall that we

start this sfep of the optimization with  a network wnﬁch

‘contains 19 capacitors (Fig 4.1), all of them greater or

v

equal to unity in value. In order to facilitate the design,

all-.possible CSN comginations‘within the network of Fig. 4.1

~

. were determined and are presented in Table 4.2. In this

table, C; \again stands for a capagitor with CSN of type i.

The optimization procedure can then be summarized by the

'following steps:

> 1 = == . C O (4.37)
4 I

N
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Step 1: Look for transformations of type‘l. These are the

ey

most preferable ones since they not only reduce the total
capacitance as much as the type 2 transformations but they
also eliminate capacitors, simplifying the final design.

Step 2: After the transformations of type. 1 are realized,

v

look for transformations of type 2. Here as well as in step

1, the 1largest set of transformations  simultaneously

realizable should be sought. b

Sfeg 3: Verify 1f there are still any capacitors whose

values exceed 2 (2C If this is the case, such

min)'

capacitors may still be re-utilized for transformations of

types 1 and 2. Then, return to step 1 and look for

combinations involving these capacitors. Otherwise, proceed

to step 4. \

- Step 4: After all transformations of types 1 and 2' have been

realized, loock for transformations of type 3. Note that

_these transformations must be realized sequentially.

‘Therefore, start with the most profitable ones.

It should be understood that the optimization
procedure proposed here does not yield (at least not always)
a single option for the final realization. Partiéularly in
steps 1 and 2 some subjective decision making is usually
required. The designer will isolate jll possible sets of
transformations which are simultaneously realizable. ' Then,
one of §uch sets must be chosen, and this choice will be, in

general, based on criteria established for each specific
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design. For example, suppose one is trying to minimize theé
total capacitance as well as the number of capacitors
required for a given realization. It is possible that more
than one set of transformations m;} yféld exactly the same
values for. these parameters. Then, the designer should
either choose any one of ‘the available networks or introduce
a new decision factor. One of such factors which may turn
out to be of major importance is the network sensitivity.
Recall that the analytical optimization starts with a fixed
network which has, by the numerical optimization, acceptable
sensitivity performance. However, one should know what
happens with the network sensitivities when the structural
transformations discussed in this section are performed.
Even though different sets of transformations may lead to
networks with the same“total capacitance and number of
capacitors, such networks will have different topologies
and, consequently, different sensitivity performances. Such
differences may, at last, decide which metwork should be

preferred for a practical realization.

IS

In what follows, the effects of the CSN
\

combinﬁfions on the network sensitivities are analytically
determined. With these results one can determine the
sensitivities of the modified netwofks simply by using the
sensitivity values obtained for the initiél 19 capacitor

configuration. Such sensitivities, on the other hand, can

be obtained as a natural outcome of the numerical

J.
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optimization previously performed. - .

4.5 EFFECTS OF ‘THE CSN COMBINATIONS ON &HE NETWORK

SENSITIVITIES

In order to avoid redundant explanations, we
discuss only the case of .the combination of 4 CSNs, The
results for the particular case of 2 CSNs combined can then

i

be readily derived.

Suppose that four capacitors Cl' C2, Q3 and C4
(C;>1 for all i) are combined by CSN equivalences. Also,

consider .without any loss of generality, that the value of

C4 is the 1lowest of . these capacitors. Then, the new
s

capacitance values will be given by

’

C, = ¢ - ¢

c, = c, - ¢, o (4.38)
€3 % ¢ =6,

€4 = S

Now, let f be the function whose sens@tivities are to be
determined. The values of the sensitivities of £ with

respect to Ci, i=1,2,3,4, are known from the numerical

optimization step. Considering the fact that the numerical

value of £ is not modified by the transformation (same CCEs)

as, for example, is the case when f is equal to w_ and Q, we

o
have

PRI PEPRRLL
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1

AOA A ~ A ~ N ~

f(?l,Cz,CB,C4) = f(Cl,Cz,C3,C4).= f(Cl+C4,C +C,,C,+C,,C

t
'

}

27C4C3%C Cy) \

¢

Py

where £ is qhe expression obtained when the variable

transformations , (4.38) are substituted in £f._ = We are

iqserested in determining the sensitivities of f with

respect to Ci' i=1,2,3,4. The sensitivity expressions are

given by
P C, of C; 9f  ac, A - '
S. T mx— = = == —— for i=1,2,3
Ci £ aci £- aci aci . (4.39)

p c, af af . 3Cc, . 3af acC of acC
Sf =_=-4‘-.—=—4-[ -l*‘ -f%++71+
: C4 £ 3C4 £ 3C1 3C4_ 3C2 3C‘4 3C3 3C4 ‘ (4.40)
of ac4]
3C4 3C4

but

aC aC aC aC aC SC3 8C4

Al = ‘2 = ‘3 = ,_l = ‘2 = — = — =] (4‘41)
. BCl BCZ 8C3 3C4 8C4 3C4 3C4
_ . Ly
Then, from (4.38) through (4.41) : . B
. ‘ r‘ ' ’
% C, -C .
S~ _ i 4 o5f . . .
c. - T 3¢ for ifl'?'3(‘ A:(4.42Y

i

1
o

~and

\

\i
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. -~ C ! -
£ 4 |af 3f of of
- S = = | b e b e ¢ (4.43)
C £ -[acl 3C2 ‘ 3C3 QCJ
4 \
f
By noting. that
-~ A - §
C4 = ci(c4/ci) fqr any i
W
-~

and by using the definition of normalized sensitivity (51],

the following sensitivity values are obtained:

- o ,
sf = (1- Ei) s(f: for i=1,2,3 O (4.44)
c, i % \ oo

L

= c C C
Sf = Sg + (Ei)Scf: +. (Ei)sg\ + (E—4)S§ (4.45)
c, 4 1 & 2 ©2 3 3

" From these equalities we conclude that whenever. the CSN

- equivalences are employed, all capacitors involved, except

the least valued one (here C4) have their sensitivitites
reduced. The sensitivity of the least valued capacitor,
however, may increase or decrease, depending on the relative
values of the sensitivities with respect to the other
capacitors involved in the combination. Another interesting
propett;y is that, even though the individu:—.‘\l sensi:tivities

may vary considerably, the total sum remains unchanged.

This is because any parameter of the transfer function of a -

- 8C network is homogeneous of order zero [59] with respect to
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the capacitance valués (not capacitance ratios) [4,5].

It should be clear at this point that the .
derivations for the case of a combination of 2 capaci tors
would lead to the same conclusions as in (4.44) and (4.45)

and C,.

without the terms corresponding to, say, c, 3

4.6 OPTIMIZATION ALGORITHM

In this section a flow chart is presented which
summarizes the qptimization algorithm discussed so far. The
numerilcal optimization (Step I) 1is not shown in detail
bevcause the algorithm employed is very simple and was
implemented using the subroutine VF02AD of the Harwell
Library [55). More details about the objective function and
the constraints can be found in the appendix a£ the end of
this chapter. The flow chart . is presented in Fig. 4.4,
where the box labelled MCO refers to the numerical Multiple
Critgria- Optimization. In the next section, two detailed
examples afe presentea in | order to illustrate" the

application of this algorithm.

It is interesting to note 'that the anal{rtical
optimization, algorithm of Flg 4.4 could‘be imp:lemented by a
computer program. However, such an imp“i‘gméntation may bring
more problems than benefits. One of the major lpr:oblems
would be the decision \points of the type "is the present
value of this figure of merit acceptable? ", Usually these

decisions are quite éubjective and the acceptable values

[
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Figure 4.4: Optimization Algorithm.
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Figure 4 4 Continued.
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-vary from'one designer to the other. A possible solution
would be the implementation of an interactive program.
However, in all the examples tried so‘gar the execution of
the algorithm proved to be so simple as to be carriedlbut by
using pencil and paper, and the need for a probably time
consumming program was not felt at all. As a matter of

. fact, the MCO step is the most time consumming part of the
design procedure in its present form. This is probably due
to the fact that no special effort was made to minimize the

computing time in this step.
4.7 EXAMPLES

4.7.1 Lowpass notch filter l ¢ ‘ N

i

As a first example, consider a lowpass notch

section with the following specifications:

fp (pole frequency) = 2 kHz
Q, (pole Q) = 30 |

fz (zero frequency) = 2.5 kHz
DC gain = 1.

£, (sampling frequency) = 25 kHz
To control the dynamic range we use, in (4.18)

Kl = 1.1

Ky, = 1/K;

[
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Two brief initial runs for C=0 and P=0 indicate’
that the optimization considering P=0 leads to better
results in this case. Then, the initial network used for

all steps of the MCO was the network ACR in Table 3.2, where

-
[

A=l.
, B=2.01249
Cm16.405406 SR | .
D=31.1915 '
' G=15.405389 ,
I=1.29304 o S
. J=1.29304 |

R=]1.,

. The MCO steps are shown in Table 4.3.. The output
of the fourth run‘represents a gsod compromise between total
capacitance and network sensitivity. The capacitance values
for this network as well as the wg and Q sensitivities .are
shown in Table 4.4. It can be~- verified that the o
sensitivities are quite small, whereas some of the Q
sensitivities have increased considerably. + However,
considering that for high Q networks' the R sensitivities
are of major importance [4,5,51,52] and that éapacitance
ratios can be implemented within 0.1%'of tolerance {3,4,5],
such Q sensitivity wvalues ‘are quite acceptable [56].

Nevertheless, the design is not concluded yet. Up to this

~point though, the total cépacitance required has been

)
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Table 4.4: Capacitance. values and sensitivities of
the numerically optimized lowpass notch
filter.

Capacitors Cap. values sensitivity | Q sensitivity
o\ 2.165 0.545 -2.39
B 3.7209 -0.430 1.888
c ‘ 5.6699 0.599 0.490
D 9.3941 ~0.498 0.548
‘ F 1.0 -0.071 -13.252
G 6.3871 - -
| 1.0 - ’ -
1 3.0332 - - )
7 3.1546 ‘- -
L 1.0 -0.0189 ~6.007
Mo 1.0015 -0.0266 6.252
N 1.0 -0.045 13.760
P 0.0 - -
R ! 1.0 -0.086, -2.949
s 1.3049 0.0239 T 7.616
) T 1.0 -0.0958 ~0.0839
v 1.7554 0.168 0.147
v 1.0 -0.0258 - -6.014
X 1.0 ) - " -
Y 1.0 - -




. 205

réduced by 33% and the capacitancg~spread by 69.9%. It is
worthwhile to note that such,improvement in component spread

allows an easier implementation of accurate capacitance

‘ratios [5]), minimizing the consequences of the higher Q

sensitivities. .

We now prqpeed'to the néxt gtep of the 'design
procedure, i.e., the’ analytical optimization according to
the algorithm of Fig. 4.4. Table 4.5 shows the list of all
possigle transformations of types 1 and 2. This list is
obtained by determining the - capacitor sets in Table 4.2
which  satisfy the ngcessaty conditions for such
transformations. Then, the possible independent sets of
transformations are identified. In this search, preference
in given to those transformations which 1lead to greatef
reductions on the’ total capacitance and/or the number of
capacitors. It should be remembered that, whenever
possible, it is ingeresting to reduce the number of elements
inlthe network, since this number is associated ‘' with the
amount of connections to be implémented in the chip and

connections occupy die area.

By this search, it is found that the set of

transformations (among five possibilities) shown in Table
4.6 yields the maximum reduction in total capacitance. ' The
new capacitance and sensitivity values obtained after
" /\
performing such transformations are presented in Table 4.7.

It can - be verified from this table that ébproximately one

¢ .
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’

Table 4.5: Possibie.CSN equivalence transformations

4

of types 1 and 2 (lowpass notch).

REDUCTION IN

CAPACITOR No. OF TOTAL
SET CAPACITORS | CAPACITANCE
(C/R) - 1.0 .
(G,H) - 1.0
L (F,N) 2 1.0
| (X,Y) 2 2.0
(c,T)’ - 1.0
+ {G,X) - 1.0
(H,Y) 1 1.0
(c,T,H,Y) 2 3.0
(G,M) - 1.0015
" (G,R) - 1.0
(L,H) 1 1.0
(L,R) 1 1.0
(C,M) - 1.0015
(C,H) - 1.0
(1,N) ( - 1.0
(F,A) - 1.0
(F,J) - 1.0,
(X,V) 1 1.0
(T,V) 1 1.0
(T,Y) 1 1.0
(1,%) - -~ 1.0
(F,T) 1 1.0
W ,v) - 1.0
(A,V) - 1.0
., (I,X,A,V) 1 3.0
(F,T,3,Y) 2 3.0
(F,T,A,V) 2 3.0

.

Ve
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Table 4.6: Set of transformations which leads to
‘ .
maximum reduction in total capacitance

(lowpass notch filter).

REDUCTION IN

CAPACITOR No. OF TOTAL

SET: CAPACITORS CAPACITANCE

(F,N) 2 1.0
(C,T,H,Y) 2. 3.0
(I,X,A,V) 1 3.0

(L,R) i 1.0

(G, M) - 1.0015
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. ; .
half of the sensitivities have decreased and one half have
inateased. The final values, however, are quite acceptable
and the maximum magnitude of the Q sensitivities has dropped
from 13.76 to 8.96 dug to the elimination of capacitors F
and N from the network. ' Their sensitivities are now
incorporated into the sensitivities with respect to
capacitor B, However, only variations on the capacitance
ratios will affect the network performénce. Therefore, o:e
should be concerned only about the sensitivitites with
respect to the elements other than B and D since these two
are the reference capacitors (app;ar in the denominator) for
all the ~capacitance ratios. Table 4.7 alsé lists the
networkvhodifications required. For each ca?acitor set, the
modifications are performed as explained in the following
‘for the case of the combination (I,X,V,A). Firstly, drop
all capacitors involveé in the combination. Then use the
new valﬁes for I, Ayand V (X=0) in capacitors with the
associated CSNs, namely Cl' C3 and C, ¢ respectively. 6f
course this has to be done so that the voltage ;burces and
virtual grounds initially switched to a given capacitor
remain the same. Also, the switching phases must be
maintained. A good way to verify whether the
- transformations were performed correctly is by applying the
suppegfggition theorem to the voltagé sources involved. By
doing so, one should be able to identify all the switching

schemes used in the original configuration.
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The next step is to verify if more transformations
of types 1 and 2 can be performed. To this end we take all

capacitors whose values are ovér 2 and look for possible

combinations involving them. Such study . shows that’

capacitors I and J can be recombined. Capacitor 1 is then
substituted by an unswitched capacitor (CSN type 5) of the
same value and J has its value modified to J-I=1.1214 (with
the same CSN). This step reduces even further the total

capacitance.

The final network is shown in.Fig. 4.; and employs
13 capacitors. No transformation of type 3 is possible her;
which would lead to a reduction in the total capacitance. A
comment is in order at this point. bsually, the
"transformations of ‘type 3 lead to marginal improvements
only. This happens because, according to equation (4.30),
the reduétion in total capacitancé for'combinations of 2
capacitors (the most common oge) is always' less than the
value of the smallest capacitance value of the set which is,
after the numerical optimization, usually close or equal to
unity. For combinations of 4 capacitors, eq. (4.36), the
improvement may be more significang, but only in the cases
where there are two or more capacitors which are equal and
are, at the same time, the least valued elements in the set.
Therefore, the designer should, at this point of  the
optimization, decide about the convenience 6f looking for

transformations of type 3. Our experience has demonstrated

A i e ke 4+ ey e Vo At % i ]
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: I
that, most of the times, the economy obtained (if any) does
not pay for the time spent in the search and calculations
involved. Nevertheless, after a few examples any designer
should be able to develop a "feeling" of whe& such

transformations are worth trving.

f

Table 4.8 presents a comparison of the networks

corresponding to the initial design, the numerically
optimized design and the final design obtained after the
analytical optimization. It can be readily verified from

this table that almost 50% of improvement in total

capacitance' and 70% improvement in component spread have

been obtained over the initial design. Also, the number of

elements 1is not excessively large. In any case, the

application of this method yields realizations with at most
19 capacitors, the final number depending on thé element
reduction obtained in the analytical optimization.

v

An analysis of' the final network shows that a good
dynamié range has resulted. The ratios of the maximum
amplitude values of Vg and Vg over the maximum magnitude
value of Vg for a unity input signal are verified to be

1.046 and 1.088 respectively. |

As expected, this improvement in the network design

comes at the expense of an increase in sensitivity, compared

‘with the initial realization. However, the high capacitance

ratio accuracy obtainable in MOS «circuits and the

»
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4.7.2 Bandpass filter

214

improvement ach(ieved in caéacitance spread serve to mitigate
the effects of the increased sensitivities. 1In fact, a
Monte Carlo simulation, considering capacitance‘ ‘ratio
tolerances of +0.1% (Gaussian distribution) shows maximum
variations of 0.063% (0=0.43 Hz) in @_ and 1.48% (0=0.148)
in Q. Conse;quently, the frequency performance of the fil*:er

should lie within acceptable limits in practice.

»

As a second example, consider a banc}pass’ network

with the following specifications:

fp (pole frequency) = 2 kHz
QP (pole Q) = 30
Peaﬁ gain =1 :

fs (sampiing frequency) = 20 .kHz

The same values of Klsl.l'and Kz'l/Kl are used. an initial

run reveals that better results can be obtained by using 'a

network with C=Q.

The initial design used 1is then the network APR ‘

(ACR/2 in Table 3/.2), where
A=1,
'B=31,6936
C=0
D=3,25233
G=1.
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H’l -
I=6.60916
P=20.4952

R=2.0

The MCO steps are shown in Table 4.9.  The output_
of the fifth run is then chosen to proceed with the
analytical optimization. The capacitance vaiues and the
corresponding sensitivities for this design are presenteé ip

Table 4.10.

For this netwgrk, the' rgtios of the maximuﬁ
amplitude& for the outputs Vg and Vg over the maximum’
amplitude for v, all for a unitary input, are found to be
1.01 and 1348, respectively. Suéh dynamic range is usually

- acceptable for signal filtering purposes.

.The analytical optimization proceeds as follows.
Table 4.11 shows all possible network transformations of
types 1 and 2. The two sets of transformations shown in
Table 4.12 are the ones which yield maximum reduction of
total capacitance and element count. Since fhege two
options ‘aFe found to field épproximately the samé\\otél
capacitance, numbe} of capacitors and sensitiviy
" performance, let 'us. pick option 1 to proceed further wit
tﬂé example., The new capacitance and sénsitivity vaiuegyyé
obtained after the transformations are presented in Table-

4.13, along with the corggsponding network modifications.

,
- \ ' ‘ :
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3

c

Table 4.10: Capacitance values and sensitivities

Sf the numerically optimized. bandpass

~

filter.

t

Capacitors Cap. values L aopaitivity Q sensitivity
- .
A 1.2923 -0.216 -3.026
B 4.4159 -0.463 1.901
[+ . ]r - - ‘ - .
D 3.4959 T -0.434 0.545
F 1.0 ~0.608 -10.019
G 1.0 P S
R 3.6630 .- -
I 1.0367 - - ”
q 1.0 -/ - -
L 1.0 -0.096 © ~11.429
M 1.0091 0.052 12.113
N 1.0060 -0.044 9,963
P 4.4246 0.784 0.634
R 1.0 0.201 -2.688
s 1.144S ~0.087 12.516
T 2.9478 . 0.856 0.450
u 1.0 ) -0.189 -0.153
v 1.0 ° -0.00%5 11,354
T x 1.0 - -
Y 3.6184 N - . -

-’

o i
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Table 4.ll: Possible CSN equi'vaience.trahsformat'ions

of types 1 and 2 (bandpass). .

4

. REDUCTION IN
. CAPACITOR No. OF TOTAL
SET CAPACITORS | CAPACITANCE
(G,H) - 1.0
(P,A) - 1.29
(G,X) 1 1.0
& (R,U) 1 1.0
165%, R, U) 3 | 3.0
(T,0) 1 1.0,
y (X,¥) 1 1.0
. (G,R) 1 1.0
(L, H) - 1.0
(L,R) 1 1.0
(P,N) - 1.006
(P,J) - l.0
(F,J) 1 1.0
(X,v) 1 1.0
(X,0) 1 1.0
(S,¥) - 1.44
(T,V) - 1.0
(p,s) - 1.44
(F,T) - 1.0
(J,¥) - 1.0
(r,T,3/1) 1 3.0
3
\ P .

e atargs

PP N e

A o3

St s i 1 oy s 43

P
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_Table 4.12:

s Y

to maximum reduction in total capacitance

(bandpass filter).
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Sets of transformations which lead -

REDUCTION IN -
CAPACITOR No. OF TOTAL
SET CAPACITORS | CAPACITANCE
(G,X,R,U) 3 3.0 "
. (F,3). ' 1.0
o (P,n) - 1.29
§ ‘ (P,N) - 1.006
& | (L8 - 1.0
-7 (s,Y) - < 1.44
(T,v) - 1.0
(G,X,R,U) 3 3.0
= | FTa 1 3.0
9 (p,A) - - 1.29
8 (®,S) | /éa 1.44
(L, H) - 1.0,

~m—_

oy
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T A

. Note that in this example,‘ﬁhe possibility of using

the capacitor P in more than one combination has been

identified frcm“ the beginning. Hence, both network

. transformations were executed in the same step. Note,

however, that they are executed sequentially since the

-capacitance and sensitivity values resulting from the first

_combination are employed as initial values for the second

transformation. Furthermore, transformations of type 3 were

not sought for the reasons given in*examplé 1.

The final network is shown in Fig. 4.6 and _the

. corresponding comparisons are presénted in Table 4.14. ¢

A Monte Carlo- simulation, with #0.1% .tolerance for

 the capacitance  ratios (Gaussian distribytion) shows mék;mum

., variations of 0.062% (o=0.425 Hz) in wo and 2.77% '(0=0.277)

" presented here, the main

‘in Q, .which is usually acceptable in practice [56].

It should be . mentioned that "'in the  examples

v

?goal.Was the .reduction in the total

‘capdcitance requifed for-a given reaiizati@n, keeping the

sensitivity performance of the network as K well as its

dynamic’ range within practically accéptable limits. If, for

'a given application, such limits are more demanding, the

- choice of the tradeoff point in the numerical optimization

and the transformations to be used in the analytical:

(2]

,optimization should be more carefully exercised.

e \‘. ) - o i
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The examples presented here, however, illustrate
f ‘

the\ possibility of considerable design improvement by

applying the proposed technique.
4.8 SUMMARY

In this chapter a new technique is proposed for the
optimizatibn of stray insensitive SC networks. The proposed
algorithm makes use of the CSN equivalences presented in
Chapter III. This allows the design'to be cafriéd out with
a small number of variables and without the need of 1large

o

computational times.

By using techniques of Multiplé Criteria
Optimization, a tradeoff between the total capacitance
necessary to realize a given transfer function and the
network sensitivities is achieved in the numericaiN part of
the optimization algorithm,. In this step, only a reduced
general bigquad with 19 capacitors is used. This is done, .
however, without any loss in the design flexibility
regarding the realization of the transfer function
coefficients. ., In the subsequent step, the CSN equivalences
are employed to further reduce the total capacitance, the
capacitance spread and the number of elements in the
network. Analytical formulas are provided to determine the
effects of the application of any given CSN equivalence on

the total capacitance as well as on the network

sensitivities., ' The control of the dynamic range is also
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discussed and a technique is proposéd which has led to good
practical resultg, Two examples are presented in defail_; to
illustrate the application‘of the algorith;n.— These examples
show the possibility of considerable design improvement by

using the new method.

The optimization procedure proposed in this chapter
has {been applied .to the most general stray insensitiv’e‘
biquad, according to the stra;r insensitivity conditions
preéenged in [14) and briefly ’discussed in Chapter I.
However, it is important to note that the method can be
equaly applied to any subnetwork of this general biguad. 'A
typical example would be its apbli.cation to optmize single
OA networks. Even in the case of biquads, the initial
network does not have to contain necessarily_ 19 capacitors.
Of course, the sma]:ler the size of the initial structure the
lesser are the chances to reduce the total capacitance by
any optimization procedure. ' Howeéver, depending "on the
particulars of the technology:employed, sometimes the use of
more elements could ovefcome the a;ivantages _obtained by the
reduction of the total capacitance in terms of the
integration area due to the.need for more interconnections.
In the exampl;as presented in this chapter we have used the
most - general network in order to illustrate the generality

of the method. In practice, it may not be always necessary,

. to start from the most general network. One can start from,

- any useful 'intermediate network.-

[N

~ e e

e v mins = na e
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4.9 APPENDIX

In this appendix we present a detailed description

of the numerical optimizationnstep (MCO} of the algofiﬁhm in

Fig. 4.4. The objective function, the equality ‘and _

inequality constraints, as we as their respective
/
derivatives are presented. he specific order of

e
presentation has been chosen for the sake of neatness.

¢
t

4,9.1 Equality Constraints

As explained in section 4.3, the equality
constraints are given by the coefficients of the‘ transfer
function H(z) written as in (4.5). From (4.5) and (3.1) the
transfer fu;ction coefficients for the network in Fig. 4.1 .

are given by

_ PG-I(1+L)

.Y T T ()

J{1+V) (1+L) +I {14M) (1+S) +
i

- {X-¥) [A(1+L) ~-P (1+M) J-AG(1+S) ~PH(1+V)
(I+F) (1+L) (1+V) ' : s
: - (A1)
5 = LAH-J (1+M) ] (1+8) .
(1+F) (1+L) (1+V)

(T-U) [P (1+4M) =A(1+L) J+PR41+V) +

AC(14S)-(1+4F) (14M) (1+S) - (1+N) (1+L) (1+V)
(1+F) (1+L) (1+V)

g = L(1+M) (14N) ~AR] (1+S) '
(1+F) (1+L) (1L+V) '




INg

227

.

Recall that, in obtaining these equations, B=D=1 has been
P .

-assumed. Therefore, the variables in the above ‘equalities

are capacitance ratios and not absolute capacitance values.

Let us now define the vector x of the optimization
variables as function of the cap&citances in Fig. 4.1 in the

following way:

)
J
L
4

E a ™ o 0w o »

o
-

3
K]
x
[
[ ]
M
< a &8 v W YW Z =2 BB 949

>

=




and . the elements y; of the vector y of the capacitancé

( ratios in eqﬁations (A.l) as

‘and

b

elds,

228

a

X

Yy = L for i=1,2,5,8,9,12,13

~N

x
Y; = —
i Xy

-

otherwise.

The substitution of these definitions in (A.1)

for the equality constraints hi, i=1 to 5, the

llowing expressions:

hl :

DY (1+yg) +ygl {14y, o) |

i[€(1+y5)—y93(l+ylo)+y7yl3}(l+yla)+
[ylyﬁ-ya (l+yll) b| (l+y15) - (Ylg_YZQ) c¥l(l+y10)-
§(14yg) (1+y; ) (14y;q) =Ly ¥o=yg (L4y;1) T(1y o)

{Ca(leyg) +(14y ) I(1Hy, g) =y 3y 4} T4y g) +
(Y167Y17) [y73(14yy ) -y (14y,4) ]

t Bltyg) Lty o) (L+y o) =C(14yyy) (14y1,)) =y ¥ 3 (147 5)

/

h

W e i e

S e e e b s L
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The derivatives of these éonstraints, which are requi;ed

A ! \,
shy © 1 .
2
%y, 1
4 N - N
sh :
1_1
/ Bhl yl3 \
xKe Xy
3hl - ;(1+y10) ' R
. g —3"2
/
My Y(Ityg)tyg
%1 X3
My . Y
%13 )
o 9hy g (1tygg)-(y9-Yy0) (1tyyy)
. Bxl\ xlo

e el
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"

{Fy6(1+y15)-(y12€y20)(l+y}0)3xl+

x||
(SN T

(exg-xg) (L4y, o) (L4yyg) = (Leyy 1) (Layy5) xg+
[y7(l+y18)+(y19-y20)(l+yll)Jx13} '

[ V]

)|
B
>

L ' S
Uy xgygxy ) (L4y5) +(y19-¥,0) (¥93% 7Y %) +

b P
N1 =

[e(}+y5 )4y§]§(l+y18)xlo+(l+yloJx18J+

'Yr3x7(l+ylé)*£Y1Y57Y8(1+Y11)]x15+
Cyy (14y,4) =y 3(14y 1) T(y0=%1g) +¥,¥ 3% g+,

3h

Yy30%, (14y;g) +x;4¥,]

e(l+ylo)(1+y18) .

2 =
Bxs X,
oh, _ ¥1(4ygg)
o 8x6 “ X, .
3h, - Y1314 4)
ax7 X,
oy - (Ly gy (leyyg)
Ixg *2
ohy o Z(1*yyq) (v, )
8x9 X,
dhy _Celltyg)-ygd{l+y;q) -y, (¥)9=Y5,)
%10 ’ *4 '
By _ Wig7¥p0'¥13= (M5l
lel x4
3h, ) Y7 (1+y,g) 4 (¥ 9=¥oq) (14y¥,,)
les Xy ,
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"3h;  {eL(l4yg)=yg1(ley, o) +y,¥q5}
Xy g R .n X4
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dhg ) =(1+y 1) (1yqg)

- Bxl2 ' X2
dh, ) yl(l+y15)
ax14 o X4
Bxls x4 ’
Bhg  B(ltyg) (1+y;,) \ | *
ax18 . x4

4.9.2 Ingggglfty Constraints

The inequality constraints can be divided ingo two

distinct ‘groups. The first grdup guarantees the
nonexistence of negative elements in the network. The
constraints are given by the inegualities (4.2) and (4;35—or

(4.4). Their derivatives cén be obtained readily and are

" not presented here. The second group of inequality

constraints is used for dynamic range control, as per
inequalities (4.19) and (4.20). The derivatives of these
two constraints, if analytically evaluated; would .be very

complex and, therefore, would ’require large amounts of

'memory vand computing time in the execution of .the program.

1 . -
Consequently, these derivatives were evaluated by numerical

methods.

For the numerical determination of derivatives, the

two-point difference formula (forward difference) haé been
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employed [57]. According to this formula, the derivative of .

a multivariable function f(x) with respect to a variable x;

~~

of x is given by '

(5.2)

3f . f(xi+A'xi)-‘f(xi) ' . l
ax; Ax; , '

where Axi-10-13xi has been used. This formula has been
preferred over the three point formula [57] to economize
computing time since the accuracy obtained has been verified

to be sufficient. i

4.9.3 Objective Function

Since the objective function . (4.22), -is a linear

cap sens’ the derivatives can be

evaluated separately for each of thesé fﬁnctions and then
weighted and added as per equation (4.22).

The derivatives of fcap with respect to the

variables x; are all equal to. one. The derivatives’ of

£ on the other hand, are éuite complex. Due to the

sens’
fact that the sensitivity expressions themselves already

contain the derivatives of o and B with respect to the

optimization parameters, the evaluation of the derivatives
, {

of fsens involves the .determination. of the second

\

derivatives of a and B.

"4 .
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The derivative of féens with‘respeét to a given Xy
can be written as
. 20 ¢ . ’ - .
sens _ ; ) .9 .
L A I O SR
i il i . i
v ) \ ) . ' -
3%, | . . - 5
-é;i—— |f3§xk)| + |f4(xk)|° | (A.3)
/‘ * £
“where
/ __ aa - o8 . 3 . . ,
f3§xk) = (1+B) 5;; o —;; A (A.4)
: R
. = 1_gqy 90 38’ :
f4(xk) (1-8) >t (a2-2) T ‘ ‘ (A.5)
. k k .
“,
P30 gy o 0% .28 da 3o 28 (A 6)
axi axkaxi ‘3xk3xi 3xi axk ‘axi axk
of, (x,) 2 2 '
4 "k 3%a 3°B da. .98 38 da
——— = (1l-B) g——m— * (a-2) + -
Bxi ‘ Bxkaxiu Bxkaxi axi axk axi Bxk
' (A.7),

Now, a look at the expressions of the equality constraints.

h4 and h5 reveals that, for a=Na/D¢;and gsgs/ns

24\:\3?Da - Ny | : S A

and h5 - BnDB - NB
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[N

where an and Bn are nominal values of a and B, respectively,

obtained from the given tiansfe; functiqn.‘ Then, with a

little algebraic manipulation, one concludes that

2 1], P
o%, By | %
!I .
and,likewise
8 -1
axk DB axk

F

o

Since the eipressions for the de{}yatives of h

been already determined, the

'Where DG ' DB = (1 + Ys)(l + Ylo) (1 + YlB)

(n.8)

(2.9)

have

following procedure can be

employed to evaluate the secofld partial derivatives'of « and

B. These derivatives can be written as

£

o

A

3 a = 9 (aa )
3xk3xi \ axi axk
228 2 28
axkaxi axi axk

¢ al
B




T

" Then:

.

(1)

(4) Evaluate

k
and ) o
828 o1 [aa (x.+Ax%.), - EE;(x )}
axkaxi Axi axk _1 i Bxk i b5 .
-With these values in hand, the evaluation of fsens and 1its
derivatives is straightforward.
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Ebaluagg %%— (x;). and %%— (x;). These values are
k k

easily obtainable from (A.8) and (A.9). They are
also employed to evaluate fsens' v
Transform 'xi into xi+Axi (Axi-10-13xi has been

used) .

Evaluate %%; (xi+Axi) and %%; (xi+Axi). . This is
equivalent to repeat

xi+Axi.

> -

3%, - .1 [au

= By (X tOx)

3a ‘
= s —-(x)]
axkaxi Axi ,éxk i

step (1) with Xy replaced by‘
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CHAPTER V

CONCLUSIONS

5.1 SUMMARY ) . ; ‘

Switched capacitor filters have Peen extensively
researched 1in the paét decade. These filters are very
attractive since they are completely MOS realizable, This
feature minimizes the final cost, improves the reliability
and facilitétes the reproduction in large scale.
Considerable effort has been spent in the generation of good
SC networks, specially for filtering applications. ,Among
the existing design methodologies, one that has enjoyed a
great deal of popularity is the.synthesis of SC filters by
an interconnection of building blocksn}USually in cascade
form) suéh as amplifiers, delay circuits, first order and
second order networks. This approach offers some advantages

over the direct design of high order filters, such as

‘modularity, simpler design equations and easier scaling.

In this thesis a new ﬁethod has been proposed for

. the generation of SC networks in such a way that the

circuits obtained arer automatically insensitive to the
parasitic capacitances inherent tolthe fabrication ‘process.
The network 'generation method is sihple, easy to'apply and
leads directly to the minimum size of the most general stray

insensitive SC network for a given number of OAs, Special

attention has been given to the particular cases of single

$
’

>
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_ p
(0):% and second order networks due .to their wide
applicability. Techniques have alsoc been proposed to reduce
the general networks obtained to structures éf manageable

size without 1losing flexibility "in the design process.

Further, an optimization algorithm has been presented which

allows the reduction of the chip area necessary for the

o

realization of a given transfer function.

i
I3

Towards this end, a new systématic approach is
presented, using the parasitic insensitivity conditions
previously reported, to determine the most. general switching

scheme'which‘éuafantees the stray insensitivity of a SC

network with a given number of OAs. Then, only those

capacitors which contribute to the network transfer function

are employed along with the derived switching scheme. This

approach automatically avoids the use of redundant elements.

The method is introduced in Chapter II .to determine the most

general 'qStrayA insensitive single OA §C network.
Subsequently, all possible z-domain transfer funcéions
obtainable from this general single OA network are derived,

along with the necessary conditions for their realizability

without any matching conditions being imposed on the

capacitors emplgyed. Techniques are then proposed to reduce
the generdl structure to circuifg of‘bractica;ly acceptable
complexity. Also, procedures to improve the final design by
reducing the total capacitance, the number of elements

and/or the component spread are discussed.

P
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In Chabte; III, the network generation technique is
extended for thk case of second order networks (fwo OAs).
ﬁftet‘ the derivation of the most general stray;insgﬁsitive
biquad, the concept of "capacitor switching netwogy“ (CSN)

is introduced. This concept allows .the determination of a

reduced general biquad which is able to realize any transfer,

function realizable by the original network with maximum
flexibilitytin choosing the coefficients /bf 'the various
CCEs. The reduced network employs only c#pacitors that are
switched according to a limited set of fouﬂ basic types of
CSNs. Quasi-canonic (8 capacitors) buildlbg blocks capable
of realizing any second order transfer func;ion are derived

from the reduced general bigquad. Then, tﬁb remaining CSNs

are employed, along with the already derive biquads, to

obtain a new set of general second order networks. Some of
the new networks have subnetworks which are canonic ihn terms
of the number of capacitors and are, themselves, general
biquads. A total of 28 biquad building blocks is obtained.
The complete set contains the five stray insensitive general
biquads presented so far in the literature. The remaining
23 networks are eompletely neﬁ. Design equations are
provided for all networks, along with senaitiviﬁy values for
a bilinearly® transformed transfer function. Dynamic range

maximization as well as spread and total capacit&née

minimizations are discussed.

-
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Chapter IV deals with the optimization of SC_

networks. An algorithm is propoﬁed'to reduce the chip area

necéssary for the implementation of a  given transfer -

function. This is done through the minimization of the
required total capacitance. The new method allows the
optimization to be carried out with a network of variable
topology without, however, requiring -the computational
effort usually necessary in these cases. Even though ‘the
proposed algorithm Ean be applied to networks of any order;

the design of second order networks is emphasized since

those are the most used buildihg blocks in the synthesis of-

.8C filters. The design flexibility of the most general
stray insensitive biquad, which employs 120 capacitors, is
maintained without the need of more than 19 variables during
any bhase of the optimizatioh process. Such reduction in
the gystem complexity is obtained by using the ‘concept of
CSN equivalences, which(is gederalized in this chapter. 1In
the proposed method, multiple criteria dptimization
techniques are employed so that a tradedff.between total

capacitance and network sensitivity 1is obtained. Dynamic

range scaling is also considered.

In all the relevant chapters, detailed examples are
presented which demonstrate the possibility of design
improvement by the use of the new techniques\ptogosed. Many

SC filters have been built and tested in laboratory to

verify the wvalidity of the theoretical results presented.°
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Due to - thex lack of proper MOS integration facilities,
however, these filters have been implemented using discrete
,components. The experimental results agree closely with the

theoretical predictions.

5.2 SUGGESTIONS FOR FURTHER WORK

Some of the possible directions for further

'research on the results obtained in this thesis are

diséussed in what follows:

(i) So far, the technique for generation of parasitic

insensitive SC networks has been applied to structures

employing at most™ two OAs. Since the method is

general, 1its extension to produce good network

, topologies for the realization of higher order fi;tets’

(such as ladder networks, for instance) is certainly
\ .

an appropriate topic for future investigation.

(ii) The .networks obtained 1in this thesis are known to

. perform well in the voice-~band frequency range. Their
> capabilities for applications at higher frequencies,
‘however, are still to be determined. Since many . of
the new networks employ novel capacitor switéhing
.schemes, an investigation in this directioﬁ could lead

to interesting results.r A ‘
(iii) The biquad building, blocks .obtained in Chapter III

have béen derived to ‘realize general second order

transfer functions. An alternative approach would be

P

to determine sets of networks to realize specific
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transfer functions, such as bandpéss;‘lowpdss, etcy

-

' Generating the "biquads in this way, the design”

o _ ' flexibility given by the genefal building blocks is

lost. On the other hand, some properties like .

sensitivity or total capacitance, for example, may be

'improved because the new structures would be

v

specifically generated to realize the desired transfer

) ' . '*  function.

In éonclusion( it is hoped 'that the —results
reported. in this thesis will be useful to others interested

" in the area of design and implementation of switched

capacitor networks.

IS

Wi a




(1

[2]

(3]

» [41

« [5]

" (6]

(7]

. (8]

245
REFERENCES

J.L., McCreary and P.R. Gra&, ‘ 'All;MOS Charge
Reéistribution' Analog to Digital Convereion Techniques
- Part I",'IEEE?J. Solid-State Circuits, vol.’ ‘SC-lo,
PP. 371-379, December 1975. Co

R.E. Suarez, P.R. Gray and D.A. Hodges, "All-MOS Chatge
Redistribution Analog to bigital Conversion Techniques
- Part II", IEEE J. Solid-State Circufts;lvoil sc-10,
pp.- 3i9—385, Decembe; 1975.

- {
D.J. Allstot and w.C, Black,Jdr., *Technological

- Considerations for Monolithic MOS Switched Capacitor

Filtering Systems", Proc. 1IEEE, vol. 71, pp.
967-986, August 1983.

M.S. Ghausi and K.R. Laker, "Modern Filter Design -
Active RC and Switched'gapacitor', Prentice-Hall, New

Jersey, 1981,

P.E. Allen and E. Sanchez-81nenc10, 'Sw1tched Capacitor'

Circuits ’ Van Nostrand Reinhold, New York, 1984.

X P. Tsivxdis and P.R. Gray, "An Integrated NMOS -

Operational Amplifier with Internal Compensation , IEEE
J. Solid—State Circuits, vol SsC-11, pp.. 748-754,
December 1976. '

R.W.. Brodersen, f.R. Gray 'ané D.A. ., Hodges, ' 'Maé
Switched Capacftor Filters . Proc. IEEE, vol. 67, pp.
61-75, January 1999.

J.T. Caves, M.A. Copeland,

4

C.F. Rahim and

s

-

Nowy

4 et ettt et i b b G fren

s



[9]

{10]

[14]

246

_[y'

’

S.D. Rosemblaum, ‘"Sampled Analog Filtering Using

Switched Capacitors as Resistor Equivalents", IEEE J.

Solid-State Circuits, vol. sc-12, PP. 592-599,

Décember 1977. ¢

B.J. Hosticka, R.W. Brodersen and P.R. Gray, "Sampled

Data Recursive Filters Using Switched Capacitor
. kA

Integrators®, IEEE UJ.

sC-12, pp. 600-608, December 1977.

G.M, Jacobs, D.A, Allstot, R.W. Brodersen and

P.R. Gray, "Design Techniques forr MOS. Switched

Capacitor Ladder Filters", IEEE Trans. Circuits and

&

Systems, vol. CAS-25, pp. 1014-1021, December 1978.

Y.P. Tsividis, "Analytical and Experimer(\t& Evaluation

of the Switched Capacitor Filter and Remarks on the

Resistor/Switched Gapacitor Correspondence”, IEEE

Trans. Circuits- and Systems, vol. Cas-26, pp.

140-144, February 1979. ,

Y.P. Tsividis, .'Analysis of Switched Capacitive
ran§. Circuits and Systems, vol.

Networks™, IEEE

CAS-26, ph. 935-946, November 1979. ,

, P
E. Hokenek ané G.S. Mgschytz,, “Analysis ‘of General

Swi tched Capacitof Networks Using Indefinite Admittance

-
»

Matrix*, IEE Proc., vol. 127, Pt.G, pp. 21-33,
F;ebtqary 1980. / : o '
M. Hasler, “"Stray éapacit;nce‘ \Insenfitivé Switched
qdpaciwt Filters®, 1981 Proc. IEEE Int.  Symp.
?iréuits and Systems, pp. 42-45, 1§81. . J

& e ‘ . ’

Solid-State Circuits, vol.




e

-
s @ ity <oy

Ay,

{15]

(16]

(171

[18]

[19]

.. [20]

wt

[21]

[22]

I

v ' -
Ve L b *
v
'S

K. Martin and A.S./Sedra, “Si:ray Insensitive Switched

Capaci’tor Filters Based ,on Bilinear Z-Transform®,

AN v

Elect. Letters, vol. 15, pp. 365-366, June 21, 1979.
K. Martin, "Inmproved Circuits for ‘Realization of

Sw{itched‘ Capacitor Filtérs", IEEE~Tréns‘. “Circuits and

. gystems, vol. CAS-27, pp. 237<244, April 1980,

R, Gé’egoriar‘x, "Switched Capacitor Filter Design Using:

Cascaded Sectidhs'f, IEEE Trans. Circuits and Systems,

vol, CAS-27, pp. 515-521, June 1980.

L

K. Martin and A.S. Sedra, "Exact Design of Switched

~

e
Capacitor Bandpass Filtegxs Using Coupled-Biquad

Struétures", IEEE Trans. Ci ;\i.ts and Sys}_tems, vol.
CAS-é?, PpP. 469-474, June 1986. See alsot”ﬁar'ch 1981
issue for -co}:re'ctions,/ pp. 261, ‘,
E.Ix El-Masry, "Stray -Insepsitive” Active Switched
Capaéitor Bi‘quad", Elect. Lej:ter.s,‘ vol. 16, no. i2,
pp. 480-481, June 5, 1980. . -

N \
E. Hokenek and G.S. Moschytz, "Gereral ' Purpose Design

of First and Second Order Switched Capacitor Bujlding

Blocks®, 1983 Proc:. ECCTD, pp. 25-30, 1983.
R. Gregorian, K;W. Martin and G.C. Témeé, "Switched

Capacitor Circuit Design", Proc. IEEE, vol. 71, ép.

941-966, August 1983. c »
R. Gregorian and J.G. Gord, A Contfinuously .Variable

Slope Adaptive Delta ‘Modulation Codec System”, IEEE J.

7

.

December 1983. /. ' .o

L3 - b" 3

a Cthe

( o .
Solid-State Circuits, vol. SC~18, px 692-700, -




[23]

(24]

D "gkl.

[26]

’

(27]

VA ¢ )

P (29

<, " [30]

‘e

248 o :

-

R. Gregorian and G. Aniix,ﬂ "a, Sinéle Chip Speech

Synthesizer Using,' a Switched Capacitor Multiplier"™,.

IEEE J. Solid-State Circuits, vol. SC-18, pp. 65-75,

February 1983.

E.I, Jury, "Theory and Applié.ation of the z-Traﬁsform

Method", John Wj.\{ey, New York, 1964. '

A. Antoniou, "Digital Fi}ters - Analysis anﬁ -Désign",
McGraw Hill, New York, '1979.. ' J‘

P.ﬁ. Fleischer and K.R. Laker, "A 'Familg;\ of Act»iye
Switchéd Capacitor ,Biquad Buiiding Blocks", 'Th,e Bell

Syst. Teci’:.' J., vol. ‘58,‘rpp, . 2235-2269, December

+1979. - : -

D.A. Hodges, P.R. Gray and R.W. Brodersen, "Potential

- . i . N B
of MOS Technology for Analog Integrated Circuits", IEEE

J. Solid-Stite -Circuits, vol. SC-13, pp. 285-294,

Juhe 1978, -

'R.‘y. McCharleg, ‘*“V.k». Saletore, " _W;C. b’lack,Ji. and -

D.A. Hodges, "aAn. Algorithmic . Analog _to Digital

Converter®, 1977 ISS_CQ’Di,g. ' Tech.  Papers, pp., 96-97,
1977. Coe I

v

R.D., éellman .and R,vg Brodersen, "A Switched Capaqitd’r N

. A ‘ )
Adaptive Lattice Filter", IEEE J. . Solid-State

Circaits, vol. . SC-18, pp. 46-56, February 1983.

T. Suguki, H. Takatori, H. .Shirasu, M. Ogawa and

N. Kunimi, "A CMOS Switched Capacitor Variable Line

. Equalizer", IEEE J. Solid-State Circuits, vol. SC-18,

pp. 700-706, fDecember 1983. , T
i . ‘ . ' N

* 4 v

IR
.« -

USRI S

iy s et o D b P ke

[P

:




[31]

[32]

249" .

P. Gillinghan,n "Stray-Free Switched Capacitor Unit -

Delay dircuit", Elect.. Letters, vol. 20, pp.
308-310, March 29, 1984.

K. Martin and A.S. Sedra, "Switched Capacitor Building

" Blocks for'.Adaptive Systems", IEEE Trans. Circuits and

[33]

(34}

[35)

[36]

(371

(38]

W
‘.’ T »
. . .
.

Systems, vol.: CAS-28, pp. 576-584, June 198].

T. Enomoto, M. Yasumoto, T. Ishihara and K. Watanabe,
"Monolithic Analog Adaptive Equalizer Integrateg
Circuit for wide Band Digital Commqucation Networks",
IEEE J. Solid~State Circuits, vol.. sC-17, pp.
1045-1054, December 1982. ’ |

E.A. Vittoz, . "Micropowér Switched Capacihgr
Oscillators”, IEEE J. Solid-State Circuits, vol.
Sc-14, pp. 622-624, June 1979.

B.J. White, G.M. Jacobs and G.F. Landsburg, "A
Monolithic Dualtone Multifrequency Receiver", IEEE J.
Solid-State‘D Circuits, ;ol. 5C-14, PP. 291-997,
December 1979. ‘ . . o ‘ NP

J.C.M, Bermudez and B:B.rshattécharyya, "Generation;
Classification and Design of Stray Insensitive Singie
6A SC Networks", tobﬁe published. _ ‘
J.C.M. Bermudez and B.B. Bhattacharyya, 'Genézation,
Classification and Design of Single 0A SC Neﬁworké“,
Proc. 1985 IEEE Int. 'Symp. Circdits and‘Systems,
Kyoto, Jépan, June 1985.

K.R.Laker, P.E. Fleischer’' and A. Ganesan, *parasitic

Inﬁensitive Biphase $witéhed Capacitor Filteré Regliied ’

)

'\_aw o ' p | .




;( ‘ 250

/ ’ * 1,

(with One Operational Amplifier per pole P ir:, The Bell
Syst. Tech. J., pp; 685-~707, May-June 1982.

|
% .
[39] K. Martin, "A. Switched Capacitor Realization of a
. ~ . |

Spectral Line Enhancer", IEEE Trans. Circuits and

|

Systems, vol. CAS-30, pp. 462-473, July‘l983.

[40] F. Brglez, LAn Approach to Analysis and Design of
Switched Capacitor FilGers: The NT/BNR Experience",
Proc. 1983 IEEE Int. Symp. Circuits and Systems, pp.
72-75, 1983. '

[4%] g. Gillinghan, "Stray Insehsitive Switched Capacitor
Biquad With Reduced Number of Capacitors”, Elect.
Letters, vol. 17, pp. 171-173, February 19, 1981.

[42] 5.C.M. Bermudez. and B.B. Bhattacharyya, "On the
 Genggation, Design and Optimization of Switched
| Capac{tor_ Biquads", Proc. 1984 IEEE 1Int. Symp.

Circuits and Syst;ms,.Montreal, Canada, PP-. 296-299,
May‘1984. : ‘ o .

(43] J.C.M. Bermudez and B.B. Bhattacharyya, "A Systematic
Procedure Yor “Generat{on and Design of . Parasitic

Iésensitive SC Biquads"; accepted for publication in

\

IEEE Trans. Circuits and Systems, vol. . CAs-32,

}

September 1985. . W1 . \
r I hY

[44] A. Nishihara, "Charécterization of Second Order

" Discrete Time Filters", blec%. Letters, éb. 84-86,

February 3, 1983. ' p
.

[45] M.S. Lee and C. Chang, "Switched Capacitor Filters

Using the LDI and .Bilinear Transformationg", IEEE

ey



[47]

[48]

(49]

[50]

(51]

(52]

[53]

/ ‘ a
/ 28
Tréqs. .,Circuits and Systems, ' vol. CAS-28, PpP.
265-270, April 1981. » |
S.K. Mitra ;nd P.P. Vaidyanathan, "Design of Switched
Capacitor Filter Networks with Minim&i Capacitor Ratio
and Total Capacitance™, Proc. 1981 IEEE Int. Symp.
Cirguits and Systems, pp. 326-329, 1981.

B. Dash, 'Equivalence "Transformation of Switched 1

h)
Capacitor Networks and of Micro-Strip Filters", Proc.

1982 ‘IEEE Int. Symp. Circuits and Systems, pp.

217-220, 1982.

F.M. E1-Turky and J. Vlach, "Generation of Equivalent

Active Networks with Minimized Sensitivities", 1EEE

Trang. Circuits and Systems, vol. CAS-28, pp.

941-946, October 1981. )

M. Hasler and M. Saghafi, "Stray Capacitance

*

Eliminating Transformations‘ for Switcred Capacitor

Circuits”, Int.* 3. Circuit Théory and Applications,

pp. 321-338, November -1983. S

J. Vliach and K. Singhal, "Sensitivity Minimization of

Networks with Operational Amplifiers and Parasitics”,

IEEE Trans, Circuits and Systems, vol. CAS-27, pp,

‘ )
' t
G. Daryanani, "Principles of Active Network Synthesis

688-697,. August 1980,

%
and Design”, John Wiley, New York, 1976.

G.S. Moschytz, "Linear Integrated Networks - Design®,

Van Nostrand Reinhold, New York, 1975.

M.R. Lightner and S.W. Director, "Multiple Criterion

A ]




l-*M-MN — e s e aw

252

+
v

Optimization for the Design of Electragnic Circuits”,

Y

IEEE Trans. Circuits and Systems, vol. Cas-28,  pp.
169—179,.ﬁarch 1981,

[54] R.K. Brayton and R. Spence, "Sensitivity - ahd
Optimization", Elsevier, New York, 1980. -

j55]‘VF02AD, Harwéll Subroutine L;brary, Harwell; Oxon,
England, 1978. |

[56] G. Fischer and G.S. Moschyti, "High-Q SC Biquad with a

Minimum Capacitor Spread”, Elect. Letters, vol. 18,

" ——— - pp. 1087-1089, December 9, 1982. R

[57] 'R. Fletcher, "Practical Methods of Optimization - vol.

f .
*1", John Wiley, New York, 1980.

[58] E. Sanchez-sinencio, R.L. Geiger and J. Silva—MaEtinez,
" "Pradeoffs Between Fissive-Sensitivi;y, Output !oltage
Swing; and Total Capaci tance in Biquadratic SC
Filters", IEﬁE Trans. Circuits and Systems, vol.
CAs-31, pp. ©984-987, November 1984. -

[59] G.s. Moéch;tz, "L inear Integrated Networks -

Fundhﬁentalé', Van Nostrand Reinhold, Ne; York, 1974.
“[60) J.C.M Bermudez and B.B. Bhattach&rrya, "Optimizatioq of

SC Biquads", to be submitted. g

-

B ol 5 A AT B Mt T35 T

S lEariia i -

K

Sy W . o X




