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ABSTRACT

Aparna Kurupati
Order Statistic Filters are a class of non-linear filters whose output is a linear combi-
nation ;)f the order statistics of the input. Analysis of these filters shows that these
filters have good edge preservation properties and are very suitable for the removal of
impulsive noise. In this thesis, algorithms for the computation of the Running Order
Statistics (ROS) are implemented in real-time using the TMS320C30 digital signal

processor (DSP). A pratical application of the realized OSF for the demodulation

of a double side band AM signal is also presented.
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Chapter 1

Introduction

Linear filters have long been the primary tool for signal and image processing. They
have the very useful superposition property. By use of superposition, a filter’s re-
sponse to an input consisting of a signal plus noise may be separated into an output
signal plus noise. Thus a filter’s response to signal and noise may be studied sep-
arately. Linear filters also have as Eigen-functions the sinusoids, sines and cosines.
This means that an input sinusoid of frequency f to a linear filter produces a sinu-
soid of frequency f, at its output. The effect of the filter is to possibly change the
amplitude and phase of the sinusoid. This characteristic of linear filters gives rise to
the transfer function representation of these filters. Unfortunately, linear filters have
poor performance in the presence of noise that is not additive as well as in pr :blems
where it is necessary to operate on signals with sharp edges. For example, consider

the image shown in Figure 1.1(a). The image is corrupted by mixed impulsive noise.




(a) (b)

Figure 1.1: (a) Image Corrupted by Impulsive Noise. (b) Filtered Image.

Impulsive noise appears as black or white spots. This noise is usually caused by
errors during image acquisition or transmission through communication channels.
During this process some image pixels are destroyed and they take high positive
(white spots) or low values. Filtering this image with a linear filter would smear
out the sharp edges as well as the noise. Such smearing of the data is unacceptable
in many applications. For such reasons nonlinear filtering techniques for signal and
image processing were considered as early as 1958 [1]. One of the most popular fam-
ily of nonlinear filters for noise removal is the Order Statistic Filter. The median
filter which represents one of the simplest such filters was first suggested by Tukey
[2] as a time series tool for robust noise suppression. Applying a 3x3 median filter
to the noise corrupted image of Figure 1.1 (a) results in Figure 1.1(b). The impulses

have been removed almost completely and the edges are preserved. Since then the




median filter and its modifications have found numerous applications in digital im-
age processing (3], (4], [5], in digital image a.na.lysi; (6], in digital TV applications
(7], in speech processing and coding [8], [9], in cepstral analysis and in various other
applications.

In 1981, Gallagher and Wise [10], and Tyan {11] developed certain determin-
istic properties of the filter; in particuiar, they showed that certain signals (labelled
root signal in [10]) are invariart to median filtering if they possess a minimum de-
gree of smoothness (local monotoniticity), and that repeated application to any
finite-length signal converges to a root in a .ﬁnite number of passes.

Kuhlmann and Wise {12] derived some properties of the second moment of
median filtered sequences of independent data. They derived the bivariate distribu-
tion function for median filtered sequences of independent arbitrary, second-order
random variables.

Ataman et al. [13] showed that median filters can remove impulsive plus
Gaussian white noise better than Hanning filters, when the amplitude of the impulses
is large or the energy of the Gaussian noise is relatively low.

These results gave the median filter a theoretical groundwork, and spurred

the development of a number of extensions and generalizations, that led into the

consequent evolution of the Order Statistic Filter (OSF).



1.1 Generalization of the Median Filter

In this section, a literature survey of filters based on Order Statistics will be consid-
ered. Filters based on Order Statistics include L-filters, alpha-trimmed mean filters,
max/median filters, median filters, rank-order filters etc. These filters have been
designed to meet various criteria, e.g. robustness, adaptivity to noise probability
distributions, preservation of edge information, preservation of image details (14].

Nodes and Gallagher [15] extended the median filter to the ith rank order
filters. They showed that for nonmedian ith ranked-order operations, repeated ap-
plication of the operation reduces any signal to a root. Also, they proved that the
output of a recursive median filter is invariant to subsequent passes by the same
filter.

In 1984, Fitch et al. [16] showed that median filtering an arbitrary level signal
to its root is equivalent to decomposing the signal into binary signals, filtering
each binary signal to a root with a binary median filter, and then reversing the
decomposition.

Several other filters closely related to median filters were then introduced.
These include the recursive median filters and the recursive separable median filters.
Arce [17], McLoughlin and Arce [18] using threshold decomposition derived closed-
form expressions for the statistics of recursive median filters and the root structure
of the recursive separable median filter.

Arce and McLoughlin [19] also used this tool to analyze the behaviour of



their max/median filters. They showed that the max/median filters are superior to
conventional median filters since the roots of the max/median filters consist of very
low resolution features which are suppressed by the latter filters.

It was shown by Bovik et al. [20] that an Optimal Order Statistic Filter
(OOSF) whose output is a linear combination of the order statistics of the input
sequence combines the properties of both the averaging and median filters. They
also showed that the optimal (under the MSE criterion) order statistic filter tends
toward the median filter as the noise becomes more impulsive. A theory of order
statistics filters and their relationship to linear FIR filters was later investigated by
Longbotham and Bovik [21].

Bednar and Watt [22] explained the relationship between alpha-trimmed mean
filters and median filters, and provided a new explanation of the convergence of
repeated median filtering of an arbitrary sequence to a root sequence.

Other generalizations of the median filter include the adaptive approach of
median filtering. Lin and Wilson [23] proposed algorithms employing adaptive-
length median filters to improve impulse noise rejection.

Nieminen et al. [24] presented median type filters with adaptive substructures
suitable for filtering signals with rapidly varying characteristics. Using adaptive
filter substructures, the current signal value from future signal values and from past
input or output signal values is; estimated.

A third article to explore the adaptive approach was by Haweel and Clarkson




(25]. The authors presented a class of adaptive algorithms employing order statistic
filtering of the sampled gradient estimates. These algorithms, dubbed order statistic
least mean squares, are designed to facilitate adaptive filter performance close to the
least squares optimum across a wide range of input environments from Gaussian to
highly impulsive.

Another major generalization of median filters was the class of stack filters
developed by Wendt et al. [26]. Along with the limited superposition property of
median and rank order filters, another property was necessary to define this new
and larger class of non-linear filters. This is called the stacking property [26] which
is an ordering property, also shared by all rank-order filters. The authors also
investigated the convergence and syntactic behaviour of these filters to determine
when they preserve monotone signals, edges, and median filter roots.

Coyle [27], and Lin and Coyle [28] showed how to design the optimal stack filter
relative to a Markov signal/noise model and a modified mean-absolute estimation
error.

Gabbouj et al. [29] developed a theory for the structural behaviour of stack
filters. Their theory allowed the designer to pick a filter which minimizes noise
subject to constraints on its structural behaviour.

During the same year, two more articles were published: the first by Lin et al.
[30] dealt with adaptive stack filtering under the Mean Absolute Error Criteri.on.

The second paper by Wendt [31] dealt with nonrecursive and recursive stack




filters, and their filtering behaviour. He showed that a recursive stack filter has the
same roots as the corresponding nonrecursive stack filter.
These theories of threshold decomposition [16] along with the stacking prop-

erties [26] have given rise to efficient VLSI implementations for stack filters.

1.2 Hardware Implementations of Rank-Order

Filters

Real-time implementation of various forms of non-linear filters requires the real-
time implementation of OSFs. Real-time implementation of an OSF involves the
computation of Running Order Statistics (ROS) of samples inside a window which
get continuously updated with the arrival of a new sample(s). Calculation of ROS
requires comparisons, additions, multiplications and nonlinear function evaluations,
which result in tremondous amounts of computation. Thus, fast algorithms and
structures are essential. In this section we review several fast algorithms and struc-
tures for the implementation of OSFs,

VLSI implementations for rank-order based filter have been done by several
authors [26], [32]. Oflazer [33] gave the design and implementation of a VLSI chip
using odd/even transposition sort-network capable of performing one-dimensional

median filtering operation. '




Huang et al. [34] presented a fast algorithm for two-dimensional median filter-
ing based on sorting and updating the gray level histogram of the picture elements
in the window.

Ataman et al. [35] developed an algorithm which determines the kth bit of
the median by inspecting the ¥ most significant bits of the samples. An alternative
method of computing the median was given by Rao and Rao [36).

Chen [37] proved that a ranked order filter can be realized by using one binary
processing circuit in k steps, if k is the number of the bits in the input signal
samples. Such an implementation reduces the time area complexity to O(k) from
O(2*) required by the classical threshold decomposition.

Rama Murthy and Swamy [38] proposed algorithms to compute the Running
Order Statistics (ROS) in real-time. The algorithms can be executed in either serial
or parallel modes of execution. They also proposed a simple expansion algorithm
to compute an (r + 1) ROS of samples in a window using two r-bit OSFs. They
also gave a parallel architecture with programmable window size and rank order for
the implementation of OSFs and a VLSI architecture which permits the usage of
two r-bit OSFs to implement an (r + 1)-bit OSF, where r is the resolution of the
input signal samples. Further this paper shows how the VLSI chip incorporating
the proposed architecture can be used as the basic building block in the real-time

implementation of various forms of nonlinear filters.



1.3 Motivation and Objective

In view of the considerable interest in median and order statistic filters, the question
of the implementation has itself received considerable attention, both in relation to
fast algorithms and to dedicated hardware implementations. Implementation of
these filters involves the incorporation of an ordering transformation which creates
a significant computational overhead.

For this reason, it is of utmost importance that fast algorithms on dedicated
hardware are used. VLSI implementations are ideal for such situations since they
can be customized and hence for real-time applications have fast processing times.
They also have certain disadvantages, i.e, they are not cost effective and take a
much longer time to implement. In order to circumvent the above problems, general
purpose DSP boards can be used.

In [38], algorithms to compute the ROS in real-time which are based on se-
quential and parallel mode of execution [38] are proposed. In addition a simple
expansion algorithm is used to compute the (r+1)-bit ROS of samples in a window
using two r-bit OSF's.

In this thesis we use the above algorithms to implement OSFs on a general
purpose digital signal processor (DSP) TMS320C30 from Texas Instruments. A
practical application of the realized OSF for the demodulation of a double side-

band amplitude modulated (AM) signal is also considered.




1.4 Organization of the Thesis

The organization of the thesis is as follows. In Chapter 2, we define the order statistic
filter and consider a few important properties. Some modifications of OSF's are then
considered. Next, a brief summary of the algorithms implemented is presented with
the flow diagrams and C code.

In Chapter 3, we give a description of the block diagram of the implementation
along with the flow diagrams and TMS320C30 C code for each of the algorithms
considered. In Chapter 4, we consider a few applications along with their solutions of
order statistic filters. We also consider one such application for our implementation
of the OSF on the TMS320C30 processor. Finally, in Chapter 5, our conclusions are

presented.

10




Chapter 2

Order Statistic Filters

In the following sections we begin with an introduction to Order Statistic Filters.
A few properties of Ranked Order Filters are considered, folluwed by some modifi-
cations of OSFs. The algorithms proposed in [38] for the computation of the ROS

are discussed in detail.

2.1 Introduction

The OSF of the ith order is a digital filter consisting of a window, (usually containing
an odd number of samples) which is stepped across an input signal. At each step
the points inside the window are ranked according to their values, and the output
at any time instant is the ith order statistic of the number of samples in the window
at its input at the same instant.

Let the window size be N and z,(n),p = 1,2,..., N be the samples inside the

11




window wy(n), at the n th time instant, i.e.,
U)N(n) = {zl(n)’z2(n)’"'va(n)} (21)

Define a new window wj(n) as the one obtained from wx(n) by sorting the N

samples inside wy(n) in the increasing order of algebraic value, i.e.,

wy(n) = {z()(n), z2)(n), ... z()(n)} (2.2)

where z(1)(n) < z(2)(n), < ... £ z(v)(n). The output of the OSF with input wx(n)
is given as

Yosr(n) = z(i(n), where t=(N+1-1) (2.3)

Suppose, for instance, that N = 5 and that the samples, in time order (nth instant),

in the window are
ws(n) = {z1(n), z2(n), z3(n), z4(n), zs(n)} = {8,1,6,4,1}
In rank order they would be

w;V(n) = {z(l)(n)’ 13(2)(11), 3(3)(71)1 3(4)(71), 3(5)("')} = {1, 1,4,6, 8}

The 2nd largest value is given by z4, which for the above example would be 6. The

window wy(n) is updated at every sampling instant n with the deletion of the oldest

sample (in time) and the inclusion of the latest sample (current or néw sample).
Figure 2.1 shows the input and output for a window width of 5 order statistic

filter, and also shows how the window moves along the signal. This operation still

12
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Figure 2.1: An Order Statistic Filter
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eliminates some impluses in both directions, it also tends to favor larger valued or
rising points.

The output values near the beginning or end of a finite length sequence may
not be defined since some samples will be missing from the window. To prevent this,
the endpoints of the sequence are repeated a sufficient number of times to fill up the
window even when it is centered on an endpoint. If the window has width N, then
the endpoints must be repeated (N — 1)/2 times. In Figure 2.1 each endpoint is

repeated twice since the window has width 5.

2.2 Some Properties of Order Statistic Filters

In this section we consider some theoretical results on the behaviour of the median

and order statistic filters.

2.2.1 :th Ranked Order Operations

The ith ranked-order operation can also be defined by the decision rule used to select
the output values at each step. For N points inside the window, the ith ranked point
zi(n) is the point such that there are at least i points with values less than or equal
to zi(n), and at least N — (i — 1) = N + 1 — i points with values greater than or
equal to z;(n) [15]. A numpér of properties of the ith ranked-order operations are

now defined but before we proceed we define a few important concepts.

14




A constant neighborhood is a region of at least &£l consecutive
points, all of which are identically valued.

An edge is a monotonically rising or falling set of points surrounded on
both sides by constant neighborhoods.

An impulse is a set of -"—’-2’—1 or fewer points whose values are dif-
ferent from the surrounding regions and whose surrounding regions are
identically valued constant neighborhoods.

A root is a signal that is not modified by filtering.
Properties

Property 1: A point z,(n) is unchanged (yosr(n) = z,(n)) by an ith ranked-order
operation if two conditions are met. The point z,(n) is located in a constant region,
and z,(n)’s position is restricted to b + %’—‘ -a<n<c- I—A%ﬂ —i|+ a where a
is any nonnegative integer of value less than N% - lﬂ-}-‘— — 1|, and b and c are the
positions of the two endpoints of the constant region.

Property 2: ith ranked-order filters can be used for the elimination of positive im-
pulses of width less than N + 1 — i points or negative impulses of width less than i
samples.

Property 8: Upon each pass of an ith ranked-order operation, every edge of a signal

will be moved to the left(advanced) by sgn[edge] - (i = 25 - 1)points, where
+1 ifzp(n) S zp(n + 1)

sgn[edge] =
-1 if zy(n) = z5(n + 1)

15




for n ranging over all positions of the edge.

Property {: Any constant region of N 4+ 1—i or more points surrounded by constant
neighborhoods of lesser values will be changed in width by 2 - (i — E;—‘ - 1) points
after being passed through an ith ranked-order operator.

Property 5: Only constant signals are invariant to ith ranked-order operations if :
is not equal to %

Property 6: If 1 is not equal to %ﬂ-, then repeated passes of an ith ranked-order

process will reduce any finite length signal to a constant.

A signal may be formed from independent identically distributed (i.i.d.) sam-
ple points of a random process. Such a signal would be formed if white noise were
sampled to form the input signal. For this type of signal, theoretical results from
order statistics [39] may be used to obtain the first-order distribution F,(-) and the
density f,() of the output of an ith ranked-order operation. If the distribution F;(-)

and the density f.(-) of the input are known, then f,(-) and F,(-) are given by the

following.
Property 7:
) = = - [P = @)™ ()
Property 8:
N .
Fie) = 3 ey (= A"

16



where N is the window size.

Property 9: A median filter (i = 2, z,(-) - Y05 (), with an input of i.i.d sample
points will transform the distribution of the input F;(-) = F,(-) symmetrically about
0.5. That is, for any { such that F;(I) = F,(l), then (1 ~ F;(l)) = (1 = F,(l)).
Property 10: The statistical median of a signal of i.i.d sample points is preserved
upon median filtering (i = N—-;’-’-‘-), or given [ such that F;(!) = 0.5, then F,(l) = 0.5.

The proofs of the above properties are given in [15).

2.2.2 Recursive Operations

If at every step, the leftmost l,}!- points are replaced'in the moving window with the
previous %7—‘ output points, and we apply the same decision rule as previously given
then we obtain the ith ranked-order operation to obtain the next output value.
Property 11: A signal is invariant to recursive filtering if and only if it is invariant
to standard filtering.

Property 12: Any signal will be reduced to a root after one pass of a recursive median
filter (i = &),

Property 13: If i # Ezﬂ, then the last computed output value of a signal being
operated on by a recursive ith ranked-order operation is the value of the signal
root for that operator. For i > %‘f—‘ (¢ < %ﬂ) this value is the value of the

maximum(minimum) value to survive the first filter pass.

Again, the proofs of the above properties are given in [15).

17




2.3 Some Modifications of Order Statistic

Filters

In this section some of the filters based on Order Statistics are considered.

2.3.1 Optimal Order Statistic Filters

These filters combine the properties of both the averaging and the median filters.
The output is a linear combination of the outputs of the ith OSFs (i = 1,2,..., N).
If yo0sr(n) is the output of an Optimal Order Statistic Filter (OOSF) operating

on wy(n), then

N
Yosr(n) =Y aiz(;)(n)

=1

where z(;(n) is the output of the ith OSF at time instant n and o;'s (i = 1,2,..., N)

are constants that are chosen for a particular application.

2.3.2 a-Trimmed Mean Filters

Median filters discard impulses and preserve edges. However, in the suppression
of additive white Gaussian noise, its performance is inferior to that of the moving
average. Thus, a good compromise between the median and moving average is the
a-Trimmed Mean Filter (ATMF).

The output of the ATMF, y47ar(n) operating on w,;(n) is obtained by ini-

tially deleting certain samples in wx(n) and then averaging the remaining samples.
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The removed samples are the most extreme values (both high and low), with an
equal number of samples dropped at each end (symmetric trimming). The number
of samples deleted is controlled by the triming parameter a which assumes values

between 0 and 0.5.

YOSF = o7 "A z(y(n)
N —2[°‘N].'=[§v:]+1 ®

where z(;)(n) represents the ith order OSF output.

2.3.3 Recursive Order Statistic Filter

If wy(n) at every sampling instant contains [%’-] number of previously computed
order statistic output samples ([&] is the integer part of &), then such a filter is

referred to as the Recursive Order Statistic Filter (ROSF) [40].

2.3.4 Adaptive Median Filter (AMF)

If N is varied at every sampling instant (i.e., the size of the window is varied) in
accordance with signal activity inside the window as defined in [41], then such a

filter is referred to as an Adaptive Median Filter (AMF).

2.4 Algorithms for OSF Implementation

In this section we consider the algorithms [38] used for the computation of the ROS.

These algorithms are based on sequential and parallel modes of execution. We
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also consider an expansion algorithm which utilizes two r-bit OSFs to compute an
r + 1-bit OSF.

Before we proceed, for the computation of the ROS. we assume that wy(n) is
as defined in equation 2.1, i is the desired order statistic and t = N +1 — i. We
also assume that the largest possible sample of wn(n) at any instant has an r-bit
representation (resolution) and L = 2". Without loss of generality, we assume that

Tp(n) 2 0,p=1,2,..,N.

2.4.1 Sequential Mode of Execution

This technique consists of two steps. Step A involves the formation of an m-array
of length L = 2" where r represents the number of bits required to represent the -
larget possible sample of wy(n). Step B involves the computation of the ROS from

the m-array elements.

Step A: Formation of an m-array

Form an array referred to as m-array with elements m;,mg,...,my by scanning

each sample of wx(n) once. The kth element m; contains number of samples in

wy(n) greater than or equal to (k-1).

Step B: Computation of ROS from m-array elements

Let ay,ay,...,a; be the r-bit binary representation a number z where a; is the MSB

and a, is the LSB. Computation of median yoss(n) consists of the following

sub steps B1-B6:
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Step B1: Initialize z = 0 (i.e. set a;for 1 <i<r)
Step B2: Initialize a counter k =1

Step B3: Set a, =1

Step B4: If m.,; < t, then set a; =0

StepBS: k=k + 1

Step B6: Go tostep B3ifk <r

At the end of the above procedure yosr(n) = =

Let us now consider an example which illustrates the above algorithm.
Example 1: Let wy(n) = {0,1,6,3,7,3,2,4,1} where N = 9. Assume r = 3 so that
L = 2" =22 = 8 and the maximum possible value for any sample in the window at

any instant is 7. Steps A and B of the algorithm are given below:

Step A: Formation of m-array (initally m1,...,m8 =0)

Scanned element my; ms m3 my my mg m7; mg

z)(n) =0 1 0 0 0 0 0 0 0
za(n) =1 2 1 0 0 0 0 0 0
z3(n) =6 3 2 1 1 1 1 1 0
z4(n) =3 4 3 2 2 1 1 1 0
zs(n) = 7 5 4 3 3 2 2 2 1
ze(n) = 3 6 5 4 4 2 2 2 1

2]




z7(n) = 2 7 6 5 4 2 2 2 1

i
o
Qo
-3
(=2}
[}
[
(-]
N
(=

zg(n)

T9(n) =1 9 8 6 3 3 2 2 1

Step B: Computation of median(initially z = {a;.a2,a3} = {0,0,0} =0)
K=1l:a,=1 z={1,0,0} = 4, mg =3, 3<5, a; =0
K=2:a;=1 z={0,1,0} = 2, mg3 =6, 645, a; =1

K=3:a3=1 z={0,1,1} =3, my =5, 545, az =1

YosF =z={0,1,1} =3

For the computation of the running median, everytime the window wy(n) gets
updated by replacing an old sample p by a new sample g, the elements of the m-array

are updated as part of Step A depending on the values of p and q as follows:
e If p < g, each m; for which p +2 <t < ¢+ 1 is incremented by unity
o If p > g, each m; for which ¢+ 2 < i < p+1 is decremented by unity
o If p=g,noneof my, : =1,2,..., L is modified

Having updated the m-array, the new median is computed by following the procedure
in Step B.

The ROS algorithm given above computes yosr(n) by sequentially computing
ay,ay, ..., ar and hence, we refer to this mode of execution of the algorithm as the
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sequential mode. A flow diagram for the implementation of the above algorithm is
given in Figure 2.2. In this flow diagram, the samples in the window wy(n) at any
instant of time are stored in a N location circular buffer wy(j),7 = 0,1,...,N =
1 and the buffer is so configured that a new sample q is written into the same
memory location where the oldest sample p that it replaces was originally residing.
The addressing of the locations of circular buffer is done by the pointer j which is
incremented modulo N at the end of every ROS computation cycle (i.e., prior to
the reading of a new input sample q).

A C language code implementing the sequence of operation in the flow diagram

given in Figure 2.2 is shown in Figure 2.3 .

2.4.2 Parallel Mode of Execution for the Computation Of
Running Median

For high speed implementation of the algorithm presented in Section 2.4.1, parallel
processing is necessary. This is possible with the following modification.

Define L logical variables M;, 1 = 1,2, ..., L such that

logic 0" ifm; <t
M; =
logic 'l ifm; >t
where t = N 4+ 1 — 1 and 1 is the order of interest. With this definition, it is easy to

see that r bits of required ROS can be directly obtained from the following relations
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Figure 2.2: Flow diagram for the sequential mode of execution of the ROS algorithm
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/* C language program for.the implementation of the OSF */
/* This program executes ROS algorithm in the sequential mode */

$include <stdio.b>

/* Definitions of OSFs parameters */

$define b o 8 /* r is the resolution of the input signal samples ¢/
sdefine N 21 /* N is the window gize «/

tdefine t 2 /* order of the OSF = 20 soO that t = N+1-{ ¢/

int w[N], mlle<r], L, alri};
Tain()

int p, k, q, 2, unity = 1, j = 0;

/* Initialization of elements of m-array and the window t/

for(k = 0; k < N; k++) w(k] - O;
Le (1<<0r1);
for(k = 0; Xk < L; k++) m[k]=0;

/* Begin computation of ROS */

while(1){

scanf("%d*, &g); /* Read the new input sample q ¢/
p = wijl: /* p is the oldest sample being replaced by q */

/* compare p and g and update m-array +/

1f( p < q)f
for(k = (p+2): k <= (g+l1);: k++)
m(k=1] += unity;

)
if{ p > q){
for(k = (q+2); k <= (p+l); k++)

} r m{k-1] -« unity:

/* Compute the i th Order Statistic from m-array elements v/

2z =0; /* Initialize z ®/
for(k = 0; k <r; k++) {(
afk] = 1;
2z~ 2 + (afk] << (r-k-1)):
z = m[z] < t ? z-(a[k) << (r-k-1)) : z:

}

printf("sd\n", 2):;

w(j] = q; /* replace sample pby q */
J = (++3§) > (N-1) ?2 0 : J:

Figure 2.3: C program for the execution of ROS algorithm in sequential mode
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(2<k <r):
a1= M
e |
Qi = Z Bd(al) A2y .00y ale-l) ‘ ‘wd.k(als 82y 000y Qhnls Ok s Qlgly oeny ar) (2'4)
d=0

where - denotes logical AN D function, the Boolean function By(a,, as, ..., ax-1) cor-

responds to d th MinTerm of (k-1) variables a;, a3, ..., ax-1, the Boolean function
Ma(ar, @z, ..., k=1, Gk, k41, ..y Gr)

is equal to logical output M,.p, and D is the decimal equivalent of an r bit binary
number b,,b,, ..., b, (whgre b, is the MSB) obtained with &y, b, ..., bx—; corresponding
to (k-1) bit binary representation of number d, b; = 1, and by = bryy= ... = b, =
0. Hence from equation 2.4 it can be seen that all the r bits of required ROS can be
expressed directly in terms of the logical variables M;, M, ..., M. We now consider

an example withr =3 and L = 8.

a = M;
a2 = Bo(a;) - Mp,a(a1, a2, a3) + Bi{ay) - My 5(as,02,a3)
=ar-Ms+ay,- My =M - Ms+M; - M;
as = Bo(a1,a3) - Mos(ay,az,a3) + Bi(ay, az) - My 3(ay,as,a3)+
By(ay,az) - My3(ay, a2,83) + Ba(ay,az) - M3 3(ay,az,a;3)
=a_1-‘d§'- My+@y-a;-My+ay @ -Mg+a,-a;- Mg

=Ms My - My+Ms - My Mg+ Ms - M; - Ms + Ms - My Mg
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The flow diagram for implementing the sequence of operations required for
the parallel mode of execution of the algorithm is give in Figure 2.4. In this flow
diagram, the samples in the window wy(n) at any instant of time are stored ina NV
location circular buffer wy(7),j = 0,1, ..., N — 1 and the buffer is so configured that
a new sample ¢ is written into the same memory location where the oldest sample
p that it replaces was originally residing. The addressing of the locations of circular
buffer is done by the pointer 7 which is incremented modulo N at the end of every
ROS computation cycle (i.e., prior to the reading of a new input sample q).

The corresponding C language program is given in Figure 2.5 .
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Figure 2.4: Flow diagram for the parallel mode of execution of the ROS algorithm
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. /* C code for the implementation of the OSF ¢/
/* This program executes ROS algorithm in the parallel mode ¢/

#include <stdio.h>

/* Definition of OSF parameters t/

fdefine r 8 /* r is the resolution of the input samples ¢/
#define N 10 /* N is the size of the window ¢/

#define ¢ 2 /* order of the OSF = 9, t = N+1l-1i ¢/

int w(N]), m{le<r), L, a{r]), M{1l<<r}, NS;

int Q(129)[r], bir), d, n, 1, z1, D, sum, suml, ql, g2, temp{r);
main()

1nt pl q, z, k' j - 0, inc - 1;

/* Initialization of the elements of m-array and window ¢/
for(k = 0; k < N; k++) w(k] = 0;

L=1c<<r;

for(k = 0; kx < L; k++) m{k)=0;

/* Begin computation of ROS */

while(l){
scanf("%d", &q); /* Read the new input sample g */
p = w(3); /¢ Read p, the oldest sample */

/* compare p and q and update m-array */

1f( p < qQ){
: for(k = (p+2):; k <= (g+l); k++)
m{k-1] += inc;

} »
if( p > g)(
for(k = (g+2); k <= (p+l); k++)
m{k-1) -= {inc;
)

/% update M-array based on m-array */

for(k = 0; k < L; k++)
M(k] = m{k] <t ? 0 : 1;

z =0;
a[0} = M[L/2);

for(k = 2; k <= r; k++) {
sum = 0;
NS = 1 << (k-1);
for(d « 0; d < NS; d++){
ql = 4;
suml = 1;
D=0;

...Cont‘d
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/* Calculation of B{d) */
for(l = k-1; 1 >= 1; 1--) {
1f(ql == 0)
suml = gumle('a(l-1)):;

else {(
temp(l-1} = ql1 ¢ 2;
suml=temp(l-1)}==0 ? suml*(!a[l-1])):suml*a(l-1);

ql /= 2; '
)
/* Calculation of Q(d] (k] ¢/
b(k-1] = 1;
n=%k-1;
g2 = 4;

for(l = n; 1 >= 1; 1--){
if(q2 == 0) b(1l-1] = q2 & 2;

else{
b(l-1] = g2 % 2;
q2 /= 2;

)

for( 1 = 1; 1 <= r;l++){
2l = 1 << (r-l);
D += bf{l-1)rz1;

)

Qf{d) {k] = M[D};

sum = sum || sumleQ{d]}(k]):

for(l = 0; 1 < xr; l++)
b(l] = 0;

; afk-1l] = sum;
) 4
/* Compute the i th Order Statistic ¢/
for(k = 0; k < r; k++)
2 += a[k] << (r-k-1):
printf(*sd \n", 2);

wij] - q; /* replace sample p by q */
I= (+4J) > (N-1) ? 0 : 3

Figure 2.5: C program for the execution of ROS algorithm in parallel mode
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2.4.3 Expansion Algorithm

To compute the (r+1)-bit ROS of samples in a window, a simple expansion algorithm
can be used by using two r-bit OSFs (say OSF) and OS F;) to perform the necessary
cormnputation.

The algorithm consists of the following three steps A, B, C.

Step A: Scan and classify each one of the signal samples z(-) of wy(n) as belonging to

either one of the two windows wﬁ)(n) or wﬁ)(n) according to the following rule:

1. If the sample z(:) is less than 27, it is inserted as a member of w}é)(n) and a
zero valued sample which we refer to as a non-set zero is inserted as a member
of wg) (n). A counter NSZ2 which keeps track of the non-set zeros inserted

into wg)(n) is incremented by unity.

2. If the sample z(:) is greater or equal to 27, then (z(-) — 2) is inserted as

a member of wg)(n) and a zero valued sample (non-set zero as mentioned

earlier) is inserted as a member of wg)(n). A counter NS§Z1 which keeps

track of non-set zeros inserted into wf\})(n) is incremented by unity.

(l)(

The idea behind the above classification is to form two windows wy’(n) and w'P(n),

each having signal sampless of maximum possible value (27-1),

Step B: Let z denote the required i th ROS of wx(r). Having classified all the samples

of wy(n) as belonging to either wiy'(n) or wf\,zr)(n), evaluate z;, the i; th
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ROS of samples of w(n) and 22 the i; th ROS of samples of w,(:‘;)(n) where
ti=N+1-¢,i3=N+1—1t;:nd ¢; and ¢, are obtained as per the

following logic:

ty =t— NSZ1
SEL =t,
ifhi<ti=t1+ N
end
to=t— NSZ2
if(ta <)ty =t,+ N
end
Step C: Obtain z using the following logic:
if(SEL <0)
z=2+2"
elseif(SEL > 0)
z=2z

Example 2: Let r =3, N =9, wy(n) = {0,1,15,11,3,2,1,8,9}, and ¢ = 7 so that
t=N+1-1=3

Step A: Formation of wi'(n) and w(n):
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Scanned element of wy(n) wiP(n) NS22 wi(n) NS§Z1
0 (1 L1 (O } 0
1 {0, i Y2 1 {0,0, i }| 0
15 {0,1,0, coeceinnnne. YL 2 1{0,0,7 i 1
F
9 {0111030$3,211,010} 5 {wv@a7v3|0v 0,@,0,1} 4

(Note 0 indicates a non-set zero)

Step B: Computation of ¢, and ¢,
ty=3-4=-1SEL =-1
thh=-149=8
t,=8-5=3

Step C: z; = 0 (2nd ROS of wi}’(n))

z3 = 1 (Tth ROS of w$d(n))

and 2 =1+ 23 =9 (since SEL < 0) which is the same as 7th ROS of wx(n).

It is easy to see that at any stage during the ROS computation, the sum of the

contents of NSZ1 and NSZ2 is equal to N. Hence, when NSZ1 is incremented

by unity, NSZ2 has to be decremented by unity and vice-versa. Further, since

contents of either NSZ1 or NSZ2 cannot exceed N or be lower than zero, these

counters must be prevented from incrementing beyong N or decrementing below

33




zero. The logic governing the update of NSZ1 and NSZ2 is given by the following

programming loops (written in PRO-MATLAB language):

if(p<2) if(p22)
if(g=2) if(g>?2)
NSZ1 =NSZ1 +1 NSZ2=NSZ2+1
if(NSZ1 2 N) if(NSZ2 > N)
NSZ1=N N§SZ2=N
end end
NSZ2=NSZ2+1 NSZ1 = NSZ1 +1
1f(NSZ2 £0) if(NSZ1 <0)
NS§SZ2=0 NSZ1=0
end end
end end
end end

If p = q, neither NSZ1 nor NSZ2 is updated.

The ROS algorithm in the above form computes an r + 1 bit OSF using two
r-bit OSFs and hence, we refer to this algorithm as the expansion algorithm. A
flow diagram for the implementation of the above algorithm is given in Figure 2.6.
In this flow diagram, the samples in the window wy(n) at any instant of time are

stored in a IV location circular buffer wy(5),7 = 0,1,...,N — 1 and the buffer is
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so configured that a new sample g is written into the same memory location where
the oldest sample p that it replaces was originally residing. Based on the value of ¢
counters NSZ1, NSZ2 and windows wly(n),w2y(n) are formed. The addressing
of the locations of circular buffer is done by the pointer j which is incremented
modulo NV at the end of every ROS computation cycle (i.e., prior to the reading of
a new input sample q).

A C language code implementing the above algorithm is given in Figure 2.7.
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Wer Wiy, w2y, mi,m2, a
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Figure 2.6: Flow diagram of the Expansion algorithm for the computation of the
ROS
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/* C language program for the implementation of the OSF ¢/
/* This | rogram executes ROS algorithm using two OSFs (Expansion algoritham) e/

M'nclude <stdio.h>
/* Definition of OSFs parameters */

#define r 8 /* r© is the resolution of the input samples ¢/
#define N 8 /* N is the size of the window */

t8define ¢t 2 /* order of the OSF = 7 sOo that taN+l-i' e/
int Ww(N)], wl[N}, w2[N], ml(l<<r]}, m2(1<<r], L, afr]:

main()

{

int q. qll q2; P pl: p2, k; Z, 21: 22, inc = 1.j - 0,
NSzl = 0, NS22 =~ N, tl1l, t2, SEL:

/* Initialization of elements of ml-array, m2-array and the windows */

for(k = 0; k < N; k++) w(k] = 0;
for(k = 0; k < N; k++) wl(k] = 0;
for(k = 0; k < N; k++) w2[k] = 0;
L= 1< r;

for(k = 0; k < L; k++) mi{k]=0;
for(k = 0; k < L; k++) m2([k]=0;

/t Begin Computation of the ROS */

while(1){
scanf("%d", &q): /* Read the nevw input sample q */
p =wij): /* Read p, the oldest sample */

/% Update ql, q2 based on the value of q and update NSZ1 and
NSZ2 based on the value of p */
t 4

if((q >= L)) {

ql = 0;
q2 =~ q - L;
if(p < L) (
NSZ1 += 1;
if(NS21 >= N) NSZ1 = N;
NS22 = NSZ2 - 1;
if(NSZ2 <= 0) NSZ2 = 0;
)
}
if((q < L)) {
ql = q:
q2 = 0;
if(p >= L){
NSZ2 += 1;
L£(NSZ2 >= N) NSZ2 = N;
NSzl = NS21 - 1;
1f(NSZ1 <= 0) NSZ1 = 0;

...Cont'd
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/¢ Computation of tl and t2 ¢/

tl = t - NS21 ;
SEL = tl;
1f(tl < 1)

tl += N;
t2 = tl - NSz2;
if(t2 < 1)

t2 += N;

Pl = wl(j): /* pl is the oldest sample being replaced by ql ¢/
/* compare pl and gl and update ml-array */

1f( pl < ql){
for(k = (pl+2); k <= (ql+l); k++)
ml{k-1] += inc;

)
1f¢ pl > ql){
for(k = (ql+2); k <= (pl+l); k++)
mifk-1) -~ inc;
}

/* Compute il th Order Statistic from the elements of ml-array +/

z1l = 0;
for(k = 0; k < r; k++) (

afk] = 1;

2l = 21 + (a[k) << (r-k-1)):

zl = ml[zl) < t1 ? 21 - (a[k] << (r-k-1)) : 2l;
)

p2 = w2(j}; /* p2 is the oldest sample being replaced by ql ¢/
i/* compare p2 and gl and update m2-array */
1£(sp2 < q2){
for(k = (p2+2); k <= (q2+1l); k++)
m2(k-1] += inc;
)
if( p2 > q2){

for(k = (q2+2); k <= (p2+l); k++)
m2{k-1] -~ inc;

}
/* Compute i2 th Order Statistic from the elements of m2-array */
22 = 0;
for(k = 0; k < r; k++) {
afk) = 1;

22 = 22 + (a[k] << (r-k-1)):
22 = m2{22) < t2 ? 22 -~ (a[k] << {(r-k-1)) : 22 ;

/* Compute 2z based on the following logic */

...Coni ’d
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if(SEL <= Q) 2 = 22 + L;

else

zZ = z1;
printf("sd Md\n",q, 2):
w(3) =~ q; /* Replace sample p by q */
wil(3j) = qi; /* Replace sample pl by ql ¢/
w2(3] = q2; /* Replace sample p2 by q2 */

jJ = (+#+3) > (N-1) 2?20 : J;

Figure 2.7: C program for the execution of ROS
using the Expansion algorithm
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2.5 Summary

In this chapter the OSF has been described in detail. Analysis of these filters shows
that these filters have good edge preservation properties and are very suitable for
the removal of impulsive noise. These two facts make these filters very attractive
for various filtering applications. Some important modifications and extensions of
the OSF have also been presented.

Section 2.4 discussed the various algorithms for Real-time implementation of
OSFs. The C language code implementing the sequence of operations of the algo-

rithms discussed have also been presented.
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Chapter 3

Implementation of Order Statistic
Filters on a General Purpose

Digital Signal Processor

3.1 Introduction

In this chapter we consider the implementation of Order Statistic Filters on a general
purpose DSP; the TMS320C30 processor.

General purpose DSP implementations have a number of advantages as com-
pared to VLSI implementations. They are cost effective and fast to implement. VLSI
implementations; take a longer time for implementation but can be customized and

hence for real-time applications have fast processing times.
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Figure 3.1: TMS320C30 System Board

In the following sections a brief description of the TMS320C30 digital signal
processor (DSP) and the Analog interfaces is given. Section 3.4 deals with the
implementation of OSFs on the TMS320C30 DSP. The algorithms considered are

the sequential mode and expansion algorithm.

3.2 TMS320C30 DSP

The block diagram of the complete TMS320C30 Implementation is shown in Figure
3.1. The TMS320C30 system board [42) is an AT bus compatible board with dual
channel 16 bit A/D and D/A systems.

The block diagram of the TMS320C30 DSP is given in Figure 3.2. The
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TMS320C30 DSP [43] is a high-performance CMOS 32-bit device capable of exe-
cuting upto 33 MFLOPS. It consists of integer and floating-point arithmetic units,
2048 x 32 bit words of on-chip RAM, 4096 x 32 bit words of on-chip ROM. control
unit and parallel and serial interfaces. A performance of 16.7 million instructions
per second is achieved, while operating from a 33.3 MHz clock.

In the next section a brief description of the Central Processing Unit and Mem-
ory Organization of the TMS320C30 DSP is given. Other details such as peripherals

are not given but can be found in [43].

3.2.1 Central Processing Unit (CPU)

The TMS320C30 has a register-based CPU architecture. The CPU consists of the

following components:

e Floating-point/integer multiplier : The multiplier performs single-cycle multi-
plications on 24-bit integer and 32-bit floating-point values. The TMS320C30
implementation of floating-point arithmetic allows for floating-point opera-
tions at fixed-point speeds via a 60-ns instruction cycle and-a high degree of
parallelism. To gain even higher throughput, a multiply and ALU operation

can be performed in a single cycle by using parallel instructions.

When performing floating-point multiplication the inputs are 32-bit floating-
point numbers, and the result is a 40-bit floating-point number. When per-

forming integer multiplication, the input data is 24 bits and yields a 32-bit
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Figure 3.2: TMS320C30 Digital Signal Processor (Adapted from [43])
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result.

Arithmetic Logic Unit (ALU) for performing arithmetic (floating-point, inte-
ger) and logical operations : The ALU performs single-cycle operations on
32-bit integer, 32-bit logical, and 40-bit floating-point data, including single-
cycle integer and floating-point conversions. Results of the ALU are always
maintained in 32-bit integer or 40-bit floating-point formats. The barrel shifter

is used to shift up to 32 bits left or right in a single cycle.

Internal buses, CPU1/CPU2 and REG1/REG2, carry two operands from
memory and two operands from the register file, thus allowing parallel multi-

plies and adds/subtracts on four integer or floating-point operands in a single

cycle.
32-bit barrel shifter
Internal buses (CPU1/CPU2 and REG1/REG2)

Auxiliary register arithmetic units (ARAUs): Two auxiliary register arithmetic
units (ARAUO and ARAU1) can generate two addresses in a single cycle.
The ARAUs operate in parallel with the multiplier and ALU. They support
addressing with displacements, index registers (IRO and IR1), and circular

and bit-reversed addressing.

o CPU register file: The TMS320C30 provides 28 registers in a multiport register
file that is tightly coupled to the CPU. All of these registers can be operated
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upon by the multiplier and ALU, and can be used as general-purpose regis-
ters. However, the registers also have some special functions for which they
are more suited than others. For example, the eight extended-precision reg-
isters are especially suited for maintaining extended-precision floating-point
results. The eight auxiliary registers support a variety of indirect addressing
modes and can be used as general-purpose 32-bit integer and logical registers.
The remaining registers provide system functions such as addressing, stack

ma: -*ment, processor statrus interrupts, and block repeat.

The registers names and assigned functions are listed in Figure 3.3.

3.2.2 Memory Organization

The total memory space of the TMS320C30 is 16M (million) 32-bit words. Program,
data, and I/O space are contained within this 16M-word address space, thqs allowing
tables, coefficients, program code, or data to be stored in either RAM or ROM. In
this way, memory usage can be maximized and memory space allocated as desired.

Figure 3.4 shows how the memory is organized on the TMS320C30. RAM
blocks 0 and 1 are each 1K x 32 bits. The ROM block is 4K x 32 bits. A 64 x 32-bit
instruction cache is provided to store often repeated sections of code thus greatly

!
reducing the number of off-chip accesses necessary.
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REGISTER NAME ASSIGNED FUCNTION
RO Extended-precision register 0
R1 Extended-precision register 1
R2 Extended-precision register 2
R3 Extended-precision register 3
R4 Extended-precision register 4
RS Extended-precision register §
R6 Extended-precision register 6
R7 Extended-precision register 7
ARO Auxiliary register O
AR1 Auxiliary register 1
AR2 Auxiliary register 2
AR3 Auxiliary register 3
AR4 Auxiliary register 4
ARS Auxiliary register S
ARG Auxiliary register 6
AR7 Auxiliary register 7

DP Data page pointer
JIRO Index register 0
IR1 Index register 1

BK Block size

sp System stack pointer

ST Status register

IE CPU/DMA interrupt enable

I¥F CPU interrupt flags
IOF 170 flags

RS Repeat start address

RE Repeat end address

RC Repeat counter

PC Program counter

Figure 3.3: CPU Registers
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FUNCTION ADDRESS

Read/write Channel A A/D and D/A 804000
Read/write Channel B A/D and D/A 804001
Generate Software Conversion Trigger 804008

Figure 3.5: Analog 1/O Mapping

3.3 Analog Interfaces

The complete analog I/O subsystem [42] consists of two separate channels along
with their own sample/hold amplifier, A/D, D/A. The A/D and D/A converters are
Burr-Brown PCM78P devices, which offer 16-bit precision and sampling rates of up

to 200 Khz.

3.3.1 Addressing

The interface is accessed through three 16-bit secondary I/O bus mapped registers.
These registers are mapped in the region between 804000 hex and 804000 hex. The
addressing used is shown in Figure 3.5.

The first two registers are used to access the A/D and D/A converters on the
two Analog I/O channels. The A/Ds and D/As deal with data in the 16 bit 2’s

complement format. Data from the A/D converter is received by means of the I/O
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register located at address 02804000 or 02804001 (on the high half of the data bus).
To output data to the D/A at the same addresses, data is moved to the I/O-mapped
register ( on the high half of .the data bus).

Location 804008 hex accesses a register which is used to start a conversion of
the A/D’s and D/A’s. All the registers are accessed with two memory wai. states.
This results in an overall time of 180 nsec to access each register.

The A/D’s and D/A’s actually use serial digital data for output/input. On
each channel of I/0, the A/D output is tied through a 16-bit shift register to the
D/A input. This means that with no processor intervention, the A/D output will
be shifted directly into the shift register, with the previous shift register contents
being simultaneously shifted into the D/A input. Thus, by default the anlaog input
signal on each channel will be echoed directly to the corresponding analog output

channel, with a one-sample-time delay.

3.3.2 Sample Timing

The sampling rates of the A/D and D/ A can be controlled by the on-chip counter/timer.
A/D and D/A conversions are initiated by an on-chip counter/timer or by an ex-
ternal trigger signal. The timer consists of a 32 bit gp—counter and a 32 bit period
register. The value of the counter is continuously incremented at an 8.33 Mhz rate
(once every 120 nsec). When the counter equals the period register it puts out a’

pulse that initiates the A/D and D/A conversions and loads a zero starting count
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' value to the 32 bit counter. To set the timer in the correct mode 6C1 hex is written
to address 808030 hex. This enables timer 1 to use the internal clock and to produce
a negative going pulse.

The analog I/O sample rate is set by writing a ‘counter load value’ into the

peripheral mapped period register at location 808038 hex.
Counter Load Value = Period in usec/0.12

A/D’s and D/A’s can be dealt through an interrupt service routine. After the
timer starts an A/D conversion, the A/D will perform the conversion, then output
an end-of-convert signal. This end-of-convert signal can be input to the ‘C30’ as
the INT! interrupt request. If INT1 iss enabled, then the interrupt service routine
can immediately read one or both A/D’s, and then if desired, write to one or both
D/A’. To enable the interrupt, a ‘1’ to bit 1 of the ‘C30’s IE Register, and a ‘1’ to

bit 13 of the ‘C30’s Status Register.
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3.4 TMS320C30 Implementation of OSF's

In this section we consider the implementation of OSFs on the TMS320C30 DSP.
Algorithms for the computation of the ROS proposed by Rama Murthy and Swamy
[38] which were discussed in Chapter 2 are used.

We consider the sequential mode of execution and expansion algorithm for our
implementation. The parallel mode of execution has not been implemented on the
TMS320C30 DSP due to the fact that evaluation of equation 2.4 requires too many
processor clock cycles. This algorithm is more suitable for VLSI implementation

using the architecture described in [38] than on a general purpose DSP.

3.4.1 Sequential Mode of Execution

The flow diagram for the implementation of the OSF by the sequential mode of
execution on the TMS320C30 DSP is given in Figure 3.6. Each time the processor
is interrupted a new sample is stored in wxy(n) and at the same time the computed
ROS sample is written to the D/A converter. wy(n) is an N location circular buffer
wn(7),j =0,1,..., N —1 configured such that a new sample from the A/D converter
is written into the memory location where the oldest sample was residing.

The C language code implementing the sequence of opera ion in the Flow
diagram given in Figure 3.6 is shown in Figure 3.7.

The total number of cycles taken by t'he algorithm is approximately 5365 .

Each cycle takes 60ns and hence the total time taken by the algorithm is 321us .
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The maximum frequency for which the algorithm works efficiently is 1553 Hz .
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/* C code for the implementation of the OSF on the TMS320C30 DSP ¢/
/* This program executes ROS algorithm in the sequential mode ¢/

/* The following lines are inserted into the C code to enable interrupt
1 to function ¢/

asm{® .sect \".int02\""):
asm(" .word _c_int02");
asm{" .text");

/* The following S lines are for intializing the necessary registers ¢/

#define TIMER_CONTROL_REG ((unsigned int +)0x808030)
tdefine ADC_COUNTER_REG ((unsigned int ¢)0x808038)

#define PRIMCTL_REG ((unsigned int *#)0x808064)
#define EXPCTL_REG ((unsigned int *)0x8080G0)
#define PRIMWD 02000800
tdefine EXPWD 0x000000

int *ADCaddress; /* pointer to A/D address */
int *DACaddress; /* pointer to D/A address */

int templ:; /* store output sample of A/D in temporary location templ ¢/
int temp2; /* store input sample to D/A in temporary location temp2 ¢/

/* Definition of OSFs parameters */

tdefine r 8 /* r is the resolution of the input samplesg ¢/
ftdefine N 21 /* N is the size of the window */

#define t 2 /* order of the OSF, i = 20 so that t=N+l-{ ¢/
int w[N], m{l<<r]}, L, a[r}:

main()

int P k.’ q, 2, unity - 1‘ j - o;

/* Initialifation of elements of m-array and the window ¢/
for(k = 0; k < N; k++) w(k]) = 0;

L~ (1 <<1x) ;
for(k = 1; k <= L; k++) m(k]=0;

*PRIMCTL_REG = PRIMWD; /* Set up primary bus wait states ¢/
*EXPCTL_REG = EXPWD; /* Set up expansion bus wait states v/

/* The following 5 lines set up timerl and analog interfaces */

#TIMER_CONTROL_REG = 0x601; /* Reset control register */
*ADC_COUNTER_REG = 204; /* Set periocd register */
*TIMER_CONTROL_REG = 0x6c¢cl; /* Set control register ¢/
ADCaddress = (int +)0x804000; /+ A/D address ¢/
DACaddress = (int *)0x804001; /+ D/A address ¢/

/* Enable interrupt for timerl and set global interrupt enable ¢/

asm(" OR 2h, IE");
asm(" OR 2000h, ST"); '

..Cont'ad
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/* Begin Computation of the ROS ¢/

while(l)(
/* Scaling by L and Biasing by L/2 */
q = (templ >> r) + (1 << (r-1)):
p = w(j); /* Read p, the oldest sample ¢/
/* compare p and q and update m-array */
1f( p < g)

for(k = (p+2); k <= (q+l); k++)
m{k-1] += unity;

)
1f( p > q){
for(k =~ (q+2); k <= (p+l); k++)
m{k-1] -= unity;
}

/* Compute Order Statistic from the elements of m-array */
z = 0; /* Initialize z %/
for(k = 0; k < =; k++) {
alk] - 1;
2= 2 + (a[k] << (r-k-1));
2 = m{z] < t ? z-(alk) << (r-k-1)) : z;
}
/* Scaling and biasing for D/A conversion */
tempz = (2 - (l<<(r-1))) <«< r;
w(3j] = q; /* Replace sample p by q */
J & [++3) > (N-1) ?2 0 : §%;
)
/* Interrupt service routine */

c_ int02()(

templ = #ADCaddress >> 16; /* Read scaled output of A/D into templ =/
*DACaddress = temp2 << 16; /* Write scaled input to D/A from temp2 */

Figure 3.7: C program for the implementation of OSF on TMS320C30
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3.4.2 Expansion Algorithm

The flow diagram for the implementation of the OSF by the Expansion algorithm on
the TMS320C30 DSP is given in Figure 3.8. Each time the processor is interrupted
a new sample is stored in wy(n), and at the same time the computed ROS sample
is writt?n to the D/A converter. wy(n) is an N location circular buffer wy(j),J =
0,1,..., N — 1 configured such that a new sample from the A/D converter is written
into the memory location where the oldest sample was residing.

The C language code implementing the sequence of operation in the Flow
diagram given in Figure 3.8 is shown in Figure 3.9.

The total number of cycles taken by the algorithm is approximately 10669
cycles. Each cycle takes 60ns and hence the total time taken by the algorithm is 640

us . The maximum frequency for which the algorithm works efficiently is 781 Hz.
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/* C code for the implementation of the OSF on the TMS320C30 DSP o/
/* This progran executes ROS algorithm using two OSFs (Expansion algorithm) v/

/* The following lines are inserted into the C code to enable interrupt
1 to function ¢/

asm(®" .sect \".intO2\""):
asm(" .word _c_intQ2");
asm(* .text"):;

/* The following 5 lines define the hardware registers required accessing v/

#define TIMER_CONTROL_REG ((unsigned int *)0x808030)
#define  ADC_COUNTER_REG ((unsigned int *)0x808038)

tdefine PRIMCTL_REG ((unsigned int *)0x808064)
#define EXPCTL_REG ((unsignad int *)0x808060)
$define PRIMWD 0x000800
#define EXPWD 0x000000

int *ADCaddress: /* pointer to A/D address */
int *DACaddress; /* pointer to D/A address */

int templ; /* store output sample of A/D in temporary location temple/
int temp2; /* store input sample to D/A in temporary location temp2 */
/* Definition of OSFs parameters ¢/

tdefine r 8 /* r is the resolution of the input samples */
#define N 8 /t N is the size of the window ¢/

tdefine t 2 /* order of the OSF = 7 so that t=N+l-i w/

int wiN}, wlN], w2([N], ml{l<<r]), m2{l<<r), L, af(r);

main()

{ H

int q, ql, g2, p, pPl, P2, k, 2, 21, -2, inc = 1,3 = 0,
NSz1%= 0, NS22 = N, tl, t2, SEL;

/* Iniéializatlon of elements of ml-array, m2-array and the windows */

for(k = 0; k < N; k++) w(k] = 0;
for(k = 0; k < N; k++) wil(k] = O;
for(k = 0; k < N; k++) w2[k) = 0;
L=1<«<r;

for(k = 0; k < L; h++) ml{k}=0;
for(k = 0; k < L; k++) m2[k]=0;

*PRIMCTL_REG = PRIMWD; /* Set up primary bus wait states ¢/
*EXPCTL_REG = EXPWD; /* Set up expansion bus wait states v/
/* The following 5 lines set up timerl and analog interfaces v/
+TIMER_CONTROL_REG = 0x601; /* Reset control register ¢/
*ADC_COUNTER_REG = 204; /t Set period register e/

*TIMER_CONTROL_REG = 0x6cl; /* Set control register =/
ADCaddress = (int *)0x804000: /* A/D address */
DACaddress = (int *)0x804001; /* D/A address */

...Cont’d
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/* Enable interrupt for timerl and set global interrupt enable ¢/

asm(® OR 2h, IE"}):
asm(® OR 2000h, ST");

/* Begin Computation of the ROS */

while(l){
q = (templ>>(r-1))+(l<<r); /* Scaling by L/2 and Biasing by L ¢/
p =~ wijl, /* Read p, the oldest sample */

/* Update the ql, q2 based on the- value of q and update NSZ1 and
NS22 based on the value of p */

if((q>= L)) {

ql = 0;

q2 = q - L;

if(p <L) {
NSZ1 += 1;
1£(NS2Z1 >= N) NSZ1l = N;
NS22 NS22 - 1;
if(NS22 <= 0) NS22 = 0;

}

}
if((g < L)) {
ql = q;
q2 = 0;
1f(p >= L)
NSZ2 4= 1;
1f(NS22 >= N) NSZ2 = N;
NS21 = NSZ21 - 1;
{f(NSZ1 <= 0) NSZl1l = Q;

1:
/* Cémputation of tl and t2 ¢/

tl = t - NS21 ;
SEL = tl;
if(el < 1)

tl += N;
t2 = t1 - NS22;
1f(t2 < 1)

t2 += N;

Pl = wi{j]; /* p) is the oldest sample being replaced by ql */
/* compare pl and ql and update ml-array ¢/
1f( pl < ql){
for(k = (pl+2); k <= (gl+l); k++)
| ml(k=-1l] += inc;
1£( pl > ql){ )

for(k = (ql+2); k <= (pl+l); k++
ml{k-1} -= inc;

...Cont’d
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/* Compute Order Statistic from the elements of ml-array */

2l = 0;
for(k = 0; k < r; k++) {
afk) = 1;

2zl = 21 + (a[k] << (r-k-1)):
2zl = ml{zl) < t1 ? 21 - (afk] << (r-k-',y) : zl;
}

p2 = w2{jl: /* p2 is the oldest sample being replaced by ql ¢/
/* compare p2 and gl and update m2-array */

1£( p2 < q2){
for(k = (p242); k <= (q2+l); Kk«++)
m2{k-1] += inc;

)
1f( p2 > q2){
for(k = (g2+2); k <= (p2+1l);: k++)
m2{k-1] -~ inc;
)

/% Compute Order Statistic from the elements of m2-array */

22 = 0;
for(k = 0; k < r; k++) {(
aftk] = 1;
22 = 22 + (a[k] << (r-k-1));
22 = m2(z2]) < t2 ? 22 - (afk]) << (xr-k-1l)) : 22 ;
}
/* Compute z based on the following logic */

{f(SEL <= 0) 2z = 22 + L;
else

T2 = 21;

temp2 = ( z - (1 << r )) << (r - 1); /* Scaling and biasing
for D/A conversion ¢/

wiil = q; /* Replace sample p by q */
wi[3] - ql, /* Replace sample pl by ql */
w2(j) = /* Replace sample p2 by q2 */
- (++1) >(N1) ?0: 3

)

/* Interrupt service routine */

c_int02(){

templ = *ADCaddress >> 16; /* Read scaled output of A/D into templ */
*pDACaddress = temp2 << 16; /* Write scaled input to D/A from temp2 ¢/

Figure 3.9: C program for the implementation of OSF on
the TMS320C30 DSP using the Expansion Algorithm
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3.5 Summary

In this chapter, the implementaticn of order statistic filters on a general purpose
DSP, the TMS320C30 processor was considered. The a.lgor.ithms considered were the
sequential mode and the expansion algorithms. The parallel mode of execution was
not implemented on the TMS320C30 DSP due to the fact that evaluation of equation
2.4 requires too many processor clock cycles. This algorithm is more suitable for
a VLSl implementation using the architecture described in [38] than on a general

purpose DSP.
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Chapter 4

Applications of Order Statistic

Filters

Order statistic filters have a number of applications that are useful for solving prob-
lems encountered in areas such as computational geometry, image processing, com-
puter graphics, pattern classification and communications.

In this chapter we shall consider a few of these applications of OSFs. In
addition we consider one such application for our implementation on the TMS320C30

processor.

63




4.1 Application of Order Statistic Filter to

Computational Geoemetry

One of the most basic operations performed on a computer is searching. For this
purpose, a number of search problems proposed by Dobkin and Lipton [44] are

presented with solutions given by Rama Murthy and Swamy [45].

1. Given a set of m lines in a plane with equation y; = axz + b,k =1,. ,m

and a point P(zo,yo), determine whether this point P lies on any of the lines.

The solution for the above problem amounts to finding out if the minimum
of the sequence wy(n) = {|lyo — arzo — bkl,.k = 1,..,m}, ie., zu(n) = 0.
The algorithm presented in Chapter 2 are capable of computing the ROS, i.e.,
they can be used to repetitively answer the above problem whenever a new
line replaces one amongst the initial set of m lines. Further, since the ROS
algorithm can compute any desired ith order statistic, it can also be used to
solve a modified form of the above problem which might require one to find

out, say, the third farthest line (based on the distance) from P(zq, o).

2. Given a set of m points (zx,yx),k = 1.2,...,m in a plane and a straight line

y = az + b, determine if this line passes through any of the points.

This problem can be considered as the dual of the previous problem. The
solution for this problem amounts to finding out if z(1)(n) of the sequence
wn(n) = {dk, k = 1,...,m} where di = |yx — azx — b| is zero. The algorithms
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presented in Chapter 2 are capable of answering the above problem under
the condition that a new point replaces one amongst the set of m points
(Zk,yx)k = 1,..,m. The modified form of the above problem which might
require one to find out, say, the third closest point to the straight line can be

solved using the ROS algorithms.

3. Given a set of points (zx,yx),k = 1,2,..,m in a plane and a new point
P(zg,y0), determine to which one amongst the original points it is closest
to. This query amounts to finding out if zero is the minimum of sequence

wy(n) = {dj,k =1, ...,m} where d}, is the Euclidean distance between (x, yx
K

and P(z,y0), i.e., d}, = I\/(a:k—zo)2+(yk — %0)’|. Again, the ROS algo-
rithms can be used for repetitive answering under the condition that a new
point replaces one amongst the set of m points (zk,yk), k = 1,..., m. To answer
the modified form which requires one to find out say, the farthest point from

P , one can use the ROS algorithms.

4.2 Application of Order Statistic Filter to

Planar Search

We consider here the “post office” problem which can be reduced to the planar
search problem. Given m cities or “post offices”, the problem is to determine which

post office is nearest to a given point.
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This problem may be solved [45] by considering each post office as a coordinate
set (zx,yx) on a plane. The problem then amounts to finding out if z(;)(n) of the

sequence wy(n) = {dx,k = 1,...,m} where di = |yx — azx — b| is zero .

4.3 Application of Order Statistic Filter to

Speech Recognition

In this section we consider the problemn of finding the closest points in spaces of small
dimensions. An example of such a problem occurs in the area of speech recognition.
Sounds can be classified according to a set of less than 8 characteristics, and thus
a database for speech recognition system to consist of a set of points is considered.
When such a system is used to understand a speaker, the method used is to find for
each sound uttered the closest sound in the database.

Let a sound be thought of an N-dinensional vector (pi,p2,...,pn). Given
a fixed set of K sounds Q@ = {¢V),q?,...,q%)} each of which is assumed to be
representative of some class of patterns, and a given new pattern p, a problem that
often arises is that of determining to which of the classes, p "most likely” belongs.
One way to choose the most likely class is to apply the nearest neighbor rule [46].
This means that if p is a metric on R”, find that ¢{*) ¢ Q for which p(¢!®), p) is
minimal and classify p as belonging to the class which q(*) represents.

p could be chosen to be L, or maximum norm. The problem of pattern
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classification reduces to finding ||¢¢) — p||,, i.e., maximum of the sequence z{!) =
{lox — ¢k = 1,.., N} for every ¢ and then finding the minimum of gV =

{p(g", p)k =1,..,K}.

4.4 Application of Order Statistic Filter to

Signal Processing

Order statistic filters can be used tc eliminate impulse noise. This is due to their
property of eliminating impulse-like structures while passing edges unperturbed. In
the following section this property is used for the digital AM detection with and

without corruption by impulse noise.

4.4.1 An Application of the TMS320C30 Based OSF

As a practical application, the OSF was implemented on the TMS320C30 board for
the real-time demodulation of the AM wave [40]. The configuration of the hardware
set-up is shown in Figure 4.1.

The modulator was implemented using a Motorola 1495L. The resulting analog

AM-modulated double side band signal z(t) is given by the equation
z(t) = A1l 4+ mcos(2r frat)cos(2m £ 1)

where m is the modulation index, A. is the amplitude of the carrier signal, fn is
the frequency of the modulated signal and f, is the frequency of the carrier signal.
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Figure 4.1: A TMS320C30 Implementation

The ciruit diagram is given in Figure 4.2. The resulting AM modulated double side
band signal was sampled at 40 KHz using the A/D converter on the system board to
get z(nT'), the digita.l signal corresponding to z(t). In equation 4.4.1 A, was chosen
to be 6 volts and the modulation index m was; taken to be 0.66 without loss of any
generality.

For the sequential mode of execution, the input carrier frequency f. was taken
to be 1.14 Khz and the input sinusoidal modulating frequency f, was taken as 60
hz. The sampled AM modulated signal was then fed to a twentieth order OSF with
a.;vindow size of 21. The resulting output of the OSF fed to the D/A results in 2
staircase output that is subsequently filtered by a 4th order, 4 Khz cut-off LPF with
a Butterworth response. It must be noted that the LPF will not destroy the edges

as the cut-off frequency is only 4 Khz. The circuit used is shown in Figure 4.3.
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Figure 4.4: Photograph showing AM Wave along with the Recovered Modulating
Signal

The moduiated AM wave z(t) and the demodulated wave y(2) = cos(27 fnt)

are shown in Figure 4.4.

4.5 Summary

A pumber of applications encountered in areas such as computational geometry,
image processing, computer graphics, pattern classification and communications :

were considered. It is seen that the OSF provides efficient solutions for the set of
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problems considered. As a practical application, the OSF was implemented on the
TMS320C30 DSP for the Real-time demodulation of a double side-band amplitude

modulated (AM) signal.

!




Chapter 5

Conclusions

Order statistic filters are a class of non-linear filters whose output is a linear combi-
nation of the order statistics of the input. Analysis of these filters shows that these
filters have good edge preservation properties and are very suitable for the removal
of impulsive noise.

In this thesis, Order statistic filters were discussed in detail. Real-time imple-
mentations of OSFs using the TMS320C30 digital signal processor was considered.
The implementations made use of the running order statistic (ROS) computation
algorithms given in [38].

In Chapter 2, the properties of ranked order filters, followed by some modifi-
cations of order statistic filters was presented. Various algorithms for the real-time
implerr.xentation of OSFs was also considered.

In Chapter 3, the implementation of order statistic filters on a general purpose
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DSP, the TMS320C30 processor was considered. The algorithms considered were the
sequential mode and the expansion algorithms. It was seen that the implementation
of these filters on general purpose DSP boards are limited to low frequencies. The
parallel mode of execution was not implemented on the TMS320C30 DSP due to
the fact that evaluation of equation 2.4 requires too many processor clock cycles.
This algorithm is more suitable for a VLSI implementation using the architecture
described in (38] than on a general purpose DSP.

In Chapter 4, a number of applications encountered in areas such as compu-
tational geometry, image processing, computer graphics, pattern classification and
communications was presented. It is seen that the OSF provides provid :s efficient
solutions for the set of problems considered. As a practical application, the OSF was
implemented on the TMS320C30 DSP for the real-time demodulation of a double

side-band amplitude modulated (AM) signal.

5.1 Future Work

Several promising avenues exist to extend the current research. These are as follows:

The performance of order statistic filters on a general purpose DSP, the TMS320C30

processor can be improved by implementing the order statistic filters in assembler.
In addition to the above, VLSI implementations of the algorithms considered

in Chapter 2 would allow the filters to be operated at larger frequencies.
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