National L
Bl G

Acquisitions and

Biblicthéque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1AON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Som.e pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
univeirsity sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, tue Wellington
Ottawa (Ontano)

Yow bie Ve itttV e e

(N Bie AW 1A

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
cui a confeéré le grade.

La qualitt d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont até
dactylographiées a l'aide d’'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la “Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

HYBRID RECOGNITION OF HANDWRITTEN
WORDED AMOUNTS ON CHEQUES

Jean-Pierre Dodel

A Thesis in the Department of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 1995

© Jean-Pierre Dodel, 1995

National Lib
Bl

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your the Volre férenn o

Our e Notre rdfgren e

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Nila thése ni des extraits
substantiels de celle-ci ne
doivent © étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10840-6

Canada

Abstract

Hybrid Recognition of Handwritten
Worded Amounts in Cheques

Jean-Pierre Dodel

A hybrid classifier combining symbolic and neural routines to recopnize
unconstrained cursive script indicating the worded amount in bank cheques is
proposed. The symbolic routines extract features outside the body of waords, and
classify letters at the beginning of words. Features extracted by the symbolic
classifier are such as ascenders, descenders and loops. When these features
provide insufficient information to classify an unknown word, the neural
classifier is used to complete the recognition started by the symbolic classifier.
Therefore, depending on the features extracted by the classificrs, some words are
recognized entirely symbolically, some words entirely necurally, and the
remaining, both symbolically and neurally. Results of experiments at the word

level are provided.

keywords: Handwriting recognition, symbolic and neural classifiers, cheques,

worded amount.

Acknowledgments

I wish to express my sincere thanks to my supervisor, Dr. R. Shinghal of
Concordia University for his direction, patience and encouragement, specially
during my difficult times. My gratitude goes out to Ms. C. Nadal working at
CENPARMI (Center for Pattern Recognition and Machine Intelligence, at
Concordia University), for her advice and informative discussions with me on
OCR (Optical Character Recognition) projects, at the beginning of my research. I
wish to thank my friend Ms. Nina Hoffle, Ph.D. student at the Montreai
Neurological Institute, for her help in collecting the specimens used for training
the system. | would also like to thank Dr. Opatrny from the Computer Science
Department at Concordia University, for helping me develop the regular
grammar shown in Figure 6.2. Finally, I would like to deeply thank my parents
for their invaluable moral support, advice, and encouragement throughout these

years.

-jV-

Table of Contents

Page

List Of FIGUIES ...ccvvviriiriiitiiiictcc sttt e sir e bbb e in
1. INtroduction . l
1.1 Manual processing of bank cheques ... 1

1.2 Automated processing of bank cheques....eiii i

1.3 Current Advances in Cursive Handwriting Recognilion 5
1.3.T SIHMON ettt e D

1.3.2 CORNEN ittt s 8

1.3.3 Barriere and Plamondon ..., 9

1.3.4 GOrSKY. .o 10

1.4 Scope of the thesis ... 10

2. Preprocessing and Overall Architecture of the System ... 12
2.1 The vocabulary ...t 12

2.2 Finding the body-ceilingcc.coouiriiieiriienenrieie I3
2.2.1 The body-ceiling windowccciinininiennncniicninenn 15

2.2.2 Adjusting the window heightccccooommiiin 16

2.3 Text segmMentation ...t 19

2.4 The classifiers: overall VIeW.......coviiiviiinriniin e 24

3. The Symbolic Classifier ... 40
3.1 Identifying ascenders and descenders............ccouuerniiinnniiiiennisinnnne, 40

3.2 Identifying notable letters at the beginning of words 43

3.3

3.4
3.5

Finding the separation point between the notable letter and the
remaining part of the word to its right ...,
Categorizing notable letterscocoiviiiiinnniniie s
Words recognized entirely by the symbolic classifier (word
CAUEBOTY 1) et e e s e
3.5.1 Recognizing “eight” ...
3.5.2 Recognizing “eighty”cccoovmmriniiircce e
3.53 Recognizing “and” ...
3.54 Recognizing “One”ccciviiriivimniinnieoninninncecsenenssesenns
3.5.5 Recognizing “Hundred”ccccivvviniinnnnnininsiceens
3.56 Recognizing “Thousand”ccccvviicrinininiinensccnecesen,
3.5.7 Recognizing “dollars”c.ccvinniciininincnr e
3.5.8 Recognizing “forty” ...t e
3.59 Recognizing “fifty”cccovvirrvcrircmnirieiectrnenneese st

Q. The NeUTal Classifier oo rieeieiereetiereeeeeeeeeeseeeeeeesassessenssmesssesnsseesanenmnsesseessssns

4.1
42
43
4.4

4.5

4.6

INPUL PAUEINS ettt enes
Outpul Patlerns ...t siessasane

Neurodes aNd CONNECLIONS ...uuuiveeiiireeieeiueeserreensecssessrssssssesssessosssssessssassss

Preparing the input to the neural networkcccovuvvveinccivcrnnencenn.
4.5.1 Finding the start and end points of word segments
4.52 Normalizing the word segmentscocevenrnnniccernrernneenennn.
453 Anchoring the input pattern........ccocovireervinvcininecncnnnecernnns

Feeding word segments through the neural network.........................

Symbolic/ Neural Classification ..o e iesnnan

-Vi-

5.1 Words recognized jointly by the symbolic and neural classifiers

(WOTd category 3) cucevriiiiicc s 11
5.2 Preparing word segments from Word category 3, to be sent to
the neural NetWork ... 114
5.2.1 Finding the startand end points of word segments 1 14
52.2 Size-normalization ... 120
5.3 Classifying word segments and patching-up the final word 120
5.4 Setting an ouput MasK.......cviiiiiiiinii e 122
Experimental ReSUISccemviieiieiicictieeet s 126
6.1 The Grammar checker.......iieiii e 126
6.1.1 Examples of grammatical forms accepted by the
grammar checker ... 128
6.1.2 Examples of grammatical forms rejected by the
grammar Checker .. i e, 131
6.2 Examples of classificationcccevvevineiinnnisinicii e 132
6.2.1 Word category 3 (type 1 word) ..o 132
6.2.2 Word category 3 (a different type 1 word example).............. 132
6.2.3 Word category 3 (type 2 Word)cevvenrnenenierieseiinncsienenn, 132
6.24 Word category 3 (type 1 word)coevvcvmennnicviinnnnniisnnennna, 132
6.2.5 Word category 2 (words recognized entirely by the
NEUTAl NEEWOTK) coou ittt rr e s er e s s e sraesnae e 132
6.3.1 Training Set.....cioineiinrnecnne s 132
6.3.2 TeStiNG Set..civririieiririeere e e 132
6.3.3 Recognition speed and memory requirements...................... 144
6.4 Integration with a digit classifier ..., 147
6.4.1 Brief description of the digit classifier ..., 147

- il -

6.4.2 The resolution strategycooecevevvnnncrenrnrcnnnnrceincneeeas 147

6.43 Results of integration ... senenneeeseeessinnnneens 153

7. Concluding Remarks ...t sisensssenes 157
Suggestions for future research..........ccciivviinen e, 158
REMCICNCES ottt e e s es e s as bt e 160
APPONAIX ottt st st sseesses s bbb e st e e sas s 164

- vii -

List of Figures

Figure number Page
1.1 : The three handwriting styles most often foundcooeveiiiiniiiss 2
1.2 : Anexample of worded and numeric amounts on a cheque ... Y
1.3 : Terminology used for word components.......oeiieneiinnnccncn, o
1.4 : Morphological simplicity of ascenders compared to body arca

SEPOKES ..ottt s s r e e 7
2.1 : Dividing the text image into Windows ..., 14
2.2 : Finding the body-ceiling Windowooiiiiiiinin o
2.3 : Increasing window size to find body-ceiling window ..o I8
2.4 : Eachscanned row returns an estimate of where the current word

ends (P1) and where the next word begins (P2)........ccccoeineiinininnnnne 22
2.5 : Segment of scanned amount “seven thousand” ..., 23
2.6 : Anexample of incorrect segmentation by the algorithm

Find_Word_Limits discussed in Section 2.3ceeveeivenenneennicniencnnnnenias 25
2.7 : Two main components of the word classifier...ueinennnnnc, 27
2.8 : Terminology and graphic symbols used in the decision tree of

Figures 2.9 10 218t e e 29
2.9 : Firststeps in the traversal of the decision treecooeviicvininiccn 30
2.10 : Leaves obtained from node BOT.........ccoveviiiinicennnininnninnisiensensarennes 31
2.11 : Leaves obtained from node BOZ........ccuumeiimineinieicinsenineinecesnneninn s 32
2.12 : Leaves obtained from node B03........ccvvemeviinnirinnnisssnnsnsecnnninnissanianns 33
2.13 : Two steps down the tree from node BO4......oceceeinincririinncicnee. 34
2.14 : Two steps down the tree from node Bl5.......ouineecvcinnenierncseisnininininencs 35

-iX -

2.15:
2.16 :
217 :
2.18 :

3.1
3.2
3.3
34

3.5
3.6

3.7

3.8

3.9

3.10 :

3.11 :
312 :
3.13 :
3.14 :

3.15:
3.16 :

Three steps down the tree from node B0G..........cccveveverrcecrineininencninnn, 36
Leaves obtained from Node BO7iconiecenniececieseseeseessneseseessseeessans 37
L.eaves obtained from node Bl8..........ceecuierenenieneneeesee e eerneereseseereseseens 38
Leaves obtained from node B09...........ccoeveevinnneininiesesesensniesseseneeesnens 39
Ascender and descender WindOWSvvvveercinnsenerieessenssssinessennne, 41
Identifying the presence of notable letter “t” in “twenty”ccooeeuue.e. 44
Coming across a dot when looking for a notable lettercccoeueenee. 47

: Tracing around the edge of the black pixel cluster to find its

PETIMCLET ittt e s s s b b s s s 48
Skipping the dot and resuming the search for the notable letter 49
Example of inaccurate separation point between a notable letter and

the letter following it ...t 51
Finding estimates for the separation point between the notable letter

and the remaining of the word (example 1).....ccccvrvivvovncivnnniniencinnnn, 52
Finding estimates for the separation point between the notable letter
and the remaining of the word (example 2)........c.cccovnvnivcnecninnnnes 53
Problems finding the separation point between the notable letter and

the remaining of the word in words starting with “th”cccvveunne. 55

Separation point between notable letter and the remaining of the

word for words starting with “th” ... 57
Example of word with lowercase “fcoeircnnincensnrscnnnnicirscieneenans 58
Algorithm (1) Notable_Category_2, applied to recognize an “S” 60
Algorithm (2) Notable_Category_2, applied to recognize an “S” 61

Uncommon case of disproportionned “S” where algorithm

Notable_Category_2 fails to recognize the notable letter as an “S” 63
Identifying the first letter in “eleven” as lowercase “e”ccccueeevrrernes 65
First feature to be found in a capital “O” (notable category 4) 67

3.17 : Third feature to be found in a capital “O” (notable category 4) .cooeeee... 70
3.18 : More common and less common types of “h” in “th”ccoeeerveieennnne. 72
3.19 : Common feature in “E” (notable category 5), “th” (notable category

S5) and “O” (notable category <) ... e 73
3.20 : Words (category 1) recognized entirely by the symbolic classitier 77
3.21 : Search boundaries inside the ascender/descender windows for

ascenders and descenders.........in e 78
3.22 : Recognizing "eighl”coinicnininirniceesseirvesnssrinsieieien e 79
3.23 : Tracing over the right “1” ... s, 8o
3.24 : Recognizing different types of “I”sccvrvereenenenccnienceceeseee e 87
3.25 : ldentifying loops by approximating the right “L” loop with an

RIIIPSE oot et e 90
4.1 : Typical 1-hidden layer backpropagation networkccccooevvveirnnnnnnee. 94
4.2 Example of pattern (“nine”) in input Matrix c.ccooveeveeeirvncnieieseieeiennnns 47
4.3 Overview of the neural network architecture ..o, 99
4.4 Words recognized entirely by the neural classifier (category 2

WOTAS) cuivertiieieeesentaeetnereaseesaeevese s sesaresessebsses sosenesessesesssena stotasennasessntaesassnran 101
4.5 : Normalizing word segments while preserving aspect ratios.........o...... 103
4.6 Normalizing wide word segmentscccoiiiivcvceniene e 104
4.7 Example of a word segment to be scaled down to fit inside the

neural network’s input MAatrixX ... e 105
4.8 Selecting the 22 uniformly distributed rows to be deleted........................ 107
4.9 Selecting the 51 uniformly distributed columns to be deleted................. 108
4.10 : Scaled down image now fits inside the input matrixcccoceveevuvreerunnneee. 109
5.1 : Type1wordsin word category 3, where one segment is recognized

by the neural classifier ..., 112

- Xi-

5.2 Type 2 words from word category 3, where 2 segments are

recognized by the neural classifier ... 113
53 Tracing the right side vs tracing the left side of the “t”, to find the

word segment start POint......iivini 117
5.4 Different segments for the word “thirty” sent to the neural classifier.... 119
6.1 Truth table for grammar flags flag_10_90, flag_100, and flag_1000 129
6.2 : 'State diagram of finite automaton representing the regular grammar

suggested by Dr. Opatiny ...t e 130
6.3 Input word yielding output shown in Figure 6.3ccoovvinniecnnennnnan. 133
6.4 Example of neural net output when the input is Figure 6.2..................... 134
6.5 Type 1 word of category 3: “sixty” without a notable letter at the

BeGINMING ccooveveeirt e et s 135
6.6 Output when inputis FIgure 6.4ovivcininicinieiienesesinssnnsssnn s 136
6.7 Type 2 word of category 3 ... 137
6.8 The output when input is Figure 6.6eeieiveneiiicienreiiinensiens e 138
6.9 Type 1 word from caiegory 3 with a notable letter at the beginning...... 140
6.10 : The output when input is Figure 6.8 ..., 141
6.11 : Recognizing a word in word category 2.........ucioniiressninininnisecsssnnnnes 143
6.12 : The output when input is Figure 6.10cccevivvreirevienrivcnniineccennnnians 144
6.13 : Training SPeCIMENSccoeeeriiieiinieeeeerriiniee s s case st bt sns e nsesassns 145
6.14 : Testing SpPecimenscceeovvvvrrerieeresvinse I 146
6.15 : Other examples of reliable and unreliable mismatchesc.cccoccuene..e. 150
6.16 : Confusion matrices for the digit and word classifiersccceuveureuuu.e. 151
6.17 : Example of mismatch resolution when the word classifier is

assumed to be WIoNgiicnnniciensnite s snsanes 154
6.18 : Example of a mismatch resolution wien the digit classifier is

assumed to be WIONE ...ttt 155

6.19 :

Table showing the recognition rates of the word classifier on the

training and testing sets..........iiieericinnine et et

- xiii -

Chapter 1
Introduction

1.1 Manual processing of bank cheques

Today, charter banks in Canada process over one billion cheques every year
(Gordon, 1995). For example, from November 1994 to January 1995 the Royal
Bank processed 348,801,000 cheques from which 70,632,203 were either personal
cheques or cheqres written on savings accounts with chequing privileges; these
70,632,203 cheques were all handwritten except for rare specimens (1%
approximately) which were typed or printed (King, 1995). Manual cheque
processing is a slow and expensive process, requiring a bank department to
collect all cheques received during the day, and manually type in the amount
wrilten on each cheque into a computer (Gordon, 1995). Automating cheque

processing should increase the speed of processing, and yet reduce costs.

1.2 Automated processing of bank cheques

In the pursuit of better and faster services, banks have partially or totally
automated many of their tasks, for example, developing the Automated Teller
Machine (ATM). However, these tasks were automated efficiently due to their
relative mechanical simplicity. Automating the process of reading a handwritten
cheque, however, is far from being a simple mechanical task; human writing has
so many styles and variations that creating a well defined model for recognizing
handwriting is a complex task requiring expensive hardware and software.
Figure 1.1 shows the three cursive handwriting styles often found (Tappert,

1984).

Handwriting where
letters in a word are mostly joined

zeden hundred +welve

Handwriting where
letters in a word are mostly separated

Sex U'\owsmA ond e lhranclred

Handwriting where letters in a word are sometimes
joined and sometimes separated

Figure 1.1: The three handwriting styles most often found.

Nonetheless, the growing need for automation in industrialized societies, has
resulted in the ever growing emergence of faster processors, which have brought
the execution of complex algorithms such as cursive handwriting recognition,

within the realm of real-time applications.

This thesis proposes a method to recognize cursive handwriting that indicates
the worded amount on a bank cheque (see Figure 1.2). The recognition process can
be divided into three phases: During the first phase (called preprocessing), the
digital image of the worded amount will be segmented into the individual
words. The second phase consists of extracting features from each word, and the
last phase will analyze the extracted features and identify (that is, classify) each
word. During the last phase, two types of classifiers are used to recognize a
word: a symbolic classifier and a neural classifier. A symbolic classifier is one that
manipulates symbols such as numbers 0 to 9 or non-numeric symbols such as
procedures and mathematical logic operators used for decision making
(Shinghal, 1992). A neural classifier, however, recognizes objects much like the
human brain, using a network of neurons to learn and recognize the name and

shapes of certain cbjects, forming a “general” idea of how each shape looks like.

In Figure 1.2, we also define a key term called the baseline, which will be used
extensively in future discussions. The baseline is the horizontal line above which
all words are written. This line is present in most cheques to guide a person
writing the worded amount. The numeric amount on a cheque, also shown in
Figure 1.2, is the amount written in digit form. Our method takes advantage of
the strengths of each of the symbolic and neural approaches (Sun and Bookman,
1993; Nagy, 1992; Shinghal, 1992) to focus each technique on sections of words

which it can classify better. Unlike the other approaches we will discuss shortly,

Numeric amount

\

Bank of x \

$| 3/P

Paytothe
order of

Theea h \

The amount of

baseline

\

Worded amount

Figure 1.2: An example of worded and numeric amounts on a cheque.

our classifier distinguishes sections which typically experience character
distortions such as the body, from more consistent sections such as those having
ascenders and descenders (Figure 1.3). This distinction can be made due to the fact
that ascenders and descenders are, in general, morphologically simpler and
better isolated shapes than those inside the body. For instance, the ascenders on
both letters “d” and the “h” shown in Figure 1.4, stand out from the rest of the
word, and the simplicity of the vertical stroke makes it relatively easier to

identify symbolically compared to other letters in the word.

Therefore the symbolic classifier will analyze the more consistent parts of words,
as algorithmic (symbolic) classification performs best when features are
consistent from one sample to another. The less consistent parts words will be
classified with the help of the neural classifier. The ability of neural networks to
learn and classify even from noisy and distorted data, makes them better suited

to deal with letter distortions.

1.3 Current Advances in Cursive Handwriting Recognition

In this section, we will cover some of the work done in recent years in this field,
showing only the important characteristics of each system such as the
classification technique, size of the vocabulary, writing constraints, number of
writers involved in training and testing, and recognition rate. Most of these
works deal with the recognition of the worded amount on cheques. We shall

refer back to this section at the end of this thesis to compare our results to these.

1.3.1 Simon (1992) worked on the classification of the following French words:

M/ ”

“un”, “deux”, “trois”, “quatre”, “cinq”, “six”, “sept”, “huit”, “neuf”, “dix”,

"o A noou vou ” "

“onze”, “douze”, “treize”, “quatorze”, “quinze”, “seize”, vingt”, “trente”,

Ascenders

AN N

sorsine 717213‘&7: GoHari--v
\

Descender

Figure 1.3: Terminology used for word components.

Ascenders

Letters with no
ascenders nor
descenders

Figure 1.4: Morphological simplicity of ascenders compared to body area strokes.

’” H ” "

“quarante”, “cinquante”, “soixante”, “cent”, “mille”, “million”, and “milliard”.
His technique consisted of representing words with an abstract graph built from
features found in words. These features were such as line forks or crossings, and
loops in a word. By selecting robust anchor features, candidate words were
selected from the vocabulary and examined to see which one fit best the
description given by the graph. When samples were collected for testing and
training, the writers were constrained to write without capital letters. Each writer
wrote a set of 25 words twice: once on a shect of paper used for training the
system, and the second time on another sheet of paper used for testing,. In other
words, their tests were done with the same writers used for training. Only 8
writers were used for training and testing. Results showed an average of 76%

correct recognition of words in the test set.

1.3.2 Cohen (1994) worked on the recognition of bank cheque amounts. His
approach focused on the recognition of the numeric amount, relying very little
on the worded amount. Although the recognition of the numeric amount is
beyond the scope of this thesis, we shall compare his cheque-fevel recognition
rate to ours in a future chapter. When collecting the test samples, 66 cheques
were written without imposing any constraints to the writers. At the cheque-
level, his results showed 14% correct recognition of the test data, using only the
digits to recognize the amount. He obtained between 18% and 46% correct
recognition when the expected amounts and the worded amount were used to
add contextual information to the numeric recognition. The expected amount is,
for instance, the amount which a phone company would expect to receive from
each customer, based on the last bill sent to him or her. In the 18% to 46% case,
however, the digit recognizer used the worded amount only 10% of the time due

to “poor quality handwriting in worded amounts and the quality of the word

recognition algorithm used”. Cohen did not describe how the classifier was

trained.

1.3.3 Barriere and Plamondon (1992) worked on an on-line system which
recognized words by first identifying its letters (letter-based recognition). On-line
systems use an electronic tablet to enter the handwriting. Off-line systems such
as ours, takes the input image from a sheet of paper whichis scanned to be put in
a digital format. On-line systems therefore have significant ad vantages over off-
line recognition, such as being able to time each stroke, obtain the order in which
the strokes were drawn and measure pressure changes on the pen. Barriéere and
Plamondon’s used as vocabulary the French dictionary “Larousse de Poche”,
containing approximately 30,000 common nouns. Their recognition technique
consisted of slowly moving a window across the word, identifying letter
sequences. From the letter sequences obtained, the word length was obtained
and candidate letters for each position within the word would be proposed.
Training consisted of displaying each word in the vocabulary on a screen and
having a human tutor indicate where each letter began and ended. From this
information the system was able to make models for each pattern in the set of
features. When the window moved across the word, it could sometimes be on
top of an entire letter or covering the end of a letter and the beginning of the next
one. In the latter, the system still managed to extract features; having previously
learned what each features looks like, it could also know what the end of a
feature and the beginning of another looked like. When samples were collected
for testing and training the following constraints were imposed upon the writers:

. Lowercase letters only.

. No component could be added to a letter after another letter had

been started. In other words, if we were writing the word “piéton”

and we were up to letter “o0”, we would not be allowed to go back

to letter “t” to add an extra stroke such as the horizontal crossbar.

Only six writers were used to train the system. The same writers were used for
testing. Therefore, as with Simon’s (1992) system, the classifier is writer-
dependent. Results showed 799 correct recognition of letters in a test set of 250

words chosen randomly from the French dictionary.

1.3.4 Gorsky (1994) worked on the recognition of worded amounts on bank
cheques. His vocabulary, however, was smaller than ours, it contained 23 words.
His recognition technique consisted of approximating words by a set of segments
(similar to a skeletonization process). Each segment was mapped into a
parameter space called lollograph. The final classification was done by comparing
the obtained hollograph with the closest prototype generaled during training for
each word in the vocabulary. The hollographic prototypes were created froma
wide variety of writing styles, and at training and testing time, writers were not
given any writing constraints. His results showed a 74% correct word recognition
rate on a test set of 500 cheques. His recognition speed, however, was slow,
taking an average of 20 seconds for each 4-word cheque, excluding preprocessing

(word segmentation. These tests were performed on an IBM RT-6500.

1.4 Scope of the thesis

In this thesis, we propose a hybrid approach to classifying unconstrained
handwritten worded amounts on cheques. Our objective is to develop two
complementary classifiers that can, together, recognize a wide variety of cursive
handwriting styles for the words in the 31-word vocabulary, which will be

covered in section 2.1.

-10-

In the following chapter, we will look at how the worded amount is prepared for
recognition; this is the preprocessing stage. We will also have, in the same
chapter, an overview of the classifiers to have an intuitive idea of how they work
together. In Chapter 3, we describe the symbolic classifier, and in Chapter 4, the
neural classifier. Chapter 5 will describe how and when both classifiers work
together to complement each other. In Chapter 6, we give our experimental
results at the word level and at the cheque level. Finally, we give our concluding

remarks in Chapter 7.

-11-

Chapter 2
Preprocessing and
Overall Architecture of the System

2.1 The vocabulary

In this thesis, we are focusing on the automated reading of only worded integer
amounts. Qur working domain is therefore the following 31-word vocabulary:
one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen,
fifteen, sixteen, seventeen, eigliteen, nineteen, twenty, thirty, forty, fifty, sixty, seventy,
eighty, ninety, hundred, thousand, and, dollars. We thus assume the maximum
alphabetic amount to be “nine hundred and ninety nine thousand ninc hundred
and ninety nine dollars”. We consider this to be a reasonable assumption since
cheques for higher amounts are usually corporate cheques that are typed or
printed. Around this vocabulary, we built a grammar checker which will help us
minimize cheque-level misrecognitions and reject ambiguous grammatical forms
of writing worded amounts. The grammar checker will be covered thoroughly in

a future chapter.

Following our introductory discussion of Chapter 1, we give bciow the
definitions of word components and key terms which will be use< in this thesis
(Figures 1.2 to 1.4):
e text image: digitized version of the original text (woded amount) written
on the cheque. The image is a black and white p.cture of the worded
amount scanned at a 300 dots per inch resolution.

e baseline: The baseline is the horizontal line above whi."h all words are
written.

-12-

¢ ascender: Section of letters such as in d or t which rise above lowercase

letters such as x or 1.
e descender: Section of letters such as y or g which extend below the

baseline.
* body: Section of the word whicii is between the ascenders and descenders

sections. The same term body can be used for a letter when referring to the
section of the letter which is between the ascender and descender section.

e body-height: Defines the height in rows of the body for all words in the
worded amount. For example, in the word “forty”, the body-height is the
height of letters having neither ascenders nor descenders, in other words,
the height of letters “o” and “r".

* body-ceiling: top row in the body.

2.2 Finding the body-ceiling

The first objective in preprocessing is to locate the baseline and give an estimate
of the body-ceiling. The baseline is assumed to be at a fixed place, as all cheques

from the same bank have that line at the same location.

When a person writes the worded amount on a cheque, it is inevitable to find
height variations amongst letlers. For instance, if someone wrote “eighteen
dollars” (see Figure 2.1), there would be height differences between letters “e”,
“i”,"n”, “o”, "a”, “r” and “s”. The body-ceiling will therefore be the result of an

approximation, an estimate of the average height characterizing the letters with

neither ascenders nor descenders.

The first step in finding the body-ceiling consists in dividing the text image from
top to bottom into windows. Each window will initially contain 5 adjacent rows.

Therefore if, for instance, the whole text image has 71 rows, there will be

-13-

L

'™

14 windows
5 rows per
window

Figure 2.1: Dividing the text image into windows.

-4-

[731‘] =14 windows (see Figure 2.1). It is important to point out that flooring 71/5

leaves 1 row out from the 14 windows, as 14 x 5 = 70 rows; generally speaking,
all rows left out of the windows will be in the bottom section of the text image
and will be ignored as they are in a region where the body-ceiling is least
expected to be found. The idea behind this technique is to enclose within one of
the windows, the top section of the body of words, where there is a drastic
increase in black pixel concentrations compared to the space above that top

section.

The next step is to count the number of black pixels (also referred to as black
pixel density) inside each window, starting from the top window and proceeding
dowi.wards (lines (3], [4] and [5] in algorithm Find_Body_Ceiling provided shortly
below). The body-ceiling is found in a window having a number of black pixels
greater than the window immediately above it by a heuristic threshold A defined

as follows:
number of pixels in window

3

In algorithm Find_Body_Ceiling, these adjacent windows are called window_2
and window_1 respectively. This difference in black pixel densities (line [6]) is a
function of the window height (initially set to 5 rows) and the length (in

columns) of the text image.

2.21 The body-ceiling window: We define the body-ceiling window as the
window where the A threshold is reached. Figure 2.2 shows how the text image
is divided into windows, and where the body-ceiling window is located. Once
this body-ceiling window is found, the exact body-ceiling value is defined to be

the middle row inside the body-ceiling window. The body-ceiling is therefore a

-15-

body-ceiling window

scan

\ window height = 5 rows

-

Val
Jy 7

(. —

==

Figure 2.2: Finding the body-ceiling window.

-16-

7
windows

row defining the upper limit of the body. So, if for instance, the window having
the A difference is the 10th window from top to bottom, and each window has 5

5
rows, the body-ceiling would correspond to row number 9x5 + l-; =47, from

. . . 5
top to bottom; the 9x5 factor counts the rows in the first 9 windows, and l;J

4

counts half the rows in the 10th window. From this approximation, it is clear that
the number of rows assigned for each window is directly related to the accuracy
of the body-ceiling; the larger the number of rows per window, the less accurate

the body-ceiling will be.

2.2.2 Adjusting the window height (when necessary): All windows have the
same number of rows which is initially set to a heuristic value of 5 (step [1] in
algorithim Find_Body_Ceiling below). It was found that for values lower than 5, in
most cases the windows would not contain enough black pixels to make a good
approximation of the body-ceiling. The initial value of 5 rows, if it suffices, will
optimize the accuracy of the body-ceiling since the approximation error will, in
the worst case, be 4 rows. However, 5 rows per window is sometimes too small
for the A difference to be found. For instance, as shown in Figure 2.3, there are
cases where the body of letters varies greatly in height and the body-ceiling
window needs to hold a greater number of rows in order to contain the majority
of black pixels present in the top section of the body. For example, looking closer
at the top portion of Figure 2.3, we can see that none of the windows can really
claim to be the body-ceiling window, the difference in heights of letters with no
ascenders nor descenders is too important, and there cannot be a drastic black
pixel density difference A, from one window to the next one. In this case, the
algorithm will increase the window height by 1 row and try to find A from top to

bottom of the text image, once more. It will keep increasing the window height,

-17 -

body-ceiling window not found

window size = 5 rows (window size too small)
— *_
body-celling

window size = 8 rows window found

Figure 2.3: Increasing window size to find body-ceiling window.

-18-

one row at a time (lines [2] and [7]), until A is found or until the window size
exceeds 15 rows in which case it will abort the search (line [8]). In most cases, the
window height will not exceed 9 rows. As shown in the bottom portion of Figure
2.3, a window height of 8 rows was sufficient to find A. The following pseudo-
code outlines the main idea behind the algorithm.

Algorithm Find_Body_Ceiling;

[1] window_height = 5 rows

bottom_window = last window in the bottom section of the text image
2] loop until window height exceeds the maximum size of 15 rows

131 window_1 = top window
[4] window_2 = window immediately below window_]
[51 loop until window_2 = bottom _window
[6] if (Pixel_Density(window_2) - Pixel_Density(window_1)) =
A then
return body-ceiling = middle row of window_2
else
windotw_1 = window_2
window_2 = window inmediately below window _1
endloop
171 increment window_height by 1 row
endloop
[8] return Error {cannot find the body-ceiling}
endAlgorithm

The above algorithm was developped using original techniques. All algorithms
described in this thesis were developped by the author, unless otherwise

specified.

2.3 Text segmentation

The second objective in preprocessing is to estimate where each word starts and

finishes on the worded amount. Know as text segmentation, a recent reference on

-19-

it is by Seni and Cohen (1994). Having obtained the body-ceiling, word
segmentation will consist of looking for blank spots inside the body, which
typically indicate a separation between two words. These blank spots are defined
as areas with a high density of white pixels within the body. The beginning of the
blank spot (or word separation) marks the end of the word to its immediate left,
and the end of the blank spot indicates the beginning of the word to its
immediate right. The following pseudo-code outlines the main steps involved in

finding these blank spots.

Definition of some important notation:

current_word(beginning) is the column in the text image where the current word to be
recognized starts.

Minimum_word_length = (number of rows in the body) x 2

column(P) = column in the text image where a pixel P is located.

Algorithm Find_Word_Limits(current_word)
[1]1 Choose 10 equally distant rows starting from the top of the body and reaching the

baseline. Choosing these rows is done as follows:
. rows in bod
space between adjacent rows = [——-I-E)——XJ

row #0 = body-ceiling

rows in body
row #n = (| —————
T

[2] P2 =current_word(beginning)

J X n) rows down from row #1.(0<n<9)

[3] for each row selected do

loop
[4] scan row from P2 to end, stopping when a sequence of white pixels
at least 1/2 the length of the previous word separation is found.
[5] P1 = first pixel in the sequence found.
[6] P2 = last pixel in the sequence found (previous P2 gets replaced by
this new value)
[7] P3 = white pixel in the middle between P1 and P2.

1 Since the first word in the worded amount has no word preceding it, the “previous word
separation” is initially set by default to 1.5 times the body-height.

-20-

18l Let us define the rectangle R with the following columns and rows:
. leftmost column = (column of P3) - 2
. rightmost column = (column of P3) + 2
The heuristic values “-2” and “2” are used to set the left
and right margins respectively, of R centered around P3.
. top row = baseline - body_height - 8
. bottom row = baseline + 8
The heuristic values “-8” and “8” are used to set the top
and bottom margins respectively, of R centered around P3.
Roughly speaking, R is a 5-column rectangle (there are 5 colunns
between the leftmnost and the rightmost columns) centered
horizontally at P3. Its height is variable depending on the body-
height.
9] if all pixels inside R are white
we have found a potental word separation starting at P1
and finislhing at P2, according to the current row being
scanned.
exit loop
endloop
endfor
At tlis point, each row has returned its estimate on where the current word ends
(P1) and where the next word begins (P2) (see Figure 2.4). We mnust now choose
the optimal P1 and P2.
[10[current_word(end) = optinal P1 = rightmost P1 in area of high density of P1’s.
Delimiting this area (call it A), will be discussed shortly. See left side of Figure
2.5.
[11] next_word(begin) = optimal P2 = leftinost P2 in area of high density of P2’s.
This area is defined analogously to the one with P1’s. See Figure 2.5.
endAlgorithm

Let us now explain more specifically how this area A is defined: We call a brotler,
a pixel P1 which is 20 columns or less apart from another P1. If we call these two

P1’s P1* and P1** respectively, we can therefore say that P1* and P1** are

-21-

Pl's

10 equally
distant rows

Current word is "seven" Next word Is "thousand"

Figure 2.4: Each scanned row returns an estimate of where the current word ends

(P1) and where the next word begins (P2).

-22-

Areas of high
density of black pixel brothers

10 equally
distant rows
Rightmost pixel in Leftmost pixel in
circled area is selected circled area is selected
as end-of-word as begining-of-word

Figure 2.5: Segment of scanned amount “seven thousand”. Finding the end and

the beginning words.

-23-

brothers. For every P1, the segmentation algorithm will compute the number of
brothers P1 has; we shall retain the P1's having the highest and the next-to-
highest number of brothers. The area A will be delimited by the retained P1’s.
Therefore if, for instance, 7 and 5 are the highest and next-to-highest number of
brothers respectively found amongst P1’s, those P1’s having 7 or 5 brothers will
constitute area A. Finding the corresponding A’ for P2's is done analogously to
finding A for P1’s. In Figure 2.5, both areas A and A” are illustrated as the “Areas

of high density of black pixel brothers”.

The above heuristic algorithm fails to separate complex cases such as the one
shown in Figure 2.6. In this figure, the lower stroke from the “¢” in “one”
stretches to the right, beyond the leftmost column of the “t”, leaving no white
pixel columns between the “e” and the “t”. Between the “u” and the “s” in
“thousand”, however, the separation reveals white pixel columns which, in this
case, is interpreted as a word separation. As defined in algorithm
Find_Word_Limits, a rectangle R (five adjacent columns) with only white pixels

must be present for that region to be considered as a word separation.

2.4 The classifiers: Overall view

The classification system to read worded amounts, described in subsequent
chapters, consists of two classifiers: A symbolic classifier and a neural classifier.
In general terms, the symbolic classifier can be seen as having two major tasks:
the first one is to detect features corresponding to ascenders and descenders of
specific letters in a word, the second task is to identify the presence of noluble
letters (letters with ascenders present at the beginning of words), and classify

each into one of the 9 categories defined for notable letters. A notable letter can

-24-

- correct segmentation
beginning of soqmentation found by the
word point algorithm

- ga%wc&\

Figure 2.6: An example of incorrect segmentation by the algorithm

Find_Word_Limits discussed in section 2.3.

-25.

be, for example, a capital (uppercase) “E” at the beginning of word “Eighty”, or it
could also be both letters “t” and “h” from the word “thousand”. In more formal
terms, if we divide the image of a word from left to right in 3 equal sections (left
section, middle section and right section), a letter is defined as “notable” if it has
an ascender in the leftmost section of the word. This 1/3 ratio may vary
depending on the features found in the word. Details will be given in a future

chapter.

The neural classifier, is a network of neurodes that takes an image as input and
produces an output from it. The network will be used whenever the symbolic
classifier is unable to find enough features to classify the entire word. The ncural
network will therefore receive its input from the symbolic classifier, and return
its results. In this way, the symbolic and neural classifiers work together to

recognize a word (see Figure 2.7).

From our 31-word vocabulary described earlier, each word will be classified

through one of the three different schemes of symbolic/ neural interactions.

* Word category 1: Words classified entirely by the symbolic classifier (will
be covered in detail in Chapter 3).

* Word category 2: Words classified entirely by the neural classifier (will be
covered in detail in Chapter 4)

* Word category 3: Words jointly classified by the symbolic and neural

classifiers (will be covered in detail in Chapter 5)

This categorization will depend on the features found (if any) by the symbolic

classifier. Generally speaking, there are words which are classified entirely from

-2 -

Neural Classifier

X

Text image Word Words
— Classifier —

Symbolic Classifier

Figure 2.7: Two main components of the word classifier

-27-

ascenders and descenders features (word category 1). Other words have no
ascenders nor descenders; these will be classified entirely by the neural classifier
(word category 2). Finally, some words have little ascender/descender
information, needing soue parts to be classified by the neural classifier (word

category 3).

In order to get an intuitive understanding of how the overall classification
scheme works, we will look at a decision tree having as root node, the unknown
word to classify. Figure 2.8 shows the legend used for representing no.t-leaf,
clustered-leaf and single-leaf nodes in the tree. As is customary, a leaf in a decision
tree is a terminal point, and in this case it corresponds to the classifier’s output to
the given unknown word. Each word in the vocabulary is therefore contained in
either a clustered-leaf node or a single-leaf node. The tree was broken up into
several sections due to its large size. Figures 2.9 to 2.18 make up the set of
diagrams illustrating the different sections of the tree. These figures should be

read from left to right as opposed to the more common top-down form.

-28 -

Nor -leaf node: all nodes in the tree, except for single-leaf nodes and clustered-leaf
nodes. Each of these nodes will represent a test or an action made on the

unknown word

Clustered-leaf node: These round-cornered rectangles group many leaves in the
decision tree. One of the leaves is selected according to the output given by the

neural network.

7 ..w] ’

Single-leaf node: Node containing only one leaf from the decision tree.

Figure 2.8: Terminology and graphic symbols used in the decision tree of Figures

29to 2.18.

-29-

RO1

beginning of word ? | \ A

"| Ascender at beginning 'l

of word ?

T T

To Figure 2.10

B2

i Identify and

Descender at
yes
Descender around the !
middle of the word? |
‘ \ 0
A
yes Descender at
Unknown word beginning of X
¢ word ? l

Descender at end
of word (as in "y") 2}

o Descender
around middle
of word ?

v

Ascender at end of
word?
(as in “and”,
“eight”, “hundred”)};

[PURSCA Ittty

Ascender at
around 2/3 of
word length ?

notable letters (if any) at the

classify

_—Ef"mm B0O3

beginning of word.

L vyt

To Fiﬁu re 2.11

its immediate left ? !

Ascender around ' To Figure 2.12
middle of word ? —
B04 1, Figure
Another ascender close to 2.13

]
d
ey ey s T AT b

BO5 ToFigure

n

Ascender around

middle of word

1

Figure 2.9: First steps in the traversal of the decision tree. Further steps beyond

nodes with codes BO1 to B05 are shown in Figures 2.10 to 2.14 respectively.

-30-

Bo1

Ascender at beginning
of word ?

!

From Figure 2.9

€S

Is the first letter al:

capital “E” ?

Figure 2.10: Leaves obtained from node B01.

-31-

#

‘

lEighty" ,

+

B02 Send body segment of word to neural

Identify and classify i network to complete the recognition. '!

notable letters (if any) at the —p Possible answers are: |

beginning of word. } ”twenty”,"thirly':',”f(?rty"," “sixty”, %

T T T — . k “seventy”, “ninety i
From Figure 2.9

Figure 2.11: Leaves obtained from node B02.

232-

B03

yes

Ascender around
middle of word ?

T

From Figure 2.9

> Ascender at the

" o | beginning of word ?

Figure 2.12: Leaves obtained from node B03.

-33-

yes
® Any descenders ?

B04

Another ascender close to
its immediate left ?

' ' o yes

From Figure 2.9 Ouput from the |)
neural netis “ve” 2 [
' ! To Figure
215

Send to neural net, the
q body segment starting from
the right of the ascender t
the end of the word.

-

Figure 2.13: Two steps down the tree from node B04. Further steps beyond node

B06 are expanded in Figure 2.15.

yes

Another ascender close 1 > 2
to its immediate left ?|- Any descenders ?

B0O5 Y Tl
2 \ yes _—__lyes

Ascender around
middle of word?

™
From Figure 2.9
\ 2R / B07
Notable letter at |i yes Notable letter 1s a
the beginning of ———————> capital “O” ? :
word ? | |

To Figure
° L-> 216

Send entire body of word to neural network
Possible answers are:

“ . o "won "o

one”, "six", "seven", "nine"

e st oo

Toedent IR R TR T TR Y AR F PR Syt Ml

Figure 2.14: Two steps down the tree from node B0S5. Further steps beyond node

B07 are expanded in Figure 2.16.

-35-

B06

Ouput from the
neural net is “ve" ?

From Figure 213

Figure 2.15: Three steps down the tree from node B06. Further steps beyond

v

Descender at
beginning of word? |;

Descender around the |

middle of the word?
(“eighteen” or “hfteen”)

-

yes

Ascender at]
beginning of word? i
i

Descender at
beginning of word?

|

VN

notable

Identify and classify

letters (if any) at the

beginning of word.

b bbbl e

L g XTIy

—@» 218

nodes B08 and B09 are expanded in Figures 2.17 and 2.18 respectively.

-36-

To Figure
——» 2.17

B09

0 an 8 Vslhies i ot it WO H LD

To Figure

Bo7

Notable letter is a

capital “O" ? ‘
no

Send body segment of word to neural network to
complete the recognition. Possible answers are:

”” "

nhvo",nthree"’ “fOUr", ”fiVC", “ten , C]even"

yes

From Figure2.14

Figure 2.16: Leaves obtained from node B07.

.37-

yes

Is the first letter a
capital “"E” ?

B08

Ascender at
beginning of word?

1

From Figure 2.15

Figure 2.17: Leaves obtained from node B)8.

-38-

B09

Ve
S

\.

N\

end body segment of word to neural
network to complete the
recognition. Possible answers are:
“thirteen”,”fourteen”,”fifteen”,

“sixteen”, “seventeen”, “nineteen”
S

Identify notable
letters (if any) at the
beginning of word.

?

!

From Figure 2.15

Figure 2.18: Leaves obtained from node B09.

-39.-

Chapter 3
The Symbolic Classifier

When an unknown word is to be classified, it is the symbolic classifier which is
called first to extract features. For each word in the worded amount, the symbolic
classifier looks for specific features such as ascenders, descenders, loops such as

those found sometimes in letter “€”, notable letters at the beginning of words, and

length/body-height ratio of words. Moreover, it performs the following tasks:

¢ classifies notable ietters in order to have a better context for recognition;
* finds points separating notable letters from the rest of the word.
¢ traces the contour of certain letters in order to find their widths, heights,

slopes, and positions within the word;

In the tree shown previously in Figure 2.9, we see that the first feature looked for,
when an unknown word is given, is a descender at the end of the word.

Following is the description of how ascenders and descenders are identified.

3.1 lIdentitying ascenders and descenders

We define two areas called the ascender and the descender windows as follows:
The ascender window, is a horizontal strip of 5 adjacent rows, stretching from the

beginning of the word to the end. Itsits E— X body_l:eight] rows above the body-

ceiling. This strip will contain the segments of ascenders which will be traced for
feature extraction. Similarly, the descender window is also 5 rows tall and lies at

a distance of [-:-i- xbody_heighlJ rows below the baseline (see Figure 3.1). The

-40-

ascender window
5 adjacent rows

body-ceiling ¢ _'

ll « body height
\ 3

= o — — E—
baseline— — &— -

C "]

descender window
5 adjacent rows

Figure 3.1: Ascender and descender windows.

-41 -

reason for keeping the ascender/ descender windows a certain distance above the
body-ceiling and below the baseline is to avoid body segments stretching slightly
above the body-ceiling or below the baseline. In Figure 3.1, for instance, the first

e” in “eighteen” stretches slightly under the baseline; by having the descender

. 1 . . .
window lgxbody_hezght rows below the baseline, we avoid that stroke

segment from the “e” which extends under the baseline and could be

misinterpreted as a descender.

Detecting ascenders and descenders consists of scanning the image of a word
from right to left inside the ascender/ descender windows within a region where
the feature is expected to be found. In a future section, we will see a detailed
table showing how each feature is mapped onto a specific arca inside the
ascender/descender windows. A descender is detected in the descender window
when a near-vertical stroke is found. We define a near-vertical stroke as one with
a slope within the following values:

oy

i
séx

wheredy is the projection of the stroke inside the window, on the y-axis, and ox
is the projection of the stroke inside the window, on the x-axis. In other words,
the absolute value of the slope inside the descender window must be greater or
equal to 1. This wide range of slopes is to accommodate inclined writing. The
same applies for detecting ascenders inside the ascender window. Specific

examples of ascender/descender detection will be shown in later sections.

-42-

3.2 |dentifying notable letters at the beginning of words

Identifying the presence of a notable letter is, in many cases, necessary not only
for context information, but also because in the design of the neural classifier,
notable letters were to be analyzed symbolically to improve the neural network’s
performance: Notable letters varying greatly in width and shapes make it
difficult for the neural classifier to learn and classify accurately all word patterns.
The identification of notable letters is used in situations such as shown in box B02
appearing in Figures 2.9 and 2.11, and box B09 appearing in Figures 2.15 and
2.18. Not all words, however, require looking for notable letters, their length-
height ratio and ascender/descender windows contain enough information to

classify them without further analysis.

In order to detect the presence of a notable letter at the beginning of a word, first,
two rows (called scan-rows) are selected above the body of the word. The first
scan-row is situated 3 rows above the ascender window and the second scan-row
is 5 rows above the first scan-row (steps [1] and [2] in algorithm Notable_letter
below). We start scanning along the scan-rows from right to left starting at
|1/ 3 xword_length| and up to the beginning of the word. Scanning halts when
each row reaches a black pixel (steps [3] and [4]). The leftmost pixel of the two
found is selected and called anclor pixel (step [5]). In the example shown in
Figure 3.2, we can see that it is the pixel found in scan-row 2 which is selected as

anchor pixel, being the leftmost pixel found from the two scan-rows.

Following, a black pixel count is done inside a box R defined as follows: The left
boundary is the middle of the blank before the word, the right boundary is set to
a heuristic 15 pixels to the right of the anchor pixel. The top boundary is the top

of the word’s highest ascender, and the bottom boundary is the top row inside

-43-

Rectangle R as explained in Algorithm
Notable_letter in section 3.2
Rectangle where pixel count will take place

leftmost pixel from
the 2 scan rows:
Anchor pixel
——————— scan row 2
————— scan row 1

Figure 3.2: Identifying the presence of notable letter “t” in “twenty”.

the ascender window (step [7]). Figure 3.2 illustrates these concepts. If either the

pixel count inside the box exceeds a threshold limit of 40 black pixels, or the

slope of the stroke at the anchor pixel is a near-vertical stroke, then a notable

letter is said to be found (step [8]).

The following pseudo code outlines the main steps involved in identifying

notable letters.

Algorithm Notable_letter: returns TRUE when a notable letter is found, FALSE
otherwise.

1]
2]
131

[41

151
l6]

71

(8l

scan_row_1 = 3 rows above the ascender window

scan_row_2 = 5 rows above scan_row_1

P1 = First black pixel found in scan_row_1, starting from |1/3 x word_length |

and up to the beginning of the word.

if P1is on a letter “i"’s dot, update P1’s value. {the algorithm that checks this will

be given shortly below}

P2 = First black pixel found in scan_row_2, starting from |1/3 x word_length |

and up to the beginning of the word.

if P2 is onn a letter “i”’s dot, update P2’s value. {the algorithm that checks this will

be given shortly below}

anchor_pixel = leftmost amongst P1 and P2.

last_blank_middle = in the last word separation (blank) found, select the middle

column.

define the rectangle R with the following columns and rows:

. leftmost column of R = last_blank_middle

. rightmost column of R = column of anchor_pixel + 15
The “+ 15" is there to extend the right boundary of the box a little further
than the anchor point in order tv make sure most of the notable letter’s
black pixels are enclosed inside this box R.

. top row of R = top row in text inage

. bottom row of R = top row in ascender window

see Figure 3.2

if (black pixel count inside R is greater than 40) or (the slope of the stroke at the

anchor pixel is a near-vertical stroke)

-45-

return TRUE
else
return FALSE
endAlgorithm

As shown in steps [3] and (4], special precaution is taken for handling the dots
over an “i” which could be on the scan path, as exemplified in Figure 3.3;
therefore, when P1 is found on scan-row1, we trace around the black pixel cluster
starting from P1 (see Figure 3.4 and step [1] in algorithm P_is_on_a_dot shown
below); if the perimeter found for the black pixel cluster is under 60 pixels, we
conclude it is a dot and hence we skip the black pixel cluster and continue
scanning left for the next black pixel P1’ along scan-row1 (as shown in Figure 3.5
and steps [2], [3], and [4]). P1 is then rejected and P1’ will be renamed P! (step
[5]). These steps are also applied on scan-row2 when P2 is found. The following
algorithm outlines the steps discussed in this paragraph:
Algorithm P_is_on_a_dot; {checks if pixel P is on a letter “i”’s dot. If it is, the
algorithm skips the dot to find the right P)
[1] Trace around t:c black pixel region where P was found. The trace starls from P

and stops when the trace has come full circle back to P.
2] if the mumber of pixels traced in step [1] is < 60 pixels

(3 Scan to the left, from P until a white pixel is reached.

[4] Continue scanning to the left until a black pixel is reached
Call tlus black pixel P’

[5] P=pP’

[6] return P

endAlgorithm

3.3 Finding the separation point between the notable letter
and the remaining part of the word to its right

As we mentioned before, the neural classifier will recognize only word segments

with letters having neither ascenders nor descenders. Therefore when a notable

-46-

scanning along scan_row 1, one sees the letter "i"s dot

‘f] _____ scan_row 1

VE

Figure 3.3: Coming across a dot when looking for a notable letter (see section

3.2).

-47 -

Tracing around the black pixel
cluster starting from P1,
gives a petimeter of less than 60
pixels, Therefore it is a dot and
must be skipped.

scan row |

Figure 3.4: Tracing around the edge of the black pixel cluster to find its perimeter

(in pixels traced).

-48 -

From P1, go to the next white pixel in order to reach the left siae
of the the black pixel cluster. Then, start looking
again for the next black pixel P1'

scan_row 1

Figure 3.5: Skipping the dot and resuming the search for the notable letter.

-49-

letter is found at the beginning of the word, it is necessary to skip it by finding an
accurate separation point between the notable letter and the remaining section of
the word to its right. This process is done before invoking the neural network, in
situations such as shown in the clustered-leaf nodes appearing in Figures 2.11
and 2.16. The algorithm starts by scanning down the notable letter from the
anchor pixel found, until the middle row inside the body is reached. Let us call
that point P1 (step {1] in algorithm Find_Separation_Pixel below). In an ideal
situation where letters never touched, P1 would always be selected as the
separation point that we are trying to find. In reality, however, PI could either be
on the left edge of the nutable letter, or if the letters were touching, it could be on
another edge in the letter next to it (see Figure 3.6). We therefore need to find
other estimates for the separation point. Starting from the anchor pixel once
more, we now trace the letter upwards, stopping when we have come down the
other side of the letter and reached the row at [3/ 4 x I)()(Iv__heighrj up from the
baseline. Let us call that point P2 (step [2]). As we can see from the examples in
Figure 3.7, the ideal separation point is between P1 and P2. Hence, from P2 we
resume the trace downwards, stopping once more when we have reached the
same row where P2 was found. Let us call that point P3 (step [3]). If P3 is
between P1 and P2, and P1 isn’t along ‘he tracing path from P2 to P3, the optimal
separation point is said to be found. Otherwise, we resume the trace until we find
a Pn which is either between P1 and P2 or to the right of PT (see Figure 3.7).
When a P is found, if it is between P1 and P2, and P1 isn’t along the tracing path
from Pn-1to Pn, then Pn is selected as the optimal separation point (step [4]).
Otherwise, if P1 was found along the path from Pn-1 to Pn, then P1 is selected as

the optimal separation point (step [5]) (Figure 3.8 (a)). If Pnis found to the right

anchor pixel

middle row

2in hf

ideal separation
point

baseline —

touching point

Figure 3.6: Example of inaccurate separation point between a notable letter and

the letter following it.

-51-

anchor point row at 3/4
the body

height
‘m.

anchor point

_— - _'_’2 _ = - £2 — P1 _
P1
baseling - — — — ™ _ - _ W . W = __ __
in these two cases ("fo’ as in "four”, and *fi* as in "tive”), P3 is
the last Pn since it was found between P1 and P2. P3 is
returned as the separation point
row at 3/4
the body
anchor point height
P4 l
baseline_ __ _/i//—- N\ 1 _wg _ T _ __ _ __

P5 P6

In this section of the word "Nine", P7 is the last Pn since it was
tound between P1 and P2. P7 is returned as the separation point

Figure 3.7: Finding estimates for the separation point between the notable letter
and the remaining of the word: Algorithm Find_Separation_Pixel in section 3.2 is

applied to a capital “F”, a lowercase “f’, and a capital “N".

.52.

row at 3/4
(@) the bodv

anchor point height

baseline — — - —

P3 was discarded since P1 was found along the path
from P2 to P3. Therefore P1 is selected as separation point

(b)

row at 3/4
anchor point the body

height

baseline — — — — - {_N‘/ ——————

P3 was found to the right of P1, therefore P1 is
selected as separation point

Figure 3.8: Finding estimates for the separation point between the notable letter
and the remaining of the word: Algorithm Find_Separation_Pixel in section 3.2 is

applied to a capital “5”, and a lowercase “t".

-53-

of P1, this means there isn’t a better estimate for the separation point between P1
and P2, therefore P1 is selected as the optimal separation point (step [5]) (see

Figure 3.8 (b)).

The following pseudo code outlines the main steps involved in finding the
separation point between the notable letter and the remaining section of the

word to its right:

Algorithm Find_Separation_Pixel;

{1) From the anclior pixel, start tracing dowonwards. Stop when we reacl row =
middle row ine the body. Call Hus pixel P1

2] Fromt the anchor pixel, start tracing upwards. Stop when we reach row =
|3/ 4x body_ height | above the baseline . Call this pixel P2.

[3] Resume trace stopped in step [2]. Stop when we reach once more row =
|3/ 4x body_ height | above the baseline. Call this pixel P3.

n=3
loop
4] if (Pn is between P1 and P2) and (P1 isn’t on the path from Pn-1 to Pn)
return Pn
[5] if (P is to the right of P1) or (P1 was found on the path from Pu-1to Pn)
return Pl
[6] n=n+1
[7] Resuime trace stopped at Pn-1. Stop wihen we reach once more row =
|37 4 x body_ height | above the baseline. Call this pixel Pu.
endloop
endAlgorithm

Although this technique works well in most cases of notable letters, there is a
problem when the first two letters are “th”, the “t” touching the “h” at the top
and disjoint from it at the bottom (see Figure 3.9). In order to solve this problem,
we shall treat all words starting with “th” differently. As we shall see shortly,

notable letters are classified into different categories, therefore identifying the

touching point

P3

P3, being between P1 and P2, is selected
as optimal separation point

Figure 3.9: Problems finding the separation point between the notable letter and

the remaining of the word in words starting with “th”.

words starting with “th” prior to finding the separation point will not be a
problem. The alternative algorithm to find the optimal separation point consists
in scanning down the notable letter from the anchor pixel, until the body-ceiling
is reached. On the way down, the leftmost column reached along the path is
retained as the separation point is defined to be at the intersection of that

leftmost columr: found, and the middle row inside the body (see Figure 3.10).

3.4 Categorizing notable lefters

Owing to the wide variety of capital letter writing styles, notable letters are
separated into 9 categories, each holding 1 or 2 notable letters. Notable letters are
categorized immediately after being found (section 3.2). Therefore the following,
algorithms are invoked in situations as shown in box B02 appearing in Figures
2.9 and 2.11, and box B09 appearing in Figures 2.15 and 2.18. Fach category
described below will start by stating which types of words fall into the category,
and it will then explain which features the classifier looks for in an unknown

word in order to classify it under this category.

® Notable category 1: Word starts with a lowercase “£” as in “forty”: 'This is a
special case where the first letter of the word has an ascender and a descender
(see Figure 3.11). It is actually the only letter in this vocabulary that has this
particular feature; therefore, recognizing it will consist of looking for a descender

at the beginning of the word.

* Notable category 2: Word starts with “S” as in “Sixty”: To recognize an "S”,
the first algorithm traces down the left side of the notable letter, starting from a
row which is 30% down from the top of the letter, and finishing at 65% down
from the top. Within those 35%, the leftmost and rightmost black pixels along the

path are kept in memory as these roughly represent the locations where the

leftmost column
found in the trace

anchor point

middle row

inside the
pbody

optimal separation point

Figure 3.10: Separation poeint between notable letter and the remaining part of

the word for words starting with “th”.

-57-

lowercase "f's have ascenders and descenders

body-ceiling

baseline

Figure 3.11: Example of word with lowercase “f".

r

horizontal tracing direction switches from left to right or vice-versa (see Figure
3.12) (steps [1] to [4] in algorithm Notable_Category_2 below). If the slope of the
straight line going through these two turning points satisfies: -1 < slope < 0, then
the slope is considered to be sufficiently oblique to characterize an “S” curvature
(steps [5] and [6]). If this condition isn’t satisfied, the notable letter is rejected
from this category; otherwise, a second algorithm will be executed to further
confirm the answer from the first one. Before looking at the second algorithm we
will look at the following pseudo-code outlining the first algorithm used to

recognize a capital “5”.

Algorithm (1) Notable_Category_2;

[11 notable_letter_height = height in rows of the notable letter

2] start_row = |0.3 x notable _letter _ height | rows down from the top of the notable
letter.

131 end_row = |0.65x notable _letier _ height | rows down from the top of the notable
letter.

41 Trace down the left edge of the notable letter from start_row down to end_row,
storing in leftmost_pix the leftimost pixel found during the trace, and in
rightmost_pix the rightmost pixel found during the trace.

[51 L =line going through leftmost_pix and rightmost_pix

[6] if (slope (L) <0) and (slope (L) = -1) then

return TRUE
else
return FALSE
endAlgorithm

The second algorithm looks at the left side of the top 30% portion of the letter. It
traces it upwards while verifying the slope of the stroke at every black pixel
traced. If the slope is positive and less than or equal to a near-horizontal
threshold value of 1, then we have probably found the parabolic top section of an

“8" (see Figure 3.13). It has been noted that most capital “5” have a sufficiently

-59.

leftmost pixel
found In trace

\ _ Top of letter

} Top 30% of helght

} Tracing zone 35%

~
o } Boftom 35%

Baseline

rightmost pixel Line going through
found in frace the two points

Figure 3.12: Algorithm (1) Notable_Category_2, described in section 3.4, applied to

recognize an “S”.

-60-

slope of stroke
at X1 is 0.87, therefore
_ top section of *§" is found

Top of letter X e

}- Tracing zone 30%

/ X } Bottom 35%

Baseline

Figure 3.13: Algorithm (2) Notable_Category_2, described in section 3.4, applied to

recognize an “S”: Identifying the parabolic top section of an “S”,

-61-

large horizontal separation between the two turning points to satisfy the slope
thresholds defined. There are unusual cases, however, of disproportionned “S”
where the height is much larger than its width, and consequently the turning
points will be horizontally much closer to each other which will generate a near-
vertical slope between them, leading to the failure of the first algorithm (see
Figur: 3.14). The following pseudo code outlines the main idea behind this

second algorithm:

Algorithm (2) Notable_Category_2;
[1] notable_letter_height = height in rows of the notable letter
2] start_row = |0.3 x notable _letter _height | rows doton from the top of the nolable
letter.
[3] end_row = top of the notable letter.
4] current_row = start_row
[5] Trace the left edge of notable letter from start_row to end_rotw, checking the slope
of the stroke at every pixel traced:
while current_row + end_row
currentPixel = black pixel on left edge of notable letter, at current_row.,
T = tangent to left edge of notable letter, at currentPixel
if slope(T) >0 and slope(T) <1 then
return TRUE
current_row = row immediately above
endwhile
return FALSE
endAlgorithm

* Notable category 3: Word starts with “E” as in “eleven”: For this category, the
first occurrence of letter “E” is actually a lowercase “e”, and it is through the

llll'

location of the within the word that the presence of this “e” is deduced.
Formally speaking, we scan from left to right the leftmost 1/4 of the word, at a

row 5 rows above the ascender window. Scanning stops when a black pixel is

-62-

N Top of letter

- w mw AR Em Em oEmeemmE T o e oweE ™ o owm oo = = o

Baseline

\ slope < -1,
Therefore algorithrm (1)
Notable_Category 2 fails

Figure 3.14: Uncommon case of disproportionned “S” where algorithm

Notable_Category_2 shown in section 3.4 fails to recognize the notable letter as an

IISII
.

- 63-

found. If the unknown word is actually “eleven”, this pixel is either the left edge
of a capital “E”, or the “I”” if the “E” is lowercased (steps | 1] and [2] in algorithm
Notable__Categoryy_3 below). To determine that the first letter is a lowercased “¢”,
the following steps are done: The pixel found during the scan must be at a
distance greater thanor equal to |1/6 x word_length |, from the beginning of the
word (step [3]). This minimum distance would correspond to the space occupied
by the lowercase “e” at the beginning of the word. If this condition is satisfied,
we trace down the left edge of the “I” until we reach the middle row inside the
body (step [4]). From there, we move west until we reach the next black pixel
which should be part of the right side of the lowercase “e” (step {5]). If no black
pixel is found, then the “1” didn’t have any letter to its left which is impossible,
therefore the letter is rejected from this notable category (step [6]). If a black pirel
is found, however, we then verify that its distance from the beginning of the
word is greater than the maximum stroke width set at 12 pixels (steps |7} and
[8]). This minimum distance ensures the presence of a letter between the black
pixel found and the beginning the word. Figure 3.15 illustrates the overall
algorithm, and the following pseudo-code is provided to outline the main steps

in classifying a letter into notable category 3:

Algorithm Notable_Category_3:

{1] scan_row = 5 rows above the ascender window

[2} scanalong scan_row from the beginning of the word to |1/ 4x word_ Iengthj.
Stop whert a black pixel is found. Call this pixel P1(Figure 3.15).

[3] If distance between P1 and beginning of the word is < |1/6xword_length |,

return FALSE

[4] Trace downwards from P1, the left edge of the notable letter. Stop when the
middle row inside body is reached. Call this pixel P2 (Figure 3.15).

[5] From P2, stayon the same rowand scan left until a black pixel 1s found or until
beginning of word is reached.

distance is greater than
1/6 the word's length

<>

1
1
[}
t

__ S1ows above the
ascender window

t
'
'
]
]
[}
1
[}
i
t
'

baseline

word start!

distance is greater
than 12 pixels

Figure 3.15: Identifying the first letter in “eleven” as lowercase “e”. Refer to

notable category 3 in section 3.4.

-65-

[6] if no black pixel was forund during [5]
return FALSE

else
(71 Call this biack pixel P3 (Figure 3.15).
[8] if distance between beginmug of word and P3 is > 12 columns
return TRUE
else
return FALSE
endAlgorithm

® Notable category 4: Word starts with a capital “O”. The first feature that would
come to mind when trying to identify a capital “O” would be to look for a loap,
however, expecting a closed loop in every capital “O” is unrealistic. Therefore,
the first feature looked for is a high concentration of black pixels at the bottom of
the letter (see Figure 3.16), corresponding to the lower portion of an “O” sitling
on top of the baseline. So the approach is to scan the letter from left to right at the
middle row inside the body. Scanning stops when a black pixel is found,
indicating the presence of the left edge of the letter. Then, we continue scanning
through that left edge until we reach a white pixel. At this point, we would be on
the left side of the inside loop of the presumed “O”. We must now locate the
right side of the inside loop by resuming the scan and stopping when the next
black pixel is reached (see Figure 3.16). A black pixel count is done in a box
sitting 3 rows below the baseline, its left boundary at the column where the left
side of the inside loop was found, its right boundary at the right side of the
inside loop, and its top boundary at the middle row inside the body (see Figure
3.16). If the pixel count is greater than the heuristic threshold value of 70 pixels,
then the feature is defined to be present. In general, other capital letters such as
“T” in “Ten” or “F” in “Five”, do not have this feature since most of the time,

they are detached from the rest of the word, however, alowercase “t” as in “ten”,

- 66 -

left inside-woll of the right inside-wall of
"O" along the scan row the "O" along the

scan row

scan row: middle
row in the body

\

Baseling — — — — _—— - -

pixel count box

Figure 3.16: First feature to be found in a capital “O” (notable category 4).

-67-

and lowercase “th” as in “three”, are also considered to be notable letters and
will sometimes have that feature since the “t” can be connected from its lower
curve, to the next letter. Therefore we must look for another feature present in a
capital “O” in order to narrow down the choices to only one. The following

algorithm outlines the steps discussed in this paragraph:

Algorithm (1) Notable_Category_4;
[1] scan_row = middle row in body
[2] scanalong scan_row from the beginning of the word to |1/2 x word_length .
Stop when a black pixel is found.
{31 Resume scanning until a white pixel is found. Call this point PT (see Figure 3.10)
[4] From P1, resume scanning until a black pixel is found. Call this point P2 (see
Figure 3.16)
[5] Define the rectangle R with the following columns and rows:
® top-left corner = P1
* bottom-right corner = (column,row) = (column of P2, 3 rows below the
baseline)
[6] if black pixel count inside R is >70
return TRUE
else
return FALSE
endAlgorithm

The second feature requires that the optimal separation point (Figure 3.7 and 3.8)
must be at least 20 column to the right of the beginning of the word. If this
condition isn’t satisfied, the letter is very narrow in the top section of the body,
therefore it is more likely to be a “t” as in “ten” than a “O". If the condition is
satisfied, however, a third feature must differentiate the “O” from a “th” who’s
optimal separation point is along the right edge of the “h” and therefore would

not be within the 20 column boundary from the beginning of the word.

-68-

Beforc going into details about how we find this third feature, it is important to
know that when the noiable letter classifier is invoked, prior analysis is done to
detect the presence of any other ascender aside from the notable letter’s. If this
prior analysis finds an ascender, the word cannot be “One” since the only
ascender in this word is in letter “O”. Having said this, we therefore know that
there are no other ascenders in the word. The first requirement to identify this
third feature is to place a starting scan-point at the top of the rightmost ascender.
To do this we scan the word from right io left at the row immediately abcve the
ascender window. Staiting from column at |0.6 x word_lengih |, we stop scanning
when a black pixel is found, indicating the presence of the left edge of the
rightmost ascender (steps [1] and [2] from algorithm Notable_Category_4 below).
From there, we trace the ascender upwards until the tracing direction starts
going downwards. The topmost row reached during the trace is defined to be the
top of the rightmost ascender in the word (step [3]). Now, finding the third
feature in a “O” consists of tracing down trom the top of the rightmost ascender,
down 15 rows along the left edge. At each row, if the left edge counts more than
14 horizontally adjacent black pixels, the third feature is found. This feature
represents the characteristic top curve of an “O”(see Figure 5.17, and steps [4], [5]
and [6]). The letter is then classified as an “O”. The following pseudo-code

outlines the steps discussed above.

Algo, ithm (2) Notable_Category_4;

i1] scan_row = row immediately above the ascender window

12] scan along scan_row from: 0.6 x word_length | to the beginning of tle word.
Stop when a black pixel is found. Call this pixel P1 (see Figure 3.17)

131 Frow P1, trace upwards the left edge of the notable letter until top ¢ f letter is
reached. Call this point P2 (see Figure 3.17)

[4] From P2 trace back down the same pati:

[5] current_row = P1’s row position.

- 69-

on this curient tracing row,
18 horizontally c.djacent top of rightmost ascender
black pixels were found,
therefore top of an "O" is

found
trace path current
— — — tracing row
last row to be
traced: 15 rows — - = =
below the top & — — —iowimmediately above
of the letter Pl ascender window

Figure 3.17: Third feature to be fcund in a capital “0” (notable category 4).

=70 -

[6] while (current_row = 15 rows down from P1)
current_pixel = black pixel currently being traced on the left edge of the
notable letter
if current_pixel has = 14 horizontally adjacent black pixels
return TRUE
current_row = row inumediately under current_row
endwhile
return FALSE
endAlgorithm

We could think that if instead of an “O”, we had a “th”, and the “h” could have a
loop in its ascender (see Figure 3.18) which would have this feature at its top,
however, we have observed that loops in a “h” are far less common than those
without loops, and when loops are present, they are usually much more narrow
than the one in a capital “O”. This difference in loop widths makes a difference in
the width at the top of the loop, therefore finding 14 horizontally adjacent black

pixels at the tep of an “h” is rather rare. This remark regarding the “h” also

lllll llll/

applies for letter “I” in “Eleven”, where looped “I”s are less common than those

without loops.

® Noiible category 5: Word starts with “th” as in “three”, or “E” in “Eleven”: In
this category the “th” and the “E” share a common feature with the “O” in the
previous notable category. It is the first feature shown in Figure 3.16 that is
present in t;.e three cases. In the “E”, the feature corresponds to the lower
horizontal stroke sitting on top of the baseline, and on the “th”, it would
correspond to the bottom curve of the “t” connecting to the “h”. Figure 3.19

illustrates these three cases.

The “E” and the “th” also have their optimal separation point beyond the 20

pixel boundary from the beginning of the word, since for the “E”, it would be

-71-

loop

More common type of "h" Less common type of "h"

Figure 3.18: More common and less common types of “h” in “th”.

-72-

baseline — —

horizontal concentration of
black pixels around the baseline

Figure 3.19: Common feature in “E” (notable category 5), “th” (notable category

5) and “O” (notable category 4.

-73-

along the right edge of the “I”, and for the “th” it would be along the right edge
of the “h”. We can immediately say that if the word has other ascenders aside
from the “El” in “Eleven”, the “th” as in “three” and the “O” in “One”, then the
word cannot be “One”, and hence it is classified under this notable category.
Otherwise, recalling the third feature found in a “O”, if we do not find those 14
horizontally adjacent black pixels, we conclude that the letter is not likely to be a
“O”, therefore we classify the letter in the notable category having the closest

resemblance to “O”, namely this category.

* Notable category 6: Word starts with lowercase “t” as in “ten”. In this category
the “t” has its bottom stroke connected to the next letter as shown, for instance, in
Figure 3.8 (b). Therefore it shares a common feature with “OQ”, namely the
horizontal concentration of black pixels along the baseline. The distinguishing
characteristic of this “t” will be the location of its optimal separation point, which
is, in the great majority of cases, found within the 20 column distance from the

beginning of the word (Figure 3.8 (b)).

e Notable category 7: Word starts with uppercase “N” as in “Nine”, or “th” as in
“three”. In this category we find again “th”, however, in this case, the “t” can be
lowercase or uppercase and is not connected through the lower stroke to the “h”.
Therefore, the “th” and the “N” share a common feature which is the
absence of the horizontal concentration of black pixels along the baseline. This is
the feature which distinguishes this notable category from all previous ones. The
“N” and “th" also share a common feature with notable category 5 and 4, namely
the location of the optimal separation point, being beyond the 20 column

threshold distance from the beginning of the word. For the “N”, the bottom

-74 -

section of Figure 3.7 shows the distant position of the optimal separation point

with respect to the beginning of the word.

e Notable category 8: Word starts with “t” as in “ten”, or uppercase “F” as in
“Four”. In this category, the “t” can be either uppercase or lowercase; however, it
does not have its lower stroke connected to the next letter. Therefore the “t” and
the “F” share a common feature with the previous notable category, namely the
absence of the horizontal concentration of black pixels along the baseline. The
feature that distinguishes this notable category from the previous one, however,
is the position of the optimal separation point. Like in notable category 6, the
point is found, in the great majority of cases, within the 20 column distance from
the beginning of the word. The top portion of Figure 3.7 shows the location of the

optimal separation point in uppercase letter “F”.

* Notable category 9: Word starts with uppercase “N” as in “Nine” or “E” in
“Eleven”. This is actually the first category checked when classifying a notable
letter. If the optimal separation point is beyond 25 columns to the right of the
beginning of the word, and the word’s length/body-height ratio is greater than
6.5 (corresponding to a word categorized as “long”), and finally, if there are no
other ascenders aside the “N” or the “E”, then the word is classified under this
notable category. A 6.5 length/body-height ratio is indeed a large ratio for the
word “Nine”, however, the uppercase “N” is in most cases, the widest notable
letter found in this particular vocabulary, therefore adding substantial length to
the word. This notable category basically tries to filter in words categorized as

“long” and without other ascenders except the ones present in the notable letters.

.75-

3.5 Words recognized entirely by the symbolic classitier (word
category 1)
This word category consists of nine words (see Figure 3.20), which are
recognized entirely by the symbolic classifier. The symbolic features discussed
up to now, are sufficient to recognize the words. In the following pseudo-codes,
we will make references to ascenders and descenders in different parts of the
word to be recognized. The specific sections of the word in which cach ascender
or descender is searched will be given in the table shown in Figure 3.21, and

referred to in the code as “<table item x>, where 1 < x < 10.

3.5.1 Recognizing “eight”: The following pseudo-code and Figure 3.22
illustrate the algorithm to recognize the word “eight”. We can also visualize this
algorithm by looking at Figure 2.9 and tracing along the path from the starting
box in the tree (where the unknown word is given) and up to the leaf node
“eight”.

Algorithm Eight,

if (ascender at end of word <table iten 1>)
if (descender around middle of word <table item 2>)
if (length/body-heiglt rutio < LONG_WORID) and
(no other descenders)

return “Eight”
endAlgorith:n

llt”

In Figure 3.22, letters “t” and “g” provide all the necessary ascender/descender
information to classify the word. Therefore the uscender in letter “h” will be
ignored as it is dispensable to the classifier. The length/body-height threshold
ratio for a word to be categorized as a “long” word is 6.5. In the example shown

in Figure 3.22, the ratio is about 5.5.

-76-

Capital "O"

™\ _
Ona_ Q/L‘am’ & ngfnlt-(

ol hundrecdl dallas
N

(has a descender)

Figure 3.20: Words (category 1) recognized entirely by the symbolic classifier.

-77-

Item Feature window | left boundary right boundary
1 tord asin “eight” or ascender |5 76 x word_length | middlie of blank after
“and”) word.
2 |gor mi-ddleﬂ s t"-"ght" descender LV /3% word_length| | |2/ 3x word _length |
or “fifty” respectively
3 y asin “sixty” descender |3 14 x word_length | end of word
4 tasin “ninety” ascender |375x word_length | end of word
5 t,right [, o [, in “..teen” | ascender LU/ 2 x word_length | | [0 85 x word_length |
“dollars”, and “twelve”
respectively
6 middle d as in “hundred” | ascender |57 12x word _length | | |3 14 x word _length |
7 right [in “dollars” ascender 1112 word_length | | |3 15x word_length)
8 lowercase f as in “forty” | descender middle of blank |1 /4 x word_length |
before word i
9 hin “thousand” ascender beginning of word [~ x word _length |
10 ['in “eleven” ascender beginming of word [1/2 x word_length |

Figure 3.21: Search boundaries inside the ascender/descender windows for
ascenders and descenders. Lejt boundary and right boundary are the leftmost and
the rightmost column limits respectively used to focus the search of the
corresponding feature to a specific word section. Section 3.5 uses this table in its

algorithms to explain in detail how words in word category 1 are classified.

-78-

word start word middle word end

found ascender window
S adjacent rows

| |

| |

I | |

| I ;.I

| ~ | I ascender
| | |

| | |

body-cemng_ R P N M
Ay 6 |
baseline — — - = MWy - — — —

descender window
descender 5 adjacent rows
found

Figure 3.22: Recognizing “eight”. Refer to algorithm Eight in section 3.5.1.

-79.

3.5.2 Recognizing “eighty”: If the “e” in the word “eighty” is lowercased, the
algorithm is very similar to the one for “eight” except that it must find a

descender at the end of the word, specifically item 3 from the table of Figure 3.21.

", n

This descender is part of the “y” in “eighty”. It must also check t'at there isn’t a
notable letter at the beginning of the word. The following pseudo- « + -tlines

the algorithm used to recognize the word “eighty” with a lowercase “¢”:

Algorithm eighty;
if descender at end of word <table item 3> and
ascender at end of word <table item 4>
if (descender around middle of word <table item 2>)
if (no ascenders at the beginning of the word)
if (length/body-height ratio < LONG_WORD) and
(n1o other descenders)
return “eighty”
endAlgorithmn

If the “e” is capitalized, however, then it is a notable letter, and the information
given by the ascenders and descenders positions is insufficient to classify the
word. Some deeper analysis must be done to the notable letter at the beginning

of the word. The pseudo-code in this case is the following;

Algorithm Eighty;
if descender at end of word <table item 3>
if descender around middle of word <table item 2>
if there is a notable letter at the beginning of the word and
notable letter is “E”
if length/body-height ratio < LONG_WORD and
no other descenders
return “Eighty”

endAlgorithm

-80-

We can visualize the above algorithm by tracing along the path between the
beginning of the tree shown in Figure 2.9 up to leaf node “Eighty” (with a capital
“e”) shown in Figure 2.10. Classifying the notable letter uses the information
given by the ascenders and descenders to narrow down the possible letters to a
minimum number. The only other word which has similar ascender/descender
features as “Eighty” is “Fifty” written with a capital “F”; they both have a
descender at the end, another descender at the middle, and a notable letter at the
beginning. So, to distinguish these two words, we recall what was said
previously regarding the difference between capital “E” and “F”; we look for a
horizontal concentration of black pixels around the notable letter’s baseline,
indicating the presence of a horizontal stroke typically present in a “E”. The
algorithm to do this is identical to the one used to identify the first feature in the

notable category 4 (that is “O”, described in section 3.4).

3.5.3 Recognizing “and™:

Algorithm And;
if ascender at end of word <table item 1>
if (length/body-height ratio < MEDIUM_WORD) and
(no other ascenders or descenders)
return “and”

endAlgorithm

The minimum length/body-height ratio corresponding to a “MEDIUM_WORD”
is 5.0. We can visualize the above algorithm by tracing along the path between
the beginning of the tree shown in Figure 2.9 up to leaf node “and” shown in

Figure 2.12.

3.5.4 Recognizing “One”: It is important to recall that in this case we are

recognizing “One” with a capital “o”. This is because the symbolic classifier

-81-

looks mainly for features outside the body, and that is where a capital “0” would

reveal information to the classifier. Pseudo code follows:

Algorithm One;
if length/body-height ratio < LONG_WORD asd no descemders
if there is a notable letter at the beginning and
notable letter is @ “O” (notable category 4)
return “One”
zndAlgorithm

We can visualize the above algorithm by tracing along the path between the
beginning of the tree shown in Figure 2.9 up to leaf node “One” shown in Figure

2.16.

3.5.5 Recognizing “Hundi~d":

Algorithm Hundred;
if ascender at end of word < table item 1> and no descenders
if ascender at beginning and middle of word <table ttem s 9 and 6> and
if length/body-height ratio > SHORT_WORD
return “hundred”
endAlgorithm

The maximum length/body-height ratio for words categorized as “short” is:
SHORT_WORD = 4.3. We can visualize the above algorithm by tracing along the
path between the beginning of the tree shown in Figure 2.9 up to leaf node

“hundred” shown in Figure 2.12.

3.5.6 Recognizing “Thousand”:

Algorithm Thousand;
if ascender at end of word < table item 1> and no descenders
if ascender at beginning of word <table item 9> and no otlier uscenders
if length/body-heigtit ratio > SHORT_WORD

-82-

return “thousand”
endAlgorithm

We can visualize the above algorithm by tracing along the path between the
beginning of the tree shown in Figure 2.9 up to leaf node “thousand” shown in

Figure 2.12

3.5.7 Recognizing “dollars”: This word is slightly more complex to recognize
since the position of the ascender in the rightmost “I” is found inside the same
region where the “t” in words such as “sixteen”, is found. Words ending with
“teen”, however, have a length/body-height ratio heuristically greater than 5.0,
and the word “dollars” may sometimes be above that threshold or below it,
depending on the writer. Therefore depending on the word’s length/body -
height ratio, different algorithms will be used. In the code below, a word
categorized as “medium” has a minimum length/body-height ratio of

MEDIUM_WORD = 5.0.

Algorithm Dollars
if length/body-heigh! ratio > MERLIUM_WORD and no u scenders
if ascender around 3[4 of word <table item 5> and ascender is right “1” as
in “dollars”(will be explained shortly)
return “dollars”
else if length/body-height ratio > SHORT_WORD and no descenders
if ascender around 3/4 of word <table item 7:> and the ascender isn’t part
of a capital “O” as in “One”
return “dollars”
endAlgorithm

We can visualize the above algorithm by tracing along the path between the

beginning of the tree shown in Figure 2.9 up to leaf node “dollars” shown in

-83-

Figures 2.13 and 2.14. There are indeed two paths to reach the same leaf node

“dollars”.

In the second line of the above pseudo-code, it is mentioned that the ascender
found was recognized as the right “I” in “dollars”. The recognition consists of the
following steps: First, we start tracing upwards the ascender, starting from the
row and column where it was found. Tracing stops when the initial row is
reached again (steps [1] to [3] in algorithm Is_letier_L below). At this point, if the
unknown word is “dollars”, we should be either or: the left edge of the right “1”
(Figure 3.23 (b)) or on the left edge of the left “I” (Figure 3.23 (a)) if the two “1”
touch at a row above the trace starting row. In the latter, it is usually because the
two “I”s have overlapping loops (see Figure 3.23 (a)). Let us call P1, the starting

point of the trace, and P2 the end-point of the trace, as shown in Figure 3.23.

Since the word “dollars” is the only word in the vocabulary which has no
descenders and two ascenders around the middle of the word, we can say the
following: If the distance between PI and P2 is greater than a threshold value of
[176 xword _lengih |, then there most probably is another ascender next to the
first one found, and the two are most probably touching since the distance
between P71 and P2 is so important (Figure 3.23 (a)). Therefore if this condition is
satisfied, the ascenders are recognized as double “1”, as shown in Figure 3.23 (a)
(step [4]). However, if the condition is not satisfied, P2 is most probably on the
left edge of the right “I”, as shown in Figure 3.23 (b). If the distance from P1 and
P2 is greater than a threshold value of 12 pixels (step [5]), then the right “1” is
suspected to have a loop and is immediately checked for it (step [6]. The specifics
regarding the detection of a loop will be discussed shortly). If no loop is found,
the ascender is rejected as an “1” (step [10]). If a loop is present, however, we scan

horizontally from P2, towards the left until we reach a black pixel P3 (see Figure

point where
(@) ascender was
found

gdoflars

baseline

Figure 3.23: Tracing over the right “1”. Steps [1] to [3] in algorithm Is_letter_|.

described in section 3.5.7.

-85 -

3.24 (a)) (step [7])). If the distance between P2 and P3 is greater than a threshold
value of |1/6 xword_length |, the distance is too important to be the separation
between two “I”s in “dollars” (step [8]). Therefore the ascender found at P1 is
rejected as an “1”. However, if the distance between P2 and P3 is less than or
equal to |1/ 6 xword_length |, and the stroke at P3 is categorized as near-vertical
(absolute value of the slope is greater or equal to 1), the ascenders at P1 and P3

are recognized as two “I”s (step [9]). See Figure 3.24 (a).

If the distance between P1 and P2 is below the threshold value of 12 pixels, the
stroke between the two points is most probably a single-stroke letter such as a
non-looped “I” (Figure 3. 24 (b)). We must now, however, find the second “1”. In
the same way described before, we scan horizontally from P2, towards the left
until we reach a black pixel P3 (step [11]). If the distance between P2 and P3 is
greater than a threshold value of |1/6 xword_lengih |, the distance is too

important to be the separation between two “I”s in “dollars” (step [12]).

lllll

Therefore the ascender found at P1 is rejected as an “I”. However, if the distance

between P2 and P3is less than or equal to |1/6 x word_lengih |, and the stroke at
P3 is categorized as near-vertical (absolute value of the slope is greater or equal
to 1), the ascenders at P1 and P3 are recognized as two “I”s (step [13]). See Figure
3.24 (b). The following algorithm outlines the algorithm described in these 3 last

paragraphs: recognizing letter “I” from word “dollars” given an unknown word.

Algorithm Is_letter_L
1] P1 = pixel where <table item 5> was found.
[2] start_row = row where <table itein 5> was found
[3] Start tracing upwards from P1. Stop when start_row is reached again. Call this
pixel P2.
4] if(P1-P2j> [L/6xword_lengih |
return TRUE

- 86 -

slope =5 frace over

baseline

(a) looped "I"s were found uncommon

slope > 5
'

~ Tbaselne

(b) one stroke "I" were cormmonly found

Figure 3.24: Recognizing different types of “1”s (algorithm Is_lefter_I. in section

3.5.7).

-87-

151 if (P1-P2)>12

l6] if there is a loop between P1and P2
171 Scan left from P2 until a black pixel is found. Call this pixel P3
18] if (P2 - P3) > |1/6 xword_length |
return FALSE
191 if absolute value of stroke at P3 is = 1

return TRUE
return FALSE

110} else

return FALSE

else
11] scan left from P2 until a black pixel is reached. Call this pixel P3
[12] if (P2 - P3) > |116 x word _length |
return FALSE

[13] if absolute value of stroke at P3 15 = 1

return TRUE

return FALSE

endAlgorithm

In the else part of algorithm Dollars, it is mentioned that the ascender found
should not be part of a capital “O” as in “One”. The algorithm that checks for this
condition is almost identical to the one used to identify the first feature in notable
category 4 (“O”), namely the horizontal concentration of black pixels. Instead of
checking for the horizontal concentration of black pixels, we measure the
distance between the left side and the right side of the inside loop, and if it is less

than |0.22 x word_length |, the ascender is not part of a capital “O".

Detecting the presence of a loop: Searching for loops is mostly used when
analyzing the word “dollars”, where the “I” could feature loops instead of simple
straight vertical bars. The algorithm to detect loops is as follows: Suppose we
wanted to search for a loop in the right “1” of the word “dollars” shown in Figure

3.24(a). Starting from P2 shown in the same figure, we scan horizontally to the

-88-

right until we reach a white pixel, indicating the inside region of the potential
loop. We then give an estimate of the loop perimeter in pixels by approximating

it with an elliptic shape (Figure 3.25).

The perimeter of an ellipse is formally given by:

¥

2
P=da le -k sint0do

0

a®-h

where k =
a

However, these integral calculations are quite heavy and time consuming.
Furthermore the extreme accuracy given by the integral is not necessary and can

be approximated by the much faster version of P described below:
P=2n -1-(a2 + bz)
2
a will be equal to the distance between the upper body-limit and the top of the
“L”, b will be the distance between P17 and P2. We can now estimate the number
of pixels to be traced around the inside of the loop. In practice the number of
pixels traced in a loop never exceeds P due to the nature of the approximation,
therefore P will be the threshold number of pixels allowed to be traced alung the

inside of the loop. If the trace exceeds this threshold before coming back to the

starting point, the trace is most probably going around the entire letter in which

.89-

eliptic approximation of letter
‘L"s inside perimeter contour

top of letter

right "L"

Figure 3.25: Identifying loops by approximating the right “L” loop with an

ellipse (last paragraph in section 3.5.7).

-90-

case the loop is said to be absent. Otherwise, we say a loop is present.

3.5.8 Recognizing “foriy”: In this algorithm, we are only recognizing the word
“forty” with a lowercase “f” which has a descender. Words with uppercase “I
will be processed differently and will be discussed later. Although the correct
spelling for this word is f-o-r-t-y, it has been observed that many people
mistakenly spell it as f-o-u-r-t-y. We decided to handle and accept these spelling,
mistakes as the percentage was too high to be ignored. Since we are allowing one
extra letter in this relatively short word, the length/body-height ratio for this
word becomes significantly less accurate, hence we will disregard it, counting on
the descender/ascender information.
Algorithm forty;
if descender at end of word <table item 3>
if descender al beginning of word <table itent 8> and no other descender s

return “forty”
endAlgorithm

We can visualize the above algorithm by tracing along the path between the
beginning of the tree shown in Figure 2.9 up to leaf node “forty” shown in the

same figure.

3.5.9 Recognizing “fifty”: In this algorithm, the word “fifty” is processed
differently depending on the capitalization of the first letter “f’. If the “f" is

lowercased, then the pseudo code is the following;:

Algorithm fifty;
if descender at end of word <table item 3>
if descender at beginning of word <table item 8>
if descender around middie of word <table item 2>
return “fifty”
endAlgorithm

-91-

We can visualize the above algorithm by tracing along the path between the
beginning of the tree shown in Figure 2.9 up to leaf node “fifty” shown in the

same figure.

If the “f” is uppercased, however, the information given by the ascenders and
descenders positions is insufficient to classify the word. It is actually the same
situation as we saw before with “Eighty” written with a uppercase “E”. And as it
was mentioned for “Eighty”, the only other word which has similar
ascenders/ descender features as “Eighty” is “Fifty” written with a capital “F”’;
they both have a descender at the end, at the middle and a notable letter at the
beginning. Therefore, to distinguish “Fifty” from “Eighty”, we will use the same
distinguishing feature used for “Eighty”, namely, if we O NOT find a
horizontal concentration of black pixels around the baseline of the notable letter,

the word is classified as “Fifty”.

In future chapters, we will see categories of words requiring deeper analysis in
order to classify them. The information collected by thza symbolic classifier needs
to be completed with the information provided inside the body of words. This
area will be the working domain of the neural classifier, which is described in the

next chapter.

-92.

Chapter 4

The Neural Classifier

During the recognition of an unknown word, the neural classificr is used (when
necessary) to complement the information extracted by the symbolic classifier. In
this chapter, we will cover only words which are recognized entirely by the
neural classifier; to understand better where the necural classifier is used to
recognize these words, we can look back at the clustered-leaf node appearing in

Figure 2.14.

A neural network is, in this case, an algorithm, whose design was motivated by
the design and functioning of human brains and components thercof. It is a
network of many very simple processors called neurodes (“artificial neurons”),
each having a small amount of local memory. These neurodes are connected by
unidirectional communication channels (“connections”), which carry numeric (as
opposed to symbolic) data. In our thesis, we have chosen a specific ty pe of neural
network called a backpropagation neural network which is simply a neural
network having 3 layers or more of neurodes and uses a special learning rule
called backpropagation, or Delta Rule (Zurada, 1992). In these networks, the
neurodes are grouped by layers and operate only on their local data and on the
inputs they receive from the previous layer via the connections. Neurodes are not
connected with other neurodes within the same layer. For a typical 1-hidden

layer backpropagation network like the simplified one shown in Figure 4.1, each

layer is denominated as follows:

-93.

Output Pattern

| A

= 4) - /
Cg &D / e e
OAL
>

11 il

Input Pattern

Output Layer
(3 neurodes)

N\

Figure 4.1: Typical 1-hidden layer backpropagation network.

-94-

* The input layer: layer receiving the input pattern. In our case, we are
classifying words coming from black and white digital images; therefore cach
neurode will receive a pixel value from the image. For simplicity, Figure 4.1
shows only 4 neurodes in the input layer; architectural details of our specific

implementation will be given shortly.

* The hidden layer: In Figure 4.1, there are 2 neurodes in this layer. Every
neurode from the input layer is connected to every neurode in the hidden

layer; the input layer is said to be fully connected to the hidden laycr.

* The output layer: Figure 4.1 shows 3 neurodes in the output layer. As we can
observe, the hidden layer is fully connected to the output layer. The
conjunction of the individual outputs from the output neurodes yields the

final result returned by the neural network.

The one-hidden-layer neural network (Goodman, 1993) used in our system
works interactively with the symbolic classifier. As learning madei, the network
uses a combination of the Backpropagation algorithm (Zurada, 1992) and its
accelerated version, Quickpropagation written by Scott Fahlman (1988). ‘The net’s
function is to recognize word segments (Plamondon, 1991) in order to complete
the recognition started by the symbolic classifier. In other words, the symbolic

classifier uses the neural network when it needs to read the body of a word.

4.1 Input Patterns

Designing the architecture of the neural classifier was crucial, since it was
necessary for it to be fast, accurate, and require the least possible number of

training samples (Bichsel and Seitz, 1992). The input matrix to the neural network

has 50 columns and 10 rows. Therefore, the total number of neurodes in the input

layer is 500. As an example, Figure 4.2 shows the input pattern for “nine”.

4.2 Output Patierns

There are 19 possible output patterns. These are segments of words, which need
partial or total neural recognition. These segments are always at the beginning of
a word, or they are preceded by a letter containing an ascender. The output

patterns (19 word segments) are the following;:

one : entire word

wo : from “two”

ree : from “three”

hree : from “three”

our : from “four” and “fourteen”
ive : from “five”

Six : entire word

seven : entire word

nine : entire word

en : from “ten”

ve : from “twelve”

ir : from “thirty” and “thirteen”
hir : from “thirty” and “thirteen”
or : from “forty”

wen : from “twenty”

een :as in “nineteen” or other words ending with “een”
ix : from “Six”

even : from “Seven”

ine : from “Nine”

- 96 -

) RPN § B S cee..1111...

10 rows

50 coiumns
-y

ceeselll..11l........ lo..o.... 11..00ceea 1111..
ce..1111..11....... ll...... 111..1...... 11.1..
e..11.111111.......11......11.. .11, 0210011,
..111.111111......111....,.111..11..... 11.11..
.111..11111...... 111..... 11.1.111.....1111...
111..111.11......12.....121.1111211..... 111....
11...11..11.....,111....121.1111.1.....111....
1...111..11....11.1...11...111.12....111.....

1.,

ees.1l...11...11..12221....11...111131.12..1111...

Figure 4.2: Example of pattern (“nine”) in input matrix.

-97.-

As shown above, each output pattern belongs to only one word in the vocabulary
with the exception of output pattern “een”. We might wonder why there are two
word segments “ree” and “hree” for the word “three” and two word segments
“ir’ and “hir” for words “thirty” and “thirteen”. The reason behind it will be

given in the next sections.

4.3 Neurodes and Connections

The neurodes in the network have real-valued weights. The activation function

used is the sigmoidal function:

S(x)=

l+e™

where a = 1. S(x) values range from -0.5 to +0.5. The ouput function is the
identity functicn. In order to maximize the neural network’s response time
without losing much accuracy, connections between layers were carefully
designed (Le Cun, Boser, Denker, Henderson, Howard, Hubbard and Jackel,
1992). From the input layer to the hidden layer, each group of 50 adjacent
neurodes is fully connected to 5 adjacent neurodes in the hidden layer. Hence
there are ten groups of 50 neurodes in the input layer connected to ten groups of
5 neurodes in the hidden layer. The hidden layer and the output layer are fully
connected. Biasing is absent in this implementation. Therefore the total input to

each neurode u; in the hidden or the output layer will be

net, = Ewu “inp,

J

where w,_ is the weight assigned to inp , the input received by 1; from neurode u;

of the previous layer. Figure 4.3 shows an overview of the network’s architecture.

-98-

INPUT LAYER
(500 neurodes)

O\
50 neurodes ')

—— — —

——
-~

/

50 neurodes

\

—_ -

I
|
I

—

/
/

—
-~

\
\WOO0OO0OO0O000000) —— — (000000000 O0Y0OOOO0O00O0

\
]

—

50 neurodes

|
I
I

a—

/
/

—
-~

\ connected

HIDDEN LAYER
(50 neurodes)

OUPUT LAYER
(19 neurodes)

'/ \\8 /5 neur‘odes 6\
| /6(\ \ Fullvt dl’ 8\]9 4
|O J_cgnnece | I neurodes
|_comected | p O .
O 5neur<‘des \ i |
\o! o/

~/ I \

50 neurodes

l

/

5 neurodes

Figure 4.3: Overview of the neural network architecture.

-99.

4.4 Words recognized entirely by the neural classifier (word
category 2)

In this chapter, we will be concerned only with words who are classified entirely
by the neural classifier (word category 2). In the next chapter we will show the
rest of the words which were not covered up to now. Words in category 2 have
no ascenders nor descenders. The only information about them is contained
inside the body. All the symbolic classifier can provide is the length/height ratio
of these words. For this reason, these words will be recognized entirely by the
neural classifier. Figure 4.4 shows the set of words in this category. Let us recall
what was stated at the beginning of this chapter: for words in word category 2,
the neural classifier is used as shown in the clustered-leaf node appearing in
Figure 2.13. If we trace along the path from the start box in the tree (Figure 2.8)
where the unknown word is given, and up to the clustered-leaf node in Figure
2.13, we notice that all the features searched by the symbolic classifier were

absent, which further illustrates the nature of words in word category 2.

4.5 Preparing the input to the neural network

This phase uses a symbolic procedure. These routines are responsible for finding
the start and end points of all word segments to be sent to the neural network.
They must also normalize the word segments in order to scale them to the neural

network'’s input matrix.

4.5.1 Finding the start and end points of word segments: Since words in
category 2 are recognized entirely by the neural classifier, these words will have

only one word segment {o be sent to the network. The segment is the entire

-100-

oL srXx
seyen Ni¥e

Figure 4.4: Words recognized entirely by the neural classifier (category 2 words).

- 101 -

word, therefore the start and end points will be the beginning and the end of the

word respectively.

4.5.2 Normalizing the word segments: Since the words are scanned with a
resolution of 300 dots per inch, and the input matrix to the neural network is 10
rows by 50 columns, the bodies of words will have to be scaled down to 10 rows
in height, in order to feed them into the matrix. Ideally, to preserve the aspect
ratio (that is, the ratio of the horizontal and vertical proportions) in this scaling
process, the y-axis scaling factor should be the same as the x-axis scaling factor
(see Figure 4.5). However, sometimes the word “seven”, for instance, can be
written very wide and not very tall, so applying the y-axis scaling factor to the x-
axis could lead to loosing letters at the end of the segment. Therefore, before
scaling down, we verify that the calculated y-axis scaling factor will make the
word segment fit in height as well as in length inside the matrix. In the case
where the y-axis scaling factor is too small to make the word segment fit in

length, we change the x-axis scaling factor to make all letters fit (see Figure 4.6).

The actual scaling is done by a common technique of removing equally spaced
rows and columns from the body, in order to uniformly reduce the number of
pixels in the image. For example, let us take a word segment such as the one
shown in Figure 4.7, in order to make the height of the segment fit inside the
input matrix, the y-axis scaling factor must be equal to 10/32 = 0.31. This means
that |(1-0.31)x32] =22 rows must be deleted from the segment. Similarly,
|(1-0.31) x75] = 51 columns must be deleted to preserve the aspect ratio. We can
see that in this case, using the y-axis scaling factor for the x-axis scaling factor

does indeed make the segment fit in length inside the input matrix:

-102 -

initial body suze: 20
@ 1ows x 85 cotumns. So
g y-axis scaling factor
will be 0.5. To keep
aspect atio, x axis
scaling factor is also
setto 0.5

input matrix: 10
rows x 50 columns

scaled down body. No letters
are left out of the input matiix

#

Figure 4.5: Normalizing word segments while preserving aspect ralios.

-103-

initial body size: 14 rows x 80
columns. y-axis scaling factoris
10/14 =0.71. To keep aspect ratio,
x-axis factor is also set to 0.71

letter left out because of
Insufficlent x-axis scaling factor

A

here, y-axis scaling factor is
0.71, but x-axis factor is

50/80 = 0.62 to fit the entire

segment inside the mattix

Figure 4.6: Normalizing wide word segments.

-104 -

75 columns

32 rows

Input matrix to neural network
(101ows x 50 columns)

Figure 4.7: Example of a word segment to be scaled down tofit inside the neural

network’s input matrix.

75 columns - 51 columns < 50 columns. We must now select 22 uniformly
distributed rows across the segment (see Figure 4.8), as well as 51 uniformly
distributed columns (Figure 4.9). Therefore we will start scanning the rows from
the top of the segment to the bottom, removing a row every (32 / 22) = 1.45 rows.
It seems odd to talk about 1.45 rows since there is no such thing as a .45 row,
howewver, 1.45 can neither be floored of ceilinged as it would dramatically change
the spacing between deleted rows. To resolve this problem of removing every

1.45 rows, we will just say that to delete the " row (11 =1 to 22), we delete row

number |1.45 xn|. The same technique is applied for deleting the 51 columns.
The scaled down image is shown in Figure 4.10. To fully understand the steps

discussed above, the following pseudo-code outlines the main steps:

Algorithm Normalize;
[11 y_scaling_fuctor = 10 (input matrix height) / word _segment_height
121 if (y_scaling_factor xword_segment _length) < 50 (input matrix lengti)
x_scaling_factor = y_scaling_factor (preserves the aspect ratio)
else
x_scaling_factor = 50 { word_segment_lengtl (compresses more the x-
axis than the y-axis to make all letters fit inside the input matrix)
13/ rows_to_delete = (1 - y_scaling_factor) Xxword_segment_height
[4] columns_to_delete = (1 - x_scaling_factor) x word_segment_length
[5] deleted_row_spacing = spacing between rows to be deleted =
word_segment_height [rows_to_delete
lo] if x_axis_scaling_factor == y_axis_scaling_factor
deleted_column_spacing = spacing between columns to be deleted =
deleted_row_spacing
else deleted_column_spacing = word_segment_length [colunns_to_delete
[7] for(row =1 to rows_to_delete)
delete row # |deleted _row_ spacing x n|
[81 for(colieznn =1 to columns_to_delete)
delete column # |deleted _column_spacing x n |

endAlgorithm

~ 106 -

22 rowsto be deleted. space
between rows = 1.451ows

Figure 4.8: Selecting the 22 uniformly distributed rows to be deleted.

-107 -

51 columns 1o be deleted. Space between columns = 1.45 columns

Figure 4.9: Selecting the 51 uniformly distributed columns to be deleted.

-108 -

75 - 81 = 24 columns

- -
32-22 =
O rows

f

Input matrix to neural network
(10 rows x 50 columns)

Figure 4.10: Scaled down image now fits inside the input matrix.

-109 -

In general, a 10 x 50 matrix accommodates comfortably all word segments.

4.5.3 Anchoring the input pattern: Anchoring the input pattern resulting from
a normalization, consists of shifting the word segment inside the matrix, towards
the bottom left corner; horizontal shifting is allc wed whenever a blank column
separates the segment from the leftmost column in the matrix. Similarly, vertical
shifting is allowed whenever blank rows separate the segment from the bottom
row inside the matrix. The idea behind this is to optimize the consistency of
patterns inside the input matrix. The more consistent they are, in terms of

location within the matrix, the more accurate the learning and recognition.

4.6 Feeding word segments through the neural network

For each word from word categories 2 and 3 (covered in the next chapter), the
following process is done: each word segment is fed through the neural network,
each time producing 19 output neurode values. Discarding the output neurodes
corresponding to output patterns disabled by a masking technique (will be
discussed in the next chapter), the neural network returns the output pattern
corresponding to the highest valued output neurode. Since words from category
2 are fed entirely through the neural network, the answer from the neural
network will immediately yield the answer to the classification of the unknown

word. Examples classification of words in category 2 will be shown in Chapter 6.

- 110-

Chapter 5

Symbolic/Neural Classification

In this chapter, we will cover the last set of words to be classified. These are
classified jointly by the symbolic and neural classifiers. To understand better
where the neural classifier is used to partly classify these words, we can look at
the clustered-leaf nodes shown in Figures 2.11, 2.16 and 2.18. [t is also used in the

non-leaf node appearing in Figure 2.13.

5.1 Words recognized jointly by the symbolic and neural
classifiers (word category 3)

The words in this category cannot be recognized fully by the symbolic classifier
due to insufficient information in the ascender and descender windows. To
complete the recognition, information inside their body must be extracted. This
word category consists of 24 words, which can be separated into two groups. The
first group (called type 1) consists of nineteen words, each containing one
segment recognized by the neural net (Figure 5.1). The circled areas indicate the
word segments to be sent to the neural network. The second group of five words
(called type 2) are such that each word contains two segments recognized by the
neural net (Figure 5.2). In both groups, words can be written with or without a

notable letter at the beginning except for those pninted to by arrows.

Adding up the number of words in the three word categories (word catcgory 1

with 9 words, word category 2 with 4 words and word category 3 with 24 words)

-111 -

Capital 7@ f(@ f.@ ;:®
Letters \\) ‘
TR Seves N T

2 [@ \wel@ Capital "F"

ety 5(@9 -'F@‘«J
‘,D@h{ @W ,
Egnieers fiflezr ”{&\M@

Lowercase "f"
(has descender)

Figure 5.1: Type 1 words in word category 3, where one segment is recognized

by the neural classifier. The remaining part of the word is recognized by the

symbolic classifier.

-112-

Capital "F"

y -
Foves WD sves

Soiesterry @'neleEm

Figure 5.2: Type 2 words from word category 3, wherc 2 segments are recognized
by the neural classifier. The remaining part of the word is recognized by the

symbolic classifier.

-113-

gives us a total of 37 words which is higher than the number of words in our
vocabulary (31 words). This is because the following words belong to more than

one word category:

e “one”: If the “0” is capitalized, then it is a notable letter and the word
belongs to word category 1; otherwise, it belongs to word category 2.

e “six”, “seven”, “nine”: When the first letter is capitalized, then it is a
notable letter and the words belong to word category 3; otherwise, they
belong to word category 2.

¢ “forty”: When the “f” is capitalized, it has no descenders and the word

belongs to word category 3; otherwise, it belongs to word category 1.

In addition, although “fourteen” always belongs to word category 3, it is treated

as a type 1 word when “f’ is not capitalized, and as a type 2 word otherwise.

5.2 Preparing word segments from word category 3, to be sent
to the neural network

The process of preparing word segments to be sent to the neural network takes
place before invoking the neural network. Therefore, in Figures 2.10, 2.15, 2.17
and 2.12, this process is done right before the nodes send the segments to the

neural network.

5.2.1 Finding the start and end points of word segments: Finding the start and
end points of category 3 words is complex due to the division of words into

multiple regions to be analyzed by different classifiers.

lltll

For words ending with “ty” such as “sixty”, the “t” (feature item #4 from Figure

3.21) and the “y” (item #3 from the same figure) will be identified by the

-114 -

symbolic claszifier, hence the end of the word segment to be sent to the neural
network will be immediately to the left of the “t”. It is important to recall that the
symbolic classifier is providing the location where the “1” was found; therefore to
find the end of the v-ord segment, we trace letter “t” upwards starting from
where it was found in the ascenders window, and stopping once we have gone
over its top and back down to the middle row inside the body. The start-point of
the word segment will depend on whether the word has a notable letter at the
beginning. If it does, then optimal separation point discussed in the previous
chapter, will be taken as start-point. Otherwise, the segment will start at the
beginning of the word. The following pseudo-code outlines the main steps
discussed in this paragraph.
Algorithm (1) Find_start_end_points;
[1] start_point = Find_Scparation_Pixel(); {call algorithm Find_Scparation_Pixel
covered tn section 3.3)
[2] feature_pixel = pixel inside the ascenders window where item #4 in Figure 3.21

was found
[3] starting from feature_pixel, trace upwards the right edge of the “t”. Stop when the

”t ’”

trace goes down the left edge of the “t” and dotwn to the middle row inside the

body.
[4] end_point = last pixel in tie trace.
endAlgorithm

For words having feature item #5 in Figure 3.21 (“twelve”, and all words ending
with “teen”), the first word segment to be sent to the neural net is the one
immediately to the right of the feature found; in other words, the word segment
will either be “ve” or “een”. Finding the start-point will not consist of tracing
down the found letter (either a “t” as “sixteen” or a “I” in “twelve”) along its left
edge, as this can often generate inaccurate results for words ending with “teen”

" t"

due to the presence of the horizontal bar in the “t” which often stretches to touch

-115-

the top of letter “e” to its right (see Figure 5.3). Interestingly enough, we
observed that the horizontal bar in letter “t” would usually stretch out more on
the right side of the “t” than on the left side (Figure 5.3 illustrates this). For this
reason, we chose to trace the letter in the same way as described in the previous
paragraph, namely, upwards from where it was found, in order to trace doswn its
more reliable left side. Tracing stops when the middle row inside the body is

reached. From this point, we scan horizontally towards the right until we find a

white pixel indicating the presence of a white space separating letter “t” from

letter “e”. At this point, if the distance travelled to the right, to find the white
pixel, is less than a threshold value of 18 pixels, the white pixel is selected as

start-point (Figure 5.3). If the distance, however, is greater than 18 pixels, the “t”

and the “e” are probably touching, leaving no white space between them. In this

extreme situation, the pixel where the threshold value was reached during the
last scan, is selected as start-point of the word segment. The end-point will
simply be the end of the word. The following pseudo-code outlines the main
steps discussed: finding the start-point and end-point for the word segment to

the right of feature item #5 in Figure 3.21.

Algorithm (2) Find_start_end_points;

[1] end_point = end of word

[2] feature_pixel = pixel inside the ascenders window where item #5 in Figure 3.21
was found.

[3]1 starting from feature_pixel, trace upwards the right edge of the feature item #5.
Stop when the trace goes down the left edge and down to the middle row inside the
body. Call this point P1.

[4] From P1, scan towards the end of the word on the same row. Stop when a white

pixel is found or when distaince between P1 and the current pixel being scanned is
greater than 18 pixels.

-i16 -

point where ascender "t" was
found in the ascender window

touching point

middle row inside

body
aseline
accurate start-point innaccurate
found by tracing start-point found
upwards letter "t" by tracing down
and traversing the letter "t"

bottom section of it

Figure 5.3: Tracing the right side vs tracing the left side of the “t”, to find the

word segment start point.

-117 -

[5] start_point = last pixel scanned in step [4]. (see Figure 5.3)
endAlgorithm

Most words ending with “teen”, have a second segment to be sent to the neural
network. This second word segment will have its end-point to the immediate left
of the “1” in “..teen”. The algorithm to find this end-point is identical to the one
used on words ending with “ty”. The algorithm to find the start-point is also
identical to the one used on words ending with “ty”. For all other words, such as
“Seven”, “Nine”, and “Six”, the start point is the separation point between the
notable letter and the rest of the word. The end point will simply be the end of

the word.

Note regarding notable letters “th” as in “thirty”: Let us recall the point made
previously in section 4.2 when discussing output patterns, regarding the two
output patterns for each word “thirty” (or “thirteen”) and “three”. The reason for
having two almost identical segments per word is the way the optimal separation
point is found in notable letters. As we saw for the symbolic classifier, the
optimal separation point in words starting with “th” is on the middle row inside
the body, on the right edge of letter “h” (see Figure 5.4). Depending on the
writer, however, the optimal separation point could be found to the right of the
“h” or in the middle of it (see Figure 5.4). From the neural network’s point of
view, the two resulting word segments are considerably different, and learning
from them as one single ouput pattern becomes difficult and sometimes yielding
unacceptable performance. Therefore the two types of segments were put in
separate classes to maximize consistency in the learning set of patterns. At
recognition time, both output patterns “ree” and “hree” will translate into

“three”, “ir’ and “hir” into “thir”.

-118-

optimal separation optimal separation

point found on the point found in the
right side of the "h" middle of the "h"
o
__‘/

Two considerably different
word segments, yet coming
from the same word

Figure 5.4: Different segments for the word “thirty” sent to the neural classifier.

-119-

5.2.2 Size-normalization: The same normalization algorithm discussed in the
previous chapter (algorithm Normalize in section 4.5.2) is used for size-

normalizing word segments from word category 3.

5.3 Classifying word segments and patching-up the final word

Word segments from category 3 are fed through the neural network in the same
way as for word category 2. The difference is that, since words from category 3
are recognized only partly by the neural network, the answers from the neural
network will not immediately yield the answer the entire classification of the
unknown word. All pieces collected from the symbolic and neural classifiers

must be put together to make up the final word.

Patching up words “twelve”, “eleven” and those ending with “teen”: In some
cases, these words can all share the same feature, namely, an ascender between
the middle and three fourths the length of the word. Therefore, when this feature
is found, we will first send to the neural network the word segment to the right
of their common feature. Thus the three words segments are “een”, “ve”, and
“even”. If the output pattern sent back from the neural network is “ve” and the
notable letter is in a notable category containing a “t”, the word is recognized as
“twelve”. If the output pattern received is “even” and the notable letter is in
notable category 3, 5, or 9, the word is recognized as “eleven”. And finally if the

output pattern received is “een”, then the following words can be recognized

immediately:

e “fifteen”: The algorithm is similar to the one used for “fifty”:

Algorithm fifteen;
if no descender at end of word and
if ascender towards the end of the word <table item 5>

-120-

if descender at beginning of word <table itemn 8>
if descender around middle of word <table item 2>
return “fifteen”
endAlgorithm

¢ “eighteen”: The algorithm is similar to the one used for “eighty”:

Algorithm eighteen;
if no descender at end of word
if ascender towards end of word <table itemn 5>
if (descender around middle of word <table ttem 2>)
if (no ascenders at the beginning of the word)
if (lengthfbody-height ratio < LONG_WORD) and
(110 other descenders)
return “eighteen”
endAlgorithm

o “fourteen”: The “f” must be lowercased. Again, the algorithm is similar to
the one used for “forty”. If the “f” is uppercased, the word must send
another segment to the neural network. Below is the algorithm for
recognizing the word “fourteen” with a lowercase “f":

Algorithm fourteen;
if no descender at end of word
if ascender towards the end of the word <table itemn 5>
if descender at beginning of word <table item 8> and
no other descenders

return “fourteen”
endAlgorithm

All other words ending with “teen” require a second word segment to be sent to
the neural network. We therefore prepare the new input to the neural net by
fetching the word segment to the left of the common feature mentioned before.

The following pseudo-code illustrates the patch-up process.

-121-

Algorithm Patch_Up;
if WordEnd = last 2 or 3 letters of word = “ty” or “teen”
final word is the concatenation of the notable letter (if any), the

output-pattern name and “ty”.
ex: “S” + “even” + “ty” = “Seventy”, “th” + “ir” + “teen” = “thirteen”
elsif WordEnd = “other”= neither “ty” nor “teen”

if

elsif

elsif

elsif
elsif
elsif
elsif
elsif
elsif
endAlgorithm

output pattern returned is “even”
if (word has no notable letter) or (notable letter is “S”)
return “seven”
if notable letter is from notable category 3, 5, or 9
return “eleven”
output pattern returned is “ine” or “ive”
if there is a descender at the beginning of the word <table item 8>
return “five”
elseif output pattern is “ine”
return “Nine”
else return “five”
ou.put pattern returned is “ix” or “six”
return “six”
output pattern returned is “en” return “ten”
output pattern returned is “wo” return “two”
output pattern returned is “hree” or “ree” return “three”
output pattern returned is “one” return “one”
output pattern returned is “our” return “four”
output pattern returned is “nine” return “nine”

5.4 Setting an ouput mask

When the input matrix to the neural network is ready, it is important to guide the

neural net’s output decision based on the features found by the symbolic

classifier. A single 32-bit integer number is used for fast masking; each output

segment is given a unique bit position in the 32-bit number. Bits set to 0 eliminate

the corresponding output patterns from the possible outputs of the neural

-122-

network. Therefore, when choosing the highest output values from the output

neurodes, the neural network will ignore neurodes corresponding to those ouput

patterns having their bit set to 0.

The following pseudo-code is the best way to see how the masking, is done. Two

parameters are given to the masking routine:
* The word termination (WordEnd): “teen”, “ty”, or “other”
¢ The notable letter at the beginning of the word. If there isn’t one, “no
Notable_Letter” is given.

Before sending the word segment to the neural network, the 32-bit mask is set to
0 to disable all output patterns’ bits. When reading the pseudo-code, you may
want to refer to the list of output patterns given in section 4.2. This list will

remind you of which segment belongs to which word.

WordEnd = ending of the word, e.g. it could be “ty”, “teen”, or “other” if it’s not “ty”
nor “teen”.

Algorithm Mask(Notable_Letter, WordEnd)

case Notable_Letter is in
notable category 8: if WordEnd = “other”
bits are set to “1” for output patterns “wo”, “en”,
“our”, and “rve”
elsif WordEnd = “ty”
bits are set to “1” for output patterns “wen”, “or”,
and “our”
elsif WordEnd = “teen or lve”
bits are set to “1” for output patterns “onr” and

" ”

or

notable category 7: if WordEnd = “other”
bits are set to “1” for output patterns “ine”, “ree”,
and “hree”
else bits are set to “1” for output patterns “ine”, “ir”

-123-

notable category 2:

notable category 6:

notable category 1:

notable category 9:

notable category 3:

notable category 5:

and “hir”
bits are set 1o “1” for output patterns “ix” and “even”

if WordEnd = “other”
bits are set to “1” for output patterns “wo” and

elsif WordEnd = “ty”
bits are set to “1” for output pattern “wen”

else (WordEnd = “teen”)
all bits are set to “0” because no word starts with
this notable category and ends with “teen”. This
word is therefore rejected.

bits are set to “1"” for output patterns “our” and “ive”
note: Words starting with this notable category and

“wy

ending with “*y” or “teen” are recognized entirely by

the symbolic classifier, therefore we ignore those words.

if WordEnd = “other”
bits are set to “1” for output patterns “ine” and
“even”

else bits arc set to “1” for output pattern “ine”

if WordEnd = “other”
bits are set to “1” for output pattern “even”

else all bits are set to “0” since there are no words in
this vocabulary which start with an “E” aside from
“eleven”. The word 1s therefore rejected.

if WordEnd = “other”
vits are set to “1” for output patterns “ree”, “hree”
and “even”

else bits are set to “1” for output patterns “ir” and
“lar”

-124-

no Notable_Letter: if WordEnd = “ty” or “teen”
bits are set to “1” for output patterns “six”,
“seven”, and “nine”

r

else bits are set to 1" for output patterns “one”, “six”,
“seven”, and “nine”
endAlgorithm

For example, given an unknown word, suppose the symbolic classifier
recognizes a “ty” (items 3 and 4 from the table in Figure 3.21) at the end of the
word, and finds a notable letter in notable category 7 (a capital “N” or a “th” at
the beginning of the word). The words which have these teatures are only
“Ninety” and “thirty”; therefore, before sending the word segmerits to the neural
network, the mask bits for word segments “ine”, “ir”, and “hir” are enabled (set
to 1) and the rest are disabled (set to 0). The experimental results from our

classification system are given in the next chapter.

-125-

Chapter 6
Experimental Results

6.1 The Grammar checker

A context free grammar for worded amounts was developed to minimize
cheque-level misrecognition and reject ambiguous forms of writing alphabetic
amounts. In the current implementation, the grammar checker is used to accept
cheques which are grammatically correct, and reject all other ones. For example,
ir we have the following amount: “Ten thousand and twenty dollars”, and the
second word “thousand” is misrecognized as “twenty” then the cheque is

rejected since “Ten twenty...” is assumed to be grammatically incorrect.

The grammar consists of 16 production rules (shown below) and a set of flags.

Formally speaking, the grammar G is defined as follows:

Start symbol: S

Non-terminal symbols: {A,B,C,D,E,E2,F,Gab,c,defg}

Terminal symbols: {one, two, three, four, five, six, seven, eight, nine, ten, eleven,
twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, hundred,

thousand, and, dollars, twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, o*, eol**}

* o represents the empty string.

** eol represents the “end-of-line” character.
S-> AIBIG

A-> aClaD | aF
B-> bC | bD | bF

-126 -

C-> cE

D-> dE

E-> E2AIVE2BIF
E2-> ¢lo

F-> fleo

G-> gAlgDIlgF

a-> “one” | "two” | "three” | "four” | "five” | "six" |
“seven” | "eight” | "nine”

b-> “ten” | "eleven” | "twelve” | "thirteen” | "fourteen” |
“fifteen” | “sixteen” | "seventeen” | “eighteen” |
“nineteen”

c-> “hundred”

d-> “thousand”

e-> “and”

f-> “dollars”
g-> “twenty” | “thirty” | "forty” | "fifty” | "sixty” |
"seventy” | “eighty” | "ninety”
Some flagging techniques were added to the grammar checker in order to

simplify the grammar definition. These flags are:
flag_1000 : is TRUE when the token (word) recognized is "thousand"

flag_10_90 : is TRUE when the token (word) recognized is between "ten”

" "

and "twenty" or one of "thirty", "forty"..."ninety".

flag_100 : is TRUE when the token (word) recognized is "hundred".

The way they these flags work together is whenever flag_1000 is s t to TRUE, it
sets the other flags to FALSE in order to allow any other word to occur next in
the worded amount. However, the word “thousand” can only appear once in the
worded amount, therefore if flag_1000 is TRUE and there is another word
“thousand” found in the amount, the grammar will reject the cheque. The word

“hundred” can appear once, or twice .t after its first instance, the word

~127 -

“thousand” was found (as in “two hundred thousand four hundred dollars”).
Moreover, the word “hundred” should not appear if flag_1000 is TRUE and
flag_10_90 is TRUE; otherwise we would get amounts such as “one thousand
twenty hundred dollars” which is not only odd but also ambiguous. In the table
shown in Figure 6.1, we can see the truth table for the three flags; fcr each

combination of truth values, we give the possible words which are accepted.

It should be noted that the above grammar is equivalent to the regular grammar
shown in Figure 6.2 (Opatrny, 1995). For the state diagram in the figure, we use

the following symbcs:

@ : A final state.
@ : Initial state.

Symbols “a”, “h”, “t”, “1-9”, “10-19”, “20-90” and “d”, stand for “and”,
“hundred”, “thousand”, “one..nine”, “ten...nineteen”, “twenty...ninety”, and

“dollars” respectively.

6.1.1 Examples of grammatical forms accepted by the grammar checker: All
common grammatical forms are accepted. There are variations such as in the use
of the word “and”: some write, for instance, “three thousand and fifty dollars”,
others might write “three thousand fifty dollars”, omitting the word “and”. Both
forms are acceptable by the grammar checker. The same applies for the word
“dollars”. There is also a common spelling mistake amongst some writers who
tend to confuse the spelling of “fourteen” and “forty”, writing sometimes “fourty”

and “forteen”. Any of these four spellings are accepted as being a common

- 128 -

flag_1000 flag_100 flag 10_90 Words accepted

FALSE FALSE FALSE “one”, “two”...“thousand”

FALSE FALSE TRUE “one”...”nine”, “hundred”,
“thousand”

FALSE TRUE FALSE “one”...”ninety”,
“thousand”

FALSE TRUE TRUE “one”...”nine”, “thousand”

TRUE FALSE FALSE “one”...”hundred”

TRUE FALSE TRUE “one”...”nine”

TRUE TRUE FALSE “one”..."ninety”

TRUE TRUE TRUE “one”...”nine”

Figure 6.1: Truth table for grammar flags flag_10_90, flag_100, and flag_1000.

-129-

(Opatrny, 1995).

Figure 6.2: State diagram of the regular grammar

-130-

misspelling. This feature, however, is not directly implemented in the grammar
definition nor in the flags, but rather it is dealt with by the classifier which must
output properly spelled words. To see how it does this, let us refer back to the
masking technique discussed in section 5.4; looking at algorithm AMask, we notice
that in the case where the notable letter is classified under notable category 8 and
the word ends with “ty” or “teen”, both segments “or” (from “forty”) and “our”
(as in “fourteen”) are allowed to be selected as output from the neural network.

This means that we can have “fourteen”, “forteen”, “forty”, and “fourty”.

We have also taken into account two ways of writing amounts which are above
1,000 dollars. For example, to write the amount of $1,600, most writers would
write “one thousand six hundred dollars”, a less common form would be “sixteen
hundred dollars”. Therefore our grammar checker will accept forms such as
“twenty frve hundred and sixty five dollars”, “thirty undred”, ete. up to “ninely nine
hundred and ninety nine dollars”. 1t will reject, however, forms such as “sixty eight
hundred thousand...”, which is not ambiguous mathematically speaking; however,
it is too rare to take the risk to accept it. A common form for this amount is “Six
million eight hundred thousand”. So for this last form, the highest number

preceding the words “hundred thousand” will be “nine”.

6.1.2 Examples of grammatical forms rejected by the grammar checker: All
odd or ambiguous forms of grammatical structures are rejected, such as “one fifty

dollars” for $150, or “twenty thousand and three thousand dollars” for $23,000.

-131-

6.2 Examples of classification

6.21 Word category 3 (type 1 word): Let us look at the example shown in
Figure 6.3, when given as input to the neural network, the net’s ouput is shown

in Figure 6.4.

6.2.2 Word category 3 (A different type 1 word example): When the input
shown in Figure 6.5 is given to the neural network, the output is shown in Figure

6.6.

6.2.3 Word category 3 (type 2 word): Now, let us look at the example shown in
Figure 6.7, where two word segments must be sent to the neural net. The output

is shown in Figure 6.8.

6.24 Word category 3 {type 1 word): This example features a notable letter at

the beginnirg. Figure 6.9 is the input and Figure 6.10 shows the output.

6.2.5 Word category 2 (words recognized entirely by the neural network): In
the following example, the word has no ascenders nor descenders, the
distinguishing characteristic of words in this category. Figure 6.11 is given as

input and Figure 6.12 shows the output of the classifiers.

6.3 Word level recognition and experimental results

6.3.1 Training set: For our experiments, we used 700 words taken from 60
cheques and 450 individual words, to train the symbolic and neural classifiers.
The data was collected from over 80 volunteers from Concordia and McGill
University students. For the neural classifier, once the architecture of the neural

network was finalized, training it took about one hour on a Sun Sparkstation 2.

-132-

table item 2
No deoscenders Neural Network

normalized bitmap
matrix

Figure 6.3: Input word yielding output shown in Figure 6.4. Table items are from

Figure 3.21.

-133-

Word has L/H ratio: 7.935484. Hence it is a "long" word.

Word has a ascender at around 2/3 of its length.

Checking to see if the ascender found could be

double “L” as in “dollars”...

Second “L” was not found therefore cannot be “dollors” ¢
Sending end-of-word to neural-net, with possible output

patterns “ve’”, “een” and “even”

Input to the neural network is the following bitmap matrix:

e .
.1111.....1111.......) P cestsecessreacssce e
I I
11..1....1..11...... 1111 . cieieenncieeaannanen cose e
) e
R N e
) .

1..'....1.....111..1..'11..........I--..l....ll.l.
11.0..111-.. .11-0..1--0-11.1..-.-.n....o.oo...o-..

Neural net guess is “een”.

So we now know the word ends with “teen”.

Word has a descender at around 1/3 of its length (could be g
as in “eighteen” or an “f” as in “fifteen”)

First letter has no ascenders nor descenders, therefore

Word was recognized -~* 'eighteen'

Figure 6.4: Example of neural net output when the input is Figure 6.3.

-134-

table item 4

return "six" normaizedbitmap matix 'able item 3

Neural Network

Figure 6.5: Type 1 word of category 3: “sixty” without a notable letter at the

beginning. Table items are from Figure 3.21.

-135-

Potential DESCENDER at row 71, col 203. Dumping local
bitmap...

0000011111100000000000000000000
0000011111000000000000000000000
0000011110000000000000000000000
0000011110000000000000000000000
0000111110000000000000000000000
0001111100000000000000000000000

Slope = 2.50. Therefore word has a 'y' at the end

Potential ASCENDER at row 26, col 186. Dumping local
bitmap...

0000000111111110000000000000000
0000001111111100000000000000000
0000001111111000000060000000000
0000011111110000000000000000000
0000111111100000000000000000000
0011111111100000000000000000000

Slope = 1.67.
...above slope is for 't (as in 'ninety')’, in Worxd

Looking for a notable letter at the beginning of the
word. ..None Found!
Possible output patterns: 'six', 'seven', ‘'nine’,

Input to the neural network is the following bitmap matrix:
00000000111100000000011000000000000000000000000000
00000001111000000000110000000000011000000000000000
00000011010000000001100000000001111001100000000000
00001110110000000011000000000011111111000000000000
00011000100000000111000000001110011110000000000000
01100001100000011110000001110000111000000000000000
11000001000001110100000011100011110000000100000000
00000010000111001100001100001110100000011100000000
00000010001100001000011000011100100011110000000000
00100110110000011011100001110000111110000000000000
Net guessed: 'six’'

word was recognized as 'sixty'

Figure 6.6: Output when input is Figure 6.5.

-136 -

notable letter classified
in notable category 7 table item5

|
|
l
|
|

return “hir" jetun "een’

normalized bitrmap normalized bitmap
matrx matiix

Neural Network Neural Network

Figure 6.7: Type 2 word of category 3. Table items are from Figure 3.21.

-137-

Potential ASCENDER at row 26, col 989. Dumping local

bitmap...

0000011111000000000000000000000
0000011111000000000000000000000
0000011111000000000000000000000
0000001111000000000000000000000
0000001111000000000000000000000
0000001111100000000000000000000

Slope = -5.00.
...above slope is for 't (as in 'nineteen')’ in Wword

Word has L/H ratio: 11.777778. Hence it is a "long" word.

Possible output patterns: 've', 'een’',

Input to the neural network is the following bitmap matrix:
01100000100000011001100000110000000000000000000000
01000000100000110C2010000001000000C000100000000000
01000011100001100000110000010000000001100000000000
01101111000001100011100000010000000011110000000000
01111110000001101111100000011000000011010000000000
111100000000011111000000000110000001100110C00000000
00011000000000111000000000001000001100001100000000
©0001110000000011000000000001100011100001100000000
00000111111000001111500000000111111000000110000000
€0000000100000000111111100000011100000000010000000

Net guessed: 'een'
Looking for a notable letter at the beginning of the word...
...found a dot from an 'i'. Dot's perimeter is 23 pixels.

Dumping bitmap for pixel density calculation...row=0 to 26.
col=795 to 874

f 1420000000000000000000000000000000200
000¢0000000000000000000000000000000000111110000000000000000000110000000000000000
00000000000000000000000000000000000000111110000000006000000001111000000000000000
00000000000000000000000000000000000000111110000C¢000000000000011110000000006000000
00000000000000000000000000000000000000111110000000000000000001111000000000000000
00000000000000000000000000000000000000111110000000000000000001211000000000000000
000000000000000000000000000000000000000111120000000000000007001111000000000000000
00000000000000000000000000000000000000011200000000000000000001111000000000000000
000000000000000000000007000000000000001111100000000000000000011100°06000000000000
00600000000000000000000000000000000000111110000000000000000001110000000000000000
00000000000000000000000000000000060000111110000000000000006011111000000000000000
00000000000000000000000000000000000000111110000000000000000011110000000000000000
000000000000000000000000000000000000001111100000000000000001111100000000000C0000
00000000000000000000000000000000000000111110000000000000000111110000000000000000
00000006000000000000000000000000000000111110000000000000000111110000000000000000
00000000000000000000000000000000060900111110000000000000000111111000000000000000
00000000000000000000000000000000000000111110000000000000000111111000000000000000
00000000000000000000000000000000000000111110000000000000001111111000000000000000
00000000000000000000000000000000000000111110000000000000001111111000000000000000
©00000000000000000000000000000¢0000000011111000000000000001111111°000000000000000
00000000000000000000000000000000000000111110000000000000111111111900000000000000
0000C000000000000000000000000000000000111110000000000000111111112¢00000000000000
00000000000000060000000000000000000000011110000000000000111011111000000000000000
00000000000000000000000000000000000000011110000000000001112011111000000000000000
000000000000000000000000000000000000000111100000000000011100011110000600000000000
00000000000000000000000000000000000000011110000000000011100001111000000000000000
00000000000000000000000000000000000000011110000000000111100001111000000000000000

Pixel density = 268
Therefore Word has a Notable letter at the beginning.

Analyzing Nntable Letter... (continued on next page)

-138-

(...continued from previous page)
Notable letter is 'N_th'.
Possible output patterns: 'ir', 'ine', ‘'hir’,

Input to the neural network is the following bitmap matrix:
00000001111000000000000010111000000000000000000000
00000001001100000010000011110000000000011100060000
10000011000110000011060001110000000001111100000000
10001110000011000011000000110000000001110000000000
11111100000001000001000000111000000000000000000000
00100000000000110001100000010000000000000000000000
00000000000000011000100000011000000000000000000000
00000000000000001100116000011000000000000000000000
00000000000000000000010000001100000000000000000000
00000000000000000000000000001100000000000000000000

Net guessed: hir.

Word was recognized as 'thirteen’

Figure 6.8 The output when input is Figure 6.7.

-139-

Notable letter classified
in notable category 2

return “ix"
normalized bitmap
matrix

Neural Network

Figure 6.9: Type 1 word from category 3 with a notable letter at the beginning.

-140-

Looking for a notable letter at the beginning of the word...
Dumping bitmap for pixel density calculation...row=0 to 35.
col=7 to 42

000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000001
000000000000000000000000000000000011
000000000000000000000000000000012111
000000000000000000000000000001111111
000000000000000000000000000011111100
000000000000000000000000000121111000
000000000000000000000000011111100000
000000000000000000000001111121000000
000000000000000000000011111100000000
0000000000000000000001111113000000000
000000000000000000001111110000000000
000000000000000000011111100000000000
000000000000000001111110000000000000
000000000000000011111100000000000000
000000000000000111111000000000000000
000000000000001111100000000000000000
000000000000011111000000000000000000

Pixel density = 92
Therefore Word has a notable letter at the beginning.

Analyzing notable Letter...

Notable letter is 'S'.
Possible output patterns: 'ix', 'even',

Input to the neural network is the following bitmap matrix:
00000000000100000000000000000000000000000000000000
00011000001100000000000000000000000000000000000000
00100100001000000000000000000000000000000000000000
101001100110000000000000000600000000000000000000000
10000011110000000000000000000600000000000000000000
100000011000
100000111100
10000110011000000000000000000000000000000000000000
10111100001110000000000000000000000000000000000000
00000000000001111100000000000000000000000000000000

Net guessed: ‘ix’.

Word was recognized as 'six'

Figure 6.10: The output when input is Figure 6.9.

-141 -

No ascenders nor descneders |

¢ |

return "nine"

normalized bitmap
matrix

Neural Network

Figure 6.11: Recognizing a word in word category 2.

-142-

Word has L/H ratio: 5.333333. Hence it is a "medium" word.

Looking for a notable letter at the beginning of the
word. . .None Found!

Possible output patterns: 'one', 'six', 'seven’', 'nine’,

Input to the neural network is the following bitmap matrix:
00000111011100000110000000011111001111110000110010
10000110000110000110000000000011011100110001100110
11001100000110000111000000000011011000110001001110
11101100000010000011000000000011111000110011011110
11111000000010000011100000000111110000110011110000
01111000000011000001111100000011100000110111100000
01111000000011000000111100000011100001110110000000
01111000000111000000000000000011100001100110000000
00110000000110000000000000000011000001100100000000
01110000001110000000000000000000000001100100000000
Net guessed: 'nine’'.

Word was recoynized as 'nine’

Figure 6.12: The output when input is Figure 6.11.

-143-

On this training data, the system delivered a 85% correct word recognition rate,
an error rate of 11%, and a rejection rate of 4%. The rejected were misrecognized
words which yielded a grammatically incorrect worded amount. Figure 6.12

shows some specimens from the training set.

6.3.2 Testing set: We tested on 500 words from over 40 volunteers. All words
come from a set of 153 cheques (see Figure 6.13 for examples of such worded
amounts) and 100 individual words. On these words, the system delivered
70.47% correct word level recognition rate, a 21.16% error rate, and a 8.37%
rejection rate. The testing set and training set are disjoint. Moreover, in order to
emphasize even more the writer-independence of the system, the set of writers

from the training set is disjoint from the set of writers in the testing set.

For a cheque to be recognized correctly, all words in the cheque must be
recognized correctly. At the cheque level, the recognition rate on the testing set is
17%; however, we will see shortly that with the addition of a digit classifier and a

resolution strategy, cheque-level results become better.

6.3.3 Recognition speed and memory requirements: For a typical 5-word
example such as the one shown in Figure 1.2, the system takes approximately 1.5
seconds to recognize all words on a Sun Sparkstation 2. This includes
preprocessing time and grammar checking time. The amount of memory
required to run the system is of approximately 2.5Mb of RAM. The system was
designed to be 100% portable to any computer platform having an ANSI C
compiler, making it easy to work with it in different environments. All routines
are original code written in C, with the exception of the neural network code
which was adapted from a generic neural network C code provided as shareware

by Goodman (1993) from the University of Nevada.

-144 -

Ore ThatSod terur Wuudiod owd wuzfx{ Vive

M e

Eighlt- Fundwd sund ciphty one

&V&n&r CL‘S"% (- dalle cc

Sevewlin _Munded and Fm_Z/’

Figure 6.13: Training specimens.

-145-

@Mé h(l/’?ﬂ/f‘a«@’/ S Z'Vﬁ- ol flars
v fumdbiee and venty poe

Lo ThuseAras)

Figure 6.14: Testing specimens.

- 146 -

6.4 Integration with a digit classifier

In order to apply the system to a cheque level application, experiments were
done with the integration of a digit classifier designed by Hum (1995). At the
cheque level, both numeric and alphabetic amounts are read and compared; if
they match, the cheque is accepted, otherwise, we apply a resolution strategy
(will be discussed shortly) to compute alternative classifications. If the resolution

strategy fails, the cheque is rejected, otherwise, it is accepted.

6.4.1 Brief description of the digit classifier: The symbolic digit classifier
extracts features from skeletonized images of the input character. The features
extracted from the skeletons are such as the number of holes, upward openings,
downward openings, left openings and right openings of an image. If a hole or
an opening has been found, its location is also recorded. The number of
horizontal, vertical, left, and right diagonal crossings of the image is also
extracted as features. The classifier was trained and tested on the CEDAR
database (Hull, 1994) of digits. The database consists of totally unconstrained
handwritten numerals taken from actual post office envelopes mailed in the
Buffalo, New York area. As such, there were no restrictions in the way the digits
were written. Hum reported a correct recognition rate of 93% on segmented

digits.

6.4.2 The resolution strategy: The strategy uses statistical information from the
confusion matrices of both word and digit classifiers to try to resolve mismatches
between the two classifiers. A mismatch is detected when the number returned

by the word classifier (corresponding to the worded amount), does not match the

-147 -

number returned by the digit classifier (corresponding to the digit amount). We

will try to resolve only those mismatches that have the following conditions:

* The number of digits in the amount returned by the word classifier must be
the same as the one returned by the digit classifier. For example “1647” and
“245” do not have the same number of digits, therefore the condition is not

satisfied.

* There is only one mismatched digit from the two numbers. For example,
“658” and “659” only differ on the third digit, therefore they satisfy the

condition. “750” and “860”, however, do not satisfy the condition.

The reason for imposing conditions is to resolve only mismatches which were
close, leaving out the riskier cases which could lead to accepting a faulty cheque.
For this reason, the mismatches which satisfy the above conditions will be called
“reliable mismatches”, and those who do not satisfy them are called “unreliable
mismatches”. In the table shown in Figure 6.15, we can see other examples of

reliable and unreliable mismatches.

Two confusion matrices were generated from the training sets for both digit and
word classifiers (see Figure 6.16). The digit classifier's matrix can be seen as a 1-
dimensional array of size 10 (for digits 0 to 9). Each slot in the array contains the
highest confusion digit corresponding to the digit represented by the slot index.
In other words, if slot #1 = “2”, this means that digit “1” is most often confused
with digit “2”. In general terms, slot #11 = m means that digit “n” is most often
confused with digit “m”. The word classifier's confusion matrix can be seen as a
2-dimensional array (10 rows for digits 0 to 9, and 2 columns). The first column

contains the list of the highest confusion digits, and the second column contains

-148-

the list of the second highest confusion digits. For instance, word “four” is most
often confused with word “five”, but it is also commonly confused with word
“two”. It is important to point out that the word classifier's confusion matrix
does not have a highest confusion digit for every word in the vocabulary; the
reason is that some words such as “and” and “dollars” do not translate into any
number. Moreover, other words such as “hundred”, “fifty”, and “seventeen” are
confused most often with words (such as “twenty”, “seventy”, “twelve”) which
cannot be translated into a single digit, as required for our resolution strategy.
The reason for having two choices for the word classifier is due to its less
accurate distinction between word classes, compared to the digit classifier. We
notice from the word classifier’s confusion matrix that for words “zero” and
“eight”, no alternative words are given. This is because the word “7¢ro” is never
present on a cheque, and for “eight” the highest and second highest confusion
words are “and” and “thousand” respectively, which do not translate into a
single digit.

Since the digit classifier has a better recognition rate than the word classifier, we
start by assuming that in a mismatch, the word classifier has the wrong answer.
When the mismatched digit is located, we check in the word classifier’s
confusion matrix if any of the alternative choices (highest confusion digit and
second highest confusion digit) for its erroneous digit matches the digit found by
the digit classifier (step [6] in algorithm Resolve_Mismatch shown below). If a
match is found then the mismatch is resolved and the cheque is accepted. If no
match is found, however, we take the reverse situation where we assume it is the
digit classifier which misrecognized the mismatched digit. In this case, we check

in the digit classifier’'s confusion matrix if the highest confusion digit for its

-149-

Reliable mismatches

Worded amount

Digit amount

Unreliable mismatches

Worded amount

Digit amount

1629’

111529"

lll 57”

l125811

ll342”

11442”

lll 57”

157

Figure 6.15: Other examples of reliable and unreliable mismatches.

-150 -

(@)

Digit classifier’s confuston matrix

Slot # Highest confusion digit
0 2
1 7
2 6
3 7
4 9
5 6
6 2
7 5
8 2
9 5

(b)

Word classifier’s confusion matrix

Slot #

Highest confusion digit

Second highest
confusion digit

0 (“zero”)
1 (“one”)
2 (“two”)
3 (“three”)
4 ("four”)
5 (“five”)
6 (“six™)
7 (“seven”)
8 (“eight”)
9 (“nine’)

none
6

& I S R e A

none
7

none
9

NN N NGO

none

Figure 6.16: Confusion matrices for the digit and word classifiers.

-151-

erroneous digit matches the digit found by the word classitier (step [7]). If a
match is found, then the mismatch is resolved and the cheque is accepted;
otherwise, the cheque is rejected. The following pseudo code outlines the main

steps in the resolution strategy.

Algorithm Resolve_Mismatch;
111 digit_manber = number returned by the digit classifier corresponding to the digit
anount.
121 words_number = number returned by the digit classifier corresponding to the
worded amount.
131 Verify both conditions for mismatch relinbility:
if (Iength(digit_number) = length(words_number)) or
(digit_number and words_number difer by more than one digit)
return CHEQUE_REJECTED
4] digits_mismatch = mismatched digit in number * eturned by the digit classifier
I5] words_mismatch = mismatched digit in number returned by word classifier.
[6] Assume the word classifier is wrong, check for alternative digits in the word
classifier’s confusion muitrix:
if (words_corfusion_matrix(row_1, words_mismutch) = digit_mismatch) or
(words_confusion_matrix(row_2, words_mismatch) = digit_misinatch)
return CHEQUE_ACCEPTED
171 Assume the digit classifier is wrong, check for alternative digits in the digit
classifier’s confusion matrix:
if digits_confusion_matrix(digits_mismatch) = words_mismatcl
return CHEQUE_ACCEPTED
18] return CHEQUE_REJECTED
endAlgorithm

Despite the efforts put into this strategy, there is one flaw which will need to be
addressed in the future in case of a commercial application. For example if, by
distraction, a person wrote 5,000 in the digit amount and “Four thousand” in the
worded amount, the resolution strategy would resolve the conflict by assuminy

the word classifier was wrong and using the fact that “Five” is indeed often

-152-

confused with “Four” (according to the word classifier’s confusion matriz). The
cheque is therefore accepted where it should have been rejected for inconsistency
between the digit and worded amounts. Although this situation is quite rare in

real applications, the potential danger exists and should be dealt with prior to a

commer:ial use.

6.4.3 Results of integration: We have tested the integrated system with 153
cheques and obtained a 29% correct cheque level recognition rate, and 719
rejection rate. It is important to differentiate the notion of rejection at the cheque
level from the one at the word level; at the cheque level, a specimen is rejected if
any of the words in the worded amount yields a grammatical error, or if the
resolution strategy discussed in section 6.4.2 fails. Therefore it is much more
difficult to obtain high recognition rates at the cheque level than it is at the word
level. The digit classifier takes on average 63ms to classify one digil (on a Sun
Spark 2), including a preprocessing stage involving thinning and smoothing,.
Therefore we can neglect the time taken by the digit classifier as it is insignificant
next the word classifier's 1.5 seconds (average) per 5-w: rd cheque. The time
complexity of the resolution strategy is fairly small and can also be neglected for
the overall pe: formance of the system. Thus, the average classification time for a
5-word cheque with 3 or 4 digits in the numeric amount, is 1.5 seconds on a Sun
2. Figures 6.17 and 6.18 show examples of outputs generated from the integrated
system, featuring the resolution strategy and the numbers returned by the digit
and word classifiers. The results found in this chapter are gathered in the table

shown in Figure 6.19.

Bank of x

5| 3§~ A

Pay to the
order of

The amount of "\';M /M MM—

Output from the systen:

Worded amount: 400. Digit amount: 500.

Digit #1 is different.

Highest confusion digit for “4” in word classifier’s confusion matrix matches “5”
Cheque accepted. Amount recognized as “500”.

Figure 6.17: Example of mismatch resolution when the word classifier is assumed

to be wrong.

-154 -

Bank of x

Pay to the
order of

The amount of S 2 9“\\ '—\) N ywo
£~

Output from the systen:

Pl St Pl Pt o Pl Pl Pt Pt Pt St Pt Pt Pt Pt ok i Pt Pt o8 Pl Pt IS Pt P P Pd Bt Pt P Pod o8 ok Pt o P o) Pt ot ot b Pt ot b Pl Pt Bt b ot Pt S ot i Pt Pk Pk ot

Worded amount: 79. Digit amount: 74.

Digit #2 is different.

Highest confusion digit for “4” in digit classifier’s confusion matrix matches “9”
Cheque accepted. Amount recognized as “79"

P Pt Pt Pt Pk P Pl DD Pt Bt Pt Pt P o Pk Pt Pt P Pt P ot b IS Pt Pl P Pt b I Pt oo Pt P Pod b Td Pt BB Pd It Pod S Pnd Pt ok Pod D ot P P b Pk P Pt ot Pt Pt

Figure 6.18: Example of a mismatch resolution when the digit classifier is

assumed to be wrong.

Without the Digit Classifier With the Digit Classifier
Word Level Cheque Cheque Level
Level
Training Testing Testing Testing
Number of 450 0 0 0
individual
words
Number of 250 500 500 500
words from
cheques
Comrect 85% 70.47% 17% 29%
recognition
rate
Error rate 11% 21.16% 73% 0%
Rejection rate 4% 8.37% 10% 71%

Figure 6.19: Table showing the recognition rates on the training and testing sets.

- 156 -

Chapter 7

Concluding Remarks

Our system to read the handwritten worded amount on a cheque is a hybrid
classifier combining symbolic and neural approaches. The symbolic routines take
care of extracting features outside the body of words. The neural classifier is used
to complete the recognition by reading word segments within the body of words.
A grammar checker was added to optimize the reliability of the system at the
cheque level, as well as to provide further context information for future
improvements of the classification scheme. All routines were designed and
written from scratch except for the basic neural network routines, which were

obtained from public domain software.

The main strength of this approach is the specialization of each classifier. The
symbolic classifier concentrates on features which tend to be consistent from one
sample to another, whereas the neural classifier concentrates on the more

variable parts of the word which are usually found inside the body.

One of the weaknesses of the system is the classification of notable letters: We
defined 9 categories for notable letters, when there are only 6 possible notable
letters at the beginning of a word (“T” as in “Ten”, “F” as in “Four”,
“S” as in “Seven”, “N” in “Nine”, “O” in “One”, and “E” in “Eleven”). As
discussed in Chapter 3, this is because some notable letters can appear in more
than one notable category. The ideal would be to have one notable letter per
category; however, the diversity in writing styles is so large, specially in notable

letters, that trying to reduce the 9 categories to 6 will be very challenging. The

second weakness is the limited context information provided by the grammar
checker; since our thesis focused mainly on word-level recognition, the grammar
checker was used to simply accept or reject worded amounts. For the cheque
level implementation the grammar should have been used dynamically during
the recognition of the worded amount, giving for each unknown word in the
worded amount, the list of the possible words which it can be classified as,
according to the grammar. The reason for the absence of this feature is because
cheque level recognition is a much larger problem than word-level recognition
and is beyond the scope of this thesis; implementing this feature would have
required substantially more coding as the recognition process would have been
modified to dynamically change its decision tree as words are being classified.
Some improvements to the overall performance of the system may be achieved
by adding the following routines:
e Salt and pepper removal could improve the performance of the symbolic
classifier.
* Baseline adjustment for words far above or below the baseline,
* Body-ceiling calculated for individual words, instead of having a single
body-ceiling for all words in the text image.
* Slant correction in order to optimize symbolic feature extraction and add

consistency to the training and testing patterns for the neural network.

Suggestions for future research

Throughout the development of this system, there were many unexpected
changes which ultimately led to this final version. Although some of the design
decisions were risky due to their unknown outcome, fortunately none led to

dead ends. However, having spent many hours studying the human writing

-158 -

process and the possible ways of reading it by a machine, we would like to give

our suggestions for future research in this area.

In a reduced vocabulary such as the one for banking cheques, contextual
information is just as important as the classifier; this is especially true for
unconstrained handwriting, where sometimes entire words are so deformed that
they cannot be recognized unless put in context with the rest of the text.
Therefore, prior to the detailed design of a classification scheme, extensive
research and development should be done on tools for extracting contextual
information, such as Automated Transition Networks, semantic and pragmatic
analyzers, and dictionaries (Shinghal, 1992). Context information can be

extracted and used at different levels:

¢ Word-level: For example, in our thesis, extracting features from notable letters

to reduce the number of possible outcomes from the neural network.

» Sentence-level: When recognizing a word, a grammar (or ATN) could provide
conditional probabilities for what the current word could be. A grammar
could also be used to check the validity of each word in the sentence, rejecting

those sentences which are ambiguous or grammatically incorrect.

For future research specifically in the recognition of bank cheques worded
amounts, we would give importance to notable letters (specially capital letters)
and all letters having ascenders or descenders as they provide valuable
information which can be isolated and retrieved more easily than features inside
the body of words. It is important to study the features to be extracted and rank
them in order of heuristic reliability, putting at the top of the list the features
which tend to be more consistent (less distorted) amongst writers in general. The

bottom of the list would then consist of less reliable features.

-159-

References

Barriere, C. and Plamondon, R. (1992). Recognizing Sequences of
Letters in Mixed-Script Handwriting. In Proceedings of the Vision

Interface Conference, Vancouver, B. C., pp. 83-91.

Bichsel, M. and Seitz, P. (1992). Object Recognition with Optimum
Neural Networks. In P. G. J. Lisboa, editor, Neural Networks: Current
Applications, Chapman & Hall, London, U. K., pp. 163-184.

Cohen, E. (1994). Computational Theory for Interpreting Hand written
Text in Constrained Domains. Artificial Intelligence, vol. 67, no. 1, pp.

1-31.

Fahlman, S. (1988). Faster-Learning Variations on Back-Propagation:
An Empirical Study. In Proceedings of the 1988 Connectionist Models
Summer School, pp. 38-51.

Goodman, P. (1993). Neural network code developed by the University

of Nevada. Available by ftp, contact gopodman@unr.edu.
Gordon, B. (1995). Manager of Operations at the Toronto Operations

Service Center, Bank of Montreal. Tel: (416) 867-4679, personal

communication (attached).

-160-

10.

11.

12,

13.

Gorsky, N. D. (1994). Experiments with handwriting recognition using
holog raphic representation of line images. Pattern Recognition Letters,

vol. 15, pp. 853-858.

Le Cun, Y., Boser, B., Denker, J. S, Henderson, D., Howard, R. E.,
Hubbard, W., and Jackel, L. D. (1992). Handwritten Digit Recognition
with a Back-Propagation Network. In P. G. J. Lisboa, editor, Neural
Networks: Current Applications, Chapman & Hall, London, U. K,, pp.
185-195.

Hull, J. (1994). A Database for Handwritten Text Recognition Research.

In IEEE Transactions on Patterns Analysis and Machine Intelligence, vol.

16, no. 5, pp. 550-560.

Hum, T. (1995). Graduate student at Concordia University finishing his
major report on handwritten numerals recognition. Contact

tonyhum@cs.concordia.ca.

King, J. (1995) Service and Operations officer for Document Processing
at the Royal Bank’s Quebec Processing and Operations Center. Tel:

(514) 874-3296, personal communication (attached).

Nagy, G.(1992). At the Frontiers of OCR. Proceedings of the IEEE, vol.
80, no. 7, pp- 1093-1098.

Opatrny, J. (1995). Department of Computer Science, Concordia

University, Montreal. Personal communication.

-161 -

-

14.

15.

16.

17.

18.

19.

20.

Parizeau, M. and Plamondon, R. (1993). Allograph Adjacency
Constraints for Cursive Script Recognition. In Pre-Proceedings of the
Third Workshop on Frontiers in Handwriting Recognition, Buffalo, N.Y,,
pp- 252-261.

Plamondon, R. (1991). Development Stages of an Electronic Notepad.
In Proceedings of the First International Conference on Dociment Analysis

and Recognition, Saint-Malo, France, pp. 361-371.

Schiirmann, J., Bartneck, N., Bayer, T., Franke, J.,, Mandler, E., and
Oberlander, M. (1992). Document Analysis - From Pixels to Contents.
Proceedings of the IEEE, vol. 80, no. 7, pp. 1101-1118.

Seni, G. and Cohen, E. (1994). External Word Segmentation of Off-Line
Handwritten Text Lines. Patternn Recogniticn, vol. 27, no. 4, pp 41-52.

Shinghal, R. (1992). Formal Concepts in Artificial Intelligence, Chapman &
Hall, London, U. K,, co-published in the U. S. with Van Nostrand, New
York.

Simon, J. C. (1992). Off-Line Cursive Word Recognition. Proceedings of
the IEEE, vol. 80, no. 7, pp. 1150-1160.

Srihari, S. N. (1992). High-Performance Reading Machines. Proceedings
of the IEEE, vol. 80, no. 7, pp. 1120-1131.

-162 -

21.

22,

23.

Sun, R. and Bookman, L. (1993). How Do Symbols and Networks Fit
Together: A Report from the Workshop on Integrating Neural and
Symbolic Processes. Al Magazinze, summer 1993, pp. 20-23.

Tappert, C. (1984). Adaptive On-Line Handwriting Recognition. In
Proceedings of the 7tit International Conference on Pattern Recoguition,

Montreal, Canada, July-August 1984, pp. 1004-1007.

Zurada, J. M. {1992). Artificial Neural Systems, West Publishing
Company, St. Paul, MN.

-163 -

Appendix

-164 -

