B+l e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Stree!
Ottawa, Ontarnio
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

Yout file Volie ilorence

Our hle Notre rdldience

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme patrtielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Images of Type

Stephen P Spackman

A Thesis in the Department of
Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at

Concordia University
Montreal, Québec, Canada

April 19, 1992

Copyright © 1992 Stephen P Spackman

Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibiiographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your tile Volte reléiemce

Owr hle Notre rétdrence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-60945-0

Canada

Abstract

Images of Type

Stephen P Spackman

Contemporary general purpose programming languages exhibit a straightforward re-
lationship between code- and data- structuring facilities, in the shape of a formal
isomorphism between the main operators of each. We exploit this relationship to
construct Visitors: high-level, executable type descriptors permitting efficient induc-
tive processing of arbitrary data structures, provided only that the data are strongly
typed. Visitors allow the programmer to write portable, high-level code, while elim-
inating inessential manual case analysis; the high level of presentation is exploited to
minimise the compromise of representational opacity. Visitors are amenable to au-
tomatic generation as a standard service of a programming language implementation.

The price paid for the use of Visitors is that data typing must be inviolable,
though there is widely accepted independent motivation for this restriction. Ap-
propriate reconstructions of many common data structures within these limits are
exhibited, including several that would initially seem to require the compromise of
the type system.

Visitors have by now been employed in garbage collectors, input-output systems
and an interpreter. The most recent implementation underlies a software system
that should see public distribution within the next six months. A number of other
potential applications for the technique have been identified, including the provision

of direct, implicit operating system support for typed data.

iii

Acknowledgements

Many thanks are due my good friends: Dr. H. J. Boom, my original supervisor,
who started the ball rolling so long ago by asking an impossible question; Dr. Peter
Grogono, who provided steady nerves and much-needed terminal guidance; and Dr.
Elizabeth Hinkelman, who tolerated an almost weekly explanation of what I think
types might be today—and under whose potted tree about half this text was com-
posed. I am also grateful for the more-than-tolerance of my employer, the University
of Chicago’s Center for Information and Language Studies, during the final writing

of this thesis.

iv

Contents

1 Introduction

1.1 Framing the Problem, Naming the Prize
1.2 The FormoftheSolution.
1.3 The Overall Structureof this Thesis

1.4 Points of Interest Along the Road

2 Exemplar—an example language
21 LexicalRules
2.2 Syntax . . e
23 Scoping
2.3.1 Bindingoperators

24 Types
2.4.1 Modifiers and attributes . . .
2.5 Summary e e e e e e e e

3 Data Structures, Control Structures

3.1 StructuresinExemplar.
3.1.1 Control structures
3.1.2 Datastructures e e
3.1.3 Discussion i e e e e e e
3.1.4 A note on non-transparent compilation

3.2 Structures Elsewhere

3.2.1 Classical FORTRAN . . .
322 Pascal

323 EBNF .. . o ittt it e e e e
3.2.4 Minimalist structuring: Core LISP, Prolog and BNF
325 Summary e
33 Visitors e
3.3.1 Mapping typesto Visitors
3.32 Sampletranslations,

3.4 Levelsof Visitation
3.4.1 Variable visitation levels
3.4.2 Opacity under visitation
3.5 Structuresassuspensions

(o J %, B 7% B S

4 Type Systems

4.1 Philosophyof Type o
4.2 Definitions and Concepts o o
421 Typeformation
422 Typerestriction i
423 Strongtyping e
424 Contrastingtypeswithsets
425 Contrasting types withclasses
4.2.6 Contrasting types with implementations
43 Typing in Extant Languages
4.3.1 Weak static typing: the post-Algol family
43.2 Algol 68 and the strongly typed languages
433 Dynamictyping
434 Lexicosyntactictyping
435 Fulltyping: ITT
436 Therawmachine
4.3.7 Underlyingtags
44 Simple Types e
4.4.1 Frimitivetypes
442 Product types.
443 Functions i
444 Sumsarenotsosimple. Ce
445 H Cetera
45 TypeEvasion
451 Motives e
452 Costsofevasion
453 Analysis e
46 Dependent Types i
4.6.1 Dependentproduct
46.2 Dependentfunctions
46.3 Functionaltypes
4.6.4 Other dependency patterns
4.7 Mutable Object Format
4.8 Software Engineeringlssues
48.1 Pros and consof strong typing.
482 Impactonmodularity
5 Representing Types
51 Primitives e e
52 Simple Composition.
53 DataSyntax e
5.4 Functions, Closures and Activation Records
54.1 Functions
5.4.2 Activationrecords
543 Closures
55 Typesand Genericity

vi

alis TAIG ML AN esaemns YW

56 Visitors 169
5.6.1 Modeobjects, M L 169
5.6.2 Physical representation of the Visitors of types 171
5.6.3 The base cases: pointers and bits 175
5.6.4 Pointers, circularity and fixed points 176
56.5 Optimisation 181
56.6 Visitorwvisitors 185
5.6.7 Sample physical translation 186
5.7 Imterfaces 191
5.7.1 Userinterface: printforms 191
5.7.2 Lateralinterfaces 193
5.7.3 Downwardinterfaces 195
58 Conclusion. 197
Applications 199
6.1 Garbage Collection 200
6.2 Binary Transput 200
6.2.1 Naive bulk transmission 201
6.2.2 Typed external representation 202
6.2.3 Lazy term transit and remote procedure call 205
6.24 Typed memory virtualisation 207
6.3 Formatted Tramsput 208
6.4 Debugging and Abstract Editing 209
6.5 UserCode e 210
6.6 Conclusion 211
Garbage Collection in Detail 213
7.1 The Garbage Collection Problem 215
7.2 Two Basic Approaches to Garbage Collection 219
7.2.1 Stop-and-copy reclamation 220
722 Mark-and-sweep reclamation 222
723 Thecommonground 223
7.3 Garbage Collection and Type Tagging 224
731 Traversal e 224
732 Forwarding 225
733 Handlingcycles 227
734 Thetag i 227
7.3.5 Immediatedata 229
7.4 Garbage Collection in the Untagged Heap 230
741 Traversal 231
7.4.2 Forwarding, sharingandcycles 232
743 Representation 233
7.5 Garbage Collection with Visitors 235
7.6 Conclusion. 237

vil

8 Empirical Implementations
81 Lithp.
8.2 2arquon e e e e e e e
B3 Jeter e e e e

9 Conclusion

9.1 Further Work e

viii

238
238
242
244

248

Symbols

Fonts
ABC Typenamesot i 10
ABC “Extra letters” naming types internal to the Visitor sys-
tem (Exemplar)
abc Sourcecode o 10
afy “Extra letters” naming values internal to the Visitor
system (Exemplar)
abc “Stropped” keywords (Exemplar) 10
abe Syntactic nonterminals (EBNF) 12
Operators
Ty Sequencing: z followed by y (EBN1)
zly Eitherzor y (EBNF) o oo 12
) Optional € (EBNF) 12
() (Grouped) z (EBNF) i 12
{z} Repeated z (EBNF)—Kleene closure 12
zy Operator/operand (syntax specification) 12
L:r Production symbol (EBNF)
(] Display brackets (Exemplar) 17
{} Frec algebra brackets (Exemplar) 17
#T Mutable type (Exemplar) 19
%T Reference type (Exemplar) 20
p:v;e Definition (Exemplar) 15
p:de Local alias (Exemplar) 16
p>: b Lambda-abstraction (Exemplar) 15
nQuv Direct recursion (Exemplar) 16
T:< fQ@p>:be Namedfunction introduction (Exemplar) 16
ea Textual substitution: a substituted forz ine 123
TCU Subtyperelation 72
Az.e Lambda abstraction 126

T+U Typesum 123

TxU
TxtU
Tﬂ
TU
T-U
T = tU

fT'I
Names

0,1, 2

T, U,V
t,u,v
Vector

N

TNV

Typeproduct
Dependent type product

Iterated typeproduct
Finite functiontype
Functiontype.
Dependent functiontype. 125
The name of type (or type constructor) Tin T 45

Primitive types of 0, 1 and 2 members

Type of natural numbers (mathematically, Ng) 98
Type variables

Variables of types T, U, V

Constructor of fixed-length array types 55
Type of integers (mathematically, Z) 98
Visitor-argument type constructor (Visitors) 45
Visitation mode-function type (Visitors) 45
Internal pointer type (Visitors) 45
Type of constructor and type names (Visitors) 45
Primitive Visitor of type T (Visitors) 45
Dereferencing function for type T (Visitors) 48

x

o endrae b e Bk ead

W o R g ot Th A A e ok ks Y

S b e m e

Lnolhr s sk & v ks =t e o ANUREE I e T] i

[PR TP R

Chapter 1

Introduction

1.1 Framing the Problem, Naming the Prize

One of the traditional great divides in programming language design is between those
languages whose type system is static and those whose typing is dynamic. The
advantages of static typing are greater safety and greater efficiency in both time and
space, making this approach the favourite of those who think of software in terms of
engineering; while dynamic typing provides lower point-to-point coupling within the
programme and better support for generic operations, characteristics of great benefit
in prototyping and for exploratory development styles.

The gap is narrowing: strongly typed languages supporting polymorphism and
declaration-free source syntax are increasingly common, while the efficiency of even
the most radically dynamic languages increases steadily. This process, naturally
enough, involves a convergence of the underlying object code generated: the best
compilers for dynamically typed systems infer large amounts of static type information
for use in optimisation, while statically typed languages communicate type-related
information dynamically in support of polymorphism.

The support of operations that are not merely transparently polymorphic (treating
every object as an indivisible atom) but intelligently generic, performing an action
that is tailored to the type of an object no matter what that type may be, is still a

problem; doubly so in light of the fact that one of the most crucial underlying linguistic

facilities from both the engineering and prototyping perspectives—automatic storage
reclamation—falls in this class. The problem is so severe that until very recently
it has been the standard assumption that any really flexible language, of whichever
persuasion, would need a dynamically typed internal data representation.

In actuality, this assumption is not warranted: although it is true that polymor-
phism appears to require that type information have some runtime representation, it
does not have to be stored in the objects it describes. An alternate solution exists in
the form of a separate system of runtime type descriptors which need only be referred
to from data in the case of the value of a polymorphic variable. One problem is to
find a good representation for such descriptors.

Not all such generic processes are so intimately connected with language viscera:
some of them, like low-level input-output, are at the level of operating system inter-
face; while still ovhers are fully the concern of the applications programmer. A second
concern is thus the flexibility and general utility of the system: it would be a shame
if it were only of use for the single system task.

Finally, it must be noted that in contemplating such a system as a user facility v.c
are, if not playing with fire, then toying with matches: amcng the great advantages
of strong typing are the opacity and security it can provide to data structures. If we
are to cut a chink in the anonymity of the arbitrary datum, we must take care that
access to it is well controlled within the conventions of the language.

The facility we are looking for would thus ideally provide the profound support
for genericity that is still the province of dynamically typed languages, within the
realms of static typing. More importantly, it would do so at the levels of performance
customary in the statically typed world, not compromising the temporal or spatial
efficiency of the language, even relative to those “old school” languages (like Pascal,

C and FORTRAN) that tiade semantic coverage for performance.

1.2 The Form of the Solution

The solution we propose to this puzzle takes the form of a large recursive nest of
polymorphic higher order functions that we term Visitors. The entire nest is derived
automatically by the compiler from the particular type system of the programme.

The construction of this object relies on the relationship:

grammar : string :: programme : trace :: type : datum

in conjunction with the observation that not only are grammars, programmes and
types themselves strings with grammars of their own, but that these second-level
grammars are, for typical contemporary formalisms, isomorphic. Thus, just as it is
quite natural to think of the “grammar” of a data structure describing the relative
locations of its components, so, too it has a naturally corresponding code structure,
and it is on this frarnework that the Visitor of a type is constructed.

A natural concern with this whole scheme is efficiency. Whi'e the general outline
of the constructed functions is straightforward, the flexibility we need to fulfill our
promise of general applicability is bought at the expense of functional parameteri-
sation of the whole visitation subsystem, and the resulting object is very abstract
indeed. Fortunately, the right abstraction brings simplicity. In particular, it appears
that (thanks perhaps to the fact that object code is simultaneously a programme and
a datum, bridging the levels from below) Visitors are perfectly matched to typical
hardware architectures and compile beautifully. Their intricate but structurally ho-
mogeneous interrelationships evaporate into an ability to ignore many of the usual
strictures of code generation, simplifying stack frames and reducing register allocation
almost to triviality.

While pretty, our solution is not perfect. It is comparatively cheap, but it does

not come free: code is not the most compact form of type description possible, and

our policy of non-interference with normal code generation is both somewhat imper-

fectly executed and dependent upon the existence of sometimes extensive additional
structures. We may use more space and/or more time during garbage collection than
traditional, more intrusive techniques require. And finally, while we suggest a seman-
tic interface to the wisitation system that we feel forms the best compromise between
the preservation of representational opacity and the necessary license to perform the
kind of type-blind but type-conscious operations that here concern us, we have not
yet attempted to devise a source syntax that would permit its reflection into the
user-programmer’s visible language model.

On the other hand, Visitors have proven themselves to be a useful technique
in the real world: they have been turned to a number of different tasks (input-
output, storage management, even serving as the kernel of an interpreter), requiring
no modification once in place. They have increased our freedom in the selection of
underlying data structures and, perhaps most tellingly, supported repeated changes
in the storage management system of one language without a glitch.!

The price of the whole arrangement is paid in the necessity of typing: since we
provide these operations by manipulation of types, every expression in the source lan-
guage must be strongly and unambiguously typed (though of course the intrusiveness
of this requirement on the programmer is a function of the source language design).
Fortunately, there is no restriction that the type system we support be simplistic
or inflexible; in fact, as will be seen, even when reconstructing characteristic objects
from languages of a far more pragmatic and semantically cavalier nature, the devising
of a suitable source notation has often proven more difficult than the construction of

a suitable type (and its corresponding Visitor).

1Well, with just one glitch, one that arose from an unintended “hole” in the type system.

1.3 The Overall Structure of this Thesis

This thesis is structured as follows. The systematic reader is nearing the end of the
introduction. In the next chapter, we introduce the superficially Algol-like language
Exemplar, making an attempt o get its formal structure out on the table from the
start so that it can be used as a vehicle for later discussion and example, not stopping
again to explain details of the formalism. The reader is cautioned that in Exemplar
the strange is sometimes made familiar and the familiar made strange; but a profound
understanding of the language described should prove unnecessary, since we use no
subtle consequences of its structure.

Next, the main exposition forms (as it were) a series of three spirals, each spiral
at a different level of abstraction. The first is about structures and discusses the
structural facilities of Exemplar and of various classical languages; it proceeds to the
construction of Visitors. In chapter 4, the second spiral treats of type, philosophically,
empirically and pragmatically: these types are the abstract objects of which the
structures of chapter 3 are source-language images. The final spiral, chapter 5, treats
of the eventual machine-level representations of types in terms of their actual storage
layouts and, ultimately, the physical representation of their Visitors. These, then,
are the object-level and the ezecutable images of type.

In outline, each spiral begins with the abstract form of the object, in its simple
cases and as we prefer to see it. Next, we consider something of the “real world,”
discussing the approaches taken by various other languages or otherwise trying to
establish some of the breadth of the field. Then comes the nitty-gritty, where we
generalise what we have seen of reality, tackle the hard cases and generally come to
grips with meta-recursion. Finally the spiral ends and we move back onto the abstract
plane, considering implications, consequences, applications or alternate formulations.

After three spirals we come out of our loop and examine practical applications,

starting (in the sixth chapter) with sketches of how Visitors might be used in a
number of quite different contexts. In the following chapter we look at garbage
collection, the lowest-level, most critical, and earliest application of visitation, in
some detail. Finally, we consider the various empirical incarnations that Visitors
have seen and attempt to summarise our practical experience in using them in their

successive refinements over the course of several years.

1.4 Points of Interest Along the Road

Along the route from introduction to conclusion we shall be passing a number of
points of local interest. This last introductory section is intended as a guide to such

secondary concerns as the interested reader might wish to look out for.

Abstraction It might be observed that this thesis is in part an attempt to do low-
level systems programming at the highest possible level of abstraction. The
particular design heuristic involved is the abstraction of all the parts of a prob-
lem to a level where they exhibit the same structure and a trivial solution is
possible (in this case that common structure is the syntactic form of EBNF).
This technique does not always work, but when it works it produces nice solu-

tions. Sometimes abstraction comes free!

Exemplar The Exemplar language has as subsidiary motivations the demonstration:
(1) that the provision of “convenient Pascal-like syntax” is orthogonal to the
imperative/applicative semantic divide in language design philosophy; (2) that
such a syntax can combine straightforwardly with a simple and directly ma-
nipulable abstract syntax a la LiSP; and (3) that (although we make no use of
this possibility in the present work) there is no barrier to allowing the user full
access to “keyword notation” either in terms of parsability or readability of the

uses of user-defined constructs (note that the description of Exemplar lists only

the scheme for such syntax, not its instances).

Rotation A recurring theme in the construction of efficient implementations is co-
ordinate rotation: wherever one thing names or describes another the intuitive
representation puts them close together, but the preferred physical represen-
tation is often to move the two into separate parallel structures in the hopes
that further standard optimisations can merge the descriptor with its context
(or eliminate it entirely). There is an argument to be made that the objects
described in this thesis can be derived by repeated application of this transfor-
mation to an underlying object-oriented system (driving the process, however,

with the early binding of ‘ype information that our source language provides).
Pointers Pointers are wonderful and faster than all the alternatives.
Nothing Doing nothing is even faster than using a pointer.

Strong Typing as an Asset Strong typing has traditionally been seen as a posi-
tive thing, but a bitter medicine. While the author admits to a pronounced
recreational interest in the subject, it is perhaps of general importance in lan-
guage design to ask what benefit can be expected if such a rigorous discipline
is to be enforced. Visitors actually provide a more powerful but more control-
lable service than their dynamically typed analogue (implicit in the structure

of object oriented systems), and this is surely not the only such case.

Antiprimitivism Programming languages almost universally exhibit a fundamen-
tal divide between builtin and user-defined objects (though some also possess
an intermediate class of nonredefinable standard objects). This manifests as
reserved names, unusual syntax, special lexical forms, (nonprogrammable) sys-
tems of coércions and so on. This is in utter violation of what we know about

software engineering, opacity, orthogonality, human factors, apple pie and child

rearing and should be stamped out just as soon as someone works out how.

The m + n Problem One of the most famous conceptual advances in compiler tech-
nology was the identification—and solution—of the “m x n” problem (whereby
writing mn compilers merely to provide m languages on n machines is avoided
by the factoring of the compiler itself into separate front- and back- ends). We
are still left, however, with a residual “m + n problem” —writing m front ends
and n back ends is still rather a lot of work. Aside from attaining m = 1 by
designing the One True Universal Language (a grail the pursuit of which still
interests the author), the best we can do is to make the “middle end” of the
compiler, the truly portable part that comes between the front and the back,
bear as much weight as possible. Many of the comments in this thesis are
motivated by anticipation of increasingly nontrivial optimisers working at this

level.

Chapter 2

Exemplar—an example language

In this chapter we introduce the hypothetical programming language Exemplar, which
will serve as a vehicle for the coming discussion. Exe:mnplar can be characterised as
a strongly typed non-pure applicative-order functional programming language with
heavy syntax—in short, it numbers among the descendants of Algol 68.

We provide only an informal description of Exemplar; and we will focus upon only
those of its properties that are of particular relevance to this thesis. The language
will be found to be somewhat more coinplex than is strictly necessary as a source
of examples for the techniques to be discussed; but this will permit its use for the
description of the code we generate, as well as for posing the problem. It is not,
it must be stressed, a practical—or even implementable—language: a number of its
features are present for expository purposes and are not well matched or particularly
useful in the form in which they are presented (and a number of its features are
known to pose unsolved technical difficulties, though that will have no impact on our

exposition).

2.1 Lexical Rules

As in most languages with free layout, whitespace serves in Exemplar only to delimit

tokens (and even then is optional in the absence of ambiguity). Having said that, we

n

also make the usual hedges that comments (commencing with “.. " and ending at

letler:

slanted :

opchar:

opener:
closer:

quote:

atom:

key:

opsym:
ternary-opsym:

(punctuation):

the end of a line) are whitespace, despite being non-blank, and that quoted material

a'blcdle!fig/hlilj'kI'minlo!plq'risituiviwixly'z
A'B'C'D'E'F'GHHIIIK'LIMIN'OIPIQIRISI TIUIVIWIXYIZ
0'112'314'5'6171819'.1_

abicdefgh'i'jklim'n'o'p'q'ris'tiu! viw'x'y'z
A'BCDERGHITK LMNOP QRSTUVWXYZ
01'23456789

(any of a number of punctuation marks, operators and
commercial symbols)

(T4

H)

"{(any character ezcept "' "
(letter'quote)letter' quote? (ezcept ..)
slanted{slanted! (ezcept end)
opchariopchar':}

Aopchar':}

end

Figure 2.1: Lexical rules of Exemplar

is never whitespace, be it ever so pale.

Unlike conventional languages (at least those that are as syntactically “heavy”
as Exemplar), most tokens are considered to be one sort or another of identifier at

abstract syntax,! even those which on the surface are bracketing constructs. This

1Abstract syntax, for the reader unfamiliar with the term, is essentially the output from the
parser and the input to sernantic analysis: the distinctive feature of Lisp [McC60, Ste90] is not (as
is often stated) that it provides straightforward manipulation of Lisp source code—which is, after
all, represented as a text file as in any other conventional language—but that access is provided to
the abstract syntax level, and it conforms to the usual data structuring conventions of the language.

10

greatly simplifies the description of the language, since the parsing of Exemplar is
independent of its repertoire of semantic features.

The lexical class of atoms (see figure 2.1 and the examples of “primaries” on page
13, figure 2.3) consists of sequences of letters, digits, underscores, points and material
enclosed between double quotes ("). It may be divided into several subclasses: type
identifiers (and the names of a few type-like objects, such as TYPE itself) start with
an uppercase letter; conventional object-level identifiers start with a lowercase letter.
The remaining possibilities are largely reserved for literals, the exceptions being “..."
which represents an elided expression (this is indeterminately notation and metan-
otation, in that it is in principle an expression within the language, but executing it
would ideally trap to a debugger), and “_” which we use (perhaps confusingly) both
as a pattern that matches anything and as the only value of type Void.2

A key is a werd written in a slanted font; a keyword identifier consists of a
sequence of such items, with the last being “end” (so that we may talk about the
object? “if then else end”). These fulfill the same function as keywords in conventional
languages without (end excepted) being in any way reserved.

An operator is a sequence of punctuation marks and other otherwise un-spoken-
for symbols; if the first character of an operator name is a colon, then the operator
is ternary and is syntactically associated with a subsequent semicolon; else it is a
prefix or infix operator, according to context.4

Finally, the brackets, () [] { }, are tokens, with each matched pair being an

identifier (albeit, and sadly, one unavailable to the user).

3Thus such useful monstrosities as o"'+" are identifiers, while 1962.nov.08 is—at least in lexical
form—a literal.

30r, more properly, the object so named.

4The distinction between prefix and infix uses is formally a distinction of type resolved as an
overload, as we can see from the fact that both negation and subtraction have the name “(-)"; but
this is unrelated to the ternary operator “:— ;”. The reason for this admittedly odd distinction is
that the author is partial to the operator :: ;, and making “” and “" into a pair of brackets would
spell its end. As if, good reader, you cared.

11

primary: atom
opener closer
opener opsym closer
ternary-opsym ,
key {key! end

secondary: primary
secondary primary

tertiary: secondary
opsym tertiary
ezpression: tertiary

tertiary opsym ezpression
tertiary ternary-opsym ezpression ; eTpPTESSIOn

primary (cont’d): opener ezpression closer
key ezpression ‘key ezpression} end

Figure 2.2: Syntax of Exemplar
2.2 Syntax

The surface syntax of Exemplar is fairly straightforward. An Exemplar programme
is a single expression according to the EBNF grammar of figure 2.2; in each case the
operator at abstract syntax (which, as in the case of brackets and keyword syntax,
may be textually discontiguou-) is underlined, thus.® Nonterminals are written in an
italic font, and the regular grammar operators are superscripted: {a!5}.6

A few features of the syntax are worthy of note. First, there is very little notion
of operator priority: almost everything associates uniformly (even more so, perhaps,
than in APL). Second, the operator/operand assignments made with the foo notation

provide the entire translation of the language into abstract syntax: resolution of the

8So traditional function-application notation would be rendered: {(z).

6We employ the bracketing style of EBNF notation; thus the vocabulary of BNF right hand sides
is augmented with the (regular) operators iz} for Kleene closure, 'z! for optionality, and z'y for
alternation; (2’ is used for grouping.

12

PP

primary:

secondary:

tertiary:

ezpression:

primary (cont’d):

TYPE Character
x foo":"22 (identifiers)
42 "badger"
6.02.e23 9.8.m..s2 (literals)

(an elided or unwritten segment of code)
- (a null pattern or value)
() (*)

- if then else end

TYPET Boolean more

wre f[x]

%Complex[Z]

-T-\E: (take the current value of variable v)
x+1

head(x, n] ++ a ++ tail[x, n]
NI : length[s]; space ~ width — | / 2
n:=+n+1;n (increment and return n)

(x + 1)

{red, green, blue}

(N length, Vector[Character, length] text)
if x > 0 then x else —x end

Figure 2.3: Lexical and syntactic examples

operator/operand relationship is never influenced by the particular names appearing

in an expression. Third, the production for a secondary provides an abstract nota-

tion subsuming a number of distinct concrete cases, including function application

(function[argument)), field selection (object selector) and variable declaration (Type

identifier). Fourth, much of the flavour of serial execution in imperative languages

is captured in the ternary operators; where serial imperative operations are to be

encoded, this is the preferred notational device. Nonetheless, the vast majority of

the uses of this notation do not involve side effects, manipulating bindings and scope

instead. Finally, the arities of operators and brackets” are assumed to be resolved by

TSince, of course, {} and {x} denote uses of distinct objects, even though the latter could equally

13

type inference (which poses few technical difficulties in a paper notation).

2.3 Scoping

Because parsing in Exemplar can be accomplished without reference to particular
identifiers, we are free to treat scope control as a quasi-semantic function: it is a
property of identifiers and expressions, and is computed over the abstract syntax
tree. Expressions in Exemplar are divided into three categories: they can be values,
patterns or types.® The category of an overall programme is value, and the category
of each subexpression is determined by (the specification statically associated, in
the present category, with the name of) its operator. In the absence of any other
information (and in particular, whenever an identifier has more syntactic arguments
than it specifies categories for), the argument of a valueis a value; while the arguments
of types and patterns are patterns.

Patterns are “left-hand-side” expressions, used to dismantle values, just as values
build them; as valus-expressions employ identifiers, so patterns introduce them. The
discussion of types is deferred to a later secticu.

As with category, the scopes and bindings of identifiers are also controlled locally
by the main operators of expressions, and as part of the same category scheme—
at least as regards their passing up or across the abstract syntax tree; for as is
conventional, they pass down it automatically. Patterns can introduce new names
(typically by “applying” a type to an identifier), and types and values new bindings;
these are by default passed back out through types and patterns, and by specific

design of the value operator : ;.

have been written “{} x".

$This is a bald lie. In fact there are also (at least) type-patterns and type-types, but intro-
ducing them into this discussion would muddy the waters rather than clearing them. Suffice it to
say that “TYPE” is to a type as a type is to its members, and the locution “TYPE T t" would be
a pattern introducing a value t of polymorphic type (locally named T). The potential ambiguity
that arises in free algebra construction (described below), between {x[T]} matching exactly x[T] or
any x[t] (t in T) is resolved in favour of the latter, since types are considered to be incomparable at
runtime (type identity is resolved at the level of abstract syntax).

14

Names and bindings passed out in this manner can be intercepted by the operator
determining the class of the subexpression, and it may reéxport them to any explicitly
determined arguments further to the right. A name always carries type with it,
and such reéxport serves to introduce a new overload on the name, overriding only
overloads with which it conflicts.?

Within this general “scoping theory,” the conventions followed by the Exemplar
entities in this thesis are roughly that names are exported, wherever meaningful, to
arguments semantically controlled by the argument introducing them (whether or not
this is the primary purpose of the construction); thus for example, declarations from
the if-part of a conditional expression will be visible in the controlled branches.

Note that these rules imply that all upward and rightward transfers of visibility
are explicitly and iteratively licensed by the operator (or its category), and leftward
such transfers are impossible—Exemplar is, in sum, a strict declaration-t....re-use

language.
2.3.1 Binding operators

Exemplar as here presented possesses several operators that exist for the particular

purpose of binding names to values.!® There are five of them, as follows:-

p : v; b (let-binding) The expression v is evaluated and matched to the
pattern p; this match must succeed. The resulting bindings are
put into effect for b, which is evaluated to yield the result of the

expression.

p >: e (A-abstraction) The expression e is abstracted on the pattern p,
which matches the eventual argument list of the function so result-

ing (or, conversely, a function is constructed which is evaluated by

9And, for present purposes, damn the torpedoes.

10There are other places in which binding occurs; in particular a for-clause in a loop binds its
control variable. In this section we omit reference to such cases of “collateral” binding as being
fundamentally uninteresting.

15

matching its argument list to yield a set of bindings under which e

is then evaluated for its result). The match is allowed to fail in the
case that the:r. are several such abstractions bound to the same

name, and one of the others succeeds.’!

n @ e (Circular naming) The expression e is evaluated in an environ-

ment in which n is bound to the result of e’s evaluation (which
is also the value of the whole expression). Caveat caller: if the
language’s semantics cause this object not to be well-defined, no
magic will save the programme from its doom. The binding of n

to e is exported, principally for the use of:

T :< f b (Abbreviated function definition) Parallel to : ;, this in-

troduces a function f with return type T to the scope of b, which
is the value of the expression. Note that f must be a function-{o-

name binding, and typically has the formn @ p >: e.

p :: n; b (Local naming) Unlike the above (which are acceptable both

as value- and type- expressions) this is a type-expression only. It
yields the product of the type of the pattern p and the type b, but
with the value eventually bound in p bound also to n in b. Only
the former binding is exported as a nameable “field” of the type.
(In particular, if p makes no binding, this field will be internally

named but externally anonymous.)

Here is a simple example of the use of several of the above, in the form of a function
quadratic of arguments a, b and c, which yields the function (over the integers, Z)

Az.az? + bz + ¢ (which may subsequently be evaluated for any desired values of z):

111p a practical language we would here have to concern ourselves with how the type compatibility

rules distinguish overloads from clausally defined functions.

16

Z[Z] :< quadratic @ (Za,Z b, Z c) >:
Zx>: (a*xx*xx)+(bxx)+c

Note that the return type of the outer function is a function type in its turn. Since
dependent types are a relatively arcane topic, we defer further discussion of the local

naming operator, :: ; to a later chapter.

2.4 Types

This section deals briefly with general aspects of Exemplar’s typesystem,in particular
as it differs from more conventional languages in its manner of dividing up the space
of possibilities.

Along with a number of atomic types whose existence we hall simply assume as
we need them, Exemplar provides a data structure description mechanism based on
the syntax of its control constructs; we shall temporarily defer the discussion of this
mechanism, since it is integral to the substance of the next two chapters. The values
of structured types are given as bracket ([]) delimited displays. We shall also have
occasional recourse to free algebras, types introduced by listing, within braces ({}),
a sequence of signatures that the constructors of the type satisfy; information stored
with the constructors thus introduced is maintained losslessly!? and may be extracted
through the use of pattern constructors homonymous with the value constructors.
This mechanism of course subsumes the familiar enumerated types of Pascal and its
relatives, in the case that the signatures are trivial.

In addition to these data structures, we provide function types: types whose
members are themselves mappings from one type to another. Exemplar functions
are first class objects, their nonlocal references lexically bound (as they must be for

functions to be “values” in any meaningful sense); they are created by)-abstraction

13But gee section 3.5, where we (briefly) consider an extension to the language in which these free
algebras are taken modulo constraints to build arbitrary types in the “algebraic data types” style.

17

with the operator >:—and eliminated by juxtaposition with a structure display giving
their arguments. The argument list itself is in fact considered to be a structure: the
same facilities are provided to construct and interpret the two (though anonymous
fields only positionally nameable are of less use in an argument list than in structures,
since they would be inaccessible to the function body).

We assumne that types are opaque except in so far as their structure is (transitively)
lexically associated with the name under which they are located. Since the name of
a function counts for this purpose (in the identification of the type of its argument
list), no difficulty arises.

One of the superficially novel features of Exemplar is the eztension construction:
from any type T we can construct new types differing from T only in the addition
of a set of new, freely constructed elements; this is written by “applying” T to the
appropriate brace-enclosed signature list. The extension elements are used in exactly
the same way as the elements of a free type; and the members of the base type remain
accessible through their original notation (except where new elements shade it).?3 In
actuality this facility does no more than legitimise the practise of using guard values
and exception codes, providing a type secure and lex‘cally transparent notation for
these notions, within the language.

Finally, there is TYPE, a type-like structure whose values are the types them-

13The practical expectation is that, wherever possible, extension elements will be implemented
with unused code space in the base type, rather than consuming additional storage. Of course, given
the generality of this mechanism, no such guarantee is made. One application of extension types
that is being investigated is their integration with an exception handling system: it turns out to
be convenient to provide an automatic conversion from any extended type to its basetype with the
property that if conversion of an extension element is attempted the exception of the same name
(and type signature) is raised. This allows interfaces to be written in a notation that is clearly
defined independent of exceptions, restricting exception handling to the lexical domain. Experience
will show whether or not this is ultimately desirable.

4Eventually we hope to be able to extend this notion further, to a general mechanism for dis-
tributed clausal definition of computational objects, covering not only functions but values and types,
and permitting a consistent interpretation for such extensions occurring in local scopes. There re-
mains to be resolved, however, a technical question of under what circumstances it is desirable for
an extension to propagate back to the original definition.

18

selves.!®

In light of the fact that this is merely a paper notation and given the immense
human aptitude for type inference, we shall not give a type assignment algorithm for
Exemplar; indeed, it may be that, as the notation stands, no adequate type inference

algorithm is possible.

2.4.1 Modifiers and attributes

Not really forming part of the basic type system of the language (for though Ex-
emplar contains constructions syntactically and pragmatically reminiscent of block-
structured imperative languages, they have been designed to operate unimpaired in a
side-effect-free programme), but enabling us to express information about the imple-
mentation of programmes and to permit programming in the more classical imperative
style, we provide two additional constructors for manipulating impure data: # and
%.

The constructor # builds, for any type T, a new type #T of mutable T’s which,
like the classical “variables” of FORTRAN and Pascal can be “modified” by the side-
effecting operator := ;;}®17 mutable values are introduced with the constructor | and,
following Bliss, we provide an explicit demuting operator, +.'® It should perhaps
be observed that the operator | is actually responsible—at least in the most direct

reading—for the allocation of storage, and is the only place in Exemplar where this is

~ 18The language design from which Exemplar derives provides a number of such pseudo-types,
sharing the property that a lexically interpreted intensional semantics affecting source interpretation
overlies a class of specialised runtime values. These pseudo-types include PATT, VALU and NAME,
and are used to define such constructs as if then else¢ end, : ; and >:. They are the means by which
the details of category and scope control are initially specified.

16Strictly speaking, of course, it is the (type T) contents of the #7T that are changed, not the #T
itself.

17We avoid the use of the word “variable” for these objecis, preferring “mutable,” (1) because
of potential confusion with the “logical variables” of Prolog; (2) because in functional languages
(to which cless Exemplar belongs, even though it contains the impure constructions described in
this section) the term normally refers to named objects which cannot change (modulo instance
unidentity); and (3) it seems clear that the mathematical tradition—that “variables” differ from
“constants” only in that they are locally more arbitrary—has priority.

18Which choice of symbolism should prove mnemonic to those readers lucky enough to be able to
remember the operator priority tables for C.

19

unambiguously the case (since values with no identifiable “location” need not literally

exist). There are no restrictions on the lifetimes of mutables in Exemplar: if they are
passed out of their original scopes they are presumably preserved in the heap.

In strictly parallel fashion, the % constructor builds pointer types, which pro-
vide references to objects.!® Pointers may be constructed with the & operator and
eliminated with =,

Although Exemplar as used in this thesis makes no formal reference to them
itself, in the text we shall have recourse to the terms pure and impure, naughty and
nice?, in reference ic programmes that may make use of mutable values; and we
shall occasionally have reason to speak of the type “Naughty T”. In general use a
distinction is drawn between pure expressions which do not involve side-effects and
impure expressions which do; it turns out to be useful to analyse the situation further,
characterising an expression on the one hand as pure if its value is independent of
the “state” of computation (independent, th.t is, of any assignments or analogous
operations in primitive functions), and on the other as nice if it, in turn, has no

impact on the state.?!

2.5 Summary

The language Exemplar, while Algol-like, attempts to provide clean lexical and syn-
tactic layers with an explicitly compositional flavour. Issues relating to type and

notational interpretation are resolved as much as possible within the language, but at

1Those familiar with Algol 68 will note that we have here unbundled the ref into its distinct
referential and mutable aspects. This is justified by the fact that references to objects with mutable
parts are very useful; in our analysis the resulting object is smpure (see below) but immutable. More
relevant to the present undertaking, perhaps, is that references and mutables have very different
characteristics at the implementation level, and it is appropriate to our present purposes to allow
this to shine through into the upper language.

3001 the reading of “well behaved,” of course.

AThe properties of effective purity and niceness—in which the attributes are taken modulo
some abstraction barrier—turn out to be fascinating, important, and hard to determine. A typical
buffering or caching scheme will, for irstance, turn out to be effectively nice while nonetheless
manipulating a great deal of internal state.

20

L RN P

a level very close to the surface. A sequential flavour is arrived at through notational
ruse: the standard “structured control” operators remain effective (as we shall later
see) in the pure functional subset of the language. Finally, (though we shall not see
this until the next chapter) the control and type specification sublanguages are made
very tightly parallel.

The approach of handling the mechanics of the language as independently as
possible from its specific features allows us to defer the discussion of particular se-
mantic facilities until they become directly relevant to our discussion. We trust that,
through these characteristics, ignorance of any given feature will result in strictly
bounded amounts of reader confusion, a property that cannot be claimed of many

previous language designs.

21

Chapter 3

Data Structures, Control
Structures

In this chapter we discuss structures, the abstract tree-like entities of which mod-
ern programming languages (and, for that matter, contemporary theories of natural
language') seem almost universally to be constructed. We progress from a consider-
ation of control and data structures in Exemplar to a survey of parallel facilities in
more typical languages. Finally we bring these threads together in the development of
the Visitor. The chapter closes with a brief investigation of an extension of algebraic
data types which provides an alternate construction for Visitors, one more closely

related to the high-level constructs of some contemporary programming ianguages.

3.1 Structures in Exemplar

As is typical of languages in its class, Exemplar provides a number of high-level,
block-structured methods of describing (or, up to isomorphism, prescribing) both the

flow of control and the arrangement of data.? In the present case it will be found

1At least at a syntactic level. [Sad91] in particular presents a syntactic and morphosyntactic
theory based on multiple parallel context-free analyses that is of interest to formai language theory as
well as to linguistics; [GKPS85) presents a more conservative (though computationally enlightened)
view of the topic.

3This contrasts both with early, pre-siructured approaches where block structure was absent,
and with a common modern sentiment that perhaps such extensive, centralised structuring facilities
demonstrate an undue concern for details of implementatior. better left to the evalvation mechanism.
In fact, it is the author’s contention that having more than a minimal repertoire of such structures
in the kernel of the language is indeed a mistake, but we here limit our discussion of this point

that these two sets of structures are closely related in both form and meaning; and
in fact it will be argued that such a close parallelism can be anticipated, at least
underlyingly, in most general-purpose prograrnming languages.

Since our concern is with structures rather than applications, we here ignore the
terminal elements of programmes: the atomic data and expressions from which they
are composed. In practise we shall assume the “usual” facilities: integral and char-
acter types with their conventional algebraic operations, and assignment and value
extraction constructions from which “impure” and “naughty” expressions may be
built. Theoretically, of course, we assume that a language implementation merely
provides a library of such semantic domains upon which the programmer may draw
freely.

Similarly, we shall for the moment ignore function types—in their data-object
aspect—and the representation of their instances as closures. Since they capture sus-
pended computations, their representation, though straightforward, can be expected
to be far more implementation-specific than those of more “usual” data. In fact they
may be treated more or less uniformly with other data structures, as described in

section 5.4.

3.1.1 Control structures

Sequencing: The simplest of Exemplar’s control structures is the familiar grouping-
and-sequencing operator corresponding to Pascal’s begin...end block, and to Lise’s
progn. In Exemplar this is written with parentheses surrounding the group and com-
mas separating the items: (a, b, ¢).> Operationally, this indicates that the cornma-

separated expressions are executed in textual sequence from left to right, returning

to the observation that it would seem advantageous in any case to represent all control constructs
in their recursive formulations in the carly stages of compilation; and this opens the door for their
direct definition within the language.

3Technically speaking, of course, the parentheses name the polymorphic universal identity func-
tion, mathematically I, while the comma is a binary go-on operator of type VT.Naughty Void — T —
Naughty T. This is straightforwardly related to the semantics given informally above, by currying
or destructuring, once noted that the notion of sequencing here resides wholly in the comma.

23

the value of the last expression evaluated. More abstractly, since it controls the order
in which the statements are executed, it specifies the manner in which information

may flow between them: it flows from earliest to latest, from left to right.

Selection: Terminal control bifurcation can be specified through a conventional “if-
statemnent” of the form if condilion then sequent end or if condition then sequent
else alternate end where the sequent or the alternate (if any) is executed, depending
as the Boolean condition is true or false. The else-less form is of type Naughty Void,
while the two-branched version (since the branches cover all immediate execution
futures) is uniformly polymorphic in the branches and the result. A second form of

conditional, akin to the familiar case-statement, has the form

if ezpression
is pattern, then action;
is pattern, then action,

is pattern,, then action,
else actiong.sagit
end

where the action; must all have the same type, the result type, which further must
be Naughty Void in the absence of an else-clause. Here the first clause whose pattern®
matches the given ezpression (or the default if none does) is evaluated to yield the
overall result of the if-expression.

Thus the effect of any of these if-constructions is to execute one of a number of
alternative expressions, chosen on the basis of the state of the programme when the

construction is reached.

Iteration: Loops in Exemplar are notated in a manner similar to that of Algol

68: there is a single basic loop structure that can carry independent <pecifications

YAt least in the full language of which Exemplar is a subset, a pattern is simply & formal
parameter, and the if-is construction has the same behaviour as a clausally defined function called
in place—except that the arms of the construction are within the scope of any declarations exported
by the if argument.

24

P NS T

Ty, e TR e T e T e

for termination conditions (while !then'...), control variables (!for! from 'to! iby!
{thenl...), induction variables (with from...as...) and body (do...). From these

components we can construct the classic while-loop:

while condition
do body

end

a for-loop:

for pattern from ezpression to limit by step
do body

end

and any number of hybrid forms like this fragment, which sums the results of f until

first it returns 0:

with N r from 0 .. Accumulate result as r
for Ni from1 .. Iterate over successive naturals
while N x : f[i]; x # 0 thenr .. Test; perhaps exit with r

asr+x .. Compute new r

end

The various prefixes can be combined and repeated ad libitum in a single loop;
and they are are considered in left-to-right sequence on each iteration (which is to
say that they interact elementwise, not cross-wise, as they would for nested loops).

The then-clause is used when it is desired to construct a yielding loop; its ex-
pression is evaluated if the associated loop controller causes the loop to terminate,
and its value is the value of the loop. If any controller has a then-clause, then all
must; and they must all have the same type.

The for from as group is used to maintain non-controlling induction variables over
the loop, with the from clause giving the initial value and the as clause updating it;
as can be seen in the third example above, the as-part need not be adjacent to the

first two clauses of the group. Multiple as-clauses are associated with for-clauses in

25

LIFO order rather than by textual adjacency so that the induction process may benefit
from the loop body itself.

The overall effect of any of these looping constructs, however specified, is that
the controlled expression(s) are evaluated repeatedly, for a total number of iterations
controlled both by the conditions above the loop on entry and by the results of each

previous iteration of the loop in turn.

Declaration and invocation: By now we have seen a number of examples of dec-
larations. Declarations of functions, in combination with function invocation, form
another control structure, and one that is in many senses more primitive than those
discussed so far (in the sense that any data structure can be constructed straight-
forwardly within the A-calculus): they are the general mechanism provided in most
programming languages whereby large (and even infinite) objects can be described
by a finite and practical notation, and structures such as loops and if-statements are
readily coded in terms of them.® Declarations in Exemplar are accomplished through

a form of let-statement:

pattern : ezpression; body

Note that this construction is not an assignment statement (which we shall write
with the operator := ;), deviating both in that the left hand side is a pattern rather
than a (mutably-valued) expression, and in that it denotes a lezical rathe than a
side-effecting operation.®

Function invocation is denoted by following a function-yielding expression with

its possibly empty bracketed argument list.”

SIn the case of lasy languages it is entirely possible to describe infinite structures without the
use of functions, but it will be found that the underlying implementation employs intimately related
closure-like structures for all but the structurally most trivial.

It might be notationally convenient to permit the introduction and initialisation of a named
mutable within a pattern, however. This is the correct formal analysis of the situation in a language
that permits “structures” of variables in a left-hand-side.

TTechnically speaking this obviates the need even for the declaration syntax just described: we
could operate purely in the combinatory realm. Such an undertaking is, however, more than slightly
cumbersome from a notational perspective.

26

The combined effect of function declaration and invocation is (as in any applica-
tive-order language) that a sequence of programme text—the function body and what-
ever it may recursively invoke—is effectively completely evaluated before proceeding,
even though the size and complexity of this execution subhistory may arbitrarily ex-
ceed that of the text of the call. Furthermore, it provides a mechanism for combining
information derived from different contexts via the separate routes of the argument
list and the lexical environment of the called function; this combined information may
influence the flow of control within the function, as well as its result.

We have not yet introduced any direct mechanism for recursion®; we provide an
operator, @, for the purpose, such that n @ v is precisely v evaluated in a context
where n is bound to v. There is in fact more than one interpretation available for
such recursion, depending on what is done about the apparent paradox that v must
be evaluated in such a way that its own value is already available.

(1) We can require that @ introduce only a well-founded induction (or recursion):
this is the classical interpretation in programming languages. If v is a function sorne of
whose range does not depend circularly on v itself, and every other point in its range
is reducible to one of these base cases through a finite number of reinvocations of the
function, then clearly enough every actual invocation of v is finite and noncircular
and there is no difficulty in practise (an “optimising” implementation must simply
take care not to outsmart itself by indefinitely expanding recursive invocations of a

function inline!).®

(2) We can in principle (it will become clear in the next section, in our discussion
of types, why this case is of particular interest even though it does not lend itself to

practical implementation) add to these instances those that are precisely circular, in

SWhile it is in principle possible to encode the Y combinator directly (Y is defined such that for
all f, Yf = f(Yf)), this only pushes the difficulty back a step in that the type that would have to
be assigned to Y is itself pathologically recursive.

9This corresponds, i the scale of objects generated, to, say, to the subset of the reals expressible
in “scientific notation,” if both mantissa and exponent are allowed to be a arbitrary integers.

27

the sense that v (or a parameterisation of v) is allowed to refer (directly or indirectly)
to itself in those cases where it is evident how to compute a fixed point for the
object; such a facility in fact constitutes an exceptional and idiosyncratic execution
mechanism.!?

(3) We can admit expressions computing values that are constructively infinite:
each increment of structure in the result must become available after only a bounded
amount of computation, and we manipulate the evaluation order of v in such a way
that if a programme only attempts to examnine a finite part of v (as, given the finitude
of the real world, it will), it will terminate, leaving the remainder of an infinite v
almost everywhere suspended in mid-calculation.!?

(4) We can contemplate the admission of classically infinite objects (for which no
such condition of guaranteed headway is imposed), at the expense of implementability.!?

In light of the fact that Exemplar is a fairly low-level language, sticking close to
the underlying semantics of the von Neumann machine, we adopt the first of these
interpretations—though circular objects can still in fact be built by virtue of the
existence of mutable values.

For the convenience of the programmer in the construction of functions thereis a
subsidiary use of the @ operator. Because of a notational clumsiness in the definition
of named functions (in that both the patterns in A-expressions and the denotations
of function types themselves require the specification of the types of the arguments,
producing a redundancy), we follow Algol 68 in introducing an abbreviated form of
function declaration, writing T :< name @ (args) >: body;. .. for T[args] name: (args)

>: body;....

19This corresponds to the rational numbers, whoee decimal expansions all eventually repeat (and
the manipulation of which requires distinct algorithms from the manipulation of general decimal
expansions, for this very reason).

1This strategy corresponds to the constructive reals, which are apparently as close an approxi-
mation to the classical reals as we can expect to see implemented directly.

}3Corresponding, of course, to the classical real numbers in all their glory.

28

3.1.2 Data structures

In many, perhaps most, general purpose programming languages there is a close
parallelism between the available data structuring and code structuring facilities (as
we shall see in section 3.2); this turns out to be a very useful consequence of the natural
constraints on data structure selection for von Neumann machines. In Exemplar,
using the freedom of a paper notation, we have made the syntax of the two fully
coincident.!® Here, then, we examine the data structuring facilities as they parallel

the control structures of the last sectien.

Sequencing: While the variety of “sequencing” that arises naturally in control
structures is normally interpreted as temporal in nature (though in effect it amounts
“merely” to causal (partial-) ordering!4), conventional data description languages also
exhibit a natural sequencing operator, this in the (abstract, address-) spatial domain.
It is the operator that constructs structures or records.!

In Exemplar, the spatial sequencing of data structures is written with the same
(textual) operator as the the sequencing of code: the comma. Type grouping, sim-
ilarly, is written with parentheses: (). Conceptually, this construction results in the
various fields of a structure being laid down in sequence, and it restricts information

to passing between them in left-to-right order.®

134 few technical problems remain in implementing such an arrangement in a practical language,
though we have every confidence that they can in fact be resolved.

14And is thus very much like the notion of time familiar from Leslie Lamport’s work on synchro-
nisation [Lam78].

151 actuality it is also a causal partial order: just as a code sequence is causally ordered by
(potential) effect, data sequence is ordered by potential control. An interesting situation can arise
when two structures of compatible control orders each have elements of the same types in the same
positions: they can be understood to be overlapping types, neither containing the other, where the
values in the intersection are at least freely interconvertible. Recall, for instance, that the intersection
of two regular grammars is not in general regular.

18Formally, just as in the code case, the comma operator is binary and the parentheses have no
semantic function at all; since Cartesian product (and even its dependent analogue, x, which we
shall meet in chapter 4) is associative up to isomorphism, and since field name scoping in Exemplar
is decoupled from bracketing in pattern contexts, this presents no formal or practical difficulty.

29

Selection: The part played by the union constructions of Algol 68 and C, and by
Pascal’s variant records, is taken in Exemplar by the type-valued if-construction. As
with its code-structuric’ ounterpart it has two forms, depending on whether the

controlling condition is simply boolean or relies on pattern matching. Thus we have:

if condition then substructure . else substructurey,. end

and

if ezpression
is pattern; then substructure,
is pattern; than substructure;

is pattern, then substructure,
else substructuredefautt
end

In both these constructions the data structure that is actually instantiated in a par-
ticular value is a function of the expression following the if key.

In the case of control structures it is clear enough (on the basis of the accumulated
traditions of programming language notation, at least) what data the controlling
expression is permitted to depend on: basically, on any names declared in scopes
surrounding the if-construction itself (in a modern functional language it is generally
guaranteed that these will still be “live” and accessible, regardless of cost: in fact this
is quite acceptable because the compiler can take steps to ensure that no overhead is
involved dealing with variables that are not captured). Furthermore, if any of these
variables is mutable (a conventional, “impure” variable, i.e., the value of a single
instance of which can change over time), its value at the moment of evaluation may
be extracted and employed.

The situation with data structures is somewhat different, since each time a data

structure is examined it must exhibit the same structure!” (unlike an impure “state-

17We here ignore the (independent) possibility that a datum might be accessed under more than
one type, a possibility that is not necessarily in conflict with strong typing, as we shall see.

30

ment,” which is in general data-dependent even within an instance). It is thus pre-
sumably inappropriate to permit structures to depend on the values of mutables, or
other impure expressions. Since data may furthermore be examined asynchronously
with respect to code on either side of an abstraction barrier which they cross—this
being the general property that makes the issue of choice of argument passing con-
ventions significant—they must also depend only on nice values, not changing the
values of mutable objects, lest their examination affect the behaviour of remo*e parts
of the programme. This does not imply that there is any need of an injunction against
references to variables (in the mathematical, non-mutable sense) defined above and
to the left of a controlling expression, whether these variables be other, constant
fields of the data structure, explicit arguments to the structure, or values from scopes
enclosing the structure declaration itself (though in this last case—as in languages
like C++, though for different reasons—the familiar transparency of the relationship
between the data structure as declared and the underlying representation in memory
is necessarily impaired, since the data structure must be closed in basically the same
manner that function cJosures are constructed). In sum, the control expression must
be (in effect) both closed and fized.

There is an additional tradeoff: since a typical data structure is examined far
more often than once (in the presence of, say, a garbage collector, it may be exam-
ined arbitrarily often, and at a moment when computational resources are particularly
scarce—see chapter 7), it will often be advantageous to store the results of any aux-
iliary expressions used in building the type, in the structure itself (once again at a
cost in transparency of implementation), rather than recomputing them each time the
structure is accessed. Obviously this decision should be based on information about
the actual complexity of the expression on the host architecture, and the expense of
the storage—saving one or two instructions will certainly not be worth the cost of an

extra field, while saving a call to a statically undeterminable user-defined function

31

assuredly will. This technique, of caching the results of complex expressions within

structures, could also be employed to forcibly fix naughty or impure expressions to
their meanings at the time of structure instantiation, if permitting them at all were
considered desirable.

The overall effect of this caching method is to impose at the implementation level
a restriction, possibly to triviality, on the complexity of control expressions in struc-

tures, but in such a manner as to be transparent to the programmer.!®

Iteration: The faculty provided in other languages by arrays and their analogues
manifests in Exemplar as an iterative (linearly inductive, if you will) structure com-
pletely parallel to the looping constructs for statements—though at some points in
this thesis we shall assume for convenience’ sake that a specialised type constructor,
Vector, has also been provided to this end, as part of some standard library.

From a certain perspective this is a somewhat peculiar unification of concepts,
since loops are generally thought of as seral constructions, while arrays are contrasted
with lists for their random accessibility of elements. In point of fact, the relationship
is quite straightforward, for only fully homogenecus arrays lack an informational
ordering in this way (and these correspond oaly to fully parallelisable loops). In
the first place, though random access may indeed be possible to an iterative, array-
like structure, many operations for building or manipulating arrays as ¢ whole work
sequentially, visiting each element in turn in the very sequence that they are reached
in their defining construction. Secondly, it is apparent that not all such structures
are randomly accessible, at least not at uniform cost; the LisSP list ¢s a kind of
vector, and with its linked structure is the most apparent such example, but the C
string—at first ylance a conventional array—can only be safely indexed if a prescan

has been performed to locate its terminating NUL and thus the upper bound on legal

18See section 5.7.3 for an explanation of how this can be assured even in the case where it is
arranged for physical storage layout to be specified in detail.

32

indices.!® Finally, it can be established that the cost of field addressability is in fact
an implementation question entirely (though certain expectations and even certain
guarantees are not unreasonable): as a limiting example, consider access to fields that
are (due perhaps to an if-construct) only conditionally present. Here, superficially
constant-cost access can be requested at the source level (language permitting), even
to entities which at run time do not exist(!)—a circumstance that can be expected to
prevent the expression from ever terminating.

Thus constant cost access to array elements is a joint property of the chosen
implementation and (possibly) the naming (i.e. indexing) convention designating the
elements. As with the indexing of conditional structures, Exemplar permits this
naming convention to be quite arbitrary (though it must be unambiguous), reserving
the right to maintain a copy of the naming expression if it is too complex by some
implementation-determined criterion; resulting in this worst case in an indirectly-
indexed array.

To take an example, an array of ten integers would be rendered thus:

for Ni to 10 do Z [i] end?®®

and would presumably receive precisely the conventional representation (the fact that
Ai.i is a trivially computed transformation, not requiring representation, being, we
hope, obvious to the compiler).

For somewhat more complex examples, see section 4.6.4.

Declaration and invocation: As below, so above: the declaration of new, named

types is accomplished in Exemplar through precisely the same mechanism as the

¥Although there are perfectly sensible C programmes that manipulate “string” addresses beyond
the final NUL (in particular, consider those involving strcat()), these must be understood from a
formal perspective as manipulating an underlying (conventional) array in which the string elements
are stored and whose bounds must be known a priori to the programme. See section 4.6.4 for further
discussion of C strings within our present framework.

30Here “[i]" is the name of the element and this “i" is an ezpression rather than a new identifier.

33

declaration of functions, except that the “type” of a type is TYPE. Like functions,
we permit types to be parameterised, but as with all structure specifications these

type-valued functions must be both pure and nice. Thus we write:

TYPE :< Vector @ (TYPE T, N limit) >:
for N i to limit do T [i] end

' i/.t;ctor[Z. 10] x: An array of ten integers, x[0] to x[9]

Once again we find that several interpretations of a type are possible in the pres-
ence of circularity: corresponding to the members of a type, we may consider as the
“instances” of an expression its evaluation histories. Thus the same recursive type
declaration could be interpreted as admitting (1) only weli-founded instances; (2) in-
stances that are either well-founded or actually circular (and thus having strictly finite
information content);?* (3) all constructive instances;?? or (4) completely arbitrary

objects (which will in general prevent the programme from terminating normally).

3.1.3 Discussion

In Exemplar, then, we find a formalism in which the notations used for expressing
code and data structures are strictly parallel. If one thinks in operational terms,
the sequence in which statements are executed in a programme corresponds to the
sequence in which the fields of a structure are “laid down” in memory; if in functional
terms, as control passes down into the leaves of the (value-) expression tree and
values pass back up, so control passes down into the (type-) tree and the constructed
structure is returned on retraction. Thus the trace of an executing programme—if

»23

represented with each function invocation on a separate track or “tier” #*—corresponds

to the instances of a data structure.

41Such are the data structures constructible in in most conventional programming languages.

33This is the behaviour exhibited by provably terminating programmes in normal reduction order
functional programming languages.

BThe origin of this notion is the observation in autosegmental phonology—see, for instance,
(Gol90]—that independent morphemes are best analysed as at least originating with independent
autosegmental tiers. The analogy is surprisingly tight.

34

In the sections that follow we shall see that this formal relationship between code
and data, while sometimes obscured by the details of the syntax, exists in many other
languages and notations of computer science. First, however, we indulge in a brief
aside on the subject of the non-obvious compilation of types to types and code to

code.

3.1.4 A note on non-transparent compilation

It is perhaps worth our while to take a few moments out for the consideration of an ex-
ample of how non-transparent representation might arise straightforwardly (especially
since it is traditional for compilers to be naive about data structure representation in
general). Consider the compilation of an expression (x + y) re (for x and y in Com-
plex[N]), in a context where speed optimisation has been determined to be necessary.
24

It is possible that an advanced compiler having a rule-based transformational mod-
ule would be aware of the distributivity of (re)-projection over Complex addition.?s
Far more mundanely, even a conservative compiler might elect to inline the complex
addition operation, or otherwise subject it to joint (interprocedural) analysis with
its calling context. Once this step has been taken, normal compilation processes will
result in the real portions of the addends being loaded into registers for manipulation,
while the imaginary part of the result, the computation deriving it, the (never exist-
ing!) registers holdiag the imaginary components of the operands and the conceptual
RAM backing them are all removed by dead-value elimination.

The overall effect, then, is of a series of complex numbers being represented as

#4This is not the same thing as speed optimisation having been requested by the user: one of the
amusing facts about optimisation is that on a virtual memory platform, better time performance
can result from performing space optimisation on the less-used portions of the code, to increase
spatiotemporal coherence (see [PHS0] for similar considerations).

351n the absence of exceptions, at any rate; had we used a bounded-precision integral representation
which fails by signalling (rather than by returning an exceptional value, the arrangement favoured
by the author for precisely this class of reason) in a context handling arithmetic exceptions, this
transformation would have had to be blocked.

35

integers in registers.

Even more dramatic effects can obtain in the case of Boolean values, which fre-
quently disappear into the control flow graph of the translated programme. A suf-
ficiently sophisticated compiler, however, might even end up substituting one type
for another throughout an entire programme: consider the case of a (textual) sym-
bol that is repeatedly looked up in table throughout the course of a calculation, to
determine different characteristics of the entity it represents. The modularisation of
the programme may be such that the programmer has no choice in this: the symbol
table accepts a name and an attribute class and returns a value in that class. The
compiler, however, would have access to the internal representation of the table, where
the various attributes of each symbol are in all probability grouped together into a
single structure. A form of global common subexpression elimination would result
straightforwardly in all references to the symbol table (after the first) being replaced
by references to the appropriate entry in that table—and subsequently by the substi-
tution of references to the internal symbol descriptor replacing stored values of the

symbol’s textual identifier in the various data structures of the programme.

3.2 Structures Elsewhere

Now let us examine the various structures that appear in several more classical no-

tations of informatics.

3.2.1 Classical FORTRAN

FORTRAN arrived on the scene before the advent of the dogma of structured pro-
gramming, and (at least originally) was not arranged in such a way as to highlight
structure in the sense that we have been using the term (a fact that is in some ways
quite ironic, since FBRTRAN seems to be the language on which the greatest efforts

at optimised implementation have been focussed, and it transpires that the hypoth-

36

esis that structured programming facilitates automatic optimisation was easier to
establish than that it facilitates software development). In recent vears, of course,
FORTRAN has married into the Pascal branch of the Algol family. The (ancient)
dialect we consider here is FORTRAN IV [ibm).

The most clearly “structured” facilities of FORTRAN IV (though they do not
manifest as inviolable blocks, by any means—see our discussion of the G@ T@ statement
and its correlate, below) are array variables and the D@ statement (or, rather, the
whole loop that it heads). Though the language does not make the relationship
notationally explicit,?® these two facilities, one for code and one for data, fall in the
same parallelism as their consciously homographic analogues in Exemplar. 1t is clear,
furthermore, that such was the intention of the language’s designers: manipulation
of arrays in the absence of loops is next to impossible, and loops in the absence of
arrays are of limited utility.

Although FoRTRAN IV lacks data abstraction facilities as such—there is a lim-
ited vocabulary of built-in types, adequate to numeric calculation, no more—it does
provide for the introduction of nonprimitive functions and subroutines, subject to the
understanding that they not be recursive. This provides for fairly arbitrary re-use
of code segments within the programme, though the failure to require provisions for
recursion means that only one “copy” of the code can be used at one point in the
programme trace. Under a similar restriction—that only one instance of the struc-
ture be active at any point—arbitrary FGRTRAN IV data can be named and reiised,
with the “labeled COMMEN" facility. As with much else in FORTRAN,?” it is a no-
seat-belts mechanism: each CBMMON decluration is actually in a position to reinterpret
the contents of its common block(s) arbitrarily, but the provision of an independent

EQUIVALENCE statement (and the requirement that named common be of globally

- 3except, perhaps, in the “implied-DO” construction, wherein the two notations are hybridised.
3and in common with C, where type consistency, at least between compilation modules, relies on
“good programming practise” rather than automatic checking.

37

uniform length) seems to suggest that the intention was to provide something very
similar in spirit to the SUBRAUTINE.

Finally, and fascinatingly, there is a striking parallelism between two characteristic
unsiructured features of the language: the GB T staternent for arbitrary transfer of
flow of control, and the EQUIVALENCE declaration, which identifies separately declared
data objects by fiat. Each of them can be interpreted as “splicing” arbitrarily selected
(but nameable) elements out of one stream of interpretation into the ongoing history
of another. The “original future” (to embezzle a phrase from stories of time travel) of
the stream of interpretation is lost. The relationship is imperfect, since EQUIVALENCE
has, on the one hand, impact only on the objects named (and the things they end

” in that arbitrary elements

up overlapping); but on the other, extends “backwards,
of arrays may be equivalenced—whereas a G T@ has impact only on what is, from
its perspective, the future of the calculation. This is, of course, a consequence of the
different temporal paradigms of homogeneous arrays and (side-effectual) loops: as has
already been noted, the informationally induced ordering on homogeneous arrays is
empty, while that on loops is in general total. In fact, since FORTRAN IV lacks condi-
tionally or multiply instantiated data, all data structures lack informational ordering
at runtime (though of course values are dynamic, and interrelated by programme ex-

ecution; and the precise effects of EQUIVALENCE declarations are crucially dependent

on the source ordering of variable declarations).

3.2.2 Pascal

The programming language Pascal [JW74] provides a much richer type system than
did FORTRAN IV. In Pascal (unsurprisingly, since the languages share Algol ances-
try), we find direct analogues of a number of Exemplar’s constructions: there are
identifiable grouping, sequencing, selection and iteration operators in the code struc-

ture:

begin ...end

38

case ...of...:...G...:... end if ...then ...lelse ...}
for...:...to...do... while ...do ...

and in the type language:

record ...end

both—though in the data case the various functions lack sharp mutual definition.
Abstraction in Pascal is available through function, procedure and type defini-
tions. Once again, however, there is no strong sense of the relationship of code and
data in the language: type definitions have a notation distinct from function, con-
stant and variable declarations (which are, further, mutually distinct)?. No mecha-
nism is provided to parameterise user-defined types, and because of the transparent
storage representations which Pascal assumes, recursion is only permitted through
pointer types (in fact, languages that provide unrestricted recursion in types will in
general need to implement them with pointers, except in the case that tail-recursion-

elimination—possibly following field re-ordering—succeeds).?°
3.2.3 EBNF

The familiar syntactic specification language (or family of such languages) known as
EBNF—Extended Backus-Naur Form—would not normally be understood as a pro-
gramming language; but it, like Prolog, can be seen as an underspecified procedural
notation (a notion that has been given concrete reality—though not for EBNF itself—

in the Unix tool, yacc). The grammar specifies what analyses might be arrived at

38Type declarations are most similar to constant definitions—at least in so far as they use the
separator ‘="—but, incomprehensibly, arithmetic expressions are forbidden on the right in constant
definitions, but permitted in actual parameters—while type expressions are permitted in type defi-
nitions, and forbidden in formal parameters (and, for that matter, as the return types of functions,
as the types of discriminant fields in variant records and as the arguments of the ‘I’ (or **’) pointer
type constructor).

29This manner of scheme sees implementation in the representation of lists on the LisP Machine
(Moo8s).

39

by a parser (or traces followed by a generator) of a string; and for any given string
the “correct” analysis deternines a recursive left-to-right traversal of the productions
very reminiscent of programme execution.

The structuring operators of (a typical instance of, and the one we employ in
this thesis) EBNF include a grouping operator, {...); a sequencing operator (in
our notation simple juxtaposition, but often ‘,’); two selection operators (the one-
sided !...!, corresponding to if ...then ...end, and the two-sided !, corresponding
to if ...then ...else ... end); and an iteration operator, {...}. The part of remote
reference is, of course, played by the nonterminals themselves, and the productions
defining themn.%

The analogy with programming languages is precise: on the one hand, we can
consider a conventional (procedural) programming language abstracted of its expres-
sion syntax: the remaining skeletonic control structures (the very things on which
we have been focusing in this chapter)—which, lacking expressions, must now receive
a non-deterministic interpretation—are exactly the operators of EBNF (that is, the
“usual” constructors of regular expressions, extended with nonterminals—in this case,
function calls). The strings generated (or parsed) by the grammar are the statement-
by-statement execution traces of the programme, and their parse trees are call trees.

Similarly, excepting pointers (which actually correspond to a second, incommen-
surate, alphabetic interpretation of the underlying string—see section 5.3) there is a
clear relationship between typical data structure declarations and EBNF grammars:
the transparently related grammar s the grammar of the data instances correspond-
ing to the structural type description. The strings are the objects. The formal
distinction between the two systems resides again in the locus of control: (computer-

scientific, parsing) grammars generally obtain their control information through the

OActually, in order to drive our analogy through, we need to assume (without loss of general-
ity) that each nonterminal is defined by a single, possibly disjunctive, production—or that clausal
definition is allowed for code. But see the next section.

40

supplementation of their leftward syntactic context with information derived from
lookahead—not an option in a type system, where examination of unidentified data
is impossible. Conversely, control information in data structures is in general com-
puted from data in the left coutext—something not in general possible for (finite)

context-free grammars.3!

3.2.4 Minimalist structuring: Core Lisp, Prolog and BNF

Not every complete programming language—or syntactic metanotation—has such a
broad range of structuring operators as those we have just described. Minimally, it
seems, one could get by, in conjunction with the ability to perform arbitrary recursive
embeddings of structures within each other, with only two such operators: a prod-
uct operator, juxtaposing structures in a sequential manner; and a sum operator,
combining them as alternatives.

While, strictly speaking, these minimal operators need only be binary, they are
both associative (up to isomorphism in the objects they describe).3? In their nota-
tionally less cumbersome variadic forms, they turn out to be very familiar structures
indeed. Interpreted (as we did with EBNF) as a grammatical formalism, these opera-
tors are precisely those of BNF, the usual minimal notation for context free grammars:

the product operator is the separator between the elements of each right-hand-side,

31Note, however, that the grammars of computationally influenced linguistics frequently do per-
mit at least unification-based attribute computation to control parsing [Bre82, GKPS85, Tom87].
Furthermore, the analogy between data structure declarations and grammars is most clearly as we
have described for LL parsers—LR parsers exploit a great deal more nondeterminism (at the source
level, not in the implementation—though [Tom87, Tom91] uses virtually parallelised LR techniques
to parse arbitrary context-free grammars), in the process obscuring the relationship to the original
source text.

331t might be thought that the sum operator was alsc commutative and idempotent. Remember,
however, that in the present discussion we are abstracting away from control information which
can select between intensionally distinct, if extensionally identical, trace futures. If we permit the
collapse of these branches (on the grounds that they represent the “same thing happening”), we
must also admit that the product operator shares these same two properties. As a practical matter,
the assumed idempotence and commutativity of (in particular) type union turned out to be one of
the greater misfeatures of Algol 68. On the other hand, the weakening of the basic composition
operators to their extensional behaviour is the theoretical essence of code-motion optimisations in
code generation; but code generators operate at the extensional level essentially.

41

while the sum operator is the (implicit) combination relation holding between the

various productions defining each nonterrinal.

As contro] structures, we see the minimal arrangement underlying the notation-
ally simpler members of both the functional and relational classes of contemporary
programming languages; and with other rule-based systems, however classified. Pro-
log programmes, for instance, have precisely the structure we just described for BNF:
once we have abstracted away from the details of control determination, relations
are defined by lists of (alternative) clauses, each a sequence of (references to) other
relations. Prolog programmes are, of course, non-deterministic (or, more strictly
speaking, exhibit largely reversible execution3®); but fully deterministic programmes
can be written with a structurally similar notation: consider, for instance, a simple
functional programming language in which functions are defined clausally, with clause
selection performed by pattern matching on the arguments.

The two-operator arrangement similarly appears in a familiar notation for data
structures: that of LiISP. LISP values are (implicit) disjunctions over all LISP objects,
and the nonprimitive objects are (canonically) lists of LiISP values. Extensionally, of
course, LISP values are single-sorted—LISP is a unitypic, “untyped” language—but
this implies merely that the type of values comes to the programmer closed up under
our primitive type constructors. The very power of LISP data structuring, and its
pragmatic weakness, arise from the fact that all of the other structures we have been

describing are mathematically reducible to this formalism.

3.2.5 Summary

In this section, we have seen that the “usual” repertoire of structuring facilities—
whether for code, for data, or, as it transpires, for the description of context free

languages—are all drawn from the same stock. On the one hand, they are all re-

SThe fact that they are really deterministic and sequential actually provides a paradigm case for
the non-commutativity of the sum operator, as described in footnote 32.

42

B

ducible to the operation of just two operators,®* a sequencing operator and a selection
operator; on the other, more extensive, “practical” notations for their description gen-
erally turn out to employ a quite uniform collection of ideas: definite and indefinite
iteration, distinct but related one-, two- and many- sided selection, and, sometimes,
functional abstraction.3® In the preceding section we exhibited a pair of identical
notations—or, rather, two applications of the same notation—for the description of
the code and data objects of a single programming language.

There appears, then, to be a very profound structural similarity between pro-
gramme structure, data types, and grammars; and, correspondingly, between pro-
gramme execution traces, particular data objects, and strings. What we have ab-
stracted away to exhibit these similarities is control: the actual computational mech-
anism by which one trace, object or string is selected from the various “possibilities”
licensed by the defining structure. This is in fact precisely to be expected: for though
the relationship between strings and data is quite transparent (we are familiar enough,
after all—under the influence of untyped operating systems such as Unix as much as
from our experience with paper notations—with strings as external representations
of more general data), a data structure is related to code in being somehow more
“fixed,” in having had its conceptual indeterminacy transferred from the “temporal”
execution domain to the “spatial” data domain.3® We will return to this theme, in
section 3.5 below.

In the next section we present Visitors, objects that encode type very generally
as code, and arise from the taking seriously of code/data parallelism, as a matter of

practical import.

34for reasons rooted in category theory, if you happen to belong to that school which believes that
category theory ezplains anything.

3%0One might speculate that the explanation for these recurring themes is to be found in the
particular linguistic processing apparatus with which the members of our species are endowed.

36Nowhere, of course, is this idea more manifest than within the implementation of a graph
reduction interpreter.

43

3.3 Visitors

Having established the existence of an isomorphism between code and data structures
(or, more strictly speaking, between the formalisms with which they are typically de-
scribed) we now examine its practical nature. Considering first the mapping from
code to data, we see that, as already implied, the data structure description pro-
duced by the direct mapping of the terminal statements of a code segment into field
specifications—made preserving its formal structure—is essentially a concrete data
representation suitable for the (naive) recording of the segment’s execution traces.
The crucial ~ontrol expressions in the structuring operators can be carried across di-
rectly, anu serve to elucidate the actual resolution of the potential choices available
to the thread of execution; true nondeterminism in the execution of primitive expres-
sions is represented by making a record of their results, from which dependent control
decisions can be reconstructed precisely. ¥

The converse mapping, from types into code, is (at least if we are—as we have been
silently throughout this chapter—ignoring the complications engendered by such im-
plementationally opaque entities as function values, the discussion of which we shall
actually defer—justified by that very opacity—until section 5.4) in fact more straight-
forward; but as the primary subject of this thesis we shall devote to it considerably
more attention.

The code structure obtained by direct mapping from the data structure description
has precisely the form r>quired of a programme designed to traverse the data in depth-
first, left-to-right sequence. The overall effect of this traversal is determined by the (as
yet unspecified) mapping from the primitive—terminal—data fields to the statements
or expressions of our executable image of the type.

Applying nov. a powerful software engineering technique—that of delaying deci-

"This is precisely the “fixing” operation of section 3.1.2. Once again we must finesse the handling
of imperative-style variables: as entities with non-local semantics we must treat them as (locally)
non-deterministic values, which are thus also “fixed” by copy into trace fields.

44

sions until the last possible moment38, we introduce the Visitor: the most general
homogeneous translation of a data structure description, obtained by direct out-
abstraction—into a set of functional parameters—of the details of leaf rerepresenta-

tion.

The Visitor of type T is a function Bt of type®

PxAT|xM=P
where

M is defined to be 7 >t.P x Alt] x M — P, the type of visitation

controllers.

P is the type of in-core data representations (pointers, in a typical phys-

ical implementation),

T is the type of names of type constructors (including atomic types as
the zero-argument boundary case), {(T] }, where 71 is the name of

a particular type (or constructor) T,

Alt] is the type of the argument list of the type or type constructor whose
name (in 7) is t

= designates a dependent map, analogous to a function type, but in which
the type of the result is allowed to depend on the value of the

argument—t, here, in A[t}]—an arrangement that is explored more

fully in section 4.6.2.

38 And implementation longer still, contextual slack permitting!

3¥Visitors will ultimately be used to invoke semantic actions on behalf of the caller. In order
that these be useful, they must be sensitive to the context of the original call into the visitation
system. Typically, this implies either that the semantic routines be closures with access to state
variables, or (in the side-effect-free style we prefer) that the Visitor itself be augmented by the
pairing of each pointer argument of type P with a semantic argument of some type S, which is
in turn a parameter of each invocation of the Visitor system. Thus the corrected type of fris
P xS x A[rT1] X M — P x S. In the interest of simplicity (and since the object of type S is—from
the perspective of the Visitor—simply passed through the entire callgraph without change) we omit
this argument throughout the present exposition.

45

The tezt of Bt is structurally isomorphic to T's original description, with each atomic
field mapped into a call to a functional parameter, M['U'], where U is the field’s type.
It should be noted that this function deals with internal objects of the language and is
not well-typed at the source level (though we are using source syntax for expositional
purposes): P in practise is an (opaque) image of underlying machine pointers, while T
and A[] provide access to type information drawn from the (link-time) symbol table.
In the applications we envision, type security is not compromised because Visitors
are generated automatically from type declarations and are not made directly visible
to the programmer.4® Specialisations of the visitor type (with P replaced by particular
user types) can be made available to the user on a context-by-context basis, though

we have not yet devised an elegant notation for the purpose.

3.3.1 Mapping types to Visitors

In this section we give the algorithm by which the Visitors for Exemplar are con-
structed. Since Exemplar’s structures generalise those of most languages, this algo-
rithm will apply mutatis mutandis to them as well, though it can be expected to
suffer somewhat in terms of transparency.

The algorithm is given first informally in English, then as an Exemplar fragment
implementing the computation for a kernel of the language. The programme as
presented assumes that all loops have been reduced to simple while-loops, and that
executable objects have had representations chosen for them from within the kernel
language, in the maunner discussed in section 5.4; an actual implementation would
in all probability implement more distinct cases, but this would seem to be without

expository value.*?

~ %Visitors thus represent a structure that is not well-typed (and in fact not well-typable), which
the programmer would not be in a position to write and which could not be computed automatically
if the source language were not itself strongly typed. What weak typing provides on the manual
sysiem, strong typing here provides “automagically.”

“'In fact, our hope is that the translation can be implemented metarecursively, as a visitation,
removing the issue of determining an appropriate covering set of structure translations completely

46

e |

i

The Argument Packet: The first step in constructing a Visitor for a type or
constructor T is the determination of the form of its argument packet, A[T'). If T
is in fact a fully instantiated type, this is straightforward: no auxiliary information
need be conveyed and A[TT’] is just the empty structure, (). Otherwise, we must
be visiting a constructor, and the argument packet contains an argument for each
argument the constructor takes. For those parameters that are not themselves types,
the type (and ultimately the value) of this argument is exactly as for the constructor.
Type parameters (which arise for carrier types like Vector or List, and for the primitive
constructors % and #), however, are mapped not into arguments of “type” TYPE,
but pairs of the t in 7 that is the symbolic name of the original actual parameter,

and its actual argument packet (which is of type At]).

The Visitor Proper: Informally, the algorithm that relates a type T to its Visitor,
Bris as follows: each structure in the type description is mapped to the corresponding
code structure in the Visitor: loops are mapped to loops,*? conditionals to condi-
tionals, ()-groups to ()-groups. Each such structure is now considered a “leaf field”
with respect to its immediate parent; that is to say that the following discussion of
leaf field translation applies to each argument of a structure, whether compound or
simple.

The overall function B7is, as already noted, of type P x .A[rT]] x M — P;let the

from the implementor’s concern. Such a presentation is not given here, however, because of unsolved
problems in designing a suitable source-level syntax for invoking visitation from the applications level.

43Since (type) do-loops are not yielding constructs—they always have type Void—while Visitors
in fact have values, we translate

...doUu...
to
...with P p from p, ... then p... as m['U'][p, a,, m]...

using a (yielding) accumulation construction (the derivation of the argument fields in this translation
is regular, and is given immediately below). Similarly, where fields are declared inside other iterated
fields—such as in while-clauses they are moved out into with-as blocks.

47

aiguments be named po, a and m, respectively. We can now describe the translation

of leaf expressions.
The image of a field declaration of type U is a local constant declaration of the
form

P pisr : m[U[pi, 2, m]; ...

where p, is the pointer value introduced by the translation of the immediately pre-
ceding field. Here m is the original m from the Visitor’s own argument list, and s,
is the argument packet appropriaie to the field being visited.

If the leaf is not a field but an expression (or in the case—such as the argument of a
parameterised field type—of an expression embedded within a field-leaf), it is passed
through unchanged but for the variables it mentions. If a variable is a parameter
of the type it is rewritten as a reference to the corresponding entry in the Visitor’s
argument packet; otherwise it must be a reference to a field v of some type V within
the structure,*® and it is rewritten as §y[p,], where p, is the p, passed to m in the
visitation of field v (not the result of that call), and 6y is a function provided by the
implementation that provides field access at visitation time.44

If any expression is too complex (in a sense that can be decided arbitrarily by the
implementor, if exact structure layout is not required—though expressions that are
not both pure and nice are necessarily in this category, if permitted at all) it can be

simplified, at some cost in space, by recasting it as a stored field initialised to the

43[f types are permitted to bind variables—if they are permitted in local scopes—then the under-
lying type structure must presumably have been rewritten, for implementation purposes, in one of
two ways: cither the context dependencies have been made parameters of the type, or they have been
made accessible (directly or indirectly) through one or more fields 2dded to the structure. These
are the same two basic techniques (respectively the combinatorial method and the closure method)
available for the implementation of function closures (which suffer precisely the same difficulties. In
fact, if an activation record is viewed as a structure the two situations collapee). The present algo-
rithm is assumed to apply afier this transformation, and so there will be no additional complication.
We can assume that variables are scoped no wider than the parameter list of the type.

44Consistently with our declaration-before-use policy, there is a restriction placed on éy, that it
only be called afier v's own visitation. From a theoretical viewpoint this ensures that the data
structures of which the Visitors are the images are uniquely defined; from a pragmatic standpoint
it makes it feasible to use Visitors to perform transput, for instance, where unvisited fields may not
be available to the § operator.

48

TYPE Code : Expression .. Extended by...
{ Code operator ? Code operand .. Formal application
. Code left 7, Code right .. ab
, code_if Code condition then Code sequent end
, code_if Code condition then Code sequent else Code alternate end
, code_while Code condition do Code body end

, Code pattern ?: Code value; Code rest
, [[Code code]] . [¥]
y e .. Other value-expression operators

}

.. Support functions ..

; Code :< typeConstructor @ Code type >:
.. Given a type expression, return its head
i Code :< typeArguments @ Code type >:
.. Given a type expression, return its argument list

Figure 3.1: Abstract syntax of Exemplar as seen by visitor

value of the expression, now followed by a reference to the new field. This forces the
evaluation of the expression to be performed at structure creation time, rather than
during the execution of the Visitor.

The value returned by the Visitor is the final p;.

In the examples of the following section we edit the output of this algorithm to
reduce the number of auxiliary variables introduced and to keep the code as readable

as possible.

The Translation in Exemplar: In this section, we assume that the abstract syntax
of Exemplar data structures has been represented with the type shown in figure
3.1. In order to avoid notational overhead from manipulating variadic operators, the

type descriptions have already been simplified by (1) reducing if {is then? lelse! end

49

Code :< visitor @ (Code type, Code p0, Code m) >:
.. Compute the visitor for a (simplified) type expression
if type
is Code type 7 Code pattern .. Base case
then
(m ? [[typeConstructor|type]]])
? [[pO ?, (typeArguments|type] ?, m]]
is Code left 7, Code right .. Sequence
then
Code pl : visitor[left, p0, m]
; visitorfright, p1, m]
is code_if Code condition then Code sequent end
then
(Code c, Code p1) : visitExpr[condition, p0, m]
; code.if ¢ then visitor[sequent, p1, m] else pO end
is code.if Code condition then Code sequent else Code alternate end
then
(Code ¢, Code pl) : visitExpr[condition, p0, m]
; codef ¢
then visitor[sequent, p1, m]
else visitor[alternate, pl, m]

end
is code_whileCode condition do Code body end
then .. This is the one subtle case
(Code c, Code pl1) : visitExpr[condition, p0, m]
; Symbol p : new]] .. New induction variable
, code.with P ? p
from p0
while c
then p
as visitor[body, p1, m]
end
end

Figure 3.2: Simplified Exemplar code computing a Visitor from a structure

50

(Code, Code) :< visitExpr @ (Code ¢, Code p0, Code m) >:
.. Visit an expression embedded in a type
.. An uninitialised local is a field of the parent structure
if ¢
is Code type ? Code pattern
then
.. Special case: both an Ivalue and an rvalue!
Code pl : visitor[c, p0, m]
: [(deref 7 [1p0]), p1)
is Code type ?, Code expression
then
Code pl : visitor[type, p0, m]
, visitExpr[expression, pl, m]
is Code type ?: Code value; Code rest
then
(Code cl, Code pl) : visitExprirest, p0, m]
» [(type ?: value; cl1), pl]
else
[c. pO] .. Actually need to be careful to insert derefs
end

Figure 3.3: Auxilliary function of figure 3.2

51

constructs to equivalent applications of if then lelse! end; (2) reducing all loops to
applications of while do end; and (3) providing each field with a single unique name
(eliminating the use of ‘:: ;" and anonymous fields).

The visitation of functions is, as already noted, not handled at this level, since
Visitors are computed from storage layouts, which in the case of executable objects
is only determined during actual code generation; this topic is discussed in detail in
section 5.4.

The actual calculation of the Visitor is performed by the function visitor in figure
3.2; it employs the auxilliary function visitExpr of figure 3.3 to handle expressions
embedded within structures (typically control expressions).

Note that when the code computed for Visitors (i.e., the output of these func-
tions) is eventually generated (elsewhere in the compiler), all abstract dereference
operators applied to type % T must initially be translated into explicit calls to é7,
though as we shall later (see especially section 5.6.5) the basic machine operation
can often be recovered in optimisation, depending on the application to which the

Visitor is ultimately put.

3.3.2 Sample translations

In this section we illustrate the effect of the algorithm of the preceding paragraphs
through a number of examples. These translations are once again exhibited at the
level of source notation; symbols such as P, M, B, ét and M should be understood
as extensions to the source language for the purpose of capturing such low level
concepts as “a position within the representation of an object”; they arise because,
strictly speaking, Visitors, operate at the level of the implementation, and not within
the user’s domain at all. This minor abuse of the notation will, however, permit us
to defer the discussion of the machine level representation of Visitors until section

5.6.

52

First, then, let us examine a trivial record structure of three fields:

TYPE Tapir :
(N limbCount
, Distance noselength
, HatSize hatSize

)

The Visitor for this type simply scans the three components sequentially:

TYPE :< A @ Tapir' >: ()

. P < Brapis @ (P p0, A[Tapir'] a, M m) >:

(P pl: m['N'}[p0, []. m] .. limbCount
; P p2 : m[Distance'][p1, [], m] .. noselLength
; m[HatSize'][p2, []. m] .. hatSize

An equivalent rendition of B, in the perhaps more familiar imperative style would

relise a pointer variable:

P < Brapis @ (P p0, A[Tapir'] a, M m) >:

((#P)p: |p0 .. walking pointer
: p:=m[N'[+p. []. m] .. limbCount
. p := m[Distance'|[+p, [], m] .. noseLength
; m|HatSize'][+p. []. m] .. hatSize

Here we see that the argument structure for the non-parametric type Tapir is—
consistently—() (an empty structure having exactly one member, namely []). The
Visitor Brap thus derives information only from its pointer parameter, p0, which it
decomposes for the caller via the callback parameter m, invoked for each of the fields
in turn. As it happens, the types of these fields are themselves all self-contained,;
thus in each case the second argument of the type-specific mode function (m|...]) is
[], as it would be in any invocation of Brap itself. The final result of the Visitor

is exactly the value returned by m|['HatSize'], since the follow of the structure is the

53

follow of the contents of the structure.4®* The auxiliary pointer constants pl and p2
serve no purpose here but to preserve the original textual sequence; from a semantic

viewpoint we might just as well bave written the more heavily embedded

P :< Brragir @ (P p0, A[Tapir'] a, M m) >:
m[HatSize'|[m[Distance'][m['N'][p0. [}, m]. [}, m], [}, m]

and in fact we can expect a compiler to generate the same instruction sequence for
each of the three descriptors, embedded, pure and imperative.

Consider now the type, or types, of general complex numbers (general in the sense
that we do not assume, as do many languages—though Haskell got this right—that
only approximate arithmetic is performed over the complex domain). We define a

type constructor (or “type-valued function”), Complex:

TYPE :< Complex @ TYPET >: Tre, T im

) ses

In this case, since the type is parameterised by the element type, T, the argument

packet A['Complex'] is no longer void. The argument that it takes, furthermore, is

6

compound: since the argument type may be parameterised in its turn,*® we make

arrangements to pass the appropriate information—as specified by A[t]—through to

the sub-Visitor:

TYPE :< A @ Complex' >: (T t, At] a) t
: P :< Bcomples @ P p0, A[rCompIex1] a, Mm>:

Ppl: mfatt][p0.ata, m . re
; mlatt][pl,ata, m .. im

.
g e

"We are here in fact glossing over a slight subtlety, at least at the level of physical implementation:
we are assuming the absence of fragmentation. In languages like C in which (visible) assistance is
provided to the underlying hardware in forcing the alignment of a structure to compatibility with
that of all its fields, with internal fragmentation otherwise avoided (something most homogeneously-
heaped garbage collected systems don’t bother trying to do), there is a need for address arithmetic
at the end of any Visitor that copes with mixed field widths. Making this detail explicit would
probably add nothing to the present discussion, however.

4As with fixed-point numbers, whose precision and scaling factor may perhaps be communicated.

54

Next we turn our attention to an instance in which Exemplar diverges from (any
approximation of) standard notation in favour of one exhibiting the symmetry be-

tween code and data. Here is the definition of the Vector constructor:

TYPE :< Vector @ (TYPET,Nn) >:for Niton do T [i] end

The Visitor for this type must accept among its arguments not only the type of the
elements of the array, but the array bound as well; for the arguments of By, are,

by construction, directly related to those of Vector itself.

TYPE :< A @ Vector' >: (T t, Alt] a)t, N n
;P i< Bvector @ (P p0, A[Vector'] a, M m) >:
with P p from p0
for Nitoan thenp
as mfatt][p,ata, m] - i)
end

As the body of the type has the form of a for-loop, so does that of the its Visitor;
there is (as there was for our original Tapir example) a slight skew in surface form
engendered by the fact that the Visitor returns a value. Here the pointer p is an
induction variable that is “walked” up the array from p0 to (just after) the end,
whence it is returned. The overall effect is just as for a fixed structure, except for
potential variation in the parameter n; this is in exact accord with the mathematical
identity between a vector of fixed dimension and the cartesian product over that
number of copies of the individual coordinate structure.

Thus far every structure we have examined has been a product of one kind or
another; these differ from sum types in that they exhibit no internal data dependency.

The following structure, however:4”

TYPE Interesting Thing :
if {tapir, cuttlefish, stone} kind, kind

*"Note that a field “kind” of enumerated type is declared locally and then immediately used within
the if-part, the selector-expression of the case construction.

55

is tapir then Tapir tapirDetails

is cuttlefish then Distance meanTentacleLength
is stone then N cucumberFrameMishapCount
end

has three different forms depending on the choice of value for the kind field. The

corresponding Visitor,

TYPE :< A @ InterestingThing' >: ()
i P :< BloterestingThing @ (P PO, A[flnterestingThing]] a, M m)>:
if P p1 : m[{tapir, cuttlefish, stone}'][p0, [}, m]
. 6{tcpir, cuttlefish, stone (P0]

is tapir then m|[apir]][pl, [}, m] .. tapirDetails
is cuttlefish then m[Distance'][p1,], m] .. mean TentacleLength
is stone then m[N'][p1, []. m] .. cucumberFrameMishapCount
end

depends on exactly the same control structure to dispatch between its various cases.
The presence, in the if-clause, of the function é1 is a technical device providing access
to the implementation’s internal mapping between representations and and the values
they represent; in essence it is the dereference operation associated with the type P.4

When a parameterised type is instantiated as a new, named type,

TYPE ComplexRational : Complex|Rational]

the Visitor must bind the same information—in the form, in this case, of the name

(within T) of the argument type, Rational'.

4814 is expressed as a parametric function partly to make explicit the type it impresses on its result,
and partly because its expected implementation does, indeed, involve a function call: in many of
the applications to which Visitors may be put the normal hardware supported mect anism for
dereference may be unavailable or inappropriate. Note that with the use of §, despite the obvious
operational interpretation of Visitors we we have been emphasising in this section of examples,
these functions are in fact completely decoupled from the physical representation—they manipulate
abstract images of representations, not the representations themselves. This can be put to practical
use, as for example, when determining the length of an object given its Visitor, even in the absence
of a physical instance.

56

TYPE :< A @ ‘ComplexRational' >: ()
; P :< BCompleshationa @ (P PO, A'ComplexRational'] a, M m) >:
m['Complex')[p0, [Rational', []}, m)

Taking this one step further, we exhibit a case where not only is the newly defined type
itself numerically parameterised (and a defined type in its own right), but information
is passed through it to its internal components.

TYPE :< ComplexRationalVector @ N n >: Vector[Complex[Rational], n]

The Visitor for this type is the involved but by now completely predictable structure,

TYPE :< A @ 'ComplexRationalVector' >: N n
; P :< BcomplexRationalVector @ (P p0, A[rCompIexRationalVector]] a, M m)>:
m[Vector'][p0, [[Complex’, [Rational', []], a n}, m]

Finally, let us examine a common structure whose inductive pattern stretches the

bounds of what is generally considered (strongly) typable:

TYPE CChar : Character{nil}
; TYPE CString : while CChar ¢*, ¢ # nil end

Here we see a simple rendition of the programming language C’s notion of a string. Its
elements are more-or-less characters, though we have provided a distinct guard value
nil which is not itself a character, a nice distinction which C itself does not make. A
CString is then a while-loop over this extended alphabet, consisting of a sequence of
characters in the basic character set terminated by the distinguished element. The

corresponding Visitor is, of course, also a loop:

TYPE :< A @ 'CString' >: ()
; P :< Besiring @ (P PO, A['CString'] 3, M m) >:
with P p from p0

“9Here we do not take care to maintain the random accessibility of string elements. We will exhibit
a more detailed representation of C strings in section 4.6.4.

57

while P p1 : m['CChar'][p. [], m}; écchralp] # nil then pl
as pl
end

though as with the Vector example above, our translation has introduced auxiliary
induction clauses to keep a “thumb” into the structure. As in the InterestingThing
example we use the § operator to examine the control expressicn, though in this case
it iterates over every character in the string. Finally we reach the guard value; the
position after the guard is the position after the CString as a whole.

For this, our final example, we once again provide a rendition in imperative terms,

which may be a little closer to what we would expect a compiler to generate as output:

P :< Bcsering @ (P p0, A['CString'] a, M m) >:

(#P)p : [P0

. while P p1: +p; p := m['CChar'][+p. [], m}; Scchar,P1] # nil
then +p
end

From the examples above, it should be clear that although Visitors are higher-
order polymorphic functions, they are have a very restricted form. In general we find
that efficient machine implementations exist for the Visitors of all the “usual” types,

a fact that we will ultimately investigate, and exploit, in section 5.6.

3.4 Levels of Visitation

In the preceding section we assumed that whenever a field was declared in a structure—
at every Jeaf—the Visitor of that structure would contain a call to the Mode entry
(m in M) for that leaf. In fact, however, many applications of Visitors—in particu-
lar, garbage collection, for which they were originally devised—are interested not in
the full “parse” of a data structure as it was declared by the programmer, but only

in the sequence of atomic constituents that represent it. This situation is strictly

58

parallel to that of code generation: in all but a very few circumstances (interactive
debugging being paradigmatic) the programmer is not concerned with whether the
original structure of the programme is preserved throughout compilation, so long as
the overall effect is as if it had.

Efficiency would be enhanced, and (ir the cases where campositional structure
is not of interest) functionality pot compromised, then, if the familiar “inlining”
optimisation from code generation were applied to Visitors: wherever one structure
is bodily embedded in another, we can replace the call to the subVisitor with the
text of the called routine. Similarly, we replace remaining M-calls for user-defined
types T—ones that are represented indirectly, via pointers—with calls, not to the
mode of %T', but to m["P']; A["P'] (since pointers must point to something) is in

fact

VTP x AT x M = P) x AT

—the type of Visitors in conjunction with their particular semantically determined
argument structures—and we pass [B7, a] as its semantic argument.

The effect of this transformation is that the domain of m is now just. th= (presum-
ably finite) set of primitive types and type constructors, paving the way for a very
effi-'en' implementation indeed.

Even in the case where 7, the domain of M, ranges over all the possible types
from a source programme, however, it is still a finite enumeration of type names,
since in the case that a type is defined schematically it encodes only the head term
(which must presumably have some textual correlate); any arguments (or contextual

information) are, or may be, bound up in the argument structure.

59

3.4.1 Variable visitation levels

In fact, the selection of a level of “primitive objects” within a programming language
is entirely arbitrary. Despite that an implementation may provide some object pre-
built and leave the making of another to the programmer’s care, or that the source
syntax may have specialised notation for one facility and leave another to fall back
on more general resources of the language, there is no requirement of the language
processor to treat the one in a manner different from the other—just so long as some
implementation is provided for every part of the language.5® This is no less true for
types than it is for functions: the type Boolean, for instance, is as easily implemented
as the “defined” type {false, true} as it is built in—though there is an important
distinction of a different nature between the official core of the language which the
user’s programmes may rely upon, and those facilities which are built on top of it.
That being the case, we can see that the level of abstraction at which visitation is
performed is potentially a parameter, under the control of the user of the mechanism.
An implementation might capitalise on this possibility by providing that the user
can define the desired level of detail in visitation, in the following manner: the user is
provided with a function m in M, which maps each type name into its Visitor (and
does nothing else). The overall effect of invoking the Visitor of some data structure
with this M-function will be to visit each of its fields, but to perform no action in the
process. If, however, we now allow the programmer to perform pointwise updates on
the function, changing its behaviour at any type,5! it will be possible to induce the

Visitor to perform useful work. In particular, if the set of types covered includes at

%[t is in fact commonplace that certain “primitive” operators of a language be implemented
as subroutines-—especially on hardware with a limited instruction set—but the reverse case, while
possible, is less common: this would correspond to a feature not in the language as set forth in the
language definition, which nonetheless has a specialised translation. A nice example might be of
a compiler that recognises certain explicitly coded loops as implementing hardware-provided string
instructions, and then uses the latter in code generation. Such recognition of idioms is probably
most common in the world of APL compilation.

$1Any type, that is, that is nameable by the programmer under the usual constraints.

60

least all of those that form part of the language core,®? all reachable parts of a data
structure can be processed in a user-specified way.

Types that are not named—whether because they are not of interest to the pro-
grammer, or because they are not nameable in the scope of construction of *he pro-
grammer’s M-function, are traversed silently, decomposed if they are compound, or
passed over if they are atomic. The programmer thus need not be concerned with

abstractions built either over or under the structures being considered.

3.4.2 Opacity under visitation

An important consideration in the deployment of Visitors is the irnpact they have
on modularity. Clearly, giving the application programmer free access to the facility
impairs modular opacity, strictly interpreted, in two ways. First, since it analyses
structures of arbitrary type without imposing upon the caller to decompose them, it
can be employed to determine the manner in which an object has been (requested to
be) implemented. Second, just as it gives access to remote modules in the user’s code,
so it provides a viewport into the language implementation itself: given an object it
can be used to determine how that object was in fact represented to the machine.
In effect these are countervailing difficulties: in particular, Visitors certainly do
not in general provide a religble view of type implementations chosen in remote scopes,
since, as we, have seen,53 the ministrations of the language processor may have re-
sulted in quite arbitrary mutation of these implementations during compilation and
processing. The situation is thus quite similar to that of languages which fail to

make promises regarding evaluation order of arguments in calls: it is true that this

53[f the language provides no mechanism for deleting objects from visibility, we can even say: all
of those that form part of the language core as understood from the perspectsve of the application.
[pen83) argues that facilities for such deletion are in fact desirable when constructing a specialised
sublanguage tailored for application to a specific project; but in that case it is presumably incumbent
upon the creator of the sublanguage to provide the appropriately specialised version of the Visitor
(if visitation is required at all).

53Unless steps have been taken to the contrary, as when Visitors are used to provide an external
representation of an object to a remote agent with which a detailed object representation contract
may not be outstanding.

61

situation can be exploited by the programmer to gather information both about the
behaviour of supposedly opaque external modules, and about the language’s compi-
lation strategy (which, we would argue, amounts to more or less the same thing, if
the programmer of the caller is “playing the modularity game”); but ultimately, if
the programmer wishes to play Mastermind with the implementation, there are al-
ways virtual memory monitoring facilities—providing military security levels between
modules of the same programme is not the object of the present undertaking. On the
other hand, it is certainly the case that no programmer should be tempted to use the
present facilities to violate conceptual modularity constraints, since, although they
do cross module boundaries, they do so in an unspecified and unspecifiable manner.
In particular, no violation of modularity is required to employ visitation—as is not
the case for the obvious alternatives.

Notably, the Visitor mechanism (at least if its iuterface be implemented as sug-
gested in the preceding section) does take care always to present an understanding of
the world couched in terms of the locally visible types and no others. Hopefully no
more than a modicum of programmerly wisdom is therefore necessary in its employ-

ment.

3.5 Structures as Suspensions®*

In this section we present an alternate understanding of data types, one which moti-
vates the more general application of Visitors that is contemplated in chapter 6.

It is traditional to view data types algebraically under their opagquc aspect, and
structurally where they are transparent. Inspired by the A-calculus, however, let us
consider an algebraic view of transparent structures.

First, let us remark on two rather well-known facts: the first is that A-calculus per-

mits the representation of arbitrary computational objects, including data structures,

$¢This brief section is based on material originally presented by the author at the Montreal meeting
of 1r1P Working Group 2.1.

62

.. Here we give an example of Bag[T), showing how constrained free
.. constructors work. Note that the injection axioms fall out from
.. the free construction method.

.. "V" is here an infix operator taking a pattern on
.. the left and, on the right, a Boolean expression over the
.. vaniables it binds.

TYPE :< Bag @ TYPE T >: {0, bag[T], ()[TYPE B, B]}

| (B = Bag[T]) .. Utility definition
[(BbVb=0wbh) .. Identity
| ((Bb.Bc)V (bW c)=(cwb)) .. Commutativity
|((Bb.Bc, Bd)

V((bewc)wd) =(by (c¥d))) .. Associativity

Figure 3.4: An algebraically defined type

as A-terms (which are in turn representable as closures in conventional functional
languages®®); and the second, that arbitrary algebraic structures can be factored into
two components: a (possibly many-sorted) free algebra of the function symbols,*®
and a set of constraining algebraic identities. See figure 3.4 for an example in (a
somewhat extended) Exemplar.

Normally when constructing types (or algebraically specified objects in general),
the constraints placed on the algebra are understood in the sense of quotients: they
reduce the size (and increase the information content of the description) of the un-
derlying free algebra until only the desired structural relationships between the sym-
bols remain. Since, however (at least on the understanding of the identity of indis-
cernibles), objects may be identified with their input-output behaviour, it is equally

valid to impose the algebraic identities as static type constraints on the functions that

85Be it noted that “classical” Lisp implementations do not fall in this category, since they lack
(context-independent) first class functions.
56And, o fortiori—their being equivalently but functions of no arguments—constant symbols.

63

manipulate them.%”

In particular, if we represent an instance of an algebraically specified data type
by the open term in the appropriate free algebra over the constructors of the type, A-
abstracted on the entire set of such constructors (in some canonical order), we obtain
an implementation of the object that is mathematically adequate precisely when the
particular eventual arguments of the term are jointly restricted to obeying the defining
algebraic identities of the type as a whole, each in its corresponding role.>®

This formulation works equally well in the case of carrier types, in which not all
of the sorts of the algebra are in fact closed over in the type definition, and of types
derivative of other types: the only additional restriction now being, as one might
expect, that the eventual arguments provide a consistent assignment of types to the
sortal constants and free sort variables of the original algebra.

The main point of difference between this style of “abstract implementation”
and the more usual technique of strong involvement of external facilities in the al-
gebraic specification of the type itself—the latter a more operational approach to
the input-output behaviour of the type, if you will—is that it provides a clear for-
mation/introduction/elimination format®® uniform across all types, whether they be
terminal, carrier types, or even functional in themselves. Of especial relevance to us
is that this outlook provides for the unitary elimination of elements: no matter
that the object be large and complex, the “natural” method of eliminating iv from
(consuming it in) a computation is monolithic. To take a concrete example, in this
style the formally obvious method of using a list value would not be by decomposition
through null, first and rest operations, but by direct elimination with reduce (fold...

in Haskel] terms). See figure 3.5.

37The notion of equalities as types is of course not new; see [ML84), and [Dev84, CAB+86] for
applications to programming languages

$The reader may observe that this is in fact a reasonably accurate, if abstract, description of
the contents of the heap in a normal-reduction-order implementation of a functional programming
language which employs a tagged data representation despite a strongly typed source notation.

$9The reader unfamiliar with this notion is referred ahead to section 4 2.1.

64

.. Now for the List[T] example, showing the familiar operations
.. as defined:

TYPE :< List @ TYPET >: (nil, cons(T, List[T}})

; .. No restrictions since we used the inherently asymmetric definition.
Boolean :< null @ List[TYPE T} | >: I{true, List[T] . >: false]

" (TYPE T){firstOMNil} :< first @ List[T] | >:
H[firstOfNl, (T t, List[T] J) >:]

List[(TYPE T){restOfNil}] :< rest @ List[T] | >:
if 1] [nil, restOfNil]
. (T t, (List[T] I, List[T}{restOfNil}.)) >: [cons]t, 1], I]

is [, x] then x
end

' TYPE U :< reduce @ List[TYPE T} I, (T = U — U)f, Uu >:1]u, f]

g e

Figure 3.5: Direct elimination in an algebraic type

65

Considering A-abstraction itself, as applied in the creation of these representations
of the elements of abstract data types, we see that it is in some sense the most general
interpreter for the datum: it is a function which is parameterisable to provide all and
(in consideration of the type restrictions we impose) only its legal interpretations.

The relevance of this representation to the present thesis, of course, is that this
most-general-interpreter representation of a datum is precisely the function that is
computed by a recursive nest of Visitors, where the interpretation parameters are
passed in as user-specified components of the range of the M-function. The division
between the algebraically specified type and the type symbols free in its signature has
been dissolved (without loss of generality) into the precise pattern of parameterisation
specified by the programmer.

The most-general-interpreter formalism—possibly generalised to the Visitor’s
more global view of an application’s entire type system—is in fact technically prefer-
able to the visitation mechanism as presented (though far less straightforwardly im-
plementable, since the checking of algebraic identities cannot be automated without
full-scale proof generation techniques), since the algebraic identities ensure complete
modular opacity, apparently without sacrifice of functionality; seemingly, however, it
can only find application in a restricted family of languages, those with equational
types, while Visitors require only that their host language be strongly typed, an

issue we shall explore in the next chapter.

66

Chapter 4

Type Systems

In the preceding chapter we explored the nature of, and a number of issues concern-
ing, data structures; here we discuss data types. The distinction is perhaps not a
standard one, but it is important to the present discussion, for the mechanism of
the Visitor manipulates structures but is justified by types. For our purposes, we
take type as an intensional notion: it refers to the intended interpretation of an
expression or a concrete datum; whilst structure is eztensional, and concerns the
actual representation of the datum in terms of other types or the underlying facilities
of the machine. A type will, however, often have a natural structure to which it
corresponds by parallelism of construction)

The reader will note that there is a crossing of levels apparent in this description:
we allow “extensional” structures to be built out of “intensional” types. The reason
for this seeming anomaly is the crucial role that abstraction plays in programming: for
representational opacity—the local inaccessibility of “implementation”—is no other
than the local coincidence of type and structure, of extensional and intensional in-
terpretation, in the form of a nonce-atomic datum. The next chapter explores the
concrete aspects of this relationship between types and data structures; for now let us
content ourselves with the observation that the ultimate implementation, the compiler
and the object code that it emits, always has access to the lowest level representation

of a datum, while a strongly typed language may exclude the programmer from this

level altogether.! The purpose of the Visitors of the preceding chapter is to permit

controlled interaction between these levels, at a finer grain than has hitherto been

possible.

4.1 Philosophy of Type

In this thesis we take the view that strong typing is necessary to the implementa-
tion of several highly desirable language features, and sufficient to nearly all practical
programming tasks that are not already overconstrained by back-compatibility is-
sues (though see section 5.7.3 for an approach to even this issue). Here we attempt
to establish the conceptual credibility of this stance, in terms of the nature of the
programmer’s task.

We assume for the moment that computer programmes are ultimately used to
model “physical” systems, broadly enough construed to embrace, for instance, psy-
chology. Any such model will be based on inputs derived from observations of the
systemn; and any observation derives from an observer, whether intelligent or mechani-
cal. The nature of the observer manifestly induces restrictions on the value measured:
there is always some domain from which reported values are drawn.?3

If a model is of any interest, furthermore, it surely predicts values of variables

or parameters of the modeled system that are themselves—directly or indirectly,

1This applies especially to functions, whose empirical extension is, in conventional language
implementations, only tenuously related to their source form.

30ur notion of type, then, is a direct generalisation of the notion of “dimension” from physics;
a data structure corresponds to & particular measurement, complete with its units. Failures of
the meter correspond to “exception values” and may themselves be folded into the measurement
domain—to the extent that the failure mode is itself subject to measurement. While we shall not be
making further use of this analogy, it is one that the author has found very useful in pinning down
relationships between types and structures.

3]t might be argued that in the case of a human observer the domain of measurement is not
predetermined, humans being endowed with “free will”; but on reflection this will be seen to be
fallacious: while—for sound mathematical reasons—it is not easy, as a human, to predict the full
range of possible human responses to a situation, nonetheless both the input and output bandwidth
of the human organism are bounded—all the more so in the case of linguistically encoded data——and
thus a fortiori our argument applies to the human observer.

68

timely or otherwise, in principle or in practise—measurable! (even of astrology is this
purported). In order to be intelligible, these variables must, also, be drawn from
a priori known domains; for otherwise they will fail of interpretability. Even (once
again) in the case of linguistically coded data one must know to expect language,
to anticipate its modality (spoken, written, modulated on an electromagnetic carrier,
...), something about the range of languages to be expected, and—as it transpires—a
great deal of pre-established context.

Clearly, the input and output domains may be interpreted as types (for they
have representation and an interpretation as (a report on) a measurement of some
kind), and the overall computation is globally typédness-preserving. Further, we
may observe that even internal aspects of a programmer-constructed model derive,
ultimately, from observation, and are passed by communication; the same argument
of a priori typédness would seem to apply to them also, mutatis mutandis.

Under a fairly weak entropic assumption, that type information, once lost, cannot
be recovered®, we can infer that every value derived for the input (in either code or
data) and destined for output is typed—though whether the typing be explicit in the
notation or implicit in the behaviour of the mode]l we cannot say.

Thus, while we have not established that all computation is internally typed (a
position that we will later argue on the basis of hardware engineering techniques®),
we are now—modulo our very concrete ontology—in a position to suggest that mean-
ingful computations may be typed without loss of generality. Much of this thesis
attempts to establish that the benefits of maintaining type information in detail

throughout a computation are great, and the convenience to be had from discarding

*In the determination of the values of “hidden variables” of a system, the scientific method, at
least, would insist on there being some other method of checking the result—for otherwise the value
will be vacuous, devoid of scientific meaning.

5An assumption that is not at odds with the possibility of self-organising systems: for to serve
as a counter-example, such a system would have to recover the original input information, rather
than constructing information “of its own”: exhibiting not attraction but synchronicity.

SThe theoretical basis of this argument has, however, only the same status as the observation
that the output of software systems is limited by resource bounds to regularity.

69

it is less than nothing.

MOMMI: Meaning Out Means Meaning In: In looking at the matter from
the other direction, it seems that computer science is blessed with a singularly
apt acronymic aphorism, GIGO, viz.: Garbage In—Garbage Out. If we take this—
uncontroversially, I trust—as both a logical implication and a practical truth, we are
justified in asserting also its contrapositive: wherever meaningful output is required,
meaningful input must be provided. In sum: Meaning Out Means Meaning In.”?

In the context of the present discussion, this would appear to imply that there is
no hope of constructing a value whose interpretation is known—which, in short, is
typed—from input data that do not also share this property.

We are left with the question of whether we can build type systems that are
practical for the kinds of engineering tasks that arise in the real world. In the following
we establish that they can cover almost everything that is handled by languages with
weaker (but more liberal) type models, and with greater convenience; this, at least,

is a start.

4.2 Definitions and Concepts

In this section our objective is first to lay out the particular style of type formalism on
which we base our analysis of programming languages, and then to contrast it with
a number of similar concepts (sets, classes, and underlying implementations) with
which we believe they should not be confused—though in each case there is excellent

historical precedent for such confusion.

"Technically speaking, “NGONGI” would appear to be the acronymic contrapositive of GIGo, but
it seems somehow too exotic for such a motherhood argument.

70

D s

4.2.1 Type formation

We follow what has become standard practise in characterising a type, or family of
types, in terms of its formation, introduction and elimination rules. The formation
rules of a type describe the syntactic form of the type’s name (nontrivial in the
case of a member of a parameterised family of types) and the conditions for its
wellformedness. Similarly, the introduction rules give the forms and conditions
for the construction of members of the type (including the types of any arguments
they may take). The introduction rules are balanced by elimination rules, which
give forms for the extraction of the information bound into the type's members,
and the types of the results. The asymmetry here—that values are introduced and
eliminated, while types are formed but not “de-formed”—is accounted for by the
facts (1) that types® shaie with functions the property that their expressive power
would be restricted by a stipulation of (general) decomposability; and (2) that the
construction of a type is “justified” by the subsequent introduction of its members:
as with a function, it is the use of a type that is its raison d’étre.

An example is provided by the simple type N of natural numbers: its formation
rule (assuming, plausibly enough in a programming context, that it is a primitive of
the system) is a simple stipulation: N exists, and is a type. It has two introduction
rules, one providing that 0 is a natural number, and one that, on condition that n is in
N, then so is the successor of n. Finally it will provide one or more elimination rules
(subtraction and an equality test would suffice in the presence of recursion, and be
conventional from a programming language viewpoint; some form of definite iteration
construct would be equally suitable®).

Cartesian product is only slightly more involved: the product, x, of T and U is

defined whenever T and U are both types; there is a single introduction rule stating

8 At least in their more sophisticated forms.
SITT [ML84] provides what amounts to (a “lazified” form of) the latter.

T

that for any t in T and u in U, (t,u) is in T x U; and the elimination rules might well
provide a pair of projection functions from the product back to the original argument
types (or some kind of splitting function as in ITT, or as would be natural in a

Janguage possessed, like Exemplar, of patterns).

4.2.2 Type restriction

To this point, intension and extension coincide. To achieve this effect we have ch~ated
somewhat in having eliminators extract “the” information from a member of a type;
ITT, for instance, would have us specify in each case a series of equality rules speci-
fying which combinations (or reiterations) of operations yield results equal within the
type, or indeed between types. In particular this is necessary for funciions, where tex-
tual equality is certainly not the appropriate general method of determining equality
between results—there must be, somewhere, an evaluation mechanism.©

Such equality rules (if they go beyond specifying the usual semantics of free al-
gebras) have the same effect as the identities of algebraic type systems. Since they
restrict either the possible values of a type or (if we use the dual interpretation pre-
sented in section 3.5) their permissible interpretations, they have the effect both of
moving in the direction of intension—thereby distinguishiag the type from its under-
lying natural structure—and of inducing a subtype relation between types with the
same structural ,..operties but different degrees of restriction: a more restricted type
is 8 subtype of a less restricted type (symbolically, T C U when T is a subtype of U).
Since the natural structures of these types are identical, a straightforward implemen-
tation need not even concern itself with the induced distinction once type correctness
is satisfied.

A less superficial form of subtype relation may be produced (at the type system’s—

and possibly the programmer’s—option) when one type is embedded in another, as,

10The well-informed reader will have noticed that the implication that the reduction mechanism
is localised specifically in the equality rules of function types is not technically accurate, but this
would not seem to b. the place to explore the issue in detail.

72

for instance, in a Cartesian product. Since the addition of fields (with their own

complement of validity constraints) actually!? restricts the values available for earlier
fields, the extended type as projected back to its “parent” is a subtype of its original .12
Implementation is still straightforward (though here we delve further into the realm
of real machines), at least for the case of the product, since the most direct imple-
mentation of the natural structure of a type will result in component str ictures being
contiguous; thus simple pointer arithmetic, or often just use of a pointer, can convert
from the subtype to the supertype. 194z Actually, an embedded subtype need not
be among the “component” types of the supertype; it would suffice if the subtype
could be reconstituted from values projected from the supertype. This observation
underlies the notion of multiple inheritance,!® and, surprisingly enough, satisfacto-
rily efficient implementations based on pointer manipulation are also known for at
least the restricted product instances of this case [PW90].

Taking our development one step further, one can imagine a “subtype” being de-
clared by the provision of an arbitrary function from the subtype to the supertype;
in the context of a prcgramming language, such a “declared” subtyping is nothing
other than a user-defined coércion. While there may be practical arguments against
introducing such a facility into a practical programming language,'* coércion is cer-
tainly something that language designers have employed freely in the past on their

own behalf, and here we see its theoretical semantic grounding.'®

1iBy the magic of the Galois relation.

13The reader is here cautioned that while in the case of type restriction, subtyping corresponded
tosubsetting, here the subtype is lentially of greater cardinality than the supertype. Furthermore
it is in general impossible to convert members of the supertype to the subtype, since values would
have to be “invented” for the newly added fields. The direction of the subtyping relation is in fact
determined by the existence of natural conversions between types, which is itself a function of the
formal descriptions of the types, a property not directly related to the set-theoretic properties of
models of the type. This is as it should be given that types are not, for us, an extensional notion.

13At least, in its type-theoretic version.

14Notably ambiguity of conversion path, ambiguity of intended type for an expression, and ambi-
guity of the resulting overall notation!

%In order for the term “subtype” to remain technically justified we also have to ensure that the
overall subtype relation remains a partial order and that coércions never fail. In the previous, more
syntactic, subtype constructions this foliowed by construction (as can be seen by contemplation of

73

Now our journey from extension to intension is complete: types that may be
arbitrarily rerepresented in passing from subtype to supertype are fully abstracted
from their concrete representations. In fact, of course, types are always distinct from
their structures; here we have just surpassed the limit at which practical compiler

stupidity can no longer suffice to make them coincide.!®

4.2.3 Strong typing

In the formalism we have just presented, strong typing is preserved by construc-
tion: the well-formedness of types follows from the restrictions that the formation
rules impose, while the typedness of values follows from the inductive composition
of expressions. Each basic operator in the expression tree interlocks with the result
types of its arguments to form a well-typed structure overall. Functions are no dif-
ferent from any other objects: the operation of function application takes a function

argument and an argument argument of the function’s argument type, and returns a

the geometry of the parallel siructures), but in the case of arbitrary coércions it cannot be checked
locally at all.

16The reader may be wondering why very general systems of subtyping are not widely implemented
in programming languages. There are a number of reasons for this: compiler complexity is one, the
potential for ambiguity in the source code is another, runtime cost is a third. In this last case,
while less genersl conversions on statically typed systems may have constant cost through clever
manipulation of representation, dynamically typed systems and cases where the layouts of the two
related types are incompatible must pay at least the cost of copying the object, and thus are linear
in object size.

The single most important reason why we do not see more general type Lierarchies, though, is
the difficulty of establishing how they behave in the presence of defined types. Here Exempiar offers
the extreme case, for in general extensional structure equality in Exemplar is equivalent to function
equality, and is thus not computable.

In the case of ground types, objects of “type” 1YPE with arguments fixed® at the moment of
analysis, this is not a problem: the tpes can be unraveled and compared eztensionally (extensionally
withio TYPE, that is).

Furthermore, it is possible to demonstrate straightforwardly that if T C U then VectornT C
Vector n U (since static inspection of Vector reveals Lhat its type argument is used only positively),
but (at least without detailed knowledge of the operation of the for-lop in terms of which Vector is,
as it happens, ultimately defined) it is not possible to determine that if n < m then Vector n T C
Vector m T; and while this is not perhaps obvious, it is not even possible (without special knowledge
about N) to detect when Vector nT = Vecter mT, since we do not (for obvious reasons, since
functions have types) require all types to support runtime equality tests. Note however that, one
way or the other, all such computations rert on the local decomposability of the type.

*But note that this includes having knowledge of the values of any fields on which dependent
types (see below) depend.

74

result of the function’s result type.

If we introduce a subtyping relation as described in the previous section, slightly
more care is required: for the formal parameters of the various type constructors must
be classified into those that are positive positions and those that are negative positions
(a position that is both positive and negative is exact; positions that are neither can
in principle exist, and may ultimately describe a truly untyped expression that can
be omitted from the computation on grounds of irrelevance). In essence, positive
positions are those that correspond, in the introduction rules, to value ezpressions,
while negative positions correspond to types used for pattern ezxpressions, such as
the formal parameters of functions.

The reason for this distinction is as follows: it is clear when constructing a value
from other values, that providing an argument that is more constrained or more
detailed than is formally required—in short, a member of a subtype—will do no harm
(our assumption that we have an official subtyping mechanism assures us that the
implementation is willing to supply any requisite “fixup” on the underlying structures,
of course). On the other hand, since a pattern that is constructed from a type will (as
just noted, effectively) tolerate a member of a subtype, it itself may consistently accept
a supertype of that formally required. (In exact positions, of course, type equivalence
must be maintained.) In sum: in positive positions, subtypes are acceptable; while

supertypes are acceptable in negative ones.?

%A curicus manifestation of this same duality is what we refer to as the note phenomenon (after
a hypothetical programming language construct of that name. While many programming languages
provide one or both of ap assert-statement, which records a predicate that must hold at some point
in the programme and instructs the implementation to abort execution with a diagnostic message
if it fails, and some form of “constraint pragma” facility for making obaervations of use to the
optimiser (such as the necessary inequality of two pointers or array indices, for instance), it is not
generally appreciated that these constructs have the same semantics and could straightforwardly be
combined. Each of them records a predicate that must be true for the programne to be correct; the
only difference is that while assertion requests abortion if the condition is not satisfied on the left,
constraint empowers the implementation to assume its truth on the right. One can easily imagine
an implementation, then, that uses only a single source construct—the note—compiling a check
whenever “safety” optimisations are requested, and subsequently assuming that the check rucceeded
(or would have succeeded) whenever “speed” is wanted.

75

4.2.4 Contrasting types with sets

Having set out our approach to typing, we now contrast types (in our sense) with a
number of distinct but related concepts with which we feel they have been confused
in the past. The first of these is that of the set.

One of the familiar explanations of the computational concept of type is that
a type actually corresponds to the mathematical notion of a set, taken in conjunc-
tion with a collection of operations on that set. A prima facie difficulty with this
approach (at least in its usual presentation) is that it can capture only internal re-
lations on the type, and thus fails in describing the equally important—and often
richer—relationships between types.

Worse, this characterisation can be quite misleading, since it «ncourages one to
focus intellectually on an eztensional notion of the type, namely the membership of
the set. On the one hand, we wish to view types as intensional structures, having to do
with the intended meanings of data; and on the other, the actual sets we are typically
invited to contemplate are abstract mathematical objects and not merely an extension
bus, if you will, the wrong extension: they may model the physical implementation of
a datum in a practical machine, but they are not that implementation; nor are they
the best way of thinking about that implementation if that is indeed our concern. The
best we can say in terms of set theory (in order to capture the desired intensionality)
is that we are interested in the elements of a set under somie interpretation function,
which is also a part of the specification of the type.

The particular relevance of this distinction be*ween types and sets is that in
standard set theory, objects possess a life of their own: they come possessed of a “free”
equality relation,® can be placed in sets arbitrarily and without restriction, and so
forth. In particular, we can know that an object is equal to itself and to nc..aing else

without knowing of any independently motivated set to which it belongs. In contrast,

3No pun intended.

76

I U T

whether two objects receive the same interpretation (are equal, i.e.) or whether an
object receives any interpretation, cannot be known without reference to some type.
This means that types must be known a priori where values are to be manipulated;*
in fact, the failure of this requirement is a fairly familiar empirical phenomenon in
weakly typed languages where it often surfaces as such a beast as the “wild pointer
bug.”

Aside from the MOMMI argument made above, that nothing of practical value is
lost in requiring that we compute only with interpretable data, there is a further
argument that in fact types as we present them are more appropriate to the expli-
cation of programming languages than are sets: that the notion of interpretability
that underlies our type system can be restricted further to practically computable®
interpretations (an idea that we will in fact capitalise upon below) of data. This is a

considerable improvement over a description in terms that would seem to lack such

computational relevance.

4.2.5 Contrasting types with classes

The object oriented programming community® is presently in the throes of a debate
over the precise nature of the relationship between the “class” and the “type.” The
emerging consensus seers to be that, at least in the object-oriented coatext, the word
“type” ought best be used for abstract protocols that various classes might choose
to respect: that certain messages are recognised by the instances of the class (and
presumably that these result in uniform intended behaviours, though this cannot be

mechanically controlled).”

4Modulo, at least, information actually to be used in the object’s interpretation—a subtle equiv-
ocation that is of relevance in nonstrict evaluation paradigms.

5The precise sense of practicality needed here actually depends on the style of the programming
language itself: certain languages (such as C and Pascal) restrict basic facilities to coustant-cost
operations, while others, such a8 CoMMON LisP, provide much more expensive operations in their
basic repertoire; the same kind of style dichotomy could maaifest at this level.

¢OCPCOM (@

"Confusingly, to say the least, the designers of the functional language Haskell have chosen to
uee the words “type” and “class” with precisely the reverse interpretations: in Haskell, a class is a

77

This notion of type corresponds quite closely with ours (except, perhaps, in the

weakness of its typical concrete manifestation in the language), having an intensional
flavour and being the guardian of semantic coherence in the language. The class,
however, is for us no more than a particular collection of values (the fact that a
class—and its values—can pertain to more than one type is simply indicative of a
certain kind of richness in the type system®), ones sharing a value under the classOf
function.

Thus the difference betvieen classes and types (in our sense) is that class is a
property of a value, (and hence, at least classically, dynamic), while type is a property
of an ezpression (and thus static). This has practical implications in two distinct
regards. From the perspective of pure performance, the dynamic association between
an expression and its interpretation must (at least superficially) bear a heavy cost:
although iinplementations are improving steadily, it is still the case that a significant
proportion of the execution cost of an object-orienied programme is consumed by
method lookup,® the operation of locating the definition associated by a class with
some name; and the fact that objects must typically record their own classes imposes
a burden of space on every instance.

From a semantic standpoint, since thz class of an object is recorded in the value, it
is inherently tied to object extension: there is no possibility for the interpretation of an
object to vary by declared intension.!® The expressive power of the two systems is (on
the assumption, at any rate, that there are near-first-class types in the language, so
that values of parametric type can be manipulated) the same; but from an engineering
perspective (if not perhaps a prototypirg perspective), a strong type system seems.

to be the better investment where a choice must be made.

published interface protocol to which a {ype may elect to conform!

®A richness that is, perhaps, paid for in that all objecta will typically share a nontrivial type.

®And, the closer we get to the “frames” outlook, slot lookup.

19This is insurmountable only in the case of muiable objects—for otherwise it can be solved, at
some cost in time, via transfer functions—but the object oriented paradigm is (thus far) strongly
imperative in outlook and biased towards mutability.

78

4.2.6 Contrasting types with implementations

Although we present an approach stressing the inductive construction of types out of
pre-existing types, it is important not to confuse the type with its implementation—
with the structure (or structures) underlying the type. In this thesis, at least, we rely
on the fact that the implementation ezists and that it must possess certain properties
and relations to its preimage in virtue of its (presumed) utility; but we do not insist
that the mapping between them be transparent or even consistent between different
instances of a given type.

Furthermore, it is clear that there is (for most constructs at least) a “natural”
implementation corresponding in the data domain to the “operational” interpretation
of a code structure, and this serves as a meaningful baseline for description. Most
extant language implementations in fact do little more than provide a transparent
implementation of this baseline!’—in fact, typical compilers seem to be so utterly
doctrinaire about the transparent implementation of defined types that they do not
even consider them or their components to be candidates for registering, though
the relevant safety criteria are essentially identical to those for scalars in the same
context!?.

In essence, the situation is exactly as it is with the executable portion of a com-
puter programme: the source programme can be interpreted as a description of how
the computer should proceed at each step (in the case of data types, while “laying out
the successive fields” in memory), but since it is the interpretation of the type that is

of interest to its clientele (precisely as it is the input-output behaviour of the overall

115gTL [SDDS86) is the usually cited example of a language providing nontrivial compilation
of data types, but in practise this seems to amount to little more than a library of alternative
implemeantations for some of its more expensive structures it provides—more akin, perhaps, to the
provision of several different sort routines in a standard subroutine library than to the kind of
transformation carried out on the executable component of a programme by a8 modern compiler. In
the more recent SETL2 {Sny90] the data representation sublanguage has been deleted.

13 A8 we shall see below, a stack frame is for our purposes best considered as a structure anyway,
with environment captured in a closure being a conventional reference toit; so in fact some ad-hoc
decomposition of structures is arguably already being performed in the most naive of compilers.

79

programme that is of interest to the programmer), the compiler is free to provide

any implementation which preserves that interface intact (which is no more than to
reiterate our point that type is intensional, of course!).

There are any number of ways in which an implementation might diverge from a
naive reading of the type declaration; here, by way of illustration, we consider four
of them. It should be noted that each of these can be employed as a potentially
useful optimisation, relying on the presence of a strong type system to protect the
representation from uninterded!? interpretation; while they could be applied to less
strongly typed languages, they would then be restricted in application to areas and
objects of the programme that happen in effect to obey a strong type discipline.

First, we might find that the ordering of the fields in a structure is not preserved;
in particular an optimising compiler might reorder fields when it can be determined
that more efficient access can thereby be provided. Among the more obvious reasons
that this might be desirable are: that reordering fields can reduce external fragmen-
tation resulting from data alignment constraints; that it can place heavily used or
frequently-dereferenced fields at low or zero offsets, where many architectures provide
preferential access; and that reordering, especially when negative offsets are permit-
ted, can provide for cheaper support of (especially multiple) inheritance [PW90]. The
compiler must naturally see to it that the proper field access code is emitted for the
layout actually chosen.

Second, the implementation might determine that one or more fields can be com-
bined into a single, joint representation. On one interpretation this is the theoretical
justification for “null pointers” (which do not, in fact, point) in Pascal and C, and
for the various infinities and NANs in IEEE floating point arithmetic; a different ex-
ample is provided by “packed” structures in which information about the domains

of fields is used to reduce internal fragmentation.!® These rearrangements, of course,

3An intensional pun, this time.
¥To understand this example it may be necessary to recall that the typical “integer”—-for

80

particularly rely on the compiler having suitable information about the underlying
representations of the components; one cannot (in general) arbitrarily assign unusu-
ally formatted or overlapping storage to different objects (as is done with the C union
construction, for example, where a burden of recording disambiguating information
elsewhere is placed upon the programmer) without loss of information.

Third, the same type might be represented in different fashion at different points
in the programme. The most straightforward case of this would be where some or
all of an object is moved into registers in a local context where it is known that no
nonlocal reference to the structure is possible (or even globally to a function nest
in the case of a global variable or common argument structure), or eliminated en-
tirely in favour of immediate operands if it is constant!®. More complex applications
of this technique might divide the uses of a type into two or more categories de-
serving of different optimisations, and provide distinct representations, even distinct
general-purpose representations, for these populations, with conversions supplied au-
tomatically as required.

Finally, one can imagine a case where the above techniques are generalised into
a fully-fledged compiler facility, whereby the programmer or the implementation can
provide multiple implementations of any type and let the optimiser chonee between
them and variants of them as it will, inserting conversions and modifying access paths
to maintain consistency.

A special case of all of the above re-representations of a typeis that in which some
component lacks information content (relative to some context) or is “dead” in the
data flow sense, and need not be represented at the object level at all. This is, of

course, in direct analogy with the dead code elimination optimisation.!®

instance—in a programming language is actually a $2-bit (or so) integer, and so storing it in a
narrower field, even where this is known to preserve the values that will be called upon to represent,
does violence to its “obvious” eziension.

15This has the effect of embedding data in the code and relies in general on the fact that code
sequences themselves are typed by our criteria; see section 5.4.

18[n the above we have stressed the familiar case of conventional data structures, but it is worth

81

In all of these cases it should be noted that the implementation is constrained in its
rearrangement of the user’s description of the type to respect two distinct interfaces:
on the one hand, the external, ultimately intensional, behaviour of the type must be
preserved (depending on modularity implementation constraints, as discussed below,
this may be no more than a constraint on the behaviour of the programme as a whole,
or it may impose requirements on whatever types—or instances of types—are exposed
at module boundaries); and on the other it must respect a downward interface to the
types in terms of which the user’s type is implemented: the chosen extension, the
representation, the actual data structure, must be a well-formed underlying object
(or, possibly, objects). Crucially, however, it ueed not respect the letter of the user’s
mapping between them; and it is only necessary that whatever functionality is actually
used of that which is declared be resynthesisable at need.

In sum, the implementation must be an implementation: it must preserve the
observable behaviour of the typerelative to its formal definition, and it must represent
it at the lower abstraction level successfully and, one hopes, in a tolerably efficient

manner. It need do no more than this.

4.3 Typing in Extant Languages

Before going further, let us turn our attention to the ways in which typing—as opposed
to mere data structuring—manifests itself in various extant programming language
families.

Practically every programming language provides for the manipulation of values
drawn from a number of different domains. Typically these might include “integers”
(often a very restricted subset of the mathematical integers), floating point numbers

(frequently and erronecusly referred to as “reals”—the presence of at least the classical

noting that precisely the same analysis applies to functions and (because this is a large part of what
a functional type representation amounts to) their calling and stack formatting conventions. Even
the tail-call optimisation is arguably dead-data elimination performed on the stack frame.

82

reals in a programming language would be guite undesirable in practise!), characters
drawn from some character set, truth values, strings of characters, arrays of floats,
“atoms” as in LISP, various kinds of functions and even—in some cases—types them-
selves [DD85]. These domains, possibly in conjunction with others introduced by the
programmer, are the stuff of the type system of the language—though precisely how

the type system is arranged varies widely.

4.3.1 Weak static typing: the post-Algol family

Perhaps the language group with which the word “typed” is most strongly associated
in the popular mind is that of the post-Algol languages of the ilk of C and Pas-
cal. This is somewhat ironic, since, although their type systems are very visible to
the programmer, they are generally among the least strongly typed of all high leve!
languages.

Among such languages as these the type system serves three main purposes: first,
to assist the compiler in generating efficient code for the manipulation of data in the
verious built-in domains; second, to streamline the notation for the operations on
these data; and finally, to provide data structuring facilities (like those described in
chapter 3) to the programmer. Each identifier is associated with a manifest (ard,
except possibly in the case of array bounds, fully specified) type at its point of decla-
ration, and a set of inductive rules is used to assign a fixed type to every expression
in the programme.

The mechanisms for introducing new types are typically very stylised: the usual
repertoire of defined types includes finite enumerations, integral ranges, records,
unions, pointers and arrays of uniformly typed elements. In particular, first cless
functions and other objects of a high-order flavour do not occur. Historically, a strict
notaticnal and semantic divide has been enforced between primitive and non-primitive

types; only in the more recent members of the family do mechanisms appear for con-

]!12

cealing their defined nature. While this separation may serve in part to simplify
the translator, it clearly compromises the goals of streamlined notation and modular
opacity. It is perhaps for such a reason that the drawing of a sharp distinction be-
tween atomic and compound objects is among the objectives that seem to have been
dropped from the structured programming agenda in these latter days when scale
tells.

It is not clear whether as a cause or an effect of this situation, but the implemen-
tation manuals of these languages often provide detailed descriptions of the actual
storage layouts used by the compiler for various data structures. This presumably
helps facilitate interfacing to foreign software components without requiring the pro-
vision of facilities specialised to that end. It is clear that this would be far less feasible
in a more opaque system or one in which higher order objects appeared.

Although the mechanism by which expressions are assigned types in languages
of this class is potentially sound, still we find that their type systems are insecure.
While not every such language provides the same set of loopholes, each seems to have
one or more escape mechanisms for stepping outside of the type system, and there
are a nunioer of ways in which this can be exploited by the programmer (see section
4.5). While there is good reason to believe that such evasion of type discipline is not
a good thing, in these languages, at least, it appears to be a necessary evil: for in the
presence of a barely fulfilled promise of high performance, they combine rigidity of
structure with poverty of expression in both code and data. Something must be done
to case the programmer’s lot. Thus there are locutions provided in which the type
determined for an expression by the inductive type assignment algorithm is at odds
with that of the value actually delivered, wher= no semantic fixup (as there would be
with a coércion) is provided, and where the construction is not formally erroneous
(though it is typically of “undefined”—which is to say, underspecified—effect). So,

for instance, the declaration

84

int strange = «(int *)(void *)"odd";

is legal C, though it results in a character array being loaded directly into a signed

integral variable, with unspecified effect. Similarly, most Pascal compilers will admit

type
dodgy =
record
case Boolean of {omission of discriminant explicitly permitted}
true: (r: real);
false: (i: integer)
end;

var
dodge: dodgy;
strange: integer;

begin

dodgy.r = 3.14159;
strange := dodgy.i;

end.

The official intent of these constructions is often that they are merely cases where
the type correctness of an expression is not statically determinable, but is placed
as a burden on the programmier; the results of these operations are then defined
when, and orly when, appropriate dynamic conditions are met. In fact, however,
they seern to constitute an incitement to ignore the programming model provided by
the high level language in favour of an operational outlook on what the particular
implementation actually does. Were this not also the mind of the language designer,
we would anticipate the generation of far more dynamic type-checking code than we
tend to find in actual implementations (and the examples above would be trapped as

erroneous).!”

17Such error checking is easily accomplished: in the Pascal example we have but to represent the
anonymous Boolean discriminant field, while in C the anonymous “void *” could be made a duplex
structure encoding the type of its referent directly.

85

Although these mechanisms manage to provide for a number of possibilities that
would otherwise require some combination of a more sophisticated type system, an
explicit external interface mechanism, and higher order objects—possibly, granted, at
some loss in efficiency—it is our view that they do not constitute a net gain, in that
they make it impossible to exploit some of the more interesting possibilities of the
typed paradigm (such as automatic storage recycling and the Visitor-based facilities
to be discussed in chapter 6) and, perhaps more importantly, tie the hands of the
compiler by compromising the semantics of the language itself and restricting it to
particular, transparent, implementation strategies.

The overall effect is that the type systems of these languages provide not so much
interface contracts as “gentlemen’s agreements” —having in particular the character-

istic that they cannot be relied upon by third parties.

4.3.2 Algol 68 and the strongly typed languages

Algol 68 itself, by which the languages of the previous section were at least somewhat
influenced, is a language of which the type system is both less expressive (though
it does indeed provide for function values under not intolerable restrictions'®) and
completely inviolable. The representational abstraction provided by the language is
opaque. This results in a language which can be (and is) garbage collected.

Algol 68 itself is hampered by an extensional approach to typing that is at odds
with the necessarily intensional demands of software engineering. The modern de-
scendants of the Algol philosophy include the strongly typed functional programming
languages [MTH90, HPW91, Tur85), often employing extended type inference tech-
niques as in [Mil78, Gro85] to reduce the burden on the programmer of providing
detailed type information. These newer languages have moved in the direction of

more intensional models of typing and, in the case of Haskell, have added a semi-

18Basically that they only be used when their scope of declaration is still live.

86

systematic approach to (static) subtyping.?®

4.3.3 Dynamic typing

Among the historically interpretive languages like APL and its descendants (notably
J), various LisPs and SNOBOL (and subsequently ICON), we find a different pattern.
In these languages there is a type system and the typing (as with Algol 68) is strony,
in the sense that no action of the programmer can result in an undetected violation
of the type system.?® Usually, however, they are characterised as “untyped.” We can
provide two distinct analyses of what precisely is going on.

On the first view, these languages provide objects of only one type, itself the (dis-
criminated) grand union of all the domains from which valid data may be drawn.
Since there is only one type for any expression, there is no opportunity for a type
violation, and strong typeédness follows a fortiori—and trivially—from this circum-
stance. On this reading, the various “types” of the language are merely the manifold
distinct variants of a single underlying object type: the language is (we might say)
unitypic.

On the contrary, we could understand such a language to possess a nontrivial
type system (with each of the data domains constituting a distinct type), but with
type checking performed dynamically, during programme execution, on the basis of
the histories of objects, rather than as a (static) property of the expressions in which
they appear.

Technically speaking, the former interpretation is more generally accurate: oper-
ations are commonly provided to enquire as to the form of an object, and implicit in
the operation of enquiry is that at least enough is known about the object’s type to

pass it as an argument, which from the static (and hence—since the object code is

¥Though its “derived instance” mechanism is apparently at odds with this interpretation.
At least if we account the raising of an exception as successful avoidance of an error—certainly
the programme in this case continues to exhibit well-defined behaviour.

87

itself static—implementational)®! perspective is tantamount to its type being already
known.

That this “type” information is best viewed as part of the value of the datum is
brought out clearly?? by the fact that notational complexity is frequently reduced by
making the operations of the language dispatch on the types of their arguments, their
possibly behaving very differently in each case (an operator “4” for example, might
designate unbounded exact addition over integers; bounded, approximate addition
over floating point numbers; concatenation over strings, and so on—note that these
operations are not even algebraically similar, since the second does not associate and
the third does not commute). In Smalltalk-80 this notational device has been raised
to the status of a major programme structuring facility: the (externally) interesting
characteristic of a class being not how its members are represented, nor even what
class these objects actually belong to, but what message protocol they observe—
what, that is, function names can be applied to them.?® Thus, for instance, the set
of objects that respond to (at least) the message printOn:at: would form a type, as
would those that respond to all of +, — and .

This extension of class-dispatch to a primary semantic feature, and the concomi-
tant enrichment of the class system, was linked with the alleviation of one of the
common problems found in LISP, namely that although such dispatching can be
important to the operation of software (because in the presence of such a system in-
formation is in practise frequently encoded in object class), the comparatively static

and inexpressive type system provided by LisPs frequently provides insufficient reso-

41Unless compilation is being carried out at runtime—and thereby hangs a proportionately epic
worm-can,

3Though see [Gro85] for a fairly successful approach to the reconstruction of the facility within
the constraints of static typing—where the operators, not operations, dispatch according to “actual”
type.

33Smalltalk-80’s adoption of the idea that functions have distinct—and potentially unrelated—
behaviour for each class of object they might be applied to, would appear to suffer from severe
difficuliies of namespace control, since it provides no mechanism other than inspection to relate the
various uses of a message name.

88

lution for fairly straightforward applications. In particular, many LISPs lack a clear
distinction accessible to the programmer between lists and functions, while at the
same time eschewing a well-defined relationship between them. Similarly, the only
way of constituting a new “flavour” of list is to recode the entire list facility on top
of some variety of record type (assuming the latter to be available). This manner of
difficulty is in fact quite typical (though far from necessary).?

As has been observed, the languages of this category are all at least descended
from interpretive stock. In most cases, of course, partial compilation is performed,
and full compilation to native object code is by now commonplace. In the process
of compilation, optimisations may be performed which have the effect of changing
the flavour of the type system at the implementation level (though of course those
compilers which implement different semantics from those with which the language
was defined can scarcely be said to be correct—or rather, to be implementing the same
dialect). For instance, even rudimentary static data flow analysis (interprocedurally
or just in combination with information about the behaviour of some set of “primitive”
functions) is often sufficient to determine that certain expressions can only be used
to manipulate values of some fixed class. Then the elimination of code necessary to
deal with other classes and even the discriminant tag specifying which class is being
manipulated can be accomplished in the course of normal optimisation processes,
resulting in a system that is in the usual case effectively statically typed in the sense
of Algol 68 (along with most, though not all, of the efficiency benefits this can bring),
though dynamically typed in principle. Such a system can actually recover more
information than would be provided explicitly by the “equivalent” statically typed

systemn (though there is no reason why statically typed systems should not avail

M1t is altogether unclear how such a distinctly functional programming language has managed
to get by with a weak and inconsistent conception of the nature of a function. Perhaps—to wax
cynical—it is because the bulk of the LisP code in the world would have made better FORTRAN—data
structures permitting.

89

themselves of the same techniques and make further gains in turn).?®* Some of the
most aggressive results in this regard have been achieved in SELF [HCCU90).

The text-based record processing language Awk is not atypical of another group
of “dynamically” typed languages. In Awk, variables are typed by their first use, and
subsequent uses of a variable are required to respect the type already determined.
There is no question, however, that the language is typed: an attempt to use an
array-valued variable in a scalar context, or vice-versa, results in abrupt programme
termination. Among scalars there is no further type distinction: numeric and string
values are transparently interconverted as part of the semantics of the primitive op-
erators of the language, and this conversion is accomplished dynamically. As with
LisP, a sufficiently devious programmer can encode information in the actual variant

according to which the data are stored.

4.3.4 Lexicosyntactic typing

A quite distinct notational approach (though one ultimately having the same implica-
tions for the runtime system as a language with strong, static typing) is found in Perl,
INTERCAL, many dialects of BASIC and perhaps the earliest versions of FORTRAN.
Here the binding of types to expressions is performed even earlier than in more typi-
cal statically typed languages: it occurs at the moment of the programmer’s original
selection of identifiers, the forms of variable names explicitly encoding their types.
There is a vague argument, perhaps, that this practise makes a programme clearer,
since the reader can be in no doubt as to what the type of a given expression might
be;?¢ yet this is bought at the expense of a type system so restrictive that only a
handful of types exist—for otherwise, the coding-space overhead of maintaining ex-
plicit type information in every identifier would be prohibitive. Furthermore, it is not

evident that the clarity of a programme is increased by reducing the expressiveness

35This is standard practise in both APL and CoMMON Lisp compilers; CoMmoN LisP and SETL
provide (very different) schemes of pragmatic declaration to similar ends.
36Though Perl still consistently confuses the author.

90

of its type system to the point that manipulation of all but a very few types requires
extensive convention and gross circurnlocution. Even in the case of a language in-
tended for a very limited application it is to hard to argue against the provision of
some support for general-purpose programming.

In clause-structured languages (where the scope of a variable name is severely
restricted and the mnemonicity of names can be compromised to some extent) this
difficulty has sometimes been attacked by reversing the relative weights of the two
components of such type-tagged names, almost eliminating the name of a variable
in favour of that of its type. This produces identifiers like expression-1, Person#3 or
NP,. Most commonly this is found in special-purpose languages such as expert system
shells, attribute grammar formalisms and, for that matter, the semniformal notations

employed by mathematicians and linguists.

4.3.5 Full typing: ITT

Developments in mathematical type theory have given rise to a new class of program-
ming languages: those based explicitly on a powerful mathematical type formalism.
One influential example is that of Per Martin-Lof [sp?]’s Intuitionistic Type Theory
ITT [ML84], which has been implemented directly as a programming language at
least twice: once by Constable et al. [CAB*86] as the (automatically generated)
proof language underpinning the NuPRL proof developinent system, and once as the
total correctness language Brouwer [Dev84]. ITT in particular has been a heavy influ-
ence on the (far more pragmatic) type system with which we work in this thesis, and
underlies our belief that “escapes” from the type system are unnecessary in almost
all practical applications.

These type systems provide not only functions but types as first class objects,
but types can nonetheless be interpreted in a fully static manner (due in part to

language semantics independent of actual reduction order), and require in theory

91

no runtime representation—though the finite resources of practical machines can be
greatly extended if some runtime representation of types (possibly in the form of

Visitors) is provided.
4.3.6 The raw machine

One final category of programming language, and with yet a different perspective on
the issue of typing, is that in which access is provided more or less directly to the
underlying machine. Here we find both the multitude of assembly languages and the
more-or-less high-level language FORTH.

The issue of whether, and to what extent, an assembly language should be urder-
stood to be typed is a tricky one. On the one hand, it is clear that a typical assembler
does very little checking for compatibility of run-time values (though static checks for
the validity and compatibility of compile-time objects like formal addressing modes
and constant values is often extensive): usually integers, pointers, flag-masks and
floating point values can be intermixed at will without a peep from the translator.
On the other, it is equally true that the behaviour of typical hardware is fully defined
(and more or less documented) in the face of whatever manipulation the programmer
might attempt. All the information necessary to understand (e.g.) what will happen
if a single-precision floating-point = is loaded into the supervisor status word register
is in fact available to the programmer—and the result is typically well-defined.

Thus, as with the dynamically typed languages, there are two distinct readings
of what is going on, depending on how much significance is placed on the conceptual
domains being manipulated. If primacy is given to the domains, we have a weakly
typed language (possibly one with fairly sophisticated and expressive data structuring
facilities, as with ASM-86). If, on the other hand, the existence of a hardware reference
manual is taken seriously, it is better to argue that there is only one type, some form

of bit-vector, and all manipulations are performed over these. Under this latter

92

interpretation we see that typical hardware architectures are indeed strongly typed.

Unlike the dynamically typed languages, there is certainly no operation that can be
performed at runtime to determine the class of a value (though one might conceivably
argue this point for the LisP Machine [Moo85] or the SPARC [sun87], which possess
tagged pointers, it seems more reasonable to see this as simply a difference in the
processing of “dereference” for various argument words, since it is indeed intended
that tagging “violations” be trapped), but nor is there any difference in the processing
of values of different “types.” The only instances in which there seems to be any
real case for a theoretical type distinction in an assembly language are those where
the assembler provides transparent access to an unsafe architecture which (like MIPS
[Kan87)) really does exhibit undefined behaviour on certain inputs; and the matter of
the code/data distinction, in that most modern architectures require code to be static
modulo some notification procedure, while placing no such restriction on data. The
majority of assemblers, furthermore (ASM-86 is an exception), provide only symbolic
access to the instruction set, while data can be decomposed statically into bits.

In the same category with assembly languages we place the rather peculiar FORTH.
FORTH is in many ways a greater success as a “portable assembly language” than
C, though C is often accused of being precisely this. The reason is that although
the machine on top of which a FORTH runs is a software construct, entirely virtual,
the source language actually succeeds (issues of standardisation apart) in providing
the kind of transparent access to it that motivates many assembly language program-
mers. At the same time it provides a high-enough-level programming environment
(in particular, one in which the definition and use of functions is comparatively low in
overhead, and where syntactic mechanisms are never reserved to the language core)
to be convenient for many applications, particularly undertakings like prototyping
where interactive development is of greater moment than absolute security.

Although its extensibility (or incremental replaceability, perhaps) somewhat clouds

93

the issue, a typical FORTH provides a notion of type that is comparable to that of
less sophisticated modern assemblers running on insecure machines: type does exist
in some sense, is crucial to the programme executing in any defined manner at all,
and is in no way checked by the compiler. From the point of view of security this is
the worst combination of all, and, as with the languages we first considered—those
exhibiting weak static typing—it is by no means clear that anything has been gained
in expressiveness by this outlay—though since the FORTH programmer is actively
encouraged to tinker with the compiler, the reduction in compiler complexity in this

case may constitute a justification in itself.

4.3.7 Underlying tags

In a few instances the underlying machine may in fact provide tagged data. Onesuch
case is that of hardware optimised for the support of object-oriented or Lisp-like lan-
guages, where it is deemed that a sufficient proportion of the data that the machine
will manipulate are required to be tagged by the language semantics that direct hard-
ware investment is desirable (though recent research suggests that such effort may
not be entirely well-advised, in light of tbe cost of boxing/unboxing operations and
the unfavourable interactions between tagged representations and optimisation); an-
other, parallel to the “raw” (but virtual) FORTH machine, arises when the underlying
(software) execution mechanism already employs tags to its own ends.

In particular, normal order evaluation can be implemented quite effectively us-
ing a data representation in which all objects are directly executable, with types (at
tke implementation level) being determined by tags at object heads which are them-

selves short, executable code sequences (this is apparently an oft-invented wheel. See,

recently, [KL89].27).

37The widely distributed Unix “TIGRE™ implementation of Alonso is not (despite the claims of
its documentation) in fact implemented in this manner, but with a conventional table-driven “byte-
code” interpreter. Coding in strict ANSI C (and thus paying an extra indirection over assembly
code when locating functions), and running on the SPARC (which admittedly provides very cheap

94

In both of these situations the cost of a strongly but dynamically typed, tagged,
language implementation is apparently reduced by the fact that external factors in-
dependently call for this approach. This independence is illusory, however: in the
case of the machine with tagged memory, the cost of tagging is still present, but
has been assumed by the hardware design and burned into silicon—in a sense, the
hardware engineer has taken the language implementation decision to adopt a tagged
representation (a decision which, perhaps, ought best not have been taken) out of the
compiler writer's hands. In that of the software graph reduction engine, we find that
the best available interpretation techniques (as, perhaps, [AJ89b], with Lazy ML) are
moving away from representations that require the tagging of every data object.

It has been suggested at various times that the reason the arrow of optimisation
points away from tagged representations and dynamic typing is in fact the underlying
unsuitability of classical von Neumann architectures for this kind of data; and that
a change in architectural perspective might reverse the preference (see the critique
in [DP80]). Given that in a tagged representation resources (whether hardware or
software) must be devoted to the dynamic expression and manip.iation of tags repre-
senting type information that even in a dynamically typed language is almost entirely
predictable (see, for instance, [CU91, DS84]) which could otherwise be employed to
further the computation, it is hard to see how the argument might go through.

We hold, then, that tagged representations may in fact be preferable in the pres-
ence of substantial underlying hardware or software support, but that the designers of
these understrata would do as well to listen to arguments against tagging as would the
designers and implementors of programming languages to run on more conventional

platforms.

function call for programmes with limited stack travel), the author was able, in the database retrieval
language Alfonso, to better the performance of this interpreter by more than a factor of two, largely
by adhering more closely to the ideas of the original TIGRE paper.

95

4.4 Simple Types

In this section we examine the various basic types that we can expect to find in
a conventional programming language’s type sysiem. In part it will constitute a
recapitulation of the survey of data structuring found in chapter 3; but here out
perspective will be from a higher level and we will touch on a number of types (in
particular function types) which would not normally be considered data structures in

their own right (though surely they must be represented as structures underlyingly).

4.4.1 Primitive types

Type systems in general set about constructing the set of all types available in a lan-
guage inductively, from a basis of “primitive” types that are inherent to the language.
It is possible in principle for this collection to be very small (indeed, implementations
ultimately make do with bit vectors and bit vectors only; and as is well known from
mathematics, character strings, integers, lambda abstractions—any of these will also
do), but in practise the hardware provides particularly efficient support for certain
kinds of operations and it would compromise the overall effectiveness of the computer
system not to provide some suitable abstraction of these operations to the program-
mer.

Theoretically, it would suffice to construct a rompiler sufficiently intelligent to
recover efficient implementations from a programmer’s abstract, mathematical de-
scriptions of data by recognising which structures can be modeled efficiently on the
target machine; but this is an approach that is only starting to be explored in code
generation, where data structure selection is taken to be already a given [Wen90).
The closest that is seen to this in “practical” languages is that some specify many of
their standard types to work “as if” they had »=en introduced as defined constructs—
though a programmer trying it out independently will surely not get the benefits of

the specialised knowledge that went into the implementation of that standard kernel.

96

This being said, it will be understood that (at least in the author’s view) there
is little theoretical meat in the issue of what is primitive and what is not; if the
categorically-motivated building blocks 2, 1 and perhaps 0 be provided along with
enough structuring and information hiding to support basic engineering needs, we
are home free. The next few paragraphs are thus devoted to practical survey and

polemic; the theory will resume in section 4.4.2.

Void: The simplest of the usual atomic types is the Void type, 1, erroneously de-
scribed in the ANSI C standard as having no members. Actually, it has exactly one
member??, and thus zero information content and no need of a distinctive physical
representation—whence, presumably, the confusion.

The theoretical importance of Void is that it permits the formal expression of
computations which manipulate no information explicitly: where computations are
performed for effect, or where something must be specified for the sake of consistency
but is in practise not needed as a value. The former permits the collapse of the
historically distinct notions of “function” and “procedure” into a single consistent
construction; the need for the latter is very common when specifying interfaces with
scope for future enhancement: where there is as yet no interaction between two
modules but the path by which the necessary non-information is transmitted (and

more information may later pass) must be recorded in the source.

Boolean: The second smallest type of wide instance is 2 (in computer science more
generally known as Boolean). The Boolean type has just two members typically

understood as representing falsity and truth, and are used to represent, for instance,

38For those who enjoy syntactic party tricks, there is even a formal argument to be made that it has
notational existence in C, as an explicit sero-character expression akin to the traces of contemporary
theoretical linguistics: we may write, e.g., “return ;" to leave a function with return type void, while
a function whose formal parameter list is “(void)” may be invoked with a textually empty actual
parameter list-—note the absence of the minus one commas that strict consistency would require to
separate its sero arguments!

97

decidable decisions.

The fact that it is the type most frequently given special syntactic attention—in
the form of the if-statement—goes deeper than the universal employment of binary
representations in contemporary computers (in fact the representation of Boolean
values by single bits is astoundingly rare in software): according to most accounting
methods it is the simplest mathematical structure capable of representing information
(and in fact this is why it is a good bet for hardware—all else being equal it maximises

noise immunity).

Integral Types: The other class of primitive types that commonly enjoys a clear
privileged relationship with the syntax (this time, in the form of for-loops) is that
of integral types. These represent some part of the set of integers, Z, usually—but
not necessarily—with a very small and very hard bound on magnitude.?® Fixed-limit
integers are, of course, usually stored as bit-vectors of predetermined size representing
polynomials in 2 of small degree. One might wish that programming language design-
ers would stop using the word “integer” to refer to these other types, at least when
the limits are not both checked by the system and selectable by the programmer.

Nonbounded integral values (at least, ones for which the bound is the amount of
memory available) can be represented easily enough in a conventional computer, but
they are of necessity variable length structures requiring more complex management
than their fixed-range counterparts (though the fact that most values are still likely
to be very small suggests an efficient two-level strategy).

The for-lcop is justified as an independent control construct by the fact that

integers must be handled inductively (while enumeration is adequate for Bnoleans—

3The natural numbers, N (typically taken in computer science as all the integers greater than
or equal to sero), is often provided as a distinct type. In part this reflects the difference in likely
meaning between values that are naturally represented in each of these two ways, and in part because
representing the sign information consumes an entire bit {!) of storage, and so is traditionally avoided
where possible. (To be fair, typical multiplication and division and division algorithms operate on
unsigned values and there may also be a performance benefit in using unsigned values where possible
on common hardware.)

98

though the one-branch if is itself, technicaily, a Boolean induction).

Further Arithmetic Types: Other arithmetic types that frequently manifest as
primitives in programming languages are fixed point numbers, rational numbers, floats
and reals. Fixed point numbers are essentially no more than scaled bounded integers,
and floating point numbers (while frequently and misleadingly referred to as “reals”)
are fixed point numbers where the scaling factor is itseli represented by a bounded
integer—taken as a power of 2, most often, to provide some representational purchase.
While it is not especially clear that floating point numbers (especially hardware-
supported floating point numbers) are of any great use for general purpose computing,
nonetheless over half of a typical modern CPU is devoted to their manipulation, and
one supposes that it is the language implementor’s racred trust to find something to
do with all that silicon, or something.

Implementations of the rationals, Q, are typically much more thorough and, like
the nonbounded integer, provide as much representational precision as can be fielded
on the machine at runtime.

When it comes to R, the “real” reals, computers have a problem, because there
is a serious mismatch between their computational properties and their theoretical
ones, since any function manipulating a raw real value would appear to need to
process an infinite amount of information, making it difficult (to say the least) to
assure termination, even assuming that an appropriate representation is available.
The price of implementing a useful form of real would seem to be the adoption of
the framework of the constructive reals, and the consequent abandonment of total
ordering: constructive reals can provide a semidecision on whether two numbers are
within a given rational of each other, but no more. While this takes some getting used
to, it is nonetheless the case that they are «n appropriate type for those tasks where

fixed precision is inadequate, may be amenable to tolerably efficient implementation

99

M e

[LB90], and may be expected to become more common in the near future.

The designers of Haskell havs, as it Lappens, further muddied the waters of nu-
meric nomer :lature by using Real as the name of the class covering all of the lan-
guage’s basic arithmetic types other than the Complex. This is unfortunate, since
in consequence it provides a total order as one of its aspects—by inheritance from

Ord—effectively barring implementations of the reals from membership in class Real.

Enumerations a Semi-Primitive: Many programming languages provide finite
enumerations among their repertoire of data types. It is somewhat unclear whether
they belong in the present section, since on the one hand they can be held to be
(sometimes opaque) renamings of sets of small, fixed, cardinality—in which case those
underlying sets are indeed primitive types in our sense; but on the other, syntax that
introduces such a type can be seen as a constructor of an entirely new type, in which
event they technically belong in section 4.6.1. We will take the very pragmatic view
that they belong here for no better reason than that they are uninteresting: they have
the same formal and representational properties as bounded subranges of the integers
(though some languages weaken their semantics, providing no ordering or arithmetic
over them).

The sane cannot be said of free algebras, though they are a straightforward gener-
alisation of enumerations; in fact, free algebras (along with other “sum” types) must

await the introduction of dependent {yping in section 4.6.

Characters: One type that is generally defined by enumeration but is nonethe-
less an indubitable semantic primitive is the character. Perhaps most programming
languages provide a character type representing, unfortunately, not the glyphs of ar-
bitrary human languages, nor even those of written English (one would have thought
that e and o, at least, were unassailable, but it appears that cc was deliberately

excluded from the most widely used standard for eight bit character encoding, the

100

combination of ASCII and 150 Latin-1), but some set of (tokens for) linguistic glyphs,
often containing at least the ASCII 7-bit coded character set.

Some languages also provide strings of characters as a primitive type, but there
are many variants on this theme and for the purposes of this thesis they are all com-
pound objects—modulo surface syntax (and perhaps the shortcomings of a particular

language) they are subject to all the same considerations as arrays.

Atoms: The case of “atoms” (values which have no other properties than that they
can be tested for equality and serve as a domain for partial functions) is interesting,
for there are again two quite distinct interpretations available, depending in this case
on the presence of a “gensym” operation that can produce new atoms at runtime.
In the absence of such an operation, a type of atoms is no more than yet another
enumeration, declared distributedly over, perhaps, several source modules. If gensym
is available, however, the type of atoms is, like the true integers, of nonbounded
cardinality.®

Either way, of course, the “traditional” implementation of atoms is as pointers to
(or indices into) structures which contain information to accelerate the manipulation
of sets they may belong to or relations they may enter into; a representation which
shares nothing with enumerations but that a fixed-widta field suffices to store a
pointer (untrue in a model where memory is unbounded, but true enough of any

contemporary hardware).3!

A Menagerie: Programming languages, particularly special-purpose programming

languages, provide in addition to the “usual” types above, a bewildering array of

T %pp intriguing hybrid possibility is to treat atoms according to the usual identity rules for local
variables: that atoms with the same lexical name have distinct values at each activation of their
context of definition, this still being understood as part of a single distributed type definition.
S1But as noted by Wilson in [Wil91), Ralph Johnson of the University of Illinois at Urbana-
Champaign has suggested an efficient approach to nonbounded (virtualised) reference spaces based
on “pointer awissling” (software pointer virtualisation supported by guard pages in virtual memory).

101

primitive types for particular applications. These could include, but are not limited
to, files, formats, wombats, windows, pens, parsnips, patterns, colours, sounds, soups
and such. Internally to a von-Neumann-hosted implementation they will all be bit-
vectors (with the remote possibility of their being behind a layer of operating-system
abstraction hiding their bit-vector-hood from the language); while from the outside

their properties are thoroughly arbitrary.

4.4.2 Product types

Turning to operators for constructing nonatomic types, we find that the most straight-
forward is the product, building types whose members are tuples (or, in computer-
science-ese, records). In its most formal guise, the product constructor is a binary
operator, x, over types, and the elements of T x U are all pairs (¢,u) with ¢t in T
and u in U. In most programming languages, and indeed Exemplar, the product
type constructor is variadic, and the element tuples may, correspondingly, be of any
length.32

In order for product types to be of practical use, it is necessary to be able to
extract the elements of their members. There are two basic notational arrangements
to this end. In one, the pattern-based approach, there is pattern syntax mirroring
the data syntax in each product type--matching a tuple (of data) against a tuple
(of patterns) resulting in bindings according to each successive pair of elements and
effecting decomposition. In the other, projection functions may be associated with
the type when it is constructed: these are functions that take elements of the product
back into one or another of the original component values. The most significant

difference between these approaches is in fact an engineering issue: the provision

33There is an important technical point here: that the empty product, () (to use Exemplar no-
tation), must (if it be permitted) have precisely one element, [J; it is isomorphic to Void. Singleton
products are isomorphic to their argument types; whether they are interchangeable with them is
essentially a notational issue (having mostly to do with the manner of invocation of the projection
functions, described below: pattern-based notations are likely to make them identical, while no-
tations with explicit projection operators will treat them as isomorphic copies, lest the projection
function be semantically anomalous).

102

of separate projection functions requires that some syntactic method be found of
naming them, while pattern matching can be purely positional (circumstances seem
to determine which is best).

Back at the abstract level, then, a product constitutes no more and no less than
a general, abstract method for taking objects of any (without loss of generality) two
types; building from them a single value; and providing that that single value suffices
for the reconstruction of either or both of the original items.33

There is a tradition in cornputer science of providing projection functions in par-
ticular with a distinguished syntax (often a tightly binding postfix notation), different
from other notations for function application. Pragmatically this arises from the par-
ticularly efficient implementation that is available for these functions (in the obvious
representation they amount to offsets in addressing modes, something even RISC ar-
chitectures are happy to provide in one instruction), and from the fact that they
are conventionally mutably valued functions, a situation which is often otherwise out-
lawed. If they are mutably valued, of course, this provides a secondary mechanism for
building values in these types (by altering old instances), just as a pattern-matching
syntax may be thought of as a secondary arrangement for elimination.

Two places where product types are very familiar but not often recognised are
as argument lists and declaration blocks in Algol-family languages. Each of
these introduces an anonymous state tuple with named fields which are accessed as
variables within their scopes; the scoping rules of the language amount to rules for the
reconstitution of the unwritten tuple names that qualify each use of a variable—the
filling-in, that is, of the implicit argument to the projection function the identifier
names. The very practical reality of this outlook will be of importance to us later,

when we consider the actual application of Visitors.

3Given access to the underlying representations of two objects we can of course always build a
special-purpose product—this is the tedious part of the familiar Godel-numbering construction—
and this is why products are generally implementable. That we are here generalising over types will
ultimately, however, be crucial.

103

4.4.3 Functions

An important special case of the product is that in which the argument types are ho-
mogeneous: the product of n copies of some type T, written T™, is no other than the
familiar algebraic vector or the (unidimensional) array of computer-science. Here
the elements—and hence the projection functions—are in one-to-one correspondence
with some initial segment of the natural numbers, and it is convenient (and conven-
tional) to provide a mapping from the naturals to the projection functions of the type
(though once again the notation is apt to be specialised and the projection functions
may not be usable in general “function” contexts).

Even if it is desired to be able to index the projection functions, it is not con-
ceptually necessary that the indices be small natural numbers; the members of any
specified finite type will do.3* Programming languages in fact commonly provide ar-
rays indexed by characters and other enumerated types. Let us write (par abus de
notation) TV for this more general case.

There are two superficially distinct constructions that can result in an array of
more than one dimension: either a vector of vectors can be constructed (resulting in
something of type (TV)V); or a single array may be built whose index type is in turn
a product (yielding some TV*V). These two objects are clearly isomorphic: in either
case, each distinct pair of indices maps to a unique array element of type T.

A convenient notation for array initialisation, and one more in consonance with the
indexable projection functions that distinguish vectors from general products, is to
use an explicit algorithm mapping the index values to the array’s initial membership
If the members are further immutable, then there is an obvious space optimisation:
storage for the array proper need never be allocated, and the elements can be com-

puted and recomputed from the initialisation code as needed—care being taken that

3 Actually it is possible to view arbitrary products as being dependent maps (see section 4.6.2)
from an enumeration of field tags to the field type(s). Meta, for one language, takes this approach.

104

enough original context is saved that this remains possible. Such a scheme is en-
tirely practical, and is the conceptual foundation of the functional programming
languages.

This leads in turn to the observation that, it not being necessary ever to represent
components not actually visited by the programme—at most a finite number of values
in the lifetime of the hardware—the index type need not be small or even finite—it can
be any type at all. Repenting of our earlier notation-abuse, let us write this generalised
type of functions from T to U thus: T — U (note that just as we restricted ourselves
to considering the constructive real numbers when discussing primitive types, here we
are not embedding the classical, set-theoretic functions in our language. Rather these
are, again, constructive functions: ones that can be expressed by finite algorithm).

A variant on this strict interpretation of a function recognises explicitly that func-
tion bodies are re-evaluated whenever their “elements” are referenced, and permits
algorithms to make reference to the dynamic state of the computation at the textual
moment of reference (using the usual predrder traversal). Through the tender ironies
of history, this is known as “strict” evaluation, and is still the standard way of doing
things.

As before there are two alternate mechanisms to build what is commonly known
as a function of more than one argument: we can either encode the argument list
as a tuple (as already noted, conventional programming languages are perhaps best
analysed as giving each function a single, tuple, argument), giving a type like (T x
U) = V; or we can use the curried representation3’, assigning the same function text
(modulo, perhaps, some qualifiers on the argument names—depending on the details
of the syntax for destructuring, in fact, as discussed above) the isomorphic type T —
(U — V). There is a complication: the curried type requires that functions be first

class values—in particular, the application of a value in T to the curried function

3Currying is & manipulation named after Haskell B. Curry, the famous combinator, wherein
functions in (TxU)—V are transformed into (semantically equivalent) functions in T—(U—V).

105

yields a result in type U — V, and the implementation must provide for its reliable
and accurate representation.

This highlights the crucial abstract property of these function types (of which ar-
rays are but one variety): a function is an object transforming objects of its argument
type to objects of its result (i.e. element) type, and the type of the function itself is, if
you will, the contract under which this is performed: given an object of the argument
type the function will not return anything but a member of the result type (and in
some languages-such as Brouwer—cannot but return such a value).

This brings us to the oft-used concept of the partial function, a function with
elements possibly missing from its domain (in the sense that no member of the range
corresponds to them). These are used to represent various partially initialised objects,
functions which are not computable for all values (and so sometimes fail to terminate),
and functions which cannot complete for some pragmatic reason—opinions differ on
where the line of pragma might be drawn.

In fact it will be observed that there are two entirely distinct ideas here: there is
the function that does not return—whose distinct existence is of interest to a type
theory qua logic, but not, to the author’s mind, to a type theory qua computational
engineering tool (unless, of course, the logical interpretation has been granted a very
practical reality), if for no other reason than there is not much to choose between
an unacceptably inefficient function and an infinitely inefficient one, when one has
knocked and an answer is required [Mil26).36

Then, there is the function that on occasion successfully returns, with the wrong
type of answer. With luck it returns an “exception value”; more often it prints
a message and halts the programme—or the machine. This, on our analysis, is a
misunderstanding, no more and no less: since this exceptional value (or message)

was in fact returned from the function, it must ipso facto pertain to the function’s

36In any event, if static determination of termination of every function is required, either the
language must be severely restricted or the compiler must be permitted, in its turn, not to terminate.

106

range. Exemplar therefore provides the extension value mechanism and in principle
that is that (in practise, of course, a non-locally-exiting exception handling mech-
anism is very useful—and the language from which Exemplar is subsetted calls for
one—though thus far it would appear to lack sufficient theoretical grounding for us
to address the matter here. As with many such things, Visitors should in fact ap-
ply mutatis mutandis to the underlying representations of programmes with fairly

arbitrary exception handling facilities).

4.4.4 Sums are not so simple

The obvious next stop in a survey of standard types is the sums: types which can
represent elements of any of a number of other types (again, without loss of general-
ity, mathematical notation favours exactly two, while computer scientists favour free
choice)—singly. An element of any one of the component types can be injected into
the sum type, and subsequently extracted unchanged; but of course, elementsof types
other than that which was provided cannot be extracted, even if they number among
the type's full list of options. It must also be possible—somehow—to determine which
of the possibly representable types is in fact represented, for otherwise the extraction
operation would itself not be reliable.

In fact we shall pass sums by for now, saying no more of them until section 4.6.1,
since in our present minimal framework we cannot express the “contract” represented
by these types: for what is “the type” of the value resulting from the obvious projec-

tion operation from a sum type back to its captured value?37

37 Actually there are two workarounds in the present context, neither of particular interest to our
development: we could, with some theoretical justification, argue that the elimination operator for
& sum should not be presented as a projection function but as a function accepting a disjunctive
object (an object drawn from a sum type, i.e.) and a sequence of functions each of which accepts an
argument from one of the summands; then only the appropriately corresponding function is called,
and it determines the result of the entire expression. This technique relies on the index types baving
(functional) +/—~-position-dual roles in sums and products. The second and far more down-to-earth
workaround—nay, kludge—relies on knowing some element in each of the summand types, and
representing every sum as a product over the same types—setting each “absent” or inappropriate
field to the known (default) value. In a physical computer, of course, the resulting value is much
larger than it needs be, and in the presence of equality the same excess of information content arises

107

4.4.5 & Cetera

Here we mention briefly a few more items that we would rather not, but without
ahich the section would be incomplete. These are all items whose existence is a
practical reality in programming languages, but which do not (yet) fit cleanly into

the kind of pattern we have been describing.

Mutables: Most traditional programming languages provide a facility generally
referred to as the variable—not the functional variable or the logical variable, but
the garden-variety side-effectual imperative variable. These variables—to avoid old
confusion (if only at the expense of creating new confusion) we shall refer to them
as mutables—have the property that “from time to time”3® they may change their
values¥®—usually (if not always) on the express instructions of the programme. The
mutable is typically modeled as something with a name—a variable (in the generic
sense, now), a field in a record, or an element of an array (though not, for instance, the
value of a general function). In Algol 68, mutables are identified with references—still
“named” objects, but with names now themselves computational values and no mere
textual identifiers (on which see the next subsection). COMMON LIsP, generalising
still further, sees a mutable as a “place” —just about anything, in fact, so long as setf
works on it.4°

In general, however, we can understand mutability as a (strange kind of) type
constructor: for every type T we provide a type #T, a container for objects of T, that

they can be assigned into and extracted from according to an appropriate “temporal”

as a need to be globally consistent in the choice of default. We only mention this somewhat silly
second option because the author once worked for someone who swore up and down that it was
good engineering practise in that the computer could then never get confused and return something
undefined.

33 The inverted commas stem from the fact that the author is by disposition unclear on what the
intuition behind “time” is supposed to be.

3%0Or, as the romantically minded—but fumble-fingered—would have it, change their vales.

10 An observation that is no longer circular since [Ste90] standardised—after cLos—the defunability
of (setf <name>).

108

discipline. For our present theory it suffices that:-

Values are defined: Whenever a mutable object is visible*? it has a defined value,

Assignment is atomic: When an assignment is requested, there is no moment
“while” it is happening, at which the container doesn’t hold a well-formed

value;*? and

Not too much depends: Structural phenomena—Ilike those determined by depen-
dent types (as described below) are protected from the vagaries of mutating

mutables.

One case of the constant definedness condition in particular causes a certain amount
of difficulty: some languages (notably Pascal and Modula-2) strictly separate the
declaration of mutables from their initialisation. Thus there is an (arbitrarily long)
period during which the programme has specified no value for them: they are then
declared but undefined. The most straightforward solution to this problem is to
design the language so that there is nc such gap (this is the solution we have chosen
for Exemplar); but equivalently we might have the compiler provide an initial value,
possibly recovering some efliciency by forestalling object creation until its first explicit
initialisation when (as is usually the case) this is possible.

Visible undefinédness is only pernicious from the implementation’s perspective
(though in languages and in cases where it is not mandatory it is often indicative of
a programming error) when the values of a type do not fully cover the representation
space provided for it: for there is no knowing what the effects of manipulating a
non-value “of” a type might be. Pointers especially are normally sparse even in their
machine-level representation, and since they play a distinguished and very “semantic”

role in the structure of data representations must be accorded special care.

“1And in a garbage collected system this includes any moment at which a garbage collection can
occur; it is not restricted to explicit references in the source programme.

43This may require nontrivialsource language support in some circumstances, as, e.g., the monitors
of Concurrent Euclid.

109

Given the provisos above, mutables are in any static snapshot much like conven-
tional values, and do not seem to require any special formal mechanics in the type
systemn beyond exclusion from some roles.43

In machine representation, of course, T and #T are (in naive implementation)
all but identical: the mutable is just the place where the actual data underlying an
object are stored.*4

The properties of mutables when taken in the presence of a subtyping relation
are worthy of brief note. Since the content of a mutable is a conventional value, for
purposes of reading we could permit #T C #U whenever T C U. As an “lvalue,”*5
however, a mutable should only accept a new value that is of a subtype of its own type;
which is to say that for purposes of writing, #T C #U when T J U. In consequence,
unless the abstract quality of “mutability” is separated into distinct properties of

readability and writability, the # operator must be opaque to subtyping.46

Pointers: Another common computational type, and one which has significantly
greater technical implications (in fact it is the root cause of the garbage collection
problem, which provided the initial motivation for the present work) is the pointer.

Here, the standard model is that to each type T there corresponds a pointer type %T,%7

$3Meanwhile, the provision of an appropriate temporal model seems to require all of denotational
semantics: but that is a distinct problem, unless it is wished to weaken our conditions.

#“Note that #T £ ##T, though the latter is both meaningful and possible: assignment to the
value of a variable of type ##T will not affect the value of the (original) value—an effect that is
perhaps best accomplished by implementing mutable mutable types as pointers. This motivates
Algol 68’s collapse of mutables and references into the single notion ref, wk'le our concern (in this
thesis) with underlying representations prompts us to maintain the distinction.

45An lvalue is a value that may appear as the left-hand-side cf an assignment; in Exemplar, as
the first argument of := ;,

48There is another, technical, reason why it might be desirable not to make mutable types mutually
comparable, namely that mutables are instance-sensitive (in that performing an operation on a
copy of a mutable value does not have the same effect as performing it on the original) and the
implementation of type conversions that require rerepresentation is made much harder.

TThe fact that pointers are inherently—and uniguely—typed turns out to be crucial to the con-
struction of Visitors. For other types we allow the “same” value to acquire different types (through
the assignment of a value of a subtype to a variable of super-type), but we do not permit the con-
version of a pointer to some type to a pointer to a supertype of the type (pointer types are, in other
words, incomparable in the subtype relation). Theoretically the reason for this is that a change of
type may always result in a change of representation, and hence a change of “ideatity,” the property

110

and its interpretation is of an arrow in a graph of accessibility to various “copies” of the
underlying T-object—isocopyhood being detectable either by operations especially
provided for the purpose, or, if T or some transitive part of T (the definition of
“part” being obvious for a product but, as we have seen, somewhat controversial for
a function) is mutable, by causal time induction over side effects.

As with mutables, pointers are perhaps most easily understood operationally (they
are, after all, a direct reflection of the characteristic operator distinguishing von Neu-
mann machines from Turing machines): the usual implementation is that a pointer

is the address of the object it makes reference to.

Patterns: At various points in our exposition we have made reference to patterns:
more or less syntactic entities which are used for eliminating values previously built,
and as the left-hand-sides of functions and equations. It is a pity that it is not
presently understood how best they can be treated as values with types of their own,
though it is amply clear that advantages would derive from solving this problem;
perhaps the most difficult aspect of this undertaking is the separation of their name-
binding behaviour from their semantics strictly understood. They would have to
be provided with scoping rules that are in some sense “the opposite” of those of

expressions, but the pinning down of in what sense proves challenging.

Type: Type theories are known in which TYPE is itself a type [Car]; for our present
purposes—or rather, for those of section 4.6—it suffices (as, for instance, in Russell
[DD85]) that types belong to some type-like domain within the language. The un-
derlying representations they are assigned (and unlike some classical type systems

it is clear that we do assign them representations) are their Visitors and any other

which pointer transmission preserves. The important operational consequence of this restriction
is that the lattice representing the values that a (possible) pointer potentially refers to is trivial,
radically simplifying the computation of reachability as needed for visitation (and in consequence
any other fixed-point computation).

111

data that may be packaged with them to support genericity. We do not attempt
here to provide them with any more formal grounding than this, other than to note
that these too—like functions, mutables, the constructive reals and other “difficult”
objects—have underlying representations that are of necessity perfectly well-behaved
structures, and it is only the reflections of these representations back into the seman-

tics that provides scope for “real mathematics” in their analysis.

4.5 Type Evasion

While sophisticated type systems are undoubtedly of value both for the purpose of or-
ganising (and maintaining coherence in) programmes, and for providing the compiler
with information it needs to do a good job of code generation, there are circumstances
in which type discipline does not seem to be on the programmer’s side. In order to
address this kind of situation, programming languages (and in some cases, program-
mer ingenuity) provide a veritable panoply of methods for evading the strictures of
their type systems.

In this section we address a number of these thorny problems and their classical
solutions, with an eye to distinguishing those that are perfectly legitimate operations
within a strongly typed system, being no more than notational devices to reduce the
burden on the programmer, from those that in fact step outside the type system
and perform “truly untyped” operations (typically stepping outside of the intensional
paradigm and providing extensional access to a datum); and further to identify which
of this latter class are necessitated by remediable deficiencies of the language’s type
system, and which are truly inherent to the programmer’s task. The astute reader
will have anticipated our objective of establishing that this last class is very small

indeed.

112

4.5.1 Motives

There is quite a range of reasons why a pr grammer might wish to circumvent the

type system of a programming language.

Genericity: In the programming language C, for instance (where argument type
checking in function calls is optional, and has only become possible quite recently
in the language’s evolution—and where reinterpretation of one integer-like type as
another is easily accomplished), one of the main uses of type evasion has been to
provide a kind of “poor man's genericity”: one of the ways in which C scores over,
say, Wirth’s languages, is its ability to define (and for the user to define) functions
like malloc() (which allocates dynamic memory space by size, and whose result is
typically cast to whatever type is desired), printf() (which takes an arbitrary list of
arguments of arbitrary type, and one format string that describes them and what is
to be done with them) and sort() (which is in fact a conventional generic function,
accepting arguments of “arbitrary” type—suitably cast to the most generic pointer
type available—and the functions nee-ded to manipulate them; and then operating on
them as black boxes interpreted by those functional arguments).

All of these functions work because in C all pointers—regardless of referent—are
more or less guaranteed to have compatible representations, and so “puns” on objects
passed by reference are entirely feasible at the machine level.

Lest it be thought that such issues apply only to functions (in which case some
form of macro-expansion approach—as is provided in Ada, for example—would be
entirely adequate), let us observe that the need arises equally for generic carrier
types—structures holding objects of arbitrary (though often homogeneous) type. A
classic example of such a situation is in fact found among those functions specifically

mentioned above: C's sort() takes an array of “generic” pointers*® to be sorted, as

#]n pre-ANs1 C these are actually of type char +, but modern C compilers provide a type “void
»" which is precisely a generic pointer, and represents an explicit embracing of the tactic.

113

one of its arguments.

This whole argument-—that genericity is of prime importance, and type rules can-
not be allowed to stand in its way—underlies the support that the so-called “untyped”
programming languages (such as LisP and Smalltalk-80, and perhaps even FORTH)
receive. In these languages it is possible to disregard the types of objects completely,
except as they apply directly to the parts of those objects that are most directly
manipulated by the programme: list manipulation code can treat a list as a list,

regardless of what it might be a list of.4°

Interfacing: An issue related to that of genericity (which can be understood as
the problem of dealing with an object whose interface is dynamic relative to the
type system of the language) is that of interfacing with objects whose behaviour,
while fully static, is not compatible with the programming language’s normal rules.
There are two very common cases in which this arises: lateral interfaces, where it
is necessary, for instance, to pass information between functions written in different
programming languages; and downward interfaces between the application and the
underlying (virtual or physical) machine.5°

In either of these instances, since the form of the data structures to be manipu-
lated was not under control of the language implementor, there can be arbitrary skew
even between objects of equivalent semantics across such a boundary: the representa-
tions become—unfortunately—paramount. It can thus prove necessary to circumvent
normal type-checking rules in order to access such data at all.

Another potentially difficult problem of interfacing arises when implementing fa-

cilities for the use of other, higher-level, software. In this case it may be desirable

49Smalltalk-80, of course, takes this one step further and, its adherents argue, enables one to
manipulate an object without knowing anything about the object itself. This strikes the author as
a most peculiar idea.

80In deference to the usual understanding of “layered” systems we assume that it is the downward,
not the upward, hemiinterface that poses the problem, though this is by no means always the best
analysis.

114

to create what is conceptually an opaque type barrier while still permitting the im-
plementation module the direct access that it needs. Since not all languages provide
explicit facilities for this task, type evasion may be, in some contexts, the sine qua

non of this desirable form of opacity.

Missing Operations: Akin to the usual motivation for calling an external function
is a different reason to seek to evade the strictures of typing: that the programming
language being used simply fails to provide a function necessary to the task at hand.
Many languages, for instance, do not provide direct access to the separate exponent
and mantissa fields of a floating point number,® despite its importance to a number
of problems in numerical analysis; another example more common in the author’s
experience is the need to manipulate individual bits within a pointer, in face of the
pointer’s nominal opacity.®? Here, particularly if one type provides more direct access
to the underlying machine model than another, the ability to interpret one object as
if it had (the “usual” extensional interpretation of) the type of another can make the

desired operations possible.

Runtime Efficiency: Perhaps the most frequently cited motive for all dubious
programming practise is runtime efficiency.®® Type evasion can serve this end in
both the spatial and temporal domains: spatially, by allowing the same storage to be
shared by distinct objects (a potentially significant saving if the structure in question
is large or replicated many times), or temporally, by specifying an implementation

for an operation that is more direct than would otherwise be possib!~. The common

81To take an example beloved of H. Rubin.

52Although the author in fact needed—or believed sie needed—to violate that opacity quite pro-
foundly, there are fairly benign reasons to examine the internal structure of a pointer: such as
constructing hash codes, at least in systems where objects’ physical address do not spontaneously
change.

53For some reason a claim of increased efficiency seems to justify almost any programming ill, even
in the face of evidence that efficiency is not increased; while arguments to asthetics, consistency or
sound engineering polic, fall on deaf ears. It is beyond the author to understand this fact.

115

element in these cases is that the programmer knows of an optimisation that cannot be
expressed in the source language strictly interpreted, and which the compiler cannot
be expected to recognise on the programmer’s behalf; type evasion is practised as a

method of tweaking the compiler’s type representation or code generation strategy.

Development Efficiency: Finally (and once again arguing in favour of unitypic
languages), there is the problem of clumsy notation: how much detail is too much
may be something of a matter of opinion, but there are certainly cases in which typed
programming languages succeed in introducing enough notational overhead into a
programme that the effort of coding is significantly increased while the clarity of
the resulting source programme is impaired. Programming languages thus frequently
provide mechanisms for ignoring the type system at the level of notation, accepting
one type where another would strictly be required, or, in the extreme case, allowing
the total omission of type information from the source code. The latter forces the
language implementation to rederive and itself insert the type information it needs
(whether dynamically or statically); while the former requires it to insert various
type conversion operations on its own initiative.5® It should be emphasised that
these last “evasions” differ somewhat in kind from those we considered above, in
that the language implementation must concern itself with the preservation of the
intended semantics of the expressions involved, rather than taking the back seat to
the programmer’s whim: data are processed “hyperintensionally” and not, as in the

preceding, “hypointensionally.”

8¢The two phenomena are in some ways opposed, since the absence of explicit type information
removes information that could be used to generate implicit coércions; though from a formal point
of view, “automatic conversion” is—or perhaps “should be” 7—just an implementation technique for
subtype-driven genericity.

116

4.5.2 Costs of evasion

Type evasion has a number of costs, some of them obvious, some of them less so.
The most famous of these is the loss of static checking: wherever the type system
is defeated, circumvented or tricked, or just looks the other way, an opportunity is
passed up for the compiler to check the source programme for consistency, and the
scope for human error is increased.’® Almost as evident is that type-evading code
(unless its mode of evasion is clearly sanctioned by the language) will tend to impair
software portability: for two compilers for the same language on different machines
are rarely bound t{o employ the same representations for data in each case.

More subtle, perhaps, is the fact that the employment of almost any such tech-
nique impairs the intensional transparency of the programme: what is an obligation
on the compiler to look away while an operation is performed is an obligation on the
programmer to think in terms of what the physical machine is doing in evaluating a
certain expression, and constitutes a shift in semantic level for anyone trying to un-
derstand the programme on its own terms, not on the machine’s; while an imposition
on the programme to “fix” an incompatible data type by inserting conversion code,
is just as much an imposition on the human reader (and maintainer) of the code.*®

On a related theme, it is also true that, just as defeating structured code format
with a “judicious” goto is more likely to impair software performance than enhance it,
confusing the compiler and causing it to disable optimisation in favour of a literalistic,
blow-by-blow translation of the source, so presenting the compiler with a “type pun”

will in general force it to retreat to a more transparent treatment of storage structure

85 Advocates of dynamic typing (our unitypicity) sometimes argue that static checking is unneces-
sary in the presence of adequate support for interactive debugging. Clearly, however, this argument
is specious, for while there it is a valid point that only oft-executed code needs to be tuned for speed,
it is hardly the case that only frequently used execution paths need be correct!

8The author in fact favours automatic conversions as part of a rich type system that provides
more substance to the practise than just minimising keyboarding effort: in mathematics a good abus
de notation is one in which blurring a semantic distinction increases the clarity of the exposition,
and so it should be with software.

117

than might otherwise be necessary: at the bluntest, it will be seen that an object
declared as one type and then interpreted as another “behind the compiler’s back”
must literally ezist in memory, even when a less “clever” description of the task to
be performed would have allowed for it (or its parts) to be dissociated, loaded into
registers, or folded into the object code in some manner (as discussed in section 4.2.6).

Finally, there are a number of language facilities possible which rely on inviolable
typing to work. Among them is garbage collection; but in general any operation
that relies on the global integrity of data structures is likely to be sensitive to type
errors, and anything relying on asynchronous integrity is absolutely dependent on
type correctness, as are such manipulations as formal verification which require static
typeédness. In each of these cases the very existence of a loophole compromises the
facility as a whole, and the entire debate is elevated to the level of language design

criteria.

4.5.3 Analysis

Of the various phenomena we have categorised as type evasion, some quite clearly
have the status of legitimate operations within the type system: the surface notation
may play fast and loose with the types of expressions but the language semantics is
entirely clear on the meaning of the operation, and specifies that meaning in terms
of well-typed (lower-level) operations. In this class of type-legitimate operations we
find both semantically-motivated static coércions (as, perhaps, when an integer is
implicitly converted into a floating point number, or a string may be written in
a context where an array of characters is “expected”) and the dynamic automatic
conversions and “typeless” features that are common in such languages as Lisp. In
all these cases, certain operations are unambiguously required by the language in the
interpretation of certain expressions, and the fact that the notation used to request

them is null changes nothing—except possibly the clarity of the notation, something

118

that must be weighed carefully by the language designer.®” In these operations, the
intent is that intension be preserved.

A second class of operations are those that we may consider fully legitimisable:
in the use of C pointers as generic object handles or the exploitation of unchecked
argument lists to provide more flexible operations, nothing is being done other than
the working around of a semantic shortcoming in the language’s type system. A more
powerful and more flexible typing scheme—in particular, one providing for polymor-
phism or dependent typing—would render such gyrations entirely unnecessary.®

Next comes a class of operations that are legitimated by fiat of the programming
language: they do not make much sense from a type theoretical perspective (and will
have an inherent tendency to compromise the possibilities for positive benefit from
the type system, as noted above), but the language provides the operations in an
“official” way and with appropriate disclaimers about programme behaviour in their
presence, and the programmer is trusted to use them well.

The features in this class are in general those intended specifically for performing
low-level tasks like interfacing and storage management: there is a sense in which
they are better interpreted as providing fairly normal access to the underlying ma-
chine representations (in some slightly extended version of the language) and then
arranging for these low level objects to be reflected up to the “normal” user level.
In whatever guise, these operations are somewhat dangerous and liable to confuse the
compiler enough to induce hypercautious translation; but they certainly have valid
application—if not so much as is often supposed—in systems programming and in

the construction of the libraries that support the basic vocabulary of operations that

$"Witness Algol 68, of which it can easily be said that there are a few too many such implicit
conversions.

8The reader unfamiliar with such type systems will find a discussion in the next section of
this chapter—though in this thesis we use explicit parametric typing rather than unconstrained
polymorphism, on the grounds that the former provides finer sernantic control, while the latter must
in any case be implemented in terms of it.

8%A number of programming languages, including Mary2 employ this model explicitly.

119

normal language users see.

The remaining operations, essentially those not sanctioned by the language but
employed because the programmer has discovered that they “work,” are probably
not found within the normal toolkit of the wise programmer, and the programming
language designer or implementor might consider removing them altogether from
existence. They operate by the exploitation of operations whose validity the com-
piler does not or cannot check: mismatched or underspecified function call interfaces,
unchecked “variant records,” creative pointer arithmetic or array indexing, and so
forth.®® Such operations not only carry with them all the deleterious effects of the
previous class, but as “unofficial” loopholes in the language they are entirely likely
to provoke unexpected results even when the compiler has noted their presence and
taken steps to defend itself: they step clearly out of the bounds of what the program-
ming system can reasonably cope with, and leave the programme at the mercy of the
raw underlying hardware. In a sense, these operations have no semantics, and even
system implementors might be well advised to find another way.

As a final comment, let us note that genericity is not alone in being a need
that can be filled through more sophisticated language technology: matters of both
efficiency and external interface might well be addressed by a compiler architecture
that permitted the programmer more insight into and more control over the internal
transformations that are traditionally seen to constitute optimisation. This might
be accomplished at the source level through extended declarations and annotations
(as, for instance, C’s register declaration and field trims); but in the interests of
portability, clear source code, and not tying the implementation’s figurative hands,
it is possible that—at least in a system that places less stress on the concept of the

integral, printable, source file—a more appropriate level for this kind of work could

80Not, it should be noted, that any of these isn’t sanctioned in some way or another by some
language—though in the process they shade into the previous class of dangerous but explicitly
legitimated practise.

120

be found, one talking more directly to the compiler’s middle- and back- “ends.”

4.6 Dependent Types

While we have been arguing for the desirability of a static typing scheme, it should
be clear (if only from the discussion in the preceding section) that a type system
in which each expression can be assigned a unique underlying type regardless of its
contezt would be overconstrained in many applications.5!

Fortunately, there is a broad middle ground available in the form of dependent
types. Strictly speaking, an expression has a dependent type if its type is itself
an expression containing (in general non-manifest) free variables, though the term is
used more loosely to refer to types composed from these. Care must, of course, be
taken, in specifying where the variables free in such a type are ultimately bound. &2

Ultimately, dependent types (in this loose sense) may differ in both their com-
positional structure and the binding points of their variables, though for Listorical
and notational reasons these often covary. This section is organised so as to examine
a number of the classical dependent types separately, though the notation employed
is clearly compatible with the full generality suggested in our definition (modulo a

particular set of scoping rules).

4.6.1 Dependent product

The most familiar of the dependent types is without a doubt the sum or discriminated
union, which we analyze as a (finite) dependent product.

The sum of types T and U, T + U, is a type whose members may derive from

81The situation is in fact very similar to that of pure functional programming: the argument for
side-effect free code should certainly not be taken as an argument against parameterisation! In fact,
we shall sce that one possible condition for the conceptual well-formédness of a dependent type is
precisely the functional “purity” requirement: that the information needed to freeze the dependency
is safe from potential assignment.

%2In particular, all the usual arguments against dynamic scoping for the free variables of functions
apply with redoubled force for types: a type must have an assignable meaning that does not change
with its context, else what of the objects pertaining to it?

121

either of the two argument types, and whose provenance is recorded. Just as records
generalised product types to an arbitrary number of operands, the discriminated
union generalises the sum; and, type evasion aside, this generalised form is, for
example, the only dependent type provided by Pascal, where it appears as the
record...case...:...of...end construct. Likewise, in our preferred analysis, the only
type that LISP provides at all is a member of this class (it is the discriminated grand
union of atoms, cons cells, integers, strings, ...).

If we choose to write a (particular) discriminated union thus®?:

({tapir, cuttlefish, stone} kind

, if kind
is tapir then Distance noselength
is cuttlefish then Distance meanTentacleLength
is stone then N cucumberFrameMishapCount
end

it becomes clear that the discriminated union is simply a pair, a two-field record
structure in which the type of the second field is an enumerated function of the
value of the first. (Equivalently, and more in the tradition of the block-structured
languages—though perhaps not of their type systems—we generalise multifield record
constructions to permit arbitrary dependencies of field types on the values of preceding
non-mutable fields®*—this was in fact the paradigm of chapter 3.) We can generalise
this straightforwardly to a dependent version of the Cartesian product operator.
Building on the usual Cartesian product notation, in which the type of pairs

with elements drawn from T and U, respectively, is written T x U, and employing

S3Note that unlike the very similar InterestingThing type employed in chapter 3, kind is here a
separate field, not embedded in the condition. The semantica is in fact the same; but the objective
in this chapter is to focus on the logical structure of the type rather than its relationship to Algol-like
control structures.

S4Note that access to fields (and variables) in outer scopes is subject to precisely the same issues
as access to outer-scope variables in functions: provision must in all cases be made for the value
of the outer variable to be available. In fact, as has been mentioned elaewhere, a variable frame is
precisely a stack-allocated structure, and the situations are for our present purposes isomorphic. In
the presence of a garbage collector, access to outer scope objects must be possible at all times, and
not just at points where textual references occur. Fortunately this need not be the concern of the
programmer, though later we will introduce restrictions on the complexity of type expressions.

122

the substitution notation ea to mean e with all free occurrences of z replaced by a
(under suitable renaming of variables to avoid name capture), we write the dependent
product of T and U (where U is now an expression possibly containing free z in T)
T x t.Uf. The “” is intended to recall the variable introduction dot of A-notation,
though for us it is here part of the dependent product operator itself.

Thus we can define T + U to be 2 x i.ifi;; T U (where if,zy is z if p, and y
otherwise).

This generalisation both permits us to define “counted” strings (for which no

enurnerated union is adequate), for instance, as:

(N length
. Vector[Character, length] data

)
and allows us to introduce more arbitrary (and potentially more practical) patterns
of dependency.

Finally, if the language provides some version of a type of types, it is possible to
define objects such as those found in Smalltalk-80, which share a common type even
though all variant representations are not statically known (types being dynamically
comnputable); which is to say that we can define a form of universal type, formally

equivalent to the single type shared by all LISP objects:

(TYPE Type
., Type value

)

Despite all of the preceding it should be stressed that the system discussed here
cannot represent the C union construction, although it clearly provides for an alter-
nation of types. The reason for this is that in C the discriminating variable (the tag,
i.e.) is bound only at the point of use of the field, rather than in one of the other fields
of some containing structure. In fact, since points of use are not statically associated

with objects, this is one of several respects in which C fails to be strongly typed.

123

On the other hand, the Algol 68 union is (isomorphic to) a very simple instance
of the class of dependent products, where the left argument of the x operator is
restricted to be a particular finite enumeration of names of types, and the right

argument the canonical mapping from names to types.

4.6.2 Dependent functions

Once dependent types have been admitted to a programming language, it is essential
that it be possible to write functions that manipulate them. So long as they are
restricted to a finitely enumerated set of variants this does not require any conceptual
extension to the naive arrangement in which each expression has a closed type, since
a restriction (for example) of the form that variant fields are only visible within case
statements dispatching on the discriminant field would suffice.®5 In the presence of
the kind of unrestricted dependency described in the preceding section, however, it is
clear that some capacity must be provided to manipulate data of essentially arbitrary
type.56

One framework for doing this is that of purely generic functions, ones that are
able to operate over arguments of completely unspecified type, as provided, for in-
stance, in ML (a familiar example from the older expression languages is the usual
if...then...else...end operation, if it be understood as a true function with condi-
tional branches enthunked). Aside from the technical observation that this source
construct in fact begs the implementational question and must underlyingly be han-
dled in the manner of the dependent maps we shall describe shortly, this mechanism
will be seen to be too weak to fill our needs, since in order to be generic over all types
a function must presumably make no assumptions about how its arguments can be

manipulated, and is thus not in a position to manipulate them in other than a com-

85As in Pascal and Mary2. In fact is is presumably the intent of the very restricted variant record
structure in Pascal to make this syntactically checkable.

66 Actually, in the presence of type comparison, one can get by, howeverso clumsily, with the
universal union structure—in fact, Lisp, of course, does. We might, however, not wish to admit
type comparison, for any number of technical reasons.

124

-

binatorial manner (which, while computationally complete, is less than satisfactory
frcm a software engineering viewpoint).

A significant generalisation of this approach is found in languages like Haskell,
where generic types can (optionally) be restricted to support named operations.®?
This extends genericity to cover the objected-oriented concept of type: parameters
are allowed to belong to any type nominally satisfying a particular input-output
protocol; but it does so by sacrificing the ability to manipulate (uniformly, at least)
objects of types that differ in this broader (signature-based) sense.®®

The problem can be addressed straightforwardly through dependent function
types directly analogous to the dependent products described in the previous section.
We can introduce, for types T and UZ, atype T t.U% of functions returning values of
type U:, depending on the value of the argument ¢ (the notation is strictly analogous
to that introduced for dependent products, in section 4.6.1, above). This is at its most
obviously useful in the case of functions returning fairly uniform structures depending
on some parameter (as values in some range or arrays of variable dimension); but, in
the presence of a type of types, it suffices to represent both freely generic (strongly
typed) functions and operations over “carrier types” where argument and result types
are both parameterised by some type which is passed in as (or perhaps computed from,
though there are practical reasons to place restrictions on this, as we shall see) an

earlier argument.

At first blush it might appear that the ability to make the value returned by a

a’Act.ually, as far as is known to the author, all such approaches to date appear to be seriously
flawed in terms of the scoping rules they are forced to employ in order to coordinate the supported
operations with those available at the callpoint; they must either be severely restricted or ulti-
mately amount to a dynamic scoping scheme. A better solution would probably be to associate the
operations dynamically with the statically located type itself, yielding a structure that is at once
object-oriented and lexically scoped: types are then values with distributedly declared structure and
an implicit substructuring relation.

8 The signature-restricted generic mechanism is clearly different from the case of Ada generics,
which, while similar in style, are designed to be implementable by macro expansion; although they
are syniactically generic they are in fact only capable of being instantiated over a finite collection of
(luper-)d;ypel (and it was apparently several years before the first true shared-code implementation
appeared).

125

function depend on its argument is insufficient to our goals, since it as important that
the arguments be generic as it is that that the result so be. This difficulty can be
circumvented straightforwardly by treating an entire argument list as a single carte-
sian product, or, if a function of multiple arguments be understood to be implicitly
curried, by making the value returned from application of the early arguments be a
function now specialised to particular argument and result types.®®

(It should perhaps further be pointed out that the value of dependent type re-
turned by such a function is no more “orphaned” or untypable than is the right
member of a dependent pair, since the arguments to a function (insofar as it is ap-
plied) are a fortiori available at its callpoint (and sufficiently evaluated to determine
the type of the result whenever the result’s value is required). In fact, the type of
the field reference operator, considered as a function from field tags to values, itself
has a dependent map type. Making the field reference operator typable is a major

motivation for dependent product types in its own right.)

4.6.3 Functional types

Throughout this section we have been discussing dependent types as if types in fact
they were. In actuality, these formal entities are no more types than n + 7 is a
number: they are expressions over the domain of types, they evaluate to particular
types, but they—in light of their particular identifying characteristic of having free
variables—are not even objects in the language.

The formal notations we have been using for dependent products and dependent
maps, however, have been chosen for their suggestivity of the classical A-abstraction

notation:™ we write T = ¢.U in recognition of the relationship between this construc-

" 69That these two solutions are as practically as theoretically equivalent becomes very clear on
examination of the current implementation of Lazy ML.
70The idea behind A-calculus is this: that if functions are true values, they can be manipulated
straightforwardly and to advantage; and that this can be achieved by the reinterpretation of the
. s -
expression f : z ++ ez as being an equality (with nonstandard equals-sign ‘'), relating f to a
function “z — e”——the whole being re-notated (for historical reasons) f = Az.e .

126

tion and At.u; we take ‘.’ to denote (textual) abstraction, designation and binding of
a variable, with = and) being operators on these formal entities.

Let us, then, introduce a new such abstiaction-legitimating operator, A, which
differs from A in that it builds abstractions over types rather than values.” We can
use it to build dependent types as objects in their own right. In fact, objects of this
kind are already familiar: they are the type constructors like Vector and #, objects
that accept parameters and evaluate to types.

The difference, of course, between these functional types and the dependent
types we addressed earlier in this section is just that the dependency is made explicit
in an argument list, rather than by default in the failure of a type expression to
bind some variable (above all others this is the reason that functional abstraction is

a powerful engineering tool, and it naturally applies to other entities besides values).

4.6.4 Other dependency patterns

The varieties of dependent type just described would seem to suffice for most practical
purposes, but it seems worth mentioning a few of the more pathological structures
from extant programming languages which can be handled (or at least, have clear
analogues) within the framework of this thesis. Since we are dealing with structures
from languages with weaker type systems than those which we propose, we will find
ourselves referring ever more frequently to physical representations. It will become
apparent, furthermore, on reading this section, that here we reach and, indeed, exceed
the limit of the descriptive capacities of Exemplar; we consider the development
of adequate source-level notations in which to describe these more intricate data
structures to be an important area for future research. As will be discussed below,
however, the techniques of this thesis apply straightforwardly in most of these cases:

they are far more easily processed than defined (a fact which should not surprise us,

"1t is a function of the particular type theory whether A and A are identical. Systems exist in
which they are, but it is a weaker assumption that they are distinct. Exemplar does not assume their
identity, although our smplementations of the two operators are very similar and tightly interwoven.

127

given that all are practical examples). Furthermore, although we are concerned here
with objects that are generally conceptualised in terms of their underlying structures,
it will be seen that we are able to provide reconstructions—as Exemplar types—that

capture most of the characteristic properties of these objects.

C Strings: One of the superficially less well motivated aspects of conventional data
structure lore is the guard value: a value that “cannot occur in practise” is selected
from a domain for use as a delimiter or sentinel in some data structure, in order
to reduce the complexity of boundary checking code and the amount of state the
programme must maintain. Unfortunately, it tends to accomplish this en dissimulant
the relationship between the data and their structure, increasing the likelihood of
programming error; while the assumption that any value of a type will in fact not
occur is considerably less justified than one might hope.”

One language in which the guard value plays a prominent and integral role is C,
where 0—besides being an integral value—plays a special part both as a “pointer”
(in which context it is understood to be an acceptable member of any pointer type,
though it specifically fails of reference) and as an element of a character string (which,
despite its otherwise being an acceptable character, it serves to delimit).”® Thus, in
the C string (which is essentially no other than a pointer to a 0-terminated array of
characters), we find three separate pathologies from the perspective of strong typing:
the pointer that may not point, the character that may not figure (or worse, whose
characterhood simply cannot be decided), and an array-like structure whose bounds
are determined by the very data it contains. Nonetheless we can provide a secure

reconstruction of this type within the present framework, at the cost, admittedly, of

" TWhile no formal type evasion is involved, it will be seen that this is another instance of the
programmer’s concealing the intended interpretation of the data from the compiler.

T3The pointer value is commonly written NULL and the character “\0°. The author’s reading
of the defining standard ([ansi89)]), however, is that they are intended to be truly identical: it is
completely acceptable to assign, say, 9 — 9 to a pointer—ihough the same clearly does not go for
any other integral value, which must be cast, and caveat castor.

128

requiring a great deal of compiler sophistication to recover the full efficiency of the

very straightforward C equivalent.
In terms of our language Exemplar, the declaration of such an object would run

something like this:74

TYPE CChar : #Character{nil}
i TYPE NullTerminatedString : for N i wiile CChar [i] :: ¢; ¢ #nil end
. TYPE CString : #(%NullTerminatedString){nil}

L}

Here, the uncertain nature of the character and pointer values themselves is cap-
tured by the extension-element mechanism (as described in section 2.4 and below).
The more interesting point for our present purposes, however, is the appearance of a
while-loop in the declaration of NullTerminatedString. This allows us to describe the
kind of serial dependency between elements of the string that is characteristic of such
an ensentinelled representation. It does this, in our notation at least, by mirroring
the structure of the code that processes the elements of the string in order—and of
the Visitor that the compiler would generate from the declaration.

The dependency pattern thus introduced, where the presence of each element
is a function of the value of its predecessor (in an unbounded fashion) is in fact a
peculiarity and the cause of some difficulty. In a strongly typed language that wished

to provide such types, bounds checking would have to be performed by scanning

"$This declaration actually fails to capture two interesting properties of C strings: first, that it
is possible to remove a prefix from a string while maintaining sharing, simply by incrementing the
pointer; and second, that since they are invariably maintained within buffers, it may be possible to
perform meaningful manipulations on strings by overwriting characters within them with null values
and vice versa. In fact, there is nothing in the nature of the present work to prohibit the exploitation
of either of these properties in user code, though it is hard to see how they could be introduced into
the source language in a clean manner. The difficulty is that the validity of pointer arithmctic here
depends on the ability of the compiler to perform minor theorem proving (since the fact that the
pointer still points to an object of the same type afier incrementation—assuming it has not been
stepped past a null character, which must be checked—rests on a nontrivial induction); while the
correctness of splitting and merging CStrings depends on their being located within a buffer,

for N i to bufferSize do CChar [i] end

and we have not provided any mechanism in the Exemplar of this thesis to describe such multiply
interpreted objects.

129

the string to locate its end (or at least, to demonstrate that its end occurred before
the element indexed) before each reference (though an optimiser could easily remove
most such operations from any given block). The ensuing loss of efficiency is fairly
great, but is perhaps justified by the observation that a significant proportion of the
notorious security problems of the Unix operating system stem from problems in the

management of null-terminated strings.

Algol 68 Arrays: One interesting data structure provided by the venerable Algol
68 is its particular rendition of the familiar array. Arraysin Algol 68 have, as in C,
more the nature of pointers than values—which is to say, that the values associated
with the names of arrays are in fact references to the elements of the array, rather than
the value-sequences themselves (this distinction becomes clear when they are used as
arguments to functions, for instance: although in both these languages parameters
are passed by value, transmitting an array results in the elements of the array being
shared while the value of the array object—the reference—is copied). Unlike C,
bowever, where the characterisation of an array as a simple pointer to its elements
verges on literal truth—the only qualification being that the type of a C array can
(in some limited circumstances) bear information about the static size of the overall
array as well as of the elements and the pointer—the Algol 68 array carries full and
dynamic dimensioning information in the form of a descriptor whose format depends
on the array’s rank.

This representation of an array as a complex reference to a complex object permits
much richer semantics than other models of arrays; in particular, it is possible—
through the manipulation of the descriptor—to provide efficient implementations of
a number of bulk operations over the entire array. Among these, for instance, are
the ability to extract slices through multidimensional arrays at certain indices, and,

more generally, the ability to trim dimensions (deleting leading and trailing elements

130

along one or more axes) and rebias indices.”

The fact that these operations are implemented on descriptors and not on elements
has implications beyond those of efficiency. From the user’s perspective, it provides a
further respect in which arrays are visibly reference-like and not value-like: the results
of these operations end up referring to the same values as do the arguments, a fact
of potential algorithmic use (particularly since copying can be forced when desired).
Far more significant for our purposes is the structure implied for, or induced on, the
data components—the actual arrays—of arrays.

On a basic level it should be apparent that the implementation of these arrays in-
volves iterated use of functional types. As with conventional fixed arrays, Algol68Array
(as described below) is actually a function from an element type and a set of bounds
(in this case, just the rank of the array, since the dimensions are potentially variable
and thus not part of the type of the array per se); but the element type and the di-
mensions stored in the descriptor are further passed through to the underlying array
of values. In Exemplar we are able to describe this arrangement explicitly (and the

availability of Visitors, of course, follows directly); we might write something like

These operations amount to minor changes in the index types as interpreted as integral
subranges—in local scopes they could typically be optimised so as to involve no runtime cost at
all. One could, however, further imagine operations picking out triangular or trapezoidal subarrays,
performing in-place transposes, slicing out diagonals, or various kinds of variable-step or irregular
sliciug (akin, perhaps, to APL’s selection functions). Vector-register supercomputers often provide
instructions to implement this kind of operation directly. The enthusiastic reader is invited to bear
these generalisations in mind as we examine the complexities arising from even the standard facilities
in the remainder of this section.

131

this:7®

TYPE :< Algol68Array @ (TYPE t, N dim) >:
with N n from 1
for N i to dimension
then (%Vector[T, n]) values
as
N (lowerBound[i]) :: |
; N (upperBound[i]) :: u
s n+uxl
end

When considered in more detail, these objects turn out to have some unusual
properties, at least as regards their physical representation in memory. If we examine
the pattern of multiple referencing that arises as these arrays are sliced (something

that Exemplar as we have presented it is unfortunately not suited to represent di-

76Actually, the simple version presented does not take care of the mechanics of indexing: the
user is still required to index the field “values” in arcane fashion. One solution to this problem
would be to use an auxiliary function for indexing. Assuming, however, that facilities are available
for vector arithmetic and predrder traversal of vector spaces, we can handle indexing within the
type specification in the following fashion (though it would require an impressive compiler indeed
to implement this with full efficiency):

TYPE :< Algol68Array @ (TYPE T, N dim) >:
Vector|[N, dim] lowerBound
, Vector[N, dim] upperBound
. (%Vector([T, reduce[1, (), lowerBound - upperBound]]) . :: v
; Vector[N, dim] stride :
[with N x from 1
for N i to dim
do x
as
note lowerBound[i] < upperBoundi]
in upperBound[i] — lowerBound(i] * x
end
end

; for Vector[N, dim] i from lowerBound to upperBound

do T [i] : v[i — lowerBound * stride]
end

132

rectly) we see that the (simple) array object referenced above by the field values is
often not held fully in common with other Algol 68 arrays seeing (some of) the same
values; in fact, once a computation has progressed through several slicing and trim-
ming operations, no single Algol 68 array that is still in use may reference all the
elements that were originally introduced in any given block. Furthermore the pat-
terns of elements that are still referenced may be somewhat irregular (a phenomenon
that will be of relevance in chapter 7, where we discuss the application of Visitors
to garbage collection).

Let us turn first to the simplest case, in which a multidimensional array is sliced so
as to yield an array of lower dimension, and where it is the fastest-varying coordinates
that are uncollapsed. The result of this operation will be a new array descriptor, the
elements relevant to which will be a contiguous subrange of those in the original
underlying array, and disjoint with any other set of elements arrived at through
a similar operation. A very slightly more complex pattern arises if we take such
(underlyingly) contiguous arrays and trim their slowest-changing index; this will result
in new and still contiguous arrays, but now with the property that they may overlap,
partially or wholly.

If instead we examine slices along higher-indexed axes, or trims along lower-
indexed ones, we find that the sets of elements accessible through a single array
descriptor form a discontiguous set: there will be a regular alternation of accessible
and inaccessible ranges of elements.

Consider finally the (still far from maximally coi..plex) collection of elements we
obtain from the union of two (untrimmed) slices taken along disjoint sets of axes.
(They will not constitute a single array, but might well both be accessible at a single
point in the programme.) They will have a common element (more generally, a
common subarray) at the point where the specified codrdinates of both slices are

satisfied; and the other accessible elements will lead off from that point in both

133

directions, in a regular manner. The overall pattern will be cruciform in the original
coordinate space, since the periods of the included elements contributed by the slices
will be different.

This kind of compiex pattern of accessible substructure is essential to the Algol
68 array (at least relative to von Neumann computer technology) and not merely an
artifact of our particular approach, since the patterns of sharing of elements are a
crucial part of the semantics of the language, and greatly restricts the possibilities
for placement (or motion) of the elements involved. (There is a sense in which these
structures are practically implementable only because they are computed analyti-
cally by the dissection of extant, nonoverlapping arrays; rather than synthetically, by

desired pattern of alias.”)

Other structure restrictions: The most interesting characteristic of the complex
arrays discussed in the last section is the way in which the various access paths
to the (presumed) regular, linear, underlying array interact to produce a patchy
pattern of accessibility. Recalling the straightforward relationship between arrays and
structures, it should not be surprising that a parallel phenomenon arises in product
types, in some implementations of some languages.

The most straightforward such case is when a language provides for the construc-
tion of references to substructures of objects: it is easy to see how a succession of
such operations can result in various parts of the same objects being visible from
different places; and the best implementations of (object) inheritance have the same
effect (though without an explicit record of the fact in the source code: the compiler
initiates such sharing silently). In the most extreme case [DD85] we find proposals

for bidirectional structure layout (fields are allocated at both positive and negative

""In fact, this suggests a very practical, if suboptimal, technique, whereby an array descriptor
contains not only a programmer-visible description of the elements of the array described, but also
invisible fields detailing the array from which the present array was ultimately derived. In & tagged
architecture this might indeed be the only acceptable option.

134

offsets from the base pointer, that is), where objects may (in complex cases) further
exhibit “holes,” areas of memory which they surround but do not contain (but which
some other object in the inheritance graph is presumably using in its objects, for its
purposes).

Such almost completely arbitrary patterns of storage location do not necessarily
pertain to functional types (which is to say that it is not necessarily the static type
of an object that resolves its structure); it is equally plausible that such a type be a
dependent product, with one or more control fields serving to determine which other
fields are present, and their types. Worst of all, when this is taken in conjunction with
two-dimensional structure layout, it results in physical object representations that are
not resolvable in a single left-to-right pass (and thus this is the first structure we have
seen that requires an extension to the Visitor mechanism, albeit a comparatively
trivial one to implement: the Visitor must now be authorised to perform pointer

arithmetic beyond mere rounding™).

A Strange Thing: As mentioned in footnote 15 of section 3.1.2, there is one addi-
tional peculiar case that can arise in systems with inheritance or automatic conversion:
two types with different and incompatible dependencies between their fields may have

non-empty type intersection under certain rules. For consider the types:

(N a, N b, Vector|N, a])

and

(N a, N b, Vector|N, b))

When a = b these structures are, as it were, coincidentally equivalent. At least in the

presence of a distinguished equality relation, this could form the basis of a system

" T Conventional sum types when contained in other structures can also result in representations
with holes when the alternatives are of differing lengths; this, too, must be handled cither with
pointer arithmetic or by permitting the visitation of “nothing”; in that case, however, the problem
can be avoided by transformation of the data structure without (in most cases) crippling loss of
efficiency. The same is not true of the bidirectional structures which already serve to address a
severe performance bottleneck.

135

of type intersection whose ramifications are sure to be complex—and which must

remain a topic for further research.

Hash Tables™: There do exist practical (and desirable) data structures in which
the pattern of reference and determination between the various components is, from
the perspective of low-level structures like the Visitor, completely opaque. One that
concerned the author for some time and influenced the early work on Visitors (and
on generic garbage collection in general) in the direction of increased support for ad
hockery, is a particular form of hash table®® contrived by the author for the Lisp
dialect Lithp [BS85]. The interesting feature of Lithp tables is their storage retention
behaviour: they permit arbitrary associations between LISP cbjects on the basis of
address (in COMMON LiSPese, they are :test # eq tables), but the retention of table
entries through a garbage collection depends on the accessibility of the keys as well
as of the table itself.3! While it is clearly practical for the Visitor to pay attention
to only the (quite straightforward) physical representation of these objects (thereby
failing to capture the subtlety about accessibility of table items), the only method
we have yet found of implementing the intended retention semantics of this structure
does involve global reachability analysis of the heap, and thus special treatment under
visitation. This structure, by virtue of its global-minded semantics, therefore marks

one of the limits of the methods here presented.

" ®The reader unfamiliar with garbage collection technology would perhape be well advised to
postpone the reading of this section until after chapter 7, since the particular technicality here
considered is intimately bound up with the garbage collection problem itself.

$0The hash table is a particular implementation technology for functions from some (arbitrary)
type T to #U{.}, that works by doing numerology on the particular arguments, t in T. The most
familiar application of hashing is the horoscope (in which T is typically DateOfBirth and U is Suit-
ablyVaguePrediction), with the symbol tables of compilation lore a distant second.

81This is correct and expected behaviour for such an associative structure if and only if there is
no maphash-like operation that dumps the entire table. The absence of such an operation was a
deliberate decision made on the basis of soft ware engineering principles; in particular we saw them
as a structured alternative to the conventional LisP property list, rather than as a generalisation of
sequences.

136

The Worst Case: One possibly useful (if only as a space optimisation) data struc-
ture that we have come across has even worse characteristics than the hash tables just
described: there is a technique (used at one point by DEC) in which two-way linked
lists are represented with single word link fields, containing the bitwise exclusive-or
of the component pointers. References into the list are, compensatorily, not one but
two words wide: they hold the addresses of adjacent pairs of list entries. The original
up- and down- links of the list can be reconstructed by exclusive-oring the address of
one of a cell’s neighbours into its link field; the result is the address of its neighbour
in the other direction. This structure is, in itself, not a problem: it amounts to no
more than a mildly nonstandard pointer representation (and thus a minor special
case, techniques for normalising which on the fly have been developed).

Consider, however, the consequence of storing the two pointers that constitute
the list handle separately. Reconstruction of the contents of the list now requires
unbounded computation: it is not in general possible to determine which pointers will
eventually come together to form an indexing pair without running the programme
experimentally.

Even in principle, there is nothing that can be done to establish the coherence
of a particular such data structure, and as it is the best example the author has yet
discovered of a data structure (as opposed to a programme: there are many subtle
graph manipulation algorithms that rely crucially on properties not amenable to
analysis by the runtime system, for instance) which challenges the notion of necessary
representational typedness—though, to be sure, it is unclear that such a structure is

of any practical use, and one can coherently recommend against its use.8?

83The technique generalises to the use of arbitrarily encrypted pointers, which is one of the methods
suggested for the implementation of capabilities (particularly in the absence of secure address space
protection hardware or the presence of insecure processing nodes [TvRvS*90]). Such provision of
security from the compiler is beyond the scope of this thesis, as is the entire problem of distributed
garbage collection, raised by the use of capabilities of almost any description.

137

4.7 Mutable Object Format

Thus far we have prohibited the dependence of a type on values that are either impure
or naughty (though they may naturally have these properties themselves by virtue
of mutable non-contrel fields). Such dependencies are not, however, un-heard-of in
the real world, and this motivates some minor relaxation of the restriction (though
it will turn out to be in some sense non-substantive). Two fairly typical examples of
this kind of dependency of types on mutable objects are the classical Pascal variant

record, and the extension to Pascal provided by Turbo Pascal strings.

Variant Records: In the case of the variant record, the presence of the variant fields
depends on the actual value of the discriminant, which can be changed dynamically
over the lifetime of the object; changing the value of the discriminant field causes the
original variant fields to be replaced by (undefined) instances of the fields associated
with the new value. (In practice the bitpattern in the storage underlying the variant
part is not changed by this operation, and the wily programmer not infrequently
takes advantage of this loophole in the type system.) In practical terms, other than
the sudden undefinédness of the values of the variant fields (not an anomaly peculiar
to this situation, since Pascal is notable for its uniform discouragement of the idea
that mutable objects should have defined values throughout their lives), the main
consequence is that enough space must be allocated to permit the representation of
the largest of the possible variants, whether or not this is the variant represented by
the present value of the record. In fact, the necessity of determining this value is one

of the reasons that variants fields are so commonly constrained to be enurnerated.

Turbo Pascal Strings: Character strings in Turbo Pascal are characterised by two
parameters: a present length and a mazimum length. Of these, the latter is static

and forms part of the object’s type, while the former is dynamic, and precedes a

138

buffer whose size is equal to the maximum length. Assignment to a string variable
results in the characters of the string being written into the buffer area, and their
number (which must be less than the destination string’s maximum length) into the
present length field; buffer positions indexed by values in excess of the present length
lack definition, whatever their relationship to the maximum. In Exemplar we could

express this arrangement thus:

TYPE :< TurboPascalString @ {0-255} limit >:
(#{0-limit}) size
, Vector[#Character, limit] . :: v
: for N i to +size
do Character [i] : v[i] end

Each of the above is, of course, a special case of a dependent product in which

the dependent type is smpure.

4.8 Software Engineering Issues

4.8.1 Pros and cons of strong typing

The most frequently noted advantage of strong typing is that since it computes fairly
detailed information about each value in a programme (and imposes on the program-
mer to make this information available) it permits much more detailed static analysis
of the source programme, yielding benefits in both reliability and efficiency.

From the reliability perspective, the advantage of strong static typing is that pro-
gramming errors are flushed at compile time that would otherwise not be detected
until runtime. The obvious benefit is that bugs are detected sooner (lest the reader
be uncertain of the truth of this statement in the context of a modern integrated
development environment, in which editor, compiler and runtime system are simulta-
neously active on the programmer’s behalf, be it noted that finding a bug by executing

a programme can involve a wait of hours or days while the necessary conditions for

139

manifestation establish themselves; in fact, in the case that the bug resides in code
whose purpose is to enhance fault-tolerance, disaster recovery or portability—or any
such application where the importance of the function justifies code whose overall
probability of eventual execution is less than one—the burden imposed on the pro-
grammer by the dynamic testing approach may be infinite). Furthermore, they are
often automatically localisable to specific interfaces, not leaving the programmer with
the uncomfortable situation of knowing that a bad value got loose in a data structure
“somehow,” but with no clear idea of quite how. The crucial observation is that strong
typing—especially with a powerful type system capable of fine distinctions—makes
available a flavour of automatic software validation that is independent of execution
path.

Efficiency is potentially enhanced by any technique that makes better information,
especially better global information, available to the code generator. Type informa-
tion is particularly valuable in this regard since it is fundamentally structure, type’s
runtime correlate, that drives instruction selection in conventional architectures. In-
formation can similarly be propagated in the reverse direction, from code to data,
resulting in better data structure selection; and the effect is synergistic—loop opti-
misations and array re-representation can, for example, be carried out in parallel.

Less obvious is that (as indeed is the substance of this paper) coarser-grained
operations can be supported in strongly typed languages than would otherwise be
available, by exploitation of the kind of big-picture analysis that strong typing per-
mits. In particular, strong typing makes possible certain simple inductive arguments
about the possible states of a programme that would otherwise (in the light of com-
putability results) not be available.

But what of the disadvantages? Often cited is that strong typing increases the
verbosity of a language, entailing greater programmer overhead in writing code. On

the assumption that type information is not in fact useful to the programmer or

140

necessary to the translation and execution of the programme, this is a valid criticism;
but it seems more reasonable to courh it as a question: in a given language proposal,
does the extra effort incurred in dealing with the type system actually pay for itself,
or not?

Proponents of strong typing frequently argue that, as with descriptive identifiers,
typing pays for itself (at least in the case of code that must be maintained and re-
used) by dint of code self-documentation alone: a type declaration on an interfaceis a
much clearer guide and a much firmer guarantee that a function behaves in a certain
way than is likely to be pr- -ided by any practical naming convention in isolation.®?
If that “overhead” is actually of use to the programmer in merely reading the text of
the programme, the argument from verbosity is difficult to make.

Another criticism is that strongly typed languages provide much weaker practical
support for common operations such as input/output and for unavoidable debugging
activities. In this ihesis we argue that in fact this is a cost incurred not by strong
but by weak typing (in point of actual fact the type system of LISP is stronger if
less rich than that of C or Pascal, each of which sabotages any potential for generic
mechanisms that the language might otherwise have had by providing trapdoors out
of the type systemm—and, at least in the case of C, actively requiring their use), as
techniques are presented for providing these kinds of facilities at reasonable cost in a
strongly and richly typed context.

Semantic paucity has also been claimed of strongly typed systems, on both theoret-
ical and practical grounds. On the theoretical level it is claimed that there are many
programmes that simply cannot be expressed in strongly typed languages. While
often this criticism derives from an excessively limited view of the possibilities of type
systems (see section 4.6 above), it does in fact hit home in two areas. The first, and

weaker, of these is that the programmer might wish to write a programme that is not

831t is also worth noting that it is not necessarily the case that strong typing be manifest in the
source code et all [DM82].

141

conceptually typed—presumably something that by its very nature uses data in a way
that does not correspond to that in which it was generated. This argument is weak
because it requires that the programmer intend an interpretation of the data that is
not among the interpretations that the data had when generated, yet the data were
(presumably) generated on behalf and under the instructions of that programmer.
In short, the programmer is hacking: attempting to extract information from the
language system that, whether for reasons of correctness or efficiency, the abstraction
provided by the systemn normally conceals. It is not clear that it is desirable, at least
from a software engineering perspective, to support this particular undertaking.

The second theoretical argument is of a mathematical nature: what if there are
programmes which while conceptually well-formed, are not provably well-typed within
whatever system has been selected for the language. This argument is thoroughly
valid, examples in the author’s experience having included the Y combinator, various
parts of the visitation system, and a software verifier [Dev84] that is (correctly!) the-
oretically unable to verify itself. The expectation is, however, that such programmes
are rare, and amenable in practise to any number of trapdoor mechanisms (whereby,
for example, the consistency of a recursive nest of type definitions is established by
programmer assertion and not by mechanical proof).34

A more pragmatically-minded argument for the semantic paucity of strongly typed
languages is that they tend to lack such facilities as alternate representations for, for
example, “long” and “short” integers. But as we have shown, this is in no way a
necessary feature of typed languages; in fact, it is the very typedness of a language
that makes such facilities possible. If it were not for the fact that each datum has a
guarantee of interpretability associated with it, it would not be possible to provide

automatic selection of the appropriate operations for the representation that happens

8Note that those programmes with subtle correctness proofs not expressible in the type system
pose no problem, in that they can still be represented in the language at the expense only of safety;
unlike the more pernicious forms of type evasion discussed earlier, such programmes involve fibs not
of commisaion but of omission.

142

to be in local use.

One final point that has been made a number of times recently is that systems
are increasingly arising which must run perpetually, in spite of constant upgrades and
occasional profound changes in their internal workings. It has been argued that strong
typing greatly complicates this manner of undertaking by making the reconnection
of functioning components much more difficult. While it is true that such systems
are in need of polymorphism and other such flexibility in their type systems, it is not
at all clear \that strong typing is a disadvantage. In fact, it would seem to take a
great deal of daring to reconfigure running systems at all, and doing it in the absence
of adejuate mechanical assurances about the compatibility of the components with
their predecessors and “interfacemates” would seem downright foolhardy.

Perhaps this feeling of the inappropriateness of strongly typed languages to dy-
namic reconfiguration is an artifact of the association between these languages and
traditional implementation techniques, in which compilation is a once-only process.
In fact, in the presence of the mechanism described in this thesis, it should be com-
paratively straightforward to implement systems in which compiling and recompiling
modules of a running programme is a fairly straightforward task, without incurring
any data coherence problems that cannot be solved mechanically, though we have not
explored this issue in any depth.

To summarise, it seems that most of the arguments usually levelled against strongly
typed languages are in fact arguments against weak typing, and the corresponding ad-
vantages that are derived by users of the unitypic languages like LisP and Smalltalk-80
are in fact due not to the typelessness of these languages, but to the fact that their
type systems, if not rich, are inviolable. True strongly typed languages have the

potential to reap the traditional rewards of both camps.

143

4.8.2 Impact on modularity

Another important question to ask about strong typing is how it interacts with the
ideal of software modularity. One rather facile response is that without strong in-
terface checking, modularity, at least modularity in the large, is an administrative
impossibility. Unfortunately, traditional approaches to the topic bring with them
a significant performance penalty when information needed by the implementation
is hidden at module boundaries. Furthermore, the drive to modularity can be self-
undermining when the domains of modular control are restricted to coincide with
the “natural objects” of the language: modules end up being constructed that cross
the inherent semantic and administrative boundaries of a project, because they are
required to gather together information deriving from or needed by the different mod-

ular domains, even though these parts have no significant internal interaction.

Types, Modules and Compilation Units: The efficiency concern is clearly not
much of a problem where modules form part of a single compilation unit: the tact
that opacity is enforced at the level of the source language need not constrain the im-
plementation in its optir-ation, since the safeguards against illegal and undesirable
interactions have already been applied by the compiler front end. Between compila-
tion units the classical solution has been to ignore the problem and require that all
interfaces on the surface of the compilation unit observe standard calling conventions,
a practise that is tolerably efficient in conventional strongly typed languages (since
the calling conventions will presumably be well-matched with the data representations
in any case). Unfortunately, on the one hand, once transparency of data representa-
tion has been abandoned, literality no longer constitutes a straightforward solution;
and on the other, the adoption of a type system sufficiently flexible that maintaining

its inviolability is not a liability makes inter-modular representation optimisation a

144

necessity®s.

The same techniques that serve to recover intermodular efficiency across compi-
lation unit boundaries, however, will solve this problem directly. In systems (such
as Mary2 [pen83]®) in which code generation is deferred until link time, data rep-
resentation selection can be treated similarly, being based on information collected
from all the parts of a compilation. Similarly, a system based on maintaining a com-
mon database of modules in various stages of compilation and optimisation should
experience no difficulty in supporting sophistici.ed data representation techniques
intermodularly.

The conflict between problem-oriented and language-oriented modularity con-
straints is also exacerbated somewhat by treating types as “real” objects with intel-
ligent implementations and a certain level of semantic sophistication: it is no longer
adequate to consider types as “mere” parts of the interface language, but things with
nontrivial implementations in their own right. In fact, it is not really the case that
such issues do not arise in systems that place less emphasis on types, but it ¢s there
less clear that the representation of data is one of the loci of concern.

The same constructions that alleviate the problem of poor scope boundaries for
code structures can perform the same service for types at the module level: as func-
tions can be provided with clausal definition mechanisms®?, so it should be possi-
ble, by extending the familiar concept of structures with separate public and private

parts®® to create type definition mechanisms that are likewise distributed and clausal,

85Consider for example the implementation of universally polymorphic functions, whether this is
accomplished with (as in Exemplar) or without an explicit type parameter.

80r Mythos, an experimental operating system (relying heavily on the techniques developed
in this thesis) presently being designed by the author, which takes the even more radical step of
considering code generation to be a reversible optimisation step, akin to process migration or data
caching.

87This facility for the spatiotemporally distributed definition of abstract functions, to my mind,
rather than the extreme-late-binding execution model, is the fundamental advantage of Smalltalk-
class languages; and it is one that they share with many contemporary functional programming

languages.
884 in C++.

145

J S

whether the clauses be associated by sum, product, or (possibly) restriction.

A formal reconstruction of this policy in the case of functions (and data objects:
consider, for instance, a slight extension to C which would permit the programmer to
introduce a value 0 into an arbitrary novel type) can be provided in terms of objects
with polymorphic types being granted overloaded implementations. In the domain
of types themselves, the correlate of polymorphism is underspecification (typically in
the form of the declaration of a subtype or a supertype—either can be appropriate,
depending on whether they underspecified type is destined for use in negative or
positive contexts). Types could be introduced in a partially specified form and refined
independently in distributed scopes. The effect would be that various aspects of the
structure of a type could be isolated within separate modules.

In order to maximise its utility, the practical application of this technique would
require careful consideration of issues such as default values, subtyping, and visibility
rules, but should pose no insurmountable difficulties; it would pay off in providing
considerably better support of modular objectives in the strongly typed context than
is possible in weakly typed or unitypic languages, and with no loss in safety. This
entire approach, of course, is predicated on an adequate solution (of the extreme case)

of the separate compilation issue, as discussed in the preceding paragraphs.

Levels of Type Abstraction: Another issue of relevance to the interaction of
strong typing and modularity is the extent to which a strongly typed language can
support changes in the apparent linguistic repertoire. It should be clear that al-
though it has been conventional to provide specialised notational facilities for the
types built in to the language, this is no more a necessary characteristic of strongly
typed languages than it is of weakly typed ones (perhaps the less so, in that the type
mechanism itself exists to mediate the allocation of new denotations). Similarly, in

the absence of a well-developed type system, issues of representational opacity cannot

146

well arise: if there are not types the details of whose structure can be withheld, then
representational opacity is at best a matter of programming discipline. Finally, the
presence of a type system provides an intensional basis on which operator overload-
ing can be resolved, potentially increasing the level of conceptual abstraction of the
source programme.

An important characteristic of (intensional) type systems, then, is not that they
permit abstraction—any programming language provides, after all, an abstraction of
the underlying machine—but that they permit and encourage layered abstraction. In
particular, since a change of type need not imply a change of representation (some-
thing which cannot be the case for extensionally motivated systems), this layering
of abstractions can be accomplished at low—and often zero—cost. It is the value of
Visitors that they permit controlled unraveling of such abstraction without doing
violence to the layering itself: from each point of observation within the programme
the composition of a datum will be coherent with the virtual type system visible at

that point.

147

Chapter 5

Representing Types

To this point we have been more or less relying on the transparency of the relationship
between a nonatomic type and its natural representation to facilitate our discussion
of the type (and “type”) schemes of extant languages, and to carry the weight of
our assertion that Visitors can manipulate objects of arbitrary type, not merely
arbitrary structure. In practise (as we have noted more than once) the relationship
between a type and its actual representation may be far from transparent (in the
worst case, involving an arbitrary transformaticn function—see section 4.2.2). In
particular, wherever deferred evaluation occurs—because a type is explicitly lazy
[Gro86, RC86], because an object is (as yet) underparameterised (as with a function
value), or because of the normal evaluation sequence of the language (as in a normal
reduction order language or one, like ICON, providing streamed expressions)—the
data structure underlying an object will be bound up as much with the execution
mechanism of the host machine as with the actual datum eventually to be delivered.
In fact, the entire range of such phenomena turns out to be strikingly easy to
handle, once noted that the realities of von Neumann architecture?® strongly restrict
the forms of data structure that are sufficiently efficient to be chosen as underlying
representations, even of—perhaps especially of—system-related objects.

In this chapter we at last consider in detail the actual relationships that are to be

1As it presently sces implementation, at any rate.

found between types and their representations in the host computer, both in terms
of the structures that represent them directly and the Visitors that we provide for

their manipulation.

5.1 Primitives

Turning first to the question of the structures that implement data types, it will be
convenient (as it was for types in their turn) to divide them into atomic (or, rather,
basic) and compound entities. Though we argued in section 4.3.6 that conventional
hardware, being possessed only of “bits,” is best analysed as being strongly but
trivially typed, it will suit us for the moment to treat pointers as a distinct case?
(these two cases will shortly be reintegrated to some extent, in section 5.3).

Having considered the atomic data structures, we will turn to the different un-
derlyingly compound objects, working our way eventually through to the runtime
representations of types themselves.

The number of primitive structures that a machine represents is in some sense a
matter of interpretation, and in another a point of no moment. Certainly no harm
would be done—except possibly in terms of performance and code complexity—if
a large number of primitive structures were recognised, covering all the different
interpretations the hardware might place on a bitstring. Or again, a very practical
choice might be to distinguish among different primitive structures on the basis of
storage class: information in the stack being handled differently from information in
a garbage collected heap, and differently again from statically allocated objects with
indefinite lifetime.

The weakest (and for many purposes, the most satisfactory) distinction we can

draw is based on the syntactic application of the data (in a sense to be explored more

3 A distinction that has physical correlate, of course, in that pointers are ultimately emitted on the
address bus: if the CPU is seen as an autonomous black box, pointers are more clearly distinguished
from other data in manner of processing than even instructions.

149

fully in section 5.3, below). For the usual run of languages and machines, the memory
representation of an object can be divided into: raw bits, whose interpretation is
determined solely by the eventual use to which the programme puts them, and whose
only inherent syntactic relationship is adiacency; and pointers, which have the addi-
tional property of referring to—and equally important, transmitting type to—remote
storage locations.® For our purposes, then, we will treat all objects as ultimately
decomposable into these parts. Any objects “atomic” at the higher level-—such as
Boolean values, references or floating point numbers—are in this stratum composed

of sequences of pointers and raw bits.

5.2 Simple Composition

As has already been suggested, the very simplest composite types, the products and
sums, are amenable to direct translation into natural structures. The product T x U
can be represented straightforwardly as the linear juxtaposition of the representations
of T and U; similarly, T + U (since it is, in our terms, if Boolean t, t then T else U
end, or equivalently 2 x 1.if,=; T U) becomes a Boolean structure followed immediately
by the representation of either T or U, depending as it reads true or false.
Extracting the first member of a product is then very straightforward: it is accom-
plished by simply ignoring the second part of the product’s representation (in fact it
has already been noted that this is the basis of a straightforward form of type single
inheritance). Since we treat the sum as underlyingly a product, the same observation

applies to exarnining its discriminant field.

3In support of the technical device we proposed in section 3.1.2 for the representation of data
with complex control expressions, we add to these two a third class of cache bits, which represents
information redundantly with a computation over (the preceding part of) the represented object and
thus has no “true” significance for the object’s syntax, while still being crucial for its practical rep-
resentation. (Note one subtlety, though: if the device is used to store locally computed information
redundantly, the associated storage is indeed composed of cache bits; but if it is used to close over
nonlocal or mutable data this is, rather, a true closure with semantic interpretation and composed
of raw bits and, presumably, pointers.) The distinction between cache and raw bits is a bookkeeping
device of use, for instance, if it is desired to make external representations of objects as transparent
as possible; or in making certain time/space tradeoffs. See further the discussion in section 6.2.1.

150

Obtaining the value field of a sum is scarcely more complicated, for it immedi-
ately follows the discriminant, at a fixed location (we can assume the discriminant is
of invariant form); thus it can be extracted by ignoring the first part of the repre-
sentation. That the appropriate variant (that is: the one corresponding to the actual
setting of the control field) of the sum is selected—that the correct type is employed
in examining the storage following the discriminant—should be assured by the overall
type correctness of the source programme and the formal rules that define it.

A difficulty now arises, however, in that there is no requirement that the repre-
sentations of the two variants have the same physical size (since T and U are, after
all, arbitrary types); even to stipulate! that they are “padded out” to the same size
is inadequate if one of the variants is, for instance, of unbounded maximum length.
This is particularly irksome if such a sum appears as the first field of a product: for
now the second field is no longer at a fixed offset, but is simply found immediately
after the first, a location that is, in general, arbitrarily hard to find. If we are to keep
the cost of the second projection function for the product reasonable (and for such a
primitive operation, a very small constant cost is really desired), something must be
done to keep the locations of the constituents more predictable.

One approach to the solution of this problem would be to precede the first object
by its size; but this fails to provide direct access to fields after the first, as will be
evident upon consideration of the process of finding the n® field of an array encoded
with this technique. The general solution is to replace at least a variably-sized first
field of a product (and perhaps every first field of a product, or every variably-sized
field, or every field that can possibly be more than one word in length) by a pointer
to the field’s representation elsewhere in memory. (This must be either transparent
to the programmer, or something that one is required to request, of course.) Since

pointers are of fixed size, both fields can now be located in constant time—one with

4As does C in this situation.

151

P o)

a dereference, one with an offset.’

A less general but nonetheless interesting alternative is to take advantage of the
isomorphism® between T x U and U x T to move a variably-sized field of a product
to the end of the physical representation, where it will cause no such trouble.” This
transformation has several conditions: there can be no more than one variably sized
field (two, if negative offsets are permitied and various further conditions are met);
the distributions of places in which the involved products are eventually used must be
such that no confusion arises (in conjunction with associativity, this transformation
can result in some of the projection functions requiring the copying of their results
or producing discontiguous representations which must be handled appropriately);
and the physical sequence of the fields must be either invisible or irrelevant (which is

essentially a condition on Visitor construction and use).

5.3 Data Syntax

The comments of the previous section prompt us to a more general discussion of the
syntactic properties of in-core data representations. We shall be picking up on a
number of comments that we have made in the preceding.

Although it is clear that memory representations are subject to grammatical phe-
nomena, their grammars are rather different from familiar string grammars. A first
model (acceptable if only types so far discussec in this chapter are involved, and there

are no pointers) might be that a data structure is just a self-terminating bit string, on

5The restriction we have imposed on pointers—that their type be uniquely determined—may
require that a certain amount of “factoring” be done on fields before this transformation is applied,
and ultimately limits its utility somewhat: there are cases where the output of the process is not
terribly felicitous. This aside, no typing problem can arise since the type of the moved field is
transmitted through the pointer.

€Care must here be exercised: these two types are only isomorphic under appropriate renaming
in the introduction and elimination operations; and we are not in a position to do anything of this
sort for the dependent product (though the reader wishing exercise is assured that there are things
that can be done).

"This representation optimisation corresponds directly to reorganising a function in order to
permit tail-recursion and subsequent tail-recursion elimination.

152

which an LL(1) syntax is imposed by the generating structure declarations. In fact,
however, there are a number of complications. First, a data structure consists po-
tentially of two bit strings,® progressing out in both directions (towards increasingly
positive and negative offsets, that is) from an origin at the object’s nominal address
(objects in registers or other disjoint address spaces are easily handled by extension of
the basic address). Second, the structure of the underlying alphabet of these strings is
complicated (and not merely extended) by the existence of pointers: for certain con-
tiguous “words” of bits can be grouped together into pointers which are not distinct
from the underlying binary symbols.® Third, since we have been permitting dependent
types, itemns appearing in the right-hand-sides of productions (corresponding to fields
in a structure description) are permitted to have arbitrary functional dependencies
on (what amount to attributes computed in a single left-to-right pass over) mate-
rial appearing to their left in that production. Finally, just as, given that structures
are (at least potentially) bidirectional, it is possible to use information alternately
from each of two data sources, it is also possible to look ahead over any fized length
substructure—or gap in structure—and thus visit fields in noncanonical sequence or
support discontiguous representations.1®

As has already been observed, the presence of pointers permits us to “step around”
variably, even arbitrarily, sized objects (subject to the condition—if we are resource
conscious—that they do not provide information that controls the rightward interpre-
tation of the structure); but in fact they also allow for arbitrary structure sharing

(or “DAGginess”) and even circularities in data structures (which in turn can be

$Actually, there are cases of practical address spaces of higher dimensionality than one. An
object oriented system might exhibit a microsegmented address space; and in general, any paged
or segmented system could assign semantics to, e.g., particular segmental offsets, allowing indexing
through multiple pointer subfields. Although we are interested in such schemes (see, for instance,
our discussion of “sones” in footnote 15 of section 7.2.2), we do not yet have a unified approach to
offer for this more general case.

®Although imprecise garbage collection schemes—discussed in section 7.1 below—in fact employ
heuristics in an attempt to finesse this problem(!).

19Actually, this last can be done in LL(1) through an arbitrarily expensive rewrite of the grammar.

153

used to represent formally infinite objects—even nontrivial ones, if information flows
“down” the cycle). (This has profound implications for Visitors, which we shall
discuss in section 5.6.4, below.)

On the other hand, there are a number of soft constraints placed on “good” data
structures over and above those mandated by the logical structure just described,
by the nature of their computational context.!' First among these is that because
it is undesirable to commit arbitrary machine resources to the mere examination of
internal data structures,!? representations are typically chosen to involve at most some
subset of the resources of the CPU itself (and no additional RAM) in their analysis.
Technically, this is but a finite amount of state and object syntax is thus a fortior:
restricted to a regular grammar (but then the amount of addressable RAM is likewise
finite). More realistically (or rather, more in line with the usual approximations), we
find that regular syntax is still supplemented with integer arithmetic of single word
range (in order to provide arrays, if for no other reason), and no more; since the
maximum length of a physical array cannot normally exceed the maximum span of a
pointer, this still fits the practical bounds.

In order to meet this practical complexity constraint, two techniques, dual in
sense (and both have which we have already discussed) are employed: the moving
of complex substructures out-of-line with pointers; and the precomputing of complex
control information, to be placed in cache fields within the structure for ready access.
These same techniques find application in the satisfaction of another soft constraint,
the result of continuing the tradition that the primitive structure access functions of
a programming language (corresponding to the eliminators of the type) have constant
cost, ideally on the order of one or two additions. Aggressive application of our dual

simplifying transformations can often, if not invariably, permit the allocation of fields

11Note that these are the same constraints that we previously observed to limit typical language
designs; here we consider them as they impact all language smplementations.

13particularly since this will occur during garbage collection, when resources are at their most
scarce.

154

to fixed locations within the structure, or at worst fixed within a single additive
parameter.

Finally, because of difficulties in managing allocation, it turns out to be impractical
to manipulate structures that are of potentially unbounded length in both directions,
and inefficient if both halves are merely of variable length. In fact, the only applica-
tions for bidirectional data structures we have run across in the literature have been
in the service of the goal of fixed field offsets.!3

The practical constraints just mentioned apply with redoubled force to the host
machine itself: in interpreting its instruction stream, at least, and possibly in locat-
ing the arguments to its instructions, a typical processor architecture abides strictly
(modulo virtual memory!) by the dictates of constant cost operations.

One final, minor complication to the syntax of data structures (though 3 linguist
would merely look upon it as bearing the hallmark of a morphological process!*) arises
when two (typically atomic, for reasons of simplicity of interpretation) substructures
of a structure are assigned overlapping storage. This is distinct from mere “packing,”
in which substructures are aligned tightly, without regard for word boundaries, and
which merely inhibits the straightforward construction of pointers to the entities
involved; here we are concerned with the case that the same bits potentially have
more than one interpretation. The most common case is probably that in which a
pointer field has a nonpointer interpretation that is active in the case that the contents
of the fields are transparently inappropriate as a pointer. This might be no more than

a sum structure packed into a single word by the cooption of an “unused” bit to hold

13]¢ is interesting to observe that bidirectionality has occasionally been suggested for object code—
one application might be to ensure that even instructions with full-width operands can be of effec-
tively fixed width in the instruction stream, and/or that “advanced notice” can be given of upcoming
address literals without compromising normal instructic- fetch mechanisms. It is perhaps also worth
observing that there is an alternate interpretation of the contents of a control stack—at least during
return—as being a secondary instruction stream consisting of calls in good old-fashioned following-
argument format (a format which has by now been essentially abandoned as requiring writable code
segments; but writability is in any event a sinc gua non of stackhood). This is a particularly good
fit to a hardware-threaded machine architecture.

14“We needn't worry about that, it happens in the lexicon!”

155

the discriminant field; but it is just as likely that there are particular values for the

“pointer” that signify the second interpretation.?®

5.4 Functions, Closures and Activation Records

Although a conventional array is a straightforward finite cartesian product, and is nor-
mally represented as a linear sequence of (by hook or by crook) equally-sized element
structures, more general map types exhibit a wide variety of internal structure. As-
sociative tables become complex combinations of underlying linear arrays and linked
structures, while general (computational) functions (and various other objects for
which a delayed evaluation mechanism is selected or required) have representations

ultimately involving native instruction sequences for the host machine.

5.4.1 Functions

The simplest of the representations involving machine code is that of a closed, ef-
fectively asynthetic function not employing visitation and requiring only a bounded
(and reasonable) amount of local storage.’® These correspond precisely to the func-
tions that are provided by C or Modula-2: they are typically represented by a simple
pointer to an unadorned code sequence. Looking at the representation from the point
of view of a garbage collector, at least, such a code sequence is simple binary storage;
the Visitor need know no more than the function’s address and possibly its length
(if it is garbage-collectible). Thus the function as a whole is very much like a homo-

geneously stored counted string; though it will usually not be possible to store the

16 Exemnplar's “extension” values (see section 2.4) are intended to formalise just this practise.

18A function is analytic (not, of course, in the sense of mathematical analysis) if it involves elim-
ination rules, and synthetic if it involves introduction; effectively so if the property is externally
detectable. Note unanalyticity corresponds immediately to purity and asyntheticity to niceness when
the latter are understood denotationally. For this very reason it is possible for an inaplementativn
to trade off one against the other; in particular a nice synthetic function can often be converted into
an implementational form that is asynthetic but naughty, reusing the same (mutable) space to hold
its result on each successive invocation. This is in fact how we analyse the use of processor registers,
both as temporaries and for argument passing.

156

length of the code segment at offset zero (since this will be the entry point itself in
most architectures), it can be stored conveniently at a fixed negative offset.

The sirnplest deviation from this basic case is when the function can return con-
stants: while these can be evaluated at compile time,!7 the fact that they can appear
in the function’s output implies that they must lead a “public” life; in particular, it
must (in general) be possible for them to live on even after the function returning
them has been garbage collected. Under certain circumstances simply embedding
such constants in the object code will suffice (small integers are often representable
directly within an instruction, for instance, and since they are typically no larger than
pointers, there is very little point in trying to avoid copy proliferation). Frequently,
though, it will be necessary to grant such constants first-class status, and make them
accessible to the Visitor for the function.

Any of four approaches to code visitation could be employed. The first and
most traditional (it has frequently been used in implementations of both LisP and
Smalltalk) is to segregate the constants into a separate constant table, typically
either prefixed or suffixed to the code segment proper (since many processor architec-
tures provide instruction-pointer-relative addressing for constants this is as convenient
from a code-generation perspective as immediate data, if not quite as efficient in terms
of space or bus bandwidth); data stored in this manner must needs be tagged as to
their types, whether by universal convention of the implementation, or specifically in
this application. Somewhat higher performance may be possible by storing data as
immediate operands in instructions, while retaining the constant table with indirect
references back to them (and retaining, of course, the tags). This second approach
(aside from being particular to a function) is no different from a table-driven approach

to data structure analysis, and immediately suggests a third encoding in which we

17Unless their semantics demands that they exist in a new copy on each scope entry, in which case
we treat them as variable; this would include mutables and the scoped-distributed version of freely
generated types that subsumes “atorns.”

157

permit code and data to be intermixed quite arbitrarily, but provide for each function
a private Visitor specialised to that function’s particular layout (and capturing in
code the information that the second approach placed in its table). Aside from the
probable negative offset of the locator for this Visitor, this is essentially equivalent
to the encoding we proposed for the “universal” type: a type descriptor with Visitor
prefixed to the datum proper.!® These second and third approaches are most clearly
advantageous when it is considered that (in most implementations) every function is
a constant, and the targets of call instructions are in general among the things that
the first approach requires be placed in an external table.

The fourth, final, and technically most humorous approach to code segment visi-
tation is write a Visitor directly for object code itself. In the the most general case
this is not possible, since disassembly is in principle harder than execution, but locally
instruction sets are very well-behaved—necessarily so, since contemporary architec-
tures interpret straight-line code with a very simple finite state method. Very little
additional information would need to be present for the successful decoding of the out-
put of a typical compiler. Though the computational overhead of using this method
would be substantial and it is unlikely to be practical for the present undertaking (in
particular, note that information deriving from the return type of the function must
be propagated backwards from the return point), it has real potential to reduce the
amount of auxiliary data that must be stored in order to handle activation records

correctly.

Dual representation of functions: Inthe foregoing we have been making a silent
assumption of immense proportions, namely that the representation of a function is

expected to be utterly opaque. In fact, there are a number of applications where this

18There is a subtle point here: this last representation results in a Visitor being embedded directly
in an object, and since Visitors are themselves code objects, it will require a Visitor of its own.
This is the concrete manifestation of the type-of-types problem, and explicit steps must be taken to
ensure that the recursion terminates; see section 5.6.6.

158

is unsatisfactory. In the cases of debugging and (coresident) compilation for instance,
it is necessary to actively decompose a function into its semantic parts, rather than
treating it as an uncomplicated block of storage. More striking yet is the case of
process migration (something that may be as unremarkable as an attempt to print
out the value of a partially evaluated function, incidentally), where it is necessary to
derive an external representation for a computation in the absence of any guarantee
that it will be “resurrected” on a processor of similar architecture.

This difficulty can realistically be addressed by treating the native object code
of a function as no more than an optimised form of some more portable—and more
decomposable—representation.!®3° The native code itself is then stored as cache bits,
with the more abstract code being visited according to the type appropriate to its

representation.

5.4.2 Activation records

In conventional applicative-order programming languages, functions exist in two dis-
tinct states: active and inactive. While active (while the flow of execution is tran-
sitively “inside” them), they require additional storage to hold their internal state.
Sometimes (though in most implementations only for “leaf functions” at the fringe of
the call-graph,? since the number of processor registers is quite limited) it may be
possible to store this state entirely within the CPU, but in general it must be saved

externally in an “activation record.”??

®And by providing fairly conventional debugging information to relate the two views, though
admittedly a roll-back debugger would make for a less constrained implementation.

30The author’s operating system design, Mythos, rests on the notion that compilation is never
more than an optimisation for anything outside a sub-kernel, and in fact integrates compilation,
physicel memory management and disk management into a unified caching protocol.

3Recall that such leafness is mo? unambiguously defined by the language but is itself an
implementation-dependent property, since, as we have already observed, the representation of func-
tions is exceptionally subject to transformation and optimisation—if only because this has been the
traditional focus of work on optimising compilers.

33What manner of storage regime is appropriate to the activation record depends on the function
in question, and how it is used. In the simplest case of a non-recursive function in a single-threaded
language, its storage may be allocated statically from a pool, in such a manner that it possibly
overlaps only the static storage associated with other functions that cannot be active at the same

159

While certain mechanisms for the provision of parallelism make objects of process
type available to the programmer as data (and the application of visitation to one
of these would presumably permit the indirect inspection of that process’s current
activation record), and while a debugger would certainly provide this facility, it is
not usual for activation records to become visible to the programmer. Wherever a
function transitively allocates storage, however, the garbage collector may come to
be activated to recycle allocated but no longer needed memory; and since it must
identify all the storage that is in use it must examine the activation records of all
presently suspended functions, so Visitors for them must be provided. Interestingly
enough, it need only examine suspended records, since the recycler itself is the active
function and its transient state is not among the structures that must be preserved
through garbage collection.?

The activation record contains a number of distinct data (a list that is, perhaps
unsurprisingly, very similar to the contents of a typical process descriptor, though
lighter on the synchronisation support): the explicit local context (local variables
and so forth); a parameter list (part of the linkage between activation records, that
can be accounted either upwards, to the callee, or downwards, to the caller); an
instruction pointer (again accounted either upwards as a return address or down-
wards as an instruction pointer); possibly a static link to the lexical environment
(see the sections on closure, following); and a dynamic link to the calling (and thus

dynamically enclosing) activation record.?*

moment. Recursive functions, since they may have more than one simultaneous activation, need
their activation records to be allocated on at least a stack. If parallelism is introduced, the stack
must fork, becoming a forest or tree of stacks. In the most general case (as in Smalltalk-80, or
Lasy ML), the activation record must be a heap-allocated object like any other, because its lifetime
becomes completely unpredictable.

Which of these cases obtains is not of great concern to us, however, since the visitation mechanism
will, by construction, successfully reach all relevant instances, as we shall sce.

33Though its static structures are, at least as they pertain to types that are still somewhere in
use (and this is the crux of another subtle issue discussed in detail in [Spa86]).

3MThis last may be implicit if activation records have known (or represented) size and are stored
(almost everywhere) stackwise.

160

Since the local context is composed of declared variables (and auxiliary variables
introduced in compilation), we can infer that it has a Visitor obtained from the
structure declaration that results from abstracting just the declarations themselves
from the function to which the activation pertains. These can depend on the argu-
ments, (the object at the other end of) the static link, and possibly the dynamic link
(depending on the semantics of the language?®). Most especially it depends on the
saved instruction pointer, since the location in the owning function at which execution
was suspended in general determines which declarations are in scope.

The argument list is, from the callee’s perspective, part of its static type and thus
depends on at most its static link. From the caller’s perspective it is a static property
of the point of call, and thus depends on the instruction pointer and all the other
factors that we just saw influence the local context. From either of these two angles,
however, it is another simple structure (in Exemplar it is even notated this way).

The static link is discussed in more detail below, but it suffices for now to ob-
serve that its format is (typically) fully determined by the function with which it is
associated, and while this must be determined it depends on none of the other, more
transient data in the activation record.

The dynamic link, and the instruction pointer or return address, are themselves
simply pointers; and the referent of the dynamic link must have a format sufficiently
well agreed-upon that it can be used to restore the old context. Thus, unless explicit
disambiguating information (presumably classed as cache bits) is inserted into the
activation record at a pre-arranged location, with concomitant runtime cost, the saved
instruction pointer must serve to ground the interpretation of the whole activation

record.

48 Note that if the language does provide some form of “deep binding” dynamic scoping—meaning
that the dynamic link must be traversed in the normal course of function execution (before, that is,
the final return)—nonleaf activation records are in general constrained to a physical format with an
invariant component holding this information, while otherwise—and if the correct Visitor can be
located—idiosyncratic layouts are possible.

161

2

(Even in the presence of explicitly cached information about the activation record
it is not safe to treat the instruction pointer as opaque, since it asserts the reachability
of the object code of the function. It cannot be assumed that this is independently
accessible from the static form of the caller—as would be superficially convenient
if only garbage collection were at issue—since the activation record may represent
an invocation of a variable function; nor can it be assumed to be available via an
activation record elsewhere in the stack, since the originator of the function—and
even its caller, in the presence of the all-important tail-recursion optimisation—may
no longer be extant.)

The most straightforward method of performing the feat of mapping the return
address to a Visitor for the activation record is to precede the return address’s target
(presumably an instruction starting the code for the continuation of the suspended
computation) with a descriptor not only for the code found there but also for its
anticipated dynamic state. This information, being associated directly with the code,
is (relatively) static and involves no direct overhead at runtime; but it has the in-
direct consequence of making it impossible to use “conventional” subroutine linkage
instructions in a straightforward manner, since now each callpoint must have a fixed
data field associated with it, between the point of call and the point of return?6:27

A somewhat less intrusive method that works for functions known as constants
(and so represented by calls to fixed addresses) is to place the administrative infor-
mation in front of the entry point to the function (instead of at its call point). This
can be located by standardising the calling instruction sequence, locating it from the
saved instruction pointer, and decomposing it to produce the target address. Since

this fails for functions invoked anonymously, it must be backed by another (possibly

36Much in the manner of archaic PpP-11 calling conventions, in fact.

37For some instruction sets there is not an execution time penalty associated with using nonstan-
dard linkage conventions adapted to this requirement and completely avoiding the call instruction,
except possibly in terms of second-order effects relating to instruction cache residency. Such an
efficient non-standard call sequence is exhibited (in this case for the Motorola MC68000) in [Spa86].

162

less efficient) method, perhaps working by associative lookup on the possible return
addresses into functions suspected of use as anonymous values (though as functional
programming gains in popularity the frequency of this case can be expected to rise
sharply).

Finally, it may be feasible to gamble on there being relatively few activation
records (rendering a more expensive solution acceptable) and store the requisite in-
formation in a separate table; this is certainly a coherent fallback position if it is
impossible to associate data with a callpoint.

In any event, traversal of the stack (or whatever other structure the activation
records might be organised into) is always possible by the same argument that sup-
ports Visitors in general: since the machine must interpret the stack frames (or
discard them), they are all interpretable (or ignorable). Particular architectures may
favour root-to-leaf or leaf-to-root traversal (depending in part on the “accounting
method” that assigns components of the activation record to the caller or the callee,
in part on matters of optimisation as touched upon shortly following, and in part
on the level of stylisation of the stack itself!) and will certainly have profound im-
pact on the best method of attaching hints to the programme for the minimisation
of visitation costs. The range of options is sufficiently wide, however, that a good
compromise seems to be consistently available in practise.

For a more detailed discussion of the data structures necessary for the efficient
traversal of the control stack, and the visitation and analysis of activation records
in the context of garbage collection, the interested reader is referred to [Spa86] and

[Gol91).

Activation Records of the Optimised: Two complications to the above analysis

arise in the presence of competent object code optimisation. The first is relatively

#Both the SPARC and the VAX (at least under the groesly inefficient CALL/RET discipline) are
notable for their extremely stylised stack formats.

163

o »-“»:.«.MM

I A s

trivial: interprocedural analysis often produces specialised entry points for functions,
in which arguments are passed by compile-time negotiated once-off conventions (pos-
sibly even being suppressed if their values are known ahead of time) or where certain
nominally necessary integrity checks or case analyses are dispensed with for privileged
customers that are (statically) known to meet appropriate criteria. These nonstan-
dard entry points may be present in addition to entry points representing the function
“as declared.”

That a function should have more than one entry point is a minor thing, eas-
ily taken care of by replicating any per-entry-point administrative data; and any
nonstandard calling conventions need not concern us in that by the time the called
function itself makes a call (thereby laying its state open to inspection) the situation
will have normalised itself (possibly on the understanding that the argument list and
the local state must in some way be merged into a single data structure).

More gruelling is the fact that the moving of values into registers is the single
most direct way of improving code quality for conventional architectures. If registers
are managed on a caller saves basis, this presents no difficulty at all (in fact it is
isornorphic to the case where no registering has occurred but the values are “nor-
mally” stored where register save happens to leave them); but where the callee saves,
register contents can be dislocated arbitrarily far up the stack from their contexts of
definition—for nothing would be gained by a callee-saves convention in which such
registers were saved regardless of whether they are actually clobbered.

The only evident solution to this problem involves maintaining a model of the
register contents as the stack is scanned: if the scan is root-to-leaf it carries type in-
formation up to where the values are eventually stored, while a leaf-to-root scan must
carry the values down to their types. Fortunately, in either case, the set of registers
is normally quite small, and the only significant overheads are (1) that the physical

implementation of Visitors must make provision to pass enough state between them

164

to perform this task (which may in turn have impact on their optimisability), and
(2) that information about where registers were spilled must itself be recorded in the

static descriptions of linkages.

5.4.3 Closures

When we discussed the representation of functions, above, we restricted ourselves
to the consideration of those that appear at the outer level. Lacking any defining
context that is not fully static and available at compile time, the “static link” in their
activation records is truly static, and so construction of an activation record purely
on the basis of the code address of the function is possible.

Functions in statically scoped programming languages, however, depend crucially
on the bindings in effect at the moment of function creation, and in internal scopes
(where functions are eflectively computed values) this postdates the start of execu-
tion. When a function is created the current bindings (at least insofar as the function
actually depends on them) must be saved as part of the function value itself. The
combination of an executable component and an environment is known as a clo-
sure (because the free variables of the function text are closed by the environment
structure, which is formally a substitution list).

The simplest method of doing this is to represent general functions as duplex
pointers, pairs referring separately to the function’s entry point and to its environ-
ment, the activation record of the creating function (this latter pointer is the proto-
static-link that will be employed when the function is eventually invoked). Once
again, the value of the entry point reference suffices to determine the type of the
environment pointer’s referent. Some care must be exercised: if the creating function
can exit while the created function is still in use, the environment must be copied t0?°
a place where it can outlive the function’s activation proper. For the sake of consis-

tency, outer functions can of course be provided with dummy environment pointers.

“%0r in general, if it contains directly mutable values, have been built in.

165

An equivalent technique (with different performance characteristics, and not pos-
sible on every architecture) is the autoclosure: rather than unifying every function
value under a duplex representation, a common simplex representation is employed,
and conventional closures are replaced by pointers to dynamically generated code
segments. This method is practical (and in particular does not involve the full force
of a conventional compiler at runtime), because the constructed function need only
perform two tasks: it must create the static link from the (to it, constant) environ-
ment pointer and transfer to a code address common to all instances of the textual
function it derives from.3° The scope for sophisticated optimisation optimisations is,
however, very broad.

{

Closed Data: Sometimes objects other than functions are in need of closure. These
include: lazy lists and other explicitly lazy structures found in otherwise strict lan-
guages; values whose context dependencies are easiest left in symbolic form until
they are finally eliminated (type values being an example); and the part-code, part-
data structures that might result from the interprocedural optimisation of specialised

recursive nests.3!

Such structures typically have multiple code pointers sharing a
common environment; but the overall effect is no more than the application of the
tail-recursion and common subexpression elimination optimisations to a type with
function components.

As with simple functions, both closure and autoclosure approaches are feasible;

in particular the representation of all data as autoclosures with the code address

%In typical architectures, and if environments are copied into heap objects when functions are
constructed, this is the work of a single instruction: a conventional subroutine call pushes the address
following itsell onto the stack and transfers to a fixed target. If the return address is popped into
whatever location is used for the environment pointer by the target of the call, the same effect
will be achieved (modulo a constant offset in the environment) as if the “trampoline” sequence had
consisted of a register load and a jump.

31The state of the art in code generation is not yet such that the optimisations can be detected
and applied automatically. Later, however, we will see just such a system of specialised functions
resulting from the optimisation of Visitors for use in garbage collection, and we see no reason in
principle why the process should not be automated.

166

doubling as a type tag appears to be a powerful representation method for use in
graph reduction interpreters (since in this representation it may be as fast to attempt
normalisation of an object as tu check whether it has yet been normalised). This
technique is described in (KL89] and has been employed by the author in the Jeter

implementation of the functional database language Alfonso.

5.5 Types and Genericity

In an ideal world, types (which capture information about how values are used) would
be information about programmes, not information within programmes, and would
not need to be manipulated—or explicitly represented—at runtime. Even where
the language permits types to be computed, these computations are in principle the
concern of the compiler rather than the runtime system, for at runtime the data stand
on their own.

Unfortunately, practical resource constraints (and such human activities as de-
bugging) intrude upon this idealisation in a number of ways, ways which have the
joint effect that data are in practise examined asynchronously to the manipulations
the programmer requested explicitly, and type information must therefore be made
present to the runtime system.

Leaving aside externally motivated tasks (like debugging), there are two ways
in which the finitude of resources can have impact on the programme. The first is
the very empirical matter of resource ezhaustion: in particular, as a computation
progresses and memory is used to hold intermediate results, the space available on
the computer may run out. This necessitates a garbage collection in which values that
are still to be used are distinguished from those that are now finished with and can
be discarded, and in turn this requires (in general) a traversal of all the storage that

is still in use, to make that discrimination. The types of the objects being traversed

167

o

must be manifest to the garbage collector so that this traversal is possible.3?

The second (and more profound) respect in which resources are limited is that the
von Neumann machine has finite words and is in this respect not a faithful mirror
of the computational domains of denotational semantics. While memory cells may
refer to values of arbitrary size anywhere in memory, they cannot contain them, and
in consequence even the trivial manipulation of an “arbitrary” value is a potentially
nontrivial operation. Thus, where generic functions are to be implemented (even
where the language’s notion of “type” does not carry the additional burden of pro-
viding the versions of operations appropriate to its members—as it does, for instance,
in Russell [DD85]—and even if the surface notation does not mention types, leaving
their determination, as in ML [MTH90], to an inference mechanism), the types of
generic arguments must normally be passed explicitly in the implementation.

How, then, do we represent a type?

As already noted, in some languages a type bears explicit runtime information in
the form of a tuple of functions implementing the primitive operations on that type,33
but this is in principle a semantic argument implicitly determined by the type, rather
than the type itself. The actual type must capture the information necessary to
manipulate members of the type in general, global ways: in particular, to traverse it
and locate its constituent parts—to identify the information it holds. In combination
with the appropriate arguments, this is precisely the function performed by the type’s
Visitor, and so our preferred representation for a typeis in fact a (possibly optimised)
closure containing at least the Visitor and its argument packet.

In the absence of Visitors, the only obvious options for direct type representa-

tion are a symbolic representation of the type declaration itself, to be manipulated

33The same observation applies mutatis mutandis to a virtual memory system, incidentally, an
observation that applies nontrivially if the type system of the memory manger has not been—as in
virtual object stores it has not been—reduced to involving only “pages” in fixed virtual pageframes.
33The type of this tuple is presumably fixed at compile time by the type or types of which the
given type is a subtype, for otherwise this representation of the type itself would be uninterpretable.

168

interpretively; or the avoidance of the issue by reducing the information content of

the type to zero.34

5.6 Visitors

Crucial, then, to our approach to the representation of types is the physical imple-
meutation of Visitors themselves. Just as we relied on the naive assumption that
instances of types could (at worst) be implemented by their natural representations
to carry us through to the present chapter, so we have implied that, since Visitors
are executable, they are representable in the same manner as other functions. While
this is (modulo issues of typability at the source level) strictly speaking true, it is
also a gross oversimplification, in that in many (perhaps most) of their anticipated
applications they must operate in unusually constrained environments and with the
greatest efficiency possible. At the same time, and in compensation, they are quite
restricted in form and thus amenable to the application of specialised implementation

techniques.

5.6.1 Mode objects, M

In -ection 3.3 we presented a formulation of the Visitor founded in mutual recursion
through a finite mode function of type M, whose domain is the enumerated type 7
of type constructor names and which typically maps almost every constructor to its
Visitor. The ulility of this arrangement arises from the ability to update the initial

(purely visiting) mode function pointwise to yield modes tailored to a particular

3There are two methods of achieving informationless type: the first is that employed by Lisp,
in which all data are explicitly tagged and there is only one type; the second is that of Modula-2,
in which opaque types are pointers with the information about their referents erased, rendering
them eflectively unmanipulable. The former approach, as we have seen, has negative (but bounded)
performance impact; while the latter makes certain services, such as automatic storage management,
impossible.”

*Although the current literature of garbage collection includes schemes for imprecise garbage
collection which are claimed to work for languages of this class (such as C++), these by no means
amount to an automatic storage rec mation system, since they (so far, at least) only work in cases
where garbage-collected types are partitioned from each other in the heap [BW88].

169

application.

Although T is finite and is typically statically determined,? it may in practise be
beyond the capacity of the compiler to enumerate. In particular, the merging of infor-
mation from separately compiled modules is difficult or even impossible for the linkers
provided by a number of common operating systems. Thus the association of names
to values that embodies a mode function is in actuality very similar to the abstract
structure represented by the varizable location mechanism of a dynamic-binding lan-
guage like classical LISP. In particular, a deep-binding implementation (wherein the
function is essentially an association list) is correct, but inefficient. A shallow-binding
approach, wherein each type (or, more precisely, type constructor name) is an actual
structure with a field representing its interpretation under the “current” environment
is potentially usable, but requires careful management if the source programme is not
such that only one visitation is in progress at a time: visitations must not see each
other’s pointwise updates.?

In practical application it appears that the number of simultaneously active visi-
tations is often bounded; the majority of the applications thus far implemented have
used visitation non-reéntrantly and with an almost entirely static mode. It would be
possible, if not entirely desirable, to impose this manner of use as a constraint on
the programmer (or at least to rely on it as the “common case”), in which event the
best representation is the inverted one, the type containing a linear array of mode
function domain entries, indexed by a representation of the function of the moment.

This certainly does not constitute . general solution; indeed, the ideal approach

is probably to take the metaphorical bull by its conceptual horns and represent the

%In conventional programming languages it is limited by the number of type declarations in the
source text and the resourcefulness of the compiler in producing divergent implementations; in those
with first-class types it is dynamic and unbounded but still constrained by the constructivity of
computation.

3The problem is even exacerbated alightly by the fact that the points of update—the relevant do-
main elements—may not even be mutually visible under the applicable type-name-scoping discipline
and modularisation constrainta,

170

mode directly as a single, contiguous linear array, even when this involves taking a
survey of the dynamic extension of the type system at the moment of invocation.
This is an extremely aggressive undertaking, but there are evidently opportunities
for incrementalisation of the computation and the retse of old mode values in light

of their great mutual redundancy.

5.6.2 Physical representation of the Visitors of types

Laying aside for the moment the issue of optimisation, we recall that Visitors, the
automatically provided domain-members of the mode functions and the actual entry
points to the visitation system, are themselves at base just functions. In principle
they diverge from run-of-the-mill functions only in that they are in some applications
invoked by the implementation on its own behalf as well as by the programmer, much
in the manner of assignment operators in conventional languages. This has the effect
that a number of system services that are atomic from the programmer’s perspective
(and from the viewpoint of typical programmer-supplied code) may interact with
them strongly. In particular, the basic data coherence assumptions that we have
enforced in user code by type discipline and restrictions on mutable objects do not
in general apply during the execution of Visitors, and the overall correctness of the
computation must be safeguarded by careful consideration of the detailed behaviour
of their object code.

The dificulties occasioned can be roughly partitioned into three groups: those
that arise from resource scarcity (because Visitors are employed in the virtualisation
ficilities that provide the illusion of boundless resources to more “normal” code);
those that arise from the detectable nonatomicity of object creation (when the Vis-
itors themsclves are involved in this genesis); and those that concern nonstandard
transient data representations (as when Visitors are being employed to perform some

global low-level data transformation).

171

Resource Scarcity: Because the visitation system may be employed in resource

virtualisation (in their earliest incarnation Visitors formed the kernel of a garbage

collector, the paradigm case of virtualisation-critical application; these same issues

arise, however, when using them to perform bulk transput—as when saving a process

image—or in support of virtual memory systems optimised by type sensitivity). The

precise restrictions that such use will impose depend on the application (not a prob-

lem in that these particular applications typically form static parts of the language-
implementation), but they can be characterised roughly as a requirement that the
spatial resources locally consumed in the execution of the Visitor be bounded by a
static constant, while their runtime be linear in the size of the object visited; this will
suffice for the purposes of the implementation’s static “accounting” (for the active
depth® and breadth of the heap are themselves limited directly by available physical
resources).

As already noted, there are two ways of looking at this restriction: from a formal
perspective, we can observe that we are restricting the Visitor to be (discounting
any Visitors it may transitively invoke) a finite state machine and thus the objects it
visits to be regular (as previously observed, this is almost always the case with uata
structures, anyway); pragmatically, we want to restrict the Visitor’s object code to
use approximately the static resources of the CPU itself, eschewing the stack but for
calls accountable to distinct objects.

Given the possibility we have granted ourselves of resorting to cache bits to record
the results of computations on which layout may depend, this does not appear to

present a substantive difficulty.

4And the constants should be measured in small numbers of bytes and cycles!

SRecall that we require that a pointer assign a unigue type to its referent. In fact, even in the
absence of this restriction we can still derive a bound on effective heap depth after cycle-breaking
(using the lattice induced by the subtyping relation and a pigeonhole argument over the finite domain
of addresses), but it is unacceptably large for practical application. Whether such pathologies would
be common if the restriction were lifted is unknown.

172

Atomicity Failure: The second, formally straightforward but technically more
troubling, respect in which care must be taken in selecting a physical representation
for Visitors is that they are subject to failures of the usual creation (and update)
atomicity of data. Since Visitors themselves may be employed in the creation, input,
or motion of objects in memory, it is vital that they examine the data under their
interpretation for semantic purposes only after they “visit” it by passing it to their
mode argument for declaration.

The operational difficulty is that there is an orthogonal practical respect in which
objects may be nonatomic at the level of their implementation: certain (very efficient
and desirable) memory allocation methods use segment boundaries, invalid pages
or their equivalents to delimit available storage, relying on an addressing fault to
trigger the appropriate virtualisation strategy. More likely than not, such a fault will
partition an object, and (if it is what triggers the fault) the execution of its Visitor.

The obvious consequence is that if the Visitor does not traverse the object’s
representation in memory order (as induced by the facility used to trigger the fault),
a faulting object will not merely be incompletely initialised, but discontiguously so.
This situation is easily defused by requiring that further manipulation of this object
(up until the faulting operation is restarted) be carried out by the same Visitor and
30 meet the same fate.® More wearisome is that this technique for passively bounding
allocation domains requires special preparation of any functions that might be in the
position of triggering such a fault, so that the recovery process can reconstruct the
formal state of the computa‘ion at that moment.” Fortunately, Visitors are typicaily

very stylised in form and arranging for the necessary conformance at implementation

§This does actually entail a restriction that all Visitors of a given object employ the same
sequence of visitation, which could in principle cause trouble; consider the (admittedly implausible)
case of a bidirectional string terminated with NuLs at each end, and known by differ~nt addresses
within. Such troubles are avoided if partially instantiated objects are forbidden to have more than
one distinct outstanding reference outside the Visitor itself.

"This is nothing but the familiar imprecise interrupt problem of pipelined hardware remanifesting
itself in software.

173

design time should not prove excessively difficult; the required state description is
similar to a Visitor, and the situation is akin to the provision of Visitor visitors

described below-—only simpler.

Representation Failure: Particularly while data are in transit between two points,
there are other respects in which they may fail to live up to the usual constraints on
their form. In particular, we find that pointers are unreliable: if their referents have
already been processed they may point to what is now an “old” incarnation (and one
that may already have suffered collateral damage of some kind); and values in general
and pointers in particular may be otherwise “marked up” or temporarily mutated to
facilitate the operation at hand. The information content of the original value must
somehow, somewhere, be preserved; but a layer of interpretation must be inserted
between such fields and their use by the Visitor, or some secondary representation
mechanism must be provided whereby separate “runtime” and visitation copies of
the data are provided {one, perhaps, concealed as cache bits). Then the problem is
reduced to that of reinitialising the copies from each other as appropriate.

This trouble is especially spectacular in the case of Visitors themselves: for
Visitors may well be active while they are being relocated, thus they may encounter
themselves in a transitory invalid state. In part this can be addressed by the two-
copy stratagem outlined above; but because of the inadvisability of invoking the
entire visitation system recursively on its own dynamic state (a process that would
not converge), steps must be taken to assure the inviolability of the initial Visitors,
even at the sacrifice of some efficiency, at least until the entire system visitation

completes.® This does not prove impractical.

%This does not apply to visitation occurring as part of “normal” programme execution and
suspended by a system-level process; its state can be visited as can that of any programme, given
that the appropriate activation record descriptors are availablc; we have chosen to permit exactly
two levels of recursion in the system, corresponding to objects and to types. Formally we could
extend this to any fixed bound, but the particular ends of resource virtualisation are best served by
setting the limit to two.

174

5.6.3 The base cases: pointers and bits

The function of most of the Visitors in the system is the decornposition of types,
whether defined by the user or the language, into simpler components. Ultimately,
however, this decomposition must terminate, reaching the actual physical represen-
tation of the data. On our present analysis the process grounds out in the invocation
of one of three most primitive Visitors: those for pointers, data bits and cache bits.
Anything that does not reach the point of analysis by one of these functions was either
empty, not pa-t of the original object, or has had its analysis preempted by the re-
placement of the Visitor for some type of which it appears as part by a (uon-visi’ing)
user function.

The implementation of the primitive Visitors for both data and cache bits is
completely trivial: they immediately return a pointer just past the end of the storage
area described to them, performing no semantic action at all. Notification has been
made that these storage areas exist, but, in effect, nodne cares. The case of the Visi-
tor for pointers is scarcely more complex; to a first approximation (an approximation
we shall sharpen in the next section) the Visitor of pointers simply invokes that of
the object referred to (which it is passed as a parameter, “pointer” being for us a
type-parameterised constructor rather than a type in its own right) and, on com-
pletion of this subvisitation, returns the address {ollowing the pointer. This ensures
that the nonlocally “contained” value is visited at the appropriate point in the overall
traversal.

The utility of these functions is, of course, in their very absence of effect: tuey make
it possible to locate data storage while ignoring pointer structure; and conversely,
to locate pointers while just “stepping over” the binary storage in between; it is
necessary only to replace the Visitor for the component of interest by a particular
semantic routine, and let the others take care of themselves. The burden of providing

a complete coer of the local system is lifted. In the case of a very literalistically-

175

implemented type (with untransformed Visitors)® there is even clear cause for a
visitation in which none of the three primitive Visitors is overridden: overriding a
set of specifiable types would have the effect of reaching all and only the subobjects
having the overridden types, with any remaining structure bypassed.'® In many other
applications, of course, both pointer and data bit visitors (perhaps also that of cache
bits for system-level operations) will be overridden, either to assure complete coverage

or as an error-detection measure.

5.6.4 Pointers, circularity and fixed points

The somewhat simplistic version of the basic Visitor for pointer types just described
in fact fails for one important class of data structures: those that are not (instan-
taneously) well-founded in their tree interpretation, even though they are a fortior
finitely represented.!? These include cyclic structures'? which refer (transitively) to
themselves. It might seem that such structures as the infinite list of natural numbers
(readily definable in languages sporting lazy evaluation) would also appear in this
category, but since we here examine the representations of objects such an entity
will have an unevaluated tail which is a cyclic code object essentially after the first
style. Obviously, the application of a Visitor that immediately visits the referent to
a pointer forming part of a representational cycle will result in a computation that

only terminates when some resource limit (in all probability, that on stack depth) is

°In a sophisticated system the very fact that this style of visitation is attempted would be
considered an indication to the compiler that such a representation should be selected.

10From the point of view of modularity this is an a prioi somewhat doubt-inspiring operation and
it is naturally the programmer’s responsibility to ensure that this is in fact the behaviour desired.

UThere is another sense in which all the data in a practical programme will be well-founded: the
algorithmic manner of their construction assures that they are not only finitely represented but also
finitely historied. We cannot, or rather would not wish to, take advantage of this fact, because it
is not (generally) desirable for history to be represented explicitly. There is, after all, a very real
sense in which computation advances through the loss of irrelevant information. Debuggers and fast
synchronisation methods employing execution reversal or “rollback” forin only a minor exception to
this rule, in that even they are unlikely to record anything approaching a full history of an execution.

13Though, note, not all cyclic types: while the Visitor of a recursive type will be self-referring
it is possible-——as with the simple linear linked list—for a recursive type to sport only well-founded
instances.

176

reached.

Given our insistence on the constant definédness of values, such a cyclic structure
must arise either as the result of an effectively ator..ic creation operation or through
the modification of a mutable value; and in the case of such a side-effectual origin
must involve precisely a cycle in the type. It is thus feasible, even straightforward, to
outlaw the occasion of this case in the design of the source language.’?

Such a dictatorial approach may not, however, be desirable. Given then that
nontermination is not it, we must ask what a sensible semantics for the visitation
of a circular structure might be: what is the result of visiting something that is
“infinite,” and how might it be computed? The practical solutions, it turns out, will
also address another problem, less theoretically profourd but almost as troublesome
from the perspective of practical performance: that of handling objects with shared
structure with acceptable efficiency (for in principle at least shared substructures can
result in a term whose tree interpretation is exponential in the size of the physical
representation).

The intuitively desirable method of handling cyclic structures is somehow to com-
pute an appropriate fixed point of the client computation. For completely general
applications of visitation there is of course no reason to believe that such a value ex-
1sts; nor are we in a position to compute it.!* Since the locations of potential cyclicity
are exposed through visitation, however, through the visitation of types that the user
knows to be cyclic and, ultimately through the visitation of pointers (which indeed
conveniently declare their types), we can leave the solution to the concerned client.

Occasionally, in fact, special semantics are attributed to shared objects, and leaving

13The effect is that achieved in LISP if not setf but setq in employed.

M An apparent exception is when the visitation is constructing an image of the visited value that
mirrors the cycle, whether in code or in data. While the fact that this is the usual (and easy)
cuse serves to motivate our more pragmatic solution below, we cannot employ it directly unless we
provide a special facility for requesting this interpretation at the source level; for otherwise we are
left with the task of determining when a programme exhibits the requisite bebaviour, which is clearly
infeasible,

177

their handling to the client may be preferable in principle.

*PRINT-CIRCLE%: One familiar application that runs into trouble with cyclic data
structures is the generation of printed output. In COMMON LisP we find that the
."andard print routine (ultimately write) provides for this through the *print-circles
global control mutable: when print-circles is true, a careful printing algorithm is
used which prefixes the output representation of all shared or cyclically referenced
data with #n= (for some unique n) on the first textual occurrence, and then replaces
subsequent occurrences with #n#, allowing the reader to reconstruct the original
value. This is a very clear case in which the application has its own idea of how the
problem should be approached. While there are several possible implementations of
the technique, among the most straightforward we find a double pass over the term to
be printed, with output occurring on the second. During the first pass we simply enter
every object to be output into a table; excepting that if we find ourselves about to put
something i1 the table that is already listed, we mark the entry as twice-reached and
forbear to traverse it again. On the second pass we check the table before printing
each object: if the current value is marked as doubly reached we output a tag, record
the tag in the table and proceed; but if the value has a tag already we print it in

place of the object itself.

Object-Marking: In principle, the same effect can be obtained in a single pass
by tagging every object output, in case subsequent reference is required—in fact the
tags could then be suppressed if they are assumed to start from some fixed value
and increment with each object written—but the result is considerably less useful to
the human reader (it does, however, form the basis of useful machine-readable data
representations). Stripped of the mechanics of printing per se, we see that the essence
of the mechanism for dealing with cyclicity is the marking of the objects that have

already been reached. For a broad class of problems where the overall result can be

178

computed on the basis of a single traversal of a spanning tree of the object graph
(and notification of where the truncations that generate this tree are located), this
would seem to be a good approach.

In particular, if the computation being performed is idempotent in the objects
being processed—as when computing the maximum of a set of values stored in soine
data structure, perhaps, or when computing the amount of storage consumed by an
object’s physical representation—the calculation proceeds with minimal redundancy.
Further efficiency is in some cases obtainable by marking objects as (previously)
reached in the objects themselves, rather than in a separate table; in particular, if
objects have a uniform tagged representation, then a bit or two in the tag might well
be allocated to this end.!® In those cases where it is permissible to destroy the object
while traversing it (of which traversals intended to make new copies of the object
elsewhere are often examples), it may even be desitable to store the administrative
information necessary for the reidentification of an object with multiple attachments
in place of the original value.

The basic assumption of object inarking, however, is that objects may be identified
with their addresses. Unless data are tagged, this assumption may not be sound; in
particular, it fails for the more general data representations discussed elsewhere in

this chapter.

Traversal Marking: In fact, since the same address (or range of addresses) can
in general be reached under any of a number of different types (something that was
clearly impossible in our original COMMON LISP example), a full solution requires that
(though sharing must still be reported whenever an overlapping address range has
been seen) traversal must continue unless the (representational) type of the present

visitation is dominated by the join of those of previous visits.

18Since this amouuts to a static allocation there is a re€ntrancy problem introduced. Either a static
proof of nonreentrancy or a straightforward fallback implementation would suffice to surmount this
difficulty.

179

We can simplify this enormously, however, under our assumption that pointers
transmit unigque type. If the record of prior traversal is associated not with the
object but with the reference to the object, then traversal will terminate after at
worst reprocessing the immediate target of a pointer (since any transitive targets are
either already marked or pot yet traversed). In principle this results in a polynomial
increase in complexity over the object-marking approach (when it applies), but in
practise most data structures seem to be almost arbiform.

Once again (and particularly since the typical machine pointer representation has
one or more bits that bear no information, being fixed as a matter of course) we might
consider the collapse of the prior-traversal-recording data structure into the objects
themselves, this time into the pointer values. Since it renders a fairly sizable external

associative structure unnecessary this can result in a fair performance improvement.6

Implications for Visitors: The special handling of cycles and sharing in general,
and the ideas of recruiting informationally redundant bits from pointer representa-
tions or of overwriting them or their referents with administrative data in particular,
have direct implications for the implementation of Visitors; for they imply that at
least during some visitations, pointers may be stored with other than their conven-
tional formats. In other cases where the values of data were subject to the process of
visitation we suggested that this would be an appropriate application of cache bits;
but clearly we cannot predereference each pointer and store its referent explicitly.
Consequently, we are in need of a mechanism for examining the referent of a
pointer in the face of these (information-preserving) disruptions. It is partly for this

reason that we introduced the dereferencing functions 61 in chapter 3.3, laying on their

16In fact we speculate that by arranging (or rearranging) objects within memory according to
their use of pointers and the possibility of cyclicity, and by informing Visitors of these same facts,
it might be practical to use a sparse associative structure to good effect, and with much reduced
performance impact; this would solve the reéntrancy problem directly. But this is a matter for future
investigation; at preseut the best solution would appear to be the use of bits in the pointers until
they are exhausted (with priority going to system tasks such as garbage collection), and external
structures thereafter.

180

shoulders the burden of interpreting whatever representation might be employed at
visitation time.

The overall implication, then, is that a client of visitation wishing to visit cyclic
structures must in general look to its own semantics in this case; but that the imple-
mentation can provide a reasonably efficient mechanism for detecting and resolving
this situation in favour of the spanning tree approach. In particular, this is precisely
what the system does on its own behalf when visitation is employed in such low-level

undertakings as garbage collection.

5.6.5 Optimisation

Given our attitude that Visitors could be made fundamental to a wide range of
facilities, some of them at very low levelsin the language system, efficiency is obviously
a matter of some concern. While ultimately we might rely on the steadily improving
quality of code generaturs to do a good job of visitor compilation, here we comment
on a number of optimisations which exploit the straightforward structure and limited

scope of Visitors, and on the use of which a compiler might be coached.?”

Tail-Call Optimisation: From the perspective of the formal analysis of Visitor
performance, the single most important optimisation is the most conventional of those
we shall consider. In the presence of the so-called tail call optimisation (in which
the sequence call target; ret becomes a simple jump target), it can be guaranteed
that no stack frame is buried under an arbitrary traversal unless it also accounts
for the processing of an increment of the heap storage, effectively bounding stack
consumption at a linear function of heap size. From a more practical standpoint, the

result is a nontrivial performance improvement, for depending on the type structure

1"In the case of a simple compiler wishing to exploit these techniques, it might prove more practical
to perform code generation of Visitors directly from type descriptions (perhaps in more than one
copy, with different optimisations applied) so as to exploit more of the potential for optimisation
than would otherwise be available in the absence of a middle-end optimiser.

181

of the programme untransformed tail calls could easily amount for as much as ten

percent of the cost of visitor execution.

Register Allocation: A second important optimisation in the compilation of Vis-
itors is the appropriate global allocation of registers. Since the basic visitation mode
of a programme’s type system is a recursive nest of functions with completely ho-
mogeneous calling conventions and largely trivial bodies, it makes sense to allocate
all of the arguments in registers. In particular, examination of the semantics of the
Visitor indicates that the only argument that (after recovery of imperative seman-
tics) is updated is the running pointer whose initial value is the object being visited
and whose final value is the overall result of the visit. In the case of conventional
product types this running pointer is never examined within the Visitor proper (ex-
cept possibly for purposes of alignment adjustment). In sums, we find that previous
values of this variable are used to access control fields, but (because of the desirability
of constant-format initial structure segments, as discussed above) these are normally
constant negative offsets from the present value and require the use of a temporary
register on few architectures. Thus, if this argument is allocated to the very register
in which it will eventually be returned as result, it too need (almost) never be saved
or restored.

Besides the arguments proper, it turns out that for many architectures (having a
plentiful register supply and lacking a branch acceleration mechanism applicable to
variable targets) performance is enhanced by the (redundant) allocation of registers
to each of the primitive, base case Visitors: those for pointers and linear storage.
This is particularly effective in conjunction with the flattening optimisation described
below (which significantly increases the ratio of primitive calls to visitations of user
types).

Both these optimisations and that following are externally visible as deviations

182

from the standard calling convention and require the codperation both of the caller
and of any routines passed into the Visitor as arguments for transitive call. This is a
point of some moment, since conventional inter-procedural linkage optimisations are
(for obvious reasons) suppressed—or at least relegated to a secondary entry point—in
the case of non-manifest functions. The visitation system, however, constitutes an
identifiable recursive nest within which all linkages are indirect (unless specifically
optimised). While this poses no particular difficulty for the compiler beyond a certain
amount of additional bookkeeping, it is worth noting that any confusion might be
avoided in a fully mechanical manner, since the type signatures of Visitors involve
P, a type that should not otherwise appear at any levelin a well-typed programme. In
conjunction with the usual type consistency rules this alone should suffice to enforce

the appropriate pragmatic divide.

Common Environment: Visitors themselves, at least for anything like a stan-
dard type system (and certainly for the type systems discussed in this thesis), turn out
to be pure, nice, environmentless functions: all of their dynamic context is received
as parameters.!® This strongly suggests the abbreviation of their representation to
simple pointers (rather than the more common duplex pointer representation of clo-
sures). Ordinarily this would have to be accompanied by the use of autoclosures for
the overridden range members of a mode function (see section 5.4.3 above), since it
approaches certainty that these will manipulate state.

In a significant proportion of applications, however, and in particular in those
low-level cases where performance is presumably most important, we find that all
the overridden range elements (attainably) originate in the same scope. When this is
the case it seems to make sense to allocate their common environment pointer to a
register before entry to the recursive visitation nest, thus saving the effort of reloading

it repeatedly.

18They are not combinators, however, since they do bind constants.

183

Flattening: As we have seen, there are two distinct classes of application of visita-
tion: those in which the objective is simply unbiased coverage of the storage structures
chosen to represent types, used (in a broad sense) internally to the system; and those
in which it is used as a user-level facility for data decomposition. While in the latter
case the formal internal structure of the data must be preserved in the interests of
correctness, in the former there is opportunity for the optimisation, not only of the
representation of the data, but of its description.

Clearly, as with any use of functions, a certain amount of inline expansion of Vis-
itors may be desirable. The optimisation is particularly favoured in this case because
the function bodies are often very short, and the spatial cost of inlining comparatively
minimal. The flattening optimisation amounts to no more than hyperaggressive in-
lining: the replacement of an indirect call to a Visitor (as all internal visitation
invocations are indirect), possibly even in the case where it is not provable that the
particular element has not been updated. This move has the twin objectives of re-
ducing runtime for the visitors and possibly eliminating some elements entirely from
the mode function’s domain, thereby reclaiming some or all of the space expenditure.

Under normal circumstances this “optimisation” would clearly be unsound, since
the observable behaviour of the programme is modified. In the case that the language
processor does not make guarantees of representational transparency, however, it is
correct, because the semantic alteration is not canonical.’® Note, however, that it
specifically must not b+ applied to the base cases, pointers and bits, lest the caller

lose the ability to perform a useful computation.?°

1 And caveat hacker!

30 Actually, and fortunately, the distinction between upper- and lower- level visitation is nothing
like as clear-cut as we suggest. On the one hand, as earlier pointed out, positive practical benefit
might derive from the refusal to guarantee the transparency of the decomposition provided by visi-
tation (just as unordered parameter evaluation may be considered a feature rather than a bug of a
language design); and on the other, since the set of pointwise updates on a visitation mode will—
at least under our recommendation for the handling of type name scoping—be statically bounded
above, it will almoet certainly be practical to compute a subdomain of the basic visitation system
over which this optimisation can be applied in total safety. Indeed, the optimisation can be applied
independently in different cases as a simple case of partial evaluation. How many distinct instanti-

184

Pre-marking: Finally, although it is not directly consistent with the presentation
of Visitors we have made in the above, it is worth noting that in applications using
traversal marking, the performance of visitation of cyclic objects, both spatially and
temporally, is significantly improved by pre-marking: scanning each object twice,
first to schedule visitation and mark the embedded pointers as attended to, and then
again to perform actual transitive visitation. This has the effect of preventing the

same “object” from appearing more than once in the stack.

5.6.6 Visitor visitors

Just as normal functions themselves have representations that need describing through
Visitors, so it is with Visitors themselves; and here find concrete manifestation of
the paradoxicality of a naive type of types. The particular difficulties are, first, that
the process of visitation (and the progress of any computation so mediated) must in
no way incapacitate them,?! and second, since Visitors exhibit the same variety of
internally idiosyncratic structure as other object code, some means of visiting it must
be found that does not require an infinite progression of visitor-visitor-visitors.

Three approaches to this difficulty are known. The first is simply to forbid the
involvement of Visitors in any visitation process, allocating them in static storage
and accessing them only through the intermediary of the type of type names, 7. This
is completely satisfactory but for the case where types are truly dynamic—though
unfortunately, polymorphic binary transpnt falls in this class.

Secondly, we might (as already suggested) classify the actual ezecutable aspect of
Visitors as cache bits, now to be regenerated from a formal, abstract description of
the code periodically (in particular, whenever it is believed that the cached version

has become invalid), care being taken to avoid any deadlock situation in which the

ations of the visitation system are desirable is of course a conventional issue of time/space tradeoff
in compilation.

31This includes ensuring that Visitors are located and preserved through garbage collection, an
important issue that we shall not be able to explore here.

185

cached version is invalidated while it is still in use (or in which it itself is involved in
the revalidation process). This need not be anywhere near as expensive as full code
generation, of course, since in the usual case the old, invalid version of the function
persists as a template for an update function.

Finally, if the host instruction set architecture permits, we might restrict the
code generation of Visitors so that they never contain any embedded data, being
pure binary storage, relocatable and dynamically linked. This forces the locus of the
difficulty back to the controlling mode object.

In any event, we find that ultimately there must be a cap to the directly-executed
part of the type system, in the form of a fixed virtual machine distinct from the host
processor that manipulates data interpretively. The function of Visitors is to push
this back from the level of the individual data to the types themselves, where the
computational overhead is much lower. That it cannot be removed completely is no
surprise: something, somewhere, must perform virtualisation, and it must do so from

“outside.”

5.6.7 Sample physical translation

For the sake of concreteness, let us finally consider the physical implementation of

the Visitor for the type Node:

TYPEN32:0..(2°32)-1
; TYPE Key : N32
; TYPE Geom : {leaf, internal}

. TYPE :< Node @ (TYPE T, N32 size) >:
if Geom geom
.. (Assume 3 bytes of align padding follow this control field)

is internal
then
%Node[T, size] left
, Key guard

. %Node[T, size] right

186

is leaf
then
Vector|Key, size] keys
. Vector[T, size] values
end

The algorithm of section 3.3.1 yields Exemplar code similar to the following:

.. Raw visitor ..

P :< Bn32 @ (P p0, Void a, M m) >:
m[binary][p0, 1.word, m] .. N32 is just 1 word long
; P :< Pkey @ (P p0, Void 3, M m) >:
m{'N32'](p0. -, m]
i P :< BGeom @ (P p0, Void a, M m) >:
m[binary][p0, 1.byte, m]

i P i< PNoae @ (P p0, ((T t, At] a) t, N32 size) a, M m) >:
P pl: m['Geom'|[p0, _, m] + (1.word — 1.byte)
; if SGeom[pol
is internal
then
P p2 : m[%]p1, [Node', [a t t, a t a, a size]], m]
. P p3: m['Key'][p2, -, m]
; m["%][p3. [Node', [a t t, ata, asize]], m]
is leaf
then
P p2 : m[Vector'|[p1, [Key', -, a size], m]
; m[Vector'][p2, [att, ata, a size], m]
end

We now consider the compilation of the function fnoqe for a generic 68000-like

processor.? Naively (not in terms of local code generation, but relative to the

3By a “generic 68000-'ike processor” we intend something with the following characteristics:
o a dosen or more geneneral-purpose registers;
¢ an orthogonal li-or-morc-addreu instruction format; and

o & hardware supported call stack on which data may be saved and parameters passed.

187

Visitor-optimisation issues discussed above), we might generate the following ob-

ject code.

; Naive translation of Bnode

; Register assignments:

rT
rE
X S

P
; tA
rM

vNode push
push
move
call

add
pop
move
call
bran

cdnternal move
push
push
push
push
push
move
move
call
disc
move
call
move
push
push
push

Argument passing to deref functions
Environment (static link)
Stack pointer

Running pointer, Pi : P
Argument, a . A[T)
Mode, m : M
rA

rP

[fM + 16 * tGeom + 4], rE
[rM + 16 * tGeom]

P, 3, P

rT

[*M + 16 * tGeom + 12], rE
(rM + 16 * tGeom + 8]

rT # k.nternal, cleaf

{rS]. rA

[rA + 8] ;@ size
[rA + 4] ;ata
[rA] ratt
1S

tNode

1S, rA

[rM + 16 * tPointer + 4], rE
[rM + 16 * tPointer]

5

[rM + 16 * tKey + 4], rE

[rM + 16 * tKey]

¢S], rA

[rA + 8] ; a size
[rA + 4] ;ata
[rA] jatt

The processor of the example actually differs crucially from the 68000 in that immediate-mode-
convention branch target addressing is used: the operands of jump, call and branch instructions are
assumed to give the addresses of target routines, not the instruction sequences themselves.

188

push S

push tNode

move 1S, 1A

move [rM 4 16 * tPointer + 4], 1E
call [rM + 16 * tPointer]

jump c.end

cJeaf move [rS], rA
push [rA + 8] ; a size
allo 1 ; vKey ignores rA
push tKey

move 1S, rA
move [rM + 16 * tVector + 4], rE
call [rM + 16 * tVector]

disc 3

move [rS], rA

push [rA + 8] ;@ size
push [rA + 4] ;ata

push [rA] jatt

move S, rA
move [rM + 16 * tVector + 4], rE
call [rM + 16 * tVector]

disc 3
c.end disc 1
retu

Substantial improvements are possible, however. Applying the optimisations we
have discussed and allocating only one more register, we can halve the size of vNode,
reduce its nominal memory reference rate by a further factor of two, and (on the
assumption that the global contextual condition is met that the Visitors for Key
and Geom are overridden nowhere in the application), eliminate its reliance on sub-

Visitors and the associated linkage costs.

; After the following optimisations:

; Closure elimination

; Tail call elimination

; Inlining (only valid in certain application contexts)
; Fixed-pattern global register allocation

189

Encoding "Tdirectly as Bt

.
?

; Register assignments:

: e T Deref, vPointer argument passing
; tS Stack pointer
tP Running pointer, Pi : P
; rA Argument, a . A[T
: M Mode, m M
X rBinary Constant = m[binary]
; rPointer Constant = m|pointer]
vNode push rA
move 1,7A
call rBinary
add rP, 3, 1P

move [P - 4], (T
bran T # k.nternal, cleaf

c.internal move [rS], rT
move tNode, rA
call rPointer
move 4, rA
call rBinary
pop rT

move tNode, rA
jump rPointer

cJeaf move [rS], rA
move [rA + 8], rA
mult 1A 4, 1A
call rBinary
pop rA

jump vVector

In this example we acheive the following local code quality improvements
(in fact we do considerably better if we take account of the total

elimination of calls to Bgeom BPointer, BKey and Bnay).
Oid/Optimised internal leaf static

instructions 33/14 27/12 49/20
data bus transactions 37/7 27/7 54/11

190

5.7 Interfaces

At various points in this thesis we have made the observation that the representation
of a type as a structure in memory is not unique: not only may the programmer encode
the same idea in an infinitude of different ways, ways that the unassisted compiler
may well be at a loss to recognise as related, but as with any part of its task efficiency
is best served by allowing the compiler itself to choose whatever representation it will
for an object described. Before concluding this chapter, let us investigate, briefly,
some of the implications—and some of the limits—of this observation.

The present section is entitled “interfaces,” and the reason is as follows: that the
representations of objects are only visible at the boundaries of modules. Of course,
this i1s somewhat tautological, since the notion of a “boundary” is imprecise and
can only really be understood in terms of the places where objects become visible
to external systems; in particular, the same system may have or lack a particular
boundary depending on its actual circumstances. When run under a debugger, for
instance, a programme acquires an interface between almost every part of itself and
the outside world: all that is normally private is brought out for the programmer’s
inspection. The consequences are both familiar and extreme—unless a programme
has been specifically prepared for debugging, most source-level debuggers are severely
constrained; and unless the compiler was instructed to be especially simpleminded
(tFrough the disabling of “optimisation”) most debuggers can become impressively
confused. In short, if every source statement and source type must be considered to
be at an interface, the compiler must take special pains to follow its directions to the

letter, not pandering to its own perceptions of intent.

5.7.1 User interface: print forms

One of the respects in which richly typed languasges and unitypic languages in the

mould of LisP typically differ is that the former (not having complete a priori infor-

191

mation about the range of types they might be required to manipulate) leave much
more of the task of providing meaningful, humnanly interpretable output to the pro-
grammer; while the unitypic languages provide printable forms for many if not all
varieties of data.?®

Such print forms, intended primarily for human consumption, are not necessarily
exact representations of the data from which they are generated, but must be suffi-
ciently suggestive that they are of practical use. Conversely they must have broad
enough range (though in principle just the ability to put out an arbitrary, specified
character will suffice?*) to represent whatever information the user does in fact need;
the exact facility provided impacts little besides programmer convenience and the
ahstract ends of good engineering. Similar observations apply to input.?

Wherever automatic formatting of data for transput is provided, this makes an
interface between the user and (the type of) the object transput: the object is laid
open for inspection. Except where there is explicit provision for indeterminacy of
format, the 1esults must be predictable; in particular, thoug. the language processor
has free choice of internal data representation, whatever choices are made at that
level must be “normalised out” during output formatting and similarly compensated
for during input.

Since all interaction with the user (even string transput, if the process be examined

in detail) will involve rerepresentation, this presents no large technical difficulty; it

~ 49]n this section we discuss teziual transput representations, based on the traditional media of
the keyboard and paper- or screen- imaged text; but all our observations apply mutatis mutandis to
the full range of human interface technology. This should not be regarded as evidence of textism on
the author’s part, a failing of which we are, the reader is assured, unquestionably innocent.

24This character presumably being drawn from whatever character set the host system holds most
dear.

3]t is often said that input is “untyped” because there is no control over what the user may
type. Of course, this is quite untrue: since the user is provided with only a keyboard (or a mouse,
if the software cares to interrogate it—the set of input devices is somewhat arbitrary but strictly
finite), input has the type of key-press-events ab initio and this type will be restricted further as
the data pass through validation and re-representation code. The only form of input type error
that a user can really commit in a system that is type-secure internally is of thz stuff of humour:
reprogramming the computer with a very large axe [Ada79), perhaps, or spooning ice cream right
into the slots [Jac91, s.v delusions, 15-point)....

192

means only that the details of the process must depend on the actual structure of the

data at the point where transput is requested, not merely on its type. This, in turn,
may be accomplished either by specialising the transput code or by prenormalising
the data to some standard form (perhaps the natural representation—the single most
common nontrivial restriction on what compound objects are automatically formatted
for output being essentially the existence of a natural representation). The former
mirrors what a programmer might do in support of a particular, explicitly chosen
representation of some type; the latter is more in line with the approaches we will
shortly suggest for interfaces to other software. One might say that the distinction
conceptually rests on whether the transput system is regarded as within or without the
language itself. But in either event, the user sees a uniform external representation,

independent of the underlying details.

5.7.2 Lateral interfaces

Where the textual transput system is viewed, not as part of the language system to
be adapted to the programme as necessary, but as an autonomous entity to which
some standard face must be presented, we have an example of a lateral interface:
an interface between two peer subsystems of the electronic world.

Since software lacks the adaptability of a human user, lateral interfaces must be
even more tightly specified than print forms for data; but because they often operate
at higher bandwidth and connect entities with greater patience for “administrivia”
there is (theoretically, at least) more scope for negotiation in their implementation.
They can be roughly classified according to the time at which such negotiation takes
place: it is another of the binding time issues so common in the analysis of program-
ming language.

The earliest possible binding time for the “notation” of a lateral interface results

in the situation most similar to that of interface with a human user: the interface here

193

constitutes a prior standard to which both parties must adhere. Similar in nature is
the situation of the “de facto standard,” whereiu the interface is designed solely for
the convenience of whichever component was written first, its counterpart conforming
to whatever that might be (which, all too commonly, is specified nowhere but in the
behaviour of the first partner).

These situations share with human interface a rigidity in their implementation:
since at least one of the partners in the interface was not party to the original ne-
gotiation, a fixed the external format is simply computed from the in-memory repre-
sentation and employed directly. The common format can be expected to be fairly
arbitrary, but since it implements the same type as the internal representations,
appropriate mappings should exist. Whether an implementation can derive them
automatically is another question: in fact, as with data formats for human use, it
is to be expected that, unless the representation is derived from a broader standard
[niso91], code will have to be written for the purpose. One exception is when what
is convenient for one party is convenient for the other: this is the case when a tradi-
tional programming language that uses very transparent data representations is used
to implement both sides of a suitably intimate connection.

The situation is different when the interface is arrived at jointly by the two part-
ners. This normally happens, for instance, between functions in the same compilation
unit: to a certain extent, each can accommodate the other since they are compiled
more or less at once. It is less obvious that this is an option even between source
languages or across module boundaries, but in fact a sufficiently aggressive imple-
mentation of a compiler suite sharing a common back end can maintain a database
of data formats which is updated constantly by the compilations contributing to an
overall application or environment. In this context we now expect the whole burden
of generation of appropriate interface code to be assumed by the compiler, since it

has been pushed back beyond the start of compilation and down below the level of

194

A e

source code.

The extreme case of late binding is where the format in which data are exchanged
is established dynamically. It is obviously not possible for such a thing to be done in
the complete prior absence of shared information, since the two partners must at least
share a common language of negotiation; in particular there must be a preéstablished
notation in which information about type?® and implementation can be conveyed.
But if such common meta-ground exists, it provides the possibility of communica-
tion between potentially disparate representations of the same type while providing
asymptotically optimal performance in the case where the representations used by
the partners chance to be well-matched (an important property in operating systems
applications such as remote procedure call). (On the author’s suggestion, Samuel A.
Rebelsky of the University of Chicago has adopted just such a scheme for his lazy term
transmissiou protocol [Reb91].) The high asymptotic performance can be achieved, of
course, because once an interface has been negotiated it can be adhered to implicitly
for the remaiuder of the connection’s existence. Such a system is described at greater

length in the next chapter.

5.7.3 Downward interfaces

The final direction in which interiaces must be made is downward to the under-
lying system. Communication with the underlying hardware or to a “hostile” host
operating system is characterised by a hyperprecise interface in which data represen-
tations and protocols are specified in more detail than the source language is likely
to permit of expression.?” Although some systems programming languages get by on
the basis of making explicit promises about the representations they employ for their
various types, it is ultimately necessary either to provide an extensive facility for the

description of physical format, or to attack the problem on a completely different

360r metatype or metametatype or....
37In fact, this same problem can arise even when communicating with the user when, for instance,
the evaluation order of the programming language is underspecified.

195

level.

The classical alternate attack on the problem is to “escape” from the source lan-
guage into assembly code, programming the necessary interfaces explicitly, and re-
ducing the interfacing problem from the main source language’s perspective to that
of providing a well-documented lateral interface to this other source language (the
assemnbler), and in a manner that it is free to dictate. It is then essentially bound
only to be consistent; all further difficulties are iaid as a burden on the programmer.

A hypothetical but more sophisticated approach might be to permit the pro-
grammer to intervene in the compiler’s normal selection of data representations, by
communizating with the middle- or back-end directly. This i« similar to suggesting
that the programmer adopt the compiler’s intermediate code as the assembly lan-
guage of choice for the lateralising strategy; the difference, of course, is that there is
more opportunity to enlist the compiler’s codperation, and less work may have to be
done by the human programmer. In principle the compiler can even retain the ability
to type-check the programme as a whole (something that is essentially never possible
when part of it is written in assembly code). The price is paid in flexibility: if the
target architecture has features that are not accessible through the code generator,
for instance, the strategy may fail. While interesting and promising on paper, it may
be that the additional demands this scheme places on the internal structure of the
compiler are unsatisfic ble.

In any event, where such explicit low-level interfaces occur, it is often the case that
data must be represented in some declared manner, not influenced by the compiler’s
preference. To return to our theme of visitation, Visitors may still be generated for
such objects, identifying fields and visiting each in turn, but a number of restrictions
are likely to apply. The first is that the requisite physical representations even of
subfields may diverge from the standards of the language to the extent that they defy

description except as raw storage. Thus even superficially decomposable objects may

196

be easiest reported as as no more than data bits. Second, any pointers may them-
selves be strangely represented or subject to unusual restrictions (such as an absolute
pre .bition against “stealing” one of their bits as a traversal marker lest something
' atoward and hardware-like oceur). Either of these irregularities may in principle be
1itigated by the same strategies that we proposed for Visitors themselves: removing
them from the domain of visitation or providing that the Visitor see a regularised
image of the structure of, shall we say, differing canonicity. A third trouble may be
that there is, indeed, no place to put any cache information that may be needed in
the interpretation of the object or as part of a forced regularisation strategy, since one
of the main ways in which an object may have a restricted representation is having
a static (and “magic”) address. In the simple case a duplex pointer will assuage this
concern, one branch designating the real object and one its formal image, but if the
object’s address is itself derived from an object of stated representation we end up
with an inductive structure completely parallel to the Visitor itself. The type system
has effectively ended up with an additional layer, but so long as the appropriate st.ps
are taken to keep everything in synchronisation (which may be nontrivial, but not

impossible) visitation still works as usual.

5.8 Conclusion

Our basic position is that strong, static typing is essential to the construction of
reliable software of any scale greater than that attainable by a single programmer in
a single session. But as we have seen in this chapter, a firm commitment to strong
typing pays its dues at compiler development time; if the structures described above
are compared with more “usual” runtime representations it will be seen that they show
clear advantages in both time and space. It is a well-established fact that the runtime
efficiency of code is in the common case enhanced by the additional information that

a type system makes available to the compiler, and a more sophisticated approach

197

to typing makes more aggressive optimisations practical. At the same time, as we
have tried to show, strong typing need not result in any semantic impoverishment of
the language: not only are the facilities normally associated with unitypic languages
potentially available within a strongly and statically typed framework, but types, as
a device for making facts about intended redundancy explicit to the translator, can
serve to reduce external notational overhead in the mapping between the problem
domain and the final programme, in the same way that it can often eliminate the
internal representational overhead of explicitly tagged data.

In the next two chapters we exhibit essential programming facilities that can
be provided gratis in the typed context, but which cannot otherwise be obtained
without significant programmer investment. Through the mechanism of Visitors,
furthermore, they will be able to attain the performance levels of compiled code, in
contrast to the interpretive behaviour of the ancestors of these facilities in unitypic
languages.

In this manner we hope to demonstrate that the cost of adoption of a strongly,
statically and expressively typed system is, in the present state of the art, a decision

with negative expected cost.

198

e VAT TR TR

Chapter 6

Applications

Having now examined Visitors in both their practical and theoretical aspects, we turn
our attention to their application. Some uses apply fully at the user level, while others
are transparent to the programmer; most lie in between, producing conventional and
familiar effects in a semi-automatic and “tedium-reduced” fashion. As will be seen,
however, they share a common theme: they provide facilities that are traditionally
provided for built-in, “system” types, but indiscriminately to those types provided by
the system and those defined by the user, in many cases at a level of efficiency that
reaches or exceeds that of conventional dedicated strategies.

Not all of the applications described in this chapter have actually been imple-
mented; several of them are derived from the author’s Mythos operating system
project, which is still in the paper design phase. Among the the main intellectual ob-
jectives of Mythos are the identification of places where higher levels of abstraction
in design and implementation, can result in improved practical performance. More
practically, we hope to demonstrate that aggressive dynamic architecture indepen-
dence can be accomplished at negligible overall cost. Visitors are a cornerstone of

this undertaking.

6.1 Garbage Collection

The application that originally motivated the development of Visitors is garbage
collection: the provision of unbounded virtual space to software with limited mo-
mentwise storage occupancy through transparent analysis of actual memory use (and
possible reconfiguration of the computation within its address space).

This task is by definition invisible to the user programme,! and the function of
the Visitor in this application is twofold: to increase the modularity of the garbage
collection code and to provide a general and efficient mechanism for supporting tagless
data representations in the heap. Tagless representations are almost always more
compact than their tagged counterparts? and permit straightforward implementation
of richer object semantics, but their types can only be established by the kind of
inductive argument that Visitors encapsulate.

Since this application of visitation was the first and remains the most heavily
investigated, we have chosen it as the subject of a more detailed investigation; this is
presented (along with the requisite background material about garbage collection in

general) in the next chapter.

6.2 Binary Transput

Intimately related to the garbage collection problem is binary transput, the storage
and transmission of computational terms in a format that is both efficiently processed
by the machine and as semantically complete as possible. The similarity to garbage

collection rests in the requirement of identifying (and in this case moving) all of the

1There are slight exceptions to this in the case of data types that have intimate connections with
physical addressing; or which are capable of adjusting their space requirements in response to overall
memory availability; but these are the funky exception rather than the rule, and while we have some
initial experience with them, we have not yet devised a clean, general interface for their support.

ISpecifically, they consume space proportional to the number of distinct representations rather
than to the total number of objects, and an advantage is thus to be expected where object layouts
are multiply instantiated. Typically, this condition only fails to obtain for structures—like code—
explicitly provided by the programmer.

200

storage associated with a value while entraining as little extraneous data as possible;

and of processing it without semantic damage.

As we shall see, Visitors permit us to perform that task without requiring the
coding of transput routines for any more than a covering set of types that are atomic
for the purposes of the transmission channel; while actually increasing the flexibility
and generality of the system as a whole. Best of all, Visitors are independently

motivated and can be generated automatically.

6.2.1 Nailve bulk transmission

To a first approxirnation, then, the task of performing binary output is just that of
traversing the term, writing its leaves serially to some external medium; a task to
which the Visitor is ideally adapted. The root Visitor for data bits is replaced by a
binary output routine, while pointer visitation is either left untouched and transparent
(if the data to be output are known to be tree-structured and free from circularity—
graphiness—and other sharing—DAGginess), or by a function that detects sharing
and for each pointer traversed writes a mark indicating whether to refer to some other
object in the file (and which) or whether new data follow.

Input is handled similarly, by a visitation of the area to hold the input term with
the most primitive Visitors replaced by binary input routines. Since we take care
(as previously noted) in the construction of Visitors to delay the examination of
controlling fields until after their traversal, they will already have been read in and
installed, and structural analysis of the partly transferred datum will be accurate.
Traversal of pointers must of course be made to allocate space for the referent in the
case that it is not identified as a pre-existing object (and as is necessarily the case
when it has been decided not to represent pointers externally).

One point worthy of slight note is the handling of cache bits: since, as we have

seen, cache bits are used to avoid the performance of arbitrary computations during

201

structure manipulation while avoiding substantive restrictions on their nominal types,
the most straightforward approach to binary transput requires that they be treated as
any other data. This yields good throughput and minimises (computational) resource
consumnption in the Visitor, but it does so at the expense of space: the resulting
external representation will not be the densest possible. If denser representation is
a goal, one could imagine a slight modification of the visitation system set forth in
the bulk of this thesis, in which the argument packet for the cache bits Visitor takes
as an additional argument the actual code which performs the calculation redundant
with the content of the cache bits field. This could then be invoked by a consumer
routine to reinitialise the cached field, lifting from the producer the burden of saving it

and from the channel that of its transmission. In fact, this is our preferred approach.

6.2.2 Typed external representation

Several degrees of precision of binary representation are possible: it can be arranged
that a term written to a file (or other channel) be interpretable later in the same
execution of the writing programme; that it be interpretable by a later execution of
the same programme; that it be interpretable by another programme having a prior
contract with the term’s writer (in the form of a shared type definition for the term,
perhaps) and running under the same language processor, on the same machine;
similarly, but for a different physical node of the same architecture; similarly again,
but with thorough independence from architecture; or, finally, without even the con-
straint of a prior contract. A dogmatic (and, we would argue, justified) interpretation
of the ideals of strong typing and well-defined interface would in principle support
all options but the last; indeed, in the absence of a prior contract it is hard to see
how even a thoroughly self-describing term could be transmitted, for how then would
the description be interpreted? We will therefore assume that at least the channel is

typed.

202

On the above scale of possibilities, each entry is, from a technical perspective,
successively harder to achieve. Traditionally, each step up the scale has been tackled
by moving to a more symbolic representation for the data, replacing objects lacking
stable external representations with symbolic references to peer structures, ultimately
standardising external representations of atomic data across all platforms and times
and taggins them explicitly where options are available (the clearest example of this is
perhaps ASN.1 [iso87]). This is manifestly far from optimal in any empirical respect.

If exact Visitors are employed—ones that have not undergone structure-modifying
transformational optimisations (and that correspond to similarly transparently rep-
resented types)—and if the chosen external data representation corresponds to some
straightforward traversal of the term, visitation can similarly be used in service of
these more abstract binary representations; it is now necessary to provide a semantic
routine for each type for which a platform-independent representation is mandated,
and to ensure that these cover at least those parts of the structure whose preservation
is required.

We can improve on the standard approach significantly, however, in three respects.
The first is that (at least if we adopt the earlier suggestion of treating the generation
of native code from abstract, machine-independent intermediate code as a dynamic
optimisation process resulting in cache bits rather than data) we are in the position
of being able to provide stable external representations for a far higher proportion
of objects than more conventional approaches would permit, including, in particular,
executable code.

Secondly, Visitors themselves constitute a type description format that (given

only transput of code!) is itself conveniently transmissible in like manner.® This vastly

3The all-crucial linkage with peer structures in the receiver requires only the establishment of
“pretransmitted” references to the basic underlying type vocabulary (though difficulties can still be
expected with more pragmatically motivated types, as the lore of floating point cross-compilation
well attests). In general, however, such identification of homologous data is the limiting factor on
the accuracy of external representations, since it is not clear that such identifications can extend
beyond the lifetime of the nametable in which they are recorded.

203

improves the external representability of generic data: where conventional schemes
require either very rigid frameworks or item-by-item tagged data, if they can handle
the situation at all, we can transmit the Visitors (in their capacity as runtime type
representations for such data) as they are needed, with subsequent reference to them
being handled in the same manner as other shared data. In fact, close examination
of the mechanism given above will reveal that this behaviour arises automatically in
the course of visitation, without any particular additional effort on the part of the
implementor (when once the overall format of Visitors has been designed correctly).

Third, we can in fact circumvent the need for a universal standard external data
format to a certain ex‘ent. One cf the primary sources of inefficiency in highly
portable external data formats is the cost of data rerepresentation into a standard,
linear, platform-independent external format, and its subsequent unpacking by the
final addressee—the so-called “marshalling” and “unmarshalling” costs. Since the
usual case for binary transput is that the receiving process is running on a machine
that is at least similar (if not identical) to that under the sender, it is a coherent
optimisation to defer such format conversion, putting it off until the binding of the
destination (not immediate if the transmission medium is passive, of course), if not
until actual reception.* When the system is coded in terms of Visitors, this requires
only that a (covering) set of input routines be generated on the receiver’s side using
the the tnverse of the foreign conventions when accessing memory. These can plau-
sibly be generated automatically from the same intermediate code as is used more
straightforwardly for the homogeneous case, by making small adjustments to the pa-
rameters of a suitable retargetable code generator.> Such a technique is (once again)

operable because the examination of stored control fields follows their restoration to

“Thus a small amount of additional {ype information is associated with the channel: it encodes
such architectural parameters as bytesex, wordsize, characterset and floating point format. Obvi-
ously strong typing is essential if this information is to be coherently applied.

$This motivates our characterisation of the operation as the use of an inverse transformation in
memory access rather than a direct transformation in the physical input operation: the latter would
be considerably harder to implement automatically.

204

the appropriate internal format.

In sum, we find that not only do Visitors provide a far more automatic approach
to the construction of binary transput facilities than has hitherto been usual, but
they in fact permit a broader range of capabilities, with potential for higher (and

more tunable) performance along a number of axes.

6.2.3 Lazy term transit and remote procedure call

Fully transparent remote procedure call across heterogeneous platforms has not hith-
erto been possible, because of the absence of a sufficient!y general technique for pa-
rameter handling. One aspect of this difficulty is the descrption of parameters in
a portable manner; Visitors in their strict interpretation (when applied to untrans-
formed representations, that is, and under the assumption that any code visited is
seen in its abstract form rather than the locally compiled object) go a long way to-
wards addressing this—for a strongly typed operating system, achieving it completely.
In fact, since (on a theoretical analysis if not in the notation of many programming
languages) both argument lists and return values (return lists, in the rare case where
these are provided) are single data structures, it is only the mechanics of the channel
that distinguish this case from that of binary transput as just described.

Equally pressing, however, is the need for efficient transmission of large structures
between remote address spaces; indeed, it might be argued that traditional inattention
to mechanisms for describing arbitrary parameter types to remote procedures has
been motivated by the absence of an efficient means of communicating them, were
they describable. For consider the case of a linked list passed as an argument to a
remote function: we may well be able to employ visitation to transmit (a copy of) the
entire term to the remote process; but this involves unbounded communication, and
it is not hard to imagine operations in which the majority of this effort is wasted (as

when the remote function need only examine the first element of the list to complete).

205

While this could be addressed through modification of the protocol or annotation of
the interface, these increase the level of human intervention necessary to derive the
interface specification, and decrease the opacity of the remote service.

A partial solution is offered by the idea of lazy term transit [Reb91}: data can be
passed a node at a time, with pointers being replaced on the receiving side by promises
of data (ideally transparently through the manipulation of the virtual memory map).
With this idea we can combine the advantages of remote shared virtual memory [Li88]
on an object level and the tagless typédness of visitational binary transput. Now,
though, we suffer from the inverse difficulty: the data to be transmitted have been
fragmented into their component nodes, which while of very small average size are
nonetheless potentially unbounded (as in the case of a monolithic array, for instance).
Clearly, some happy medium is needed.

Such a compromise is to be found in the observation (commonly made in operating
system design) that there is usually an a priori optimum length for data packets in
(any implementation of) a protocol, often one determined by the characteristics of
the underlying trans: -t system. Ana amount of read-ahead that will fill out the
packet (or the page) is thus for practical purposes free (similarly, large objects can
be truncated at such boundaries—being effectively paged—provided the necessary
adjustments are made between architectures whose page boundaries cannot be made
to coincide).® Experimental results from the garbage collecticzi and virtual memory
literature [Wil91] suggest that an appropriate traversal order is breadth-first within
cach packet (and directly demand-driven thereafter). While this is not the natural
traversal generated by visitation, the buffering of subvisitation demands in a queue

can clearly be applied through a srnall modification to the usual handling of pointers;

8This approach originally arose in conversation with Samuel Rebelsky. Since Rebelsky’s term
tour interface [Reb91) also serves as a gatevray between disparate execution domains (in particular
interfacing eager and lasy reduction order processors) it does not appear that this optimisation can
be applied without explicit casewise justification by static strictness analysis or dynamic checks for
subterm grounding.

206

and this can be done in the client code, without change to the visitation system itself.

The single greatest novel complication introduced by the above (relative to con-
ventional remote procedure call facilities) is that we are here attempting to pass data
to a remote procedure by reference rather than just by value. Superficially, the im-
plementation just described will actually provide an erratic hybnd between copying
and non-copying semantics (though this will be detectable only if the caller is mul-
tithreaded or the remote service is provided with remote callbacks). This can be
tightened by defensively invalidating local pages containing objects actually trans-
mitted to ihe remote procedure and applying whatever synchronisation or atomicity
policy has been specified for the remote interface as a whole at the moment that
a potential conflict is detected. At the worst, absolute synchrony can be enforced
by reclaiming the transmitted data to its page of origin on the calling side. This
amounts to making the lazy remote copying mechanism simultaneously bidirectional,
with tne advantage that it unifies the transfer of arguments and results (though it
must be admitted that a difficult distributed garbage collection problem ensues). As
always with remote invocation, it is essential to performance to choose the weakest

synchronisation model consistent with the application.

6.2.4 Typed memory virtualisation

Several advantages potentially devolve from making type information available to the
virtual memory system. One is that quite aggressive compression can be employed in
paging at comparatively low cost when type information is available [Wil91]; clearly
we can do this as more or less a direct application of the technique discussed in
the previous section—for a backing store may have an unusual call interface, being
invoked implicitly on the process’s behalf by a page fault handler, but it is easily seen
as one of the most trivial of possible remote services.

Another conceptually straightforward possibility is inter-architectural remote shared

207

memory, wherein both format conversion and data transmission are handled trans-
parently through visitation and and an underlying communication channel. In fact
this is no more than a special case of the remote procedure call interface sketched
above: in a typed system, virtual shared memory is effectively identical with the
combination of strict synchronisation across the call interface, a multithreaded client,

and parameter passing by reference.

6.3 Formatted Transput

While the bulk of this thesis deals with data in one or another machine-readable
representation, their most familiar form (at least to computing “civilians”) is certainly
their external, printable representation. In the previous chapter we discussed the
problem of ensuring that data to be read or written were converted to a canonical
shape for communication with the user, but did not address how Visitors apply to
the actual parsing and imaging ol data once a standard form is reached.

Much of the effort of communicating with the user is the inalienable responsibility
of special-purpose code that knows the printable representation of the various data
considered atomic by the language. Even in the case of compound data, the reading
and writing of the appropriate brackets and separators must often remain the domain
of the application. Visitors assist the undertaking, however, in three regards.

First, transput of data structures generally involves a structural induction, and
it is in the mechanics of induction that Visitors shine. Under certain assumptions
about the manner in which visitation is made available to the programmer, much
of the work of case analysis, traversal, and the handling of circularities stands to be
automated through the installation of the various transput primitives as entries in a
visitation mode.

Second, the handling of “semistandard” types (such as might be informally de-

scribed as “a kind of vector” or “a linked list of stuff”) can be simplified, because the

208

]

externalisation of the dispatch mechanism and the inherent polymorphism of visita-

tion permit the ready installation of specialisations of generic handlers for such cases
in the transput modes.

Finally, when it comes to the printing of the unprintable, the simple provision of
a covering set of external notations for the primitive vaiieties of storage ensures that
some kind of external representation for data can be cooked up automatically, and if

necessary it can be made a faithful representation of the value in memory.

6.4 Debugging and Abstract Editing

A more exciting application of the same technique of using visitation to assist in the
construction of human-readable output is to debugging and abstract editing. Where
it is necessary to manipulate the “official” source representation of data, the Visitor
is essentially restricted to providing infrastructural support, but when it comes to
providing some kind of representation for arbitrary data it is far more visibly useful.

In particular, we observe that Visitors are in large part redundant with the infor-
mation stored in classical debug records for the explanation of runtime structures to
interactive debuggers, but they are far more direct and general: while their correlation
with structures in the original source code may just as casily be obscured by optimisa-
tion processes as may that of conventional debug information, in the case of Visitors
we can make a claim of completeness of representation that is not classically possible.
Using the Visitor for the programme state we can completely decode all structures
accessible to the computation, complete with whatever structural information has
actually been preserved.

The most effective manner of translating information back and forth between
internal and editable displays is through a process of lazy synchronisation employing
back-to-back Visitors, one traversing the subject data structure and one a standard

descriptor that in turn serves as input to the imaging logic.

209

In the presence of standard-format code, the possibility also exists of (fairly

transparently’) executing unoptimised code in interpretive mode.

6.5 User Code

Although it has its share of technical difficulties, one important place to put the
power of the Visitor is directly in the hands of the user. Many programmes exhibit
identifiable abstract data types which can be viewed as (possibly among many other
things) expressions subject to one or more interpretation disciplines. If we take a
broad enough sense for “expression” (and within the present paradigm we are free
to) this is true of any well-founded data structure subjected to structural induction.

For such applications we can generate Visitors as fairly normal user-level func-
tions: in essence we supplement the more conventional automatically-provided elim-
inators or patterns for the decomposition of the user’s types with a primitive global
interpretation operator that analyses it into the components from which it was built.
This has the immediate effect of extending the standard functional operators like map
and reduce to all the “classical” data structures.

There are two difficulties with this application: the first is the restriction to well
founded data, as already noted, which arises from the difficulty (at least in most lan-
guages) of establishing a clean computational vocabulary for computations involving
fixed-points.

Second, it is not clear what the ideal source syntax for these Visitors would
be. The most obvious solutions are a single fixed function that decomposes an ob-
ject according to the lexical form of the type declaration (whatever was compound
is compound, whatever was referred to by a single name is considered atomic)—an
appropriate notation might be to apply the substitute operators directly to the da-

tum to be eliminated—but this has the drawback of being somewhat arbitrary and

T TThe tricky part being the changeover between the two modes of execution, something easily
accomplished with a rollback debugger but difficult without.

210

inflexible. Alternatively, an explicit inductive case statement of some kind where the

programmer has control over the effective atomicity of substructures in the form of
the labeling of the branches might be provided; but such a construction would appear
to have excessive syntactic we;ght for the simple task it performs.

Notwithstanding these minor drawbacks, the automatic provision of Visitors for
types as they are declared would be a powerful technique and provide strong support
for a type-based functional programming style capturing much of the flexibility of the
object oriented paradigm and the transparent efficiency of C, in a package with tight

control over both scope and semantic coherence.

6.6 Conclusion

In this chapter we have shown that Visitors provide a general-purpose software
facility potentially important in three distinct classes of application. First, they form
the provide a unified and efficient backbone for a number of important facilities below
the normal level of attention of the programmer, including several varieties of both
transparent interprocess communication and storage virtualisation. Second, they
provide a level of infrastructure for common interface tasks at both textual and binary
levels, and with various degrees of interactivity, providing little new functionality
(aside, perhaps, from cleaner polymorphism in a strongly typed environment) but a
measurable reduction in programming tedium. Finally, at the user level, they provide
a straightforward facility for the efficient globa! manipulation of arbitrary data, while
still enforcing a reasonable level of type opacity.

In all of these applications, Visitors serve to break down the divide between prim-
itive and defined objects, furthering the goals of linguistic orthogonality, modularity
and opacity. In providing a new, higher-level approach to some recurring problems
it reduces source code size, encourages code sharing and should ultimately increase

programmer productivity. Finally, their use exposes the inductive structure of certain

211

computations directly tc the compiler, with potential benefits to optimisation.
In the next chapter we investigate garbage collection, the lowest-level of all out

applications, in detail.

212

Chapter 7

Garbage Collection in Detaill

In this chapter we treat in some detail of the main application to which Visitors
have in practise been put. This application is that of garbage collection, and in order
that the issues be clear, we start by discussing the problem of garbage collection in
general.

One of the main objectives of programming language development is to reduce
the amount of overhead imposed on the programmer by issues that are not directly
relevant to the solution of the problem at hand. Not only does this reduce the amount
of code that must ultimately be written (though there is by now a large body of ac-
cumulated evidence that this alone will repay a heavy investment in both language
design and implementation), but it serves to reduce the tendency for the underlying
algorithms to be obscured by the ropes and nails of the programmer’s craft. “In the
large,” furthermore, it is essential to limit the amount of “convention”—programme-
external cultural information—that must be understood in order to engage supposedly
opaque interfaces appropriately. After notational issues have been addressed, one of
the most significant contributions that a language can make to this cause is the auto-
matic handling of storage management, since complex issues of ownership otherwise
arise wherever a structure must be passed between different modules.

Much of the literature of garbage collection is based either on the severely im-

1A fairly detailed design for a garbage collector supporting multiple languages and employing an
early version of Visitors (therein “markers”) can be found in [Spa8s).

poverished unitypic or “untyped” systems? in the tradition of such languages as Lisp
and Smalltalk-80, or, recently, on the pessimistic assumptions imposed by the use of
the lax type systems found in C and its descendants or (typical implementations of)
Pascal. The former approach can be seen as buying easy garbage collection at the
expense of running the user’s code in a partially interpreted manner (since the type
information, at least, is decoded by looking up enumerated tags in tables, and is,
except where special local efforts have been by the compiler, basically ineliminable),
while the latter necessarily compromises the effectiveness of the garbage collector
(garbage collection becomes imprecise) and places a burden on the programmer to
follow restrictive programming guidelines with great care.

Although, technically speaking, the mechanics of the approach in this thesis could
be applied mutatis mutandis to an imprecise garbage collector in order to improve its
precision, this would require either a heavy investment in s'~tic analysis or a very in-
volved and expensive runtime (in this case, garbage-collection-time) mechanism. The
situation is thoroughly comparable with the parsing of simple context-free grammars:
the “bottom-up” approaches (to which such information-poor techniques are—like
string parsers that must cope with fragmented input—condemned) are either chart-
ish or require extensive LR pre-analysis; while LL grammars translate neatly into
executable code. Our mechanism is intended primarily for application in the context
of a strongly, statically typed language, wherein data structure layout is unambigu-
ously determined (and only in this context is it likely to be useful for applications
beyond garbage collection, which continue to require precise analysis).

In the context of strong (and thus precise) typing, our technique provides some-
thing of the best of both worlds: data are untagged and directly accessed, potentially

without overhead relative to naive representations;® yet garbage collection can be car-

See section 4.3 for an explanation of the inverted commas.
~Whether it is possible to deliver on this promise will depend on the precise details of the garbage
collection algorithm selected—and whether the type system permits objects of great complexity.

214

ried out as efficiently (sometimes slightly more so, sometimes slightly less, depending
on the exact details of memory and CPU systems) as with unmodified classical algo-
rithms. As we saw in the previcus chapter, furthermore, the investment in garbage
collector support here contemplated has further payoffs in other applications relying
on global properties of data structures. Relative to tagged or reference-counted sys-
tems, on the other hand, we free the compiler from the burden of maniy ulating data
with constrained representations that fragment its knowledge of its task and limit its

options at the tactical level.

7.1 The Garbage Collection Problem

The approach taken to storage reclamation by a garbage collection system! is that
while data structures are created according to the text of the programme (modulo the
results of any static optimisations that the compiler might perform), their dedllocation
is the responsibility of a separate storage recycling module, the garbage collector. The
garbage collector has very limited interaction with the client programme; typically it
imposes a requirement on the client to obey exceptionally precisely defined linkage and
register allocation conventions (to some extent we are able o relax these restrictions,
providing greater latitude for optimisation, as shall be seen below), but only enters
the control flow graph at points where storage allocation takes place, to handle the
(unusual) case where an allocation cannot be satisfied directly out of already available

memory.® Thus, while obviously the decision to compute a value should be considered

*In contrast to reference counting systems, where storage recycling and client code are mingled.

®In the best optimised implementations (see, for instance, [AL91]) it may not make an explicit
appearance in the control flow graph even at this point, being handled as a recoverable exception,
much after the style of stack extension in conventional virtual memory systems. This does, of course,
impoee restrictions on the acceptable use of registers at storage allocation points comparable to those
in effect at callpoints in traditional garbage collectors; but these same restrictions would be in force
acroas any explicit call to a garbage collector, and the net performance gain from making the code
(in the usual case) branch-free is substantial. Typical branch penalties are of several base instruc-
tion times (and many machines additionally predict forward branches not-taken—which cannot be
corrected through the obvious code-rerdering without making loops branch forward and thus, typ-
ically, mispredict). Particularly in systems with high allocation bandwidth, and on platforms like
the Mach operating system kernel [ABB*86] where user page fault handlers are straightforwardly

215

entirely the concern of the programmer(!), the allocation of storage to hold it is made
an implicit part of its construction, and its return to the global pool is removed from
the programmer’s purview.® The worst that can be said of this approach is probably
that it introduces an artifical symmetry between heap-allocated and register- (or
stack-) allocated values.

In particular, unlike reference counting techniques, in a garbage-collected system
the compiler does not classically emit any code structures to support storage recla-
mation: this is removed from the domain of the client programme altogether. We
modify this paradigm slightly in that we generate no synchronous code structures
to support reclamation, though code is generated to which the storage reclamation
subsystem (the garbage collector, i.e.; and other facilities may link. This code is
derived, furthermore, not from the “executable” portion of the source code of the
programme, but from type declarations themselves.

Once a shortage of available memory has been detected (or garbage collection
has otherwise been triggered—preémptively while waiting for input, for instance, or
while the stack is at low-tide [Wil88]), the garbage collector proceeds to determine
which storage (or which objects) are actually possibly in use, judging by an induc-
tive traversal of the entire state of the computation, based in the actual machine
context as saved at the moment of invocation. This process relies on detailed infor-
mation about the contents of every field of every data structure in the computation,
including register frames, stack frames and, potentially, the object code itself. It is,
of course, the efficient representation—through Visitors—of this information that is

the primary topic of this thesis.

implementable, some variant of this technique should now be considered the baseline.

®For reasons of tuning it may be desirable to provide the programmer with methods of allocating
and, particularly, freeing storage more explicitly; the programmer may know, for instance, that some
value can never outlive some computation, a fact whose determination by static programme analysis
may be difficult or impossible. This issue is touched upon in [Spa86}, though current developments
in static programme analysis are reducing the practical importance of “his concern—or rather are
making it increasingly likely that the compiler can do a good job of inserting such hints.

216

o

PR ORI S

s

While it is not true that everything reachable through an inductive traversal of
the computational state forms part of the future of the computation (consider, as a
trivial example, the fate of the last two arguments to an if-expression: at least one
of them is dead to the computational result, though, like Schrodinger’s cat, it may
not know it yet”), it is the case that, in a strongly typed language, everything not
reachable through such a traversal is not part of the future—since there is no way for
storage to be drawn into the computation except through allocation, itself under the
management of the storage recycler and synchronised with garbage collection.®

The conceptual utility of garbage collection, therefore, relies fundamental on the
same manner of insight as the conceptual adequacy of strong typing: the latter is
justified by the observation that storage uninterpretable by the source programme
is uninteresting to any (usual) goals of the programmer; the latter by that storage
inaccessible to the object programme is uninteresting to the computational goals of
the programme.

Recent research has demonstrated that it is in fact possible to provide for some
kind of garbage collection facility even in systems that (like C++) are only weakly
typed. These schemes operate by making the worst-case assumption that everything
which, judging from its location, alignment and bit pattern, might possibly be a
pointer, is a pointer in fact, and recursively tracking down the (putative) objects thus
(putatively) referenced.

This class of scheme involves quite high overhead (because of the necessity of
deciding whether something might plausibly be a pointer and the need to maintain all
auxiliary data structures in external tables because of the uncertainty over whether
objects reachable from a maybe-pointer are as they are believed to be). It suffers
from the further disadvantages of being imprecise (in particular, aside from, say,

integral values that are quite coincidentally pointer-like in form, they will treat as live

TThe cat itself is not an observer since it is either dead or imaginary, often both.
8Which is, incidentally, why imprecise garbage collection (see below) works at all.

217

objects transitively referenced from dead fields in inactive cases of variant structures,
potentially a serious problem for najvely-written linked-structure mutation code),
failing to resolve the loss of memory due to fragmentation (insofar as objects whose
types cannot be determined reliably cannot be moved safely—for only real pointers—
and not pointeroids—should be fixed up when their apparent referent moves) and
somewhat unsafe (since a weakly typed language actually permits the determined
programmer to “disguise” pointers in such a way as to make them opaque to the
garbage collector—as when the application performs pointer arithmetic or makes use
of “spare” bits in pointers to hold administrative data®). Since its main purpose in
being is to support weakly typed languages’® which we hold to be undesirable for
independent reasons of software engineering, it is not clear that it provides a good
approach to the problem—though it assuredly constitutes a valuable contribution to
the literature.

We should also mention at this point the profound sensitivity that garbage col-
lected systems exhibit to the presence (and precise details) of virtual memory, since
a number of our remarks will be justified with reference to these interactions. On
the one hand, we find ihat garbage collected systems (particularly ones that employ
tagged object representations, since they tend to encourage the proliferation of small
objects related by pointers) tend to possess very poor spatio-temporal locality prop-
erties, both locally (related objects get allocated to remote pages'!) and globally (for
garbage collection itself is a global-scale periodic event, more or less the worst case for
virtual memory systems). On the other, the presence of virtual memory makes the
process memory space elastic: using excess memory tends to degrade performance

asymptotically rather than terminating the process abruptly. Advantage can be taken

YA despicable practizse to which the author hirself has stooped on occasion.

10And, in particular, it seems, C++, the mutant descendent of a mongrel language whose only
positive attributes are a kind of pugnacious hybrid vigour and a long (if not unbroken) tradition of
compilers so bad that they inspire hackerly programmers with the warm comnfy feeling that they can
trust the code generator never to surprise them. ©

110r cache lines, or whatever: this applies across the entire storage hierarchy.

218

of this elasticity to tune data structures whose sizes can be predicted statistically on

the basis of recent behaviour, but not known with certainty. For example, in an algo-
rithm that uses a stack with a reasonable expected size but a worst case proportional
to the size of the entire heap (we shall see such an algorithm later) the heap size on
each garbage collection cycle {and thus, indirectly, the garbage collection frequency)
might be chosen so that it and the ezpected stack can fit in physical memory simul-
taneously. In the event that a larger stack is required, the next garbage collection
will be slow but will not fail (under reasonable assumptions about the availability of

backing store, at least).!?

7.2 Two Basic Approaches to Garbage Collection

The two basic approaches to garbage collection which dominate the literature are
stop-and-copy and mark-and-sweep. The more sophisticated techniques—the paral-
lel methods, imprecise garbage collection, the various scavenging collectors, and so
forth—are generally seen as modifications of one or the other of these two fundamen-
tal types, either improving its performance or weakening its preconditions through
the exploitation of knowledge about which are the usual cases encountered in the
process. There is at least one other technique of great importance: that of static
analysis of data lifetime, whereby it is determined at compile time how long a datum
may persist; this is of course at the heart of any competent compilation strategy, but
(as it is essentially a meikod for the avoidance of garbage collection) is outside the
scope of this thesis, except in its indirect implications for the handling of compiled
code.

The Visitors herein described can be applied directly to the support of either

13Actually, given the reference patterns associated with stacks (reference frequency decreases
sharply with distance from the top of the stack), algorithms are relatively insensitive to the amount
of physical memory available to hold it, on the assumption of an informed memory management
systemn. But the existence of uniformly accessible memory beyond that which is optimally available
is crucial. We shall later consider other, more specialised data structures whose probable size is
much smaller than their worst-case size, and which do require random accessibility.

219

of these primary techniques (though as we shall see, there are reasons to expect

greater payoff in the case of systems that can be expected to select a mark-and-sweep

approach).

7.2.1 Stop-and-copy reclamation

Probably the simplest of the garbage collection strategies is the basic copying collec-
tor. In essence, this technique operates by discarding the entire heap, and salvaging
the active term (that is, those structures that are accessible from the present state of
the computation) into a new heap, one that was presumably cleared on the previous
cycle.?® The entire garbage collection task iz thus reduced to a single operation: that
of making a faithful copy of the current term (or, in more traditional terms, of all
objects that are accessible from any part of the present state of the programme).
The complications are (1) that it is necessary to identify all the “roots” of the :urrent
term—all the places that the programme state makes reference to objects in the heap;
(2) that the heap is in general composed of a fairly complex and heterogeneous col-
lection of objects; and (3) that these objects are potentially connected in an arbitrary
graph, somewhat complicating traversal.

Of these three difficulties, the first must be addressed head on, one way or the
other: either by restricting the implementation of the language in such a way that the
identification of marking roots is straightforward (in the most extreme case perhaps
restricting all references into the heap to a single stack, itself possibly a heap object—
this is the approach we adopted in the modular graph reduction interpreter Jeter);
or, at the other extreme, by ensuring that there is sufficient ancillary information
available to determine what parts of the normal machine state in fact represent such
references at the moment of garbage collection (see, for instance, section 5.4).

The third question, that of correctly manipulating a potentially cyclic structure,

13]n practise even fairly naive implemnentations employ three areas: one to hold the surviving term
in odd cycles, one to hold it in even cycles, and a single, larger, area, in which new allocation is
performed when the current hemispace is full.

220

Al N A

is easily addressed for a stop-and-copy collector, since the very nature of the copy-
ing operation is to change the address of object. Provided some method exists to
record the new address of an object that has already moved (and it is possible in
some circumstances that the space vacated by the moved object will be appropriate
to this purpose), the very fact that an object now resides in the new area will suf-
fice to indicate that it has already been processed, handling both forms of multiple
parentage—cycles and “DAGginess”—at once.

The middle of our three complications is, of course, the main topic of this thesis,
and is addressed in the current context throughout the following sections of this
chapter.

Aside from being very simple, the stop-and-copy approach has the advantage that
it is potentially very tiine-efficient, in that it need only ever examine memory that
is still in use at the time of garbage collection, and that orly once; it has no cost
component dependent on the amount of space that is reclaimed (making the term
“storage recycler” more appropriate than “garbage collector,” a term suggestive of
a procedure with the opposite characteristics). This is particularly attractive in the
presence of large amounts of cheap virtual memory, since it now makes sense to
employ a very large heap of which only active parts will generally remain resident at
the top of the memory hierarchy. Techniques are known to reduce the input-output
bandwidth and external storage cost associated with a paged heap, at least in those
operating systems which provide for user paging processes [Wil91], further increasing
the attractiveness of the method. There is still, of course, a concern that if the lower
parts of the storage hierarchy are too slow, the repaging of the inactive parts of
the present term will dominate the cost of garbage collection: for the time between
garbage collections will necessarily exceed the basic time constant of the pager (by
the hypothesis of large virtual memory). This can be addressed either through the

application of generational techniques or, parallelly, by adjusting the estimated cost

221

L

of outpaging old survivor (pages) appropriately in the pager’s victim selection code,

on the generational assumption that new pages die young.!*

7.2.2 Mark-and-sweep reclamation

In contrast to the copying method, a mark-and-sweep garbage collector operates with
the heap in place, rather than by moving the current term between disjoint hemis-
paces. This leaves the door open for an approach in which active objects never
move, an important factor if relocation is for some reason prohibited, as in impre-
cise garbage collection (where pointer fields requiring update cannot be located ac-
curately) or when physical pointers to heap objects have been exported from the
garbage collector’s domain. Considerations of fragmentation control, on the other
hand (particularly significant in virtual memory systems with heavily loaded physical
store), exploitation of generationalism, and reduction of the complexity (and concomi-
tant increase in the petformance) of allocation code can all argue for a compacting
approach in which retained objects are moved into contiguity.?®

In either the compacting or in-place variants of the technique, the first step in
garbage collection is to perform a complete traversal of accessible storage, making
note (in sorne fashion) of its extent. If compaction is not desired, the next step is
to gather the remaining—unmarked—space together into a freelist for subsequent
reallocation; after which any auxiliary data structures in the garbage collector are
reset to their initial values and normal processing of the client programme is resurned.

In the compacting case, the marking phase is followed, separately or together,

14The crucial advantage of a dead page is that its residency is immaterial: it can be deallocated
from the pagemap without examination (being replaced by a demand-created page to keep the
address-space in use) and thus need never cause a slow page fault.

15At least if objects are not of uniform sise. Even then, uniform object size need not be universal:
implementations in which objects of different sise and/or type are segregated into distinct subheaps
(sones) can be quite effective (particularly on segmented-memory architectures). With care, in
many type systems amenable to a simple tagged object layout, such an approach can exhibit the
high storage utilisation and facility of array representation of untagged implementations, without
losing the benefits of tagging. Effectively, tag information is moved up into the segment (or zone-
determining) portion of the pointer.

222

by the relocation of objects to their new, contiguous, positions and the updating of
what pointers they contain to reference these new locations.’® Once again, client
computation resumes after reinitialisation of any auxiliary structures.

The mark-and-sweep method thus involves at least one pass over the retained
storage (two or three in the compacting case), and a full scan over recycled storage (or
some summary image thereof) in order to distinguish it from that which is retained.!”
The technique may be justified, however, on other grounds: in particular, in not
requiring hemispaces it has lower address space requirements, and it appears to have
other advantages in handling more complex or highly constrained objects (though

new technology may yet shift this balance).

7.2.3 The common ground

A number of fine-grain operations are manifestly common to both these approaches,
mark-and-sweep and stop-and-copy. First, there is the inductive determination of
which objects are accessible to the current state of the computation, whose basis is
the location of the marking roots—those places where the heap values are mentioned
in the implementation machine model—and whose induction step is the traversal of
heap objects to determine their bounds and locate any transitive heap references they
may contain.1®

Secondly, each of these basic strategies (though not the compactionless variant of

mark-and-sweep) relies on the ability to move arbitrary objects from old addresses to

new.

16Obviously we are glossing over the details of how the new pointer targets are determined.

17The use of a hierarchic structure for occupancy marking could presumably reduce this to more
like O(nlog m), where n is the sise of the retained term and m, the overall size of the heap, a much
more satisfactory bound when the heap is large—at least if storage is elastic.

18 Actually, it should be noted that it is potentially necessary to traverse arbitrary amounts of
storage that are not themselves in the heap and susceptible to conventional recycling. Consider two
cases: that of a generational garbage collector, in which portions of the heap may be tenured, but
from which pointers to new objects must still be examined; and that of, say, a system file descriptor
table, where although the table and its entries may themselves be (for technical reasons) static,
heapened buffers may be associated with those that are presently open (as is the usual practise in
implementing C).

223

Finally (and again excepting compactionless mark-and-sweep) they both need to
update objects so that any pointers they contain continue to reference the original
targets, despite their possibly having moved within the address space of the process.

Each of these common elements has a range of possible implementations; but
Visitors provide a straightforward, unified and efficient mechanism for handling all
three. As we saw in chapter 6, furthermore, they capture similar commonality in a

number of other domains where similar needs arise.

7.3 Garbage Collection and Type Tagging

Perhaps because of the great suc;ess of LisP, or perhaps because of questions of
comparative complexity, garbage collection is normally associated with a tagged heap:
one in which all the objects share a uniform structure (they have, that is, only a single
type at the implementation level), a discriminated union in which the discriminant
field, the tag, is at the (fixed) least ofiset. Although this is far from the only context
in vhich garbage collection is feasible, it will be instructive to spend a few paragraphs

in consideration of the techniques appropriate to it.

7.3.1 Traversal

The single most striking implication of object tagging is that objects are discrete,
uniquely typed, and identifiable even when removed from their contexts (if, at least,
it is known wkere they start): a (machine) pointer identifies a distinct object.?®
Among other things, this permits traversal of the heap to be performed in a stackless
manner: a linear scan of a compact heap of tagged objects can reliably locate all

pointers; thus, for instance, with tagged objects, a stop-and-copy recycler needs no

auxiliary storage beyond its to-space.

19While in the absence of tagging it will be observed that a structure and its first field typically
share the same address, being distinguished only by their type. Note that the extra clarity is being
paid for in space: each object must be allocated storage of its own (though it may be possible to
recover some of this cost in a virtual memory system through the use of a compressed backing store).

224

|

Similarly, where (as in the relocating mark-and-sweep algorithm) an update pass
must be performed to “fix up” pointers to their referents’ new addresses, a linear scan
of the heap will suffice.?°

Even in the event that such a linear traversal is not performed, an inductive visit
of every object is greatly facilitated by the presence of a type tag: for the induction
code can be a single recursive function that dispatches on the value of the type
tag. It need contain no logic dependent on the particular programme whose state
is being manipulated. This is bought, though, at the cost of essentially interpretive
execution: each type tag can be seen as an opcode of a virtual machine specialised for
data structure traversal. As we shall see shortly, the normal methods for interpreter
acceleration—ultimately resulting in the compilation of types and the elision of the
tags—are available.

(It may be possible to reap these benefits of object tagging even in basically
untagged systems. If objects are gathered together into breadth-first pages during
their first garbage collection, as suggested in [Wil91), it may be possible (under certain
assumptions of object boundary identifiability) to tag the pages on which objects
reside with the types—in our case the Visitors and their argument packets?!—of
their root terms (from which the types of the subterms follow inductively). Then all
objects that have survived at least one garbage collection will acquire tags—and at a
storage cost that can be amortised, at least for large objects, which untagged systems

encourage, over an entire page.)

7.3.2 Forwarding

Another stop-and-copy subtask that is greatly simplified in the presence of tagged

data is the representation of forwarding information, the record of where an object

20There is an amusing alternate reconstruction of the stop-and-copy algorithm in which fizup
drives the process, with the movement of objects to to-space being a side-effect of the determination
of their new addresses.

211n order to ensure progress we can use pointers in the rare case when these are large.

225

is located after it has been moved to the to-space. The idea is to reserve a type

tag for the “type” Forwarded, whose representation has only one field other than the
tag, and whose interpretation is that the object that was being sought is actually
at the address in that field (and no longer the address being examined). The use of
this mechanism does require that every object have at least one full-width field in
addition to its type tag (there are types, such as “atoms” and various distinguished
constants which might otherwise coherently need no fields at all),?? but it does not
involve additional runtime overhead?® since these pseudo-objects exist only during
the process of garbage collection: by the time the client application is resumed, all
pointers have been fixed up and the forwarding “objects”—being, as they are, at the
addresses of “dead” values—are no longer present in the graph.

This will not work in the mark-and-sweep case, of course, since in this scheme
space is reused immediately, without regard to whether its previous occupant survived
recycling. Thus auxiliary data structures must exist to hold this information, whether
or not tags are present.?*

(Once again it should be noted that all hope of superimposing forwarding infor-
mation on untagged structures is not lost. Since (1) the fact that an object has been
forwarded can be recorded in only one bit, and (2) where objects overlap they must
be moved as a single unit and so can share a forwarding record, the tag need for these
purposes be a single bit that is shared between all objects at a given address. If the

underlying hardware provides “exception bits” or: values, or if the data structure rep-

43There are strong arguments from scoping (as well as from the conceptual semantics of the atom as
alomic) that even atoms with “properties” should have those properties stored in tables according
to the property rather than being bound directly into the data structure of the atom. There is
an attractive implementation of shallow-bound values under this arrangement and the building of
coresident compilers under any binding discipline should be greatly simplified.

33Except in the case of a parallel garbage collector.

34 As described in [Spa86), it is possible to store much—but not all—of this information in space
originally occupied by objects that have been discarded, at the cost of performing fixup before
relocation, a slightly more complex undertaking. The crucial observation is that objects (at least
those that do not change in length during garbage collection!) either move to their new addresses
together, as a continuous block with a single fixup value, or are separated by at least one cell of free
storage, which can be used to hold fixup information.

226

N

resentation mechanism is sufficiently sophisticated, this might prove to be a practical

approach.)

7.3.3 Handling cycles

As has already been noted, the stop-and-copy approach to storage recycling does not
suffer from difficulties with cyclic data structures that are any different from those
caused by partially ordered structure sharing: once an object has been moved its
new address is used, and no attempt is made to move it a second time. In the mark-
and-sweep arrangement, however, destination computation, motion and marking take
place at different times, and so some interlock mechanism must be provided to permit
the marking phase to terminate even on cyclic structures. When data are tagged,
this is conveniently accomplished by stealing one of the bits from the tag to indicate
whether the object has yet been reached. When traversal encounters an object whose
bit is set, it can ignore it: it has either been marked already (in the case of structure
sharing) or is in the process of being marked (for a cycle).

There is a particular subtlety here that is worthy of note: the correctness of this
method of storing state in the object tag relies on the tag being associated with a
unique object: with its address encoding a [type, instance] pair. If the tag (as with the
reduced, single-bit tags we suggested at the end of the previous section) is associated
only with the address, traversal could be incorrectly halted on encountering a large
structure whose first field had already been marked through an independent reference

of its own.

7.3.4 The tag

Let us turn our attention to the representation of the tag itself.
Perhaps the most obvious choice (at least for languages with only a handful of
types, as is common where the tagged representation is chosen) and the most compact,

is to use a small enumerated representation to encode the type of an object. Functions,

227

like those in the garbage collector, needing to interpret the type field?® will be coded
internally with a case-statemnent dispatching on the value of that tag. Typically, the
tag need be only one byte long.?

Considering, however, the penalty that many processor implementations place on
the manipulation of unaligned data, the fact that such a tag requires 8 bits only
and not 32 may be immaterial. One approach to “using up” the remaining bits has
been to collapse array descriptors into their headers, putting some sort of repetition
count in there. Another possibility is to allow the header to contain a forwarding
pointer, using pointer values that do not point into the heap to represent types.
But given that, as we have observed, the code using the tag field is likely to be
in the form of a case-statement, which in turn—at least if, as in the case of the
garbage collector, it is not sparse—is probably translated into a jump-table; and
given, finally, that the number of places where a dispatch across all types is likely
to be performed is small in comparison to the {otal size of the programme, it seems
sensible to use an indirectly-threaded implementation in which the tag is itself a
pointer to a structure containing entries for both administrative data (such as the
printable name of the type, perhaps) and the branch targets for the various pieces of
type-dispatching code—with each such application granted its own offset in the type
descriptor structure.?” This indirectly-threaded system is precisely the arrangement
that the author’s lazy functional database engine kernel, Jeter, employs for the tagged
objects that comprise its combinator graph.

Three further refinements of this scheme suggest themselves. One is that, now

the type has become a structure reached through a pointer, it might be made into

38Intuitively this would include only the garbage collector and type-checking mechanisms, but
recall that in languages like LisP one can enguire as to the “type” of an object, and this notion of
“type"—the top-level discriminant of a grand union—is efficiently represented by the same tag we
are discussing here.

38Providing for the encoding of 127 types, since in the course of the preceding few sections we
bave “stolen” one bit plus one code from among the possibilities, marking and forwarding to effect.

37The astute reader will observe that this is precisely the structure that implementations of lan-
guages like Smalltalk-80 need to virtualise.

228

BT = 2T

a heap object in its own right (a convenient method, among other things, of imple-
menting type-introduction mechanisms). A second is that if one of the “aspects” of
the type is more frequently used than the others (a Visitor is one likely candidate,
while in graph-reduction systems the interpreter for a representation object is a good
choice), we can convert from indirect to direct threading by moving the code for
this most favoured routine up into the type descriptor itself. The remaining fields
of the descriptor can be stored preceding the entry point (if the processor architec-
ture supports offset branches well); they can be moved to negative offsets within the
structure (unless type objects are kept in the heap and advantage is being taken of
linear-scannability of objects); or, in desperation, they might even be located through
an associative table elsewhere, if the performance gain justifies. Finally, in the most
extreme extension of this development, we might move (a copy of) the most favoured
interpretation routine into the object itself, producing a subroutine-threaded struc-
ture (a long-favourite technique of the author; and see [KL89]).?8

These techniques for associating additional administrative information with eff-

ciently represented code will be of further use to us in another context, below.

7.3.5 Immediate data

One optimisation that is quite common in implementations of LisP (and which is
supported directly in the hardware on LisP Machines and the SPARC architecture)
is to represent the members of certain data domains immediately within the word

that would otherwise be a pointer into the heap. Typically this is done by the

380f course, this is only advantageous when the most frequently encountered nodes have very sim-
ple semantic routines associated with them—routines of one or two instructions, at most; for longer
sequences must be translated as calls or jumps to centralised routines to hold space consumption
down, and double-jumping is likely to be inefficient. In fact, we should note two further drawbacks of
the scheme: first, as noted in [KL89] (though in light of the performance benefits of deep pipelining,
branch target buffers [ME86] and a separate code cache we would not be as ready as the authors
to criticise hardware architects for this difficulty), many modern architectures do not take kindly to
self-modifying code (and placing instructions into mobile and mutable data cells is self-modification
with a vengeance from a hardware perspective); second, at least in those machines which lack such
refinements as pipelining, indirect branching—at least through a register—may be faster than long
direct branching, by simple virtue of denser instruction format.

229

expedient of reserving a few bits in the word to discriminate; since for efficiency
(or even architectural) reasons many implementations will align all heap objects on
boundaries whose pointers are divisible by four,?? this may well not interfere with
the address range at all. There may even be hardware support for the detection
of misaligned data access, removing the need for an explicit validity check before
dereference.

Another form of immediate data (that may not, however, be so straightforwardly
recognisable) results not from such bit-stealing, but from code-stealing. Implementa-
tions may reserve certain pointer values to special implementation-defined meanings:
sometimes (as with the null pointer) they may not in fact be pointers at all; in other
cases such pointers may refer otherwise normally to objects that are not in the heap,
for instance.

Such phenomena do not conceptually require any special handling; but they do
introduce a second level of discrimination that must be performed as a garbage col-
lector interprets objects: the type of a value must be checked both before and (when

appropriate) after the word that names it is dereferenced.

7.4 Garbage Collection in the Untagged Heap

We turn our attention now to the issues of garbage collection in the context of a heap
that is untagged, but still strongly typed. Here we find that although the type of an
object is still uniquely determinable, it is no longer a local property of the object’s
representation; information accumnulated along the access path to the object may also

come to bear. Nor, in the absence of tags, do objects have any unique existence: it

*“Tuciz2 is, of course, nothing remotely “magic” about this number: it is simply a convention
of contemporary hardware architecture that machines are grudgingly byte addressable, use 32-bit
pointers, and honestly prefer their data aligned on 32-bit boundaries. This is justified by the “fact”
that characters are 8 bits wide, though given that there are (by count of the Unicode consortium)
something between 2!® and 218 characters (not, of course, counting differences of language or font,
{or example) presently in use world-wide, this strikes the author as a somewhat peculiar piece of
ogic.

230

cannot be decided (other than by global analysis) whether the two fields of a complex

rational are parts of a greater whole, for those fields may be accessible both through
the complex number containing them and individually, by separate paths.

In the most extreme case, a system supporting subtyping or multiple inheritance
might theoretically exhibit the behaviour that the same copy of the same pointer must
at different times (when viewed, that is, through different access paths) be interpreted
as having different types and referring to different—even disjoint3°—objects. In fact,
this case is pathological for us (as will be seen in section 7.4.2 below), but can always
be avoided if the language requires that pointers and mutables have unambiguous

type.3
7.4.1 Traversal

In the untagged case, traversal of the contents of the heap is really no more com-
plicated than in the tagged case; in fact it will be seen that our eventual solution is
somewhat simpler (if subtler). It is true, however, that the lack of tagging makes the
problem more tightly constrained.

As we have just observed, in the absence of tags, the type of an object in the
heap becomes a property only known by reaching it through a complete access path
(starting, as it happens, from any object whose type is not dependent, though we
shall not be using this fact). The implication is that while an hierarchic approach to
term traversal is completely feasible, it is not in general possible to use a linear scan
to perform breadth-first processing, as we could using tags.*

The actual mechanics of traversal are not significantly different, however: starting
from a root object (whose type is known), we examine each of its fields in turn;

and for those that are pointers, we extract their types from the description of the

30If the representation mechanism is smart enough to derive them, there are common cases in
which the best representation of some multiply-heritable type has a “hole” at offset zero.

31The author finds the concept of side-effects occurring at multiple overloads mind-norking, and
sincerely hopes that sie never has cause to implement a language with this feature.

33Though see the parenthesised passage at the end of section 7.3.1.

231

present object, and recur. Once more we note that the most obvious representation
for an object type in this context is an element of an enumerated type (possibly
taken in conjunction with a tuple of parameters)—in fact, the type 7 of type names,
from chapter 3. Each time we examine an object we pass the enumeration value
corresponding to its type, and this can be used to recognise special cases (of which
pointers are an example) and to index into a table of representations for the various
types in the language, encoded in some type representation language having a few
control operators to handle variant records and so forth and using 7 to refer to the
types of constituents. The traversal process is identical to the tagged case except that

pointers are always paired with their type tags where their referents were before.®*

7.4.2 Forwarding, sharing and cycles

The representation of forwarding information that seemed appropriate for tagged
objects fails abysmally in their absence: we can still use the space previously occupied
by an object3 (or whatever other arrangement we might have made for the mark-
and-sweep strategy) to hold its new address, but we cannot modify the tag of an
object to indicate that it has been moved, if tag it hasn’t got. If there is no constant
part of a structure that we can use to record that it has moved, and there probably
is not, we must resort to an external table having (naively, at least) a bit for each cell
of storage in the heap.

When it comes to the handling of shared and cyclic structures we have an even
greater problem. As has already been noted, types are not associated uniquely with

pointer values. This means that the fact that an object’s address has been visited

3314 is amusing to note that the schemne of zoned storage as mentioned in footnote 15 of section
7.2.2, encoding type in segment values, is precisely intermediate between these extremes.

Mt might be thought that even this poses problems in the case of types possessed of a hole at offset
sero: writing a forwarding pointer into this field (even after moving the object “at” this address)
is catastrophic if subsequent processing reveals another interpretation for the address, under which
that cell is occupied. In fact, however, since structural overlap is significant, destination addresses
cannot be assigned until all retained storage has been located, for systems that permit overlapping
objects—by which point there is no difficulty, so long as every independently accessible cell of a
moved object is subjected to the forwarding mechamsm.

232

does not mean that the object itself has been visited, and so associating a processed
bit with each target heap cell will not suffice. Fortunately it is adequate (in the
absence of overloaded pointers) to associate a traversed bit with each pointer. In the
event that there are multiple references to the same object (a frequent event, but
one that is statistically dominated in practise by the singly-referenced case) this will
result in additional work being performed; for the target object will be examined once
per pointer and not once for all. The solution is correct, however, for the pointers

within a structure will not be traversed if they are marked as already processed.®

7.4.3 Representation

The issue of finding a good representation for the type information is here rather
different from when we had to tag each object. In particular, we are no longer paying
a per-object space cost no matter how we decide® and so need not be especially
concerned with density.

In the preceding we suggested that the basic approach to encoding the structural
information associated with a type was through a data structure stored in an entry in
a table, that structure to describe the layout of the objects of the type in some object-
representation description language. The astute reader will already have divined that
our preferred representation description language is in fact machine code: the entries

in this table®” are in fact the (cc npiled) Visitors for the various types, and the table

- 35Particular care must be taken in the presence of overlapping objects to ensure that no commit-
ment is made to process a marked pointer and that the pointer is marked as soon as a commitment
is made.

36Hopefully. In fact, during a worst-case recursive traversal of the heap, where all objects are
linked linearly through fields other than the last (so that they are not susceptible to the tail-call
optimisation), it is possible for (representations of) type descriptors of all heap objects to be on the
stack simultaneously, a (large) O(n) expenditure. An algorithm (related to me by H.J. Boom, but
whose origin we have been unable to discover) is known which consumes space of O(y/n), but its
application in the present context is tricky, and we shall not present it here (the interested reader is
referred to [Spa86] where this algorithm is given and much of the mechanics of its interaction with
Visitors is developed). Clearly it is desirable to choose an initial stack size more on the order of
O(log n) frames; and this is one of those cases where in a virtual memory system we may choose to
rely on storage elasticity to preserve correctness under an over-aggressive allocation heuristic.

37Though for debugging purposes it may be shadowed by a second table containing the abstract
syntax—or even the source form—of the original declaration; in fact the same shadowing can be

233

is itself an object of the mysterious controller type M from chapter 3.

In and of itself, this will not suffice: for calling the Visitor of an object will result
in the object being traversed, but no action being taken.3® Each generic operation
is therefore given a private copy of the table with the entries for those types that
it manipulates or interprets directly modified to its ends. The new entries must
respect the type signature of a Visitor, but can perform arbitrary computation: in
the support of garbage collection we would expect M-objects computing, perhaps,
the size of an object; the marking of the memory extent which it covers (which may
not be the same thing); its recursive copy to a new location (including or excluding
objects reached through pointers, depending on the style of the garbage collector);
the update of its pointer fields, and so on.

On the subject of space consumption, let us note that these type description tables
(which are potentially rather large®) can be expected not to proliferate as rapidly as
might be initially assumed. On the one hand, it should be observed that they can be
treated as values and allocated and discarded as needed (if that should prove useful).
On the other, experience has shown that the application of a few optimisations (as
described in section 5.6.5) can both shrink the physical representations of the tables
and collapse them together; actual garbage collectors implemewnted with this technique
have shared a single such table in memory between all the internal functions of the

garbage collector.4°

expected to occur for any runtime structure that is a little opaque to dynamic examination—though
see section 6.4 for a discussion of the application of Visitors themselves to this task.

380ther than its sise being computed in an arbitrarily—possibly infinitely—inefficient manner, at
any rate.

3Though it should be remembered that they contain entries for type constructors and not, strictly
speaking, for individual types.

“OThere is, as always, a tradeoff here: the resulting optimised copy of the table has too much
garbage-collection-specific information folded into it to be itself useful for many other tasks; the
particular specialisation was chosen because, considering garbage collection in isolation, it provides
excellent performance in both *.- and space.

234

7.5 Garbage Collection with Visitors

As we have just seen, something very much like the Visitor drops quite naturally out
of the representational optimisation of a tagless garbage collector. Approaching the
matter from the other direction, we now examine garbage collection as an application
of visitation.

Not all of the garbage collection task is directly involved with the traversal of data,
but in each method most of the work lies in locating and updating objects and the
pointers within them. The interface between a garbage collector and the visitation
system thus resides in the client routines that implement a few crucial operations.
The simplest of these*! is the determination of the size of an arbitrary object. Here
we assume (for the sake of simplicity) that objects start at offset zero and contain no

“holes,” and that pointer arithmetic operates in the units of Size!?.

Size :< size @ (TYPET, %T t) >:

M s : baseMode
; P :< s|pointer] @ (P p0, Alpointer] a, M m) >: p0 + pointerSize
; s[constructor[T]][t, arguments[T), s] - t

The operation of this function is straightforward: a visitation mode s is con-
structed, specialised to size determination. This new mode differs from the system-
provided baseMode only in the treatment of (subobjects represented through) point-
ers, since in this case only the size of the pointer itself is to be included. Thus (s
r'P]) is updated to step silently over its argument in the manner of the visitors of
primitive binary types. Visitation is then initiated fort (if T is a pointer type, i.e. t

is a pointer to a pointer, then the entry point s (constructor[T]) will be the revised

41Though in a thoroughly optimised garbage collector we can generally expect not to see it as an
independent routine.

#3This diverges, for instance, from the C convention that pointer arithmetic is scaled by the size
of the referent (practical because such operations are restricted to types of manifest size).

235

pointer visitor s “P itself; otherwise it will be, by construction of baseMode, exactly

Beonstrucra(T), and the total linear distance traversed, the difference between t and the
pointer returned from the visitation, is the actual size of t’s referent.

The storage-related garbage collection routines that do involve pointer traversal
are not significantly more complex. Consider, for instance, the operation of mark-
ing all accessible storage in a mark/sweep collector, given functions mark[start, size]

(returning start + size) and isMarked[pointer):43

P :< traverseMarking @ (TYPE T, %T t) >:
M s : baseMode
; P :< s[binary] @ (P p0, A[binary] a, M m) >: mark|p0, a]
. P :< s|[pointer] @ (P p0, A[pointer] a, M m) >:
if isMarked[p0]
then p0 + pointerSize
else P p: mark[p0, pointerSize]; traverseMarking[a, p0], p
end
; s|constructor|T]][t, arguments[T], s]

Structurally identical code is used to implement pointer update (in the event that
the garbage collection technique relocates objects within the heap) and to provide
the copy operation of the stop-and-copy method (though as already noted this last
may involve additional restrictions on the storage formats that the implementation
can employ).

The code we have just presented is designed for garbage collection in the untyped
heap, but as have shown, tagged data in fact a subset of of tagless data, correspond-
ing to types of the form (TYPE T, T t) (possibly under some encoding of the type

representation). Thus the code fragments above will apply directly to tagged data

©This function is coded in a side-eflectual style; technically this is unnecessary, since the marking
table could easily be reified and passed around the function nest; but here as elsewhere in this
thesis we omit the additional uninterpreted polymorphic semantic argument to Visitors that would
transmit this information. The present formulation is, in any event, probably more true to a practical
implementation.

236

as well—in practise the (single) Visitor for tagged data performs dispatch to the
subVisitors for the various data fields, and in a matter of a couple of machine in-
structions. This dispatch operation is the same as would be performed by the garbage

collection routines themselves in a more naively factored programme.

7.6 Conclusion

In this chapter, we have examined the application of Visitors to the problems of
garbage collection. We have seen that those parts of the standard task that scan,
analyse or update data in the heap can be reduced to triviality (specifically, to on
the order of half a dozen lines of executable code each, with no type-specific code
whatsoever provided by the programmer). There is no cause for surprise in this fact,
since we have shown in the course of our development that Visitors themselves can
be derived by transformation of the data structures natural to the task, abstracting
the description of data, its processing and its physical format in memory away from
each other.

Although this development recapitulates the history of the notion in our work,
and it is thus with storage recycling that we have the most experience, it must be
emphasised that the abstraction of the garbage collection application out of the Vis-
itor proper is complete: it is in no way specialised to this particular task, and a
development similar to the above could have been provided for any of a number of
other tasks involving the traversal and manipulation of arbitrary data, as in fact we
saw in chapter 6.

In the next chapter we describe the empirical experience on which this, and all

our work on Visitors, is founded.

237

Chapter 8

Empirical Implementations

Although the full development of Visitors as described in this thesis awaits their
incorporation into a .ative-code compiler developed from scratch with their applica-
tion in mind, they have, in one form or another, seen implementation in a number of
different systems. Taken together these pilot implementations validate the large part
of the present scheme empirically, the main exceptior being the mcchanisms relating
to the processing of active code in unconstrained stack frames, as described in section
5.4. On this latter pcint, however, see [Gol91] and [App89], which effectively describe
the application of Visitors as specialised to garbage collection, developing strategies

identical in essence to those of [Spa86].

8.1 Lithp

The basic ideas behind the Visitor—that garbage collection support code should be
derived automatically from data structure descriptions, that enough information was
in principle present in object code and stack frames to enable a garbage collector to do
its job without seriously constraining code generation, and that such routines, once
generated, could in fact be turned to a number of other tasks (binary transput being
a particular concern)—arose during the development of Lithp [BS85], H. J. Boom'’s
Scheme-like L1SP research system.

At the time the author joined the undertaking, Boom's code already featured a

garbage collector in which—in the interests of modularity, rather than out of any
clearly defined theoretical motivation—almost all the knowledge of data structure
layout had been factored out of the garbage collector proper into two sets of traversal
routines, one to locate pointers within an object and one to traverse all the fields by
underlying (host architecture) type.

In the quest for better performance, the author replaced the original garbage

collector with one having the following characteristics:~

¢ atagged object representation (unremarkably, in view of the LISP client system’s

semantics);
e a compacting mark/sweep strategy;

¢ support for a number of data structures requiring special attention during
garbage collection: file handles that must be closed on deallocation, hash tables
keyed on address (with, unlike COMMON LisP hash tables, inverse retention
dependency for the keys: see section 4.6.4), and objects that change size (as a

dynamic tuning measure) during garbage collection;!

e careful consideration of the effect of memory reference patt.rns on virtual mem-
ory performance (with attention paid to the distinction between read and write

access); and

o exploitation of generationalism (though this was not a generational collector per
se) through a scheme of shallow and deep garbage collections, and using the fact

that in compacting collectors memory address encodes object age monotonically.

1The interesting implication here is that during “compaction™, not all objects move down in
memory; in fact there is a possibility of futile garbage collection in which the size of the current
term actually grows. This was handled in the manner that has now become standard, through the
use of a succession of panic levels—since object growth is purely heuristic, it is possible to squeeze
them through the application of “external pressure.”

239

While working on the new garbage collector, we experimented with the automatic
generation of lisp object formats, their constructors, eliminators and garbage collec-
tion routines, from field lists supplied in macro calls. Eventually the implementation
limits of the VAX Macro-11 assembler forced us to abandon this approach (spurred
by the success of the bootstrap compiler written entirely in Stage 2 we were, after
all, asking rather a Jot of its integral macro processor) and although we retained the
Visitor-like software architecture we returned to hand-coded markers.

The practical precursor of the generally applicable Visitor—as opposed to the
garbage-collection-specialised marker—arose when considerations of resource avail-
ability persuaded us to introduce into the runtime system a facility for storing com-
pressed heap images. Rather than writing new code to perform the traversal of the
objects to be saved and restored, we subverted (as we then saw it) the markers,
recoding them where necessary so that they could perform both functions smoothly.?

The limitations of this early work were, then, that:-

o with the arguable exception of the stack, which was traversed with a similar
mechanism even though it was not itself located within the heap, and although
the heap traversal code did not depend on it (behaving instead as though every
object were an independently licensed variant record), the objects processed

were in fact tagged;

¢ automatic generation of markers from static data structure descriptions was

eventually abandoned for technical reasons;

o the work of traversal was spread between several sets of routines, rather than

being strongly identified with a single executable image of each type3;

3The required changes were of the form of (a) increasing the precision with which field types were
identified, particularly with respect to relocatability and a couple of factors relating specifically to
compression; and (b) changing the order in which information was processed so the fact that during
input objects must be manipulated that are only partially initialised did not pose a problem.

SThough note that even now we advocate the use of optimisations which derive such specialised
structures from more general Visitors.

240

o though the various traversal routines were coded in such a way as to preserve
some machine registers transparently and to use others for intercommunica-
tion in a more-or-less consistent fashion, there was no clear understanding of
this technique as an optimisation over closures and the compilation of general

recursive nests; and

e as a consequence of the taggedness of the representation (which as we have
seen restricts objects to single interpretations), all type analysis encoded by the
markers went directly from the source “type” to the implementation structure;

there were no intermediate (opaque) type levels, and no opportunity for them.
Its successes can be enumerated as follows:-

o it worked, supporting Lithp’s own compiler, Fox,* and that of the total cor-
rectness language, Brouwer [Dev84], as well as various experiments in data

structures and functional programming over a period of several years.®

e the performance of the code structured by these techniques was demonstrated

to be more than adequate;®

o the technique of re-use of functionally (if not, at that time, closure-) param-
eterised general interpreters to perform tasks (in fact, unforeseen tasks) other

than garbage collection was demonstrated most satisfactorily;

e it provided valuable experience in the design of language support facilities, and

in particular in the techniques of very low-level functional programming.

$Fox—Boom’s work, and which the author maintained and extended for some years—was itself
an interesting beast, being a full-scale tree-grammar-based native code compiler written entirely
(well, except for some minor instrumentation code) in the pure functional style.

CAll of these applications were also direct early influences on the shape of present work.

SOverall, the new garbage collector was about an order of magnitude faster (by the wall clock)
than the more naive code it replaced. This performance gain must largely be credited to increased
attention paid to the performance characteristics of virtual memory operating at the edge of its
capacity and the implementation of a8 number of optimisations inspired by early generational r ystems
[Ungs84).

241

A clear indirect benefit of the marker was that the extreme modularity it permit-

ted in the representation of data objects made it possible to expend relatively more
effort on the macroscopic behaviour of the garbage collector. Similar benefits can be
expected to derive from the automatically generated Visitors of the present model,
since they permit much greater decoupling of the code generation and data structure
selection mechanisms of the compiler, on the one hand, from the runtime system on

the other.

8.2 Zarquon’

Zarquon, undertaken by the author as a term project in {[197?-77]], was conceived as
a fully generic editor for tree structured data: while editing operations were to be
presented to the user as manipulating a uniform display image, the abstract parse
trees backing the image were in fact created on demand (on a cache basis) from the
objects being edited, and unparsed back into them as edits were performed. The
parsing and unparsing operations were delegated to Visitors of a form quite similar
to the present design (though operating over a rather different type system, one
revolving around types that are meaningful to the user interface rather than the host
processor, and potentially performing nontrivial transduction). In this manrer, it
was hoped to build a tool that could edit objects on provision of a loadable driver
module containing the requisite visitors and transput code (and possibly, though not
normally, special display and interaction logic), without prior arrangement with the
editor.

Zarquon (a project of frankly excessive scope) was never completed; in partic-
ular, the problems, both practical and theoretical, of generating and managing a

suitable “generic editing” display were never solved.® Nonetheless, we succeeded in

TEtymological note: the Great Prophet Zarquon is, of course, notable for (among other things)
cutting his Second Coming rather fine and arriving during Max Quordlepleen’s magnificent emceeal
of the End of the Universe, at the restaurant of the same name [Ada8s).

$And it was learned that C is not the systems programming panacea that some would claim.

242

demonstrating that Visitors could fairly comfortably be extended to the domain of
editing (with its irregular, local updates of objects), and would operate smoothly with
untagged data not designed for amenability to this (or any other editing) technique.

Once again, let us summarise the positive and negative aspects of this project.

On the down side:-

o Zarquon was never completed; the system as a whole never ran; and

¢ no attempt was ever made to generate Zarquon’s Visitor-analogues (which
were written in C) automatically: since the objects Zarquon manipulated were
of external origin, writing Visitors by hand was the main step in adapting the
programme to a new type (the idea being that this was at least as easy as and

far more flexible than the alternatives).
While on the upside:-

e the project demonstrated the feasibility of this technique for the manipulation

of untagged data, something that had not, to this point, been done in practise;

o the objects successfully manipulated included alien data structures (actually C
structures used by the AmigaDOS operating system) which were not designed

with amenability to the technique in mind;®?

e it provided us with a feeling for what could—and what could not—reasonably

be accomplished with this method in a high-level language;® and

e the project saw the (successful, as far as this aspect went) application of Vis-
itors to a nontrivial external task, and one that involves more than structure-

preserving global operations analogous to garbage collection (as the previous

9Though surely they did not exercise the full possibilities of the C language—which could have
taken them into the domain of the untyped.

19I5 particular, it was at this stage in the development of the Visitor that we discovered that
Visitors are not even typable in ANsI C!

243

non-garbage-collection application, that of moving a term to and from an ex-

ternal file, was analogous).

On a relative scale of abandoned projects, then, Zarquon was a qualified suc-
cess: although its primary objective remained unsatisfied, it validated the technology
presented in this thesis in a broader domain and provided a great deal of beneficial
practical experience, in particular providing insight into the places where system level

support—such as automatically derived Visitors—would be most useful.

8.3 Jeter!!

The Center for Information and Language Studies at the University of Chicago is
presently developing a large-scale structurally-oriented textual database system with
a normal-order pure functional substrate. This system is designed for use by the
academic public; present plans call for it to be shipped with a CD-ROM (being
developed with the ARTFL project) containing the Trésor de la Langue Frangaise
database (to 1939) in early 1992.!2 As far as we have been able to determine, this
is the first “industrial strength” application of normal order reduction, a technology
which has hitherto been confined to the laboratory.

We dubbed the runtime system of this functional database server Jeter; it is in
essence a graph reduction interpreter kernel, written in ANSI C, and designed to be
efficient, portable and highly extensible; in particular we hope that in the future it
will play host to a number of different compilation strategies, employing different
schemes of combinators and/or supercombinators [Dil88, AJ89a]. It has, in fact,
shown clear signs of satisfying all three of these objectives: it is many times faster

than the Unix TIGRE interpreter (on which we did our early prototyping), and in some

MHJeter is named in part after the writer K. W. Jeter who, it must be said, out-Dicks Philip K.
Dick; and in part because there was some initial concern that its performance characteristics might
be such that we would have to throw it away in a hurry—a worry which, happily, has subsequently

proved unfounded.
13See [BDM*86, ZDW90, DZW90, ZWS92)).

244

common applications—with naively coded queries and without extensive tuning—is
significantly faster than the hand-crafted C query processing routines it replaces;
during its development it was moved backwards and forwards between Unix SPARCs
and 1BM PCs without glitches!3; and at one point a new illative datatype was installed
in the interpreter by two people new to the system in the space of about two hours.
All Jeter heap objects are described by Visitors; the only other description an object
type has in the system is implicit in the code that implements its semantic primitives.

Most objects in the Jeter heap are tagged (since the graph reduction paradigm
requires that subgraphs at least be marked as evaluated or unevaluated, there is no
loss in this; in fact, it has been turned to advantage, and almost all code in Jeter
is dispatched automatically on type by the interpreter). The exceptions (though
the exact list changes frequently) are mostly system structures such as evaluation
contexts, spine stack segments and so forth; but may shortly include various kinds
of transput and string buffer. Stack segments in particular exercise the generality of
Visitors, since although it is extremely desirable that storage not be retained on the
basis of inactive stack slots, performance considerations led us both to store stack
pointers remotely from the stack segments to which they relate, and to introduce
some hysteresis in storage allotment between adjacent segments. yielding a quantity
of state that must be propagated along the stack. It is, of course, unremarkable that
this data structure exists and is garbage collectible; it is more noteworthy that it
required no code and no support to operate beyond that which was already part of
the system.

Jeter currently has two distinct methods of storage reclamation: it uses a one-bit

reference counting scheme with counts in the pointers!*!® [WF77]; and since this

13 Aside from questions of Unix buffer flushing policy: under Unix, unbufler output is prohibitively
inefficient, while buffered output is jerky and makes demonstrations of lazy evaluation appear some-
what unconvincing!

14The fact that in order to do this we need to subvert a pointer bit-—something not sanctioned
by the ANs1 C standard!-—is our one major point of non-compliance and non-portability.

15The code that implements the one-bit reference counting scheme is intricately interwoven in the

245

(although it reclaims well in excess of 95% of storage allocated and will run for quite
a long time in a multi-megabyte heap) is even more approximate than full reference
counting schemes, it is backed by a conventional stop-and-copy collector. Both of
these reclamation schemes employ Visitors for object traversal (though the copying
collector currently has a breadth-first traversal strategy taking advantage of tags—
and their ability to identify objects “out of context”—where they exist: objects that
are known to be tagged can be visited with the “tagged object” Visitor even during
a linear scan of the (new) heap).

During early development, both the output system and the interpreter itself (the
two, in fact, being more or less indistinguishable) made extensive use of the Visitors.

In sum, the shortcomings of Jeter as an instance of Visitor technology are as

follows:-

e since Jeter is at present entirely coded in (almost entirely portable) C, it has
not been possible to implement techniques for manipulating either live code or

the system stack directly;

e more or less at the requirement of the language implementation technique itself!®
all user-visible data are tagged in the heap, and there is at present no exten-
sibility to the type system at the implementation level—the types and their

Visitors are linked in; and

e once again we have not had the opportunity to generate Visitors automatically

(in this case because of the inflexibility of the C macro preprocessor).

However,

present interpreter (though it is certainly possible to write less storage-efficient code that largely
ignores its presence, since reference counting is only approximate anyway), in an effort to maximise
the use that is got from that one bit per object. In practise this is turning out to be the major
source of implementation and maintenance effort, and is a strong argument for either the timely
automation of code generation or the abandonment of reference counting.

16Though there is hope for extensive computation with unboxed data in local eager mode [PIL91],
and we have ourselves considered placing unboxed data into the stack for locally strict computations.

246

- e

o we have been able to demonstrate the smooth coéxistence of tagged and tagless

objects in the heap, mediated by Visitors;

e Visitors have again proven their applicability to many tasks that were not
specifiable in any detail before the fact, a boen to both prototyping and final

implementation;

e the same code supports not only all phases of storage reclamation by a single
technique, but in fact supports two quite different reclamation methods on the
same objects, in the same heap: both reference counting and stop-and-copy;

and

o Jeter is well on its way to being what can only be considered a production sys-
tem, as it is presently managing hundreds of megabytes of data and will shortly

be in the hands of dozens of users of widely varying technical competence.

The next logical step in the evolution of Jeter—and the next step in the deploy-
ment of Visitors—will in all probability be the implementation of a true compiler,

making, among other things, nontrivial decisions about the representations of data.

247

Chapter 9

Conclusion

Visitors are executable images of data types. Because of the simplicity and unifor-
mity of types in conventional languages, even a simple compiler can generate high-
quality code for them; complications arise at a reasonable rate as compiler sophisti-
cation and semantic demands increase. The methodology of Visitor implementation
and use is, as a whole, principled, flexible, and efficient.

Since Visitors ultimately derive from the source programme’s type structure it is
imperative that the language they support be strongly typed; this is trivially true of
the “untyped” Lisp-like languages (for which Visitors provide mainly a convenient
rapid-prototyping tool for various system internals), but is an important global prop-
erty in which “typed” languages in general may fail; in particular, languages such as
C and Pascal (as normally construed) lack this property and cannot be provided with
(secure and automatically constructed) Visitors.

Visitation was originally invented as a tool for increasing the modularity of a
garbage collector. In this application it can also vastly extend a garbage collector’s
flexibility, operating (if necessary) in a tagless environment without exhibiting “in-
terpretive” behaviour.

Whether as an independent justification or an added benefit, the same automat-
ically generated code can be used in support of other language-, operating-system-

and user- level tasks that involve global operations over data structures under vari-

able notions of type opacity and atomicity. Contrariwise, since Visitors are explicitly
representable at the intermediate code level (if not normally in the source) there is
scope for a good compiler to specialise them to a particular task without the need of
special facilities.

If applied aggressively in the context of an operating system, Visitors have the
potential to make type information both more present and more immediately useful
to the whole system, making truly transparent remote procedure call and tolerably

efficient inter-architectural virtually shared memory a practical and attainable goal.

9.1 Further Work

The single most important piece of work that remains to be undertaken is the con-
struction of an untagged, garbage collected programming language implementation
that relies on automatically generated Visitors for its semantic coherence and that
makes them visible to the user as a general-purpose programming tool. As a sub-
sidiary goal this involves the devising of a good source-level interface for Visitors
and visitation modes.

Additional respects in which visitation deserves further exploration include:-

o Implementation and measurement of the performance impact of visitation as

an approach to marshaling and unmarshaling in operating systems.

o Better integration of visitation with modern garbage collection technology as

developed for tagged heaps.

e Application of Visitors tolanguages like SELF, where all type information is dy-
pamically introduced by an aggressive compiler rather than being present, even
implicitly, in the source form (something we do not consider to be a good engi-
neering tactic but may be useful for prototyping and certainly poses a unique

technical challenge).

249

List of Formalisms

Programming Languages

Ada [dod83] U.S. Department of Defense programming language. Notable for having

everything but a clear semantics.

Alfonso Normal-order pure functional textual database retrieval language under de-
velopment (by the author, among others) at the University of Chicago’s Center
for Information and Language Studies. Based loosely on Alonzo [g.v.], and

implemented with Visitors.

Algol 68 [vWMP*76] Seminal strongly typed imperative functional language with
(unsurprisingly) “Algol” syntax. Algol 68 is garbage-collected and has a rich

array semantics including reference-yielding array slices.
Alonzo [Ram89] Normal-order pure functional language with Scheme-like syntax.

APL [Ive87) Interpreted array manipulation language renowned for its bizarre char-
acter set (but see J). Unitypic type system, with good implementations using

significantly more representations than are visible to the user.

ASM-86 Intgl’s original assembly language for the ever-popular iAPX 86/88 micro-

processors. Provides nontrivial data structuring facilities.
Awk [AKW88] Unix text file scanning and manipulation language.

Basic (“Beginner’s All-purpose Symbolic Instruction Code”) Family of once-popular,

typically interpreted FORTRANesque programming languages of varying abili-

ties.
Bliss [WRH71] DEC systems programming language.

Brouwer [Dev84] Total-correctness language developed by Dr. H. J. Boom at Con-

cordia and based on the incredibly rich type logic ITT [g.v.].

C [KRT78, HS87, ansi89] Systems programming language of the Unix operating sys-
tem, now widely used elsewhere. Remarkably insecure; only recent versions

have provided paramter type checking.

C++ [Str86] Half-hearted extension of C [g.v.] aimed at getting on the object-

oriented bandwagon.

CoMMON LisP [Ste90] Grand Unified LISP [¢.v.] dialect, now with Object Orienta-

tion!

Concurrent Euclid [Hol83] Systems programming language with strict segregation

of “unsafe” features, explicit parallelism and monitors for synchronisation.

FORTH [forth83] An explicitly stack based language, implemented with an exposed

threaded interpreter. Highly insecure.

FORTRAN [ibm] A line-oriented language specialised for floating-point arithmetic,

now trying to evolve into something like Ada.

Haskell [HPW91] “A Non-strict, Purely Functional Language,” intended to serve as

a common platform for research in the field.

IcoN [GG83] An interpreted language with streamed expressions and pattern match-

ing operators, evolved from SNOBOL [g.v.).

251

INTERCAL [WL73] A language specifically designed for the purpose of being com-

pletely different from every other language. Not entirely successful in this goal.
J [Ive90] A modern dialect of APL [g.v.] using the ASCII character set.

Lazy ML [AJ89b] A normal-order dialect of ML [g.v.], remarkable for its efficient

implementation.

Lisp [McC60] A programming language granting explicit programmatic access to the
abstract syntax level, and originally based on the A-calculus. All early imple-
mentations seem to have messed up the variable-scoping rules, and (perhaps as
a consequence) an imperative programming style has become the norm, mak-
ing the 1anguage by now remarkable only for its illegibility and (with certain
notable exceptions) inefficiency. Of particular interest for its very small kernel

of basic data representations, corresponding roughly to BNF in form.

Lithp [BS85] A Scheme-like LisP dialect [¢q.v.] developed by Dr. H. J. Boom at

Concordia University. The original testbed for visitation.

Mary2 [pen83] A systems programming language notable for its programmable sur-

face syntax and link-time code generation.
Miranda [Tur85] A functional programming language.

ML [MTH90] Another functional programming language, originally conceived as a
metalanguage for proof construction work, but ultimately more popular in more

general contexts.
Modula-2 [Wir83] Systems programming lanzuage with modules and monitors.

Pascal [JW74] A teaching language addressing the didactic climate of the early *70s.

252

bl cama

Perl [Wal] Perl (“Practical Extraction and Report Language”) is a general-purpose

Unix text-processing language providing interpretive access to most Unix system

calls.

Prolog [CM87] Mistakenly believed by many to be a programming language, actu-
ally a primitive knowledge representation syntax with a remarkably inefficient
operational semantics glued on at an angle. Spectacularly popular. Prolog’s
code format is very simple, and comparable to BNF; see the comment under

Lisp.
Russell [DD85] A programming language with first-class types.

Scheme [RC86] A very much cleaned up dialect of LISP [¢g.v.] with lexical scoping

and first-class continuations.

SELF [HCCU90] A classless object-oriented language in which all operations are
dispatched along a fully dynamic multiple-inheritance prototype chain, which
is also the sole name resolution mechanism. Possesses an implementation of

profoundly amazing efficiency, all things considered.

SETL [SDDS86] A language specialised for the manipulation of finite sets, once no-

table { ¢ providing explicit facilities for the description of data representations.

SETL2 [Sny90] An updated SETL, adding modules and first-class functions, but delet.

ing the data-representation sublanguage.

Smalltalk-80 [GR83] A class-based object-oriented language. Despite lacking for
many years even tolerably efficient implementations on non-specialised hard-
ware, the root of the current object-oriented programming fad. A wonderful

language for its day.

SNoBOL [GPPT71] A very line-oriented imperative string-manipulation language.

263

Stage 2 [Wai70] A macro processor much abused in the bootstrapping of Lithp.

Turbo Pascal Commerical Pascal dialect [¢q.v.] with extensive systems program-

ming and string manipulation extensions.
VAX Macro-11 Assembler for DEC’s VAX architecture.

yacc [Joh79] “Yet Another Compiler Compiler,” actually a crippled LR parser gen-
erator. The precise mode of crippledom is that although semantic actions can
be associated with productions, they are pieces of C code that are executed
at reduce-time, communicating with each other by indexing into the stack in a

most unsanitary manner. Very famous; to be avoided.

Other

Autolexical Syntax [Sad91] A theoretical linguistic superstructure developing the

idea of multiple, parallel, independent linguistic modules.

GPSG [GKPS85] (Generalised Phrase Structure Grammar) Lexicalist syntactic the-
ory factoring phrase structure rules into ID/LP (Immediate Dominance/Linear

Precedence) format and making heavy use of unification.

ITT [ML84] (Intuitionistic Type Theory) A formal type theory employing the notion
that a type can be identified with a proposition true if the type is inhabited.
This duality is sometimes cumbersome (since every relevant property of an
object has to be formally encoded in its surface form), but as a type system it

is spectacularly rich.

A-calculus [Bar84] Mathematical object providing the foundations for the functional
model of computation. Based on the notion that f : z = y can be interpreted
as declaring f to be identical with a function value z +— y (classically written

Az.y).

254

LFG (Lexical-Functional Grammar) [Bre82] A unification and attribute-grammar

based lexicalist linguistic theory.

NuPRL [CAB*86] (New (or “Nearly Ultimate”?) Proof Refinement Language) A

theorem-proving system using ITT [¢.v.] as its logic.

255

Bibliography

[ABB*86]

[acm90]

[AdaT9]

[Ada85)

[AJ89a]

[AJ89b]

[AKW8S)

[AL91]

[ansi89]

[App89Y]

[Bar84]

M. J. Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for Unix development. In USENIX Conference Proceedings,
Atlanta, Georgia, July 1986.

ACM SIGPLAN. Proceedings of the ACM SIGPLAN ’90 Conference on
Programming Language Design and Implementation, White Plains, New
York, June 1990. Published as SIGPLAN Notices 25(6), June 1990.

Douglas Adams. The Hitch-Hiker’s Guide to the Galazy. Pan Books,
1979.

Douglas Adams. The Hitch-Hiker's Guide to the Galazy: The Original
Radio Scripts. Pan Books, 1985.

Lennart Augustsson and Thomas Johnsson. The Chalmers Lazy-ML
compiler. The Computer Journal, 32(2):127-141, 1989.

Lennart Augustsson and Thomas Johnsson. Lazy ML user’s manual.
Technical report, Chalmers University, June 1989. tLazy ML.

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The
AWK Programming Language. Addison-Wesley, 1988. tAwk.

Andrew W. Appel and Kai Li. Virtual memory primitives for user pro-
grammes. In Proceedings of the Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
pages 96-107, Santa Clara, California, April 1991. Published as Com-
puter Architecture News 19(2); Operating Systems Review 25(special
issue); and SIGPLAN Notices 26(4), April 1991.

American National Standards Institute. American National Standard
for Information Systems—Programming Language C, 1989. tansi C
[ANSI X3.159-1989).

Andrew W. Appel. Runtime tags aren’t necessary. Lisp and Symbolic
Computation, 2:153-162, 1989.

Hendrik Pieter Barendregt. The Lambda Calculus: its Syntaz and Se-
mantics. North-Holland, 1984.

[BDG*88]

[BDM+86)

[Bre82)

(BS85]

[BW8S]

[CAB+86]

[Car]

[CM87]

[CU91)

[DD85]

[Dev84]

[Dil88)

D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales,
and D. A. Moon. CoMMON LISP Object System specification. X3J11
document 88-002R. Published as SIGPLAN Notices 23(special issue),
September 1988.

Abraham Bookstein, Scott Deerwester, Robert Morrissey, Keith Wa-
clena, and Donald Ziff. A system for integrated bibliographic and full-
text retrieval in a distributed computing environment. In Computers
and the Humanities: Today’s Research, Tomorrow’s Teaching, pages

285-291. University of Toronto, March 1986.

Joan Bresnan, editor. The Mental Representation of Grammatical Re-
lations. MIT Press, 1982. {LFG (Lexical-Functional Grammar).

H. J. Boom and Stephen P Spackman. Brief notes on Lithp. Technical
Report PLSG-3, Concordia University Department of Computer Science
Progamming Languages Study Group, 1985. tLithp.

H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative en-
vironment. Software: Practice and Ezperience, 18(9):807-820, Septem-
ber 1988.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. Y. Sasaki, and S. F. Smith. Implementing Mathe-
matics with the NuPRL Proof Development System. Prentice-Hall, 1986.
tNuPRL.

Luca Cardelli. A polymorphic A-calculus with type:type. Technical
Report 10, Digital Systerns Research Center.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-
Verlag, third edition, 1987.

Craig Chambers and David Ungar. Making pure object-oriented lan-
guages practical. In OOPSLA '91 Conference Proceedings, pages 1-15,
Phoenix, Arizona, October 1991. ACM SIGPLAN. Published as SIG-
PLAN Notices 15(11), November 1991.

James Donahue and Alan Dermers. Data types are values. ACM Trans-
actions on Programming Languages and Systems, 7(3):426-445, July
1985.

Michel Patrick Devine. A program verifier for total correctness based
on intuitionistic type theory. Master’s thesis, Concordia University De-
partment of Computer Science, 1984. {Brouwer.

Antoni Diller. Compiling Functional Languages. John Wiley & Sons,
1988. Actually about implementation techniques for normal-order lan-
guages, a nice introduction, survey and handy reference.

257

[DM82]

[dod83]

[DP80)

[DS84]

[DZW90]

[forth83]

(GG83)

[GKPS85)

[Gol90]

[Gol91]

[GPPT1]

[GR3]

[Gro85]

[Gro86)

L. Damas and R. Milner. Principal type schemes for functional pro-
grams. In Proceedings of the #* ACM Symposium on the Principles of
Programming Languages, pages 207-212, 1982.

United States Department of Defense. Reference manual for the Ada
programming language, 1983. [ANSI/MIL-STD-1815A-1983] {Ada.

D. R. Ditzel and D. A. Patterson. Retrospective on high-level language
computer architectures. In Proceedings of the 7* Annual Symposium on
Computer Architecture, pages 97-104. IEEE, 1980.

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation
of the Smalltalk-80 System. In Proceedings of the 11* Annual ACM
Symposium on the Principles of Programming Languages, pages 297-
302, Salt Lake City, Utah, 1984.

Scott C. Deerwester, Donald A. Ziff, and Keith Waclena. An architec-
ture for full text retrieval systems. In DEXA 90: Database and Ezpert
Systems Applications, pages 22-29, September 1990.

Forth Standards Team. Forth-89 Standard. Mountain View Press, 1983.

Ralph E. Griswold and Madge T. Griswold. The Icon Programming
Language. Prentice-Hall, 1983. tIcoN.

Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan Sag. Generalised
Phrase Structure Grammar. Harvard University Press, 1985. 1GPSG.

John A. Goldsmith. Autosegmental and Metrical Phonology. Basil Black-
well, 1990.

Benjamin Goldberg. Tag-free garbage collection for strongly typed pro-
gramming languages. In Proceedings of the ACM SIGPLAN ’91 Con-
ference on Programming Language Design and Implementation, pages
165-176, Toronto, Ontario, June 1991. ACM SIGPLAN. Published as
SIGPLAN Notices 26(6), June 1991.

R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL/{ Pro-
gramming Language. Prentice-Hall, second edition, 1971.

Adele Goldberg and David Robson. Smalltalk-80: The Language and
its Implementation. Addison-Wesley, 1983. $Smalltalk-80.

Peter Grogono. A Typed, Applicative Programming Language. PhD
thesis, Concordia University Department of Computer Science, February
1985.

Peter Grogono. Bias user manual. Technical Report PLSG-10, Con-
cordia University Department of Computer Science Progamming Lan-
guages Study Group, October 1986. {Bias.

258

[HCCU90]
[Hol83]

[HPW91]

[HS87)

[ibm]

[is087]

[Ive87]

[Ive90]

[Jac91)

[Joh79]

[JW74)

[Kan87]

[KL89)

[KR78]

[Lam78]

Urs Holzle, Bay-Wei Chang, Craig Chambers, and David Ungar. The
SELF Manual, July 1990. {SELF.

R. C. Holt. Concurrent Euclid, the Uniz® System, and Tunis. Addison-
Wesley, 1983. {Concurrent Euclid.

Report on the programming language Haskell, version 1.1, August
1991. Available by anonymous ftp from nebula.systemsz.cs.yale.edu
[128.36.13.1):/pub/haskell-report, though there is a README file there
that implies that people who do this are liable to prosecution. {Haskell.

Samue] P. Harbison and Guy L. Steele Jr. C: A Reference Manual
Prentice-Hall, second edition, 1987. A far more useful reference for
pre-ANSI C than Kernighan and Ritchie [KR78] in that it attempts to
describe something of the range of extant C implementations.

IBM. IBM System /860 FORTRAN IV Language.

I1SO. Information Prosessing—QOpen Systems Interconnection—
Specification of Abstract Syntaz Notation One (ASN.1), 1987. 1SO In-
ternational Standard 8824 tASN.1.

Kenneth E. Iverson. A dictionary of APL. APL Quote Quad, 18(1):5-40,
September 1987.

Kenneth E. Iverson. The ISI dictionary of J. Technical report, ISI, 1990.
td.

Steve Jackson, editor. GURPS Basic Set. Steve Jackson Games, third
edition, 1991.

S. C. Johnson. Yacc: Yet another compiler-compiler. In Uniz Program-
mer’s Manual. Bell Laboratories, 7% edition, January 1979. {yacc.

Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Repori.
Springer-Verlag, second edition, 1974. {Pascal.

Gerry Kane. MIPS R2000 Architecture Manual. Prentice-Hall, 1987.

Philip J. Koopman, Jr. and Peter Lee. A fresh look at combinator
graph reduction (or, having a TICRE by the tail). SIGPLAN Notices,
24(7):110-119, July 1989.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice-Hall, 1978. {pre-standardisation C.

Leslie Lamport. Time, clocks and the ordering of events in a dsitributed
system. Communications of the ACM, 21(7):558-565, July 1978.

259

[LBSO]

[Li88)

[McC60)

[MHS6]

[Mil26)
[Mil78)

IML84)

[Moo85]

[MTHS0)

[niso91]

[pen83]

[PH90)

[PJLOI]

Vernon A. Lee, Jr. and Hans-J. Boehm. Optimizing programs over the
constructive reals. In Proceedings of the ACM SIGPLAN ’90 Conference
on Programming Language Design and Implementation [acm90], pages
102-111. Published as SIGPLAN Notices 25(6), June 1990.

K. Li. Ivy: a shared virtual memory system for parallel computing. In
Proceedings of the 1988 International Conference on Parallel Computing
(Vol. II), pages 94-101, St. Charles, Illinois, August 1988.

John McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part 1. Communications of the ACM,

3(4):184-195, 1960.

Scott McFarling and John Hennessy. Reducing the cost of branches.
In The 18* Annual international Symposium on Computer Architec-
ture, pages 396—403, Tokyo, Japan, June 1986. Published as Computer
Architecture News 14(2), June 1986.

A. A. Milne. Winnie-the-Pooh. E. P. Dutton & Co., Inc., 1926.

R. Milner. A theory of type polymorpbkism in programming. Journal of
Computer and System Sciences, 17:348-375, 1978.

Per Martin-Lof. Intuitionistic type theory: Notes by Giovanni Sombin
of a series of lectures given in Padua, 1984.

David Moon. Architecture of the Symbolics 3600. In The 12 An-
nual international Symposium on Computer Architecture, pages T6-83,
Boston, Massachusets, June 1985. Published as Computer Architecture
News 13(3), June 1985.

Robin Milner, Mads Toffe, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, 1990. {ML.

National Information Standards Organization, New Brunswick, New
Jersey. Electronic Manuscript Preparation and Markup, 1991.
[ANSI/NISO 239.59-1988] 1SGML.

Penobscot Research Center, Reach Road, Deer Isle, Maine. Mary2 Lan-
guage Reference Manual, version G, December 1983. tMary2.

Karl Pettis and Robert C. Hansen. Profile guided code positioning.
In Proceedings of the ACM SIGPLAN ’90 Conference on Programming
Language Design and Implementation [acm90}, pages 16-27. Published
as SIGPLAN Notices 25(6), June 1990.

Simon L Peyton Jones and John Launchbury. Unboxed values as first
class citizens in a non-strict functional language. In Functional Program-
ming Languages and Computer Architecture (5% ACM Conference),

260

[PW90)

[Ram89]
[RC86]

[Reb91]

[Sad91]

[SDDS86]

[Sny90]

[Spa86]

[Ste90]

[Str86)

[sun87]

[Torn87]

[Tom91]

number 523 in Lecture Notes in Computer Science, pages 636-666, Cam-
bridge, Massachusetts, August 1991. Springer-Verlag.

William Pugh and Grant Weddell. Two-directional record layout for
multiple inheritance. In Proceedings of the ACM SIGPLAN ’90 Con-

ference on Programming Language Design and Implementation [acm90],
pages 85-91. Published as SIGPLAN Notices 25(6), June 1990.

John D. Ramsdell. The Alonzo functional programming language. SIG-
PLAN Notices, 24(9):47-56, September 1989.

Jonathan Rees and William Clinger. Revised® report on the algorithmic
language Scheme. SIGPLAN Notices, 21(12):37-79, December 1986.

Samuel A. Rebelsky. An introduction to tours, a protocol for demand-
driven communication of terms. Technical Report CS91-27, University
of Chicago Department of Computer Science, 1991.

Jerrold M. Sadock. Autolezical Syntaz. University of Chicago Press,
1991. tAutolexical theory.

J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Pro-
gramming with Sets: An Introduction to SETL. Springer-Verlag, 1986.
tSETL.

W. Kirk Snyder. The SETL2 programming language. Technical Report
490, Courant Institute of Mathematical Sciences, New York University,
September 1990. tsetl2.

Stephen P Spackman. Garkbit. Technical Report PLSG-7(?), Concordia
University Department of Computer Science Progamming Languages
Study Group, 1986.

Guy L. Steele Jr. CoMMON LisP: The Language. Digital Press, second
edition, 1990. The second edition incorporates X3J13 revisions, includ-
ing the Common Lisp Object System [BDG*88]. {CoMMON LisP.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
1986. 1C++.

Sun Microsystems, Inc., Mountain View, California. The SPARC Ar-
chitecture Manual, version 7, 1987.

Masaru Tomita. An efficient augmented-context-free parsing algorithm.
Computational Linguistics, 13(1-2):31-46, January-June 1987.

Masaru Tomita, editor. Generalised LR Parsing. Kluwer Academic,
1991.

261

[Tur85)

[TvRvS+90]

[Ung84]

[vWMP+76]

[Wai70]

(Wal]
[Wen90)

[WF77)
[Wilgs)
(Wil91]
[Wir83]
[WL73]

[WRHT71]

[ZDW90]

D. A. Turner. Miranda: A Non-strict Functional Language with Poly-
morphic Types, volume 201 of Lecture Notes in Computer Science.
Springer-Verlag, 1985.

Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, gre-
gory J. Sharp, Sape J. Mullender, Jack Jansen, and Guido van Rossum.
Amoeba system. Communications of the ACM, 33(12):46-63, December
1990.

David Ungar. Generation scavenging: a non-disruptive high-
performance storage reclamation algorithm. SIGPLAN \Notices,

19(5):157-167, May 1984.

A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster,
M. Sintzoff, C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker.
Revised Report on the Algorithmic Language Algol 68. Springer-Verlag,
1976. tAlgol 68.

W. M. Waite. The mobile programming system: Stage2. Communica-
tions of the ACM, 13(7):415-421, July 1970.

Larry Wall. Perl. Unix manual page.

Alan L. Wendt. Fast code generation using automatically-generated
decision trees. In Proceedings of the ACM SIGPLAN 90 Conference
on Programming Language Design and Implementation [acm90], pages
9-15. Published as SIGPLAN Notices 25(6), June 1990.

David S. Wise and Daniel P. Friedman. The one-bit reference count.

BIT, 17:351-359, 1977.

Paul R. Wilson. Opportunistic garbage collection. SIGPLAN Notices,
23(12):98-102, December 1988.

Paul R. Wilson. Some issues and strategies in heap management and
memory heirarchies. SIGPLAN Notices, 26(3):45~-52, March 1991.

Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 1983.
tModula-2.

Dorald R. Woods and James M. Lyon. The INTERCAL programming
language reference manual, 1973. {INTERCAL.

W. A. Wulf, D. B. Russel, and A. N. Habermann. Bliss: A language for
systems programming. Communications of the ACM, 14(12):780-790,
December 1971.

Donald A. Ziff, Scott C. Deerwester, and Keith Waclena. Using a func-
tional language for textual information retrieval: Design and imple-
mentation. Technical Report 90-1, University of Chicago Center for
Information and Language Studies, February 1990.

262

(ZWS92] Donald A. Ziff, Keith Waclena, and Stephen P Spackman. Using a
lazy functional language for textual information retrieval. Technical Re-
port 92-02, University of Chicago Center for Information and Languages
Studies, 1992.

The mark t indicates a canonical reference for a language, theory or formal system.

263

