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" ABSTRACT

0
-

Incremental Inductive Learning of ) ‘
Discriminant Descriptions from - :
Noisy and Incomplete Data ‘

John Opala ‘

.
-3 -
3

A program was written by which partial discriminant descriptions of concepts can

be learned incrementally by a computer from positive and negative examples. The

method was applied to an Automatic Speech Recognition system to genceralize over -

phoneme descriptions in order to produce preconditions for production rules. Data

‘ . . . . .
from this domain may contain errors and may not carry cnough information for full

discrimination og concepts. A truth maintenance system was therefore adapted to han-
-

dle the non-monotonic logic. Depth-first and backtracking techniques were’used to -~ *

-

guide the search in the induction process.
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Chptcr 1.

lntrociuctlbn

Learning is the,procéss by which we acq’uir;: knowledge and expertise. It is often used

¥

as a main criterion in attributing intelligence to some entity. The role of learning as a basis
for intelligent behaviour has long been recognized by Artificial Intclligence researchers.

§incb the 1950’s computers ﬁave been used to model learning theories and algorithms. This

N

has created the (fledgling) science of machine learning. .

The efforts made in learning rescarch can be divided into thre¢ main categorics,” here

ordered accordiné to their emergence historically as a center of, focus {Carbonell1983}:

1. Cognitive simulation: The use of the computer as a simulation tool to investigate
human learning methods. This is also known as the psychological approach. The coniputcr’su

modelling capabilities arc used in a soft of txperimental epistcmology. Some [Simont983]

-

consider this area of research in learning tobe the most worthy of pursuit; the goal of under-

. -

standing ourselves has always been one of science’s most driving aspirations. . v

2. Theoretical analysis (the science of intelligence); .Exploration of the space of possible
learning methods. As with any theoretical study, efforts made here are not only intercstia{g
for their own sake, but are justified by providing a framework in whjch all ;such rescarch can
be,ad\;anced: from !l(xe prac;icai to the speculative. -

© s 1

3. Task-oriented studies: The development of learniné systems to improve the perfor-
mance of a given task. This is also called the' engineering approach. Taking (l;c practical
route, many facets of learning are discovered and their problems tackled in the service of a
specific mission. Many larger sys;ems use learr;ing methods toward accomplishing their goal.

For. example, resea"rch in léaminghas been conducted to address the bottleneck in knowledge

-1- .
.. . )
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“acquisition for expert systems, to help develop automatic programming systems, to enable

robots to adapt and refine skills, etc. In short, the aim in this approach is to, transfer the

" .

burden of learning from humans (as instructors) te the computer (as student.)

-

Naturally, the boundaries l}etween these objectives are not entirely wéll-defined.. Suc-

cessful research in one of these areas often has contributed toward advancement in the oth-
crs, It is in the third of these categories that the present thesis has its birth, and it is hope§
that it can help add one more dot of.resolution to the picture presenfed by the body of

knowledge found in'the second category. . ’ X ) -

In the prac;ical sphere, the need for learning systems is particularly evident in systems
that must acquire knowledge in“forms which are only relevant to its own internal representa-
tion of its environment, forms that ar'e alien to human thinking. In such cases, the computer
needs to have the knowledge conform to its model of the world in order to perforr;l its task.
It is tedious and unnccc‘ssary for a human expert to have to compile the information irr this

. »
contrived format when the computer can do the learning itself.

Relatively little effort has beén expended on learning methods that are resistant to noise

: - - . . . .
or that can learn from uncertain or incomplete information [Dietterich1983]. These aspects
arc often ignored, rendering the problem into a more tractable and ideal form, in ordér to

crcate a clearer theory on learning-errors being considered a degenerate case. Yet this is
ate e
1

preciscly the sort of environment the real world presents. Undoubtedly, humans learn under
such conditions, often having to unlearn some things. If a computer is to learn in this same

real world, it also must be capable of dealing with these difficulties.

This thesis attempts to address these problems in its application to, an Automatic
L]

Speech Recognition (ASR) System designed to be developed and operaté in the real-world.

In this system noise comes through the data from noise (as the word is most commonly

N

e




meant) and human errors, and incomplefe informatiod is inherent-in the developmental

i

npp'rqach to the speech recognition problem that this system is applied to.
. ‘ E .
- The program described here takes examples of phonemes from acoustic cues measured
. .

on sounds from the real world and attempts to generalize over them —a form of learning-- in-

order to characterize a class of sounds over a yider spectrum than that presented by the indi- .
b} . .

vidual observations. These representations of the world of specch arc relevant only to the <

s -

ASR. For a human expért, to have to do the learning described here is unwarranted, possibly

) i EY

less accurate and certainly less cfficient. The program must provide generalizations for
. L |

several classes that aresas discriminant as possible, must identify plausible errors, and demar-

1

cate arcas where discrimination remains unclear.
LY

& » ” - ’

] ’ Chapter 2 gives an overview of maching learning with particular emphasis on lcarning/ &

from examples, as well as a formalism for dealing with non-monotonic logic. Chapter 3 -
N 2N ° .

> n

.. describes the ASR systerny to which this thesis is leplicd and explains the nature; of the data

and the goals of learning in this context, Chapter 4 analyses previous work on learning for *

this ASR system. Chapter 5 describes the structure and workings of the learning method pro-

) posed for this thesis. Chapter 6 discusses\sgcsi_fiyproblems encountered agd their solutions,
o ! ' , ,
and chapter 7 concludes with a description of tests, evaluation_ of rcsults and suggestions for v \‘
A ' . ‘ \\ ~
further work. Appendix A“provides an abridged listing of some of the /i'csults obtained for
i ASR, and Appendix B provides an abridged listing of results obtaificd from a simpler learn- -
LI s * S ~
* ing pfoblem. ) e . - .
. . . = :‘
- p :
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Chapter 2.
An overview of machine learning

N a{ and non-monotonic Ioglc.

-

Tl
In order to provide points of reference ang familiarize the reader with the nomenclature
-“ .
used in lhis‘lhcsis, this chapter will review x,nachine learning, giving specific emphasis’on
lcarning from examples on the theory and issues relevant to this thesis. As well, non-

monotonic logic ig discussed (since handling falsc assertions is an important aspect of this

work) along with a method for dcaling with it.

As was mentioned in the introduction, learning is the method by which we acquire

2.1 Maehine learning definition.

/ ' “

Knowledge. Machine learning is that subset of A.L rescarch that s concerned with computa.
’ N

tional approaches to the problem. Simon [Simon1983] defines it thus: "Learning denotes

changes in the system that are adaptive in the sense that they enable the system to do thé

same task or tasks drawn from the same population more efficiently and more effectively the

next time.” This definition presents us with the idea of learning in a more tractable form in
‘“
terms of computing and with it we can rtcognize lcamj%g systems as those whose perfor-
\

mance improves over time. However, it does not describe what learning consists of or how it |

¢ [

is'accomplished. ,
.

The central paradigm for most learning is inductive inference. The inductive principlesis

the form of reasoning that allows the formation of generalities expressing a concept from indi-

vidual examples of it. As was recognized by the early Greek philosophers loné aéo [Michal-

skil983], it is the mélhoq by which we come to know the primary p’remises of the world about

- i

us. An example best illustrates: .

' M
’ 0 ;

‘3

Vit
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If after the observations: Socrates is Greek, Plato is Greek, Aristotle is Greek, and that
[}

v

Socrates, Plato, and Aristotle, are philosophers, are made, the asscrtion is made that; All

“

philosophers are Greek, then this last is said to have been arrived at by induction, 4

Induction as a rigorous formalism does have its problems % however, lcaving the deeper
problems of empiricism to the philosophers, we are concerned only that. induction # a practi-
cal method and its workings can be modelled on a machine.

2.2 Learning Space description.

Although the various extant learning systems differ widely in‘a[')proach, expression, and
application, some common aspects can be uscd as dimensjons to describe a space of learning.
This space can be used to situate, compare and analyse learning systems. Below are three
such dimpI]Sions for all lcérning systems and a description of important points found on cach

[Dieterrich1983], [Carbonell1983]. Other aspects of learning that are less commonly applica-

ble but are nevertheless relevant to this work will also be explored. :

»

NG
2.2.1 Methods of acquiring knowledge.

Points along this dimension refer to gencral methods of acquiring knowledge. They are
here ordered in increasing independence (one might say intelligence) of the learning system.
This is to say an increasing amount of inference is used, coupled with a decreasing dtpen-

dence on a teacher.

2.2.1.1 Rote learning.

This is akin to memorization for humans or direct programming for computers. All
, - ®
information is directly assimilated without translation to another form, nor is any inference or

analysis performed. A computer that js simply acquiring information (e.g. a program) can be

L]
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’ said to be learning; however, this is a degenerate form. The only effort expended on its part
- , P
is that of storage; nevertheless, an knowledge is assimilated. .
' P .

¥

2.2.1.2 Learning from instruction,

Here theknowledge is presented directly as well, but only from a higher level of abstrac-

tion, so that the Igarner must translate the information into its own internal representation.

This is the form of learning most people associate with the education process.

2.2.1.3 Learning by analogy.

In this form of lcarning, new knowledge is gained by adapting existing knowledge (of

skills, concepts etc.) that is similar to that of the present goal. Sec [Carbonell1983a] for

°

example.

ey
-~

2.2.1.4 Learning from examples. .

This arca of learning is the most extensively explored. Examples and counterexamples
of a concept are provided ﬁo the learner so that it may form a generalization. This is the

method adopted in this thesis. It is reviewed in greater detail below.

2.2.1.5 Learning by doing.

Learning in this case involves some procedure that is successively improved based on

~
W

experience.  Applications include learning of heuristics, game playing, robot control. ‘.

\

2.2.1.6 Learning from observation and discovery.

13

In this method, inductive infe;ince is made without a teacher. The learner assimilates

knowledge (classifying to form taxonomies, forming theories, etc.) by simply obse;'ving its

~a
L
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environment or by actively experimenting with it.

< . '
2.2.2 Knowledge .ﬁepresentatlon.
Naturally closely linked to the goal of the learning system, this dimension classifics '
learning systems according to the form in which knowledge is expressed. Representations
‘ a
commonly used inclyde: ’
Parameters in algebraic cxpr?:ssions
Decision trecs
Formal Grammars
Production Rules (of particular relevance to this thesis) )
Formal logic-based expressions
Graphs and networks - ‘
Frames and Schemes
Computer programs and other procedural encodings
Taxonomies

Multiple representations. oo

[Carbonell1983).

2.2.3 Domain of application.

N

Tt

Learning systems can be classified by the domain to which they are applied, Systems

can range from being generally applicable, to being inextricably linked to tasks in spccific

o ¥ -

S ( . . ,
applications such,as, game plziymg, medical diagnosis, natural language processing, speech

recognifion, and so on. -The list of domains to which lcarning methods have béen and.are

being applied is long and growing. ' ‘ .

B . ooy R U T -, . . -
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* [Michalski1983a] for example. - ,

2.3 Learning as search.

As with most ‘A 1. endeavors, the role search plays in learning is an important one. In
- \

fact, the entire process of inductive’leaming can be viewed as a state space search [Michal-

¥

5ki1983]. Observatignal statements (the initial state), expressed in some formalism, are com-
bined or transformed by the application of operators to create inductive assertions, which can
then be modified similarly to gp€ate new assertions. Opcrators anc} stageme;xt's to which to
apply them are chosen in a directed manner according to some control strategy. Processing
continugs until a goal statc is rcached (a set of gencral inductive assertions), which implies
the observations, conforms to the criteria specific to the particular learning task, and maxim-

izes some preference criterion.
L]

This association with the more familiar theory of search provides a background on

~
a

which processing methods of ]caming systems can be characterized and compared.

[}

¢

2.4 Learning from experience.

This general labél of inductive learning covers the last three methods described above.

o -
*

Learning from examples can be viewed as a subset of this larger task. The entire task of

-

knowledge acquisition is here divided into three main operations:

L. Clustering . -
2, Characrerf'zan'on and

3. (Stomge/indexing. ' -

¥

. The object of .clustering is ‘to identify observations as belonging to a certain class.

Given only a description, the learner must come to recognize the observation as an instance

of some specific concept. Naturally, any such classification represents ‘a hypothesis. Some

o .

advances in this area are found in the Conceptual Clustering method by Michalski and Stepp

e

. v
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Characterizafion is that part of the'problem involving the formulation of general descrip-,

tions ‘of the concepts to be learned. Having clustered the observations into classes, the
A
learner must generalize them to create definitions for each class.

v
.

Storage and indexing involve the organizdtion of the new knowledge for cfficient reten-

tion and retrieval. This is particularly important Tn systems where the learning material cov-
¢

ers a big space:

2.4.1 Learning from examples. * Yd
. /’

« This type of learning is a degenerate form of learning from experience. Ip this case, the
clustering portion of the learning task is accomplished by the teacher, who preclassifies the

observations. Typically, systems performing this type of learning cover only a relatively small
{ . ‘ A

. set of con[cepts and the storage/indexing task is trivial. The remaining task then, that of char-
)

N 4 .
acterization, is the central endeavor of learning from examples.

The problem is most simply stated as follows: Given a set of positive and possibly nega-
tive examples of some concepts, the goal is to generate descriptions for cach concept that

cover all of the positive examples and none of the negative examples.

- +

- £y

A positive example is one that describes an instance of a given concept, and is denoted

thus: -

. an> A

o

' ' ’ (A . .
where observation ‘a’ is an instance of class ‘A’. A negative cxample is one that describes an

instance of something other than a given concept. i.e.:

.

- ’ . bou> ~A o ' ' '

s

»
’

This notation also applies to generalizations, which are not ‘instances’ of a concept, but

wl{ése descriptions can also be said' to fall within a concept.
L5 .

*

hd .
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» “

The first constraint in the description of the goal above, that of complete coverage of

» ;

positive cxamples for a concept, is called the completeness condition. The second-no cover-

age of negative examples— is called the consistency condition.

v

In the rexg‘aindcr of this work, the terms ‘example’ and ‘observation’ are considered

.
o

, synonymous, likéwise the terms ‘concept’ and ‘class’.

«

.

During the course of learning, operations are applied to observations and other asser-
tions created during learning. Thesc operations create new assertions which can be con-

sidered more or less general than others. This is to say that fearning is achieved in a space

. where a partial ordering based on ‘relative generality exists. Such a relation is denoted thus

[

g [Michalski1983): " ' o [

a|<b, ,

mcaning that assertion ‘a’ can be generalized to, or is less general than assertion ‘b’. It fol-

. lows that ‘b’ is more general than ‘a’. Conversely,
\ - (
<+ b |> a,

- meaning that assertion ‘b’ can be specialized to, or is more general than assertion ‘a’. /
- ‘ . A . ) . ) [ /
The issues central to learning from examples are those of representation of knowledge,

) )
' type of concept descriptions sought, methods of generalization, and search controk. Thése /

€ .
and other issucs are discussed below. - . /

2.4.2 Representation of knowledge. /

v
)

¥

3

‘

i

A

2.4.2.1 Representation language ‘ .

£y

Of critical importance to the learning task is the choice of representation ianguage in

. .

. ‘ which observations and generalizations are expressed. Naturally the choice/i’s) dictated by)fhe
« /

nature of the learning task. It is important that the language is rich eno{gh to be capable of

[ “ . -

W, -~
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ea/siy expressing all the assertions that will be necessary, and be able to do so’in sufficient

/efetail to apprehend the crucial features. For example, while attribute descriptions (descrip-
7 tions specifying global properties of an objectj can be sufficiently captured.by probositional
logic or a simple'cx;ex}sion thereof, str\—lc‘tural descriptions (descriptions of composite struc-
tures cons'isting of various componentf) must be capable of describing relations between com-
ponents and therefore need the more expressive power of prcdicaiz' logic or some similar

form. However, the language chosen shmy not be so rich as to include irrelevant detail.

The scope of allowed forms and the modes of inference must be elearly delincated.

As was shown above in Section 2.2.2, the forms aFC\f{gricd and provide a key for classi-
fying learning systems. One of the most often used forms is the predicate calculus, or some
subset or extension thereof adapted specifically f6r use in inductive systems. It is chosen for

AN .
its expressiveness and clear syntax and semantics. Such a form, ‘annotated predicate cal-
«

culus’ (APC) [Michalskil983], is used below to describe. somé common generalization rules.

Typically, assertions in learning arc described by.conjunctions and disjunctions of descriptors.
For example, the description of an apple might be expressed as:

} .

(shape(object) =~ spherical A color(object) = green A tastg(object) = sour) V
(shape(object) = spherical A color(object) = red A taste(object) = sweet) V
(shape(object) = spherical A color(object) = brown A’ texture(object) = wrinkled)

2.4.2.2 Descriptors

The descriptors are those observable features and mcasures of the examples usedfor
learning. These are selected by the teacher. The choice of descriptors (itsclf an integral part

of the learning task) should naturally be based upbn their relevance to the subject of Icarning.

Learning is conducted in the space defined by these descriptors. The descriptors them-
selves have attributes’ (type, domdin, interrelationslfips with others, etc.), the nature of which

can be exploited to constrain the description space and define what movements may be made

in it. In other words, the learning system can be tailored according to the specific nature of

—

v

- - o

-
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the learning task through its expression in the descriptors and their peculiarities. This is what
i ¢ v J

Michalski [Michalski1983] calls a part of the problem' backg}owd'infonnation—a set of

assumptions and constraints imposed on the observational statements and generated candi- .

date inductive assertions, and any relevant problem domain knowledge. As well as having
influence in the exp;cssion of descriptors, such problem background information affects the
. forms of generalization and search iﬂtrol. Problem background knowledke fs one of the

components of the definition of Micha

[ [} 1
\ .
With respect to the relevance of descriptors, three types of learning can be delineated:

»

1. Learning with completely relevant descriptors; The descriptors capture the essential

ki’s general paradigm for inductive inference.

i

propertics ‘of the objects of learning. Only the information necessary to characterize the -

.
a

desired concepts is available. . ‘ . -

2. Learning with partially relevant descriptors; Observations include redundant or
et

o irrclevant information along with relevant information. The irrelevant information muddlcs '
. : \

the inductive process. For example, when learning how to distinguish between cars and bicy-

L

cles, information in the examples about weight and number of wheels is relevant. Informa-
tion about color and age of vehicles can only confuse the learner. The learner’s task in this

~case-is to determine the relevant information and to carry on induction with that subset of the

*

-~

input.

3. Learning with indirectly relevant descriptors; In this case the observations contain no

descriptors immediately relevant to the learning task. However, relevant information can be -,

, V

derived from some of the initial data. As & simple vexample, if speed is a relevant descriptor

to some concept but is unavailable, and distance and time are not directly relevant, but are
o

- mevertheless provided, the speed might be computed.

This distinction of learning based on relevance of des.c’riptors defines the premises for

¢ ‘ two forms of induction by which learning systems are characterized. In the first, selective

’ \

.
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induction, the information used to characterize the concept is found in the observations.

Such systems must deal with the problem of selecting the relevant information. See [Quin-

1an1983] for instance.

In the second, constructive induction, information in the observation is transformed,
v o \

creating new descriptors and thereby altering the representation of the learning space.

~

. - [Lenat1983] is an example.

-

1

2.4.2.3 Domain and type of descriptors.

The domain is the set of all possible values a'descriptor can adopt. With information

. about the domain of descriptors, a learning system can be constrained to operate only within
. ¢ (
this bounded space.

. '

The structure of the information carried by a descriptor, as is given by its type, i§ useful

\ information to a learning system because it determines what operators can be applied to the
descriptor. Here we cover three basic types: a )

7’

.

~ 1. Nominal descriprors:

. -~ Il
5 The values of these are independent symbols or names. There is'no structure organizing
L) .

s

4

them. For example: Predicates and any n-ary function whose range is an unordercd sct such

g
as Name(person) or Haircolor(person), etc.
' K
. 2. Linear descriptors.
" Y . Values of these are organized .in a totally ordered fashion. For example, age, tempera-

v \‘ L * . ’

ture, and weight are linear descriptors. # .

3. Structured descriptors.
' Values of such descriptors are organized as tree oriented graphs that capture the pro- ’
: -1 '
. ‘ ' ~

“ . -

. : : . 4
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perty of relative generality between values, That is, parent nodes are more general than their , P

o

. -

children nodes. For example, for the descriptor "place”, we could have "Canada” as a parent

[y

node and the names of the ten provinces and two territories as its children, nodes.

.

2.4.2.4 Other constraints ' 3

Many other constraints on descriptors can be imposed, depending on the problem task.

i

Here is a brief description of three common constraints.

1. Interdependence among values.

Q

This can oecur when one descriptor specifies a state and another characterizes that

state. For some values of the first descriptor, the second may be redundant, irrelevant, or

»

. contradictory. For example, if we are trying to distinguish many types of faces, then when

_—

the descriptor Hair-length(face) takes on the value O or ‘beardless’, then the descriptor Hair- . :
. . :
color is irrclevant.

.
"’ - .

2. Properties of descriptors.
, , ,
Particularly with descriptors that describe relations among objects, there may exist cer- \1
tain general properties such as symmetry, tr;msitivity, etc. The reflexivity of the relation | ﬂ
sibling-of, or the transitivity of the relation heavier-than are examples of such ge‘ fal proper- K |

s tics.

1

3. Interrelationships among descriptors.

\ Specific to the problem, some special relationships mray exist between descriptors to

constrain their values. For example,'if the learning task involves insects, theJ following might :

be expressed;

\

RN N

for évery P, number-of-legs(P) > numbex:-oﬁbod;}-gbgments(P)

.
Y

n - o
s pn \ )

! . - - . .
v
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2.4.2.5 Descriptions Sought.

»
The goal of the learning system is to produ¢e some form of characterization of the con-

o '
cepts presented to it. The form ofl}hcse descriptions, usually dictated by the use to which
' ¢t "‘:/ ’

they will be put, provides another classification by which learning can be described.

1. A Characteristic description is intended to describe a class of objects so that they can

be distinguished from -all other possible classes. For example, the characteristic description

.

of apples would discriminate any apple from all things that are not apples. Such a description

- is typically expressed as a /ﬁmjunctipn of basic propertics common to all (known) objects in

the class. A Maximal Conjunctive Generalization (MCG) [Hayes-Roth1983}is the longest

such expression. That is, it gives the most descriptive account of the class, identifying all the

i

properties that hold for every member of the class.

A"
2. A Discriminant description destribes a class in the context of a fixed set of classes.,
“
The characterizations need only state the properties that are sufficient to distinguish members
of one class from the rest. The Minimal Discriminant Description is the shortest such

description. It provides the minimum information necessary for an object to be recognized as

-

. ) Ce .
a member of one class and not any other. Such descriptions arec commonly represented as

conjunctive expressions or disjunctions of conjunctive expressions.

3. Other more complex types of descriptions are learned through more powerful induc-
, ‘ - . ~ rge
tive methods that accomplish descriptive generalization {Lenat1983]. For instante, a Taxo-

nomic description is a structured description of a class that is partitiongd into subclasscs,

Naturally, the examples in learning tasks that attempt to determine a taxonomy do 10t neces-

sarily belong to a single class. Taxonomies can be flat or hicrarchic:{l, and the'.ir descriptions
are fundamentally disjunctive. J ,

. An important distinction between learning systems addresses the issue of whc‘t-hcr thefé
is only one concept for which a description is sought, or whether the Icaft;ing systcn: is

¢ A}
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v

simultancously acquiring several concepts.

In single concept acquisition, one can distinguish two forms based on the data available.
In the first, only positive examples are presented to the learner. Naturally, in this case the
consistency constraint does not apply. The major problem however, is that evidence from
cxampleé'cannot pro'vidc any ndication of overgeneralization. Constraints on generalizations
must be provided to the program as problem domain knowledge or in terms of the forms of
the géncralizations (c.g., where l\gCG is the goal.) In the second form we distinguish hc;re,
negative examples, also known as countercxamples, are also provided to the learncr. Such
situations provide means of curbing overgeneralizations by enforcing consistency. Should a
generalization be made that is so wide as to enc'ompass a ncfative example, it is an overgen-
cralization. Of particular interest is the variety of counterexample known as a near miss
[Winston1975) This is an example that just barely fails because of some s.matll variation in

)

the description. Such counterexamples provide very clear constraints during the generaliza-

tion process by demonstrating very specific distinctions.

.~

Systems learning multiple concepts naturally have both positive and negative examples
available,'as a positive example in one class may represent a nf:gative example in another.
This is only the case, however, if the classes are mutually disjoint. Some leamiﬂg problems
have concepts that overlap, where an c:bservzftion can be a member of one or more classes.
For example, if the subject of learning involves the distinction of mechanical difficulties in
cars, and thc observational examples consist of lists of symptoms such as black smoke, no
ignition etc., then it is certainly possible for a car to have several thing§ wrong with it, and in
such a case one would expect the symptoms to be consistent with all tohe problems involved.

In cases of overlapping classes, the consistency constraint must be relaxed. o

* .\ . }‘p
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2.4.3 Generalization Rules. . ' g

The following is a short description of some of the common gencralization rules found
in inductive learning systems. In the characterization'of ‘learning as a statc space scarch, such

inference rules are considered to be the operators that transform the current state into the

next. These inference rules can be divided into three types:

-

<

cp o

1. Generalization rules that transform descriptions into more general descriptions.
These new descriptions imply the des¢riptions from \\@ch they were derived, e.g.
Y if ¢ > K and f 12 K get transformed into g ::> K by a generalization rule,

theng — cand g — f. ¢

2. Specialization rules that perform the opposite transformation, gencrating logical

»

- o consequences (more specific descriptions) from general descriptions.
\
v “ N
3. Reformation rules that transform descriptions into other logically equivalent ones,
- ¢ .
Specialization and réeformation rules consist of the familiar deductive inferences. They
L d
are truth preserving; if sorge description is true, then its specialization or transformation is
S0 .
, true as well. However, gncralization rules, as a consequence of induction, arc falsity

+ H
preserving; If a description is false, then its generalization is false also. The reverse--if the
~

generalization is false, then the original descriptiox{ is false--does not hold. For example, in
deduction the 'fo.llowing is truth preserving: All men are mortal; Socrates is a man; therefore

Socrates is mortdl, In contrast, the induction "Socrates is Greek; Plato is Greek; Descartes

is Greek; so all philosophers are Greek” is falsity preserving; bacause the third obscrvation is

false, so nece‘ﬁarily is the generalization-based on it. To illustrate that the reverse does not

3

hold, i{ this generalization were based only on the first two observations, and was found to be

.
A3

false, this would not discredit those observations. To say that “all philosophers are Greek" is

false does not imply that "Socrates is Greek” or "Plato is Greek" is falsc.
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ce ) Note that because of the induction, these generalizations may not be true, however they

» . do express an aspgct of plausibility. Assertions created by generalization rules can be com-

4 ! [
) pared to data or tested empirically for validation. The search for the best correct assertions

created with these rules constitutes the core of the learning process.
Reformation rules are used in constructive generalization methods, and will not be
¢
covered here. As well, specialization rules will not'be covered explicitly, as they can H)e
A

Py

viewed as the reverse of generalization rules and can be found in standard texts on logic.

Only selective generalization rules usced for concept acquisition are described below. We
A

:

"
further restrict the scope by cxamining only generalization rules that transform one or more 1 .
»

.

statements into a single more gencral statement.

-

In concept acquisition, the term ‘more gencral’ has a simple set-theoretic interpretation:
2

’
a dcséliption is more general if it is satisfied by a laiger number of objects. ’ i

The language uscd below to express the rules is taken from the Annotated Predicate

.

Calculus (APC) described by Michalski [Michalskil983]. The language conforms to all the

[

notation used so far in this thesis and its interpretation ought to be self evident.

2.4.3.1 Rules.

1. Dropping Condition rule. .
CxAS:>K|<Ctx::>K .

¢ 4 .
‘ where K is a class, Cix is some description (here meant to denote context), and S is an arbi-
oo ar);«‘prcc!icatc or logical expression. .
. ¢ This rule (the most commonly foundj states that a description can bl generalized by‘ v
., removing a conjunctively linked expression. For example, animal ::> person- is a gen- &
° N ) ersization of  animial and two-legs ::> person. ’ |
° ° )
v, ’ , ’ o <. - > -

PRV AN SUUR VPR RN & DYSVIFS S S L P




NTVATRSURL T S TNT TR M PO T G Oy RO R YRR

- D

-19 -

2. Adding Alternative rule.

Ctx1 > K |< Ctx1 VCix2 ::> K

-

— A description can be generalized by adding an alternative (using disjunction). For cxam-
}

ple, apples can be round and red or green in color which could be expressed (allowing inter-

nal disjunction) as
N

(shape = round) and (color = red) ::> apple
I< -

(shape = round) and (color = red or green) ::> apple

. Important special cases of this rule involve the extension of the scope of values for one

descriptor as additions of alternatives. These take on different forms depending on the type

of the descriptor whose scope is extended. "

2a. Extending Reference rule.

Ctx A [L=R1] ::> K |< Cix A [L=R2] ::> K
where R1 C R2 C Dom(L). Dom(L) is the domain of L. L is a term that acts as descriptor
when it adopts values, and the sets R1 and R2 contain values L can adopt (to satisfy member-

ship in K). R1 and R2 are called rcferences. A description can be generalized by enlarging

the reference of a descriptor.

-

JIn particular, if in this case R2 = Dom(L), then the descriptor [L=Dom(L)] is always

\ /

true and can therefore be deleted. Under these circumstances, this rule is the same as the

dropping condition rule.

2b. Closing Interval rule. ‘ . Ps

‘ Ctx A[L=a] :> K

) < Ctx A[L#a..b] ::> K
‘ Ctx A[L=b] ::> K

where L is an ordered linear descriptor and a and b are values in its domain. If two descrip-

t

L3
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tions differ only in the value of one linear descriptor, then they can be generalized to a

description where the reference of the descriptor in question is an interval linking the values.
c.g.  wheels=4 A doors=2 ::> car

. - < wheels=4 A doors=[2.%] ::> car
. «  whiels=4 A doors=4 ::> car
9

2c. Climbing Generalization Tree rule.

Ctx A [L=a] :> K )

Ctx A [L=b] ::> K
. . < Ctx A[L=s] :> K

Cix A [L=i] :> K

where L is a structured descriptor and s is the nearest ancestor to nodes a, b, ..., i in the gen-

’

eralization tree L represents. Naturally, the rule only applies to descriptions with such

-

— -aescriptors. .
4
c.g. scason=winter A site=Montreal ::> cold-place secason=winter A
scason=winter A site=Trois-Rivieres ::> cold-place |<  site=Quebec-province ::>
scason=winter Y\ site=Quebec-city ::> cold-place cold-place

y .
v

AN

3. Turning Conjunction into Disjunction rule.
FIAF2:>K |[< FIVF2 > K
- where F1 and F2 are arbitrary descriptions. A description can be gerieralized by changing a

conjunction to a disjunction. ' B

4. Inductive resolution rule.

o PAF1:>K .
= £ Fl1VF2:>K
’ ~PAF2:>K : ’

where P is some predicate and F1 and F2 are arbitrary descriptions. This rule is faken from

the resolution principle of deductive logic by interpreting formulas as concept descriptions.

pM
.
.

\ - ; . o~ .
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For example, d

/""\j °

< refreshing V relaxing 1> swimming-;;ool

cold A refreshing ::> swimming-pool

hot A relaxing ::> swimming-pool

\

5. Extension Against rule. ’ .

Ctx1 A [L=R1] ::> K
< [L#R2] ::> K

Cx2 A [L'=R2] u>~K
where R1 and R2 are disjoint sets. Given a positive example of a concept with a descriptor
taking values from one set, and a negative example with the same descriptor mkin.g values
from a second disjoint set, the generalization describing objects with this same descriptor not
having any values from the second set can be made (generalization of the class of the positive
example.) For instance, .

poor A health=good ::> happy - a

< healthzbad ::> happy ’
rich A health=bad ::> ~happy

¢

This rule is useful in systems that try to determine discriminant dcscriiﬂions (sce Section
2.4.2.5 above) for it provides a single criterion by which an dbject can be identified as being a

member of a certain class or not.

[
-

. 2.4.4 Search through a description space

Despite the constraints on-the learning description space incurred from representation

of the learning problem, the space of possible descriptions in a concept acquisition task usu-
o

ally remains extremely large, and the attaipment of a goa;l description through the successive

[}
~ ¢

application of operators on states in this space must be conducted in an organized manner.

’

The directed exploration of this space then is a form of search, and some of the methods and
issues involved with searching as applied to inductive learning are reviewed below. Note that

many of the different aspects investigated below ar;: related or ck;scly linked. For example,

o
Ll - .
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here is a strong association between data-driven methods and incremental learning.

2.4.4.1 Dlrec'tion of search

As?vc- have mentioned, descriptors of concepts are partially ordered according to rela-

tive generality. This brdering' implies three basic approaches to goal attainment, identified by

-

th(e dirﬁtions taken to achieve it.

.

. ( 1. General to Specific.

Methods -working in this direction start with (overly) general descriptions and employ

specialization rules to attain more specific hypotheses about the goal.

S {
2, Specific to General.

In this direction, methods begin with specific descriptions and hypothesize about the

< -~

goal by gcx]cralizing.

3. Bi-directional. ~

\

Methods using a bi-dircctional approach attempt to converge on a goal description from

3
“»
1

both the specific and general sides, thereby defining bounds on the concept.

2.4.4.2 Data'-drive‘n and model-driven methods

¢ ' oL
Inductive learning methods cafi be divided into data-driven and model-driven strategies

* for conducting search. Some systems employ a mixture of both.

; Data-driven methods, also known as bottom-up methods, apply the generalization rules

S . . .

(or specializa\ion or transformation rules) as operators to the input observational statements

in order to generate new hypotheses. Theéy use data to gradually converge on a goal. Exam-

4
ples include Winston’s Blocksworld [Winston 75], Hayes-Roth’s Sprouter, and Vere's Thoth

i
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(see [Dietterich1983)).
- s n
Model-driven methods, also known as top-down methods, supply other information to

the operators. lThe observational statements are used only to test the hypotheses gcncrn'ted.

Such a strategy is also callgd a Generate and Test method. An example of such a system is

Induce [Dietterich1983].

v

A mixed strategy might employ a data driven approach to positive cxamples and a

~

“model driven approach to negative examples. - >

2.4.4.3 Incremental and non-incremental methods

The way tha(\observational data is presented to a learning system characterizes the con-

duct of the search. This can be done non-incrementally (one-shot) or incrementally.
“%

- ¥

rd
\ _Non-incremental methods have all the input examples available at the outset. This

-
~

allows them to use statistical-methods to evaluate competing hypotheses. Such a procedure

o

can perform analysis to identify noise and can orggnizc the data so as to maximize the speed

of convergence during generalization. That is, there is less exploration of bad paths resulting

1

from poorly chosen premises. -
¥ o o
Incremental methods process examples one at a timé. Systems employing this melhod
. \ .
must formulate generalizations consistent with data encountered so far, and must subsc-

v’

quently refine these generalizations after considering additional examples. By their design,

> '
these systems respond well to new information, but the speed of convergerice on the

¢

concept(s) is often dependent on the ordering of the éxamples. Exceptional cases in the data,
. 3

-

X [S
and in particular noisy .data, can result-in the formation of bad premises that make recovery
difficult. In fact, such systems can produce different solutions with dif(crcnt'o;dcrings of the

data.

1
.

These systems most closely resemble human learning, and allow for the use of partially
y .
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learned concepts. For example, if interaction with the teacher is possible, such systems can
present partially learned concepts to show the strengths and weaknesses in the concept forma-
tion, and allow the feacher to guide the choice of new examples and focus attention on poorly

resolved aspects of the concept.

v

2.4.4.4 Search control strategles

The search of the description space where competifxg hypotheses are evaluated and
3 .
! il .
chosen for further exploration is a matter of program control taken from conventional search

procedures. The methods are as varied as there are searching paradigms. A few basic

’

approaches are described here for their relevince to this thesis.

A b'rc;dlh first search will generate a whole set 'of competing hypotheses at each level of

@

" complexity. Such systems have large memory requirements but do not need to backtrack

from unfruitful explorations. Because all‘ paths to a solution are explored to some degree,

"alternative solutions—in the case of learning this reads as alternative descriptions—are more

2

thoroughly examined and therefore more easily attainable. Thus such systems can often learn

e

disjunctive concepts.

Dcp}h first methods consider only one hypothesis at a time, and therefore have less tax-
ing memory requircments than breadth first searches. However, a depth first approach to

scarch might require much backtracking to reco:.'er from dead-end paths. -Allhough rapid

convergence on a concept description satisfying the \goal is possible, such systems can usually -

LS
only learn conjunctive concept descriptions. . .

Both these search methods and theirﬁ'ariations can be exhaustive or they may be guided
to the gbal by heuristic evaluation functions, thereby taking advantage of some of the problem
LI
bn\ckground knowledge. For example Michalski. [Michalskil983] in defining his Star Metho-

- dology of inductive learning describes a Lexicographic Evaluation Function (LEF) as a set of

.
£ . - »
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criterion tolerance pairs that is used to prune hypothéses (inductive assertions) during sem;h.
A score is computed for each criterion, and starting with the first criterion, only the best
v;éoring assertions, or thqsé: within the given tolerance from the i;est, are rclainc'd. Pruning
continues to the next criterion uhtil the number of hypotheses is manageable frém. the scarch-

- ing point of view, Such a function is a formalization of the characteristics desired for a goal
, f
v description. Naturadly, the criteria chosen depend on the purpose of the lcarned descriptions.

The criteria can include the degree of fit between the assertion inductively arrived at and the
observations made, the readability for human interaction considerations, and the costs in

computation and storage. - .

'

2.4.4.5 Intra-operator Search

# What has been covered so far concerning scarch is applied at the level of choices
. t
between whole assertions to generalize with. Scarch can also be involved, at a lower Idvel in

¢

. the process of comparing, contrasting, or combining assertions during generalization. The
variety of descriptors and the methods of combining them also defines a large scarch spacc:
ie. given two assertions, it might be pdssible to generalize them in many ways. Scarc}r at this

. ) - level is called Intra-Operator Search.

-~ M i

~

2.4.4.6 Simplifying Assumptiops
. o~
Most systems that learn from examples employ some simplifying assumptions about the

~~n

~ " lask in order to reduce the problem to a more tractable form. Unfortunately, some of these

assumptions make the systems unusable for tackling real-world problems where the assump-
" tions can not be realistically applied. Some of these assumptions are:

- That .the concept can be described with a set of necessary and sufficient conditions.

That is to say that the concepts are clear cut and can be expressed.

i
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That the concepts do not overlap. ' - - , K
N . / ]
That the concepts do not change over time. . *

» .
That no noise is present in the observations. No "positive” examples are actually nega-
. ) . . _
- : tives, and vice versa. . ~

~

That the ‘language and the descriptors chosen for representation are éufﬁcient for

description of the concept.

\

. L
That a concept can be described with only conjunctive conditions. ‘

o

Using such assumptions, systems can learn inductively with the rather simple complete-

.

ness and consistency conditions. If however, some assumptions must be dropped, these con-

ditions, must be relaxed. For instance, with respect to the completeness condition, the goal of

r;}carning is to create a hypothesis H that tautologically implies the facts F. That is, F is a logi-
PR . [ -~

cal consequence of H, ghat is, H — F is true under all inierpretations. If however, noisefcan

.

possibly be present in the facts, the system must scarch for a hypothesis that weakly implies

the facts. That is, F is only a plausible or partial consequence of H. For examplé, partial ’

-~

hypotheses could account for some but not al the facts.

’
4

5 2.5 Non-monotonic logic.

~ “

Because the system proposed here must éperate in a real worfd environment, it is quite
possiblé that errors might be present in the data. Since the strategy chosen for this program.
is incn.;mental, the crro}s cannot be determined, or even gues'sed at, a priori'without some
knowledge about the problem. Therefore, every datum is at least initially treated as fact, or
rather, is accorded some belief: as premises, all observations are assumed to be true. Upon ,~ '.P
further assimilation of data, evidence may show some beliefs to be péorly fouxvzded'and must

therefore bé disbelieved according to some method of measuring the plausibility of an item in :

-

the data based on the rest of the body of data.

v
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The systent of evidence can also show that some data previously dishelieved is currently

quite likely to be valid. These then must be re-believed. In fact, it is possible for assertions °

- to flip-flop between belief and disbelief many times, based on coinpeting evidence for and

against them that grows over time.

.

The consequences of having basic premises change truth values during the operation can

'

be dire for any system, deductive or inductive. For if the premiscs can change, all the con-
2 w . . ‘
clusions based upon them must also be reevaluated. In such situations, it must be possible to
' propagate the consequences correctly and efficiently, and perhaps to minimize any duplica-

tion of effort in further scarch toward a goal. \

This is to say that the logic employed is non.monotonic. Most rcasoning done by com-

.

puters is monotonic, in the sense that the number of true statements is strictly increasing over

‘time. New statements are added and conclusions are derived from them, but this does not

\

cause any previously known statement to become invalid. In non-monotonic reasoning, this is -
not the case. What was true, or assumed truc through the usc of some default reasoning, can

become or be sh(zwn to be false, and all the rcasoning based upon the belicf in its validity ,
must be undone.

—

There are several methods of dealing with non-monotonicity including fuzzy logic, pro-
babilistic methods, and backtracking search. Because of the incremental ap;nonch adopted
for this systen: adopted in this thesis, a i)acktracking scarch method was chosen as best suitc
to deal with the non-mgnotonic nature of the task. Fuzzy logic and probabilistic methods arc
more often associated with non-'incrcmeqtal approaches. One sp.ccific' scarch mechanism, the
Truth Maintenance System (TMS) [Doyle1979], described briefly below, was adapted to fit

. “the needs of the task defined in this thesis. A description of the task involved in this thesis is

found in chapter 3. Chapker 5 prévides a description of the system and the solution of the

task.
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2%.1 Truth Maintenance System ) 1

t Most often the disbelief of some given premise occurs indirectly because the addition of
' 4 °

new knowledge created a logical conflict in some derived assertion. Upon discovery of a con-
’ -
flict, the system backtracks to the point where the assumption was made that the given prem-

ise is valid, and is able to continue its operation in a logically consisten{ manner by reversing.
. . &

that assumption,

1

For example (fig. 1), if a program were trying to determine a time and place for a
conference for a group of professors based on convenience and economy, it might attempt to
establish the time first, then the place, and then test its solution. Suppose it chose Christmas

as the time for the conference and then.decided that the location would be Montreal based on

)

the distances cach professor would have to travel (and independent of the choice of time). It

might discover.or be told that this solution fails because no one wants to go at Christmas, It
A . ¢

must now retrace its steps to the point where it decided on the time and start recomputing the

time and location.

DR AL

'
-
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_ believed and which disbelieved for the present to be valid. Thus the support li

AR -29- '
the reasoning that was made after the assumption thaf the time be Christmas, even though

this reasoning did not depend on that assumption. It must now go over this same ground in

recomputing a solution.

!
By withdrawing statements based on the order of their presentaiion, rather than respon-

sibility for inconsistency, much effor} is wasted. One method of «dealing with this problem is
called Dependency Directed Ba’cl&racking, where assumptions and inferefices can be inserted

into and withdrawn from a data base directly.

A )
Since the withdrawal or disbelief of statements can have far-reaching conscquences in a
o+

kndwledge base (i.c., all that"was based on withdrawn statecments must be altered), it is useful

4

to record” with each assértion generated its logical ancestry, that is, the list of other state-
. ) ‘ ¢
ments on which it depends for validity. This record provides a method of efficiently .pro-

pagating changes in a non-monotonic system and of implementing dependency directed back-

»
tracking.

[

ThekTMS”provides a method of recording the dependency of assertions and employs
dependency ditected backtracking to resolve conflicts, In TMS, all assertions arc rccordcdﬁas

nodes that are accorded a status value; ‘in’ or ‘out’ indicating current belief or disbelief
b}

respectively in their validity. As well, acconlpa;nying cach node is a support list that rccords

- [y

its logical dependency on the validity accorded to other nodes. That is, the support list
o

describes the derivation of an Qm’mption indicating which of the other as>bl\i?ns must be

\is actually
two lists; An ‘IN list’ naming the~‘other nodes that must be ‘in’ for the current assertjon to
hold, and also an ‘OUT list’ naming those that must be ‘out’ for the current assertion tehold.

i
Premises as well as derived expressions are represented in this way. For example, we may

l haxé the following nodes: N

(1) Time is July (SL () ()) )
) b - - m, )

4 ans
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(2) Weather is sunny (SL () ()) ™ o -

(3) Temperature is hot (SL (1,2) (4))

EY

(4) Place is Antarctica (SL () () : ‘ . ; ,

-

where status, in or-out, of the assertion that it is hot (node 3) depends on nodes 1 and, 2 being
£

in and node 4 being out. As nodes 1, 2 and 4 are premises, they currently have no support,

however this may change as more evidence is provided.

TheMist of nodes necessary for support need not be exhaustive. If only the assertions -
- from which a given infcrence is directly derived are included on the support list, the inference

is indirectly linked to all the rest of the assertions on which it depends.

When an inconsistency is discovered, dependency directed backtracking is invoked, the
4

aim of which is to trace back to premises and find one (or a few) pfemise(s) which when

changed in status, make(s) the conflict disappear. The results of these transitions are pro-
pagated throughout the knowledge base so that it can be in a consistent state. For example, if &
L @

it were in fact the casc that nodes 1, 2 and 3 were believed and we had further:
X . , i

(4) Place is Antarctica (SL () (5)) 1

(5) Prace is Florida (SL () (4))
with node 4 ‘out’ and ;1ode 5 ‘in’, and then the program discovers that it is cold causing a
conflict with.node 3, it ‘migh't then disbelieve that it is July, forcing ‘the disbelief that it is hok
As well, all other assumptions based on its being Julyshavigg nodewl in their ‘in’ lists, would
be forced ‘out’ as well. Those based on node 5 and/or nodg 2 ;nd unrelated to node 1 would

remain intact; the reasoning.involved with them need not be undone and recomputed, only

L .
-

that on which the contradiction depended would have to be altered.
4 . . ' .
_ Inferences that have gone ‘out’ are retained in case-some new information should con- Ca
- 5 ’

¢

fifct with whatever information;forceé them to go out in the first place. In this-case, should

the assertion that fercgd others ‘out’ itself go ‘out’, the others can"lie rebelieved directly

,
- 1
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witliout rederivation.

-TMS is a tool to be used as a consistency watchdog for a parent program operating in a
non-monotonic environment. The creations of assertions based' on the premises are the -
responsibility of the parent program. The validity accorded to the premises is also the

responsibility of the parent program; however, TMS handles all the ncccssary‘changcs in

status of the assumptions.and the consequences thereof when inconsistencies arise.
2

TMS is therefore useful to a learning system where the data is not certain. Although

¢ - .
the logical method is inductive rather than deductive in a learning system, the basic operation
of TMS can be adapted where observational statements are taken as premises, generalizations

are ‘used as derived assertions, and overgeneralizations or bad generalizations represent the

conflicts.

TMS, has been used by Whitehill [Whitehill1980] in lcarning, and the general methods
9 % . '

used by him have been adapted by Gilloux [DeMori1987} and have further cvolved into the

methods pr0pased here. The simple description above of TMS reflects the main paradigms

retained and adapted to this_program, N

bl
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Chapter 3.
» . 0 -
Learning for Speech Recognition

£

3.1 Automatic Speech Recognition.

’;Thc aim of automatic speech recognition is to be able to recognize the speech of many
speakers and many speaking styles and to do so quickly and effectively. Recognition of a
large vocabulary. in a multi-spcaker cnvironment is a very complex task. The approach taken
by the Automatic Specch Recognition system (ASR) by DeMori et al. [DeMoril987] to which

this learning program is directed, is to create'a knowledge based procedural network.

[
" In a procedural network applied to specch recognition, procedures are associated with

transitions between states of a network. A procedure computes the similarity of an input sig-
nal to the clements of a sct of prototypes. In a knowledge based approach, speech signals are
described ag sets of acoustic properties. A knowledge based approach is so named because

the procedures arc infused with knowledge about recognition (phonetic knowledge) in order

b 4
% . “ . . '
. toachieve better reSults. Phonetic knowledge can include algorithms to extract acoustic cues

from input waveforms and contextual constraints, for cxamplé. In this ASR, the procedures
S .

arc perceptual plans that must be capable of implementing various recognition strategies that

dircct the focus of attention based on speaking styles. Speaking styles represent groups of

» differing .pronunciation methods. Speakers of different mother tongues often speak in dif-
ferent ‘styles’. The organization of these plans into a procedural network, as an Augmented

~

Transition Network for instance, and the-nature,of its operation, e.g. data-driven- or model-

driven, arc issues of ASR at a level well beyond the scope of this thesis.

, The perceptual plans themselves, for fast execution during recognition, must be well

~ +

. '

organized. In this ASR the organization is a Network of Action Hierarchies that operate

a

‘ It s
according to an elaboration-decision paradigm. An elaboration phase consjsts of the execu-

. s ‘ . . ‘ . . ! B,
tion of procedures that extract information about the signal under examination.' In a de¢ision
) E =32
' " .
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.

phase, signal descriptions constructed from the elaboration are used to control the cho)icc of
actions. These actions either generate phonemic hypotheses, or instigate further elaboration-

decision cycles. |

Thus during recognition, the system proceeds as follows: An input sﬁgnal is received and
analysis procedures are performed on it to extract acoustic cues. Acoustic cues are measurcs
of features and properties of the input signal. Next, a dccision phase is begun where compet-
ing preconditions of rules are compared to the data descriptions obtained so far. A fuzay
algebra is used to order the candidates of partially matched preconditions. If two or more
preconditions are satis;g”ned with the same degree of confidence, they define an Active Confu-
sion Set. The most similar prccondition to the current data description acts as a rule to
determine the next action to perform. This action is supposed to d;scriminalc best the
m(;xsze;s of the active confusion set, or if there is no confusion, it will produce a hypothesis
proposing a classification of the sound. .Thus cither a hypothesis of the signal is produced, or

1] t
another elaboration-decision cycle begins, where elaboration consists of more signal process-

>

ing and property extraction to sharpen the focus (sce fig. 2). 'I‘hiwccss is repeated as

13

often as needed to generate required hypotheses or until all the choicgs-edicountered in the

cycles are exhausted. This last eventuality indicates that the recognition system nceds to

undergo more development; new procedures mighit be written for a better description of the

' signals during some elaborations, or more learning might be necessary to create a better clas-

_ sification (from which the rules mentioned above are generated).

The generation of the network described for the ASR is intended to be accomplished in
a semiautomatic manner. Although an exbert is ultimately responsible for conceiving percep-
taal plans, he does so with the aid of some high level tools. In particular, a Plan Generating
Expert Sys;teni is used in the development of this A.SR in order to help genesatg the pro-

cedures used in the elaboration phakes. An inductive learning program is used to generate

v
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Figure 2: Elaboratign-Decision cycles.

4 .
;

the rules mentioned in the decision phases/ The design and creation of a system aimed at
/ k4

tackling such a large and complex problex}x can not be achieved directly. Rather, it must

I .
4

evolve through succcésive réﬁnemems.‘/lft fact the entire design §§ viewed as a -planning
* s , .
activity whose goal is that of producing discriminaht descriptions for the phonemes to be
recognized. The classification of descriptions must be learned from experiments (i.e. learne
inductivelhy), and the discrimination ;')ower of a classification can not be predicted; it must be

evaluated experimentally. Refinement of a plan occurs when unacceptable recognition confu-

sions occur. Refinement is the expansion of an action into a more detailed plan.

]

Throughout this development stage, a human (aﬁ expert) interacts with the planning and
lcarninng systems, guiding their operétions accc;rding to his or her know{edge of phonetics. In
the learning system intended for development of the ASR, interaction with the teacher, a?art.
from his chéicc of descriptors and supply of data, takes the form of preii;ninary alignment of

the data and the inierpretation of the resuits of learning for further realization of the system.

The planning and creation of the elaboratio

olving ‘as it does many complex

‘methods, is.bejrond the scope of this thesis and u for its explanation, and so the

~

R R
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4 3.2 The Learning Task. .

A;%himed above in the discussion on decision phases, the learning system must pro-

vide a classification of phonemic hypotheses or active confusion sets. Th it must take

data in the form of sets of acoustic cues (along with the name of the sol

the class) and generalize them. The generalizations are descriptions of a class that represents
.

‘either a specific hypothesis, or a set of classes (active confusion set which might be discrim-

inated through further elaboration). These generalizations then can be interpreted as rules,
where the descriptions act as preconditions, and the classes cach describes act as the actions
(hypotheses or sets requiring futher elaboration). During rpéognilion. cucs taken from the

input signal are compared with these generalizations during the decision phases.-

The point of learning is to summarize the characteristics of specific sounds from several
speakers and speaking styles. If the descriptors--acoustic cues--carry cnough discrimination

power and the examples cover enough of the spectrum chosen, the learning system will pro-

vd

duce recognition rules wherebyﬂ later, unidentified acoustic descriptions can be identificd a6~

<
A

instances of specific classes of sounds.

Full discrimination might not be possibfe, cither because the examples chosen for learn-
ing don’t present enough information, or because the very nature of the cl:csériptors is insuffi-
cient to provide resolution. An example from another domain demonstrates how descriptors
affect resolution: if the learning task involved the discrimination between bicycles and cars,

and the training examples contained only information about their color, resolution would not

S

- be possible. '

v

The possible presence of errors in the data naturally presents further difficultics for
discrimination. Unless they are recognized as such, bad data points can contradict and res-

trict generalizations that might be perfectly valid. Even when promising characterizations are

made via the learning system, they may be refuted during experimentation, particularly when

L]
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"new speaking styles are observed: they may now r&)resent overgeneralizations.

Thus the aim’ of the learning system is to give descriptions of classes that are as general
as possible given the data, and to also give characterizations of those areas where discrimina-
- /

tion is confused. To accomplish this as effectively as possible in a real world environment, it

must also try to identify and deal appropriately with errors in the data.

Faced with results that provide only partial discrimination for some classes, the teacher
(in this casc the cxpert developing the ASR) can either direct further learning by the program
to amend the characterizations, either widening or narrowing them, or he can use the descrip-
tion of the confusion areasr({.c. any specifically delineated confusion between classes, or the
arcas not coveréd by the class generalizations) as the precondition(s) to further elaboration. '
That is, the teacher carr present more detail aimed at clarifying some aspect of the generaliza-
tions, or if such actions appear unpromising, the tcacfmer can decide to use what generaliza-
\ tions exist and to use the characterizations of the confusions to trigger a new step of elabora-
tion. A new claboration would, as mentioned, be created by the expert with the aid of the . .
. GPES. Naturally, for such claboration, new information (most likely from new descriptors J

chosen specifically to resolve the confusion) should be presented to the learning system.

Qs

Since the teacher can decide to augment what has been'learned with more examples,

learning should be conducted incrementally. This implies that the learning program should be
G '

capable of saving and restoring its current state (learned generalizations), so that it may con-

tinue learning without having to reprocess all the data it had previously used.

I

‘ To illustrate by analééy, the task’ of developing thé ASR- with respect to learning may be

) : VA .
viewed as one of recognizing outlines on a badly focussed photograph. If one imagines a -

N

painting depicting several areas of differing colors that have distinct boundaries, this can -
: .

represent the problem space, where the different color areas represent the different classes

s

and characterization involves describing the boundaries on each area. Consider a poorly

. . \
£ . .

. « ~
. . N
5 .
1 L, -
5 B
v d € .
. P Al

. Al N I i R .
L L ST R N N T T P Ao
et A SRR & o KRR it s S B o, TR




P <::nj

-37. }

focused photograph taken of the painting so that the image portrays the painting with general
areas that are clearly of a certain color but whose edges mcld in with the neighbouring color

)

areas. This photograph can represent the learning space at some point in the development of
the system. Lastly, if one now imagines such a photograph as emerging into vicw gradually,
pixel by pixel, and if one cdnsiders that some pixels may be out of place, one creates a men-

. i . . . . ”
tal image of the task of learning in this environment.

The poor focus, fcnding an image ;:f arcas o_f indeterminatc color, is meant to represent
the proble;n of inadqqﬁatc discriminant power of the descriptors. The image cmerging piccé
by picce and never in full detail is meant to convey the incremental way in which the data is
presented to the learning system. The picture is never complete, but more picces of it can
always be additionally revealed--just as moré examples can be added to, an incremental learn-
ing system for better informed descriptions—-to give a more chailed picturc. Indeed, whole
areas of colo; may have been omitted from view and later"brought to light, just as new speak-
ing styles for the same sounds can be later observed. Lastly, in describing the analogy, the

idea of misplaced pixels represents erroneous data or noise.

Although the picture is incomplete and badly focussed, somc areas might still be per-
ceived as quite recognizably belonging to one distinct color. The true boundarics’might not
be distinguishable, but an area within them can reasom{bly be described as a characterization
for a given color. The true boundaries might be guessed at. Such descriptions arc only par-
tially discriminant; Although some of the problem space is now iabclled, there still exist

fuzzy or confusion areas.

&

The problem of erroneous data, here in the form of misplaced pixels, can be dealt with
in the same manner as human perception deals with such situations; if enough of the picture
emerges, a single lone point of one color sitting amongst a multitude of others of another

color becomes more and more obviously contrasting as the picturc emerges and must eventu-

S ', -
. . N P s (B '
; -« * . Ce & ~ a2 ant "t d 'v1§~7 o Lah N
g et e s i e S PR RN e SRR R A et




.38 -

. .

_ally be dismiseed as erroneous from overwhelming evidence and then ignéred. If, howew;m

there are others of the same or different colors nearby to support it, the situation can change,
where the contrasting color points might represent a local fuzzy,area. On more evidence, the
contrasting points might again be simply considered erroneous data. Thus the descriptions

and hypotheses of the picture can change mahy times as the image gradually appears.
\ .

To extend the analogy, the teacher upon being given the learned outlines of the colored
art:a/snow faces two choices; to add more detail to the picture or to take another photograph,
perhaps with another focus detailing some fuzzy arca. These options correspgnd to more

learning and to elaboration in the ASR described here. a

As mentioned above, the data in a knowledge based approach cbnsists of acoustic cues.
Lcaving out the descriptions of what is being measured in ASR and discussions on particular
relevance, we restrict our study of the data to reprcséntation issues in learning. The acoustic

¢ , -
cues are mceasures of the input signal that record either the simple absence or presence of
some featurc or some numg}'ical value associated with a specific instance of some feature
present in the signal. As an example of each type, we have for instance the cue ‘Detection of
a Buzz (abbreviated ‘bz’) as a type of cue that provides description of the signal by its pres-

ence or absence, and ‘Maximum Zero Crossing Density of the Signal’ (abbreviated ‘zx’) which

with some’ specific numerical count describes a signal feature.

Thus the language.necded to describe the instances of examples for learning is in fact

a

quite simple. All that is necessary is a set of attribute-value pairs to describe the features and

the measures made. Those cues whose information consists simply of the presence or

2 -

absence of some feature can also be represented as attribute-value pairs whose range is [0,1].

As'illustration, an example of the data used to test the system looks as follows:

. . " . . .
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(observe *((buzz = 0.099) (resener = 0.092) (npeak = 0.500) (delay = 1.000)
(bzival = 0.117) (mindex = 0.700) (mprofile = 0.021)
(cg_index = 0.800) (index70 = 0.667) (bzcnt = 0.400) (bzmag = 0.336)

(compactness = 0.680)) 'P)
where P is the class that this data is a positive examplé of, and buzz, resener, npeak, and

[y

delay etc. are the cues. )

¢ This consistency in representaticn permits a simple and uniform method of generaliza- )
-/ tion accomplished by the application of a single rule. As all descriptors have as domain a
linear type, the closing interval generalization rule as a special case of the adding alternatiye

~—

rule (see Section 2.4.3.1) is used exclusively to create generalizations. ‘ - N

A full learning example is represented as a conjunction of all its lincar descriptors.
However, as each example represents a sinélc point in the problem shacc, possibly an errome-
ous one, and since the description, although consisting of several conjunctively linked cucs, is
an ipterp'rctati;)n of a single event, cach example is taken as an indivisible whelc and generali-
zatiqn between them involves all the descriptors. That is, no intra-operator scarch is per-
formed to determine which features get generalized. For example, we might have:

, ) (a=1)(b=4)(c=i)+(
A " C(a= = 4., =2,
. @m0 (b= =6 (2=0.1) (b= 4.7) (c = 2.6

'

[

where the conjunctions bejween the descriptors in the observations on the left and in the gen-

eralization on the right

e implieit. Note that this is not quite how the closing interval gen-
eralization rule is expfessed, where generaliza!ion occurs based on the disparity between
observations in only one descriptor (all others being equal). The form of generalization used
here is in fact wider and, although more prone to produce overgeneralizations, ;vhcn coupled
with b}a;ktracking methods and enough data, the scheme can produce valid generalizations.
So in a;'ldition to the.uniformity of representation, the use of each description as an indivisi-

. ble ‘whole simplifies the generalization task evc;n meore By eliminating the nced for scarch

il - -

through the combinatorially explosive sub-space within descriptions.
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Moreover, the domain of the descriptors is known, and can be supplied to the learning

ptogram. Knowledge of the the domain allows the program to deal with oexampleé that are
presented with missing descriptors. The absence of a descriptor is meant to convey ‘don’t
care’ situations where the value associated with the missing descriptor was not observed and

-

is presumably not of any consequence to the observation. In such cases, the pregram can
N -

provide the missing descriptor for the new observation as a generalization covering its entire

- domain. For example,"if the domain of the descriptor ‘a’ is known Yo be [1,5], and the obser-

vation (b =2) (¢ = 3) is presented to the lcarning system, then the program can translate this
pgscwali011 into (a = 1..5) (b = 2) (¢ = 3). Thus, Py expressing that the ‘missing’ descriptor
can take on any value in its domain, the ‘don’t care’ message is preserved and the data is put
into a standardized form for easier and quicker processing. The reverse opératio}l, that of
dropping descriptors (whose interval of values span the entire Jrzinge) from generalized
descriptions can casily be accomplished ad) postprocessing operation in order to express the

[ . - -

learned generalizations as simply as possible.

‘The uniformity of descriptions as ordered sequen\ccs of linear variables permits a view
of them as n-tuples describir;g points (or areas, or spaces) in n-space. Indeed this spatial
representation of the learning task provides a good illustration of its nature. ‘Labelled poipts
appear onc by one in the space, and ~th~r:)ugh7 generalizafion partitions of {hat space are

" ,
described as belonging.to the different clas\ﬁs. Some partition belonging to a class may be

60 many points that are labelled differently from

‘
(4

g
found to be so encompassing as to incl}de«
the class the partition represents, and its boundaries have to be redefined by using fewer, or
perhaps different points of its own class. A two dimensior_xg_x} case is sufficient for illustration

(fig. 3). The graph depicts the learned areas (solid squares) for two classes (circles and trian-

- L)

gfes). The areas are generalizations obtained from the individual points supplied as examples

&

of each class (depicted according to membership}. In the example, the triangle class descrip-

1
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- tion is too general because it includes too many (three in this case) observations from a dif- ‘\/
o ferent class. The triangle class description i‘s therefore made less general (only extending as

far right as the dotted line) by ignoring two observations of its own class, in order to remain

- consistent and within tolerances for error. \
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Figure 3: Graphical depiction of generalization.

.One aspect of the problem well illustrated by this representation is the result o{_ insuffi-
cient information carried by the examples for full discrimination.' If enough information were
present in the¢ data to fﬁlly discriminate lh'er concepts chosen for learning, assuming this is
pos;it;fé and discounting errors, the resulting generalizations would include all points of their
class and the boundaries between them wo;xld be com;:letcly well-defined. This is to say that”

there would exist no overlaps forcing redefinition of the géneralized boundaries and thus leav-

Ve 3

ing some points outside. Given this situation, where enough information is present for full

-

»

% ' - - discrimination, if one now removes one or.morg dimens‘xg(u, i.e. provides less information in
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describing data, then the projections of the learned ideal generalizations into the lesser space :
might now show overlaps. The concepts may well be distinct, bu); with only partial informa-
tion, only partial discrimination may be possible (fig. 4).
Y r
4 : :
. ' §___ cums v Class B . ,
s
Cnp " Class A
» X \
Y L4 '
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z . - ’
I o A - ©
. Figure 4: Overlap caused by loss of dimension. '
¥
‘ 3.3 Sources of noise.

-

Data collected during develophent of the ASR must be collected froth the rehl world.

—~—

. . . ‘
Such data.is never perfect. Therefore the system must be capable of dealing with the pﬂ)b-

lems of noise found therein. .

Data is collected by tape recording a series of individual speakers pronouncing sounds

’

. ‘(letters, numbers, words etc.)\by reading a list chosen to address the class of .sounds for
which a recognition plan is being realized. “The recordings are then analysed arnd measured to

produce the desired descriptions for learning. This same method is used when the ASR is,
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‘being tested for its recognition capacity, however during lear)aing for development of the sys-

tem, the class is supplied with each description. During testing, the system must detertjine

the class if it can.

.

The descriptions obtained by analysing the signal represent real cvents and not interpre-
1

tations, therefore any errors and anomalies existed before the analysis. Such errors thercfore -

result from the speaker, the limitations of the medium used to record the data, and the

method of collecting the data.

As was noted, the approach to dcveloping. the ASR is evolutionary. Perception and
learning can m')t be expected to accomplish the entire task in onc shot. Certain classes are
targeted and cfforts are focussed on their resolution..) Along with a restriction of class during
development, the speaking style must also be restricted. /dhhough the aim of learning is to

generalize for the class, the features chosen for cxtraction might only be capable of suffi-

ciently characterizing sounds spoken in a certain style. Thercfore, at a given stage in develop-

ment, the speaker from whom data is being collected is not*dnly restricted in what is said but

’ *

in how it is said as well. The range of the style might be quitc narrow for some perception

plans. An utterance, although quite distinguishable to the human car as belonging to a cer-

14
tain class, may be quite confusing to the learning system. A poorly spoken cxample (not spo-

ken in a style that is being targeted for recognition) constitutes a ‘mispronhunciation’. This
type of ‘mispronunciation’ represents one of the sources of noisc. Outright mispronuncia-

-~

tions, that is incorrect rcaqdings, also contribute to noise. - .
- L ’

Another possible. source of error is the simple mislabelling and bad placement ‘or sclec-
%

-

fion of data and other such ‘clerical’ errors that are possible in any large data collcction pro-

ject. Although these are usually types of ‘errors that can be screened out, they can be

dealt with in the 5ame way as less tractable errors. e
. \
\ y
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Lastly, noise can be in the form of real noise, as the word-is most familiarly understood.
Stray sounds, background noises, and anomalous sounds produced frc.md\‘, the «ifficulties in
bio-mcct;anical, mechanical and electronjc conveyance of sound mfight find their way onto the
tape and therefore into some description

{
3.4 Summary.

The aspects of a learnjing system demanded by the needs of the ASR described here
involve the prm)’rsion of discriminant descriptions for séveral classes of sounds from generali-
zations of the descriptions of example sounds. These example sounds are relativeiy simply
cxpressed. Becausce of the possibly incompiete nature of the data, and with a view to the
claboration-decision pz;radigm ﬁs‘ed by- the recognition system and its evolutionary develop-
ment, only partially disé‘fimi‘i\ant d;ascriptions“\ might suffice for the construction of the deci-

sion rules of a given cycte. As well, descriptions of confusion areas detailing the boundaries

and the classes involved is also desirable information.

Because the system is designed to grow, gradually assimilating more classes and styles to
recognize, and since the learning program interacts with an expert who can direct more learn-
ing, adding to previously observed data to produce more informed results, the program must

be incremental in approach. It must be capable of saving its current configuration and restor-

ing itsclf for any state.

: v .

The existence of noise in the data implies that the program should try to recognize

errors and have some mechanism for ignoring them.

Lastly as it is meant as a practical tool,: the learning system should accomplish these

goals with reasonable speed and efficacy.
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Chapter 4.

Previous Work.

4.1. Introduction.

The ASR by DeMori et al. [DeMori1987] has already benefited from an inductive learn-
ing pniogram; designed by Michel Gilloux, it also was designed specifically for usc’it.\ this
ASR system. Unfortunately, for reasons described below, its operation was found to be
inadequate. The present thesis is an effort to rectify the problems cncountered by Gilloux's
system. Thus, the present work has been modelled on Gilloux’s work and has evolved from
it. This chapter will briefly describe Gilloux’s work and the problems found therein, thus
providing an introduction to the work addressed in this thesis.

13

4.2. Structure of previous work

The structure of Gilloux’s inductive learning program consists of a network of nodes
constructed dynamically as the program assimilates data. Each node rcpresents an obscrva-
tion or a generalization of two or more observations for a given class, ‘The nodes contain the
description and class of the observation or generalization. In accordance with the nomencla-
ture for the task of generating recognition rules, Gilloux calls these theAclt=hand-side (LHS)
and right-hand-side (RHS) of a node respectively. As the system is intended to operate with
non-monotonic logic, a status field (values: ‘in’ or ‘out’) indicating current belicf or disbelief

of validity of the description is included with each node.

The nodes are linked via pointers that indicate relative generality. These links are kept
in lists called ‘IN’ and ‘OUT’ and are attached to each node. The IN list carries the pointers

that refer to all nodes of the same class as the host node and less gencral. The OUT list

~

points to less general nodes of other classes. A node is less gcr)eral than another if its

»

description is compl'etely contained within the déscription of the ()lher. Thus the IN and
-45-° -
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OUT lists act as the support lists of a TMS that provide the justification for a node’s status.‘ .

1

’YA node is ‘in’ if all the nodes.on its IN list are also ‘in’. This translates as: A generalization
4

is believed only if all the lesser generalizations and observations on which if is based are also
believed. Also, a node is ‘in’ only if all the nodes on its OUT‘lis"_t' are ‘out’. That is, it is

belicved only if all the lesser generalizations and observations of other classes that are encom-

paﬁ&by its description are disbelieved.

Thede links to less general nodes are doubled by providing the opposite link in the less ‘

¢ .

general node to the more gencral node. Each node then also has IS-IN-OF and IS-OUT-OF
lists that point to encompassing generalizations of the same class and of other classes. This

structure provides a direct retrieval method for generalizations without necessitating search.

.

& In order to capturce the possibly imprecise nature of tht data and to provide a frame- ‘

”
-
‘e

work for the data’s expression in the formation of generalizations, each node is also supplied o

» \

with positive and negative cvidence measufes. For clarity, these will be called ‘evidence’ and

”~

}“- ‘conflict’. Fach nodc has a measure of evidence itdicating the number of times it has been .

'

obscerved by the program. In the case of generalization-, the evidence measure consists of the
. & .

sum of the evidence measures for the observations from.which it is generali,rzed. The conflict .

* .

mcasurc for an obscrvatign is always zero; that fowa generalization is'the sumi of the evidence N
4

measures of all the observatibns that arc less gefferal and represent examples from classes =

v

other than the generalization’s own class. . .

With respect to the evidence and conﬂictvmehsureg, the validity.of a generah’zation can BN

o .
. also be determined according.to the weights of support and opposition to a description,

rcgardless of the current status of the ‘nodes involved. As implemented, a node is believed

only if its conflict mdasure is below a certain threshold value and its evidence measure greatly

outwcighs its conflict measure in terms of some predetermined threshold ratio. As long as

o~ .
» i

members of the IN and OUT lists are in accordance, a node gan be believed even _though“2

< O * . .

B
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'

there is observed evidence that refutes the generalization, if that conflict is small enough both ”

absolutely and relatively. Alternately, a node may be disbelicved based on these same criteria

- ’

even though its current TMS state allows for its belief.

]

By this method, incomplete confidence in the data in terms of errors and in discrimina-

tion power can be accounted for in the generalization process. Belief can be accorded to gen-

eralizations even though therc is some (possibly erroneous) small amount of refuting evi-
dence. Disbelief can be accorded to generalizations whose nodes in opposition are all djsbe-

lieved, but whose validity is suspect because of the sheer volume of the opposition or because

s
,

of its unacceptable ratio’to the support. "

. ¢
. {
Aside from the node structure, the only other data structure found in Gilloux's program -

.

is the organization of the network itself, which consists simply of a list of all the nodes placed

El

in reverse order of creation.

4.3. Operation of previous work - i
. N

In accordance with the nature of the task as outlined in chapter 3, Gilloux has designed

5

an incremental inductive lcarnin}; system. Fhe nctwork grows and reaches a.new statc as. '
each observation is presented to it. Thefgencralization method is that described in the previ-
ous chapter, whereby two descfiptions'of he same class are generalized to form one by creat- .

ing intervals from the v tching descriptors.

¢

As they are successively presented to the program, obscrvations are first screened for

1 N

previous occurrence. If the same obsecrvation (same RHS and LHS) already cxists in the net-

1
work, its evidence is simply increased. If the observation is new, it is introduced into the net- -

work as a new node and is compared to the rest of the nodes in the network in order to

establish lﬁ‘ks\and update support and opposition measures (Figures 5 and 6).

-

.
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Procedure LEARNEXAMPLE (description, class)
newnode ;= mémber(description, class, list-of-nodes)
if node ¥ nil then

begin
v evidence(node) := evidence(node) + 1;
for every node N in is-in-of(node) do
UPEVIDENCE(node); ,
for every node N in is-out-of(node) do >
UPCONFLICT(node);
end
clse
ADDNODE(makenode(description, ctass));
end;

I

Figure 5: Gilloux's LEARNEXAMPLE procedure,

Procedure ADDNODE(node); .
‘ for every node N in ligt-of-nodes do  (*list-of-nodes is all nodes in the*) 4
B if RHS(N) = RHS(nqd (*nctwork, globally defined. *)

if (not (mefnber(generalize(LHS(node), LHS(N)), list-of-nodes))) do
ADDN@DE(makenode(generalize(LHS(node), LHS(N))));

e

- else (* RHS(N) # RHS(node) *)
‘ N if equivalent(LHS(N), LHS(node)) then ‘
begin ‘ ¢
¢ makeoutlink(N,node); ' ' -
makeoutlink(node,N); '
end

else I ’ ®
) if moregeneralthan(LHS(N), LHS(node)) then +~ .
. makeoutlmk(N node) .+
. else' .

if moregeneralthan(LHS(node) LHS(N)) then ~ .

makeOL tlmk(node N); , .

end;

|
> ‘ Figure 6: Gilloux’s ADDNODE procedure.

~ ~
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Both of these actions, since they represent ncw ififormation, can cause a change in
status for other nodes;wy being on the OUT list of some node from another class caus-
ing it to be disbelieved (observations arc assumed to be ‘in’), or by providing cnough evidence
to some previously disbelieved node allowing ié'rcbclief (or vice-versa through conflicting evi-

dence). When a node’s status is changed, inconsistencies in the set of belicfs of the nclwgfk
?

Z, . ,

can arise” For example, if a node Njchanges from ‘in’ to ‘out’ in sjatus, other more general ,

ve their status changed to ‘out’. Via the ‘TMS for-
g

nodes from' the same class ought also
malism, the consequences of any change in status for a given node are traced to all the other
nodes dependent on its status. Nedessary changes arc cffected, and their own consequences
are further propagated through the network. In this way, a consistent set of beliefs is main-

tained at all times (Figure 7). ~

€

' Nbte also that when a node is disbelieved, it is rctained in the network. So that if the

N

evidences and the set of beliefs should later allow, it can be rebelieved without rederivation.

When a new node is being added to the network, it is generalized with all other nodes of
the same class (both observations and generalizations), and when this results in previously
unsecen deseriptions, the new anE?alizatiéns are added to the network in exactly the same

‘

way. Naturally this can create further changes and more generalizations (Figure 6).

In this way, Gilloux’.c; program builds up a ncl;vork of nod:is whose current state con-
tains every gencralization (believed or disbelieved) that can be made with the given ob;cn‘/:f-
tions, and it &oes so for eaf:h class. . The current set of beliefs is bascd on the competing cvi-
dence of the observations presented to it. The widest of the believed nodes, (that is the best

generalizations) can be traced .as those that are currently ‘in’ and who are not linked to any

" othgrs of the same class that are more gencral. Thcro#;an be many of these and since the

.
I TP

ogram covers all the generalizations,git is capable of learning disjunctive concepts; that is,

P
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. Procedure TRUTHMAINTAIN(node,status);
" if status = ‘in’ then
bcgin Ty : 7
status(node) := ‘in’; ’
for every node N in is-out-of(node) do
TRU'I'HMAINTAIN(N,out),
U for every.node N in is-in-of(node) do
if status(N) = ‘out’ and ADMISSIBLE(N) then
TRUTHMAINTAIN(N, n);
end

else (* status is out ") .

begin
status(node) := ‘out’; .
for every node N in is-in-of(node) do
'I‘RUTHMAINTAIN(N out); N

for every node N in is-out-of(node) do
{ if status(N) = ‘out’ and ADMISSIBLE(N) then
TRUTHMAINTAIN(N,in);

.«

end;
cnd;

Figure 7: Gilloux’s TRUTHMAINTAIN procedure.
offering several descriptions dti;j}mctively linked. k

A}

»

4.4. Problems with previous work

. Unfortunately, Gilloux’s program fails as a workable solution in two respects. The first

of these problems is that the exhaustive search for valid generalizations suffers from a com-

binatorial explosion. The network’s size grows much too rapidly. Since each new node is

gencralized with every node of the same class and these generalizations are introduced as new

nodes in the same way, the program in effect creates all possible generalizations for a class by
generalizing the observations in every combination of all possible sizes.” Although redundant

generaliinlions are not copiéd in the network, all combinations are in fact generated, and the
set of unique generalizations retained is still explosive in its growth.
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Each new node must be compared with the rest, of all classes, to establish links, update

the measures and maintain consistency. The processing of new observations quickly becomes

-

more and more cumbersome and the time of processing new observations increascs dramati-
cally. This makes the program unusable for large amounts of data. During tests, evidence
showed that the number of nodes in the network increcased at a rate approaching 2" where n

was the number of observations made.

v

The second problem with Gilloux’s program is that no mechanism is provided for decid-
. ,

ing the validity of an observation. Although there is in place a method (by competing cvi-

dence and conflict) for .t.a‘lgcing the unreliability of the data into account when deciding the vali-
‘."o M - . v
dity of peneralizgtions, the strict adherence to the TMS formalism as a means of propagating>

changes and maintaining consistency coupled with the unwavering belief in obscrvations

eclipses the method’s effects entirely.

An observation, a point in the learning space, acting as a node in Gilloux’s network has

-

no less-general nodes pointing to it andgtherefore has no members on its outlist and no con-

flict. Since it is also dssumed to be ‘in’ initially, it remains ‘in’ for the duration of the net-
{

work, as nothing can make if go ‘out’. It follows from this situation that any gencralization

that goes ‘out’ will also remain so for the duration of the network: If a gencralization goes

-

‘out’, it was compelled. to’do so because one or more opposing observations are ‘in’.
4

n .
Although a node may be put ‘out’ becausc of an IN list member being ‘out’, or becausc of
evidence and conflict measures, the reason for its disbelicf can always be reduced to oppos-
ing observations being ‘in’. That is, any given ‘out’ gencralization can have the cause of its

disbelief. traced back ultimately to one or more opposing observations being ‘in’. This

includes nodes which have been made ‘out’ because aof overwhelming conflict measures that

»

represent several opposing observations.

Because of this flaw, Gilloux’s program actually accomplishes the simpler task of finding

1 " -

s e
LA



:
ez bed

S
(RN |

- ° * r
i s

. the generalizations of each class for which there is no conflict. The retention of out nodes,. :

the us¢ of T.M.S., the links and measures etc., all become inetl'fectivq as no node with any

2

opposition is ever believed and once ‘out’, no nodes are ever rebelieved. .-

% M .

4

.o

o A

-
s L

B

-
'
AANRFYS % S LI

B

.
,
.
Lo
A T,

-
..
R

p
- .
.
. .
a
‘ ° ' 4 ‘
4 1 ~
‘I‘ *
-4
.
-

. .
' - A ~

- *

.
R
A ——
N ' L) M
r ¢ -
i . .
A
» . v S N ' t
' B 4 -, s A A s AN
P ST e T e it i e B g o H el




% ‘:{;;:_ .
< 4]

T

Chapter 5.

s s
Lo

.

¢
L Ao e e

The learning program. .

s.l- lntmducﬁono ' 00'

We propose here to agcomplish the./leaming task as'sef out in chapter three, and also to
address the problems encountered with Gilloux’s solution as described in the previous -
chapter. The-problem space and gr;;ls remaining the same, many characteristics 61‘ our pro- N
posed approach remain the same as Gilloux’s: the rc;prescnmtion issues and method of gen-
eralization remain unchanged, processing is still incremental, the direction tloward solution is Y

still specific-to-general and the program retains a data-driven stratcgy. We have tried to

reduce the size of the network and increase its speed. In order to have crror tolerance .

———— i

without interference from the truth maintenance mechanism, we made some changes in the
+ e '

way observations are perceived by the system and in the way changes in validity are pro-

»

pagated. This program then differs in structure, search control, and in the treatment of

observations. The program retains a TMSdik'q manager to maintain consistency, but the

- 14

program’s operation differs in the new algorithm.

4

More organization has been imposed on the network structure. In order to facilitate the
implementation of all aspects of the :ew algorithm, the nctwork has c\;olvcd from Gilloux’s
.- simple list to a collection of nodes divided by class, and within each class by scparating obser- o

vations .and geg\eiraliz/ations. ' ’
The most si;niﬁcmt difference in approach to converging on a generalization that
" characterizes a class is the coﬂctrol strategy of the search. A depth-first approach was
adopted for this,‘program, where t!ne aim was to devclogand retain at any gi;/cn’ point in the

. Al ” ~>
execution of the learning program only the widest.(i.e. most general) or few widest generaliza-

g

¢ +
tions that are believed valid for each class in the network. No intermediary gencralizations

'are retained. If a generalization becomes.too wide, the program backtracks (o a different or

- -
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lesser generalizatioh that is consistent with the state of the other nodes. This approach is
*heuristic because the program does not generate ‘all, the generalizations possible and will not

abandon the current widest generalizations to try combinations of observations that differ

0
1

greatly unless compelled to backtrack far enough. , -

For this reason the ‘best’ generalizations mxg t not ever get generatcd However, as

S

". with most heuristic solutions to problems in artificial mtelhgence, the goal of finding the best

solution is sacrificed so that an adequate solution might be found more conveniently.

To compare, Gilloux’s program tries to find a solution by a brute force strategy, expend-

ing most of its efforts creating all pessible generalizations. Qur program searches for a solu-
g mo: g allpg g prog

o tion in a more directed manner,” trying to find another possible generalization only when
{ rying P g Yy

nccessary for consistency.

In Gilloux’s program, all the mechanisms necessary to implement a method of determin-

P

ing validity of generalizations with error tolerance were in place, but were made ineffective
LI .o . .

because of the absolute validit)" accorded to all observations. In order to rectify this situa-

tion, a criterion by which observations can be deemed invalid is introduced. In the new pro-
5
gram, an observation is assumed valid initially, but it retains this status only when it is
currently contributing to 4he (widest) generalizations believed valid for its class. That is, an
8

'
observation is believed only if it is a member of the IN list of some currently held generaliza-

tion of the same class. * An observation is disbelieved (‘out’) otherwise. That is, the observa-
- tion}is not accorded any validity if it is not among those observations that are generalized to

form the current best generalizations.

&

~ This method allows the validity of generalizations to be determmed by the competmg

evidence and conflict measures, as was the intent of Gilloux’s work. The purpose of the

TMS is simply to propagate any changes determined in this way in order that consistency be
i N . . .

maintained. With this criterion for observations, these intentions are better realized and a

.
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. TN .
m-ox"e dfnamic network is achieved. t
. .
‘ . 5.2 Structure of the lgar:lng program. )
— As ﬁment_ior]ed ébove, an organized structyre has been imposed on the network in grder ”‘
to improve programming, legibility and comprchexlgion, as well as processing’ . ~'
. The network is divided into class groups. A class group is created d'){namically for each {
) néw class presented to the program. Each class group is a list containing the name of the '
class followed by 4 sublists contain{ng the nodes .(obscrvations and gencralizations) belonging
* to timt class. They are in order: | ' - \ - ;
1. Observations: The observed nodes: the nodes that result frc;m direct inputs to the pro- u
gram as learning examples. | ‘
2. Generalizations: The currept most general nodes that are belieded. ‘ .
3. Gensout: The generalized nodes ;hat are disbelicved but whose status may change y
’ dépepdent on the belief accorded to other nodes. a o

-~

4. Transitions: The list of observation nodes whose status is pending during a propaga-

tion of changes through the network. . :
. t
This last list is necessary for consistency maintenance. Tt is only non-empty during
change propagations and empty whenever the network is "j)-to-‘datc". Its contents do vot

represent any additional information. Its use is made more apparent in the discussion of pro-

3

pagation below.

\ . - . A

S The structure of a node is much the same as it was in Gilloux’s network. The distinc- )
tion made between observations and generalizations and the listing conventions described

below ;or the IN and OUT lists elirmin;ntes‘ the need for the reverse link Ié-lN-OF and IS- |
_ T OUT-OF lists. The only other difference is in ;he naming conventions for the IN and OUT

\ v

lists, which call ‘proponents’ and ‘opponents’ to reflect their role better. :

~Y .

R L kit s, v (e ot LN wa s e ald iyl




L
K
.yﬁ

s ot

4 ,
. -56-
A generalization is completely characterized by its proponents list. Every observation of

the same clas/s that is less general is included in it. Any generalization of the same class that v

is less gchcrgl would be composed of a subset of these proponents and would therefore be

—

redundant if it were also included on the proponents list of the more general node. By res- )

tricting links to exist only between observations and generalizations, comparisons about rela-

tive generality and similarity between generalizations of the same class are simplified: if one
" generalization’s proponents list contains all the members of another’s, then it is more general

\ . than (or possibly equal to) the other. o , ) ¢

Thus, the list of nodes in the ‘proponents’ of a generalization consists only of the obser-

vations from which it is derived. The list of ‘opponents’ is the list of observations (only)
from other classes that fall within the span of its description. On the other side, an

observation’s ‘proponents’ list contains all the existing generalizations that are built from it, o
& .

and its ‘opponents’ list contains all the generalizations of other classes that contain it; that is,

those it supports and those it opposes. . o ‘

a N \ R .
As always, generalizations are ‘in’ according to the rules of TMS (all opponents ‘out’,

all pr0p611cnts ‘in’). The status of a generalization also depends on thesformula for error

[

tolerance involving evidence and conflict measures.

-

. »

§.3 Description of processing in the learning program

) - We now describe the program in detail.

5

5.3,1 Observation.

;

One by one, learning examples for different classes are presented to the program. Each
example consists of a description ande class '(Figure 8). ~Optionally a number can 'be pro-

vided indicating how many observations a given example represéms. The descriptors. are put

-
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N into a standard order for convenience of comparison and generalization. This includes filling
. ' in any ‘don’t care’ missing descriptors according to an alphabet that expresses the domain of * -

each as described on page 40 above. The alphabet is optionally incorporated into the pro-
- gram. If it does not exist, the learning data should be presented ir; a consistent format for

proper execution.

Procedure OBSERVE(description, class, evidence);

(* Introduces new examples into th&gefwork. Searches
within the same class and within the other classes
for previous observation or contradiction. .‘) -

g
..

begin
align description in standard form;
if class does not exist then _
create-structure(class); - j ’

scarch observations-of(class) for same description;
_ if previous-observatjon then
UPEVIDENCE(previous-observation, evidence)

else B
begin :
search observations-of all other classes
for same description; . * ‘
if contradicting-node then . ‘
begin ) . F
s evidence:= evidence + evidence-of(contradicting-node);
class:= union(class, class-of(contradicting-node);
\ ' KILL(contradicting-node);
‘ - end;
N
newnode:= create-node(description, class, evidence);
~ addnode(newnode);
end; .
end; - . -

-

- Figure 8: Pseudo:code for OBSERVE.

[

ad b
BN Pa 9

If a class structure does not already exist for the given class, one is created to hald the

3

ot ot

nodes 6f that class.
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P :
<The new description is compared to those of previous observations in the same class to

discover if the new example has already been encoded. If so, its evidence is increased as is

+

the cvidence of those g‘cneralizations it proposes and the conflict measures of those it

opposes (Figure 9). The consequences of these changes in measures can alter the beliefs (‘in’

to ‘out’ or yice versa) accorded some generalizations. The details of those events are found

i . 3 Ll

below under Believe and Disbelieve. - $

. Procedure UPEVIDENCE(node, evidence);
(* Increases the evidence of an observed example
*and effects the changes influenced by this. *)

Var believelist: list-of-nodes;

begin
evidence-of(node):= evidence-of(node) + evidence;
X
- for every P in the proponents of node do
begin
. evidence-of(P):= evidence-of(P) + evidence;
. ' if (out-p(P)) and (admissible-p(P)) then
push(P, believelist);
end;
for every opponent O in the opponents of node do
begin
conflict-of(O):= conflict-of(O) + evidence;
+ if (in-p(0)) and not(admtsszble-p(O)) then
, DISBELIEVE(O);
\ end; ’

o

BELIEVE(behevehst), (* a list of candidate nodes for belief *)
(* test, change status, and propagate if valid *)

while not empty(changestack) do

. L PROPAGATE(pop(changestack)); i

' end;

Figure 9: Pseudo-code for UPEVIDENQE.

- If the example is new, the description is compared against all observations of other

classes. If an' observation from a different class is found with the same description, a con-
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tradiction is detected and resolved as described in the next chapter.

Having passed these tests, the example is entered into the network as an observation

node (Figure 10). CN ‘

Entering an examplé in thvt)etwork is accomplished by adding it to the list of obsecrva-

tions for its class, and then linking it to those generalizations of its own and other classes that
r

- . 3 . I3 .- . . \

it is less-general than. This insertion and linkeage also involves updating the evidence or con-
0 . » . 3 *

flict measures of those it now supports or opposes. This action in turn can change the vali-

dity of those nodes (as tested here by the function admissible-p) from ‘out’ to ‘in’ in the case

of ‘out’ generalizations of its own class, and ‘in’ to ‘out’ for ‘in’ gencralizations of other

¢

classes. ’

Following this, the observan:on is merged with the ;:urremly believed widest generaliza-
tions of its own class to create new generalizations. If any of these are admissible, they are
retained as the new, more general generalizations for the class; generalization also involves
determining proponents and opponents as well as cvidence and conflict mca‘surcs for the

newly synthesized description. If, however, ‘these gencralizations do not result in any ncw

descriptions that are acceptable under the present circumstances, the observation is deemed

‘out’, and the previ(;us generalizations are retained. All the changes aceffmulated by- these
operatifohé\k?re then propagated. ‘ !
. . ' o

In tl&s way, the program only merges the new observations with the most general gen-
eralizations already held. Qaly a small number of these widest generalizations are hefd i the

network at any given time. The number of these determincs how many branches of the

°

search tree need be investigated, and this number is regulated. by a heuristic cvaluation

~

described in Section 5.3.2. The merging of observations only with thc best gencralizations

4

attained yet implements a depth-first-like strategy for search. Any lesser intermediary gen-

eralizations have to be generated during backtracking, when none of the generalizations

.
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Of course, thg'tvpvc; methoas \t\iffer radicélly,in optrution ‘and how learhing is achieved.
The present uses logic \;Iith induclive\rules to manipulate descriptions ami qréa(c new gchcml-“
izations. Neur#l networks depend on 'g\radual‘ numerical adjuslmcl.m in paramcte;s to create
recognition systtms.. Both approaches ll%vc their ad:;ntngcs. In fa'cl. recent advances in the”

field of neural networks have proven very useful to the task of specch recognition. The main

%1 ® -
N

advantage to using a learning system based on a more formal logic (when contrasted to ncural

- e -
.

nets) is the ;pi]ity to express some problem background knowledge to help guide the generali:
;s Y

-~

AL . Co e
zation process in the system. Neural networks are/more limited in this respect.

- - 3
To achieve a speech recognition system that approaches human performance levels is a
* [3 -
s el . ’
very difficult-task. For this rcason the current developments in the ASR involve lcarning
. . t
from several sources including stochastic methods and ncural networks to make best use of

’
»

. - . . . *
the advantages each has to offef. The suggested role for an inductive learning program in the
emerging system is as a ‘filter’ for learning Jata. The present program organizes the data so

’ .
that'a partition of the learning space is produced whereby individual examples can be judged

according to how well they represent their class or how problematic lilcy are (through inclu-
¢ ' .

sion in confusion areas or as probable errors.) The other learning systems might benefit from

7 such a filter in the presentation of data as they do not have these mechanisms for determining

the relative worth of training examples. Thus this system would retain. jts function as a guide

- u

to development and take on the new role of teaching aid. . s

] a '
.. ’.,
Apart from the role fo‘g which it was intended, suggestions have been made for applica-

tion of the system in the domain of financial classification. Models in this discipline exist

Y

whose purpose is to partition a space of variables for predictive purposes (most notably the
prediction of financial distress) [Frydman1985]. The task of learning in this arca includes the

possibility of mislabeled learning examples, thus the methods presented in this thesis scem
/ a ~
very well matched to the task of learning the intervals describing such partitions,

DY

v

.
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" 1.5 Buggested lmgrovc:menu. .

s »
.

£ . - -
There is_room for ilﬂprover‘nent of this system in many areas. Most notably, more
’ o .

. -sophis(icated search techniques could be used in the quest for, t_hé best generalization. The

method bythich errors-are found could be improved to distinguish them from observations

Al

that are siinply part of irresolute arcas.

-

»

° Lo ! ,
Certainly searches can be aided by more ififormed evaluations. : ,

Lastly, entircly different learning methodologies such as explanation-based learning -

[DeJong1981] might be applied to the task required for the ASR. Such investigatiohs provide
s ‘ \ '

fruitful areas for further research.

P

Xx \ e -

. Both of these goals can be achicved by adding more dorain specific knowledge to the’

s)}stcm. Expectations f(ﬁ;:he data could be expressed and used to screen out likely errors.
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Total number of nodes: 172

Total learning time: 69

C.laSS_eS included: ((b p) (3) (e v) (b ¢) (4) () (k) (1) (v) () (b) (d)(c)) -

Appendix A.

' ' [}

Learning Report

. Direct contrad:cn?ns in observations:

class: (b p)

predigate: ((bi = 1) (br =2) (bu”*= 0) (bz = 0)

(d1 = 2) (dr = 3) (np = 1) (pb = 1) (re = 0)
(rq=2)(rr=2) (st

class: (e v)

0)(zq =3))

predicate: ((bi = 1) (br = 2) (bu = O) (bz = 0)

(d1 = 1) (dr = 4) (np = 0) (pb = 1) (rc = 0)
(rq=2) (rr = 2) (st =

class: (b e)

predicate: ((bi = 1) (br = 2) (bu = 0) (bz = 0)
© (dlL=2) (dr = 3) (np = 1) (pb = 1) {re
(rq =3) (rr = 2) (st = 0) (29 = 2) )

Generalizations

Class: (b p)
number of nodes observed:

l —

. / |
pred: ((bi = 1) (br = 2) (bu = 0)/(bz = 0) _
(dl =2) (dr = 3) (np.= 1)

0) (2 = 3))

1Y

-

b = 1) (re = 0)

(rq = 2) (rr = 2) (st = 0) {zq = 3) )

evidence: 3 conflict: 0
opposing observations:
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.obrscrvaﬁ«;ns not included: ' . o '
‘ , S
Class: (3) ' ‘ :
number of nodes observed: 1 .~ B T
pred: ((bi = 1) (br = 2) (bu = 0) (bz = 0) . S .
'(dl = 2) (dr = 3) (np = 1) (pb = 0) (re = 0) S
(rq=4) (rr = 1) (st = 0) (zq = 1) ) , .
evidence: 1 conflict: 0 o
opposing observations: : ' ' —
observations not included: -
® .
Clags: (e v) \
. number of nodes observed: 1 .
<y "
pred: ((bi = 1) (br = 2) (bu = 0) (bz =0) ' o L\ ,
+ (dl = 1) (dr = 4) (np = 0) (pb = 1) (re = 0) t ‘
(rq=2) (rr =2) (st = 0) (zq = 3) )
evidence: 2 conflict: 0 . ”
opposing observations: B *
observations not included: '
Class: (b €)
number of nodes observed: 1
prcda((bl 1) (br=2) (bu=0)(bz=0) & °
"(dl=2) (dr =3) (np = 1) (pb = 1) (re = 0) ° a ,
(rq=3) (rr=2) (st=0) (zq=2)) : S e >
evidence: 2 conflict: 0 . ~ .
opposing observations: ’
. G ]
obiservations not included:
- \
1] -
Class: (4) - ~ . i
number of nodes observed: 1 . o -
pred: ((bi = 3) (br =2) (bu = 1) (bz = 1) : ' -
(di = 1) (dr = 3) (np = 0) (pb = 0) (re -0) -
(q=3)(m=3)(t=1(@g=3)) - o .
evxdence 1 conflict: 0 - e
3 ﬁ » .
[ \ } .;’E
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opposing observations: ) '
observations not included: - R .. > : ‘-
Class: (g) . ) ' .
number of nodes ebserved: 3 | .
v v .

pred: ((bi = 3) (br = (2 3)) (bu=1) (bz =1)

(dl = (12)) (dr = 3) (np = (0 1)) (pb = 0) (rc = 0) . R ¢

(rq = (24)) (rr = 2) (st = (12)) (zq = (1 2))) ’ ——
evidence: 3 conflict: 0 _
opposing observations: .

: P CA

observations not included:

-Class: (k)
. - number of nodes observed 5

observations not included:

Class: (f) | SR

[ 4

3 . &

pred: ((bi = 1) (br = 2) (bu = (0 1)) (bz = (0 1)) iy
(dl=(14) (@dr=23) (mp=1) (pb=(0 ) (re=0) - "
(rq=(34)) (rr=(23)) (st =(0 1)) (z,q = 1) )
evidence: 3. conflict: 1 i ‘ . ' .
opposing observations: B ’ .
(d)-> ((bi = 1) (br = 2) (bu = 1) (bz = 0) . ‘ s
(dl = 3) (dr = 3) (np = 1) (pb = 0) (re = 0) ‘ ‘
(rq=4) (=2 (t=Dm =1))

pr;:d:. ((bi = 1) (br = 2) (bu T (0 1) (bz =0)
(dl = (12)) (dr = 3) (np = (12)) (pb = (0 1)) (re = 0) .
(rq=4)(rr=(12)) (st =(01)) (zq=1))

evidence: 3 conflict: 1 -

o

" opposing observations: .

(3)=> ((bi = 1) (br = 2) (bu = 0) (bz = 0) ' 3
(dl = 2) (dr = 3) (np = 1) (pb = 0) (rc = 0) R
(rg=4) (rr=1) (st =0) (zq = 1) ) '

pred: ((bi = 1) (br = 2) (l;u = () (bz = 0) 1
(dl=2)(dr=4)(np=1) (pb=1) (re=0) |
(rq =2) (rr = 2) (st = 0) (2= 2) ) g

-

number of nodes observed: 3

B!
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pred: (b = 1) (bs = 2). (bu = 1) (bz = 0)

7 (dl = 2) (dr = 3) (np'= 1) (pb = 0) (re = 0)
| . © (19=2) (r=3) (st =) (zq = 1)) .

cvidence: 2 conflict: 0
| opposing observations:
l

~ . evidence: 1 conflict: 0

. . -_ opposing observations: '

‘ pred: ((bi = 1) (br = (2 3)) (bu = 0) (bz = 0)

L Y (dl=2)(dr=(24) (np=1) (pb=1) (re=0) .~
- . / (rq=(34)) (rr=1) (st = 0) (2q = (1 M)

: “ B <
observations not included: '
pred: ((bi = 1) (br = 3) (bu = 0) (bz = 0)
(dl'=2) (dr = 4) (np = 1) (pb = 1) (re = 0) ° A
(rq = 3) (rr = 1) (st ='0) (zq = 3) ) .o

Class: (v)
number of ngdcs observed: 12 ' ]

. * pred: ((bi = (1 4)) (br = (3 4)) (bu = (0 1)) (bz = (0 1))
; ' (dl'=(12)) (dr =(3 4)} (np = (0 1)) (pb = 0) (re = (0 1))
(rq=(13)) (rr=(34)) (st=(12) (zq=(1 4))3
evidence: 8 conflict: 1
i opposing observations:
? ' (b)~> ((bi = 2) (br = 4) (bu = 0) (bz = 1)
| - (dl = 1) (dr = 4) (np = 0) (pb = 0) (re = 0)
A :  (rq = 2) (T = 3) (st = 1) (2q = 3) )

4

obscrvations not included: |
’ pred; ((bi K’f; (br = 2) (bu=0) (bz=1)
(dl = 1) (dr = 4) (np = 1) (pb = 0) (re = 0)
(rq=1) (r=4) (st=0) (zq =4)) _,
pred: ((bi = 1) (br'=2) (bu=0) (bz=1) ~
(dl = 1) (dr = 4) (np = 0) (pb = 1) (re = 0)
o - (g = 1) (it = 3) (st = 0) (2 = 4)
-t pred: ((bi = 3) (br = 5) (bu = 0) (bz =1) .
e (dl=4) (dr=3)(np=1)(pb=0) (re =0) ~
(rq=2) (rr=2) (st=1) (29 =3))
‘ pred: ((bi = 2) (br = 4) (bu = 0) (bz=1)
’ (dl = 1) (dr = 4) (np = 1) (pb = 1) (re = 0).
h (rq = 1) (rr <°2) (st = 0) (zq = 3)) ’

Class: (p)
number of nodes observed: 13 .

>
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! | - pred: ((bi = 1) (br = 2) (bu = 0) (bz = 0) / /
) L . (dl=(12)) (dr S4)(ap = 1) (pb = (0 1)) (re = 0) - :
(cq = (13)) (rr = (2 4)) (st = 0) (zq = (34)) ) /o
evidence: 5 conflict: 0 . [
N opposing observations: '

observations not included: o /
. < pred: ((bi = 1) (br = 2), (bu = 0) (bz = 0) ,
, (dl = 2) (dr = 3) (np = 1) (pb = 1) (re = 0) i S
= (g = 2) (5r = 2) (st = 0) (zq =2)) L o,
pred: ((bi = 1) (br = 2) (bu = 1) (bz = 0) ‘ ‘
' (dl = 4) (dr = 4) (np = 1) (pb = 0) (re = 0) ./
(rq=3) (rr=2)(st=1) (2q=1)) . . y
. pred: ((bi = 1) (br =2) (bu = 0) (bz = 0) ;
. . (dI'=1) (dr =3) (np = 1) (pb = 1) (re = 0) /
(g (=2t =0)(q=3))
pred: ((bi = 1) (br = 2) (bu = 0) (bz=0) . : .
. . (dl = 1) (dr = 3) (np = 1) (pb,= 1) (re = 0) ~ . e
v (rq =2) (rr = 2) (st = 0}(zq =2)) > \
’ . pred: ((bi = 3) (br = 5) (bu = z=1) : ' .
(dl=1)(dr=4) (np = 1) =1) (re = 0) . . -
(rqg =2) (rg = 3) (st = 0) (zq = 4) ) . Yoo ~
* pred: ((b: =1) (br =2} (bu=1) (bz=0) ' :
. o (d1=3) (dr=4) (np=0) (pb=0) (re=0) . ~
(rq=3) (rr=2) (st=1) (zq=1)) iy '
pred: ((bi = 1) (br =2) (bu = 0) (bz = 0)
(dt=1) (dr =3)'(np=1) (pb =1) (re = 0) .
(rq =2) (rr = 3) (st = 0) (2q = 4) ). .
o < . pred: ((bi = 1) (br # 2) (bu = 0) (bz 0) .
. S (dl = 4) (dr = 3) (np = 1) (pb = 1) (re = 0) .
‘ . (rg=3) (rr=2) (st = 0) (2q =3) '

o, " Class: (b)
) number of nodes observed: 38

A k]
- : pred: ((bi = (2%)) (br = (2 5)) (bu = 0) (bz = (0 1))
- , (dl = (1 2)) (dr = (3 4)) (np = (0 1)) (pb = (0 1)) (re = 0)
(rq = (13)) (rr = (2 3)) (st = (0 1)) (zq = (2 4)) )
evidence: 26 conflict: 9 B
'opposing obsefvations: -
> S (d)=> ((bi = 2) (br = 4) (bu =0) (bz = 1)
; (dl = 1) (dr = 3) (np = 0) (pb = 1) (re ~'0)
| ' (rq = 2) (rr'= 2) (st = 0) (zq = 3}+)
(vV)=>((bi = 2) (br = 3) (bu = 0) (bz = 1) -
(dl = 2) (dr = 4) (np = 0) (pb = 0) (re = 0)

‘ (rq=2) (rr = 3) (st = 1) (zq = 3) ) -
e T (d)-—> ((bi = 2) (br = 3) (by = 0) (bz = 1)
e . ' . 1 (dl 2) (dr = 3) (np'= 0) (pb = 0) (re = 0)
L ! r"a‘ A '
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. 0.

(rq = 3) (rr=2) (st = 1) (29 = 3) )
(d)=> ((bi = 4) (br = 5) (bu = 0) (bz = 1) .
© 7 (dl = 2) (dr = 3) (np = 0) (pb = 0) (re = 0)
\ (rq = 2) (rr = 2) (st =1) (zq = 4) )
(p)—> ((bi = 3) (b1 = 5) (bu = 0) (bz = 1)
(dl = 1) (dr = 4) (np = 1) (pb ="1) (re = 0)
. (rq=2) (rr =3) (st = 0) (zq = 4) )
(d)--> ((bi = 3) (br = 4) (bu = 0) (bz = 1)
' (dl = 1) (dr = 4) {np = 0) (pb = 1) (re = 0)
(rq = 2) (rr = 2) (bt = 0) (zg = 3) )
(v)=> ((bi = 2) (br = 4) (bu = 0) (bz = 1)
(dl = 1) (dr = 4) (np = 1) (pb = 1) (re = 0)
(rq = 1) (rr = 2) (st = 0) (Zq = 3) ) ’
(d)--> ((bi = 3) (br = 5) (bu = 0) (bz = 1)
(dl=2) (dr=3) (np=0) (pb=0) (re =0) -
(rq = 2) (ir = 2) (st = 1) (2q = 3) )
(d)--> ((bi = 2) (br = 5) (bu = 0) (bz = 1)
b (dl=2) (dr = 3) (np = 0) (pb = 0) (re = 0)
(rq = 2) (rr =2)(st=1) (zq = 3))
"observations not included: !
pred: ((bi = 4) (br = 5) (bu = 0) (bz = 1)
(dl = 2) (dr = 4) (np < 1) (pb = 0) (rc = 1)
(rq = 1) (rr = 2) (st = 0) (zq = 4) ) B
pred: ((bi=3) (br=4) (bu=0)(bz=1) -
(dl = 2) (dr = 4) (np = 0) (pb =0) (rc = 1)
(rq = 1) (rr = 2) (st = 0) (zq = 4) ) '
pred: ((bi = 3) (br = 5) (bu = 0) (bz =1)
(dl = 1) (dr = 4} (np = 1) (pb = 1) (re = 0)
(rg =1) (rr = 4) (st = 0) (zg = 4) ) *
pred: ((bi = 3) (br = 4) (bu = 0) (bz = 1) ,
(dl = 2) (dr = 1) (np = 1) (pb = 1) (re = 0)
- (q=d)(rr=2) (st =0) (zq=1))
pred: ((bi = 2) (br = 5) (bu = 0) (bz = 0) *
(dl = 2) (dr = 3) (np = 0) (pb = 0) (re = 1)
' (rq = 2) (rr = 2) (st = 1) (2q = 3) )
pred: ((bi = 1) (br = 2) (bu = 0) (bz = 0)
(di'= 1) (dr = 3) (ap = 1) (pb = 1) (re = 0)
(rq = 2) (rr = 2) (st = 0) (zq = 4) ) .
pred: ((bi = 1) (br = 3) (bu = 0) (bz =1
(dl.= 2) (dr = 3) (np = 1) (pb = 0) (re = 0)
(rq=4) (rr=2) (s =1)(zg=1)) *
pred: ((bi = 3) (br = 4) (bu = 0) (bz = 1),
(dl = 1) (dr = 4) (np = 1) (pb = 0) (re = 0)
frq = 1) (rr = 4) (st = 0) (zq = 3) ) '
“pred: ((bi = 3) (br = 4) (bu = 0) (bz = 1)
(dl =2) (dr=3) (ap = 1) (pb — &) {re = 0)
- (q=4) (rr=2) (st =0) (zq=1)) -
- pred: ((bi = 3) (br = 5) (bu = 0) (bz = 1)
(di=1)(dr=3)(np=1)(pb=1)(re =1) .

/
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- (rq-l)(rr-2)(~t-0)(zq 4)) oy e
pred: ((bi=1) (br=2) (bu=0)(bz=0) - .
(dl = 1) (dr = 4) (np = 1) (pb = 1) (re = 0)
(rq = 1) (rr = 4) (st = 0)(zq=5)) A . ‘
7 pred: ((bi = 1) (br = 2) (bu = 0) (bz =) . o

T ' (dl=2)(dr = 4) (np = 0) (pb = 0) (rc = 0) , .
S =D (r=2lt=)(@=4F . . o

- . Ae ) . ) S ; )
B / . . o
Class: (d) : A ; t ' \
~ number of nodes observed: 21 , : . ) '

< i} ’ . T g
. T T~ pred: ((bi= (2 3)) (b5 = (3 5)) (bu = (0 1)) (bz = 1)
! . (dl = (24)) (dr (2 3)) (np = (0 1)) (pb = (0 1)) (e =0)
' (rq = (24)) (rr = {1 2)) (st-(O 1)) (zq = {13))

evidence: 11 confliet: 4

R pd
opposmg observations: s

7. (b)—>,((bi = 3) (br = 4) (bu =0) (bz = 1) = v
(dl=2) dr=3) (np=1) (pb =0) (re = 0)
S (= 4) (r=2) (st =0) (zq =1)) -
" (v)=> ((bi = 3 (br = 5) (bu = 0) (bz = 1)
/ , 7 (di=4) (dr =3) (np = 1) (pb = Qh(re =0)
' (rq=2) (rr=2) (st = 1) (2q =3) ) _ ; y
(b)--> ((bi = 3) (br = 5) (bu = 0) (bz = 1)
. (di = 2) (dr.5/3) {np = 0) (pb = 0) (re = 0)°
X | (rq=2) (r=2) (st=0) (zq=3)) ~_ °
. (b)-> ((bi = 3) (br = 4) (bu = 0) (bz=1) ~
e | (=2 (dr=3)(op=0) (pb=0) (re=0) - . s
' (rq=2) (rr =2) (st = 1) (2q.= 3)) T

pred: ((bi=(23) (br=(35) bu= O 1) bz =1) - N
T (dl = (19)) (dr = (23)) (ap = (0 1)) (b = (8 1)) (re = 0) * -
ra = £4) 1= (4 24t~ 0 D) = CGP))

. evidence: 9 conflict: 4 C, . ' \
¥ opposing observations:
= (b)—> ((bi = 3) (br = 5) (bu = 0) (bz = 1)
(dI'= 1) (dr ='3) (np = 0).(pb = 0) (re = 0)
(rq=3) (rr = 2) (st = 0) (zq = 3) )

. (W= ((bi=3)br="5) (bu=0) (bz=1) ., ¥
R v (di = 4) (dr = 3) (np = 1) (pb =D)'(re =B " -
o . (rq=2) (rr=2) (st =1) (zq =3)) R . v
" (b)-> ((bi=3) (br=5) (bu=0) (bz=1) - .
v " (di=2) (dr=3) (np=0) (pb = 0) (re = 0). . .
: ] (rg=2) (rr=2 (W= 0) (zg=3)) - . , . -
~ RE (b)—> ((bi = 3) (br = 4) (bu = 0) (bz = 1) . \, )
(d1 = 2) (dr = 3) (np = 0) (pb = 0) (re = 0 " .
(rq=2) (r=2) (st =1) (zq =3)) - . o /
observations not included: T , AT -
N « J N %
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' e E
pred: ((bi = 3) (br =) (bu = 0) (bz = 1) .
. (dl = 1) (dr = 4) (np'= 1) (pb 0) (rc = ()
.- . {rq=1) (rr =4) (st =-0) (zq < 4) - -
Y p}fd ((bi = 3) (br = 5) (bu = 0) (bz = 0)
.~ (dl=1) (dr=4) (np = 1) (pb = 0) (re =)
- (rq = 1) (rr,3) (st'= 1) (2q = 4) )
R pred: {(bi = 2) {br = 5).(bu = 0) (bz = 0)
. . (dl=2)(dr=1)(np=1) (pb=1)(re=0) , /
. (rq=4)(rr=1) (st=0)(zq=1)) =
. pred: ((bi = 4) (br = 5) (bu = 0) (bz =~ 1)
(d1'=2) (dr ='3) (np = 1) (pb = 1) (re = 1)
(rq=1) (tr=2) (st =0) (zq = 4) T~ .
N . pred: ((bi = 4) (br = 5) (bu = 0) (bz = 1) « ¥
(dl = 2) (dr =3) (np = 0) (pb = 0) (re = 0)
’ (rq=2) (rr=2) (st=1) (zq = 4) ) -
-~ : »  pred; ((bi = 3) (ly 5){bu,= 1) (bz = 1)
W T (dl = 2) (dr =™4) (np = 0) (pb = 0) (re =.0)
. , N gD (=) (t=1)(=3)~
. : ,pred: ((bi =1) (br = 2) (bu = 1) (bz = 0) ‘
T — (dI'= 3)-(dr = 3) (np = 1) (pb ='0) (re'= 0)
. S ‘ (rq=4) (rr=2) (st=1)(2q=1) )~
. pred: ((bi = 1) (br = 1) (bu =1) (bz = 0)
. : (dl = 2) (dr = 3) (np'= 0) (pb = 0) (re =.0) J o
) N (rq=4) (rr=2) (st=1) (2q = 1)) -
' ) L pred: ((bi = 3) (br = 4) (bu = 0)(bz = 1) v
\. (dl = 1) (dr &) (np = 0) (pb = 1) (re = 0)
(rq =2) (rr = 2) (st=0)(zq =3)) ‘ Ve

# Class: (e) ) -t

' v f ber of nodes observed: 29 ) , o

j\ . T MN\: ((bi = (1 2)) (br = (2 3)) (bu = (0 1)) (bz=0) . .

< . (dI'=(14)) (dr = (24)) (np = (02)) {pb = 0) (re = 0)
“rq=(14)) (rr=(23)) (st = (0 2)) (z a9 - -

r ' evidence: 23 conflict: 9 .

e
{

' ' *e /\opposmg obscrvations:

AT ) >«m-1>(br-2>(bu-1)(bz=0>
o . (dl=4) (dr = 4) (np = 1) (pb = 0) (re ¥ O
B ™ (rq=3) (rr =2) (st=1) (zq =1))

. . (K)-> ((bi = 1) (e 2) (bu = 1) (bz = 0)
ha ~ “(dl =.1) (dr = 3) (np = 1) (pb = 0) (re-O)“
' , (f=4) (r=2)Bt=1) (@4 =1)) -/

*2, .-, (d)=> ((bi = 1)a(br = 2) (bu = 1) (bz = 0)
. . . (dl = 3) (dr = 3) (np = 1) (pb = 0) (re = 0).
N Tt = 4) (1 = 2) (st = 1) (ag = 1))
o Lo (p)-> ((bi = 1) (br = 2) (bu = 0) (bz = 0)
% ¢ ‘ (di = 2) (dr = 4) (np = 1) (pb = 0) (re = 0)
U (e D=2 (=0 2 =3)) :

- - . « ,
A - s
. ¢ ¢

.
y - rd
e AT LT L . T . - o
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(p)~> ((bi = 1) (br=2) bu=1) (bz=0) *
(dl'=3) (dr = 4) (np = D) (pb = 0) (re = 0)
(rq=3) (rr=2) (st=1)(zq = 1))

(b)w> ((bi = 1) (br & 2) (bu Q) (bz = 0)
(dl = 2) (dr = 4) (np 0) (pb = 0) (re = 0)
S R !
p)—== ((b1 r = 1 = Z = 1 .
(dl = Ty (dr = ®np = 1) (pb = 0) (1 = 0) °
' (rg=2) (rr=2) (st =0) (2q = 3))
()-> ((bi = 1) (br = 2) (bu = 1j (bz = 0)
(dl = 2) (dr = 3) (np = 1) (pb = 0) (re = 0)
(rq=2) (rr = 3) (st =1) (zq = 1) )
(k)=> ((bi = 1) (br = 2) (bu =0) (bz = 0)
© (dl=1) (dr = 3) (np =1) (pb = 0) (rc = 0)
(fq=4) (rr=2) (st=0) (zq < 1))

observations not included:
. pred: ((bi = 1) (br = 2) (bu =0) (bz = 0)
< (dl=1)(dr =4) (ap = 0) (pb = 1) (re = 0)
(fq=1) (rr = 3) (st = 0) (zq = 3) )
~ pred: ((bi = 1) (br =2) (bu = 0) (bz = 0) *
" (dl = 1) (dr = 4) (np = 0) (pb = 1) (rc = 0)
= (rq=3)(rr=2) (st =0) (zq = 2) )
pred: ((bi = 1)*(br = 2) (bu = 0) (bz = 0)
(dl = 1) (dr = 4) (ap = 0) (pb = 1) (re = 0)
/- (rg =1) (rr = 3) (st = 0) (zq = 4).)
pred: «bl = 1) (br = 2) (bw =0) (bz =-0)
(dl = 2) (dr = 4) (np = 1) (pb = 1) (rc = V)
(rq=3)(rr=2) (st = 0) (zq=2) )
pred: ((bi = 1) (br = 2) (bu =1)(bz =1).
(dl = 1) (dr = 3) (np = 1) (pb = 0) ¢rc = 0)
(rq=1) (rr = 3) (st = 2) (2 = 4) )
pred: ((bi = 1) (bt = 2) (bu = 0) (bz = 0)
(dl = 2) (dr = 4) (np = 0) pb 1) (re = O)
(rq=2) ("’ =2) (st=0).zq=1))

Confusion Areas ! :
K

classes: ((b) (e)) | . . :
confusion; ((bi = 2) (br = (2 3)) (bu = 0) Kbz = 0)
(dl = (1 2)) (dr = (3 4)) (np = (0‘1) = 0) (e = 0)
2q =

(rq = (13)) (rr = (23)) (st = (0-1)
number of observations within:

classes: ((e) (p)) ‘
confusion: ((bi = 1) (br = 2) (bu = 0) bz = 0)

@ 4)) )

\ (dl = (1 2)) {dr = 4) (np = 1) (pb = 0) (rc = 0)

(rq =(13)) (rr = (23)) (st = 0) (Zq 34)))

¢ . o ha
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" number of observatfons within: (p)=2

. classes: ((e) (v))

confusion: ({bi = (1 2)) (br = 3) (bu = (0 1)) (bz = 0)
(d1 = (12)) (dr = (3 4)) (np = (0 1)} (pb = 0) (re = 0)
(rq = (13)) (rr = 3) (st = (12) (Zq (14)))

number of observations wuhm

classes: ((e) (1)

confusion: ((bi = 1) (br = 2) (bu = 1) (bz = 0)
(dl = 2) (dr = 3) (np = 1) (pb = 0) (re = 0)
(rq=2) (rr=3) (st=1) (zq = 1))

number of observations within:. (t)=1

classes: ((e) (k))

confusion: ((bi = 1) (br = 2) (bu = (0 1)) (bz = 0)
(dl = (1.2)) (dr = 3) (np = (1 2)) (pb = 0) (re,= 0)
(rq = 4) (57 = 2) (st = (01)) (zq = 1))

number of obscrvatlons within: (k)=2

classes: ((¢) (k)

confusion: ((bi = 1) (br = 2) (bu = (0 1)) (bz = 0) ‘

' (dl.= (1 4)) (dr = (2 3)) (np = 1) (pb = 0) (re = 0)
(rq=(34)) (rr=(23)) (st ='(0 1)) (zq = 1))

number of observations within: (k)=2 (d)=’1 _

classes: ((b) (d))

confusiort: ((bi = (2 3)) (br = (3 5)) (bu = 0) gbz ='1)
(dl = 2) (dr = 3) (np = (0 1)) (pb = (0 1)) (re = 0) -
(rq = (23)) {rr =2) (st = (0 1)) (zq = (23)))

numbcr of observations within: (b)=2 (d)=3

classes: () @) ' —
confusion: ((bi = 3) (br = 3) (bu = 1) (bz = 1) ¢

(dl = 2) (dr = 3) (np-= (0 1)) (pb = 0) (re = 0)
(rq=(24)) (rr=2) (st=1) (zq = (12)) )
number of observations within: ’
classes: ((b) (d)) ‘
confusion: ((bi = (2 3)) (br = (3 5)) (bu = 0) (bz = 1)
C(di=(12)) (dr=3) (p= O 1) (po = @ 1) (re’='0) .
(rg = (23)) (rr = 2) (st=(01)) (2¢= (2 3)) )

* number of observations within:* (b)=3 (d)=4 ’

classes: ((d) (g))

 confusion: ((bi = 3) (br = 3) (bu = 1) (bz+1)

(dl = (12)) (dr = 3) (np = (0 1)) (pb = 0) (re = 0)

(rq = (24))(rr = 2) (st = 1) (zq = 2) ) -

number of observations within: 4

o

\\\




"'*';lasses:'((b) (v))
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confusion: ((bi = (3 4)) (br.w (3 4)) (bu = 0) (bz = (0 1))

(dl = (1 2)) (dr = (34)) (np = (02)) (pb = 0) (re = 0)

(rq=(13)) (rr=3) (st= 1) (zq = (24)) )

number of observations within; (v)=1 (b)=1 .

| classes: (k) (t)

confusion; ((bi = 1) (br = 2) (bu = 0) ({)2 = 0)

Yo (dl=2)(dr=3)(np=1) (pb=1) (rc= 0)
v (rq = 4) (rr = 1) (st = 0) (2q = 1))
number of observatlens within:

classes: ((3) (k))

confusion: ((bi = 1) (br = 2) (bu & 0) (bz=0) °
(dl = 2) (dr = 3) (np = 1) (pb = 0) (re = Q)
(rq=4) (rr=1) (st =0) (zq=1))

number of observations within: (3)-1

classes: ((b) (e) (v)) ~
confusion: ((bi = 2) (br = 3) (bu = 0) (bz=0)." T

(dl = (1 2)) (dr = (34)) (np = (01)) (pb = 0) (re = 0)

(rq=(13)) (rr = 3) (st = 1) (zq = (2 4)) )

number of observations within:



Appendix B. ‘ r

Otlier Results P

N TR -,

. N
’I‘hc followmg is an excerpt of tests run on the learning system to ﬂlu&trale its learning

’

¥
capacity when faced wnth erroneous data. Three regions of the plane (A B, and C) were del-

Al - "
mcatcd w:th ovetlaps covcrmg 13% of their total area. 100 points were rand‘omly generated
i

wnlhm the space, and 6 randomly choscn pomts were deliberately mnslabclled to, create errors.

These poims were tsed as learning data. ‘

”

Gencralizations were produced (including confusion arcas) in seperate runs involving 2
permutations of the learning examples, and with 4 different error tolerances. The generaliza-
tions produced are here called filters to-reflect their role in classifying a second set of ran-

domly generated points within the space.

The second set of points wére compared to the learned generalizations and were classi- .

+* ' .
fied according to the encompassing generalization or in cases where they did not fall into a

. generalization (or confusion area) according to the nearest generalization. The- classification
3 B

-according to the learned generalizations was coxﬁpared to the real membership of the points.

This produced correct classifications, near:correct classifications (when the learned generali-

0 +
zation was nearcst to-the point), and similarly confused, near-co@used, incorrect and near-
y

J4ncorrect classifications.

The first twa tables show the ideal results of the learning data and the testing data when

filtered through the true characterizations of the regions. They provide a record on the accu-

' racy qf the détﬁ and of the best that might regsonably be expected of learned filters. Among

‘the 4 error tolerances used is one that allowed any and all alien points intrffding into a gen-
eralization. The results in this case were the same for both permutations of the data. This

provides a view of the classification that results from complete generalization.

- 105 - , )
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when errors exist, The most interesting result is that learning seemed to be at its best when

the error tolerance chosen was closest to the real error.
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<

learn data true filter results ‘
overall A B C

tests: 1000 34 33 33
correct: 64 22 22 20 .
confused: 30 —10 9 11
incorrect: 6 , 2 2 2

‘
-
=

test data true filter results
overall A B C-

tests: 50 16 17 17
correct: 37 4 10 13
confused: 13 2 7 4
incorrect: 0 0 0 0

» . -,

data perm 1'tolerance a (< 10 a{)s., < 1/2 rel.)
learned filter ’

overall B C A

tests: 50 17 17 16 ..
correct: 42 12 16 14
near-correct: 0 0 0 0
confused; 4 3 1 0

_ near-confused: 0 0 0,0

" incorrect: 4 20 2- )
.near-incorrect: 0 0. 0 0
uncldssified: ” 0 0 0 0

4

"

. data perm 1 tolerance b (<\'5 abs., < 1/3 rel.)

learned filter
— overall B C A

_ tests; 50 17 17. 16

correct: - 37 12 11 14

The results show that the system is capable of producing useful gencralization even
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ncai:-corrcct: - 3 3 0
confused: 0 0 0. 0

" ncar-confused: 1 0 0 1
incorpegf: - 1, o o0 1
near-ineotrect: 5 2 3 0
unclassified: = 0 0.. 0 0

! . -

data perm 1 tplerance d (complete; anything)
“learned filter
overall B C A

tests: 50 17 17 16
correct: ) 6 2 1 3
near-correct:’ 0 0 0" o0

. confused: . 44 15 16 13
_ necar-confused: 0 0. 0 0

* incorrect: 0 0 0
necar-incorrect:, 0 0 o 0,
unclassified: = 0 -0 0 0

data perm 2 tolerance a (< 10 abs., < 1/2 rel.)
learned filter
. overall B A C

&
i

tests: 50 17 16 17

correct: 29 12 4 13
near-correct: 10° 0 -7 3
confused:- 4 3 0 1 '
near-confused: 0 _ O 0 0
incorrect: 4 20 2 0
near-incorrect: 3 0 3 0
Junclassified: 0 0 0 0

3
~

data perm 2 tolerance b (< 5 abs., < 1/3 reb.)
learned filter T
overall B A c -

)

tests: 50 17 16 17
correct: 25 12 2 11
near-correct: 14 0 9 5
confused: <0 0 0 0
near-confused: 1 o o 1"
_ incorrect: 5 5 0 0

s 0 5 0

near-incorrect:

'y

w,\
;
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classified: 6- o o0 0 - - 1 '

data perm 2 tolerance ¢ (< 2 abs.,‘ < 1/10 rel))
learned filter o

overal B A C

tests: 50. 1
cprrect: 22
near-correct: 20 |
confused: 0
near-confused: 0
- " incorrect: 4
® .
4
0

P

near-incorrect:
unclassified:




