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Abstract

A Foundation for Integrating Heterogeneous Data Sources

Narayana [yer Subramanian. Ph.D.

Concordia University. 1997

We study the foundations of the integration issues that arise in a federation of
heterogeneous data sources, possibly storing related information. Some of the notable
features of our approach, motivated by the shortcomings of existing technology. in-
clude (a) the ability to share data across multiple heterogeneous data sources. (b) the
ability to manipulate the meta-data (schema) component of a data source in the same
vein as data can be manipulated, and (c) the ability to query besides well-structured
data sources (such as relational databases), semi-structured data sources (such as the
HTML documents on the World Wide Web). Our approach is declarative and is based
on a simple logic called SchemaLog. We initially develop SchemalLog in the context
of multiple relational databases. Schemalog’s syntax is higher-order but it enjoys a
first-order semantics. We present a formal account of the semantics of Schemalog
by developing a model theory, a proof theory, and a fixpoint theory. We also prove
that these semantics are equivalent for Schemal.og. We illustrate the simplicity and
power of SchemalLog with a variety of applications including multidatabase inter-
operability. database programming with schema browsing. database restructuring.
cooperative query answering. and powerful forms of aggregate computations. in the
spirit of OLAP applications.

SchemaLog can be implemented on top of existing database systems in a ‘non-
intrusive’ way. We describe such an implementation architecture. Realizing an effi-
cient implementation of a Schemal.og-based system warrants the study of the calculus
and algebraic languages underlying SchemaLog. We develop a new algebra by extend-
ing the conventional relational algebra with some new operations that are capable of
manipulating both data and schema information in a federation of databases. In par-

ticular, the algebra has schema querying as well as schema restructuring operations.
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We also develop a calculus language inspired by Schemalog. Based on the calcu-
lus language. we study varying notions of safety that naturally arise in a federation
scenario.

One of our primary concerns in this dissertation has been the practical rele-
vance and industrial impact of our contributions. In this vein and inspired by the
SchemalLog experience, we develop a principled extension of SQL. called SchemaSQL .
SchemaSQL is downward compatible with SQL syntax and semantics and is capable
of (a) representing data in a database. in a structure substantially different from the
original database. in which data and meta-data may be interchanged, (b creating
views whose schema is dynamically dependent on the input database. (c) expressing
novel aggregation (over rows, and in general blocks of information) operations. in the
spirit of some of the functionalities needed in OLAP applications, and (d) providing a
great facility for interoperability and data. meta-data management in multidatabase
systems. We also describe an architecture for realizing a SchemaSQL implementation
that makes use of existing technology.

Legacy as well as non-traditional information systems constitute an important
fragment of the data sources available in real-life. We demonstrate that SchemaLog
can be naturally extended to support non-relational systems as well. In particular, we
show that the powerful features of SchemaLog for meta-data querying, information
restructuring, and interoperability extend naturally to the ER databases. Network
databases. and information sources on the web. In particular. we address the fun-
damental problem of retrieving specific information of interest to the user. from the
enormous number of resources that are available on the Web. With this in mind. and
inspired by SchemaLog, we develop a simple logic called WebLog and illustrate the
simplicity and power of WebLog for Web querying and restructuring using a variety

of applications involving real-life information in the Web.
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Chapter 1
Introduction

Tremendous advances in recent times in the areas of storage. retrieval, and processing
of electronic information, in conjunction with similar advances in the computer and
telecommunication industries, has brought about what the pundits refer to as the
information revolution. As it is marching towards the third millennium, expanding in
proportions hitherto unheard of, the information technology (IT) industry is having
its impact felt on all facets of human life in almost every part of the world. Crucial to
the continued growth of the IT industry is the development of frameworks. tools. and
techniques to integrate information from multiple kinds of data sources spread over a
distributed network and encompassing a heterogeneous mix of computers. operating
systems, communication links. and local information systems. This thesis is set n
this context.

Electronic information resides in various mediums. the most common of which is
database systems. Database systems include legacy systems such as network and hier-
archical databases as well as traditional systems such as relational and more recently
object-oriented databases. Typically, users store. retrieve. and manipulate the data
in these sources via application programs (as in the case of a network database that
maintains details such as business type, CEO, and location on the Fortune 500 com-
panies). or using a common standardized query language (such as SQL as in the case
of a relational database that stores monthly operational details of various companies
trading in stock exchanges in North America).

A colossal amount of information also resides in non-traditional sources such as
semi-structured documents. spreadsheets, and importantly, the information sources

on the World Wide Web. Users interact with these sources via user interface facilities



specific to each of these sources (such as the form-based interface of a web server
that provides up to date stock prices of various companies, in exchanges all over the
world).

Increasingly. there is a compelling need for interoperation among these various
information sources. An example is that of an investment consultant who would like to
access and analyze information from the Fortune 500 network database. the monthly
operational details relational database. and the stock price Web server, in order to take
judicious decisions involving stock investments. [mportantly, the consultant should
be able to access the information that (s)he needs. in a uniform and seamless manner.
without having to worry about the idiosyncrasies (such as geographical location. local
query languages. user interfaces etc.) of each of the information sources.

This thesis addresses some important issues that arise in the manipulation of (elec-
tronic) information stored in diverse information management systems. In particular.

it is motivated by the following limitations of the existing frameworks for information

management.

1.1 Limitations of Existing Frameworks for Infor-

mation Management

We identify three important limitations of currently available information manage-

ment systems.

e The rapid progress in the field of information technology has resulted in the
evolution of diverse information storage environments with data and application
programs generated specifically to each of these environments. but typically
incompatible with one another. This has resulted in an inability to share data
and programs across the different platforms, the need for which has become
compelling. Thus, there is a need for interoperable systems, capable of pooling
together and reasoning over data from multiple kinds of information systems.

Currently available technology is incapable of addressing this need.

e While seamless interoperability among multiple information sources is an indis-
pensable need and a major challenge. problems exist even in the context of a

single information source. In the currently available frameworks for information

o



management (including the most popular and commercially successful relational
model), the notion of what constitutes information, in the sense of what can
be queried or manipulated, is restricted to what is perceived as data in the
framework: existing technology does not allow for manipulating the meta-data
(schema) component of an information source, in the same vein as data can be
manipulated. This can be seen to be a major shortcoming, given that meta-
data constitutes an important part of the information in an information source.
A closely related issue is that, the expressive power of most query languages
including the relational query languages. is dependent on the way information
is organized in an information source - queries expressible against one schema
can no ionger be expressed if the same info is structured according to a dif-
ferent schema. This is clearly an undesirable aspect of existing frameworks for

information management.

e Structured information sources (such as relational databases) form only a frac-
tion of the electronic sources of information. A vast amount of information in
the real world is present in a semi-structured fashion, with no clearcut notion
of a schema associated with the information. A powerful example of this is the
World Wide Web, which is a collection of a colossal amount of both structured
and semi-structured information. Currently, there is little support for query-
ing and manipulating such semi-structured information sources. Harnessing the
potential of this rich source of information calls for models and languages for

semi-structured information sources.

We now amplify each of the above issues with the aid of real-life examples. In
the following. by a federation. we mean a collection of information sources requiring
interoperation among themselves. In this example. we consider a federation consist-
ing of relational databases. This federation will be used as the running example in

Chapters | - 4 of this thesis.

Example 1.1.1 Consider a federation of university databases consisting of relational
databases univ_A, univ_B, and univ_C corresponding to universities A, B, and C.
Each database maintains information on the university's departments, staff, and their

average salary. Figure 1 shows a sample instance of this federation.



univ-A

pay-Info

category dept avg-sal univ-C

Prof cs 70,000 cs

Assoc Prof  cs 60,000 category avg-sal

Secretary cs 35,000 Prof 65,000

Prof Math 65,000 Assist Prof  10.000
univ-B ece

pay-Info category avg-sal

category cs Math Secretary  30.000

Prof 80,000 65,000 Prof 70,000

Assist Prof 45,000 42,000

Asso Prof 65,000 55,000

Figure I: University Databases

The univ_A database has a single relation pay.info which has one tuple for each
department and each category in that department. The database univ_B also has a
single relation (also pay_info), but in this case, department names appear as attribute
names and the values corresponding to them are the average salaries. univ_C has
as many relations as there are departments, and has tuples corresponding to each
category and its average salary in each of the dept; relations.

The heterogeneity in these representations is evident from the example': The
atomic values of univ_4 (dept;s) appear as attribute names in univ_B and as relation
names in unie (.

It is natural for the users of one of these databases to interact with the other
databases in the context of the federation of universities. The user may wish to
express queries such as the following.

(Q1) *“Which are the departments that have an average salary above 3{5h in all
the three universities for any given category?”

(Q2) “List departments with the same name in univ_B and univ_C that have the

same average salary for the same categories of staff.”

1We are taking a simplified version of the problem by assuming the ‘names’ to be the same across
the databases. In reality this might not be so; e.g. dept; in one database/relation might correspond
to department; in another. But this issue can be suppressed here without loss of generality as such
“name mappings” can be easily realized in our framework.



Query Q, requires an access to each of the three databases in the federation.
and manipulation of information across these databases. Note that the ‘information’
being manipulated does not come from the data position alone. In order to process
Q.. we also need to manipulate the schema components - attribute names in univ_B
and relation names in univ.C - that contain the department names. Also, note
that expressing this query in SQL would involve posing (a series of) individual SQL
queries to each of the component databases and finally applying another (series of)
SQL queries on the intermediate results. This is clearly undesirable and the federation
user should be able to express this query in a concise and uniform way. preferably in
one shot.

As illustrated by the above example, a basic need that arises in the context of a
federation of information systems is interoperability. Interoperability can be defined
as the ability to uniformly share. interpret, and manipulate information across com-
ponent information systems in a federation. Almost all aspects of heterogeneity in
a federation (e.g.. database schemas, data models, communication protocols, query
processing, consistency management, security management, etc.) raise challenges
for interoperability. Interacting with component information systems in a federation
calls for the ability to query them in a manner independent of the discrepancies in
their structure and data semantics. In this thesis, one of the important issues we
focus on is: how to query component information systems of a federation which store
semantically similar data using dissimilar schema?

Now. let us turn our attention to a single database scenario and consider a simple
query that lists “the names of all the departments that have an average salary greater
than $30K for any category of staff”. Against univ_A. this query can be expressed in
a straightforward manner in SQL. However, if the information in univ_\ is structured
according to the schema of univ_B (the department names that are part of the answer.
now occupy the attribute position). it is not straightforward to see how this query can
be expressed in SQL. Note that in making this claim we are assuming that the system
tables are not accessible to the end user, an assumption that did not restrict SQL from
expressing the query against univ_A. Thus, it is evident that the expressive power
of SQL is dependent on the way information is structured in a database, and if the
information is reorganized. queries that could be posed against the original database
can no longer be expressed against the restructured one. Clearly, besides having the

ability to manipulate schema as well as data, the language we develop should not



suffer from the drawback that its expressive power is dependent on the schema of the
information source.

Finally, assume that one of the components of the university federation, univ_B,
is not a relational database, but an information source on the Web which is a HTML
(Hypertext Markup Language) document containing the pay information. Note that
the HTML documents ‘structure’ information by means of tags embedded in the
document. The federation user might still want to express queries of the nature of
and Q. Doing so in such a complex scenario requires the ability to express queries
over both structured and semi-structured information sources (such as the HTML
documents, flat files. etc). Thus, our framework should be capable of handling both
structured as well as semi-structured information sources in a uniform manner.

This thesis is an outcome of our efforts in addressing these shortcomings of existing
technology. It critically analyzes these issues, studies the foundations of meta-data
management. interoperability. and querying and restructuring of structured as well as
semi-structured information systems, and proposes models, languages, and algorithms
that handle these issues in a seamless way.

The rest of this chapter is organized as follows. In Section 1.2, we undertake an
extensive survey of interoperability related literature. In Section 1.3, we highlight the
major contributions of this thesis and indicate how the thesis is organized. Finally.
we conclude this chapter in Section 1.4, by listing some of the salient publications

resulting from this thesis.

1.2 Related Works on Integration of Information

Previous work in the area of integrating information from multiple information sources
can be classified into (a) research on multidatabase systems and (b) research on

handling semi-structured information sources.

1.2.1 Multidatabase Systems

The objective of a multidatabase system (MDBS) is to provide end users with an
integrated view of the data in multiple database systems. Multidatabase systems,
also referred to as Heterogeneous Database Systems (HDBS) and Federated Database

Systems (FDBS) by different authors, has been an active area of research for many



vears (see [LR82, DH834, BLN86, DP90] for some early works). Surveys in this field
can be found in [ACM90] (in particular, see Sheth and Larson [SL90], Litwin, Mark.
and Roussopoulos [LMR90]), Hsiao [Hsi92], and [HBP94].

The approaches attempted so far for interoperability in MDBS are based on one
of the following: (i) a common data model, and (i) non-procedural languages. In the
following, we survey representative works in each of these approaches. For a compre-

hensive survey of related literature. the reader is referred to [LMR90] and [ACMI4].

Common data model: The databases participating in the federation are mapped
to a common data model (CDM) (such as the object-oriented model. that naturally
meets the CDM requirements in terms of richness of modeling power) which acts as an
‘interpreter’ among them. The similarities in the information contents of the individ-
ual databases and their semantical inter-relationships are captured in the mappings
to the CDM. In such a setting, the user queries the CDM using a CDM language.
and usually has to be aware of the CDM schema. In a more sophisticated scenario.
‘views’ which correspond to the schema of the participating databases are defined on
the CDM, thus providing the user with a convenient illusion that all the information
she gets is from her own database. (This is called tight coupling [SL90].)

A “canonical” example of the CDM-based approach is the Pegasus project of
Ahmed et. al. [ASD*91]. Pegasus defines a common object model for unifying
the data models of the underlying svstems. Landers and Rosenberg use the func-
tional model of DAPLEX as the CDM in their Multibase project [LR82]. Mcrmaid
(Templeton et. al [Tem37]) uses a relational CDM. and allows only for relational in-
teroperability (with extensions to include text). Thus users of a Mermaid federation
may formulate queries using SQL.

The major problem associated with the approaches in this category is the amount
of human participation required for obtaining the CDM mappings. Dynamic changes
in semantics or the schemas of the individual databases can also lead to revisions in
the CDM (mappings) requiring major (and hence costly) human intervention. Also in
many cases, autonomy requirements might impose limits on the information available

for constructing the CDM mappings.

Non-procedural languages: The second approach for interoperability in MDBS

involves defining a language that can allow users to define and manipulate a collection
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of autonomous databases in a non-procedural way. Thus a CDM, as defined in the
previous case is not required; the non-procedural language in some sense plays the
role of the CDM here. The major advantage associated with this approach is the
flexibility such a loose coupling ([SL90]) provides.

Litwin. Mark. and Roussopoulos [LMR90]. advocate that the concept of an MDBS
language is central to the notion of a MDBS system. They argue against a global in-
terpretation (as obtained in the CDM approach). and discuss the merits of a language
MSQL (Multidatabase-SQL) [Lit39. GLRS93]. an extension of SQL for interoperabil-
ity among multiple relational databases. The salient features of this language include
the ability to retrieve and update relations in different databases. define multidatabase
views. and specify compatible and equivalent domains across different databases. [n
([CL93]) Chomicki and Litwin propose an extension to OSQL ([ADK*91]), a func-
tional object-oriented language. The language has constructs that are capable of
declaratively specifying a broad class of mappings across multiple object-oriented
databases. They also sketch the operational semantics of this language.

More recently, Sciore, Siegel. and Rosenthal [SSR94], introduce a theory of se-
mantic values as a unit of exchange that facilitates interoperability. They apply this
theory on the relational model. and propose an extension to SQL called context-
SQL (CSQL). For each attribute in a schema, CSQL provides the capabilities for
specifying. and manipulating meta-attributes, that correspond to properties of that
attribute. These meta-attributes provide the context information for interoperability
among databases in an MDBS. UniSQL/M [KGK*95} is 2 multidatabase system for
managing a heterogeneous collection of relational database systems. The language of
UniSQL/M. known as SQL/M. provides facilities for defining a global schema over
related entities in different local databases. and to deal with simple semantic het-
erogeneity issues such as scaling and unit transformation. The emerging standard
for SQL3 ([SQLY6. Bee93]) supports abstract data typess and object id's. and hence
shares some of the features of the previously discusses languages.

Languages based on higher-order logic have been used as a vehicle for interoper-
ability. The underlying philosophy is that the schematic information should be seri-
ously considered as part of a database’s information content. Thus such approaches
are especially suited for handling schematic discrepancies ([KLK91]) commonly oc-
curring in MDBS. These approaches involve defining a higher-order logical language

that can express queries ranging over the (meta)information corresponding to the
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individual databases and their schemas. The major advantage associated with such
approaches is the declarativity they derive from their logical foundations.

Lefebvre, Bernus, and Topor {LBT92] use F-logic (Kifer et. al. [KLW95]), to
provide data mappings between local databases and an assumed global database (that
is an integrated view of the local databases). The mappings take care of the data as
well as the schermna discrepancies in the local databases. Global queries are translated
into local queries via a query translation algorithm, also written in F-logic. The
major strength of this approach is that using a declarative medium to provide the
mapping as well as the query translation rules helps in conciseness, modularity. and
maintenance. Krishnamurthy and Naqvi [KN88] propose a Horn-clause like language
that can “range over” both data and meta-data by allowing “higher-order™ variables.
Krishnamurthy. Litwin, and Kent [KLK91] extend this language and demonstrate its
capability for interoperability. However, they do not provide a formal model-theoretic
or proof-theoretic semantics for their language, and their language is not a full-fledged
logic.

An approach that falls in between the above two classifications is the M(DM)
model of Barsalou and Gangopadhyay [BG92]. M(DM) deals with a set of metatypes
that formalize data model constructs in second-order logic. A data model is hence a
collection of M(DM) metatypes. A schema instantiates these metatypes into a set of
first-order types. A database then consists of instances of the schema types. M(DM])'s
metatypes are organized into an inheritance lattice? which provides extensibility.

Onc of the carliest proposals for treating data and meta-data in a uniform manner.
comes from Codd. the inventor of relational model. In [Cod79]. Codd extends the
relational model and algebra in such a manner that the model captures more meaning
than captured by the basic relational model. A notable operator in this extended-
relational algebra is an operator that takes a relational extension as its argument
and returns the corresponding relation name. By allowing for the relation names in
the database to be queried (besides allowing for querying the values). the algebra of
[Cod79] blurs the distinction between data and meta-data.

Approaches discussed so far suffer from one or more of the following drawbacks.
[n order to effectively handle schematic discrepancies, the schema information should

be given primary status (along with values appearing in the databases) within the

2The term “lattice” used here is not in its mathematical sense; it is loosely used by the authors
to put forth their ideas.



language. This functionality is lacking in some of the above approaches ([Lit89.
SSR94, KGK*95]). In these approaches, as there is no uniform treatment of data
and meta-data, schema browsing and specifying “higher-order mappings” would be
inconvenient. While [LBT92] makes use of the higher-order capabilities of F-logic in
uniformly manipulating data and schema, their approach uses F-logic primarily for
query translation and provides an SQL-based user interface. This severely limits the
schema browsing capabilities from the user interface. Approaches that base inter-
operability on higher-order mappings among component databases ([CL93. LBT92])
do not provide support for ad-hoc queries that refer to (and possibly compare) data
and schema components of multiple databases in one shot. [CL93] and [SSR94] do
not provide a uniform syntax for multiple databases in a manner that glosses over
their schematic discrepancies. The SQL3 standard ([SQL96. Bee93]). while a compu-
tationally complete language, to our knowledge, does not have facilities for directly
supporting the kind of higher-order mappings required in an MDBS setting. While
[Cod79] attempts to provide equal status to the values and the relation names in a
database, it does not extend the same treatment to other schema components such
as the attribute names and the database name. In [BG92|, although the combination
of logic, object orientation, and metaprogramming gives much power to the M(DM)
model. its second-order nature raises questions about the possibility of practical im-

plementations based on this approach. Also. its semantics is quite complex.

1.2.2 Semi-structured Information Sources

[nteroperability among semi-structured information systems is an active area of cur-
rent research. Components of an MDBS are well-structured data sources with a
characteristic support for standard query languages. However. semi-structured in-
formation sources are tvpically exposed to the outside world via interfaces unique
to each of the sources and hence incompatible with one another. Some of these
sources need not even be information systems. in the traditional sense (e.g. spread-
sheets, mail tools). Thus, realizing interoperability among semi-structured data
sources poses a considerable challenge. Wiederhold [Wie92] proposed the impor-
tant concept of a mediator - a program that integrates heterogeneous data sources,
and provides a uniform interface through which end users may ask queries. A me-

diator queries each source using an interface, called a wrapper, provided by that
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source. Informally, a wrapper provides a view of the associated information source,
and implements a class of queries against it. The mediator then integrates the
data coming from disparate sources in a uniform manner. Several data integration
projects [ACHK94, CGH*94, SAB*95, Ham94, TRV96] have developed mediator
languages that an application developer can use to create a mediator. The TSIM-
MIS ([CGH*94]) project at Stanford is based on a ‘light weight’ object model called
Object Exchange Model (OEM). [t provides tools for generating the components (in-
cluding wrappers) that are needed to build systems for integrating information. The
HERMES ([SAB*95]) project at Maryland is broader in scope and considers, be-
sides databases. arbitrary software packages, multimedia sources etc. IBM’s Garlic
project ([CHS*95]) also provides substantial support for multimedia reasoning and
integration.

While the TSIMMIS approach caters to a variety of semi-structured sources whose
scheme may be ill-defined or even unknown, it is a framework for the mediator de-
veloper and is too low level to serve the needs of an end user. Also. it intertwines
the information access and integration activities; the integration strategy dynami-
cally varies depending on the data being fetched. Thus, the TSIMMIS goal is not to
perform a fully automated integration, but rather to provide a framework and tools
to assist developers in their integration efforts.

The HERMES project aims ta cater to a wide variety of data sources and makes
use of "ports” exposed by the component data sources. for developing mediator appli-
cations. Thus. the power of this approach is limited by the capabilities of the data
sources. For example. the HERMES approach to interoperability among multiple
relational databases. would make use of the SQL ports provided by the relational
sources to despatch SQL queries against the sources and integrate the returned re-
sults. Thus. the interoperability application would be constrained by the limitations
of SQL.

Recently. Gyssens at al. [GLS95, GLS96] proposed a two-dimensional data model
called the tabular data model and defined a tabular algebra corresponding to it.
They also show that their algebra is complete for querying and restructuring. They
observed the potential of the tabular model and algebra to serve as a unifying model
for relations (as in databases) and spreadsheets. However, this proposal is tailored for
tabular information. and does not consider non-tabular information sources requiring

interoperability.
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In [LSK95], Levy, Srivastava, and Kirk present an architecture for query processing
in global information systems. Their approach is based on description logic. While
their framework is more general than that of traditional MDBS, many of the issues
they study also arise in MDBS and their techniques are applicable to MDBS. From
this perspective, their approach is based on mapping the “component” information
systems to a so-called “world-view”. which is similar to a CDM. Query optimization
being their main concern. issues such as schema browsing, restructuring, and database
programming are not addressed.

In recent times. the problem of querying and updating semi-structured data stored
in documents has received much attention ([ACM93, CAS94. ACM95. Abi97]). These
works are relevant in our context for the reason that many common data sources
requiring interoperability such as the Web, mail folders etc, are in fact a collec-
tion of semi-structured documents. In [ACM93], Abiteboul, Cluet, and Milo make
use of the grammar of a document to ‘map’ it to an appropriate object-oriented
database. Christophides, Abiteboul, Cluet, and Scholl ([CAS94]) use a similar idea
to map SGML (Standard General Markup Language) documents into object-oriented
databases. However, these proposals do not account for novel features such as navi-
gation (via hyperlinks), essential for querying information sources on the Web.

Many recent proposals ([LRO96, MMM96, AMMT96]) have addressed the chal-
lenges arising in the context of Web querying. Most of these proposals are specific
to the Web setting and it is unclear how they can be deployed in a scenario requir-
ing interoperation among Web as well as traditional data sources. In Chapter 5. we

revisit this issue and study these works in detail.

1.2.3 Our Approach

Our approach in this thesis is based on using (higher-order) languages as a vehicle for
integrating information from multiple data sources. In particular, we develop these
languages with an aim towards addressing the drawbacks of existing frameworks for
information management, identified in Section 1.1.

We believe that declarativity is a key requirement for interoperability among com-
ponent data sources in a federation. A logic-based approach for interoperability would
bring the advantages of clear foundations, sound formalism, and proof procedures

thus providing for a truly declarative environment. Conventional query languages are
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based on predicate calculus and are useful for querying the data in a data source. But
as discussed in Section 1.1, interoperability necessitates a functionality to query not
only the data in a source but also its schema or meta-data. This calls for a higher-
order language which treats “components” of such meta-data as “first class” entities
in its semantic structure. In such a framework. queries that manipulate data as well
as their schema “in the same breath” could be naturally formulated. However. some
of the important concerns in designing an expressive logic language are the following.
The language should (1) be sound and complete: (2) be tractable in admitting simple
and efficient proof procedures and an effective implementation: (3) enhance the ex-
pressive power signiﬁcantly while adding relatively few simple constructs to first-order
logic: and (4) admit queries and programs to be expressed intuitively and concisely.
Some of the other key features required in a language for interoperability in a feder-
ation of heterogeneous information sources are the following. The language must (5)
have an expressive power that is independent of the schema with which the source is
structured: (6) to promote interoperability, permit the restructuring of one source to
conform to the schema of another; (7) be easy to use and yet sufficiently expressive:
(8) be capable of handling both structured and semi-structured information sources
in a uniform manner: and finally (9) admit effective and efficient implementation. In
particular, it must be possible to realize a non-intrusive implementation that would
require minimal additions to component information management systems. In the

rest of this thesis. we show how these goals can be realized.

1.3 Structure and Contributions of This Thesis

I. [n Chapter 2 of this thesis. we develop a formal framework for interoperability
based on a higher-order logic called SchemalLog. Though this thesis is set in
the general context of structured as well as semi-structured information sources.
we begin our study by developing Schemal.og as a foundation for interoperabil-
ity among relational databases. We have chosen the relational model for this
purpose for (a) it has sound theoretical foundations, (b) it is perhaps the best
understood data model, and (c) it is commercially popular and widely avail-
able. Later in the thesis, we extend our study to other (more general) settings

involving non-relational and semi-structured information sources.
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I1.

III.

Our other contributions in this chapter include the development of a fixpoint
theory for the definite clause fragment of SchemaLog and demonstration of its
equivalence to the model-theoretic semantics. We also develop a sound and com-
plete proof procedure for all clausal theories. We establish the correspondence
between SchemaLog and first-order predicate calculus and provide a reduction
of SchemalLog to predicate calculus. We illustrate the simplicity and power of
SchemaLog with a variety of applications involving database programming (with
schema browsing). schema integration. schema evolution, cooperative query an-
swering, and aggregation. We also highlight our implementation of SchemalLog

realized on a federation of INGRES databases.

Crucial to realizing an efficient implementation of SchemaLog is the study of
the fundamental operations underlying the logical language. Thereto. in Chap-
ter 3. we develop an algebra capable of querying and restructuring relational
databases. We also develop a calculus language inspired by a fragment of
SchemaLog useful for federation querying, and develop a notion of varying levels
of safety that naturally arise in the context of our calculus. Our results in this
chapter, on the equivalence between the various safe fragments of the calculus
language and fragments of the algebra, form the theoretical foundations of an

effective implementation of SchemaLog.

SQL is the lingua franca of the database community, especially for the prac-
titioners in the industry. While SchemaLog is a powerful language rooted
on sound theoretical foundations. many of its (mostly syntactic) features are
hard to adapt to for a typical, SQL ~die-hard” database programmer. How-
ever. it would be easy for such a user to adapt to a language having a syntax
closer to SQL. but which retains the spirit of SchemaLog. Dictated by these
practical considerations, in Chapter 4, we develop an SQL-like language called
SchemaSQL that is capable of querying as well as restructuring, both data and
schema 3. SchemaSQL is also capable of performing novel aggregation (beyond
the realm of what is possible in SQL), along the lines of the complex aggregation
operations commonly performed in On-line Analytical Processing (OLAP) sys-

temns. We also propose an implementation architecture for SchemaSQL that is

3ANSI SQL9?2 is the dialect of SQL we consider as our starting point.
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designed to build on existing technology and present an algorithm for realizing

a system based on SchemaSQL .

IV. In Chapter 5, we demonstrate how the thoughts that went into the design of
SchemalLog can be brought to bear in a natural way, in the context of legacy
databases (such as the Network databases) and non-traditional information sys-
tems (such as the World Wide Web). We show that the powerful features of
SchemaLog for meta-data querying, information restructuring. and interoper-
ability can be naturally extended to a truly heterogeneous federation consisting
of both relational and non-relational sources. Thus. this chapter demonstrates
the role of SchemalLog as a foundation for integrating heterogeneous information

sources.

Finally, we discuss future research and conclude in Chapter 6.

A Note On The Background Assumed Of The Reader: While the prerequisites
for an understanding of the thesis have been kept to a minimum, Chapter 2 assumes
a knowledge of first-order logic (See Chang and Lee [CL73}, Enderton [End72]). In
particular, many of the proofs presented in this chapter, follow the proof techniques
of [CL73]. Chapter 3 assumes a basic knowledge of Relational Algebra and Relational
Calculus, and Chapter 4 assumes some familiarity with SQL. Finally. an understand-

ing of the ER-model and the Network model is assumed for Chapter 5.

Before closing this chapter. we list selected publications that have resulted from

this thesis.
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1996.
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Chapter 2
SchemalLog

In this chapter. we develop the logical foundations of interoperability among compo-
nent data sources in a federation, based on a higher-order logic called SchemalLog.
SchemaLog provides uniform status to data as well as schema components of the
sources. Thus, it allows for naturally formulating queries that manipulate data as
well as their schema in a uniform manner. SchemalLog, besides being a sound and
complete logic, is tractable in admitting simple and efficient proof procedures and
an effective implementation, enhances the expressive power significantly while adding
relatively few simple constructs to first-order logic, and admits queries and programs

to be expressed intuitively and concisely.

2.1 Overview of the Chapter

e We introduce SchemaLog informally with a motivating example (Section 2.2).
Our syntax (Section 2.3.1) was inspired in part by that of [KN38]. However
while they provide no formal semantics. we develop model-theoretic (Section
2.3.2), fixpoint (Section 2.5.1), and proof-theoretic (Section 2.5.2) semantics
for SchemaLog. Thus, unlike their language, SchemaLog is a full-fledged logic.

Besides. technically the framework developed by us is different from that of
[KN83|.

e We propose a proof procedure for full clausal SchemaLog and show that it is

sound and complete (Section 2.5.2).



e Schemalog, like HiLog (Chen et. al. [CKW90]), is syntactically higher-order
but semantically first-order. We give a reduction of Schemalog to first-order
predicate calculus (Section 2.4). This reduction yields the technical bene-
fits of soundness, completeness, and compactness for SchemalLog. However we
argue that for interoperability, a crucial requirement for a query language is
“schema preservation” (see Section 2.4), and prove that under this require-

ment Schemalog has a strictly higher expressive power than first-order logic.

e We illustrate a number of applications of SchemaLog for practical problems.
in the field of MDBS as well as schema browsing, cooperative query answer-
ing. schema evolution and integration, and computation of powerful forms of
aggregation beyond the abilities of conventional languages like SQL (Section
2.6). We also outline the potential of SchemalLog for providing a theoretical
foundation for OLAP (On-Line Analytical Processing), currently an active area

of research with tremendous practical potential.

¢ We compare Schemalog with previously proposed higher-order logics including

F-logic and HiLog and bring out its unique features (Section 2.7).

o We briefly highlight our implementation of a Schemalog-based interoperable
system on a federation of INGRES databases (Section 2.3). Finally, we sum-

marize the chapter and discuss future research (Section 2.9).

[n this chapter. we contine ourselves to the interoperability problem in relational
databases. Our eventual objective (achieved in Chapter 3) is to extend Schemalog
into a logic capable of providing for interoperability among different data models. In
the rest of the chapter. by a federation. we mean a collection of relational databases

that can interoperate among themselves.

2.2 Schemal.og By Example

In this section, we introduce the syntax and intuitive semantics of our proposed
language informally via the university federation example (Example 1.1.1) of Chapter
1. We will follow it with a formal account of the syntax and semantics in the next

section.
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Let us revisit the queries @, and @, of Example 1.1.1.

(Q:) “Which are the departments that have an average salary above 545K in all
the three universities for any given category?”

(Q,) “List departments with the same name in univ_B and univ_C that have the
same average salary for the same categories of staff.”

Each database is made of relations. and each relation is made of tuples. which
are functions mapping attributes to values. Identification of the set of tuples which
constitute a relation could be accomplished by associating tuple-id’s with them. Now

the query @, can be expressed in SchemaLog as':

? — univ_A :: pay_info[T, : dept—D, category—C, avg_sal—S],
univ_B :: pay_info[T; : category—C, D—S,], D # ‘category’,
univ_C :: D[Ts : category—C, avg_sal—Ss], S, > 45K, S; > 45K. S, > 5K

and query @ can be expressed as:

? — univ_B :: pay_info[T; : category—C, D—S], D # ‘category’,
univ_C :: D[Ts : category—C, avg_sal—S]

Notice that in query @, variable D ranges over domain values as well as at-
tribute and relation names. It is this flexibility which makes such a querying medium
highly expressive and declarative. The variables T intuitively stand for the tuple-id’s
corresponding to the tuples in the relations.

[n queries Q; and Q.. the variable D is explicitly compared with the attribute
category whenever D occurs in a position which ranges over attributes. Thus an
explicit comparison is required, unless it is known. e.g. that there is no relation

called category in univ C.

2.3 SchemaLog — Syntax and Semantics

In this section we formally present the syntax and semantics of our language.

Existential variables can be projected out by writing rules. Here, we mainly focus on the intuition
behind the syntax of SchemaLog.



2.3.1 Syntax

We use strings starting with a lower case letter for constants and those starting with
an upper case letter from the end of the alphabet (such as X, Y, ...) for variables. As
a special case. we use ¢; to denote arbitrary terms of the language. A, B, ... denote
arbitrary well-formed formulas and A. B, ... denote arbitrary atoms.

The vocabulary of the language L of Schemalog consists of pairwise disjoint
countable sets G (of function symbols), S (of non-function symbols), V (of variables).
and the usual logical connectives =.V. A, and quantifiers 3 and V.

Every symbol in S UV is a term of the language. If f € G is a n-place function
symbol. and ¢,..... t, are terms, then f(¢y,....f,) I1s a term.

An atomic formula of L is an expression of one of the following forms:

(db)::(rel)[(tid) : (attr)—(val)]
(db)::(rel)[(attr)]
(db)::(rel)
(db)
where (db). (rel), (attr), (tid). and (val) are terms of £. Example 2.3.1 illustrates

the intuitive meaning of this syntax. In an atom of the form
(db)::(rel)[(tid) : (attr)—(val)]

we refer to the terms (db). (rel). (attr), and (val) as the non-id components and
(tid) as the id component. The id component intuitively stands for tuple-id (tid). The
depth of an atomic formula A. denoted depth(:\). is the number of non-id components
in A. The depths of the four categories of atoms introduced above are 4.3,2. and 1
respectively. By our delinition of atoms. an id-component appears only in atoms of
depth L. The well-formed formulas (wff's) of £ are defined as usual: every atom is a
wif: =A. AV B. AAB.(3X)A. and (V.X)A are wff's of £ whenever A and B are wif's
and X is a variable.
We also permit molecular formulas of the form
(db)::(rel)[(tid) : (attr;)—(val), ..., (attr.)—{vals)]
as an abbreviation of the corresponding well-formed formula
(db)::(rel)[(tid) : (attry)—(vali)] A --- A (db):(rel)[(tid) : (attr,)—(val,)].
In spirit. molecular formulas of SchemaLog are similar to the molecules in F-logic

[KLW95]. from which we borrow this term.
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A literal is an atom or the negation of an atom. A clause is a formula of the form
VX - VXnu(L V ---V L,) where each L; is a literal and Xi,...,Xn are all the
variables occurring in Ly V---V L,. A definite clause is a clause in which exactly one
positive literal is present and it is represented as A «— By,..., B,, where A is called
the head and ‘B, .... B’ is called the body of the definite clause. A unit clause is a

clause of the form A «. that is a definite clause with an empty body.

Example 2.3.1 The molecule univ_B :: pay_info[T : category—C, D—45K] in
the contert of the university federation asserts the fact that database univ B has a
relation pay_in fo which has an attribute category and an attribute that contains. for

some tuple. a value 45K .

2.3.2 Semantics

Let [’ be a non-empty set of elements called intensions (corresponding to the terms of
L). Consider a function Z that maps each non-function symbol to its corresponding
intension in U/ and a function Z;,, which interprets the function symbols as functions
over [/. The true atoms of the model are captured using a function F which takes as
arguments the name of the database, the relation name, attribute name, and tuple-id,
and maps to a corresponding individual value. Thus for a given atomic formula to
be true. the function F corresponding to the formula (after mapping the symbols ot
the formula to their corresponding intensions) should be defined in the structure (and
the values should match).

A semantic structure M for our language is a tuple < U".Z.Zf,n. F > where

e [’ is a non-empty set of intensions:

e T: S — [ is a function that associates an element of (" with each symbol in S:

¢ Zrun(f) : U =L . where f is a function symbol of arity r in g.

o F:U ~ [l ~ [[U ~ [U ~ Ul]], where [A ~» B] denotes the set of all partial
functions from A to B.

To illustrate the role of F, consider the atom d :: r. For this atom to be true.
F(Z(d))(Z(r)) should be defined in M. Similarly, for the atom d :: rft:a — v] to be
true, F(Z(d)NZ(r))}Z(a))(Z(t)) should be defined in M and
F(Z()Z(r)(Z(a))(Z(¢)) = I(v).

A vaf (variable assignment function) is a function v: V — U. We extend it to

the set 7 of terms as follows.

[
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e v(s) =I(s) for every s € S.
o U(f(ty.uatr)) = Lrun(f)(w(t1), ..., v(ts)), where f is a function symbol of arity &
in G and ¢; are terms.

Let {; € T be any term. The satisfaction of an atomic formula A, in a structure

M under a vaf v is defined as follows.

o Let A be of the form ¢;. Then W |=, A iff
F(v(ty)) is defined in M.

e Let A be of the form ¢, :: £,. Then M E, Aiff
F(v(t,))(v(t2)) is defined in M.

o Let A be of the form ¢, :: ¢5{t5]. Then M [, A iff
F(v(t))(v(t2))(v(t3)) is defined in M.

o Let A be of the form ¢, :: ¢5{ty : t3—ts]. Then M k=, A iff
Fv(t))(v(t2))(v(taz))(v(ty)) is defined in M, and
Flu(t))(v(t2))(v(ts))(v(ts)) = v(is)

Satisfaction of compound formulas is defined in the usual way:
e M =, (AVB)If M E, Aor M E, B;
o M =, (mA)Iff M ¥, A

o W k=, (IX)A iff for some vaf p. that may possibly differ from v only on X.
such that M =, A:

For closed tormulas. M =, A does not depend on v and we can simply write
M EA

Before closing this section. we note that built-in predicates (=, #. <, etc.) can be
introduced and interpreted in SchemaLog in the usual manner. We shall freely make

use of built-in predicates in our examples.



2.4 Reduction of Schemalog to Predicate Calcu-

lus

The richer syntax of SchemalLog may raise questions about its axiomatizability and
hence its potential for being implemented as a viable medium for MDBS interoper-
ability. In this section. we prove that every Schemalog formula can be encoded in
first-order predicate calculus. in an equivalence preserving manner. This will show
that Schemalog inherits many of the desirable properties of first-order logic. while
offering the convenience of a higher-order syntax.
Syntax
We define a language L, that is derived from the SchemaLog language L. Ly
consists of the set S of logical symbols. variables V. the function symbols G. and
unique predicate symbols call}, cally. callz, and cally. 'S.V and G correspond to those
in L.

Given a SchemalLog formula A, its encoding A" in predicate calculus is determined
by the recursive transformation rules given below. In this discussion, s; € SuV. f€g,

E.tap, trets Laters tidy bvat € T, the set of terms, and A. B are any formulas.

encode (s) =s

encode ( f) =f

encode ( f(¢y.....¢,)) = encode( f)(encode(t,).....encode(t,))
encode (fgy =2 b ity for—to]) = cally(encode(t ). encade(t. ). encode(t,.1).

encode(t . ). encode(t q))

encode (L =2 brer[baser]) = cally(encode(ty). encode(t ). encode(t oer))
encode (tgp 2 tee) = cally(encode(tp ). encode(tre))

encode (tg) = call,(encode(ty))

encode (A V Bj = encode (A) V encode (B)

encode (A A B) = encode (A) A encode (B)

encode (— A) = — encode (A)

encode (A — B) = encode (A) — encode (B)

encode ((QX)A) = (QX)encode(A), where Q is

either 3 or V.



Semantics
Given a SchemaLog structure M, = < U,Z, Ty, F >, we construct a corresponding
first-order structure, encode(Ms) = Msq = < U,Zs, I, > as follows. (Zy interprets
function symbols of L, as functions of appropriate arity over U. I, interprets the
predicate symbols of L, as relations of appropriate arity over /. Note that the
logical symbols s € S are function symbols of arity 0.)
Z;(s) =4ey I(s). foreachs € S .
Ii( ). tn) =def Lrun(F)(U1. ... un), for each f € G of arity n. and uy,.... U, €
(.

The call, predicates of Ly, are interpreted in the following way:

Let d.r.t.a.ve U.

(d.r.t,a.v) € T(cally) iff F(d)(r)(t)(a) is defined in M,. and F(d)(r)(t)(a) = v.

(d.r.a) € T,(calls) iff F(d)(r)(a) is defined in M,.

(d,ry € Ty(cally) iff F(d)(r) is defined in M,.

(d) € I (cally) iff F(d) is defined in M.

A variable assignment v is a function from the variables of L, to the universe (.
v is extended to the set T of terms, analogously to the way it is done in Section 2.3.2.
Then, the truth of a well-formed formula A, with variable assignment v in structure

My, is defined as follows:

1. If Ais an atomic formula of the form cally(te, trers teid- battr Lval)s
where t. tret. tid. baters bear are terms of Ly, and v is a vaf.
then Myy o cally(tap treie brids bacers Eeat) 1fE
(U(tap). U(tret). v{tuia) V(tarer ). v(teat)) € Ly(cally).

(Similarly. for atoms of depth < ).

2. If Ais a wif involving connectives and/or quantifiers. its satisfaction is defined

in the usual inductive manner.

Theorem 2.4.1 (Encoding Theorem)
Let A be a SchemaLog formula, M, be a SchemaLog structure, and v a vaf. Let
encode(A) be the first-order formula corresponding to A and encode(M,) be the cor-

responding structure for the first-order language Ly,

Then. M, =, A iff encode(M,) k=, encode(A).



PROOF. Let M, = < U,Z,Zf,n,F > be the SchemaLog structure. Let encode (M)
be the structure My = < U,Zs,T, >. We shall show by induction on the structure
of the formulas A of £ that M, |, Aiff My k=, encode(A).

Base case: A is an atom. Actually, there are four cases to consider, depend-
ing on the depth of the atom. We shall give the proof for the case when depth
is 4. The proof for atoms of depth less than four is analogous. Let A be the
atom tg i treiftrd t taer—rtuat]. where L. trer, tiids Laser Evat are terms of L. Now.
M, =, ts o bealtua @ baer—toal]s W F(o(tas))(v(tre))(v(Eeia) ) (¥(Eanr)) is defined in
M. and F(v(tp))(v(tret)(v(beia)) (V(Earer)) = v(Evat),
ff < v(ta). vtret), U(tauer), v(tua), V(toa) > € ZIp(cally),
iff Mia = cally(bap, trets teids taters tuat), 1ff Mfo =, encode(A).

Induction: Suppose A is a compound formula involving connectives and/or quan-
tifiers. We shall indicate the proof for one case; the remaining cases will follow

analogously.

Let A be of the form B V C where B and C are arbitrary SchemaLog formulas.

My, BVvC MsE,BorME, C

Mo =, encode(B) or My, =, encode(C)
Mgo =, (encode(B) V encode(C) )

My, £, encode(B Vv C)

Mgo = encode (A).

t ¢ 09

O

From Theorem 2.4.1. with simple induction. it follows that every SchemaLog pro-
gram P can be encoded into a first-order logic program encode(P). such that for ev-
ery SchemaLog structure M;,. P maps .M, to an output structure o, iff encode(P)
maps encode( M,,) to encode( M,,.). In simple words, this means that for all mappings
between SchemalLog structures expressible by SchemaLog programs there exist cor-
responding transformations on the encodings of the SchemalLog structures. which are
expressible as first-order logic programs. Thus, technically SchemalLog has no more
expressive power than first-order logic as a database programming language. As a
consequence of the first-order semantics, the results of axiomatizability, decidability,

and compactness accrue for SchemalLog.



Discussion on Expressive Power

The results of the preceding section indicate that Schemalog has no more expressive
power than first-order logic, in view of the fact that the former can be simulated in
the latter. This raises the question - “What good is SchemalLog, if it does not yield
a higher erpressive power than first-order logic?”. To understand this question in
perspective. note that the simulation of SchemalLog in first-order logic crucially relies
on the assumption that a federation of conventional databases is available in reduced
form, i.e. in the form of the four call relations - cally, cally, callz. cally (see the proof
of Theorem 2.4.1). The equivalence in expressive power between first-order logic
and SchemaLog thus holds only when the former is given a federation of databases
in reduced form as input. while the latter is used against databases in conventional
form. Thus, notice that the simulated and simulating languages do not take the same
federation of databases as input, although the inputs are equivalent.

Ross [Ros92] addresses a similar issue in the context of an algebra he proposes
for HiLog and introduces the notion of a relation preserving simulation. He defines
a simulation to be relation preserving, if the simulated as well as the simulating
formalisms operate on the same database. In the context of interoperability, we can
extend this notion to the level of a federation and speak of simulations that preserve

schemas.

Definition 2.4.1 Let 7 : Z;, — I, be a transformation between a class of input

and output instances. and L be any logic language. We say that a program P in L
expresses 7 provided VI € T;,. P(I) = 7([).

Definition 2.4.2 (Schema preserving simulation) A language L can be simulated in
a schema preserving manner in another language L' provided for every program P in
L that erpresses a transformation v : I;; — Loy, there is a program P' in L' that

€Ipresses 1.

A crucial point to observe in the above definition is that programs in both the sim-
ulated (L) and simulating (L') languages manipulate input instances with identical
schemas (and hence identical data). This is to be contrasted with the kind of simu-
lation entailed by Theorem 2.4.1, where SchemaLog programs manipulate relational

databases in their conventional form, while the simulating first-order logic programs

N
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manipulate the encoded versions of these databases, which clearly have a different
schema.

The theoretical motivation for schema preservation arises from the fact that if
the databases in the federation are encoded arbitrarily for the purpose of simulation,
useful information such as normal forms and integrity constraints would be lost. This
is certainly the case with the reduced form encoding used in the proof of Theorem
2.4.1. From a practical perspective. because of autonomy requirements and also due
to the prohibitive cost involved. encoding the databases in a federation into reduced
form is infeasible. While Theorem 2.4.1 does not yield a schema preserving simulation.
it does not establish that no such simulation is possible. The following theorem settles

this issue with finality.

Theorem 2.4.2 First-order logic cannot simulate SchemalLog in a schema preserving

manner.

ProOF. Consider the SchemalLog program P:
db' :: rel'{ X—=Y] «— db :: rella— X, b—>Y].

Clearly, P generates a relation whose width is dependent on the data in rel. On the
other hand, every relational algebraic operator produces an output with a schema that
is data-independent. By induction. any first-order logic program has this property
and hence the transformation expressed by P cannot be expressed by any first-order
logic program. a

Theorem 2.4.2. together with Theorem 2.4.1. implies that first-order logic cannot
express the mapping between a conventional database and its reduced form. On the
other hand. Schemalog can readily express this and more powerful forms of restruc-
turing of databases (also see Section 2.6.2). In view of the above discussions. we
see that schema preservation is an essential practical requirement for query languages
for interoperability. We conclude that under the requirement of schema preservation.
SchemalLog has a strictly higher expressive power than first-order logic.

As a final note, we remark that a language with higher expressive power under
the requirement of schema preservation, leads to queries in the chosen application
domain which are more natural and concise compared to the language which can

only simulate the former via encodings that do not preserve schemas.



2.5 Programming in Schemal.og

For the purposes of database programming, in Section 2.5.1, we focus on the definite
clause fragment of SchemaLog. We develop the fixpoint and model theoretic semantics
of this fragment and establish their equivalence. In Section 2.5.2. we develop a sound
and complete proof theory for the full logic of SchemaLog. For simplicity of exposition.
we do not address the issue of equality in Sections 2.5.1 and 2.5.2. In Appendix A.l.
we show how the results of these sections can be lifted to the case where equality

theory is addressed.

2.5.1 Fixpoint Semantics

We will consider a program P to be a set of definite clauses. The notions of Herbrand
base. Herbrand interpretation and Herbrand model follow those of the conventional

ones with extensions induced by the nested structure of SchemalLog atoms.

Definition 2.5.1 Let A be an atomic formula of depth n, | < n < 4. The restriction
of 4 to depth m, m < n, is the formula A’ obtained by retaining the first m non-
id components of A. When the depth is not important, we simply say that A’ is a
restriction of A. The restriction of an atom A of depth n to depth n. is itself.

Example 2.5.1 The restriction of ty iz tafty : ty—ts] to depth 3. 2. [ are ty =z t;t3] |

t, ity and t, respectively.

Definition 2.5.2 Let [ be a set of ground atoms. Then the closure of [. denoted clif).
is defined as cl([) = {A | 3B € [ s.t. A is the restriction of B to depth m. for some
I < m < depth(B) }. A set of atoms [ is closed if cl([) = [.

We extend the notion of closure to a set T of sets of atoms by defining cl(Z) =yes
{cl([)| I €T}

Let P be a definite program. Then the Herbrand universe of P is the set of all
ground (i.e. variable-free) terms that can be constructed using the symbols in P.
The Herbrand base Bp of P is the set of all ground atoms that can be formed using
the logical symbols appearing in P. Note that by definition, the Herbrand base of
a program is closed. A Herbrand interpretation [ of P is any closed subset of Bp.

[t can be shown that a Herbrand interpretation obtained from first principles using
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the definition of a structure by interpreting all logical symbols as themselves and the
function symbols in G in the usual “Herbrand” style is equivalent to the above simpler
notion of Herbrand interpretation. [ is a model of P if it satisfies all the clauses in P.
[t is easy to show that the union (intersection) of closed subsets of Bp is closed. Then
cl(28#), the set of all Herbrand interpretations of P, is a complete lattice under the
partial order of set inclusion C. The top element of this lattice is Bp and the bottom

element is ®. Union and intersection correspond to the join and meet as usual.

Definition 2.5.3 Let P be a definite program. The mapping Tp : cl(287) — cl(28¢)
is defined as follows. Let [ be a Herbrand interpretation. Then Tp(I) = cl({A €
Bp | A — A,...... 4, is a ground instance of a clause in P and {A;,.....An} € [}).

We have the following results.

Lemma 2.5.1 Let P be a definite program. The mapping Tp is continuous (and

hence monotone).

PROOF. Let X be a directed? subset of c/(287). {A,..., A.} C lub(X) iff

{A,....A,} C [, for some [ € X. To show Tp is continuous, we have to show
Tp(lub( X)) = lub(Tp( X)), for each directed subset X. Thus,

A€Tp(lub(X)) & Be Ay, ....: A, is a ground instance of a clause in P .
{4 ... 1,} Club(X). and A is a restriction of B.
< Be—A...... 1, is a ground instance of a clause in P and
{Aroonos 4.} C I, for some [ € X. and A is a restriction of B.

< AeTp(l). for some [ € X.
< A€ lub(Tp(X)).

This proves that Tp is continuous. Monotonicity follows from this. a

Lemma 2.5.2 Let P be a definite program and [ be a Herbrand interpretation of P.
Then [ is a model for P iff Tp(I) C I.

PROOF. [ is a model for P iff for each ground instance A «— A,,...., A, of each
clause in P. {A,,...,4.} C [ implies A € L. This is true if and only if Tp(I) C I.

2 X is directed if every finite subset of .X has an upper bound in X.
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In particular, notice that every atom B € Tp(I) which is a restriction of A, where
A «—— Ay ..., A, is a ground instance of a clause in P and {A,, ..., An} C I, is also

in [ (as [ is closed). o

Theorem 2.5.1 (Fixpoint characterization of Least Herbrand Model)

Let P be a definite program. Let M(P) be the set of all Herbrand models of P and let
NM(P) be their intersection. Then NM(P) is a model of P called the least Herbrand
model of P. Further NM(P) = Ifp(Tp) = TpTw = {A|A€BpAPE A}

PROOF. We know. NM(P) is glb([ : I is a Herbrand model for P). It follows from
Lemma 2.5.2 that this is the same as {fp(Tp). The theorem now follows from Lemma
2.5.1. The details are identical to those for classical logic programming ([vK76]). O

[ncorporating any of the various forms of negation studied in logic programming

(e.g.. see [She88]) in SchemalLog is not very difficult.

2.5.2 Proof Theory of SchemaLog

[n this section, we develop a sound and complete proof theory for Schemalog as a
full-fledged logic. We consider arbitrary SchemalLog theories, not just definite clauses.
Analogous to first order logic, we can show that arbitrary theories can be trans-
formed into clausal theories. This is achieved through Skolemization. as usual. We
then develop the proof theory for SchemaLog theories consisting of clauses. based on

resolution.

Skolemization in SchemaLog

A sentence ¢ in SchemaLog can be transformed into an equivalent sentence ¢’ in
prenex normal form. A sentence is in prenex normal form if it is of the form
(Q1X1)...(Q.X ) (F) where every (Q; Xi),t = 1..... n. is either (V.X;) or (3.X;). and
F is a formula containing no quantifiers. This transformation is along the lines of the
one used in predicate calculus. An algorithm for this transformation can be found in
Chang and Lee [CL73] and can be easily adapted for SchemaLog.

Skolemization is the process of eliminating the existential quantifiers in a formula
by replacing them with suitable functions (called Skolem functions). The intuition
behind Skolemization is the following. If a formula asserts that for every X, there

exists a Y such that some property holds, the choice of ¥ could be seen as a function of
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X. Skolemization simply assigns a (new) arbitrary function symbol to represent this
choice function. This can be used to eliminate the existential quantifier associated
with Y.

Notice that Skolemization in SchemalLog is virtually identical to that in classical
first-order logic. The essential reason for this is that in SchemaLog, as in classical
logic. function symbols are directly interpreted into their extensions. By contrast.
HiLog (for example). interprets function symbols (as also other symbols) intensionally.
There. a new svmbol chosen to represent a Skolem function must be assigned a new
intension. which may not always be possible. The authors of HiLog get around this
difficulty by using an unused arity of one of the old symbols to represent the Skolem
function. (See [CKW90] for the details.) For SchemalLog, since Skolemization works

in a manner identical to that of predicate calculus, as explained above.

Herbrand’s Theorem

By virtue of Skolemization, without loss of generality. we can restrict our attention
to formulas in prenex normal form which are universally quantified. By transforming
such formulas into conjunctive normal form, we can obtain SchemaLog formulas that
are in Clausal form. Thus. such formulas may be viewed as sets of clauses. Recall the

notions of Herbrand universe, Herbrand base, and Herbrand interpretations (Section
2.5.1).

Proposition 2.5.1 Lct S be a sct of clauses and suppose S has a model. Then S hax

a Herbrand model.

PROOF. Let [ be an interpretation of S. The Herbrand interpretation [' is defined
as [' = {4 € Bs: Ais true in [}. It follows by an easy induction that if [ is a model

of S.then [’ is also a model of S. a

Lemma 2.5.3 4 set of clauses S is unsatisfiable iff it is false with respect to all

Herbrand structures.

PRrOOF. If S is satisfiable, then Proposition 2.5.1 shows that it has a Herbrand
model. ]

Following Chang and Lee [CLT3|, we next introduce the notion of a semantic

tree. As in the classical case. we shall use semantic trees to establish the strong
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version of Herbrand’s Theorem (see Theorem 2.5.2 below) for Schemal.og, as well as
to prove the completeness of our proof procedure. The following notions are needed
in defining semantic trees. Recall the notion of restriction of atoms to smaller depths

(see Definition 2.5.1). The notion can be extended to literals in the obvious manner.

Definition 2.5.4 A literal L, is reducible to literal L;, if L; is L, restricted to
depth(L;). Let A be an atom. The literal =A’ contradicts A. if A is reducible to
A’. The set {A.—~A"} is called a contradictory pair.

Notice that if =4’ contradicts A, it does not in general follow that —A contradicts

A’. An example is A = db :: rel[attr] and A" = db :: rel.

Definition 2.5.5 Let S be a set of clauses, and let Bs be the Herbrand base of S.
A semantic tree for S is any tree whose edges are labeled with finite sets of ground
literals such that:

(i) Each node v has a finite number of children; let e,.-- -, e; be the edges connecting
v to its children and let lit(e;) denote the (finite) set of literals labeling e;. We can
view each set lit(e;) also as denoting the conjunction of the literals in this set. Then,
lit(ey) V - -- V lit(ex) is a tautology.

(ii) For each node v, the union of all labels of edges appearing in the branch from the

root down to v. contains no contradictory pair of literals.

For a node v of a semantic tree. we let [(v) denote the union of all labels of edges
appearing in the branch from the root down to r. Note that in general [{r) can be

viewed as a partial interpretation.

Definition 2.5.6 Let Bs be the Herbrand base of a set S of clauses. A semantic tree
T for S is said to be complete provided for every leaf node v of T. and for every atom

A € Bs. I{v) contains A or =A. Notice that a complete semantic tree can be infinite.

Definition 2.5.7 A node v of a semantic tree T for a set of clauses S is a failure
node if [(v) falsifies some ground instance of a clause in S, but I(v") does not falsify
any ground instance of a clause in S for every ancestor node v' of v. T is said to be
closed provided every branch of T terminates at a failure node. A node v of a closed
semantic tree is called an inference node if all the immediate descendant nodes of v

are failure nodes.
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We finally state the strong version of Herbrand’s Theorem for SchemaLog which
plays an important role in the proof of completeness of the proof procedure. Its proof

given below, is analogous to that for classical predicate calculus.

Theorem 2.5.2 (Herbrand’s Theorem) A set S of wffs in clausal form is unsatisfi-

able iff every complete semantic tree T for S has a finite closed subtree.

PROOF. It has been shown in Section 2.4 that there is a transformation from Schema-
Log to first order logic such that a SchemaLog formula A is true in a structure M,
under vaf v iff the corresponding first order formula encode(A) is true in the corre-
sponding first order structure encode(M;) under the vaf v (Theorem 2.4.1). Her-
brand’s theorem can now be proved from the above result using a technique similar
to that used for predicate calculus [CL73]. The main observation is that whenever
S is unsatisfiable. every branch of any complete semantic tree T of S must have a
failure node. Since each node of T has a finite number of children, an application
of Kénig's Lemma at once implies the existence of a finite closed subtree of T. The
details are straightforward and are suppressed. a

Note that just as in the classical case [CL73], we get as an easy consequence of
Theorem 2.5.2 that a set S of clauses is unsatisfiable if and only if some finite subset

of the ground instances of § is.

Unification

Unification in SchemaLog has to be treated differently from the way it is clone conven-
tionally. In our case. unlike in predicate calculus. there is a natural need for literals
of unequal depth to be unified. To see this. consider the following example.

Cousider the definite program P = {db :: rel[attr] «— } asserting the existence
of a database db. with a relation named rel. for which an attribute attr is defined.
Now. consider a query : 7 —db :: rel which asks about the existence of a database db,
with a relation named rel defined on it. Resolution in the conventional sense would
not result in a refutation (whereas it should!). Now let us “switch” the (head of the)
rule and the goal, i.e. consider the program P = {db :: rel «— } and the query
? — db :: rel[attr]. Intuitively, we understand that the resolution should fail.

The above example illustrates two key issues: (1) Unification in SchemalLog in-

volves ‘unlike’ literals and (2) unifiability is not commutative. Intuitively. the above
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issues are related to the definition of closure used in the fixpoint semantics. This in
turn is associated with the nested structure of atoms allowed in our language. Thus,

the conventional notion of unification needs to be extended®. We discuss this next.

Definition 2.5.8 A substitution is a finite set of the form {t;/X\.....ta/ Xn} . where

Xi..... X, are distinct variables, and every term t; is different from X;, 1 <t < n.

Definition 2.5.9 - unifier of literal L; to literal L; is a substitution 8 such that L;0
is reducible (see Definition 2.5.4) to Li8. Literal L; is unifiable to literal L, if there
is a unifier of L; to L;.

Definition 2.5.10 A unifier o of a literal L; to literal L; is a most general unifier

(mgu) iff for each unifier § for L; to L;, there erists a substitution \ such that 0=0cl.

The Unification Algorithm
Our unification algorithm is essentially similar to the one for classical logic. We have
to adopt certain modifications to account for the peculiar syntax of SchemaLog and
the somewhat different notion of unification defined above. We develop an algorithm
below by modifying the unification algorithm discussed, e.g.. in Uliman [Uli39a].
Consider any two SchemaLog atoms A and B. Without loss of generality. we
may assume that there is no variable which occurs in both A and B. (Such variables
can always be renamed). We would like to test if A can be unified to B. Clearly. a
necessarv condition for this is that depth(A) < depth(B). which we shall assume in

the algorithm below.

Algorithm 2.5.1 Computing the Most General Unifier.
INpuT: Atomic formulas A and B with disjoint sets of variables.

OuTPUT: A most general unifier of A to B or an indication that none erists.

MEeTHOD: The algorithm consists of two phases. Phase I distinguishes the equivalent subez-
pressions of A and B that must become identical in the MGU. Phase II determines if an
MGU exists.

3The directionality associated with unification also arises in F-logic [KLW95] but for a different
reason: a molecule with fewer components may be unified to one with more components. This
feature is present in SchemaLog as well, at the molecular level. But, unlike F-logic, SchemaLog
unification needs to be directional even at the atomic level.



Phase |: Finding equivalent subezpressions.

A tree corresponding to each of A and B is constructed first. The following rules inductively
define the tree for A. (The tree for B is constructed in a similar way.)

1. If A is of the form tgp :: tret[teid © tater—tuai], then the tree for A has an unlabeled root
with 3 children, vgp, Urel. Uid- Uater, Uvat from left to right, in that order where v; is the root
of the tree for the term ¢;, i € {db. rel.id.attr.val} (If A is an atom of depth less than four.
its tree will have an unlabeled root with children corresponding to the terms appearing in
Al)

2. Let ¢t be a term of the form f(¢..... t,) for a function symbol f of arity n and terms
ti,...,tn. Then the tree for ¢ has a root labeled f. The root has n children vy,....vn.
where v; is the root of the tree for ¢;, : = 1, ..., n.

Rules 1 and 2 completely describe the tree for any SchemaLog atom.

After building the trees for A and B, we group their nodes into equivalence classes. These
equivalence classes can be represented by the equivalence relation =. The rules for defining
= are:

1. If ry and rg are the roots of the two trees. then ry = rpg.

2. Suppose m, n are any nodes of t4 and tg respectively, such that m = n. Then two cases
arise:

CASE 1: m is the root r4 and n is the root rg. In this case, let uy,...,us be the children
of r4 and vy....,v, be the children of rg, where | < k < n < 4. We say that a child u;
corresponds to a child v;, provided both correspond to a database. a relation. a tuple-id.
an attribute or a value term. Whenever u; corresponds to v;. set u, = v,.

CASE 2: m and n are both any nodes of t4 and tg. other than their roots. [n this case.
m and n must be labeled. If theyv are both internal nodes. they must be labeled by some
function symbols. If the function symbols are distinct. conclude ~A cannot be unified to
B” and exit. Otherwise. they must have the same number of children. say u;.....u, and
Ulen... v, respectively. Then set u; = v;.i=1...., n.

3. If nodes m and n are labeled by the same variable. then m = n.

4. n = n for any node n; if n = m, then m = n; if n = m and m = p. then n = p.

Phase I of the algorithm constructs the MGU by considering each equivalence class obtained
from the previous phase. This phase is identical to phase II of the unification algorithm for

classical logic given in Ullman [U1i89a], to which we refer the reader for details. a

We give an example of unification, to illustrate the algorithm.

Example 2.5.2 We will consider unifying the Schemalog formula A to B where,
A= f(X.g(X)) ::Y and B = f(g(U), V) :: rel(g(W)).
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The equivalence classes we obtain are: {W}, {U}, {V, rel}, {X, g(U)}, {9(X).
V} and the MGU T is obtained as: T(W) =W, r(U) = U. 7(Y) = rel, 7(X) = g(U).
(V) = g(g(l7)). O

Theorem 2.5.3 Unification Theorem:

Given atomic formulas A and B, Algorithm 2.5.1 correctly computes the most general

untfier of A to B if the mgu erists.

The proof of this theorem follows the same lines as the one discussed for classical
logic in Ullman [Ul189a]. The modifications to the proof to account for the modified

phase [ of the algorithm are straightforward.

Resolution and Completeness

[n this section, we show that the extension of the resolution-based proof procedure
to the higher-order setting is sound and complete for Schemalog. Before presenting

resolution, we recall the following notions.

Definition 2.5.11 Let L, and L; be two literals in a clause C. If there is a most

general unifier o of L; to L. then Co is called a factor of C'. If Co is a unit clause.
it is called a unit factor of C.

Definition 2.5.12 Let (', and C', be two clauses (called parent clauses) with no vart-
ables in common. Let Ly and Ly be two literals in Cy and Cy respectively. If Ly has
a most general unifier o to =L,. then the clause obtained by removing Lio and Lo
from a disjunction of C1o and (0 is called a binary resolvent of C'y and ;. The

literals L, and L, are called the literals resolved upon.

Definition 2.5.13 A resolvent of (parent} clauses C'\ and C, is a binary resolvent of
a factor of C'y and a factor of C,.

Definition 2.5.14 A clause C is a variant of another clause D provided there is a
substitution § which maps variables in D to distinct variables in C such that C = D6.
Let S be a set of clauses standardized apart in the classical sense. A deduction from
S is a finite sequence Cy,....C, of clauses such that fori =1,...,n, either C; is a

variant of some clause in S, or C; is a resolvent of C'; and Cy, for some j. k < 1.
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The proof for the following lemma, and the proof for the completeness theorem
that follows, both closely follow the proofs of the corresponding results for predicate
calculus [CL73]. In both cases, we provide the major steps and ideas involved in the

proof; other details are analogous to those in [CL73].

Lemma 2.5.4 Lifting Lemma:
[fC\ and C3' are instances of C, and C, respectively, and if C' is a resolvent of c/

and Cy', then there is a resolvent C' of Cy and C, such that C' is an instance of C'.

PROOF. Variables in C; and C; can be renamed such that there are no common
variables in them. Let L," and L,’ be the literals of C| and C; (respectively) that are
resolved upon and let + be the mgu of L;’ to =L,'. Let C’ be the clause obtained by
removing L’ and L,'~ from a disjunction of Cy'y and C%'y. There is a substitution
§ such that C;' = C,0 and C,’ = C.0. Let A; be the mgu for the literals, say
{LL.....L%} in Ci, which correspond to L. Let L; = Li\ = --- = LEA.
Clearly, L; is a literal in the factor C;\; of C;. It follows from this that L/ is an

instance of L;. Since L' is unifiable to =L,’, L, is unifiable to =L,. Let o be the
mgu of L, to —L,.

Let C be the disjunction D,V D, where D; is the disjunction obtained by removing
Lio from (CiA)o. i = 1,2. From this. it can be proved that C is a resolvent of ('
and C,. Clearly. C' is an instance of C since C' = E; V E,. where E; is obtained by
removing L;'y from (C/v)o. i =1,2. and A o & is more general than § o . O
Theorem 2.5.4 Soundness and Completeness of Resolution:

A set S of clauses is unsatisfiable if and only if there is a deduction of the empty

clause O from S.

PROOF. Suppose S is unsatisfiable. Let Bs be the Herbrand base of 5. Let T be
a complete semantic tree for S. By Herbrand’s theorem (Theorem 2.5.2). T has a
subtree T”, which is a finite closed semantic tree. If T’ has only one (root) node, then
O must be in S, giving a trivial deduction of O. If 7" has more than one node, T’ must
have at least one inference node, for otherwise we can get a trivial contradiction to the
finiteness of T’. Let v be an inference node of T'. Assume without loss of generality
that v has exactly two children - v,,v,. (By the definition of a semantic tree, v has

> 2 children, and the case where v has > 2 children can be handled similarly to the
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present case.) Clearly, v, v2 are failure nodes. Let A and —A be the labels of the
edges (v,v;) and (v, v;) respectively. But since v is not a failure node, there must
exist two ground instances Cy’ and C3' of clauses Cy and Cz in S such that C," and
C,’ are false in I(v,) and [(v,) respectively, but both C," and C' are not falsified by
[(v). Therefore. C;’ must contain —=A and C;' must contain A. By resolving upon
the literals A and —A. we can obtain a resolvent C’ of C}’ and C,’. which must be
false in [(v). By Lemma 2.5.4, there is a resolvent C' of Cy and (', such that (" is a
ground instance of '. Let T" be the closed semantic tree for (SU{C'}). obtained from
T' by deleting all nodes and edges below the first node from the root down where
C' is falsified. Clearly. the number of nodes in T" is strictly fewer than that in T".
Since T' and hence T” is finite, we can apply this technique inductively by adding
resolvents of clauses in S U {C} (obtained by deduction) to S U {C} and so forth.
eventually obtaining the empty subtree consisting of only the root. At this point we
would clearly have obtained a deduction of the empty clause O from 5.

Soundness follows in a straightforward way. o
Molecular programming vs Atomic programming
We mentioned in Section 2.3.1 that molecular formulas can be introduced in the syn-
tax of SchemaLog as an abbreviation for a conjunction of atomic formulas. Molecular
formulas can indeed provide a mechanism for direct, convenient programming. Let
us illustrate this point with an example.

Consider the (good old!) example of grandfathers. The grandfather predicate can
be defined (from the parent predicate) in Schemalog using the rule
db :: grandpa[f(X.Y) : pers—X. grndFath—Y] «—

db:: par(T, : pers—X. fath—Z|. db:: par(T,: pers—Z, fath—Y].

Notice that this rule makes use of molecules. The precise model-theoretic semantics
of molecular formulas in SchemaLog relies on their equivalence to a corresponding
conjunction of atoms. However, as the reader can very well verify, expressing the same
rule using only atoms* would be quite cumbersome. We remark that in a relational
context. one could completely dispense with tuple-id’s (in an interface) as long as
molecular programming is supported by the system. The system can always fill in
the id’s. The point, however, is that tuple-id’s are needed in order to keep the model-

theoretic semantics of Schemalog simple, in that they allow references to tuples via

4This will necessitate two rules — one for each argument of the predicate grandpa.
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their intensions (tuple-id’s) as opposed to their extension (i.e. the actual tuple of
values). Besides, they are quite in keeping with our eventual objective of providing
for the integration of disparate data models, including the object-oriented model.
We remark that the fixpoint theory and proof theory of molecular programs are
straightforward extensions of those for atomic programs. In the rest of this chapter.
we shall freely make use of molecules in our examples. While the use of molecules
makes the programming of certain queries easier. we shall see later (Section 2.6)
that clever manipulation of tuple id’s gives Schemalog great power in expressing
sophisticated queries. even in the relational context.

Programming Predicates

In the context of queries as well as view definitions. it will be convenient to have the
(facility for) predicates (which are not part of any database) available. The difference
between such predicates and those in a database is that they may be regarded as
corresponding to temporary tables and hence one need not carry along the tuple-id’s
with such predicates. We call such predicates programming predicates (for distinction
from the database predicates).’ On the technical side. programming predicates can be
easily incorporated in SchemaLog by introducing a separate set of predicate symbols
and then interpreting them “classically”. We shall freely make use of programming
predicates in the examples of Section 2.6 (e.g., see query @, in Section 2.6.1).
The main distinction between programming predicates and database predicates is
that unlike database predicates. the schema components of programming predicates
do not have a formal status in SchemaLlog. Thus. programming predicates have a

syntax similar to predicates in Datalog.

2.6 Applications of Schemalog

[n this section, we give a variety of examples illustrating the power and applicabil-
ity of SchemalLog for database programming, schema integration. schema evolution.

cooperative query answering, and aggregation. We also make a case for adopting a

SFor programming predicates we use the conventional syntax (pred-name)({arg.},....(argn})-
Note that this introduces ambiguity in the syntax of SchemaLog. as a programming predicate could
now be confused with a functional term! We can remove this ambiguity by requiring functional terms
to conform to the syntax f < ty,...,tm >. For the sake of clarity and simplicity of exposition, we
ignore this point. The intended meaning of SchemaLog expressions will always be clear from the
context.
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uniform framework for schema integration and evolution and illustrate via examples

how SchemalLog could fulfill this need.

2.6.1 Database Programming and Schema Browsing

The main advantage of SchemalLog for database programming lies in its simplicity of
syntax which buys it ease of programming. Yet its higher-order syntax gives it suffi-
cient power to express complex queries in a natural way thus bringing programming
closer to intuition. For instance let us take a look at the following example query
adopted from [CKW90].

(Q3) “Find the names of all the binary relations in which the token ‘john’ appears. h

This query can be expressed in HiLog, the following way®:

relations(Y)(X) — X(Y,Z)
relations(Z)(X) «— X(Y.Z)
? — relations(john)(X)
Now, consider a variant of Q3
(Q4) “Find the names of all the relations in which the token ‘john’ appears.”

[t seems the only way such a query could be expressed in HiLog is by writing
one set of rules for each arity of the various relations present in the database (this
presupposes the user’s knowledge of the schema of the database). By contrast. in
SchemalLog this query can be expressed quite elegantly. as follows.

relations(X. Rel) «— db:: Rel[l : A—X]
? — relations( john'. Rel)

Here. relations is the programming relation that contains information on each
token in database db and the name(s) of the relation(s) in which the token appears.
Note that we have considered the query in the context of just one database. If all
databases and relations where ‘john’ occurs are of interest, we could write the rule

whereabouts(X. DB, Rel) «— DB :: Rel[l : A—X]. and ask the query.

? — whereabouts(*john', DB, Rel).

On the other hand. if we specifically want the binary relations in which “john’
appears (query Q3), the expression of this query would be less direct (and concise) in
SchemaLog than in HiLog, in that the SchemaLog query would have to use (stratified)

negation:

%Incidentally, the same browsing capability is available in F-logic too.

41



arity>z2(Rel) «—— db:: Rel[A,B|, A # B.

arityso(Rel) «—— db:: Rell[A,B,C], A#B, B#C, A#C.
aritys( Rel) «—— arity>y(Rel), —arityso(Rel).
binary_where(X, Rel) «— db:: Rel[l : A—X], arity,(Rel).
? — binary_where(‘john’, Rel).

We leave it to the reader to judge which of the two types of queries Q3 and Q4
above is more “typical” and practically useful. Furthermore. in Section 2.6.5, we
revisit query Q3 and illustrate how Schemalog extended with aggregate functions
can express this query in a concise way (see Example 2.6.4).
Next. we present another interesting program that demonstrates the usefulness
of SchemalLog for database programming. Natural join is a ubiquitous operation in
database applications. This program demonstrates how Schemalog could be used to
invoke natural join in unconventional, but practically useful settings. Consider the
query
(Qs) “Given two relations r and s (in database db), whose schemas are unknown,
compute their natural join.”
[t is obvious that this query cannot be expressed in classical logic. In SchemaLog.
this query can be expressed as follows.
db 2 join(r.s)[f(U.V) : A»X] «— db = r[U : A=X]. db == s[V : B-Y].
—nonJoinable(U. V).

db :: jon(r.s)[f(U. V) : A=X] e db = ril : B—>Y]. db 5[V : A—X].
—non.Joinable(L". V).

nonJoinable(U'. V') «— db:=r[l: A=X], db:s[V: A=Y], X #V.

In this program. a pair of tuples u. ¢ from relations r and s respectively, is regarded
nonJoinable if r and s have a common attribute attr on which « and v disagree (rule
3). In all other cases, they are regarded joinable. The join rules copy all components
from a pair of joinable tuples. For each tuple in the result relation, the sub-tuple
corresponding to relation r is computed in rule . Rule 2 computes the sub-tuple
corresponding to relation s. Since the tuples are joinable, they can be safely copied
componentwise without fear of inconsistency. This example also demonstrates how
tuple-id’s can be used to write powerful yet elegant SchemaLog programs. Sections

2.6.4 and 2.6.5 contain more examples of the use of tuple-id’s in other contexts.
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2.6.2 Schema Integration

One of the requirements for schema integration in an MDBS is developing a unified
representation of semantically similar information structured and stored differently
in the individual component databases. The concept of mediator was proposed by
Wiederhold [Wie92] as a means for integrating data from heterogeneous sources. The
expressive power of SchemaLog and its ability to resolve data/meta-data conflicts
suggests that it has the potential for being used as a platform for developing me-
diators. We illustrate below. how SchemaLog’'s higher-order syntax can be used to
achieve this in the case where the component databases are relational.
Consider the examples in Section 2.2. It might be argued that in order for an
end user to use the language for querying databases belonging to a federation. she
has to be aware of the schemas belonging to the individual databases she is interested
in. The queries discussed in Section 2.2 are only for illustrating the power of the
language. The idea is to use SchemaLog as a vehicle for formulating higher-order
views over the databases so that the user can interact with an interface which is
transparent to the differences in the component database schemas.
For instance, consider the following example’ of higher-order view defined over
the university federation of Example 1.1.1.
db-view :: p[f(D.C, S, univ_A) : department—D, categ—C, asal—S5, db—univ_A]
— univ_A :: pay_info[T : category—C. dept—D. avg_sal—5].

db-view :: p[f(D.C.S.univ_B) : department—D. categ—C', a_sal—5S. db—univ_B]|
— univ_B :: pay_info[T : category—C. D—S)|. D # category.

db-view :: p[f(D.C. 5. univ_C) : department—D. categ—C'. a_sal—S. db—univ (]
— univ (' :: D[T : category—C. avg_sal—S].

In this example. the (view) relation p is placed in a unified (derived) database
called db-view. Here, p provides a unified view of all component databases. This
illustrates the use of rules for defining views. The idea is that a logic program can
define a unified view of different schemas in a MDBS, which can be conveniently
queried by a federation user. The use of logic rules offers great flexibility in setting up
such views. In like manner, a component database can be structured using SchemaLog
to conform to the schema of another database.

This approach to unifying representations in component databases obviates the

"This example is an adaptation of a similar example in [KN83].
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need for a canonical datamodel (see Section 1). In fact. in contrast with the CDM-
based approach, this approach affords great flexibility for maintaining mappings
against changes to component representations. In recent work, Turiniet. al. ([ART96.
GD96]) at the University of Pisa have implemented a mediator language using Schema-

Log.

2.6.3 Schema Evolution

Schema Evolution is the process of assisting and maintaining the changes to the
schematic information and contents of a database. It is a somewhat abused term in
the database field. in that it has been interpreted to mean different things by different
researchers. While Kim [Kim90] treats versioning of schema for object management
as schema evolution. Nguyen and Rieu [NR89| considers the various schema change
operations and the associated consequences as being its main issues. Osborn [Osb39]
gives some interesting perspectives on the consequences of the polymorphic constructs
in object-oriented databases and how this aids in avoiding code ‘evolution’.

An important issue in schema evolution is to provide evolution transparency to
the users, whereby they would be able to pose queries to the database based on a
(possibly old) version of the schema they are familiar with, even if the schema has
evolved to a different state. In related work. Ullman [Ull87] argues for the need for
allowing the user to be ignorant about the structure of the database and pose queries
to the database with only the knowledge about the attributes (in all relations) of the
database. This will make the front-end to the user more declarative. as she is no
longer hothered about the details of the database schema. As pointed out by Ullman.
all natural language interfaces essentially require a facility to handle such needs.

Consider an application which has schema changes happening in a dynamic way.
Every time the schema gets modified. the previous application programs written for
the database become invalid and the user will have to rewrite/modify them after
‘updating’ herself about the schema status. We maintain that a end user should not
be bothered with the details about the schema of the database she is using, especially
if it keeps changing often. A better approach would be to assume that the user has
the knowledge of a particular schema and let her use this to formulate queries against
the database, even after the schema has been modified. The idea is to shield the

modifications to the schema of the database from the user as much as possible. As a
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consequence, it should be possible to maintain currency and relevance of application
programs with very little modifications to account for the changes to the schema.

We argue that a uniform approach to schema integration and evolution is both
desirable and possible. We view the schema evolution problem from the schema
integration point of view in the following way. Each stage of the schema evolution
may be conceptually considered a different (database) schema that we are dealing
with. The mappings between different database schemas can be defined using logic
programs in a suitable higher-order language such as SchemalLog. This framework
affords the possibility of schema-independent querying and programming.

We consider an example to illustrate our approach. This example assumes there
has been no loss of information in the meta-data. between different stages of the
evolution.

Time ti:
schema,: rely(ay,. ar12,a13) rely(az;, az).

Time t2 (current schema):

schemas: reli(ay;-ar2) reli(ai2, a13) rela(aqy, az).

Relation rel; has been split into rel, and rel} at time t2 (assuming the decompo-
sition is loss-less join).

The following Schemalog program defines a mapping between the two schemas.
schemay = re\ [f(X.Y.Z) : an—X. a12—Y, ai3—=2Z] —

schemay == rély[[' : ay; = X. a1a—Y], schema, : rel{[[" : aip—Y. az—Z]
schemay = rely,{ fIN.Y) tay—X. ap—=Y] «—— schema, = rely[I': ay—X. an—Y]

Suppose the user has a view of schema,: she can still pose queries with that view.
The transformation program will take care of the relevant evolutionary relationship
between the two schemas. Besides. since the mapping between older versions and
evolved versions of the schema is maintained declaratively as a logic program. the
maintenance of application programs becomes much easier.

One complication that may arise in the context of schema evolution is that evo-
lution might involve some loss of (meta-)information (say deletion of attributes).
How can we produce meaningful answers to queries (based on an older version of
the schema) which refer to such “lost” information? We suggest a cooperative query

answering approach to this problem in the following section.



2.6.4 Cooperative Query Answering

Research in the area of cooperative query answering (CQA) for databases seeks to
provide relevant responses to queries posed by users in cases where a direct answer
is not very helpful or informative. An overview of the work done in this area can be
found in Gaasterland et. al [GGM92]. We also consider the aspect of CQA. concerned
with answering queries in data/knowledge-base systems by extending the scope of
the query so that more information can be gathered in the answers. as discussed in
Cuppens and Demolombe [CD83]. Responses can be generated by looking for details
that are related to the original answers, but are not themselves literal answers of the
original query.

Consider the application of schema evolution discussed in the previous section.
We mentioned that in the case of evolution involving loss of meta-information, for a
query that addresses the ‘lost’ meta-information, one should not just return a direct
nil/false answer, but should provide more relevant information pertaining to the query.
This cooperative functionality can be realized in SchemaLog as the following example

illustrates.

Example 2.6.1 Suppose we want to capture parts of an old schema, that are discon-
tinued in a new one. Note that values in one database might well correspond to parts
of the schema in the other. ®

The following SchemaLog program computes the “discontinued™ parts of a schema.
ilems(Schema. R) — Schema:: R
items(Schema. A) «— Schema:: R[A]
items(Schema. V) «— Schema:: R[[: A=V
discont(Spew. X) —— items(Sou, X), —items(Snew, ).

Here — is just stratified negation. First. items pairs up schemas and the various
items of information that exists in them: relation names. attribute names, and their
values. Then discont simply says X is an item that is discontinued from the database.
Embellishments can be easily made to this basic idea if information on when certain
item of (meta-)information was deleted or discontinued were to be kept. In such cases,

in addition to telling the user “this item no longer exists in the current database’ we

8Notice that the issue of having “correspondence tables” or mappings between old names and new
ones as commonly arises in actual implementation and maintenance of federations can be suppressed
without loss of generality, because such tables would simply add some edb relations to a logic program
that maps the old database to the new one.
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can also tell them when it was dropped. A very similar approach can also be taken

for identifying items which are newly introduced in Spe which never existed in Soq.

The second aspect of CQA of interest to us arises when we want to generalize
responses to queries. but it is different from the earlier approach in many ways, as
the following example illustrates. This example will also illustrate a very useful and

powerful way of querying (also involving schema browsing).

Example 2.6.2 Consider the query
(Qs) “Tell me all about “john' that you can possibly find out from the database.”

For simplicity, suppose ‘john ' is a token (i.e. it is only a value) in the database
we are considering. The following program expresses this query (T is the token of
interest).

(1) interest(T.R.[.A,V) «— db:=: R[[: X—=T, A-V].
(2) interest(T. R, [,A.V) «— interest(T.S.J,B,U), db:: R[I : XU, A-V].
(3) info(T,R.A.V) «— interest(T.R,I.A,V).

Rule (1) says if token T occurs as a value of attribute X for tuple [ in relation
R, then the 3-tuple (7, R,rl, A, V). where V is any (other) value in the tuple where T
occurs, and A its attribute name, is of interest. The second rule says that if a certain
token U is of relevance to T'. then all 5-tuples that are interesting with respect to [’
are of interest to T. Rule (3) simply collects tuples of T', R. A,V where T is a token.
R is a relation name. A is an attribute name and V is a value (of the attribute A)
which pertain to token T.

Now. (under the simple assumption that all information about *john" is contained
in a single database). the query Qs can be expressed as

?—info(‘john', R.A. V).

In order to make the response for the above query much more meaningful to the
user. we can add the following rule to the program.

(1) schemarich_info(T) :: R[[ : A=V] «— interest(T, R, [, A, V).

This rule generates a set of databases, each corresponding to a token that appears
in the input database. Each such database has relations containing those tuples in
the corresponding relation in the input database, which pertain to the token directly
or indirectly.

As a related query. one might want to verify whether two individuals, say ‘john’

and *mary’, in a database are related. Indeed, one might even want to know how they
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are related. The idea is that "john’ and ‘mary’ are considered related if they both
appear in the same tuple in some relation, where the relation is an existing database
relation or is obtained via a sequence of equijoins from existing relations. In addition,
the output should also include the details of the equijoin and the schema information
that is essential to the relationship between ‘john’ and ‘mary’. The challenge is to
express this query without a detailed knowledge of the schema of the database. In

SchemalLog. this can be readily expressed as

dbrey it interest{ X —T. relnship(R. A)—V] «— db:: R[[ : X—T. A—V].
dbney :: interest[X — T. relnship(equijoin(P.R.B.C), A) — V] «—
dbpew =2 interest[ X =T, relnship(P, B)—U], db :: R[[ : C—U. A-V], ~in(R. P).

db is the existing database while db,e,, is the newly created one. The membership
test, performed using predicate in makes sure no self joins are performed, and so the
computation terminates. It is straightforward to write rules to define predicate in.
On the other hand, for performance reasons, one may even want to implement in as a
“built-in” predicate. The relationship between ‘john’ and ‘mary’ can now be queried
as

? — dbpey i interest[X—*john’. R—'mary’].

[n a more complex situation where an item is not known to be a token (i.e. it could
be an attribute. relation. or value). one can easily write appropriate rules in Schema-
Log to browse/navigate through the schema and compile the relevant information.
We close this section noting that CQA (together with schema browsing/navigation)
does indeed find interesting applications in the context of a federation. E.g.. ‘john'
could be an international criminal (!) on whom information may have to be tracked
down from a (criminal) MDBS operated by Interpol. The point is that Schemalog 1s
well equipped to handle such situations. The (inevitably) numerous aliases of "john’
could be captured as an edb relation representing the correspondence mappings be-

tween names across the component databases of the federation.

2.6.5 Aggregation

Aggregate functions constitute an important functionality in practical database query

languages. So far, our discussions and examples illustrating the expressive power of
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SchemaLog have mainly drawn upon its higher-order features. In this section, we
informally discuss SchemaLog extended with aggregate functions. We shall show
how a clever manipulation of tuple-id’s can be used to express powerful aggregate
computations. Normally, aggregate queries considered in the literature as well as
those implemented by commercial systems involve collecting the (multisets of ) values
appearing in a column (or more), grouped according to specific criteria, and then
applying any of the system-supplied aggregate operations - avg, count, max, min, sum.
The crucial point is that values are retrieved from individual columns, one column at a
time. We call such conventional aggregation vertical aggregation for convenience. We
shall see that not only is it possible to express the conventional forms of grouping as
in SQL. SchemaLog can express even novel (and practically useful) forms of grouping
(and hence aggregation) which have no counterparts in SQL. Throughout this section.
we shall mainly consider aggregate queries in the context of non-recursive queries. The
semantics of aggregate queries in deductive databases (with and without recursion)
is discussed in Ramakrishnan et al [MPR90]. Based on this theme, the semantics of
SchemaLog queries with aggregates (without recursion) can be obtained as follows.
A Schemalog rule with aggregates is of the form

db :: relltid : attri—valy, ..., attrp—valy, aggAttri—aggi(Xi), -...

aggAttr,—agga(Xn)] «— (expression).

Here. tid. attr;,agg Attr;, valj are terms as usual; agg; are one of the usual aggre-
gate functions. The (expression) is a conjunction of any usual SchemaLog molecules.
and programming and built-in predicates. The grouping is captured by the nse of the
tuple-id tid in conjunction with the attribute names aggAttr;. Suppose db and rel
are ground. for simplicity. The relation computed for the head is obtained as tollows.
(1) Let Yi..... Y., be the set of all variables occurring in the rule head. Let r be
the relation corresponding to the body of the rule. Let my,

v,.(r) be the projection

.....

of r onto the columns corresponding to the arguments.® (2) Let Ty.....T, be the
variables among the Y’s that appear as arguments of tid in the rule head. Partition
the relation 7y, _y,. based on the values on columns Ty,...,Tp. (3) For each block of
the partition. compute the multiset of values in column X; that are associated with
the attribute aggAttr;, and compute the aggregate agg; of this multiset. Finally, all

ground facts with the same tuple-id tid are merged into one tuple in the output.

9The relation corresponding to the rule body can be computed using (minor adaptations to) the

functions VTOA and ATOV discussed in Ullman [Ul189a].
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Semantics for the case when db and/or rel are non-ground is defined analogously.

Example 2.6.3 Consider the relation in Figure 2 (which is a part of a database
db) storing information on prices of various stocks at different exchanges (possibly in

different countries) on a day to day basis, during March 1997.

date | stock | Xge; | ... | Xgen
01 sl 30 18
0L s2 34 40
02 sl 35 39
02 s2 36 43

Figure 2: Stock Exchange Database

Vertical Aggregation: Our first example is the simple query
(Q+) “For each stock, compute its average (during March 1997) closing price at the
Toronto stock exchange.”

This query is a conventional aggregate query expressible in conventional languages
like SQL. In SchemalLog, it can be expressed as

toronto :: avgStock Prices[f(S) : stock—S. avgPrice—avg(P)] «—

db :: stockIn folstock—S. toronto— P.

The above rule instructs the system to retrieve the (multiset of) closing prices at
the Toronto exchange for each stock, and then compute the average. Note the use of
the tuple-id f(S) to achieve an effect similar to SQL’s "groupby stock™. But as we
shall see. grouping using tuple-id’s is more powerful than SQL’s groupby.

The query Q- can be extended in various ways. depending on the need and appli-
cation. E.g., suppose we need to compute a similar average price for stocks. but w.r.t.
every exchange. If the number of exchanges is small and known to the user a priori,
this can be expressed in the obvious way in SQL. However, Schemalog does not re-
quire complete prior knowledge of the schema on the part of the user. Regardless of
the number of exchanges involved, she can simply write the query

all X ges :: avgStock Prices(f(S) : stock—S, avgPrice(X)—avg(P)] «—

db :: stockIn fo[stock—S. X—P|, X # stock, X # date.
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This rule creates a database (or view) allXges and computes for each exchange
the average price of each stock at that exchange.

Next, suppose that stockIn fo stores information pertaining to a whole year. Sup-
pose also that there is, in addition, another relation in the database — dates2weeks(D. )te
- that maps dates into week numbers. E.g.. assuming the financial year starts in April
and closes in March, we would expect dates2weeks(04-01-96. 1) and dates2weeks(03-
31-97.52) to hold. Now, consider the query
(Qs) “For each stock. compute the weekly average closing prices at each of the er-
changes.”

This can be expressed as:
allX ges =: weekly Avgs[f(S, W) : stock—S, weekNo—W. avgPrice(X)—avg(P)] «—

db :: stockIn foldate— D, stock—S. X—P], X # stock, X # date. dates2weeks(D.W).
Horizontal Aggregation: Consider the query
(Qs) “ For each stock, compute its daily average closing price across various er-
changes.”

Note that unlike conventional aggregate queries which involve collecting values
occurring in a column (or more) based on some grouping criterion, this involves
collecting the values appearing in a row! Again, when the number of exchanges is small
and known to the user a priori. one can express this query in SQL. In SchemaLog.
without a detailed knowledge of the schema, the user can express Qg using the rule

rgeWiseAvg :: daily[g(S, D) : date—D, stock—S. avgPrice—avg( P)] —

db :: stockInfoldate—D. stock—S. X—DP). X # stock. X # dalc.

Note that by the choice of the tuple-id g(S. D). the rule instructs the system to
perform a horizontal aggregation. This query assumes (reasonably) that stock and
date uniquely determine the closing prices at each of the exchanges. In other words.
stock and date form a key for the relation stockIn fo. As another example. consider
the query
(Qa) “For each stock, find the daily marimum and minimum closing price over all
exchanges, as well as the exchanges at which such prices prevailed.”

Even assuming a complete knowledge of the schema, whenever a number of ex-

changes are involved (which is a typical situation), expressing this query in SQL

19[ndeed, this may be realized as a virtual relation, implemented as an external function call, but
we may assume without loss of generality that it is accessible via a programming predicate call such
as dates2weeks(D, W).



would involve writing a complicated program involving many temporary relations. In
SchemaLog, this is accomplished elegantly.
cgeWiseAgg :: daily(g(S5.D) : date—D, stock—S, maz—maz(P), min—min(P)|
—— db :: stockIn foldate—D. stock—S, X—P]. X # stock, X # date.
rgeWiseAgg :: daily[g(S, D) : maz X ge— Xmaz. minXge—Xpin] «—
rgeWiseAgg :: daily[g(S. D) : mar—Ppaz, min—Pnil,
db :: stockInfo[date—D. stock—S. Xmar—Praz: Xmin— i |-
Xar # date. Xpur # stock. Xpnin # date. Xpin # stock.

The first rule computes the daily maximum and minimum closing prices for each
stock. The second rule derives the names of the associated exchanges by checking
off the maximum and minimum prices against the various exchanges in stock/n fo.
Note that tuples of the output relation daily are assembled piecemealin that different
rules compute values of different attributes. The above rules assume that the daily
maximum and minimum prices occur at unique exchanges. If this assumption cannot
be made. it means more than one exchange could close at the maximum and/or
minimum price for a given stock. In this case, the output to the query should contain
a tuple for each exchange with the maximum/minimum closing price. We leave it
as a simple exercise to the reader to modify the tuple-id used in the rules above to
achieve this effect.

Global Aggregation: There are situations where we might need to perform aggre-
gates on (multisets) of values retrieved from positions more general than just rows or
columns. As a first example. consider

(Q\1) “For each stock and each week (number). compute the average closing price
over all erchanges.”

The output to the query must be of the form weekly(Week:No. Stock, Avg) with
the obvious meaning. The problem is that the multiset of values on which the aver-
aging must be performed for a given stock and week number, is actually contained in
a “rectangular block” within the relation stockInfo. While it is not clear how such
queries can be expressed in SQL at all, the following rule in SchemaLog expresses it
in a straightforward manner.

global :: weekly All X ges[f(S, W) : stock—S. week—W, avg Price—avg(P)| «—

db :: stockIn fo[date—D. stock—S, X— P}, X # stock, X # date,
dates2weeks(D, W).

To appreciate the effect of attribute names in influencing the way in which values
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are grouped into multisets, notice that the SchemaLog rules for queries Qs and @y
are almost identical. In particular, the rule bodies are identical and the tuple-id’s used
in the rule head are identical. However, while Qg computes a series of vertical (con-
ventional) aggregates, @;; computes one global aggregate. This dramatic difference
arises because in Qg individual multisets of prices are grouped and associated with
the attribute avg Price( X). for each exchange X, before the average is computed. In
Q11, by contrast. all these prices are grouped into one multiset associated with the
attribute avg Price (a constant). and then the (global) average is computed.

Aggregation over arbitrary collections of values (retrieved from different relations
or even databases) can be quite conveniently expressed in SchemalLog, in a manner
similar to that illustrated by the example of query Q.

We call such aggregation over arbitrary collections global aggregation. Note that
in general, the global aggregation cannot be simulated by a sequence of horizontal and
vertical aggregations. This is the case when the aggregate function is not “additive”.
Average is an example of a non-additive function. For instance, avg({2.3,4.5.6}) =
§ # avg(avg({2,3}), avg({4,5,6})) = 3.75.

Our last example of this section illustrates how the concept of arity of predicates

can be elegantly captured in Schemalog.

Example 2.6.4 Reuvisit query @3 - “Find the names of all the binary relations in
which the token ‘john” appears” - from Section 2.6.1. We now show how this query
can be erpressed in a succinct manner in Schemalog. The idea is to make use of a
‘system " relation defined using SchemalLog with aggregation. called arity. This relation
would maintain information on the arity of each relation (in each database) in the
federation. The following program illustrates houw this relation is defined and how it
is utilized for expressing query Qs.

system = arity[f(D,R) : db—D, rel—R, ary—count(A)] — D :: R[A].

whereabouts(X. D, R) — D :: R[A—X],system :: arity[db—D. rel>R. ary—2].

? — whereabouts(john, DB, Rel)

We close this section by noting that, using the power of higher-order variables
and by a clever manipulation of tuple-id’s for grouping, the user can express a rather
powerful class of aggregate computations in SchemalLog. These remarks hold even

when the suite of basic aggregates (avg, count, max, min, sum) available in normal
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implementations were to be augmented with other functions implemented via external
function calls.

The dynamic restructuring and horizontal or block aggregation capabilities offered
by the flexible syntax of SchemaLog indicate that SchemaLog can be used to develop
a theoretical foundation for OLAP (On-Line Analytical Processing) ([CCS95]). a
fledgling technology with tremendous practical potential, lacking clear foundations.
Indeed. [GLS96] shows that the querying and restructuring capabilities of SchemaLog
can be visualized in terms of four fundamental restructuring algebraic operators. aug-
mented by classical algebraic operators. This paper also develops such an algebra in
the context of a two-dimensional data model called the tabular data modeland proves
that it is complete for all generic, computable transformations. [GLS95] discusses in
detail how the tabular data model and the tabular algebra can serve as a foundation
for OLAP.

In Chapter 4, we develop a language called SchemaSQL, drawing on the inspiration
from the SchemalLog experience. We also illustrate the usefulness of SchemaSQL for
OLAP applications.

2.7 Comparison With Other Logics

The notion of “higher-orderness” associated with a logic is ill-defined. Chen ef. al.
[CKW90] point this out and provide a clear classification of logics based on the order
of their svntax and semantics. [t is generally believed that higher-order syntax would
be quite useful in the context of object-oriented databases. database programming.
and schema integration. In this section. we compare Schemalog with existing higher-
order logics. We also comment on the “design decisions” made in the development of
SchemalLog.

HiLog: HiLog (Chen et. al. [CKW90]) is a powerful logic based on higher-order
syntax but with a first-order semantics. Parameters are arityless in this language
and the distinction between predicate, function, and constant symbols is eliminated.
HiLog terms could be constructed from any logical symbol followed by any finite
number of arguments. HiLog also blurs the distinction between the atoms and terms.
Thus, the language has a powerful syntactic expressivity and finds natural appli-

cations in numerous contexts (see [CKW90| for details). HiLog has a sound and



complete proof theory. [CKW39| discusses the applicability of HiLog as a database
programming language. The higher-order syntactic features of the language find in-
teresting applications for schema browsing, set operations. and as an implementation
vehicle for object-oriented languages. From the viewpoint of MDBS interoperability,
though HiLog has the concept of arityless-ness. the lack of a means in its syntax to
refer to “places” corresponding to attributes or “method” names makes it cumber-
some to express queries that range over multiple databases (or even multiple relations
within the same database - see Section 2.6.1). Hence HiLog (without further exten-
sions) seems to be unsuitable for the purpose of interoperability.

F-logic: Kifer et. al. [KLW95] provide a logical foundation for object-oriented
databases using a logic called F-logic. Like HiLog, F-logic is a logic with a higher-
order syntax but a first-order semantics'!. The logic is powerful enough to capture
the object-oriented notions of complex objects. classes, types, methods. and inheri-
tance. F-logic also has a schema browsing facility which hints at the possibility of
its application for interoperability. The syntax of F-logic, unlike that of SchemalLog,
was not designed with interoperability as one of the main goals. Thus, using F-logic
for MDBS interoperabilit;v admits several alternatives, depending on how an MDBS
is modeled within F-logic syntax. In [LS95] we undertake a detailed study of the
various possibilities for modeling MDBS in F-logic as well as other proposed higher-
order logics and contrast these approaches with the Schemalog based approach for
interoperability. Based on our analysis. we have derived the following conclusions in
respect of approaches based on F-logic. Every approach based on F-logic suffers from
either or both of the following drawbacks (while all of the F-logic based approaches
known to us suffer from drawback 1).

1. “Access path” violation: In the context of interoperability in an MDBS. it is
natural to require that a relation cannot be referred to without asserting the existence
of a database it belongs to, and an attribute cannot be referred to without indicating
a relation it is defined on. and so forth. The syntax makes it impossible to enforce
this access path at the language level.

2. Closure property violation: Any attempt at capturing interoperability should ensure
that a full atom specifying the existence of a database having a certain value for given

relation, attribute, and tid, needs to imply an expression that asserts the existence

11When non-monotonic method inheritance is not considered.
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of the database, the relation, etc. In Schemalog, this notion is naturally captured
in the model theory. Many of the approaches based on F-logic do not enforce this
property within the logic itself, making it necessary to write programs to enforce such
constraints.

Though SchemalLog uses some concepts and some techniques similar to those used
for HiLog and F-logic. it has some important technical differences which include the
following:

(1) Function symbols in SchemalLog are interpreted extensionally, whereas in
HiLog, they are interpreted intensionally. This feature allows the classical techniques
for Skolemization (and hence proof procedure) to be used for SchemaLog (with minor
modifications to account for its syntax and the notion of a closed structure).

(2) SchemalLog features position independence (achieved by using attribute names
and tuple id’s). Position independence allows us to ignore the argument positions of
relations in a database; they can be referred to unambiguously through their names.
HiLog is position dependent. While F-logic is position independent (it has names for
its methods/attributes), the way the Schemalog semantic structure interprets the
attribute names is significantly different from the way the F-logic structure interprets
its method names. This is true even if one strips off (i) those aspects of an F-logic
structure which are needed only for those methods which take arguments (unlike the
attributes of a relation) and (ii) the aspects needed mainly for inheritance.

HOL: A higher-order language for computing with labeled sets is introduced in
Manchanda {Man89]. The language supports structured data. object-identity. and
sets. This also belongs to the above class of languages in that its semantics is
first-order. This paper also illustrates a template mechanism to define the database
schema. But it is not obvious how to extend this language to a framework which
would support queries over higher-order objects across multiple databases.

COL: Abiteboul and Grumbach [AG87] introduce a logic called COL for defining
and manipulating complex objects. COL achieves the functionality for manipulating
complex objects by introducing what are called (base and derived) “data functions”.
The syntax as well as the semantics of COL is higher-order. The syntax does not
support the constructs necessary for interoperability.

Approach based on Annotated logic: In recent work, Subrahmanian [Sub94]
has studied the problem of integrating multiple deductive databases featuring in-

consistencies. uncertainties. and non-monotonic forms of negation. He proposes an
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approach based on annotated logics ([Sub87], [KL88], [KS92]) for realizing a “me-
diator” between the component knowledge-bases. We observe that the contribution
of this paper neatly complements that of SchemaLog for data integration, in that
SchemaLog helps resolve conflicts arising from data/meta-data interplay whereas
Subrahmanian’s framework allows to handle inconsistencies between (the data in)
component databases. We can easily augment the framework of Schemalog either
with annotations (in the spirit of annotated logics) or with the Information Source
Tracking framework proposed by Sadri [Sad91] and studied by Lakshmanan and Sadri
[LS94]. The resulting language will be powerful enough to handle both kinds of in-
consistencies.

The SchemaLog Approach: In principle, one could augment HiLog or F-logic
with the facilities for naming individual schemas as well as naming attributes (in
the case of HiLog). In our project, we have chosen to start from a “neutral zone”
and try to build a logic that is as simple as possible while effectively solving the
problem on hand. One of the benefits of this approach has been with regard to ease of
implementation (see Section 2.8). The development of a relational calculus inspired
by SchemaLog syntax and of an algebra with an equivalent expressive power (See
Chapter 3) has had a strong impact on the ease and efficiency of our implementation of
SchemaLog. In [Law93] it has been pointed out based on implementation experience
that there are many difficulties in implementing F-logic with its complex semantics
and proof-theory. Indeed, this has led some researchers to investigate implementations
of languages based on restricted versions of F-logic ({Dob95]). We are not aware of an
algebra corresponding to (even restricted versions of ) F-logic. Secondly. for extending
SchemaLog to cater for an QO data model. there is really no need to incorporate all
the features of OODBs within the logic: we simply need a construct which will act as
an “interface” to an OODB and retrieve information from it. The details of how the
vich features of an OODB are modeled can be left outside the language for so far as the
purpose of interoperability goes. We also remark that making Schemalog arityless
(like HiLog) (also see discussions on molecular programs in Section 2.5) presents no
problems for the semantics. In our work, we have chosen to keep the logic no more
complex than necessary for the problem studied here. We remark that even with
this simplicity, SchemaLog appears to be quite powerful and easy to program in, for

several applications (see Section 2.6).
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2.8 Implementation

In this section. we briefly discuss our implementation of the querying fragment of
SchemaLog on an MDBS consisting of schematically disparate INGRES databases.
[n principle, we can use the equivalence to predicate calculus result of Section 2.4 to
realize an implementation on Prolog. But. such an implementation would clearly be
inefficient - the existing federation would need to be rewritten to a first-order reduced

form - an expensive process in itself. Instead, we adopt the following approach.
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Figure 3: Schemalog System Architecture

Two important aspects of Schemalog are (i) its higher-order features to access
schema information from multiple databases. and (i) deduction. A significant fea-
ture of our implementation is that these two aspects are handled independently. The
schema information is manipulated using operators of the extended algebra. SQA (to
be discussed in Chapter 3) implemented using INGRES Embedded-SQL (ESQL). The
deductive DBMS CORAL [RSS92] is used for recursive query processing. Figure 3
shows the architecture of our implementation. Since user programs can involve com-
plex interactions between schema manipulation and deduction, our implementation
integrates these two functionalities from ESQL and CORAL closely.

Phase | of our implementation is concerned with extracting the schema related in-
formation of databases in the federation and converting it to a “first-order” form. This
phase essentially makes use of the extended algebra (S Q.A) operators. The implemen-

tation compiles the SchemaLog program into an algebraic form. During this process,

38



various optimization strategies suggested by the properties of the algebraic operators
([LSS95]) are employed to minimize the cost of fetching the meta-information as well
as to reduce the amount of information that needs to be processed in Phase 2. In the
second phase, the inference engine of CORAL and its rich suite of recursive query
optimization strategies are exploited for efficient query processing. The system sports
a pleasant user interface capable, among other things, of a schema browsing facility.
Further details of this implementation are discussed in [LSPS95. Pap94]. Figure 4

shows our implementation platform for SchemaLog.

Language ESQL.C

DBMS INGRES

Deductitve System CORAL

User Interface Motif

Platform Sun 3/50 workstations
Under UNTX

Figure 4: Implementation Particulars of SchemalLog

As demonstrated in this implementation, the simplicity of SchemalLog has resulted
in an elegant design, and in its easy realization even within the framework of current
relational database systems. Our ongoing work involves using the database storage
manager EXODUS [CDRSS6] for storing the output of Phase 1. We expect this to
vield a significant gain in performance. as CORAL has a direct interface to EXO-
DUS for storing and manipulating persistent relations. Our ongoing implementation
includes the full power of Schemal.og programming language (allowing Schemalog

molecules. as opposed to just programming predicates. in rule heads).

2.9 Conclusions

Developing a declarative approach to integrating information from multiple hetero-
geneous data sources is a major goal of our research. We have taken the first step
toward this goal in this chapter, by developing a simple logic called SchemaLog which
is syntactically higher-order but has a first-order semantics. SchemaLog provides for
interoperability among a federation of multiple relational databases. We developed a
fixpoint theory for the definite clause fragment of SchemaLog and showed its equiv-

alence to the model-theoretic semantics. We also developed a sound and complete
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proof procedure for all clausal theories. We established the correspondence between
Schemalog and first-order predicate calculus and provided a reduction of SchemaLog
to predicate calculus. We illustrated the simplicity and power of Schemalog with
a variety of applications involving database programming (with schema browsing).
schema integration. schema evolution. cooperative query answering, and aggregation.
We also highlighted our implementation of Schemalog realized on a federation of
INGRES databases.

[n view of the reduction to predicate calculus (see Section 2.4), one may ask
the question. why not use standard predicate calculus for the applications envisaged
here. The following are some of the reasons why our approach would be superior to
one based on first-order reduction. (1) As we have demonstrated, programming in
Schemalog is more natural and much more concise. (2) As proved in Section 2.4,
it is impossible to use classical predicate calculus for interoperability in a schema
preserving manner. (3) The notion of closure (Section 2.5.1) is directly captured
in the SchemalLog unification theory. In a first-order encoding based approach.
closure needs to he captured in a roundabout way by adding axioms of the form
‘call;_y( --- ) «— call( --- )", i =2,3,4, to the reduced program. Clearly, this leads
to inefficiency in query evaluation. (4) SchemaLog is much better equipped with
the wherewithal for developing a paradigm capable of addressing the interoperability
issues arising in MDBS featuring multiple data models.

We note that though in this chapter we have confined ourselves to interoperability
among multiple relational databases. the contributions here lay the foundations for
many of the later chapters in this thesis. In particular. in Chapter 5. we extend
SchemaLog to provide for interoperability among MDBS featuring disparate data
models such as ER and Network models as well as information sources on the Web.

SchemaSQL. discussed in Chapter 4 also draws its inspiration from SchemalLog.
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Chapter 3
Algebra and Calculus

In this chapter, we develop an algebra by extending the conventional relational al-
gebra with some new operations so that the resulting algebra is capable of accessing
the database names, relation names, and attribute names besides the values. in a
federation of databases, in a uniform manner. We also develop a calculus (along the
lines of classical relational calculus) inspired by a fragment of Schemalog that is use-
ful for federation querying. An important contribution of this chapter is the study
of various notions of safety associated with the calculus language. We first intro-
duce a fragment of the algebra that is appropriate for querying data and meta-data
in a uniform manner. and extend the equivalence result between classical relational
algebra and relational calculus to a framework which manipulates data and schema
uniformly. Since Schemalog is capable of performing federation restructuring as well.
we introduce algebraic operators for restructuring information to conform to different
schemas.

Study of such an algebra is important in its own right. A SchemalLog query com-
piled into an abstract algebraic form would hide the low level algorithmic details of
its implementation. [t would better reveal the various query optimization opportu-
nities suggested by the properties of the algebraic operations. Thus, such a study
is fundamental to the development of strategies for efficiently realizing a SchemaLog
based database programming platform in a federation of existing database manage-

ment systems.
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3.1 Overview of the Chapter

In Section 3.2, we discuss the important requirements we seek in our algebra. Based
on these requirements, we develop the schema (as well as data) querying algebra in
Section 3.3. In Section 3.4, we define a fragment of SchemaLog capable of federation
querying and prove that the expressive power of the algebra is no less than that
of the query language. In Section 3.5, we develop a calculus language inspired by
SchemaLog and study various notions of safety that naturally arise in the context of
this language. We also study the relative expressive powers of the calculus. algebra,
and querying languages and establish that they have an equivalent expressive power.
In Section 3.6. we develop the algebra capable of restructuring information to conform
to different schemas. Finally in Section 3.7, we make some important observations in

connection with the many issues studied in this chapter.

3.2 Requirements for the Algebra

In this section, we discuss some of the important requirements that dictate the de-

velopment of our algebra.

1. The algebra must be sufficiently expressive in the sense that it should sup-
port the possibility of compiling query and restructuring programs written in
SchemaLog into algebraic expressions which when evaluated iteratively will re-
turn a result that is equivalent to the result expected from the Schemalog

prograrmi.

2. The operations must be as simple as possible and should admit efficient imple-

mentation.

We first observe that SchemalLog supports two kinds of predicates: (i) database
predicates, and (ii) programming predicates. Database predicates correspond to databases
whose schema information (i.e. the names of the databases, names of the relations
and the attributes in the databases) is of interest and hence is given first class sta-
tus. This is the case for relations stored in an existing database (the so-called edb)
as well as relations constructed by database programs written in SchemalLog, where
the associated schema information is regarded just as important as the data. Pro-

gramming predicates are often used as a device for temporary storage of intermediate
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computations by programs. and sometimes for holding answers to queries. In this
case, no attention is paid to the schema of such relations. Recall Example 2.6.2 of
Chapter 2 for an instance of a SchemaLog program in which both database predicates
and programming predicates are used in an essential way. [t should be pointed out
that in classical deductive database query languages such as Datalog, the only kind
of relations supported are programming relations.

From the preceding discussion. it is clear that our algebra must manipulate two
kinds of objects — database relations and programming relations. Note that the inter-
face provided by classical relational algebra to the relations in a database essentially
treats them as “programming” relations. This is because it is impossible to query or
manipulate meta-data using this interface. Our extended algebra has three kinds of

operators.

I. Classical Relational Algebra (RA) operators: these are capable of querying (the

data in) database as well as programming relations.

2. Operators which query database relations (both data and schema) and present
the output in the form of programming relations. Thus, they map relations in

a database to programming relations.

3. Operators which take as input programming relations (and some parameters)
and structure the information in them in specified ways. Thus. such operators

‘map programming relations into database relations.

Operators of type (2) (Section 3.3) and type (3) (Section 3.6) are new and are
unique to our algebra. Before presenting the definitions of the operators. we remark
that in classical RA. one can refer to attributes (which are schema components) either
by position or by name. However. this does not mean that their schema is given a
first class status. The point is that schema information, when it is not explicitly
represented in a relational form, cannot be retrieved or restructured using classical
RA. Our algebra facilitates powerful meta-data querying and restructuring, besides

providing for conventional data querying. We first introduce the type (2) operators.
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3.3 Schema Querying Algebra

[n this section, we introduce the querying operators in our algebra. The definitions
of classical relational algebra — selection (o), projection (7), cartesian product (X).
union (U), difference (—). — are as usual: no modifications are necessary. As re-
marked in the opening paragraph of this chapter, we study in depth. the various
notions of safety arising in a higher-order calculus language. With an aim towards
studying the relative expressive powers of the various safe fragments of the calculus
language and the algebra introduced in this section, whenever we define a new oper-
ator, we also define an operator that is its variant, and describe the scenario in which

the variant operator is applicable.

Definition 3.3.1 (Fetching database names) The first new operator we intro-
duce, 8, is 0-ary and returns the set of names of all the databases in the federation

of databases.
8() = {d | d is the name of a database in the federation }

For example, () against the university federation of Example 1.1.1. would return

the unary relation: {univ_A,univ_B,uniwv.C}.

The & operator is useful in scenarios in which the names of the databases in a
federation are not known apriori. To cater to the scenario in which the names of
the databases of interest should be restricted to a set of pre-determined names. we

introduce the following variant of the § operator.

Definition 3.3.2 The operators is a unary operator that takes a unary relation (i.c.
a set) as input and returns those entries in the input relation that correspond to the
names of databases in the federation.

8(s) = {d | d€s A dis the name of a database in the federation }

For example, 8({univ_A,univ_D,univ_E}) against the university federation would
return the relation {univ_A}.

The second operator is capable of querying relation names in databases.

Definition 3.3.3 (Fetching relation names) The relation querying operator is a

unary operator that takes a unary relation as input and returns a binary relation. as

follows.
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p(p) = {(d,r) | d € p. d is a name of a database in the federation, r is a relation

name in d}

For each database name d in the input set p, p associates d with the name of each

relation that is part of the database d in the federation.

For example. let relation p = {univ_A.univ.C'’}. p(p) against the university federa-
tion would vield the relation: {({univ_A.pay_info).(univC.cs), (univ.C. ece),

(univ_C.math)}.

From the definition of p above, it might appear that 8 can be simulated using p
and 7. However, note that this is not the case - the counter example is a scenario in
which there exists a database that does not contain any relations. Similar observation
applies for the other variant operators (introduced further down in this section) as
well.

Similar to the & operator, we now introduce a variant of the p operator.

Definition 3.3.4 Operator p takes a binary relation as input and returns a subset

of the input relation as shown below.

p(t) = {{d,r) | (d.r) €t, d isaname of a database in the federation, r is a relation

name in d}

The next operator in our algebra is intended to extract attribute names from relations

of the federation.

Definition 3.3.5 (Fetching attribute names) Operator a takes a binary relation

as argument and returns a ternary relation.

a(q) = {{(d.r.a) | (d.r) € q. d is a database in the federation. r is a relation

name in d. and a is an attribute name in the scheme of r}.

For each (d,r) pair appearing in g such that r is a relation in federation database

d, o associates to the pair, names of each attribute in the scheme of r.

For example, let ¢ = {{univ_C,cs)}. In the context of the university federation, a(q)

would return the relation: {{(univ.C,cs, category), (univ_C, cs,avg_sal)}.

We now present operator &, variant of a.
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Definition 3.3.6 This operator takes a ternary relation as input and returns its
subset as defined below.
a&(u) = {{d,r,a) | (d.r,a) € u, d is a database in the federation, r is a relation

name in d, and a is an attribute name in the scheme of r}.

Before we formaliy present the last new operator v of our querying algebra. some

basic definitions are in order.

Definition 3.3.7 :A pattern is a sequence {p;.....px), k > 0, where each p; is of one
of the forms: ‘a; —v;’, "a; — ° — v, — . Herea;is called the attribute
component and v; is called the value component, of p;. Let r be any relation.
“a; —v;  is satisfied by a tuple t in relation r if t{a;] = v;; in this case, attribute a; ts
called the witness of satisfaction.
a; — issatisfied by a tuple t in relation r if a; is an attribute inr: a; is the witness
of satisfaction.

— v; " is satisfied by a tuple t in relation r if 3 an attribute a; in the scheme of r
such that tla;] = vi; attribute a; is the witness of satisfaction.
* s satisfied by a tuple t in relation r if a; is an attribute in the scheme of r
such that tla;] = vi; a; is the witness of satisfaction. © — ’is trivially satisfied by

every tuple t in relation r.

A pattern (py....,px) is satisfied by a tuple ¢ in relation r with witness of satisfaction

{ay..... ay} provided (p;) is satisfied by tuple # with witness a;. ¢ = 1..... k.

Operator v allows us to relate data to meta-data. It takes a binary relation as
input. and a pattern as a parameter and returns a relation that cousists of tuples cor-

responding to those parts of the database where the queried pattern exists. Formally.

Definition 3.3.8 Let s be a binary relation and (py,....px) be a pattern as defined

in Definition 3.3.7. Then.
Yy pk)(s) = {d,r,a1,v1,...,ak,0c | {d,r) €s A d is a database in the federation

A r is a relation in d A 3 a tuple t € r such that t satisfies (p,...,px) with witness

{ar,...,ax} A tlay,...,ae] = (v, ..., 0)}

Note that when the pattern is empty, ‘y()(s) would return the set of all pairs

(d,r) € s such that r is a non-empty relation in the database d in the federation.
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Example 3.3.1 The operation V(s secretary’, — )(s) against the university databases

of Example 1.1.1 will yield the relation in Figure 3.

v A | payinfo un%v_A pa.y_?nfo category | secretary dept cs
univ_B | pay info ungv_A pay_{nfo category | secretary | category sec'r?tz}ry
univ.C os unfv_.'—\ pay.info | category | secretary | avg-sal 35K
univ_C ece univ_C ece category | secretary | category | secretary
univ_C ece category | secretary | avg-sal J0K

Figure 5: (a) Relation s and (b) output of N > secretary’, — )(s)

Finally, operator « also has its variant, which we define below.

Definition 3.3.9 Let u be a ternary relation and (py,-..,pi) be a pattern. Then,
‘7( | (d,r,ay),....(d,r.ax) €u A d is a database

in the federation A r is a relation ind A 3 a tuple t € r such that t satisfies

)(u) ={d,r,ai,v1,...,8k, Uk

(p1,...,px) with witness {ar.....ar} A tlar....,ae) = (vi...., ve)}.

We remark that operators o, w, X. U, —, and each of the main schema querying
operators (or its variant) of our extended algebra form an independent set of oper-
ators: each operator cannot be simulated using one or more of the other operators.
[n particular. note that given a binary relation ¢. the effect of operations a(q) and
1\'1.2,3(‘7( - )(q)) is not the same: a{q) contains in its output. tuples of the formn
(d.r.a) such that (d.r) € q. r is any relation (possibly empty) in the database d. and
a is an attribute in r’s scheme. On the other hand. the output of 1r1,2,3(‘7( - >(q))
includes only non-empty relations.

However, note that each of the main schema querying operators can simulate its
variant operator. As an example, 3(3) = 6() N s. The variant operators are needed
for scenarios in which the main operator would be too costly to be realized. Also. as

can be seen later in this chapter, the various notions of safety are intrinsically related

to the fragments of the algebra obtained using the variant operators.

Example 3.3.2 Query Q; of Section 2.2, “List similar departments in univ_B and
univ_C that have the same average salary for similar categories of staff " can be ex-

pressed in our extended algebra as:
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T54,85.56 T'$4=810 A $5=58 A $56=512 (TS5 category’( ¥ (category — , — )

({{(univ_B, pay-info)}) ) X Vcategory — . avgosal — >( p({{univ.C)})))

Based on the operators we have defined so far, we now define various fragments
of the querying algebra. The motivation for such a fragmentation is the following.
Counsider the implementation of SchemaLog atop a huge federation spanning multiple
databases across a wide geographic layout. Clearly. for practical reasons, it would be
infeasible to process queries that require an access of the entire federation. However.
this is not the case with queries that restrict attention to parts of the federation and
hence our implementation should admit such queries. The algebra we present below.
is designed with such a need in mind. Each fragment of the algebra. successively
restricts attention to specific databases in the federation, specific relations in specific

databases and so on.

Definition 3.3.10 SQA, d-SQA, r-SQA, a-SQA
We will denote the algebra consisting of the classical algebra operations as well as the
querying operators, §, p, o, and v as SQA. Based on the variant operators, we also
define the following fragments of SQA.
db-bounded SQA (d-SQA): The algebra obtained from SQA by substituting

the & operator with operator 5.
rel-bounded SQA (r-SQA): The algebra obtained from d-SQA by

substituting the p operator with operator p.
attr-bounded SQA (a-SQA): The algebra obtained from r-SQA by

substituting a and v with

operators & and 4 respectively.

[t is evident from the above definition that d-SQA is incapable of listing the names
of all the databases in a federation. Intuitively, this algebra is suited for a scenario
in which the names of the databases of interest should be restricted to names known
apriori (or obtained using the other operators in the algebra). A similar comment
(suitably modified with relation names and attribute names) applies for the other
fragments of SQA as well: r-SQA restricts attention to specific relations in specific
databases and a-SQA is applicable in scenarios in which (schema level) operations

should be restricted to specific columns of specific relations in specific databases.
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3.4 Schemal.og Based Query Language

In general. SchemaLog permits not only querying (both data and schema) of compo-
nent databases, but also restructuring. For instance, as shown in Section 2.6.2. it is
straightforward to restructure the information in database univ_B of Example l.1.1
to conform to the schema of the database univ_A, using a simple Schemalog pro-
gram. [n this section. we restrict attention to the part of SchemalLog that performs
(schema and data) querying. the fragment to be precisely defined later in this section.

Motivated by the same needs for which in the previous section we defined the
various fragments of the algebra, we also define the progressively restrictive fragments
of the SchemaLog-based query language. Thereto. we define the following notions of
limited, db-limited. rel-limited, and attr-limited variables appearing in a SchemaLog

rule.

Definition 3.4.1 A variable appearing in a SchemaLog rule is limited if it appears as
an argument of a non-negated subgoal or is equated to a constant or a limited variable
(perhaps through a chain of equalities). A SchemaLog rule is safe if all variables

appearing in it are limited.

Definition 3.4.2 A variable appearing in a SchemaLog rule is db-limited (rel-limited.
attr-limited) if (a) it appears in a non-db (non-db and non-rel, value) position of a
non-negated SchemaLog subgoal having a constant or a db-limited (rel-limited. attr-
limited) cariable in the db (db and rel. non-value) position(s). or (b) it is cquated
to a constant or a db-limited variable (perhaps through a chain of equalities). A
SchemalLog rule is db-safe (rel-safe, attr-safe) if all variables appearing in it are db-
limited (rel-limited. attr-limited).

Definition 3.4.3 The Querying Fragment of SchemaLog (Lq). is obtained by impos-
ing the following constraints on the definite clause fragment of SchemaLog: - (i) no
function symbols are allowed. (ii) rule heads are required to be programming predicates,
(iii) rules are non-recursive and safe, and (iv) tuple-id’s (used only in rule bodies) are
unshared eristential variables. The db-safe (rel-safe, attr-safe) querying fragment of
SchemaLog EdQ (LY, L), is obtained by imposing an additional constraint that (v)

the rules are db-safe (rel-safe, attr-safe).
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The rationale for the above restrictions is as follows. The restriction of rule heads
to programming predicates ensures that the resulting language only permits query-
ing, as opposed to database restructuring. The restriction on tuple-id’s ensures that
the querying cannot depend on the internal details of tuple-id’s somewhat akin to
conventional relational query languages. At the same time, owing to the higher-order
nature of this language. it still permits schema browsing and queries that can explore
the rich semantics of schema. The restriction to the non-recursive fragment allows us
to relate this language to the extended relational algebra defined earlier.

Programming in the above fragment would be based on molecules, and terms
would either be constant or variable symbols. Also. programs in this language can es-
sentially ignore the tuple-id’s. The resulting database programming language is quite
in line with the relational model in that, the latter also does not allow manipulation
of tuple-id’s. The following lemma establishes the sufficiency of SQA to implement

safe Lo programs.

Lemma 3.4.1 Let D be a federation of databases (edb), P be a set of safe rules in
Lo, and p be any predicate defined by P. Let P(D) denote the output computed by
P on input D and let pPP) be the relation corresponding to p in P(D). Then there
ezists an expression E. depending only on P, in SQA such that E(D) = pP P,

PROOF. There are two major parts to this proof. In the first part we need to prove
that each predicate defined by P has an equivalent expression in SQA . The second
part deals with proving that DOM. the set of all symbols appearing in P and in the
edb relations. can be generated using SQA .

Part I: Proof of this part is similar to [/1l89b]. Subgoals in rules in P consist
of conventional (programming) predicates as well as SchemalLog molecules. For each
subgoal S;. let Q; be the corresponding SQA expression, and let the schema of the
relation corresponding to Q; be the variables appearing in S:. Subgoals that are pro-
gramming predicates are handled as in [U1189b]. We show how relations corresponding
to subgoals that are SchemaLog molecules can be derived using SQA. There are four
cases to consider, depending on the depth.

When a subgoal S; is a SchemaLog molecule of depth:

(1) Let S; be X. Then Q; = §(). If S; is a constant d. then Q; is simply {d}.



(2) Let S; be D :: R. Then Q; = p(8()). If one or more of D, R are constants, or if
D and R are the same variable, then simply modify Q; by imposing appropriate

additional selection(s).

(3) If S;is D :: R[A,,..., An]. then Q; is essentially the expression a(p(6())) 6-
joined with itself n-times. where 8 is "$1 = $1 A $2 = $2’. [f some of the terms

in S, are constants or repeating variables. we can impose appropriate selections

in Q,.

(4) If S; is of the form D :: R[4, =V, A= Vs, ..., A, — Vo)L then Q; is
woutp,u_hg,(acond,‘,ion,'y(pl'npn) (p(8()))). where p; is an attribute/value pair of one
of the forms * — "."a; — °." — v;’,a; — v;", depending on whether and where
the pair A; — V; contains constants. G nditions corresponds to selection condi-
tions capturing the occurrence of constants and repeating variables in S5;, and
output Args is the list of arguments corresponding to distinct variables occurring

in Si.

Now, the technique of [UllI89b] can be applied to obtain an expression for P.

Part [I: Evaluating negated subgoals involves generating complementary relations
([U1189b]). We need to prove that SQA can generate DOM, the set of all constants
appearing in P and in the databases in the federation. As our framework treats
attribute names and relation names as first class citizens. the SQA expression gen-
erating DOM should include them in the domain. If C' is the set of all constants
appearing in P. DOM is expressed the following way.

DOM =C U 8() U m(p(8())) U msla(p(6())) U malyy _, y(p(60)))

With these modifications. the proof is easily obtained along the lines of [U1I89h].

|

We now turn our attention to the relative expressive powers of the other fragments

of Lg and the algebra. The following lemma establishes that the expressive power of
E“Q is no more than that of d-SQA.

Lemma 3.4.2 Let D be a federation of databases, P be a set of db-safe rules in L,
and p be any predicate defined by P. Let P(D) denote the output computed by P on
input D and let pP(P) be the relation corresponding to p in P(D). Then there erists
an erpression E. depending only on P, in d-SQA such that E(D) = p¥P).

! As discussed in Section 3.4. the tuple-id component can be ignored in Lq .
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PROOF. The proof is similar to the proof of Lemma 3.4.1, and we present the modi-
fications required to both parts of the above to proof.

Part [: The major modification from the proof of Lemma 3.4.1 is the case when a
variable appears in the db-position of an atom a. Obtaining the d-SQA expression
when the db-position of « contains a constant is straight-forward - these constants
would be the elements of the argument relation s of 5. We illustrate the proof for
the scenario in which the db term is a variable for the case when the depth of a is 1.
Proofs for the other cases are similar.

Let a be X. [t follows from the definition of a db-safe rule of EdQ that X already
occurs as (or is equated to) a db-safe variable in another atom 3 of the rule. Let this
be the k-th variable in 3 and @, be the d-SQA expression corresponding to 3. Then.
the d-SQA expression corresponding to a, Q; = s(m.Qj).

With this modification. the proof is obtained along the lines of the proof of Lemma
3.4.1.

Part [I: The proof of this part is based on an important observation that, when
we consider the L',dQ fragment, we only need to restrict attention to a subset of DOM
(the set of all constants appearing in P and in the databases in the federation). This
is because, by definition, programs in the /.:dQ fragment can only access databases that
are named either directly (by means of constants) or (by “traversing’ the subgoals in
the program) via other named objects in the federation. Thus, given a £ program

P. containing k SchemalLog atoms in it, DOMy, of P is defined as:

DOMY,(P) = DOM,(0) = DOM?,.(0) =C
DOM (P) = {s| 3d € DOM},,s is a relation name. attribute name. or
value in database d}

DO My (P) = Uggick DO MY (0)

We now prove that DO My, can be generated using d-SQA by presenting the corre-
sponding d-SQA expression.

DOMS,(P) =C.
DOM (P) = §(DOMy(P)) U ma(p(8( DOM(P)))) U ms(x(p(6( DOMY(P)))))
U ms(v( — y(p(B(DOM(PI)))

=]
(]



DOMy4(P) = Uy < « < xDOM(P),

where k£ is the number of C'é atoms appearing in P.

With these modifications. the proof is obtained along the lines of the proof of
Lemma 3.4.1. a
A similar expressibility result extends to the other fragments of Lo and SQA
as well. We conclude this section. by presenting these results: the proofs are very
similar to that of Lemma 3.4.2 (appropriately extended to the relation and attribute

fragments) and are hence omitted.

Lemma 3.4.3 Let D be a federation of databases, P be a set of (rel-safe) rules in
o, and p be any predicate defined by P. Let P(D) denote the output computed by

P on input D and let pP®P be the relation corresponding to p in P(D). Then there

erists an expression E, depending only on P, in r-SQA such that E(D) = pP (™),

Lemma 3.4.4 Let D be a federation of databases, P be a set of (attr-safe) rules in
&, and p be any predicate defined by P. Let P(D) denote the output computed by

P on input D and let pP™®) be the relation corresponding to p in P(D). Then there

ezists an ezpression E, depending only on P, in a-SQA such that E(D) = pP ().

3.5 Extended Calculus

In this section. we study a language Lc in the spirit of domain relational calculus that
is inspired by the syntax of SchemaLog. We take a fresh look at the notion of safety
in the context of £¢ and study in depth the different levels of safety that naturally
arise in the context of L. We also investigate the relationship between the various

safe fragments of Lc and the algebras of Section 3.3.

Definition 3.5.1 A term of L is either a variable or a constant. Atomic formulas
(atoms®) are one of the following forms:

(i) (db) = (rel)[ (attr))—(val), ..., (attry) — (val,)],

(i) (db) :: (rel)[ (attry),...,(attra)], (iii) (db) = (rel), (iv) (db), where (db}, (rel),

(attr;). and (val) are terms, or (v) an atom involving one of the built-in predicates

2Note that atoms in L¢ correspond in general to molecules in £. Also note that explicit tuple-id’s
are dispensed with in Lc.
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=,<,>,#. Formulas are formed by closing atoms under the usual boolean connectives
and quantifiers. Atoms of type (i) - (iv) are called the database atoms while those of
type (v) are called built-in atoms.

The depth of a database atom in L is defined as follows. Atoms of depth 1, 2, and
3 are defined as in SchemalLog (Section 2.3.1). All other database atoms are defined
to be of depth §. Built-in atoms are of depth 0. An expression in Lc is of the form
{Xi...... | o(Xy.... . X..)}. where Xi,.... X, are the distinct free variables in
the Lc formula o.

The notions of free and bound occurrences of variables in formulas are defined as

usual.

3.5.1 Domain and Safety

As L¢ provides a formal status to database names, relation names and attribute
names in the federation, our domain should include, apart from the values appearing
in the federation, the names of all the databases, all the relations as well as the

attribute names in them. The following definition captures this notion.

Definition 3.5.2 Define the depth of a formula ¢ (depth(¢)) to be the marimum of
the depth of the atoms in the formula. Let C be the set of constants appearing in o.
Now. the domain of o denoted as DOM (@), is defined as follows.

[f depth(o) = 0. DOM (o) = C

[f depth(o) = 1. DOM(0) = CU{s | s is a database name in the federation
}

If depth(o) = 2. DOM(0) = C' U {s|s is a database name. or a relation
name in the federation }

[f depth(®) = 3. DOM(¢) = CU{s | s is a database name, relation name.
or an attribute name in the federation }

If depth(¢) = 4, DOM(¢) = CU{s | s is a database name, relation name,

attribute name, or a value in the federation }.

Safety: We would like the formulas of L¢ that we consider, to “pay attention
to the domain of the formula”. Following Ullman [Ull89b], we call such domain

independent formulas “safe formulas”. We formally define safe formulas below. For

74



a formula ¢, variable X, and constant a, ¢[a/X] denotes the result of replacing all

free occurrences of X in ¢ by a.

Definition 3.5.3 Let A denote the domain of ¢ (DOM(d)) as defined in Definition
3.5.2. A formula ¢ in Lc is safe if it satisfies the following properties.

o Each answer to ¢ comes from A.

o For each subformula of ¢ of the form (3X)(8). éla/X] is false regardless of the
values substituted for other free variables of ©. Va & .

o For each subformula of ¢ of the form (VX)(¢). éla/X] is true regardless of the
values substituted for other free variables of ¢, Va & A.

We call the fragment of Lc corresponding to the safe formulas. safe Lc.
While the above notion of safety is theoretically sound, practical considerations.
as explained below, motivate the need for taking a closer look at the notion of safety

and refining it further into more specific fragments.

Alternative definitions of Domain/Safety

Consider a federation consisting of bibliographic databases all over North America.
Admittedly, this federation comprises a large number of databases spread over a wide
geographical landscape. Given the enormity of such a federation and the concomitant
high cost of accessing information across the component databases in the federation.
it is not realistic to consider expressions that refer to all the component databases.
as safe. However. the above definition (Definition 3.5.3) of safety does not take into
account such practical considerations. As an example. {.X | \'}. the expression that
lists the names of all the bibliographic databases in North America is safe by the
above definition!

Thus, the classical notion of safety does not suffice for the federation setting. A
practically useful definition of safety should render as safe, only those expressions
that restrict attention to a specific set of databases in the {ederation. Indeed. such
restrictions can be extended to specific relations in known databases (and even to
specific attributes in known relations). A starker and more convincing example for
the need for restricting attention to subsets of the entire federation information arises

in the context of the World Wide Web. When we consider the web as a federation of



information sources (which we shall in Chapter 3), it is not appropriate to consider
queries that refer to all the information sources in the web as safe. Below, we provide
alternative definitions of safety that are suitable for scenarios in which the federation
is huge and the cost of evaluating some classes of queries traditionally considered safe.
is so high that. for practical reasons, the queries should be considered unsafe. Finally,
note that if we are dealing with a federation containing a small number of component
databases. when the individual access cost is not very high. then the above notion of
safety is indeed appropriate.

The above observations suggest that depending on the class of applications under
consideration. the applicable notion of safety should be different. This calls for a
notion of varving degrees of safety - from the most liberal. in which formulas referring
to all component databases in a federation should be considered safe (Definition 3.5.3),
to the most restrictive in which only formulas referring to specific set of databases.
relations. and even attributes should be considered safe. It follows that the different
notions of safety can be obtained by modifying the notion of the domain of a formula.
[ndeed it is evident from Definition 3.5.3 that the safety of a formula intrinsically
depends on the notion of domain. With an aim towards formulating various levels of

safety. we provide alternative definitions of domain of a formula.

Definition 3.5.4 (Alternative definitions of DOM)

DOMS (o) = DOMS,(3) = DOMY,.(0) =C

DO W‘H (0) = {s | 3d € DOM,.s is a relation name. attribute name. or value in
database d}

DOMF o) = {s | 3d.r € DOM., .5 is a attribute name. or value in relation r
which is in database d}

DOMF (o) = {s|3d.r.a € DOM:!

e s 18 a value in column a in relation r which is
in database d}

DOMy(9) = Uizo DO My(6)
DOM,(8) = Ui»o DOM: , (9)
DOM,ir(9) = Ui DOM;,,. ()

For each definition of domain, we have a corresponding notion of safety.



Definition 3.5.5 (Alternative definitions of safety) A formula ¢ in Lc is db-
safe (rel-safe, attr-safe) if it satisfies the properties of Definition 3.5.3, with A as
DOMy(¢) (DOM, (), DO My () respectively).

We now state the results on the inter-relationship among the various safe fragments

of L¢. The proofs are straightforward and hence omitted.

Proposition 3.5.1 Every db-safe Lc formula is a safe Lc formula.
Proposition 3.5.2 Every rel-safe Lc formula is a db-safe Lo formula.
Proposition 3.5.3 Every attr-safe Lc formula is a rel-safe Lo formula.

Our next result demonstrates that the expressive power of L¢ is no less than that

of SQA.
Lemma 3.5.1 Every expression of SQA is expressible in safe Lc.

PROOF. The proof is an induction on the number of operators in the SQ.A expression,
say E. It is very similar to the proof of expressibility of classical algebra expressions
in safe DRC ([UlI89b]). The only difference is that we have one new base case (8).
and three new induction cases (p. a, <) to be considered.

Base Case: E = 8(): The safe Lo formula corresponding to this expression is
{X | X}. The safety of this formula follows from the definition.
[nduction:
Case 1. p(E,): Let E; be equivalent to the safe query {D | o(D)}. Then E 1s
equivalent to the safe query {D.R | o(D)A D :: R}.
Case 2. a(E,): Let the safe query corresponding to £, be {D.R | w(D.R)}. E'is
then equivalent to the safe query {D, R, A | w(D,R) A D :: R[A]}.
Case 3. V(= g o —-m,,)(El): Let E, be equivalent to the safe Lc query {D. R |
x(D, R)}. Then E is equivalent to the safe query,
{D.R,ALVI, A0, Vo, ..., An, Vi | X(D,R) A D =z R[A1—=Vj, As—Va, ..., An—= Vo] A
Ay =ay AV, = v,}.

The safety of the equivalent Lo queries is straightforward. O
We now turn our attention to the expressibility of the other fragments of the calculus

by the corresponding fragments of the algebra.



Lemma 3.5.2 Every d-SQA erpression can be expressed by a db-safe Lc formula.

PROOF. Recall that -SQA is obtained from SQA by replacing the §() operation
with the 8(s) operation. Thus we can obtain our proof from the proof of Lemma
3.5.1, by showing how 3(3) can be expressed using a db-safe L¢ formula. We present
the modifications necessary to the above proof.

The new base case for the proof is the scenario in which there are zero operators
in the d-SQA expression E. Then E is a set consisting of constants {cy,....c.}. The
equivalent db-safe L formulafor Eis {X | X =¢ V ... V X =cu}.

A new inductive case arises for the d-SQA operator £ = 85(E,): Let E, be
equivalent to the db-safe Lo query {D | ¢(D)}. Then E is the db-safe Lc query
{D | o(D) A D}.

The rest of the inductive cases are identical to those in the proof of Lemma 3.5.1.
A crucial observation that can be easily verified is that the equivalent safe L¢ queries
for these cases are also db-safe. a

Expressibility results similar to the ones above, extend to the other fragments of

the algebra and calculus languages.
Lemma 3.5.3 Every r-SQA ezpression can be expressed by a rel-safe Lc formula.
Lemma 3.5.4 Every a-SQA ezpression can be expressed by a attr-safe Lc formaula.

The proofs of Lemmas 3.5.3 and 3.5.4 are similar to the proof for the Lemma 3.5.2
extended to the rel and attr fragments respectively.

We now turn our attention to the relative expressive power of the Lo and Lg
languages. Our first result in this direction states that the expressive power of safe

Lo language is no less than that of the safe Lc fragment.
Lemma 3.5.5 Every safe Lc query can be expressed in safe Lq.

ProoF. This proof works along the lines of the proof of expressibility of safe DRC
queries in safe, non-recursive Datalog [Ul189b].

It can be shown that for every safe Lc query {X | ¢(X)}, there is an equivalent
(safe) Lc query {X | ¥(X)}, where the formula ¢ satisfies the following conditions.

e v does not contain any use of V.



e [f F,V F, is a subformula in ¢, F; and F, have the same set of free variables.

e If F{A--- A F, is a maximal conjunct in ¥, then all free variables in F; are
limited by (a) appearing free in F; (j = { possibly) where Fj; is not a built-in
atom and is not a negated formula, or (b) being equated to a constant or a

limited variable (perhaps through a chain of equalities).

e Whenever v has a subformula —¢. —¢ is part of a subformula of the form

1IN Aok “p Agret A+ A pm. where at least one of the o;’s is not negated.

[ndeed, 6 can be translated to v algorithmically, as discussed in [UlI89b]. Let F
be any safe Lc formula. By the above. we may assume without loss of generality that
F satisfies the above conditions.

Let G be a maximal conjunct of subformuias of F. Let X;....,.X, be the free vari-

ables in . We prove that for every subformula (7, there is a Lo program that defines

is true iff Glay/ X1, .- ., an/ Xa] is true. Here Gla;/ X\, ...,an/X,] denotes the ground
formula obtained by substituting a; for X; in G.

Let G = Gy A--- A Gi. The base case is when & = | and G, is one of the L¢
atoms. We define a predicate pg for G by pg(X1,..., Xm) «— Gi A --- A Gy where
X,.....X, are the free variables in ;. From the definition of safe L formulas. it
follows that X;'s are limited. This is thus a safe rule in Lq.

Induction: We need to consider three cases - 3. V. and A. G does not contain V.
and - can only appear within conjunctions.

(3) Let &G = (3X,)H. where X;...... \. are the free variables in the atorn . The
predicate corresponding to pg can be defined as
pe(Xi...... A A G P i) e— pu(Nq.... . Xk).

(V) Let G = H Vv [. By the definition of safety. free variables of H and [ must
be the same. The proof of this claim would be based on the argument that it [ has
some free variable that does not appear in H, whenever H is true, [ need not be true,
and hence this free variable can take on any value (in particular, one that does not
belong to DOM). Let the free variables in H (and I) be Xi,..., Xix. The following
two rules can be used to express G.
pe( Xy, ... Xi) — pu(Xy..... Xi)
pe(Xi...... Xi) — pr(Xi...., Xk)



(A) Let G = GiA- - -AG,. The rule for G can be expressed as: pg(Xi,..., Xi) —— SiA
-+ A S,, where S; is the subgoal corresponding to G; (obtained inductively) and
X1,..., X are the free variables appearing among the G’s. a

Similar result extends to the other fragments of the respective languages as well,

and below we present these results.
Lemma 3.5.6 Every db-safe Lc query can be expressed using a L program.

PROOF. The proof of this lemma differs little from that of Lemma 3.5.5: in particular.
the only modification required is to prove that the free variables in a maximal conjunct
of subformulas of any db-safe L¢ formula, are db-limited. This result follows from
the definition of db-safe Lc formulas. The rest of the proof can be obtained along
the lines of the proof of Lemma 3.5.3. a

The proofs of the following two lemmas are similar to that of Lemma 3.5.6. ex-

tended to the rel and attr fragments respectively.
Lemma 3.5.7 Every rel-safe Lc query can be expressed using a L program.
Lemma 3.5.8 Every attr-safe Lc query can be ezpressed using a L program.

We are now ready to present our final result of this section that establishes the

equivalence of the various languages introduced so far.

Theorem 3.5.1 The set of queries erpressible in cach of the following scts of lan-

guages is identical.
o SQA. safe L. and safe Lg
o d-SQA, db-safe L. and C‘é
o r-SQA, rel-safe Lc. and L

o a-SQA, attr-safe Lc, and L5

PROOF. Follows from Lemmas 3.4.1 - 3.5.8. a
While the proof of equivalent expressive power of these languages, presented above
is roundabout. in Appendix B, we present some direct results on the relative expressive

powers of the various pairs of languages.
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3.6 Restructuring Algebra

In this section, we introduce the type (3) operators discussed in the beginning of
this chapter. While the operators of Section 3.3 are capable of data and schema
querying, the operators we introduce below query as well as restructure data and meta-
data in a federation. Thus, these operators are useful for realizing the restructuring
functionality of SchemaLog. We will denote the algebra consisting of the restructuring
operators defined in this section as SRA. By SA. we denote the algebra consisting
of both the SQA and SRA operators. We now present the SR.A operators.

Definition 3.6.1 (Creating databases) The first operator ¥ takes a programming
relation of arity k as input and a column number i < k as a parameter, and creates
databases with names corresponding to the entries appearing in column ¢ of the input
relation. More formally, 9;(s), for a programming relation s and a column number
i creates a database named d for each d € wi(s), if such a database does not already

extst.

For example, ¥, ({(univA), (univB),(univC)} creates the databases

univA, univB, univC (which do not contain any other information).

Definition 3.6.2 (Creating relations in databases) The second operator k takes
a programming relation of arity k as input and two column numbers i.j < k as pa-
rameters. [t creates databases with names corresponding to the entries appearing in
column i (of the inpul relation), and containing relations whose names arc obtained by
interpreting the entries appearing in column j. More formally. & ,(s). for a program-
ming relation s and column numbers i.j creates a database named d with relations
having names ry, .. ..r, eractly when os)—g(7;,(s)) = {(d.r1),....(d.ra)}. whenever

such a database does not already exist. Note that osi—-4 denotes classical selection.

For example, £1({(univA, payInfo).(univC. cs), (univC, ece)}) creates the databases
univA and univC, the former containing a relation payIn fo, and the latter containing

the relations cs and ece. (The scheme of the relations is not yet defined.)

Definition 3.6.3 (Creating relations with schemas) The nezt operator ¢ takes
a programming relation of arity k as input and three column numbers ¢,j,1 < k as

parameters. [t creates databases with names corresponding to the entries in column 1,
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having relations with names corresponding to entries in column j and whose schemas
are determined by interpreting the entries appearing column [ as the attributes associ-
ated with the relation names in column j. More formally, for a programming relation
s and column numbers i, j,1, <;;i(s) creates a database d containing a relation r with
attributes ay.....an exactly when og—g(7:;1(3)) = {(d.r.ay).....(d,r.a,)}. when-

ever such a database does not already exist.

For example, let s = {(univC, cs,category). (univC.ece, category)}. Then. ¢1.23(s)
will create a database univC containing two relations cs and ece both with the schema

{catergory} and with no data.

Definition 3.6.4 (Creating and populating relations with schemas) The last
operator o takes a programming relation of arity k as input, four column numbers
i.j, k.l and another list of column numbers gi....,gm as parameters and returns as
output several databases structured according to the interpretation of column i entries
as database names, column j entries as relation names, column k entries as attribute
names, and column | entries as values. Facts so generated form pieces of larger tu-
ples. The grouping for forming output tuples is determined based on equality on the
columns gy, ...,gm. More formally, o;;kuig,...am(S) creates a database d containing
relation r with attributes ay,...,a, eractly when

osi=a(mijk(3) = {(d.r.a1),...,(d.r,an)}, whenever such a database does not al-
ready erist. Furthermore. it populates the relation r of database d with a tuple t such
that t{a;. . ... an) = (v1e. ... v, eractly when 3t,. .. .. o € s such that m ;. ({ty..... L3 =
{(d.r.ay.vr).....(d,r.an va)}. and finally, ti{gr. ... gm] = = talgr.. .. . gm]. When

the relation r already erists. the above mentioned tuples are appended to this relation.

For example. let r be the relation:
{(univC.cs.avg.prof,63K).
(univC,cs,avg. Aprof,40K),
(univC,cs, cat,prof,prof),
(univC,cs,cat, Aprof. Aprof),
(univC,ece, avg. sec,30K),
(univC,ece.avg,prof,T0K),
(univC,ece, cat,prof,prof),
(univC, ece, cat. sec. sec)}

Then. gy.2.35.4(r) will create the database shown in Figure 6.
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univ-C

cs

cat avg
Prof 65,000
AProf 40.000

ece
cat avg
Sec 30,000

Prof 70.000

Figure 6: Example of Restructuring

We remark that our restructuring operations also have limited update capabilities
in the sense that whenever the relation corresponding to the restructured form already
exists, newly generated data is appended to such a relation. E.g.. suppose that the
relation payInfo shown in Figure 6 already exists (say. because of an invocation of
operation g).

Let s' = {(univC, cs, avg, sec. 35K ), (univC, cs, cat, sec, sec)}. Then 01235:4(5") will
have the effect of appending the tuple (sec, 35K to the eristing cs relation of database
univC.

We now present an example algebraic program, that illustrates the expressive

power of our (querying and restructuring) algebra. SA.

Example 3.6.1 Suppose it is required to restructure the information in the univC

database of our running erample such that it conforms to the schema of the univB

database. The intended effect is that the there would be a single relation (called. say

payInfo) whose attributes are category and the names of the departments in univC.

The department columns contain the avgSal information. The following algebraic

expression accomplishes this restructuring in a straightforward manner.
015.243((T1344(Y (carms ang— ) (PUH(unIVCI}))

Umiaa6(Y rats augs ) (PL@ICIN)) X {(payInfo)))
For the sake of clarity, we ezplain the details of computation of the above algebraic

expression in the form of a sequence of simple steps showing intermediate results. For

this purpose, we use temporary (programming) relations to store intermediate resulls.



[. r == p({(univC)})
20725 V(g aug— )(T1)
3. ry:=m246(r2)

f. ry i =ma44(r2)

J. rs:=rz3lUry

6. re :=rs x {(pay[nfo)}
7. r::= 015.2.43(rs)

The steps are self-explanatory.

3.7 Discussion and Conclusion

As suggested by Example 3.6.1 of the preceding section. SA can be regarded as the
algebra that lies at the heart of an implementation of Schemalog. In [ALNI96]. we
study this issue in detail and propose an implementation architecture that is based
on compiling SchemaLog constructs into SA. We also address the challenging is-
sues unique to the SchemaLog implementation and propose three alternative storage
structures for dealing with them. Following up this work, [Ala97] proposes algorithms
for top-down implementation of SchemalLog, including alternative strategies for the
implementation of the algebraic operators. This work also evaluates the effectiveness
of the alternate strategies with a series of experiments on real-life databases running
on MS Access. These works conclude that from practical considerations. a viable
approach for implementing SchemaLog programs seems to be to use conventional
storage for existing database relations and a storage strategy known as reduced stor-
age (based on the first-order reduction result of Schemalog) [ALNI96] for derived
database relations. We refer to [ALNI96. Ala97] for the details.

An important question that arises in the context of such an implementation is the
sufficiency of SA to express every program in the full-fledged SchemaLog language.
In particular. the full SchemaLog language has function symbols which are used in
an essential way for performing advanced database programming (as illustrated in
Section 2.6.1). Note that SA captures the functionality of function symbols by means
of the grouping parameters set {gy,...,gn} of the ¢ operator: the ‘assembling’ of the

output tuples is determined based on the equality on these columns. In particular,
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there is no order associated with the parameters {g;....,gn}. However, note that
function symbols in SchemaLog have an implicit ordering associated with them.

We remark that the lack of such an ordering on the grouping attributes exhibited
by the algebra. can be imposed on SchemalLog by introducing equality axioms that
capture this notion. Conversely, SA can be developed along the SchemaLog direction
by introducing function symbols (or a means by which they can be simulated) in
the algebra. However, we do not pursue these issues further in this thesis. As a
final remark. as illustrated by the various results in this chapter. SA can be seen
to be sufficiently expressive to cater to most of the commonly occuring SchemalLog

programs.



Chapter 4

SchemaSQL

Since its inception in [BM’s System R database management system, SQL ([ACTS.
Cha76]) has been the reigning relational database query language supported by most
database management systems. It is the lingua franca of the database community, es-
pecially for the practitioners in the industry. While SchemaLog is a powerful language
with formal theoretical basis, it is difficult for a typical database practitioner well-
oiled in SQL, to adapt to its syntax, and start developing applications in SchemalLog.
On the other hand, it will be easier for the same user to adapt to a language having a
syntax closer to that of SQL. Motivated by this practical need, we develop an SQL-like
language that derives its inspirations from Schemalog. In particular. in the spirit of
SchemaLog, our language (a) has a expressive power that is independent of the feder-
ation/database schema. (b) is easy to use. yet sufficiently expressive. (c) is capable of
performing data and schema querying as well as restructuring. and (d) has the ability
to perform complex of aggregation beyond the realm of what is possible in standard
SQL. Besides. in view of the importance and popularity of SQL in the database world.
our language provides full data manipulation and view definition capabilities of SQL
and is downward compatible with SQL, in the sense that it is compatible with SQL
syntax and semantics. We call this dialect of SQL, SchemaSQL .

SchemaSQL is not a language obtained by extending SQL with ad-hoc constructs
capable of mimic-ing the features of SchemaLog. On the contrary, we have paid
careful attention to the study of the formal semantics of standard SQL and on how
the semantics can be extended to SchemaSQL in a natural and intuitively pleasing
manner. The end result is a language that is easy for the SQL user to adapt. Also.

as a result of the principled extension, SchemaSQL queries can be processed by
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reducing them to a series of SQL queries. thus enabling the possibility of realizing
an implementation of SchemaSQL on top of existing DBMS infrastructures. This

chapter discusses all these issues in depth, and is organized as follows.

4.1 Overview of the Chapter

(1) We review the syntax and semantics of SQL. and develop SchemaSQL as a prin-
cipled ertension of SQL (Sections 4.2. £.3.2). As a result. for a SQL user. adapting
to SchemaSQL is relatively easy. (2) We illustrate via examples the following pow-
erful features of SchemaSQL : (i) uniform manipulation of data and meta-data: (1)
creating restructured views and the ability to dynamically create output schemas; (i)
the ability to express sophisticated aggregate computations far beyond those express-
ible in conventional languages like SQL (Sections 4.3.3, 4.4.2). (3) We propose an
implementation architecture for SchemaSQL that is designed to build on eristing
RDBMS technology, and requires minimal additions to it, while greatly enhancing
its power (Section 4.5). We provide an implementation algorithm for SchemaSQL,
and establish its correctness. We also discuss novel query optimization issues that
arise in the context of this implementation. (4) Finally, we propose an extension to
SchemaSQL for systematically resolving the semantic heterogeneity problem arising

in a MIDBS environment (Section +.6).

4.2 Syntax

Our goal is to develop SchemaSQL as a principled extension of SQL. To this end. we
brieflv analyze the syntax of SQL. and then develop the syntax of SchemaSQL as a
natural extension. Our discussion below is itself a novel way of viewing the syntax
and semantics of SQL. which. in our opinion. helps a better understanding of SQL
subtleties.

[n an SQL query. the (tuple) variables are declared in the from clause. A variable
declaration has the form <range> <var>. For example, in the query in Figure 7(a).
the expression emp T declares T as a variable that ranges over the (tuples of the)
relation emp (in the usual SQL jargon, these variables are called aliases.) The select

and where clauses refer to (the extension of ) attributes, where an attribute is denoted

oL
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as <var>.<attName>, var being a (tuple) variable declared in the from clause, and

attName being the name of an attribute of the relation (extension) over which var

ranges.
select T.name select emp.name select name
from emp T from emp from emp
where T.dept = where emp.dept = where dept =
"Marketing" “"Marketing" "Marketing"
(a) (b) (c)

Figure 7: Syntax of Simple SQL Queries

When no ambiguity arises, SQL permits certain abbreviations. Queries of Figure
7(b.c) are equivalent to the first one, and are the most common ways such queries
are written in practice. Note that in Figures 7(b) and 7(c), emp acts essentially as a
tuple variable.

The SchemaSQL syntax extends that of SQL in several directions.

1. The federation consists of databases, with each database containing relations.

The syntax allows to distinguish between (the components of) different databases.

(S
.

To permit meta-data queries and restructuring views, SchemaSQL permits
the declaration of other types of variables in addition to the (tuple) variables
permitted in SQL.

3. Aggregate operations are generalized in SchemaSQL to make horizontal and
block aggregations possible. in addition to the usual vertical aggregation in
SQL.

In this section we will concentrate on the first two aspects. Restructuring views and
aggregation are discussed in Section 4.4.
Variable Declarations in SchemaSQL

SchemaSQL permits the declaration of variables that can range over any of the
following five sets: (i) names of databases in a federation: (ii) names of the relations
in a database; (iii) names of the attributes in the scheme of a relation; (iv) tuplesin a
given relation in a database; and (v) values appearing in a column corresponding to a
given attribute in a relation. Variable declarations follow the same syntax as <range>
<var> in SQL, where var is any identifier. However, there are two major differences.

(1) The only kind of range permitted in SQL is a set of tuples in some relation in the
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database, whereas in SchemaSQL any of the five kinds of ranges above can be used
to declare variables. (2) More importantly, the range specification in SQL is made
using a constant, i.e. an identifier referring to a specific relation in a database. By
contrast, the diversity of ranges possible in SchemaSQL permits range specifications
to be nested, in the sense that it is possible to say, e.g., that X is a variable ranging
over the relation names in a database D, and that T is a tuple in the relation denoted

by X. These ideas are made precise in the following definition.

Definition 4.2.1 (Range Specifications) The concepts of range specifications. con-
stant, and variable identifiers are simultaneously defined by mutual recursion as fol-
lows:
I. Range specifications are one of the following five types of expressions, where db,
rel, attr are any constant or variable identifiers (defined in 2 below).
(a) The erpression -> denotes a range corresponding to the set of database

names in the federation.
(b) The expression db-> denotes the set of relation names in the database db.

(c) The erpression db::rel-> denotes the set of names of attributes in the

scheme of the relation rel in the database db'.
(d) db::rel denotes the set of tuples in the relation rel in the database db.
(e) db::rel.attr denotes the set of values appearing in the column named

attr in the relation rel in the database db.

2. A variable declaration is of the form <range> <var> where <range> is one of
the range specifications above and <var> is an identifier*.. An identifier <var>
is said to be a variable if it is declared as a variable by an expression of the
form <range> <var> in the from clause. Variables declared over the ranges (a)
to (e) are called db-name, rel-name, attr-name, tuple, and domain variables.

respectively. Any identifier not so declared is a constant.

As an illustration of the idea of nesting variable declarations, consider the clause
from dbi-> X, dbi::X T. This declares X as variable ranging over the set of relation
names in the database db1 and T as a variable ranging over the tuples in each relation
X in the database db1.

'The intuition for the notation is that we can regard the attributes of a relation as written to
the right of the relation name itself!

2 Abbreviations similar in spirit to those allowed for SQL are also allowed in SchemaSQL .
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We will use the University federation of Chapter 1, expanded with yet another

database component univ-D (shown in Figure 8) as the running example for this

chapter.

univ-B
) sallnfo
univ-A category cs Math
sallnfo Prof 55,000 65,000
category dept salFloor Assoc Prof 50,000 55,000
Prof CS 65.000
Assoc Prof CS 50,000 univ-D
Prof Math 60,000 sallnfo
Assoc Prof Math 55,000 dept Prof Assoc Prof
CS 75,000 60.000
Math 60,000 45.000
univ-C
CS
category salFloor
Prof 60.000
Assoc Prof 55,000
Math
category salFloor
Prof 70,000

Assoc Prof 60,000

Figure 8: Representing Similar Information Using Different Schemas in Multiple
Databases univ-A, univ-B, univ-C, and univ-D

Example 4.2.1 List the departments in univ-A that pay a higher salary floor to

their technicians compared with the same department in univ-B.

select A.dept
from univ-A::sallInfo A, univ-B::sallnfo B,

univ-B::sallnfo-> AttB

where AttB <> "category" and
A.dept = AttB and
Q1) A.category = ‘“technician" and

"“technician" and
A.salFloor > B.AttB

B.category

Explanation: Variables A and B are (SQL-like) tuple variables ranging over the
relations univ-A: :salInfo
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and univ-B::salInfo. respectively. The variable AttB is declared as an attribute
name of the relation univ-B: :salInfo. It is intended to be a dept; attribute (hence
the condition AttB <> "category" in the where clause). The rest of the query is

self-explanatory. n

Example 4.2.2 List the departments in univ-C that pay a higher salary floor to

their technicians compared with the same department in univ-D.

select RelC
from univ-C-> RelC, univ-C::RelC C,
univ-D::salInfo D
(Q2) where RelC
C.category = "technician" and
C.salFloor > D.technician

"

D.dept and

Explanation: The variable RelC is declared as a relation name in the database
univ-C. Note that in this database there is one relation per department, and the
relation name coincides with department name. Variable C is then declared as a
tuple variable on this (variable) relation RelC. The variable D is an (SQL-like) tuple
variable ranging over the relation univ-D::salInfo. Note that in univ-D: :sallnfo
categories are represented by attribute names, whose domains consist of the salary
floors of the corresponding category. Hence. D.technician is the salary floor for

category technician (for the tuple represented by tuple variable D).
a

4.3 Semantics I: Fixed Output Schema

We first quickly review the semantics of SQL and express it in a manner that makes

it possible to realize the semantics of SchemaSQL by a simple extension.

4.3.1 SQL Semantics Reviewed

A query in SQL assumes a fized scheme for the underlying database, and maps each
database to a relation over a fixed scheme, called the output scheme associated with

the query. Let D be the set of all database instances over a fixed scheme. Let a query
Q be of the form
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select attrList, aggList
from fromList

where whereConditions
group by groupbyList

having haveConditions

Let R be the set of all relations over the output scheme of the query Q. The query

@ induces a function

Q:D—-R

from databases to relations over a fixed scheme. defined as follows. Let D € D
be an input database. and 7p the set of all tuples appearing in any relation in D.
Let 7 be the set of tuple variables occurring in Q. We define an instantiation as a
function ¢ : 7—7p which instantiates each tuple variable in @ to some tuple over its
appropriate range. The conditions whereConditions in the where clause induce a
boolean function. denoted sat(z, @), on the set of all instantiations. reflecting whether
the conditions are satisfied by an instantiation. This is defined in the obvious manner.
Let Zo = {¢ | ¢ is an instantiation for which sat(:,@Q) = true} denote the set of
instantiations satisfying the conditions in the where clause. The query assembles
each satisfying instantiation into a tuple for the answer relation, as follows. Let
Ta.cerrise denote the set of all tuples over the scheme attrList such that each value
in each tuple appears in the database D. Then the tuple assembly function is a

function tupleg : Zo—TartrList defined as follows.

tupleg(t) = ® (1) A]

“t.A"€attrlList

Here. the predicate “t.A” € attrList indicates the condition that the attribute
denotation t.4 literally® appears in the list of attributes attrList in the select
statement. The svmbol @ denotes concatenation. and :(¢)[4] denotes the restriction
of the tuple () to the attribute A. For an instantiation :. tupleg(z) produces a tuple
over the attributes attrList listed in the select statement. Suppose @ is a regular
query, i.e. a query without aggregation. In this case, the agglist is empty and the
having and group by clauses are absent, and the result of the query is captured by

the function

Q(D) = {tupleq(:) | : € g}

3Modulo the abbreviations permitted in SQL. as explained in the beginning of Section 4.2.
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To account for aggregation, we need the following extension. We define a relation

~ on the instantiations.

Definition 4.3.1 For:, j € Ig, : ~j iff V“.A” € groupbylList, :(¢)[A] =
J(&)[A]. It is straightforward to see that ~ is an equivalence relation on Ig. This
definition essentially says that two instantiations (satisfying the conditions in the
where clause) are ~-equivalent provided they agree on all attributes appearing in the

group by clause.

Let Taggrist denote the set of tuples over the scheme aggList. We define a function
aggregateq : Ig—TaggList as follows.

aggregateq() = (0% agge([J()[B] 1) € TIq. ) ~ i)

“aggp(t.B)" €agglist
For a given instantiation :, aggregateg considers all instantiations equivalent to

1, and, for each aggregate operation, say aggg. indicated on the attribute ¢.B in the
aggList, it performs the operation aggg on the multiset of values associated with
this attribute by any instantiation equivalent to :. We use [...] instead of {...} to
denote multisets.

Now, we are ready to describe the tuple assembly associated with aggregate
queries. Let @ be a query involving aggregation. We define a function aggtupleq :

Z — Taetrrist X TaggList as follows.

aggtupleg(t) = tupleq(z)®aggregateQ(z)
Finally. the result of an aggregate query is captured by the function
Q(D) = {aggtupleg(t) | 1 € Ig & the tuple aggtupleg(:) satisfies the conditions
haveConditions in the having clause}.
Notice that in addition to assembling tuples in accordance with the function
aggtupleg. a filter is applied to check whether the conditions in the having clause

are satisfied, as such conditions may involve aggregate values.

4.3.2 Semantics of SchemaSQL Queries

The semantics of SchemaSQL is obtained as a natural extension of that of SQL. A

SchemaSQL query Q is of the form:

select itemList, aggList

from fromList
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where whereConditions
group by groupbyList

having haveConditions

where itemList is a list of db-name, rel-name, attr-name, and domain variables:
aggList is a list of expressions of the form agg(X) where agg is an aggregate func-
tion. and X is a variable declared in the from clause: fromList is a list of variable
declarations: groupbyList is a list of variables: and the conditions in the where and
having clauses are analogous to SQL*. The main difference with an SQL query is the
availability of additional variable types (in addition to the usual SQL tuple variables).

Let D be the set of all federation database instances. Let R be the set of all

relations over the output scheme of the query @. The query @ induces a function
Q:D—R

from federations to relations, defined as follows. Let D € D be an input federation.
and Op the set of all items (database names, relation names, attribute names. tuples.
and values) appearing in D. Let V be the set of variables occurring in Q. We define
an instantiation as a function : : V—Op which instantiates each variable in @ to
some item over its appropriate range. Throughout this chapter, we assume that any
instantiation ¢ is extended in such a way that for a literal constant c, i(c) = c. In
defining the semantics of SchemaSQL queries. we will find the following definitions

useful. Identifiers in typewrite font (e.g. db) can be constants or variables.

Definition 4.3.2 Admissibility

An instantiation @ is an admissible provided. it satisfies the following conditions.

o whenever db-> R is a declaration in the from clause, ((R) is the name of

relation in the database :(db).

e whenever db::rel-> A is a declaralion in the from clause, i(A) is an attribute

name in the relation i(rel) in the database :(db).

o whenever db::rel T is a declaration in the from clause, «(T) is a tuple in the
relation i(rel) in the database :(db).

4 Abbreviations similar in spirit to those allowed for SQL (see Section 4.2) are also allowed in
SchemaSQ@QL .
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e whenever db::rel.attr V is a declaration in the from clause, :(V) is a value

that appears in the column 1(attr) of the relation i(rel) in the database i(db).

Definition 4.3.3 Validity
Let sat(:.Q) be a boolean function on the set of all instantiations, induced by the
conditions in the where clause. An instantiation 1 is valid provided (a) sat(:.Q)

is true. and (b) whenever T.attr V is a variable declaration in the from clause.
(V) = «T)[e(attr)].

Definition +1.3.2 precisely captures the notion of an appropriate range for a vari-
able. The conditions in the where clause as well as additional conditions induced
by the presence of certain patterns involving implicit or explicit tuple variables is
captured in Definition 4.3.3. We now define.

Zo = {¢ | ¢ is a admissible and valid instantiation}

The query assembles each satisfying instantiation into a tuple for the answer
relation. as follows. Let TjtenList denote the set of all tuples over the scheme itemList
such that each value in each tuple appears in the federation D. Then the tuple

assembly function is a function tupleg : To—TitenList defined as follows.

tupleg(z) = ® i(s)

s€itemList
where s is a db-name, rel-name. attr-name, or domain variable. The symbol @
denotes concatenation. For an instantiation . tupleg(:) produces a tuple over the list
of objects itemList listed in the select statement. Suppose @ is a query without

aggregation. In this case the result of the query is captured by the function

Q(D) = [tupleg(:) | 1 € Ig]

Similar to SQL. SchemaSQL "s semantics is based on multisets. Multisets are
distinguished from sets with the use of [..] instead of {..}.

It is not hard to see that the formal semantics captured by these definitions exactly
correspond to the intuitive semantics discussed earlier for Queries Q1 and Q2 of

Section 4.2.

4.3.3 Aggregation with Fixed Output Schema

In SQL, we are restricted to “vertical” (or column-wise) aggregation on a predeter-
mined set of columns. while SchemaSQL allows “horizontal” (or row-wise) aggre-

gation. and also aggregation over more general “blocks” of information. Before we
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illustrate these points with examples, we provide a formal development of the seman-

tics.

Semantics of Aggregation with Fixed Output Schema

The development of the semantics of aggregation in SchemaSQL queries with a fixed
output schema is similar to that for SQL aggregation. However, there is a great differ-
ence in the expressive power: in SQL. we are restricted to “vertical” (or column-wise)
aggregation on a predetermined set of columns. while SchemaS@QL allows “horizon-
tal” (or row-wise) aggregation. and also aggregation over more general “blocks™ of
information. Examples of aggregation in SchemaSQL were given in section +.3.3.
Here we formalize the semantics.

Let Q be a SchemaSQL query involving aggregation. We define an equivalence

relation ~ on the instantiations Zg as follows.

Definition 4.3.4 For . j € Ig, ¢ ~j iff V" € groupbyList, (v) = J(v).
It is straightforward to see that ~ is an equivalence relation on Ig. I[ntuitively, two
instantiations are ~-equivalent provided they agree on all variables appearing in the

group by clause.

Let Taggrist denote the set of tuples over the scheme aggList. We define a function
aggregateq : To—Taggrist as follows.

aggregateg(t) = ® agg.(J(e) ) € To. ) ~ 1))
“agge(v)” cagglist

For a given instantiation t. aggregateg performs the operation agg. indicated on
the variable v in the aggList on the multiset of values associated with this variable
by all instantiations equivalent to &.

Now. we are ready to describe the tuple assembly associated with aggregate
queries. Let @ be a query involving aggregation. We define a function aggtupleq :

T — TitenList ¥ TaggList as follows.
aggtupleg(1) = tupleg(z) ®aggregateq(z)
Finally, the result of an aggregate query is captured by the function
Q(D) = {aggtupleg(t) | + € Tg & the tuple aggtupleg(z) satisfies the conditions
haveConditions in the having clause}.

We now provide some examples illustrating aggregation in SchemaSQL .
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Example 4.3.1 The query

select T.category, avg(T.D)

(Q3) from univ-B::salInfo-> D,
univ-B::sallnfo T
where D <> "category"

group by T.category

computes the average salary floor of each category of employees over all departments
in univ-B. This captures horizontal aggregation. The condition D <> "category”
enforces the variable D to range over department names. Hence a knowledge of
department names (and even the number of departments) is not required to express
this query. Alternatively, we could enumerate the departments, e.g., use the condition

(D = "Math” or D = "CS” or ...)°. By contrast, the query

select T.category, avg(T.salFloor)
(Qa) from univ-C-> D, univ-C::D T

group by T.category

computes a similar information from univ-C. Notice that the aggregation is computed
over a multiset of values obtained from several relations in univ-C. In a similar way.
aggregations over values collected from more than one database can also be expressed.

Block aggregations of a more sophisticated form are illustrated in Example 1.4.3. =

4.4 Semantics II: Dynamic Output Schema and

Restructuring Views

The result of an SQL query (or view definition) is a single relation. Our discussion in
the previous section was limited to the fragment of SchemaSQL queries that produce
one relation, with a fixed schema, as output. In this section. we provide examples
to demonstrate the following capabilities of SchemaSQL . (i) declaration of dynamic
output schema, (ii) restructuring views, and (iii) interaction between dynamic output

schema creation and aggregation.

SAn elegant solution would be to specify some kind of “type hierarchy” for the attributes which
can then be used for saying “D is an attribute of the following kind", rather than “D is one of the
following attributes”. Our proposed extension to SchemaSQL discussed in Section 4.6, addresses
this issue.
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We illustrate the capabilities of SchemaSQL for the generation of an output
schema which can dynamically depend on the input instance (i.e. the databases in
the federation). While aggregation in SQL is restricted to vertical aggregation on a
predetermined set of columns, we have so far seen that SchemaSQL can express hor-
izontal aggregation and aggregation over more general “blocks” (see Example 4.3.1).
In this section. we shall see that the combination of dynamic output schema and
meta-data variables allows us to express vertical aggregation on a variable number of

columns as well.

4.4.1 Restructuring Without Aggregation

We first illustrate the ideas and expressive power of SchemaSQL for performing

restructuring, using examples. Formal development will follow.

Example 4.4.1 Consider the relation salInfo in the database univ-B. The follow-
ing SchemaSQL view definition restructures this information into the format of the
schema univ-A: :sallnfo.
create view
BtoA::salInfo(category, dept, salFloor) as

select T.category, D, T.D
(Qs) from univ-B::sallnfo-> D,

univ-B::sallnfo T

where D <> ‘category’

Explanation: Two variables are declared in the from clause: T is a tuple vari-
able ranging over the tuples of relation univ-B::sallnfo. and D is an attribute-
name variable ranging over the attributes of univ-B::salInfo. The condition in
the where clause forces D to be a department name. Finally, each output tuple
(T.category,D,T.D) lists the category, department name, and the corresponding
salary floor (which is in the format of univ-A::sallnfo).

Note that each tuple in the univ-B::salInfo format generates several tuples in
the univ-A: :salInfo scheme. The mapping, in this respect, is one-to-many. But
each instantiation of the variables in the query, actually contributes to one output

tuple. [ |

The following example illustrates restructuring involving dynamic creation of output

schema.



Example 4.4.2 This view definition restructures data in univ-A: :salInfo into the
format of the schema univ-B::salInfo.
create view AtoB::sallnfo(category, D) as

select A.category, A.salFloor
Qse) from univ-A::salInfo A, A.dept D

Explanation: Each tuple of univ-A::salInfo contains the salary floor for one
category in a single department, while each tuple of univ-B::sallnfo contains
the salary floors for one category in every department. Intuitively. all tuples in
univ-A::sallnfo corresponding to the same category are grouped together and
“merged” to produce one output tuple.

Another aspect of this restructuring view is the use of variables in the create
view clause. The variable D in create view AtoB::salInfo(category, D) is de-
clared as a domain variable ranging over the values of the dept attribute in the relation
univ-A::salInfo. Hence. the schema of the view AtoB::sallnfo is “dynamically”
declared as AtoB::sallnfo(category, deptl, ..., deptn), where deptl, ...,
deptn are the values occurring in the dept column in the relation univ-A::sallnfo.

The restructuring in this example corresponds to a many-to-one mapping from

instantiations to output tuples. ]

As demonstrated by the previous examples, the semantics of restructuring in the
context of a dynamically declared output schema has two aspects to it: (i) the
determination of the output schema itself. and (ii) the formatting of data to conform
to the schema determined in (i). In this section. we formalize these concepts. We

illustrate our development of the semantics by revisiting Example -t.4.2.
Let a query @ bhe a view definition of the form

create view db::rel(attrl, ..., attrn) as
select obji, ..., objn
from fromList

where whereConditions

We first define some useful notions. Recall that Zg is the set of instantiations

satisfying the conditions in the where clause, as defined in Section 4.3.2.

Definition 4.4.1 For two instantiations 1,) € Ig, we define : = ), provided :(db) =
J(db) and i(rel) = y(rel). Clearly = is an equivalence relation.
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Determination of output schema: Each instantiation : € T produces a view
of a database, :(db), containing a relation named :(rel), whose scheme consists of
the attribute set attrsetg(:) = {j(attr) | attr € {attrl,..,attrn}, ) € Ig, j =:}.
Thus, each =-equivalence class of instantiations defines one relation scheme in the
output view. FE.g., in Example 1.4.2. all instantiations : € Iy are =-equivalent.
and this one equivalence class produces a view containing a database called AtoB,
containing one relation named salInfo, with the scheme {category,CS.Math,...}.

Formatting data to fit the schema: There are two aspects to this. Firstly,
the output computed by the SchemaSQL query defining the view has to be properly
allocated to conform to the output schema declared in the create view statement.
This by itself might in general result in null values, which are eliminated by identifying
maximal subsets of “related” tuples and “merging” them. These ideas are made
precise below.

As seen above. an instantiation : € Zy contributes to a view of a database :(db)
containing a relation named :(rel) with a scheme given by attrsetg(:). The instan-
tiations =-equivalent to : contribute to a relation. allocateg(:), over the attribute set
attrsetg(t), as follows. For each instantiation j € Ig such that j = i, allocateg(:)

contains a tuple t. defined as follows. Let A € attrsetg(z). Then

{A] = { J(objk). whenever A = j(attrk)

null. otherwise.

Figure 9(i) shows allocateges(t) for the view (Q6) defined in Example 4.-1.2. where

1 is any instantiation (recall all of them are =-equivalent).

AtoB
sallnfo univ-B
category CS Math sallnfo
Prof 65.000 null category CS Math
Assoc Prof 30.000 null Prof 65,000 60.000
Prof null 60,000 Assoc Prof 50,000 53,000
Assoc Prof null 53,000

(i) (ii)

Figure 9: (i) The relation allocatege(z) and (ii) the final result after merging
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Secondly, merging of tuples in allocateg(:) is formalized as follows. Let DOM
denote the union of all domains of all attributes of all relations involved in the fed-
eration, together with the null value, null. Define a partial order on DOM, by setting
null < v, Yu € poM. In particular, note that any two distinct non-null values are
incomparable. The least upper bound, lub, of two values in DOM is defined in the
obvious way.

u, ifv<u
lub(u.v) =< v, ifu<v
unde fined, otherwise.

We now have the following

mergeable provided for each i = L,....n, either t;[Ai] = t2[Ai], or at least one of
ti[A] or t2[A;] is @ null. Suppose t, and t, are mergeable. Then their merge. denoted
t =t Oty is defined as t[A;] = lub(t[A], t2[Ad]), i =1.....n.

Clearly. the operator () is commutative and associative. and it can be easily extended
to any set of mergeable tuples. [t will be convenient below to extend the operator O
to any relation containing an arbitrary (i.e. not necessarily mergeable) set of tuples.

The idea is to merge every maximal subset of mergeable tuples in the relation.

Definition 4.4.3 Let r be any relation over the scheme R. Then the merge of r.
denoted QO r. is defined as follows.

Or = {t | 3« macimal subset{t..... tm} S r. of mergeable tuples. and ¢ =

G{tl ----- tm}}'
Note that O{t,..... tm} is as defined in Definition §.4.2.

Finally. we can define the semantics of view definitions in SchemaS@QL as follows.
The output relation produced by instantiations =-equivalent to + € Iq is given by
O allocateg(t). E.g., the final output produced by the view definition (Q6) in
Example 1.4.2 is a view of a database A2B containing a relation salInfo(category,
CS, Math) as shown in Figure 9(ii).

4.4.2 Aggregation with Dynamic View Definition

In Section 4.3. we illustrated the capability of SchemaSQL for computing (i) horizon-

tal aggregation and (ii) aggregation over blocks of information collected from several
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relations, or even databases. In this section, we shall see that when SchemaSQL ag-
gregation is combined with its view definition facility, it is possible to express vertical
aggregation over a variable number of columns, determined dynamically by the input

instance. The following example illustrates this point.

Example 4.4.3 Suppose that in the database univ-D in Figure 8, there is an ad-
ditional relation faculty(dname, fname) relating each department to its faculty.

Consider the query

select U.fname, avg(T.C)
from univ-D::sallnfo—> C,

(Q7) univ-D::sallnfo T, univ-D::faculty U
where C <> "dept" and T.dept = U.dname
group by U.fname

QT computes, for each faculty, the faculty-wide average floor salary of all employ-
ees (over all departments) in the faculty. Notice that the aggregation is performed
over ‘rectangular blocks’ of information. Consider now the following view definition

Q8, which is essentially defined using the query Q7.

create view averages::sallnfo(faculty, C) as
select U.fname, avg(T.C)
from univ-D::sallnfo—-> C,
(Q8) univ-D::sallnfo T, univ-D::faculty U
where C <> "dept" and T.dept = U.dname
group by U.fname

The view defined by Q8 actually computes. for each faculty. the average floor
salarv in each category of employees (over all departments) in the faculty. This is
achieved by using the variable C. ranging over categories, in the dynamic output

schema declaration through the create view statement. [

The semantics of restructuring (via view definition) with aggregation involves
putting together the ideas behind each of these operations. Intuitively. as explained
in Section 4.4.1, the instantiations =-equivalent to : € Zg produce (in the view) one
relation in a database whose scheme consists of the attributes attrsetq(:), as defined
in that section. The tuples for this relation are obtained by computing the aggrega-

tions listed in the aggList in the select statement w.r.t. each equivalence class of
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instantiations which agree on the variables listed in the group by clause as well as
on the variables appearing in the create view statement, and then performing the
necessary merging. This intuition is formalized below. Consider the view definition

Q below where we omit the having clause for simplicity.

create view db::rel(attrl, ..., attrn) as
select objList, aggList

from fromList

where whereConditions

group by groupbyList

Definition 4.4.4 For two instantiations i.j € Ig. we define 1#), provided for each
0 € groubyList, :(0) = j(0). and for each variable X occurring in the create view

statement, (X) = )(X). Clearly, # is an equivalence relation.

The notions of aggregateg(:) and aggtupleqg(z) are defined analogously to the way
they were defined in Section 4.1.1. The only difference is that the equivalence relation

# is used instead of ~.

aggregateq(r) = (%) aggo([)(0) | ) € Iq. 7 # 1))

“aggo(o)” Eagglist

aggtupleg(t) = tupleg(:) ® aggregateg(t)

The concept of allocating tuples computed above according to the various output
schemas dynamically created by the instantiations can be formalized in a way similar
to what was done in Section 1.4.1. and we suppress these obvious details for brevity.
Let aggallocateg (1) denote the allocated relation determined by the =-equivalence
class of : € Zg. The concept of merging. defined in Definitions 4.1.2 and 4.4.3. can
now be directly applied to compute the final output. Thus, for each instantiation
1 € Ig. the =-equivalence class of ¢ contributes to the relation © aggallocateq (¢).
over the schema :(db) :: ((rel)(attrseto(t)).

E.g..it is easy to verify that the view defined by Q10 indeed computes for each fac-
ulty, the category-wise floor salary averages. Before closing this section, we note that
the combination of dynamic output schema declaration with SchemaSQL $ aggrega-
tion mechanism makes it possible to express many other novel forms of aggregation

as well.
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4.5 Implementation Issues

In this section we describe the architecture of a system for implementing a multi-
database querying and restructuring facility based on SchemaSQL. A highlight of our
architecture is that it builds on existing architecture in a non-intrusive way, requiring
minimal extensions to prevailing database technology. This makes it possible to build
a SchemaSQL system on top of (already available) SQL systems. We also identify
novel query optimization opportunities that arise in a multidatabase setting.

The architecture consists of a SchemaSQL server that communicates with the
local databases in the federation. We assume that the meta-information comprising
of component database names. names of the relations in each database. names of the
attributes in each relation. and possibly other useful information (such as statistical
information on the component databases useful for query optimization) are stored
in the SchemaSQL server in the form of a relation called Federation System Table
(FST). Due to the varying degrees of autonomy component databases enjoy in a
multidatabase system, some or all of this information may not be available. While
our approach is capable of handling this scenario, for the sake of clarity. we assume
that the component database names as well as their schema information is available
in the SchemaSQ@L server.

[n our architecture, global SchemaSQL queries are submitted to the SchemaSQL
server. which determines a series of local SQL queries and submits them to the local
databases. The SchemaSQL server then collects the answers from local databases.
and. using its own resident SQL engine, executes a final series of SQL queries to
produce the answer to the global query. Intuitively, the task of the SchemaSQL
server is to compile the instantiations for the variables declared in the query. and
enforce the conditions. groupings. aggregations, and mergings to produce the output.
Many query optimization opportunities at different stages, and at different levels of
abstraction. are possible, and should be employed for efficiency (see discussions at the
end of this section). Figure 10 depicts our architecture for implementing SchemaSQL.
Algorithm 4.5.1, gives a more detailed account of our query processing strategy.

Query processing in a SchemaSQL environment consists of two major phases. In
the first phase, tables called VIT’s (Variable Instantiation Table) corresponding to
the variable declaration in the from clause of a SchemaSQL statement are generated.

The schema of a VIT consists of all the variables in one or more variable declarations in
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the from clause and its contents correspond to instantiations of these variables. VIT's
are matertalized by erecuting appropriate SQL queries on the FST and/or component
databases. In the second phase, the SchemaSQL query is rewritten into an equivalent
SQL query on the VIT’s and the generated answer is appropriately presented to the
user. Our algorithm below considers SchemaSQL queries with a fixed output schema
possibly with aggregation. A complete algorithm for the implementation of the full
language, as well as novel query optimization strategies are discussed in [LSS96b].
In the following, we assume that the FST has the scheme FST (db-name, rel-name,

attr-name). .\lso. we refer to the db-name. rel-name. and attr-name variables (de-

fined in Definition -1.2.1) collectively as meta-variables.

Algorithm 4.5.1 SchemaSQL Query Processing

INPUT: A SchemaSQL query with a fixed output schema and aggregation.

OUTPUT: Bindings for the variables appearing in the select clause of the SchemaSQL
statement.

METHOD: The algorithm consists of two phases.

(1) Corresponding to a set of variable declarations in the from clause, create V' IT's

using one or more SQL queries against some local databases and/or the FST.

(2) Rewrite the original SchemaSQL query against the federation into an equivalent

query against the set of VIT relations and run it using the resident SQL server.
Phase I
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(0) The input SchemaSQL statement is rewritten into the following form such that

the conditions in the where clause are in conjunctive normal form.

select S1...., 5,

from (range,) Vi, ..., (ranges) Vi

where (cond,) and ... and (cond,)

group by grouplist

having haveConditions
(1) Consider the variable declaration for variable V.
(a) If V; is a meta-variable: In this case. all variables in the declaration (range;) V;
range over meta-data. Create VIT; with a schema consisting of V; and any variables
appearing in (range;), and contents obtained using an appropriate SQL query against
the FST. For example. let ‘D::rel-> V;’ be the declaration and one of the conditions
in the where clause be ‘V; .op. ¢’ where .op. is a (in)equality operator and c is a
constant. Qbtain VIT; corresponding to V IT; as:

select db-name as D, attr-name as V;
from FST

where rel-name = ‘rel” and attr-name .op. c
Meta-variable declarations of other forms are handled in a similar way.

(b) If V; is a domain variable: Group together domain variable declarations that are
declared using the same tuple variable as for Vi. Create VIT; with schema consisting
of the domain variables in the group. Obtain the (tuple of) bindings for the attr-name
variables (in the range declarations) in the group, using their corresponding VIT's.
Using this, generate a set of SQL queries against local databases. The contents of
VIT: will be the union of answers to these queries. For example, let db::rel T be a
tuple variable declaration, ‘T.A V;’ be the declaration for the domain variable and
‘V; .op. ¢’ be a condition in the where clause, where .0p. is a (in)equality operator and
c is a constant. Let ‘T.attr V;’ be another domain variable declaration in the from
clause.

(i) Obtain the bindings for attr-name variable A from its VIT, and name it relation

(i) For a € T. generate an SQL query against database db:

select a as V, attras |,

from rel
where a .op. ¢

(iii) Obtain VIT, as the union of answers to all the SQL queries generated in (ii).
against db.

Domain-variable declarations of other forms (e.g. when db, rel, attr are also vari-
ables) are handled in a similar way.
(c) If Vi is a tuple variable: Generate bindings for the meta-variables in (range;) as in
case (a). The attributes of the VIT corresponding to V; are obtained by analyzing the
select, where, group by, and having clauses. We consider a variable V' as relevant in
the context of tuple variable V, if (i) V is of the form V;.C or V;.c (C,c are a variable
and constant respectively) and occurs in the select, group by, or having clause, or (ii)
V occurs in the declaration of V; and either is compared with a variable in the where
clause, or occurs in the select clause, or (iii) V occurs in a relevant variable of the
form Vi.V and V is compared with a variable in the where clause. The schema of the
VIT is the set consisting of all relevant variables in the context of V;. Finally, the
contents of VIT are obtained by generating appropriate SQL queries against local
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databases. In general, if there are occurrences of the form V;.C in the select or the
where clause, the VIT would be obtained as a union of several SQL queries.

For example, let the select clause contain an aggregation of the form avg(V;.C),
the variable declaration be ‘db::R V.’ and two of the conditions in the where clause
be ‘Vi.a; .op. V;.a;’ and ‘Vi.a3 .op. ¢, where a,, a3, a3, c are constants.

(i) Obtain a VIT corresponding to db-> R (as in (a) above) and name it T'.
(i) The schema of VIT; is {Vi..C,V,.a1}.

(ii) For each rr € T, obtain the attribute names in relation r (using an SQL query
on the FST) and generate the following SQL statement.

Let cy....,c, be the instantiations of C'. corresponding to r.
select ¢; as V;.C, a; as Vi.a,

from r

where V;.a3 .0p. ¢

UNION

UNION .

select ¢, as Vi..C, a, as V;.qy

from r

where V.a3 .op. ¢

(ii)) Obtain VIT; as the union of all the SQL statements generated in (ii).

Tuple variable declarations of other forms are handled in a similar way.

Phase 11

Execution of this phase happens in the SchemaSQL server. The SchemaSQL query
is rewritten into an equivalent conventional SQL statement on the VIT’s generated in
Phase L, in the following way. (a) The select, group by, and having clauses of the rewrit-
ten query are obtained by copying the corresponding clauses in the SchemaSQL query
after disambiguating the attribute names that appear in more than one VIT: (b) the
from clause consists of the subset of VIT's relevant to the final result. and (c) the
where clause is obtained by retaining the conditions involving tuple variables and by
adding a condition "V [T,.X = VIT,.X" for tables V[T, and V' [T, having a common
attribute.

It is interesting to note that using our algorithm. the novel horizontal aggrega-
tion (Section 4.3.3. Example 4.3.1) which cannot be performed in a conventional
SQL system, can be easily realized in our framework. More general kind of "hlock’

aggregations can also be handled in a similar way.

Theorem 4.5.1 Algorithm {.5.1 correctly computes answers to SchemaSQL queries.

Proof Sketch:
We prove the correctness of the theorem by establishing that Algorithm 1.5.1

generates the set Q(D), the set of tuples that form the answer to a SchemaSQL
query @, according to the semantics of SchemaSQL . Q(D) is obtained from Iq, the
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set of all "legal’ instantiations for the variables in Q. We show that the various steps
in the algorithm correspond to the generation of (elements of) Iq.

Step 1(a) of Phase [ of the algorithm ensures the admissibility (Definition 4.3.2)
condition that each meta-variable is instantiated to some items over its appropriate
range. 1(b) ensures the validity condition involving domain variables (Definition 4.3.3.
condition (b)) 1(c) captures the admissibility condition involving tuple variables. For
optimization purposes. some of the where conditions are pushed into each of these
steps. This corresponds to an early verification of the validity condition. and limits
the number of instantiations for the variables in @. Finally. Phase [I corresponds to
the tuple assembly. tupleg function, and projects the parts of the tuples relevant to
output. Note that the condition sat(/, Q) is identical for the semantics of SQL as well
as that of SchemaSQL (with respect to the instantiations) and hence the conditions
in the where clause. not used in Phase [ are retained. A similar argument holds for

retaining the aggregation operators as well as the group by and having clauses.

O
VIT, VIT, VIT,
RelC RelC | C.salFloor D.dept | D.technician
cs cs 50,000 cs 55,000
math math 40,000 math 40,000

Figure 11: Example - Query Processing

Example 4.5.1 I[n this example. we illustrate our algorithm using a variant of the

‘List the departments in univ-C that pay a higher salary floor to their technicians

compared with the same department in univ-D. List also the (higher) pay.’

select RelC, C.salFloor

from univ-C-> RelC, univ-C::RelC C,
univ-D::sallnfo D

where RelC = D.dept and
C.category = "technician" and
C.salFloor > D.technician

Phase I

VIT; corresponding to the variable declaration univ-C-> RelC is created using:
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select rel-name as RelC
from FST

where db-name = ‘univ-C’

Figure 11 shows VIT,. To generate the SQL statement that creates VIT5, the
following SQL queries are issued against the FST.

select attr-name select attr-name
from FST from FST

where where

db-name = ‘univ-C’ db-name = ‘univ-C’
and rel-name = ‘cs’ and rel-name = ‘math’

Let the answer to both the queries be {category, salFloor}. VIT,, corresponding

to univ-C: :RelC C is obtained by querving the database univ-C using:

select ‘cs’ as RelC, cs.salFloor as C.salFloor

from cs
where c¢s.category = ‘technician’
UNION

select ‘math’ as RelC,
math.salFloor as C.salFloor

from math

where math.category = ‘technician’

To obtain V IT3 corresponding to univ-D::sallnfo D. querying is first done on

the FST to obtain the names of the attributes in relation sallnfo of database univ-D:

select attr-name
from FST

where db-name = ‘univ-D’ & rel-name = ‘sallnfo’

Let the answer to this query be {dept. prof. technician}. V' IT;. shown in Figure

L1 is obtained by querying the database univ-D:
select dept as D.dept,

technician as D.technician
from salInfo

Phase 11

Having obtained all the VIT’s corresponding to the variable declarations, Phase II
now consists of rewriting the SchemaSQL statement into the following SQL statement

to obtain the final answer.
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select RelC, C.salFloor

from

VIT,,VIT;

vhere RelC = D.dept and

C.salFloor > D.technician
[ |

A SchemaSQL system on the PC-Windows platform is currently under implemen-

tation.

Query Optimization

There are several opportunities for query optimization which are peculiar to the

MDBS environment. In the following, we identify the major optimization possibilities

and sketch how they can be incorporated in Algorithm 4.5.1.

1.

The conditions in the where clause of the input SchemaSQL query should be
pushed inside the local spawned SQL queries so that they are as ‘tight’ as
possible. Algorithm 4.5.1 incorporates this optimization to some extent.
Knowledge of the variables in the select and where clauses can be used to mini-
mize the size of the VIT’s generated in Phase [. For example, if certain attributes
are not required for processing in Phase II, they can ‘dropped’ while generating
the local SQL queries.

If more than one tuple variable refers to the same database, and their rele-
vant where conditions do not involve data from another database, the SQL
statements corresponding to these variable declarations should be combined
into one. This would have the effect of combining the V IT's corresponding to
these variable declarations and thus reducing the number of spawned local SQL
queries. This can be incorporated by modifying the step I(c) of our algorithm.
One of the costliest factors for query evaluation in a multidatabase environment
is database connectivity. We should minimize the number of times connections
are made to a database during query evaluation. Thus, the spawned SQL
statements need to be submitted (in batches) to the component databases in
such a way that they are evaluated in minimal number of connections to the
databases.

In view of the sideways information passing (sip) [BR86] technique inherent
in our algorithm, reordering of variable declarations would result in more ef-

ficient query processing. However, the heuristics that meta-variables obtain
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a significantly fewer number of bindings when compared to other variables
in a multidatabase setting, presents novel issues in reordering. For instance
the order ‘db::r.a R, -> D, D-> R’ suggested by the conventional reorder-
ing strategies could be worse than ‘-> D, D-> R, db::r.a R’ because of the
lower number of bindings R obtains for V[T in the latter.

6. We should make use of works such as [LN90, LNS90] to determine which of

the VIT's should be generated first so that the tightest bindings are passed for
generating subsequent VITs.

-1

. If parallelism can be supported, SQL queries to multiple databases can be sub-

mitted in parallel.

Replication and Inconsistency

Replication of data, and inconsistency among data from local databases are common
in multidatabase systems. The view facility of SchemaSQL and our architecture
provide the means to cope with these difficulties.

Controlled (intentional) replication can be addressed through the Federation Sys-
tem Table, FST. A copy of the replicated data is identified as the primary copy, and
the FST routes all references to the replicated data to the primary copy. The choice
of the primary copy is influenced by factors such as efficiency of query processing,
network connectivity, and the load at local sites. In a dynamic scheme, the FST is
updated in response to changes in the network (e.g., network disconnection) and the
load at local sites.

Data replication and overlap among (independent) local sites. with the possibility
of inconsistency. is much subtler. The view facility of SchemaSQL can be used to
resolve inconsistencies by exposing only the appropriate data through the view. This
is similar to the approach taken in multidatabase systems utilizing an (integrated)
global schema. Our architecture is more flexible, and does not require a global schema.
yet, the view facility can mimic the role played by the global schema for resolving

data inconsistency.

4.6 Semantic Heterogeneity

One of the roadblocks to achieving true interoperability is the heterogeneity that

arises due to the difference in the meaning and interpretation of similar data across
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the component systems. This semantic heterogeneity problem has been discussed in
detail in [Sig91], [KCGS93], [HM93]. A promising approach to dealing with semantic
heterogeneity is the proposal of Sciore, Siegel, and Rosenthal [SSR94]. The main
idea behind their proposal is the notion of semantic values, obtained by introducing
explicit context information to each data object in the database. In applying this
idea to the relational model, they develop an extension of SQL called Context-SQL
(C-SQL) that allows for explicitly accessing the data as well as its context information.

In this section, we sketch how SchemaSQL can be extended with the wherewithal
to tackle the semantic heterogeneity problem. We extend the proposal of [SSR94].
by associating the context information to relation names as well as attribute names.
in addition to the values in a database. Also, in the SchemaSQL setting, there is a
natural need for including the type information of an object as part of its context
information. We propose techniques for intensionally specifying the semantic values as
well as for algorithmically deriving the (intensional) semantic value specification of a
restructured database, given the old specification and the SchemaSQL view definition.

The following example illustrates our ideas.

Example 4.6.1 Consider the database univinfoA having a single relation stats with
scheme {cat, cs, math, ontario, quebec}. This database stores information on the
floor salary of various employee categories for each department (as in univ-B of the
university federation) as well as information on the average number of years it takes to
get promoted to a category. in each province in the country. The type information of
the objects in the database univinfoA is stored in a relation called isa and is captured
using the following rules®:
(sa(cs.dept) —
isa(math,dept) —
isa(ontario, prov) «—
1sa(quebec, prov) «—
isa(C,cat) — stats[cat — C]
isa(S,sal) « stats[D — S|, isa(D, dept)
isa(Y,year) « stats[P — Y|, isa(P,prov)

Now, consider restructuring univinfoA into univinfoB which consists of two relations

salstats{dept, prof, assoc-prof} and timestats{prov, prof, assoc-prof}. salstats has tuples

5The syntax of the type specification rules is based on the syntax of SchemaLog {LSS97].
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of the form < d, s, sz >. representing the fact that d is a department that has a floor
salary of s, for category professor, and s, for associate professor. A tuple of the form
< p.y1, Y2 > in timestats says that p is a province in which the average time it takes
to reach the category professor is y; and to reach the category associate professor
is y2. The following SchemaSQL statements perform the restructuring that yields

univinfoB.

create view
univInfoB::salstats(dept, T.cat) as
select D, T.D
from univInfoA::stats T,
univInfol::stats-> D,

where D isa ‘dept’

create view
univInfoB: :timestats(prov, T.cat) as
select P, T.P
from univInfoA::stats T,
univIinfoA::stats-> P,

where P isa ‘prov’

Note how the type information is used in the where clause to elegantly specify the
range of the attribute variables. Our algorithm that processes the restructuring view
definitions derives the following intensional type specification for univinfoB:
tsa(prof.cat) —

isa(assoc-prof. cat) «

isa(D.dept) — salstats[dept — D]

(

isa(S, sal) — salstats[C' — S).isa(C, cat)

isa( P, prov) — timestats|prov — P]
(

isa(Y. year) « timestats[P — Y|.isa(P.prov)
Query processing in this setting involves the following modification to the process-
ing of comparisons mentioned in the user’s query. The comparison is performed after

(a) finding the type information using the specification, (b) finding the associated

context information, and (c) applying the appropriate conversion functions.
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4.7 Comparison with Related Work

In this section, we compare ana contrast our proposal against some of the related
work for meta-data manipulation and multidatabase interoperability.

The features of SchemaSQL that distinguishes it from similar works include

e Uniform treatment of data and metadata.

e No explicit use of object identifiers.
o Downward compatibility with SQL.
e Comprehensive aggregation facility.
e Restructuring views, in which data and meta-data may be interchanged.

e Designed specifically for interoperability in multi-database systems.

Further, we also discuss the implementation of SchemaSQL on a platform of SQL
servers.

In [Lit89, GLRS93|, Litwin et al. propose a multidatabase manipulation language
called MSQL that is capable of expressing queries over multiple databases in a single
statement. MSQL extends the traditional functions of SQL to the context of a feder-
ation of databases. The salient features of this language include the ability to retrieve
and update relations in different databases, define multi-database views, and specify
compatible and equivalent domains across different databases. [MR95] extends MSQL
with features for accessing external functions (for resolving semantic heterogeneity)
and for specifving a global schema against which the component databases could be
mapped. Though MSQL (and its extension) has facilities for ranging variables over
multiple database names. its treatment of data and meta-data is non-uniform in that
relation names and attribute names are not given the same status as the data values.
The issues of schema independent querying and resolving schematic discrepancies of
the kind discussed in this chapter, are not addressed in their work.

Many object-oriented query languages, by virtue of treating the schema informa-
tion as objects, are capable of powerful meta-data querying and manipulation. Some
of these languages include XSQL (Kifer, Kim, and Sagiv [KKS92]), HOSQL (Ahmed
et al. [ASD*91]), Noodle (Mumick and Ross [MR93]), and OSQL (Chomicki and
Litwin [CL93]).

XSQL ([KKS92]) has its logical foundations in F-logic ([KLW95]) and is capable of

querying and restructuring object-oriented databases. However, it is not suitable for
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the needs addressed in this chapter as its syntax was not designed with interoperabil-
ity as a main goal. Besides, the complex nature of this query language raises concerns
about effective and efficient implementability, a concern not addressed in [KKS92].
The Pegasus Multi-database system ([ASD*91]) uses a language called HOSQL as its
data manipulation language. HOSQL is a functional object-oriented language that
incorporates non-procedural statements to manipulate multiple databases. OSQL
([CL93]), an extension of HOSQL is capable of tackling schematic discrepancies among
heterogeneous object-oriented databases with a common data model. Both HOSQL
and OSQL do not provide for ad-hoc queries that refer to many local databases in the
federation in one shot. While XSQL, HOSQL, and OSQL have a SQL flavor, unlike
SchemaSQL . they do not appear to be downward compatible with SQL syntax and
semantics. In other related work, [Ros92] proposes an interesting algebra and calculus
that treats relation names at par with the values in a relation. However, its expres-
sive power is limited in that attribute names, database names, and comprehensive
aggregation capabilities are not supported.

In [LBT92], Lefebvre, Bernus, and Topor use F-logic ([KLW95]), to reconcile
schematic discrepancies in a federation of relational databases. Unlike SchemaSQL
which can provide a ‘dynamic global schema’, ad hoc queries that refer the data and
schema components of the local databases in a single statement cannot be posed in
their framework.

UniSQL/M [KGK*95] is a multidatabase system for managing a heterogeneous
collection of reclational database systems. The language of UniSQL/M. known as
SQL/M. provides facilities for defining a global schema over related entities in different
local databases. and to deal with semantic heterogeneity issues such as scaling and
unit transformation. However, it does not have facilities for manipulating metadata.
Hence features such as restructuring views that transform data into metadata and vice
versa, dynamic schema definitions, and extended aggregation facilities supported in
SchemaSQL are not available in SQL/M. The emerging standard for SQL3 ([SQL96.
Bee93]) supports ADTs and oid’s, and thus shares some features with higher-order
languages. However, even though it is computationally complete, to our knowledge
it does not directly support the kind of higher-order features in SchemaSQL.

Krishnamurthy and Naqvi [KN88] and Krishnamurthy, Litwin, and Kent [KLK91}
are early and influential proposals that demonstrated the power of using variables that

uniformly range over data and meta-data. for schema browsing and interoperability.
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While such ‘higher-order variables’ admitted in SchemaSQL have been inspired by
these proposals, there are major differences that distinguish our work from the above
proposals. (i) These languages have a syntax closer to that of logic programming
languages, and far from that of SQL. (ii) More importantly, these languages do not
admit tuple variables of the kind permitted in SchemaSQL (and even SQL). This lim-
its their expressive power. (iii) Lastly, aggregate computations of the kind discussed
in Sections 4.3.3 and 4.4.2 are unique to our framework, and to our knowledge, not
addressed elsewhere in the literature.

In the context of multi-dimensional databases (MDDB) and on-line analytical
processing (OLAP), there is a great need for powerful languages expressing complex
forms of aggregation ([CCS95]). The powerful features of SchemaSQL for horizontal
and block aggregation will be especially useful in this context (e.g. see Examples
4.3.1, 4.4.3). We have recently observed that the Data Cube operator proposed by
Gray et al. ([GBLP96]) can be simulated in SchemaSQL. Unlike the cube operator.
SchemaSQL can express any subset of the data cube to any level of granularity.

In other related work, Gyssens et al. ([GLS96]) develop a general data model
called the Tabular Data Model, which subsumes relations and spreadsheets as special
cases. They develop an algebra for querying and restructuring tabular information
and show that the algebra is complete for a broad class of natural transformations.
They also demonstrate that the tabular algebra can serve as a foundation for OLAP.
Restructuring views expressible in SchemaSQL can also be expressed in their algebra
but they do not address aggregate computations.

We now compare SchemaSQ@L with SchemaLog, discussed in Chapter 2. SchemaSQL
has been to a large extent inspired by Schemalog. [ndeed, the logical underpinnings
of SchemaSQL can be found in Schemalog. However, SchemaSQL is not obtained
by simply “SQL-izing™ SchemaLog. There are important differences between the two
languages. (i) SchemaSQL has been designed to be as close as possible to SQL. In
this vein, we have developed the syntax and semantics of SchemaSQL by extending
that of SQL. SchemaLog on the other hand has a syntax based on logic program-
ming. (ii) Answers to SchemaSQL queries come with an associated schema. In
SchemalLog, as in other logic programming systems, answers to queries are simply
a set of (tuples of) bindings of variables in the query (unless explicitly specified us-
ing a restructuring rule). (iii) The aggregation semantics of SchemaSQL is based on

a ‘merging’ operator. There is no obvious way to simulate merging in Schemalog.
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(iv) To facilitate an ordinary SQL user to adapt to SchemaSQL in an easy way, we
have designed SchemaSQL without the following features present in SchemalLog -
(a) function symbols and (b) explicit access to tuple-id’s. As demonstrated in this
chapter, the resulting language is simple, yet powerful for the interoperability needs

in a federation.

4.8 Conclusions

In this chapter, we discussed a principled extension of SQL, called SchemaSQL .
that offers the capability of uniform manipulation of data and meta-data in re-
lational multi-database systems. We developed a precise syntax and semantics of
SchemaSQL in a manner that extends traditional SQL syntax and semantics. and
demonstrated the following. (1) SchemaSQL retains the flavour of SQL while sup-
porting querying of both data and meta-data. (2) It can be used to represent data
in a database in a structure substantially different from the original database, in
which data and meta-data may be interchanged. (3) It also permits the creation of
views whose schema is dynamically dependent on the contents of the input instance.
(4) While aggregation in SQL is restricted to values occurring in one column at a
time, SchemaSQL permits “horizontal” aggregation and even aggregation over more
general “blocks” of information. (5) SchemaSQL provides a great facility for inter-
operability and data/meta-data management in relational multi-database systems.
We provided many examples to illustrate our claims. We outlined an architecture for
the implementation of SchemaSQL and discussed implementation algorithms based
on available database technology that allows for powerful integration of SQL based
relational DBMS.

The work presented in this chapter has opened up avenues for interesting research
in the context of query languages for OLAP-based information systems. As pointed
out in Section 4.7, the aggregation and restructuring features of SchemaSQL smack
of similar functionalities required in the OLAP setting. However, in order to serve
as a full-fledged OLAP query language, SchemaSQL needs to be extended further.

[Gin97] addresses these and related issues.
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Chapter 5

Extending Schemal.og to Legacy
and Non-traditional Database

Systems

While we proposed SchemalLog as a logic born out of pragmatic needs arising in the
context of relational databases, the power and applicability of SchemaLog are by no
means confined to the relational model. In this chapter, we study how the thoughts
that went into the design of SchemalLog can be brought to bear in a natural way.
in the context of legacy databases (such as Network databases) and non-traditional
information systems (such as the World Wide Web). We show that the powerful
features of Schemalog for meta-data querying. information restructuring, and inter-
operability are versatile as well. and extend naturally to settings radically different
from the relational model.

We illustrate the natural applicability SchemalLog exhibits for catering to the
legacy and non-traditional database systems by studying how the syntax of SchemaLog
(perhaps with minor modifications) can be interpreted against the ER databases, CO-
DASYL (Network) databases, and the information repositories on the World Wide
Web. These specific information sources we consider, form a representative sample
of the many existing non-relational sources and help illustrate the generality of a
Schemalog-based approach for interoperability. Given the importance of the Web,
we give it a special treatment in this chapter, and study in depth how it can benefit

from a SchemaLog-based approach for querying and restructuring information.
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5.1 Schemalog and the Network Model

The network model is one of the early successful models of databases. It was adopted
in the first database-standard specification, called the CODASYL DBTG report, written
in the late 1960s by the Database Task Group. We do not discuss the details of the
network model here and refer to [UlI84] for a comprehensive treatment of the subject.

The basic concepts in the network model are record sets that represent data and
link sets that capture the relationships among the data. The cODASYL standard
allows only for many-to-one links (with one-to-one link as a special case). Whenever
there is a link (many-to-one mapping) from one record set to another, we can associate
a subset of records of the former (called member of the link occurrence) to a single
record of the latter (called owner of the link occurrence). Thus, the link set can be
viewed as a restricted (binary) relationship in the sense of the ER-model. Indeed. a

network model schema of a database can be derived from its ER-model representation

(U184, WKT9].

5.1.1 Interpreting SchemalLog Against Network Databases

The intuition behind our approach to adapting the Schemalog syntax to the net-
work model is based on the principles underlying the methodology for translating a
ER-model representation to a network schema. We observe the following about the
network schema: the logical record sets are similar to the entities of the ER-model.
The link sets correspond to relationships in the ER-model, and consist of the links
(as discussed above) that capture the connection between records of the record set.
Thus. the records in a record set can be likened to tuples in tables and the link set
can be thought of as a relational representation of the many-to-one mapping the link
represents. Each 2-tuple in the latter relation would be a pair of tuple-id’s (tid’s)
representing the relationship that exists between the tuples the tid’s stand for. More-
over, we name the columns of this (link) relation owner and member, our choice of
the names inspired by the corresponding terminology in the network model parlance.
The table in Figure 5.1.1 sums up this approach.

Note that the above abstraction fits nicely in the framework of SchemalLog due to
the fact that the SchemaLog model allows for a first-class treatment of tid’s. We use

the following example to illustrate these ideas.
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| NETWORK CONCEPT | OUR ABSTRACTION |

Record Tuple

Record Set R with fields fi,..., f. | Relation R with attributes fi,..., fa

Link Set S with owner O Relation S with attributes ‘owner’ and
and member M ‘member’, having tuples of the form (¢;, ¢;)

where ¢; is a tid of a tuple in relation O
and ¢; is a tid in relation M such that
t; and ¢, stand in relationship S.

Figure 12: Abstracting the Network Model

Example 5.1.1 The application as well as the network schema are from [UlI84. pp.
98]. Consider a company ‘abc’ that keeps track of information about its customers.
their orders, balances, possible suppliers, and the prices for the various items supplied

by the supplier. The network schema is given below.

RECORD SET suppliers
1 sname char(20),
1 saddr char(30);

RECORD SET items
1 iname char(15)

RECORD SET prices
1 price real,
1 iname VIRTUAL

SOURCE IS items.iname OF OWNER OF itempr
1 sname VIRTUAL

SOURCE IS suppliers.sname OF OWNER OF suppr;

RECORD SET persons
1 name char(20),
1 addr char(30),

1 balance real;

RECORD SET orders



1 order_no integer,

1 quantity real;

LINK SET suppr
OWNER IS suppliers
MEMBER IS prices;

LINK SET itempr
OWNER IS items
MEMBER IS prices;

LINK SET itemord
OWNER IS items
MEMBER IS orders;

LINK SET persord
OWNER IS persons
MEMBER IS orders;

As explained before, we abstract both record sets and link sets as relations. The
attributes of the relations corresponding to the former would be the fields of the
record set. and the relations corresponding to the latter would have two attributes
-owner’ and ‘member’. Note that the link relation captures the connection between
two tuples having tuple-id's ¢, and t;, by the membership of a tuple (L. ;) in it.
To illustrate. if Granola is an item sold for 10.00 by supplier ABC Corp.. the suppr
relation would contain a tuple (;,t;) where ¢, is the tid corresponding to the tuple
in relation suppliers that has information on ABC Corp, and ¢, is the tid of the tuple
in prices that represents the price 10.00. Moreover, the itempr relation would contain
a tuple (ta,t3), where ¢; is the tid of the tuple in relation items that has information

on Granola.

Q. : List all the suppliers of item Granola and the prices they charge

The following SchemaLog query against the network database ‘abc’ expresses this.



—— abc :: items[[ : iname—'Granola’l, abc:: itempr{X : owner—I, member—J],
abe :: prices[J : price— P}, abc :: suppr(Y : owner—K,member—J|,

abe :: suppliers[K : sname—S]

I.J,and K are tid variables that occur in the tid position in the ‘record set relations’
and in the value position in the ‘link set relations’. Using these variables, we navigate
the appropriate links of the abc database to generate the list of suppliers of Granola

and their prices. X and Y are “don’t care” existential variables.

Q. : List all the items ordered by Brooks
The corresponding Schemalog query is:
«—— abc :: persons|l : name—*Brooks'], abc :: persord[X : owner—I, member—J],

abe :: itemord[Y : owner— K, member—J|, abc :: items[K : iname—P].

[n the following section, we discuss some of the salient features of our approach

as well as some of the outstanding issues.

5.1.2 Discussions

The examples of the previous section illustrate how the powerful features of SchemaLog
such as the ability to refer to and quantify over tid’s in a relation and the place-holder
facility for various types of concepts such as relation name and attribute name can
be effectively put to use to query network databases. [t is interesting to note the
following important distinction that occurs in the context of applying SchemalLog for
network databases as opposed to any other data sources we have considered so far.
In the relational context, for instance, we observed an intricate interplay that occurs
between the database names, relation names, attribute names, and values: depend-
ing on the context, each of them could take the place of any other. However, tid’s
have their own distinct status and do not seem to participate in the aforementioned
interplay. Interestingly, in the case of the network databases, there is a natural need
for the tid’s to appear in the value position as well. Indeed, it is this facility that
provides the ability to navigate the links of a network database. Our examples amply

illustrate how the tid variables appear in the value position and vice versa.



We remark that the above characteristic of the network model, justifies one of
our important design decisions behind the design of SchemaLog - that of providing a
first class status to all concepts and allowing for their free, unrestricted intermingling.
This feature of SchemaLog has been crucial for putting it to use in the context of the

network databases.

Implementation Issues

While we have proposed an elegant framework for declaratively posing queries (in
SchemalLog) against network databases, we have not yet addressed the issues that
arise in the context of erecuting these queries against the databases. In the following
we briefly sketch two possible implementation strategies.

In the first, and the less favored strategy, the relational abstractions of network
databases are materialized and the Schemalog queries are executed against such a
(relational) database. An important challenge in this strategy is the realization of
the tid’s of the link relations. One possible way to implement tid’s is by making use
of the primary key attributes of the record set relations as a surrogate for the tid’s. If
efficiency is a consideration, physical addresses (pointers) of the records can be used
as the tid’s. However, due to the highly dynamic nature of the physical addresses,
keeping currency of tid’s would be a major challenge.

The second (more preferred) strategy involves translating SchemaLog queries into
the host language (CODASYL) DML. Investigating such a translation methodology as
well as the optimization opportunities it opens up is an interesting research issue that

is bevond the scope of this thesis and we plan to pursue it as part of future work.

5.2 Extending SchemalLog to the (Extended) ER
Model

Entity-Relationship (ER) model is one of the most important models of information
systems. Its ability to capture the semantics of most real-life applications, combined
with its simplicity, makes it a basis for designing database schemes conforming to
many types of data models including relational and network models. In this section,
we show via examples how SchemaLlog, properly extended, can be used to query as

well as restructure ER databases. In Appendix C, we provide a formal account of the
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Figure 13: ER Diagram

syntax and semantics of the extended SchemaLog language.

The starting point of our approach to deploying Schemalog for (extended) ER
databases is the work of Grant, Ling, and Lee. who propose a logic for databases
called ERL [GLL93]. ERL is to ER databases. what first-order logic is to relational
databases and exhibits the following two important features: (a) ERL allows for
predicates as arguments of predicates and (b) permits attributes that may be single-
valued, multi-valued, or composite. Given an ER diagram of an application. [GLLY3]
provides a methodology for representing it in ERL. We illustrate the idea using the
following example adapted from [GLL93].

Example 5.2.1 Consider the ER-diagram of Figure 13.
The ERL schema of this ER-diagram is the following;:

department (dname, location, manager).
employee (ssno, name, age, salary, qual).

equipment(tagno, eqname, cost).



task(taskcode, taskname).
employs(department, employee).
access (status, department, equipment).

usesfor (employee, equipment, task).

Note that the predicates department, equipment, task, and employee also appear

as arguments of other predicates.

5.2.1 Adapting SchemaLog to the (Extended) ER Model

As illustrated in the above example, the idea behind mapping an ER diagram to a
ERL schema is based on the following translation methodology. Corresponding to
each entity and each regular and weak relationship in the ER diagram, there is a
predicate symbol in the ERL schema. Moreover, the set of attributes of the predicate
corresponding to a relationship, contains the names of the entities involved in the
relationship. Notice that such a relation can be thought of as a nested relation -
the ‘inner relations’ being the relations corresponding to the entities (that stand in
the relationship). For example, the nested relation corresponding to access would
have a simple attribute status and composite attributes (which is a nested relation)
corresponding to (entities) dept and equipment. Figure 14(a) illustrates this nested
relation. Based on this view, we build our proposal for applying SchemalLog to ER
databases.

SchemalLog, as presented in chapter 2 does not have the provision for modeling
non-1NF relations. However. we note that by a slight modification (extension) to the
syntax presented in Section 2.3.1. it is possible to adapt SchemaLog to handle complex
values. The idea behind the extension is the following. We treat each complex value
(a sub-relation) in a single tuple of a nested relation as a distinct relation (that exists
independent of the parent relation, and hence can be thought of as a regular relation).
Such an interpretation essentially corresponds to (a) identifying each sub-relation in
a nested relation with a specific (atomic) identifier, and () using this identifier as the
name of the relation to refer to it as though it existed as a regular relation. Figure
14(b) illustrates this idea of denoting the sub-relation with id’s and reasoning about

the nested relation using these id’s. Some examples of queries are now in order.

Example 5.2.2 Consider the ER database of Example 5.2.1. We now give some
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examples of queries in SchemaLog that can be posed against this database.

Q. : Find the portion of the access relationship for the status value owns
This can be expressed in the (extended) SchemaLog as:
— erdb :: access[status—‘owns’, department—D, equipment—E],
D[dname—NAME, location—~LOCN, manager—MG R],
E[tagno—T AG#. eqname—EQNM, cost—COST)].

In this SchemalLog query, variables D and E range over (atomic) id’s correspond-
ing to the subrelations in the access relation. D ranges over the id’s corresponding
to each distinct department that has status ‘owns’. We interpret these id’s as the
names of the relations that contain (the compound) values pertaining to the depart-
ments, and access them as though they existed as independent relations. Notice how
a new type of atom (derived from the SchemaLog atom of depth 4, by stripping off
the database name place-holder) is used to refer to these nested relations. The new
atom is required to distinguish the nested relations from that of the normal database

relations.

Q. : Find the tag# and cost of all equipment used for the task with code XYZ
This query can be posed as:
— erdb :: uses for(task—T. equipment—E],
Eltagno—T AG#. cost—COST)]. T[taskcode—‘XYZ'].

As seen in the above examples. SchemaLog with a minor modification involving
the introduction of a new "db-less atom’, is capable of querying ER databases. Despite
this change in the syntax, the semantics of the language requires littie modification.
[n Appendix C, we provide a formal account of the syntax and semantics of the
extended Schemalog language.

We remark that the the ability of SchemaLog to cater to the (extended) ER
model, one of the most fundamental models of database systems, is a testimony
to the generality and usefulness of a SchemaLog-based approach to querying and
restructuring information. A case in point is the nested-relational model which, as
the reader can readily see, can easily be modeled in Schemalog using the approach

described in this section.



5.3 Schemalog in the Context of Querying and
Restructuring the World Wide Web

The World Wide Web (WWW) is revolutionizing the information age. Its strong im-
pact on the end user and the many potential benefits it augurs have spurred tremen-
dous research on a whole gamut of issues related to storing, retrieving, and manipu-
lating information on the Web. The Web is emerging to be one of the most exciting
topics of active research, bringing together researchers from diverse areas such as
communications, electronic publishing, language processing, and databases.

While the Web is a resource of colossal amount of information, the task of searching
for specific information of one’s interest is difficult and is fraught with the danger
of the user being overwhelmed by a deluge of information. This is typically the
scenario that a casual user encounters while using any of the available (keyword based)
Web search engines. Besides, users often have partial knowledge on the information
(such as the layout of the page(s), patterns appearing in it, or synonyms of words or
sentences in the page(s)), they are looking for. However, currently available tools do
not provide a facility for expressing such partial knowledge the users may have on the
information they are querying. Yet another need experienced by an emerging class
of users (commonly referred to as information-brokers) pertains to pooling together
information from multiple sources and integrating it in a common source. Again.
available tools do not provide adequate support for such consolidation of information.

Undeterred by these obvious shortcomings and propped up by some ad-hoc tools
and primitive techniques., the Web is growing in an explosive way due to its usefulness
even with these restrictions. However, unless tools and techniques based on sound
formal foundations, for catering to the above needs are developed, the Web’s full
potential cannot be realized. In this context, the experience of successfully applying
SchemalLog in the context of non-relational database systems providing the requisite
verve, we investigate how the powerful features of the our language can be put to use
in the context of querying and restructuring information on the Web.

Thus, the problem we address is the following: How can a user (seeking specific
information she is interested in) retrieve and perhaps restructure information in the
Web? In real life, she might also have clues on the information of interest to her, such

as its likely location in the Web, its structure, some keywords, or patterns relevant to
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it. We would like to enable the user to specify such knowledge as part of the query,
make use of it to search the Web, and return a helpful response “satisfying” the query.

Most information in the Web is present in the form of Hypertext Markup Lan-
guage (HTML) documents. Our proposal in this section, provides for a declarative way
for retrieving and restructuring information in HTML documents. In the subsequent

discussions. we use the terms Web documents and HTML documents interchangeably.

Querying the Web — State of the Art: The compelling need for querying in-
formation in the Web has led to the development of a number of tools that, based
on some keywords specified by the user, search the Web and return information re-
lated to the keywords. Lycos, WWWW (World Wide Web Worm), NetFind, and
InfoSeek are some examples. These search tools make use of a pre-compiled catalog
(also called a reference database) of information available in the Web to answer user
queries. Searches can be performed on titles, reference hypertext, URL' etc. These
tools typically have two components: resource locator and search interface. The re-
source locator is run periodically to gather information from the Web and create the
catalog. The search interface provides fast access to information in the catalog. In
Section 5.3.5, we discuss in detail two popular search tools - WWWW, and Lycos.
More information on Web search tools in general can be found in [SEKN92. Kos}.

Currently available Web search tools suffer from the following drawbacks.

e Partial knowledge that a user might have on the information she is querying

about is not fully exploited.

As an example, consider the user searching for call for papers (CFPs) of all
database conferences. In particular, she is interested in knowing the submission
deadlines of various conferences. She also has the following information on
CFPs.

(i) Most database related CFP’s can be obtained by navigating links from the
page of Michael Ley at http://www.informatik.uni-trier.de/ley/db/index.html.
(ii) Each CFP has a pattern of the form “... Date ... (date) ..” (or a ‘synonym’

of this pattern), where (date) is potentially the submission deadline.

We would like the user to be able to express such information when she specifies

!Uniform Resource Locator, an address that specifies the location of a resource in the Web.
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the query. The query processor should also make use of this information to

perform an efficient search.

The restructuring ability these tools provide is limited, or non-eristent.

Continuing on the example above, the user might want to group together links
to CFPs that have submission deadlines in the same month. The querying tool
should allow for specifying in an ad hoc manner the format in which the answer

should be presented.

There are no facilities for exploiting ezternally available libraries of string and

document processing functions.

Various resources for processing documents and strings are available in the form
of external functions. The querying medium should be able to exploit these

readily available tools for allowing powerful and natural ways of querying the

Web.

Query result quality is compromised by the highly dynamic nature of Web doc-

uments.

In most search tools, once the page is visited, it is marked read and never visited
again (unless explicitly asked to). But, by its very nature, information in each
document is ever changing/expanding along with the Web. Thus, soon after an
update. the catalog could become out of date. The search engines thus do not

take into account the highly dynamic nature of the Web.

Besides these shortcomings. the search interface provided by these tools is highly

restrictive. A typical interface would ask for keywords in the document the user is

interested in and a choice of the kind of search to be done (e.g. title search, URL

search, keyword search etc). Thus. the search possibilities are circumscribed by the

limited choices provided by the search interface, as opposed to the possibilities opened

up by ad hoc querying.

Given the parallels between many of the needs on the Web and those traditionally

addressed by the database community, many database researchers ([LSS96a, LRO96,
MMM96, AMMT96, Abi97)) have realized that tools and techniques well-studied for

databases can be brought to bear in the context of the Web. In particular, in the area

of structured document querying — a broader paradigm of which Web documents can
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be thought of as a special case - there have been early ([SHT*77}) as well as recent
([ACM93, CAS94, ACM95]) works that base their approach on providing a “database
view” of the structured information present in documents. Most proposals in this
direction follow the idea of “mapping” the underlying grammar of the document to
an appropriate database scheme. Thus, when the document is parsed using this
grammar, corresponding objects would be created in the database. These works
exploit the well studied optimization techniques in databases to improve “document
query processing”. In Section 5.3.5, we discuss some of these works in more detail.

Though the Web is a collection of structured documents, the nature of interre-
lationships among these documents raises new issues that are yet to be addressed
in a convincing manner by the above proposals for document query processing. In-
formation gathering in the Web lays its emphasis on navigation via hyperlinks that
relate documents to one another. The above proposals do not account for the notion
of hyperlinks and the associated aspects of navigation. Restructuring the relation-
ship among the various documents is another issue yet to be addressed satisfactorily.
Also, the multimedia nature of (certain) Web documents, calls for novel ideas and
techniques to address the problem of querying the Web.

Our Strategy: Inspired by the Schemalog experience, we adopt a pragmatic
approach to the problem of querying and restructuring information in the Web. We
propose a declarative query language called WebLog that has its roots in Schemalog.
Some of the highlights of WebLog are (a) providing a declarative interface for query-
ing as well as restructuring (the language is logic based). (b) accommodating partial
knowledge a users may have on the information being queried ( WebLog has a rich
syntax and semantics), (c) providing ways for seamlessly integrating libraries of doc-
ument analysis and string processing algorithms, thus putting their combined power
to work for querying and restructuring the Web (the language has facilities for spec-
ifying foreign functions in the form of ‘built-in predicates’), and (d) recognizing the
dynamic nature of Web information (query processing need not be done on catalogs,
but on the Web itself by taking advantage of ‘navigation landmarks’ the user has the
flexibility to specify).
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5.3.1 HTML Overview

[n this section, we present the main features of the Hypertext Markup Language
(HTML), the language of most Web documents today. A detailed discussion is clearly
beyond the scope of this thesis. Interested readers are referred to [BC95].

HTML is the language used for creating hypertext documents on the Web. It has
the facility for creating documents that contain hyperlinks which are pointers from
keywords appearing in the document to a destination. At its simplest, the destination
is another HTML document. The destination could also be a resource such as an
external image. a video clip, or a sound file. Hyperlinks are the most important
constituent of HTML documents. They are composed of two anchors - a source
anchor (henceforth called hypertezt) that specifies the start of the hypertext link and
a destination anchor (henceforth called href) that is a pointer to the document to be
linked from the source. The display that is the result of viewing a HTML document
using a browser (such as NCSA Mosaic or NetScape) is called a page. The hypertext
appears as a highlighted text in the page. Activation (usually clicking) of hypertext is
interpreted as a request for displaying the destination document. We call this process
navigation. For reasons that will become obvious in Section 5.3.2, we associate an id
called a hlink-id with each hyperlink. A hlink-id has two components, the hypertext.
and the href.

HTML allows for preparing documents for Web browsing by embedding control
codes (tags) in ASCII text to designate titles, headings, paragraphs. and hyperlinks.
Figure 15 contains some of the commonly used tags in a HTML document.

Conceptually. an HTML document consists of two parts: the head and the body.
The head contains meta-information about the document. It is specified using the tag
*(title)’. The body consists of the document contents that includes headings. text.
images, voice, video etc and hyperlinks. Users can navigate over the various docu-
ments by activating the hyperlink that would be of interest. Figure 16 shows a sample
HTML document at URL: http://www.informatik.uni-trier.de/ley/db/index.html, and

Figure 17 shows the corresponding page viewed using the browser NCSA Mosaic.

5.3.2 Conceptual Model

In this section, we describe the WebLog model of HTML information. The conceptual

model suggests simple, yet powerful ways of querying HTML documents. It also
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<title> ... <ftitle> DGocument Title
<hl> ... <hl> Most prominent header
<h6> ... </h6> Least prominent header
<hr> Horizontal line
<pre> ... </pre> Preformattd text
<em> ... <em> Emphasis
<b> .. </b> bold font
<ub .. <ub Unordered List
<ol .. </ob Ordered list
<a href="url"><htext</a> hyperlink to “url”
<img src="url"[alt=][align=] link to image file

Figure 15: Common Tags in HTML

facilitates making use of common knowledge users might have about a document.

Each page (and hence a document) consists of a heterogeneous mix of information
about the topic mentioned in the ‘title’ of the document. In practice, a typical
document would consist of “groups of related information” that are spatially close
together in the page. Information within each such group would be homogeneous. For
instance, information enclosed within the tag <HR> (horizontal line) in a document
could form a group of related information. Similarly. the tags header, paragraphs.
lists etc could play the role of delimiting one group from another.

We would like to distinguish between groups of related information appearing in
a page. We call each such group. a rel-infon. A page is thus a set of rel-infons.

The notion of what constitutes a rel-infon is highly subjective. We believe this
choice should be left to the user. who will define it based on her needs. For example. in
the HTML document presented in Figure 16, we could consider either the tag <HR>
or <UL> to be the rel-infon delimiter. In the former case, the granularity we obtain
for a rel-infon is at the level of distinguishing information present in the Ley server,
and elsewhere. In the latter case, the granularity is finer - information appearing
under ‘conferences’, ‘journals’ etc would be considered as corresponding to different
rel-infons. We argue that this flexibility of specifying rel-infon granularity is a source

of great power in expressing queries.
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<html><head><title>Database Systems &Xamp; Logic Programming</title></head>
<body><hil>Database Systems kamp: Logic Programming</h1>

An experimental

<a href="introc.html">bibliograpy server</a> by

<a hret="http://uwn.intormatik.uni-txior.de/'loy/addr.html">!ichael Ley</a>,
Universitkauml;t

<a hret="http://wus.uni-trier.de/trier/trier_eng.html">Trier, Garmany</a>.<br>
<b><a href="about/call.html">Call for Contributions</a></b>

<hr>

<h2>Information on this server</h2>

<ul>

<li><b>Conferences</b>

<ul>

<1i><a hret="cont/index.a.html”>Index: All conferences on this server</a>
<1i>... <a href="cont/index.html">on Database Systems</a>
(<a hret="conf/sigmod/index.html">SIGMOD</a>,

<a hret='"conf/vldb/index.html"“>VLDB</a>,

|

<1i>... <a href="contf/index.l.html">on Logic Programming</a>
(<a href="conf/iclp/index.html">ICLP</a>,

<a href="conf/slp/index.html*”>SLP/SACLP</a>,

D |

</ul>

<1i><a href=")ournals/index.html”><b>Journals</b></a>

(<a hrat="journals/tods/index.html">TODS</a>,

<a href="journals/tois/index.html">TOIS</a>,

R |

</ul>

<hr>

<h2>Links to related services</h2>

<ul>

<li><a href="../organizations.html">Computer Science Organizations</a>
(<a hret="http://info.acm.org/">ACN</a> -

<a htot="hctp://bunny.cs.uiuc.edu/READHE.hcml">SIGHDD</a> -

<a hrer="http://info.sigir.acm.org/sigir/">SIGIR</a> -

<a href="http://wuw.cs.mu.oz.au/ ad/alp/info-alp.html*>ALP</a> -

atc.)

<li><a hrer="http://wuw.comlab.ox.ac.uk/archive/logic-prog.html">WWW
virtual Library: Logic Programming</a> (by Jonathan Bowen, Oxford)
<li><a href="http://web.cs.city.ac.uk/archive/constraints/constraints.html*>Cicy
University Constraints Archive</a>

</ul>

<hr>

<address>

<a hret="http://wuw.informatik.uni-trier.de/ ley/addr html”>Michael Ley</a>
(leyQuni-trier.de)

19-Jul-956

</address>

</body>

</html>

Figure 16: Sample HTML Code
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Figuregp: The page at leyurl
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From the perspective of querying and restructuring HTML documents, the infor-
mation that would be of utmost interest in a page are keywords or more generally
strings, hyperlinks, and tags that adorn strings. We would like to provide ‘first-class
status’ to all these concepts in our model.

A rel-infon has several attributes. The attributes come from a set consisting of
strings ‘occurs’, ‘hlink’, and various tags (such as <title>, <b>, <em>) that
adorn strings in a HTML document. The attributes of a rel-infon map to ‘values’
that are strings. except for the hlink attribute that is mapped to a hlink-id.

Formally, let 7 be the set of all tags that adorn tokens in a HTML document, S
be the set of strings, and H be the set of hlink-ids. A rel-infon is a partial, set valued
mapping /.

[ : {*occurs',‘hlink'} U T — 2°V%

[ntuitively, the attributes are meant to play the following role in modeling a rel-
infon. The attribute ‘occurs’ is mapped to the set of strings occurring in a rel-infon:
‘hlink’ is mapped to the set of hlink-id’s of hyperlinks appearing in a rel-infon, and
the tag attributes, if defined, are mapped to the tokens they adorn in the rel-infon.
For instance, in the document in Figure 16, if we consider <ul> to be the rel-
infon delimiter, b — ‘con ferences’ is a legal ‘attribute/value pair’ in the rel-infon on
conferences. The tag attribute ‘title’ is a special one; it is mapped to the same string
(the title of the document) regardless of the rel-infon in the document.

Each rel-infon also has a unique id. This id could be the a token appearing in a
header associated with a rel-infon. the most prominent "keyword’ in a rel-infon, or
even the byte offset of the start of the rel-infon from the beginning of the page. Our

model does not commit to a specific choice and offers some flexibility.

5.3.3 WebLog — Syntax and Semantics

In this section, we discuss the syntax and semantics of WebLog. We also discuss the

role of built-in predicates in a WebLog programming environment.

Syntax

As mentioned earlier, WebLog is inspired by SchemaLog and its syntax can be seen

to be a ‘clone’ of that of SchemaLog. We use strings starting with a lower case letter
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for constants and those starting with an upper case letter for variables. As a special
case, we use {; to denote arbitrary terms of the language. A, B, ... denote arbitrary
well-formed formulas and A, B, ... denote arbitrary atoms.

The vocabulary of WebLog consists of pairwise disjoint countable sets G (of func-
tion symbols). S (of non-function symbols), V (of variables), and the usual logical
connectives =.V.A. 3. and V.

Every symbol in SUV is a term of the language. If f € G is a n-place function
symbol. and ¢,,....t, are terms, then f(t,.... t,) is a term.

An atomic formula of WebLog is an expression of one of the following forms:
{url){{rid) : (attr) —(val)]
(url)[(rid) : (attr)—(val)]
(url)[(attr)]
(url)
where (url), (attr), (rid), and (val) are terms of WebLog. We refer to them as url
term, attr term, rid term, and val term respectively. The rid term intuitively stands
for the rel-infon id (rid) and is optional. The well-formed formulas (wft’s) of WebLog
are defined as usual: every atom is a wif; A4, AV B, AA B,(3X)A, and (VX)A are
wif’s of £ whenever A and B are wff’s and X is a variable.

We also permit molecular formulas of the form
(url)[(rid) : (attr;)—={valy). ..., (attrp)—+(val,)] as an abbreviation of the corre-
sponding well-formed formula
(url){{rid) : (attry)—(valy)] A --- A (urh)[(rid) : (attr,)—=(val,)]. In spirit. this is

similar to the molecules in SchemalLog.

Example: http : //www.com[X : title—Web'. hlink—~L, occurs—+example’] is
an atomic formula in WebLog. Here. the url address is the url term, title, hlink, and

occurs are the attr terms. X is the rid term, and the remaining terms are the val terms.

Next. we present the semantics of WebLog using examples. The examples make
use of “built-in predicates” that are tailor-made for the Web setting. Built-ins play
a significant role in a WebLog programming environment. Before we present the

semantics. we discuss some of the commonly used built-in predicates.
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Built-in Predicates

In any application, it is often useful (or necessary) to express certain general rela-
tionships whose semantics is well understood in the context of the application. Thus,
these relationships need not be explicitly defined in the program, but are implicitly
known to the system. Such relationships are expressed using special predicates called
built-in predicates. Some examples of built-ins in datalog are the arithmetic predicates
(<,>,= etc).

In the context of querying the Web, there is a natural need for string processing
and for conventional and multimedia document analysis. In real life, algorithms for
such analysis are available as stand-alone, external functions. With an aim towards
exploiting the availability of these external resources, we treat built-in predicates as
(abstractions of) ezternal functions. This novel approach (a) combines the power
of search, deduction, and external functions, and (b) makes it easy to (continually)
incorporate new external functions even as they are deployed. Built-ins are a source
of great power for WebLog. Naturally, our treatment of built-in predicates calls for
the notion of a ‘legal binding pattern’ - the external function’s pre-condition with
regard to an argument being either bound or free ~ with which a built-in could be
invoked.

In the following, we identify some useful built-in predicates for WebLog applica-

tions. All of these built-ins could be invoked with a binding pattern of either (bound,
free) or (bound. bound).

o href(< hlink-id >.< url >): This predicate captures the relationship between
a hlink-id and the destination anchor in its corresponding hyperlink. The second

argument stands for the URL of the destination.

e htext(< hlink-id >,< string >): This is the counterpart of href that cap-
tures the relationship between a hyperlink and its source anchor. The second
argument stands for the hypertezt that is the source anchor in the hyperlink

corresponding to the < hlink-id >.

e substring(< string >, < string >): Pattern matching is an important require-
ment in document querying. The binary built-in predicate substring, is useful
in this context. The first argument of substring is the source string and the

second argument is a substring in the source.
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e isa(< string >,< type >): This predicate is useful for type checking - a need
often felt while querying patterns in documents. The first argument of isa is
some object that is represented as a string. The second argument is its type
(e.g. int, float, string, date, url, year etc.). While we do not anticipate a need
for sophisticated type checking as in OO databases or in OO programming, the
algorithms implementing this foreign function could use a predetermined library
to assign types to values. For example, the string following the keyword date:

is assigned the type date.

e len(< string >,int): The second argument of this predicate is the length of the

string in its first argument.

e newlink(< string >, < hlink-id >): The second argument is a unique hlink-id
corresponding to the string occurring in the first argument. The htext com-
ponent of this hlink-id is the string itself, while the href component is system

generated. This predicate is useful for generating new hlink-ids in WebLog.

Besides these commonly used built-ins, we would freely make use of other useful
predicates (such as synonym, homonym etc.) whose semantics would be clear from
the context. In particular, built-ins that facilitate querying multimedia documents

as abstractions of appropriate media processing algorithms would be extremely useful.

Programming Predicates: In the context of queries as well as view definitions, as
in SchemaLog, it will be convenient to have the facility for programming predicates
i.e. predicates which do not refer to any document, but exist only in the context of
a program. We shall freely make use of programming predicates in the rest of the

examples in this section.

Semantics

In this section, we informally present the semantics of WebLog. We make use of real
life examples in our presentation. Through these examples we will illustrate the power
of WebLogto (a) navigate hyperlinks, () search titles as well as the document for key-
words, (c) recognize patterns appearing in documents, and (d) perform restructuring.

We use the Ley server originating at the “Database Systems & Logic Programming”
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page (http://www.informatik.uni-trier.de/~ley/db/index.html?) for our illus-
tration.

The semantics closely follows the conceptual model. The ur! term stands for the
URL of a page, and similarly the attr term, rid term and val term stand for the concept
they are named after. Symbols ‘[’ and ‘]’ in the syntax, enclose attribute/value pairs in
the context of a single rel-infon in the document. An assertion url[rid : attr—value]
is interpreted as saying value belongs to the set of values associated with attr in
the context of the rel-infon rid in the page url. We will illustrate these notions via

examples.

Hyperlink Navigation and Searching Titles

One of the novel features of WebLog is that it treats hyperlinks as ‘first class citizens’.
This provides the facility for navigating across HTML documents using a WebLog
program. Hyperlinks can also be queried like ordinary data, and used for restructur-

ing. The following example illustrates these ideas.

(Q1) We are interested in collecting all citations (hyperlinks) referring to HTML
documents, that appear in the Database Systems & Logic Programming page. We
would also like this collection to contain the title of the document the citation refers

to. The following WebLog program expresses this need.

ans.html(title—all citations’.hlink—=L, occurs—T)|

— leyurllhlink—L}. href(L.U7), Ultitle—T].

Variable L in the first subgoal ranges over all hyperlinks in leyurl. The built-in
predicate href is used to navigate over the citations in the page at leyurl. The rule
generates a new HTML document ans.html that is a collection of all citations in
leyurl, annotated with the title of the cited document.

The navigation in this example is simple; there is just one level of traversal.

Navigation of a more general kind is illustrated in the next example.

2In order to avoid repeating this long URL, from now on we will refer to it as leyurl.
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Querying Keywords in Documents

The Ley server is the collection of documents originating in the leyurl. These docu-
ments have the property that (i) they can be reached by navigating links originating
in the leyurl, and (i) their URL will have the prefix

http://www.informatik.uni-trier.de/Iey/. Suppose we would like to make use

of this knowledge to express the following query:

(Q2) Find all documents in the Ley server that have information related to “[nter-
operability’.
The WebLog program that expresses this query is:

ley_server_pages(http : [ [www.in formatik.uni-trier.de/ ley/db/index.html) «—
ley_server_pages(U) «— ley_server_pages(V), V[hlink—L], href(L,U),

substring(U, http:[ /www.in formatik.uni—trier.de/ ley/).
interesting_urls(U) «— ley_server_pages(U),

Uloccurs— 1), synonym(1,‘Interoperability’).

Rules (1) and (2) help identify the documents belonging to Ley server. The re-
cursive rule (Rule (2)) essentially captures the properties (i), and (ii), known to the
user. Navigation is done via recursion. Rule (3) searches for occurrences of keywords
related to *Interoperability’ (captured using the predicate synonym) in the Ley server
documents and returns the relevant URLs in the relation interesting_url. The pred-
icates ley_server_pages(U’) and interesting_urls(U’) are programming predicates; href.

substring. and synonym are built-ins.

Querying Patterns

The following example illustrates how patterns appearing in HTML documents can
be conventionally queried in WebLog. It also demonstrates the handling of types in

our framework.

(Q3) Suppose we know that a paper on Coral has appeared in the VLDB Journal.
We do not know which year this paper appeared, but would like to find this information.

3A deductive database system from University of Wisconsin, Madison
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We know that a bibliography of papers on Coral can be found in 2 document with
title ‘Coral’, accessible from the Ley server. We of course, know that the year would

appear in the bibliography entry. The following rule in WebLog helps find out the year.

ans(Y) «— leyserver_pages(U), Ultitle—'Coral’, occurs—S], len(S, 40),
substring(S,‘VLDB Journal'), substring(S,Y), isa(Y, year).

ley_server_pages is the relation containing the URL'’s of documents in Ley server
(obtained using the program for query @Q,). The body of the above rule expresses
the user’s knowledge that (a) the title of the bibliography document is ‘Coral’, (b} It
has some string (whose length we specify is 40) that has substrings ‘' VLDB Journal
and the string that stands for the year. We could also express our knowledge that
the string corresponding to the year is of type year. Thus, the answer relation would
contain all years that appear in a string of length 40 that has VLDB Journal as the

substring. One of these integers must be the year in which this paper appeared.

Restructuring

A simple instance of restructuring using WebLog can be seen in the program for query
Q. in Section 5.3.3, where the answer is presented as an HTML document containing
the appropriate citations. In this section, we illustrate via examples, the sophisticated

restructuring capabilities of WebLog.

(Q.4) We would like to compile the citations of CFP’s of all conferences having
‘interoperability” as a topic of interest. We would also like to include information on
the submission deadline in this compilation.

We are aware that the CFP’s can be obtained by navigating the tree of pages
that has a root in the rel-infon containing the string ‘conference’, in leyurl. We also
know that CFP’s have patterns of the form ‘..submission...< date >..". With this

knowledge, Q4 can be expressed the following way.
traverse(L) «— leyurl[occurs—*Con ference’,hlink—~L].
traverse(L) «— traverse(M), href(M,U),

Uloccurs—*Con ference'], Ulhlink—-L].
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cfp.html[L : title—*allcfps', hlink—» L occurs—»‘submission date D} —
traverse(L), href(L,U), Uloccurs—*Interoperability’], Uloccurs— P},
len(P,20), substring(P,S), synonym(S, ‘submit’), substring(P, D), isa(D, date).

traverse(L) asserts the fact that the page cited via hyperlink L is traversed (from
a page ‘descending’ from the leyur! page). Rule (1) initiates the navigation from the
leyurl page via all hyperlinks that are present in the rel-infon having the keyword
‘Conference’. Rule (2) is recursive, and is guaranteed to terminate soon because of the
presence of the keyword ‘Conference’ in the second subgoal. Thus, only pages having
this keyword would be traversed. The last rule uses the following idea to generate
the ‘result page’. If a page has the keyword ‘Interoperability’ and some rel-infon in
the same page has a pattern that mentions ‘submit’ (or some synonym of that) along
with a date in it, we infer it must be a CFP page that is of interest to us. Note
the use of rid term L in the head. It helps in ‘grouping’ together the date and hlink
information belonging to the same rel-infon in the restructured output. Note also
the use of function symbol ‘.’ (concatenation) in the head. It helps in appropriately

positioning the strings in the output.

(Qs) Suppose we would like to restructure the newly generated cfp.html further
in such a way that all conferences having a deadline in the same week are grouped
together in a page.
The following two rules help obtain the desired effect. (We assume a built-in
predicate dates2weeks that converts a date to its corresponding week in the year.)
U[title—W, hlink— L, occurs—date :".D} «—
cfp.htmllhlink— L, occurs— 5], substring(S. D), isa(D, date),
dates2weeks(D. W), newlink(W, M), href(M, ).

cfp_by_week.htmlI[W :title— byweek’, occurs— ‘weekNo., hlink— M| —
cfp.htmlloccurs—S), substring(S, D), isa(D, date), dates2weeks(D, W),
newlink(W, M).

The first rule generates as many HTML documents as are distinct number of week
numbers corresponding to the dates in cfp.html. Thus, links to CFP’s having deadline
in the same week are put together in the same page. For each week number, subgoal

newlink generates a unique hyperlink, in whose location the CFP citations are added.
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The second rule is used to generate a page that is an ‘interface’, containing links to
the new set of pages that are generated in the first rule. In this rule, the rid term

W is used to group together (as one rel-infon), the hlinks of the cfp pages having the
deadline in the same week.

5.3.4 Discussions on Safety

In Chapter 3, we investigated the various notions of safety associated with a calculus
language inspired by the querying fragment of Schemalog and established equiva-
lence results between each safe fragment of the calculus and an algebra capable of
querying data as well as schema. In the context of the Web, the notion of safety as-
sumes practical significance, worthy of further study. For instance, consider the query
¢ «— X that requests a listing of all the URLs in the Web. Though this query is
considered safe in the sense of the conventional notion of safety, for practical reasons
of ‘incomputability on the web’ it should be considered unsafe.

We remark that the discussions as well as the results on safety discussed in Chap-
ter 3, naturally extend to WebLog as well. Indeed, these notions have an important
impact on the realization of a WebLog-based system for Web querying and restruc-
turing. We do not discuss these issues further in this thesis, and plan to investigate

them as part of future work.

5.3.5 Related Work and Discussion

This section discusses some important tools and techniques that have been proposed
(and some of them available) for Web querying.

WWWW is a search tool developed at the University of Colorado by Oliver
McBryan ([McB94]). WWWW has a resource locator that scours the Web inspecting
all resources. Each HTML file found is indexed with its title string. Each URL refer-
enced in a HTML file is indexed by the clickable hypertext associated with the URL.
the name of the HTML file referring the URL, and its title. The information that
is gathered by the locator is stored in four types of search databases - (1) citation
hypertext, (2) citation URL, (3) HTML titles, and (4) HTML address databases.
The search interface makes use of the Unix egrep program to query the catalog, and

provides the option for searching each of these databases.
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Lycos ([ML94]), developed at the Center for Machine Translation, Carnegie Mellon
University is one of the popular Web search tool ([P0i95]). The Lycos resource locator
(called, web erplorer) searches the Web every day, building a database of all the Web
pages it finds. The index of the catalog is updated every week. The explorer, written
in Perl and C, provides the following information on each document to the catalog -
title, headings and sub headings, 100 most weighty words, first 20 lines, and number
of words. The search engine takes a user query, performs a retrieval from the catalog,
and returns a list sorted according to a “match score”. The engine is a C program
that uses a disk-based inverted file retrieval system and a simple sum of weights to
score documents.

As discussed in Section 5.3. these tools suffer from the drawbacks that (e) the ad
hoc querying allowed against their rigid interface is limited, (b) there are no provisions
for restructuring, (c) querying is done on a catalog that is difficult to keep up-to-date,
and (d) there is little provision for exploiting users’ partial knowledge.

Querying structured documents is currently an area of active research. Work in
this area is relevant to the Web setting, given that that the Web documents are a
special kind of structured documents. We now discuss some important works that
apply database techniques in the context of querying documents.

The problem of extracting data from structured documents (including flat files)
has been addressed by database researchers since the early days of the field ([SHT*77]).
Recent advances in information modeling (e.g. semantically richer models such as
the object-oriented model), and query processing (e.g. rvelational query optimiza-
tion techniques) together with the need created by developments such as the Web,
have stimulated fresh investigation of issues related to querying and updating struc-
tured data stored in documents ([ACM93. CAS94, ACM93]). In [ACM93], Abiteboul.
Cluet, and Milo make use of the grammar of a document to ‘map’ it to an appro-
priate object-oriented database. They introduce the notion of a structuring schema
which consists of the database schema and the grammar annotated with database
programs that specify how terminals and non-terminals in the grammar are mapped
to the schema. When the document is parsed, for each grammar rule that is fired, an
appropriate instance, dictated by the annotation, is created in the database. They
adopt well-studied database optimization techniques to efficiently perform this trans-
lation. Christophides, Abiteboul, Cluet, and Scholl ([CAS94]) use a similar idea to
map SGML (Standard General Markup Language) documents into object-oriented
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databases. They also study the extensions to the object query languages (calculus,
and SQL-like languages) necessitated by the mapping. Interestingly, in their model
(as in ours’) navigation is given a first class status using ‘path variables’. More
recently, Abiteboul, Cluet, and Milo ([ACM95]) study the (inverse) problem of prop-
agating updates specified logically on a database, to a file that actually stores the
semi-structured data. They investigate optimization techniques suitable for this “re-
verse translation”.

Shortcomings of these proposals from a Web querying standpoint were identified
in Section 3.3. On the other hand, we anticipate a natural use for techniques in these
works in WebLog applications. We can use the techniques of [ACM93] to “materialize”
relevant information into databases -~ OO or otherwise — which can then be queried
using WebLog. We plan to investigate this issue in future.

Recent times have seen a spate of work, that make use of traditional database
techniques to address the problem of querying the Web. W3QL ([KS93]) is a SQL-
like query language designed specifically for the Web. This language has features for
querying HTML documents and hyperlinks, but lacks restructuring facilities. Hy-
perFile ([CGB93]) is an interesting data and query model useful in the context of
querying the Web. The MultiSurf project ((MGE*95]) is an attempt at integrating
text browsing of a local database with hypertext browsing of the Web. [HVM95]
presents the Hy+ system for graphical presentation and visual querying of structured
data. Web visualization is the emphasis of Hy+. More recently, Mendelzon et al.
[MMMO96] propose a query language called WebSQL. that integrates textual retrieval
with structure and topology based queries. They also propose a notion of ‘local-
ity” of queries - which addresses the question of what fragment of the network must
be visited to answer a particular query. In [LRO96], Levy, Rajaraman, and Ordille
describe their "Information Manifold’ system that provides a declarative description
of the contents and capabilities of various information sources on the Web. They
present algorithms that, based on the query as well as the descriptions of the sources,
generate efficient query plans for processing the query. Closer to our approach is the
work of Atzeni et. al. [AMMT96], on the ‘Araneus data model’ for Web documents
that provides a relational abstraction on top of Web pages. Thus, in their framework,
any relational query language can be used to query the Web. While our approach can
be thought of as providing a syntactic relational abstraction (based on HTML) on

top of web documents, [AMMT96] strives at providing a semantic abstraction that
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is document specific. However, they do not provide a methodology for specifying
and realizing such relational views. Note that realizing such views in our context
is straight-forward. Indeed, in our setting, semantic abstractions that are document
specific can be built on top of the WebLog view, using a language such as SchemaLog.

Salient features of our framework include the following. The declarative query
interface of WebLog facilitates simple and natural ways of querying Web information.
[ts rich syntax and semantics allows for expressing powerful queries that incorporate
knowledge that users might have on the information being queried. WebLog provides
first class status to hyperlinks. This novelty contributes to two major advantages -
(a) the user can specify partial information on the traversals to be done to answer
a query, and (b) the query processor can exploit this information to query directly
on tha Web in an efficient way (rather than query the catalog which might be out of
date). This framework is also general enough to support multimedia information, as
long as appropriate algorithms for media information processing and extracting their
‘meta-data’ are available for abstraction as built-in predicates.

We note that our proposal is not meant to replace the existing search facilities
in the Web. We could build on the existing tools to realize our framework. In this
sense, the work presented in this chapter complements the tools that are available
for Web searching. For ‘global’ searches where the user has little knowledge about
the information she wants (in terms of possible locations etc.), and wants to query
the whole Web blindly, we still advocate the use of search engines. On the other
hand, there are numerous circumstances where the user has partial knowledge of the
information required. A compelling example of such a scenario arises in the context
of the Intranet, where the structure of each page of the same ‘kind’ can be expected
to have a certain degree of uniformity. In such cases, we anticipate the use of WebLog
as an attractive alternative to search engines. Restructuring and ad hoc querying are

the other unique advantages of WebLog.

5.4 Concluding Remarks

Legacy as well as non-traditional database systems constitute an important segment of
information systems. In Chapter 2, we established SchemalLog as a powerful language

that provides a fresh perspective on the notion of querying and restructuring relational
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databases and in the process provides for interoperability in a relational setting.
In this chapter, we discussed how SchemaLlog can be deployed in the context of
non-relational information systems. In particular, we investigated how the novel
features of Schemal.og such as (a) the ability to refer to schema information apart
from data, and (b) the first-class treatment of all concepts, including the tid’s, help
us naturally interpret Schemalog against Network databases, ER databases. and
information repositories on the World Wide Web.

In real life, there is a need for interoperating among multiple information systems
that belong to diverse data models. In this context, an ensemble of the various
schemes we proposed in this chapter for naturally interpreting SchemaLog against
different data models, would provide for an environment in which a single SchemalLog
program would orchestrate interoperability among multiple information sources. For
instance, we can write an application in Schemalog that manipulates information
from diverse sources such as relational databases, network databases, and the Web.
This observation reinforces the importance of SchemaLog as a powerful language for
developing advanced mediators that run on top of information sources, in a data

model independent manner.



Chapter 6
Summary and Future Work

In this chapter, we recapitulate the main contributions of this thesis. We also identify

and discuss the many exciting avenues for future research opened up by this thesis.

6.1 Summary

The objective of this thesis has been to study the foundations of the integration issues
that arise in a federation of heterogeneous data sources. With this in mind, we de-
veloped an elegant logic called SchemaLog. We initially developed SchemalLog in the
context of multiple relational databases and later extended it to cover non-relational
sources (such as ER databases, Network databases, and information sources on the
Web). Schemalog treats the data in a data source as well as its schema components
as first class citizens. This makes SchemaLog (syntactically) higher-order. We de-
veloped a simple first-order semantics for SchemaLog, based on the idea of making
the intensions of higher-order objects explicit in the semantic structure and mak-
ing the higher-ordér variables range over these intensions rather than the extensions
they stand for. We also developed a fixpoint theoretic and proof-theoretic semantics
of SchemaLog. In fact, the framework can be extended to incorporate the various
forms of negation extensively studied in the literature of deductive databases and
logic programming (see [She88] for a survey), notably stratified negation, without
much difficulty. Even though SchemaLog is quite simple, our study (and our experi-
ence) indicates that it has a rich expressive power making it applicable to a variety of

problems including interoperability, database programming (with schema browsing),
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schema integration and evolution, cooperative query answering, and powerful forms
of aggregate computations, in the spirit of OLAP applications.

Realizing an efficient implementation of a SchemaLog-based system warrants the
study of the calculus and algebraic languages underlying SchemaLog. We developed
a new algebra by extending the conventional relational algebra with some new op-
erations that are capable of manipulating both data and schema information in a
federation of databases. In particular, the algebra has schema querying as well as
schema restructuring operations. We also developed a calculus language inspired by
SchemaLog. Based on the calculus language, we studied varying notions of safety ap-
plicable in a federation scenario, from the most liberal — in which queries could refer
to any object in a federation, to the most restrictive - in which safe queries could
refer to only a restricted subset of objects in a federation. We also studied in depth
the relative expressive power of the various fragments of the algebra, the calculus,
and a querying fragment of SchemaLog.

Practical relevance and impact on the industry have been some of the primary
concerns of our research on the foundations of data integration. In this vein, in or-
der to cater to the practitioners in the industry, we developed a principled extension
of SQL in the spirit of SchemaLog, called SchemaSQL . SchemaSQL is downward
compatible with SQL in that every SQL statement is a SchemaSQL statement hav-
ing precisely the same semantics as the SQL statement. Besides, SchemaSQL treats
data and meta-data in a uniform manner (a la SchemaLog) and allows the program-
mer to naturallv express queries that manipulate both data and schema components
of database systems. In particular. SchemaSQL is capable of (a) representing data
in a database. in a structure substantially different from the original database. in
which data and meta-data may be interchanged, (b) creating views whose schema is
dyvnamically dependent on the input database, (c) expressing novel aggregation (over
rows, and in general blocks of information) operations, in the spirit of some of the
functionalities needed in OLAP applications, and (d) providing a great facility for
interoperability and data, meta-data management in multidatabase systems. We de-
scribed an architecture for realizing a non-intrusive SchemaSQL implementation that
makes use of existing technology. We also discussed the implementation algorithms
and related optimization opportunities.

Legacy as well as non-traditional information systems constitute an important

fragment of the data sources available in real-life. We demonstrated that SchemalLog
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can be naturally extended to support non-relational systems as well. In particular, we
showed that the powerful features of SchemaLog for meta-data querying, information
restructuring, and interoperability extend naturally to the ER databases, Network
databases, and information sources on the Web. The Web being an important and
extensive source of non-traditional data, we gave it a special treatment in this thesis.
In particular. we addressed the fundamental problem of retrieving specific information
of interest to the user, from the enormous number of resources that are available on
the Web. With this in mind, and inspired by SchemaLog, we developed a simple
logic called WebLog. We presented a conceptual model for HTML documents and
studied its syntax and (informal) semantics. One of the novelties of WebLog is that it
provides a first class treatment of hyperlinks in HTML documents, and makes use of
this to express powerful forms of navigation across HTML documents. We illustrated
the simplicity and power of WebLog using a variety of applications involving real-life
information in the Web. We also discussed the other relevant proposals for querying
structured documents with the Web as a special case, and the features of WebLog
that makes it a unique language for Web querying and restructuring.

SchemalLog’s versatility to adapt to diverse data models establishes its role as a
medium for developing advanced mediators capable of integrating information from

heterogeneous data sources in a datamodel independent manner.

6.2 Future Work

In this section, we delineate the many opportunities for future research opened up by
this thesis.

l. Alternative semantics in the context of full-fledged SchemaLog pro-
grams: The semantics of programs in a database programming language based
on full-ledged Schemalog, raises interesting issues. In such a language, SchemalLog
molecules can appear in rule heads, and have the effect of ‘creating’ new federa-
tion objects during the execution of the program. We can associate a notion of
various levels of semantics, based on how we would like to treat objects created
during the execution of the program. These semantics range from the most
conservative (in which the higher-order variables in the program range only

over the originally existing, edb objects) to the most liberal (in which variables
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range over existing objects as well as objects created during the execution of
the program). Issues such as expressive power of the language and efficient
implementability are directly related to the varying notions of semantics and

warrant further investigation.

Challenges arising in the implementation of SchemaLog: [ALNI9]
investigated the major issues in the implementation of a Schemalog-based
database programming language. [t proposed an architecture for the imple-
mentation. based on compiling SchemalLog constructs into the schema algebra
(SA) (proposed in Chapter 3). This work addressed some of the challeng-
ing issues unique to SchemaLog implementation and proposed three alternative
storage structures for dealing with them. It also proposed algorithms for top-
down implementation of SchemaLog, including alternative strategies for the
implementation of the algebraic operators and evaluated the effectiveness of
the alternative strategies with a series of experiments on top of MS Access.
This work showed that the SA algebraic operators can be used in efficient
set-oriented top-down evaluation of SchemaLog programs, by organizing com-
putations in such a way that results are computed “piecemeal”. However, SA is
not a sufficiently powerful language to express every program in the full-fledged
SchemalLog language. Development of an algebra in the spirit of SA and having
an equivalent expressive power as the full SchemaLog language is an interesting

research 1ssue.

Another challenging problem in the context of realizing SchemalLog is the follow-
ing. An important feature of SchemalLog that drives its powerful restructuring
capabilities is the ability to ‘program’ using tuple-id’s. However, in doing so.
some perfectly natural SchemaLog programs have the effect of producing iden-
tical tuples in the output, albeit with different tuple-id’s. This is clearly unde-
sirable, since eliminating these redundant tuples is a costly operation. Avoiding
the generation of duplicate tuples during the processing of SchemaLog programs
is an interesting open research problem. [Ala97] addresses these and other re-
lated issues such as adapting the magic-sets query processing method to the

context of processing Schemalog programs.

While the discussions above are based on realizing a non-intrusive implementa-

tion of SchemaLog based on existing technology, the inherently two-dimensional
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nature of Schemalog suggests that, novel physical storage structures and and
attendant multidimensional indexing technologies would lead to a more efficient
implementation. Emerging technologies such as OLAP would benefit immensely

from research in this direction.

3. Extending SchemaSQL for OLAP Applications: In Chapter 4, we outlined

the possibility of SchemaSQL as a language for OLAP applications. However,
SchemaSQL , as presented in this chapter, suffers from some important limita-
tions in this context. Some of these limitations include (1) lack of any notion
similar to typing, (2) limited dynamic schema creation capability (a view needs
to be defined in order to restructure information, as opposed to being able to
express restructuring quertes), and (3) loss of information on meta-data (some-
times restructuring a relation using a SchemaSQL statement can result in loss
of valuable information about meta-data). [Gin97] investigates these issues in
depth and proposes extensions to the language in such a way that it can serve

as a full-fledged language for OLAP applications.

The strategy for implementing SchemaSQL discussed in Chapter 4 (Algorithm
4.5.1), considers only its querying fragment. It would be interesting to study
how this strategy would scale up when restructuring is incorporated in our
implementation. [Gin97] addresses these and related issues. [Urs97] discusses
an efficient implementation of a related algebra (obtained by extending the

tabular algebra of [GLS96]) for multidimensional databases.

. Query processing in the context of legacy systems: In Chapter 3. we
proposed two possibles strategies for realizing an implementation of SchemalLog
on top of legacy systems such as the network and ER database systems: (1)
based on materializing the relational abstractions of the underlying data sources.
and (2) based on a direct translation of SchemalLog query into the host database
DML. Both the strategies provide opportunities for interesting research. In
particular, implementing the tid’s of Schemalog in (!), and the optimization
issues that arise in (2) in the context of compiling the SchemaLog constructs into

those of the host language constructs, raise many challenges requiring further

research.



5. Semantic abstractions on Web sources: The conceptual model underly-
ing our extension to SchemalLog to the Web setting is based on the HTML
grammar. Thus, our abstraction of Web documents is essentially syntactic -
all documents have an identical mapping (based on the HTML grammar) to
their corresponding abstractions; in particular, the abstractions do not take
into account the semantics of the document. Though SchemaLog can be fur-
ther used to build semantic abstractions on top of the syntactic view, a strategy
for directly building semantic abstractions of HTML documents is clearly de-
sirable. In the context of integrating data from heterogeneous semi-structured
data sources, [LSGK96] takes the first step in this direction and proposes a
methodology for building semantic views on top of data in applications such as
spreadsheets, word processors, and mail tools. Based on such a view, these tools
can be queried and updated in the same vein as that can be done in conven-
tional database systems. We need to investigate how such a methodology can be
extended to the Web setting. Challenging issues related to query optimization

and (semantic) view maintenance arise in this context.

Yet another opportunity for future research in the context of WebLog, arises
in the development of its formal semantics. Implementation of WebLog also
poses many interesting problems. A restricted fragment of WebLog has been
implemented ([KLS96]). We are currently in the process of realizing a full-blown
implementation. I[n this context, we are investigating various useful foreign
functions and their efficient incorporation in the WebLog engine. Our ongoing

work addresses these and related issues.
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Appendix A

Schemalog

A.1 Equality

For simplicity of exposition, we have left open the issue of how equality is to be in-
terpreted, in our presentation of model theory and proof theory. A straightforward
approach is to view equality semantically. For instance, if a Herbrand structure H
contains both the atoms d :: r[i : a—wvy] and d :: i : a—v,], then we can force H also
to contain the atom v, = v, which says the terms v; and v, semantically denote the
same intension. The idea then is to consider the quotient Herbrand structures with re-
spect to the congruence =. The proof theory can be correspondingly augmented with
paramodulation while preserving the soundness and completeness theorems. F-logic
[KLW93] follows this approach. While there are some advantages to this approach.
we feel that from a practical perspective on database querying, it is more natural to
view equality syntactically. For example, if we have both d :: empl[i : sal—50K] and
d :: empli : sal—100A’] it is more appropriate to conclude our knowledge is inconsis-
tent than to regard 30K" and 100K as “semantically equal”. The following definition

of e-satisfiability formalizes the notion of syntactic equality.

Definition A.1.1 A theory T is e-satisfiable if it has a model such that distinct
ground terms in the language of T are interpreted by the model into different inten-

sions.

Corresponding to the model-theoretic property of e-satisfiability, we introduce its

proof-theoretic counterpart — e-consistency.
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Definition A.1.2 Let A be the atom db :: rellt : a—v]| and B be db' :: rel'[t’ :
a'—v’]. A and B are e-ambivalent if there are ground substitutions § and 8’ such that
(db,rel,t,a)d = (db',rel',t',a"}¢’ and v6 # v'0'.

A theory T is e-inconsistent if there erist e-ambivalent atoms A and B (not nec-
essarily distinct) such that T - A and T F B. T is e-consistent if 7 is not e-

tnconststent.

Note that a single atom could be e-ambivalent with itself. E.g. consider the theory
T ={d:r[i:a—X]}.
We next lift the soundness and completeness theorem (Theorem 2.5.4) of Section

2.5, to account for e-satisfiability and e-consistency.
Theorem A.1.1 A theory T is e-consistent iff T is e-satisfiable.

PROOF. (=) T is e-consistent. Assume T is not e-satisfiable. Then there exist
ground atoms A = d :: r[i : a—v} and B =d =z r[i : a—ve], v1 and v, are distinct.
such that T |= A and 7 | B. Clearly A and B are e-ambivalent. By Theorem 2.5.4.
T + A and T + B, which implies 7 is e-inconsistent — a contradiction!

(<) T is e-satisfiable. Assume 7 is e-inconsistent. There exist e-ambivalent atoms
A and Bsuch that 7T+ A and 7 F B. Let 6 and ¢’ be substitutions such that A8 and
B’ are ground atoms that agree on all the components except the value component.
By Theorem 2.5.4. T |= A0 and 7 |= B¢'. It follows that T is not e-satisfiable - a

contradiction! a

A.2 Proofs of Some Results

Theorem 2.5.2. (Herbrand’s Theorem) A set S of wffs in clausal form is unsatisfi-
able iff every complete semantic tree T for S has a finite closed subtree.

PROOF. It has been shown in Section 2.4 that there is a transformation from Schema-
Log to first order logic such that a Schemalog formula A is true in a structure M,
under vaf v iff the corresponding first order formula encode(A) is true in the corre-
sponding first order structure encode(M,) under the vaf v (Theorem 2.4.1). Her-
brand’s theorem can now be proved from the above result using a technique similar
to that used for predicate calculus {CL73]. The main observation is that whenever

S is unsatisfiable, every branch of any complete semantic tree T of § must have a
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failure node. Since each node of T has a finite number of children, an application
of Konig’s Lemma at once implies the existence of a finite closed subtree of T'. The
details are straightforward and are suppressed. a
Lemma 2.5.4. (Lifting Lemma) If C\' and C;' are instances of Cy and C,, respec-
tively, and if C' is a resolvent of Cy' and C,'. then there is a resolvent C of Cy and
C', such that C' is an instance of C.
PROOF. Variables in C; and C, can be renamed such that there are no common
variables in them. Let L,’ and L.’ be the literals of C} and C; (respectively) that are
resolved upon and let v be the mgu of Ly’ to ~Ly". Let C” be the clause obtained by
removing L,y and Ly~ from a disjunction of Cy’y and Ca'~. There is a substitution
6 such that C,' = C10 and C,' = C,0. Let \; be the mgu for the literals, say
{L‘,....L{-"} in C;. which correspond to L;. Let L; = L\, = --- = L5\
Clearly, L; is a literal in the factor CA; of C;. It follows from this that L' is an
instance of L;. Since L;’ is unifiable to =L,". L is unifiable to =L,. Let o be the
mgu of L; to =L,.

Let C be the disjunction D,V D, where D; is the disjunction obtained by removing
Lio from (Ci\)e, i = 1,2. From this, it can be proved that C is a resolvent of C,
and C,. Clearly, C’ is an instance of C since C' = E; V Ea, where F; is obtained by

removing L;'v from (Ci'v)o, i = 1,2, and A o ¢ is more general than o 7. O
g g /



Appendix B

Some Direct Results on the

Expressive Powers of S04 and L,

The following lemma establishes that the expressive power of SQA is no less than
that of safe Lc and thus (in conjunction with Lemma 3.5.1) establishes that the two

languages have the same expressive power.
Lemma B.0.1 Every safe Lc query can be expressed by a SQ.A expression.

PROOF. This proof is similar to the proof for the classical case as discussed in [Ul184].
There are two major parts to this proof. In the first part, we prove that given a safe
L formula . there is an expression in SQ.A, denoting the set DOM (). The second
part is an inductive proof on the number of operators in a subformula of .

Let {zy...... re | @(xi.....z¢)} be a safe L¢ formula. It can be shown that for

every safe L formula. there exists an equivalent safe formula with no occurrences of
A and V. Thus, wé may assume without loss of generality that y has only operators
VvV, =, and 3.
Part [: We need to prove that SQA can generate DOM, the set of all constants
appearing in ¢ and in the databases in the federation. As our framework treats
attribute names and relation names as first class citizens, the SQ.A expression gen-
erating DOM should include them in the domain. If C is the set of all constants
appearing in P, DOM is expressed the following way.

DOM =C U §() U m(p(8())) U ms(a(p(8()))) U malr _, y(p(8()))

Part II: We prove by induction on the number of operators in a subformula w of ¥

that, if w has free domain variables y,,. .., ym, then DOM ()™ N
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{y1,---+¥m | w(y1.---.ym)} has an equivalent expression in SQ.A. Thus, as a special
case, when w is ¢ itself, we have an algebraic expression for

DOM () N {zy,...,zk | ¥(zy,.-. ,Tk)}, and we would have proved the theorem.
The inductive proof is similar to the one for the classical case ([Ul184]) - the base case
is when there are zero operators in w and the other cases are for operators V. =, and
3. The only difference in our setting is the base case which involves the new atoms in
Lc. We show how relations corresponding to L¢ atoms can be derived using SQA.

There are four scenarios to consider depending on the depth of w.
(2) Let w be X. Then E; = §(). If w is a constant d, then E; is simply {d}.

(b) Let w be D :: R. Then E; = p(8()). If one or more of D, R are constants, or if
D and R are the same variable, then simply modify E; by imposing appropriate

additional selection(s).

(c) Ifwis D :: R[Ay,...,Aqs], then E; is essentially the expression a(p(6())) 6-
joined with itself n-times, where 8 is ‘51 = 31 A 82 = $2°. If some of the terms

in w are constants or repeating variables, we can impose appropriate selections
in E,’.

(d) If wis of the form D :: R[A,—W, Ay—V,, ..., An—V,], then E; is
Wougput,‘rg_,(Uconditions‘)’(m _upn)(p(é()))), where p; is an attribute/value pair of one
of the forms - — '.'a; — °,* — v;’,‘a; — v;’. depending on whether and where
the pair A; — Vi contains constants. Gconditions corresponds to selection condi-
tions capturing the occurrence of constants and repeating variables in . and
output Args is the list of arguments corresponding to distinct variables occurring

in w.

Now the techniques of [Uli84] can be applied to obtain an expression for ¥. o

The following result establishes that the expressive power of db-safe L¢ is no more

that of d-SQA.
Lemma B.0.2 Every db-safe Lc query is expressible in d-SQA.

PROOF. This proof can also be obtained from the proof for the similar lemma (Lemma
B.0.1) for the more liberal fragment of the language. In part [ of the lemma, we need

to prove that DOMy(¢) can be generated using a d-SQA expression. The only
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modification in Part [ arises because of the need for considering cases when variables
appear in the database positions of db-safe L¢ formulas.

Part I: Let {z),...,2x | ¥(z1,....Zk)} be a db-safe Lc query. Let C be the set of
constants in . We need to prove that DOMgy (1) can be generated using a d-SQA
expression. Definition 3.5.5 defines DO My, as a union of a sequence of sets. in which
an element of the sequence is defined based on its predecessor, and the length of the
sequence is based on the instance of the federation. Thus, it would appear that a
corresponding algebraic expression that generates DO My would need an unbounded
union operation (simulable using a while construct). However, it can be observed
that in order to generate DO Mg, it is enough that the length of the sequence be
utmost the number of Lc atoms in ¥. Thus, the union is indeed bounded and the
number of unions in the equivalent d-SQA expression, can be statically determined

from . Based on this crucial observation, we present the expression that generates

DO[\/[db(‘tl’).

DOMS, () =C.
DOM3 () = B(DOMy(¥)) U m2(p(8(DOM;(¥)))) U walex(p(§(DOM(¥))))
U iy )(P(5(00Méb(‘¢')))))

DOMgp(v)=Uo < i < DOM}, (¥), where n is the number of Lc atoms appearing in
Y.

Part [I: The major modification to the proof of this part from the proof of Lemma
B.0.1 is the case when a variable appears in the database position of a subformula w.
Obtaining the d-SQA expression when the database position contains a constant is
straight-forward - these constants would be the elements of the argument relation s
of §. We illustrate the proof for the variable occurrence scenario for the case when
the depth of w is 1. Proofs for the other cases are similar.

Let w be X. It follows from the definition of db-safety that X already occurs in
another subformula 7 of ¥. Let E; be the d-SQA expression corresponding to the
db-safe formula {X | 7(X)}. Then, E; = 8(E;).

With this modification, the proof is obtained along the lines of the proof of Lemma
B.0.1. : a

We now present similar results for the more restrictive fragments of the languages.
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Lemma B.0.3 Every rel-safe Lc query can be ezpressed by a r-SQA ezpression.
Lemma B.0.4 Every attr-safe Lo query can be ezpressed by a a-SQA ezpression.

Lemmas B.0.3 and B.0.4 can be proved using proof techniques akin to that of

Lemma B.0.2 extended to the rel and attr fragments.



Appendix C

Extended-Schemalog — Syntax

and Semantics

In this appendix, we formally present the syntax and semantics of our language for

querying and restructuring ER databases.

C.1 Syntax

We use strings starting with a lower case letter for constants and those starting with
an upper case letter for variables. As a special case, we use {; to denote arbitrary
terms of the language. A.B, ... denote arbitrary well-formed formulas and A, B. ...
denote arbitrary atoms.

The vocabulary of the language £ of SchemaLog consists of pairwise disjoint
countable sets G (of function symbols), S (of non-function symbols), V (of variables).
and the usual logical connectives -, V, A, 3, and V.

Every symbol in SU V is a term of the language. If f € G is a n-place function
symbol, and ¢,,...,t, are terms, then f(1,...,¢s) is a term.

An atomic formula of £ is an expression of one of the following forms:
<db>:<rel>[<tid>: <attr> — <val>]

<db>::<rel>[<attr>]

<db>::<rel>

<db>

<rel>[<tid>: <attr> — <val>]



<rel>[<attr>]
where <db>, <rel>, <attr>, <tid>, and <val> are terms of L.

We refer to the first four categories of atoms as db-atoms and the last two as rel-
atoms. In an atom of the form <db>::<rel>[<tid>: <attr> — <val>], we refer to
the terms <db>. <rel>, <attr>. and <val> as the non-id components and <tid> as
the id component. The id component intuitively stands for tuple-id (tid). The depth
of an atomic formula A, denoted depth(A), is the number of non-id components in
A. The depths of the four categories of db-atoms introduced above are 432, and 1
respectively. The well-formed formulas (wif's) of £ are defined as usual: every atom
isa wi - A, AV B, AAB,(3X)A, and (VX)A are wff’s of £ whenever A and B are
wff’s and X is a variable.

We also permit molecular formulas of the form
<db>::<rel>[<tid>: <attr;> — <val;>,...,<attr,> — <val,>] as an abbrevi-
ation of the corresponding well-formed formula
<db>:<rel>[<tid>: <attr;> — <val;>]A. .. A <db>:u<rel>[<tid>: <attr,> — <val,>
A literal is an atom or the negation of an atom. A clause is a formula of the form
VX ...YXn
(LyV...V L,) where each L; is a literal and Xj,..., X;, are all the variables occurring
in Ly V...V L.. A definite clause is a clause in which at most one positive literal
is present and it is represented as A «— Bj,.... B, where A is called the head and
Bi.....B, is called the body of the definite clause. A unit clause is a clause of the

form A —. that is a definite clause with an empty body.

C.2 Semantics

Let {7 be a non-empty set of elements called intensions (corresponding o the terms of
L). Consider a function T that maps each non-function symbol to its corresponding
intension in U and a function Zy,, which interprets the function symbols as functions
over /. The true atoms of the model are captured using the functions F and Fie.
F takes as arguments the name of the database, the relation name, attribute name,
and tuple-id, and maps to a corresponding individual value. F,¢ takes as arguments
the name of a relation, attribute name, and tuple-id, and maps to a corresponding

individual value. Thus for a given db (rel) atomic formula to be true, the function
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F (Fret) corresponding to the formula (after mapping the symbols of the formula
to their corresponding intensions) should be defined in the structure (and the values -
should match).

A semantic structure M for our language is a tuple < U, T, Zfun, F, Fret > where

e [/ is a non-empty set of intensions:

e 7Z: S — U is a function that associates an element of U/ with each symbol in S:

o T;un(f) : Un—U. where f is a function symbol of arity n in G.

e F:U~ [U~ [U~ [U~ Ul]], where [A ~ B] denotes the set of all partial
functions from A to B.

o Fret : U~ [U ~ (U~ UJ].

A vaf (variable assignment function) is a function v : ¥V — U. We extend it to
the set T of terms as follows.
o v(s) =I(s) forevery s € S,
o v( [ty ti)) = Zrun(f)(w(t1), ....n v(t)), where f is a function symbol of arity &
in G and ¢; are terms.

Let t; € T be any term. The satisfaction of an atomic formula A, in a structure

M under a vaf v is defined as follows.

o Let A be of the form ¢; :: to[ty: t3 — t5]. Then M =, A iff
F(v(t))(v(tz))(v(t3))(v(ty)) is defined in M, and
Flo(t))(v(t2))(v(t3))(v(ta)) = v(ts)

o Let A bhe of the form ¢, :: tp{t3]. Then M [, Aiff
F(v(t))v(t2))(v(t3)) is defined in M.

o Let 4 be of the form ¢, :: t;. Then M |, A iff
F(v(t1))(v(t2)) is defined in M.

o Let A be of the form ¢;. Then M =, A iff
F(v(ty)) is defined in M.

o Let A be of the form ¢[t3: t2 — t4]. Then M =, Aiff
Fre(v(t1))(v(t2))(v(¢3)) is defined in M, and
Fra(v(t1))(v(t2))(v(t3)) = v(t4)

o Let A be of the form ¢,[¢;]. Then M |=, A iff
Frelv(t1))(v(t2)) is defined in M.



Satisfaction of compound formulas is defined in the usual way:
o M =, (AVB)Ift M E, Aor M k=, B;
o M E, (A If M B, A

o M Ik, (3X)A iff for some vaf p, that may possibly differ from » only on
X. W E, A

For closed formulas. M =, A does not depend on v and we can simply write

M = A
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