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ABSTRACT 

New ongoing commissioning approach of central plants: methodology and case 

study  

Danielle Monfet, Ph.D. 

Concordia University, 2011 

 This research project proposes a new methodology and tool to perform ongoing 

commissioning of central plants. The proposed methodology includes a new approach for 

the development and use of benchmarking models in the context of ongoing 

commissioning. Different techniques are explored to establish the benchmarking models: 

(1) a static approach, which is based on pre-defined training set size and established 

different models for week days and weekend & holidays, or (2) window techniques, 

which are either augmented or sliding. Two different types of benchmark models are 

evaluated: correlation-based and Artificial Neural Network (ANN) models.  

 The proposed ongoing commissioning methodology is evaluated for two chillers 

installed in the central plant of the Concordia Sciences Building (CSB). Both chillers 

have identical capacity and performance characteristics; however, they have quite 

different operating hours. The results show that models developed with seven days of 

data monitored at the beginning of the summer season provide accurate results over the 

remaining of the summer and for the following summer. For the chillers used in the case 

study, the proposed multivariable polynomial (MP) models provide the most accurate 

prediction with CV(RMSE) below 7% over the remaining of the summer season, and 

below 8% for the following summer season. 
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As part of the ongoing commissioning approach, measured data used to develop 

the benchmarking models combined with manufacturer’s information were also used to 

develop a calibrated computer model of the CSB central cooling plant in TRNSYS. User 

input files were modified to reflect the operating characteristics of the equipment 

installed in the central plant and a control equation was proposed for the cooling towers. 

The simulation results were in good agreement with the monitored data, with CV(RMSE) 

that do not exceed 5.5% for water temperature at key locations, 12.5% for the electric 

power input of the cooling equipment, and 18.6% for the COP of chillers and various 

groups of equipment. The Relative Error (R.E.) calculated over the summer season for 

the cooling electricity used is within ±15.6%.  

The approach undertaken to calibrate the CSB central cooling plant showed that it 

is possible to develop a calibrated model using measurements already available from the 

Monitoring and Data Acquisition System (MDAS) and manufacturer data, without 

modifying by trial-and-error some variables or using stochastic approaches. 
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1 INTRODUCTION 

1.1 Problem statement 

 Improving building energy performance is becoming a common task in both 

newly constructed and existing buildings. The terms commissioning, re-commissioning, 

retro-commissioning, and ongoing commissioning are often used to describe the actions 

undertaken to verify if the installed building components or systems perform in 

compliance with the design specifications, current goals and/or Owner’s Project 

Requirements (OPR). For new buildings, commissioning normally takes place before 

occupancy, and ensures the mechanical systems are checked for performance and system 

interoperability at part load and design conditions (ASHRAE 2005a). For existing 

facilities, re-commissioning or retro-commissioning are used to restore the facility’s 

performance to its initial design specifications or to make the mechanical systems work 

efficiently (Abouzelof 2001). More recently, the new concepts of ongoing commissioning 

has been proposed for existing buildings to ensure that the strategies implemented 

continue to meet the current or evolving OPR throughout time (ASHRAE 2005a). 

Ongoing commissioning is a comprehensive process used to help resolve operation 

problems, improve comfort, optimize energy use and identify retrofits for existing 

commercial and institutional buildings and central plant facilities (Liu et al. 2002).  

 Ongoing commissioning provides great possibility to improve the energy 

consumption in buildings, which is something that needs to be addressed since the energy 

consumption of commercial and institutional buildings in Canada has increased by 33% 

between 1990 and 2005 (Natural Resources Canada 2008). This is particularly true for 
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the higher education sector (cégep and university establishments) in Québec, which 

represents 15% of the total floor area of the public sector, while accounting for 20% of 

the energy use (Roy 2008).  

 Ongoing commissioning is a complex approach for the monitoring and analysis of 

operational parameters of heating, ventilation and air conditioning (HVAC) systems and 

components in order to (1) detect faults and failures, (2) display warnings and 

recommend remedial actions, and estimate the energy or cost implications of such 

measures, (3) compare the monitored performance with benchmarking data to detect the 

deterioration of performance or abnormal operation conditions, and (4) present the 

relevant indicators of energy performance to help building operators and managers to 

become aware of the systems performance, and therefore, to undertake the required 

actions for achieving high performance along the systems useful life.  

 So far, no detailed or standard approach has been proposed by the industry to 

establish benchmarking models at the central plant component level in the context of 

ongoing commissioning. This research project proposes a new approach to develop 

benchmarking models that characterize the equipment or system performance under 

normal operation to identify operation problems using benchmarking models.  

1.2 Scope and methodology 

 This research project proposes a new approach to perform ongoing 

commissioning in central plants, which includes a new approach to develop and use 

benchmarking models in the context of ongoing commissioning. Different techniques are 

explored to establish the benchmarking models as well as different types of benchmark 
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models (correlation-based and ANN models). The tool will attempt to periodically report 

the energy performance of equipment and of the overall central plant in order to maintain 

the systems operating performance.  

 The benchmarking models are established using previously monitored data. To 

illustrate the proposed approach, a case study for developing benchmarking models, in 

the context of ongoing commissioning, is presented for the electric power input to chillers 

installed in the central plant of a university building located in Montréal, Canada, the 

Concordia Sciences Building (CSB). The proposed approach can later on be extended to 

the other equipment present in the central plant or to the whole central plant.  

 Also, as part of the ongoing commissioning approach, a new approach is proposed 

to calibrate the TRNSYS model of the CSB central cooling plant, where measured data 

used to develop the benchmarking models combined with manufacturer’s information are 

used to identify the TRNSYS user input files to reflect the operating characteristics of the 

equipment installed in the central plant. 

 To achieve the scope of this research project, the available literature on ongoing 

commission and inverse models is first reviewed (Chapter 2) followed by a detailed 

description of the proposed ongoing commissioning approach (Chapter 3). The following 

two chapters introduce the case study (Chapter 4) and the evaluation of the benchmarking 

models (Chapter 5). In Chapter 6, the calibration process and results are described. 

Finally, conclusions, contributions and future work of this project are presented in 

Chapter 7. 
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2 LITERATURE REVIEW 

Ongoing commissioning is a complex approach to maintain optimum operation by 

performing constant monitoring of HVAC systems and equipment, data analysis, and 

sensors calibration and systems tuned up, as needed. Tools for ongoing commissioning 

can be used to (1) detect faults and failures, (2) display warnings and recommend 

remedial actions, and estimate the energy or cost implications of such measures, (3) 

compare the monitored performance with benchmarking data to detect the deterioration 

of performance or abnormal operation conditions, and (4) present the relevant indicators 

of energy performance to help building operators and managers to become aware of the 

systems performance, and therefore, to undertake the required actions for achieving high 

performance along the systems useful life.  

The development of a new approach to perform ongoing commissioning requires a 

review of the literature to assess the current state of the industry. Available ongoing 

commissioning techniques, including available commissioning methods and software to 

assist the building managers developed by manufacturers and control companies, and 

benchmarking and inverse modeling methods are presented. Based on the review of the 

published information and the limitations of the presented techniques and tools, the 

objectives of the thesis are presented.  

2.1 Commissioning classification and definitions 

 Improving building energy performance is becoming a common task in both 

newly constructed and existing buildings. The terms commissioning, re-commissioning, 

retro-commissioning, continuous commissioning
SM

 and ongoing commissioning are often 
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used to describe the actions undertaken to verify if the installed building components or 

systems perform in compliance with the design specifications, current goals and/or 

Owner’s Project Requirements (OPR). Commissioning, in any of its form, ensure and 

maximize the performance of energy efficiency measures (Mills 2011). It also involves 

identifying energy efficient strategies in ordinary buildings where no particular effort 

have been previously made to save energy. The persistence of the savings is often 

ensured using benchmarking and by revisiting the need to commission the building again. 

2.1.1 Commissioning 

For new buildings, commissioning normally takes place before occupancy, and 

ensures the mechanical systems are checked for performance and system interoperability 

at part load and design conditions (ASHRAE 2005a). ASHRAE has published two 

guidelines on commissioning: “Guideline 0-2005: The Commissioning Process” 

(ASHRAE 2005a) and “Guideline 1.1-2007: HVAC&R Technical Requirements for the 

Commissioning Process” (ASHRAE 2007). Both guidelines present the procedures to 

verify and document that the performance of the systems meets defined objectives and 

criteria. The major objectives include documenting the owner’s requirements, verifying 

the building installation and performance, coordinating the systems installation and 

operation, and detecting system problems. Ideally the process starts at the beginning of 

the design phase, continues throughout the construction phase, and is finalized before 

occupancy. The contractors, designers, engineers and architects work in collaboration 

with an independent commissioning agent to perform the commissioning of new 

constructions. 
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2.1.2 Re-commissioning and retro-commissioning 

Re-commissioning and retro-commissioning apply to existing buildings and are 

one time processes. In the case of re-commissioning, the building has previously been 

commissioned, while retro-commissioning applies to existing building that were not 

previously commissioned. The objectives are similar to the commissioning process. Re-

commissioning has for goal to restore the facility’s performance to its initial design 

specifications or to make the mechanical systems work efficiently (Abouzelof 2001). In 

the case of retro-commissioning, the process ensures that the building and its systems are 

adjusted to meet the current operational needs (Wiggins 2005). The retro-commissioning 

process include also technical retro-commissioning, where actual flows, temperatures and 

pressures of the building systems are compared to the actual control sequences to 

determine energy-efficient control sequences (McFarlane 2010). 

2.1.3 Continuous and ongoing commissioning 

 Follow-up consumption tracking and initial commissioning is essential to ensure 

proper operation of the mechanical systems and perform continuous and ongoing 

commissioning. Techniques to perform commissioning, retro-commissioning, continuous 

commissioningSM and/or ongoing commissioning have similar objectives: improve the 

operation of the system based on design or building conditions. Commissioning, in any 

form, is based on a similar approach. However, continuous and ongoing commissioning 

ensure that the strategies implemented are maintained throughout time to improve the 

building performance. Continuous commissioning
SM

 is a comprehensive process used to 

help resolve operation problems, improve comfort, optimize energy use and identify 
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retrofits for existing commercial and institutional buildings and central plant facilities 

(Liu et al. 2002). Continuous commissioning
SM

 is performed periodically, usually every 

three or fourth months, while a much smaller time step, usually between ten minutes and 

one hour, is selected for ongoing commissioning (Claridge et al. 2004). The continuous 

and ongoing commissioning processes are a continuation of the initial commissioning 

process that take places before the occupancy and operation phase.  

2.1.3.1 Process description 

 During continuous or ongoing commissioning, the project intent is only 

considered as a reference, not as the performance target, realizing that (1) the building 

designer rarely specifies the optimal operation of the systems, and (2) the building 

function and use have often changed significantly from original expectations (Liu et al. 

2003a). The processes of continuous or ongoing commissioning are integrated 

approaches that implement optimal schedules for operating setpoints, and ensure optimal 

operation of the systems and persistence of the integrated changes. The objective is to 

maintain optimum operation by performing ongoing monitoring of the systems, data 

analysis and sensors calibration, and systems tuned up, as needed. However, this process 

has yet to be automated and only a limited number of applications have been developed, 

beyond the conventional control of HVAC systems, to automatically assess and maintain 

the performance of the mechanical systems. 

 Continuous or ongoing commissioning include different tasks to ensure the 

performance of the systems is maintained throughout time, which are defined for 
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different building sub-systems such as the air-handling units (AHU), the central cooling 

or heating plant or the storage system.  

 Three different approaches can be used to provide continuous and ongoing 

commissioning: (1) perform initial commissioning of a new building or retro-

commissioning for an existing building, with quarterly follow-up evaluations to assess 

the energy building performance (typically called Continuous Commissioning
SM

); (2) an 

ongoing commissioning provider performs off-site continuous data collection of systems 

operation and use Fault Detection, Diagnostics and Optimization (FDDO) tools to 

evaluate energy consumption on a monthly basis and recommend measures to be 

implemented; or (3) the building operator purchases and implements a FDDO tool to 

continuously collect and analyse data to identify energy savings opportunities (Roth et al. 

2008). Ongoing commissioning yields better results for large buildings where 

opportunities for improving and optimizing the systems interaction are possible.  

The “Continuous Commissioning (CC)
SM

 Guidebook” prepared by Liu et al. 

(2002) for the Federal Energy Management Program, US Department of Energy and 

“Methods for automated and continuous commissioning of building systems” prepared by 

the Portland Energy Conservation (ARTI 2003) provide examples of measures to be 

implemented. For instance, in the case of central chiller plants, the measurements needed 

for calculating the kW electric input per ton of refrigeration and rules-of-thumb to reset 

the supply chilled water temperature are presented. The ongoing measurement and 

analysis of energy performance can be used to: (1) identify problems; (2) establish a post-

CC
SM

 baseline to be used as a reference to which future performance is compared; and (3) 
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periodically trend some operating parameters and compare with historical levels. Some 

related developments are presented. 

2.1.3.2 Case studies 

Generally, the measured energy use savings per surface area are strongly 

dependent on the building type. Liu et al. (1997) performed a study in which the savings 

generated by CC
SM

 are measured. The average savings are $13.56/m
2
/yr for seven 

medical research laboratory buildings, $4.63/m
2
/yr for six hospitals, $4.63/m

2
/yr for five 

university teaching and office buildings, $2.37/m
2
/yr for seven office buildings, and 

$1.83/m
2
/yr for two school buildings.  

Deng et al. (2001) developed a CC
SM

 plan that was first applied on the air/water 

distribution of a building HVAC system, and later extended to central chilled/hot water 

distribution loops and utilities plants. Several strategies were developed: (1) optimized 

chiller/boiler operation schedule/sequence based on individual plant conditions and load 

profile, (2) a chilled/hot water supply temperature reset schedule based on the ambient 

temperature, (3) a chilled/hot water plant differential pressure (DP) reset schedule based 

on the ambient temperature or total flow rate, and (4) a condensing water supply 

temperature reset schedule based on the ambient temperature. The performance of the 

central plant was then monitored to demonstrate the benefit of CC
SM

. 

The CC
SM

 process was also implemented at the South City Campus (Deng et al. 

2005). The campus is divided between classrooms, offices, labs, cafeteria, two 

gymnasiums, an auditorium and a swimming pool. Two 300-ton, one 130-ton chillers, 

and three low-pressure steam boilers (two at 500 hp and one 150 hp) served 30 major Air 
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Handling Units (AHUs). To ensure optimal system operation, building data are 

monitored and compared with benchmark to improve the performance of the central 

plant. A temperature-based regression model was developed to estimate the energy 

savings due to the implementation of the different measures. The energy savings were 

estimated to be in excess of 10% of the utility bill.  

Chen et al. (2006) also implemented CC
SM

 for the chilled water cooling systems 

of a modern Central Utility Plant (CUP) with 935-ton chillers and five 100 hp Variable 

Frequency Drive (VFD) primary pumps. CC
SM

 was applied to evaluate the already very 

efficient CUP, to further optimize its operation, and to reduce operation costs. The 

measures are presented in Table 2.1 and can be used as guidelines to optimize the cooling 

plant operation. 

Table 2.1: Example of CC
SM

 measures applied to a central cooling plant (Chen, et al. 2006) 

Item Chilled water side Condenser water side 

Staging strategy Improve so individual chillers are always 

operated in the high efficiency range 

Applied to cooling tower fan 

Temperature 

reset control 

N/A Temperature setpoint based on ambient 

wet-bulb temperature and system load 

Flow control N/A Independent of chillers operation 

Chiller start/stop 

control 

Reduce electrical spike by spreading the 

AHU's start-up sequence, stage up 

chillers earlier, limit the maximum 

number of chillers running during AHUs 

start-up period, increase the time span 

between chillers stage up. 

 

 

The CC
SM

 process is well established; however, the implementation and 

description of ongoing commissioning approaches and tools still lack detailed 

methodologies to analyse monitored data. 
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2.2 Available tools for data collection and analysis 

 The installation of Energy Management Control System (EMCS) in modern 

buildings allows for the monitoring of operating parameters and energy performance of 

primary and secondary building system components. However, the analysis, 

interpretation and visualization of the collected data can still be enhanced, in the context 

of ongoing commissioning. A few studies and tools that have been developed to assist the 

evaluation process are presented in this section. 

2.2.1 Data visualization tools 

 Various visualization techniques can be used to describe or evaluate the building 

performance such as line plots, carpet plots, scatter plots, which describe the functionality 

and performance of building and system in a visual way (Baumann 2004). The use of 

such techniques simplifies and allows for a rapid identification of errors, malfunctions, 

deterioration of performance and optimization opportunities.  

 Trend analysis is a powerful approach for commissioning or continuous 

commissioning (Seidl 2006). The “offset from setpoint” analysis is often performed on 

the data collected using the EMCS. This determines how long the component operates 

outside the boundary conditions and its magnitude above design conditions. The current 

operating trends are compared with the baseline trends, which are established under 

normal equipment operation. Once set up and tested, the analysis is done automatically. 

For example, the Universal Translator (UT) is a free tool that allows filtering, analysis 

and visualization of large amount of data (Seidl 2007). This tool can read large amount of 

data, transform trend data into databases with uniform time-stamps, graphically show 
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trend data in time series and perform limited automatic analysis to evaluate economizer 

performance and the ability of all equipment to maintain setpoints over time, which is 

useful to visualize data and perform simple commissioning task and energy tracking. 

However, the tool does not offer standardized and pre-programmed continuous analysis 

of mechanical systems and equipment performances.  

2.2.2 Data analysis tools 

Different companies have developed data collection/optimization tool. For 

example, one of the tools advises the plant engineers and/or operators on how to best 

operate the equipment to achieve the least-cost operation of the system at any time 

(Fernández-Polanco et al. 2005). The optimizer uses a mixture of plant data and manual 

data as input. The system generally runs by manual request, but automatic optimization is 

also possible. To evaluate the plant performance, two types of measurements are 

proposed: (1) Key Performance Indicators (KPIs) and (2) Energy-Influencing Variables 

(EIVs). The models are derived from design data, historical data, or thermodynamic 

principles. The optimization is performed using Mixed Integer Programming (MIP) and 

Non-Linear Programming (NLP) techniques. The tool finds the least-cost equipment 

operations that meet the process demand, while taking into consideration physical 

constraints and equipment availability.  

The Remote Building Analysis and Optimization (RBAO) program informs 

operation managers via monthly reports that state the problems and possible solutions 

required to optimize the equipment of the building (Lash 2005). The objective of the 

method is to uncover faults that cannot otherwise be detected or uncovered from a one-
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shot survey of a building or addressed with a commercial software product, since, in most 

cases, commercial software product still require on-site expertise and time to interpret the 

outputs. The RBAO uses a combination of artificial intelligence and advanced diagnostic 

methods to perform data analysis (Lash 2005).  

The Diagnostic Agent for Building Operation (DABO), the software developed 

by the Intelligent Buildings Group of the CanmetENERGY Research Centre, provides 

automatic analysis and reporting of monitored data based on artificial intelligence 

algorithms, engineering calculations and statistical analysis (Choinière 2004). The 

software helps to improve the building operation by comparing the operating parameters 

of HVAC air-handling units, room control devices, heating and cooling circuits and 

rooftop units with the corresponding setpoint values (CANMET 2007). The analysis is 

performed in three steps: (1) hourly component analysis, (2) integrated systems analysis 

where the overall HVAC system is analyzed over a longer period of time, and (3) basic 

energy auditing (Choinière and Corsi 2003). The integrated systems analysis evaluates if 

the start up time, supply air temperature, supply air pressure, outdoor air level, and design 

equipment capacity are optimum. The software includes a data acquisition application 

that is linked to the building EMCS, a DABO-database (SQL server) and a client 

application (interface) that assists in the configuration of the building and HVAC 

systems, system analysis and viewing of results (CANMET 2007).  

 The Whole-Building Diagnostician (WBD 2008), the modular software developed 

at the Pacific Northwest National Laboratory, tracks the overall building energy use, 

monitors the performance of air-handling units, and detects problems with outside-air 

control. The WBD has two modules: the Whole-Building Energy (WBE) module and the 
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Outdoor Air Economizer (OAE) diagnostic module. The energy analysis of the WBE is 

based on an Energy Consumption Index (ECI), which is calculated as the ratio of actual 

energy consumption to the expected energy consumption of the whole building. The 

expected energy consumption values are estimated using empirical models of the 

building and systems. Detailed analysis of equipment energy consumption is not yet 

available. The other diagnostics module, the Outdoor-Air Economizer (OAE) 

diagnostician, detects air side economizer operation and ventilation problems. Based on 

the analysis of the recorded information, the OAE module generates a list of possible 

causes for economizer malfunctioning (Katipamula et al. 2003). The WBD uses graphical 

representation of the systems parameters, such as air temperature and energy 

consumption, and database of building energy performance over time to assist the users 

in identifying major changes in operations and energy consumption. 

 The HVAC System Assistant (ACRx Palm Pilot
TM

 2008) records measurements 

of key variables, and detects fault and degradation of the air conditioning refrigeration 

system; it informs the service technician of the existence of these conditions, the impact 

of these faults on energy consumption and the available savings potential. It also 

calculates the Efficiency Index (EI) and Capacity Index (CI) of the system. Data is 

transmitted from the databases and accessed via the online web service. Reports are 

generated including, for instance, the efficiency of the system, the priority of retro-

commissioning or tune-up measures, and the estimation of electricity use when the tune-

up is completed.  

 ENFORMA (2009) is an internet-based application that utilizes data from existing 

building automation system to continuously and automatically identify energy 
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inefficiencies of HVAC systems, by using rule-based fault detection and diagnostic 

techniques. The system displays the variation in time of selected parameters and 

evaluates the financial impact of faults.  

Performance and Continuous Re-commissioning Analysis Tool (PACRAT 2009) 

is a tool for monitored data mining to improve facility management. It diagnoses system 

problems and poor performance, manages and summarizes monitored data, produces 

extensive reporting and visualization of system operational parameters, documents 

important operational parameters, provides interoperability for different automation 

systems, and summarizes/formats the data for effective visualization. It combines 

historical data from various sources, such as data collected via EMCS and data loggers 

into one format. It is designed to complement the EMCS, not duplicate its functions. The 

tool includes modules for AHU as well as chillers and hydronic components. Boiler and 

VAV box modules are under development (Santos et al. 2008). For each module, 

standard or user-defined characterization modules help in determining the cost of energy 

waste or anomalies.  

 Although the tools presented above have useful features assessing the 

performance of HVAC systems and the detection of eventual faults, they cannot be used 

directly in the ongoing commissioning of central cooling plant. 

2.2.3 Assessing the energy performance of buildings 

 One approach to assess the monitored energy performance of buildings and their 

systems is to compare the measured data to benchmark data. The benchmark information 

is often determined using baseline models. Since the 1970s energy crisis, different tools, 
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techniques and approaches have been proposed to develop baseline models. Although the 

extensive review of all those developments is beyond the goal of this thesis, a few 

examples related to the development of baseline models or benchmark data are presented 

in this section. Spielvogel et al. (1977) developed several energy indices by using 

statistical analysis of simulation and actual building data. Sud and Wiggins (1983) 

developed simplified graphical procedure to estimate heating, cooling and electricity 

energy usage. Other studies on the development of base case energy consumption were 

presented by Wulfinghoff (1984), Sullivan et al. (1985) and MacArthur et al. (1989). Fels 

(1986) used the heating energy signature of a house to develop its weather-normalized 

baseline energy consumption (pre-retrofit value) to be used as a reference value for 

assessing the annual energy savings due to retrofits. Extensive research was carried out at 

Texas A&M University: one example is presented in Haberl and Claridge (1987). 

Haves et al. (2001) presented different options for baseline analysis, such as 

previous or current performance of comparable buildings and/or previous or intended 

performance of the building in question. Typically, simple regression models are used to 

correct for differences between the conditions under which the actual performance is 

observed and the conditions for the baseline. Examples include weather and occupancy 

normalizations.  

Baseline energy models, which are used to document energy savings, are 

developed using one of the following: (1) short-term measured data, (2) long-term hourly 

or 15-minute whole building energy data, such as building electricity, cooling and heating 

consumption, and/or (3) utility bills for electricity, gas and/or chilled or hot water (Liu et 

al. 2002). Most models are expressed as a function of outside air temperature since both 
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cooling and heating loads are normally weather dependent. Short-term data are useful to 

determine the baseline for specific pieces of equipment, while long-term data are more 

reliable to portray the whole building energy use. Models developed using long-term data 

also improve the detection of system faults during commissioning follow-up. It is 

recommended to include chilled water energy use or chiller electricity use, hot 

water/steam energy use or gas consumption, and overall building energy consumption in 

the baseline models.  

Beasley et al. (2002) discussed a procedure to create a baseline of the daily 

performance of multi-building facilities served by a central plant. The statistical models 

predict the energy usage, utilizing historical daily data, and are normalized for weather 

and occupancy effects. Each component is empirically modeled based on past conditions. 

A comparison module determines the difference between the energy use prediction from 

the model and the consumption data. 

Pattern recognition (Seem 2005) combined with statistical approach (Seem 2007) 

were also used to determine if the energy consumption of building components was 

significantly different than previously monitored energy consumption. The method 

accounted for weekly variation in energy consumption by grouping days of the week with 

similar power consumption. The method combines an outlier identification method that 

determines inconsistent numbers, for example energy consumption value, from a set, with 

additional statistical criteria used to determine if there are any outliers and quantify how 

many are present. The implementation in real buildings showed that when the appropriate 

day type is selected, abnormal operations can easily be detected.  
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Clustering techniques can also be used to identify performance issues in buildings 

(Santamouris et al. 2007). Simpler models have also been proposed, such as the used of 

change point multiple linear regression models (Jacob et al. 2010) and the use ANN with 

Heating and Cooling Degree Day (Yan and Yao 2010) to assess building performances.  

Recent research on lifetime commissioning stated that quality control on building 

energy performances needed to be addressed and compared with design value (Djuric and 

Novakovic 2010). To address the issue on how to manage monitored data, Ahmed et al. 

(2010) proposed a data warehouse structure to visualize performance data, where the 

current data are compared with previously monitored data of the previous year. This 

approach was also explored by Torrens et al. (2011) to automate the comparison process 

and evaluate project alternatives. 

The use of benchmarking data to detect abnormal operation conditions or 

performance deterioration is becoming more common. Two different benchmarking 

systems have been identified: public benchmarking and internal benchmarking (Chung 

2011). Public benchmark models are developed using various methods and uses indices 

of performance from a large number of reference buildings to build benchmarking data; 

public benchmark models can be used to assess if a building performs poorer, similar or 

better than comparable buildings in the same region. On the other hand, internal 

benchmarking models are building specific: the benchmark model, simulation-based or 

ANN for example, cannot be directly used to establish the score for other buildings. So 

far, few studies have focus on developing a benchmark model for a particular building 

and then using it to identify variation of its energy performance over time (Kreider and 
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Haberl 1994; Haberl and Thamilseran 1996; Beasley et al. 2002; Paris et al. 2009; 

Ginestet and Marchio 2010). 

2.2.4 Limitations 

All the tools related to continuous or ongoing commissioning used to evaluate 

building performance are often limited to the secondary (air-side) HVAC systems and 

whole building energy consumption. A limited number of tools have the capabilities to 

perform detailed system analysis. In most cases, the equipment specific analysis tools are 

not integrated to a complete continuous analysis tool. Furthermore, no detail procedure as 

to the quantity of monitored data required to establish the benchmark models are 

provided. Therefore, the evaluation of different techniques to establish benchmark 

models to perform ongoing commissioning of central plant equipment is required to 

enhance the currently existing models. 

2.3 Inverse modeling 

 Benchmarking models are inverse models developed using monitored or 

simulated data used to evaluate the energy consumption or demand of the main building 

equipment (AHUs, fans, boilers, chillers, cooling tower and pumps) and the overall 

performance of the building or energy use.  

Inverse or data-driven models are developed to estimate the systems energy use 

output (dependent) variables with the support of known and measured input (independent 

variables). Two different sets of data can be used to achieve this goal: intrusive and non-

intrusive data. Intrusive data (or active data) are collected by operating the systems under 

predetermined or planned conditions for a broad range of system operating conditions 

http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bGinestet%2C+S.%7d&section1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bMarchio%2C+D.%7d&section1=AU&database=3&yearselect=yearrange&sort=yr
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(ASHRAE 2001). By setting some restrictions on the system conditions, a more accurate 

model can be developed since a wider range of inputs and outputs is available to identify 

the system parameters. Non-intrusive data (or passive data) are collected under normal 

system operations and can include information such as temperature, pressure differential, 

metering data and utility bills. In most cases, the mathematical models (inverse models) 

are developed using non-intrusive data since they use available historical data and are 

directly monitored using the monitoring and data acquisition system (MDAS) used to 

control the operation of the building.  

From the list of inverse models available in the literature, only two are selected, 

the analytical and ANN because they are the most commonly use, are relatively simple 

and flexible for ongoing commissioning purposes.  

2.3.1 Analytical models 

Different analytical inverse models have been used to predict the building 

performance. PRISM, the Princeton Scorekeeping Method, is an example of data-driven 

approach (Fels et al. 1986). The method uses information from past utility bills and 

weather data to evaluate energy savings due to renovations, for instance the replacement 

of a boiler. The Normalized Annual Consumption (NAC) index is calculated for the pre- 

and post-retrofit periods to evaluate the energy savings.  

The ASHRAE HVAC 1 and 2 toolkits present component based models used to 

model primary and secondary HVAC components (Lebrun et al. 1994 and Brandemuehi 

et al. 1993). Primary system components are modeled using either regression methods, 

first-principle methods or a combination of both. The regression analysis is developed 



21 

 

using exponential forms, Fourier series, and second- or third-degree polynomials. 

Manufacturer data combined with one of the above mentioned functional forms allow the 

estimation of the equipment energy consumption at total and partial load (Lebrun et al. 

1994). 

Beck and Woodbury (1998) presented an overview of the general procedures and 

concepts used for parameters or functions identification by inverse techniques. The 

challenge in developing a good inverse model is to overcome two main difficulties: (1) to 

find the best correlation between different parameters and (2) the non-linearity and 

sensitivity of the solution to a number of variables. The developed model is considered 

satisfactory when the difference between the measured values and the predictions of the 

corresponding physical model is below a user-defined convergence criterion. 

ASHRAE has presented algorithms that can be used to develop inverse models 

(Kissock et al. 2003). Numerical algorithms are presented for (1) general least-squares 

regression, for example linear, non-linear, multi-linear regressions, (2) variable-base 

degree-day (VBDD), (3) change-point, which capture the nonlinear relationship between 

heating and cooling energy use and ambient temperature caused by system effects such as 

control and latent loads, and (4) combination change-point multivariable regression 

models in the inverse modeling toolkit documentation. The proposed models were later 

on evaluated for different cases by Haberl et al. (2003). 

At the component level, different models have been proposed for cooling and 

heating equipment. For example, models combining first-principles, manufacturer’s data 

and/or thermodynamic correlations are presented in the references (Braun 1988, 

Brandemuehi et al. 1993, Lebrun et al. 1994, Bechtler et al. 2001, Chen et al. 2003, Solati 
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et al. 2003, Swider 2003, Saththasivam and Ng 2008). In all cases, the measurements are 

performed in laboratory settings, under steady-state conditions. Three models from the 

literature, pertinent to the topic of this study, are selected and presented below.  

The York and Cappiello (Y&C) model (1982) estimates the electric power input 

ECH with a triquadratic polynomial (Equation (2.1)): 
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 where the coefficients a to k are indentified with available data points. 

In the early nineties, Gordon and Ng presented and tested a chiller model relating 

the COP to the cooling load (Gordon and Ng 1994, Gordon and Ng 1995, Gordon and al. 

1995). Later on, the model was refined into a three-parameter model (Gordon and Ng 

2000) defined by Equation (2.2): 
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where a1 (ΔS) is the total entropy production in chiller, a2 (Qleak) is the heat losses 

(or gains) from (or into) chiller, and a3 (R) is the total heat exchanger thermal resistance.  

 Swider (2003) proposed a simple model to estimate the COP of chillers (Equation 

(2.3)).  

                            (2.3) 

2.3.2 Artificial neural network (ANN) models 

Different neural networks have been developed to predict building energy use 

(Kreider et al. 1995; Dodier and Henze 2004; Ben-Nakhi et al. 2004). Neural networks 

are models that determine the output by using compositions of basics functions of the 
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inputs. For example, the feed-forward approach is based on two steps: (1) prior 

determination of dependencies in the data set by using δ-test, and (2) feed-forward 

artificial neural networks for model building (system identification) (Ohlsson et al. 1994). 

The δ-test is used to determine dependency, assuming an underlying continuous function, 

by constructing conditional probabilities. A dependability index is defined to quantify the 

dependency on each of the variables. The system identification is then performed by 

realizing a function mapping for the input values to the output values.  

The neural network with pre- and post-processing consisted of three parts: (1) an 

input vector, which consisted of independent variables, (2) an output vector, which 

consisted of dependent variables, and (3) an algorithm that maps the inputs to the outputs 

(Feuston and Thurtell 1994). The data were prepared using scaling transforms and 

principal component analysis, and a conjugate gradient method was employed to 

determine the model coefficients. 

Some studies presented models to estimate energy savings for building retrofits 

(Krarti et al. 1998), while others try to predict future building energy use based on 

weather variables and building characteristics. In general, the training consists of 

adjusting the weights to minimize the error over a set of data. The case studies used to 

evaluate the performance of ANN showed that the cooling and heating loads could be 

predicted quite accurately without referencing to actual loads from the previous few 

hours.  
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2.3.3 Great predictor SHOOTOUT 

The great energy predictor SHOOTOUT I competition was organized to evaluate 

various approaches that are available to perform data analysis and prediction. The 

objective was to identify the most accurate method to predict hourly energy use based on 

a limited amount of measured data using empirical models (Kreider and Haberl 1994). To 

predict the hourly energy use, the contestants were provided with a training set consisting 

of whole-building electricity (lights and receptacles), chilled water, hot water, and 

environmental data (ambient temperature, absolute humidity ratio, wind, and horizontal 

insolation). Two statistical measures were used to evaluate the predictions made with the 

various model: the coefficient of variation of the root mean square error (Equation (2.4)) 

and the mean bias error (Equation (2.5)).  
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 where CV(RMSE) is the coefficient of variance of the root mean squared error; 

MBE is the mean bias error; where     is the predicted value.    is the measured value,    is 

the mean of the measured value sample data, and   is the number of records of data in the 

testing set. 

 The Bayesian non-linear modeling, the feed-forward multilayer perceptron and 

the neural network with pre- and post-processing were the models that provided the best 

predictions (Kreider and Haberl 1994). The results from the three models had an average 

CV(RMSE) and MBE below 0.205 and 0.146, respectively for the prediction of whole-

building electricity use, chilled water load and heating water load. 
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 The great energy predictor SHOOTOUT II involved developing the most 

effective model to simulate energy baselines for the purposed of evaluating energy 

savings from retrofits (Haberl and Thamilseran 1996). Two buildings that received 

retrofits were used as case studies. The first building was an engineering building of 

30,000 m
2
 that contained classrooms, offices, a computer centre, laboratories facilities 

and an unconditioned underground parking garage. The second building was a business 

building, with a floor area of 12,925 m
2
, which consisted of six stories of classrooms, 

offices and lecture halls. For both buildings, data sets were provided in different files for 

pre- and post-retrofit periods. Each file included independent variables (weather data and 

calendar time stamp) and corresponding dependent variables, such as whole-building 

energy use.  

 The winner of the contest used a combination of 10 neural networks with two 

hidden layers of 25 units each (Haberl and Thamilseran 1998). The runner-up of the 

contest, in contrast to the other participants, used a non-neural-net-based statistical day 

type routine for weather-dependent independent variables and weekday-weekend, hourly 

multiple regressions for the weather dependent data. The third place participant used a 

Bayesian non-linear regression with multiple hyper-parameters after removal of outliers. 

For all three models, the CV(RMSE) and the MBE were below 0.20 and 0.35 

respectively. 

2.3.4 Inverse models for ongoing commissioning 

Inverse models are often used to develop baseline energy use in buildings. 

Baseline energy uses are frequently referred to benchmarking in an ongoing 
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commissioning context. The development of the inverse model allows the establishment 

of the benchmark model that can later on be used to evaluate the current performance of 

the building by comparisons (current performance versus benchmark performance). The 

benchmark model can also be used to evaluate the impact of optimization measures for 

the systems and equipment present in the building.  

Different challenges must be overcome to evaluate techniques to identify model 

coefficients for benchmarking using monitored data. For example, Reddy et al. (2003a) 

looked at different initial length of data set for adaptive on-line training, techniques to 

determine when monitored data do not provide new information to the model parameters, 

and if the selected model influences the initial length of data set required for training. 

Two indices, the trace of a matrix of regressors (the sum of the diagonal elements) and 

the log of the mean of the determinant of regressors, were proposed to assess the length 

of data set required for training.  

Reddy et al. (2003b) compared the use of four model types for the assessment of 

the prediction accuracy and their ability to evaluate the model parameter. They evaluate 

the models for on-line training for two different approaches: (1) by re-estimating the 

parameters or (2) by incrementally adjusting the parameters as newer monitored data are 

available. Two different field operated chiller data sets are used to evaluate the 

approaches and model types. The first data set consist of hourly data over five months, 

while the second data set consists of 1126 data sets of 15-minute data. The results 

obtained from the analysis showed that the CV(RMSE) varies widely for the sliding 

window approach. Also, for the evaluated correlation-based models, about 300 to 400 

points is required to reach model stability. The final conclusion recommended the use of 
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the Gordon-Ng model for FD using model parameter tracking sets. The black-box 

multivariate polynomial model and the multilayer perceptron ANN model also showed 

good model prediction accuracy. In the study by Reddy et al. (2003b), the proposed 

approaches and models were evaluated for FDD using adaptive on-line training for 

steady-state performance. They also concluded that there is no significant difference 

between the internal and external predictive accuracy. The former refers to the model 

identification using data of the training set, while the letter refers to data of the testing set. 

However, further evaluation of techniques and models must still be overcome to 

obtain a close representation of building or system behaviours: (1) the inputs relevant to 

the prediction must be determined, (2) the appropriate model structure for a given set of 

inputs must be selected, (3) the appropriate time lag must be selected, and (4) ensure the 

model excludes the noise from the data set (Dodier and Henze 2004).  

The use of inverse or data-driven models for benchmarking is becoming more 

common. New rating systems, such as the Building Energy Quotient (Building EQ) 

proposed by ASHRAE requires two rating components: (1) an asset rating (as design) 

and (2) an operational rating (in operation) to assist owners and operators in 

understanding their building and identifying potential energy improvement measures 

(Colker 2009, Jarnagin 2009, Nall 2009). Currently, the Building EQ is calculated as the 

ratio between the Energy Use Index (EUI) for the subject building, divided by the median 

source EUI for that type of building in the same climate zone. For the operational rating, 

the calculation of Building EQ is based on actual utility bills over one full year; however 

the use of benchmarking models at the equipment level could lead to more complete 

assessment of the energy performance of buildings.  
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2.4 Objective of the thesis 

 The concept of ongoing commissioning is becoming more popular given the 

continual increase in energy costs. To reduce the energy use in buildings the current 

performance and operating conditions need to be continuously monitored and analysed, 

which also includes the comparison of measured data with benchmarking data to detect 

abnormal operation conditions or performance deterioration.  

So far, no detailed or standard approach has been proposed by the industry to 

establish benchmarking models at the component and central plant level in the context of 

ongoing commissioning. This thesis proposes a new approach to develop benchmarking 

models that characterize the equipment or system performance under normal operation 

and to identify operation problems using benchmarking models. The benchmarking 

models are established using previously monitored data. This thesis is a contribution to 

the development of the ongoing commissioning approach, and focuses on discussing and 

presenting results for different training and retraining approaches to establish the 

benchmarking models. To illustrate the proposed approach, a case study for developing 

benchmarking models, in the context of ongoing commissioning, is presented for the 

electric power input to chillers of an existing central cooling and heating plant that serves 

several buildings. 

The main objectives of the thesis are  

1. To develop an ongoing commissioning approach to evaluate the energy 

performance of central plant for buildings, including an approach to 

establish benchmark models using monitored data;  
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2. To develop new benchmarking correlation-based and ANN models from 

the monitored data and assess their ability to be used to perform ongoing 

commissioning compared to existing models;  

3. To test the proposed approach using a case study; and 

4. To propose a calibration technique using a sub-set of monitored data and 

to calibrate a TRNSYS model of the central cooling plant.  

The central cooling plant of the Concordia Sciences Building (CSB) is used to 

evaluate the proposed ongoing commissioning and benchmarking approaches. 

Various tools and models have been developed to evaluate the performance of the 

secondary systems. Therefore, the focus of this study will be on the current building load 

used to perform ongoing commissioning of the central plant.   
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3 PROPOSED ONGOING COMMISSIONING APPROACH 

 The literature review (Chapter 2) presented different approaches and techniques to 

evaluate and predict the energy-related performance of buildings, including 

commissioning, re- and retro-commissioning and ongoing commissioning. Ongoing 

commissioning is a complex approach for the monitoring and analysis of operational 

parameters of HVAC systems and components in order to (1) detect faults and failures, 

(2) display warnings and recommend remedial actions, and estimate the energy or cost 

implications of such measures, (3) compare the monitored performance with 

benchmarking data to detect the deterioration of performance or abnormal operation 

conditions, and (4) present the relevant indicators of energy performance to help building 

operators and managers to become aware of the systems performance, and therefore, to 

undertake the required actions for achieving high performance along the systems useful 

life.  

 This research project proposes a new methodology to perform ongoing 

commissioning in central plants. The proposed methodology includes a new approach for 

the development and use of benchmarking models in the context of ongoing 

commissioning and a prototype tool to display the results and provide operating 

performance information to the building operators. So far, no detailed or standard 

approach has been proposed by the industry to establish benchmarking models at the 

component and central plant level in the context of ongoing commissioning. 

The benchmarking models, which are energy baseline models, are obtained and 

updated using monitored data. This research proposes guidelines and recommendations 

for equipment and central plant benchmarking. This includes exploring different 
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techniques as well as different types of model, such as correlation-based and Artificial 

Neural Network (ANN) models that are suitable for benchmarking and ongoing 

commissioning.  

 The benchmarking models are established using previously monitored data. The 

proposed approach can be applied to any piece of equipment present in the central plant 

or to the whole central plant. The proposed approach can be used in buildings of different 

sizes; however it should be more cost effective in large buildings with complex systems 

and operating strategies. The remediation tasks to be performed, once operation problems 

have been identified, are beyond the purpose of this thesis. For specific action that could 

be undertaken to address the identified problems, refer to the Continuous Commissioning 

(CC)
SM

 Guidebook (Liu et al. 2002) and the Methods for Automated and Continuous 

Commissioning of Building Systems (ARTI 2003) (Monfet and Zmeureanu 2011).  

The new ongoing commissioning prototype tool is also presented and will 

periodically evaluate and compare the energy performance of heating and cooling central 

plants of large commercial and institutional buildings. This approach will ensure that no 

changes (e.g. degradation of equipment performances) occur throughout time without 

being noticed by the building operators. To help the building operators to detect changes, 

the current system performances is displayed continuously and reports and warnings are 

periodically transmitted to the operators. The proposed approach will also help maintain 

the performance of the systems.  
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3.1 Overview of the proposed ongoing commissioning methodology 

Figure 3.1 presents a flow chart of the proposed methodology, including the main 

components used to develop the ongoing commissioning tool. The proposed ongoing 

commissioning methodology, which is to be integrated in the Monitoring and Data 

Acquisition System (MDAS) of large commercial and institutional buildings, is 

composed of (1) the preliminary phase, in which data are monitored and archived in a 

database, and benchmarking models (inverse models) of the energy performance of the 

central cooling and heating plan are developed and tested, based on past normal operation 

conditions, and (2) the ongoing commissioning phase, in which the actual performance of 

the central plant is compared with the results from the benchmarking models; finally, 

reports and warnings are sent to the building operators. 

 

Figure 3.1: Overview of the new ongoing commissioning concept (Monfet and Zmeureanu 2011) 
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3.1.1 Preliminary phase 

 During the preliminary phase, the benchmarking models of the central plant 

energy performance under normal operating conditions, without known problems, are 

established. The benchmarking models are developed using monitored data, collected via 

the Monitoring and Data Acquisition Systems (MDAS), at the beginning of the ongoing 

commissioning process, and used as reference for future measurements. Normally, the 

data set used to establish the benchmarking models is composed of data monitored at the 

beginning of the ongoing commissioning process, which is supposed to be representative 

of the equipment operating conditions; however, this is not always the case since the 

equipment operation might be in a lower or higher range than normal operation. Thus, the 

minimum amount of data required to establish accurate benchmarking models and the 

frequency of retraining the models should be evaluated.  

 A library of benchmarking models contains; for instance, about 10 correlation-

based models and 12 Artificial Neural Network (ANN) models for the electric power 

input (E, in kW) and Coefficient of Performance (COP). Correlation-based models and 

ANN models predict the value of a dependent variable (e.g., electric power input to a 

chiller) in terms of known input independent variables (e.g., outdoor air temperature T). 

The correlation-based models can be as simple as E = a + b · T, where the coefficients a 

and b are identified from the data measured in the past (ASHRAE 2001). The ANN 

models are more complex as they mimic the information transfer in the human brain. In 

order to select the most appropriate benchmarking model, a large number of 

benchmarking models need to be developed and tested using several samples of 

monitored data. The central plant manager or consultant does not need to be familiar with 
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the benchmarking models, with the details about the model development, or 

mathematical background. The model development and application could be 

automatically controlled by the software that would be implemented in the MDAS, which 

is not part of this research project. However, the application software would include a 

feature to provide the user with the opportunity to select one particular model out of 

many available as well as to select the training data set from the database of monitored 

data. 

 For simplification, only one model is used to show the proposed step-by-step 

approach: 

i. Select a set of monitored variables from a list of available sensors, and the 

recording time and duration: start recording the selected data via the MDAS in the 

database. It is assumed that during the monitoring and recording of data, the 

HVAC systems are in normal operation mode, without known problems or 

failures. 

ii. Data monitored during the preliminary phase are used to calculate the weekly or 

daily benchmarking performance indices. For instance, the following indices 

should be calculated: total energy consumption, in kWh/m
2 

per conditioned floor 

area of buildings supplied with chilled water by the central plant; peak or average 

electrical demand in kW or kW/m
2
; average COP of chillers or of the overall 

central plant; and average thermal efficiency of heat exchangers (η). The 

benchmarking performance indices are compared with values from the central 

plant archive, if available, and with published values from similar central plants. 

The comparison enables the central plant operators to determine if the 
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performance of the systems before the beginning of the ongoing commissioning 

process is poorer, comparable or better than that of the same central plant in the 

recent past or with that of similar facilities. 

iii. Develop the benchmarking model, i.e., identify the coefficients of independent 

variables if a correlation-based model is selected, or train the ANN model by 

using a training set (a sub-set of the selected monitored data set from the 

database). Different training data sets are used of different lengths and from 

different acquisition periods. The accuracy of the model is evaluated by using a 

testing data set, which is the remaining sub-set of the selected monitored data set; 

and statistical indices such as the coefficient of determination (R
2
) and the 

Coefficient of Variance of the Root-Mean-Square-Error (CV(RMSE)), in %. 

Normally, the training data set should be composed of data monitored at the 

beginning of the commissioning process, which might not be fully representative 

of the equipment operating conditions. Hence, different training and retraining 

techniques using static or dynamic windows (sliding window versus augmented 

window) are used and the results compared. This includes evaluating different 

acquisition periods as new data become available in the database, and the need for 

periodic or “when needed” retraining of the selected model. This research project 

evaluates some existing models in terms of accuracy and proposes new models to 

assess the performance of the equipment and the central plant. The proposed 

research also studies the best selection of monitored data for the purpose of 

developing benchmark models, which includes determining the most 
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advantageous data acquisition period (when in time) as well as its duration (how 

long in time) for various existing and new models. 

iv. Repeat step (3) for each model of the library of benchmarking models.  

v. Finally, one benchmarking model is selected based on the accuracy of the results 

over the testing set, the number of sensors needed, and the training and retraining 

time.  

3.1.2 Ongoing commissioning phase  

 Once the initial/training data acquisition period is over and the benchmark models 

have been established, the following steps are followed: 

i. The performance indices of major equipment and of the whole central plant, 

based on actual monitored data beyond the training set, are compared with the 

benchmarking targets such as electric power and COP. For this purpose, a 

statistical approach is used. If the measured index has a value outside the 

prediction interval, the equipment or the central plant as a whole has an abnormal 

performance, and a warning is sent to the building operators (Equations (3.5) and 

(3.6)). 

ii. The results are presented via the ongoing commissioning prototype tool, which 

consists mainly of a visualization dashboard. Also, if the comparison shows 

deterioration in the performance, i.e. if the equipment is performing below its 

benchmark value, warnings and reports are sent to the building operator that 

specifies the problem area (Section 3.4). 
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iii. The ongoing commissioning prototype tool can later on be integrated into an 

existing program, such as DABO, to automatically perform ongoing 

commissioning of central plants. 

3.2 Performance evaluation of the system 

As part of the proposed ongoing commissioning methodology, data monitored 

during the preliminary phase are used to compare the current conditions with the design 

conditions to determine the operation changes that have occurred since the start-up of the 

systems and their impact on the equipment performances. The analysis could include for 

example: (1) the chilled and heating water demand, (2) the central plant electricity 

demand and the overall Coefficient of Performance, and (3) the electricity demand for 

each piece of equipment. Various daily, weekly and seasonal indices can be calculated to 

evaluate the performance of the central plant equipment: the peak electric demand in kW, 

the energy consumption (kWh and kWh/m
2
 of the building conditioned floor area), the 

Coefficient of Performance (COP) at the equipment level, and the heat exchangers 

effectiveness (η). The indices are used to evaluate the performance of the central plant 

when compared with values from the central plant archive, if available, with published 

values from similar central plants, and as a reference point for future comparison. 

3.3 Benchmarking 

Ongoing commissioning helps to maintain and even improve system energy 

performance throughout time. The process requires the development of performance 

baselines, which are targets that must be met to maintain the operation of the systems. 

The performance baselines are energy baseline models that normally include models for 
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whole building electricity, cooling energy, and heating energy that are either based on 

regression models or a calibrated simulation (Liu et al. 2003a). For the new concept, the 

performance baseline is referred to as a benchmarking model, i.e. as the reference model 

for future comparison. This project proposes and evaluates different approaches and 

model types to develop the benchmarks.  

The benchmarking models are developed using monitored data. The models can 

also be used to estimate benchmark indices (e.g. COP or electricity use), which might not 

be directly available through the MDAS. 

3.3.1 Methodology 

As presented in the literature, several different mathematical models are available 

to evaluate central plant or equipment performances (Chapter 2). However, information 

on required data set size to develop the models or the period/operating characteristics for 

which the models are applicable is rarely available. Hence, the effectiveness of different 

approaches to establish the benchmark models is evaluated for different model types.  

For each approach, the data set selected for developing the benchmarking model 

is divided in two sub-sets: (1) a training data set and (2) a testing data set. Different 

methods of dividing the selected data set into training and testing data sets (e.g., random 

selection) can be considered. In this research project, the training data set uses two-thirds 

of the benchmarking data set (Kreider and Haberl 1994), and the testing data set uses the 

balance of the data set to verify the correctness of the models before it is used for 

benchmarking. Different training and retraining techniques using static windows or 

dynamic windows (sliding window or augmented window) are used, and the results 
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compared. An example of the application of such training techniques for the prediction of 

electric input for HVAC systems using ANN models is presented in Yang et al. (2005). 

3.3.1.1 Static approach 

The static technique is used to train the selected model based on a pre-defined 

training set size, such as the first month of summer or as soon as the data are available 

from the MDAS; the model is not retrained when new data become available. The static 

benchmarking model can be developed for various day types, i.e. for different load 

patterns (week days versus weekend and/or holidays, or week days with different activity 

types).  

In order to determine the minimum amount of monitored data required to 

establish the benchmark models, testing is performed by varying the training set size and 

the period for which it applies to determine which combinations provide the most 

accurate results for each model. Therefore, different scenarios are tested. For example, 

the training set uses data of the first week of the summer, or the first month of the 

summer to establish the model for the next days, weeks or the entire summer or cooling 

season. The analysis is also used to determine the minimum training data set size required 

at the beginning of the ongoing commissioning process, when only a limited amount of 

data is available to establish the benchmark. Recommendations are then drawn from the 

analysis and made available to the user to select the appropriate training data set (how 

much and when) at the beginning of the ongoing commissioning process. 
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3.3.1.2 Window approach 

 The dynamically-trained benchmarking model can adapt itself to changes in the 

energy consumption pattern. For the window technique, the model is retrained 

periodically using new monitored data. Two different window types are evaluated: the 

augmented window and the sliding window. In the case of the augmented window 

technique (Figure 3.2), the initial benchmarking model is developed (trained and tested), 

for example, by using the window composed of three data sets (no.1 to no.3). Once the 

model is developed, the new monitored data sets (no.4 to no.9) are compared with the 

predicted values from the benchmarking model. The window is increased as new data are 

collected, and is composed now of five data sets (no.1 to no.5). The benchmarking model 

is retrained using the new enlarged window. The monitored data sets (no.6 to no.9) are 

compared with the predicted values from the retrained benchmarking model.  

 The new collected data are added in to the initial training set periodically (daily, 

weekly, bi-weekly or monthly), thus enlarging the window size, before retraining occurs. 

At the end of summer season, for instance, the augmented window data set is large and 

covers the whole spectrum of operating and weather conditions; however, it requires 

large data storage capacity, and the training/retraining time of benchmarking models 

could become of concern.  

 
Figure 3.2: Example of the augmented window process 
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 In the case of the sliding window (Figure 3.3), the window size is kept constant 

throughout the evaluation season. The initial benchmarking model is developed (trained 

and tested) by using the window composed of three data sets (no.1 to no.3). When data 

set no.4 becomes available, it is added to the data set, while the data set no.1 is dropped 

from the data, before retraining occurs. Once the model is developed, the new monitored 

data sets (no.5 to no.9) are compared with the predicted values from the benchmarking 

model, which is based on the window data sets (no.2 to no.4). The sliding window 

technique does not increase the need for storage capacity nor the training time as the 

amount of data used for training remains the same; however, it predicts well the energy 

performance when the actual operation conditions are in the range of those covered by 

the reduced training window.  

 
Figure 3.3: Example of the sliding window process 

 

For both cases, the integration of the window approach in an ongoing 

commissioning scheme might increase the complexity of the problem and computing 

time. Both approaches are analyzed in terms of performance and accuracy and based on 

the results; guidelines will be proposed to establish accurate benchmark models. 
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3.3.2 Model types 

The different window approaches proposed to establish the benchmark models at 

the equipment and the central plant level are evaluated for two different model types: (1) 

correlation-based models, and (2) ANN models. The performance of each model type is 

evaluated with the same training data set. The analysis will determine which models are 

more appropriate to establish the benchmark models in an ongoing commissioning 

perspective. 

3.3.2.1 Correlation-based models 

A number of models are available to evaluate the performance of the main 

equipment installed in central plants (Chapter 2). For example, models combining first-

principles and correlations are presented in the ASHRAE Toolkits (ASHRAE Toolkits 1 

(1994) and 2 (1993)). Other models have been proposed that use and/or combine first-

principle, manufacturer data and correlations based on measurements for chillers and 

cooling towers (Braun 1988, Chen et al. 2003, Solati et al. 2003, and Saththasovam and 

Ng 2008). In all cases, the input variables are defined, but the required training data set 

characteristics, e.g. the quantity of data required, are not presented.  

Identification of the model coefficients 

 For the correlation-based models, the model coefficients are identified using least-

square regression in STATGRAPHICS (2008). For example, in its general form, a 

multiple linear regression model or correlation-based model is written according to 

Equation (3.1): 

                           (3.1) 

 



43 

 

 where   is the dependent variable, x are the independent variables,   are the 

unknown regression coefficients, and e is the error or residual. The parameter p denotes 

the number of independent variables.  

 To identify the coefficients, the sum of the squares (SS) of the residuals (Equation 

(3.2)) between the measured and calculated dependent variable is differentiated with 

respect to each coefficient and set equal to zero. The problem can then be rewritten in 

matrix form (Equation (3.3)) or in simple form as described by Equation (3.4). The 

coefficients [A] are then identified by solving Equation (3.4). 
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            (3.4) 

 

 Once the model coefficients are identified, the model is tested and can then be 

used to perform ongoing commissioning. 

Prediction interval 

 The tested model is used to perform ongoing commissioning where the 

performance indices of major equipment and of the whole central plant, based on actual 

monitored data beyond the training set, are compared with the benchmarking targets. For 

this purpose, a statistical approach is used where a warning is sent to the building 

operators if the measured index has a value outside the prediction interval.  

 The confidence limit of the forecast is given by Equation (3.5): 

                   
             (3.5) 
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 where tα/  n-p is the t-value with n-p sample size, leaving an area of α/2 to right and 

left, and the expression        
             is the standard error for the forecast. For a 

sample size greater than 30 for a 95% confidence interval, the prediction interval can be 

estimated by Equation (3.6): 

              (3.6) 

 

 where 1.96 represents the t-value and RMSE is the Root-Mean-Square-Error 

calculated using Equation (3.7): 

      
         

  
   

   
 (3.7) 

 

 The prediction interval is used in the ongoing commissioning prototype tool: if 

the measured values/index falls outside the computed interval, an operating performance 

issue has been identified. 

3.3.2.2 ANN models 

Artificial neural networks (ANN) benchmarking models of the central plant 

equipment, developed using the same set of monitored data, are also proposed and tested.  

 The general model for the proposed ANN includes an input layer with xi neurons, 

one or more hidden layers with hj,i neurons, and an output layer with yi neurons, where i 

defines the number of neurons and j the number of hidden layers. The network is 

characterized by (1) its architecture, i.e. the pattern of connections between each neuron, 

(2) its training or learning algorithm, which is the method used to determine the weights 

on the connections, and (3) its activation or transfer functions (Fausett 1994).  
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 In this study, the proposed benchmark ANN models are feedforward 

backpropagation networks. The feedforward network consists of one input layer, N 

hidden layers, and one output layer. For feedforward backpropagation networks, using 

multi-layers, a hyperbolic tangent sigmoid transfer function provides good results 

between the input and the hidden layers as well as between hidden layers (Fausset 1994, 

Krarti et al. 1998, Dodier and Henze 2004, and MATLAB 2008). The hyperbolic tangent 

sigmoid transfer function (Figure 3.4a) is defined by Equation (3.8) where Hj is described 

by Equation (3.9). Equation (3.9) presents a set of weights (w) and bias (b) that are used 

between each connection (neuron) and adjusted to minimize the error. 

                     
 

              
   (3.8) 

         

 

   

     (3.9) 

 

 The transfer function used to determine the output is set to linear (Figure 3.4b), 

which is appropriate for regression problems with continuous real value targets (Dodier 

and Henze 2004). The transfer function describes a linear relationship between the 

neurons from the last hidden layer and the neurons of the output layer (MATLAB 2008).  

 

Figure 3.4: Transfer function (MATLAB 2008) - (a) hyperbolic tangent sigmoid, (b) linear 
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 Researchers have used different techniques to train ANN models to predict the 

energy use of different pieces of equipment or the building loads. For example, building 

energy use was predicted successfully using the conjugate gradient method (Feuston and 

Thurtell 1994), the gradient descent backpropagation method (Dodier and Henze 2004), 

while the generalised radial basis function has been used to predict chiller performances 

(Bechtler and al. 2001 and Swider 2003).  

 In this study, the Bayesian regularization backpropagation is selected for training. 

The Bayesian regularization backpropagation updates the weight and bias values 

according to Levenberg-Marquardt optimization. This technique minimizes a 

combination of the sum of the squared errors and weights. The Levenberg-Marquardt 

algorithm is designed to approach a second order training speed and is an efficient 

method to train moderate-sized feedforward neural networks (up to several hundred 

weights). The backpropagation is used to calculate the new performance with respect to 

the weights and bias variables (MATLAB 2008).  

 Different training data sets of different sizes are tested in this study as well as 

different combinations of hidden layers and neurons per layers. The benchmark ANN 

models are developed using MATLAB (2008). The prediction interval for the ANN 

model is determined according to Equation (3.6). 

3.4 Ongoing commissioning prototype tool 

The proposed ongoing commissioning tool uses the data available via the MDAS 

to evaluate the performance and carry out ongoing commissioning of the central plant for 

the main pieces of equipment that provide cooling and heating to the building. A 15-
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minute comparison module, which compares the current data (peak and total demand at 

that moment) with the benchmark values, is used to assess the performance of the 

systems. If the comparisons show deterioration in the performance, warnings are sent to 

the building operators that specify the problem area(s), such as which piece of equipment 

is performing below the benchmark value.  

In addition, a visualization tool is also proposed. The tool includes a graphic 

representation of the benchmark energy use of the main equipment and central plant as 

well as the measured energy consumption which is added to the graphic as the 

information becomes available. Dials for the main indices (COP, η) are also used to 

provide a better understanding of the current performance of the systems. The dials show 

the optimum, acceptable and out of range performance criteria in real-time. Figure 3.5 

presents an example of the visualization tool. Also, an economic module could also be 

integrated to the tool. 

The proposed approach and techniques can then be integrated to an existing tool, 

such as DABO, to automatically perform ongoing commissioning of central plants. 

 

Figure 3.5: Overview of the proposed visualization tool 
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4 CASE STUDY: CONCORDIA SCIENCES BUILDING 

The Concordia Sciences Building (CSB) is located on the Loyola campus in 

Montréal and has a total floor area of 32,000 m
2
. The building is divided in three main 

sectors: sector A, B and C (Figure 4.1). Sector A is the heart of the building and mainly 

consists of laboratories and offices. Sector B is the Bryan wing, an existing building that 

is integrated to the CSB, where the majority of the envelope infrastructure has been 

conserved and the interior has been redesigned to accommodate the new university needs. 

Sector C is located on the south-west side of the building. 

 

Figure 4.1: General building layout 

 

The floor plans of sector A are divided between office spaces and laboratories. 

Offices are principally located along the south-east and south-west perimeters. The main 

entrance is along the south façade of the building. The building is eight stories high. 

There are two basements with storage areas, testing labs and classrooms. Staff offices and 

teaching areas are located on the five floors above ground. The sixth floor is a mechanical 

penthouse where most of the HVAC equipment is located. Sector A also includes an 

atrium located on the west portion of the wing that acts as a transition area between the 

existing structure and the new structure. 

Sector A Sector B 

Sector C 
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Sector B is the renovated section of the building. The existing Bryan building has 

been integrated to the new complex. The building is four stories high. There is one 

basement where offices and lockers are located. The three floors above ground are 

essentially used for office spaces. 

Sector C is the south-west wing of the building. There are four stories above 

ground and one basement floor. Research labs, computer labs, and machine shops are 

located in the basement. The fourth floor is a mechanical penthouse where mechanical 

systems for both sectors B and C are installed. Offices are located along the east façade 

and labs occupied the remaining of the floor space. 

4.1 Description of the CSB central plant 

A thermal central plant serves all sectors of the building, where different heat 

recovery systems have been installed to improve the overall performance of the central 

plant. Chilled water, heating water and steam are supplied to the building to respond to 

the building load.  

4.1.1 Cooling systems 

Figure 4.2 is a simplified schematic representation of the chilled water 

components present in the central plant.  

4.1.1.1 Cooling equipment for summer design operation 

During the summer, two centrifugal chillers, CH-1 and CH-2, provide chilled 

water to the air-handling units (AHU) installed in the building CSB (point A) and the 

administrative (AD) building (Point B). The chillers use R-123 refrigerant, have a cooling 
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capacity of 3165 kW (900 tons) each, and the coefficient of performance (COP) is 5.76 at 

design conditions. The chilled water leaves at 5.6°C and returns at 13.3ºC, thus providing 

the cooling required within the CSB (point A) and the AD building (point B) during the 

summer. When the first chiller is started, the corresponding chilled water and condenser 

water pumps are started simultaneously. The fans of the cooling towers are started when 

the condenser pumps are started, if required. The second chiller is only started if the 

chilled water demand is not meet by the first chiller. In this case, the second set of pumps 

and cooling tower is also started.  

The chillers are cooled down by two perpendicular flow cooling towers, CT-1 and 

CT-2, having a capacity of 4750 kW (1350 tons) each at design conditions. The 

condenser water temperature enters the cooling tower at 35.0°C and leaves at 29.4 ºC. 

During the summer, one of the chillers can operate under heat recovery mode. For that 

chiller, at design conditions, about 80 % of the condenser water is directed first to a heat 

exchanger (HX-3) to pre-warm the heating water return, and then mixed with the 

remaining 20 % before being sent to the cooling tower. The cooling tower fans are turned 

off whenever the outdoor air conditions allow it. Also, if the chilled water load is low, 

two smaller chillers, chillers CH-3 and CH-4, are used to provide chilled water to the 

CSB, while the two large chillers are turned off and the AD building is cooled using 

outdoor air. 

4.1.1.2 Cooling equipment for winter design operation 

For the CSB, two small chillers, chillers CH-3 and CH-4, installed in the CSB, 

serve the fan coil units during the winter and part of the shoulder seasons, while cooling 
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is provided to the AD building using outdoor air. The chillers have a capacity of 352 kW 

(100 tons) each. The condensers of the smaller chillers (CH-3 and CH-4) are directly 

connected to the heating water loop to pre-warm the heating water return. 

4.1.2 Heating systems 

Heating water is produced and used for various means, such as specific laboratory 

applications, heating and humidification (Figure 4.3). During the summer, steam and re-

heat water are provided to the CSB, while during the winter, steam and high temperature 

heating water are provided.  

4.1.2.1 Heating equipment for summer design operation 

During the summer, steam is provided by a high efficiency natural gas boiler (B-

1) having a capacity of 815 kW. Steam is used to produce low-, mid- and high- 

temperature heating water for various purposes as well as being directly used to feed the 

humidifiers, if required. During this period, the hydronic heating system, which is used 

for re-heat purposes only, operates on 35ºC supply and 29.4ºC return water temperatures. 

For that same period, if chillers CH-1 or CH-2 are in operation, the boiler economizer 

system (S-1) is turned off, and heat is recovered from the cooling towers CT-1 or CT-2 

using the heat exchanger HX-3 (Figure 4.3). 
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4.1.2.2 Heating equipment for winter design operation 

During the winter, steam is produced by two existing natural gas boilers. The heat 

rejected from exhaust gases from the two existing boilers, B-2 and B-3, is recovered 

using a boiler economizer, S-1, which recuperates heat from the exhaust gases and 

transfers it to a water stream. The heating water return temperature is increased within the 

heat recovery heat exchanger (HX-1). If heat recuperated via HX-1 is insufficient to 

achieve the design heating water supply temperature of 51.7°C, a tube and shell heat 

exchanger (HX-2) is used to further raise the temperature of the water using steam. 

4.1.3 Overview of central plant equipment design data 

The equipment design conditions and specifications (Table 4.1) are presented to 

provide an overview of the installed equipment of the thermal central plant.  

Table 4.1: Equipment design information 

Item Design information Pumps Design information 

CH-1 & CH-2 

(each) 

Power, kW 549 P-1 & P-2 

(each) 

Flow, L/s 72.6 

RLA, A 587 Power, kW 75 

Evaporator Tin/Tout,° C 13.3/5.6 P-3 & P-4 

(each) 

Flow, L/s 131.5 

Evaporator flow, L/s 97 Power, kW 56 

Condenser Tin/ Tout, °C 29.4/35.0 P-5 & P-6 

(each) 

Flow, L/s 107.3 

Condenser flow, L/s 162 Power, kW 30 

HCFC 123 charge, kg 612 P-7 to P-9 

(each) 

Flow, L/s 53.6 

COP 5.76 Power, kW 56 

CT-1 &  

CT-2 

(each) 

Flow, L/s 131.5 P-10 

(boiler economizer) 

Flow, L/s 38.5 

Fan power, kW 30 Power, kW 37.3 

Tin/ Tout,°C 35.0/29.4 P-11 

(condensate) 

Flow, L/s 95.3 

TWB, °C 24.3 Power, kW 15 

Boiler economizer 

fan Power, kW 11.2 

  

 

Heat exchanger 

Item Hot side  Cold side  

HX-1 

Flow, L/s 95.5 Flow, L/s 107.3 

THSS,°C 57.1 TCSS,°C 29.4 

THSR, °C 32.2 TCSR, °C 51.7 

HX-2 
Steam, kg/h 12,701 Flow, L/s 107.3 

Pressure, kPa 414 TCSS/TCSR,°C 35.2/51.7 

HX-3 
Flow, L/s 107.3 Flow, L/s 107.3 

THSS/THSR,°C 37.8/32.2 TCSS/TCSR,°C 29.4/35.0 
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General system characteristics, such as design temperature and related properties, 

are presented in Table 4.2. 

Table 4.2: Design systems water properties 

Item   , m3
/s Tavg, °C Cp,water, kJ/kg • °C ρwater, kg/m

3
 

Heating water Monitored 32.2 4.174 994.9 

Chilled water Measured 9.45 4.196 999.3 

Chilled water CSB Monitored 9.45 4.196 999.3 

Condenser water Measured 33.6 4.174 994.4 

HX-1 
Hot side 0.0955 44.6 4.174 990.2 

Cold side 0.1073 40.6 4.174 991.8 

HX-2 Cold side 0.1073 43.5 4.174 990.5 

HX-3 
Hot side 0.1073 35.0 4.174 994.0 

Cold side 0.1073 32.2 4.174 994.9 

4.2 Data monitored at the CSB central plant 

Information about the as-built and as-operated thermal performance of the CSB is 

obtained from the Monitoring and Data Acquisition System (MDAS) through the 

collaboration of the Physical Plant of Concordia University. The system uses a leading 

controls manufacturer's DDC control system. The data points are monitored every fifteen 

minutes. The complete list of monitored data is presented in Appendix A. 

4.2.1 Additional measurements 

During the first year of operation of the central plant, various changes were made 

to the systems by the facility management team compared to the design specifications to 

ensure the systems were operating properly. Changes were made to the chilled water 

system and heat recovery systems through the heat exchanger HX-3. Therefore, to 

identify the changes, the water flow rates of all the chilled and condenser water pumps 

(constant speed pumps) were measured, with the collaboration of CanmetENERGY 
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Research Centre on September 25
th

 2008, using an ultrasonic water flow meter, 

Controlotron system 1010 model 1010EWDPTRE-TIDXGZ (Table 4.3).  

Table 4.3: Controlotron system datasheet  

Transit-time accuracy At least 1% to 2% of indicated flow (better than 0.5% possible with 

calibration) 

Flow sensitivity 0.001 fps (0.0003 m/s) – even at zero flow 

Zero drift-stability Less than 0.5% 

Response rate (damping) Smart Slew
TM

 effective from 0.25 second to 5 minutes 

Flow velocity range Min ±40 ft/s (±12 m/s), incl. zero flow 

Linearity 0.003 ft/s (0.001 m/s) 

Flow profile compensation Automatic Reynolds number correction of reported flow rate 

 

The pumps measurements are presented in Table 4.4. The flow for the condenser 

water pump is determined using the manufacturer pump curve. The installed pump is a 

Bell & Gossett VSCS 10x12x11 with a 27 cm (10.75 inches) impeller. The measured 

pressure is 290 kPa (42 psi), and thus, the flow for the condenser water pump is evaluated 

at 110 L/s. 

Table 4.4: Cooling pumps water flow measurements 

Item Tag Pipe size, 

mm 

Vs, 

m/s 

          , 

gpm 

Flow, 

L/s 

Uncertainty, L/s 

(Equation (4.1)) 

CHW pump P-1 & P-2 150 1485 1375 86.75 0.97 

COND pump P-3 & P-4 300  1750 110.00 N/A 

HX-3 (COND) pump P-5 200 1495 950 60.00 0.67 

HX-3 (HW) pump P-6 200 1501 1700 107.25 1.20 

 

For the chilled water pumps, P-1 and P-2, the measured water flow rates are about 

20% higher than the design specifications (Monfet and Zmeureanu 2009a). Originally, 

two set of pumps, one for the AD building and one for the CSB, were included in the 

design. However, the pumps specified for the CSB were sufficient to provide the required 

flow to both buildings, and therefore, the existing pumps (pumps to AD building) were 

removed and the flow increased on the CSB pumps to meet the required flow rate of both 

buildings. The pumps P-3 and P-4 between the condenser and cooling tower were sized 

based on the cooling tower manufacturer’s specification of 4540 kW and 131.5 L/s. The 
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measurements revealed a water flow rate of only 110.0 L/s. Perhaps the pressure loss in 

the condenser-cooling tower loop is greater than the design value used in the selection of 

pumps. 

The anticipated heat recovery of the heat exchanger HX-3 was underestimated. In 

the current operation, in order to meet the building heating demand, only 55% of the 

water flow rate (pump P-5) from the condenser is needed to be directed to the heat 

exchanger (HX-3) instead of 80% as it was designed for.  

4.2.2 Measurement uncertainties 

The accuracies on selected measurements are presented in Table 4.5. The 

uncertainties are estimated using information presented in ASHRAE Guideline 2-2005 

(ASHRAE 2005b). 

Table 4.5: Accuracy information for selected measurements 

Item Accuracy Zero-drift 

Constant water flow meter 1% 0.5% 

Chiller power 5% - 

Temperature ± 1°C - 

 

Equation (4.1) defines the uncertainty for fixed measurement in its general form: 

                     (4.1) 

 

where Ua is the accuracy uncertainty, Uzd is the zero-drift uncertainty, and X is the 

measurement. The uncertainties for the constant water flow measurements are presented 

in Table 4.4.  

For cases where measured data are used together to calculate a new variable, there 

is propagation of errors. To illustrate the error propagation, the equation used to calculate 

the uncertainty for the COP is presented (Equation (4.2)).  
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 (4.2) 

 

where Uv is the accuracy uncertainty of the chilled water volumetric flow rate 

(Table 4.4), UΔT is accuracy uncertainty of the temperature difference between the 

entering and leaving chilled water at the evaporator, and UE is the accuracy uncertainty of 

the electric power input.  

4.3 Overview of the CSB central plant operation and performance 

The monitored data were originally analyzed for the summer 2008, from June 23
rd

 

to September 21
st
 2008 (Monfet and Zmeureanu 2009a).  

For the 2008 summer season, the instantaneous electric power input to the chillers 

was not being monitored; however, the percent relative load amperage (%RLA) was 

continuously being monitored with respect to the maximum amperage. The building 

operators manually recorded the chiller instantaneous current (ICH) and corresponding 

%RLA twice a day. Based on this information, a correlation was developed to estimate 

the intensity of the electric current, in Amperes (Equation (4.3)), with a R
2
 value of 

0.975:  

                         (4.3) 

 

A correlation was also developed for the chiller power factor (PFmanufacturer) based 

on manufacturer information (Equation (4.4)), with a R
2
 value of 0.9865 (Monfet and 

Zmeureanu 2009a): 

                        
  

        
 

 

         
  

        
         (4.4) 
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where QE is the evaporator cooling load, calculated from the water flow rate and 

temperature difference of the chilled water (Equation(4.5)) and QEdesign is the evaporator 

cooling load at design conditions, which is equal to 3165 kW, both in kW:  

             

 

   

                  (4.5) 

 

where mP-i is the measured water flow rate of pumps P-1 and/or P-2 in kg/s; Cp is 

the water specific heat and has a value of 4.196 kJ/(kg·°C) at the average chilled water 

temperature of 9.45°C; TCHWR is the monitored chilled water return temperature; and 

TCHWSpt is the chilled water supply temperature setpoint (6.8˚C). The instantaneous 

electric power input for each chiller, in kW, is then calculated by assuming that the 

voltage (V) is constant (Equation (4.6)).  

                 (4.6) 

 

In March 2009, additional monitored data points became available through the 

MDAS: the voltage, the current, the power factor and electric power input to each chiller. 

The developed correlations were used to evaluate the electric power input to the chiller 

and compared with the new 2009 monitored data points, and discrepancies between the 

data evaluated using the approach taken in 2008 compared with the new measured data 

were found. Table 4.6 presents the average electric power input and electricity used for 

the power estimated using Equations (4.3) to (4.6) and the monitored electric power input 

over the summer 2009. The average electric power inputs and energy consumption for 

chiller CH-1 and chiller CH-2 are underestimated when the preliminary correlations are 

used. 
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Table 4.6: Electric power input to chillers, summer 2009 

Item Calculated (Equations (4.3) to (4.6)) Measured 

 Power, kW E, kWh Power, kW E, kWh 

CH-1 224 ± 69 291,365 313 ± 93 406,155 

CH-2 211 ± 61 139,995 299 ± 85 198,330 

4.4 Overview of the equipment operation 

The analysis is therefore presented for the summer 2009 monitored data: the as-

operated performance of the CSB central plant is analyzed in detail for the first week of 

summer, which starts on Monday June 22
nd

 and ends on Sunday June 28
th

 2009, followed 

by a comparison of seasonal and annual monitored data for 2009 and 2010. 

Sections 4.4 to 4.7 present monitored and estimated data for the week of June 22
nd

 

to 28
th

 2009, while section 4.8 presents the seasonal and some annual data for 2009 and 

2010. For the week of June 22
nd

 to June 28
th

 2009, the heating water system is always 

required. The heat exchanger (HX-1) is bypassed and the steam supply valve to the heat 

exchanger (HX-2) is close when chillers CH-1 or CH-2 are operating. The heating water 

is warmed up via the heat recovery system (HX-3) installed between the condenser water 

loop and the heating water loop. The heat recovered reduced the overall central plant 

energy use. The heat exchanger (HX-3) is always in operation when chillers CH-1 or CH-

2 are in operation. During the summer months, steam is provided to hot water tanks, 

specific lab applications and humidifiers if required.  

4.4.1 Chillers 

For the week of June 22
nd

 to June 28
th

 2009, chiller CH-2 is in operation every 

day, except on June 22
nd

 between 4h45 and 7h45. Both chillers, CH-1 and CH-2, are 

operating simultaneously from 12h30 on June 25
th

 to 00h30 on June 26
th

, and from 11h45 

to 21h00 on June 26
th

 2009.  
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The electric power input to the chiller is generally higher at start-ups, and varies 

between 150 kW and 550 kW for chiller CH-2 and between 200 kW and 400 kW for 

chiller CH-1 (Figure 4.4). The chiller electric power input increases when the outdoor air 

temperature increases (Figure 4.5). For outdoor air temperatures above 23°C, the two 

chillers, CH-1 and CH-2, operate simultaneously if required. This occurs when one of the 

chillers is running at 90% of its capacity. When both chillers are operating 

simultaneously, they both operate at around 55-65 % of their capacity (Figure 4.4).  

 

Figure 4.4: Chiller electric power input variation, June 22
nd

 to 28
th

 2009 

 

 

Figure 4.5: Chiller electric power input variation with outdoor air temperature, June 22
nd

 to 28
th

 2009 
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For chiller CH-1, the evaporator water temperature difference can be estimated 

using the evaporator water temperature difference given by the sensors integrated within 

chiller itself or by calculating the difference between the entering and leaving chilled 

temperatures monitored using two thermometers installed on the water pipes. The direct 

reading of the evaporator water temperature difference at the chiller is only available for 

chiller CH-1. For the week of June 22
nd

 to June 28
th

 2009, when chiller CH-1 is operating 

on June 25
th

 and 26
th

, the water temperature difference calculated using the two 

thermometers is slightly higher than the value recorded by the chiller, especially at start-

up (Figure 4.7). The average difference on June 25
th

 and 26
th

 is 0.6±0.7°C, while being 

0.5±0.5°C over the complete summer season. The average difference at start-up only is 

higher, 1.9±2.7°C over the summer season. The measurement differences are explained 

by the different location of the thermometers (within the chiller itself and outside the 

chiller); hence, the interaction with the environment is different. Also, the sensors might 

be calibrated differently and the accuracy of the internal thermometer is ±0.5°C 

compared to ±1°C for the thermometers installed on the water pipes (Table 4.5). The 

analysis of the monitored data is carried out using the water temperature difference 

calculated using the two thermometers for both chillers. 
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Figure 4.6: Evaporator water temperature difference comparison for chiller CH-1, June 25
th

 to 26
th

 2009 

4.4.2 Cooling towers 

For the cooling towers, the fan variable frequency drive (VFD) level is monitored. 

The fan VFD level varies between 30 % and 80 % of its full capacity (Figure 4.7). Both 

cooling towers are in operation when chillers CH-1 and CH-2 are operating 

simultaneously. Otherwise, the cooling tower CT-1 is in operation when chiller CH-1 is 

in operation. Similarly, the cooling tower CT-2 is in operation when CH-2 is in operation. 

The VFD level increases with increase in outdoor air temperature (Figure 4.8), having a 

similar trend to the electric power input to the chillers. 

 
Figure 4.7: Cooling tower fans VFD variation, June 22

nd
 to 28

th
 2009  
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Figure 4.8: Cooling tower fans VFD variation with outdoor air temperature, June 22

nd
 to 28

th
 2009  

4.4.3 Heating equipment 

 The steam load varies throughout the day (Figure 4.9). The load is lower during 

the weekend (June 27
th

 and 28
th

). No specific trend can be noticed with changes in 

outdoor air temperature (Figure 4.10) or outdoor air relative humidity (Figure 4.11). 

 

Figure 4.9: CSB steam production rate, June 22
nd

 to 28
th

 2009 
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Figure 4.10: CSB steam production rate, June 22
nd

 to 28
th

 2009 versus outdoor air temperature 

 

 

Figure 4.11: CSB steam production rate, June 22
nd

 to 28
th

 2009 versus outdoor air relative humidity 

 

Information about the heating water distribution systems, such as the pumps VFD 

level is available (Figure 4.12). Three pumps (P-7 to P-9) are available for heating water 
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to 28
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Figure 4.12: Heating water distribution pumps VFD level, June 22
nd

 to 28
th
 2009 

4.4.4 Heat exchanger 

During the week of June 22
nd

 to June 28
th

 2009, the heat exchanger HX-3 is the 

only heat exchanger in operation. It recovers the heat from the condenser water loop to 

pre-warm the heating water. Figure 4.13 presents the water temperature leaving the heat 

exchanger HX-3 on the cold side (  
    , see Figure 4.3) and the heating water supply 

temperature (    
   ). For the week of June 22

nd
 to June 28

th
 2009, the heat exchanger HX-3 

recovered enough heat from the condenser water loop to maintain the heating load 

demand of the CSB. 

 

Figure 4.13: Heating water temperature comparison, June 22
nd

 to 28
th

 2009 
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4.4.5 Daily average monitored data 

The daily average measured data for the week of June 22
nd

 to June 28
th

 2009 are 

presented, as an example, in Table 4.7. 

Table 4.7: Daily average measurements, June 22
nd

 to 28
th

 2009 

Item 6/22 6/23 6/24 6/25 6/26 6/27 6/28 

Tdb, °C 22.1 ±  4.5 25.2 ±  7.0 26.9 ±  6.1 26.8 ±  4.7 23.6 ±  3.2 20.9 ±  2.5 23.1 ±  5.7 

RH, % 34.8 ±13.5 23.0 ±  9.4 20.5 ±  5.1 34.3 ±16.7 41.1 ±14.3 68.5 ±15.6 63.1 ±29.0 

     
   , L/s 84.9 ±  3.9 84.0 ±  5.2 86.7 ±  4.8 119.6 ±30.9 113.3 ±29.1 86.7 ±  2.0 87.9 ±  2.1 

     
   , °C 7.2 ±  0.2 7.2 ±  0.1 7.2 ±  0.1 7.2 ±  0.3 7.2 ±  0.3 7.2 ±  0.1 7.2 ±  0.1 

     
   , °C 11.4 ±  1.2 11.6 ±  1.7 12.4 ±  1.6 12.7 ±  1.0 11.9 ±  1.1 11.5 ±  0.8 12.1 ±  1.1 

    
   , L/s 

Missing 

data 

Missing 

data 

Missing 

data 
35.9 ±  3.0 40.8 ±  3.6 42.0 ±  1.6 41.4 ±  2.6 

    
   , °C 32.0 ±  1.2 32.5 ±  1.7 33.6 ±  1.8 33.4 ±  1.1 32.6 ±  1.3 32.6 ±  0.7 33.1 ±  1.0 

    
   , °C 29.4 ±  0.7 29.5 ±  0.9 30.8 ±  1.4 30.2 ±  0.9 29.6 ±  1.0 30.0 ±  0.5 30.4 ±  0.8 

     
    , °C OFF OFF OFF 6.7 ±  0.1 6.7 ±  0.1 OFF OFF 

     
    , °C OFF OFF OFF 12.1 ±  0.6 11.1 ±  0.8 OFF OFF 

     
    , °C OFF OFF OFF 33.8 ±  0.7 32.6 ±  0.8 OFF OFF 

     
    , °C OFF OFF OFF 28.3 ±  0.4 28.4 ±  0.3 OFF OFF 

     
    , °C 6.7 ±  0.1 6.7 ±  0.1 6.7 ±  0.1 6.8 ±  0.2 6.7 ±  0.1 6.7 ±  0.1 6.7 ±  0.1 

     
    , °C 11.1 ±  1.3 11.2 ±  1.8 11.9 ±  1.6 12.3 ±  1.0 11.5 ±  1.1 11.0 ±  0.8 11.5 ±  1.1 

     
    , °C 33.4 ±  1.6 33.7 ±  2.2 34.6 ±  1.9 34.5 ±  1.3 33.6 ±  1.5 33.3 ±  0.9 34.0 ±  1.3 

     
    , °C 28.6 ±  0.4 28.5 ±  0.5 28.6 ±  0.4 28.6 ±  0.2 28.5 ±  0.3 28.5 ±  0.3 28.5 ±  0.2 

  
    , °C 30.9 ±  0.9 31.2 ±  1.7 32.5 ±  1.9 32.2 ±  1.1 31.3 ±  1.3 31.4 ±  0.7 31.9 ±  1.1 

  
    , °C 32.0 ±  1.1 32.3 ±  1.7 33.3 ±  2.0 33.2 ±  1.2 32.2 ±  1.4 32.2 ±  0.8 32.8 ±  1.1 

       , kg/s 88.4 ±  3.1 88.1 ±  1.8 87.8 ±  1.8 88.2 ±  1.6 88.5 ±  1.9 86.8 ±  0.8 87.1 ±  1.6 

Tcondensate, °C 101.3 ±  1.5 101.4 ±  1.5 101.2 ±  1.0 101.2 ±  1.2 100.9 ±  1.3 101.1 ±  1.0 101.2 ±  1.2 

4.5 Operating characteristics of the central plant 

The operation of the central plant is evaluated using different indices. For the 

CSB central plant, the cooling and heating loads, the heat recovered and the heat rejected 

are estimated. In its general form, the load and heat rate  are determined using Equation 

(4.7):  

                         (4.7) 

 

 where    is the calculated load, kW;    is the volumetric flow rate, m
3
/s; Cp,water is 

the specific heat of water at the average design water temperature, kJ/kg · °C; ρwater is the 
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water density at the average design water temperature, kg/m
3
; and ΔT is the water 

temperature difference between the supply and return, °C. 

The central plant heat rejected is the heat rejected via the condenser of the 

chillers. The heat rejected is calculated using Equation (4.8): 

                                    

 

   

 (4.8) 

 

 where           is the calculated heat rejected, kW;     is the water flow rate for 

each cooling tower (CT-1 & CT-2), m
3
/s; Cp,water is the specific heat of water at the 

average design water temperature, kJ/kg·°C; ρwater is the water density at the average 

design water temperature, kg/m
3
; and ΔTi is the water temperature difference between the 

supply and return monitored at the condensers of the chillers.  

The total load is determined using Equation (4.9): 

            (4.9) 

 

 where Q is the total load over time, MJ;     is the summation of the load over 

time, kW; and Δt is the time interval, h. 

The loads of the central plant are estimated to demonstrate the interaction between 

the various systems installed in the CSB central plant.  

4.5.1 Central plant thermal loads 

Figure 4.14 shows the CSB cooling and heating loads. The chilled water load 

increases almost linearly when the outdoor air temperature is between 16°C and 26°C 

(Figure 4.14). At outdoor air temperatures above 26°C, the total chilled water load is 

around 2500 ± 1000 kW. The heating water load varies slightly throughout the day. For 
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the studied period, the average heating load is around 500 kW and does not vary 

significantly with changes in outdoor air temperature. By convention, the heating loads 

are presented graphically as negative values. 

 

Figure 4.14: Total heating and chilled water load versus outdoor air temperature, June 22
nd

 to 28
th

 2009 

4.5.2 Central plant heat recovered 

During the summer, when either chillers CH-1 or CH-2 are in operation, the 

boiler economizer heat exchanger (HX-1) is not operational. For the heat exchanger HX-

3, the heat recovered is calculated on the cold side (heating water loop). The heat 

recovered varies during system operation, with a maximum value close to 600 kW 

(Figure 4.15). The average heat recovered is 400±90 kW. The heat recovered increases 

with increase in outdoor air temperatures between 15°C and 25°C, while varying between 

400 kW and 500 kW for outdoor air temperature higher than 25°C (Figure 4.16). 
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Figure 4.15: Heat recovered from heat exchanger HX-3, June 22
nd

 to 28
th

 2009 

 

 

Figure 4.16: Heat recovered from heat exchanger HX-3 versus outdoor air temperature, June 22
nd

 to 28
th
 

2009 

4.5.3 Central plant heat rejected  

The central plant heat rejected (Equation (4.8)) varies with the cooling water load, 

peaking during the afternoon (Figure 4.17). The heat rejected increases with the increase 

in outdoor air temperatures (Figure 4.18). The load increases almost linearly between 

15°C and 28°C, from 1000 kW to close to 4500 kW. 
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Figure 4.17: Central plant heat rejected load, June 22
nd

 to 28
th

 2009 

 

 

Figure 4.18: Central plant heat rejected load versus outdoor air temperature, June 22
nd

 to 28
th

 2009 

4.5.4 Daily average load data  
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peak load (kW) are presented in Table 4.8. The     
    is calculated at the CSB entrance, 
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the location of the equipment used to monitor the data: the CSB temperature readings are 

influenced by heat losses/gains along the water pipes installed between the chillers and 

where the thermometers are installed. 

 

Figure 4.19: Central plant cooling load analysis, June 22
nd

 to 28
th

 2009 

 
Table 4.8: Daily energy and peak load, June 22

nd
 to 28

th
 2009 

Date 

Item 
06/22 06/23 06/24 06/25 06/26 06/27 06/28 

   
   , MJ/day 

(Peak, kW) 

40,075 

(685) 

44,050 

(680) 

39,165 

(590) 

41,235 

(645) 

43,430 

(745) 

39,475 

(570) 

40,775 

(565) 

    
   , MJ/day 

(Peak, kW) 

109,770 

(2210) 

137,140 

(2570) 

164,285 

(2665) 

235,365 

(4040) 

187,635 

(3515) 

135,800 

(2230) 

156,220 

(2600) 

QCHW, MJ/day 

(Peak, kW) 

116,755 

(2790) 

141,695 

(2585) 

161,920 

(2525) 

254,985 

(5515) 

207,315 

(5700) 

134,045 

(2040) 

151,230 

(2405) 

Qrec., MJ/day  

(Peak, kW) 

33,775 

(605) 

40,770 

(620) 

33,535 

(555) 

37,280 

(585) 

36,315 

(620) 

31,955 

(495) 

33,810 

(510) 

Qreject., MJ/day  

(Peak, kW) 

163,550 

(3185) 

203,570 

(3820) 

236,270 

(3795) 

337,440 

(5655) 

273,755 

(5095) 

191,020 

(2830) 

217,300 

(3515) 

4.6 Electric demand and energy use 

The operation of the central plant is also evaluated by determining the electricity 

used for the installed mechanical equipment compared with the chilled and heating water 
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loads. Equation (4.10) is used to estimate the total electricity use for the mechanical 

equipment. 

           

 

 

 (4.10) 

 

 where E is the electric energy use, kWh;     is the instantaneous electric power, 

kW; and Δt is the time interval, h. 

The energy use is evaluated first for the cooling equipment for the week of June 

22
nd

 to June 28
th

 2009 and then for the year 2009 and 2010.  

4.6.1 Electric power input of chillers  

Since March 2009, the electrical power input is directly recorded by the CSB 

MBAS for both chillers. The uncertainty range of the power measurement readings are 

±5%. Figure 4.20 shows the accuracy of the electric power input variations of chiller CH-

2 for the week of June 22
nd

 to June 28
th

 2009. 

 

Figure 4.20: Uncertainty range of chiller CH-2 electric power input variation, June 22
nd

 to 28
th

 2009 
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4.6.2 Electric power input of cooling towers  

For the cooling towers, the fan VFD level is monitored. The instantaneous power 

is evaluated using Equation (4.11): 

      
              

         
 

 

      (4.11) 

 

 where      is the instantaneous electric power, kW; %VFD is the fan VFD level, 

%; RPM is the rated motor rotation per minute, 1800 RPM; RPMdesign is the design motor 

rotation per minute, 1800 RPM; and Pfan is the fan full capacity, 30 kW. 

 The energy use is evaluated for each cooling tower and summed to get the overall 

cooling towers electricity use. 

4.6.3 Electric power input of pumps  

The electric power input is calculated with Equation (4.12) for pumps with 

variable speed drive and Equation (4.13) for constant speed pumps. Pumps design 

information is presented in Table 4.1. 

            
    

        

         
 

 

       (4.12) 

 

 where            is the variable speed pump instantaneous electric power use, 

kW; %VFD is the pump VFD level, %; RPM is the rated motor rotation per minute, 

RPM; RPMdesign is the design motor rotation per minute, RPM; and Ppump is the pump 

motor full capacity, kW. 

                    (4.13) 
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 where                is the constant speed pump instantaneous electric power use, 

kW and Ppump is the pump motor operating capacity, kW. 

4.6.4 Central plant electricity use 

The central plant electricity use is then determined using Equation (4.14):  

                           (4.14) 

 

Daily results are presented for the week of June 22
nd

 to June 28
th

 2009 (Table 

4.9). The chillers use the largest amount of electricity, 58% of the total central plant 

electricity use. The pumps account for 40% of the overall electricity consumption. The 

cooling pumps (chilled and condenser water) account for 62% of the electricity used by 

the pumps.  

Table 4.9: Daily central plant electricity consumption, June 22
nd

 to June 28
th
 2009 

Day 

Item 
06/22 06/23 06/24 06/25 06/26 06/27 06/28 

        , kWh/day 6320 7755 8780 12,680 10,370 7240 8110 

ECT, kWh/day 85 145 330 500 220 120 200 

Epumps, kWh/day 4625 5290 5115 6455 6430 5100 5100 

Eelec, kWh/day 11,030 13,190 14,225 19,635 17,020 12,460 13,410 

4.7 Performance characteristics  

The performance of various equipment or group of equipment is evaluated using 

the coefficient of performance (COP) or the effectiveness. The COP is defined as the 

desired output cooling load divided by the required electric input (Equation (4.15)): 

    
  

       

 (4.15) 

 

 where COP is the coefficient of performance; QE is the evaporator load 

determined using Equation (4.7), kW; and         is the electric power input, kW. 
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4.7.1 COP of chillers 

For comparison purposes, the COP of chillers is presented at design conditions in 

Table 4.10 and compared with the COP based on monitored data (Table 4.11). The 

          
      

 is determined using the rated chiller information (Table 4.1) and the measured 

flow rate of the pumps. The COP at pumps of 5.10 is based on the operating 

characteristics of the chillers and is lower than the manufacturer rated value of 5.76.  

For the COPCH, the evaporator load is determined using monitored water 

temperature and the measured pump water flow rate. The average uncertainty on the COP 

for the week of June 22
nd

 to June 28
th

 2009 is estimated at ±1.26 for CH-1 and ±1.22 for 

CH-2. The measured COP (Table 4.11) are comparable with the COP calculated using 

the revised pump water flow rate (Table 4.10). 

Table 4.10: Electric power input and COP for chillers based on design conditions 

Item 

Design CHW flow rate 

At evaporator At pumps 

QCND, kW 3771 2568 

QE, kW 3127 2801 

E, kW 549 549 

          
      

 5.76 5.10 

 
Table 4.11: Daily average chillers performances, June 22

nd
 to 28

th
 2009 

Day 

Item 
06/22 06/23 06/24 06/25 06/26 06/27 06/28 

CH-1 

QE, kW OFF OFF OFF 1960 ± 220 1600 ± 300 OFF OFF 

E, kW OFF OFF OFF 335 ±   30 271 ±   36 OFF OFF 

COPCH OFF OFF OFF 5.85 ±0.38 5.91 ±1.08 OFF OFF 

QE/QEdesign OFF OFF OFF 0.62 ±0.07 0.50 ±0.09 OFF OFF 

CH-2 

QE, kW 1580 ± 460 1640 ± 655 1875 ± 590 2015 ± 315 1715 ± 390 1550 ± 275 1750 ± 395 

E, kW 308 ±   77 323 ± 117 370 ± 111 368 ±   77 316 ±   86 302 ±   49 338 ±   72 

COPCH 5.07 ±0.39 4.97 ±0.42 5.02 ±0.26 5.54 ±0.50 5.50 ±0.46 5.13 ±0.19 5.16 ±0.16 

QE/QEdesign 0.50 ±0.15 0.52 ±0.21 0.59 ±0.19 0.64 ±0.10 0.54 ±0.12 0.49 ±0.09 0.55 ±0.13 
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4.7.2 COP of central cooling plant 

Several COP values can be used to assess the overall central plant performance: 

(1) the chillers COP, (2) the central plant COP (including chillers, cooling towers, and 

pumps P-3 to P-4), as defined by Hartman (2001), (3) the central plant COP*, which is 

similar to the central plant COP but also includes the heat exchanger condenser water 

pumps (P-3 to P-5), and (4) the cooling COP (including chillers, cooling towers, and 

pumps P-1 to P-5) (Table 4.12). The monitored chillers COP is about 15% lower than the 

rated COP of 5.76. Overall, the performance of the cooling system indicates that the 

chillers and pumps have the largest impact on the overall COP. 

Table 4.12: Daily average COP of central cooling plant, June 22
nd

 to 28
th

 2009 

Day 

Item 
06/22 06/23 06/24 06/25 06/26 06/27 06/28 

      5.07±0.39 4.97±0.42 5.02±0.26 5.54±0.50 5.13±0.19 5.13±0.19 5.16±0.16 

                 4.22±0.45 4.12±0.54 4.19±0.33 4.60±0.33 4.54±0.37 4.26±0.21 4.32±0.19 

                
  3.90±0.47 3.80±0.58 3.91±0.37 4.38±0.36 4.27±0.39 3.93±0.23 4.02±0.23 

           3.27±0.49 3.21±0.63 3.35±0.43 3.75±0.29 3.58±0.33 3.30±0.25 3.42±0.27 

4.7.3 Effectiveness of heat exchanger HX-3 

The effectiveness is calculated for the heat exchanger HX-3. To calculate the 

effectiveness of HX-3 (Figure 4.21), the entering hot side water temperature (  
    ) is 

equal to the condenser leaving water temperature that is being redirected to the heat 

exchanger. The heat exchanger supply and return cold side water temperatures (  
     

and   
    ) are being monitored, and assuming the heat exchanged between the cold side 

and hot side is 100%, the leaving hot side water temperature (   
    ) is calculated 

according to Equation (4.16) and using the measured water flow rates presented in Table 

4.4. 
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Figure 4.21: Temperature locations for heat exchanger HX-3 

 

   
       

      
                   

       
     

                 

  (4.16) 

 

 where    is the volumetric flow rate, m
3
/s; Cp is the specific heat of water at the 

average design water temperature, kJ/kg · °C; ρ is the water density at the average design 

water temperature, kg/m
3
; and T are the water temperatures, °C. 

Based on NTU method for counterflow heat exchanger, the effectiveness of the 

heat exchanger HX-3 is given by Equation (4.17) (McQuiston et al. 2005), for the case 

                                     , where        = 0.107 m
3
/s,       = 0.060 m

3
/s, 

      =       , and     =     : 

      
  

        
    

  
       

     (4.17) 

Table 4.13 presents the average effectiveness of heat exchanger HX-3 for the 

week of June 22
nd

 to June 28
th

 2009. For the week analysed, the effectiveness of heat 

exchanger HX-3 varies between 0.69 and 0.75. 

Table 4.13: Daily average effectiveness for heat exchanger HX-3, June 22
nd

 to 28
th

 2009 

Day 

Item 
06/22 06/23 06/24 06/25 06/26 06/27 06/28 

      0.69±0.11 0.71±0.13 0.71±0.16 0.75±0.08 0.72±0.14 0.74±0.12 0.73±0.12 
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4.8 Overview of the as-operated characteristics of the CSB central plant 

To portray a complete scheme of the CSB central plant operation, seasonal and 

yearly data for 2009 and 2010 are analyzed. Weekly data for the year 2009 are also 

presented in Appendix B.  

4.8.1 Equipment operating characteristics 

Table 4.14 and Table 4.15 present seasonal monitored data for the year 2009 and 

2010, respectively. The average outdoor air temperature is about 4ºC higher in the winter, 

2ºC higher in the spring, and about 1ºC higher in the summer in 2010 compared to 2009. 

The relative humidity is also higher in 2010.  

The heating water flow rate, which is variable, is higher, while the supply 

temperatures are similar in 2010 compared to 2009. The average temperatures at the heat 

exchangers are similar for both years. The steam flow rate is slightly higher in 2010 when 

compared to 2009. 

Table 4.14: Seasonally average monitored data, 2009 

Season
1 

Item 
Winter Spring Summer Fall 

Tdb, °C -6.5 ±  7.3 12.6 ±  7.2 21.1 ±  5.2 5.1 ±  7.0 

RH, % 38.6 ±13.5 36.8 ±22.3  43.5 ±21.6 46.0 ±19.9 

     
   , L/s OFF 82.5 ±  8.4 94.2 ±24.6 84.3 ±  2.6 

     
   , °C OFF 7.7 ± 2.4 7.1 ±  0.5 7.2 ±  0.8 

     
   , °C OFF 11.2 ± 2.2 11.7 ±  1.6 12.5 ±  1.5 

    
   , L/s 72.8 ±12.4 53.0 ±  9.9 46.1 ±  7.2 65.1 ±11.8 

    
   , °C 38.3 ±  2.5 33.3 ±  3.1 31.7 ±  1.7 35.7 ±  3.9 

    
   , °C 38.3 ±  2.5 31.7 ±  3.0 29.5 ±  1.4 33.9 ±  3.0 

       , kg/s 52.9 ±12.8 71.4 ±17.8 87.5 ±  8.5 75.9 ±17.0 

Tcondensate, °C 100.3±  7.7 101.7 ±  4.0 100.6 ±  6.7 101.2±  4.4 

  
    , °C 46.8 ±  5.5 34.3 ±  3.6 31.3 ±  1.6 37.8 ±  5.1 

  
    , °C 39.8 ±  2.6 32.7 ±  3.0 30.2 ±  1.6 35.0 ±  3.1 

  
    , °C 38.2 ±  2.4 32.1 ±  2.9 30.3 ±  1.6 34.1 ±  2.8 

  
    , °C 42.0 ±  3.3 33.4 ±  3.2 30.7 ±  1.5 36.1 ±  3.6 

  
    , °C OFF 30.0 ±  1.5 31.0 ±  1.5 31.1 ±  1.2 

  
    , °C OFF 30.8 ±  1.8 32.1 ±  1.6 32.4 ±  1.4 

1 
Winter is from 12/22/2008 to 03/22/2009, spring is from 03/23/2009 to 06/21/2009,  

 summer is from 06/22/2009 to 09/20/2009, and fall is from 09/21/2009 to 12/20/2009 
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Table 4.15: Seasonally average monitored data, 2010 

Season
1 

Item 
Winter Spring Summer Fall 

Tdb, °C -2.5 ±  6.6 14.3 ±  8.2 22.1 ±  5.5 5.5 ±  7.7 

RH, % 42.5 ±17.4 37.5 ±23.1 47.0 ±22.1 49.6 ±21.0 

     
   , L/s OFF 88.4 ±12.5 105.7 ±28.8 83.5 ±17.8 

     
   , °C OFF 7.1 ±  0.7 7.1 ±  0.6 7.3 ±  2.0 

     
   , °C OFF 11.0 ±  1.5 11.7 ±  1.5 10.5 ±  2.0 

    
   , L/s 69.2 ±11.9 58.2 ±13.5 55.5 ±10.4 64.1 ±12.9 

    
   , °C 40.0 ±  3.7 32.6 ±  2.8 30.0 ±  2.0 36.2 ±  4.2 

    
   , °C 36.7 ±  2.7 31.0 ±  2.7 28.0 ±  1.6 34.3 ±  3.5 

       , kg/s 48.2 ±  9.5 80.4 ±13.9 87.1 ±  6.3 68.1 ±16.7 

Tcondensate, °C 97.8 ±12.4 96.6 ±14.0 99.7 ±  4.9 99.2 ±  6.9 

  
    , °C 42.9 ±  5.1 34.6 ±  2.5 31.4  ±  1.4 38.6 ±  5.2 

  
    , °C 38.2 ±  2.5 33.2 ±  2.1 30.3 ±  1.3 36.0 ±  3.5 

  
    , °C 36.6 ±  2.7 32.4 ±  2.0 29.9 ±  1.3 34.9 ±  3.1 

  
    , °C 39.5 ±  3.8 33.4 ±  2.4 30.7 ±  1.4 36.8 ±  3.9 

  
    , °C OFF 29.9±  1.3 29.4 ±  1.2 28.7 ±  1.0 

  
    , °C OFF 30.8±  1.4 30.4 ±  1.2 29.5 ±  1.1 

1 
Winter is from 12/21/2009 to 03/21/2010, spring is from 03/22/2010 to 06/20/2010,  

 summer is from 06/21/2010 to 09/19/2020, and fall is from 09/20/2010 to 12/19/2010 

4.8.2 Operating characteristics of the central plant 

The central plant thermal load, such as the chilled and heating water loads, the 

heat recovered and the heat rejected are evaluated. Seasonal and annual data are 

presented for the year 2009 and 2010 to demonstrate the energy use and peak variations 

throughout the year (Table 4.16 and Table 4.17). 

The outdoor air conditions are different between 2009 and 2010 (see section 

4.8.1), and they influences the central plant thermal loads. The annual chilled water load, 

the heat recovered, and the heat rejected are 33%, 20% and 10% higher in 2010 

compared to 2009, respectively. The heating water load is 15% lower in 2010 compared 

to 2009. 

  



81 

 

Table 4.16: Seasonally and annual energy use and peak loads, 2009 

Item, GJ/season Winter Spring Summer Fall Year 2009 

    
    (Peak, kW) OFF 2,285 (2700) 11,070 (4925) 235 (2845) 13,595 (4925) 

QCHW (Peak, kW) OFF 2,435 (7495) 11,665 (5700) 245 (2705) 14,345 (7495) 

Qrec. (Peak, kW) OFF 400 (1065) 2,620 (3735) 65   (745) 3,085 (3735) 

Qreject. (Peak, kW) OFF 3,280 (4025) 15,930 (7870) 350 (4000) 19,560 (7870) 

   
    (Peak, kW) 10,825 (8630) 2,620 (2805) 3,105 (1080) 4,345 (3920) 21,140 (8630) 

QBE (Peak, kW) 8,075 (2560) 1,435 (1760) 315   (800) 2,855 (2080) 12,660 (2560) 

QHX-1 (Peak, kW) 9,795 (4630) 1,800 (2060) 175   (560) 3,855 (3465) 15,905 (4630) 

QHX-2 (Peak, kW) 1,240 (4795) 520 (1240) 485 (1035) 580 (2310) 2,755 (4795) 

 
Table 4.17: Seasonally and annual energy use and peak loads, 2010 

Item, GJ/season Winter Spring Summer Fall Year 2010 

    
    (Peak, kW) OFF 3,970 (4375) 13,715 (5330) 570 (4580) 18,255 (5330) 

QCHW (Peak, kW) OFF 4,045 (4870) 14, 535 (5840) 555 (4485) 19,135 (5840) 

Qrec. (Peak, kW) OFF 1,020   (965) 2,500 (1735) 160   (655) 3,680 (1735) 

Qreject. (Peak, kW) OFF 5,030 (7130) 15,720 (6240) 650 (4865) 21,400 (7130) 

   
    (Peak, kW) 8,995 (4385) 2,985 (2530) 3,085 (1715) 3,655 (3050) 17,775 (4385) 

QBE (Peak, kW) 5,875 (2240) 835 (1120) 45   (640) 2,660 (2400) 9,280 (2560) 

QHX-1 (Peak, kW) 7,715 (3930) 985 (1315) 50  (730) 3,065 (2660) 11,250 (3930) 

QHX-2 (Peak, kW) 1,120 (3255) 1,080 (2510) 630  (960) 645 (2135) 3,460 (3255) 

4.8.3 Electric demand and energy use of the central plant equipment 

The electricity used for the installed mechanical equipment in the central plant is 

estimated. The 2009 and 2010 seasonal and annual monitored information are presented 

in Table 4.18 and Table 4.19. 

The total electricity consumption is 17% higher in 2010 compared to 2009. There 

is a large increase in electricity consumption in the spring and the summer 2010 

compared to 2009, 49% and 18% respectively. In the winter and fall, the electricity 

consumption is about 10% lower in 2010 compared to 2009. The electricity consumption 

of the central plant is influenced by the outdoor air conditions: the outdoor air 

temperatures and relative humidity are higher in 2010 compared to 2009 (see section 

4.8.1). 
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Table 4.18: Seasonally average central plant electricity consumption, 2009 

Item 

Season 
Winter Spring Summer Fall Year 2009 

   , kWh/season OFF 131,090 604,485 11,090 746,660 

ECT, kWh/season OFF 1,580 14,800 245 16,625 

Epumps, kWh/season 170,995 167,535 415,995 140,545 899,255 

Eelec, kWh/season 170,995 300,205 1,035,280 151,880 1,662,540 

 
Table 4.19: Seasonally average central plant electricity consumption, 2010 

Item 

Season 
Winter Spring Summer Fall Year 2010 

   , kWh/season OFF 218,545 713,175 32,300 964,020 

ECT, kWh/season OFF 3,960 32,245 465 36,670 

Epumps, kWh/season 154,425 225,120 476,340 106,900 940,410 

Eelec, kWh/season 154,425 447,625 1,221,760 139,665 1,941,100 

4.8.4 Performance characteristics 

The performances of various equipment or groups of equipment are evaluated 

using the coefficient of performance (COP) and the effectiveness for heat exchangers, in 

a similar way as presented in section 4.7.2. Table 4.20 and Table 4.21 present the 2009 

and 2010 seasonal averages. 

The average COP over the summer 2010 season is slightly higher than in 2009, 

which could be explained by the measurements uncertainty (Equation (4.2)). The average 

COP uncertainty over the summer 2009 is ±1.09, while being ±1.24 for the summer 2010. 

Table 4.20: Seasonally average central plant performance indices, 2009 

Item 

Season 
Winter Spring Summer Fall 

     (uncertainty) OFF 5.05±1.14 
5.24±1.03 

(±1.20) 

5.29±0.30 

                 OFF 4.10±0.89 4.31±0.71 4.49±0.32 

                
  OFF 

 

3.86±0.89 
4.04±0.69 4.20±0.34 

           OFF 3.38±0.83 3.38±0.63 3.60±0.36 

      0.47±0.12 0.59±0.20 0.37±0.20 0.59±0.18 

      OFF 0.55±0.31 0.74±0.12 0.71±0.11 
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Table 4.21: Seasonally average central plant performance indices, 2010 

Item 

Season 
Winter Spring Summer Fall 

     (uncertainty) OFF 4.99±0.71  
5.36±0.70 

(±1.42) 

4.53±0.75 

                 OFF 4.07±0.68 4.37±0.61 3.61±0.76 

                
  OFF 3.77±0.69 4.12±0.64 3.28±0.77 

           OFF 3.13±0.68 3.45±0.60 2.67±0.73 

      0.48±0.20 0.48±0.27 0.51±0.16 0.55±0.14 

      OFF 0.67±0.15 0.59±0.11 0.59±0.12 

 

The central plant and modified central plant COP over the summer 2009 and 2010 

are compared with the benchmark scale proposed by Hartman (2001), which considered 

the electricity consumption of chillers, cooling towers and condenser water pumps to 

calculate the COP (Figure 4.20). The average central plant COP and central plant COP*, 

which also includes the heat recovery pump P-5 on the condenser water loop to the heat 

exchanger HX-3, over the summer 2009 and 2010 are evaluated as “good” when 

compared to the benchmark scale. 

 

Figure 4.22: Comparison of central plant and modified central plant COP, summer 2009 and summer 2010 

4.9 Conclusions 

The analysis of monitored data of the CSB showed changes in operation 

compared to the design information. The main differences are modified water flow rate to 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Hartman 2001

C
O

P EXCELLENT

GOOD

FAIR

POOR

Central Plant Central Plant*

2009 2010



84 

 

constant speed pumps and slight variation of the temperature setpoints. The as-operated 

conditions, thermal loads, electricity used, COP and effectiveness of the main equipments 

were analyzed in detail for the first week of the summer 2009, from June 22
nd

 to June 28
th

 

2009 (sections 4.4 to 4.7), and presented for seasonal and yearly data of the year 2009 

and 2010 (section 4.8). 

The comparison between the 2009 and 2010 seasonal and yearly data showed 

higher outdoor air conditions in 2010 compared to 2009. This has a direct effect on the 

total heating, cooling loads and heat rejected, and the seasonal and annual electricity use. 

In terms of heat recovered and COP, the values were similar. The small differences can 

be explained by the uncertainty of the measurements. 

The analyzed information is useful to develop the benchmarking models and to 

calibrate the model of the central cooling plant in the TRNSYS program.  
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5 BENCHMARKING MODELS AND APPLICATION 

 The proposed benchmarking approach, presented in Chapter 3, is tested using 

monitored data from the central plant of the Concordia Sciences Building (CSB), located 

on the Loyola campus in Montréal, Canada. The data used to establish the models are 

obtained through the collaboration of the Physical Plant of Concordia University from the 

Monitoring and Data Acquisition System (MDAS) installed at the CSB. The data 

monitored over the 2009 summer season, from June 22
nd

 to September 20
th

 2009, are 

used to initially evaluate the benchmark models. Additional monitored data, collected 

over the 2010 summer season, from June 21
st
 to September 19

th
 2010, are used to further 

verify the developed models. A total of fifty-eight points are monitored every fifteen 

minutes and available to establish benchmarking models and evaluate the proposed 

approach.  

5.1 Monitored data pre-processing 

 Prior to establishing the benchmark models, a detailed analysis of the monitored 

data is performed to identify any data monitoring problems or outliers. The following 

rules were applied to the data set: 

All monitored data 

1. There could be a time delay in the data recording between some points at start-up 

and shut-down of the equipment between the system signal and recording of 

monitored data points. For example, at start-up, the ON/OFF signal of the chiller 

could indicate that the equipment is ON, while the monitored data point (sensor) 

for the electric power input to the chiller would show a value different from zero 
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only at the next recorded time step, i.e. 15 minutes. If this situation occurs, the set 

of data monitored at this time-step is incomplete and removed from the original 

data set. 

2. In a few cases, it was noticed that at the pump start-up, the calculation of the 

thermal water load, based on temperature difference between the supply and 

return flows, gives a negative value or zero since both temperature sensors are at 

the same temperature. This situation generates an incomplete set of monitored 

data for that time-step and the data are removed from the original data set. 

Training and testing sets 

 To improve the quality of the data used to develop the model, outliers are 

removed from the initial data set. The initial data set includes both the training and testing 

data sets. For each data set selected to establish the benchmark models (training and 

testing sets), outliers are identified for the electric power input, COP, thermal loads and 

water supply and return temperatures. Outliers are observations that are numerically 

distant from the rest of the data. In most cases, an outlier indicates a measurement error 

or an abrupt change in operation that is unusual for normal operation. Outliers removal 

can be done by visual inspection or using a mathematical approach. Measurements 

satisfying the conditions of Equations (5.1a) and (5.1b) are considered to be outliers and 

are automatically eliminated from the data sets used to establish the models.  

            (5.1a) 
            (5.1b) 

 

 where    is the measured value,    is the mean of the measured values in the data 

set, and   is the standard deviation. The standard deviation is a measure of the variability 
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or dispersion of observations about the mean. According to Chebyshev’s theorem, when 

using three standard deviations, there are at least ~90% (8/9) of the observations of any 

distribution that fall in that interval (Walpole et al. 2002). The use of a larger data set for 

training ensures that the observations selected to establish the benchmark models cover a 

wide range of operating conditions without including observations that could increase the 

noise level within the data set. 

Data set used during ongoing commissioning 

 The analysis of monitored data revealed that at start-up, the electrical power input 

to pumps or chillers and positive thermal water loads are often outside the normal 

operation values of the equipment. For example, for chiller CH-1, the electrical power 

input (Figure 5.1) and the evaporator thermal load (Figure 5.2) are higher at start-up. The 

start-up of the chiller creates a spike in electricity demand, while the evaporator load is 

higher because the time for the return chilled water temperature to reach its normal 

operating temperature range is longer than for the supply chilled water; therefore, the 

evaporator load, calculated based on the water temperature difference, is higher. To avoid 

false warnings being sent to the building operators, the first complete set of monitored 

data at start-up is ignored.  
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Figure 5.1: Chiller CH-1 electric power input variation at start-up, September 7
th

 to 13
th

 2009 

 

 

Figure 5.2: Chiller CH-1 evaporator load variation at start-up, September 7
th

 to 13
th

 2009 

Verification set 

 The verification set is used to further evaluate the accuracy of the benchmark 

models. To avoid false errors in the calculation of the various model criteria, the first 

complete set of monitored data at start-up is ignored and the outliers are removed from 

the verification data. 
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5.2 Evaluation criteria 

 Different criteria are used to evaluate the precision of the proposed models, which 

are calculated after the data pre-processing tasks are done (Section 5.1). The coefficient 

of determination (R
2
), which is the sum of squares of the residual compared with the total 

sum of squares of the variation (proportional to the sample variance), is used to evaluate 

the correctness of the identified correlation coefficients of the developed benchmarking 

model (Equation (5.2)). The R
2
 value can vary between 0 and 100% and indicates how 

much the variation of the dependent variable (y) is explained by the variation of 

independent variable (xi). A R
2
 of zero means none of the variation is explained by the 

model, while a R
2
 of 100% means that the model explains the whole variation of the 

dependent variable (y) due to the variation of the independent variables. A R
2
 greater than 

75% is usually considered acceptable for a good relationship amongst the energy and 

independent variables (IPMVP 2007). 

      
         

  
   

          
   

      (5.2) 

 

 where    is the measured value,     is the predicted value,    is the mean of the 

measured value sample data, and   is the number of data used to establish the regression 

equation.  

 The Coefficient of Variance of the Root-Mean-Squared-Error (CV(RMSE)), the 

Root-Mean-Squared-Error (RMSE), and the Mean Bias Error (MBE) are used to assess 

the precision of the models for the different data sets - Equations (5.3) to (5.5) as defined 

by IPMVP (2007). A CV(RMSE) of 3-5% for prediction of power input at the component 

level is acceptable (Haberl and Bou-Saada 1998, Kammerud et al. 1999). For models of 
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whole building energy use, the model is considered acceptable if the CV(RMSE) is less 

than 30% when using hourly data, or 5% to 15% for monthly data (ASHRAE 2002).  

         
 
         

  
   

   
  

     
(5.3) 

      
         

  
   

   
 (5.4) 

    
         

 
   

 
 (5.5) 

 

 An additional criterion, the Relative Error (R.E.), is used to compare the estimates 

of energy consumption of each equipment or equipment group with the measured values 

over the verification set (Equation (5.6)).  

     
          

             
   

         
   

     (5.6) 

5.3 Model types 

New correlations and existing correlations, as well as new ANN models, are 

evaluated for the equipment installed in the CSB. Models are developed that characterize 

the operation of the systems under normal operating conditions (benchmarking). The 

benchmarking models, which are energy baseline models, are obtained and updated using 

monitored data. 

 For each technique, the data set selected from monitored data used to develop the 

benchmarking model is divided in two sub-sets: (1) a training data set and (2) a testing 

data set. Different methods of dividing the selected data set into training and testing data 

sets (e.g., random selection) can be considered. For this project, the training data set uses 

the first two-thirds of the benchmarking data set (Kreider and Haberl 1994) to identify the 

model coefficients or train the ANN models, and the testing data set uses the balance of 
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the data set to verify the correctness of the models before it is used for benchmarking. 

Once the benchmarking model is developed, the actual monitored data, outside the initial 

data set, are compared with the model results to detect abnormal energy performance. 

Different training and retraining techniques using static windows or dynamic windows 

(sliding window or augmented window) are used in this chapter, and the results 

compared. For the correlation-based models, the model coefficients are identified using 

least-square regression in STATGRAPHICS (2008), while for the ANN models, the 

models are trained in MATLAB (2008) with the Bayesian regularization 

backpropagation. 

5.4 Training and testing data sets 

 The techniques used for the development of benchmarking models of the energy 

performance of the central plant equipment using monitored data are presented in this 

section. For general presentation and description of the proposed techniques, refer to 

Chapter 3, section 3.3.1. To facilitate the comparison between the correlation-based and 

ANN models, the same training and testing data sets are used for both models. Examples 

of benchmarking models are presented in Section 5.5. 

 For the correlation-based or ANN models, the models are trained using several 

techniques. The set names represent the period of time from which the data points are 

taken from. The data set excludes the data points when the equipment is not in operation. 

Thus, the data set size indicates the number of time-step (15 minutes) during operation 

for each data set. The first part of the set name indicates the equipment for which the 

model is developed. For example, CH1 for chiller CH-1, while the second part is the 
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abbreviation for the period of data set used to establish the models (Table 5.1). The 

number in front of each abbreviation indicates the period of time used as an initial data 

set, which includes both the training and testing data sets.  

Table 5.1: Definition of the abbreviations used for the various benchmark models 

Abbreviation Signification 

WW Number of work week excluding holidays 

WEH Number of week end including holidays 

H Number of hours used to established the models 

D Number of days used to established the models 

R Number of days before retraining occurs for the sliding window models 

 

For the cooling systems, the equipment is divided into three groups: (1) chiller 

CH-1 and cooling tower CT-1, (2) chiller CH-2 and cooling tower CT-2, and (3) heat 

exchanger HX-3. From June 22
nd

 to July 6
th

 2009, the chiller CH-2 and cooling tower 

CT-2 are the first group of equipment to be start-up, while after July 6
th

 2009, the chiller 

CH-1 and the cooling tower CT-1 become the first group of equipment to be started-up, 

when required. Since the quantity of monitored data during operation is different at the 

beginning of the summer, the models are established with slightly different training data 

set. However, once the initial data set is selected, which is composed of 30 hours of 

operation over the first two weeks of the summer for CH-1 and CT-1 (CH1-30H, CT1-

30H) and the first day of summer for CH-2 and CT-2 (CH2-1D, CT2-1D), the general 

rule to increase the initial training and testing data sets is similar. 

5.4.1 Training data set by static technique 

Static models can be of two different types: (1) a typical static technique that uses 

a pre-defined training and testing data set that includes both working days, weekends and 

holidays, and (2) a split static technique, where models are developed for various day 

types (separate models for working days and weekends & holidays for example).  
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5.4.1.1 Typical static 

For the typical static technique, the initial data set of 30 hours for chiller CH-1 

(CH1-30H) and cooling tower CT-1 (CT1-30H), and of one day for chiller CH-2 (CH2-

1D) and cooling tower CT-2 (CT2-1D) are first used to established the models. 

Additional static models are also evaluated, and the result compared: the data sets, used 

for training and testing, are presented in Table 5.2 for CH-1 and CT-1 and in Table 5.3 

for CH-2 and CT-2. 

Table 5.2: Training and testing data sets for typical static technique, CH-1 and CT-1 

Set name 
Training set Testing set 

Date Data set size Date Data set size 

CH or CT1-30H 06/22 to 06/26 – 22.5 h 85 06/27 to 07/06 – 8 h 29 

CH or CT1-7D 06/22 to 07/10 331 07/11 to 07/12 186 

CH or CT1-10D 06/22 to 07/12 517 07/13 to 07/15 94 

CH or CT1-14D 06/22 to 07/15 610 07/16 to 07/19 227 

CH or CT1-21D 06/22 to 07/19 822 07/20 to 07/26 608 

CH or CT1-28D 06/22 to 07/24 1271 07/25 to 08/02 822 

 
Table 5.3: Training and testing data sets for typical static technique, CH-2 and CT-2 

Set name 
Training set Testing set 

Date Data set size Date Data set size 

CH or CT2-1D 06/22 0:00 to 16:00 47 06/22 16:00 to 24:00 32 

CH or CT2-7D 06/22 to 06/26 443 06/27 to 06/28 192 

CH or CT2-10D 06/22 to 06/27 538 06/28 to 07/01 380 

CH or CT2-14D 06/22 to 06/30 833 07/01 to 07/05 400 

CH or CT2-21D 06/22 to 07/05 1233 07/06 to07/12 91 

CH or CT2-28D 06/22 to 07/10 1336 07/11 to 07/19 49 

5.4.1.2 Split static 

Due to low chilled water demand from the buildings, chiller CH-1 and cooling 

tower CT-1 are only really being operated after July 6
th

; consequently, the development 

of split static models for CH-1 and CT-1 at the beginning of the summer season, where 

different models are used for working days and weekend & holidays, is not possible. 

Therefore, split static models are only presented for the chiller CH-2 and cooling tower 

CT-2. The monitored data from the equipment are used to establish different models for 
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working days (WW) and weekends & holidays (WEH). Table 5.4 specifies the data used 

to establish the models. For instance, the first selected data set contains the first working 

weeks of the summer (CH2-1WW), while the second data set contains one holiday and 

one weekend (CH2-1WEH). The data set size indicates the number of data in the set for 

each monitored variable.  

Table 5.4: Training and testing data sets for split static technique, CH-2 and CT-2 

Set name 
Training set Testing set 

Date Data set size Date Data set size 

CH or CT2-1WW 
06/22 to 06/23 and  

06/25 0:00 to 12:00 
218 06/25 12:00 to 06/26 139 

CH or CT2-1WEH 06/24 and 06/27 184 06/28 95 

CH or CT2-2WW 
06/22 to 06/23, 06/25 to 

06/26 and 06/29 to 06/30 
538 07/02 to 07/03 189 

CH or CT2-2WEH 06/24, 06/27, 06/28, 07/01 383 07/04 to 07/05 120 

5.4.2 Training data set by window technique 

 Two different window types, augmented and sliding, are evaluated for both 

chillers, with different training set size. 

5.4.2.1 Augmented window  

In terms of training and testing, the typical static and the augmented window 

techniques are similar. For example, a 7D typical static model is trained with the same 

data set as the 7D augmented window model. The difference lies in the retraining of the 

model. For the typical static, the pre-defined set size is used to establish the model and 

there is no retraining for the rest of the summer. For the augmented window, the model is 

established and used until additional data are available; the model is then retrained using 

the augmented data set (see Section 3.3.1.2). 

Between June 22
nd

 and July 6
th

 2009, chiller CH-1 and cooling tower CT-1 are the 

second operating group of cooling equipment and are only operating for a total of 30.25 
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hours. The initial model for the cooling equipment group one uses the first 30 hours of 

operation collected over the first two weeks of the summer season, plus the first full week 

of data monitored during which CH-1 and CT-1 are the first group of equipment to be 

started-up when required. As the monitored data become available, the training set size is 

increased every seven days. Thus, the models are then developed using 14, 21 and 28 

days of monitored data, excluding non-operating hours. Data sets for training and testing 

the benchmarking models for chiller CH-1 and cooling tower CT-1, using the augmented 

window technique, are presented in Table 5.5. 

Table 5.5: Training and testing data sets for augmented window technique, CH-1 and CT-1 

Set name 
Training set Testing set 

Date Data set size Date Data set size 

CH or CT1-7D 06/22 to 07/10 331 07/11 to 07/12 186 

CH or CT1-14D 06/22 to 07/15 610 07/16 to 07/19 227 

CH or CT1-21D 06/22 to 07/19 822 07/20 to 07/26 608 

CH or CT1-28D 06/22 to 07/24 1271 07/25 to 08/02 822 

 

 Since chiller CH-2 and cooling tower CT-2 are in operation from the beginning of 

the summer season, the following augmented windows are proposed to establish the 

benchmarking models (Table 5.6). It is important to mention that chiller CH-2 and 

cooling CT-2 operate for 339 hours between June 22
nd

 and July 6
th

 2009 and for 330 

hours between July 7
th

 and September 20
th

 2009. 

Table 5.6: Training and testing data sets for augmented window technique, CH-2 and CT-2 

Set name 
Training set Testing set 

Date Data set size Date Data set size 

CH or CT2-7D 06/22 to 06/26 443 06/27 to 06/28 192 

CH or CT2-14D 06/22 to 06/30 833 07/01 to 07/05 400 

CH or CT2-21D 06/22 to 07/05 1233 07/06 to07/12 91 

CH or CT2-28D 06/22 to 07/10 1336 07/11 to 07/19 49 

5.4.2.2 Sliding window  

 Two different window sizes are used for the cooling equipment: (1) a 14 days 

(14D) window, where the first ten days of data are used to establish the model and the 
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last four days for testing, and (2) a 21 days (21D) window, where the first fourteen days 

of data are used to establish the model and the last seven days of data are used for testing. 

For the first model, the retraining occurs after seven days (R7), while for the second 

model it occurs after ten days (R10) (Table 5.7).  

Table 5.7: Training and testing data sets for sliding window technique 

Set name Training set Testing set Retraining 

CH, CT or HX-14D-R7 
10 days 4 days After 7 days 

CH, CT or HX -14D-R7 

CH, CT or HX -21D–R10 
14 days 7 days After 10 days 

CH, CT or HX -21D–R10 

5.5 Development of benchmarking models for chillers 

 Once pre-processing of the data is completed and the data sets are selected, new 

correlation-based models and ANN models are developed in this study for different 

equipment of the central plant and evaluated using the different training techniques. For 

the chillers, different benchmarking correlation-based and ANN models are proposed and 

compared with existing models as well as with results available in the literature. The 

evaluated models are general models, while the identified model coefficients or trained 

ANN models are case oriented. 

5.5.1 Proposed correlation-based models 

 Previous studies of the performance of the Concordia Sciences Building have 

revealed that the total supply airflow rate does not significantly vary with the variation of 

outdoor air temperature (Monfet et al. 2009); however, the chilled water load and electric 

power input to chiller increase when the outdoor air temperature rises (Figure 5.3), while 

no specific trend was noticed with changes in the outdoor air relative humidity.  
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Figure 5.3: Chiller CH-1 electric power input variation versus outdoor air temperature 

  

The analysis of monitored data shows that the supply chilled water and return 

condenser water temperatures are almost constant (Table 5.8), and the electric power 

input to the chillers increases with outdoor air temperatures. Therefore, the parameters 

used to characterize the performance of the chiller include the evaporator load ratio 

(QE/QEdesign), the supply condenser water temperature and the outdoor air temperature. 

Different correlation-based models for the chiller electric power input and COP are 

proposed: (1) a Multivariable Linear (ML) model for power input defined by Equation 

(5.7) and a Multivariable non-Linear (ML) model for COP defined by Equation (5.8); and 

(2) a multivariable polynomial (MP) model, Equation (5.9) for power input and Equation 

(5.10) for COP.  

Table 5.8: Chillers operating characteristics, summer 2009  

Item Chiller CH-1 Chiller CH-2 

TCHWS°C 6.8 ± 0.7 6.8 ± 0.6 

TCNDR, °C 28.3 ± 0.4 28.5 ± 0.5 
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 where      is the instantaneous electric power input, in kW; COPCH is the 

calculated instantaneous chiller coefficient of performance;     is the instantaneous 

chilled water load, equal to the evaporator load (Equation (4.5)), in kW;            is the 

design evaporator capacity, 3165 kW; TCNDS is the condenser water leaving temperature, 

in °C; and TO/A is the dry-bulb outdoor air temperature, in °C. 

 The models described by Equations (5.7) to (5.10) are valid for normal operating 

conditions of the chillers installed in the central plant, where TCHWS is ~6.8°C and the 

TCNDR ~28°C. 

5.5.2 Existing correlation-based models used for comparison purposes 

This section presents four models available in the literature which can be used to 

evaluate the performance of chillers. Their use as benchmarking models is presented in 

Section 5.5.4.1. 

EnergyPlus model 

One model used by the EnergyPlus program (DOE 2009) simulates the electric 

power input (PCH) of an electric liquid chiller. The chiller power input is determined 

using Equation (5.11): 

               
 

      
                       (5.11) 
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 where PCH is the chiller compressor power, kW and         is the available cooling 

capacity of the chiller in kW, defined by Equation (5.12); 

                         (5.12) 

 

 where       is chiller capacity at reference conditions (reference temperatures and 

flow rates defined by the user) and CapFTemp is the cooling capacity factor for different 

operating temperatures, given by Equation (5.13); COPref  is the reference coefficient of 

performance; EIRFTemp is the energy input to cooling output ratio at full load, given by 

Equation (5.14); and EIRFPLR is the energy input to cooling output ratio at part load 

ratio, given by Equation (5.15). 

 The model, developed by Hydeman et al. (2002) as part of the CoolTools™ 

project sponsored by Pacific Gas and Electric Company (PG&E), uses Equations (5.13) 

to (5.15) to determine the various coefficients used in the chiller power equation (5.11).  

                                
                        

  

                   
(5.13) 

                                
                        

  

                  
(5.14) 

                               
                      

                          (5.15) 

 

 where PLR is the part-load and calculated using Equation (5.16). 

    
  

      
  (5.16) 

 

 The coefficients of the performance curves (Equations (5.13) to (5.15)) can either 

be generated using manufacturer’s data or measured data. In this study, the Hydeman and 
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Gillespie (2002) technique, which is based on Hydeman et al. (2002), is used with some 

modifications for the identification of the coefficients aj, bj, and cj. 

Initial training set 

 The training data set contains monitored data at each time-step of the following 

 variables: PCH QE, COP, TCHWS, TCHWR, TCNDS, and TCNDR, where TCHWS is the 

 supply chilled water temperature; TCHWR is the return chilled water temperature; 

 TCNDR is the return condenser water temperature from the cooling tower; TCNDS is 

 the condenser water leaving temperature to the cooling tower; QE is the 

 instantaneous chilled water load, equal to the evaporator load determined using 

 the formulation presented in ASHRAE 2002; PCH is the instantaneous electric 

 power input; and COP is the coefficient of performance equal to QE/PCH, 

 dimensionless. 

1. In the training data set, the maximum evaporator load QE,max is identified. The 

maximum QE,max and the corresponding electric power PCH,max, and COP are then 

used as the reference values (Qref = QEmax, Pref = PCH,max, and COPref) in the 

modified approach, which is proposed in this study; 

2. For all data in the training data set, the CAPFT is calculated using Equation 

(5.17), where Qref = QE,max and QE is the evaporator load at each time-step;  

      
  

    
  (5.17) 

 

3. The training data set is split into (1) full-load and (2) part-load conditions based 

on the CAPFT values calculated using Equation (5.17). For this study, the full-

load conditions data set was selected for CAPFT values greater than or equal to 



101 

 

0.85 (CAPFT≥0.85), while the part-load conditions for CAPFT values lower than 

0.85 (CAPFT<0.85). A CAPFT greater than 0.85 is selected for the full load 

conditions since the chillers operate around 55-60% of their full design capacity 

most of the time. 

Full-load conditions data set (CAPFT ≥ 0.85)  

4. For the full-load conditions data set (CAPFT ≥ 0.85), the EIRFT is calculated at 

each time-step using Equation (5.18), where CAPFT is calculated using Equation 

(5.17), Pref = PCH,max, and PCH is the instantaneous monitored power input to the 

chiller; 

      
   

          
  (5.18) 

 

5. The full-load conditions data set is used to identify the coefficients aj of Equation 

(5.14) where CapFTemp is equal to CAPFT (Equation (5.17)), and the 

coefficients bj of Equation (5.13) where EIRTemp is equal to EIRFT (Equation 

(5.18)). 

Full-load and part-load conditions data set 

6. Using the coefficients aj and bj identified in (5), the estimates of CapFTemp* 

(Equation (5.13)) and EIRTemp* (Equation (5.14)) are calculated for all the data 

in the training data set, i.e. for the full- and part-load conditions; 

7. The PLR (Equation (5.16)) and chillerEIRFLPR (Equation (5.19)) are calculated 

for all the data in the training data set, i.e. for the full- and part-load conditions, 

where CapFTemp* is the estimate of CapFTemp and EIRTemp* is the estimate of 

EIRTemp; 
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 (5.19) 

 

8. All the data in the training data set are used to identify the coefficients cj of 

Equation (5.15), where EIRFPLR is equal to chillerEIRFLPR (Equation (5.19)); 

9. Using the coefficients ci identified in (8), EIRFPLR* (Equation (5.15)) is 

estimated for all the data in the training data set, i.e. for the full- and part-load 

conditions; 

10. The electric power input to the chiller (Equation (5.11)) is calculated for all data 

points with the variables calculated in (6), CapFTemp* and EIRTemp*, and in (9), 

EIRFPLR*. 

 To illustrate the proposed approach, a sample of data for the CH1-28D data set is 

presented in Table 5.9. The results for the calculations performed on the full-load 

conditions are presented in Table 5.9 and for the full- and part-load conditions in Table 

5.10, while the identified coefficients are presented in Table 5.11. The proposed approach 

is used to identify the coefficients of the performance curves for the electric power input 

to the chiller.  

 Initial training set (Table 5.9) 

1. The maximum evaporator load QEmax =2666 kW is identified at 07/21 12:45 (bold 

values in Table 5.9); therefore Qref = QEmax = 2666 kW, Pref = 517 kW, and 

COPref = 5.157. 

2. CAPFT is calculated using Equation (5.20). For example, at 12:00 on 07/21: 

      
  

    
 

       

       
       (5.20) 
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3. The training data set is split into (1) full-load conditions (FL), where CAPFT ≥ 

0.85 and (2) part-load conditions (PL), where CAPFT < 0.85. 

 Full-load conditions data set (Table 5.9) 

4. For the full-load conditions data set (CAPFT ≥ 0.85), the EIRFT is calculated at 

each time-step using Equation (5.21). For example, at 12:00 on 07/21: 

      
   

          
 

   

         
         (5.21) 

 

5. The coefficients aj of Equation (5.13) and the coefficients bj of Equation (5.14) 

are identified using the calculated CAPFT and EIRFT, respectively, along with 

measurements of temperatures (Table 5.9). The identified coefficients aj and bj for 

both chillers CH-1 and CH-2 are presented in Table 5.11, and compared with the 

default values of a TRANE chiller, as presented in the EnergyPlus program 

(section 5.5.4.1). 

 Full-load and part-load conditions data set (Table 5.10) 

6. Using the coefficients aj and bj, the estimates of CapFTemp* (Equation (5.13)) 

and EIRTemp* (Equation (5.14)) are calculated for all the data in the training data 

set. For example, at 12:00 on 07/21, CapFTemp* = 0.9577033 and EIRTemp* = 

0.9902288. 

7. The PLR (Equation (5.16)) and chillerEIRFLPR (Equation (5.19)) are calculated 

for all the data in the training data set. For example, at 12:00 on 07/21, the PLR = 

0.99716 and: 

               
   

                         
         (5.22) 
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8. The coefficients cj of Equation (5.15) are identified (Table 5.11) by using 

EIRFPLR equal to chillerEIRFLPR, along with the calculated PLR and 

measurements of temperatures. 

9. Using the coefficients ci identified in (8), EIRFPLR* (Equation (5.15)) is 

estimated for all the data in the training data set. For example, at 12:00 on 07/21, 

EIRFPLR* = 0.98197. 

10. The electric power input to the chiller (Equation (5.11)) is calculated for all data 

points with the CapFTemp*, EIRTemp*, EIRFPLR*. For example, at 12:00 on 

07/21 : 

                                                             (5.23) 

 
Table 5.9: Sample of data and calculation of training set for CH1-28D, July 21 2009  

Date Time 

TCHWS, 

°C 

TCNDS, 

°C 

QE, 

kW 

PCH, 

kW COP CAPFT FL PL EIRFT 

Measurements Calculations 

7/21 12:00 6.72 36.66 2546 497 5.123 0.955 X  1.0066 

7/21 12:15 6.72 36.55 2586 505 5.121 0.970 X  1.0070 

7/21 12:30 6.72 37.05 2568 481 5.339 0.963 X  0.9659 

7/21 12:45 6.72 36.89 2666 517 5.157 1.000 X  1.0000 

7/21 13:00 6.78 36.83 2644 511 5.175 0.992 X  0.9965 

            

7/21 20:00 6.72 35.66 2346 445 5.272 0.880 X  0.9781 

7/21 20:15 6.78 35.33 2280 435 5.243 0.855 X  0.9836 

7/21 20:30 6.78 34.94 2200 419 5.252 0.825  X  

7/21 20:45 6.72 35.5 2244 420 5.344 0.842  X  

 
Table 5.10: Sample of calculation for training set of CH1-28D, July 21 2009  

Date Time CapFTemp* EIRTemp* PLR chillerEIRFLPR EIRFPLR* 
PCH, 

kW 

7/21 12:00 0.9577033 0.9902288 0.99716 1.01368 0.98197 481 

7/21 12:15 0.9487055 0.9882193 1.02243 1.04188 1.01906 494 

7/21 12:30 0.9931338 0.9959175 0.96982 0.94064 0.93934 480 

7/21 12:45 0.9779322 0.9938546 1.02257 1.02889 1.01168 508 

7/21 13:00 0.9755892 0.9980719 1.01663 1.01508 1.00464 506 

         

7/21 20:00 0.8920124 0.9654081 0.98647 0.99951 0.98965 440 

7/21 20:15 0.8714134 0.9676649 0.98161 0.99781 0.99049 431 

7/21 20:30 0.8576679 0.9543319 0.96235 0.99016 0.97481 412 

7/21 20:45 0.8848609 0.9600703 0.95127 0.95627 0.95004 417 
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Table 5.11: Example of coefficients for the electric power input models for chillers  

ITEM CH1-28D CH2-7D Trane 

a0 55.6849 11.9917 -0.2176 

a1 -5.9214 -7.7791 -0.0494 

a2 0.13986 0.71449 8.70 E-05 

a3 -1.98856 0.86498 0.09612 

a4 0.01810 -0.00760 -0.00203 

a5 0.11092 -0.05142 0.00254 

b0 -42.7144 -51.5804 -0.0199 

b1 6.25958 22.43780 -0.07848 

b2 -0.19697 -2.30418 0.00194 

b3 1.19876 -1.34114 0.07123 

b4 -7.36280 E-03 -3.78277 E-03 -9.17380E-04 

b5 -0.09546 0.24441 -0.00058 

c0 1.94517 2.33977 0.35161 

c1 -0.01389 -0.08433 0.00921 

c2 -1.49532 E-03 6.53170 E-04 -2.382325E-05 

c3 -1.91033 -1.91995 0.12232 

c4 -1.53332 -0.10428 -0.18201 

c5 0.12419 0.07856 -0.00784 

c6 0.46424 0.03295 0.68849 

 

York & Cappiello (Y&C) model 

The model proposed by York and Cappiello (1982) estimates the electric power 

input to chillers based on a triquadratic polynomial (Equation (5.24)). To identify the 

coefficients dj, the following monitored data points must be available: ECH, QE, TCHWS, 

and TCNDR. 

                                     
          

 

         
                                  

                          

(5.24) 

 

 where the coefficients di have no physical meaning and are identified with 

available data points. 
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Gordon & Ng (G&Ng) model 

 Gordon and Ng (2000) proposed a different model that is based on the following 

monitored data points: COP, QE, TCHWR, and TCNDR. The three-parameter model is defined 

by Equation (5.25). 

 
 

   
   

     
 

     
      

     
 

  
   

      
       

  

      
     

   

            

     
  (5.25) 

 

 where the coefficients e1 corresponds to the total entropy production in the chiller, 

e2 corresponds to the heat losses (or gains) from (or into) the chiller, e3 corresponds to the 

total heat exchanger thermal resistance; the chilled water return and condenser water 

return temperatures are in Kelvin. The coefficients ej are identified using Equation (5.25) 

along with measurements and used in (Equation (5.26)) to evaluate the electricity power 

input of the chiller.  

        

 
 
 
 
 

 

 
 
   

     
 

  
    

      
       

  

      
     

  

     
 

     
    

  

     
 

 

 
 

  

 
 
 
 
 

 (5.26) 

 

Swider model 

Swider (2003) proposed a simple model to estimate the COP of chillers (Equation 

(5.27)) that is evaluated in this study for benchmarking purposes. Given the COP, TCHWR, 

and TCNDR, the fi coefficients are identified. 

                            (5.27) 

5.5.3 Proposed ANN models 

 The proposed benchmark ANN models are developed using MATLAB (2008). 

The ANN model output is the chiller power (ECH) in kW and the coefficient of 
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performance (COPCH). The proposed models are based on the same input variables used 

in the correlation-based models, presented in Sections 5.5.1 and 5.5.2, for the same 

training and testing set sizes. The inputs and reference model names are presented in 

Table 5.12. 

Table 5.12: ANN model inputs  

ANN inputs Reference names 

QE/QEdesign, TCNDS, TO/A Proposed 

QE, TCNDR, TCHWS Y&C 

QE, TCNDR, TCHWR G&Ng and Swider 

5.5.4 Discussion of results 

 This section presents the results over the training and testing set for the developed 

benchmark models. The coefficients of the correlation-based models, which are identified 

using the training data set and STATGRAPHICS (2008), are presented in Appendix C. 

When the correlation-based model estimates the electric power input, rather than directly 

estimating the COP, the COP is calculated using Equation (5.28). 

    
                      

                           
 (5.28) 

 

 For the sliding window technique, the results are presented in Monfet and 

Zmeureanu (2011) for the Power-ML model for the electric power input to the chillers. 

The results demonstrated that the monitored data available to establish the models have a 

great impact on the prediction made by the model. For chiller CH-1, between July 6
th

 and 

August 12
th

 2009 when it is the first chiller to be start-up when required, both sliding 

window sizes (14 days and 21 days) provide accurate identification of the correlation 

coefficients, α, β and γ, with R
2
 of about 98%. Better results are obtained with the 14-day 

sliding window (CH1-14D-R7): the predictions over the testing data set have CV(RMSE) 
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values below 9%, and the average MBE below -19.0 kW (Monfet and Zmereuanu 2011). 

For chiller CH-2, since only a limited amount of monitored data is available to establish 

the model, the accuracy of the predictions varies throughout the testing data sets, with 

large CV(RMSE) and MBE values. Therefore, the sliding window technique is not 

recommended if the chiller is less frequently used (in this case less than 25% of time for 

most of the summer 2009). The models are more accurate when the operation is over a 

longer period of time.  

Reddy et al. (2003a) compared the sliding window approach and the incremental 

window approach applied to two different chillers. The incremental window of 100 data 

points (from hourly data) or 200 data points (from 15-minute data) is an acceptable 

window period for the initial model identification (larger sliding window improved the 

model predictions (Reddy et al. 2003a)). The two sliding windows presented larger 

variability. Reddy et al. (2003b) found, by analyzing the coefficient of variance of the 

prediction errors, that the incremental window approach is preferable to be used. 

Since the operation of both chillers varies throughout the summer, the sliding 

window technique is not recommended. Therefore, no further testing and evaluation of 

the sliding window technique is included in this study. 

5.5.4.1 Training and testing 

 The models for the chillers are trained using data sets presented in Table 5.2 to 

Table 5.4 for the static technique and Table 5.5 and Table 5.6 for the augmented window 

technique. Results are presented for the correlation-based and ANN models. For all 
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tables, the light grey cells represent the results that are part of both the typical static and 

augmented window techniques. 

Proposed correlation-based models 

 Four different models are proposed to evaluate the performance of the chillers: (1) 

multivariable linear and non-linear models (ML), Equation (5.7) for power and Equation 

(5.8) for COP, and (2) multivariable polynomial (MP) models, Equation (5.9) for power 

and Equation (5.10) for COP. The identified coefficients, αj, βj, γj, and δ , are presented in 

Table 5.13 for the electric power input and in Table 5.14 for the COP. 

 The coefficients identified for chiller CH-1 and chiller CH-2 are different for both 

the proposed electric power input and COP models, thus demonstrating the need to 

develop different models even if the chillers are identical (Table 5.13 and Table 5.14). 

The difference in the performance characteristics of the chillers are a result of distinct 

operating patterns. Also, since different data sets are used to develop each model, the 

identified coefficients vary from one data set to another. 

Table 5.13: Model coefficients for the electric power input for chillers - proposed models 

Set name 
Power-ML Power-MP 

α1 α 2 α 3 β0 β1 β2 β3 β4 β5 

CH1-30H 464.60 0.70191 0.81996 -5408.81 223.720 216.50 -4.9612 330.63 0.64336 

CH1-7D 510.92 1.82066 -0.99732 1055.96 132.120 271.08 1.1741 -66.57 -0.73922 

CH1-10D 476.80 2.31547 -0.85339 1312.93 65.781 348.69 1.4013 -82.53 -0.70090 

CH1-14D 471.72 2.36141 -0.79136 1253.31 57.131 362.42 1.3316 -78.54 -0.69385 

CH1-21D 507.46 2.24646 -1.28093 1742.77 44.928 373.05 1.8171 -109.32 -0.85319 

CH1-28D 530.85 2.01938 -1.40941 1640.15 98.936 329.71 1.6884 -101.71 -0.88002 

CH2-1D 492.94 0.75163 1.79606 1042.26 0.021 510.90 0.9918 -62.639 -0.16431 

CH2-7D 602.74 1.37629 -1.83149 1936.68 140.262 256.95 2.1452 -124.95 -1.08592 

CH2-10D 601.30 1.33543 -1.75639 1920.91 121.095 288.99 2.1109 -123.49 -1.27857 

CH2-14D 580.98 1.37976 -1.44529 2007.90 105.695 300.35 2.1768 -128.45 -1.13956 

CH2-21D 574.21 1.37861 -1.21520 2056.98 67.068 350.78 2.1870 -130.80 -0.97738 

CH2-28D 573.29 1.41835 -1.21357 2213.31 47.887 374.38 2.3267 -140.34 -0.98673 

CH2-1WW 539.65 1.00756 0.35866 1885.38 2.769 434.27 1.9821 -120.10 0.01066 

CH2-1WEH 582.48 0.13299 0.65181 -515.54 392.304 154.45 -0.4917 36.00 -0.43687 

CH2-2WW 584.42 1.75760 -2.23004 2316.38 72.953 343.50 2.4442 -146.94 -1.36038 

CH2-2WEH 545.20 0.44678 1.02425 -759.71 391.460 137.73 -0.7153 50.81 -0.09463 
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Table 5.14: Model coefficients for the coefficient of performance for chillers - proposed models 

Set name 
COP-ML COP-MP 

γ1 γ 2 γ 3   1   2   3   4   5 

CH1-30H 0.06274 0.18691 -0.01942 1.5025 0.5489 -0.00727 0.40527 -0.01599 

CH1-7D 0.01451 0.14956 0.01773 -6.5134 10.1854 -0.00757 0.30205 0.01215 

CH1-10D -0.21018 0.16761 0.00985 -8.5893 12.0013 -0.00591 0.23678 0.01129 

CH1-14D -0.22241 0.16943 0.00831 -8.4305 11.7326 -0.00563 0.23020 0.01098 

CH1-21D -0.13141 0.15578 0.01651 -7.1582 10.4771 -0.00607 0.25108 0.01292 

CH1-28D -0.03979 0.14584 0.02017 -7.0071 10.1708 -0.00587 0.24666 0.01456 

CH2-1D -0.09780 0.16260 -0.00948 -5.8075 7.8268 -0.00349 0.21420 -0.02632 

CH2-7D 0.11646 0.12850 0.02508 -6.8091 10.8512 -0.01026 0.37961 0.01736 

CH2-10D 0.11836 0.13079 0.02237 -6.3936 10.1936 -0.00995 0.37282 0.02055 

CH2-14D 0.07874 0.13444 0.02208 -6.4561 10.3185 -0.00978 0.36660 0.02012 

CH2-21D 0.03928 0.13959 0.01646 -6.3274 9.9876 -0.00881 0.33936 0.01719 

CH2-28D 0.01328 0.14202 0.01460 -6.3922 9.9527 -0.00850 0.32996 0.01710 

CH2-1WW -0.06884 0.16486 -0.01610 -4.9122 8.1320 -0.00739 0.31945 -0.00308 

CH2-1WEH 0.11347 0.16023 -0.02401 -5.3292 6.8202 -0.00435 0.23519 0.00503 

CH2-2WW 0.12552 0.12000 0.04212 -6.1646 9.7600 -0.00940 0.35756 0.02486 

CH2-2WEH -0.02247 0.17377 -0.03183 -5.9575 7.8975 -0.00437 0.22793 0.00052 

 

 For the Power-ML model for chiller CH-1, the CH1-30H, the CH1-10D and the 

CH1-21D data sets provide the best results, with CV(RMSE) below 4.4% and average 

MBE below ±4.1 kW over the testing set (Table 5.15). For chiller CH-2, over the testing 

data set for the typical static and augmented window techniques, the maximum 

CV(RMSE) is 5.0% and the average MBE below ±6.8 kW, with the exception of the 

CH2-28D, where the CV(RMSE) is 7.0% and the average MBE is -20.6 kW (Table 5.15). 

For the model developed using the split static technique, the results are accurate over the 

testing set when the CH2-2WW data set and the CH2-1WEH are used for training, the 

CV(RMSE) are lower than 4.9% over the testing set. 

 For the Power-MP, the models developed using the typical static and augmented 

window techniques provide accurate results over the testing set for all training set size for 

chillers CH-1 and CH-2, with CV(RMSE) below 4.3% and RMSE below 15.4 kW (Table 

5.16). The best results are obtained for the CH1-30H and CH1-10D data sets for chiller 

CH-1 and the CH2-1D and CH2-28D data set for chiller CH-2. For the split static 



111 

 

technique, the models developed provide accurate results when the CH2-2WW and CH2-

1WEH data set are used for training, with CV(RMSE) below 3.4% over the testing set. 

Table 5.15: Results for the electric power input models for chillers, static and augmented window 

techniques - proposed correlation-based ML model 

Set name 
Training set Testing set 

R
2
, % CV, % RMSE, kW CV, % RMSE, kW MBE, kW 

CH1-30H 99.89 3.4 10.5 2.2 6.5 1.33 

CH1-7D 99.81 4.5 14.3 5.5 13.2 -8.07 

CH1-10D 99.82 4.5 13.0 3.9 9.5 -3.31 

CH1-14D 99.82 4.4 12.5 6.3 19.5 -10.15 

CH1-21D 99.79 4.8 13.8 4.4 14.6 -4.04 

CH1-28D 99.81 4.6 14.2 5.4 17.1 8.77 

CH2-1D 99.91 3.1 8.8 2.8 9.9 6.77 

CH2-7D 99.61 6.5 21.9 3.2 10.1 -0.11 

CH2-10D 99.65 6.1 20.2 4.5 14.8 3.85 

CH2-14D 99.65 6.0 19.8 4.9 15.2 -4.98 

CH2-21D 99.70 5.7 18.4 5.0 11.4 -6.47 

CH2-28D 99.69 5.8 18.5 7.0 29.5 -20.57 

CH2-1WW 99.83 4.2 14.2 12.8 41.3 31.07 

CH2-1WEH 99.92 3.0 10.2 2.8 9.5 2.62 

CH2-2WW 99.65 6.0 19.7 4.9 17.7 -5.57 

CH2-2WEH 99.91 3.0 10.0 6.6 15.2 -1.40 

 
Table 5.16: Results for the electric power input models for chillers, static and augmented window 

techniques - proposed correlation-based MP model 

Set name 
Training set Testing set 

R
2
, % CV, % RMSE, kW CV, % RMSE, kW MBE, kW 

CH1-30H 95.28 3.2 9.8 2.5 7.5 2.92 

CH1-7D 96.11 3.9 12.4 3.7 8.8 0.29 

CH1-10D 97.89 3.8 11.1 4.0 9.7 -3.24 

CH1-14D 98.01 3.9 10.9 3.8 11.8 -7.61 

CH1-21D 98.15 3.7 10.8 2.9 9.7 -1.36 

CH1-28D 98.55 3.4 10.5 4.2 13.4 5.75 

CH2-1D 98.78 3.0 8.6 2.2 7.6 1.43 

CH2-7D 97.64 4.3 14.5 3.9 12.5 -5.71 

CH2-10D 97.53 4.2 13.9 3.7 12.1 0.68 

CH2-14D 97.22 4.3 14.1 3.8 11.8 -1.19 

CH2-21D 97.83 4.1 13.3 4.1 9.4 -1.50 

CH2-28D 98.04 4.1 13.1 3.7 15.4 -12.13 

CH2-1WW 99.79 3.2 10.8 8.8 28.3 20.15 

CH2-1WEH 99.09 2.5 8.5 2.6 8.8 1.12 

CH2-2WW 97.03 4.3 14.2 3.4 12.1 -1.05 

CH2-2WEH 99.01 2.6 8.5 6.9 15.9 4.34 

 

For the proposed COP-ML models, the CV(RMSE) are 2.8% and 5.2% for the 

CH1-30H and CH1-10D data set over the testing set, respectively (Table 5.17). For 

chiller CH-2, the CH2-1D and CH2-7D provide the best results over the testing set with 
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CV(RMSE) of 3.6% and 4.0%, respectively. The average MBE errors are low for all data 

set, ±0.36. The split static technique does not provide accurate results over the testing set 

with CV(RMSE) greater than 5%, except for the model developed using one week-end 

and holiday (CH2-1WEH). 

Table 5.17: Results for the coefficient of performance for chillers, static and augmented window techniques 

- proposed correlation-based ML model 

Set name 
Training set Testing set 

R
2
, % CV, % RMSE CV, % RMSE MBE 

CH1-30H 99.84 4.0 0.2 2.8 0.2 -0.02 

CH1-7D 99.64 5.9 0.3 11.5 0.6 0.33 

CH1-10D 99.64 6.0 0.3 5.2 0.3 0.04 

CH1-14D 99.66 5.9 0.3 8.2 0.4 0.21 

CH1-21D 99.62 6.3 0.3 6.6 0.3 0.12 

CH1-28D 99.61 6.3 0.3 7.6 0.4 -0.19 

CH2-1D 99.86 3.8 0.2 3.6 0.2 -0.07 

CH2-7D 99.19 9.1 0.5 4.0 0.2 -0.03 

CH2-10D 99.31 8.4 0.4 6.0 0.3 -0.07 

CH2-14D 99.33 8.2 0.4 6.7 0.3 0.11 

CH2-21D 99.41 7.7 0.4 7.3 0.3 0.11 

CH2-28D 99.39 7.8 0.4 11.0 0.5 0.36 

CH2-1WW 99.64 6.0 0.3 15.8 0.9 -0.68 

CH2-1WEH 99.85 3.9 0.2 2.8 0.1 -0.05 

CH2-2WW 99.36 8.1 0.4 6.8 0.3 0.12 

CH2-2WEH 99.85 3.9 0.2 9.2 0.4 0.04 

 

 The proposed COP-MP model performs well for all typical static and augmented 

window training set sizes, with CV(RMSE) below 5.0% and average MBE below ±0.12 

over the testing sets (Table 5.18) for both chillers. The best results are obtained for the 

CH1-30H and CH1-21D data sets for chiller CH-1 and the CH2-1D and CH2-28D data 

sets for chiller CH-2. The split static technique performs well for models developed with 

two work weeks (CH2-2WW) and two weekend and holidays (2WEH), with CV(RMSE) 

below 5.0% and average MBE below ±0.02. 

 The statistical criteria calculated for the split static technique show no 

improvement in the prediction over the testing set compared with the other proposed 

techniques.  
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Table 5.18: Results for the coefficient of performance for chillers, typical static and augmented window 

techniques - proposed MP model 

Set name 
Training set Testing set 

R
2
, % CV, % RMSE CV, % RMSE MBE 

CH1-30H 99.88 3.4 0.2 2.2 0.1 -0.03 

CH1-7D 99.84 4.0 0.2 4.3 0.2 0.08 

CH1-10D 99.85 3.9 0.2 4.1 0.2 0.06 

CH1-14D 99.85 3.9 0.2 3.4 0.2 0.09 

CH1-21D 99.87 3.7 0.2 2.9 0.2 0.01 

CH1-28D 99.88 3.4 0.2 5.0 0.2 -0.12 

CH2-1D 99.91 3.0 0.2 3.3 0.2 -0.12 

CH2-7D 99.76 4.9 0.3 3.7 0.2 0.10 

CH2-10D 99.78 4.7 0.2 4.0 0.2 -0.04 

CH2-14D 99.77 4.8 0.3 4.0 0.2 0.03 

CH2-21D 99.80 4.5 0.2 4.3 0.2 0.05 

CH2-28D 99.80 4.5 0.2 3.1 0.2 0.11 

CH2-1WW 99.87 3.7 0.2 9.8 0.6 -0.41 

CH2-1WEH 99.94 2.5 0.1 2.4 0.1 -0.01 

CH2-2WW 99.75 5.0 0.3 3.3 0.2 0.01 

CH2-2WEH 99.93 2.7 0.1 5.0 0.2 0.02 

 

 Based on the analysis of the proposed models over the testing data sets, the 

proposed MP-models provide the most accurate results over the testing sets for both 

chillers when established using the typical static or augmented window techniques. For 

the MP models, the models developed with CH1-30H, CH1-10D, CH2-1D and CH2-28D 

provide the best results over the testing set. For chiller CH-1, over the testing set, the 

CV(RMSE) is below 2.9% for both the Power-MP and COP-MP. The RMSE and MBE 

are below ±9.7 kW and ±2.9 kW for the Power-MP model and 0.2 and ±0.03 for the 

COP-MP model, respectively. For chiller CH-2, the CV(RMSE) are below 3.7% for the 

Power-MP and COP-MP model. The RMSE and MBE are below ±15.4 kW and ±12.1 

kW for the Power-MP and 0.2 and ±0.1 for the COP-MP models, respectively. 

Existing correlation-based models 

 For the existing models, the EnergyPlus model (Table 5.19) provides good results 

over the training sets for models established using 30 hours or 28 days of data for chiller 

CH-1, and more than 7 days of data for chiller CH-2. Over the testing set, the CV(RMSE) 
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are below 4.5% for the CH1-30H and CH1-28D data sets. For chiller CH-2, the 

developed models provide good results over the testing sets, with the exception of the 

CH2-1D data set: the CV(RMSE) are below 4.2% and the average MBE below -10.8 kW.  

Table 5.19: Results for the electric power input model for chillers, typical static and augmented window 

techniques - proposed technique for the EnergyPlus model 

Set name 
Training set Testing set 

CV, % RMSE, kW CV, % RMSE, kW MBE, kW 

CH1-30H 2.9 8.9 2.5 7.4 1.72 

CH1-7D 5.3 16.9 5.4 12.9 -3.95 

CH1-10D 5.5 16.1 12.3 29.8 -3.42 

CH1-14D 8.4 23.8 7.4 22.8 -5.29 

CH1-21D 6.5 18.8 7.2 24.1 -1.37 

CH1-28D 3.7 11.4 4.5 14.3 6.25 

CH2-1D 10.8 30.8 11.0 37.7 10.41 

CH2-7D 4.9 16.4 4.0 12.9 -5.56 

CH2-10D 4.8 15.8 4.2 13.9 -1.73 

CH2-14D 4.2 13.9 3.9 12.1 -2.21 

CH2-21D 4.0 12.9 4.0 9.0 -1.34 

CH2-28D 4.1 13.2 3.5 14.5 -10.82 

 

 Pre-determined coefficients are available in the EnergyPlus program. The chillers 

installed at the Concordia Sciences Building are Trane CVHF0910 models with COP of 

5.76 at design conditions. This model is not available as a default in EnergyPlus. 

Therefore, the Trane chiller model that has the closest capacity, which is the Trane 

CVHF0796 with COP of 6.4, is used for comparison purposes. The coefficients defined 

in EnergyPlus are presented in Table 5.11. Figure 5.4 presents the measured electric 

power input variations compared to the EnergyPlus model developed using the proposed 

technique for the CH1-28D for chiller CH-1 and the default EnergyPlus model. The 

prediction made by the proposed technique over part of the testing set (July 29
th

 to July 

31
st
 2009), shows agreement with the measured data, especially when the electric power 

input is high, while the prediction made using the default Trane coefficients available in 

EnergyPlus underestimates the electric power input. The CV(RMSE) over the testing set 
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for the CH1-28D using the proposed approach is 4.5%, while being 12.3% when the 

Trane coefficients available in EnergyPlus are used. 

 

Figure 5.4: Chiller CH-1 power electric input variation for EnergyPlus model, July 29
th

 to July 31
st
 2009 

 For the Y&C model, the CV(RMSE) are below 5.1% over the testing set except 

for models developed using the split static technique for chillers CH-1 and CH-2 (Table 

5.20). The model developed with the CH1-30H, CH1-21D, CH2-1D and CH2-21D 

provide the most accurate results. 

Table 5.20: Results for the electric power input model for chillers, static and augmented window 

techniques - York & Cappiello model 

Set name 
Training set Testing set 

R
2
, % CV, % RMSE, kW CV, % RMSE, kW MBE, kW 

CH1-30H 96.42 2.8 0.2 2.1 0.1 0.28 

CH1-7D 95.57 4.1 13.2 4.9 11.7 1.96 

CH1-10D 97.79 4.0 11.6 4.1 9.9 -3.49 

CH1-14D 97.91 4.0 11.3 5.1 15.8 -11.38 

CH1-21D 97.74 4.1 12.0 3.2 10.8 -3.51 

CH1-28D 98.27 3.7 11.5 4.7 14.9 6.93 

CH2-1D 98.92 2.8 8.1 2.4 8.4 2.13 

CH2-7D 95.38 6.0 20.2 4.3 13.7 -10.12 

CH2-10D 95.36 5.8 19.1 4.5 14.6 -1.63 

CH2-14D 94.86 5.8 19.1 4.1 12.7 -4.60 

CH2-21D 96.36 5.3 17.1 3.9 8.9 -0.49 

CH2-28D 96.75 5.3 16.7 4.7 19.6 -15.92 

CH2-1WW 98.32 3.8 12.7 12.4 39.8 29.89 

CH2-1WEH 99.17 2.4 8.1 2.4 8.1 1.69 

CH2-2WW 93.80 6.3 20.5 4.0 14.5 -9.05 

CH2-2WEH 99.04 2.5 8.3 7.0 16.2 3.63 
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 For the Gordon & Ng model, the CV(RMSE) are below 5.0% over the testing set 

for chiller CH-1 and CH-2, except for the models developed for chiller CH-2 with 28 

days of data and the split static technique (Table 5.21). For the split static technique, the 

models developed using two working weeks (CH2-2WW) provide accurate results with 

CV(RMSE) below 4.3% and average MBE of ±9.7 kW over the testing set. 

Table 5.21: Results for the electric power input model for chillers, static and augmented window 

techniques - Gordon & Ng model 

Set name 
Training set Testing set 

R
2
, % CV, % RMSE, kW CV, % RMSE, kW MBE, kW 

CH1-30H 99.73 3.7 11.1 2.5 7.3 -2.20 

CH1-7D 99.60 4.5 14.3 3.5 8.5 -1.72 

CH1-10D 99.69 4.3 12.4 4.3 10.5 -4.61 

CH1-14D 99.69 4.3 12.1 4.8 14.9 -11.14 

CH1-21D 99.68 4.4 12.6 3.4 11.4 -3.49 

CH1-28D 99.72 4.0 12.4 5.0 15.8 7.29 

CH2-1D 99.84 3.2 9.2 2.6 8.8 3.90 

CH2-7D 99.34 6.2 20.8 3.9 12.5 -8.18 

CH2-10D 99.41 5.9 19.5 4.6 14.9 -1.85 

CH2-14D 99.42 5.9 19.5 4.2 13.1 -4.49 

CH2-21D 99.53 5.4 17.6 3.4 7.6 -1.47 

CH2-28D 99.54 5.5 17.4 5.2 21.7 -18.02 

CH2-1WW 99.74 4.2 14.2 11.9 38.1 27.06 

CH2-1WEH 99.88 2.6 8.8 2.7 9.2 2.22 

CH2-2WW 99.28 6.4 21.1 4.3 15.5 -9.72 

CH2-2WEH 99.85 2.7 9.1 6.4 14.8 3.90 

 

 If the York and Cappiello and the Gordon-Ng models are used to evaluate the 

COP (Equation (5.28)), the CV(RMSE) are below 4.6% and the average MBE below ± 

0.2 for chiller CH-1 over the testing set (Table 5.22). For chiller CH-2, the CV(RMSE) 

varies between 2.6% and 6.5% over the testing set, with the exception of the model 

developed using one work week of data (CH2-1WW).  

 For the existing COP model (Swider 2003) for chiller CH-1, the CV(RMSE) vary 

between 3.8% and 8.1% over the training set; the CH1-30H and the CH1-21D data sets 

provide the best results over the testing set, with CV(RMSE) below 6.2% and average 

MBE below ±0.12 with variations within ±0.9 (Table 5.23). For chiller CH-2, the split 
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static models have CV(RMSE) greater than 5% over the testing set, except for the CH1-

1WEH model. The CH2-1D and the CH2-7D data sets provide the best results over the 

testing set, with CV(RMSE) below 3.6% and average MBE below ±0.05 with variations 

within ±0.8. 

Table 5.22: Results for the coefficient of performance for chillers, static and augmented window techniques 

- calculated from the existing electric power input models 

Set name 

COP – Power Y&C COP - Power G&Ng 

Training set Testing set Training set Testing set 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH1-30H 2.8 0.2 1.9 0.1 -0.003 3.6 0.2 2.4 0.1 0.04 

CH1-7D 4.2 0.2 5.0 0.2 -0.06 4.6 0.3 3.3 0.2 0.02 

CH1-10D 3.9 0.2 3.8 0.2 0.06 4.3 0.2 4.1 0.2 0.09 

CH1-14D 3.9 0.2 4.6 0.2 0.18 4.2 0.2 4.5 0.2 0.18 

CH1-21D 4.0 0.2 3.2 0.2 0.05 4.3 0.2 3.4 0.2 0.05 

CH1-28D 3.8 0.2 5.2 0.3 -0.13 4.0 0.2 5.6 0.3 -0.14 

CH2-1D 2.5 0.1 2.4 0.1 -0.04 2.9 0.1 2.4 0.1 -0.06 

CH2-7D 6.3 0.3 4.6 0.2 0.18 6.5 0.3 4.0 0.2 0.14 

CH2-10D 6.0 0.3 4.7 0.2 0.02 6.2 0.3 4.8 0.3 0.03 

CH2-14D 6.0 0.3 3.9 0.2 0.07 6.2 0.3 3.9 0.2 0.06 

CH2-21D 5.4 0.3 4.1 0.2 -0.003 5.6 0.3 3.3 0.2 0.02 

CH2-28D 5.3 0.3 4.6 0.2 0.19 5.5 0.3 5.0 0.2 0.21 

CH2-1WW 3.8 0.2 11.9 0.7 -0.52 4.1 0.2 11.3 0.6 -0.47 

CH2-1WEH 2.4 0.1 2.2 0.1 -0.02 2.6 0.1 2.4 0.1 -0.02 

CH2-2WW 6.5 0.3 4.0 0.2 0.14 6.7 0.4 4.1 0.2 0.14 

CH2-2WEH 2.4 0.1 5.3 0.3 -0.08 2.7 0.1 5.0 0.2 -0.09 

 
Table 5.23: Results for the coefficient of performance for chillers, static and augmented window techniques 

- existing Swider model 

Set name 
Training set Testing set 

R2, % CV, % RMSE, kW CV, % RMSE, kW MBE, kW 

CH1-30H 99.85 3.8 0.2 2.6 0.2 0.02 

CH1-7D 99.70 5.5 0.3 11.9 0.6 0.37 

CH1-10D 99.58 6.5 0.3 6.4 0.3 0.08 

CH1-14D 99.69 6.4 0.3 7.9 0.4 0.14 

CH1-21D 99.63 6.1 0.3 6.2 0.3 0.12 

CH1-28D 99.65 5.9 0.3 7.0 0.4 -0.17 

CH2-1D 99.87 3.6 0.2 3.6 0.2 -0.01 

CH2-7D 99.36 8.1 0.4 3.2 0.2 0.05 

CH2-10D 99.45 7.4 0.4 5.3 0.3 -0.01 

CH2-14D 99.47 7.3 0.4 5.9 0.3 0.14 

CH2-21D 99.54 6.8 0.4 7.9 0.4 0.18 

CH2-28D 99.52 6.9 0.4 8.7 0.4 0.32 

CH2-1WW 99.71 5.5 0.3 13.3 0.8 -0.59 

CH2-1WEH 99.88 3.6 0.2 2.8 0.1 -0.06 

CH2-2WW 99.41 7.7 0.4 5.9 0.3 0.20 

CH2-2WEH 99.85 3.9 0.2 9.6 0.5 0.16 
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The statistical results calculated over the training and testing sets for the proposed 

models are comparable to the one calculated for the existing models. Figure 5.5 and 

Figure 5.6 present a comparison of the models providing the lowest CV(RMSE) over the 

training and testing set for the proposed and existing correlation-based models for the 

electric power input and COP of chillers, respectively. Based on the training and testing 

set analysis, the proposed multivariate polynomial (MP) models for the electric power 

input and COP, followed by the G&Ng and the Y&C models provide the most accurate 

predictions for the chillers used in this case study.  

 

Figure 5.5: Comparison of the proposed and existing correlation-based model for the chillers power 

electric input over the training and testing sets 

 

 

Figure 5.6: Comparison of the proposed and existing correlation-based model for the chillers COP over 

the training and testing sets 
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ANN models 

 For each proposed models (Table 5.12), the ANN model architecture is composed 

of three inputs, one hidden layer with 5 neurons for example and two outputs (Figure 

5.7). 

 

Figure 5.7: General feedforward ANN model 

 

 For the chiller models, since the number of inputs and outputs are low, only one 

hidden layers is used. Also, since the number of input is fewer than 5, approximately 

twice as many hidden neurons are used in the proposed network (Priddy and Keller 

2005). Therefore, the models are trained with various training set size (30H, 7D, 10D, 

14D, 21D and 28D) for different number of neurons per hidden layer (one hidden layer 

(1H) with 3 to 12 neurons – 1H3N to 1H12N). For each ANN models, different 

combinations of neurons per layers are tested and the number of neurons that provides the 

best results in terms of CV(RMSE) and MBE over the testing set, are selected. The 

results obtained for each training set sizes and number of neurons are presented in 

Appendix D. 

 For the models developed using the inputs to the new proposed model, the models 

developed using the typical or augmented window techniques provide accurate results 

with CV(RMSE) below 5.8% for both the electric power input and COP over the testing 
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set (Table 5.24). For chiller CH-1, the MBE and the RMSE are the lowest for the model 

developed for the CH1-21D-1H9N. For chiller CH-2, the split static models, the results 

are only within the 5% acceptable CV(RMSE) range for the one weekend & holidays and 

two work weeks, where the average MBE are below ±1.0 kW for the electric power input 

to the chiller and ±0.01 for the COP. For the typical static and augmented window 

techniques, the chiller CH-2 models are trained with nine neurons per hidden layer and 

provide accurate results over the testing set, with CV(RMSE) below 4.1% for both the 

chiller electric power input and COP. The best results for chiller CH-2 are obtained with 

the CH2-28D-1H9N data set. 

Table 5.24: Results for chillers, static and augmented window techniques - proposed ANN models 

Set name 

Power -QE/QEdesign, TCNDS, TO/A COP - QE/QEdesign, TCNDS, TO/A 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kw 

CV, 

% 

RMSE, 

kw 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH1-30H-1H3N 3.2 9.6 2.4 7.0 0.75 3.2 0.2 2.3 0.1 -0.03 

CH1-7D-1H3N 3.9 12.3 4.1 9.8 0.33 3.9 0.2 5.8 0.3 0.12 

CH1-10D-1H3N 3.8 11.2 4.2 10.1 -3.53 3.8 0.2 4.0 0.2 0.07 

CH1-14D-1H3N 3.8 10.7 4.0 12.3 -7.49 3.7 0.2 3.5 0.2 0.11 

CH1-21D-1H9N 3.4 9.7 3.0 9.9 -1.88 3.4 0.2 3.0 0.2 0.04 

CH1-28D-1H9N 3.1 9.5 4.1 12.9 5.56 3.1 0.2 4.6 0.2 -0.11 

CH2-1D -1H9N 2.8 8.0 3.0 10.3 -1.24 2.5 0.1 4.0 0.2 0.08 

CH2-7D-1H9N 2.8 9.5 3.7 11.8 2.74 3.1 0.2 3.6 0.2 -0.02 

CH2-10D-1H9N 2.9 9.6 3.0 9.9 -1.70 3.1 0.2 3.4 0.2 0.03 

CH2-14D-1H9N 2.9 9.5 3.7 11.6 0.38 3.1 0.2 3.9 0.2 0.01 

CH2-21D-1H9N 3.0 9.8 4.1 9.3 -0.76 3.2 0.2 4.0 0.2 0.02 

CH2-28D-1H9N 3.1 9.9 2.5 10.3 -7.52 3.2 0.2 2.5 0.1 0.08 

CH2-1WW-1H3N 3.2 10.7 8.6 27.6 18.89 3.0 0.2 8.9 0.5 -0.36 

CH2-1WEH-1H3N 2.5 8.4 2.6 8.7 0.58 2.4 0.1 2.2 0.1 -0.004 

CH2-2WW -1H8N 2.8 9.1 3.0 10.8 0.95 3.0 0.2 3.0 0.2 -0.01 

CH2-2WEH -1H8N 2.3 7.7 6.1 14.1 6.88 2.4 0.1 4.9 0.2 -0.12 

 

For the model developed based on the inputs to the Y&C model, the models 

giving the most accurate results over the testing sets are developed using eight neurons 

per hidden layer (Table 5.25). Except for the split static technique, the CV(RMSE) over 

the testing sets are below 5.2% for both chillers. The best results are obtained over the 
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testing set when the CH1-21D-1H8N and CH2-28D-1H8N data set and ANN architecture 

are used. 

Table 5.25: Results for chillers, static and augmented window techniques - Y&C ANN models 

Set name 

Power - QE, TCNDR, TCHWS COP - QE, TCNDR, TCHWS 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kw 

CV, 

% 

RMSE, 

kw 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH1-30H-1H8N 2.4 7.2 2.3 6.7 -0.42 2.3 0.1 2.0 0.1 -0.003 

CH1-7D-1H8N 3.4 10.7 5.2 12.4 3.33 3.4 0.2 4.6 0.2 0.06 

CH1-10D-1H8N 3.3 9.5 3.4 8.3 -2.64 3.3 0.2 3.4 0.2 0.06 

CH1-14D-1H8N 3.3 9.3 4.5 13.9 -8.38 3.2 0.2 3.9 0.2 0.13 

CH1-21D-1H8N 3.3 9.5 3.3 11.0 -1.12 3.2 0.2 3.2 0.2 0.02 

CH1-28D-1H8N 3.1 9.5 4.2 13.2 5.61 3.1 0.2 4.7 0.3 -0.11 

CH2-1D -1H8N 2.7 7.6 3.3 11.2 -1.05 2.2 0.1 2.7 0.1 -0.01 

CH2-7D-1H8N 4.4 14.8 4.4 14.0 -3.23 4.7 0.2 4.7 0.2 0.09 

CH2-10D-1H8N 4.2 14.0 4.2 13.6 -0.42 4.5 0.2 4.5 0.2 0.01 

CH2-14D-1H8N 4.2 14.0 4.2 13.2 -1.37 4.6 0.2 4.3 0.2 0.04 

CH2-21D-1H8N 4.2 13.6 4.2 9.4 0.09 4.5 0.2 4.1 0.2 -0.002 

CH2-28D-1H8N 4.2 13.2 2.5 10.4 -5.48 4.5 0.2 3.4 0.2 0.09 

CH2-1WW -1H8N 2.2 7.5 15.7 50.4 23.41 2.3 0.1 15.7 0.9 -0.40 

CH2-1WEH -1H8N 2.4 8.1 2.4 8.0 1.72 2.3 0.1 2.0 0.1 -0.02 

CH2-2WW -1H8N 3.3 10.8 3.1 11.3 -1.30 3.6 0.2 3.4 0.2 0.04 

CH2-2WEH -1H8N 2.3 7.8 7.8 18.0 5.56 2.3 0.1 5.3 0.3 -0.04 

  

The inputs to the Gordon-Ng and Swider models are the same: evaporator load, 

chilled water return water temperature and condenser water return temperature. For all 

data set sizes, the models trained with one hidden layers with eight neurons (1H8N) 

provides accurate results over the testing sets (Table 5.26). The CV(RMSE) over the 

testing sets varies between 2.4% and 6.8% for the electric power input and COP, except 

for the models developed using the split static technique. For chiller CH-2, the split static 

model for one week-end & holidays and the two work weeks gives CV(RMSE) below 

4.7% over the testing set. The best results are obtained over the testing set when the CH1-

21D-1H8N and CH2-28D-1H8N data set and ANN architecture are used. 

For all the tested ANN models, the models established with the typical static or 

augmented window techniques provide accurate results over the testing data set with 
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CV(RMSE) below 6.8% for all training set sizes. The models developed with 21-days of 

data for chiller CH-1 (CH1-21D) and 28-days of data for chiller CH-2 (CH2-28) provide 

the most accurate results (Figure 5.8). Over the testing set, the CV(RMSE) are often 

lower for the ANN models compared with the proposed and existing correlation-based 

models. 

Table 5.26: Results for chillers, static and augmented window techniques - G&Ng and Swider ANN models 

Set name 

Power - QE, TCNDR, TCHWR COP - QE, TCNDR, TCHWR 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kw 

CV, 

% 

RMSE, 

kw 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH1-30H -1H8N 2.3 6.9 2.7 7.8 -1.18 2.3 0.1 2.4 0.1 0.02 

CH1-7D-1H8N 3.3 10.5 3.5 8.4 -1.15 3.4 0.2 6.8 0.3 0.12 

CH1-10D-1H8N 3.2 0.4 4.5 10.9 -1.74 3.2 0.2 4.0 0.2 0.03 

CH1-14D-1H8N 3.3 9.3 4.2 13.0 -7.65 3.2 0.2 4.2 0.2 0.13 

CH1-21D-1H8N 3.3 9.7 3.0 10.2 -1.36 3.3 0.2 2.9 0.2 0.03 

CH1-28D-1H8N 3.1 9.6 4.1 13.1 5.78 3.1 0.2 4.7 0.3 -0.11 

CH2-1D -1H8N 2.8 7.9 2.8 9.6 0.05 2.4 0.1 2.9 0.1 -0.01 

CH2-7D-1H8N 4.3 14.4 4.3 13.7 -3.42 4.5 0.2 4.3 0.2 0.09 

CH2-10D-1H8N 4.2 14.0 4.0 13.1 -0.30 4.5 0.2 4.4 0.2 0.02 

CH2-14D-1H8N 4.3 14.1 4.2 13.1 -1.28 4.7 0.2 4.2 0.2 0.04 

CH2-21D-1H8N 4.1 13.3 5.0 11.3 -1.1 4.4 0.2 4.3 0.2 0.02 

CH2-28D-1H8N 4.2 13.4 2.7 11.3 -6.72 4.5 0.2 3.5 0.2 0.10 

CH2-1WW -1H8N 2.3 7.6 13.9 44.6 22.25 2.3 0.1 12.7 0.7 -0.38 

CH2-1WEH -1H8N 2.4 7.9 2.2 7.6 1.62 2.2 0.1 2.0 0.1 -0.01 

CH2-2WW -1H8N 4.4 14.3 3.6 13.0 -1.22 4.7 0.2 4.1 0.2 0.04 

CH2-2WEH -1H8N 2.3 7.8 7.7 17.8 5.10 2.2 0.1 5.8 0.3 -0.01 

 

 

Figure 5.8: Comparison of the ANN – a) over the training set, b) over the testing set 
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5.5.4.2 Benchmarking predictions versus monitored data 

 Once the benchmarking models are tested, the developed models are used to 

predict the expected performance of the equipment under normal operation without 

known problems; the monitored performance is then compared with the expected 

performance to detect abnormal performance of the equipment. For the correlation-based 

models, the analysis carried over the training and testing sets has demonstrated that the 

proposed multivariate polynomial (MP) models for the electric power input and COP and 

the Gordon & Ng model provide the most accurate predictions for the chillers used in this 

case study. Therefore, the MP models for the electric power input (Equation (5.9)) and 

the coefficient of performance (Equation (5.10)) developed using the 21 days data set for 

CH-1 (CH1-21D) are used to illustrate the ongoing commissioning approach using 

benchmark models.  

 Figure 5.9 and Figure 5.10 present the interval of confidence for the model 

predictions, defined in Chapter 3 section 3.3.2 Equations (3.5) and (3.6), as well as the 

measured or currently being monitored data on July 31
st
 2009 for the electric power input 

and COP of chiller CH-1, respectively. If the measured data are outside the model 

boundaries for more than one hour, a warning is sent to the building operators. Since the 

water distribution system is large, a one hour delay is necessary for the system to adjust 

to any changes made to the operating conditions. On July 31
st
 2009, the performance of 

chiller CH-1 is within the prediction limits. However, if an operating problem was 

detected, warnings would be sent to the building operating team, and eventually other 

application software for diagnostics or automatic action to be undertaken on some of the 

equipment would be activated. 
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Figure 5.9: Ongoing commissioning of chiller CH-1 power electric input – CH1-21D Power-MP model, 

July 31
st
 2009 

 

 

Figure 5.10: Ongoing commissioning of chiller CH-1 coefficient of performance – CH1-21D COP-MP 

model, July 31
st
 2009 

 

 For chiller CH-2, the ANN models provide more accurate results over the testing 

set; therefore, the proposed ANN model trained with 7 days of data (CH2-7D-1H9N) is 

selected to illustrate the ongoing commissioning approach. Figure 5.11 and Figure 5.12 

present the interval of confidence for the model predictions as well as the measured or 

currently being monitored data on June 30
th

 2009 from 8:00 to 18:00 for the electric 

power input and COP of chiller CH-2, respectively. The electric power input is outside 

the predictions boundaries from 11h45 to 12h30, while the COP is outside the boundary 

conditions at 13h15, which is around when chiller CH-1 is started-up (12h45). Once the 
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second chiller is started, the electric power input and COP of chiller CH-2 are back to be 

within the model limits.  

 

Figure 5.11: Ongoing commissioning of chiller CH-2 power electric input – CH2-7D-1H9N proposed 

ANN, June 30
th

 2009 

 

 

Figure 5.12: Ongoing commissioning of chiller CH-2 coefficient of performance – CH2-7D-1H9N 

proposed ANN, June 30
th

 2009 
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evaluation criteria calculated over the training, testing and verification sets are compared 

also with information available in the literature. 

5.5.5.1 Proposed correlation-based models 

For the verification set, it is assumed that the monitored data represent normal 

operating conditions that prevailed during the training and testing periods. The 

verification set is used to further assess the performance of the models for a longer period 

of time. For example, the CV(RMSE) for the Power-ML model for chillers CH1-30H and 

CH2-1D are 3.4% and 3.1% over the training set and 2.2% and 2.8% over the testing set 

respectively (Table 5.15); however, over the verification set, the CV(RMSE) are 10.7% 

and 12.0%, respectively. By increasing the window size to seven days (Power ML-CH1-

7D and Power ML-CH2-7D), the CV(RMSE) drops to 6.7% for chiller CH-1 and 10.1% 

for chiller CH-2, over the verification period (Table 5.27). 

Table 5.27: Results for the electric power input for chillers from the proposed models – verification set  

Verification set 

Power ML (5.7) Power MP (5.9) 
CV,  

% 

RMSE, 

kW 

MBE, 

kW 

R.E. 

% 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

R.E. 

% 

CH1-30H, 07/06 to 09/22 10.7 33.4 -25.7 -9.8 13.9 43.6 -31.4 -11.6 

CH1-7D, 07/13 to 09/22 6.7 21.0 -6.0 -3.5 5.4 17.0 -1.1 -1.9 

CH1-10D, 07/16 to 09/22 6.8 21.5 -4.3 -2.9 5.4 17.2 -1.5 -2.0 

CH1-14D, 07/20 to 09/22 6.8 21.7 -3.7 -2.9 5.5 17.5 -0.8 -1.8 

CH1-21D, 07/27 to 09/22 6.8 21.3 0.8 -1.3 5.8 18.4 2.5 -0.8 

CH1-28D, 08/03 to 09/22 7.1 22.1 0.9 -1.3 6.2 19.4 2.5 -0.8 

CH2-1D, 06/23 to 09/20 12.0 35.9 20.9 3.7 9.6 28.7 16.9 2.4 

CH2-7D, 06/29 to 09/20 10.1 29.0 14.6 1.5 6.4 18.5 7.3 -0.9 

CH2-10D, 07/02 to 09/20 10.8 30.6 16.1 0.1 7.1 20.1 10.1 -2.0 

CH2-14D, 07/06 to 09/20 11.4 31.5 19.6 1.2 7.7 21.2 12.2 -1.4 

CH2-21D, 07/13 to 09/20 12.1 34.0 24.6 2.0 8.4 23.4 15.3 -1.1 

CH2-28D, 07/20 to 09/20 12.6 34.6 26.6 5.8 8.5 23.3 16.4 2.3 

CH2-1WW 12.3 9.5 23.9 
4.2 

8.7 25.9 16.1 2.1 

CH2-1WEH 11.2 29.0 12.7 8.8 22.6 11.8 

CH2-2WW  9.9 15.2 14.5 
0.6 

7.0 19.7 10.0 -1.2 

CH2-2WEH  16.2 40.2 35.0 12.6 30.7 25.7 
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Figure 5.13 and Figure 5.14 show the variation of the CV(RMSE) over the 

verification set for the different training and testing set sizes for chillers CH-1 and CH-2, 

respectively. For both chillers, it is clearly shown that the proposed Power-MP models 

perform slightly better than the Power-ML model for all training and testing set sizes 

over the verification set.  

 

Figure 5.13: Comparison of the electrical power input from the proposed correlation-based models over 

the verification set for different training set size, chiller CH-1 

  

 

Figure 5.14: Comparison of the electrical power input from the proposed correlation-based models over 

the verification set for different training set size, chiller CH-2 
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days does not significantly improve the prediction accuracy over the verification set. 

Hence, the minimum training and testing data set for the Power ML-CH1 and Power MP-

CH1 model should be seven days (CH1-7D). 

 For the chiller CH-2 of the case study, the split static technique does not improve 

the CV(RMSE) over the verification set compared to the typical static or augmented 

window techniques (Figure 5.14). The use of the augmented window technique after 

seven days does not improve the prediction accuracy of the verification set. Thus, for 

chiller CH-2, the minimum training and testing data set for the Power ML-CH2 and 

Power MP-CH2 models should be seven days (CH2-7D). 

For the proposed COP-ML and COP-MP models, the results over the verification 

set are presented in Table 5.28. For both chillers, the results clearly show that the propose 

COP-MP model performs better than the COP-ML model for all training and testing set 

sizes over the verification set (Figure 5.15 and Figure 5.16). 

 For chiller CH-1, increasing the augmented window or using a typical static 

window larger than seven days does not significantly improve the prediction accuracy 

over the verification set (Figure 5.15). Hence, the minimum training and testing data set 

for the COP-ML-CH1 and COP-MP-CH1 model should be seven days (CH1-7D). 

For chiller CH-2, for the proposed models for the COP, the CV(RMSE) are higher 

for the COP-ML models and vary between 13.2% and 18.3% (Table 5.28). For the MP 

models, the CV(RMSE) are lower than 8.3% for model established with more than seven 

days of data over the verification set. The typical static or augmented window techniques 

provide better results than the split static technique over the verification set (Figure 5.16). 

The use of the augmented window technique after seven days does not improve the 
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prediction accuracy of the verification set. Thus, for chiller CH-2, the minimum training 

and testing data set for the COP-ML-CH2 and COP-MP-CH2 models should be seven 

days (CH2-7D). 

Table 5.28: Results for the COP for chillers from the proposed models – verification data set 

Verification set 
COP ML (5.8) COP MP (5.10) 

CV, % RMSE MBE CV, % RMSE MBE 

CH1-30H, 07/06 to 09/22 16.2 0.9 0.67 13.7 0.7 0.54 

CH1-7D, 07/13 to 09/22 9.6 0.5 0.17 5.9 0.3 0.02 

CH1-10D, 07/16 to 09/22 8.7 0.5 0.10 5.8 0.3 -0.01 

CH1-14D, 07/20 to 09/22 8.8 0.5 0.09 5.9 0.3 -0.03 

CH1-21D, 07/27 to 09/22 8.7 0.5 0.01 6.3 0.3 -0.05 

CH1-28D, 08/03 to 09/22 9.4 0.5 0.01 6.6 0.4 -0.04 

CH2-1D, 06/23 to 09/20 13.3 0.7 -0.42 11.7 0.6 -0.40 

CH2-7D, 06/29 to 09/20 13.2 0.7 -0.33 6.8 0.4 -0.14 

CH2-10D, 07/02 to 09/20 13.9 0.8 -0.36 7.5 0.4 -0.18 

CH2-14D, 07/06 to 09/20 13.9 0.8 -0.44 7.7 0.4 -0.22 

CH2-21D, 07/13 to 09/20 14.1 0.8 -0.58 8.2 0.5 -0.30 

CH2-28D, 07/20 to 09/20 14.3 0.8 -0.62 8.3 0.5 -0.33 

CH2-1WW 14.8 0.8 -0.53 9.5 0.5 -0.32 

CH2-1WEH 14.5 0.8 -0.32 9.6 0.5 -0.24 

CH2-2WW  13.0 0.7 -0.29 7.4 0.4 -0.17 

CH2-2WEH  18.3 1.0 -0.93 12.5 0.7 -0.60 

 

 

Figure 5.15: Comparison of COP from the proposed correlation-based models over the verification set for 

different training set size, chiller CH-1 
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Figure 5.16: Comparison of the COP from the proposed correlation-based models over the verification set 

for different training set size, chiller CH-2 

5.5.5.2 Existing correlation-based models 

 For the EnergyPlus model, for all training data sets, the CV(RMSE) over the 

testing set are lower than 7.4% (Table 5.19), with one exception for chillers CH-1 and 

CH-2 (CH1-10D and CH2-1D). However, the CV(RMSE) over the verification set vary 

between 6.0-12.3% and 7.4-9.6%, respectively for chiller CH-1 and CH-2 (Table 5.29).  

Table 5.29: Results for the electric power input for chillers from the EnergyPlus model – verification set 

Verification set CV, % RMSE, kW MBE, kW R.E., % 

CH1-30H, 07/06 to 09/22 12.3 38.5 -25.4 -9.6 

CH1-7D, 07/13 to 09/22 11.7 36.9 -2.3 -2.3 

CH1-10D, 07/16 to 09/22 11.9 37.7 -2.2 -2.2 

CH1-14D, 07/20 to 09/22 16.0 50.9 0.2 -1.4 

CH1-21D, 07/27 to 09/22 8.1 25.5 3.3 -0.5 

CH1-28D, 08/03 to 09/22 6.0 18.8 3.0 -0.6 

CH2-1D, 06/23 to 09/20 44.7 133.5 91.7 17.1 

CH2-7D, 06/29 to 09/20 7.4 21.2 7.9 -0.7 

CH2-10D, 07/02 to 09/20 8.1 22.9 10.9 -1.5 

CH2-14D, 07/06 to 09/20 8.5 23.4 15.2 -0.2 

CH2-21D, 07/13 to 09/20 9.4 26.2 19.2 0.3 

CH2-28D, 07/20 to 09/20 9.6 26.4 20.3 3.7 

 

 For chiller CH-1, it is important to mention that for the models develop with the 

CH1-7D, CH1-10D and CH1-14D data sets, the predictions made with the identified 

curve coefficients are negative for TCHWS greater or equal to 7.28°C. For the complete 
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summer, from June 22
nd

 to September 20
th

 2009, the average TCHWS when the chiller is 

operating, excluding start-up, is 6.72±0.20°C. For that same period, the minimum TCHWS 

is 6.44°C, which is within one standard deviation. A TCHWS of 7.28°C is almost an outlier 

since it is close to three standard deviations from the average (Equation (5.1)) and could 

indicate the limit of the developed model. Therefore, the augmented window technique is 

not recommended. The used of a typical static window of 28-days provides good 

prediction accuracy over the verification set, with CV(RMSE) below 6.0%. 

 For chiller CH-2, the CV(RMSE) are below 9.6%, except for the model trained 

with one day of data (CH2-1D). The use of the augmented window technique after seven 

days does not improve the prediction accuracy of the verification set. Thus, for chiller 

CH-2, the minimum training and testing data set for the EnergyPlus model should be 

seven days (CH2-7D). 

 For the York & Cappiello models and the Gordon & Ng models, the CV(RMSE) 

over the testing set for the typical and augmented window techniques are below 5.1% 

(Table 5.20) and 5.2% (Table 5.21), respectively. However, the CV(RMSE) are higher, 

between 5.9% and 13.9% over the verification set (Table 5.30). 

 For chiller CH-1, for both models, the accuracy of the prediction does not 

improved over the verification set when the augmented window technique is used. For 

that reason, it is preferable to use a typical static window rather than using the augmented 

window technique. For chiller CH-2, the CV(RMSE) are comparable for the static 

techniques and the augmented window technique. However, increasing the training and 

testing set to more than seven days does not significantly improved the accuracy of the 

prediction over the verification set. Hence, the minimum training and testing data set for 
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the York & Cappiello and the Gordon & Ng models is seven days for both chillers (CH1-

7D and CH2-7D). 

Table 5.30: Results for the electric power input for chillers from existing models – verification data set 

Verification set 

Power Y&C Power Gordon & Ng 

CV,  

% 

RMSE, 

kW 

MBE, 

kW 

R.E. 

% 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

R.E. 

% 

CH1-30H, 07/06 to 09/22 9.8 30.8 -22.2 -8.6 8.5 26.6 -19.4 -7.7 

CH1-7D, 07/13 to 09/22 5.7 17.8 -2.7 -2.4 6.1 19.1 -4.5 -3.0 

CH1-10D, 07/16 to 09/22 5.6 17.8 -3.4 -2.6 5.9 18.6 -3.3 -2.5 

CH1-14D, 07/20 to 09/22 5.8 18.3 -2.7 -2.3 5.9 18.6 -2.2 -2.2 

CH1-21D, 07/27 to 09/22 5.9 18.5 2.5 -0.7 6.2 19.3 2.3 -0.8 

CH1-28D, 08/03 to 09/22 6.1 19.2 3.5 -0.4 6.4 20.2 3.0 -0.6 

CH2-1D, 06/23 to 09/20 10.6 31.7 17.8 2.8 10.4 31.1 19.8 3.4 

CH2-7D, 06/29 to 09/20 8.9 25.7 12.0 0.7 9.2 26.6 12.7 1.0 

CH2-10D, 07/02 to 09/20 10.2 28.8 17.9 0.8 10.3 29.0 17.4 0.7 

CH2-14D, 07/06 to 09/20 11.2 30.8 22.7 2.4 11.4 31.4 22.6 2.4 

CH2-21D, 07/13 to 09/20 12.0 33.5 26.2 2.7 12.1 33.9 25.9 2.6 

CH2-28D, 07/20 to 09/20 12.3 33.7 27.2 6.2 12.6 34.4 27.4 6.2 

CH2-1WW 11.2 33.2 22.6 
4.0 

10.9 32.3 20.9 3.5 

CH2-1WEH 9.7 25.0 14.1 9.8 25.2 13.9 

CH2-2WW  10.3 28.9 19.9 
1.8 

10.5 29.4 19.7 1.7 

CH2-2WEH  13.9 34.0 29.1 13.9 34.0 29.3 

 

 For the existing COP model, the CV(RMSE) are below 5.2% over the testing set 

for the York & Cappiello and Gordon & Ng model, except for the split static technique, 

where it varies between 2.2% and 11.9% (Table 5.22). Over the verification set, the 

CV(RMSE) are below 11.3%, except for the CH1-30H and the split static technique 

(Table 5.31). For the Swider model, the CV(RMSE) are below 13.3% over the testing set 

(Table 5.23), while varying between 9.1% and 14.2% over the verification set (Table 

5.31). Increasing the training and testing set beyond seven days or using split models 

does significantly improve the prediction over the verification set. Hence, the minimum 

training and testing data set for the existing COP models is seven days for both chillers 

(CH1-7D and CH2-7D). 

 For the proposed and existing correlation-based models, the use of a split static 

technique, versus typical static or augmented window techniques, to develop the 
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benchmark models does not improve the model predictions. For most models, increasing 

the training and testing set size beyond seven days, using either the typical static of 

augmented window techniques, does not significantly improve the prediction over the 

verification set. Hence, the minimum training and testing data set for the proposed and 

existing correlation-based models is seven days for both chillers (CH1-7D and CH2-7D). 

Table 5.31: Results for the COP for chillers from the existing models – verification data set 

Verification set 

COP – Power Y&C COP – Power G&Ng COP – Swider 
CV, 

% 
RMSE MBE 

CV, 

% 
RMSE MBE 

CV, 

% 
RMSE MBE 

CH1-30H, 07/06 to 09/22 196.8 10.4 0.56 8.7 0.5 0.34 12.8 0.7 0.48 

CH1-7D, 07/13 to 09/22 5.9 0.3 0.02 6.1 0.3 0.05 9.3 0.5 0.19 

CH1-10D, 07/16 to 09/22 5.8 0.3 0.04 6.0 0.3 0.04 9.3 0.5 0.10 

CH1-14D, 07/20 to 09/22 5.9 0.3 0.02 6.1 0.3 0.02 9.5 0.5 0.09 

CH1-21D, 07/27 to 09/22 6.2 0.3 -0.06 6.4 0.3 -0.06 9.1 0.5 0.02 

CH1-28D, 08/03 to 09/22 6.4 0.3 -0.07 6.7 0.4 -0.07 9.5 0.5 0.02 

CH2-1D, 06/23 to 09/20 10.7 0.6 -0.34 10.3 0.6 -0.36 11.8 0.6 -0.33 

CH2-7D, 06/29 to 09/20 8.7 0.6 -0.23 9.0 0.5 -0.25 11.8 0.6 -0.26 

CH2-10D, 07/02 to 09/20 9.7 0.6 -0.34 9.8 0.5 -0.33 12.5 0.7 -031 

CH2-14D, 07/06 to 09/20 10.4 0.5 -0.43 10.6 0.6 -0.43 13.0 0.7 -0.41 

CH2-21D, 07/13 to 09/20 11.1 0.5 -0.50 11.2 0.6 -0.49 13.3 0.8 -0.53 

CH2-28D, 07/20 to 09/20 11.1 0.6 -0.51 11.3 0.6 -0.51 13.5 0.8 -0.57 

CH2-1WW 10.9 0.6 -0.41 10.4 0.6 -0.38 13.3 0.7 -0.45 

CH2-1WEH 9.7 0.5 -0.30 9.7 0.5 -0.30 12.1 0.6 -0.21 

CH2-2WW  9.6 0.5 -0.37 9.8 0.5 -0.37 12.4 0.7 -0.32 

CH2-2WEH  12.7 0.7 -0.62 12.7 0.7 -0.62 14.2 0.8 -0.70 

5.5.5.3 ANN models 

 For all evaluated ANN models, the CV(RMSE) are below 5.2% over the testing 

set, except for the split static technique (Table 5.24 to Table 5.26). Over the verification 

sets, the CV(RMSE) varies between 5.5% and 15.4% for the model based on the 

proposed input (Table 5.32), between 5.6% and 14.6% for the model based on the York 

& Cappiello input (Table 5.33), and between 5.5% and 14.4% for the model based on the 

Gordon & Ng and Swider input (Table 5.34).  

For all ANN models, increasing the training and testing set beyond seven days or 

using split models does significantly improve the prediction over the verification set. 
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Hence, the minimum training and testing data set for all the proposed ANN models is 

seven days for both chillers (CH1-7D and CH2-7D). 

Table 5.32: Results for chillers from the proposed ANN models – verification data set  

Verification set 
Power, QE/QEdesign, TCNDS, TO/A COP, QE/QEdesign, TCNDS, TO/A 

CV, % 
RMSE, 

kW 

MBE, 

kW 
R.E., % CV, % RMSE MBE 

CH1-30H-1H3N 12.5 39.2 -24.91 -9.5 15.4 0.8 0.59 

CH1-7D-1H3N 6.1 19.3 -4.13 -2.9 6.3 -0.3 0.05 

CH1-10D-1H3N 5.5 17.4 -1.73 -2.1 5.7 0.3 0.02 

CH1-14D-1H3N 5.5 17.5 -0.96 -1.8 5.7 0.3 -0.01 

CH1-21D-1H9N 5.7 17.9 1.35 -1.2 6.0 0.3 -0.03 

CH1-28D-1H9N 6.2 19.4 2.29 -0.8 6.5 0.3 -0.04 

CH2-1D -1H9N 12.4 37.1 17.70 2.6 12.0 0.6 -0.33 

CH2-7D-1H9N 6.3 18.2 4.72 -1.8 6.3 0.3 -0.06 

CH2-10D-1H9N 7.2 20.2 6.42 -3.2 6.6 0.4 -0.09 

CH2-14D-1H9N 7.1 19.5 6.61 -3.3 6.6 0.4 -0.10 

CH2-21D-1H9N 7.8 21.9 10.59 -2.7 7.1 0.4 -0.20 

CH2-28D-1H9N 8.8 24.1 13.52 1.3 7.6 0.4 -0.24 

CH2-1WW-1H3N 8.7 25.8 15.54 
2.0 

9.1 0.5 -0.30 

CH2-1WEH-1H3N 9.6 24.7 14.10 9.6 0.5 -0.24 

CH2-2WW -1H8N 6.7 19.0 5.60 
-2.6 

6.7 0.4 -0.07 

CH2-2WEH -1H8N 11.7 28.5 23.48 11.9 0.7 -0.57 

 
Table 5.33: Results for chillers from the Y&C ANN models – verification data set  

Verification set 
Power – QE, TCNDR, TCHWS COP – QE, TCNDR, TCHWS 

CV, % 
RMSE, 

kW 

MBE, 

kW 
R.E., % CV, % RMSE MBE 

CH1-30H-1H8N 10.0 31.3 -20.08 -8.0 14.3 0.8 0.50 

CH1-7D-1H8N 6.1 19.2 -2.53 -2.3 5.9 0.3 0.04 

CH1-10D-1H8N 5.6 17.9 -2.30 -2.2 5.9 0.3 0.03 

CH1-14D-1H8N 6.2 19.8 -2.22 -2.2 6.1 0.3 0.01 

CH1-21D-1H8N 6.0 19.0 2.15 -0.9 6.3 0.3 -0.05 

CH1-28D-1H8N 5.9 18.4 1.91 -0.9 6.2 0.3 -0.03 

CH2-1D -1H8N 11.7 35.0 14.87 1.8 10.8 0.6 -0.30 

CH2-7D-1H8N 9.6 27.7 10.86 0.4 8.0 0.4 -0.16 

CH2-10D-1H8N 8.8 24.7 10.04 -1.8 8.6 0.5 -0.17 

CH2-14D-1H8N 9.7 26.8 15.31 -0.2 8.5 0.5 -0.26 

CH2-21D-1H8N 10.5 29.4 20.31 0.7 9.7 0.6 -0.38 

CH2-28D-1H8N 10.5 28.9 20.43 3.8 9.6 0.5 -0.38 

CH2-1WW -1H8N 13.0 38.5 23.58 
4.2 

12.9 0.7 -0.40 

CH2-1WEH -1H8N 9.8 25.2 13.55 10.6 0.6 -0.23 

CH2-2WW -1H8N 7.2 20.2 9.04 
-1.4 

7.7 0.4 -0.13 

CH2-2WEH -1H8N 14.6 35.7 30.67 13.2 0.8 -0.64 
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Table 5.34: Results for chillers from the G&Ng and Swider ANN models – verification data set  

Verification set 
Power – QE, TCNDR, TCHWR COP – QE, TCNDR, TCHWR 

CV, % 
RMSE, 

kW 

MBE, 

kW 
R.E., % CV, % RMSE MBE 

CH1-30H -1H8N 15.3 47.9 -22.50 -8.7 13.4 0.7 0.52 

CH1-7D-1H8N 5.5 17.3 -2.05 -2.2 6.6 0.3 0.04 

CH1-10D-1H8N 5.5 17.4 -2.41 -2.3 5.6 0.3 0.01 

CH1-14D-1H8N 5.8 18.4 -1.64 -2.0 5.9 0.3 0.02 

CH1-21D-1H8N 5.8 18.2 2.36 -0.8 6.0 0.3 -0.05 

CH1-28D-1H8N 6.0 18.9 1.68 -1.0 6.3 0.3 -0.03 

CH2-1D -1H8N 11.1 33.2 16.43 2.3 10.9 0.6 -0.32 

CH2-7D-1H8N 8.4 24.1 5.46 -1.5 8.0 0.4 -0.10 

CH2-10D-1H8N 8.5 24.0 9.99 -1.9 5.3 0.5 -0.18 

CH2-14D-1H8N 9.4 26.0 13.31 -0.9 9.0 0.5 -0.24 

CH2-21D-1H8N 9.7 27.1 17.22 -0.3 9.2 0.5 -0.33 

CH2-28D-1H8N 10.8 29.6 21.5 4.1 9.8 0.6 -0.40 

CH2-1WW -1H8N 11.4 33.9 21.57 
3.8 

10.7 0.6 -0.37 

CH2-1WEH -1H8N 10.4 26.8 15.31 10.3 0.6 -0.27 

CH2-2WW -1H8N 9.0 25.4 11.85 
-0.6 

8.0 0.4 -0.17 

CH2-2WEH -1H8N 14.4 35.3 30.19 13.0 0.7 -0.63 

5.5.5.4 Other studies of correlation-based and ANN models for chillers 

Several studies have previously compared the accuracy of correlation-based 

models and ANN models. In most cases, manufacturer’s data or laboratory test data are 

used to identify the coefficients (Hydeman et al. 2002, Jiang & Reddy 2003, Lee and Lu 

2010). The models are developed using steady-state conditions and the evaluation criteria 

are usually calculated over the training data set rather than a testing set or verification set 

as presented in this study. 

Correlation-based models 

 Hydeman et al. 2002 compared the modified DOE2 model, which is one of the 

models used in EnergyPlus program, and the Gordon & Ng model using the same two 

manufacturer’s data set for training and testing. For the modified DOE2 model, the 

CV(RMSE) were below 2.7%, while for the same data set, the Gordon & Ng model gave 

CV(RMSE) of 2.9% and 9.2%  
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 The Gordon & Ng model was also evaluated using manufacturer’s data for 

centrifugal chillers having a capacity between 386 to 400 tons. For this data set, the 

CV(RMSE) varies between 1.6% and 7.3% (Jiang and Reddy 2003).  

 Swider (2003) and Lee and Lu (2010) compared the accuracy of different 

empirically based models for chillers using different manufacturing or measured data 

sets. Swider used a training set to identify the COP model coefficients for a single 

circuited centrifugal chiller. The training set contained about 90% of the monitored data. 

The relative root-mean-squared-error (R-RMSE), which is calculated similarly to the 

CV(RMSE) used in this study, varies between 2.3% and 4.9% for the model similar to the 

York and Cappiello model. For the Gordon & Ng model, the CV(RMSE) varies between 

5.1% and 5.6%, while it varies between 3.1% and 5.2% for the Swider model. 

 Lee and Lu (2010) tested different models for different classes of data set. For 

constant condenser and chilled water flow rates, ten laboratory test data sets were used to 

develop the models to predict the COP. The CV(RMSE) are calculated for the training 

data sets. For the model similar to the York and Cappiello model, the CV(RMSE) varies 

between 0.05% and 1.24%. For the Gordon & Ng model, the CV(RMSE) varies between 

1.0% and 3.8%, while it varies between 2.3% and 9.2% for the Swider model. 

 Table 5.35 presents an overview of the data available in the literature on model 

accuracy for correlation-based models, while Figure 5.17 and Figure 5.18 present the 

CV(RMSE) from the models developed in this study over the testing and verification sets 

using the seven days data set (CH1-7D and CH2-7D), except for the EnergyPlus model 

for chiller CH-1 where the 28 days data set is used (CH1-28D). The accuracy of the 
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models available in the literature is represented by the CV(RMSE) range and the average 

value.  

 Over the testing set, the CV(RMSE) are slightly higher or lower than the range 

available in the literature (Figure 5.17) for all models, including the proposed models. 

Over the verification set, the proposed MP models perform as well as the existing 

models, with CV(RMSE) close to the value available in the literature.  

Table 5.35: Accuracy of correlation-based models available in the literature 

Authors 
Data  

type 

 EnergyPlus Y&C Gordon & Ng Swider 

CV(RMSE), % CV(RMSE)
3
, % CV(RMSE)

3
, % CV(RMSE)

3
, % 

Hydeman et al. (2002) 1 0.7 – 2.7  2.9 – 9.2  

Jiang & Reddy (2003) 1   1.6 – 7.3  

Swider (2003) 2  2.3 – 4.9 5.1 – 5.6 3.1 – 5.2 

Lee & Lu (2010) 1  0.05 – 1.24 1.0 – 3.8 2.3 – 9.2 

1. Based on manufacturer data 

2. Used of a training set to identify the coefficient of the COP models, which contained about 90% of 

the monitored data, while the testing set included an additional 50 monitored data points. 

3. The information presented is for either the CV(RMSE) or the relative root-mean-squared-error (R-

RMSE), which is calculated similarly to the CV(RMSE). 

 

 

Figure 5.17: Comparison of the correlation-based models over the testing set for different training set size 

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

P
o

w
er

 M
L

P
o

w
er

 M
P

En
er

gy
P

lu
s

Y&
 C

G
o

rd
o

n
 &

N
g

C
O

P
-M

L

C
O

P
-M

P

Sw
id

er

C
V

(R
M

SE
),

 %

CH1 CH2 data available in the literature 

c



138 

 

 

 

Figure 5.18: Comparison of the correlation-based models over the verification set for different training set 

size 

 

ANN models 

 For the ANN models, most models are developed using the generalized radial 
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calculated similarly to the CV(RMSE) defined in this study, varied between 1.7% and 

2.1% for the radial basis function network and is around 1.7% for the multilayer 

perceptron model, over the testing set.  

Figure 5.19 presents the CV(RMSE) over the verification set for the three 

proposed ANN models for the electric power input and the COP of chillers CH-1 and 

CH-2 as well as the accuracy range found in the literature. The results are shown for the 

models developed using seven days of data (CH1-7D and CH2-7D). Over the verification 

set, the CV(RMSE) are slightly higher than the one available in the literature. However, 

over the testing set, the results are within the accuracy range found in the literature.  

 

Figure 5.19: Comparison of the ANN models over the verification set for different training set size 
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(2003b) also found that about 320 to 400 points (from hourly data) are required for the 

incremental window approach. 

The study presented in this thesis concluded that seven days of data monitored at 

15-minute interval at the beginning of the summer season for both chillers, which 

corresponds to a training data set of 331 and 443 of data points during operation for 

chiller CH-1 and chiller CH-2 respectively, provides accurate model predictions over the 

remaining of the summer season. 

5.5.5.5 Summer 2010 

 Data monitored over the summer 2010, from June 21
st
 to September 19

th
 2010, are 

also available. Table 5.36 presents an overview of the operating characteristics for both 

chillers over the summer 2009 and 2010. For both chillers, the condenser supply water 

temperature is one degree lower in 2010 compared to 2009. For chiller CH-1 the average 

electric power input is 10 kW lower in 2010 and consequently, the COP is higher 

compared to 2009. For chiller CH-2, the average operating characteristics are similar; 

however, chiller CH-2 was in operation more often in 2010.  

Table 5.36: Comparison of chillers operating characteristics, summer 2009 and 2010  

Item 
CH-1 CH-2 

2009 2010 2009 2010 

TCHWS, °C  6.8 ± 0.4 6.8 ± 0.6 6.7 ± 0.2 6.7 ± 0.5 

TCHWR, °C  11.3 ± 1.5 11.4 ± 1.5 11.2 ± 1.3 11.4 ± 1.3 

TCNDR, °C  28.3 ± 0.4 28.4 ± 0.3 28.5 ± 0.4 28.5 ± 0.3 

TCNDS, °C  33.3 ± 1.8 32.4 ± 1.4 33.3 ± 1.6 32.4 ± 1.2 

QE, kW 1671 ± 549 1682 ± 510 1615 ± 477 1681 ± 456 

QE/QEdesign 0.53 ± 0.2 0.53 ± 0.2 0.51 ± 0.2 0.53 ± 0.1 

Power, kW 313 ± 92 301 ± 78 299 ± 77 300 ± 73 

COP 5.29 ± 1.0 5.50 ± 0.7 5.39 ± 1.3 5.57 ± 0.7 

No. operating hours 1299 1183 663 1190 

Electricity use, kWh 406,155 355,950 198,330 357,225 
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 The models that were developed with seven days of data for both chillers, except 

for the EnergyPlus model for chiller CH-1 where the CH1-28D data set was used, are 

verified over the summer 2010 (Table 5.37).  

Table 5.37: Results for chillers from the developed benchmark models – summer 2010 data set  

Models 
CH1-7D CH2-7D 

P, kW COP P, kW COP 

CV, % R.E.,% CV, % CV, % R.E.,% CV, % 

Proposed 

correlation-based 

models 

Power-ML 7.6 1.9    8.2 12.8 6.9 12.8 

Power-MP 5.7 -0.04 5.8 7.9 -1.2 7.9 

COP-ML   11.0   16.0 

COP-MP   6.1   7.9 

Existing 

correlation-based 

models 

EnergyPlus 6.1
1
 0.3

1
 7.9

1
 9.2 -3.6 10.6 

Y&C 7.7   3.1 7.5  12.5 6.3 11.9 

Gordon&Ng 7.4 3.1 7.6 12.6 6.4 12.1 

Swider   9.6   13.4 

ANN models 

Proposed 5.8
2
 2.2

2
  6.3

2
 8.8

3
 1.3

3
 20.9

3
 

Y&C
4
 13.5 -3.2 14.8 18.1 12.4 14.8 

G&Ng and Swider
4
 43.5 -33.9 46.5 10.6 1.1 14.8 

1. Based on the EnergyPlus model developed with 28 days of data (CH1-28D) 

2. Based on CH1-7D-1H3N model 

3. Based on CH2-7D-1H9N model 

4. Based on CH-7D-1H8N models 

 

The results shows that the proposed Power-MP correlation-based model gives 

accurate prediction with CV(RMSE) below 5.7% and 7.9% for the electric power input 

and 5.8% and 7.9% for the COP for chillers CH-1 and CH-2, respectively.  

5.5.6 Concluding remarks 

Several studies have previously compared the accuracy of correlation-based 

models and ANN models (see Section 5.5.5.4). Measured data are rarely used to establish 

benchmark models. Furthermore, the evaluation criteria, such as the CV(RMSE), are 

calculated over the training set rather than over a testing or verification set for steady-

state conditions. In this study, a different technique is proposed to establish and evaluate 

the accuracy of different benchmark models. Measured data were used to develop several 
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correlation-based and ANN benchmark models to evaluate different training techniques. 

The initial data set was divided into training and testing sets, where the training set is 

used to develop the model and the testing set to verify its accuracy.  

For the proposed correlation-based models, the results showed that the MP 

models provide accurate results over the testing set. The MP models were also compared 

with existing models developed using the same training and testing data sets, and the 

proposed MP models (power and COP) provide CV(RMSE) below 5.0%, which is close 

to or better than the CV(RMSE) determined for the existing correlation-based models. 

The ANN models also gave accurate prediction over the testing set, with CV(RMSE) 

below 6.8%.  

After the models coefficients are identified or the model is trained using the 

training data set and the accuracy of the prediction verified over the testing set, the 

ongoing commissioning process can begin. Section 5.5.4.2 presented how the models are 

used to perform ongoing commissioning.  

 To complete the analysis, an additional data set, the verification data set was used 

to evaluate the accuracy of the prediction over a larger period, outside the initial training 

and testing sets. A model can show CV(RMSE) below 5% over the training and testing 

sets, but the results can be quite different over the verification set. Studies found in the 

literature used the training and testing set to evaluate the accuracy of their models; in this 

study, the verification set, which represents different periods in the summer, is used to 

evaluate the accuracy of the prediction.  

For the various models, the performance of the model varies with the sizes of the 

training data set. When the static window techniques are compared, the results over the 
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testing and verification sets demonstrate that the accuracy of the predictions is not 

improved with the use of separate models for week days and weekend & holidays. This 

remark applies to all correlation-based and ANN models evaluated in this study.  

 For chiller CH-1, all the models developed with the 30 hours (CH1-30H) provide 

accurate results over the testing set with CV(RMSE) varying between 1.9% and 2.9%, 

while over the verification set the CV(RMSE) are greater than 10.0%. The CV(RMSE) 

calculated in this study over the verification set are higher than data calculated over 

training and testing sets published in previous studies. Increasing the training and testing 

sets to more than seven days does not significantly improve the accuracy of the prediction 

over the verification set, except for the EnergyPlus model. Therefore, for chiller CH-1, 

training and testing data sets of seven days for all models are recommended to establish 

the benchmark model (CH1-7D), except for the EnergyPlus model.  

For chiller CH-2, all the models developed with one day of data (CH2-1D) 

provide accurate results over the testing set, with CV(RMSE) varying between 2.2% and 

11.0%, while over the verification set, the CV(RMSE) are greater than 10.4%. Over the 

testing set, the CV(RMSE) are comparable to data published in previous studies; 

however, over the verification set, the CV(RMSE) are higher. The use of the augmented 

window technique does not improve the prediction over the verification set. For chiller 

CH-2, the models developed with seven days of data give accurate results over the testing 

and verification sets, with CV(RMSE) below 4.6% over the testing set and 10.8% over 

the verification set for the electric power input, and below 6.0% over the testing set and 

13.9% over the verification set for the COP. Therefore, for chiller CH-2, training and 
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testing data sets of seven days for all models is recommended to establish the benchmark 

model (CH2-7D). 

 The models developed using seven days of data (CH-7D-2009) were verified 

using data monitored over the summer 2010 season. For both chillers, the results showed 

that the proposed Power-MP model,  which is valid for normal operating conditions of 

the chillers installed in the central plant, where TCHWS is ~6.8°C and the TCNDR ~28°C, 

provide accurate prediction over the summer 2010 season with CV(RMSE) below 7.9% 

for both the electric power input and COP.  
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6 DEVELOPMENT OF THE CALIBRATED COMPUTER MODEL USING 

TRNSYS 

 The use of simulation is becoming more common to assess the operating energy 

performance of the systems, identify issues and propose retrofits in buildings as part of 

the ongoing commissioning process. Several studies have demonstrated the use of 

calibrated simulation models to identify opportunities to improve the whole building 

energy performance (e.g. Lawrence and Braun. 2007, Lee et al. 2007, and Pan et al. 

2007), and different procedures have been proposed to calibrate computer models (e.g. 

Pedrini et al. 2002, Yoon et al. 2003, and Lui and Lui 2011).  

 The complexity of the calibration method differs from one author to another. 

Claridge (1998) introduced different methods to analyze measured energy data from 

commercial buildings. The review included a simplified approach to calibrate energy 

model using the energy signature and energy characteristics of systems and buildings that 

was later on evaluated (Lui and Claridge 1998; Lui et al. 2004) and described in more 

detail in Lui et al. 2003 and Lui et al. 2006.  

Reddy (2006) also carried out a literature review on calibration of building energy 

simulations programs. Based on the review, an approach based on a general stochastic 

methodology for calibrating detailed building energy simulation programs with utility 

bills and audit information was recommended and tested (Reddy et al. 2007a, 2007b). 

The proposed methodology leads to a small set of solutions rather than a single calibrated 

solution, where a sensitivity analysis is performed to identify influential input parameters. 

The influential parameters are then varied to improve the calibration results, leading to 

parameter vector solutions used to evaluate uncertainty of retrofit savings.  
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 In this study, a different approach is proposed where manufacturer and as-

operated equipment data are used to extract data for the simulation of power input and 

energy use of the mechanical components and systems, and finally to calibrate the 

simulation results.  

 Prior to this study, the calibration of a model developed using the EnergyPlus 

program (DOE 2009) for the CSB air-side systems was carried out using data obtained 

from the Monitoring and Data Acquisition System (MDAS) through the collaboration of 

the Physical Plant of Concordia University (Monfet et al. 2009). Input parameters, such 

as night time setback temperature set points, minimum outdoor air flow rate and 

economizer setting were modified based on visual comparison between the simulation 

results and measured data. In the end, the calibration exercise indicated that the computer 

model developed gave good estimations of the whole-building cooling loads, supply 

airflow rate and supply and return air temperatures.  

 In this study, the computer model of the CSB central cooling plant is developed 

using TRaNsient SYstem Simulation (TRNSYS) program version 16 (TRNSYS 2006). A 

flow chart of the model developed in TRNSYS is presented in Figure 6.1. The simulation 

is run with a time-step of 15 minutes that is equal to the monitoring time step. Some 

selected measured data or data calculated from measurements are input to the model at 

each time step (Table 6.1). The interaction between the heating water loop and the chilled 

water loop is modeled via the heat recovery heat exchanger HX-3. The information of 

Table 6.1 is directly input into the “TRNSYS load”, “TRNSYS psychometric”, and 

“TRNSYS HX-3” components. The TRNSYS components are then used to model the 

performance of the equipment shown in Figure 6.1, where the darker links show the 
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physical connections between each piece of equipment. The output boxes represent the 

simulation outputs that could be used to simulate the whole building and the central plant 

heating components to complete the simulation at a later stage. OUTPUT 1 gives the 

supply chilled water temperature (TCHWS) calculated by TRNSYS rather than the 

temperature setpoint defined by the user and used to calculate the cooling load as 

presented in Table 6.1, and OUTPUT 2 the supply heating water temperature (THWS or 

T8) leaving the cold-side of heat exchanger HX-3. Additional outputs are also available 

for each TRNSYS components, such as water temperatures and more importantly the 

electric power input that are used to perform the calibration. The approach undertaken to 

calibrate the TRNSYS CSB central cooling plant model is presented in the following 

sections. 

 

Figure 6.1: TRNSYS model flow chart 
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Table 6.1: TRNSYS input file 

Item Unit 

Outdoor air dry-bulb temperature (TDB) ˚C 

Outdoor relative humidity (RH) % 

Chiller CH-1 chilled water supply temperature (TCHWS) setpoint   ˚C 

Chiller CH-1 chilled water return temperature (TCHWR)  ˚C 

Chiller CH-1 chilled water flow rate kg/hr 

Chiller CH-2 chilled water supply temperature (TCHWS) setpoint   ˚C 

Chiller CH-2 chilled water return temperature (TCHWR)  ˚C 

Chiller CH-2 chilled water flow rate kg/hr 

Chiller CH-1 or CH-2 to HX-3 (1,2) 

Cold side mass flow rate to HX-3 kg/hr 

Cold side entering temperature (heating water return temperature),  T7 ˚C 

6.1 2008 TRNSYS model of the CSB central cooling plant 

A computer model of the CSB central cooling plant was initially modeled in 

TRNSYS and calibrated with monitored data of June 23
rd

 to June 29
th

, 2008, and then 

tested with data over the summer season, from June 23
rd

 to September 21
st
, 2008 (Monfet 

and Zmeureanu 2009b). The summer 2008 TRNSYS model was calibrated using 

correlations, developed from monitored data, that characterized the performance of the 

chillers and showed good agreement between the simulated and monitored/correlations 

results: the simulated chilled and heating water temperatures, compared at key locations, 

were in good agreement with the monitored data with a CV(RMSE) value below 8%; the 

cooling electricity used was also within the acceptable range, the maximum relative error 

(R.E.) was less than 5% and the CV(RMSE) about 7.5%.  

In March 2009, additional monitored data points became available through the 

MDAS: the voltage, the current, the power factor and the electric power input to each 

chiller. The correlations characterising the performance of the chillers were evaluated 

using the 2009 data and compared with the actual measured electric power input to the 

chillers (section 4.3). Differences between the results evaluated using the approach taken 

in 2008 compared with the new 2009 monitored data points were found: for chiller CH-1, 
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the average electric power input and energy consumption are underestimated by 30% and 

40%, respectively, while for chiller CH-2 the average electric power input and energy 

consumption are underestimated by 40% when the preliminary correlations are used. 

Hence, to reflect the actual measured electric power input to the chillers and provide 

more accurate prediction of the total power and energy use of the central cooling plant, 

the model is recalibrated using the summer 2009 monitored data.  

6.2 Description of the calibration approach 

 The calibration approach proposed in this study is based (1) the modification of 

input data and parameters to minimize the difference between the TRNSYS predictions 

and the measurements using a sub-set of monitored data, and (2) the comparison between 

the predictions and the measurements for all data monitored over the summer 2009. The 

various inputs and parameters used in the TRNSYS program are defined using 

manufacturer data and a sub-set of monitored data over the summer 2009 that are already 

available from the MDAS, without modifying some variables by trial-and-error or using 

stochastic approaches. The comparison between the predictions made by TRNSYS and 

the measurements is performed for the complete summer season and carried out for water 

temperatures at key locations, the electric power input and the electricity use. 

 The proposed calibration approach, in its general form, is based on identifying 

and modifying the inputs, parameters and external files used by the TRNSYS types for 

the main piece of equipment. The TRNSYS types are modified using the available 

manufacturer data from the operation and maintenance manual or using seven days (7D) 

of measured operating data at the beginning of the summer season, as defined in this 
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thesis, already available from the MDAS. The proposed approach is later on used to 

calibrate the TRNSYS model of the CSB central cooling plant. 

 In this study, the use of measured data is preferred to identify inputs and 

parameters to the TRNSYS types compared to manufacturer catalogue data or TRNSYS 

default files when possible. As a guideline, the identification and modification of the 

following inputs, parameters and/or default TRNSYS files are recommended for the 

following major equipment: 

vi. Water-cooled chiller (Type666) 

a. Initial step: compare the external default TRNSYS files for the chiller 

performance curves with manufacturer and measured data; if the measured 

chiller performance is different than the default files at the operating water 

temperatures, modify the TRNSYS performance files. 

b. File modification: if a three by three matrix of manufacturer data points, 

which is the minimum of data points required in TRNSYS, is available, 

modify the files with the manufacturer data points only. If only a limited 

number of performance data points are available, use curve shifting to 

modify the original TRNSYS files to identify new performance 

coefficients with measured data (Section 6.3.1). 

c. Results comparison: the chilled water and condenser water leaving 

temperatures, the electric power input and the COP are used to verify if 

the model is calibrated (Section 6.4.1.1). 
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vii. Cooling Tower: user-supplied performance coefficients (Type51b) 

a. Inputs: the cooling tower performance is characterized by the mass 

transfer constant (L/G), which is equal to the inlet water mass flow rate 

(kg/s) over the air mass flow rate (kg/s) and the mass transfer exponent 

(n). Evaluate the mass transfer constant (L/G) using the pump flow rate 

and the manufacturer air mass flow rate. For the mass transfer exponent, 

isolate the cooling tower from the rest of the simulation and select the 

exponent that provide the most accurate prediction of cooling tower 

leaving water temperature. 

b. Control: the cooling tower electric power input varies with the percentage 

of the variable frequency drive required to maintain a constant cooling 

tower leaving water temperature. A correlation-based model developed 

using seven days (7D) of data is proposed (Section 6.3.2). 

c. Results comparison: the cooling tower leaving water temperature and the 

electric power input are used to verify if the model is calibrated.  

viii. Counter flow heat exchanger (Type5b): identify the average UA-value based on 

measurements of heat flow and temperature difference on both water streams, and 

compare the heat exchanger leaving water temperature. 

 Once the main components are calibrated, the simulation results are compared 

with the measured data for the total central electric power input, electricity energy use 

and COP over the complete summer season. The approach undertaken to modify the 

TRNSYS default information is presented in Section 6.3 for the case study used in this 

project. 
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6.3 Model input data 

This section presents the inputs to the model, and the TRNSYS types used to 

simulate the major equipment. TRNSYS types are divided into main categories such as 

heat exchangers, HVAC, hydronics, loads and structures, output and weather data reading 

and processing, just to name a few. Each type includes a list of inputs, outputs and 

parameters that characterize the mathematical model used to simulate the component 

(TRNSYS 2006). The TRNSYS types are used to create the model that replicates the 

equipment arrangement of the central plant to be modeled. The complete list of types 

selected to simulate the energy use of the CSB central plant is presented in Table 6.2. 

For each major component, the main input and output variables and parameters 

are presented in the following sub-sections. Also, additional monitored data or 

manufacturer data are used to determine additional parameters, where required. 

Table 6.2: TRNSYS types used in the cooling central plant model 

Name TRNSYS type 

Counter flow heat exchanger (HX-3) Type5b 

Data reader for generic data files (Input:Table 6.1) Type9a 

Flow mixer Type11d 

Controlled flow diverter Type11f 

Pipe/duct (to and from CT-1 & CT-2) Type31 

Psychometrics: dry-bulb and relative humidity known Type33e 

Cooling tower: user-supplied performance coefficients (CT-1 & CT-2) Type51b 

Online plotter with file Type65a 

Single speed pump (P-1 to P-5) Type654 

Water cooled chiller (CH-1 & CH-2) Type666 

Heating and cooling loads imposed on a flow stream  Type682 

Equation N/A 

 

Four main groups of equipment are present in the CSB central cooling plant: (1) 

chillers, (2) cooling towers, (3) heat exchanger, and (4) pumps. The pumps are constant 

flow and required little effort for calibration since the design and manufacturer 

information are easily entered as inputs and parameters in the TRNSYS types.  
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For the chillers, cooling towers and heat exchanger, manufacturer and monitored 

data are used to define the inputs and parameters to the TRNSYS types. For 

identifications and modifications of the TRNSYS types parameters or inputs using 

monitored data, the training monitored data sets recommended for benchmarking are 

selected (see Section 5.5.6): for both chillers, the training data set of seven days at the 

beginning of the summer season were recommended to establish the benchmark model 

(Table 6.3).  

Table 6.3: Recommended training data sets 

Set name 
Training set 

Date Data set size 

CH-7D CT1-7D  06/22 to 07/10 331 

CH2-7D CT2-7D HX3-7D 06/22 to 06/26 443 

6.3.1 Chillers (Type666) 

The input variables to the chillers are presented in Table 6.4. At this stage of 

development, the chiller is turned ON whenever the cooling load calculated for each 

chiller based on measurements is greater than zero (Equation (6.1)). When the first chiller 

is turned on, the first chiller water pumps and cooling tower are started. Similarly, when 

the second chiller is turn on, the second chiller water pumps and cooling tower are 

started. The following output variables are calculated by TRNSYS: the supply chilled 

water temperature (TCHWS), the condenser supply water temperature (TCNDS), the electric 

input to the chiller, and the chiller COP. 

                                    (6.1) 

 

where QE is the calculated chiller evaporator load, kW; mP-1 or P-2 is the measured 

water flow rate of pumps P-1 or P-2, kg/s; Cp is the water specific heat at the average 

chilled water temperature of 9.45°C, 4.196 kJ/(kg·°C); TCHWR is the monitored chilled 
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water return temperature, °C; and TCHWSst is the chilled water supply temperature setpoint, 

°C. 

Table 6.4: Type666 - Input variables for chillers 

Item Input 

Chilled water inlet temperature (TCHWR), ˚C From measurements 

Chilled water flow rate, kg/hr From measurements 

Condenser entering water temperature (TCNDR), ˚C From simulation 

Cooling water flow rate, kg/hr From measurements 

Set point temperature for chilled water supply (TCHWS), ˚C Average monitored data 

Control signal ON/OFF, monitored 

 

Two external files are also used to define: (1) the chiller performance data, which 

defines (i) the capacity ratio in kW/kW as the ratio between the chiller evaporator load 

for leaving chilled water and entering condenser water temperatures different than the 

design conditions and the load at design conditions of 3165 kW; and (ii) the COP ratio as 

the COP at operating conditions divided by the design COP of 5.76, and (2) the electric 

input part-load ratio (PWR) in terms of cooling part-load ratio (PLR).  

The calibration process includes modifying the chillers default files in TRNSYS 

(Appendix E: Table E.1) using manufacturer data or measured data to obtain accurate 

prediction of the electric power input.  

The condenser water temperature entering the chiller is almost constant 

(28.3±0.4°C for chiller CH-1 and 28.5±0.4°C for CH-2 over the summer 2009). 

Therefore, the value is kept constant at the average value during the initial simulation. 

Two sets of data have been provided by the manufacturer. The first one as part of 

the CSB operation and maintenance manual (Table 6.5), while the second one was 

generated using the manufacturer selection software for specific chilled and condenser 

water temperatures (Table 6.6).   
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Table 6.5: Manufacturer information for chiller available in the operation and maintenance manual 

PLR,  

% 

Capacity,  

kW 

CHWS,  

°C 

CHWR,  

°C 

CNDR,  

°C 

CNDS,  

°C 

Electric power input, 

kW 

PWR 

100 3165 5.6 13.3 29.4 35.0 548.5 1.0000 

90 2850 5.6 12.6 27.2 32.2 454.0 0.8276 

80 2530 5.6 11.8 25.0 29.4 377.5 0.6882 

70 2215 5.6 11.0 22.8 26.6 314.0 0.5724 

60 1900 5.6 10.2 20.6 23.8 259.8 0.4737 

50 1580 5.6 9.4 18.3 21.0 211.0 0.3847 

40 1265 5.6 8.7 18.3 20.5 178.6 0.3257 

30 950 5.6 7.9 18.3 20.0 145.9 0.2659 

20 630 5.6 7.1 18.3 19.5 112.3 0.2047 

10 315 5.6 6.3 18.3 18.9 75.7 0.1380 

 
Table 6.6: Additional information for chiller from manufacturer’s selection software 

CHWS, 

°C 

CHWR, 

°C 

CNDR, 

°C 

CNDS, 

°C 

Flow, 

L/s 

Electric 

power input , 

kW 

Capacity ratio, 

kW/kW 

COP ratio 

5 13.3 16 29.4 80.35 434.5 0.8942 1.1508 

6 13.3 20 25.5 91.32 393.7 0.8938 1.2738 

7 13.3 25 29.4 118.98 531.3 1.0050 1.0624 

8 15.6 30 37.7 99.80 557.8 1.0169 1.0069 

9 15.6 35 40.6 115.04 592.5 1.0180 0.9497 

 

The TRNSYS default file that contains the capacity ratio and COP ratio for a 

combination of leaving chilled water and entering condenser water temperatures 

(Appendix E: Table E.1) requires at least two chilled water temperature and condenser 

water temperature points to characterise the performance of the chillers. Since the 

information available from the operation and maintenance manual only includes one 

supply chilled water temperature (TCHWS = 5.6°C), the TRNSYS default file is modified 

using the additional manufacturer data (Table 6.6) for leaving chilled water temperature 

between 5°C and 9°C and condenser entering temperature between 16°C and 35°C.  

Figure 6.2 and Figure 6.3 presents the TRNSYS default data and the manufacturer 

data. It is important to note a change in performance for the manufacturer data between 

the 6°C/20°C and the 7°C/25°C data points (Table 6.6). The manufacturer only provided 

five capacity ratio and COP ratio points, which is insufficient to develop surface curves 

that characterise the performance of the chiller. Therefore, using the difference between 
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the TRNSYS default value compared to the manufacturer data, the TRNSYS default 

points are shifted to pass through the capacity ratio and COP ratio provided by the 

manufacturer. The shift is carried out for the chilled water and condenser water 

temperatures separately first. For example, for all the data points at TCHWS = 5 °C, the 

default curve is shifted to fit through the 5°C/16°C manufacturer data point. Similarly, for 

the TCNDS = 30 °C, for example, the five default data points are shifted to pass through the 

7°C/30°C manufacturer data point. The average between the shift carried out for the 

chilled water and condenser water temperatures is used as the final value in the new 

TRNSYS data files (Appendix E: Table E.1). Figure 6.4 and Figure 6.5 presents, as 

examples, the new coefficients used in TRNSYS for the capacity ratio, which are 

developed by shifting the TRNSYS default data to fit through the provided manufacturer 

data. 

 
Figure 6.2: Comparison between TRNSYS default and manufacturer data of chiller cooling capacity to 

cooling capacity at design conditions 
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Figure 6.3: Comparison between TRNSYS default and manufacturer data of chiller COP to COP at design 

conditions  

 

 

Figure 6.4: Chiller cooling capacity to cooling capacity at design conditions performance curves versus 

chiller water temperatures 
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Figure 6.5: Chiller cooling capacity to cooling capacity at design conditions performance curves versus 

condenser water temperature 

 

The second external file defines the chiller power input ratio (PWR) in terms of 

the part-load cooling load ratio (PLR) at the evaporator (Appendix E: Table E.2). This 

file is also modified based on manufacturer data (Table 6.5) or using measured data 

(Table 6.7).  

Table 6.7: Electric PWR versus part-load cooling load PLR based on measurements 
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0.6 0.6455 0.6333 

0.7 0.7321 0.7352 

0.8 0.8312 0.8532 

0.9 0.9496 0.9937 

1.0 1.0944 1.1633 
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seven day training data set, CH1-7D and CH2-7D (Table 6.3), and the tabulated results 

are presented in Table 6.7. The values presented in Table 6.7 replace the original data of 

the TRNSYS default file. Figure 6.6 presents the different PWR versus PLR curves. 

 

Figure 6.6: TRNSYS input file, PWR versus PLR 

 

The CV(RMSE) (Equation (5.3)) and the NMBE (Equation (6.2)) are calculated 

between the measured electric power input and the predicted electric power input by 

TRNSYS (Figure 6.7) for different cases to see if modifying the external chiller input 

files improve the prediction made by TRNSYS.  

     
         

 
   

       
     (6.2) 

 

 where    is the measured value,     is the predicted value,    is the mean of the 

measured value sample data, and   is the number of data.  

 The modification to the external files for the chillers to improve the predictions 

made by TRNSYS program is carried out as follows:  

i. TRNSYS default: run the simulation using the TRNSYS default, where the data 

for the external files for the capacity ratio and COP ratio and the PWR versus 
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ii. New TRNSYS data based on manufacturer data: run the simulation using the 

manufacturer data to generate the new TRNSYS external files. 

a. External file for the capacity ratio and COP ratio is generated by shifting 

the TRNSYS defaults data to pass through the manufacturer data points 

(Appendix E: Table E.1, Figure 6.4 and Figure 6.5) 

b. External file for the PWR versus PLR is modified using the data presented 

in Table 6.5. 

iii. New TRNSYS data based on manufacturer and measured data: run the simulation 

using the new TRNSYS external files generated using manufacturer data for the 

capacity ratio and COP ratio (same file as ii.a), and by modifying the external file 

for the PWR versus PLR using measured data (Table 6.7). 

 The first set of modifications made to the two external files (ii) does not improve 

the CV(RMSE) and NMBE for the electric power input to the chillers. However, 

modifying the PWR versus PLR files using measured data significantly improve the 

CV(RMSE) and NMBE for the electric power input prediction of chiller CH-1, while the 

CV(RMSE) and NMBE are slightly higher for chiller CH-2 (Figure 6.7). The measured 

data used to modifying the PWR versus PLR files covers a wider range of operating 

water temperatures and conditions, thus providing more accurate predictions of the 

electric power input to the chillers compared to the prediction made using the 

manufacturer data. The difference in the performance characteristics of the chillers is 

explained by distinct operating patterns: chiller CH-1 has a more constant operation, 

while chiller CH-2 cycle ON and OFF throughout most of the summer.  
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Figure 6.7: Impact of modifying the chiller external files on the prediction of electric power input 

6.3.2 Cooling towers (Type51b) 

For the cooling towers, two coefficients are user-defined: the mass transfer 

constant (L/G), which is equal to the inlet water mass flow rate (kg/s) over the air mass 

flow rate (kg/s) and the mass transfer exponent (n). Based on the measured water flow 

rate of 110 L/s (Table 4.4) and the manufacturer air mass flow rate (Table 6.8), the mass 

transfer constant (L/G) is evaluated at 0.6. For the mass transfer exponent, ASHRAE 

(2004) recommends a value between -0.55 and -0.65. Simulations for mass transfer 

exponents varying between -0.55 and -0.65 at 0.05 intervals are performed and a value of 

-0.65 is selected. 

Table 6.8: Manufacturer information for cooling towers 

Item Data 
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Cell airflow, m
3
/s 78.75 

Water flow rate, L/s 131.5 
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tower outlet temperature is relatively constant at about 28-29 °C, emphasis is put on 

properly simulating the cooling tower electricity demand. 

 Preliminary correlations that estimate the variable frequency drive (VFD) level for 

CT-1 (Equation (6.3)) and CT-2 (Equation (6.4)) were developed using measured data, 

dry-bulb temperature (TDB) and relative humidity (RH), and the condenser load at the 

chiller calculated based on measurements of water flow rate and leaving and entering 

water temperatures (Equation (6.5)) of the week of June 23
rd

 to 29
th

 2008, where for the 

training data set the correlation gives a R
2
 value of 95.7% for CT-1 (Monfet and 

Zmeureanu 2009b). 

                                                      (6.3) 

                                                     (6.4) 

                                  (6.5) 

 

where QCH-CT is the calculated thermal condenser load at the chiller, kW; Cp is the 

water specific heat at the average design water temperature, kJ/(kg·°C); mP-3 or P-4 is the 

water flow rate of the condenser water pumps P-3 or P-4, 0.110 kg/s; TCNDS is the water 

temperature of the condenser water leaving the chiller, °C.  

Revised correlations (Equations (6.6) and (6.7)) were developed using the 

summer 2009 monitored data, using the cooling tower load (Equation (6.8)) and the 

cooling tower approach temperature (Equation (6.9)) as independent variables to predict 

the VFD level.  

                                              (6.6) 

                                              (6.7) 

                                           
         (6.8) 



163 

 

                        (6.9) 

 

 where QCT-i is the calculated load of the cooling tower i, kW; Cp is the water 

specific heat at the average water temperature, kJ/(kg·°C); mP-3 or P-4 is the water flow rate 

of the condenser water pumps P-3 or P-4, 0.110 kg/s; TCT-i,in is the entering cooling tower 

water temperature (mix of the water temperature leaving the chiller and of the water 

leaving the heat exchanger HX-3 if applicable) of cooling tower i, °C; TCNDS,CT-i,st is the 

cooling tower leaving temperature setpoint of cooling tower i, °C; and Twb is the outdoor 

air wet-bulb temperature, °C. 

 The evaluation of the techniques to establish the benchmark models for the 

chillers showed that increasing the training and testing data sets to more than seven days 

does not significantly improve the accuracy of predictions over the verification set 

(Section 5.5.6). Since the cooling tower operation follows the chillers operation, the 

coefficients of the new correlations are identified using the CT1-7D and the CT2-7D 

training data set (Table 6.3): Equations (6.6) and (6.7) for CT-1 and CT-2, respectively. 

The R
2
 on the training set is 97.13% for CT-1 and 97.99% for CT-2. The estimated VFD 

speed is entered as an input to the cooling tower.  

 An overview of the inputs to the TRNSYS Type51b is presented in Table 6.9. The 

cooling tower leaving water temperature and electric power input is calculated by 

TRNSYS. 
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Table 6.9: Type51b - Input variables for cooling towers 

Item Input 

Water inlet temperature (TCNDS), ˚C From simulation 

Inlet water flow rate, kg/hr For measurements 

Dry-bulb temperature TDB, ˚C From measurements, directly input to Type51b (Table 6.1) 

Wet-bulb temperature, ˚C From measurements, directly input to Type33e (Table 6.1) 

and output from Type33e connected to Type51b  

Sump make-up temperature, ˚C 25  

Relative fan speed for cell-1 Calculated (Equations (6.6) or (6.7)) 

Relative fan speed for cell-2 Calculated (Equations (6.6) or (6.7)) 

Mass transfer constant 0.6 

Mass transfer exponent -0.65 

6.3.3 Heat exchanger HX-3 (Type5b) 

 For the heat exchanger, the overall heat transfer coefficient (UA) is user-defined. 

The overall heat transfer coefficient is first evaluated based on the heat exchanger 

manufacturer information (Table 6.10) and Equation (6.10). The overall heat transfer 

coefficient is determined to be 880 kW/K (3,175,430 kJ/hr·K – TRNSYS Type5b input) 

from manufacturer data (Alfa Laval 2002).  

          (6.10) 

 

 where    is the rate of heat transfer, kW; UA is the overall heat-transfer coefficient 

associated with the heat exchanger surface area, kW/K; and ΔTm is the natural logarithmic 

mean temperature difference between the fluid streams, K. 

Table 6.10: Information for heat exchanger HX-3 

Item Manufacturer data Measured data 

Heat exchanged, kW 2469 463 

ΔTm, K 2.8 1.1 

Relative directions of fluids Countercurrent Countercurrent 

Number of passes 1 1 

 

 For comparison purposes (Section 6.4.1.3), the overall heat transfer coefficient 

(UA) is also evaluated based on the monitored data (Table 6.10) for the HX3-7D data set 

(Table 6.3). The average UA-value is 463 kW/K (1,667,235 kJ/hr·K), which is input to 
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the TRNSYS Type5b (Table 6.11). The heat exchanger cold-side outlet temperature T8 is 

calculated by TRNSYS. 

Table 6.11: Type5b - Input variables for the heat exchanger 

Item Input 

Hot side inlet temperature T9, ˚C From simulation 

Hot side water flow rate, kg/hr From measurements 

Cold side inlet temperature (T7), ˚C From measurements, directly input to Type5b (Table 6.1) 

Cold side mass flow rate to HX-3, kg/hr From measurements, directly input to Type5b (Table 6.1) 

Overall heat transfer coefficient, kJ/hr·K 1,667,235 (from average measurements for HX-7D) 

6.3.4 Cooling and heat recovery pumps (Type 654) 

The TRNSYS input information of the pumps (Table 6.12) is based on design (D) 

conditions, measured (M) pump data (Table 4.4) and manufacturer catalogue (MC) data.  

Table 6.12: Input pumps information for the TRNSYS model 

Pump Description Flow,  

L/s 

(M) 

Flow,  

kg/hr 

(Type 654 input) 

Power,  

kW 

(D) 

Pump efficiency,  

% 

(MC) 

Motor 

efficiency 

(D) 

P-1 CHW 86.75 312,065 75 82 0.9 

P-2 CHW 86.75 312,065 75 82 0.9 

P-3 CNDW 110.00 395,440 56 70 0.9 

P-4 CNDW 110.00 395,440 56 70 0.9 

P-5 CND-HR 60.00 214,900 30 75 0.9 

P-6 HW-HR 107.25 384,140 30 84 0.9 

6.4 Simulation results 

Kaplan and Canner (1992) recommended that the maximum allowable difference 

between predicted and monitored data be of 15-25% (monthly) and 25-35% (daily) for 

the simulation of HVAC systems. The annual simulated energy use should be within 10% 

of collected information, while a difference less than 25% is acceptable on a seasonal 

basis. For the coefficient of variance (CV (RMSE)) and the normalized mean bias error 

(NMBE), the value should be within ±30% and ±10% when using hourly data, 

respectively, or 5% to 15% for monthly data (ASHRAE 2002).  
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The coefficient of variance (CV (RMSE)), the normalized mean bias error 

(NMBE), and the relative error (R.E.) are used to evaluate the accuracy of the simulation 

results. The CV(RMSE) and the R.E. are calculated using Equations (5.3) and (5.6), 

respectively, while the NMBE is calculated using Equation (6.2). 

The calibration is carried out for temperatures at key locations and electric power 

input and energy consumption of the central cooling plant.  

6.4.1 Overview of the simulated results versus the measured data 

Visual and statistical assessments are performed first for the week of July 27
th

 to 

August 2
nd

 2009, followed by statistical assessment over the complete summer season, 

from June 22
nd

 to September 20
th

 2009. 

6.4.1.1 Chiller CH-1: simulated results versus measured data 

The external files modified using manufacturer data (Table 6.6) for the capacity 

ratio and COP ratio (Appendix E: Table E.1) and measured data for the electric PWR 

versus PLR (Table 6.7) are used for the final simulation.  

The following output variables are calculated by TRNSYS and compared with 

measured data: the supply chilled water temperature (TCHWS) (Figure 6.8), the condenser 

supply water temperature (TCNDS) (Figure 6.9), the electric input to the chiller (Figure 

6.10), and the chiller COP (Figure 6.11).  

For the electric power input and the COP, the measurements uncertainty range is 

shown for the measured value. The predictions made by TRNSYS compare well with 

monitored data (Table 6.13). The electric power input is slightly overestimated by 

TRNSYS, while the COP is within the measured uncertainty range. 
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Figure 6.8: Simulated versus monitored chilled water supply temperature (TCHWS) for CH-1, July 27
th

 to 

August 2
nd

 2009 

 

 

Figure 6.9: Simulated versus monitored condenser supply water temperature (TCNDS) for CH-1, July 27
th

 to 

August 2
nd

 2009 
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Figure 6.10: Simulated versus monitored electric power input for CH-1, July 27
th

 to August 2
nd

 2009 

 

 

Figure 6.11: Simulated versus monitored COP for CH-1, July 27
th

 to August 2
nd

 2009 
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 2009 

ITEM CV(RMSE), % NMBE, % RMSE 

TCHWS, °C 2.6 -0.2 0.2 

TCNDS, °C 4.0 4.2 1.3 

ECH1, kW 11.1 -6.5 35.0 

COPCH1 11.3 6.9 1.0 
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6.4.1.2 Cooling tower: simulated results versus measured data 

For the cooling towers, the following output variables are calculated by TRNSYS: 

the leaving cooling water temperature (TCNDR) and the electric input to the cooling tower. 

The predicted cooling tower leaving water temperature compares well with measured 

data of July 27
th

 to August 2
nd

 2009, the CV(RMSE) is 4.5%, the NMBE 4.7% and the 

RMSE 1.3°C (Figure 6.12).  

 

Figure 6.12: Simulated versus monitored leaving cooling tower water temperature (TCNDR) for CT-1, July 

27
th

 to August 2
nd

 2009 
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not contain a large sample of monitored data for the outdoor air conditions previously 

described and when both cooling towers operate simultaneously; hence, the proposed 

approach to estimate the required cooling tower VFD level (Equation (6.6)) does not 
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grasp such operating conditions. For the week of July 27
th

 to August 2
nd

 2009, the 

CV(RMSE) is 39.6%, the NMBE 30.9% and the RMSE 2.8 kW. 

 

Figure 6.13: Simulated versus monitored electric input for CT-1, July 27
th

 to August 2
nd

 2009 

6.4.1.3 Heat exchanger HX-3: simulated results versus measured data 

For the heat exchanger HX-3, the CV(RMSE), NMBE and RMSE calculated for 

the cold-side leaving water temperature (T8) are presented for the manufacturer and 

identified from measurements UA values (Table 6.14). The difference in the cold-side 

leaving water temperature between the results obtained using the manufacturer UA value 

and the one based on the modified UA value using measured data is negligible. The 

predicted cold side leaving water temperature T8, based on the identified UA value from 

measurements for the heat exchanger, compares well with measured data of July 27
th

 to 

August 2
nd

 2009 (Figure 6.14). Hence, average measured data calculated over seven days 

of monitored data offer a good alternative to characterise the operating characteristic of 

the heat exchanger if no manufacturer data are available. 
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Table 6.14: Simulated versus measured data for heat exchanger HX-3, July 27
th

 to August 2
nd

 2009 

ITEM Based on manufacturer UA value 

(880 kW/K) 

Based on identify from measurements UA value 

(463 kW/K) 

CV(RMSE), % 1.6 1.8 

NMBE, % 1.1 1.5 

RMSE, °C 0.5 0.6 

 

 

Figure 6.14: Simulated versus monitored cold-side leaving water temperature (T8) of HX-3, July 27
th

 to 

August 2
nd

 2009 

6.4.1.4 Summer 2009: simulated results versus measured data 

To complete the water temperature analysis at key locations, the temperatures are 

compared over the complete summer season. The CV(RMSE), the NMBE and the RMSE 

presented in Table 6.15 show that the simulated chilled and heating water temperatures 

are in good agreement with the monitored data over the entire summer, from June 22
nd

 to 

September 20
th

 2009: the CV(RMSE) is below 5.5%, the NMBE below ±5.0%, and the 

maximum RMSE is 1.6°C.  
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Table 6.15: Simulated versus monitored average water temperature during the system operation, June 22
nd

 

to September 20
th

 2009 

ITEM TRNSYS Measured CV(RMSE), % NMBE, % RMSE, °C 

THWS,HX-3 (T8) 31.6±1.6 32.0±1.6 2.3 1.5 0.73 

TCNDR, CT-1 27.5±0.6 28.3±0.4 5.4 4.7 1.58 

TCNDR, CT-2 27.7±0.8 28.5±0.4 5.2 3.7 1.52 

TCHWS,CH-1 6.7±0.0 6.7±0.4 3.8 -0.2 0.25 

TCNDS,CH-1 31.9±1.7 33.3±1.8 4.9 4.2 1.62 

TCHWS,CH-2 6.7±0.0 6.7±0.2 3.4 0.1 0.23 

TCNDS,CH-2 34.1±1.2 33.3±1.6 3.0 -2.4 1.00 

6.4.2 Cooling electricity use: simulated results versus measured data 

The electricity use of the central plant for cooling purposes, which includes 

cooling towers, pumps and chillers, is evaluated and compared to the monitored data for 

the entire summer. 

6.4.2.1 Total electric power input 

The estimated and measured total electric power inputs are compared. Figure 6.15 

presents the total electric power input of the week of July 27
th

 to August 2
nd

 2009 as an 

example. During weekends (August 1
st
 and 2

nd
), the estimated electric power input is 

close to the measured value. During week days, the variations show similar trends: the 

TRNSYS simulation results are slightly higher than the measured value. 

The CV(RMSE) and NMBE are calculated for the electric power input of the 

central plant equipment over the summer 2009, from June 22
nd

 to September 20
th

 2009 

for a fifteen minutes time step and a one hour time step, which is based on the average 

electric power input over an hour. Table 6.16 presents the results for the cooling 

equipment. The CV(RMSE) and NMBE are similar for both the fifteen minutes and one 

hour time steps. The CV(RMSE) are below 20% and the NMBE below 16%, except for 

the cooling towers. For the cooling central plant over the complete summer season, the 
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CV(RMSE) is below 12.2% and the NMBE below ±5.9%, which is below the 

recommended value by ASHRAE (2002) of ±30% for CV(RMSE) and ±10% for NMBE 

when using hourly data. 

 

Figure 6.15: Simulated versus monitored total electric input, July 27
th

 to August 2
nd

 2009 

 
Table 6.16: Simulated versus measured equipment electricity power input, June 22

nd
 to September 20

th
 

2009 

ITEM 15 minutes Hourly 

CV(RMSE), % NMBE, % CV(RMSE), % NMBE, % 

CH-1 11.4 -6.6 9.1 -6.6 

CH-2 19.1 -15.6 17.6 -15.6 

CT-1 59.8 26.3 57.3 26.3 

CT-2 58.6 -17.5 61.3 -18.6 

P-1 to P-5 0.0 0.0 4.0 0.7 

Total 12.2 -5.9 9.3 -5.9 

6.4.2.2 Electric energy use 

The daily electricity use for the week of July 27
th

 to August 2
nd

 2009 is presented 

in Figure 6.16 as an example. The daily electricity use increases with increase in outdoor 

temperature, except during weekends (August 1
st
 and 2

nd
) where the daily electricity use 

is around 12,000 kWh.  
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Figure 6.16: Daily simulated and monitored electric use, July 27
th

 to August 2
nd

 2009 

 

Figure 6.17 and Figure 6.18 show the daily Relative Error (R.E.) for the 

electricity use for the month of July and August 2009, respectively. As a reminder, the 

R.E. is calculated according to Equation (6.11): 

     
          

             
   

         
   

     (6.11) 

 

 where     is the predicted value,    is the measured value, and   is the number of 

data.  

TRNSYS slightly overestimates the daily electricity use. The discrepancies are 

larger when the outdoor air temperature is higher both in July and August. During July 

and August, the R.E. does not exceed 10%, except on July 29
th

 and 30
th

 and August 22
nd

 

when both chillers and cooling towers are working simultaneously for 24-hours. Over the 

complete summer season, the R.E. calculated on a daily basis varies between -15.5% and 

8.6%.  
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Figure 6.17: Daily relative error (R.E) between the monitored and simulated electric use, July 2009 

 

 

Figure 6.18: Daily relative error (R.E.) between the monitored and simulated electric use, August 2009 

 

The electricity use over the summer is also compared (Table 6.17), where CH 

refers to chillers only, CT to cooling towers, and P to pumps. The daily and seasonal R.E. 

are calculated for the central plant equipment. For the chillers and pumps, the R.E. is 

close or better than the recommended value of 25-35% (daily) by Kaplan and Canner 
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(1992). For the daily total electricity use, the maximum daily R.E. is ±15.4%, while being 

below 6% on a seasonal basis, which is within the recommended values.  

Table 6.17: Simulated versus measured cooling electricity use in kWh, June 22
nd

 to September 20
th

 2009 

ITEM TRNSYS Measured Seasonal R.E., % 

CH-1 432,960 406,155 6.6 

CH-2 229,130 198,270 15.6 

CH 662,090 604,425 9.5 

CT 13,587 14,885 -8.7 

P-1 to P-5 303,820 306,080 -0.7 

Total 979,500 925,390 5.8 

6.4.3 Coefficient of Performance: simulated results versus measured data 

 The Coefficient of Performance (COP) is calculated for five cases: (1) for each 

individual chiller, (2) for both chillers, (3) for the central plant (including chillers, cooling 

towers, and pumps P-3 to P-4), as defined by Hartman (2001), (4) for the central plant*, 

including the heat exchanger condenser water pumps (P-3 to P-5), and (5) for the cooling 

central plant (including chillers, cooling towers, and pumps P-1 to P-5) as defined in 

Section 4.7.  

The estimated COP by TRNSYS and the calculated COP based on measurements 

are compared for the week of July 27
th

 to August 2
nd

 2009, which was previously 

presented for chiller CH-1 in Figure 6.11 and is presented in Figure 6.19 for chiller CH-2. 

The simulated COP lies within the uncertainty range based on measurements. Both 

simulated and estimated COP for chillers CH-1 and CH-2 follow similar trend.  

The COP values are slightly underestimated by TRNSYS over the summer season 

(Table 6.18); however, within the uncertainty range. The RMSE is lower than 1.00 which 

is within the average uncertainty calculated for the COP over the summer season, while 

the CV(RMSE) are below 18.5% and the NMBE below 7.2%, which is also within the 

values recommended by ASHRAE (2002).  
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Figure 6.19: Simulated versus monitored COP of CH-2, July 27
th

 to August 2
nd

 2009 

 
Table 6.18: Simulated versus measured average COP of cooling system, June 22

nd
 to September 20

th
 2009 

ITEM TRNSYS Measured CV (RMSE), % NMBE, % RMSE 

COPCH-1 4.91±0.42 5.29±1.00 18.5 7.2 0.98 

COPCH-2 5.12±0.20 5.39±1.32 18.3 5.1 0.99 

      4.96±0.39 5.24±1.03 18.6 5.3 0.97 

                 4.15±0.48 4.31±0.71 12.3 3.7 0.53 

                
  3.90±0.50 4.04±0.69 11.4 3.2 0.46 

           3.31±053 3.38±0.63 9.3 2.1 0.31 

6.5 Calibration remarks 

The analysis of the monitored data combined with the manufacturer’s information 

was used to develop the TRNSYS model. User input files were modified to reflect the 

operating characteristics of the equipment installed in the central plant and a control 

equation was proposed for the cooling towers. The model was calibrated and tested with 

data over the summer season, from June 22
nd

 to September 20
th

 2009. The comparison 

between water temperatures and instantaneous electricity demand at key locations 

ensures that the model developed with TRNSYS accurately mimics the operation of the 

central plant; not only at the central plant level, but also at the component level.  
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The simulated chilled and heating water temperatures, compared at key locations, 

were in good agreement with the monitored data with maximum RMSE of 1.6°C and 

CV(RMSE) values below 5.5%. For the electric power input for the cooling equipment, 

the CV(RMSE) is below 12.5%, while the NMBE is below ±6%. For the cooling 

electricity used, the simulation results are also within the acceptable range recommended 

by Kaplan and Carner (1992): the maximum daily R.E. is below ±15.5%, while being 

below 6% on a seasonal basis. At the equipment level, the R.E. calculated over the 

summer are below ±15.6%.  

The COP of chillers and various group of equipment showed good agreement 

with the measured information: the RMSE are lower than 1.0, the CV(RMSE) below 

18.6% and the NMBE below 7.2%. Overall the calibration exercise showed good 

agreement between the simulated and monitored data. 

The proposed calibration approach used in this study is based on using 

manufacturer data and measured data to modify the inputs, parameters and external files 

of the TRNSYS types used in the computer model. Therefore, the manufacturer data and 

measured data available have an influence on the success of the proposed approach to 

calibrate the CSB central cooling plant. For example, only a limited number of points 

were provided by the chillers manufacturer to modify the TRNSYS default curves that 

characterise the performance of the chillers. Additional points from the manufacturer 

selection software may improve the simulation results. For the cooling tower, the 

proposed control strategies provides relatively precise leaving cooling tower water 

temperature, while it does not allow precise predictions of the electric power input. The 

cubic relationship between the VFD levels, which is input to the cooling tower type in 
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TRNSYS, to the estimate electric power input to the cooling tower, may amplify the 

imprecision of the results predicted by TRNSYS. A more complex control strategy, such 

as the use of a PID controller, would probably improve the simulation results. However, 

the use of such a strategy requires considerable effort and knowledge of the systems to 

tune the parameters of the controller. Nevertheless, the approach undertaken to calibrate 

the CSB central cooling plant shows that it is possible to develop a calibrated model 

using measurements already available from the MDAS and manufacturer data, without 

modifying by trial-and-error some variables or using stochastic approaches.  
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7 CONCLUSIONS 

This research project proposed a new methodology and tool to perform ongoing 

commissioning of central plants. The proposed methodology includes a new approach for 

the development and use of benchmarking models in the context of ongoing 

commissioning, while the tool is based on establishing benchmark models to perform 

comparisons between the benchmark and the current performances of the systems. 

 In this study, a different technique was proposed to establish and evaluate the 

accuracy of different benchmark models. Measured data were used to develop several 

correlation-based and ANN benchmark models to evaluate different training techniques. 

The evaluated models were general models, while the identified model coefficients or 

trained ANN models were case oriented. Furthermore, the evaluation criteria, such as the 

CV(RMSE), were calculated over the training set rather than over a testing or verification 

set for steady-state conditions  

 The Concordia Sciences Building (CSB) was used as a case study to evaluate the 

proposed ongoing commissioning methodology. In order to select and establish models 

that are representative of the operating characteristics of the central plant, a detailed 

analysis of the central plant systems was performed at the equipment and system levels. 

The benchmarking methodology was then evaluated for the two chillers installed in the 

CSB.  

 For the case under study and for the various models, the performance of the 

model varies with the size of the training data set. When the static window techniques are 

compared, the results over the testing and verification sets demonstrate that the accuracy 

of the predictions is not improved with the use of separate models for week days and 
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weekend & holidays. This remark applies to all correlation-based and ANN models 

evaluated in this study. Furthermore, for chiller CH-1, increasing the training and testing 

sets to more than seven days does not significantly improve the accuracy of the prediction 

over the verification set, except for the EnergyPlus model. Therefore, for chiller CH-1, 

training and testing data sets of seven days for all models are recommended to establish 

the benchmark model (CH1-7D), except for the EnergyPlus model. For chiller CH-2, the 

use of the augmented window technique does not improve the prediction over the 

verification set. For chiller CH-2, the models developed with seven days of data give 

accurate results over the testing and verification sets, with CV(RMSE) below 4.6% over 

the testing set and 10.8% over the verification set for the electric power input, and below 

6.0% over the testing set and 13.9% over the verification set for the COP. Therefore, for 

chiller CH-2, training and testing data sets of seven days for all models is recommended 

to establish the benchmark model (CH2-7D). 

 For the proposed correlation-based models, the results showed that the MP 

models provide accurate results over the testing set. The MP models were also compared 

with existing models developed using the same training and testing data sets, and the 

proposed MP models (power and COP) provide CV(RMSE) below 5.0%, which is close 

to or better than the CV(RMSE) determined for the existing correlation-based models and 

within the recommended range of 3-5% for prediction of power input at the component 

level (Haberl and Bou-Saada 1998, Kammerud et al. 1999). The ANN models also gave 

accurate prediction over the testing set, with CV(RMSE) below 6.8%.  

 The evaluation of the proposed methodology using a case study led to various 

recommendations regarding the development of benchmarking models at the component 
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level to perform ongoing commissioning. The monitored data available limits the model 

to be selected to establish the benchmark models. Also, the frequency and quality of the 

data monitored have a direct impact on the goodness of the developed benchmark 

models. Therefore, caution is required when adjusting the threshold to identify change in 

the performance of the equipment. 

As part of the ongoing commissioning approach, a calibration approach was 

proposed in this study which is based on (1) the modification of input data and 

parameters to minimize the difference between the TRNSYS predictions and the 

measurements using a sub-set of monitored data, and (2) the comparison between the 

predictions and the measurements for all summer 2009 monitored data. The simulation 

results were in good agreement with the monitored data, with CV(RMSE) that do not 

exceed 5.5% for water temperature at key locations, 12.5% for the electric power input of 

the cooling equipment, and 18.6% for the COP of chillers and various groups of 

equipment, which is below the recommended value by ASHRAE (2002) of ±30% for 

CV(RMSE) and ±10% for NMBE. The Relative Error (R.E.) calculated over the summer 

season for the cooling electricity used is within ±15.6%, which is also within the 

recommended value in the literature (Kaplan and Canner 1992; ASHRAE 2002). The 

approach undertaken to calibrate the CSB central cooling plant showed that it was 

possible to develop a calibrated model using measurements already available from the 

Monitoring and Data Acquisition System (MDAS) and manufacturer data, without 

modifying by trial-and-error some variables or using stochastic approaches. 
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7.1 Contributions 

The research work undertaken to complete this thesis lead to the following 

contributions: 

1. Development of a new ongoing commissioning concept for the energy 

performance of central heating and cooling plants in cold climates, which 

includes:  

a. The proposed general ongoing commissioning methodology and tool, 

b. The approach to establish the benchmark models using monitored data; 

2. Development of new benchmarking ANN and correlation-based models from 

the monitored data and assessment of their performance for ongoing 

commissioning: 

a. Four new correlation-based models and three new ANN models were 

evaluated and compared with existing correlation-based models and 

data available in the literature to evaluate the performance of water-

cooled electric chillers, 

b. Different training techniques and training data sets were used to 

evaluate proposed and existing benchmark models for the chillers of the 

case study. The results demonstrated that seven days of data monitored 

at the beginning of the summer season were sufficient to establish 

accurate models to predict the energy performance of the chillers used 

in the case study 

3. Development and testing of a new calibration approach in TRNSYS using a sub-set 

of monitored data and manufacturer catalogue data. 
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7.2 Recommendation for future work 

 The methodology presented in this thesis showed great potential to assist the 

ongoing commissioning process. However, to complete the evaluation of the proposed 

ongoing commissioning methodology and tool, the following items are recommended for 

future work: 

 Propose statistical criteria to evaluate the “richness” of monitored data to identify 

more appropriate inverse models; 

 Evaluate different model identification and prediction band techniques to improve the 

robustness of the developed benchmark models; 

 Develop benchmark models for the other main cooling and heating equipment present 

in the central plant, including cooling tower, heat exchanger, and boilers; 

 Develop models for groups of equipment such as the cooling equipment, heating 

equipment and heat recovery equipment as well as for the complete central plant; 

 Evaluate the benchmarking methodology for different ongoing commissioning 

starting points, such as the first day of the cooling season or anytime during the year; 

 Test the approach for other central plants; 

 Complete the central plant simulation; 

 Evaluate the calibration approach for the other seasons and on an annual basis; 

 Optimize the operation of the central plant using the calibrated computer model to 

establish an “optimal” benchmark target.  
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APPENDIX A: Description of monitored data 

Table A.1: Central plant monitored data, general information and cooling 

Description of Measured Variable Acronym 

Outdoor air temperature Tdb, °C 

Outdoor air relative humidity RH,% 

Chilled water flow rate to CSB      
   , gpm 

CSB chilled water supply temperature      
   , °C 

CSB chilled water return temperature      
   , °C 

CSB chilled water pressure differential      
   , psi 

Chilled water pump P-1, ON/OFF P-1 

Chilled water pump P-2, ON/OFF P-2 

Chilled water valve to AD building, ON/OFF  

Chiller CH-1 chilled water supply temperature      
    , °C 

Chiller CH-1 chiller water return temperature      
    , °C 

Chiller CH-1 condenser water supply temperature      
    , °C 

Chiller CH-1 condenser water return temperature      
    , °C 

Chiller CH-1, ON/OFF CH-1 

Chiller CH-1 percent RLA RLA
CH-1

, % 

Chiller CH-1 condenser water pump, ON/OFF P-3 

Chiller CH-2 chilled water supply temperature      
    , °C 

Chiller CH-2 chiller water return temperature      
    , °C 

Chiller CH-2 condenser water supply temperature      
    , °C 

Chiller CH-2 condenser water return temperature       
    , °C 

Chiller CH-2, ON/OFF CH-2 

Chiller CH-2 percent RLA RLA
CH-2

, % 

Chiller CH-2 condenser water pump, ON/OFF P-4 

Cooling tower CT-1 supply water temperature      
    , °C 

Cooling tower CT-1 fan ON/OFF CT-1 

Cooling tower CT-1 fan VFD level VFD
CT-1

, % 

Cooling tower CT-2 supply water temperature      
    , °C 

Cooling tower CT-2 fan ON/OFF CT-2 

Cooling tower CT-2 fan VFD level VFD
CT-2

, % 
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Table A.2: Central plant monitored data, heating and heat exchangers 

Description of Measured Variable Acronym 

CSB steam production        , lb/hr 

CSB steam pressure Psteam, psi 

CSB condensate temperature Tcondensate, °C 

CSB condensate flow             , gpm 

Heating water flow rate to CSB     
   , gpm 

CSB heating water supply temperature     
   , °C 

CSB heating water return temperature     
   , °C 

CSB heating water pressure differential     
   , psi 

CSB heating water return pressure     
   , psi 

CSB heating water pump P-7, ON/OFF P-7 

CSB heating water pump P-7 VFD level VFD
P-7

,% 

CSB heating water pump P-8, ON/OFF P-8 

CSB heating water pump P-8 VFD level VFD
P-8

,% 

CSB heating water pump P-9, ON/OFF P-9 

CSB heating water pump P-9 VFD level VFD
P-9

,% 

SOFAM fan VFD level VFD
BE

,% 

Heat exchanger HX-1 hot side entering water temperature   
    , °C 

Heat exchanger HX-1 hot side leaving water temperature   
    , °C 

Heat exchanger HX-1 cold side entering water temperature   
    , °C 

Heat exchanger HX-1 cold side entering water temperature   
    , °C 

Heat exchanger HX-1 bypass valve, ON/OFF  

Heat exchanger HX-2 steam valve, ON/OFF  

Chiller CH-1 valve to heat exchanger HX-3, ON/OFF  

Chiller CH-2 valve to heat exchanger HX-3, ON/OFF  

Heat exchanger HX-3 hot side pump P-5, ON/OFF P-5 

Heat exchanger HX-3 cold side pump P-6, ON/OFF P-6 

Heat exchanger HX-3 cold side entering water temperature   
    , °C 

Heat exchanger HX-3 cold side entering water temperature   
    , °C 
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Appendix B: CSB Weekly average operating information for 2009 
 

Table B.1: Weekly average weather and CSB chilled and heating water monitored data, 2009 

Item 

Week 
Tdb, °C RH, % 

     
   ,  

L/s 

     
   ,  

°C 

     
   , 

°C 
    

   , L/s 
    

   , 

°C 

    
   , 

°C 
12/22 – 12/28 -5.4±6.7 49.2±20.2 OFF OFF OFF 67.0±  7.2 42.0±3.2 38.0±2.1 

12/29 – 01/04 -10.0±5.9 36.8±11.1 OFF OFF OFF 81.0±  5.7 44.4±3.0 39.8±2.1 

01/05 – 01/11 -9.4±3.9 39.6±10.1 OFF OFF OFF 80.6±  6.7 44.5±2.2 39.8±2.0 

01/12 – 01/18 -14.7±7.2 41.0±  7.2 OFF OFF OFF 88.7±  8.1 44.9±2.2 39.3±1.8 

01/19 – 01/25 -10.7±4.8 43.0±  9.8 OFF OFF OFF 78.1± 11.7 44.8±2.1 39.8±1.9 

01/26 – 02/01 -10.1±4.5 44.4±10.5 OFF OFF OFF 75.1±11.6 44.6±2.0 39.8±1.9 

02/02 – 02/08 -7.6±6.7 32.6±  7.0 OFF OFF OFF 74.6±10.2 43.4±3.0 38.9±2.0 

02/09 – 02/15 NO DATA        

02/16 – 02/22 -4.1±3.6 43.3±18.0 OFF OFF OFF 71.1±  9.7 40.8±2.0 37.2±1.7 

02/23 – 03/01 -4.8±6.2 38.5±13.0 OFF OFF OFF 69.8±11.6 41.5±3.3 37.8±2.5 

03/02 – 03/08 -2.9±7.3 36.8±14.0 OFF OFF OFF 62.0±  8.6 40.4±3.9 36.9±2.7 

03/09 – 03/15 -1.2±5.4 31.9±10.2 OFF OFF OFF 66.2±10.5 39.9±2.6 36.8±1.9 

03/16 – 03/22 2.4±5.0 26.9±  8.3 OFF OFF OFF 59.6±10.9 38.6±2.3 36.1±1.9 

03/23 – 03/29 3.8±6.7 33.6±18.9 OFF OFF OFF 55.7±10.3 37.3±3.0 35.1±2.1 

03/30 – 04/05 6.7±4.1 50.7±22.1 OFF OFF OFF 58.6±11.8 35.6±2.1 33.9±1.8 

04/06 – 04/12 3.5±3.1 40.3±20.2 OFF OFF OFF 60.8±  8.6 37.6±1.3 35.6±1.3 

04/13 – 04/19 9.3±5.4 22.6±  3.7 OFF OFF OFF 48.2±12.4 35.4±2.1 34.0±1.9 

04/20 – 04/26 12.1±6.2 33.8±18.7 81.4±  8.8 7.1±0.9 10.6±1.5 55.4±  7.9 33.1±2.3 31.7±2.3 

04/27 – 05/03 14.5±6.2 28.4±16.8 81.8±  6.1 7.1±0.4 11.4±1.5 50.4±11.5 32.7±3.3 31.3±3.6 

05/04 – 05/10 14.1±3.9 45.1±25.5 77.0±12.4 7.2±0.8 10.3±1.4 57.9±  7.6 31.3±2.0 30.0±2.2 

05/11 – 05/17 14.3±4.9 28.2±17.6 80.5±  8.8 7.3±1.1 11.0±1.6 52.3±10.1 32.0±2.6 31.0±2.8 

05/18 – 05/24 16.6±6.4 24.7±  9.3 81.9±  4.5 7.2±0.7 11.1±1.5 48.0±  6.2 32.5±1.6 30.9±1.9 

05/25 – 05/31 13.8±3.4 47.2±27.3 83.3±  5.4 7.5±1.5 10.4±1.3 54.8±  7.2 32.0±2.1 31.0±2.1 

06/01 – 06/07 16.1±5.6 29.3±16.7 80.1±  6.4 8.7±4.3 11.6±3.6 48.2±  7.1 31.6±1.6 30.0±1.8 

06/08 – 06/14 18.0±4.6 46.1±25.9 84.7±  8.7 8.2±3.2 11.8±2.4 51.3±  5.8 30.8±1.5 29.3±2.2 

06/15 – 06/21 20.2±4.7 49.9±24.8 85.8±  7.8 7.3±0.6 11.3±1.3 47.2±  6.3 31.1±2.2 29.4±.27 

06/22 – 06/28 24.1±5.4 40.1±23.2 94.9±21.6 7.2±0.2 12.0±1.3 40.3±  3.6 32.8±1.4 30.0±1.0 

06/29 – 07/05 20.8±4.1 58.3±24.7 89.0±15.0 7.3±0.5 11.6±1.4 48.1±  6.9 32.1±1.6 29.6±1.0 

07/06 – 07/12 20.4±4.3 46.2±21.5 80.9±  4.4 7.2±0.4 11.1±1.6 48.2±  5.1 31.1±1.3 29.1±1.0 

07/13 – 07/19 19.3±4.0 43.8±17.9 83.7±  5.4 7.1±0.5 11.5±1.6 46.1±  6.4 30.9±1.5 29.4±1.6 

07/20 – 07/26 22.3±4.0 45.7±19.1 88.2±17.2 7.1±0.6 12.0±1.5 43.3±  6.0 32.5±2.1 29.9±2.2 

07/27 – 08/02 23.8±3.9 49.2±22.5 109.0±30.3 7.1±0.2 12.0±1.1 44.3±  4.2 32.2±1.2 29.4±0.9 

08/03 – 08/09 21.0±4.1 38.5±17.8 84.6±17.2 7.1±0.2 10.9±1.4 52.1±  6.5 31.0±1.7 28.6±1.2 

08/10 – 08/16 25.4±4.5 47.3±23.2 113.5±31.1 7.1±0.4 12.7±1.3 39.6±  4.5 33.0±1.5 30.0±1.3 

08/17 – 08/23 25.1±3.6 49.1±19.2 119.7±31.7 7.1±0.4 12.4±1.3 39.9±  3.6 32.7±1.4 29.8±1.0 

08/24 – 08/30 18.9±4.5 42.7±24.7 82.8±  4.7 7.2±0.6 11.5±1.7 50.0±  7.1 31.5±1.7 29.6±1.6 

08/31 – 09/06 19.0±4.8 34.1±16.8 81.3±  4.5 7.2±0.8 11.0±1.8 49.1±  7.1 30.9±1.2 29.2±1.1 

09/07 – 09/13 19.3±5.0 32.3±15.2 81.2±  4.3 7.1±0.9 11.2±1.6 46.6±  7.1 30.8±1.3 29.3±1.2 

09/14 – 09/20 14.9±4.0 37.8±18.0 78.8±  3.9 7.3±1.3 10.3±1.7 52.1±  6.8 30.8±1.4 29.9±1.7 

09/21 – 09/27 18.9±4.7 51.1±25.3 84.5±  2.5 7.1±0.4 12.7±1.4 Data loss 30.9±1.5 29.5±0.9 

09/28 – 10/04 11.2±3.7 60.4±20.8 83.3±  3.4 7.5±1.8 11.3±1.7 60.2±  8.4 31.9±2.1 31.4±1.8 

10/05 – 10/11 11.1±2.2 53.5±21.7 OFF OFF OFF 64.2±  8.9 32.0±1.5 31.2±1.3 

10/12 – 10/18 4.5±3.4 34.5±13.3 OFF OFF OFF 66.5±15.0 35.5±3.2 33.5±2.7 

10/19 – 10/25 7.2±4.2 45.8±21.7 OFF OFF OFF 60.1±  5.8 34.9±2.6 33.4±2.3 

10/26 – 11/01 8.3±3.1 43.5±15.0 OFF OFF OFF 59.0±  8.4 34.1±1.9 32.6±1.5 

11/02 – 11/08 5.1±3.8 35.9±12.2 OFF OFF OFF 60.3±  9.2 35.8±2.1 33.8±1.5 

11/09 – 11/15 7.8±4.2 41.7±24.7 OFF OFF OFF 60.7±11.5 34.8±2.6 33.2±2.4 

11/16 – 11/22 5.6±2.9 44.6±16.6 OFF OFF OFF 63.3±  8.6 35.7±1.9 33.6±1.6 

11/23 – 11/29 5.7±2.4 56.8±17.6 OFF OFF OFF 63.6±  7.4 35.7±1.5 33.9±1.4 

11/30 – 12/06 2.5±2.7 49.5±18.0 OFF OFF OFF 65.0±10.7 37.4±1.8 35.2±1.6 

12/07 – 12/13 -3.6±2.6 43.7±17.8 OFF OFF OFF 73.3±  8.0 40.3±2.5 37.0±2.2 

12/14 – 12/20 -9.1±6.1 43.6±17.3 OFF OFF OFF 85.3±  7.9 43.3±3.3 39.1±2.5 

12/21 – 12/27 -4.7±5.1 52.2±16.2 OFF OFF OFF 68.1±  4.0 41.2±3.1 37.6±2.2 

12/28 – 01/03 -6.7±5.3 53.3±12.7 OFF OFF OFF 73.3±  6.9 42.1±2.9 38.2±2.1 
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Table B.2: Weekly average monitored data for steam system and heat exchangers, 2009 

Item 

Week 

       , 

kg/s 

Tcondensate, 

°C 

  
    ,  

°C 

  
    ,  

°C 

  
    ,  

°C 

  
    ,  

°C 

  
    ,  

°C 

  
    ,  

°C 
12/22 – 12/28 56.6±15.5 98.5±13.1 45.7±5.0 39.3±2.4 37.9±2.1 41.3±3.0 OFF OFF 

12/29 – 01/04 48.6±  9.1 101.6±  4.6 50.2±4.4 41.4±2.2 39.7±2.0 44.0±2.7 OFF OFF 

01/05 – 01/11 54.3±  8.3 101.2±  5.0 49.7±3.3 41.4±1.9 39.7±2.0 44.1±2.1 OFF OFF 

01/12 – 01/18 44.2±12.7 93.0±14.5 51.3±3.7 40.9±1.7 39.1±1.8 44.0±1.9 OFF OFF 

01/19 – 01/25 48.3±12.2 101.3±  4.2 50.5±3.5 41.4±1.9 39.6±1.9 44.4±2.0 OFF OFF 

01/26 – 02/01 56.8±10.6 101.3±  4.6 49.9±3.3 41.4±1.8 39.7±1.9 44.1±1.9 OFF OFF 

02/02 – 02/08 53.4±11.6 101.3±  4.8 48.4±4.8 40.5±2.2 38.8±2.0 43.0±2.9 OFF OFF 

02/09 – 02/15 NO DATA        

02/16 – 02/22 55.1±11.2 101.3±  5.0 44.0±3.5 38.6±1.7 37.1±1.7 40.5±1.9 OFF OFF 

02/23 – 03/01 54.6±11.5 101.0±  6.4 45.1±5.1 39.1±2.7 37.7±2.5 41.1±3.2 OFF OFF 

03/02 – 03/08 59.1±16.3 100.7±  6.3 43.8±5.9 38.2±2.9 36.8±2.6 40.1±3.7 OFF OFF 

03/09 – 03/15 51.8±11.7 100.5±  7.1 42.4±3.9 37.9±2.0 36.6±1.8 39.5±2.5 OFF OFF 

03/16 – 03/22 52.5±12.7 101.8±  3.0 40.2±2.8 37.2±1.8 35.9±1.8 38.4±2.2 OFF OFF 

03/23 – 03/29 60.1±15.3 101.5±  4.2 39.0±4.0 36.2±2.3 35.1±2.1 37.3±2.8 OFF OFF 

03/30 – 04/05 68.6±13.4 101.8±  2.4 36.4±2.3 34.8±1.9 34.0±1.7 35.5±2.0 OFF OFF 

04/06 – 04/12 52.1±12.5 101.9±  2.6 38.6±1.6 36.3±1.2 35.5±1.3 37.4±1.3 OFF OFF 

04/13 – 04/19 55.1±14.6 102.1±  2.4 36.3±2.3 34.5±1.8 33.9±1.8 35.3±2.0 OFF OFF 

04/20 – 04/26 70.6±16.5 102.1±  3.3 34.4±2.2 33.0±2.2 32.2±2.2 33.6±2.3 30.0±1.5 30.8±1.8 

04/27 – 05/03 72.4±15.9 102.2±  2.2 33.3±2.3 32.0±2.1 31.5±2.1 32.5±2.2 30.6±1.3 31.7±1.4 

05/04 – 05/10 80.2±13.9 101.8±  3.4 31.8±1.7 30.7±1.6 30.3±1.5 31.1±1.6 29.5±0.9 30.4±1.1 

05/11 – 05/17 68.1±18.0 102.0±  2.6 32.7±2.3 31.3±2.0 31.0±1.9 31.9±2.1 29.9±1.5 30.9±1.5 

05/18 – 05/24 75.3±15.9 102.0±  3.0 32.9±1.8 31.7±1.6 31.5±1.5 32.3±1.8 30.6±1.1 31.5±1.2 

05/25 – 05/31 69.1±21.7 99.3±10.5 32.4±1.9 31.2±1.8 30.8±1.7 31.7±1.9 30.1±1.0 30.9±1.2 

06/01 – 06/07 79.9±11.4 102.0±  2.6 32.0±1.8 30.8±1.7 30.2±1.8 31.4±1.7 30.5±1.0 31.0±1.1 

06/08 – 06/14 86.2±  6.2 102.0±  2.1 30.8±1.1 29.4±1.3 28.6±1.6 30.1±1.1 27.7±0.3 27.8±0.4 

06/15 – 06/21 87.9±  2.5 101.4±  1.5 31.0±1.4 29.3±1.8 28.8±2.2 30.1±1.6 30.8±1.7 31.5±1.9 

06/22 – 06/28 87.8±  2.0 101.2±  1.3 33.2±1.3 32.2±1.3 32.2±1.4 32.5±1.3 31.6±1.4 32.6±1.5 

06/29 – 07/05 84.4±  2.4 101.2±  1.5 31.9±2.0 30.9±2.0 31.0±2.0 31.2±1.9 31.2±1.3 32.2±1.5 

07/06 – 07/12 84.4±  2.8 101.4±  1.6 30.8±0.9 29.7±0.9 29.9±1.0 30.2±0.9 30.4±1.2 31.4±1.4 

07/13 – 07/19 84.7±  2.4 101.2±  1.3 30.3±0.6 29.2±0.7 29.1±0.8 29.7±0.6 30.2±1.7 31.6±1.3 

07/20 – 07/26 88.3±  4.2 101.3±  1.4 32.5±2.5 31.5±2.5 31.6±2.5 31.8±2.4 31.2±1.3 32.3±1.5 

07/27 – 08/02 89.5±  1.9 101.3±  0.9 32.9±0.9 31.9±0.9 32.1±0.9 32.2±0.9 31.1±1.1 32.1±1.2 

08/03 – 08/09 89.5±  3.6 101.2±  2.6 30.7±1.5 29.7±1.5 29.7±1.6 30.0±1.5 29.9±1.6 31.1±1.3 

08/10 – 08/16 89.6±  2.9 101.4±  1.0 33.6±1.5 32.6±1.5 32.6±1.5 32.8±1.4 31.9±1.5 32.9±1.6 

08/17 – 08/23 89.6±  2.6 101.3±  0.9 32.8±1.2 31.8±1. 2 32.1±1.2 32.2±1.2 31.7±1.4 32.7±1.4 

08/24 – 08/30 89.3±  3.6 101.5±  0.9 30.7±1.0 29.7±1.0 29.8±1.0 30.2±1.0 30.9±1.6 31.9±1.7 

08/31 – 09/06 89.3±  3.9 101.6±  1.0 30.6±0.8 29.5±0.7 29.5±0.7 30.1±0.8 30.4±1.2 31.5±1.5 

09/07 – 09/13 82.8±20.5 97.1±14.9 30.4±0.8 29.4±0.7 29.4±0.7 29.9±0.7 30.1±1.1 31.1±1.2 

09/14 – 09/20 87.7±18.4 96.7±17.4 31.4±1.6 30.2±1.3 30.3±1.4 30.9±1.6 29.5±1.2 30.4±1.3 

09/21 – 09/27 97.6±  3.6 101.5±  0.9 31.2±1.1 30.0±1.1 30.2±1.2 30.8±1.4 31.1±1.2 32. 4±1.4 

09/28 – 10/04 91.8±16.5 100.6±  3.6 33.4±2.3 31.9±1.9 31.6±1.8 32.5±2.3 OFF OFF 

10/05 – 10/11 87.1±14.3 101.3±  1.7 32.7±1.8 31.5±1.5 31.1±1.4 32.0±1.6 OFF OFF 

10/12 – 10/18 79.6±10.6 101.7±  1.8 37.3±3.4 34.6±2.6 33.7±2.4 35.6±2.8 OFF OFF 

10/19 – 10/25 82.4±  6.7 101.5±  2.1 35.7±3.0 34.1±2.5 33.4±2.4 34.8±2.7 OFF OFF 

10/26 – 11/01 84.3±  8.3 101.5±  1.7 34.8±2.0 33.4±1.7 32.7±1.5 34.1±1.8 OFF OFF 

11/02 – 11/08 80.4±  8.0 101.6±  2.1 37.2±2.6 34.8±1.6 33.9±1.4 35.9±1.8 OFF OFF 

11/09 – 11/15 82.1±  6.8 101.8±  1.5 36.0±2.8 33.8±1.8 33.0±1.7 34.7±2.1 OFF OFF 

11/16 – 11/22 75.8±11.5 101.7±  3.3 36.6±2.3 34.5±1.6 33.5±1.5 35.5±1.9 OFF OFF 

11/23 – 11/29 74.9±12.7 101.8±  2.0 36.5±1.8 34.8±1.3 33.8±1.4 35.6±1.5 OFF OFF 

11/30 – 12/06 60.2±16.2 101.0±  4.6 38.5±2.0 36.2±1.5 35.1±1.5 37.2±1.7 OFF OFF 

12/07 – 12/13 58.4±13.3 98.9±11.2 43.0±3.4 38.2±2.3 36.9±2.2 39.8±2.6 OFF OFF 

12/14 – 12/20 49.8±11.0 101.0±  5.8 48.1±5.5 40.6±2.6 39.0±2.5 42.9±3.1 OFF OFF 

12/21 – 12/27 50.6±  8.9 101.2±  5.5 44.4±5.1 38.9±2.4 37.5±2.2 40.8±3.0 OFF OFF 

12/28 – 01/03 47.2±  5.6 100.9±  5.6 45.9±4.9 39.5±2.2 38.1±2.1 41.7±2.8 OFF OFF 
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Table B.3: Weekly average monitored data for chillers, 2009 

Item 

Week 
     

    , 

°C 

     
    , 

°C 

     
    , 

°C 

     
    , 

°C 

     
    , 

°C 

     
    , 

°C 

     
    , 

°C 

     
    , 

°C 

12/22 – 04/19 OFF OFF OFF OFF OFF OFF OFF OFF 

04/20 – 04/26 6.8±0.6 10.3±1.5 32.1±2.0 28.2±1.3 OFF OFF OFF OFF 

04/27 – 05/03 6.9±1.2 11.1±1.6 32.7±2.3 28.1±1.2 OFF OFF OFF OFF 

05/04 – 05/10 6.8±0.9 10.0±1.5 31.6±1.7 28.3±0.7 OFF OFF OFF OFF 

05/11 – 05/17 7.0±1.1 10.7±1.5 32.1±2.2 28.1±1.1 OFF OFF OFF OFF 

05/18 – 05/24 6.8±0.8 10.7±1.4 32.4±1.8 28.2±0.8 OFF OFF OFF OFF 

05/25 – 05/31 OFF OFF OFF OFF 6.9±1.0 10.1±1.3 31.7±2.6 28.2±1.8 

06/01 – 06/07 6.7±0.1 10.3±1.7 32.0±1.8 28.3±0.6 6.7±0.1 9.8±1.6 31.6±1.5 28.4±0.8 

06/08 – 06/14 6.7±0.3 11.4±1.7 33.3±1.9 28.2±0.4 6.7±0.1 10.4±1.3 32.4±1.4 28.4±0.5 

06/15 – 06/21 7.9±2.0 10.4±1.5 29.7±1.4 28.1±0.6 6.7±0.1 10.8±1.3 33.1±1.5 28.6±0.4 

06/22 – 06/28 6.7±0.1 11.6±0.9 33.2±0.9 28.4±0.4 6.7±0.1 11.5±1.3 33.9±1.6 28.6±0.3 

06/29 – 07/05 6.7±0.1 11.4±0.7 33.1±0.6 28.4±0.3 6.7±0.1 11.2±1.5 33.5±1.8 28.5±0.4 

07/06 – 07/12 6.8±0.6 10.9±1.6 32.8±1.8 28.3±0.5 6.7±0.1 9.7±1.0 31.8±1.3 28.5±0.7 

07/13 – 07/19 6.8±0.5 10.8±1.5 32.9±1.7 28.3±0.4 7.0±0.9 12.7±1.6 35.2±1.8 28.6±0.2 

07/20 – 07/26 6.7±0.5 11.6±1.5 33.7±1.8 28.3±0.4 6.8±0.3 11.4±0.5 33.0±0.5 28.5±0.1 

07/27 – 08/02 6.7±0.2 11.5±1.1 33.5±1.3 28.4±0.3 6.7±0.2 11.2±0.7 32.8±0.8 28.5±0.1 

08/03 – 08/09 6.7±0.2 10.5±1.4 32.5±1.7 28.3±0.5 6.9±1.2 11.8±0.9 33.4±0.9 28.5±0.2 

08/10 – 08/16 6.8±0.4 12.3±1.3 34.3±1.7 28.4±0.2 6.7±0.1 11.3±0.8 33.1±0.9 28.5±0.1 

08/17 – 08/23 6.7±0.4 11.9±1.3 34.0±1.6 28.4±0.2 6.7±0.1 11.5±1.0 33.3±1.2 28.5±0.1 

08/24 – 08/30 6.7±0.1 11.9±1.6 34.2±1.8 28.4±0.3 6.7±0.1 9.7±1.0 32.1±1.4 28.6±0.7 

08/31 – 09/06 6.7±0.1 10.8±1.6 32.8±1.9 28.3±0.5 6.7±0.1 9.0±1.2 31.0±1.6 28.4±0.7 

09/07 – 09/13 6.7±0.1 10.7±1.4 32.7±1.7 28.3±0.6 OFF OFF OFF OFF 

09/14 – 09/20 6.8±0.2 9.7±1.2 31.4±1.4 28.2±0.7 OFF OFF OFF OFF 

09/21 – 09/27 6.7±0.1 12.1±0.1 34.3±1.6 28.3±0.4 OFF OFF OFF OFF 

09/28 – 10/04 7.2±1.6 7.2±1.6 32.2±2.1 28.1±1.6 OFF OFF OFF OFF 

10/05  – 01/03 OFF OFF OFF OFF OFF OFF OFF OFF 

 

Table B.4: Weekly average energy use and peak loads for cooling systems, 2009 

Item 

Week 

   
   , MJ/week 

(Peak, kW) 

    
   , MJ/week 

(Peak, kW) 

QCHW, MJ/week 

(Peak, kW) 

Qrec., MJ/week 

(Peak, kW) 

Qreject., MJ/week 

(Peak, kW) 

12/22 – 04/19 Table B.5 OFF OFF OFF OFF 

04/20 – 04/26 200,730 (1225) 147,580 (2210) 142,935 (2145) 33,710   (875) 198,385 (3110) 

04/27 – 05/03 193,630 (1250) 224,145 (2590) 229,335 (2650) 70,460   (960) 311,545 (4025) 

05/04 – 05/10 170,910   (960) 176,410 (2290) 188,565 (2305) 66,905   (715) 255,450 (3640) 

05/11 – 05/17 156,685   (910) 126,805 (2640) 128,560 (2545) 35,000 (1065) 171,750 (3670) 

05/18 – 05/24 206,090   (895) 327,300 (2450) 334,065 (2445) 87,510   (655) 456,655 (3510) 

05/25 – 05/31 127,210 (1350) 55,155 (2380) 58,675 (2570) 17,615   (640) 80,785 (3670) 

06/01 – 06/07 210,020   (890) 299,745 (2700) 318,940 (4930) 18,810   (655) 424,700 (3895) 

06/08 – 06/14 170,280   (690) 473,430 (3095) 414,100 (7495) 2,775   (620) 566,510 (3640) 

06/15 – 06/21 217,460   (890) 596,310 (2565) 617,970 (5115) 68,075   (695) 813,880 (3745) 

06/22 – 06/28 288,205   (745) 1,128,045  (4040)  1,167,940 (5700) 247,440   (620) 1,622,905 (5655) 

06/29 – 07/05 265,760   (700) 904,645 (3825) 931,660 (5680) 238,305   (720) 1,310,205 (5195) 

07/06 – 07/12 255,065 (1080) 618,710 (2495) 642,840 (3695) 167,875   (835) 887,130 (3925) 

07/13 – 07/19 201,420   (885) 540,615 (2795) 530,860 (2650) 183,180 (3130) 752,940 (4405) 

07/20 – 07/26 271,800   (720) 1,015,630 (3770) 1,033,670 (4285) 255,910   (695) 1,442,815 (4740) 

07/27 – 08/02 295,250   (775) 1,334,140 (4150) 1,456,150 (4640) 277,075   (680) 1,907,415 (6270) 

08/03 – 08/09 276,530   (840) 807,425 (3850) 853,890 (4320) 291,115 (3735) 1,163,270 (5830) 

08/10 – 08/16 291,315   (735) 1,552,375 (4290) 1,644,365 (4610) 282,215   (830) 2,207,210 (6290) 

08/17 – 08/23 277,600   (620) 1,585,695 (4925) 1,743,140 (5575) 261,555   (815) 2,287,830 (7870) 

08/24 – 08/30 197,965   (685) 567,030 (2701) 583,875 (2710) 170,815   (730) 835,030 (4025) 

08/31 – 09/06 199,090   (655) 488,290 (2515) 490,055 (2585) 124,120   (915) 691,485 (4000) 

09/07 – 09/13 171,160   (745) 448,060 (2590) 451,155 (2565) 88,170   (680) 633,500 (3920) 

09/14 – 09/20 112,250   (770) 137,160 (2345) 138,080 (2570) 32,920   (710) 187,495 (3875) 

09/21 – 09/27 61,140   (630) 217,720 (2845) 222,710 (2705) 64,660   (745) 314,095 (4000) 

09/28 – 10/04 105,665   (730) 23,530 (2405) 23,410 (2345) OFF 34,020 (3695) 

10/05 – 01/03 Table B.5 OFF OFF OFF OFF 
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Table B.5: Weekly average energy use and peak loads for heating systems, 2009 

Item 

Week 

   
   , MJ/week 

(Peak, kW) 

QBE, MJ/week 

(Peak, kW) 

QHX-1, MJ/week 

(Peak, kW) 

QHX-2, MJ/week 

(Peak, kW) 

12/22 – 12/28 843,480 (3325) 619,455 (2240) 701,970 (2365) 168,495 (3015) 

12/29 – 01/04 1,161,245 (4135) 852,555 (2080) 1,067,820 (3570) 114,925 (1260) 

01/05 – 01/11 1,067,430 (3785) 801,475 (1920) 985,795 (3120) 94,885 (1790) 

01/12 – 01/18 1,474,165 (8630) 1,005,945 (2560) 1,245,745 (3835) 242,405 (4795) 

01/19 – 01/25 959,250 (5315) 877,165 (2560) 891,090 (4630) 84,050 (2700) 

01/26 – 02/01 1,220,740 (4450) 820,180 (2080) 1,116,205 (3880) 122,000 (2090) 

02/02 – 02/08 1,026,600 (4100) 763,630 (2240) 946,965 (3980) 103,940 (2030) 

02/09 – 02/15 NO DATA    

02/16 – 02/22 726,040 (3305) 525,780 (1920) 677,055 (3330) 69,380 (1835) 

02/23 – 03/01 825,515 (3790) 577,295 (2080) 753,725 (3450) 84,500 (1890) 

03/02 – 03/08 665,580 (2985) 520,455 (1920) 613,170 (2530) 65,320 (1200) 

03/09 – 03/15 494,950 (3160) 422,320 (1920) 457,895 (2100) 53,510 (1255) 

03/16 – 03/22 359,495 (1595) 287,495 (1280) 335,860 (1915) 37,845   (655) 

03/23 – 03/29 305,950 (2805) 250,515 (1760) 277,835 (2060) 38,620 (1240) 

03/30 – 04/05 237,775 (2085) 150,800 (1280) 220,000 (1600) 29,880 (1200) 

04/06 – 04/12 242,680 (1340) 167,200 (1120) 222,705 (1380) 29,250   (995) 

04/13 – 04/19 182,740 (1170) 149,645   (960) 165,015 (1075) 28,930   (455) 

04/20 – 04/26 200,730 (1225) 99,285   (800) 146,235   (980) 31,880   (765) 

04/27 – 05/03 193,630 (1250) 61,300   (800) 82,405 (1185) 49,625   (915) 

05/04 – 05/10 170,910   (960) 62,734   (800) 73,605   (950) 38,690   (650) 

05/11 – 05/17 156,685   (910) 67,340   (800) 79,345   (850) 47,280   (815) 

05/18 – 05/24 206,090   (895) 63,455   (800) 74,255   (785) 48,200   (700) 

05/25 – 05/31 127,210 (1350) 75,255   (960) 82,570 (1215) 33,180    (660) 

06/01 – 06/07 210,020   (890) 89,500   (960) 121,755   (745) 74,015   (695) 

06/08 – 06/14 170,280   (690) 88,495   (800) 139,755   (630) 31,325   (565) 

06/15 – 06/21 217,460   (890) 108,350   (800) 113,940   (905) 37,795   (605) 

06/22 – 06/28 288,205   (745) 28,490     (160) 8,685   (160) 34,810   (360) 

06/29 – 07/05 265,760   (700) 20,435     (160) 6,810   (250) 26,275   (460) 

07/06 – 07/12 255,065 (1080) 26,620     (320) 10,840   (490) 81,460 (1035) 

07/13 – 07/19 201,420   (885) 36,115     (480) 29,345   (550) 44,540   (885) 

07/20 – 07/26 271,800   (720) 9,640     (160) 2,460   (215) 21,825   (395) 

07/27 – 08/02 295,250   (775) 8,635     (160) 810     (60) 22,245   (435) 

08/03 – 08/09 276,530   (840) 17,700     (480) 8,025   (420) 28,185   (410) 

08/10 – 08/16 291,315   (735) 5,610     (160) 1,045   (365) 15,365   (510) 

08/17 – 08/23 277,600   (620) 5,180     (160) 375     (50) 20,004   (245) 

08/24 – 08/30 197,965   (685) 28,345     (480) 16,420   (465) 20,150   (400) 

08/31 – 09/06 199,090   (655) 35,685     (800) 26,215   (560) 57,550   (565) 

09/07 – 09/13 171,160   (745) 34,390     (480) 19,675   (535) 68,545   (745) 

09/14 – 09/20 112,250   (770) 60,145     (800) 46,005   (560) 42,235   (530) 

09/21 – 09/27 61,140   (630) 4,460   (800) 3,260   (440) 3,945   (350) 

09/28 – 10/04 105,665   (730) 91,085   (800) 91,410 (1595) 22,445   (685) 

10/05 – 10/11 153,805   (860) 99,860   (800) 127,040   (870) 36,525   (585) 

10/12 – 10/18 354,190 (1665) 237,710 (1280) 321,275 (1450) 46,680 (1145) 

10/19 – 10/25 231,820 (2525) 131,375 (1440) 200,805 (2390) 42,395   (620) 

10/26 – 11/01 207,485 (1070) 122,020   (800) 182,795   (985) 32,355   (700) 

11/02 – 11/08 306,735 (1430) 214,830 (1280) 286,465 (1395) 36,220 (1210) 

11/09 – 11/15 257,555 (1585) 171,665 (1440) 232,770 (2170) 39,985   (960) 

11/16 – 11/22 316,625 (1880) 202,745 (1760) 295,665 (1660) 35,115 (1225) 

11/23 – 11/29 288,515 (1450) 168,930   (960) 267,395 (1195) 31,220   (635) 

11/30 – 12/06 326,665 (1830) 221,735 (1920) 305,170 (1785) 33,650 (1000) 

12/07 – 12/13 744,545 (3335) 461,030 (1600) 640,285 (3175) 118,680 (1860) 

12/14 – 12/20 989,565 (3920) 730,250 (2080) 902,460 (3465) 99,930 (2310) 

12/21 – 12/27 931,805 (4320) 537,580 (2080) 849,500 (3620) 93,310 (2185) 

12/28 – 01/03 992,415 (4260) 618,735 (1920) 905,300 (3470) 98,820 (1655) 
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Table B.6: Weekly average central plant electricity consumption, 2009 

Item 

Week 

   , 

kWh/week 

ECT, 

kWh/week 

Epumps, 

kWh/week 

Eelec, 

kWh/week 

12/22 – 12/28 0 0 12,090 12,090 

12/29 – 01/04 0 0 19,390 19,390 

01/05 – 01/11 0 0 16,575 16,575 

01/12 – 01/18 0 0 19,060 19,060 

01/19 – 01/25 0 0 13,865 13,865 

01/26 – 02/01 0 0 17,555 17,555 

02/02 – 02/08 0 0 16,065 16,065 

02/09 – 02/15 0 0 NO DATA NO DATA 

02/16 – 02/22 0 0 13,060 13,060 

02/23 – 03/01 0 0 14,630 14,630 

03/02 – 03/08 0 0 11,265 11,265 

03/09 – 03/15 0 0 9,230 9,230 

03/16 – 03/22 0 0 7,955 7,955 

03/23 – 03/29 0 0 7,605 7,605 

03/30 – 04/05 0 0 8,075 8,075 

04/06 – 04/12 0 0 8,210 8,210 

04/13 – 04/19 0 0 6,415 6,415 

04/20 – 04/26 8,045 60 13,635 21,740 

04/27 – 05/03 12,115 100 11,485 23,700 

05/04 – 05/10 10,240 50 13,000 23,290 

05/11 – 05/17 6,855 40 9,950 16,845 

05/18 – 05/24 17,760 130 15,220 33,110 

05/25 – 05/31 3,290 25 8,820 12,135 

06/01 – 06/07 17,450 125 18,735 36,310 

06/08 – 06/14 21,925 430 21,810 44,165 

06/15 – 06/21 33,410 625 24,555 58,590 

06/22 – 06/28 61,255 1,595 38,120 100,970 

06/29 – 07/05 49,895 930 34,645 85,470 

07/06 – 07/12 34,505 390 28,915 63,810 

07/13 – 07/19 28,980 565 23,125 52,670 

07/20 – 07/26 53,930 1,090 34,835 89,855 

07/27 – 08/02 71,835 1,810 45,495 119,140 

08/03 – 08/09 45,500 420 37,370 83,290 

08/10 – 08/16 81,710 3,040 45,195 129,945 

08/17 – 08/23 85,095 3,815 47,465 136,375 

08/24 – 08/30 31,645 535 24,730 56,910 

08/31 – 09/06 27,270 295 23,135 50,700 

09/07 – 09/13 24,780 250 20,420 45,450 

09/14 – 09/20 8,075 50 12,555 20,680 

09/21 – 09/27 11,090 230 18,050 29,370 

09/28 – 10/04 0 15 9,020 9,035 

10/05 – 10/11 0 0 9,980 9,980 

10/12 – 10/18 0 0 10,975 10,975 

10/19 – 10/25 0 0 8,610 8,610 

10/26 – 11/01 0 0 7,855 7,855 

11/02 – 11/08 0 0 8,525 8,525 

11/09 – 11/15 0 0 8,660 8,660 

11/16 – 11/22 0 0 9,495 9,495 

11/23 – 11/29 0 0 8,625 8,625 

11/30 – 12/06 0 0 9,045 9,045 

12/07 – 12/13 0 0 14,550 14,550 

12/14 – 12/20 0 0 17,155 17,155 

12/21 – 12/27 0 0 14,210 14,210 

12/28 – 01/03 0 0 15,555 15,555 
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Table B.7: Weekly average performance indices of the central plant 
Item 

Week 
                                       

        
                        

12/22 – 12/28 OFF OFF  OFF 0.45±0.11 OFF 
12/29 – 01/04 OFF OFF  OFF 0.41±0.06 OFF 
01/05 – 01/11 OFF OFF  OFF 0.44±0.07 OFF 
01/12 – 01/18 OFF OFF  OFF 0.41±0.08 OFF 
01/19 – 01/25 OFF OFF  OFF 0.44±0.06 OFF 
01/26 – 02/01 OFF OFF  OFF 0.43±0.07 OFF 
02/02 – 02/08 OFF OFF  OFF 0.43±0.07 OFF 
02/09 – 02/15 OFF OFF  OFF NO DATA OFF 
02/16 – 02/22 OFF OFF  OFF 0.53±0.15 OFF 
02/23 – 03/01 OFF OFF  OFF 0.50±0.14 OFF 
03/02 – 03/08 OFF OFF  OFF 0.52±0.15 OFF 
03/09 – 03/15 OFF OFF  OFF 0.53±0.14 OFF 
03/16 – 03/22 OFF OFF  OFF 0.57±0.15 OFF 
03/23 – 03/29 OFF OFF  OFF 0.59±0.17 OFF 
03/30 – 04/05 OFF OFF  OFF 0.66±0.17 OFF 
04/06 – 04/12 OFF OFF  OFF 0.61±0.15 OFF 
04/13 – 04/19 OFF OFF  OFF 0.58±0.20 OFF 
04/20 – 04/26 4.72±1.10 4.69±1.08  2.89±0.88 0.62±0.20 0.58±0.35 

04/27 – 05/03 5.18±0.46 5.14±0.45  3.96±0.55 0.56±0.23 0.74±0.15 

05/04 – 05/10 4.94±0.91 4.92±0.90  3.54±0.85 0.54±0.19 0.62±0.21 

05/11 – 05/17 5.11±0.57 5.09±0.56  3.83±0.69 0.52±0.23 0.61±0.19 

05/18 – 05/24 5.14±0.60 5.11±0.59  3.65±0.67 0.53±0.25 0.66±0.18 

05/25 – 05/31 5.02±2.79 4.97±2.69  2.87±1.13 0.58±0.20 0.59±0.20 

06/01 – 06/07 4.94±2.06 4.90±1.95  3.05±1.14 0.64±0.18 0.64±0.24 

06/08 – 06/14 5.15±0.90 5.08±0.86  3.30±0.73 0.68±0.18 0.02±0.07 

06/15 – 06/21 5.08±0.52 4.99±0.50  3.30±0.51 0.53±0.23 0.61±0.27 

06/22 – 06/28 5.19±0.41 5.08±0.39  3.41±0.44 0.28±0.18 0.72±0.12 

06/29 – 07/05 5.12±0.58 5.04±0.57  3.30±0.50 0.25±0.15 0.72±0.12 

07/06 – 07/12 5.03±0.57 4.98±0.55  3.17±0.65 0.30±0.16 0.72±0.13 

07/13 – 07/19 5.04±0.41 4.96±0.40  3.24±0.46 0.45±0.16 0.73±0.10 

07/20 – 07/26 5.24±0.37 5.15±0.35  3.46±0.48 0.26±0.22 0.73±0.11 

07/27 – 08/02 5.56±0.35 5.43±0.32  3.63±0.32 0.11±0.09 0.75±0.10 

08/03 – 08/09 5.03±0.68 4.99±0.66  3.11±0.70 0.31±0.16 0.73±0.12 

08/10 – 08/16 5.59±0.56 5.40±0.54  3.76±0.30 0.13±0.13 0.76±0.10 

08/17 – 08/23 5.70±1.29 5.46±0.74  3.76±0.41 0.10±0.10 0.78±0.09 

08/24 – 08/30 5.05±1.34 4.98±1.27  3.21±0.74 0.37±0.17 0.72±0.14 

08/31 – 09/06 4.86±1.56 4.81±1.53  3.05±0.88 0.48±0.19 0.71±0.15 

09/07 – 09/13 4.98±1.15 4.94±1.14  3.19±0.71 0.42±0.18 0.70±0.15 

09/14 – 09/20 5.01±3.82 4.94±3.52  2.83±1.30 0.49±0.20 0.70±0.21 

09/21 – 09/27 5.29±0.30 5.19±0.29  3.60±0.36 0.40±0.17 0.71±0.11 
09/28 – 10/04 OFF OFF  OFF 0.54±0.21 OFF 
10/05 – 10/11 OFF OFF  OFF 0.57±0.18 OFF 
10/12 – 10/18 OFF OFF  OFF 0.56±0.19 OFF 
10/19 – 10/25 OFF OFF  OFF 0.63±0.19 OFF 
10/26 – 11/01 OFF OFF  OFF 0.66±0.16 OFF 
11/02 – 11/08 OFF OFF  OFF 0.63±0.18 OFF 
11/09 – 11/15 OFF OFF  OFF 0.60±0.19 OFF 
11/16 – 11/22 OFF OFF  OFF 0.64±0.17 OFF 
11/23 – 11/29 OFF OFF  OFF 0.66±0.16 OFF 
11/30 – 12/06 OFF OFF  OFF 0.63±015 OFF 
12/07 – 12/13 OFF OFF  OFF 0.50±0.14 OFF 
12/14 – 12/20 OFF OFF  OFF 0.46±0.13 OFF 
12/21 – 12/27 OFF OFF  OFF 0.52±0.13 OFF 
12/28 – 01/03 OFF OFF  OFF 0.49±0.12 OFF 
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Appendix C: Correlation-based model coefficients 
 

Table C.1: Coefficients for the electric power input models for chillers, Equation 5.19 – existing 

EnergyPlus model 

Set name       Pref COPref a0 a1 a2 a3 a4 a5 

Trane  

CVHF 2799 
2799  6.40 -0.2176 -0.0494 8.70 E-05 0.09612 -0.00203 0.00254 

CH1-30H 2266 339 6.69 108.1450 -19.2207 0.80636 -2.51884 0.01341 0.24362 

CH1-7D 2546 434 5.87 60.2946 -0.9378 0.23199 -3.25442 0.05275 -0.06083 

CH1-10D 2546 434 5.87 66.5676 -2.1152 0.29755 -3.38759 0.05384 -0.05230 

CH1-14D 2546 434 5.87 75.2669 10.6880 -1.68116 -6.29507 0.05826 0.33444 

CH1-21D 2648 495 5.35 5.9293 8.8859 -0.89437 -2.00399 0.02037 0.08848 

CH1-28D 2666 517 5.16 55.6849 -5.9214 0.13986 -1.98856 0.01810 0.11092 

CH2-1D 2081 387 5.43 255.5610 -27.6964 0.39433 -9.47780 0.07495 0.65188 

CH2-7D 2928 527 5.56 11.9917 -7.7791 0.71449 0.86498 -0.00760 -0.05142 

CH2-10D 2928 527 5.56 11.9917 -7.7791 0.71449 0.86498 -0.00760 -0.05142 

CH2-14D 2928 527 5.56 -8.5273 0.2242 -0.06358 0.51072 -0.00940 0.01878 

CH2-21D 2928 527 5.56 -0.5696 -0.7353 -0.01311 0.23578 -0.00631 0.02741 

CH2-28D 2928 527 5.56 -8.6454 1.8560 -0.20341 0.19041 -0.00567 0.02757 

 

Table C.2: Coefficients for the electric power input models for chillers, Equation 5.20 – existing 

EnergyPlus model 

Set name b0 b1 b2 b3 b4 b5 

Trane CVHF 2799 -0.0199 -0.07848 0.00194 0.07123 -9.17380E-04 -0.00058 

CH1-30H -56.6583 10.49900 -0.96952 1.28252 -2.69995 E-02 0.08165 

CH1-7D -201.5340 58.43500 -4.23824 0.28796 6.05000 E-06 -0.03730 

CH1-10D -214.9250 59.05250 -4.11478 0.92367 -2.90940 E-03 -0.10114 

CH1-14D -219.7120 52.00780 -3.02603 2.52346 -5.34559 E-03 -0.31393 

CH1-21D -114.9490 26.09400 -1.47054 1.48837 -4.33813 E-03 -0.16923 

CH1-28D -42.7144 6.25958 -0.19697 1.19876 -7.36280 E-03 -0.09546 

CH2-1D -473.2240 159.48600 -8.48478 -3.32317 1.74600 E-01  -1.32621 

CH2-7D -51.5804 22.43780 -2.30418 -1.34114 -3.78277 E-03 0.24441 

CH2-10D -51.5804 22.43780 -2.30418 -1.34114 -3.78277 E-03 0.24441 

CH2-14D -42.3250 13.03990 -1.11650 -0.11793 -3.16450 E-03 0.06007 

CH2-21D -30.8199 7.36389 -0.57089 0.31733 -4.79260 E-03 0.01228 

CH2-28D -5.8344 -0.29780 -0.02285 0.386481 -6.25419 E-03 0.01708 

 

Table C.3: Coefficients for the electric power input models for chillers, Equation 5.21 – existing 

EnergyPlus model 

Set name c0 c1 c2 c3 c4 c5 c6 

Trane CVHF 2799 0.35161 0.00921 -2.382325E-05 0.12232 -0.18201 -0.00784 0.68849 

CH1-30H 19.06210 -1.33277 2.30658 E-02 9.77271 -2.12435 -0.24626 1.30724 

CH1-7D -0.59745 0.02880 -2.32380 E-04 1.51642 -0.45829 -0.01089 0.19651 

CH1-10D -6.96597 0.48961 -8.48258 E-03 -1.73432 -0.77935 0.10189 0.17410 

CH1-14D 0.425461 -0.00551 -9.48600 E-05 0.38709 0.09060 0.01593 -0.14964 

CH1-21D 1.40462 0.01898 -2.06077 E-03 -2.02660 -1.46201 0.13174 0.32790 

CH1-28D 1.94517 -0.01389 -1.49532 E-03 -1.91033 -1.53332 0.12419 0.46424 

CH2-1D 13.53640 -1.05093 2.03286 E-02 2.27129 2.28096 -0.13296 -0.49633 

CH2-7D 2.33977 -0.08433 6.53170 E-04 -1.91995 -0.10428 0.07856 0.03295 

CH2-10D 1.41009 -0.02335 -3.97950 E-04 -2.10914 -0.42073 0.09222 0.14380 

CH2-14D 8.75129 -0.45837 5.93953 E-03 -0.58359 -0.84720 0.06192 0.24894 

CH2-21D 10.74070 -0.57270 7.47873 E-03 -0.22867 -1.14377 0.06158 0.33336 

CH2-28D 12.86780 -0.70446 9.53311 E-03 0.15227 -1.02804 0.04728 0.30031 
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Table C.4: Coefficients for the electric power input models for chillers, d0 to d5 – existing York & Cappiello 

model 

Set name d0 d1 d2 d3 d4 d5 

CH1-30H -121425 84.553 3599.280 20842.40 9.36407 E-07 22.2139 

CH1-7D -34174 15.667 952.645 6129.97 3.43740 E-05 -1.1631 

CH1-10D -5664 0.820 14.050 1629.03 2.23514 E-05 -1.3097 

CH1-14D -9665 1.517 59.640 2609.11 1.97104 E-05 -0.5389 

CH1-21D -14925 5.600 405.399 2726.63 2.77382 E-05 -3.2874 

CH1-28D -18533 10.909 605.179 2967.64 3.28715 E-05 -3.0989 

CH2-1D -13860 -3.296 41.018 3773.35 4.03397 E-06 -0.3261 

CH2-7D -48285 33.093 1579.170 7521.84 3.94222 E-05 5.7517 

CH2-10D -44955 32.408 1474.740 7005.15 3.51244 E-05 4.2943 

CH2-14D -30485 25.708 991.470 4756.36 2.91392 E-05 5.3648 

CH2-21D -41553 38.963 1377.730 6448.54 2.89060 E-05 3.5309 

CH2-28D -13700 15.200 535.864 1741.90 2.58396 E-05 3.0212 

CH2-1WW 6915 -0.002 272.648 -3222.38 1.60953 E-05 -0.3919 

CH2-1WEH -10682 7.204 479.196 1137.69 3.19120 E-05 -1.9564 

CH2-2WW -49769 45.401 1646.520 7726.21 3.11948 E-05 8.0153 

CH2-2WEH 2547 -8.578 -211.881 74.86 2.94375 E-05 -1.1209 

 

Table C.5: Coefficients for the electric power input models for chillers, d6 to d10 – existing York & 

Cappiello model 

Set name d6 d7 d8 d9 d10 

CH1-30H -20.700 -2.97423 -12.54540 -722.082 4.42106 E-01 

CH1-7D -174.215 -0.55130 -2.31787 -131.701 8.17863 E-02 

CH1-10D -139.677 -0.03186 -0.10136 9.327 4.46411 E-03 

CH1-14D -182.165 -0.05224 -0.20870 -4.230 7.66351 E-03 

CH1-21D -130.203 -0.19608 -0.83166 -32.854 2.94983 E-02 

CH1-28D -84.241 -0.38733 -1.61674 -63.781 5.77056 E-02 

CH2-1D -254.707 0.15159 0.49230 -4.408 -2.18083 E-02 

CH2-7D 65.680 -1.13230 -4.95945 -286.067 1.69973 E-01 

CH2-10D 41.546 -1.11302 -4.85331 -257.949 1.67029 E-01 

CH2-14D 73.655 -0.87849 -3.84827 -194.866 1.31944 E-01 

CH2-21D 32.026 -1.34809 -5.81057 -236.341 2.01478 E-01 

CH2-28D 104.84 -0.51863 -2.26451 -106.402 7.77564 E-02 

CH2-1WW 326.063 0.00117 -0.01258 -38.473 9.31737 E-04 

CH2-1WEH 36.873 -0.25031 -1.07724 -55.316 3.78368 E-02 

CH2-2WW 109.143 -1.56796 -6.79427 -315.464 2.35053 E-01 

CH2-2WEH -86.495 0.30910 1.29831 41.285 -4.63336 E-02 

 

  



208 

 

Table C.6: Coefficients for the electric power input models for chillers – existing Gordon & Ng model 

Set name e1 e2 e3 

CH1-30H 0.85195 -2398.68 0.00660 

CH1-7D 0.46488 -526.92 0.00806 

CH1-10D 0.52266 -817.55 0.00815 

CH1-14D 0.56725 -1002.46 0.00802 

CH1-21D 0.54212 -884.92 0.00833 

CH1-28D 0.46665 -552.17 0.00867 

CH2-1D 0.59389 -1119.25 0.00937 

CH2-7D 0.21374 434.77 0.01022 

CH2-10D 0.32000 0.64 0.00989 

CH2-14D 0.37813 -223.85 0.00957 

CH2-21D 0.50599 -780.04 0.00930 

CH2-28D 0.51724 -838.29 0.00934 

CH2-1WW 0.50248 -780.12 0.00964 

CH2-1WEH 0.62023 -1250.67 0.00928 

CH2-2WW 0.36045 -179.73 0.00954 

CH2-2WEH 0.54012 -862.27 0.00926 

 

Table C.7: Coefficients for the coefficient of performance for chiller – Existing Swider model 

Set name f1 f2 f3 

CH1-30H 1.38768 E-03 -0.37782 0.271301 

CH1-7D 5.86066 E-04 -0.02232 0.166573 

CH1-10D 1.39000 E-04 0.28252 0.068173 

CH1-14D 1.82409 E-04 0.28186 0.065769 

CH1-21D 1.61620 E-04 0.20301 0.096527 

CH1-28D 3.87480 E-04 0.05607 0.140090 

CH2-1D -2.45130 E-04 0.32783 0.062889 

CH2-7D -3.35160 E-04 0.23111 0.110382 

CH2-10D -3.33850 E-04 0.23188 0.109850 

CH2-14D -1.89340 E-04 0.19172 0.117681 

CH2-21D 1.78660 E-04 0.06517 0.144667 

CH2-28D 8.28700 E-04 -0.15894 0.194756 

CH2-1WW -1.38336 E-04 0.21619 0.099014 

CH2-1WEH -9.75356 E-04 0.40104 0.076834 

CH2-2WW 2.71566 E-04 0.02233 0.160078 

CH2-2WEH -4.09633 E-04 0.24192 0.106742 
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Appendix D: ANN models 

 

 For all tables, the light grey cells represent the results that are part of both the 

classic static and augmented window approach. The results in bold have been selected as 

the most accurate results and are presented in section 5.5. 

Table D.1: Results for chiller CH-1, classic static and augmented window - proposed ANN models 

Set name 

Power - QE/QEdesign, TCNDS, TO/A COP - QE/QEdesign, TCNDS, TO/A 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kW 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH1-30H-1H3N 3.2 9.6 2.4 7.0 0.75 3.2 0.2 2.3 0.1 -0.03 

CH1-30H-1H4N 3.0 9.2 3.2 9.5 -2.93 2.8 0.2 2.6 0.2 -0.02 

CH1-30H-1H5N 2.7 8.2 2.8 8.2 -0.32 2.5 0.1 2.7 0.2 -0.01 

CH1-30H-1H6N 2.6 7.9 2.8 8.1 -1.34 2.3 0.1 2.8 0.2 0.06 

CH1-30H-1H7N 2.5 7.7 2.9 8.5 -0.45 2.3 0.1 2.7 0.2 0.00 

CH1-30H-1H8N 2.5 7.6 2.8 8.1 -1.91 2.3 0.1 2.7 0.2 0.04 

CH1-30H-1H9N 2.4 7.3 3.1 9.0 -2.77 2.2 0.1 3.0 0.2 0.04 

CH1-7D-1H3N 3.9 12.3 4.1 9.8 0.33 3.9 0.2 5.8 0.3 0.12 

CH1-7D-1H4N 3.8 12.2 4.1 9.7 0.12 3.9 0.2 5.6 0.3 0.12 

CH1-7D-1H5N 3.7 11.6 4.7 11.2 0.72 3.7 0.2 4.3 0.2 0.10 

CH1-7D-1H6N 3.5 11.2 5.1 12.3 0.60 3.6 0.2 8.1 0.4 0.17 

CH1-7D-1H7N 3.5 11.3 7.8 18.6 4.45 3.5 0.2 6.0 0.3 0.11 

CH1-7D-1H8N 3.5 11.0 6.1 14.5 2.66 3.5 0.2 8.0 0.4 0.15 

CH1-7D-1H9N 3.4 10.9 5.1 12.3 0.72 3.5 0.2 8.4 0.4 0.16 

CH1-10D-1H3N 3.8 11.2 4.2 10.1 -3.53 3.8 0.2 4.0 0.2 0.07 

CH1-10D-1H4N 3.9 11.4 4.6 11.0 -3.65 3.7 0.2 3.9 0.2 0.06 

CH1-10D-1H5N 3.7 10.6 4.5 10.9 -2.44 3.6 0.2 4.5 0.2 0.04 

CH1-10D-1H6N 3.6 10.5 6.1 14.7 -2.21 3.6 0.2 5.7 0.2 0.04 

CH1-10D-1H7N 3.5 10.2 6.8 16.5 -2.45 3.5 0.2 6.1 0.3 0.05 

CH1-10D-1H8N 3.5 10.1 6.5 15.8 -2.24 3.4 0.2 6.1 0.3 0.04 

CH1-10D-1H9N 3.4 10.0 8.4 20.4 -1.27 3.4 0.2 7.2 0.3 0.03 

CH1-14D-1H3N 3.8 10.7 4.0 12.3 -7.49 3.7 0.2 3.5 0.2 0.11 

CH1-14D-1H4N 3.8 10.6 4.7 14.4 -8.94 3.7 0.2 4.1 0.2 0.14 

CH1-14D-1H5N 3.7 10.6 35.6 15.4 -9.54 3.7 0.2 4.0 0.2 0.13 

CH1-14D-1H6N 10.1 3.6 3.9 12.0 -6.55 3.5 0.2 3.8 0.2 0.11 

CH1-14D-1H7N 3.6 10.2 4.1 12.6 -7.37 3.6 0.2 3.9 0.2 0.12 

CH1-14D-1H8N 3.6 10.1 4.1 12.7 -7.17 3.5 0.2 3.9 0.2 0.11 

CH1-21D-1H3N 3.6 10.6 2.8 9.3 -0.57 3.6 0.2 2.9 0.2 0.02 

CH1-21D-1H4N 3.5 10.3 2.8 9.3 -0.86 3.5 0.2 2.9 0.2 0.02 

CH1-21D-1H5N 3.5 10.2 2.8 9.3 -1.40 3.5 0.2 2.9 0.2 0.03 

CH1-21D-1H6N 3.5 10.1 2.8 9.2 -1.58 3.5 0.2 2.9 0.2 0.03 

CH1-21D-1H7N 3.4 10.0 2.9 9.7 -1.74 3.5 0.2 3.0 0.2 0.03 

CH1-21D-1H8N 3.4 10.0 2.9 9.9 -2.00 3.5 0.2 3.0 0.2 0.04 

CH1-21D-1H9N 3.4 9.7 3.0 9.9 -1.88 3.4 0.2 3.0 0.2 0.04 

CH1-28D-1H3N 3.4 10.4 4.4 13.9 6.13 3.3 0.2 4.7 0.3 -0.11 

CH1-28D-1H4N 3.2 9.8 4.2 13.4 5.94 3.3 0.2 4.7 0.3 -0.11 

CH1-28D-1H5N 3.2 9.8 4.2 13.4 6.03 3.3 0.2 4.8 0.3 -0.09 

CH1-28D-1H6N 3.2 9.7 4.2 13.3 5.97 3.2 0.2 4.6 0.3 -0.11 

CH1-28D-1H7N 3.2 9.7 4.1 13.2 5.89 3.2 0.2 4.6 0.3 -0.11 

CH1-28D-1H8N 3.1 9.6 4.0 12.9 5.77 3.2 0.2 4.6 0.3 -0.11 

CH1-28D-1H9N 3.1 9.5 4.1 12.9 5.56 3.1 0.2 4.6 0.2 -0.11 
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Table D.2: Results for chiller CH-2, classic static and augmented window – proposed ANN models 

Set name 

Power - QE/QEdesign, TCNDS, TO/A COP - QE/QEdesign, TCNDS, TO/A 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kW 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH2-1D-1H3N 3.0 8.6 4.0 13.8 7.95 2.5 0.1 3.4 0.2 0.05 

CH2-1D -1H4N 2.8 8.0 3.7 12.7 -3.81 2.5 0.1 3.8 0.2 0.07 

CH2-1D -1H5N 2.8 8.0 3.3 11.2 -2.15 2.5 0.1 3.9 0.2 0.07 

CH2-1D -1H6N 2.8 8.0 3.1 10.7 -1.61 2.5 0.1 3.9 0.2 0.07 

CH2-1D -1H7N 2.8 8.0 3.1 10.5 -1.40 2.5 0.1 4.0 0.2 0.07 

CH2-1D -1H8N 2.8 8.0 3.0 10.3 -1.30 2.5 0.1 4.0 0.2 0.08 

CH2-1D -1H9N 2.8 8.0 3.0 10.3 -1.24 2.5 0.1 4.0 0.2 0.08 

CH2-7D-1H3N 3.6 12.3 3.5 11.3 -3.44 3.7 0.2 3.4 0.2 0.05 

CH2-7D-1H4N 3.5 11.8 3.6 11.6 -3.60 3.7 0.2 3.5 0.2 0.05 

CH2-7D-1H5N 3.3 11.2 3.3 10.6 -0.65 3.4 0.2 3.6 0.2 0.07 

CH2-7D-1H6N 3.2 10.9 3.2 10.2 0.46 3.5 0.2 3.2 0.2 0.04 

CH2-7D-1H7N 3.1 10.3 3.4 10.9 1.77 3.1 0.2 3.6 0.2 0.02 

CH2-7D-1H8N 2.9 9.8 3.4 10.8 2.60 3.2 0.2 3.2 0.2 -0.03 

CH2-7D-1H9N 2.8 9.5 3.7 11.8 2.74 3.1 0.2 3.6 0.2 -0.02 

CH2-10D-1H3N 3.7 12.4 3.3 10.7 -1.43 4.0 0.2 3.5 0.2 0.02 

CH2-10D-1H4N 4.0 13.2 3.6 11.9 1.91 3.6 0.2 3.5 0.2 0.04 

CH2-10D-1H5N 3.3 10.8 3.0 9.9 -0.78 3.4 0.2 3.2 0.2 0.04 

CH2-10D-1H6N 3.1 10.4 2.8 9.3 1.24 3.3 0.2 2.9 0.2 -0.01 

CH2-10D-1H7N 3.2 10.5 3.2 10.6 1.41 3.3 0.2 3.3 0.2 0.01 

CH2-10D-1H8N 2.9 9.8 2.8 9.3 -0.78 3.2 0.2 3.1 0.2 0.02 

CH2-10D-1H9N 2.9 9.6 3.0 9.9 -1.70 3.1 0.2 3.4 0.2 0.03 

CH2-14D-1H3N 3.6 11.8 4.3 13.3 -0.94 3.6 0.2 3.8 0.2 0.01 

CH2-14D-1H4N 3.3 11.0 4.1 12.7 -0.31 3.5 0.2 3.7 0.2 0.01 

CH2-14D-1H5N 3.3 10.8 3.7 11.7 -0.41 3.4 0.2 4.1 0.2 0.02 

CH2-14D-1H6N 3.1 10.2 3.8 11.7 -0.32 3.3 0.2 3.9 0.2 0.02 

CH2-14D-1H7N 3.0 9.8 3.9 12.3 0.97 3.0 0.2 3.9 0.2 0.01 

CH2-14D-1H8N 2.9 9.6 3.7 11.6 0.99 3.0 0.2 3.8 0.2 0.01 

CH2-14D-1H9N 2.9 9.5 3.7 11.6 0.38 3.1 0.2 3.9 0.2 0.01 

CH2-21D-1H3N 3.7 11.9 5.7 12.9 0.66 3.7 0.2 4.3 0.2 0.02 

CH2-21D-1H4N 3.6 11.7 5.4 12.2 0.45 3.6 0.2 4.2 0.2 0.02 

CH2-21D-1H5N 3.2 10.5 4.6 10.4 -1.26 3.4 0.2 4.3 0.2 0.02 

CH2-21D-1H6N 3.3 10.6 4.4 10.0 -1.63 3.4 0.2 4.3 0.2 0.03 

CH2-21D-1H7N 3.0 9.8 4.1 9.2 -1.16 3.3 0.2 4.1 0.2 0.02 

CH2-21D-1H8N 3.0 9.7 4.4 9.9 -1.17 3.2 0.2 4.2 0.2 0.02 

CH2-21D-1H9N 3.0 9.8 4.1 9.3 -0.76 3.2 0.2 4.0 0.2 0.02 

CH2-28D-1H3N 4.0 12.8 3.7 15.7 -12.56 4.0 0.2 3.6 0.2 0.14 

CH2-28D-1H4N 3.7 11.7 4.2 17.6 -14.16 3.7 0.2 3.4 0.2 0.13 

CH2-28D-1H5N 3.5 11.3 3.7 15.7 -12.53 3.5 0.2 2.8 0.1 0.10 

CH2-28D-1H6N 3.3 10.5 3.4 14.5 -11.36 3.4 0.2 3.0 0.1 0.12 

CH2-28D-1H7N 3.3 10.3 3.1 13.0 -9.39 3.4 0.2 3.1 0.2 0.11 

CH2-28D-1H8N 3.1 9.9 2.5 10.5 -7.94 3.3 0.2 2.5 0.1 0.09 

CH2-28D-1H9N 3.1 9.9 2.5 10.3 -7.52 3.2 0.2 2.5 0.1 0.08 
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Table D.3: Results for chiller CH-2, split static – proposed ANN models 

Set name 

Power - QE/QEdesign, TCNDS, TO/A COP - QE/QEdesign, TCNDS, TO/A 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kW 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH2-1WW-1H3N 3.2 10.7 8.6 27.6 18.89 3.0 0.2 8.9 0.5 -0.36 

CH2-1WW -1H4N 2.6 8.6 11.6 37.4 29.62 2.8 0.1 10.7 0.6 -0.47 

CH2-1WW -1H5N 2.5 8.2 9.2 29.4 19.92 2.5 0.1 8.9 0.5 -0.34 

CH2-1WW -1H6N 2.4 8.1 9.9 31.9 22.53 2.5 0.1 9.5 0.5 -0.38 

CH2-1WW -1H7N 2.3 7.8 9.3 30.0 19.70 2.5 0.1 8.9 0.5 -0.34 

CH2-1WW -1H8N 2.3 7.9 10.2 32.7 24.40 2.4 0.1 8.9 0.5 -0.37 

CH2-1WW -1H9N 2.3 7.8 9.6 30.8 21.18 2.4 0.1 9.8 0.6 -0.41 

CH2-1WEH-1H3N 2.5 8.4 2.6 8.7 0.58 2.4 0.1 2.2 0.1 -0.004 

CH2-1WEH -1H4N 2.4 8.0 2.6 8.9 2.52 2.4 0.1 2.4 0.1 -0.02 

CH2-1WEH -1H5N 2.4 7.9 2.8 9.6 1.88 2.3 0.1 2.4 0.1 -0.01 

CH2-1WEH -1H6N 2.4 7.9 2.9 9.8 3.15 2.3 0.1 2.4 0.1 -0.02 

CH2-1WEH -1H7N 2.3 7.8 3.5 11.7 4.13 2.2 0.1 2.7 0.1 -0.03 

CH2-1WEH -1H8N 2.3 7.6 3.4 11.4 4.00 2.2 0.1 2.7 0.1 -0.03 

CH2-1WEH -1H9N 2.3 7.6 3.3 11.0 3.72 2.2 0.1 2.7 0.1 -0.03 

CH2-2WW-1H3N 3.6 11.9 3.4 12.4 -2.16 3.7 0.2 3.3 0.2 -0.01 

CH2-2WW -1H4N 3.6 11.7 3.6 13.1 -1.54 3.6 0.2 3.4 0.2 -0.02 

CH2-2WW -1H5N 3.3 10.8 3.3 12.0 -0.21 3.4 0.2 3.2 0.2 -0.02 

CH2-2WW -1H6N 3.1 10.2 3.1 11.0 0.09 3.2 0.2 3.1 0.2 -0.02 

CH2-2WW -1H7N 3.0 9.8 3.1 11.0 1.27 3.2 0.2 3.1 0.2 -0.01 

CH2-2WW -1H8N 2.8 9.1 3.0 10.8 0.95 3.0 0.2 3.0 0.2 -0.01 

CH2-2WW -1H9N 2.7 8.8 3.1 11.1 1.88 2.9 0.2 3.0 0.2 -0.01 

CH2-2WEH-1H3N 2.4 8.1 9.6 22.1 8.99 2.5 0.1 5.6 0.3 -0.10 

CH2-2WEH -1H4N 2.5 8.2 8.5 19.5 6.65 2.5 0.1 6.1 0.3 -0.15 

CH2-2WEH -1H5N 2.4 7.9 7.3 16.8 9.26 2.4 0.1 5.4 0.3 -0.13 

CH2-2WEH -1H6N 2.4 7.9 8.9 20.5 10.97 2.4 0.1 5.0 0.2 -0.13 

CH2-2WEH -1H7N 2.3 7.7 6.1 13.9 6.57 2.4 0.1 4.8 0.2 -0.12 

CH2-2WEH -1H8N 2.3 7.7 6.1 14.1 6.88 2.4 0.1 4.9 0.2 -0.12 

CH2-2WEH -1H9N 2.3 7.7 6.2 14.4 7.28 2.4 0.1 4.9 0.2 -0.12 
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Table D.4: Results for chiller CH-1, classic static and augmented window – Y&C ANN models 

Set name 

Power - QE, TCNDR, TCHWS COP - QE, TCNDR, TCHWS 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kW 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH1-30H-1H3N 2.8 8.6 2.6 7.5 -1.58 2.7 0.2 2.1 0.1 0.01 

CH1-30H-1H4N 2.6 7.9 2.5 7.4 -1.83 2.4 0.1 2.1 0.1 0.02 

CH1-30H-1H5N 2.6 7.9 2.5 7.3 -1.86 2.4 0.1 2.1 0.1 0.02 

CH1-30H-1H6N 2.5 7.5 2.4 7.1 -1.61 2.4 0.1 2.1 0.1 0.02 

CH1-30H-1H7N 2.4 7.4 2.4 6.9 -0.77 2.4 0.1 2.1 0.1 0.01 

CH1-30H-1H8N 2.4 7.2 2.3 6.7 -0.42 2.3 0.1 2.0 0.1 -0.003 

CH1-30H-1H9N 2.1 6.5 2.2 6.5 0.52 2.1 0.1 2.0 0.1 -0.03 

CH1-7D-1H3N 4.1 13.1 4.1 9.7 -0.71 4.2 0.2 6.3 0.3 0.16 

CH1-7D-1H4N 4.1 13.1 4.3 10.3 0.84 4.2 0.2 6.6 0.3 0.16 

CH1-7D-1H5N 4.1 13.1 4.1 9.8 0.56 4.2 0.2 6.4 0.3 0.16 

CH1-7D-1H6N 3.5 11.1 4.4 10.6 2.23 3.5 0.2 7.2 0.3 0.13 

CH1-7D-1H7N 3.5 11.1 4.6 11.0 2.62 3.5 0.2 4.1 0.2 0.04 

CH1-7D-1H8N 3.4 10.7 5.2 12.4 3.33 3.4 0.2 4.6 0.2 0.06 

CH1-7D-1H9N 3.2 10.3 5.0 11.9 1.97 3.3 0.2 6.3 0.3 0.08 

CH1-10D-1H3N 3.9 11.5 4.2 10.1 -3.31 3.9 0.2 3.9 0.2 0.06 

CH1-10D-1H4N 3.9 11.4 4.2 10.2 -3.68 3.9 0.2 3.9 0.2 0.07 

CH1-10D-1H5N 3.5 10.1 4.5 10.8 -2.48 3.4 0.2 4.0 0.2 0.05 

CH1-10D-1H6N 3.4 9.7 4.4 10.6 -2.61 3.3 0.2 4.0 0.2 0.05 

CH1-10D-1H7N 3.3 9.6 3.6 8.7 -2.68 3.3 0.2 3.4 0.2 0.05 

CH1-10D-1H8N 3.3 9.5 3.4 8.3 -2.64 3.3 0.2 3.4 0.2 0.06 

CH1-10D-1H9N 3.3 9.5 3.5 8.5 -2.50 3.2 0.2 3.3 0.2 0.05 

CH1-14D-1H3N 4.0 11.2 4.7 14.5 -10.41 3.9 0.2 4.5 0.2 0.18 

CH1-14D-1H4N 3.6 10.2 4.2 13.2 -8.26 3.5 0.2 3.9 0.2 0.13 

CH1-14D-1H5N 3.5 10.0 38.1 15.4 -9.99 3.4 0.2 4.1 0.2 0.15 

CH1-14D-1H6N 3.4 9.7 4.5 13.9 -8.18 3.4 0.2 3.8 0.2 0.12 

CH1-14D-1H7N 3.3 9.4 4.5 14.0 -8.45 3.3 0.2 3.9 0.2 0.13 

CH1-14D-1H8N 3.3 9.3 4.5 13.9 -8.38 3.2 0.2 3.9 0.2 0.13 

CH1-14D-1H9N 3.2 9.2 4.1 12.6 -7.72 3.2 0.2 3.9 0.2 0.12 

CH1-14D-1H10N 4.1 11.9 4.3 13.5 -7.88 4.2 0.2 4.0 0.2 0.12 

CH1-21D-1H3N 3.9 11.3 3.4 11.4 -2.04 3.8 0.2 3.0 0.2 0.04 

CH1-21D-1H4N 3.4 10.0 3.2 10.6 -1.59 3.4 0.2 3.0 0.2 0.03 

CH1-21D-1H5N 3.3 9.7 3.1 10.4 -1.82 3.3 0.2 3.1 0.2 0.03 

CH1-21D-1H6N 3.3 9.5 6.5 21.6 -2.41 3.3 0.2 5.0 0.3 0.04 

CH1-21D-1H7N 3.3 9.4 4.1 13.9 -1.50 3.3 0.2 3.9 0.2 0.03 

CH1-21D-1H8N 3.3 9.5 3.3 11.0 -1.12 3.2 0.2 3.2 0.2 0.02 

CH1-21D-1H9N 3.2 9.4 4.3 14.4 -1.34 3.2 0.2 3.7 0.2 0.03 

CH1-21D-1H10N 3.2 9.2 3.8 12.6 -1.36 3.2 0.2 3.9 0.2 0.02 

CH1-21D-1H11N 3.1 9.1 3.3 11.1 -1.31 3.2 0.2 3.3 0.2 0.03 

CH1-21D-1H12N 3.1 9.1 4.1 13.7 -1.35 3.2 0.2 4.1 0.2 0.03 

CH1-28D-1H3N 3.6 11.0 4.9 25.5 6.98 3.6 0.2 5.3 0.3 -0.13 

CH1-28D-1H4N 3.3 10.1 4.4 14.1 5.96 3.2 0.2 4.8 0.3 -0.11 

CH1-28D-1H5N 3.2 9.9 4.2 13.4 5.91 3.2 0.2 4.7 0.3 -0.11 

CH1-28D-1H6N 3.2 9.7 4.2 13.5 5.89 3.2 0.2 4.8 0.3 -0.11 

CH1-28D-1H7N 3.1 9.6 4.2 13.4 5.72 3.1 0.2 4.7 0.3 -0.11 

CH1-28D-1H8N 3.1 9.5 4.2 13.2 5.61 3.1 0.2 4.7 0.3 -0.11 

CH1-28D-1H9N 3.1 9.5 4.2 13.4 5.81 3.1 0.2 4.7 0.3 -0.11 
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Table D.5: Results for chiller CH-2, classic static and augmented window – Y&C ANN models 

Set name 

Power - QE, TCNDR, TCHWS COP - QE, TCNDR, TCHWS 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kW 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH2-1D-1H3N 2.9 8.4 3.2 11.0 -1.36 2.4 0.1 2.6 0.1 -0.01 

CH2-1D -1H4N 2.8 8.0 3.3 11.3 -1.67 2.3 0.1 2.7 0.1 -0.01 

CH2-1D -1H5N 2.7 7.7 3.5 12.0 -1.43 2.3 0.1 2.7 0.1 -0.01 

CH2-1D -1H6N 2.7 7.6 3.4 11.5 -1.23 2.2 0.1 2.7 0.1 -0.01 

CH2-1D -1H7N 2.7 7.6 3.3 11.4 -1.14 2.2 0.1 2.7 0.1 -0.01 

CH2-1D -1H8N 2.7 7.6 3.3 11.2 -1.05 2.2 0.1 2.7 0.1 -0.01 

CH2-1D -1H9N 2.7 7.6 3.2 11.0 -0.96 2.2 0.1 2.7 0.1 -0.01 

CH2-7D-1H3N 5.8 19.5 4.9 15.7 -11.28 6.0 0.3 4.9 0.3 0.20 

CH2-7D-1H4N 5.6 18.8 5.3 17.1 -7.01 5.7 0.3 4.9 0.3 0.15 

CH2-7D-1H5N 4.7 15.8 4.3 13.8 -5.19 4.9 0.3 4.6 0.2 0.13 

CH2-7D-1H6N 4.8 16.1 4.1 13.0 -2.64 5.0 0.3 4.5 0.2 0.07 

CH2-7D-1H7N 4.7 15.7 4.2 13.3 -2.07 5.0 0.3 4.5 0.2 0.08 

CH2-7D-1H8N 4.4 14.8 4.4 14.0 -3.23 4.7 0.2 4.7 0.2 0.09 

CH2-7D-1H9N 4.7 16.0 4.4 14.2 -2.71 4.9 0.3 4.5 0.2 0.07 

CH2-10D-1H3N 5.5 18.2 4.3 14.0 -2.64 5.8 0.3 4.8 0.3 0.06 

CH2-10D-1H4N 5.1 16.8 4.4 14.4 -0.19 5.1 0.3 4.3 0.2 0.01 

CH2-10D-1H5N 4.7 15.5 4.1 13.5 -1.33 4.9 0.3 4.6 0.2 0.03 

CH2-10D-1H6N 4.5 14.8 4.1 13.6 -0.27 4.7 0.2 4.3 0.2 0.01 

CH2-10D-1H7N 4.3 14.3 4.1 13.3 -0.61 4.6 0.2 4.3 0.2 0.005 

CH2-10D-1H8N 4.2 14.0 4.2 13.6 -0.42 4.5 0.2 4.5 0.2 0.01 

CH2-10D-1H9N 4.2 13.9 4.2 13.6 -0.53 4.5 0.2 4.5 0.2 0.02 

CH2-14D-1H3N 5.4 17.9 4.2 13.0 -2.98 5.8 0.3 3.7 0.2 0.06 

CH2-14D-1H4N 5.4 17.8 4.6 14.4 -3.33 5.6 0.3 4.1 0.2 0.06 

CH2-14D-1H5N 4.8 15.9 4.6 14.3 -2.76 5.0 0.3 4.4 0.2 0.06 

CH2-14D-1H6N 4.7 15.4 4.5 14.0 -1.14 4.9 0.3 4.1 0.2 0.04 

CH2-14D-1H7N 4.3 14.1 4.3 13.5 -2.16 4.7 0.2 4.4 0.2 0.05 

CH2-14D-1H8N 4.2 14.0 4.2 13.2 -1.37 4.6 0.2 4.3 0.2 0.04 

CH2-14D-1H9N 4.3 14.1 4.3 13.4 -1.54 4.6 0.2 4.4 0.2 0.04 

CH2-21D-1H3N 4.8 15.6 3.8 8.5 -1.04 5.1 0.3 3.5 0.2 0.02 

CH2-21D-1H4N 4.8 15.4 3.4 7.8 -0.82 5.1 0.3 3.5 0.2 0.02 

CH2-21D-1H5N 4.4 14.3 4.5 10.1 -0.69 4.7 0.2 4.0 0.2 0.02 

CH2-21D-1H6N 4.2 13.7 3.4 7.8 -0.92 4.6 0.2 3.6 0.2 0.02 

CH2-21D-1H7N 4.3 13.8 4.2 9.4 0.16 4.6 0.2 3.9 0.2 -0.0001 

CH2-21D-1H8N 4.2 13.6 4.2 9.4 0.09 4.5 0.2 4.1 0.2 -0.002 

CH2-21D-1H9N 4.2 13.6 4.5 10.2 0.09 4,5 0.2 4.4 0.2 -0.002 

CH2-28D-1H3N 4.8 15.2 2.7 11.4 -6.31 5.0 0.3 3.3 0.2 0.11 

CH2-28D-1H4N 4.7 15.0 4.0 17.0 -12.57 4.7 0.2 4.4 0.2 0.16 

CH2-28D-1H5N 4.5 14.3 2.7 11.4 -8.10 4.7 0.2 3.0 0.2 0.10 

CH2-28D-1H6N 4.2 13.2 2.5 10.3 -5.77 4.4 0.2 3.2 0.2 0.09 

CH2-28D-1H7N 4.3 13.5 2.8 11.8 -7.72 4.5 0.2 3.6 0.2 0.11 

CH2-28D-1H8N 4.2 13.2 2.5 10.4 -5.48 4.5 0.2 3.4 0.2 0.09 

CH2-28D-1H9N 4.1 13.2 2.4 10.3 -6.04 4.4 0.2 3.2 0.2 0.10 
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Table D.6: Results for chiller CH-2, split static – Y&C ANN models 

Set name 

Power - QE, TCNDR, TCHWS COP - QE, TCNDR, TCHWS 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kW 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH2-1WW-1H3N 3.8 12.7 11.9 38.3 27.68 3.7 0.2 11.6 0.7 -0.50 

CH2-1WW -1H4N 2.6 8.8 12.6 40.4 26.51 3.0 0.2 11.9 0.7 -0.47 

CH2-1WW -1H5N 2.6 8.8 13.3 42.7 26.88 3.0 0.1 12.3 0.7 -0.48 

CH2-1WW -1H6N 2.6 8.6 12.5 40.2 27.09 2.9 0.1 12.0 0.7 -0.48 

CH2-1WW -1H7N 2.4 8.2 12.8 41.2 24.81 2.7 0.1 11.8 0.7 -0.42 

CH2-1WW -1H8N 2.2 7.5 15.7 50.4 23.41 2.3 0.1 15.7 0.9 -0.40 

CH2-1WW -1H9N 2.2 7.3 12.9 41.5 22.17 2.2 0.1 12.3 0.7 -0.37 

CH2-1WEH-1H3N 2.4 8.0 2.4 8.1 1.73 2.3 0.1 2.0 0.1 -0.02 

CH2-1WEH -1H4N 2.4 8.0 2.3 7.8 1.79 2.3 0.1 2.0 0.1 -0.02 

CH2-1WEH -1H5N 2.4 8.1 2.4 8.0 1.89 2.3 0.1 2.0 0.1 -0.02 

CH2-1WEH -1H6N 2.4 8.0 2.3 7.8 1.89 2.3 0.1 2.0 0.1 -0.02 

CH2-1WEH -1H7N 2.4 8.1 2.4 8.0 1.88 2.3 0.1 2.0 0.1 -0.02 

CH2-1WEH -1H8N 2.4 8.1 2.4 8.0 1.72 2.3 0.1 2.0 0.1 -0.02 

CH2-1WEH -1H9N 2.4 8.1 2.1 8.0 1.72 2.3 0.1 2.0 0.1 -0.02 

CH2-2WW-1H3N 3.8 12.5 3.5 12.6 -3.22 4.0 0.2 3.6 0.2 0.03 

CH2-2WW -1H4N 3.6 12.0 3.5 12.6 -2.94 3.8 0.2 3.6 0.2 0.03 

CH2-2WW -1H5N 3.4 11.2 3.5 12.4 -1.14 3.8 0.2 3.6 0.2 0.03 

CH2-2WW -1H6N 3.4 11.2 3.3 11.8 -1.35 3.8 0.2 3.5 0.2 0.03 

CH2-2WW -1H7N 3.2 10.5 3.2 11.4 -1.08 3.5 0.2 3.4 0.2 0.03 

CH2-2WW -1H8N 3.3 10.8 3.1 11.3 -1.30 3.6 0.2 3.4 0.2 0.04 

CH2-2WW -1H9N 3.2 10.5 3.4 12.1 -1.59 3.4 0.2 3.6 0.2 0.02 

CH2-2WEH-1H3N 2.4 7.8 8.5 19.5 4.15 2.3 0.1 6.5 0.3 0.04 

CH2-2WEH -1H4N 2.4 7.8 9.1 21.0 8.57 2.3 0.1 5.3 0.3 -0.05 

CH2-2WEH -1H5N 2.3 7.8 9.1 20.9 8.67 2.3 0.1 5.3 0.3 -0.06 

CH2-2WEH -1H6N 2.3 7.8 7.3 16.9 4.88 2.3 0.1 5.5 0.3 -0.02 

CH2-2WEH -1H7N 2.3 7.8 7.8 18.1 5.61 2.3 0.1 5.3 0.3 -0.04 

CH2-2WEH -1H8N 2.3 7.8 7.8 18.0 5.56 2.3 0.1 5.3 0.3 -0.04 

CH2-2WEH -1H9N 2.3 7.8 7.9 18.2 5.90 2.3 0.1 5.4 0.3 -0.03 
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Table D.7: Results for chiller CH-1, classic static and augmented window –G&Ng and Swider ANN models 

Set name 

Power - QE, TCNDR, TCHWR COP - QE, TCNDR, TCHWR 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kW 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH1-30H-1H3N 2.8 8.5 2.3 6.6 -0.17 2.8 0.2 2.0 0.1 -0.001 

CH1-30H -1H4N 2.7 8.4 2.3 6.8 -0.47 2.8 0.2 2.1 0.1 0.003 

CH1-30H -1H5N 2.6 7.9 2.6 7.6 0.47 2.6 0.2 2.3 0.1 -0.02 

CH1-30H -1H6N 2.6 7.8 2.7 7.9 -1.03 2.3 0.1 2.4 0.1 0.01 

CH1-30H -1H7N 2.3 7.0 2.7 8.0 -1.68 2.3 0.1 2.5 0.1 0.03 

CH1-30H -1H8N 2.3 6.9 2.7 7.8 -1.18 2.3 0.1 2.4 0.1 0.02 

CH1-30H -1H9N 2.3 7.0 2.6 7.6 -0.99 2.3 0.1 2.4 0.1 0.02 

CH1-7D-1H3N 4.2 13.3 3.5 8.5 -1.47 4.3 0.2 6.6 0.3 0.17 

CH1-7D-1H4N 4.2 13.3 3.5 8.3 -1.61 4.3 0.2 6.5 0.3 0.16 

CH1-7D-1H5N 3.5 11.2 3.8 9.0 -3.47 3.6 0.2 5.9 0.3 0.13 

CH1-7D-1H6N 3.5 11.0 4.3 10.4 2.37 3.5 0.2 5.3 0.3 0.08 

CH1-7D-1H7N 3.4 10.8 4.4 10.6 3.08 3.4 0.2 4.7 0.2 0.07 

CH1-7D-1H8N 3.3 10.5 3.5 8.4 -1.15 3.4 0.2 6.8 0.3 0.12 

CH1-7D-1H9N 3.3 10.6 5.8 14.0 2.86 3.4 0.2 6.6 0.3 0.07 

CH1-10D-1H3N 4.0 11.6 4.6 11.3 -3.12 3.9 0.2 4.1 0.2 0.06 

CH1-10D-1H4N 4.0 11.5 4.6 11.2 -3.16 3.9 0.2 4.1 0.2 0.06 

CH1-10D-1H5N 3.4 10.0 4.3 10.4 -2.08 3.4 0.2 3.9 0.2 0.05 

CH1-10D-1H6N 3.4 9.9 4.4 10.8 -2.01 3.4 0.2 4.0 0.2 0.04 

CH1-10D-1H7N 3.3 9.7 4.4 10.7 -2.86 3.3 0.2 3.9 0.2 0.06 

CH1-10D-1H8N 3.2 0.4 4.5 10.9 -1.74 3.2 0.2 4.0 0.2 0.03 

CH1-10D-1H9N 3.2 9.4 4.4 10.7 -1.52 3.2 0.2 3.9 0.2 0.03 

CH1-14D-1H3N 4.0 11.4 5.2 16.2 -11.71 3.9 0.2 4.1 0.2 0.17 

CH1-14D-1H4N 4.0 11.3 4.7 14.4 -10.59 3.0 0.2 4.4 0.2 0.18 

CH1-14D-1H5N 3.5 9.9 32.9 13.3 -7.78 3.4 0.2 3.8 0.2 0.12 

CH1-14D-1H6N 3.4 9.7 4.6 14.4 -8.58 3.4 0.2 4.0 0.2 0.13 

CH1-14D-1H7N 3.4 9.6 4.2 13.0 -7.91 3.3 0.2 4.2 0.2 0.14 

CH1-14D-1H8N 3.3 9.3 4.2 13.0 -7.65 3.2 0.2 4.2 0.2 0.13 

CH1-14D-1H9N 3.3 9.4 4.4 13.6 -8.17 3.3 0.2 4.2 0.2 0.13 

CH1-21D-1H3N 3.9 11.2 3.4 11.4 -2.13 3.8 0.2 3.0 0.2 0.04 

CH1-21D-1H4N 3.7 10.8 3.5 11.6 -2.04 3.7 0.2 3.0 0.2 0.03 

CH1-21D-1H5N 3.4 9.9 3.1 10.4 -1.87 3.4 0.2 3.0 0.2 0.03 

CH1-21D-1H6N 3.7 10.7 3.1 10.5 -2.19 3.6 0.2 3.2 0.2 0.04 

CH1-21D-1H7N 3.3 9.6 3.1 10.2 -1.48 3.3 0.2 3.0 0.2 0.03 

CH1-21D-1H8N 3.3 9.7 3.0 10.2 -1.36 3.3 0.2 2.9 0.2 0.03 

CH1-21D-1H9N 3.2 9.4 3.6 12.1 -1.71 3.3 0.2 3.7 0.2 0.03 

CH1-28D-1H3N 3.6 11.0 4.9 15.5 6.93 3.6 0.2 5.3 0.3 -0.13 

CH1-28D-1H4N 3.6 11.0 4.8 15.2 6.94 3.6 0.2 5.4 0.3 -01.3 

CH1-28D-1H5N 3.3 10.0 4.2 13.3 5.78 3.2 0.2 4.7 0.3 -0.11 

CH1-28D-1H6N 3.2 9.8 4.3 13.6 6.09 3.2 0.2 4.7 0.3 -0.11 

CH1-28D-1H7N 3.2 9.9 4.3 13.8 6.07 3.2 0.2 4.8 0.3 -0.11 

CH1-28D-1H8N 3.1 9.6 4.1 13.1 5.78 3.1 0.2 4.7 0.3 -0.11 

CH1-28D-1H9N 3.1 9.6 4.2 13.2 5.77 3.1 0.2 4.6 0.3 -0.10 
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Table D.8: Results for chiller CH-2, classic static and augmented window – G&Ng and Swider ANN 

models 

Set name 

Power - QE, TCNDR, TCHWR COP - QE, TCNDR, TCHWR 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kW 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH2-1D-1H3N 2.8 8.0 2.8 9.7 -0.49 2.4 0.1 2.8 0.1 -0.01 

CH2-1D -1H4N 2.8 7.9 3.0 10.2 -0.39 2.4 0.1 2.8 0.1 -0.01 

CH2-1D -1H5N 2.8 7.9 2.9 9.9 -0.26 2.4 0.1 2.8 0.1 -0.01 

CH2-1D -1H6N 2.8 7.9 2.8 9.7 -0.12 2.4 0.1 2.9 0.1 -0.01 

CH2-1D -1H7N 2.8 7.9 2.8 9.6 -0.02 2.4 0.1 2.9 0.1 -0.01 

CH2-1D -1H8N 2.8 7.9 2.8 9.6 0.05 2.4 0.1 2.9 0.1 -0.01 

CH2-1D -1H9N 2.8 7.9 2.8 9.5 00.3 2.4 0.1 2.7 0.1 -0.01 

CH2-7D-1H3N 5.6 19.1 4.4 13.9 -9.37 6.1 0.3 4.5 0.2 0.18 

CH2-7D-1H4N 4.8 16.4 4.5 14.4 -5.60 5.1 0.3 4.4 0.2 0.11 

CH2-7D-1H5N 4.4 14.8 4.2 13.3 -4.45 4.7 0.2 4.3 0.2 0.09 

CH2-7D-1H6N 4.5 15.2 4.6 14.7 -3.31 4.8 0.2 4.3 0.2 0.08 

CH2-7D-1H7N 4.4 14.8 4.1 13.0 -3.00 4.6 0.2 4.3 0.2 0.09 

CH2-7D-1H8N 4.3 14.4 4.3 13.7 -3.42 4.5 0.2 4.3 0.2 0.09 

CH2-7D-1H9N 4.1 13.9 4.1 13.1 -3.54 4.4 0.2 4.4 0.2 0.09 

CH2-10D-1H3N 5.4 18.0 4.3 13.9 -2.80 5.8 0.3 4.8 0.3 0.06 

CH2-10D-1H4N 4.7 15.5 4.1 13.3 0.44 4.9 0.3 4.4 0.2 0.01 

CH2-10D-1H5N 4.4 14.6 3.9 12.7 -1.11 4.7 0.2 4.2 0.2 0.02 

CH2-10D-1H6N 4.5 14.8 4.1 13.5 -0.27 4.7 0.2 4.3 0.2 0.01 

CH2-10D-1H7N 4.5 14.8 4.2 13.6 -0.41 4.6 0.2 4.4 0.2 0.01 

CH2-10D-1H8N 4.2 14.0 4.0 13.1 -0.30 4.5 0.2 4.4 0.2 0.02 

CH2-10D-1H9N 4.2 14.1 4.0 13.2 -0.58 4.5 0.2 4.3 0.2 0.02 

CH2-14D-1H3N 5.3 17.4 3.8 11.9 -2.54 5.7 0.3 3.6 0.2 0.06 

CH2-14D-1H4N 5.4 17.7 4.6 14.2 -3.36 5.6 0.3 4.0 0.2 0.06 

CH2-14D-1H5N 4.8 15.9 4.8 15.0 -3.26 5.0 0.3 4.5 0.2 0.06 

CH2-14D-1H6N 4.4 14.7 4.2 13.0 -2.10 4.8 0.3 4.3 0.2 0.05 

CH2-14D-1H7N 4.4 14.4 4.4 13.6 -1.46 4.8 0.2 4.2 0.2 0.04 

CH2-14D-1H8N 4.3 14.1 4.2 13.1 -1.28 4.7 0.2 4.2 0.2 0.04 

CH2-14D-1H9N 4.3 14.1 4.3 13.3 -1.32 4.7 0.2 4.2 0.2 0.04 

CH2-21D-1H3N 4.8 15.6 3.7 8.5 -1.05 5.1 0.3 3.5 0.2 0.02 

CH2-21D-1H4N 4.8 15.4 3.5 7.8 -0.81 5.1 0.3 3.5 0.2 0.02 

CH2-21D-1H5N 4.5 14.6 4.5 10.2 -0.37 4.7 0.2 4.0 0.2 0.01 

CH2-21D-1H6N 4.3 13.8 3.6 8.3 0.36 4.6 0.2 3.6 0.2 -0.003 

CH2-21D-1H7N 4.4 14.2 4.9 11.1 -1.44 4.6 0.2 4.3 0.2 0.03 

CH2-21D-1H8N 4.1 13.3 5.0 11.3 -1.1 4.4 0.2 4.3 0.2 0.02 

CH2-21D-1H9N 4.1 13.3 5.1 11.6 -1.21 4.4 0.2 4.2 0.2 0.02 

CH2-28D-1H3N 4.8 15.2 2.7 11.2 -6.02 5.0 0.3 3.3 0.2 0.11 

CH2-28D-1H4N 4.7 15.0 2.5 10.4 -7.37 5.0 0.3 3.1 0.2 0.11 

CH2-28D-1H5N 4.3 13.7 3.0 12.5 -7.82 4.5 0.2 3.8 0.2 0.12 

CH2-28D-1H6N 4.1 13.2 2.5 10.3 -5.43 4.4 0.2 3.2 0.2 0.09 

CH2-28D-1H7N 4.2 13.4 2.8 11.6 -8.37 4.5 0.2 3.5 0.2 0.12 

CH2-28D-1H8N 4.2 13.4 2.7 11.3 -6.72 4.5 0.2 3.5 0.2 0.10 

CH2-28D-1H9N 4.1 13.2 2.6 10.8 -6.99 4.4 0.2 3.2 0.2 0.10 
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Table D.9: Results for chiller CH-2, split static – G&Ng and Swider ANN models 

Set name 

Power - QE, TCNDR, TCHWR COP - QE, TCNDR, TCHWR 
Training set Testing set Training set Testing set 

CV, 

% 

RMSE, 

kW 

CV, 

% 

RMSE, 

kW 

MBE, 

kW 

CV, 

% 
RMSE 

CV, 

% 
RMSE MBE 

CH2-1WW-1H3N 2.9 9.6 17.6 56.5 20.73 3.2 0.2 14.8 0.8 -0.39 

CH2-1WW -1H4N 2.7 8.9 12.8 41.0 25.94 3.0 0.2 12.1 0.7 -0.46 

CH2-1WW -1H5N 2.6 8.6 13.1 42.0 24.46 2.9 0.1 12.0 0.7 -0.43 

CH2-1WW -1H6N 2.5 8.4 12.5 40.2 23.72 2.8 0.1 11.6 0.7 -0.42 

CH2-1WW -1H7N 2.4 8.1 13.1 42.2 24.01 2.7 0.1 12.1 0.7 -0.41 

CH2-1WW -1H8N 2.3 7.6 13.9 44.6 22.25 2.3 0.1 12.7 0.7 -0.38 

CH2-1WW -1H9N 2.2 7.2 13.6 43.6 21.43 2.2 0.1 12.6 0.7 -0.37 

CH2-1WEH-1H3N 2.5 8.6 2.4 8.0 1.08 2.2 0.1 1.9 0.1 -0.01 

CH2-1WEH -1H4N 2.4 8.0 2.2 7.5 1.20 2.2 0.1 2.0 0.1 -0.01 

CH2-1WEH -1H5N 2.4 8.0 2.2 8.0 1.53 2.2 0.1 2.0 0.1 -0.01 

CH2-1WEH -1H6N 2.4 7.9 2.3 7.6 1.65 2.2 0.1 2.0 0.1 -0.01 

CH2-1WEH -1H7N 2.4 7.9 2.3 7.6 1.63 2.2 0.1 2.0 0.1 -0.01 

CH2-1WEH -1H8N 2.4 7.9 2.2 7.6 1.62 2.2 0.1 2.0 0.1 -0.01 

CH2-1WEH -1H9N 2.4 7.9 2.2 7.6 1.62 2.2 0.1 2.0 0.1 -0.01 

CH2-2WW-1H3N 5.9 19.5 3.6 13.0 -5.71 6.3 0.3 3.8 0.2 0.11 

CH2-2WW -1H4N 5.2 17.2 4.8 17.1 -6.05 5.2 0.3 4.7 0.2 0.07 

CH2-2WW -1H5N 4.7 15.5 4.0 14.3 -3.24 5.1 0.3 4.4 0.2 0.06 

CH2-2WW -1H6N 4.6 15.2 3.9 13.9 -2.39 5.0 0.3 4.3 0.2 0.06 

CH2-2WW -1H7N 4.7 15.3 3.9 13.9 -2.99 5.0 0.3 4.3 0.2 0.07 

CH2-2WW -1H8N 4.4 14.3 3.6 13.0 -1.22 4.7 0.2 4.1 0.2 0.04 

CH2-2WW -1H9N 4.4 14.4 3.9 13.8 -2.25 4.7 0.2 4.3 0.2 0.05 

CH2-2WEH-1H3N 2.4 7.9 10.7 24.6 11.12 2.3 0.1 5.4 0.3 -0.08 

CH2-2WEH -1H4N 2.4 7.9 9.7 22.3 9.45 2.3 0.1 5.4 0.3 -0.07 

CH2-2WEH -1H5N 2.4 7.9 9.4 21.7 8.86 2.3 0.1 5.4 0.3 -0.07 

CH2-2WEH -1H6N 2.3 7.8 7.9 18.1 5.57 2.3 0.1 5.8 0.3 -0.02 

CH2-2WEH -1H7N 2.3 7.7 8.0 18.4 5.53 2.3 0.1 5.8 0.3 -0.02 

CH2-2WEH -1H8N 2.3 7.8 7.7 17.8 5.10 2.2 0.1 5.8 0.3 -0.01 

CH2-2WEH -1H9N 2.3 7.8 7.8 17.9 4.96 2.2 0.1 5.9 0.3 -0.01 
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Appendix E: TRNSYS default model coefficients 

 
Table E.1: Data of chiller capacity to cooling capacity at design conditions and COP to COP at design 

conditions 

Water Temperature TRNSYS default coefficients New TRNSYS coefficients 

CHWS, °C CWT, °C 

Capacity ratio, 

kW/kW COP ratio 

Capacity ratio, 

kW/kW COP ratio 

5 16 1.0403 1.3348 0.8942 1.1508 

5 20 1.0161 1.1843 0.8709 1.1146 

5 25 0.9859 1.0742 0.9003 0.9549 

5 30 0.9556 0.9596 0.8799 0.8610 

5 35 0.9250 0.8629 0.8538 0.7761 

5 40 0.8951 0.7775   

6 16 1.0623 1.3573 0.9171 1.2876 

6 20 1.0381 1.2292 0.8938 1.2738 

6 25 1.0081 1.0944 0.9234 1.0895 

6 30 0.9778 0.9798 0.9030 0.9955 

6 35 0.9475 0.8809 0.8772 0.9084 

6 40 0.9175 0.7978   

7 16 1.0843 1.3820 0.9987 1.2627 

7 20 1.0601 1.2517 0.9754 1.2468 

7 25 1.0301 1.1169 1.0050 1.0624 

7 30 1.0000 1.0000 0.9848 0.9661 

7 35 0.9699 0.9011 0.9592 0.8791 

7 40 0.9397 0.8157   

8 16 1.1061 1.4045 1.0304 1.3059 

8 20 1.0821 1.2742 1.0073 1.2899 

8 25 1.0521 1.1371 1.0369 1.1238 

8 30 1.0222 1.0202 1.0169 1.0069 

8 35 0.9921 0.9191 0.9913 0.9177 

8 40 0.9621 0.8337   

9 16 1.1281 1.4270 1.0569 1.3402 

9 20 1.1041 1.2966 1.0338 1.3241 

9 25 1.0743 1.1573 1.0636 1.1353 

9 30 1.0444 1.0404 1.0436 1.0390 

9 35 1.0143 0.9393 1.0180 0.9497 

9 40 0.9845 0.8517   

10 16 1.1501 1.4494   

10 20 1.1261 1.3191   

10 25 1.0963 1.1798   

10 30 1.0666 1.0607   

10 35 1.0367 0.9573   

10 40 1.0069 0.8697   

 
Table E.2: TRNSYS default data of chiller electric PWR versus part-load cooling load PLR 

PLR Fraction of Full Load Power 

0.0 0.0000 

0.25 0.2497 

0.50 0.4956 

0.75 0.6902 

1.00 1.0000 

 


