INFERRING REGULATION PROGRAMS IN A
TRANSCRIPTION REGULATORY MODULE NETWORK

JIANLONG QI

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 2011
(© JIANLONG Q1, 2011

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Jianlong Qi
Entitled: Inferring regulation programs in a transcription regulatory module
network

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. A. Hanna

External Examiner

Dr. M. T. Hallett

Examiner
Dr. V. Chvatal

Examiner
Dr. N. Shiri

Examiner
Dr. A. Tsang

Supervisor

Dr. Gregory Butler

Approved

Chair of Department or Graduate Program Director

20

Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Inferring regulation programs in a transcription regulatory module network

Jianlong Qi, Ph.D.

Concordia University, 2011

Cells have a complex mechanism to control the expression of genes so that they are capable
of adapting to environmental changes or genetic perturbations. A major part of the mecha-
nism is fulfilled by transcription factors which can regulate the expression of other genes.
Transcriptional regulatory relationships between genes and their transcription factors can
be represented by a network, called a transcription regulatory network.

Many algorithms have been proposed to learn transcription regulatory networks from
gene expression data. In particular, the module network method, a special type of Bayesian
networks, has shown promising results. In a module network, a regulatory module is a set of
genes that show similar expression profiles and are regulated by a shared set of transcription
factors (i.e., the regulation program of the module). This method significantly decreases
the number of parameters to be learned. Module network learning consists of two tasks:
clustering genes into modules and inferring the regulation program for each module. This
thesis concentrates on designing algorithms for the latter task.

First, we introduce a regression tree-based Gibbs sampling algorithm for learning reg-
ulation programs in module networks. The novelty of this method is that a set of tree
operations is defined for generating new regression trees from a given tree. We show that
the set of tree operations is sufficient to generate a well mixing Gibbs sampler even for
large datasets.

Second, we apply linear models to infer regulation programs. Given a gene module, this

iii

method partitions all experimental conditions into two condition clusters, between which
the module’s genes are most differentially expressed. Consequently, the process of learning
the regulation program for the module becomes one of identifying transcription factors that
are also differentially expressed between these two condition clusters.

Third, we explore the possibility of integrating results from different algorithms. The
integration methods we select are union, intersection, and weighted rank aggregation. The
experiments in a yeast dataset show that the union and weighted rank aggregation methods
produce more accurate predictions than those given by individual algorithms, whereas the
intersection method does not yield any improvement in the accuracy of predictions. In
addition, somewhat surprisingly, the union method, which has a much lower computational

cost than rank aggregation, archives comparable results as given by rank aggregation.

v

Dedication

I would like to thank most of all my supervisor, Dr. Gregory Butler, for his continued
academic and financial support without which this work would not have been completed.
His enlightening discussions and suggestions helped greatly to improve the thesis quality.
In addition, I would like to thank Dr. Tom Michoel from Freiburg Institute for Advanced
Studies for his help on my research. I would also like to thank Dr. Adrian Tsang for
his valuable suggestions on my research. I would also like to thank Dr. Yuanzhu Chen
from Memorial University of Newfoundland for his help on the revision of this thesis and
valuable suggestions on my defence.

Lots of thanks to all my lab mates: Christine Kehyayan, Hajar Sadr, Byakuya Otaku,
Yue Wang, Stephen Barrett, and Jun Luo for enjoyable time in our lab. I would like to give
many thanks to LeGym where I get refreshed after a day’s work in the lab.

My sincere thanks go to my parents and my in-laws for their enthusiastic support, kind-
ness and understanding during these busy years. During my PhD. studies, my daughter
Claire was born. I would like to thank her for granting me great joy. Last, I would like
to dedicate this thesis to my wife. Without her encourage and support, I would not have

finished my studies.

Contents

List of Figures

List of Tables

1 Introduction

1.1

Transcription regulatory network 0oL L.

1.2 The research objective and contributions

1.3 Roadmap e

2 Bioinformatics Background

2.1

2.2

23

24
2.5

Genome sequencing and assemblyo

Genome annotation ou v e e e e e e e e e e e e

221
222
223
224
2.2.5
2.2.6

Geneprediction
Gene annotation using sequence similarity
Gene ontology annotation,
Protein feature annotation,
Reconstruction of metabolic networks

Reconstruction of transcription regulatory networks

Collecting gene expressiondata

2.3.1
232
233

Microarray technology
Tag-based technology
RNA-seqtechnology

Known transcription factors in Saccharomyces cerevisiae

Benchmark gene expression datasets

25.1

Syntheticdatasets

vi

xi

xiv

2.6

2.5.2 Real biological datasets
2.5.2.1 The Escherichia Coli dataset
2.5.2.2 Theyeaststressdataset

Applying gene expression data to annotate genome

2.6.1 Selecting differentially expressed genes

2.6.2 Gene set enrichment analysis

2.6.3 Clusteringofgenes
2.6.3.1 Distance-based methods
2.6.3.2 Model-based methods

2.6.4 Inferring transcription regulatory networks
2.6.4.1 Relevancenetworks L.

2.6.4.2 Linearregression

3 Related work

3.1

3.2

33

Introduction to Bayesian networkso 0oL
3.1.1 Basicstructure
3.1.2 Parameter learning Lo
3.1.3 Structurelearning
Applying Bayesian networks to infer transcription regulatory networks . . .
3.2.1 Sparsecandidates
3.2.2 Bootstrap-based confidence estimation.
3.2.3 Bayesian model averaging
3.2.4 Divide-and-conquer approach
3.2.5 Adding prior biological knowledge
Applying module networks to infer transcription regulatory networks
3.3.1 Basic structure of module networks
3.3.2 Using the expectation maximization algorithm to learn module net-
works
3.3.3 Applying a two-step-based method to learn module networks
3.3.3.1 Clustering genes into modules by Gibbs sampler

3.3.3.2 Inferring regulation programs by logistic regression . . .

vii

26
26
26
28
28

30
30
31
31
32
33
33

35
36
37
37

4 A regression tree-based Gibbs sampler

4.1 Introduction L
4.2 Applying Gibbs sampling oo
4.2.1 Regulation program of a module and its Bayesian score
4.2.2 Sampling regression trees by a Gibbs sampler
4.2.3 Theregulatory score of aregulator
4.2.4 The expected value of the regulatory score of a regulator
4.3 Experimental results and discussion Lo
43.1 SyntheticData,

4.3.1.1 Regression tree-based Gibbs sampling versus the deter-
ministic algorithm o000

4.3.1.2 Regression tree-based Gibbs sampling versus LeMoNe

43.2 Biologicaldata oL
433 Discussion e

4.4 Conclusion and futurework

Applying linear models

5.1 Imtroduction
5.2 Inferring regulatory relationships in module networks by linear models . . .
5.2.1 Extracting the critical contrast of a condition clustering

5.2.2 Using moderated ¢-statistics to select differentially expressed tran-
scriptionfactors
5.2.3 The regulatory score for assigning a transcription factor to a module
5.3 Experimental results and discussiono
5.3.1 Experimental results in the yeast stress dataset
5.3.1.1 Results for regulation of nitrogen utilization
5.3.1.2 Linear model versus LeMoNe in the NCR process
5.3.1.3 Results over the entire yeast stress dataset
5.3.2 Experimental results in the Escherichia Coli (E. coli) dataset

5.3.2.1 Linear model versus LeMoNe in the flagellum chemo-
taxis SyStem
5.3.2.2 Results over the entire E. coli dataset

54 Conclusionand future work

45
47
47
50
53

54
54
55
56

57
58
59
59
59
60
64
65

66
68
68

6 An integrative approach to infer regulation programs

6.1

Introduction . .

6.2 Systemandmethod L

6.3

6.2.1 Data set and reference database

6.2.2 Integrationmethods

6.2.3 Regulation program learning algorithms

6.2.3.1

6.2.3.2
6.2.3.3

LeMoNe e
Inferelator
LIMMA-based method

Experimental results and discussion L.

6.3.1 Results of individual learning algorithms

6.3.2 Results for the weighted rank aggregation

6.3.3 Comparison of integration methods and individual algorithms

6.4 Conclusion and future work e

7 Inferring regulatory relationships in fungal species by module networks

7.1

7.2

7.3

Results in Aspergillus niger o oL

7.1.1 Experimental results and Discussion

7.1.1.1

7.1.1.2
7.1.2 Methods

7.1.2.1

7.1.2.2

Regulatory modules and their validation
Discussion Lo
Collecting gene expressiondata

Selecting candidate transcription factors

Results in Sporotrichum thermophile

7.2.1 Experimental results and discussion

7.2.2 Methods

7.2.2.1

7.2.2.2

Collecting gene expressiondata

Applying LeMoNe to infer regulatory relationships

Results in Phanerochaete chrysosporium

7.3.1 Experimental results and discussion

7.3.2 Methods

7.3.2.1

Collecting gene expression data and candidate transcrip-

tionfactors

X

71
71
72
72
73
74
74
75
75
76
76
77
78
82

7.3.2.2 Applying the LIMMA-based method to infer regulatory

relationships L. 96
8 Conclusions and future work 98
Bibliography 100
Appendices 116

List of Figures

B W N =

10
11

12

13

14

15

Regulatory relationship between a transcription factor and a gene [111]. . . 2
Transcription Regulatory Network in the budding yeast [69]. 3
Regulation of galactose utilization in the budding yeast [92] 17

Bayesian network for a portion of transcription regulatory pathways in-
volved in glucose repression in the budding yeast 27

A transcription regulatory network represented by a Bayesian network (left)

and a module network (right). 34
An example of the regulation program of the module M3. 34
The module of nitrogen catabolite repression in the yeast stress dataset and

its regulation program [106] L oL oL 36
Plot of the average of the F'-measure produced by the regression tree-based
Gibbs sampling and the deterministic algorithm in 12 synthetic datasets. . . 45
Regulatory network in dataset4. 46
Regulatory network indataset 12 48
Correlation measure between two sets of k (k = 1, ..., 50) Gibbs samplers
inmodule 7. 48
Correlation between the expression profiles of GAL11 and ALPHALI in
dataset 12. 50
Correlation between the expression profiles of TUP1 and ALPHAT1 in dataset

12, 51
Correlation between the expression profiles of SNF2_SWI1 and ALPHA1
indataset 12. L. 51

X1

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

Ordinary t-statistic for the contrast between the union of the first £ condi-
tion clusters (k = 1,2, ..., 17) and the remaining 18 — k clusters.
Heatmaps of expression values of genes in the module for nitrogen utiliza-
tion in the yeast stress dataset (top), and known transcription factors of the
module (bottom).
Top 3 levels of the LeMoNe’s regression tree built on a condition clustering
of the module for nitrogen utilization.
Histogram of expression values of GLN3 in condition clusters clusterl,
cluster2and cluster3. L L oL
Histogram of expression values of GAT1 in condition clusters clusterl,
cluster2and cluster3. Lo L
Precision versus recall curves for the linear model and LeMoNe in the yeast
stressdataset.o e e
Ordinary t-statistic for the contrast between the union of the first £ condi-
tion clusters (k = 1, 2, ..., 25) and the remaining 26 — k clusters.
Heatmaps of expression values of genes in module 3 in the E. coli dataset
(top), and known transcription factors of the module (bottom).
Precision versus recall curves for the linear model and LeMoNe in the E.
colidataset.
Probability density function of coefficients (regulatory scores) based on
permuted data and the approximated fit by the Weibull distribution.
Probability density function of randomly generated regulatory scores and
the approximated fit by the stretched exponentials.
Comparison of precision of three candidate learning algorithms.

Comparison of precision given by the rank aggregation at k£ = 25, 50, 75,

Comparison between precisions of integration methods and baseline preci-
SIONS. « . v o e e e e e
Heatmap of expression values of genes in module 5 in the S. thermophile
dataset.
Heatmap of expression values of genes in module 7 in the S. thermophile

dataset. e

Xii

61

32

33

34

35

Heatmap of expression values of genes in module 15 in the S. thermophile
dataset. e
Heatmap of expression values of genes in module 4 in the Phanerochaete
chrysosporium dataset.
Heatmap of expression values of genes in module 7 in the Phanerochaete
chrysosporium dataset. e
Heatmap of expression values of genes in module 9 in the Phanerochaete

chrysosporium dataset. e

Xiii

List of Tables

R 9 N n B

10

11
12
13
14

15
16
17
18

F-measure of the regression tree-based sampling algorithm, deterministic
algorithm and LeMoNe in synthetic datasets. 46
Inferred transcription factors for the regulation of nitrogen utilization in the
yeaststressdataset oL o Lo 60

Top 10 inferred regulatory relationships by the linear model and LeMoNe

in the yeast stress dataset 65
Inferred transcription factors for module 3 in the E. coli dataset 66
Inferred transcription factors for module 24 in the E. coli dataset 67
Inferred transcription factors for module 36 in the E. coli dataset 67
Top twenty regulator-module interactions as given by the union method . . 79

Top twenty regulator-module interactions as given by the weighted rank
aggregationmethod L L Lo 80
Top twenty regulator-module interactions as given by the intersection method 81

Comparison of areas under precision curves for the top 100 predictions

given by the integration methods and individual learning algorithms. 82
Summary of inferred modules in A. niger 86
Candidate transcription factors in A. niger 89
Summary of inferred modules in S. thermophile 90

Summary of inferred modules and their transcription factors in the Phane-

rochaete chrysosporium dataset 94
Candidate transcription factors in Phanerochaete chrysosporium 97
A. niger EST module assignment 120
S. thermophile gene module assignment 128
Phanerochaete chrysosporium gene module assignment 139

X1V

19

20

21

Annotation of genes in module 4 in the Phanerochaete chrysosporium dataset
140

Annotation of genes in module 7 in the Phanerochaete chrysosporium dataset
141

Annotation of genes in module 9 in the Phanerochaete chrysosporium dataset
143

XV

Glossary

DNA
mRNA
BAC
EMBL
MF
BP

CC
DAG
HMM
cDNA
SAGE
DGE
RPKM
FPKM
SGD
GSEA
CLR
MLE
MAP
EM
NCR
EST
JGI
HWKP

Deoxyribonucleic acid

messenger ribonucleic acid

bacterial artificial chromosome
European molecular biology laboratory
Molecular function

Biological process

Cellular component

Directed acyclic graph

Hidden Markov model
Complementary deoxyribonucleic acid
Serial analysis of gene expression
Digital gene expression

Reads per kilobase per million reads sequenced
Fragments per kilobase of transcript per million fragments sequenced
Saccharomyces genome database

Gene set enrichment analysis

Context likelihood of relatedness
Maximum likelihood estimation
Maximum a posteriori

Expectation maximization

Nitrogen catabolite repression
Expressed sequence tag

Joint genome institute

Hardwood kraft pulp

XVvi

SWMP
MIG1

SNF1
RGT1
HXT3
HXT1
GAL4
GAL7
GAL3
GAL10
GALS0
GCN4
DALS0
GLN3
MET28
DAL2
DAL3
GAT1

PLP2
MBP1_SWI6
SWI4_SWI6
SPT16
ACE2
TUP1
ALPHA1
REB1

A1 ALPHA2
GAL11
SNF2_SWI1
UGA3
HAP4
GSM1

Softwood mechanical pulp

Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae

Gene name in Saccharomyces cerevisiae

Xvii

USV1
STES
MET32
GZF3
URE2
fihC
flhD
fliA
creA
xinR
xyrA
xinD
aguA

Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Saccharomyces cerevisiae
Gene name in Escherichia Coli
Gene name in Escherichia Coli
Gene name in Escherichia Coli
Gene name in Aspergillus niger
Gene name in Aspergillus niger
Gene name in Aspergillus niger
Gene name in Aspergillus niger

Gene name in Aspergillus niger

XViil

Chapter 1

Introduction

1.1 Transcription regulatory network

Living organisms are built by cells which are mainly made of proteins. Deoxyribonucleic
acid (DNA) encodes the complete genetic information for protein synthesis that consists
of two stages: transcription and translation. In the transcription stage, a gene, which is
a strand of DNA molecule in the nucleus, is transcribed to a messenger ribonucleic acid
(mRNA), and then this mRNA is translated to a protein in the translation stage. This entire
process represents the central dogma of molecular biology.

Taking the information contained in genes and turning that information into proteins is
called gene expression. Cells have a complex mechanism that controls the expression of
genes so that they are able to express varied combinations of genes in response to environ-
mental changes or genetic perturbations. Generally, this mechanism consists of two levels
of controls: post-transcriptional regulation, and transcriptional regulation. The former con-
trols protein synthesis after synthesis of RNA has begun, while the latter controls which
genes are transcribed into mRNA.

A major part of transcriptional regulation is fulfilled by transcription factors, which are
a specific type of proteins and are capable of either enhancing or inhibiting the expression
of other genes by binding to binding sites (i.e., cis-regulatory DNA sequence elements) nor-
mally located in the upstream of these genes (Figure 1). Transcription factors often work
together to regulate gene expression. In addition, transcription factors are themselves pro-
teins, and are thus subject to transcriptional regulations accomplished by other transcription

factors. This results in chains of transcriptional regulations.

REGULATE

~~ TRANSCRIPTION ™

\\ FACTOR ___-‘__/ /J GNE

PO P8 ———— 50D

BINDING SITE

il N
'\\R]:ROTET;V;” >

Figure 1: Regulatory relationship between a transcription factor and a gene [111].

The collection of transcriptional regulatory relationships in a cell can be represented by
a network, where vertices and edges denote genes and transcriptional regulations, respec-
tively. Such a network is referred to as a transcription regulatory network. Figure 2 shows
the regulatory network of 106 transcription factors and their targets in the budding yeast
Saccharomyces cerevisiae (S. cerevisiae) [69].

Identifying transcription regulatory networks is critical, because it facilitates under-
standing biological processes in cells. For example, the preferred carbon source for the
budding yeast is glucose, but yeast is capable of utilizing many other carbon sources. Ex-
perimental results have shown that the genes expressed by yeast are different under various
levels of glucose [17]. Some genes (e.g., transporters of glucose) are induced by glu-
cose, but another set of genes, such as genes involved in the utilization of alternate carbon
sources, are repressed by glucose. The regulation of gene expression in response to varying
carbon sources in the environment is primarily controlled by the transcription regulatory
network in the yeast. In this thesis, we concentrate on designing methods for inferring

transcriptional regulatory relationships between genes.

All Factors

Bl cerCycle Bl Cevelopmentsl Processes Bl DNARMAProtein Biceymibesis Bl Envionmenta Response [l Metabalsm
Figure 2: Transcription Regulatory Network in the budding yeast [69].

1.2 The research objective and contributions

Gene expression data, which measure mRNA levels of genes, are widely used for inferring
transcription regulatory networks. Expression data can be collected under static or time
series experiments. In a static experiment, expression data are measured under a particular
condition. In contrast, time series expression date are collected in predefined time points
after changes in the environment. In this thesis, we focus on designing methods to infer
regulatory networks from expression data collected under static experiments. However, we
should notice that time series data are also valuable for the reconstruction of regulatory
networks. For example, the binding activity of transcription factors to their targets can be
represented by a temporal process.

The reconstruction of regulatory networks from gene expression data is based on the
following idea: molecular interactions (i.e., regulatory relationships) between transcription
factors and their targets might lead to corresponding correlations between their expression
values [92].

Many algorithms have been proposed to learn transcription regulatory networks from

gene expression data, including information-theoretic approaches [35], linear regression
[11] and clustering algorithms [33]. Given an expression dataset, these algorithms first
generate an ordered list of potential regulator-gene interactions according to their signifi-
cance. Then, only interactions with significance more than a given threshold are considered
as true regulatory relationships. In this thesis, we only focus on the first task. The selection
of a threshold will be left for future work.

In particular, Bayesian networks [39] have shown promising results. The major advan-
tage of the Bayesian network method is that it studies the joint probability distribution over
the expression values of a set of genes, instead of evaluating pairwise correlations. In ad-
dition, the method detects the dependence structure between genes which is similar to the
structure of regulatory networks. One limitation of the method is that regulatory networks
consist of feedloops and self-regulations which can not be represented by directed acyclic
graphs. In addition, the models inferred by standard Bayesian networks often overfit data,
because the number of parameters to be learned is enormous compared to the number of
samples (experimental conditions) in a typical gene expression dataset. To overcome this
issue, the module network method [105], a special type of Bayesian networks, has been
proposed. The module network method, groups genes with similar expression profiles into
regulatory modules, and consequently reduces the number of parameters to be learned.

Module network learning consists of two tasks: clustering genes into modules, and in-
ferring a regulation program for each module. The regulation program of a gene module
includes one or several transcription factors, which regulate the transcription of genes in
this module. Segal et al. [106] applied the expectation maximization algorithm [28] to al-
ternate between these two tasks. Furthermore, Michoel et al. [62] enhanced the learning
procedure by introducing a two-step method, which separates clustering genes into mod-
ules and learning the regulation program for each module. That is, they grouped genes
into modules before learning the regulation program of each module. Experimental results
showed that the separation improves the performance of the module network method in
inferring regulatory networks.

This research focuses on the second step in module network learning, i.e., inferring the
regulation program (transcription factors) for a given gene module. This thesis presents

three methods for this task.

The first method is a regression tree-based Gibbs sampling algorithm [99]. The regula-
tion program of a module is normally learned by a deterministic search [106], and the ma-
jor shortcoming of this search algorithm is that its result may only represent one of several
possible regulation programs. In order to account for the model uncertainty, we propose
a regression tree-based Gibbs sampling algorithm. With the Gibbs sampler, we build a
Markov chain whose stationary distribution is the posterior probability of regression trees
given the data. To build the chain, we define the neighborhood of a given regression tree
using a set of tree operations and transition probabilities for sampling a new regression tree
from the neighbourhood. Moreover, we show that the set of tree operations is sufficient to
generate a Gibbs sampler with well mixing rate even for large datasets.

The second method applies linear models to inferring regulation programs [100]. Given
a gene module, this method groups all experimental conditions into two condition clusters,
between which the module’s genes are most significantly differentially expressed. Con-
sequently, the process of learning the regulation program for the module becomes one of
identifying transcription factors that are also differentially expressed between these two
condition clusters. The contribution of this method is that it does not rely on regres-
sion trees, which have been widely used to infer regulation programs in module networks
[106, 62, 99]. Our experimental results in two real biological datasets indicate that the
tree structure has a limitation that may affect the performance of regression tree-based al-
gorithms, but the proposed method can overcome the limitation. In addition, the linear
model is capable of detecting under which conditions the transcription factors of a module
regulate the genes in the module.

The third method explores the possibility of integrating results from complementary
regulation program learning algorithms [101]. To the best of our knowledge, this is the first
such an attempt. The integration methods we select are union, intersection, and weighted
rank aggregation. They are applied to combine ordered lists of regulator-module interac-
tions in a yeast benchmark dataset from three algorithms: LeMoNe [62], the LIMMA-based
method [100], and Inferelator [11]. These three algorithms rely on distinct techniques, and
consequently show different biases in detecting regulatory relationships. The experiments
show that integrating their results by the union or the weighted rank aggregation produces

promising results.

1.3 Road map

This thesis is organized as follows. Chapter 2 and Chapter 3 introduce the backgound of this
thesis. Chapter 2 gives brief descriptions of the major tasks in the pipeline of annotating the
genome of a species, such as genome sequencing, gene prediction, and identifying regula-
tory binding sites. Chapter 3 focus on reviewing the work for applying Bayesian networks
and module networks to infer transcription regulatory networks from gene expression data.

Our work is presented in Chapters 4-7. Chapter 4 introduces a regression tree-based
Gibbs sampling algorithm for learning regulation programs in module networks. Chapter
5 applies linear models to infer regulation programs. Chapter 6 describes an integrative
approach to inferring regulation programs. In addition, Chapter 7 applies module networks
to infer regulatory relationships in three fungal species. Last, Chapter 8 concludes the

thesis by summarizing the main results and point to future work.

Chapter 2
Bioinformatics Background

There are two stages for analyzing a selected species: genome sequencing and genome
annotation. In the former stage, the DNA composition of the genome of the species is iden-
tified, while in the latter stage the completed sequence is annotated. In this chapter, we will
briefly review the tasks involved in these steps. Section 2.1 describes genome sequenc-
ing and assembly. Section 2.2 reviews several major tasks in genome annotation. Since
this thesis is about using gene expression data to infer transcription regulatory networks,
we describe technologies for collecting gene expression data and techniques for analyzing

expression data in Sections 2.3-2.6.

2.1 Genome sequencing and assembly

There are two main sequencing genome technologies: whole-genome shotgun sequencing
and hierarchical shotgun sequencing [94]. The former is employed to sequence genomes
that are smaller in size and contain less repetitive DNAs. To apply this method, genomic
DNA is isolated from an organism and mechanically sheared into fragments that are sub-
cloned into libraries. These libraries, normally consisting of 10 to 20 kb DNAs, are se-
quenced from both ends by operations that are able to generate short sequence data (e.g.,
about 500 to 800 bp). These short sequence data are connected to become contiguous
segments (called contigs) that are assembled to obtain a map of the complete genome.

In contrast, hierarchical shotgun sequencing subclones digested genomic DNA into

bacterial artificial chromosome (BAC) libraries, which contain longer DNA fragments (e.g.,

100 to 500 kb) and mapped to known chromosomal locations. The advantage of hierarchi-
cal shotgun sequencing over whole-genome shotgun sequencing is that it is less likely to
make mistakes in sequence assembly. However, hierarchical shotgun sequencing takes
more time and cost than whole-genome shotgun sequencing. Hence, the size and complex-

ity of the selected genome determines which sequencing method should be adopted.

2.2 Genome annotation

Genome annotation can be divided into two processes: structure annotation and functional
annotation. Genome structure annotation focuses on detecting genomic elements. For ex-
ample, one of the major tasks in structure annotation is to identify genes and predict their
structures. In contrast, genome functional annotation focuses on attaching functions to
these genomic elements. Basic tasks in functional annotation are to determine biologi-
cal and biochemical functions of products of genes, such as associating genes with Gene
Ontology annotations and assigning proteins to protein families. Typical examples of ad-
vanced tasks in functional annotation include the reconstruction of metabolic networks and
transcription regulatory networks. In this section, we will give a brief description of these

tasks.

2.2.1 Gene prediction

Gene prediction not only searches for locations of genes in a target genome, but also iden-
tifies the structures of these genes, including coding regions (known as exons) and inter-
vening sequences (known as introns). There are two types of methods for gene prediction:
extrinsic and intrinsic.

In extrinsic gene finding systems, genomic DNA is compared to sequences of known
protein products or expressed sequence tags. Hence, these systems rely on extensive tran-
script and protein sequence databases. Typical examples of such databases are the Refer-
ence Sequence (RefSeq) [98] and Ensembl [37]. Many algorithms, such as BLAST [5] and
sim4 [38], have been designed to search for the match between a known sequence and a
region of the target genome, indicating that a protein-coding gene has been identified. The
limitation of extrinsic gene finding systems is that they might produce poor performance in

a genome for which few known protein or expressed sequence tags are available [12].

Intrinsic gene finding systems, also called ab initio approaches, are based on the ob-
servation that the base composition of gene-coding regions is normally very different from
that of non-coding regions in a genome. Consequently, these algorithms search the whole
genomic DNA sequences for long open reading frames. A well known example of this
type gene finding method is GlimmerHMM [78], which is based on a generalized Hidden
Markov model. The major advantage of this algorithm is that users are allowed to re-train

it for a target genome by using complete coding sequences collected from the genome.

2.2.2 Gene annotation using sequence similarity

There are several well-known sequence databases, such as the GenBank [8], European
Molecular Biology Laboratory (EMBL), Nucleotide Sequence Database[22], and the DNA
Databank of Japan [91]. They include characterized sequences from many species. One
approach to identifying the function of a new gene is to search these databases for genes
with similar sequences whose functions have been identified,

The comparison of sequences is performed by sequence alignment, which helps cal-
culating the alignment score between two sequences, using similarity matrices in which
higher scores are given to similar characters (e.g., nucleotides) and lower scores are given
to dissimilar characters. Given a query sequence and a library of sequences, sequence
alignment first computes the score between the query sequence and each sequence in the
library. Then, the query sequence can be predicted to have the function of the sequence in
the library that has the maximum alignment score to the query.

There are two types of sequence alignment algorithms: global alignment and local
alignment. The former aligns a complete nucleotide or protein sequence to another se-
quence by spanning the entire length of both sequences. The Needleman-Wunsch algorithm
[90] is often applied to perform global alignment. In contrast, a local alignment method
aligns the most similar stretches within two sequences. In other words, a local alignment
method is used to determine similar regions between sequences, and consequently it can
start and end at arbitrary positions in aligned sequences. A well-known method for local

sequence alignment is the Smith-Waterman algorithm [112].

2.2.3 Gene ontology annotation

The Gene Ontology (GO) is one of the most important ontologies within the bioinformatics
community, and is being developed by the Gene Ontology Consortium [47]. The primary
goal of GO is to define a shared, structured and controlled vocabulary to annotate molecular
attributes across model organisms [46]. It represents a repository of computable biological
knowledge and comprises three ontologies: molecular function (MF), biological process
(BP), and cellular component (CC). MF represents information on the role played by a
gene product. BP refers to a biological objective to which a gene product contributes.
CC represents the cellular localization of a gene product, including cellular structures and
complexes [132].

GO terms and their relationships are represented by Directed Acyclic Graphs (DAGS),
where each node except for the root has one or more parent nodes and no cyclic relation-
ships between terms are allowed. There are two kinds of relationships between children
nodes and parent nodes: “is a” and “part of””. The former is used when a child class is a
subclass of a parent class, while the latter is used when a child is a component of a parent.
Each gene product can be annotated with a set of GO terms.

The GO-based functional annotation consists of two steps. First, given a list of genes,
their associated GO-terms are extracted from GO databases. Second, enriched terms in the
GO annotation of these genes are identified. These terms may provide an insight into the
biological functions that these gene are involved in. Many algorithms have been designed
to identify enriched GO terms, such as BINGO [76] and GlueGO [10].

2.2.4 Protein feature annotation

Proteins are normally associated with some features (e.g., protein families and domains),
and identifying these features can provide insights into functions of proteins. The InterPro
database [58] consists of a large collection of such features that are found in proteins with
known functions. Consequently, they are often used to annotate functions of new protein
sequences. InterPro consists of 11 member databases, which are based on different but
complementary techniques. When different algorithms identify features that are located
in the same region of same proteins, these features are merged into a single feature by a
curator. This design ensures the consistency of data in InterPro.

For example, Pfam [36] is a member of the InterPro database, and focuses on conserved

10

protein families. The core of Pfam is a set of seed alignments. Each of these seed align-
ments consists of a group of sequences that are relatively stable between releases of the
database, and can be used to build profile hidden Markov models (HMMS). Given a profile
HMM and a set of protein sequences, HMMER [31] can search homologous sequences of
this profile HMM from this set of sequences. The identified sequences are predicted to be

associated with the same functions as the proteins from which the profile HMM is built.

2.2.5 Reconstruction of metabolic networks

Metabolism is the set of chemical reactions that occur in a living organism. These chemical
reactions are organized into two types of pathways: catabolism and anabolism. The former
convert molecules, which serve as food, into energy, while the latter use energy to construct
components of cells (e.g., proteins and nucleic acids). The set of all pathways in a cell is
called the metabolic network. Enzymes, a special type of proteins, play an important role
in metabolism, because they act as catalysts to allow chemical reactions in metabolism to
proceed quickly and efficiently.

After identifying genes and their functions in an organism, one task is to reconstruct
the metabolic network of this organism. The Pathway Tools [64] is widely used for this
task. The reconstruction by the Pathway tools consists of two steps. In the first step, this
tool predicts the metabolic-pathway complements of this organism from its genome by
the comparison to MetaCyc [19], a metabolic pathway reference database. This database
records more than 1,400 experimentally determined pathways from all domains of life. In
the second step, the Pathway Tools calculates the evidence that each pathway recorded
in MetaCyc occurs in this organism. The evidence of a pathway is based on how many
enzymes in this pathway exist in this organism. Moreover, the presence of an enzyme is
determined by checking whether a gene in this organism is associated with the enzyme.
Hence, the quality of the reconstructed metabolic network strongly relies on the accuracy

of the gene prediction in this organism.

2.2.6 Reconstruction of transcription regulatory networks

Transcription regulatory networks can be reconstructed by detecting the correlation of ex-
pressions between transcription factors and their targets. This thesis focuses on designing

this type of methods, and Section 2.6 will review related work.

11

Binding specificity is an important property of transcription factors. That is, each tran-
scription factor is capable of recognizing and binding to a particular pattern of binding
sites, which is called a motif. Consequently, another direction to reconstruct transcription
regulatory networks is to identify regulatory binding sites of transcription factors. This type
of methods can broadly be categorized into two groups: gene expression-based approaches
and phylogenetic approaches. The former are based on the observation that co-expressed
genes are very likely to be regulated by the same transcription factors, and consequently
they share common motifs. Gibbs sampling [125] has been extensively adopted to search
for motifs in the upstream regions of co-expressed genes. In Section 2.3, we will describe
how to collect gene expression data.

Phylogenetic approaches are based on the idea that functional elements in a genome,
such as binding motifs in the upstream regions of genes, are more likely to be conserved
than non-functional elements during evolution. Hence, motifs can be detected from the
alignment of the upstream regions of orthologous genes from close species. The authors in
[136] applied this strategy to find motifs in human genome.

Putative binding sites produced by the aforementioned computational methods can be
experimentally validated by chromatin immunoprecipitation [13]. The other way to val-
idate putative binding sites is to check whether they are recorded in databases of known
binding sites. TRANSFAC [83] is the most comprehensive curated database for regulatory

binding sites.

2.3 Collecting gene expression data

Gene expression data are often used in functional annotation. They are normally organized
into a data matrix, where each row represents the expression levels of a particular gene
across all experimental conditions, while each column represents the expression level of
each gene in a particular condition. In this section, we describe several technologies for

collecting expression data.

2.3.1 Microarray technology

Microarrays exploit the preferential binding of complementary single-stranded nucleic-acid

sequences. The basic principle is that unknown samples are hybridized to an ordered array

12

of immobilized DNA molecules whose sequences are known [48]. The idea of using a
piece of DNA as a probe to determine the presence of the complementary DNA (cDNA) in
a solution is evolved from Southern blotting technology. The most attractive advantage of
microarray technology is that it is capable of measuring the expression levels of thousands
of genes in parallel.

A microarray is a small chip (made of chemically coated glass, nylon membrane or
silicon) onto which tens of thousands of DNA probes are attached in fixed grids. Generally,
microarrays are categorized into two groups: cDNA microarrays and oligonucleotide arrays
(abbreviated oligo chip). A cDNA microarray simultaneously analyzes two samples, a test
sample and a reference sample. In contrast, in oligo chips, the test sample and the reference
are separated, and they are analyzed on different chips. In other words, the two samples on a
cDNA chip can be viewed as comparable to two samples on two oligo chips [122]. Despite
differences in the details of their experimental protocols, both types of experiments consist

of the following steps: target preparation, hybridization, scanning, and normalization [61].

2.3.2 Tag-based technology

Microarray technology relies on a collection of representative clones of all genes in a
species, so this technology is only able to measure the expression levels of prior known
genomic features. In contrast, tag-based technologies can provide absolute expression val-
ues without the need for any probe design [52].

Serial analysis of gene expression (SAGE) has pioneered the use of short sequence
tags in expression profiling [131]. It consists of three steps. First, after mRNA has been
isolated from samples, a small fragment of sequences (14-20 base pairs), called a tag, is
extracted from a defined position of each mRNA molecule. Second, these fragments are
linked together to form a long chain, which is then cloned into a vector. Third, this vector
is sequenced, and consequently the tag frequency of each mRNA is counted. The laborious
and costly cloning and sequencing steps limit the use of SAGE. Deep sequencing tech-
nology, also referred to as Digital Gene Expression tag profiling (DGE), has been widely
used in gene expression analysis. Unlike classical SAGE, tags are not cloned in DGE, but

sequenced immediately [117].

13

2.3.3 RNA-seq technology

RNA-seq [134] is a new technology to measure gene expression. Unlike SAGE and DGE
that are based on expensive Sanger sequencing technology, RNA-seq relies on flow cell
sequencing [56]. Given a population of RNA, RNA-seq converts them into a library of
cDNA fragments. These fragments are then sequenced in a high-throughput sequencing
manner to obtain reads. Typical examples of sequencing technologies used by RNA-seq
include Illumina IG [3], Applied Biosystems SOLiD [2], and Roche 454 Life Science [1].

After cDNA fragments are sequenced, the next task in the pipeline of analyzing RNA-
seq data is to align reads to a reference genome. This task is challenging, because these
reads are generally short. Many algorithms have been designed to perform this task, such
as QPALMA [25] and TopHat [127]. The major difficulty here is how to align reads that
span exon boundaries (i.e., splice junctions). Given a set of known splice junctions from
the reference genome, QPALMA trains a support vector machine-like algorithm, and then
the algorithm is applied to predict the alignments of junction reads. Unlike QPALMA,
TopHat does not rely on known splice sites. TopHat first identifies reads that can not be
directly mapped to the reference genome. TopHat then aligns these unmapped reads to
splice junctions using a seed-and-extend strategy.

After reads are mapped to the reference genome, the next task is to count the numbers
of reads in particular genomic regions, because these numbers can be used as a measure
of the prevalence of transcripts from known and previous unknown genes. This represents
one of RNA-seq’s advantages. That is, it is capable of providing digital gene expression
levels, in contrast to analog-style signals from microarray technology [134].

There is a positive association between the length of a gene’s transcript and the number
of aligned reads in its corresponding genomic region. Hence, raw counts are required to be
normalized before they can be used to select highly expressed genes [14]. ERANGE [89]
proposes to apply the following formula to normalize reads :

9
where C' denotes the number of reads that are aligned to the exons of a gene, N denotes the
total number of reads aligned to the reference genome, and L denotes the total length of
the gene’s exons in base pairs. R is referred to as reads per kilobase per million reads se-

quenced (RPKM). Another state-of-the-art algorithm for measuring transcript abundances

14

is Cufflinks [128]. This algorithm uses expected fragments per kilobase of transcript per
million fragments sequenced, abbreviated as FPKM, to measure transcript abundances. The
abundance of a transcript ¢ in FPKM units is equal to :

10° x 10® x oy

SO @)Ut i+ 1)

where o, denotes the probability that a fragment selected at random comes from ¢; I(t) is

the length of ¢, F' represents a normal distribution, and F'(7) denotes the probability that a
fragment has length i.

2.4 Known transcription factors in Saccharomyces cere-
visiae

The budding yeast Saccharomyces cerevisiae is one of the most extensively studied eu-
karyotic model organisms. The YEASTRACT database [123, 88] records information on
documented regulatory relationships in this species. In addition, it contains binding sites
of transcription factors. In release Dec 13, 2010 [4], there are more than 48,200 regu-
latory relationships between 183 transcription factors and 6,403 genes based on nearly
1,200 research papers. The transcription factors included in this database cover most tran-
scription factors recorded in the Saccharomyces Genome Database [21], which is the most
comprehensive repository of the molecular biology and genetics in the yeast. Due to the
comprehensiveness of the YEASTRACT database, it is widely used as a reference database
to validate results of regulation network learning algorithms in yeast datasets [133, 137].
In this thesis, we also rely on records in YEASTRACT to evaluate the performance of our
methods in a yeast benchmark dataset.

Experimental confidence for regulatory relationships in YEASTRACT can be catego-
rized into two types: direct evidence and indirect evidence. The former is assigned to
associations, where bindings of transcription factors to the promoter regions of their target
genes have been validated by experiments, such as chromatin immunoprecipitation assays.
In contrast, if a regulatory relationship between a transcription factor and a gene is sup-
ported by an indirect evidence, this indicates that the expression level of the target gene is
changed owing to the mutation (or deletion) of the gene encoding this transcription factor.

There are 29,051 regulatory associations based on direct evidence and 19,182 on indirect

15

evidence in YEASTRACT (released on Dec 13, 2010).

The regulation of galactose utilization in the budding yeast is one of the best charac-
terized eukaryotic systems of transcriptional regulation, and is well documented in YEAS-
TRACT. The yeast is capable of converting galactose into glucose-6-phosphate for energy.
However, the expression of genes for galactose utilization is repressed when glucose is
added into the environment, because glucose is the preferred carbon source for the budding
yeast [9]. This is referred to as glucose repression. The transcription factor, MIG1, plays a
major role in glucose repression [104]. In the presence of glucose, cytoplasmically located
MIGTI is translocated to the nucleus to inhibit the expression of glucose-repressed genes,
such as GAL4 which is the activator of genes involved in galactose utilization (Figure 3).

The utilization of galactose consists of two steps: i) galactose is transported across
the membrane into the cell by GAL?2; ii) glycolysis enzymes (GAL1, GALS, GAL7 and
GAL10) covert galactose into glucose-6-phosphate through a series of metabolic reac-
tions. The transcription of the genes involved in these two steps is influenced by the
post-transcriptional regulation between GAL4, GALS80, and GAL3 [9]. When galactose
is absent, the function of GAL4 for activating the transcription of GAL2, GAL1, GALS,
GAL7 and GALIO is disable due to the protein-protein interaction between GAL4 and
GALS80. However, in the presence of galactose, GAL3 interacts with GALS0 so that GAL4

is released to activate the transcription of genes involved in galactose utilization.

2.5 Benchmark gene expression datasets

The development of algorithms using gene expression data to annotate genomes relies on
benchmark expression datasets, where performances of different algorithms can be as-
sessed. Benchmark datasets can be categorized into two types: synthetic datasets and real

biological datasets.

2.5.1 Synthetic datasets

Synthetic datasets are generated by simulators, such as SynTReN [130] and GeneNetWeaver

[80]. Given the transcription regulatory network of a species, these simulators sample a

16

=g Fost-transcriptional inhibition

— Trar15c:r|.|:|t|onal activation Glycolysis enzymes
—P Metabolic step

Post-transcriptional J Transcription
Inhibitors Facter

Figure 3: Regulation of galactose utilization in the budding yeast [92]

sub-network from the whole network, and then infer a dynamical model from the sam-
pled sub-network. The inferred dynamical model is capable of generating synthetic ex-
pression data, which manifest the expression pattern shown by the genes in the sampled
sub-network. Noise is often added into synthetic expression data before they are used to
evaluate the performance of algorithms, because all technologies for collecting expression
data are subject to random experimental noise.

In order to generate a synthetic gene expression dataset, users first need to specify the
size of the sampled network (i.e., the number of genes in the network). Moreover, users
need to determine the number of experimental conditions included in the synthetic dataset
and the noise intensity level to be added. Synthetic datasets have been widely used to
evaluate the performance of algorithms. For example, in [79], synthetic datasets based
on the regulatory network of the budding yeast are used to evaluate the performance of

algorithms. In Chapter 4, we also test our proposed method on synthetic datasets.

2.5.2 Real biological datasets

In order to become a benchmark, a real biological dataset has to meet the following two

requirements. First, the dataset should be relevant to a well studied model organism whose

17

biological processes have been extensively analyzed. This requirement ensures that the
biological soundness of the result given by an algorithm in this dataset can be validated.
Second, the dataset should consist of expression values collected under a relative large
number of conditions, and consequently there are a sufficient number of genes involved in
the response given by cells to these conditions. This requirement ensures that the perfor-
mance of algorithms can be thoroughly evaluated based their results in this dataset. In this
subsection, we describe two benchmark datasets: the Escherichia Coli dataset [35] and the

yeast stress dataset [45].

2.5.2.1 The Escherichia Coli dataset

Escherichia Coli (E. coli) is one of the best-studied prokaryotic model organisms. A dataset
of gene expression profiles in this species has been assembled [35], and it consists of 445
experiments under various conditions, including growth phases, heat shock, numerous ge-
netic mutations and so on. This dataset has been applied to evaluate the performance of
relevance networks, Bayesian networks, linear regression, and module networks for using
expression data to infer transcription regulatory networks [35, 86]. We use this dataset
to assess our proposed method in Chapter 5. Experimental results of algorithms in this
dataset can be validated by records in EcoCyc [65], which is a comprehensive database of
biological processes in E. coli, and RegulonDB [44], which is a database for experimentally
confirmed transcription regulatory interactions in E. coli.

Most algorithms achieve better results in this dataset than those obtained in the yeast
stress dataset described in Section 2.5.2.2, because E. coli has a much simpler transcrip-
tional regulation system than the budding yeast. Consequently, transcription factors and

their targets in E. coli are highly co-expressed. This facilitates regulatory network learning.

2.5.2.2 The yeast stress dataset

Another widely used benchmark dataset is the yeast stress dataset, which measures the
budding yeast’s response to a panel of diverse environmental stresses [45]. The condi-
tions covered by the dataset consist of temperature shocks, amino acid starvation, nitrogen
source depletion, and so on. Around 900 genes in this dataset show a stereotypical response
under many different environmental stresses. This stereotypical response is referred to as

the environmental stress response. Genes involved in the environmental stress response are

18

regulated by different transcription factors [45], but they manifest similar expression pro-
files. Consequently, algorithms using expression data to infer regulatory networks exclude
these genes from their analyses [106].

In contrast, there are 2,355 genes in this dataset showing unique response to specific
conditions. Many algorithms have been applied to infer transcription factors of these genes,
such as [106, 62]. In this thesis, the performance of three proposed methods is also eval-
uated using this set of genes. Saccharomyces Genome Database (SGD) [21] and YEAS-
TRACT [88] are the major reference databases of the budding yeast. Records in these two
databases are often used to validate results from different algorithms on the yeast stress

dataset.

2.6 Applying gene expression data to annotate genome

In this section, we will describe several major techniques for analyzing expression data,
including selecting differentially expressed genes, gene set enrichment analysis, clustering

of genes via expression values, and inferring transcription regulatory networks.

2.6.1 Selecting differentially expressed genes

One crucial step in the analysis of expression data is to select differentially expressed genes.
Suppose that experimental conditions in a dataset are categorized into two groups: class
1 and class 2. Golub et al. [51] proposed to select differentially expressed genes between
these two groups by evaluating signal-to-noise statistic values of genes. The signal-to-noise

statistic value of a gene ¢ is defined as:

_ m(g) — 1a2(9)]
P9) = ST
[o1(g) + o2(9)]
where [111(g),01(g)] and [p2(g), 02(g)] denote the means and standard deviations of the
expression levels of g for the conditions in class 1 and class 2, respectively.

Another similar measurement is ¢-statistics [72]. The ¢-statistic value of g is defined as:

T(g) _ ’,ul(g) — ,UJQ(g)‘

o1(9)?

where 17 and n, denote the numbers of conditions in class 1 and 2, respectively. The other
variables are defined as the above equation for P(g). When conditions are clustered into
more than two groups, F'-statistics can be applied.

In addition, the Wilcoxon rank sum test [129] and empirical Bayesian method [32]
have been applied to detect differentially expressed genes from expression data. A common
characteristic of the methods described in this subsection is that they are capable of ranking
genes into an ordered list. The higher its ranking in this ordered list, the more likely a
gene is differentially expressed. Moreover, this ordered list can be used as the input for

downstream analyses, such as gene set enrichment analysis.

2.6.2 Gene set enrichment analysis

Given an ordered list of differentially expressed genes, a straightforward method to inter-
pret this list is to verify whether the genes in the top of the list are relevant to the biological
difference between condition classes. This is referred to as singular enrichment analysis
[57]. The limitation of singular enrichment analysis is that it does not incorporate biologi-
cal knowledge regarding how genes work together [60].

To overcome this limitation, Subramanian et al. [116] designed a statistical method,
called gene set enrichment analysis (GSEA), to interpret this ordered list. After genes are
grouped into gene sets according to the biological functions they participate in, GSEA is
capable of calculating the enrichment score for each gene set. This score can be used
to determine whether the members of a gene set are randomly distributed throughout the
ordered list or primarily located in the top or bottom. If a gene set is associated with
the latter distribution, the genes in this set are predicted to be relevant to the phenotypic
distinction between the experimental condition classes.

Suppose that N genes are ranked into an ordered list L = (g1, ..., gn) according to their
degrees of differential expression, 7(g;) = r;, between condition classes. The enrichment

score of a gene set S with Ng genes is calculated as
ES(S) = max [Phlt(S i) = Prpjss(S:1)] 5

where

P S |TJ |p
hit (S, 7) Z

g; €8
7<i

20

and

Priss (1) = 3 ﬁ
E

The parameter p determines the weight for correlations of genes with the phenotypic dis-
tinction between condition classes, and can be decided by users. Essentially, the enrichment
of S denotes the maximum difference between F ;¢ and Pyiqq-

The significance of £S(.S) is normally assessed by comparing it with a set of enrich-
ment scores based on permuted condition classes. The percentage of scores more than
ES(S) in this set is used as the p-value for S. Given a threshold p-value (e.g., 0.01),
several gene sets may be considered to be relevant to the phenotypic distinction between
condition classes. Consequently, false discovery rate control or familywise-error rate con-
trol [7] is applied to correct multiple comparisons. Compared to false discovery rate, the
disadvantage of using familywise-error rate to correct multiple comparisons is that it is

overstrict and may lead to no statistically significant gene set [116].

2.6.3 Clustering of genes

Clustering gene expression data is a method widely used in functional annotation. The
strategy is to apply clustering algorithms [33] to identify gene clusters, which are groups of
genes with similar expression patterns over a range of experimental conditions. If a gene
with unknown function is assigned to a cluster dominated by genes involved in some par-
ticular biological process, then this gene can be inferred to participate in the same process.
Many different clustering methods have been successfully applied to cluster gene expres-
sion data. These methods can be broadly categorized into two types: distance-based and

model-based.

2.6.3.1 Distance-based methods

Typical examples of distance-based methods include /K-means clustering [121] and Self
Organizing Map [120]. The common characteristic of distance-based methods is that they
rely on similarity metrics to calculate distances between genes. Consequently, genes with

close distances are grouped into the same gene cluster. In [33], the similarity between two

21

genes X and Y based on their expression values measured under N conditions is calculated

N

1 Xi - Xoffset Y; - Y;)ffset
X,Y) = —
S(X,Y) NZ_;(5,)(5 ,

where X; and Y; denote the expression values of X and Y under the condition i,

as:

N 2
Xi_Xo se
By — Z(ffset)

; N ’
i=1
and
N 2
(Y; - }/;ffset)
(I)y = E T

=1
Xorfset and Y,¢rs; denote reference states for the expression values of X and Y. For
example, when X, ¢fse and Y,rse¢ denote the means of X and Y under these /N condi-
tions, S(X,Y’) becomes the Pearson correlation coefficient between these two genes. The
distance-based methods are simple and computationally efficient. However, they are sensi-

tive to noise, and have difficulty in handling missing data [102].

2.6.3.2 Model-based methods

Instead of using similarity metrics, model-based methods assume that genes in a cluster
are drawn from the same probability distribution. Accordingly, the expression values in a
dataset are considered to be generated from a mixture of probability distributions. Suppose
that X = {X;

ijs . N,j=1,..., M} denotes expression values of N genes collected

under M conditions, and X;; is the expression value of the gene ¢ under the condition
7. Furthermore, suppose that the N genes are assigned into K gene clusters. Let £/ =
(E(i),i=1,...,N) denote the cluster indicator variable, and £ (i) = k, 1 < k < K
denote that the gene ¢ is assigned to the cluster k. In addition, suppose that expression
values of genes in the cluster k£ under the condition j follow a normal distribution with the
mean f; and variance oj;. Thatis, X;; ~ N(B, 03;) if E(i) = k. The likelihood of
observing X is proportional to:
K

P(xIE,3,0%) <[] I] H(12, 1/20%j)(Xu—5w)2).

k=1 E(i)=k j=1
The expectation maximization algorithm [28] and Gibbs sampling [63] can be applied to

determine the values of parameters (e.g., I7, 3, 0%) that maximize the above likelihood.

22

The advantage of model-based methods is that they are more resistant to noise than
distance-based methods. In addition, gene clusters obtained by model-based methods can
be statistically evaluated by the likelihood of observing the data from the learned mixture
of probability distributions. Due to the aforementioned advantages, model-based clustering
approaches draw more and more attention. Typical examples of model-based methods

include the finite mixture model [49] and the Dirichlet process mixture model [102].

2.6.4 Inferring transcription regulatory networks

Gene expression data are widely used to infer transcription regulatory relationships be-
tween genes. For example, when genes are grouped into gene clusters based on their ex-
pression profiles, if most genes in a learned cluster are known to be regulated by a tran-
scription factor, it is very likely that this transcription factor also regulates the expression
of other genes in this cluster. Beside clustering algorithms, Bayesian networks have also
achieved promising results in inferring regulatory relationships from gene expression data,
and Chapter 3 will review related work in this direction. In this subsection, we will describe

how to apply relevance networks and linear regressions to learn regulatory networks.

2.6.4.1 Relevance networks

In a relevance network, each node denotes a gene, and two nodes are connected by an edge
only when the mutual information between them is higher than a given threshold [15].
The mutual information between two genes X and Y based on their discretized expression

values is defined as:

V) P (25, Y5)

= zza: Pl og p(zi)p (y;)
where P (x;) denotes the probability that X shows the expression value z;. The higher
mutual information between a transcription factor and a gene, the more likely they have
a regulatory relationship. Compared to the Pearson correlation coefficient, the advantage
of mutual information is that it does not assume linearity, continuity, or other properties
associated with the relationships between expression values of transcription factors and
their targets, but it costs more computationally [35].

A limitation of the relevance network method is that its performance deteriorates when

some candidate transcription factors are weakly co-expressed with a large number of genes.

23

To cope with this problem, Faith et al. [35] designed the context likelihood of relatedness
(CLR) algorithm, which extends the relevance network method by adding a background
correction step. The background distribution for the mutual information between gene
X and gene Y consists of two sets of mutual information values: the set (M [x) of mutual
information values between X and all other genes, and the set (M Iy) of mutual information
values between Y and all other genes. My and M Iy can be approximated by normal

distributions. Consequently, the corrected mutual information between X and Y can be

[(Zx,Zy) =] Z% + Z%,

where Zx and Zy denote the z-scores of the mutual information value between X and Y

calculated as:

from the normal distributions associated with M Iy and M [y, respectively.

Another limitation of the relevance network method is that genes with indirect regu-
latory relationships may show high mutual information and this increases the number of
false positives. For example, if gene X regulates gene Y that regulates gene Z, X and
Z probably have enriched mutual information due to the co-expression between them. In
[81], the authors applied the data processing inequality to filter high mutual information
associated with indirect interactions. The data processing inequality states that if gene X

and gene Z interacts only through gene Y, then:
I(X;2) <min[I(X;Y), [(Y;Z)].
Hence, the interaction between X and Z can be eliminated from predictions by the rele-
vance network method if /(X;Z) < I(X;Y)and [(X;2) < I(Y; Z).
2.6.4.2 Linear regression

In [11, 74], linear regression was applied to infer transcription regulatory networks from
gene expression data. Let Y = (y1, 92, ..., yn) denote the expression values of gene y under
N conditions. Let Z = (21, 23, ..., 2,,) denote a list of p candidate transcription factors for

1. Then, the expression value of y under the condition ¢ can be modeled as:

p
Yi = a+ Z/szij,
j=1

where z;; denotes the expression value of the transcription factor z; under the condition

i, and /3; is the regression coefficient of z;. Transcription factors associated with positive

24

(or negative) coefficients activate (or repress) the expression of y. In addition, the impact
of a transcription factor on the regulation of y can be evaluated by the magnitude of its
coefficient.

The regression coefficients of candidate transcription factors can be inferred by ordinary
least square multivariate regression, but the method tends to assign many transcription
factors with non-zero coefficients, and this makes it difficult to interpret the result. To

overcome this limitation, L1 shrinkage [126] is often used, which is defined as:

N

» 2
(&, 3) = ar%vmin Z (yZ —a— Zﬁj%’)

B i=1

with the constraint:))
S IBI <Y 15,
j=1 j=1

where ;" denotes the ordinary least squares estimate of the coefficient of z;, ¢ is called the
shrinkage parameter, and its value is in the range of O to 1. The optimal value of ¢ can be
identified by cross validation [11]. One advantage of linear regression is that it can be used
for inferring transcription factors of a set of co-expressed genes (i.e., a regulatory module).
It is implemented by regressing the mean of expression values of this set of genes on a list
of candidate transcription factors. In Chapter 6, we apply this method on the yeast stress

dataset.

25

Chapter 3

Related work

Many algorithms, such as information-theoretic approaches, ordinary differential equa-
tions, and clustering algorithms, have been adopted for learning transcription regulatory
networks using gene expression data. In [6, 35], the authors described how to apply them,
and compared their strengths and limitations. In this chapter, we will review the work using
Bayesian networks.

This chapter is organized as follows. Section 3.1 gives a brief introduction of learning
Bayesian networks. Section 3.2 reviews several methods that applied Bayesian networks to
infer transcription regulatory networks. Section 3.3 describes how to apply the module net-
work method [106], a special type of Bayesian networks, to learn transcription regulatory

networks.

3.1 Introduction to Bayesian networks

3.1.1 Basic structure

Bayesian networks are a combination of probability theory and graph theory. They are
very useful to represent probabilistic relationships between multiple interacting entities. A
Bayesian network can be represented by a directed acyclic graph (DAG). In the context
of transcription regulatory networks, each node denotes a gene, while each edge indicates
a regulatory relationship between two genes. Figure 4 shows a Bayesian network repre-
senting a portion of transcription regulatory pathways involved in glucose repression in the

budding yeast. It describes that the transcription factor, SNF1, regulates its target, MIG1,

26

Figure 4: Bayesian network for a portion of transcription regulatory pathways involved in
glucose repression in the budding yeast

which is also a transcription factor and regulates the transcription of genes involved in
glucose utilization [16]. In addition, the combination of MIG1 and RGT1 regulates the
transcription of HXT3 and HXT1 whose functions are to transport glucose into cells [66].

Conditional independence is a critical concept in Bayesian networks. Mathematically,
a and b are conditionally independent given c if p(a, b|c) = p(a|c)p(b|c). Essentially, the
DAG structure in a Bayesian network encodes conditional independence relations between
nodes. That is, a node is conditionally independent of its non-descendants given its parents.
This allows efficient inference and learning in Bayesian networks.

Each node in a Bayesian network is associated with a conditional probability distribu-
tion that describes its relationship with its parents. For discrete variables, the multinomial
distribution is often used, and it can be expressed as a conditional probability table. For
continuous variables, the most common choice is the linear Gaussian distribution. That is,
each node is associated with a Gaussian distribution whose mean varies linearly with the

value of the node’s parents and whose standard deviation is fixed.

27

3.1.2 Parameter learning

The task of parameter learning is to find the parameter 6 of the conditional probability
distributions associated with the nodes given a network structure S and a set of training
data D. It can be computed efficiently under two assumptions: no missing data in the
training set (i.e., complete data) and parameter independence [54].

For complete data, the maximum likelihood estimation (MLE) is a typical method for
parameter learning in Bayesian networks. This learning method aims to maximize the
likelihood of data, i.e. p(D|6). The probability of observing a new sample x is estimated

by p(z|0rE), where 0y, is calculated as:
Ovre = arg max p(D|6).

This method is not a strict Bayesian approach, because no prior distribution of ¢ is included.
In contrast, the maximum a posteriori (MAP) estimator aims to maximize the posterior

distribution, and is defined as:
Orvap = arg max p(D]0)p(0),

where p(6) denotes the prior distribution of #. The Dirichlet and Gaussian priors are often
used for the multinomial and Gaussian distributions, respectively, because it is straight-
forward to calculate the corresponding posterior distributions. When the training data con-
tains missing data or hidden variables, the expectation maximization algorithm [28] is often

used.

3.1.3 Structure learning

In the previous subsection, we showed how to learn the parameters of a Bayesian network
with a known structure .S, but in reality, S is often unknown. The common strategy for
structure learning is to introduce a statistically motivated scoring function that evaluates
each network with respect to the training data, and then to search for the network with the
maximal score [42].

The score can be evaluated by the posterior probability of a structure S given the data
D:

SCORE(S : D) = log P(S|D) = log P(D|S) + log P(S) + C,

28

where C'is a constant independent of S; P(D|S) denotes the marginal likelihood averaging

the probability of the data over all possible parameter assignments to S, and is defined as:
P(D|S) = / P(D|S, 0)P(0]S)db:

and P(S) represents the prior knowledge about the network structure. For example, we
may assume that all networks are equally likely if no prior knowledge is available.

The number of possible network structures is exponential to the number of variables,
so an exhaustive search is not feasible even for a network with a small number of nodes.
Consequently, heuristic methods are applied to decide how to navigate in the search space.
The greedy hill-climbing algorithm is one of the most widely used methods. In addition,
the simulated annealing and best-first search are also applied. A detailed description of
structuring learning in Bayesian networks is included in the tutorial [54] given by Hecker-

man.

3.2 Applying Bayesian networks to infer transcription reg-

ulatory networks

Bayesian networks have yielded promising results in inferring transcription regulatory net-
works from gene expression data [42, 107]. One advantage of this method is to apply
Bayesian probability theory to deal with uncertainty of data. Moreover, the method uses
directed acyclic graphs to represent transcription regulatory networks, which facilitates the
interpretation of results, i.e., that each gene is regulated by its parents.

Despite the success of Bayesian networks in learning regulatory networks, this method
has a major shortcoming. A typical gene expression dataset describes thousands of genes,
but at most consists of a few hundreds of instances (experimental conditions). In Bayesian
networks, each gene is associated with its own set of parents and a conditional probability
distribution, so the number of structural features and distribution parameters to be learned
is enormous relative to the amount of available data [87]. Hence, learned models may
overfit the data, and consequently do not represent real regulatory relationships. In addition,
some subtle patterns may not be detected when training samples are rare. To cope with
this problem, several techniques have been proposed, including sparse candidates [43],

bootstrapping [40], model averaging [41], and adding prior biological knowledge [59].

29

3.2.1 Sparse candidates

As described in Section 3.1.3, heuristic search strategies are frequently used to cope with
huge search spaces in learning regulatory networks. However, the search process is still
very time-consuming when there are thousands of genes. Because a gene only interacts
with a very limited number of genes, the sparse candidates algorithm [43] restricts the
maximum number of affecting genes for each target gene. This design significantly reduces
the number of possible networks.

The sparse candidates algorithm first identifies a relatively small number of candidate
parents for each gene, based on simple local statistics, such as correlations between gene
expression levels. Then, it restricts the search to networks, where only the candidate parents
of a gene can be its parents. In addition, this algorithm is capable of dynamically adjusting

the candidate parents for each gene so that the search space is not overly restricted.

3.2.2 Bootstrap-based confidence estimation

When learning Bayesian networks with many variables and a small number of samples,
we often find that many networks with largely distinct structures should be considered as
a reasonable explanation of the given data. From a Bayesian perspective, this indicates
that the posterior probability over models of the given data is not dominated by a single
network [42]. Because it is not feasible to list all likely networks in the context of learning
regulatory networks, the authors in [40] proposed to extract common edges (features) from
them, instead of learning entire network structures.

There are two types of features of interest: Markov relations and order relations. A
Markov relation between two genes indicates that one gene is in the Markov blanket of
the other. The Markov blanket of a variable in a Bayesian network is the minimal set
of variables that shield this variable from the rest of variables. Essentially, this feature
represents that these two genes are involved in the same biological process. An order
relation between two genes denotes that one gene is an ancestor of the other. This feature
indicates that there is a regulatory relationship between these two genes.

The statistical confidence of an extracted feature is evaluated by a bootstrap method.
This method first generates a perturbed version of the original dataset by sampling, with
replacement, a fixed number of instances. Then, a network is inferred from the perturbed

dataset. The above two-step process is repeated multiple times in order to obtain a set of

30

networks. Lastly, the confidence of a feature is measured by the percentage of networks
owning this feature in the set of sampled networks. It has been shown that statistical con-
fidences produced by this simple bootstrap method correlate well with the estimates by

Bayesian posterior.

3.2.3 Bayesian model averaging

Bayesian model averaging accounts for model uncertainty by averaging over all possible
models [75, 55]. The posterior distribution of a quantity of interest, A\, such as the proba-

bility of an edge, conditional on the data, D, is given by:

K
pr(A[D) = pr(A|My, D)pr(My| D),
k=1

where (Mj, ..., M) denotes the set of models under consideration. In general, the number
of terms in the summation can be impractically large, so the summation is often approxi-
mated by using Markov chain Monte Carlo model composition [50].

Let A denote the class of models under consideration. The method constructs a Markov
chain {M(t),t = 1,2,...N} with the state space A and the equilibrium distribution pr(;| D).

Then, the average:
N
1
G = Y pr(AM (1), D)
t=1

can be used to estimate pr(A|D). In [41], the authors apply Bayesian model averaging to
reconstruct regulatory networks from gene expression data, and the experiments show that

this method outperforms the bootstrap approach proposed in [40].

3.2.4 Divide-and-conquer approach

In [68], the authors applied a divide-and-conquer approach to infer transcription regulatory

networks. This method consists of four steps:
1. Seed genes, which are highly differentially expressed, are identified;

2. Genes closely related with the seed genes based on biological similarities and expres-

sion similarities, are grouped into overlapped modules. That is, some genes, called

31

intermediary genes, are involved in multiple modules. The biological similarity be-
tween two genes is measured by the Gene Ontology terms associated with them and

their annotations in MIPS [85];
3. A Bayesian network is inferred for each module identified in the previous step; and

4. The networks of individual modules are integrated to form the global network through

intermediary genes.

This method increases the ratio of the number of samples to the number of genes, and
consequently reduces incorrect dependencies caused by the high dimensionality of data.
Experimental results show that it is capable of detecting subtle relationships that traditional

whole-set-based approaches often fail to identify.

3.2.5 Adding prior biological knowledge

A possible solution to handle small numbers of samples in gene expression data is to com-
bine them with other biological information. For example, in [59], the authors proposed to
use protein-protein interactions to determine the prior distribution of a regulatory network,
and then gene expression data were used to infer the detail of this network.

Tamada et al. [119] enhanced the above method with an iterative procedure, which
alternates between learning Bayesian networks and motif detection. First, they infer a gene
regulatory network from gene expression data alone. Then, motifs are detected from the
upstream region of genes that are regulated by the same transcription factors. Moreover, the
learned motifs are embedded into the prior distribution of networks, and then a new network
is inferred from the gene expression data. This process is repeated until the structure of the
network does not change considerably. The authors in [108] proposed a similar method
using the expectation maximization algorithm.

Evolutionary information has been incorporated into learning regulatory networks from
expression data [118]. Given two organisms, the basic idea is to first identify the pairs of
orthologous genes between these two organisms by sequence alignment. Then, the network
of each organism is inferred from expression data. Lastly, incomplete parts in the network
of one organism can be enhanced by checking their counterparts (e.g., orthologous genes)

in the other organism’s network.

32

3.3 Applying module networks to infer transcription reg-

ulatory networks

3.3.1 Basic structure of module networks

The authors in [105] introduced module networks, which are a special type of Bayesian
networks. In a module network, each module represents a set of variables that share (1) a
single variable or a set of variables as their parents and (2) local distributions. In the context
of transcription regulatory networks, a module (i.e., a regulatory module) is a set of genes
that show similar expression values under a given set of experimental conditions. In Figure
5, we compare the representations of a transcription regulatory network with 6 genes in the
budding yeast by a Bayesian network and a module network. In the latter, these genes are
grouped into 3 modules: M1 consisting of GCN4; M2 consisting of DAL80, GLN3, and
MET?28; and M3 consisting of DAL2 and DAL3. Since genes in a same module share a
local probabilistic model, there are only three models to be learned, which is less than the
five required by a Bayesian network.

The local probabilistic model (i.e., the regulation program) of a module consists of
one or several genes, which are the regulators of this module. It can be represented by a
regression tree. Each internal node of the tree is associated with a set of conditions (i.e., a
condition cluster) and a test of the behavior of a particular transcription factor, while each
leaf node is associated with a condition cluster and a normal distribution which describes
the behaviors of genes in the module under this condition cluster. To assign a condition to
a leaf node (i.e., a condition cluster), starting from the root of the regression tree, at each
internal node we select the branch by evaluating the behavior of the transcription factor
tested in the node under this condition.

Figure 6 shows an example of the regulation program of the module M3 in Figure 5.
This regulation program consists of two tests (internal nodes): whether DALSO is highly
expressed and whether GLN3 is highly expressed. Consequently, expression values of the
genes in this module are partitioned into three condition clusters: cluster] where the genes
in M3 are down expressed, cluster2 where the genes are not expressed, and cluster3 where

the genes are highly expressed.

33

DAL8O @ /
\(
DAL8O GLN3

@ @D ““3

Bayesian Network Module Network

Figure 5: A transcription regulatory network represented by a Bayesian network (left) and
a module network (right).

If DAL8O is highly
expressed

No
Yes
If GLN3 is highly
expressed
o
Condition clusterl Condition cluster2 Condition cluster3
N(-2,1) N(0,1) N(2,1)

Figure 6: An example of the regulation program of the module M3. N (u, o) represents a
normal distribution with mean y+ and variance o.

34

3.3.2 Using the expectation maximization algorithm to learn module

networks

To learn module network models, Segal et al. [106] applied the Expectation Maximization
(EM) algorithm [28], using the Bayesian score [54] to evaluate a model’s fit to the data.
The learning algorithm is an iterative process, and each iteration consists of two steps: a
M-step and an E-step. In each M-step, the algorithm determines the best regulation program
(regression tree) for each given gene module, while in each E-step, genes are re-assigned to
the module whose regulation program best predicts its behavior. The algorithm stops when
the module assignment of genes is not changed between two iterations.

The procedure of a M-step is described as follows:

e Given a list of candidate regulators, start from a regression tree with a single leaf

node consisting of all experimental conditions.

e Perform a series of operations that split a leaf node into two leaf nodes using a reg-
ulator and a splitting value as the test. The selection of leaf nodes, regulators and

splitting values is done to maximize the increase of the Bayesian score.

e In each splitting operation, the selected leaf node becomes an internal node as the
parent of the two new leaf nodes, and is associated with the selected regulator and

splitting value.
e This process stops when no splitting operation can increase the Bayesian score.

In an E-step, the algorithm assigns each gene to the module whose regulation program
best predicts its behavior. Given the regulation program of a module, the likelihood of
observing an expression value under a particular condition is determined by the normal
distribution associated with the leaf node (i.e., condition cluster), which the condition is as-
signed to. Consequently, the overall probability that the expression values of a given gene
are generated from the regulation program of this module can be calculated by multiplying
likelihoods of observing this gene’s expression values under individual experimental con-
ditions. Hence, each gene is assigned to the module with the highest probability to generate
its expression values.

The module network learning method has yielded promising results in several com-

plex eukaryotic systems, such as the budding yeast [106] and mouse [71]. Figure 7 shows

35

Figure 7: The module of nitrogen catabolite repression in the yeast stress dataset and its
regulation program [106]

the module of nitrogen catabolite repression in the yeast stress dataset and its regulation
program [106]. The expression values of genes in this module are grouped into three con-
dition clusters, where they are not expressed, highly expressed and moderately expressed,
respectively. The regulation program of this module consists of two internal nodes testing
the behaviors of transcription factors GAT1 and PLP2, respectively. In addition, several
putative regulatory relationships predicted by the algorithm in the yeast stress dataset have

been verified by microarray experiments [106].

3.3.3 Applying a two-step-based method to learn module networks

One limitation of the EM-based module network learning algorithm is that it only selects a
single module network model that may represent a local maximum in the posterior distribu-
tion of models given the data. One possible solution for the issue is to apply sampling-based
methods to sample models from the posterior distribution. However, sampling-based meth-

ods may show extremely slow convergence rates when learning module networks, because

36

they have to shift between grouping genes into modules (E-steps) and inferring regulation
programs of modules (M-steps), which leads to a huge search space of models.

Michoel et al. [62] introduced a novel two-step method for learning module networks,
which separates clustering genes into modules and learning the regulation program for each
module. This design makes it feasible to apply sampling-based algorithms to learn module
networks, because the search space of models significantly decreases. Experimental re-
sults show that this method outperforms the EM-based learning algorithm. The following

subsections will give a briefly description of each step.

3.3.3.1 Clustering genes into modules by Gibbs sampler

In the first stage, the Gibbs sampling algorithm [63], which is based on the weighted Chi-
nese restaurant process [102], is used to cluster genes into modules. One innovative design
of the clustering algorithm is to apply two-way clustering of genes and conditions. That
is, instead of considering that expression values under different conditions in a module are
independent, it clusters conditions into condition clusters, and then assumes that expression
values for conditions in a condition cluster are drawn from a same normal distribution. This
design significantly reduces the number of parameters to be determined, and consequently

shows good convergence even for large datasets.

3.3.3.2 Inferring regulation programs by logistic regression

In the second stage, given a list of candidate transcription factors and gene modules learned
in the first stage, the algorithm calculates the confidences (i.e., regulatory scores) for as-
signing these transcription factors to these modules [62]. The procedure is described as

follows:

e Given a gene module, a condition clustering is generated by the Gibbs sampling
algorithm [63] based on the expression values of genes in the module. The condition
clustering represents a partition of all conditions in the data and consists of several

condition clusters, each of which includes a set of conditions.

e Then, the learned condition clustering is represented by a regression tree. Unlike
the regression tree described in Section 3.3.1, each internal node in the tree is only

associated with a set of conditions, but no transcription factor.

37

e For a given transcription factor in the list of candidates, at each internal node in the
tree, a logistic regression classifier is built to predict the assignments of conditions
included in the node to its left or right child node, using the transcription factor as
the feature. The classification accuracy of the classifier is used to determine the

confidence of assigning the transcription factor to the node.

e Accordingly, the overall confidence (i.e., the regulatory score) for assigning the tran-
scription factor to the module is calculated by summing individual confidences for

the transcription factor in all internal nodes of the regression tree.

e All candidate transcription factors are sorted into an ordered list according to their
regulatory scores. The higher its ranking, the more likely a candidate transcription

factor regulates the module.

38

Chapter 4

A regression tree-based Gibbs sampler
to learn the regulation programs in a
transcription regulatory module

network

4.1 Introduction

The purpose of this chapter is to demonstrate feasibility of applying a regression tree-
based Gibbs sampling algorithm to learn regulation programs in module networks. Given a
module, we use a Gibbs sampler to sample regulation programes, i.e., regression trees, from
the posterior distribution of regulation programs given the data. A set of tree operations is
defined for generating new regression trees from a given tree. We show that the set of tree
operations is sufficient to generate a Gibbs sampler with well mixing rate even for large
datasets. Based on the frequency with which a regulator appears in the sampled regulation
programs and the significance that the regulator shows in the sampled regulation programs,
we provide the confidence estimate for the regulatory relationship between the regulator
and the module.

The remainder of this chapter is organized as follows. In Section 4.2, we describe how
to apply Gibbs sampling to sample regression trees in module networks. In Section 4.3, we

present the experimental results in synthetic and real biological data. Section 4.4 concludes

39

this chapter by summarizing the main results.

4.2 Applying Gibbs sampling to learn regulation programs

in module networks

4.2.1 Regulation program of a module and its Bayesian score

The regulation program of a given module can be represented by a regression tree, which
consists of two types of nodes: internal nodes and leaf nodes [105]. Each internal node,
which has a regulator and a splitting value, corresponds to a test of whether the expression
value of the regulator for an experimental condition is greater than the splitting value, and
has two child nodes: the right child node is chosen when the answer to the test is true; the
left child is chosen otherwise. Each leaf node represents a set of experimental conditions
where the behaviors (upregulation, no change, or downregulation) of regulators match the
context specified by the tests on the path to the leaf node. In addition, each leaf node is
associated with a normal distribution to describe the expression level of the module’s genes
in the experimental conditions associated with the leaf node.

The task of learning the regulation program for a module is to find the program that
best explains the change of gene expression level in the module. A regulation program’s fit
to a module can be evaluated by the Bayesian score [54] of its regression tree, R, which is

defined as:

S(R) =S, (1)

where L represents the set of leaf nodes in R; .S; is the Bayesian score of leaf node /, which
is calculated as:

S = log//p(u, T) H Hp(xi’m\,u, 7) dpdr, (2)

mee; i€ A

where ¢; and A denote the set of experimental conditions in leaf node [and the set of
genes assigned to the module, respectively; x; ,,, represents the expression level of gene ¢
in experimental condition m; p (x|, 7) is a normal distribution with mean 4 and precision
7; p(p, 7) = p(u|7)p(7) is a normal-gamma prior distribution over x and 7 with

1/2
o) = (3) e wemr,

P

40

p(T) _ »‘30“0 7_()40—16—[507"
I'(ao)

a0, o, Ao > 0 and —oo < g < oo. In this work, we use the values ag, 5y, \g = 0.1 and
Ho = 0.0.
The double integral in Equation (2) can be solved explicitly by

Tl(n) — Z T, (n=0,1,2.),

i€A,mee;

and the result is

1 1 A
S, =— §Tl(0) log(27) + 5 log (—0>

o+ 1,7
1
—log () + log I’ (ao + ETZ(O)> 3)
1) ‘
+ aglog By — | ap + §Tl log 34
with)
(1) (0)
U @] (0 =i
51:30+§ U (0) (0)\ (0)
T 2 (20 + 1) T,

Hence, it is straightforward to compute the Bayesian score of the regulation program for a

module.

4.2.2 Sampling regression trees by a Gibbs sampler

In [106], the authors used a deterministic search algorithm to learn the regression tree
(regulation program) of a module. The major shortcoming of the deterministic algorithm
is that its result may only represent one of several possible models.

In order to account for the model uncertainty in the deterministic search algorithm,
we may use Bayesian model averaging [75], which is able to calculate the strength of
a regulator over all possible regression trees. However, in general it is not feasible to
enumerate all regression trees due to the huge number of possible trees. Hence, we use
a Gibbs sampling algorithm to sample regression trees from the posterior distribution of
regression trees given the data, where the log-likelihood of a regression tree R under the

posterior distribution is given by the Bayesian score (Equation (1)).

41

Following the standard Gibbs sampling framework [73], given the current regression
tree R;, we sample the next regression tree R;;; from the neighborhood of R; (nbd(R;)),
which consists of 1; and the regression trees generated by modifying R; with one of fol-

lowing operations:

e splitting one leaf node into two leaf nodes by a regulator and a splitting value, and
converting the split leaf node into an internal node associated with the selected regu-

lator and splitting value;

e trimming two leaf nodes connecting to a same internal node and converting the in-

ternal node into a leaf node, i.e., the reverse of the splitting operation; and

e replacing the regulator and splitting value in one internal node with another regulator

and splitting value.

The probability or transition rate () that a regression tree R € nbd(R;) is selected as R;11
is proportional to the exponential of the Bayesian score difference, i.e.,

eS(R)—S(Rt)
= ZRlenbd(Rt) eS(R/)_S(Rt) .

Starting from a randomly generated regression tree, the Gibbs sampling procedure simu-

Qr

lates a Markov chain with the posterior distribution as its equilibrium distribution. In other
words, after a burn-in period, the probability to sample a particular regression tree R, is
proportional to e,

Initial random regression trees for the Gibbs sampling procedure are generated by the
following method. For a dataset consisting of N experimental conditions, we generate
a random number K, 1 < K < V/N. Then, starting from a tree with only one leaf
node consisting of all experimental conditions, we randomly split a leaf node into two leaf
nodes using a randomly selected regulator and splitting value. This process stops when the
regression tree has more than K leaf nodes and this tree is used as the starting point for the
Gibbs sampling procedure.

In large datasets, the splitting operation is very time-consuming, because we need to
enumerate all possible combinations of a regulator and a splitting value in each leaf node.
In this case, we can restrict the maximum number of leaf nodes in regression trees to
decrease the sample space. In addition, the replacing operation may also cause the sampling

process to be very slow when there are many regulators or experimental conditions. In this

42

situation, we may discretize the expression values of regulators to decrease the number of

possible splitting values of each regulator.

4.2.3 The regulatory score of a regulator

At first view, one approach to identify regulators of a module is to select the regulators
that frequently appear in the regression trees sampled by the Gibbs sampling procedure.
However, the approach does not consider the significance of regulators in regression trees,
e.g., how many conditions they regulate in regression trees.

Hence, we introduce a regulatory score f(y, R), for a regulator y in a regression tree R,

representing the significance that y shows in R. This score is defined as:

fomy =it S @
where S; is defined as Equation (2); L,, denotes the set of leaf nodes which can be reached
from the internal node where y is assigned to in R; |A| denotes the number of genes as-
signed to the module; C' and C), denote the total number of experimental conditions in
the module and the number of experimental conditions assigned to the leaf nodes in L,,
respectively. Essentially, Equation (4) represents the product of the geometric average of
the prediction probability associated with the leaf nodes under y and the weight factor, %,
which suggests that regulators regulating more experimental conditions are more signifi-

cant in a regression tree.

4.2.4 The expected value of the regulatory score of a regulator

Given a sequence of regression trees (R, t = 1,2, ..., N) generated by the Gibbs sampling
algorithm, the expected value of the regulatory score of a regulator y with respect to the
posterior distribution can be approximated as:

1N

E(SW) ~ >y,). 5)

Since F(S(y)) takes into account the regulatory score of y shown in each regression tree
and the posterior probability of each regression tree, it can be used to evaluate the likelihood
that y regulates the module. Hence, given a set of regulators, we can rank the regulators by

E(S(y)) and then select the top-ranked regulators as the most significant regulators.

43

In this work, we use the method proposed in [63] to test convergence of the Gibbs
sampling algorithm. That is, given a set of regulators {y;,i = 1,...,m}, we run two in-
dependent Gibbs samplers. Let a; and b; denote F(S(y;)) produced by the first Gibbs
sampler and second Gibbs sampler, respectively. Then, the correlation measure between

the two samplers is defined as:

| > iy aibil
\/(221 a7)(doi, 07)

If the correlation, p, between two Gibbs samplers is 1, then they reach full convergence.

. (6)

p:

4.3 Experimental results and discussion

In this section, we present the results produced by the regression tree-based Gibbs sampler

for synthetic data and real biological data.

4.3.1 Synthetic Data

We require that the number of genes in a simulated network should be close to that in a
real biological module and the regulatory relationships in a simulated network should not
be obvious. Hence, we used SynTReN [130] to generate simulated datasets for gene net-
works with 30 genes of which 10-15 act as regulators. The topology of the networks was
sub-sampled from the transcriptional network of Saccharomyces cerevisiae. All parame-
ters of SynTReN were set to default values. We generated 12 simulated datasets with the
above configurations and each dataset included 60 microarray samples for 20 experimental
conditions.

In each synthetic dataset, we ran 10 independent Gibbs samplers using the list of true
regulators as potential regulators. Starting from a randomly generated regression tree, each
Gibbs sampler used 50 iterations for burn in steps, had a sampling step of 10 iterations, and
consisted of 100 iterations in total. This configuration is applied in all Gibbs samplers in
this work. Then, we calculated the expected value of the regulatory score of each regulator
(Equation 5) based on the regression trees sampled by the 10 Gibbs samplers. Lastly, we
ranked the regulators according to their expected values. To investigate the convergence

property of this sampling procedure, we calculated the correlation measure between the

44

expected values from two sets of 10 Gibbs samplers (Equation 6), which is 0.99, a value
indicating that the Gibbs sampling procedure reached convergence.

In this subsection, we compare the ranks produced by the regression tree-based Gibbs
sampling with those produced by the deterministic algorithm [106] and LeMoNe [62]. In
a good rank of regulators, the more genes a regulator regulates, the higher the rank of this
regulator. We use the F'-measure [87] to evaluate the ranks produced by different algo-
rithms. Given a rank of regulators in a synthetic gene network, starting from an empty
predicted regulator set, regulators are sequentially added to the predicted regulator set ac-
cording to their order in the rank. As one regulator is included into the predicted regulator
set, the regulator is predicted to regulate all genes in the network. Then, based on the true
gene network and predicted regulatory relationships, we calculate the corresponding true
positive (tp), false positive (fp), false negative (fn) and F-measure for the current predicted

regulator set. The F'-measure is defined as:

F =

where
t t
P = P and R = P .
tp + fp tp + fn
Note that regulatory relationships via intermediate regulators are also considered as true

positives.

4.3.1.1 Regression tree-based Gibbs sampling versus the deterministic algorithm

The deterministic algorithm (see Section 3.3.2) can rank regulators based on the order that
they are selected to split leaf nodes. Figure 8 shows the comparison of the F'-measure
between the regression tree-based Gibbs sampling and the deterministic algorithm. Gen-
erally, the regression tree-based Gibbs sampling gives better F'-measure. Furthermore, we
compared the ranks produced by the two algorithms in each dataset (Table 1).

Figure 9 shows the regulatory network in dataset 4 where the tree-based sampling algo-
rithm outperformed the deterministic algorithm. In the dataset, the tree-based sampling al-
gorithm ranked MBP1_SWI6, SWI4_SWI6, and SPT16 as the top 3 regulators and they reg-
ulate 10, 3 and 12 genes, respectively. The deterministic algorithm selected SWI4_SWI6,
ACE2 and TUPI and they each only regulate 3 genes. Since MBP1_SWI6 and SPT16 are
the most important regulators, the tree-based sampling algorithm detects the true network

structure in the dataset.

45

—o— Tree—based Sampling algorithm
--A-- Deterministic algorithm

0.29
I

F-Measure
023 025 027
1 1 1 1 |

0.21
|

|

0.19
1

1 2 3 4 5 6 7 8 9
Number of selected Regulators

Figure 8: Plot of the average of the F'-measure produced by the regression tree-based Gibbs
sampling and the deterministic algorithm in 12 synthetic datasets. For each algorithm, the
figure shows the average of F'-measures obtained by the algorithm in the 12 datasets, when
thetop ¢ (. = 1,2, ..., 9) regulators in the ranks given by the algorithm are selected.

GAL1 e
PCL1

BN \\ ;\»‘»‘ \\

’ swia
p

STE6

LEU3 CAF4

Figure 9: Regulatory network in dataset 4. Each node denotes a gene, while the tail and
head of each directed edge denote a transcription factor and a gene regulated by the tran-
scription factor. Three genes (MBP1_SWI6, SWI4_SWI6, and SPT16) are in yellow color
because they are going to be further analyzed in the text.

46

Algorithms Regression tree-based Deterministic LeMoNe
#Regulators | ’ 3 |) 3 | ’ 3
Selected

Dataset 1 033 | 027 | 0.22 033 | 027 | 022 | 0.03 | 0.04 | 0.21
Dataset 2 0.38 | 0.31 | 0.28 0.38 | 038 [033 | 038 | 029 | 0.24
Dataset 3 041 | 033 |0.33 041 | 033 |033 | 041 | 037 |0.32
Dataset 4 026 | 0.24 | 0.36 0.08 | 0.11 |0.13 | 0.08 | 0.11 | 0.12
Dataset 5 0.17 | 0.14 | 0.15 0.17 | 0.18 | 0.15 | 0.17 | 0.14 | 0.15
Dataset 6 0.14 | 0.17 | 0.27 0.14 | 0.28 | 026 | 0.14 | 0.28 | 0.33
Dataset 7 0.15 | 0.12 | 0.16 0.15 [0.12 | 0.16 | 0.15 | 0.12 | 0.13
Dataset 8 0.17 | 0.14 | 0.22 0.17 | 0.14 | 0.14 | 0.17 | 027 | 0.22
Dataset 9 025 | 021 | 035 0.02 |1 0.09 | 026 | 0.02 |0.26 | 0.35
Dataset 10 026 | 032 | 0.28 026 | 026 | 022 || 026 | 032 | N/A
Dataset 11 041 | 035 | 031 041 | 035 | 035 || 041 | 035 | 052
Dataset 12 0.05 | 0.08 | 0.08 0.03 | 0.06 | 0.09 || 0.03 |0.19 | 0.18

Table 1: F'-measure of the regression tree-based sampling algorithm, deterministic algo-
rithm and LeMoNe in synthetic datasets. In each dataset, for each algorithm, the table
shows the corresponding F'-measures, when the top one regulator, top two regulators, and
top three regulators in the rank of the algorithm are selected, respectively.

4.3.1.2 Regression tree-based Gibbs sampling versus LeMoNe

LeMoNe [62] is an ensemble method, which samples the clustering of experimental con-
ditions and learns fuzzy decision trees as regulation programs. Given a module and a list
of regulators, LeMoNe is also able to rank the regulators according to the probabilities that
they regulate the module.

In most datasets the regression tree-based Gibbs sampling algorithm and LeMoNe
achieved comparable results (Table 1). In dataset 4, the tree-based sampling algorithm
outperformed LeMoNe and LeMone’s result is similar to that of the deterministic algo-
rithm. However, LeMoNe gave the better result with dataset 12. The regulatory network of
this dataset is shown in Figure 10. The tree-based sampling algorithm ranked ALPHA1 and
REBI as the top two regulators, but they both only regulate two genes. LeMoNe assigned
A1_ALPHA2 and GALI11 as the top two regulators and they regulate one and nine genes,

respectively.

47

OO0

oy

o

[PAus

cDC39 |
T\ | cDc36
Af_ALPHA2

T~

Figure 10: Regulatory network in dataset 12. Each node denotes a gene, while the tail
and head of each directed edge denote a transcription factor and a gene regulated by the
transcription factor. Five genes (STES5, GAL11, TUP1, SNF2_SWI1, and ALPHAT1) are in
yellow color because they are going to be further analyzed in the text.

4.3.2 Biological data

In this subsection, we tested the regression tree-based Gibbs sampling algorithm on two
real biological modules, module 7 and 11 learned in [63], from the yeast stress dataset
[45] consisting of 2355 genes and 173 experimental conditions. The dataset contains a
large number of regulators (466) and experimental conditions (173), so the Gibbs sampling
procedure may have a slow convergence rate. Hence, we applied the method proposed
in [63] to identify how many independent Gibbs sampler runs are required for reaching
convergence.

We ran 150 independent Gibbs samplers with module 7. Note that we used the dis-
cretized expression values of regulators in the replacing operation when constructing the
neighborhood of a regression tree and set the maximum number of leaf nodes in the tree
to the square root of the number of the experimental conditions in the dataset, i.e., 14.
Then, we calculated the expected value of the regulatory score of each regulator based
on the regression trees sampled by k£ (k = 1, ...,50) samplers. Figure 11 shows the cor-

relation measure (Equation 6) between the expected values of two non-overlapping sets

48

T T T T T T T T T T T T T T T T T
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Number of Gibbs samplers merged

Figure 11: Correlation measure between two sets of k (kK = 1, ..., 50) Gibbs samplers in
module 7. For a given k, we calculated the correlation measure (Equation 6) between
the expected values of the regulatory scores of all candidate regulators based on two non-
overlapping sets of k£ Gibbs samplers.

of k (k = 1,...,50) Gibbs samplers. We observed that all samplers achieved compara-
ble Bayesian scores, but the correlation measure between two individual Gibbs samplers
is only around 0.37. This indicates that there are multiple local maxima in the posterior
distribution and each sampler can only visit a local maximum. However, the correlation
measure between two sets of 20 Gibbs samplers is around 0.94, a value indicating that the
Gibbs sampling procedure reached convergence. We observed a similar result of the con-
vergence test with module 11. This implies that the regression tree-based Gibbs sampling
has a well mixing rate even for this large dataset.

Based on the above convergence tests, we ran 20 independent Gibbs samplers with
module 7 and module 11, respectively. Regulatory relationships recorded in the YEAS-
TRACT [88] database were used to validate the results of the algorithm. Below are the
experimental results.

Module 11 consists of 47 genes. Most genes in the module participate in nitrogen
catabolite repression or amino acid metabolism. The regression tree-based Gibbs sampling
algorithm ranks UGA3, MET28 and GAT1 as the top three regulators, and they are all
supported by YEASTRACT. MET28 is a member of the basic leucine zipper DNA binding

49

factor family and encodes a transcription factor that participates in the regulation of sulfur
amino acid metabolism. In the module, 8 of 47 genes are known to be regulated by MET28
in YEASTRACT. In addition, the MET28 binding motif, 5’-TCACGTG-3’, is detected in
the upstream region of 20 genes. GAT1 encodes a transcriptional activator that is involved
in the regulation of genes participating in nitrogen catabolite repression. In the module,
seven genes are regulated by GAT1 according to the YEASTRACT database and the GAT1
binding motif is found in upstream of 19 genes. UGA3 regulates the transcription of genes,
which are required for the utilization of gamma-aminobutyrate as a nitrogen source. In
the module, one gene is known to be regulated by UGA3 in YEASTRACT and the UGA3
binding motif, 5’-SGCGGNWTTT-3’, is detected in the upstream region of four genes.
Module 7 consists of 30 genes. Most genes in the module participate in respiratory
processes. HAP4, GSM1 and USV1 are the top three regulators predicted by the regres-
sion tree-based Gibbs sampling algorithm. HAP4 is a well known regulator of respiratory
genes and 28 genes in the module are regulated by HAP4 according to the YEASTRACT
database. YEASTRACT does not show that any gene in the module is regulated by GSM1
or USV1, but the functions of the two regulators recorded in SGD database [20] are rel-
evant to the respiratory process in the yeast. GSM1 and USV1 are suspected to regulate
genes involved in energy metabolism and growth on non-fermentable carbon sources, re-

spectively.

4.3.3 Discussion

The regression tree-based Gibbs sampling, deterministic algorithm and LeMoNe all show
bad performance when detecting the regulatory network shown in Figure 10 (dataset 12)
and have a common problem that they select an intermediate regulator, which is co-regulated
with the module instead of regulating it, as the top regulator. In this subsection we analyze
the result produced by the tree-based sampling algorithm to identify the reason.

ALPHAL1 is selected as the top regulator by the regression tree-based Gibbs sampling
algorithm, but it is actually an intermediate regulator regulated by GAL11, SNF2_SWI1 and
TUP1, the most important regulators in the gene network. Due to the regulatory relation-
ships, ALPHA1 co-expresses with the three regulators (Figures 12 to 14). Furthermore,
we observed that ALPHALI also co-expresses with genes regulated by the three regula-

tors to some degree, because correlations between gene expression levels show transitivity.

50

|-~ GALM
-~ ALPHA1

08

06

0.4 -

Expression Levels

0.2 -

0 10 20 30 40 50 60
Experiments

Figure 12: Correlation between the expression profiles of GAL11 and ALPHAT1 in dataset
12.

0.8

0.6

04

Expression Levels

0.2 +

0.0 +

0 10 20 30 40 50 60
Experiments

Figure 13: Correlation between the expression profiles of TUP1 and ALPHA1 in dataset
12.

51

—=— SNF2_SWi1
~&- ALPHAT

08

0.6 —

0.4

Expression Levels

02

0 10 20 30 40 50 60
Experiments

Figure 14: Correlation between the expression profiles of SNF2_SWI1 and ALPHAT in
dataset 12.

—— STES
-4 - ALPHA1

0.8

06

0.4

Expression Levels

0.2

0.0 +

0 10 20 30 40 50 60
Experiments

Figure 15: Correlation between the expression profiles of STES and ALPHAI in dataset
12.

52

For example, Figure 15 shows that ALPHA1 co-expresses with STES that is regulated by
TUPI.

We consider the correlation between ALPHA1 and STES as a fake correlation in con-
trast to a true correlation between a gene and its regulator. Fake correlations cause AL-
PHAT1 to co-express with most genes in the network, but the tree-based sampling algorithm
cannot distinguish between true correlations and fake correlations, so it ranks ALPHAT as
the most significant regulator. This problem is very common. For example, in the network
shown in Figure 9, SWI4_SWI6, which is regulated by SPT16 and MBPI_SWI6, is ranked

as the second most significant regulator, but it only regulates 3 genes.

4.4 Conclusion and future work

In this chapter, we introduced a Gibbs sampling approach to finding regulation programs
in a transcription module network. Regulation programs of regulatory modules are repre-
sented as regression trees and a set of tree operations are defined. This set of operations are
used by Gibbs samplers to sample regression trees from a posteriori distribution derived
from data. Experimental results in synthetic datasets and real biological datasets indicate
that this set of tree operations is sufficient to generate a Gibbs sampler with well conver-
gence property even for large datasets. In addition, comparisons were made with two other
approaches: the deterministic algorithm [106] and the fuzzy-learning algorithm [62]. The
Gibbs sampling approach outperforms the deterministic algorithm based on an F'-measure
comparison, and achieves comparable results with those given by the fuzzy-learning algo-
rithm.

As shown in Section 4.3.3, solely gene expression value-based methods, including the
regression tree-based Gibbs sampling, deterministic algorithm and LeMoNe, cannot dis-
tinguish between true correlations and fake correlations. Our future work will concentrate
on solving the problem. One solution is to combine biological prior knowledge into the
learning algorithms. The method designed in [135] can be used to model prior knowledge
and add it into the Bayesian score of regression trees. Another possible solution is to eval-
uate multiple regulators in each internal node in a regression tree, instead of only selecting
a regulator and a splitting value. For example, we may build a classifier that uses several
regulators as features to partition experimental conditions into two groups in each internal

node.

53

Computational time

In synthetic datasets, we used a Dell workstation with Intel Pentium 4 processor and 3GB
memory. It took around 2 minutes. The yeast stress dataset includes much more conditions
that those in synthetic datasets, so we used a HP rackmount server with AMD Opteron
processors (x86, 64 bit, dual core) and 16 GB memory. It took around 10 minutes for the

proposed method to generate a sampler in each module in the yeast stress dataset on.

54

Chapter 5

Applying linear models to learn
regulation programs in a transcription

regulatory module network

5.1 Introduction

A common strategy of most regulation program learning algorithms in module networks
[106, 62, 99] is that the regulation program of a module is represented by a regression
tree. Each internal node of the tree is associated with a transcription factor and a set of
conditions (i.e., a condition cluster), while each leaf node is only associated with a condi-
tion cluster. In this way, each internal node represents a contrast between the conditions
covered by its left-child and right-child nodes. The confidence of assigning a transcrip-
tion factor to a particular node is evaluated by the degree of differential expression that
that transcription factor manifests in the contrast represented by the node. Accordingly,
the overall confidence (i.e., the regulatory score) for assigning a transcription factor to a
module is calculated by summing individual confidences for that transcription factor in all
internal nodes of the module’s tree.

A limitation of regression tree-based regulation program learning is that tree structures
can represent a contrast between two condition clusters only if they are assigned to the
left-child and right-child of a same internal node. Hence, regression tree-based learning
might miss some biologically meaningful contrasts. In addition, the learning assumes that

transcription factors are globally co-expressed to some degree with their targets, indicating

55

that they should behave similarly across all experimental conditions in a given dataset.
Global expression correlations are strong indications for regulatory relationships, but it
is overstrict to demand that all regulatory relationships show this property. An obvious
example is that transcription factors that are constitutive genes—cells express at a basal
level in all conditions—might be locally co-expressed with their targets in some particular
conditions.

In this chapter, we apply linear models to learn the regulation program of a module.
Given a condition clustering of the module, instead of building a regression tree, the pro-
posed method extracts the contrast in which the module’s genes are most significantly dif-
ferentially expressed, called the critical contrast. The differential expression under the
contrast represents an important characteristic of the expression profile of the genes, so the
process of learning the regulation program for the module becomes one of identifying tran-
scription factors whose expression profiles are also associated with the characteristic. The
effectiveness of the proposed method is demonstrated by applying it to two real biological
datasets.

The remainder of this chapter is organized as follows: Section 5.2 describes how to ap-
ply linear models to infer regulatory relationships in module networks. Section 5.3 presents

experimental results. Section 5.4 summarizes the main results and points to future work.

5.2 Inferring regulatory relationships in module networks

by linear models

Given a gene module, we first obtain a condition clustering based on the expression values
of genes in the module. The condition clustering represents a partition of all conditions in
the data and consists of several condition clusters, each of which includes a set of condi-
tions. Given the condition clustering, the proposed method consists of two tasks: extracting
the critical contrast of the condition clustering, and inferring transcription factors based on
the contrast. We use linear models to accomplish both tasks. The following subsections

describe the details of each task.

56

5.2.1 Extracting the critical contrast of a condition clustering

The purpose of identifying the critical contrast of a condition clustering is to find, between
which two condition clusters, the module’s genes are most significantly differentially ex-
pressed. Consequently, we define the critical contrast as consisting of two condition clus-
ters: the extraordinary cluster, in which the genes show extraordinary behaviors (i.e., ex-
tremely high or low expression values); and the ordinary cluster, in which the genes show
ordinary behaviors.

We measure the differential expression of genes between condition clusters with the
linear model described below. Suppose that in a dataset we identified a gene module M
in which conditions are partitioned into two clusters: c¢; and c,. The expression values of

genes in M under the condition ¢ can then be represented by the linear model [67]:
yi = i Xa + BaXio + & (7)

where 31 and 5 denote regression coefficients, and ¢; is normally distributed with mean 0

and variance 02. X;; and X, are indicator variables defined as follows:

1 :7€¢
Xin =
0 Ii¢01

X, = 1 :iECQ.
0 :i¢cy

In this way, the degree of differential expression of the genes in M between c; and ¢y can

be determined by the ordinary ¢-statistic, which is defined as:

M1 — M2
- fh—py ®)
\/(n1*1)81+(”2*1)32 ni+no
ni+ng—2 ninz

where ;1; and po are the means of the expression values of the genes in ¢; and co, respec-

tively; s, and s, are the standard deviations in ¢; and c,, respectively; n, and n, denote the
numbers of conditions in ¢; and c,, respectively.

We then apply the following search strategy to identify the critical contrast of a given
condition clustering ¢ of M. Suppose that ¢ consists of N condition clusters. First we
sort these NV condition clusters into an ordered list according to the mean of the expression

values in the clusters. Then, we calculate the ordinary ¢-statistic for the contrast between

57

the unions of the first £ condition clusters (k = 1,2,..., N — 1) and remaining N — k
condition clusters in the ordered list. Finally, the contrast with the maximum ¢-statistic
among the N —1 contrasts is chosen as the critical contrast of c. Consequently, its associated
union of condition clusters with the higher absolute mean of expression values becomes the

extraordinary cluster c., while the other union becomes the ordinary cluster c,.

5.2.2 Using moderated t-statistics to select differentially expressed tran-

scription factors

Since the genes in M show different behaviors between c. and c,, the task of learning the
regulation program of M can be accomplished by identifying transcription factors that are
also dramatically differentially expressed between the same two clusters. We may apply
ordinary ¢-statistics as defined in Equation 8 to do the work, but inferences based on the
statistics might not be stable when the number of expression values in ¢, or ¢, is small.
This is a likely situation, because we only evaluate the expression values of an individual
transcription factor, instead of a set of genes.

To cope with the instability, we use a moderated ¢-statistic [113, 114], based on a
Bayesian hierarchical model, to select differentially expressed transcription factors. Given
a transcription factor r, the hierarchical model assumes a prior distribution for the variance

of 7 (%), which is defined as:
1 1
— ~ mxio)]

2
Oy

where dy and s are estimated by an empirical Bayes approach, and Xzo represents a Chi-

square distribution with dy degree of freedom. It can be shown that the posterior mean of

o, 2is:
g 2 _ dosg + (ne — 1)872"6 + (no — 1)520
" do+ ne +ny — 2

where s, and s,, are the standard deviations of the expression values of 7 in ¢, and c,,

(10)

and n. and n, denote the numbers of conditions in ¢, and ¢,, respectively. The moderated

t-statistic is defined by replacing the pooled variance in Equation 8 by s;.:

t; _ Hre — Hro (11)

5 Ne+No
Sr \/ NeNo
where ... and u,., are the means of the expression values of 7 in ¢, and ¢, respectively. The

t, provides more stable inference when the number of conditions is small [113], because

58

it borrows extra information from the ensemble of genes in the dataset by using dy and s.
Furthermore, in order to make ¢, comparable with moderated ¢-statistics based on other

condition clusterings, we can normalize ¢, by:

- tr — U
tr-standardized = d (12)

where ; and s; are the mean and standard deviation of the moderated ¢-statistics of all
candidate transcription factors based on c.

As explained in the subsection 5.2.1, the extraordinary cluster c, and ordinary cluster
¢, may be the union of several condition clusters from the condition clustering ¢, such that
the genes in M can be differentially expressed within c. and c,. However, the confidence
of the assignment of r to M (Equation 11) is only relevant to the degree of the differential
expression that » manifests between c. and c¢,. This indicates that it is not required for r
to be globally co-expressed with genes in M in order to obtain a high confidence of it as a

transcription factor of M.

5.2.3 The regulatory score for assigning a transcription factor to a

module

If the expression values of genes in M can be partitioned into multiple equi-probable con-
dition clusterings, then the overall confidence (i.e., the regulatory score) of the assignment
of » may be calculated by summing the individual confidences that r shows in all condi-
tion clusterings. Hence, the regulatory score for assigning r to M over a set of condition

clusterings C' is defined as:

Z(T) - Z tzr-standardized (13)
ceC

where o, rundardizeq 1S the standardized moderated ¢-statistic of r, based on a condition
clustering c. We can rank all candidate transcription factors according to their regulatory
scores as defined in Equation 13. The higher its ranking, the more likely a candidate tran-

scription factor regulates M.

59

5.3 Experimental results and discussion

5.3.1 Experimental results in the yeast stress dataset

We applied the proposed method to a yeast dataset which measures yeast’s response to
various stresses, and consists of 173 experimental conditions [45]. In [63] 2355 differen-
tially expressed genes in this dataset were clustered into 69 gene modules. We sampled
10 condition clusterings for each gene module using a Gibbs sampler [62]. Then, given
the list of 321 candidate transcription factors prepared in [106], we calculated the regula-
tory score for assigning a transcription factor to a particular module as defined in Equation
13. Furthermore, the regulatory relationships between 185 transcription factors and 6297
genes recorded in YEASTRACT [88] (released on Apr 27, 2009) were used as the reference

database to evaluate predictions given by the linear model.

5.3.1.1 Results for regulation of nitrogen utilization

In the yeast stress dataset, a module for nitrogen utilization was obtained in [62]. This
module consists of 47 genes mostly involved in two pathways: the methionine pathway
(regulated by MET28 and MET32), and the nitrogen catabolite repression (NCR) system
(regulated by GLN3, GZF3, DALS80 and GAT1). Both pathways relate to the process by
which the budding yeast uses the best available nitrogen source in the environment [77, 24].

In this module, we sampled a condition clustering with 18 clusters that were ordered
descendingly by their means of expression values. As shown in Figure 16, we obtained the
maximum ordinary ¢-statistic (38.98) when we compared the union of the first 3 condition
clusters with the remaining clusters in the ordered list. This indicates that the extraordinary
cluster of the clustering’s critical contrast includes those conditions under nitrogen deple-
tion and amino-acid starvation where using non-preferred nitrogen sources is crucial, while
the ordinary cluster consists of the remaining conditions. Accordingly, the critical contrast
represents the comparison of the genes’ behaviors under preferred and non-preferred nitro-
gen sources.

Figure 17 shows that the module’s genes are dramatically differentially expressed in
the contrast. That is, they are only highly expressed under non-preferred nitrogen sources
(i.e., the extraordinary cluster). Similar results were obtained for the critical contrasts of

the other nine condition clusterings of the module.

60

40

35

30

25

20

Ordinary t-statistics

15 -

10

T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
k

Figure 16: Ordinary ¢-statistic for the contrast between the union of the first £ condition
clusters (k = 1,2, ...,17) and the remaining 18 — % clusters. The horizontal axis gives the
values of k. The colored triangle represents the largest ordinary ¢-statistic.

We then ordered candidate transcription factors according to their regulatory scores as
defined in Equation 13. Table 2 shows the top ten regulators as ranked by the linear model,
which includes most known transcription factors of the NCR process and the methionine

pathway.

5.3.1.2 Linear model versus LeMoNe in the NCR process

Furthermore, we compared the predictions for the module studied in the Section 5.3.1.1
given by the linear model and by the LeMoNe regression tree-based method [62]. As
shown in Table 2, both methods identify most known transcription factors of the module,
but they ranked the transcription factors of the NCR process (denoted with *) differently.
DALS8O, GLN3, GZF3, and GAT1 are the first, fifth, eighth, and ninth regulators in the
rank by the linear model. However, LeMoNe ranks GAT1, DAL8O, GZF3 as the first,
fourth and fourteenth regulators, and most strikingly, GLN3 is out of the top 100. We next
investigated why the two methods show very different confidences on the assignments of
GLN3 and GAT1 to this module.

Given the condition clustering we studied in the Section 5.3.1.1, LeMoNe builds a

61

OPT2
MET16
ORT1
ARG1
MET2
YNL276C
MEP2
ASP34
ASP33
ASP32
ASP31
suL2
YLRO53C
ISA1
MET1
YKR033C
MET14
DAL5S
ECM17
MET3
YJLosow
LYS1
DAL3
DAL7
DCG1
DAL2
DAL4
YAPS
YIL165C
SER33
YHR176W
DUR3
PEX21
YGR154C
T0S10
YGR125W
MEP1
MET10
GAT1
SER3
YELO72W
CAN1
MET32
UGA3
RAD59
LEU2
suL1

)

Do

GECCCB00000¢ =
e

NN g USEREER S
e sponco IRE0RSBE0RE0E
S e ™ S
55 S>> ganuasonan cccclecee
o T ey SEESSCCCSS CBEBENEESE
ol 2 §aceatees
BAPE DDA i ERE © P 2 ROLOPcOLop

X <! o 2
& b0,)
GATA1
MET28
GZF3
GLN3
DAL80
MET32

Figure 17: Heatmaps of expression values of genes in the module for nitrogen utilization
in the yeast stress dataset (top), and known transcription factors of the module (bottom). In
track CC (critical contrast) conditions assigned to the extraordinary and ordinary clusters
are colored by red and green, respectively. In track RT (regression tree) conditions assigned
to clusterl, cluster2, and cluster3 (detailed in Figure 18) are colored by black, yellow, and
blue, respectively.

62

Algorithm Linear model LeMoNe
Rank Regulator | Number of genes || Regulator | Number of genes
regulated regulated
1 DALS0* | 10 GAT1* | 7
2 MET32 | 13 MET28 | 8
3 UGA3 1 MET32 | 13
4 LYS14 |1 DALS80* | 10
5 GLN3* | 18 UGA3 1
6 YAPS 3 THI2 0
7 MET28 | 8 YAPS5 3
8 GZF3* | 6 CMP2 |0
9 GAT1* | 7 GCN20 |0
10 DAL82 | 9 INO2 1

Table 2: Top 10 transcription factors for the module of nitrogen utilization in the yeast stress
dataset as inferred by the linear model and LeMoNe, and the number of genes they regulate
in the module according to records in YEASTRACT. * regulators are known transcription
factors of NCR process.

regression tree as shown in Figure 18, in which we focus on three condition clusters: clus-
terl; cluster2, mainly consisting of conditions in stationary phase; and cluster3, including
the conditions under nitrogen depletion and amino acid starvation (i.e., the extraordinary
cluster identified by the liner model). As seen in Figure 17, genes in the module are not
expressed in clusterl, and slightly expressed in cluster2, but significantly expressed in clus-
ter3. We speculate that the conditions in cluster2 represent a transition from utilizing pre-
ferred nitrogen sources to non-preferred nitrogen sources. During the transition, preferred
nitrogen sources become less and less available, such that NCR related genes are expressed
to some degree, but the expressed amount is much less than that under non-preferred nitro-
gen sources (e.g., conditions in cluster3).

As shown in Figures 19 and 20, the major distinction between the expression profiles
of GAT1 and GLN3 is that GAT1 is significantly differentially expressed between clusterl
and cluster2 (p-value = 9.675e-09 for the two sample ¢-test) that is similar to NCR related
genes, but compared to GAT1, GLN3 is much less significant (p-value = 0.08 for the two
sample t-test). We consider that the distinction is due to their expressions being controlled

by different mechanisms. In the presence of a preferred nitrogen source, cells express

63

15
>3 (cluster3)

Figure 18: Top 3 levels of the LeMoNe’s regression tree built on a condition clustering of
the module for nitrogen utilization. A condition cluster is represented by a circle containing
its number of conditions. Three of the clusters have been given labels for easy reference in
the text.

GLN3 at a basal level, but it is located in the cytoplasm due to the protein-protein inter-
action with URE2. When preferred nitrogen sources are absent and only a non-preferred
nitrogen source is available, GLN3 is translocated from the cytoplasm to the nucleus where
GLN3 activates the transcription of GAT1 and NCR related genes [24]. Hence, GLN3
shows a constitutive expression profile, and as a result it is only locally co-expressed with
NCR related genes in cluster3. In contrast, GAT1’s activity is basically controlled by tran-
scriptional regulation, so its expression profile is essentially very close to that of a typical
NCR related gene [23], and it is globally co-expressed with its targets.

The confidence of assigning a transcription factor to the module by LeMoNe is mainly
determined by the degree of the transcription factor’s differential expression in the contrast
between clusterl, and the union of cluster2 and cluster3 (i.e., the contrast represented by
the root node of the regression tree in Figure 18). GAT1 is more significantly differentially
expressed in the contrast (p-value < 2.2e-16 for the two sample ¢-test) than GLN3 (p-
value = 9.043e-06 for the two sample ¢-test), and consequently LeMoNe ranks GAT1 much
higher than GLN3.

Cluster1

wH
o

expression

Cluster2

Frequency
o= W O N

o
o

expression

Cluster3

Frequency
o =~ N W b

-6 -3 0
expression

o

Figure 19: Histogram of expression values of GLN3 in condition clusters clusterl, cluster2
and cluster3.

Cluster1
45
>
233
(0]
522
O11
Hod . . : : ,
-6 -3 0 3 6
expression
Cluster2

Frequency
oON B OO ®

o

-6 -3 0 3
expression

Cluster3

Frequency
oN O @ :

o

-6 -3 0 3
expression

Figure 20: Histogram of expression values of GAT1 in condition clusters clusterl, cluster2
and cluster3.

On the other hand, as explained in Section 5.3.1.1, the linear model searches for tran-
scription factors that are differentially expressed in the contrast between cluster3, and
the union of clusterl and cluster2 (i.e., between conditions under non-preferred nitrogen
sources and the other conditions). Genes in the module are involved in the process by
which the yeast uses the best available nitrogen source, so the differential expression in this
contrast is the most important property of the genes’ expression profile. But as the contrast
can not be directly represented by LeMoNe’s regression tree, it gives low confidence for
the assignment of two known regulators (GLN3 and GZF3) to the module.

The experimental results in the module suggest that LeMoNe and the linear model
rely on different contrasts to infer transcription factors. As a result, they show distinct
preference in detecting regulatory relationships. Their different preferences in assignment

of regulators are also demonstrated by their results in the dataset as shown in the follows.

5.3.1.3 Results over the entire yeast stress dataset

Looking deeper, we compared the regulator gene-wise performance of the proposed method
and LeMoNe over the entire yeast stress dataset. We applied each method to the dataset to
calculate the regulatory score for assigning a regulator to a module. Then we ordered all of
the method’s regulatory scores between 321 candidate transcription factors and 69 modules
in descending order. This lead to a ranked list of 22,149 regulator-module interactions
for the method. Furthermore, in order to convert regulator module-wise predictions into
regulator gene-wise predictions, we made the simplifying assumption that the regulator of
each module-wise prediction regulates all genes in the module.

Following the aforementioned strategy, the top 200 regulator module-wise predictions
from the linear model yielded 4993 regulator gene-wise predictions. The closest number
of gene-wise predictions yielded by LeMoNe (5021) are produced by its top 191 module-
wise predictions. Taking these gene-wise predictions from LeMoNe and the linear model,
we get Figure 21 showing the precision versus recall curves for these two methods. The

precision and recall of the top 7 regulator gene-wise predictions from a method are defined

as:
TP(i
Precisiongene—wise(1) = ,(Z), (14)
i
and
TP(1
recall gene—wise(1) = P(Z), (15)

66

0.50 4

—e— Linear model
--A-- LeMoNe

0.45

0.40 A

Precision
o o o
8 & 8
| 1 Il

0.15 +

0.10

0.05

0.00 4

T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030
Recall

Figure 21: Precision versus recall curves for the linear model and LeMoNe in the yeast
stress dataset. Precisions and recalls are defined as Equations 14 and 15, respectively.

where T'P(i) represents the number of regulator-gene interactions in the top i predictions
recorded in YEASTRACT, and P gives the total number of interactions recorded in YEAS-
TRACT.

In general, LeMoNe and the proposed method achieve comparable performance in the
dataset (with areas under the curves of 0.0028 versus 0.0033), but we observe that they
retrieve very different parts of the transcriptional regulatory networks in the yeast. For
example, in Table 3 which shows the top 10 predictions given by two methods, the only
overlapped prediction is the assignment of DAL8S0 to module 51. In LeMoNe it is the
second prediction, while in the linear model it is the fourth prediction. The difference
is because LeMoNe and the linear model depend on distinct contrasts to infer regulators
of modules (i.e., select differentially expressed transcription factors). The difference also
suggests that combining the predictions given by these two methods might be a promising

direction.

5.3.2 Experimental results in the Escherichia Coli (E. coli) dataset

The E. coli dataset [35] contains expression values for 4345 genes under 189 conditions.

In this dataset, we first clustered 1882 genes with standard deviations more than 0.5 into

67

Algorithm Linear model LeMoNe
Rank Regulator | Module || Regulator | Module

1 DALZS0 11 PDR3 13
2 MET32 11 DALSO 51
3 PHD1 36 USV1 28
4 DALZSO0 51 HAP4 30
5 DALS2 48 IME4 46
6 UGA3 11 HAP4 7

7 ACA1 48 XBP1 10
8 DALS0 40 TOSS8 24
9 LYS14 11 GAT1 11
10 GLN3 11 GALS80 41

Table 3: Top 10 inferred regulatory relationships by the linear model and LeMoNe in the
yeast stress dataset

70 gene modules using 100 independent Gibbs sampler runs [63]. Then, we sampled 10
condition clusterings for each gene module. Furthermore, using the list of 316 transcrip-
tion factors prepared in [86] as the candidate transcription factors of these modules, we
calculated the regulatory score for assigning each transcription factor in this list to a par-
ticular module as defined in Equation 13. Last, we evaluated the results by the regulatory

relationships recorded in RegulonDB [44].

5.3.2.1 Linear model versus LeMoNe in the flagellum chemotaxis system

E. coli is capable of using its chemotaxis sensory system to detect environmental signals.
These detected signals are then used to direct its flagellar motors so that it can move towards
the source of nutrient in environments [34]. The transcription of genes involved in the
chemotaxis and flagella system in E. coli is mainly regulated by three transcription factors:
FLHC, FLHD and FLIA [86]. FLHC and FLHD are the master regulators of the system
because FLIA is regulated by them [110].

In the E. coli dataset, we identified three modules (3, 24 and 36) related to chemotaxis
and flagellar system. The linear model predicts FLHC, FLHD and FLIA as the top 3 regu-
lators for each of these modules, but LeMoNe misses FLHD in all of these modules (Tables
4-6).

We further analyzed the results of these two algorithms in module 3. In this module, we

68

Top 3 regulators as ranked by the linear model

Rank 1 2 3

Regulator FLIA | FLHC | FLHD
Number of genes regulated | 33 30 30

Top 3 regulators as ranked by LeMoNe

Rank 1 2 3

Regulator FLIA | TRER | EVGA
Number of genes regulated | 33 0 0

Table 4: Top 3 transcription factors for module 3 in the E. coli dataset as inferred by the
linear model and LeMoNe, and the number of genes they regulate in the module according
to records in RegulonDB. The module consists of 44 genes.

Top 3 regulators as ranked by the linear model

Rank 1 2 3
Regulator FLIA | FLHC | FLHD
Number of genes regulated 5 6 6
Top 3 regulators as ranked by LeMoNe
Rank 1 2 3
Regulator CELD | FLIA | FLHC
Number of genes regulated 0 5 6

Table 5: Top 3 transcription factors for module 24 in the E. coli dataset as inferred by the
linear model and LeMoNe, and the number of genes they regulate in the module according
to records in RegulonDB. The module consists of 12 genes.

Top 3 regulators as ranked by the linear model

Rank 1 2 3
Regulator FLHD | FLIA | FLHC
Number of genes regulated 1 2 1
Top 3 regulators as ranked by LeMoNe
Rank 1 2 3
Regulator FLIA | CYSB | FLHC
Number of genes regulated 2 0 1

Table 6: Top 3 transcription factors for module 36 in the E. coli dataset as inferred by the
linear model and LeMoNe, and the number of genes they regulate in the module according
to records in RegulonDB. The module consists of 4 genes.

69

190

180

170

160

150 4

140

130

120

110

Ordinary t-statistics

100

90

- M%ﬂ\@

70 -

Figure 22: Ordinary ¢-statistic for the contrast between the union of the first £ condition
clusters (k = 1,2, ..., 25) and the remaining 26 — % clusters. The horizontal axis gives the
values of k. The colored triangle represents the largest ordinary ¢-statistic.

sampled a condition clustering with 26 clusters, and they were sorted into an ordered list by
their means of expression values. We obtained the maximum ordinary ¢-statistic (188.60)
when we compared the union of the first 4 condition clusters with the remaining clusters
in the ordered list (Figure 22). The structure of the regression tree built by LeMoNe in the
module is similar to that of the tree shown in Figure 18, but clusterl, cluster2 and cluster3
consist of 149, 13, and 27 conditions, respectively. LeMoNe searches for transcription
factors differentially expressed in the contrast between cluster1, and the union of cluster2
and cluster3. FLHD and FLHC are the 25th and 14th in the ordered list given by LeMoNe
in this module, and they are assigned much less confidence for regulating this module than
that of FLIA (1st regulator in LeMoNe’s ordered list). This is because the coexpression
of FLHD and FLHC with the genes in this module is significantly lower than that for
FLIA [86]. In other words, unlike FLIA, FLHD and FLHC are not globally co-expressed
with their targets. However, FLHD and FLHC are strongly differentially expressed in the
critical contrast used by the linear model (i.e., the contrast between cluster3 and the union
of clusterl and cluster2) (Figure 23), and consequently they are assigned high confidence

for regulating this module by the linear model.

70

fiA

g6

g

figB

figh

cheZ
cheY
cheW
cheR
cheB
cheA

yecR

.

55300 HLLU‘J(;;

il

i

o 8 < 3 o
Fobor ket e nd SRR oo e e %&U—WP‘ e e
PR ET S e e Ra000 = S3is s e]

fihD

fihC

fliA

Figure 23: Heatmaps of expression values of genes in module 3 in the E. coli dataset (top),
and known transcription factors of the module (bottom). In track CC (critical contrast)
conditions assigned to the extraordinary and ordinary clusters are colored by red and green,
respectively. In track RT (regression tree) conditions assigned to clusterl, cluster2, and
cluster3 (detailed in Figure 18) are colored by black, yellow, and blue, respectively. Note
that the numbers of conditions included in clusterl, cluster2 and cluster3 are 149, 13, and
27, respectively, instead of those shown in Figure 18

71

—e— Linear model
--A-- LeMoNe

T
0.00 0.02 0.04 0.06 0.08 0.10
Recall

Figure 24: Precision versus recall curves for the linear model and LeMoNe in the E. coli
dataset. Precisions and recalls are defined as Equations 14 and 15, respectively.

5.3.2.2 Results over the entire E. coli dataset

Similar to the comparison in Section 5.3.1.3, we evaluated the performance of the linear
model and LeMoNe using precision versus recall curves based on their results in the entire
E. coli dataset (Figure 24). The top 100 regulator module-wise predictions from the linear
model were transformed to 985 regulator gene-wise predictions. The closest number of
gene-wise predictions from LeMoNe are produced by its top 95 module-wise predictions.
The precision and recall of the top ¢ regulator gene-wise predictions from a method are
defined as Equations 14 and 15. The linear model yields slightly better performance than
LeMoNe.

5.4 Conclusion and future work

In this chapter, we proposed to apply linear models to infer regulators in transcriptional
module networks. Given a gene module, the proposed method identifies the critical contrast
of this module, which consists of two condition clusters. Since an important characteristic
of genes in this module is that they are significantly differentially expressed between these

two clusters, the proposed method searches for transcription factors also associated with

72

this characteristic as the regulators of this module. The novelty of this strategy is that it
does not rely on regression trees, which have been widely used to infer regulators of gene
modules. Based on the analysis of two modules in the yeast and E. coli, we show that the
structure of regression trees may restrict regression tree-based methods from identifying
some regulatory relationships. In addition, the proposed simple linear model is capable of
achieving comparable results with LeMoNe, a well known regression tree-based algorithm,
based on their overall performance on two real biological datasets.

One direction for future work is to extend the linear model to use ensemble methods
[18]. In the module for nitrogen utilization in the yeast stress dataset, the highest ¢-statistic
value (38.98) is achieved when k=3 (Figure 16). However, when k = ¢ (+ = 4,5, ..., 10),
the corresponding t-statistic is only slightly smaller than 38.98. This indicates that the
genes in this module are also highly differentially expressed in these contrasts. In addition,
similar results are observed in module 3 in the E. coli dataset (Figure 22). Hence, it may be
promising to calculate regulatory scores of transcription factors based on their differential
expression in an ensemble of multiple contrasts.

Another direction for future work is to keep each experimental condition individually,
instead of clustering conditions into condition clusters. In other words, each condition
is considered to be a condition cluster. This simplification can significantly reduce the
computational workload of the proposed method, because condition clustering is very time-

consuming.

Computational time

It takes around 20 minutes for the proposed linear model to identify critical contrasts and
infer transcription factors of all modules in the yeast stress dataset on a Dell workstation

with Intel Pentium 4 processor and 3GB memory. The E. coli dataset requires 30 minutes.

73

Chapter 6

An integrative approach to infer
regulation programs in a transcription

regulatory module network

6.1 Introduction

Many techniques have been applied to infer the regulation program of a given gene module,
such as logistic regression [62], ¢-statistics [100], Gibbs sampler [99], and linear regression
[11]. A common characteristic of these methods is that they are able to calculate the confi-
dence (i.e., regulatory score) for the assignment of a transcription factor to a gene module,
which is referred to as a regulator-module interaction. Consequently, their results can be
sorted into an ordered list of regulator-module interactions according to their regulatory
scores. The higher the ranking of a regulator-module interaction in the ordered list given
by a method, the more confidence this method assigns to the interaction. In addition, since
these methods resort to distinct techniques, they show very different biases in detecting
regulatory relationships. For example, in the nitrogen utilization module in the budding
yeast, LeMoNe [62] favors regulatory relationships where transcription factors and genes
are globally co-expressed, while the LIMMA-based method [100] favors regulatory rela-
tionships where transcription factors and genes are locally co-expressed. This suggests that
integrating results from different regulation program learning algorithms can be a promis-
ing direction in better inferring regulatory networks.

In this chapter, we extend our previous work [100] by integrating its results with those

74

given by two other learning algorithms [62, 11]. The integration methods we select are
union, intersection, and weighted rank aggregation [95]. Experimental results indicate that
the union and weighted rank aggregation methods produce more accurate predictions than
those given by individual algorithms, whereas the intersection method does not yield any
improvement in the accuracy of predictions.

The rest of this chapter is organized as follows: Section 6.2 describes the dataset,
integration methods, and regulation program learning algorithms studied in this chapter.
Section 6.3 presents experimental results. Section 6.4 summarizes the main results and
discusses future work.

Note that the assignment of a regulator to a module is associated with a p-value for each
regulation program learning algorithm, and the p-value is required by the weighted rank
aggregation method to integrate results from different learning algorithms. In contrast, the
assignment is also associated with a p-value based on records in the reference database,
YEASTRACT. The p-value is calculated by the hypergeometric distribution and is used to

evaluate the performance of individual learning algorithms and integration methods.

6.2 System and method

6.2.1 Data set and reference database

The yeast stress dataset has been used as a benchmark to validate the performance of mod-
ule network learning algorithms [106, 62]. In previous work [106, 63], 2355 differentially
expressed genes in the dataset were selected and these genes were clustered into 69 gene
modules. In this work, we apply three algorithms [62, 11, 100] to infer regulators of these
modules using a list of 321 transcription factors prepared by Segal et al. [106] as candi-
date transcription factors. Then, we integrate the results of these algorithms by methods
described in Section 6.2.2. The regulatory relationships recorded in YEASTRACT [88]
(released on Apr 27, 2009) are used as the reference database to validate results given by

individual algorithms and our integration methods.

75

6.2.2 Integration methods

We apply union, intersection, and weighted rank aggregation integration methods to inte-
grate results from different regulation program learning algorithms. The union and inter-
section methods are straightforward. The former determines the ranking of a regulator-
module interaction using the highest ranking given by all candidate learning algorithms. In
contrast, the latter determines the ranking of an interaction using the lowest ranking. For
example, given a regulator-module interaction, which is the 1st, 3rd and 5th items in rank-
ings given by three individual learning algorithms, respectively, the union method assigns
Ist as its ranking, while the intersection method assigns 5th as its ranking. After deter-
mining the ranking of each interaction, these methods can each produce an ordered list of
regulator-module interactions by sorting interactions by their rankings.

In comparison, the weighted rank aggregation method [95] is much more computation-
ally intensive than the union and intersection methods. Given a set of learning algorithms
M, this integration algorithm searches for an ordered list 6* that is simultaneously as close
as possible to the list produced by each algorithm in M. Let L,, = (A7, AD, ..., A7)
represents an ordered list of k£ regulator-module interactions produced by the algorithm m.
Let 7™ (A) denote the rank of the interaction A under m. Finally, let m(i) (: = 1,2, ..., k)
denote the p-value (weight) that algorithm m assigns to the interaction ranked at the ith po-

sition in the ordered list. This can be represented by the following minimization problem:
0" = argmin ¢ (9),

where

O (6) = > d(5 L) (16)

meM
represents the sum of the distances between an ordered list 0 and the lists from all algo-
rithms. The distance between § and L,, is determined by the weighted Spearman’s footrule

distance:

d(6, L) = > |m(r°(A) —m(r™(A))] x

A€ELnUS

‘7“5 (A) —r™ (A)‘)

To determine 0*, we apply the cross-entropy Monte Carlo algorithm [96]. This algorithm

represents an ordered list by a random matrix whose entries are 0 or 1. The matrix follows

76

two constraints: the sum of each column is 1 and the sum of each row is at most 1. Given
a current random matrix (ordered list), a new matrix is generated by shuffling entries in
the current matrix subject to above two constraints. This sampled matrix is used to update
entries in the current matrix so that the value of Equation 16 is reduced. This sampling

procedure repeats utile it reaches convergence.

6.2.3 Regulation program learning algorithms

We select LeMoNe [62], Inferelator [11], and the LIMMA-based method [100], as candi-
date regulation program learning algorithms. In this subsection, we describe how to apply
these algorithms to the yeast stress dataset. In addition, in order to apply the weighted rank
aggregation to integrate their results, for each algorithm, we also define how to calculate

the p-value for the assignment of a regulator to a module.

6.2.3.1 LeMoNe

For each gene module in the yeast stress dataset, LeMoNe [62] sampled 10 regression
trees, and then calculated regulatory scores for assigning transcription factors to this mod-
ule based on these trees. Regulatory scores of all regulator-module interactions were down-
loaded from the supplementary website of [62].

We calculate the LeMoNe-based p-value for the assignment of a regulator r to a module
as follows. First, given a regression tree 7' of this module, we define the p-value of the
split with 7 and a splitting value z at an internal node ¢ in 7" (i.e., p-value(, (7, 2)) as the
probability of observing a split with a higher average prediction probability than this split
at the node ¢. The average prediction probability of a split is defined as in Equation 4 of
[62]. Then, the p-value for assigning r to ¢ is defined as:

p-value) (r)]Z| Zp value (7, 2)

where w; is the number of experimental conditions in ¢ divided by the total number of
conditions in the data, and Z represents the set of possible splitting values for r in ¢. Fur-
thermore, given a set of regression trees F', the LeMoNe-based p-value for assigning r to

this module can be calculated as:

p-value(r | Z Z p-value (r

TeF teT

77

6.2.3.2 Inferelator

Inferelator [11] uses linear regression and variable selection to identify transcription factors
of gene modules. In each gene module in the yeast stress dataset, we fit a linear model to
the mean of the module’s genes in each condition using the 321 candidate transcription
factors as predictor variables. The regulatory score for assigning a regulator to the module
is decided by the absolute value of the regulator’s regression coefficient in the fitted model.

The Inferelator-based p-value for the assignment of a regulatory to a module is defined
as follows. First, we permute the values of the expression value matrix from the row direc-
tion (gene). Second, we apply Inferelator to the permuted dataset using the original gene
modules. Third, we fit the distribution of nonzero coefficients obtained from the permuted

dataset by the Weibull distribution defined as:

k rx

k-1 .
pif(e) =5 (5) e am

with £ = 0.889 and A = 0.015 (Figure 25). Last, we define the Inferelator-based p-value
for a regulator-module interaction with a regulatory score S as the probability of observing

a value more than S from the Weibull distribution (Equation 17).

6.2.3.3 LIMMA-based method

In our previous [100], moderated ¢-statistics proposed in LIMMA [113] were applied to
infer transcription factors of gene modules. For each gene module in the yeast dataset,
ten condition clusterings were sampled by a two-way clustering algorithm [63]. Then the
regulatory score for assigning a transcription factor to this module was calculated by sum-
ming the transcription factor’s standardized moderated ¢-statistics based on the sampled
condition clusterings.

We next describe how to define the method’s p-value for the assignment of a tran-
scription factor to a module. First, we randomly generate ten condition clusterings, each
of which consisted of two clusters. We then calculate the regulator score for each can-
didate transcription factor based on these randomly generated clusterings. Moreover, we
record the regulatory score of a randomly selected transcription factor. The above process
is repeated to obtain 100,000 randomly generated regulatory scores. Last, the probabil-

ity density function of these randomly generated scores is approximated by the stretched

78

—— Empirical distribution of coefficients based on permuted data
--- Approximate fit by the Weibull distribution

Density

0.0 0.1 0.2 0.3 0.4
Magnitude of coefficients

Figure 25: Probability density function of coefficients (regulatory scores) based on per-
muted data and the approximated fit by the Weibull distribution. The solid line denotes the
empirical probability density function of regression coefficients obtained by Inferelator in
permuted expression data, while the dotted line denotes the probability density function of
the Weibull distribution (Equation 17) with £ = 0.889 and A = 0.015.

79

exponentials [115] defined as:

hmaz (9.4 _br T — Tmax o fOI' X 2 Tmaz
pdf () = { PL=b " (18)

Rinaz €Xp [—b1(Tmaz —)] for © < Tpas

with hye. = 0.127, b, = 0.024, b; = 0.083, ¢, = 2.45, ¢ = 1.70 and 2,4, = —0.050.
As shown in Figure 26, the approximated fit is very close to the empirical distribution of
the randomly generated regulatory scores, so the p-value for a regulator-module interaction

with a regulatory score S can be defined as the probability of observing a value more than

S from the approximated fit.

w
S | —— Empirical distribution of randomly generated regulatory scores
- - - Approximate fit by the stretched exponentials
o
S
>
=
7]
c
(O]
(@)
v
o
o
o
O_ i
© T T T

T
-20 -10 0 10 20
Regulatory scores

Figure 26: Probability density function of randomly generated regulatory scores and the
approximated fit by the stretched exponentials. The solid line denotes the empirical prob-
ability density function of regulatory scores obtained by the LIMMA-based method based
on randomly generated condition clusterings, while the dotted line denotes the stretched ex-
ponentials (Equation 18) with h,,., = 0.127, b, = 0.024, b; = 0.083, ¢, = 2.45, ¢; = 1.70
and x,,,, = —0.050.

80

6.3 Experimental results and discussion

6.3.1 Results of individual learning algorithms

We applied each regulation program learning algorithm described in Section 6.2.3 to cal-
culate the regulatory score for assigning a regulator to a module. Then we sorted all of its
regulatory scores between 321 candidate transcription factors and 69 modules in the de-
scending order. This led to an ordered list of 22,149 regulator-module interactions for each
method.

In addition, for each regulator-module interaction, we used the hypergeometric distri-
bution to calculate the p-value of this interaction, using regulatory relationships in YEAS-
TRACT as the reference database. This p-value is based on the number of genes regulated
by the regulator in the dataset, the number of genes regulated by the regulator in the mod-
ule, and the number of genes in the module. Note that the p-values defined in Section 6.2.3
are used as weights by the weighted rank aggregation algorithm, while the p-values based
the hypergeometric distribution defined here are used to determine if regulator-module in-
teractions are true positives.

Moreover, for a given ordered list of regulator-module interactions, we define the pre-

cision of the top ¢ items in this ordered list as:

p(i) = —=, 19)

where 7'(7) denotes the number of interactions with p-values less than 0.05 in the top ¢
items (i.e., the number of true positives among these ¢ interactions).

In Figure 27, we show the precisions of the top ¢ regulator-module interactions (: =
1,2, ...,100) in the ordered lists obtained by Inferelator, LeMoNe and the LIMMA-based
method. When less than 20 interactions are selected, the LIMMA-based method outper-
forms the other two methods. However, Inferelator and LeMoNe outperform the LIMMA-
based method when the number of selected interactions is in the range of 20 and 50. In
addition, when more than 50 interactions are selected, the three methods show similar per-

formance in the yeast dataset.

81

1.0

08 0.9

— LIMMA
= = Inferelator
+ LeMoNe

L
="

05 06 07

Precision
-

02 03 04
I

0.1

0.0

T T T T T T T T
10 20 30 40 50 60 70 80 90 100

Number of selected regulatory relationships

o

Figure 27: Comparison of precision of three candidate learning algorithms. For each al-
gorithm, the figure shows the precision (Equation 19) when the top ¢ (i = 1,2, ...,100)
regulator-module interactions in the rank given by the algorithm are selected.

6.3.2 Results for the weighted rank aggregation

The weighted rank aggregation method searches for a synthesized list that is simultaneously
as close as possible to the ordered lists from LeMoNe, Inferelator, and the LIMMA-based
method. However, it is not feasible to directly apply this integration method on a list with
22,149 interactions due to the extensive computational workload. Hence, we resort to a
tradeoff by integrating the top k£ (k < 22,149) interactions in the ordered lists given by
these algorithms. This is, for a given ordered list and k, interactions ranked lower than
kGe., k+1,k+2,...,22,149), are associated with a same weight (p-value) of one. The
larger k, the closer the list produced by the rank aggregation is to the lists given by the three
candidate algorithms, but the rank aggregation costs more computation time. For example,
it takes 12 and 48 hours for £ = 75 and £ = 100 on a HP rackmount server with AMD
Opteron processors (x86, 64 bit, dual core) and 16 GB memory.

In order to select a proper value for k in the yeast dataset, we applied the rank aggrega-
tion ten times for £ = 25, 50, 75, 100, respectively. For each k, this led to 10 ordered lists,
and we calculated the average of the precisions of the top ¢ (: = 1,2, ..., k) interactions in
these ten lists. As shown in Figure 28, when k increases from 25, to 50 and then to 75,

the precisions obtained by the rank aggregation method are improved, but the precisions at

82

09 1.0
L

0.8

0.7

0.6
|

Precision
05

0.4
]

01 02 03
I I

0.0

T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Number of selected regulatory relationships

Figure 28: Comparison of precision given by the rank aggregation at k£ = 25, 50, 75, and
100.

k =75 and k£ = 100 are about the same. This indicates that after % reaches 75, considering
more interactions from the ordered lists of the candidate algorithms can no longer improve
the performance of the rank aggregation method. Hence, £ is set to 100 in our tests using

the yeast dataset.

6.3.3 Comparison of integration methods and individual algorithms

In this subsection, we compare the performance of integration methods with individual
algorithms. In order to make the comparison clear, for a given ¢ (: = 1,2, ...,100), we
define the baseline precision as that obtained by selecting the maximum of the precisions
of the top 7 interactions given by all individual algorithms. That is, given a set of individual
learning algorithms)/, it is determined as:

p*(i) = max (p,, (7)), (20)

meM

where p,, (i) denotes the precision of top 7 interactions in the ordered list given by algorithm
m (Equation 19). Note that baseline precisions represent an upper optimistic bound that can
not be achieved by individual algorithms as we can only use one of them at a time. Hence,

even if the precisions obtained by an integration method are only comparable to baseline

83

precisions, it still shows that this integration method yield a better overall performance than
those of individual algorithms.

We compare the precision of the top 100 predictions from the three integration methods
with baseline precisions (Figure 29). The union and rank aggregation methods generate
better or similar results compared to the baseline precisions. In addition, somewhat sur-
prisingly, the union method, which has a lower computational cost than rank aggregation,
archives comparable results as given by rank aggregation. The first twenty interactions

from union and rank aggregation are shown in Tables 7 and 8, respectively.

1.0

0.9

0.8

: —— Baseline

a EAY — — Rank aggregation
: Tab. -++ Union

TNy - Intersection

07
>

0.6
>4
[}

Precision
05

04

03
I

0.2

0.1

0.0
I

T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Number of selected regulatory relationships

Figure 29: Comparison between precisions of integration methods and baseline precisions.
For each of the three integration methods, the figure shows the precision (Equation 19)
when the top ¢ (: = 1,2, ...,100) regulator-module interactions in the rank given by the
integration method are selected. For a given ¢, the baseline precision denotes the maximum
of precisions obtained by individual learning algorithms (Equation 20).

On the other hand, we observe that baseline precisions are generally better than pre-
cisions given by the intersection method. The intersection method sorts interactions by
their lowest rankings from all candidate algorithms, so it tends to assign interactions with
moderate confidences from all algorithms with high ranks. We speculate that this may have
affected its performance. For example, as shown in Table 9, its first 20 interactions include
several that are not highly ranked by any algorithm, such as the twelfth interaction (RDS2
to module 16) ranked 219th, 125th and 273rd by the LIMMA-based method, LeMoNe, and

Inferelator, respectively; and the eighteenth interaction (DALS81 to module 58) ranked as

84

Ranks from individual algorithms
rank | Regulator-module | p-value | LIMMA | LeMoNe | Inferelator
DALS80-11* 3.47e-10 1 130 88
1 IME4-46 1.00e+00 48 1 2906
HAP1-13 1.00e+00 | 3076 169 1
HAP4-7* 1.67e-30 50 9 2
4 MET32-11* 1.21e-13 2 30 7
DALS80-51* 0.00e+00 4 2 10281
PHD1-36* 5.20e-03 3 342 5
7 HAP4-30 5.33e-02 23 3 32
MET32-27 1.00e+00 | 9680 3702 3
10 TOS8-24* 1.45e-02 49 4 111
GAT1-59 2.55e-03 802 5059 4
12 XBP1-10* 1.08e-02 59 5 602
DALS82-48 1.00e+00 5 49 7771
UGA3-11 2.35e-01 6 509 59
14 USV1-28 1.00e+00 190 6 10281
SKO1-57 1.00e+00 | 4663 10026 6
17 GAT1-11* 4.24e-05 34 7 28
ACA1-48 1.00e+00 7 1048 7773
19 PDR3-13 3.90e-01 12 8 10281
DALS0-40 1.00e+00 8 367 27

Table 7: Top twenty regulator-module interactions as given by the union method. * records
represent true positives at the p-value threshold of 0.05.

85

Ranks from individual algorithms
rank | Regulator-module | p-value | LIMMA | LeMoNe | Inferelator

1 HAP4-7* 1.67e-30 50 9 2

2 GAT1-11* 4.24e-05 34 7 28
3 MET28-11* 5.92e-10 27 24 16
4 HAP4-30 5.33e-02 23 3 32

5 MET32-11* 1.21e-13 2 30 7

6 DALS0-51 0.00e+00 4 2 10281
7 DALS81-6 6.67e-01 21 14 1193
8 PDR3-13 3.90e-01 12 8 10281
9 PHD1-36* 5.20e-03 3 342 5
10 IME4-46 1.00e+00 48 1 2906
11 TOSS8-24* 1.45e-02 49 4 111
12 GALS80-41* 7.45e-09 7107 10 52
13 DALS1-55 4.17e-01 14 16 285
14 MET32-40* 1.00e-02 52 5329 37
15 CUP2-10* 1.12e-02 553 32 18
16 YAP5-51 1.00e+00 37 746 40
17 XBP1-10* 1.08e-02 59 5 602
18 YAP6-25 8.63e-02 26 26 5444
19 UGA3-40 1.00e+00 22 33 93
20 UGA3-11 2.35e-01 6 509 59

Table 8: Top twenty regulator-module interactions as given by the weighted rank aggrega-
tion method. * records represent true positives at the p-value threshold of 0.05.

86

Ranks from individual algorithms
rank | Regulator-module | p-value | LIMMA | LeMoNe | Inferelator

1 MET?28-11* 5.92e-10 27 24 16
2 MET32-11* 1.21e-13 2 30 7
3 HAP4-30 5.33e-02 23 3 32
4 GAT1-11* 4.24e-05 34 7 28
5 HAP4-7* 1.67e-30 50 9 2
6 OAF1-22 5.37e-02 73 45 87
7 UGA3-40 1.00e+00 22 33 93
8 TOSS8-24* 1.45e-02 49 4 111
9 DALS80-11* 3.47e-10 1 130 88
10 GAL4-22* 7.44e-03 155 85 115
11 MET32-51 1.00e+00 28 224 113
12 RDS2-16 1.00e+00 219 125 273
13 YRR1-24* 4.06e-04 273 21 230
14 DALS1-55 4.17e-01 14 16 285
15 GZF3-11* 8.34e-04 31 188 297
16 TOS8-49 5.55e-02 87 308 85
17 SWI4-55 3.67e-01 39 63 310
18 DALS81-58 1.00e+00 199 310 190
19 BAS1-63 1.00e+00 33 88 312
20 IME4-3 4.52e-01 317 58 245

Table 9: Top twenty regulator-module interactions as given by the intersection method. *
records represent true positives at the p-value threshold of 0.05.

87

Integration methods Individual algorithms
Rank ag- | Union | Intersection| LIMMA | Inferelator| LeMoNe
gregation
Area under curve | 42.63 41.12 | 36.09 36.72 35.79 35.18

Table 10: Comparison of areas under precision curves for the top 100 predictions given by
the integration methods and individual learning algorithms. The precision curves for the
integration methods are shown in Figure 29, while the precision curves for the individual
learning algorithms are shown in Figure 27.

199th, 310th and 190th by the LIMMA-based method, LeMoNe, and Inferelator, respec-
tively.

We also compare areas under precision curves for the top 100 predictions given by the
integration methods and individual learning algorithms (Table 10). The union and weighted
rank aggregation methods achieve better results than those from the individual learning al-
gorithms, but the intersection method only yields a comparable result with the individual
learning algorithms. These results indicate that we should be cautious to apply the inter-

section method to integrate results from algorithms of different natures.

6.4 Conclusion and future work

In this chapter, a meta-learner approach was applied to infer transcription factors of co-
expressed gene modules in a yeast stress dataset, with the regulatory relationships recorded
in YEASTRACT as the gold standard. We integrated the predictions of three existing infer-
ence techniques [62, 11, 100] by three different methods: union, intersection and weighted
rank aggregation. Experimental results show that integrated predictions based on union or
rank aggregation have higher precision than any of the individual methods. The justifica-
tion of this work is that the results generated by different algorithms are not identical and
often have clearly different influences from the datasets used. The experiments confirm
our expectation that integrating the output of several algorithms results in higher quality
predictions. To the best of our knowledge, this is the first such an attempt. Consequently,
this work may point out a promising direction for module network learning.

An interesting extension of this work is to investigate if integrating results from more

88

algorithms can lead to even better performance. In particular, we expect that when more al-
gorithms are combined, we may see significant difference between the union and weighted
rank aggregation methods.

The experiments in this work are conducted on a yeast dataset, and results are validated
by the regulatory relationships recorded in YEASTRACT, which does not represent a com-
plete reference database of the regulatory network in the yeast. Hence, another direction
for future work is to perform experiments on expression data from other species (e.g., E.
coli [35]) to verify if results are consistent with those we obtained in the yeast dataset. In
addition, we are interested in performing experiments on synthetic datasets (e.g., DREAM

[97]), where complete reference networks are available.

Computational time

It takes around 5 minutes for the union and intersection integration methods to generate
the rank of regulator-module interactions on the yeast stress dataset on a Dell workstation
with Intel Pentium 4 processor and 3GB memory. The weighted rank aggregation method
requires much more computational resource than union and intersection, so we ran it on a
HP rackmount server with AMD Opteron processors (x86, 64 bit, dual core) and 16 GB

memory. It takes around 48 hours for the integration method on the yeast stress dataset.

89

Chapter 7

Inferring regulatory relationships in

fungal species by module networks

Aspergillus niger, Sporotrichum thermophile, and Phanerochaete chrysosporium are im-
portant organisms for industry, because they are capable of producing many useful en-
zymes. The genomes of the species have been sequenced, but little of their regulatory
networks have been identified. In this chapter, we apply module networks to infer gene
clusters and their regulators in the three fungal species. The experimental results may help
biologists to understand how their regulatory networks work. In addition, some results may
be validated by wet lab experiments in the Centre for Structural and Functional Genomics

at Concordia University.

7.1 Results in Aspergillus niger

Aspergillus niger (A. niger) is an important organism used in biotechnology, as a host to
produce enzymes for many industries, such as food, beverage, textile, and agriculture [26].
The genome of A. niger has been sequenced and annotated [93]. In this section, we apply

the module network method [106] to infer regulatory relationships in this fungus.

90

7.1.1 Experimental results and Discussion
7.1.1.1 Regulatory modules and their validation

We applied the module network method implemented in Genomica [106] to infer regulatory
relationships within 229 differentially expressed sequence tags (ESTs) [109] under the con-
ditions of xylose, maltose and glycerol. The dataset consists of 3 experimental conditions,
so the initial number of modules and the maximum number of regulators for each module
were decided to be 26 and 2. The default values were applied for the other parameters in
Genomica.

After merging modules, Genomica learned 15 gene modules. Table 11 shows details of
the 15 modules. Column Regulatorl denotes the regulator assigned to the root node of the
regulatory tree of each module, while column Regulator2 denotes the regulator assigned
to the internal node in the second level of the regulatory tree. However, in some modules
(e.g., module 1), regulatory trees only consist of one internal node.

In order to evaluate the learned modules, we analyzed the GO annotation of ESTs in
each module using BiNGO [76]. The latest annotation of A. niger, Joint Genome Institute
(JGI) version 3.0 [29], was released in June 2008 [93]. 104 of 229 differentially expressed
ESTs were annotated with GO terms in this release. We only considered GO terms anno-
tating more than 3 genes and evaluated modules with more than 3 GO annotated genes.
Consequently, modules 2, 7 , 10 and 11 were discarded. Under the p-value threshold of
0.05, no module represented significant functional enrichments. Hence, each module was
named by the GO term with the smallest p-value that genes in the module were obtained
in the GO enrichment analysis. For example, module O is named as carbohydrate trans-
port module, because carbohydrate transport is the most significantly enriched GO term in
the module (p-value = 0.14). One third (4 genes) of annotated genes in this module are
annotated with this GO term.

Furthermore, we applied Gibbs Motif Sampler [124] to detect binding sites of tran-
scription factors with lengths from 6 to 10 base pairs and maximum posteriori values more
than O in the upstream region of ESTs in each module. The motif, TTCTTC, was identified
from module 3. Table 16 in Appendix lists the module assignment of 229 ESTs.

91

No. | Module name | #Genes p-value (GO | Regulatorl | Regulator2 | Motif de-
(#genes coherence) tected
with GO
annotation)

0 carbohydrate 17 (12) 14% (33%) Asn_07474 | Asn_02714

transport

1 metabolic pro- | 17 (8) 13% (100%) | Asn_04815

cess

2 N/A 2 (0) N/A (N/A) Asn_04815

3 electron trans- | 16 (10) 52% (20%) Asn_02714 TTCTTC

port

4 cellular 14 (11) 21% (18%) Asn_02714 | Asn_07474

biosynthetic
process

5 alcohol 26 (7) 41% (28%) Asn_02714 | Asn_07474

metabolic
process

6 cellular pro- | 17 (5) 29% (40%) Asn_02714

tein metabolic
process

7 N/A 8 (0) N/A (N/A) Asn_02714

8 carbohydrate 20 (9) 32% (44%) Asn_04815

metabolic
process

9 biosynthetic 14 (8) 35% (38%) Asn_04815

process

10 | N/A 2(1) N/A (N/A) Asn_02714 | Asn_07474

11 | N/A 7(1) N/A(N/A) Asn_04815

12 | macromolecule | 39 (15) 53% (40%) Asn_04815

metabolic pro-
cess

13 | carbohydrate 17 (9) 68% (33%) Asn_07474 | Asn_04815

transport

14 | regulation 13 (6) 19% (33%) None

of macro-
molecule
metabolic
process

Table 11: Summary of inferred modules in A. niger. The GO coherence of each module
is measured as the percentage of genes annotated by the GO term assigned as the name of
the module. The columns Regulator] and Regulator2 denote the regulators assigned to the
root node and the internal node in the second level of the regulatory tree of each module,
respectively.

92

7.1.1.2 Discussion

The gene expression data were collected under three different sugar conditions, so we ex-
pected to identify transcription regulatory relationships between genes involved in sugar
metabolism. The inferred modules match our expectation, since they participate in various
processes in metabolism, such as carbohydrate transport and carbohydrate metabolic pro-
cess. However, although most modules are large enough to show functional enrichment,
we do not find any module with functional enrichment below the p-value threshold of 0.05.
Moreover, the GO terms with the lowest p-values of these modules are very general GO
terms. For example, the most specific terms are “electron transport” (module 3) and “regu-
lation of macromolecule metabolic process” (module 14), which are at the fifth layer in the
biological process ontology. This problem is partially due to the fact that only a small frac-
tion of ESTs (104 of 229) are annotated with GO terms and most annotated terms are very
general. When new releases of A. niger annotations are available, we expect this situation
to improve.

In this experiment, we used 10 genes as the candidates of transcription factors. creA
[103] and x/nR [53], two known transcription factors in A. niger, were not included, be-
cause they were not in the list of differentially expressed ESTs. Adding these two known
transcription factors into the experiments would not change the results, because Genomica
relies on the correlation between the expression levels of transcription factors and their reg-
ulated genes to detect regulatory relationships. Hence, if the expression levels of some can-
didate regulators do not change significantly, they will not be selected to explain the change
of expression levels of genes in modules. This is also demonstrated by the result that the
three ESTs, Asn_04815, Asn_07474 and Asn_02714, which are the most significantly dif-
ferentially expressed among the 10 candidate regulators, regulate all learned modules. On
the other hand, we speculate that the small number of experimental conditions covered by

the dataset may lead to this result.

7.1.2 Methods
7.1.2.1 Collecting gene expression data

We collected the gene expression data for A. niger under the conditions of xylose, maltose

and glycerol, using cDNA microarray. For each condition, we collected 6 samples, so the

93

total number of arrays is 18. The probes on these arrays were retrieved from the expressed
sequence tag database [109] in fungal genomics project in Concordia university. LIMMA
[114] package was used to select differentially expressed ESTs. We set the cut-off p-value
to 0.001, and 229 ESTs were selected under this threshold. These differentially expressed
ESTs included several enzymes involved in xylose consumption [27], such as xyrA (prob-
able NAD(P)H-dependent D-xylose reductas), xinD (4-beta-D-xylan xylohydrolase) and
aguA (alpha-D-glucuronoside).

7.1.2.2 Selecting candidate transcription factors

We downloaded all genes annotated with the GO term “transcription regulation” in A. niger
from the UniProt database [70]. Then, we blasted the 229 differentially expressed ESTs
against these transcription factors. 9 ESTs have hits with E-values less than 0.001. These
differentially expressed ESTs were also blasted against transcription factors in the budding
yeast obtained from SGD [20]. 5 ESTs have hits with E-values less than 0.001. Combining
these two results from BLAST together, we obtained a set of 10 ESTs, which were used
as candidate transcription factors in this experiment. Table 12 shows detail about these

candidate transcription factors.

7.2 Results in Sporotrichum thermophile

Sporotrichum thermophile (S. thermophile) is a thermophilic fungus species. One of its
most important characteristics is that it is capable of secreting enzymes that can efficiently
decompose lignocellulose. These enzymes are critical for the development of technologies
using biomass to generate energy. In this section, we apply the module network method
[62] to infer regulatory relationships in this fungus based on expression data collected under

varied carbon sources.

7.2.1 Experimental results and discussion

Using a Gibbs sampling-based clustering algorithm [63], we identified 13 modules con-
sisting of 436 genes (Table 17 in Appendix). In order to evaluate the learned modules, we
analyzed the InterPro protein domain annotations of genes in each module using BINGO
[76] (Table 13). Note that under the p-value threshold 0.05, the modules 4, 9, 10, 12, and 14

94

No. EST UniProt Hit GO from UniProt SGD Hit Description in SGD
1 Asn_02714 A2QRX0 Regulation of transcription, DNA-
dependent (GO:0006355)
2 Asn_07607 A2RA34 Regulation of transcription, DNA- YBR240C 7inc finger protein of the
dependent (GO:0006355) Zn(I)2Cys6 type, probable
transcriptional activator of thiamine
biosynthetic genes

3 Asn_03498 A2QF35

4 Asn_04815 A2QUL7 1. Regulation of sequence-specific

DNA binding transcription fac-
tor activity (GO:0051090); 2.
Transcription initiation, DNA-
dependent (GO:0006352)

5 Asn_01382 A5AA99 Regulation of transcription, DNA-

dependent (GO:0006355)

6 Asn_07224 A2R5X0 Regulation of transcription, DNA-

dependent (GO:0006355)

7 Asn_04275 A2QGW8 Regulation of transcription, DNA- YPL248C DNA-binding transcription factor

dependent (GO:0006355) required for the activation of the
GAL genes in response to galac-
tose; repressed by Gal80p and ac-
tivated by Gal3p

8 Asn_00534 A2Q726 YKLO62W Transcriptional activator related to
Msn2p; activated in stress condi-
tions, which results in translocation
from the cytoplasm to the nucleus;
binds DNA at stress response ele-
ments of responsive genes, induc-
ing gene expression

9 Asn_04368 A2Q7Y4 Regulation of transcription, DNA-

dependent (GO:0006355)

10 Asn_07474 YIR023W Positive regulator of genes in multi-
ple nitrogen degradation pathways;
contains DNA binding domain but
does not appear to bind the do-
decanucleotide sequence present in
the promoter region of many genes
involved in allantoin catabolism

Table 12: Candidate transcription factors in A. niger. The column “UniPro Hit” denotes
the hit of each EST against the UniProt database, while the next column shows the GO
annotation of the hit in the UniProt database. The column “SGD Hit” denotes the hit of
each EST against transcription factors in the budding yeast, while the next column shows

the description of the hit in the SGD database.

95

Module| #Genes Enriched InterPro domain | #Genes p-value Inferred regulator

No in the annotated
module with the
enriched
domain
1 73 IPRO11332 Ribosomal | 4 1.1043e-07 N/A
protein, zinc-binding
domain
2 36 IPR0O06424 1 0.029434 Spoth1|86826

Glyceraldehyde-3-
phosphate dehydroge-

nase, type I

3 56 IPR0O07125 Histone core | 3 0.0015421 Spoth1|44208

4 30 N/A N/A N/A N/A

5 20 IPRO11050 Pectin lyase | 6 4.5571e-11 Spoth1/83795
fold/virulence factor

7 17 IPR0O01547 Glycoside hy- | 2 0.0055073 Spoth1|111567
drolase, family 5

8 24 IPRO11583 Chitinase 11 2 0.0022806 Spoth1|110916

9 58 N/A N/A N/A N/A

10 11 N/A N/A N/A Spoth1]103539

12 32 N/A N/A N/A N/A

13 31 IPR002068 Heat shock | 2 0.0018607 Spoth1|111817
protein Hsp20

14 28 N/A N/A N/A Spoth1|114828

15 20 IPR0O05103 Glycoside hy- | 5 4.6656e-08 Spoth1/80133

drolase, family 61

Table 13: Summary of inferred modules in S. thermophile

do not show enrichment for any annotation. We infer the regulators of each module using
LeMoNe [62] (Table 13). Note that LeMoNe does not obtain results with high confidence
for the modules 1, 4, 9, and 12.

This dataset consists of expression values measured under 10 carbon sources. Con-
sequently, several identified gene modules are related to biological processes for utilizing
particular carbon sources in metabolism. The module 5 consists of 20 genes, and 6 of them
are associated the InterPro annotation “PR0O11050”. This term denotes pectin lyases which
are capable of degrading the pectic components of the plant cell wall [84]. In addition,
most genes in this module show expression profiles consistent with the annotation. That

is, they are highly expressed under pectin (Figure 30). Hence, we expect that genes with

96

Spoth1|71406
Spoth1|71204
Spoth1|103536
Spoth1[108890
Spoth1|103539
Spoth1[|112014
Spoth1|95168
Spoth1]|82505
Spoth1|52525
Spoth1|52713
Spoth1|52160
Spoth1[102322
Spoth1|81869
Spoth1|52463
Spoth1|79295
Spoth1|46981
Spoth1|87557
Spoth1|98480
Spoth1]|90594
Spoth1|97342

Glucose.2
Sucrose.1
Sucrose.2
Inulin
Avicel
HWKP
Barley.1
Barley.2
SWMP
Corn
Pectin
Alfalfa

~
[
172}
Q
]
=
(O]

Figure 30: Heatmap of expression values of genes in module 5 in the S. thermophile dataset.

unknown functions in the module are very likely to also participate in degrading pectin.
This hypothesis is worth of validating by lab experiments.

The most enriched annotations for the modules 7 and 15 are “PR001547” (glycoside
hydrolase family 5) and “PR005103” (glycoside hydrolase family 61), respectively. Both
terms denote enzymes that hydrolyse the glycosidic bond between two or more carbohy-
drates, or between a carbohydrate and a non-carbohydrate moiety. However, the family 61
only consists of endoglucanase enzymes, while the family 5 covers enzymes with a wide
range of activities, such as xylanase, endoglucanase, and endoglycoceramidase. Accord-
ingly, the expression profiles of genes in these two modules are different. Genes in the
module 7 are strongly expressed under softwood mechanical pulp and slightly expressed
under barley (Figure 31), while genes in the module 15 are strongly expressed under barley
and slightly expressed under softwood mechanical pulp (Figure 32). Web lab experiments

may be performed to identity the biological function of genes in the two modules.

7.2.2 Methods

7.2.2.1 Collecting gene expression data

RNA-seq technology was used to measure the expression values of 8,486 genes under 10

carbon sources: glucose, sucrose, inulin, pectin, avicel, hardwood kraft pulp (HWKP),

97

Spoth1|97137
Spoth1|84297
Spoth1]|71222
Spoth1|103537
Spoth1|95378
Spoth1|52068
Spoth1[100518
Spoth1|113698
Spoth1[110117
Spoth1|76393
Spoth1|43353
Spoth1|90655
Spoth1|74713
Spoth1|109508
Spoth1|74716
Spoth1|97899
Spoth1|73312

HWKP
Avicel
Glucose.2
Sucrose. 1
Pectin
Glucose.1
Sucrose.2
Alfalfa
Inulin
Barley.2
Com
Barley.1
SWMP

Figure 31: Heatmap of expression values of genes in module 7 in the S. thermophile dataset.

Spoth1|109444
Spoth1|85556
Spoth1[108917
Spoth1|96478
Spoth1|56237
Spoth1|55982
Spoth1|103054
Spoth1|55869
Spoth1|51596
Spoth1[103032
Spoth1|49824
Spoth1|92668
Spoth1|111088
Spoth1|79765
Spoth1[100068
Spoth1|99678
Spoth1|98122
Spoth1|109943
Spoth1|89603
Spoth1|39279

Inulin
HWKP
Pectin
Avicel
Alfalfa
Corn
SWMP
Barley.2
Barley.1

o~ o~ ~— ~
@ @ [@
@ @ @ @
g & g 8
=} S S =}
(O] @« @« o

Figure 32: Heatmap of expression values of genes in module 15 in the S. thermophile
dataset.

98

softwood mechanical pulp (SWMP), corn, alfalfa, and barley. We collected two samples
under glucose, sucrose, and barley, respectively, while we collected one sample under each
of the other carbon sources. Hence, this dataset consists of 13 samples. Cufflinks [128] was
applied to convert raw counts into FPKM values. 5,853 out of 8,468 genes are associated
with protein domain annotation in the JGI S. thermophile website [30]. The annotation was
used in the gene set enrichment analysis, because it has a better quality than GO annotation
in the species.

We removed genes that are not significantly differentially expressed in this dataset
(standard deviation less than 50). This led to a dataset with only 911 genes. 699 out of
the 911 genes are annotated with protein domain annotation. The expression values of

each gene was normalized by subtracting its mean and dividing by its standard deviation.

7.2.2.2 Applying LeMoNe to infer regulatory relationships

We applied a Gibbs sampling clustering algorithm [63] to infer gene clusters (modules) in
this dataset. 50 Gibbs samplers were sampled with the default parameters. Since the Gibbs
sampling is a non-deterministic algorithm, we calculated the correlation between two runs
with 50 independent samplers, which was 0.99, a value indicating that the Gibbs sampling
procedure reached convergence.

The clustering algorithm obtained 24 modules. We discarded modules with more than
100 genes or less than 5 genes, because they were not likely to represent biologically co-
herent modules. Consequently, 13 modules consisting of 436 genes were kept for further
analysis. Then, we applied LeMoNe [62], which is based on logistic regression and has
been described in Section 3.3.3, to infer regulators of these modules. For each module,
10 condition clusterings were sampled with default parameters. In addition, a list of 870
candidate transcription factors were downloaded from the JGI S. thermophile website [30]

by searching the keyword “Transcription factor”.

7.3 Results in Phanerochaete chrysosporium

Phanerochaete chrysosporium is a white rot fungus, which is able to efficiently degrade
lignin in wood to carbon dioxide and thereby gain access to the carbohydrate polymers of

plant cell walls [82]. Moreover, the fungus is capable of degrading explosive contaminants,

99

Module | Number of genes in this module | Inferred regulator
module 1 85 Phchr1|03235
module 2 48 Phchr1]00149
module 3 45 Phchr1|03235
module 4 45 Phchr1|00419
module 5 51 Phchr1|03235
module 6 31 Phchr1|03235
module 7 52 Phchr1|05523
module 8 27 Phchr1|06278
module 9 75 Phchr1|03235
module 10 16 Phchr1|06278
module 11 18 Phchrl|11322
module 12 16 Phchr1|00149
module 13 13 Phchr1]05523
module 14 10 Phchr1|01493
module 15 97 Phchr1|03235
module 17 20 Phchr1|00419
module 18 42 Phchr1|03235
module 19 23 Phchr1]03235

Table 14: Summary of inferred modules and their transcription factors in the Phane-
rochaete chrysosporium dataset

pesticides and toxic waste. In this section, we apply the LIMMA-based method (described
in Chapter 5) to infer regulatory relationships in this fungus based on expression data col-

lected under different levels of nitrogen.

7.3.1 Experimental results and discussion

We identified 18 modules consisting of 714 genes (Table 18 in Appendix). Table 14 shows
the inferred transcription factor of each module. Most inferred modules are differentially
expressed under different levels of nitrogen, such as module 4 and module 7. Genes in
module 4 are highly expressed under the high nitrogen condition (Figure 33), while genes
in module 7 are highly expressed under the low nitrogen condition (Figure 34). Genes in
these two modules are more expressed after 4 days than after 2 days. Hence, we speculate
that the genes may be involved in the response to the change of nitrogen levels in the
environment. Our hypothesis can be further validated by lab experiments. Tables 19 and

20 in Appendix show their annotation.

100

Phchr1]00028
Phchr1100560
Phchr1{00789
Phchr1|00858
Phchr100948
Phchr1(01308
Phchr
Phchr1]01461
Phchr1/01806
Phchr101819
Phchr1(02353
Phchr1/02838
Phchr1|02839
Phchr1(02992
Phchr1]03041
Phchr1(03043
Phchr1(03225
Phchr1]04988
Phchr1(05400
Phchr1(05519
Phchr1|05946
Phchr1/06101
Phchr1|07147
Phchr1|07153
Phchr1(07936
Phchr1(08232
Phchr1(08233
Phchr1|08234
Phchr1|08283
Phchr1(08350
Phchr1/08983
Phchr1/09283
Phchr1109299
Phchr109309
Phchr1|09672
Phchr109686
Phchr1/09789
Phchr
Phchr
Phehr1|11294
Phchr1|11486
Phchr1|11487
Phchr1|11500
Phchr1(12163
Phchr1|12930

=]
=
w
=
=

—
o
(<2
oo
o

N. -
T T
£ E
o =
0 [o]
Z 4

Day2.High.2
Day4.High.2

Day2.Low.1
Day4.Low.2
Day4.Low.1
Day2.Low.2
Day2.High.1
Day4.High.1

Figure 33: Heatmap of expression values of genes in module 4 in the Phanerochaete
chrysosporium dataset. Day2.High and Day4.High denote samples collected after 2 days
and 4 days under the high nitrogen condition, respectively. Day2.Low and Day4.Low de-
note samples collected after 2 days and 4 days under the low nitrogen condition, respec-
tively.

101

hchr1|00058
hehr1|00641
hchr1|00642
hchrd{01000
hchrd(01424
hchr1]01425
hchr1]01927
hchr]02053
hehr|02221
hchr1]02334
hchr1]02336
hchr1(02463
hchrt|02581
hchrd|02719
hchr1|02752
hehrt (02771
hchr1|02792
hchrd|04046
hchrt|04141
hchrd|04142
hchrd (04806
hchrd (04824
hchrd (05208
hchrd (09897
hchr1|06343
hchrt (06371
hchr1|06544
hchr1|06564
hchr1|06760
hchr1|06777
hchr1|07124
hchr1|07214
hehr1|07445
hehr1(07780
hchr1|07808
hchr1|08454
hchr1|08520
hchr1|10299
hehr1|10726
hehrt[10771
hchr1|10798
hchrd|10907
hehrd|11143
hchr
hchr
hehr
hehr
hehr
hehr
hehr
hehr
hchr

T 00U U U U000 U0

POPOPNORORD — — .
OODPRIOCOOOD—.
ISR OSONCO O
ORI SISHOOTD!

v N
[[y
-
0 0
z 4

Day2.High.2
Day4.High.2
Day2.Low.2
Day2.Low.1
Day4.Low.1
Day4.Low.2

Day2.High.1
Day4.High.1

Figure 34: Heatmap of expression values of genes in module 7 in the Phanerochaete
chrysosporium dataset. Day2.High and Day4.High denote samples collected after 2 days
and 4 days under the high nitrogen condition, respectively. Day2.Low and Day4.Low de-
note samples collected after 2 days and 4 days under the low nitrogen condition, respec-
tively.

102

Another interesting module is module 9. Genes in the module are highly expressed
under the normal condition, but not expressed under either the high nitrogen condition or
the low nitrogen condition (Figure 35). We speculate that the genes may be involved in the
biological process of utilizing nitrogen under the normal condition. Table 21 in Appendix

shows their annotation.

7.3.2 Methods
7.3.2.1 Collecting gene expression data and candidate transcription factors

RNA-seq technology was used to measure the expression values of 12,998 genes in Phane-
rochaete chrysosporium. Under each of high nitrogen and low nitrogen conditions, the
expression values of the genes were measured after 2 days and 4 days, respectively. In addi-
tion, their expression values under the normal condition were also measured. We collected
two replicates of each measurement, so the dataset consisted of 10 samples. Cufflinks
[128] was applied to convert raw counts into FPKM values. The annotation of the genes
was downloaded from the website of the centre for structural and functional genomics at
Concordia university. The annotation is based on blasting the genes against well-annotated
proteins from other fungi in the SwissProt database. 5,503 out of 12,998 genes have hits
under the E-value threshold 1E-9.

We removed genes with standard deviations less than 100. This led to a dataset with
only 861 genes. 498 out of the 861 genes are associated with annotation. The expression
values of each gene was normalized by subtracting its mean and dividing by its standard

deviation.

7.3.2.2 Applying the LIMMA-based method to infer regulatory relationships

We applied the Gibbs sampling clustering algorithm [63] to infer gene clusters (modules)
in this dataset. 100 Gibbs samplers were sampled with the default parameters. The clus-
tering algorithm obtained 23 modules. Modules with more than 100 genes or less than 5
genes were discarded. Consequently 18 modules were kept. We applied the LIMMA-based
method (described in Chapter 5) to infer regulators of the modules. 44 genes were selected

as candidate transcription factors according to their annotations (Table 15).

103

e Jo L ST T T T T Lo T T T T T

G = = = S COCOGC O CONONORORORO - 2 2 D CD e I D

T T T T T T T T T

e
O IO B 0 T OONIRORI GO C OG0 O HT IO ORI I G Id I TS IO IT I GO IO 2 OO S IOORI —=—I—> OO COICIHCIRICO—]
R R GILOGITH— GO T I P L LA COTIO—ISH> STGT—ICD 0O 5 G0 = — 0O KO OGO — IO RO — — O T . O CID 0 I O LRI OIS

T JeJe T T T

RORORORORI S A A A A SOOI OO O TOTO Il IS >F>S 3T

S DI

Day4.High.2
Day2.High.1
Day2.High.2
Day4.High.1
Day4.Low.2
Day4.Low.1
Day2.Low.1
Day2.Low.2
Normal.2
Normal.1

Figure 35: Heatmap of expression values of genes in module 9 in the Phanerochaete
chrysosporium dataset. Day2.High and Day4.High denote samples collected after 2 days
and 4 days under the high nitrogen condition, respectively. Day2.Low and Day4.Low de-
note samples collected after 2 days and 4 days under the low nitrogen condition, respec-
tively.

104

No | Transcription factor Annotation
1 Phchr1|00149 Transcription initiation factor TFIID subunit 7
2 Phchr1]00276 RNA polymerase II transcription factor B subunit 3
3 Phchr1|00412 Transcription elongation factor 1
4 Phchr1|00419 Transcription initiation factor TFIID subunit 13
5 Phchr1|00600 Transcription factor SPT8
6 Phchr1]00602 Transcription elongation factor spt-6
7 Phchr1|01409 Transcription initiation factor TFIID subunit 11
8 Phchr1|01493 Transcription elongation factor S-II
9 Phchr1|01730 Transcription factor SOX-30
10 Phchr1|02172 Transcription initiation factor TFIID subunit 5
11 Phchr1|02491 Transcription factor tau subunit sfc4
12 Phchr1|03145 Putative transcription factor C16C4.22
13 Phchr1|03186 Transcription initiation factor TFIID subunit 2
14 Phchr1|03235 pH-response transcription factor pacC/RIM101
15 Phchr1|03236 Putative transcription initiation factor TFIID 111 kDa subunit
16 Phchr1|03300 Transcription factor TFIIIB component B” homolog
17 Phchr1|03705 AP-1-like transcription factor
18 Phchr1|04286 Transcription factor IWS1
19 Phchr1|05320 Transcription initiation factor TFIID subunit 9
20 Phchr1]05421 Transcription elongation factor SPT4
21 Phchr1|05470 Transcription factor atf1
22 Phchr1|05523 General transcription factor 3C polypeptide 5
23 Phchr1|05796 RNA polymerase I-specific transcription initiation factor rrn3
24 Phchr1]06013 Transcription initiation factor IIB
25 Phchr1|06216 Transcription factor 25
26 Phchr1|06278 Nuclear transcription factor Y subunit gamma
27 Phchr1|06800 Transcription factor IIIB 60 kDa subunit
28 Phchr1|07516 Transcription initiation factor TFIID subunit 10b
29 Phchr1|07651 Transcription factor bHLH140
30 Phchr1|08302 Transcription initiation factor IIF subunit beta
31 Phchr1]09400 Probable transcription initiation factor IIA small chain
32 Phchr1|09418 Transcription elongation factor SPT5
33 Phchr1|09734 Nuclear transcription factor Y subunit beta
34 Phchr1]09896 Transcription factor prrl
35 Phchr1|09897 Transcription factor prrl
36 Phchr1{10102 Transcription initiation factor IIA large subunit
37 Phchr1|10195 Transcription initiation factor TFIID subunit 12
38 Phchr1|10350 RNA polymerase II transcription factor B subunit 4
39 Phchr1|10425 General transcription factor ITH subunit 1
40 Phchr1|10698 TFIIH basal transcription factor complex p47 subunit
41 Phchr1|10844 RNA polymerase II transcription factor B subunit 2
42 Phchr1|11322 General transcription factor IIE subunit 1
43 Phchr1|11863 Transcription initiation factor TFIID subunit 6
44 Phchr1|12375 Transcription factor steA

105

Table 15: Candidate transcription factors in Phanerochaete chrysosporium

Computational time

It takes around 30 minutes for Genomica on the A. niger dataset on a Dell workstation
with Intel Pentium 4 processor and 3GB memory. It takes around 1 minute for LeMoNe
to generate one Gibbs sampler for clustering genes on the S. thermophile dataset and the
Phanerochaete chrysosporium dataset on a HP rackmount server with AMD Opteron pro-
cessors (x86, 64 bit, dual core) and 16 GB memory. 100 samplers were generated for each
dataset. It takes around 5 minutes for LeMoNe to infer transcription factors of gene mod-
ules on the S. thermophile dataset on the Dell workstation. It takes 2 minutes for the linear
model to infer transcription factors of gene modules on the Phanerochaete chrysosporium

dataset on the Dell workstation.

106

Chapter 8
Conclusions and future work

Cells have a complex mechanism that controls the expression of genes so that they are able
to express varied combinations of genes in response to environmental changes or genetic
perturbations. A major part of this mechanism is fulfilled by transcription factors, which
are able to bind to the upstream region of genes and then influence their expression levels.
The transcriptional regulatory relationships between genes and their transcription factors
can be represented by a network, called a transcription regulatory network.

Gene expression data are widely used to infer transcription regulatory networks. How-
ever, many transcription factors and their targets do not show correlated expression profiles,
because the activity of the transcription factors may be regulated by post-translational mod-
ifications or by protein-protein interactions. Hence, we can not rely on expression data to
reconstruct the entire regulatory network.

Many algorithms have been proposed for inferring transcription regulatory networks
from gene expression data. Particularly, module networks [105], which are a special type of
Bayesian networks, are shown to be promising. In a module network, a regulatory module
is a set of genes that show similar expression profiles and are regulated by a shared set of
regulators (i.e., the regulation program of the module). The regulation program of a module
is a set of transcription factors that regulate the transcription of the genes in the module.
This thesis concentrates on designing algorithms for inferring the regulation program of a
given module.

First, we proposed a regression tree-based Gibbs sampling algorithm (Chapter 4). We

show that in synthetic datasets the proposed sampling algorithm achieves better results than

107

the deterministic algorithm [106]. Moreover, most predictions made by the sampling al-
gorithm in the yeast stress dataset [45] are supported by known regulatory relationships in
YEASTRACT [88]. Second, we proposed to apply a linear model to infer regulators in
module networks (Chapter 5). The effectiveness of the method was demonstrated by the
experiments in the yeast stress dataset and the E. coli dataset [35]. In addition, we showed
that the proposed method can detect regulatory relationships where transcription factors
and their targets are locally co-expressed. The regulatory relationships are often neglected
by regression tree-based algorithms. Third, we proposed to integrate results from different
regulation program learning algorithms (Chapter 6). For this, we combined results given
by three algorithms: LeMoNe [62], the LIMMA-based method [100], and Inferelator [11]
on the yeast stress dataset. The experiments show that the union and weighted rank ag-
gregation integration methods produce better precisions than those obtained by individual
algorithms.

Despite the success of the module network method, it has shortcomings. The most
critical limitation is that not all significant regulatory relationships can be embedded in
modules. The limitation is due to two reasons. First, some transcription factors regulate a
very small number of genes or even just one gene. Consequently, their targets are not likely
to be grouped into individual modules. As a result, the module network method shows a
poor performance in detecting targets of the transcription factors no matter which regulation
program learning algorithm is applied. Second, the result of the module network method is
normally interpreted as that the inferred transcription factor of a module regulates all genes
in the module. However, the interpretation is sometimes problematic and may lead to a
large number of false positives. The genes involved in the same biological process (i.e., a
module) may be regulated by different transcription factors, because they may play distinct
roles in the process.

To overcome the limitation, a straightforward solution is to apply individual gene-based
algorithms, such as CLR [35]. However, many condition contrasts are not obvious when
genes are not organized into modules, and consequently individual gene-based algorithms
fail to detect some regulatory relationships that module-based methods identify [86]. Most
regulatory network learning algorithms only work with either modules or genes, but not
both. The further work of this thesis is to perform analysis using module-based methods as
well as individual gene-based methods to investigate way to select between them in a given

dataset.

108

Bibliography

[1] http://www.454.com/. [Online; accessed 08-Jun-2010].
[2] http://www.appliedbiosystems.com. [Online; accessed 08-Jun-2010].
[3] http://www.illumina.com. [Online; accessed 08-Jun-2010].

[4] D. Abdulrehman, P. T. Monteiro, M. C. Teixeira, N. P. Mira, A. B. Loureno, S. C.
dos Santos, T. R. Cabrito, A. P. Francisco, S. C. Madeira, R. S. Aires, A. L. Oliveira,
I. S-Correia, and A. T. Freitas. YEASTRACT: providing a programmatic access to
curated transcriptional regulatory associations in Saccharomyces cerevisiae through
a web services interface. Nucleic Acids Research, 39(suppl 1):D136-D140, 2011.

[5] S. E. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215:403—-410, 1990.

[6] M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. di Bernardo. How to infer
gene networks from expression profiles. Molecular Systems Biology, 3:78-87, 2007.

[7] Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple

testing under dependency. Annals of Statistics, 29:1165-1188, 2001.

[8] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler. Gen-
Bank. Nucleic Acids Research, 35(suppl_1):D21-25, 2007.

[9] P.J. Bhat and T. V. S. Murthy. Transcriptional control of the GAL/MEL regulon of
yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduc-
tion. Molecular Microbiology, 40(5):1059-1066, 2001.

[10] G. Bindea, B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W.-
H. Fridman, F. Pags, Z. Trajanoski, and J. Galon. ClueGO: a Cytoscape plug-in

109

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

to decipher functionally grouped gene ontology and pathway annotation networks.
Bioinformatics, 25(8):1091-1093, 2009.

R. Bonneau, D. J. Reiss, P. Shannon, M. Facciotti, L. Hood, N. S. Baliga, and
V. Thorsson. The Inferelator: an algorithm for learning parsimonious regulatory

networks from systems-biology data sets de novo. Genome Biology, 7(5):R36, 2006.

M. R. Brent. How does eukaryotic gene prediction work. Nature Biotechnology,
25:883-885, 2007.

M. J. Buck and J. D. Lieb. ChIP-chip: considerations for the design, analysis, and ap-
plication of genome-wide chromatin immunoprecipitation experiments. Genomics,
83(3):349 — 360, 2004.

J. Bullard, E. Purdom, K. Hansen, and S. Dudoit. Evaluation of statistical meth-

ods for normalization and differential expression in mRNA-Seq experiments. BMC
Bioinformatics, 11(1):94, Feb. 2010.

A.J. Butte, I. S. Kohane, and I. S. Kohane. Mutual information relevance networks:
Functional genomic clustering using pairwise entropy measurements. Pacific Sym-

posium on Biocomputing, 5:415-426, 2000.

M. Carlson. Regulation of glucose utilization in yeast. Current Opinion in Genetics
& Development, 8(5):560 — 564, 1998.

M. Carlson. Glucose repression in yeast. Current Opinion in Microbiology, 2(2):202
—207, 1999.

L. E. Carvalho and C. E. Lawrence. Centroid estimation in discrete high-dimensional
spaces with applications in biology. Proceedings of the National Academy of Sci-
ences, 105(9):3209-3214, 2008.

R. Caspi, T. Altman, J. M. Dale, K. Dreher, C. A. Fulcher, F. Gilham, P. Kaipa, A. S.
Karthikeyan, A. Kothari, M. Krummenacker, M. Latendresse, L. A. Mueller, S. Pa-
ley, L. Popescu, A. Pujar, A. G. Shearer, P. Zhang, and P. D. Karp. The MetaCyc
database of metabolic pathways and enzymes and the BioCyc collection of path-
way/genome databases. Nucleic Acids Research, 38(suppl 1):D473-D479, 2010.

110

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Cherry, C. Adler, C. Ball, S. Chervitz, S. Dwight, E. Hester, Y. Jia, G. Juvik,
T. Roe, M. Schroeder, S. Weng, and D. Botstein. SGD: Saccharomyces Genome
Database. Nucleic Acids Research, 26(1):73-79, 1998.

K. R. Christie, S. Weng, R. Balakrishnan, M. C. Costanzo, K. Dolinski, S. S. Dwight,
S. R. Engel, B. Feierbach, D. G. Fisk, J. E. Hirschman, E. L. Hong, L. Issel-Tarver,
R. Nash, A. Sethuraman, B. Starr, C. L. Theesfeld, R. Andrada, G. Binkley, Q. Dong,
C. Lane, M. Schroeder, D. Botstein, and J. M. Cherry. Saccharomyces Genome
Database (SGD) provides tools to identify and analyze sequences from Saccha-

romyces cerevisiae and related sequences from other organisms. Nucleic Acids Re-
search, 32(suppl-1):D311-314, 2004.

G. Cochrane, P. Aldebert, N. Althorpe, M. Andersson, W. Baker, A. Baldwin,
K. Bates, S. Bhattacharyya, P. Browne, A. van den Broek, M. Castro, K. Duggan,
R. Eberhardt, N. Faruque, J. Gamble, C. Kanz, T. Kulikova, C. Lee, R. Leinonen,
Q. Lin, V. Lombard, R. Lopez, M. McHale, H. McWilliam, G. Mukherjee, F. Nar-
done, M. P. G. Pastor, S. Sobhany, P. Stoehr, K. Tzouvara, R. Vaughan, D. Wu,
W. Zhu, and R. Apweiler. EMBL Nucleotide Sequence Database: developments in
2005. Nucleic Acids Research, 34(suppl_1):D10-15, 2006.

J. A. Coffman, R. Rai, T. Cunningham, V. Svetlov, and T. G. Cooper. Gatlp, a GATA
family protein whose production is sensitive to nitrogen catabolite repression, par-
ticipates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces
cerevisiae. Molecular and Cellular Biology, 16(3):847-858, 1996.

T. S. Cunningham, R. Rai, and T. G. Cooper. The level of DAL80 expression down-
regulates GATA factor-mediated transcription in Saccharomyces cerevisiae. Journal
of Bacteriology, 182(23):6584-6591, 2000.

F. De Bona, S. Ossowski, K. Schneeberger, and G. Rtsch. Optimal spliced align-
ments of short sequence reads. Bioinformatics, 24(16):1174-i1180, 2008.

R. P. de Vries and J. Visser. Aspergillus enzymes involved in degradation of plant
cell wall polysaccharides. Microbiology and Molecular Biology Reviews, 65(4):497—
522,2001.

111

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

R. P. de Vries, J. Visser, and L. H. de Graaff. CreA modulates the XInR-induced
expression on xylose of Aspergillus niger genes involved in xylan degradation. Re-
search in Microbiology, 150(4):281 — 285, 1999.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1-38, 1977.

DOE Joint Genome Institute. Joint Genome Institute Aspergillus niger. http:
//genome. jgi-psf.org/Aspni5/Aspni5.home.html, 2009. [Online;
accessed 10-Aug-2009].

DOE Joint Genome Institute. Joint Genome Institute Sporotrichum ther-
mophile. http://genome. jgi-psf.org/Spothl/Spothl.home.html,
2010. [Online; accessed 08-Jul-2010].

S. R. Eddy. A probabilistic model of local sequence alignment that simplifies statis-
tical significance estimation. PLoS Computational Biology, 4(5):e1000069, 2008.

B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher. Empirical Bayes analy-
sis of a microarray experiment. Journal of the American Statistical Association,
96(456):1151-1160, 2001.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National Academy
of Sciences, 95(25):14863—-14868, 1998.

T. Emonet, C. M. Macal, M. J. North, C. E. Wickersham, and P. Cluzel. AgentCell:
a digital single-cell assay for bacterial chemotaxis. Bioinformatics, 21(11):2714—
2721, 2005.

J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif,
J. J. Collins, and T. S. Gardner. Large-scale mapping and validation of Escherichia
coli transcriptional regulation from a compendium of expression profiles. PLoS
Biology, 5(1):54-66, 2007.

112

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

R. D. Finn, J. Tate, J. Mistry, P. C. Coggill, S. J. Sammut, H.-R. Hotz, G. Ceric,
K. Forslund, S. R. Eddy, E. L. L. Sonnhammer, and A. Bateman. The Pfam protein
families database. Nucleic Acids Research, 36(suppl 1):D281-D288, 2008.

P. Flicek, M. R. Amode, and D. Barrell. Ensembl 2011. Nucleic Acids Research,
39(suppl 1):D800-D80O6, 2011.

L. Florea, G. Hartzell, Z. Zhang, G. M. Rubin, and W. Miller. A computer program
for aligning a cDNA sequence with a genomic DNA sequence. Genome Research,
8(9):967-974, 1998.

N. Friedman. Inferring cellular networks using probabilistic graphical models. Sci-
ence, 303(5659):799-805, 2004.

N. Friedman, M. Goldszmidt, and A. Wyn. Data analysis with Bayesian networks: A
bootstrap approach. In Proceedings of 15th Conference on Uncertainty in Artificial
Intelligence, pages 206-215, 1999.

N. Friedman and D. Koller. Being Bayesian about network structure. a Bayesian

approach to structure discovery in Bayesian networks. Machine Learning, 50(1-
2):95-125, 2003.

N. Friedman, M. Linial, and I. Nachman. Using Bayesian networks to analyze ex-
pression data. Journal of Computational Biology, 7(3-4):601-620, 2000.

N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure from
massive datasets: The ”Sparse Candidate” algorithm. In Proceedings of 15th Con-
ference on Uncertainty in Artificial Intelligence, pages 206-215, 1999.

S. Gama-Castro, V. Jimenez-Jacinto, M. Peralta-Gil, A. Santos-Zavaleta, M. 1.
Penaloza-Spinola, B. Contreras-Moreira, J. Segura-Salazar, L. Muniz-Rascado,
I. Martinez-Flores, H. Salgado, C. Bonavides-Martinez, C. Abreu-Goodger,
C. Rodriguez-Penagos, J. Miranda-Rios, E. Morett, E. Merino, A. M. Huerta,
L. Trevino-Quintanilla, and J. Collado-Vides. RegulonDB (version 6.0): gene
regulation model of Escherichia coli K-12 beyond transcription, active (experi-
mental) annotated promoters and Textpresso navigation. Nucleic Acids Research,
36(Database issue):D120-124, 2008.

113

[45] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz,
D. Botstein, and P. O. Brown. Genomic expression programs in the response of yeast

cells to environmental changes. Molecular and Cellular Biology, 11(12):4241-4257,
2000.

[46] Gene Ontology Consortium. Creating the gene ontology resource: design and im-
plementation. Genome Research, 11(8):1425-1433, 2001.

[47] Gene Ontology Consortium. The Gene Ontology (GO) database and informatics
resource. Nucleic Acid Research, 32(Database issue):D258-D261, 2004.

[48] D. Gershon. Microarray technology: An array of opportunities. Nature,
416(6883):885-891, 2002.

[49] D. Ghosh and A. M. Chinnaiyan. Mixture modelling of gene expression data from
microarray experiments. Bioinformatics, 18(2):275-286, 2002.

[50] P. Giudici and R. Castelo. Improving Markov Chain Monte Carlo model search for
data mining. Machine Learning, 50(1):127-158, January 2003.

[51] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander. Molecular classification of cancer: Class discovery and class prediction by

gene expression monitoring. Science, 286(5439):531-537, 1999.

[52] M. Harbers and P. Carninci. Tag-based approaches for transcriptome research and
genome annotation. Nature Methods, 2(7):495-502, 2005.

[53] A. A. Hasper, J. Visser, and L. H. De Graaff. The Aspergillus niger transcriptional
activator XInR, which is involved in the degradation of the polysaccharides xylan
and cellulose, also regulates d-xylose reductase gene expression. Molecular Micro-
biology, 36(1):193-200, 2000.

[54] D. Heckerman. A tutorial on learning with Bayesian networks. In Learning in
graphical models, pages 301-354. MIT Press, 1999.

[55] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model
averaging: A tutorial. Statistical Science, 14(4):382—-401, 1999.

114

[56] R. A. Holt and S. J. Jones. The new paradigm of flow cell sequencing. Genome
Research, 18(6):839-846, 2008.

[57] D. W. Huang, B. T. Sherman, and R. A. Lempicki. Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids
Research, 37(1):1-13, 2009.

[58] S. Hunter, R. Apweiler, T. K. Attwood, A. Bairoch, A. Bateman, D. Binns, P. Bork,
U. Das, L. Daugherty, L. Duquenne, R. D. Finn, J. Gough, D. Haft, N. Hulo,
D. Kahn, E. Kelly, A. Laugraud, 1. Letunic, D. Lonsdale, R. Lopez, M. Madera,
J. Maslen, C. McAnulla, J. McDowall, J. Mistry, A. Mitchell, N. Mulder, D. Natale,
C. Orengo, A. F. Quinn, J. D. Selengut, C. J. A. Sigrist, M. Thimma, P. D. Thomas,
F. Valentin, D. Wilson, C. H. Wu, and C. Yeats. InterPro: the integrative protein
signature database. Nucleic Acids Research, 37(suppl 1):D211-D215, 2009.

[59] S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano. Combining
microarrays and biological knowledge for estimating gene networks via Bayesian
networks. In Proceedings of the IEEE Computer Society Conference on Bioinfor-
matics, 2003.

[60] R. A. Irizarry, C. Wang, Y. Zhou, and T. P. Speed. Gene set enrichment analysis
made simple. Statistical Methods in Medical Research, 18(6):565-575, 2009.

[61] D.Jiang, C. Tang, and A. Zhang. Cluster analysis for gene expression data: a survey.
IEEE Transactions on Knowledge and Data Engineering, 16(11):1370- 1386, 2004.

[62] A. Joshi, R. De Smet, K. Marchal, Y. Van de Peer, and T. Michoel. Module net-
works revisited: computational assessment and prioritization of model predictions.
Bioinformatics, 25(4):490-496, 2009.

[63] A. Joshi, Y. Van de Peer, and T. Michoel. Analysis of a Gibbs sampler method
for model-based clustering of gene expression data. Bioinformatics, 24(2):176—183,
2008.

[64] P. D. Karp, S. Paley, and P. Romero. The Pathway Tools software. Bioinformatics,
18(suppl 1):S225-S232, 2002.

115

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

I. M. Keseler, J. Collado-Vides, A. Santos-Zavaleta, M. Peralta-Gil, S. Gama-Castro,
L. Muiz-Rascado, C. Bonavides-Martinez, S. Paley, M. Krummenacker, T. Altman,
P. Kaipa, A. Spaulding, J. Pacheco, M. Latendresse, C. Fulcher, M. Sarker, A. G.
Shearer, A. Mackie, 1. Paulsen, R. P. Gunsalus, and P. D. Karp. EcoCyc: a com-
prehensive database of Escherichia coli biology. Nucleic Acids Research, 39(suppl
1):D583-D590, 2011.

J.-H. Kim and M. Johnston. Two glucose-sensing pathways converge on Rgtl to reg-
ulate expression of glucose transporter genes in Saccharomyces cerevisiae. Journal
of Biological Chemistry, 281(36):26144-26149, 2006.

M. H. Kutner, J. Neter, C. J. Nachtsheim, and W. Li. Applied Linear Statistical
Models. Boston : McGraw-Hill Irwin, 2005.

P. H. Lee and D. Lee. Modularized learning of genetic interaction networks from
biological annotations and mRNA expression data. Bioinformatics, 21(11):2739—
2747, 2005.

T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M.
Hannett, C. T. Harbison, C. M. Thompson, 1. Simon, J. Zeitlinger, E. G. Jennings,
H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J.-B. Tagne, T. L. Volkert,
E. Fraenkel, D. K. Gifford, and R. A. Young. Transcriptional regulatory networks in
Saccharomyces cerevisiae. Science, 298(5594):799-804, 2002.

R. Leinonen, F. G. Diez, D. Binns, W. Fleischmann, R. Lopez, and R. Apweiler.
UniProt archive. Bioinformatics, 20(17):3236-3237, 2004.

J. Li, Z. J. Liu, Y. C. Pan, Q. Liu, X. Fu, N. G. Cooper, Y. Li, M. Qiu, and T. Shi.
Regulatory module network of basic/helix-loop-helix transcription factors in mouse
brain. Genome Biology, 8(11):R244, 2007.

H. Liu, J. Li, and L. Wong. A comparative study of feature selection and classi-
fication methods using gene expression profiles and proteomic patterns. Genome

Informatics, 13:51-60, 2002.

J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2004.

116

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

A. Madar, A. Greenfield, E. Vanden-Eijnden, and R. Bonneau. DREAM3: Network
inference using dynamic context likelihood of relatedness and the Inferelator. PLoS
ONE, 5(3):¢9803, 03 2010.

D. Madigan, J. York, and D. Allard. Bayesian graphical models for discrete data.
International Statistical Review, 63(2):215-232, 1995.

S. Maere, K. Heymans, and M. Kuiper. BINGO: a Cytoscape plugin to assess over-
representation of gene ontology categories in biological networks. Bioinformatics,
21(16):3448-3449, 2005.

B. Magasanik and C. A. Kaiser. Nitrogen regulation in Saccharomyces cerevisiae.
Gene, 290(1-2):1 - 18, 2002.

W. H. Majoros, M. Pertea, and S. L. Salzberg. TigrScan and GlimmerHMM: two
open source ab initio eukaryotic gene-finders. Bioinformatics, 20(16):2878-2879,
2004.

D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky.
Revealing strengths and weaknesses of methods for gene network inference. Pro-
ceedings of the National Academy of Sciences, 107(14):6286-6291, 2010.

D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano. Generating realistic in
silico gene networks for performance assessment of reverse engineering methods.
Journal of Computational Biology, 16(2):229-239, 20009.

A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Favera, and
A. Califano. ARACNE: an algorithm for the reconstruction of gene regulatory net-
works in a mammalian cellular context. BMC Bioinformatics, 7(Suppl 1):S7, 2006.

D. Martinez, L. Larrondo, N. Putnam, M. D. Sollewijn, M. D. Sollewijn Gelpke,
K. Huang, J. Chapman, K. G. Helfenbein, P. Ramaiya, J. C. Detter, F. Larimer,
P. M. Coutinho, B. Henrissat, R. Berka, and D. Cullen. Genome sequence of the

lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature
biotechnology, 22(6):695-700, 2004.

V. Matys, O. V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie,
I. Reuter, D. Chekmenev, M. Krull, K. Hornischer, N. Voss, P. Stegmaier,

117

[84]

[85]

[86]

[87]

[88]

[89]

[90]

B. Lewicki-Potapov, H. Saxel, A. E. Kel, and E. Wingender. TRANSFAC and
its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic
Acids Research, 34(Database issue):D108-110, 2006.

O. Mayans, M. Scott, I. Connerton, T. Gravesen, J. Benen, J. Visser, R. Pickersgill,
and J. Jenkins. Two crystal structures of pectin lyase A from Aspergillus reveal a pH
driven conformational change and striking divergence in the substrate-binding clefts

of pectin and pectate lyases. Structure, 5(5):677 — 689, 1997.

H. W. Mewes, D. Frishman, U. Gldener, G. Mannhaupt, K. Mayer, M. Mokrejs,
B. Morgenstern, M. Mnsterktter, S. Rudd, and B. Weil. MIPS: a database for
genomes and protein sequences. Nucleic Acids Research, 30(1):31-34, 2002.

T. Michoel, R. De Smet, A. Joshi, Y. Van de Peer, and K. Marchal. Comparative
analysis of module-based versus direct methods for reverse-engineering transcrip-

tional regulatory networks. BMC Systems Biology, 3(1):49, 2009.

T. Michoel, S. Maere, E. Bonnet, A. Joshi, Y. Saeys, T. Van den Bulcke,
K. Van Leemput, P. van Remortel, M. Kuiper, K. Marchal, and Y. Van de Peer.
Validating module network learning algorithms using simulated data. BMC Bioin-
formatics, 8(Suppl 2):S5, 2007.

P. T. Monteiro, N. D. Mendes, M. C. Teixeira, S. d’Orey, S. Tenreiro, N. P. Mira,
H. Pais, A. P. Francisco, A. M. Carvalho, A. B. Lourenco, I. Sa-Correia, A. L.
Oliveira, and A. T. Freitas. YEASTRACT-DISCOVERER: new tools to improve
the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae.
Nucleic Acids Research, 36(suppl_1):D132-136, 2008.

A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7):621-8,
2008.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443-53, 1970.

118

[91]

[92]

[93]

[94]

[95]

[96]

[97]

K. Okubo, H. Sugawara, T. Gojobori, and Y. Tateno. DDBJ in preparation for
overview of research activities behind data submissions. Nucleic Acids Research,
34(suppl-1):D6-9, 2006.

D. Pe’er. From gene expression to molecular pathways. PhD thesis, The Hebrew
University, 2003.

H. J. Pel, J. H. de Winde, D. B. Archer, P. S. Dyer, G. Hofmann, P. J. Schaap,
G. Turner, R. P. de Vries, R. Albang, K. Albermann, M. R. Andersen, J. D. Bendt-
sen, J. A. E. Benen, M. van den Berg, S. Breestraat, M. X. Caddick, R. Contreras,
M. Cornell, P. M. Coutinho, E. G. J. Danchin, A. J. M. Debets, P. Dekker, P. W. M.
van Dijck, A. van Dijk, L. Dijkhuizen, A. J. M. Driessen, C. d’Enfert, S. Geysens,
C. Goosen, G. S. P. Groot, P. W. J. de Groot, T. Guillemette, B. Henrissat, M. Her-
weijer, J. P. T. W. van den Hombergh, C. A. M. J. J. van den Hondel, R. T. J. M.
van der Heijden, R. M. van der Kaaij, F. M. Klis, H. J. Kools, C. P. Kubicek, P. A.
van Kuyk, J. Lauber, X. Lu, M. J. E. C. van der Maarel, R. Meulenberg, H. Menke,
M. A. Mortimer, J. Nielsen, S. G. Oliver, M. Olsthoorn, K. Pal, N. N. M. E. van Peij,
A.F. J. Ram, U. Rinas, J. A. Roubos, C. M. J. Sagt, M. Schmoll, J. Sun, D. Ussery,
J. Varga, W. Vervecken, P. J. J. van de Vondervoort, H. Wedler, H. A. B. Wosten, A.-
P. Zeng, A.J.J. van Ooyen, J. Visser, and H. Stam. Genome sequencing and analysis
of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology,
25(2):221-231, 2007.

J. Pevsner. Bioinformatics and Functional Genomics, 2nd Edition. Wiley-Blackwell,
20009.

V. Pihur, S. Datta, and S. Datta. Weighted rank aggregation of cluster validation
measures: a Monte Carlo cross-entropy approach. Bioinformatics, 23(13):1607—
1615, 2007.

V. Pihur, S. Datta, and S. Datta. RankAggreg, an R package for weighted rank
aggregation. BMC Bioinformatics, 10(1):62, 2009.

R. J. Prill, D. Marbach, J. Saez-Rodriguez, P. K. Sorger, L. G. Alexopoulos, X. Xue,

N. D. Clarke, G. Altan-Bonnet, and G. Stolovitzky. Towards a rigorous assessment

119

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

of systems biology models: The DREAM3 challenges. PLoS ONE, 5(2):€9202, 02
2010.

K. D. Pruitt, T. Tatusova, and D. R. Maglott. NCBI Reference Sequence (RefSeq):
a curated non-redundant sequence database of genomes, transcripts and proteins.
Nucleic Acids Research, 33(suppl 1):D501-D504, 2005.

J. Qi, T. Michoel, and G. Butler. A regression tree-based Gibbs sampler to learn
the regulation programs in a transcription regulatory module network. In Proceed-
ings of 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology, pages 206-215, 2010.

J. Qi, T. Michoel, and G. Butler. Applying linear models to learn regulation pro-
grams in a transcription regulatory module network. In Proceedings of 9th European
Conference on Evolutionary Computation, Machine Learning and Data Mining in

Bioinformatics, pages 37-47, 2011.

J. Qi, T. Michoel, and G. Butler. An integrative approach to infer regulation
programs in a transcription regulatory module network. In Proceedings of the
2011 ACM Conference on Bioinformatics, Computational Biology and Biomedicine.
ACM, 2011.

Z. S. Qin. Clustering microarray gene expression data using weighted Chinese
restaurant process. Bioinformatics, 22(16):1988—-1997, 2006.

G. J. G. Ruijter, S. A. Vanhanen, M. M. C. Gielkens, P. J. I. van de Vondervoort,
and J. Visser. Isolation of Aspergillus niger creA mutants and effects of the muta-

tions on expression of arabinases and L-arabinose catabolic enzymes. Microbiology,
143(9):2991-2998, 1997.

H.-J. Schller. Transcriptional control of nonfermentative metabolism in the yeast
Saccharomyces cerevisiae. Current Genetics, 43:139-160, 2003. 10.1007/s00294-
003-0381-8.

E. Segal, D. Pe’er, A. Regev, D. Koller, and N. Friedman. Learning module net-
works. Journal of Machine Learning Research, 6:557-588, 2005.

120

[106] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman.
Module networks: identifying regulatory modules and their condition-specific regu-

lators from gene expression data. Nature Genetics, 34(2):166—176, June 2003.

[107] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich probabilistic models
for gene expression. Bioinformatics, 17(suppl_1):S243-252, 2001.

[108] E. Segal, R. Yelensky, and D. Koller. Genome-wide discovery of transcrip-
tional modules from DNA sequence and gene expression. Bioinformatics,
19(suppl.1):1273-282, 2003.

[109] N. Semova, R. Storms, T. John, P. Gaudet, P. Ulycznyj, X. Min, J. Sun, G. Butler,
and A. Tsang. Generation, annotation, and analysis of an extensive Aspergillus niger
EST collection. BMC Microbiology, 6(1):7, 2006.

[110] W. Shi, M. Bogdanov, W. Dowhan, and D. R. Zusman. The pss and psd genes are
required for motility and chemotaxis in Escherichia coli. Journal of Bacteriology,
175(23):7711-7714, 1993.

[111] S. Sinha. http://www.cs.uiuc.edu/homes/sinhas/img/
DAILYILLINI. jpg, 2011. [Online; accessed 12-Jan-2011].

[112] T.F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195-197, 1981.

[113] G. K. Smyth. Linear models and empirical Bayes methods for assessing differen-
tial expression in microarray experiments. Statistical Applications in Genetics and
Molecular Biology, 3:Article3, 2004.

[114] G. K. Smyth. Limma: linear models for microarray data. In Bioinformatics
and Computational Biology Solutions using R and Bioconductor, pages 397-420.
Springer, 2005.

[115] G. Stolovitzky, R. J. Prill, and A. Califano. Lessons from the DREAM?2 challenges.
Annals of the New York Academy of Sciences, 1158:159—-195, March 2009.

[116] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A.
Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P.

121

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Mesirov. Gene set enrichment analysis: A knowledge-based approach for inter-
preting genome-wide expression profiles. Proceedings of the National Academy of
Sciences, 102(43):15545-15550, 2005.

P. A. C. "t Hoen, Y. Ariyurek, H. H. Thygesen, E. Vreugdenhil, R. H. A. M. Vossen,
R. X. de Menezes, J. M. Boer, G.-J. B. van Ommen, and J. T. den Dunnen. Deep
sequencing-based expression analysis shows major advances in robustness, resolu-

tion and inter-lab portability over five microarray platforms. Nucleic Acids Research,
36(21):e141, 2008.

Y. Tamada, H. Bannai, S. Imoto, T. Katayama, M. Kanehisa, and S. Miyano. Utiliz-
ing evolutionary information and gene expression data for estimating gene networks
with Bayesian network models. Journal of Bioinformatics and Computational Biol-
0gy, 3(6):1295-1313, December 2005.

Y. Tamada, S. Kim, H. Bannai, S. Imoto, K. Tashiro, S. Kuhara, and S. Miyano.
Estimating gene networks from gene expression data by combining Bayesian net-
work model with promoter element detection. Bioinformatics, 19(suppl.2):1i227-
236, 2003.

P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lan-
der, and T. R. Golub. Interpreting patterns of gene expression with self-organizing
maps: Methods and application to hematopoietic differentiation. Proceedings of the
National Academy of Sciences, 96(6):2907-2912, 1999.

S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic

determination of genetic network architecture. Nature Genetics, 22(3):281-5, 1999.

A. Tefferi, M. E. Bolander, S. M. Ansell, E. D. Wieben, and T. C. Spelsberg. Primer
on medical genomics part. IIl: Microarray experiments and data analysis. Mayo
Clinic Proceedings, 77(9):927-940, 2002.

M. C. Teixeira, P. Monteiro, P. Jain, S. Tenreiro, A. R. Fernandes, N. P. Mira,
M. Alenquer, A. T. Freitas, A. L. Oliveira, and 1. S-Correia. The YEASTRACT
database: a tool for the analysis of transcription regulatory associations in Saccha-
romyces cerevisiae. Nucleic Acids Research, 34(suppl 1):D446-D451, 2006.

122

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

W. Thompson, E. C. Rouchka, and C. E. Lawrence. Gibbs Recursive Sampler:
finding transcription factor binding sites. Nucleic Acids Research, 31(13):3580—
3585, 2003.

W. A. Thompson, L. A. Newberg, S. Conlan, L. A. McCue, and C. E. Lawrence. The
Gibbs Centroid Sampler. Nucleic Acids Research, 35(Web Server issue): W232-237,
2007.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):pp. 267-288, 1996.

C. Trapnell, L. Pachter, and S. L. Salzberg. TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics, 25(9):1105-1111, 20009.

C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren,
S. L. Salzberg, B. J. Wold, and L. Pachter. Transcript assembly and quantification
by RNA-Seq reveals unannotated transcripts and isoform switching during cell dif-

ferentiation. Nature Biotechnology, 5:511-5, 2010.

V. G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied
to the ionizing radiation response. Proceedings of the National Academy of Sciences,
98(9):5116-5121, 2001.

T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Ver-
schoren, B. De Moor, and K. Marchal. SynTReN: a generator of synthetic gene
expression data for design and analysis of structure learning algorithms. BMC Bioin-
formatics, 7(1):43, 2006.

V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler. Serial analysis of gene
expression. Science, 270(5235):484-487, 1995.

H. Wang and F. Azuaje. Gene expression correlation and gene ontology-based simi-
larity: An assessment of quantitative relationships. In Proceedings of IEEE Sympo-
sium on Computational Intelligence in Bioinformatics and Computational Biology,
pages 25-31. IEEE Computer Society, 2004.

123

[133]

[134]

[135]

[136]

[137]

Y. Wang, X.-S. Zhang, and Y. Xia. Predicting eukaryotic transcriptional cooperativ-
ity by Bayesian network integration of genome-wide data. Nucleic Acids Research,
37(18):5943-5958, 2009.

Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for transcrip-
tomics. Nature Reviews Genetics, 10:57-63, 2009.

A. V. Werhli and D. Husmeier. Reconstructing gene regulatory networks with
Bayesian networks by combining expression data with multiple sources of prior

knowledge. Statistical Applications in Genetics and Molecular Biology, 6(1), 2007.

X. Xie, J. Lu, E. J. Kulbokas, T. R. Golub, V. Mootha, K. Lindblad-Toh, E. S. Lander,
and M. Kellis. Systematic discovery of regulatory motifs in human promoters and
3 prime UTRs by comparison of several mammals. Nature, 434(7031):338-345,
2005.

T. Zeng and J. Li. Maximization of negative correlations in time-course gene ex-
pression data for enhancing understanding of molecular pathways. Nucleic Acids
Research, 38(1):el, 2010.

124

Appendices

125

No EST Module Number JGI Hit

1 Asn_00397 0 Aspni3|56553

2 Asn_00518 0 Aspni3|55604

3 Asn_00785 0 Aspni3|209668
4 Asn.01386 0 Aspni3|209397
5 Asn.01461 0 Aspni3|206434
6 Asn.01933 0 Aspni3|139271
7 Asn_04357 0 Aspni3|52535

8 Asn_04434 0 Aspni3|56782

9 Asn_04494 0 Aspni3|55668

10 Asn_06125 0 Aspni3|174330
11 Asn.07154 0 Aspni3|210730
12 Asn_07911 0 Aspni3|56628

13 Asn_08161 0 Aspni3|52520

14 Asn_08350 0 Aspni3|53284

15 Asn_08528 0 Aspni3|53978

16 Asn_08765 0 Aspni3|51764

17 Asn_10089 0 Aspni3|52520

18 Asn_00163 1 Aspni3|57436

19 Asn_00421 1 Aspni3|205670
20 Asn_00473 1 #N/A

21 Asn_00644 1 Aspni3|55136

22 Asn.00831 1 Aspni3|54490

23 Asn_00835 1 Aspni3|119631
24 Asn_00846 1 Aspni3|36764

25 Asn_00850 1 #N/A

26 Asn_01446 1 Aspni3|56619

27 Asn_01561 1 Aspni3|205927
28 Asn.02480 1 Aspni3|209771
29 Asn.04007 1 Aspni3|47818

30 Asn.04493 1 Aspni3|52817

31 Asn_04713 1 #N/A

32 Asn_05745 1 Aspni3|203198
33 Asn_07943 1 Aspni3|143109
34 Asn.08182 1 Aspni3|56619

35 Asn.00715 2 Aspni3|47967

36 Asn.00830 2 Aspni3|47967

37 Asn.00078 3 Aspni3|52118

38 Asn_00358 3 Aspni3|56225

39 Asn_00544 3 Aspni3|208318
40 Asn.01316 3 Aspni3|196413
41 Asn.01637 3 Aspni3|190162
42 Asn.01999 3 #N/A

43 Asn.02459 3 Aspni3|53173

44 Asn_02640 3 Aspni3|56880

45 Asn_03291 3 Aspni3|197015
46 Asn_03316 3 Aspni3|208898
47 Asn_04086 3 Aspni3|42733

48 Asn_04110 3 Aspni3|205620
49 Asn_04193 3 Aspni3|196413
50 Asn_04368 3 Aspni3|52040

51 Asn_06249 3 Aspni3|188169
52 Asn_10820 3 Aspni3|208318
53 Asn_00309 4 Aspni3|52919

54 Asn_00404 4 Aspni3|54097

55 Asn_00726 4 Aspni3|[205904
56 Asn_00766 4 Aspni3|55947

57 Asn_00815 4 Aspni3|209875
58 Asn_01126 4 Aspni3|201613
59 Asn.01508 4 Aspni3|199734
60 Asn_01557 4 Aspni3|52865

61 Asn02278 4 Aspni3|51702

62 Asn_02428 4 Aspni3|212334

Continued on next page

126

Table 16: continued

No EST Module Number JGI Hit

63 Asn_04380 4 #N/A

64 Asn.04553 4 Aspni3|225596
65 Asn_06497 4 Aspni3|38983

66 Asn_07370 4 Aspni3|52525

67 Asn_00396 5 Aspni3|172668
68 Asn.00428 5 #N/A

69 Asn.00508 5 Aspni3|214348
70 Asn_00898 5 Aspni3|209521
71 Asn_00988 5 #N/A

72 Asn_01438 5 Aspni3|55185

73 Asn.01574 5 Aspni3|211265
74 Asn.01646 5 Aspni3|209252
75 Asn.01657 5 Aspni3[49934

76 Asn.01744 5 Aspni3|51653

77 Asn_01941 5 Aspni3|52670
78 Asn_02386 5 #N/A

79 Asn_02743 5 Aspni3|56152

80 Asn_03366 5 Aspni3|45434

81 Asn_04141 5 Aspni3|214458
82 Asn_04771 5 Aspni3|53082

83 Asn.04798 5 Aspni3|54952

84 Asn_05148 5 Aspni3|52530
85 Asn_05786 5 #N/A

86 Asn_06020 5 Aspni3|205376
87 Asn_06737 5 Aspni3|205909
88 Asn_07192 5 #N/A

89 Asn 07224 5 Aspni3|53496

90 Asn_07531 5 Aspni3|225679
91 Asn_08332 5 Aspni3|212570
92 Asn.09151 5 Aspni3|200758
93 Asn_00331 6 Aspni3|57243

94 Asn_00470 6 #N/A

95 Asn_00506 6 Aspni3|54742

96 Asn_00507 6 Aspni3|53522

97 Asn_00563 6 Aspni3|196122
98 Asn_00593 6 Aspni3|55590

99 Asn.00613 6 Aspni3|54021

100 Asn.00952 6 Aspni3|54615

101 Asn.01045 6 Aspni3|204445
102 Asn_01451 6 Aspni3|127335
103 Asn_01602 6 Aspni3|200760
104 Asn.01943 6 #N/A

105 Asn.02074 6 Aspni3|214715
106 Asn.05354 6 Aspni3|175896
107 Asn.07606 6 Aspni3|56475

108 Asn_10322 6 Aspni3|209669
109 Asn_10482 6 Aspni3|56523

110 Asn_00075 7 Aspni3|41606

111 Asn.00765 7 Aspni3|56177

112 Asn.00974 7 Aspni3|196989
113 Asn.01607 7 Aspni3|198257
114 Asn_ 01664 7 Aspni3|55069

115 Asn 01919 7 Aspni3|200329
116 Asn_02012 7 Aspni3|54106

117 Asn_05808 7 Aspni3|225673
118 Asn_00524 8 Aspni3|124156
119 Asn-00686 8 Aspni3|52071

120 Asn_01360 8 Aspni3|56084

121 Asn_01537 8 Aspni3|208547
122 Asn.01770 8 Aspni3|203198
123 Asn_02169 8 Aspni3|183088

Continued on next page

127

Table 16: continued

No EST Module Number JGI Hit
124 Asn 02189 8 Aspni3|54140
125 Asn 02307 8 Aspni3|51662
126 Asn_04445 8 Aspni3|56093
127 Asn_04446 8 Aspni3|205670
128 Asn_ 04727 8 Aspni3|211544
129 Asn 05204 8 Aspni3|198680
130 Asn05299 8 Aspni3|207261
131 Asn05346 8 Aspni3|200605
132 Asn 05634 8 #N/A

133 Asn_ 06231 8 Aspni3|54837
134 Asn_06795 8 Aspni3|51997
135 Asn_08044 8 Aspni3|208192
136 Asn 08784 8 Aspni3|53386
137 Asn09354 8 Aspni3|38546
138 Asn_00743 9 Aspni3|214270
139 Asn_00927 9 Aspni3|54445
140 Asn 01026 9 Aspni3|55147
141 Asn 01382 9 Aspni3|206952
142 Asn_ 01560 9 #N/A

143 Asn_ 04275 9 Aspni3|52410
144 Asn 04287 9 Aspni3|54038
145 Asn_04299 9 Aspni3 122060
146 Asn_04301 9 Aspni3|54270
147 Asn 04311 9 Aspni3|211963
148 Asn_04313 9 Aspni3|55501
149 Asn 06610 9 Aspni3|57363
150 Asn 07607 9 Aspni3|180348
151 Asn_ 08711 9 Aspni3|208246
152 Asn_ 01022 10 Aspni3|197162
153 Asn 01049 10 Aspni3|124807
154 Asn-00107 11 Aspni3|56390
155 Asn_01789 11 #N/A

156 Asn_02113 11 Aspni3|56954
157 Asn_ 02441 11 Aspni3|207313
158 Asn_02492 11 Aspni3|52545
159 Asn_03280 11 Aspni3|52544
160 Asn_08808 11 Aspni3|189022
161 Asn_00065 12 Aspni3[47911
162 Asn_00260 12 Aspni3|213597
163 Asn_00547 12 Aspni3|214233
164 Asn_00584 12 Aspni3|207710
165 Asn_00696 12 Aspni3|200686
166 Asn 00697 12 Aspni3|54046
167 Asn 00757 12 Aspni3|46394
168 Asn00917 12 Aspni3|214233
169 Asn 01759 12 Aspni3|209422
170 Asn_02060 12 Aspni3|51738
171 Asn 02218 12 Aspni3|207276
172 Asn 02240 12 Aspni3|52741
173 Asn 02254 12 #N/A

174 Asn 02264 12 Aspni3|56788
175 Asn_02265 12 Aspni3|213369
176 Asn_02350 12 Aspni3|208611
177 Asn_02384 12 Aspni3|214624
178 Asn_02704 12 Aspni3|41522
179 Asn 03271 12 Aspni3|52004
180 Asn 03282 12 Aspni3|53268
181 Asn_03617 12 Aspni3|202289
182 Asn_03864 12 Aspni3|136085
183 Asn_04128 12 Aspni3|202301
184 Asn_04133 12 Aspni3|[173099

Continued on next page

128

Table 16: continued

No EST Module Number JGI Hit

185 Asn_04627 12 Aspni3|45867

186 Asn_04908 12 Aspni3|57215

187 Asn_ 05574 12 Aspni3|54015

188 Asn_05797 12 #N/A

189 Asn_06532 12 Aspni3|179998
190 Asn 06724 12 Aspni3|51883

191 Asn 07659 12 #N/A

192 Asn 07673 12 Aspni3|207278
193 Asn_08867 12 Aspni3|130814
194 Asn_08878 12 Aspni3|55114

195 Asn_09005 12 Aspni3|197473
196 Asn09186 12 Aspni3|37174

197 Asn 09187 12 Aspni3|49515

198 Asn_10425 12 Aspni3|205396
199 Asn_10480 12 #N/A

200 Asn_00186 13 Aspni3|53978

201 Asn_00290 13 Aspni3|56628

202 Asn_00460 13 Aspni3|187673
203 Asn_00910 13 Aspni3|56643

204 Asn_00981 13 Aspni3|208387
205 Asn01031 13 Aspni3|203267
206 Asn.01102 13 Aspni3|[172786
207 Asn.01374 13 #N/A

208 Asn_01375 13 Aspni3|202623
209 Asn 01791 13 Aspni3|53545

210 Asn_02245 13 Aspni3|[206607
211 Asn_02400 13 #N/A

212 Asn 02714 13 Aspni3|207862
213 Asn_03498 13 Aspni3|52449

214 Asn_04082 13 Aspni3|55680
215 Asn_06949 13 Aspni3|183268
216 Asn_08517 13 #N/A

217 Asn_00105 14 Aspni3|206342
218 Asn_00277 14 Aspni3|52270
219 Asn_00534 14 Aspni3|53252

220 Asn 01142 14 Aspni3|200887
221 Asn 02026 14 Aspni3|184327
222 Asn 04815 14 Aspni3|56887

223 Asn_05200 14 Aspni3|130233
224 Asn_05699 14 Aspni3|208022
225 Asn_06220 14 Aspni3|52186

226 Asn 06676 14 Aspni3|213505
227 Asn 07438 14 Aspni3|126214
228 Asn 07461 14 Aspni3|214859
229 Asn 07474 14 Aspni3|54801

Table 16: A. niger EST module assignment

129

Gene Module Number Annotation
Spoth1|105405 1 unknown
Spoth1]105650 1 unknown
Spoth1]109530 1 unknown
Spoth1[109941 1 unknown
Spoth1]110006 1 unknown
Spoth1[110210 1 unknown
Spoth1]110274 1 unknown
Spoth1|110466 1 unknown
Spoth1]110569 1 unknown
Spoth1|110597 1 unknown
Spoth1]110627 1 unknown
Spoth1|110699 1 unknown
Spoth1[110707 1 unknown
Spoth1[110817 1 unknown
Spoth1]110927 1 unknown
Spoth1|110948 1 unknown
Spoth1|111005 1 unknown
Spoth1[111118 1 unknown
Spoth1[111196 1 unknown
Spoth1|111425 1 unknown
Spoth1[111493 1 unknown
Spoth1|111512 1 unknown
Spoth1[111593 1 unknown
Spoth1]111636 1 unknown
Spoth1[111694 1 unknown
Spoth1|111695 1 unknown
Spoth1[111773 1 unknown
Spoth1[111817 1 unknown
Spoth1[111881 1 unknown
Spoth1[112017 1 unknown
Spoth1]112150 1 unknown
Spoth1]112534 1 unknown
Spoth1[112551 1 unknown
Spoth1[112561 1 unknown
Spoth1|112583 1 unknown
Spoth1]112682 1 unknown
Spoth1|113725 1 unknown
Spoth1]116020 1 unknown
Spoth1]17667 1 unknown
Spoth1]36429 1 unknown
Spoth1]39517 1 unknown
Spoth1]47786 1 unknown
Spoth1]55762 1 unknown
Spoth1]59591 1 unknown
Spoth1]62593 1 unknown
Spoth1]63764 1 unknown
Spoth1]67358 1 unknown
Spoth1]68104 1 unknown
Spoth1|71369 1 unknown
Spoth1|71631 1 unknown
Spoth1|72204 1 unknown
Spoth1|72333 1 unknown
Spoth1]72822 1 unknown
Spoth1]75107 1 unknown
Spoth1]76559 1 unknown
Spoth1|77277 1 unknown
Spoth1|78218 1 unknown
Spoth1]79440 1 unknown
Spoth1|81425 1 unknown
Spoth1[83980 1 unknown
Spoth1]86357 1 unknown
Spoth1[86979 1 unknown

Continued on next page

130

Table 17: continued

Gene Module Number Annotation
Spoth1|87141 1 unknown
Spoth1]87236 1 unknown
Spoth1]87328 1 unknown
Spoth1|87600 1 unknown
Spoth1|87961 1 unknown
Spoth1|88229 1 unknown
Spoth1|88290 1 unknown
Spoth1|88813 1 unknown
Spoth1|88876 1 unknown
Spoth1[89090 1 unknown
Spoth1[91450 1 unknown
Spoth1[102781 unknown

Spoth1]104936

Histidine triad (HIT) protein

Spoth1|106343

D(P)-binding

Spoth1|109542

Alternative oxidase

Spoth1[109875

unknown

Spoth1[110028 Basic helix-loop-helix dimerisation region bHLH
Spoth1|110187 unknown

Spoth1|110640 Globin-like

Spoth1|111025 No domain

Spoth1[111232 unknown

Spoth1[111928 unknown

Spoth1]112100 No domain

Spoth1[112121 Thiamine pyrophosphate enzyme, central region
Spoth1|112227 D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase
Spoth1|112340 unknown

Spoth1[112491 Sugar transporter
Spoth1]112607 unknown

Spoth1|114633 unknown

Spoth1]116450 unknown

Spoth1]117297 No domain

Spoth1]12282 Beta-Ig-H3/fasciclin
Spoth1]35073 unknown

Spoth1]44608 unknown

Spoth1]45669 No domain

Spoth1|51371 unknown

Spoth1 63965

Glutamine synthetase, catalytic region

[S53) [EOY [KOVY UV EOCY UV JEUCY [RUCY RUCY) [KOV) NCY FY Y FNY NCY O NN ENY BC) HC) Y NN NN BY INY FNY FY FCY FOY FNY ENY EY FOY FEY FE) NN Y FOY FNY F) BCY) FNY FNY FCY I

Spoth1]72700 unknown
Spoth1]80825 unknown
Spoth1[80919 unknown
Spoth1[81031 unknown
Spoth1|82154 unknown
Spoth1]82223 unknown
Spoth1|85131 No domain
Spoth1[86378 unknown
Spoth1|86783 unknown
Spoth1[88036 unknown
Spoth1[104913 unknown
Spoth1]105536 unknown
Spoth1]107442 unknown
Spoth1[107663 unknown
Spoth1[108137 unknown
Spoth1[109565 unknown
Spoth1|110231 unknown
Spoth1[110263 unknown
Spoth1[110451 unknown
Spoth1[110709 unknown
Spoth1[110717 unknown
Spoth1[110811 3 unknown
Spoth1|111107 3 unknown
Spoth1[111110 3 unknown

Continued on next page

131

Table 17: continued

Gene Module Number Annotation
Spoth1|111142 3 unknown
Spoth1|111191 3 unknown
Spoth1|111426 3 unknown
Spoth1|111482 3 unknown
Spoth1|111519 3 unknown
Spoth1|111987 3 unknown
Spoth1]112029 3 unknown
Spoth1[112136 3 unknown
Spoth1|112137 3 unknown
Spoth1|112165 3 unknown
Spoth1]112492 3 unknown
Spoth1|112499 3 unknown
Spoth1|112605 3 unknown
Spoth1|112708 3 unknown
Spoth1|113613 3 unknown
Spoth1|113873 3 unknown
Spoth1|116034 3 unknown
Spoth1]18022 3 unknown
Spoth1]36979 3 unknown
Spoth1]42718 3 unknown
Spoth1|59772 3 unknown
Spoth1]62195 3 unknown
Spoth1]63138 3 unknown
Spoth1]63276 3 unknown
Spoth1|64541 3 unknown
Spoth1[67310 3 unknown
Spoth1|67711 3 unknown
Spoth1]70702 3 unknown
Spoth1|72741 3 unknown
Spoth1|74496 3 unknown
Spoth1|74526 3 unknown
Spoth1]75870 3 unknown
Spoth1|79084 3 unknown
Spoth1|79643 3 unknown
Spoth1]80725 3 unknown
Spoth1|80889 3 unknown
Spoth1|86721 3 unknown
Spoth1]86936 3 unknown
Spoth1[87186 unknown
Spoth1[87550 unknown
Spoth1[87711 unknown
Spoth1|88076 unknown

Spoth1 103702

Aldose 1-epimerase

Spoth1|109566

Cellulose-binding region, fungal

Spoth1[109678

NULL

Spoth1[110651

Cellulose-binding region, fungal

Spoth1|111372

Cellulose-binding region, fungal

Spoth1|111388

Cellulose-binding region, fungal

Spoth1|112050

Cellulose-binding region, fungal

Spoth1|112089

Glycoside hydrolase, family 61

Spoth1]112264 No domain

Spoth1]112306 Methionine synthase, vitamin-B12 independent
Spoth1]112399 Cellulose-binding region, fungal
Spoth1[112471 Oxidoreductase, N-terminal
Spoth1|114107 General substrate transporter

Spoth1|114673

unknown

Spoth1|115968

Glycoside hydrolase, family 1

Spoth1| 116553

Glycoside hydrolase, family 10

Spoth1[33936

Cellulose-binding region, fungal

Spoth1]39555

Glycoside hydrolase, family 43

Spoth1]46583

IS FS) F NS (NN IS N F S [F NS RS S SO IFSSL IS RS RS IS IS (S S [EOC EOVY) [RON) %)

Cellulose-binding region, fungal

Continued on next page

132

Table 17: continued

Gene

Module Number

Annotation

Spoth1 66729

Cellulose-binding region, fungal

Spoth1|68753

No domain

Spoth1|76901

Glycoside hydrolase, family 45

Spoth1|80104

Glycoside hydrolase, family 43

Spoth1 |80312

Cellulose-binding region, fungal

Spoth1 81925

FAD dependent oxidoreductase

Spoth 84133

Lipase, GDSL

Spoth1|84164

General substrate transporter

Spoth1[86753

Cellulose-binding region, fungal

Spoth1]89872

Ribose/galactose isomerase

Spoth1]98003

Cellulose-binding region, fungal

Spoth1]102322

Pectate lyase, catalytic

Spoth1]103536 No domain
Spoth1]103539 unknown
Spoth1]108890 Sugar transporter

Spoth1[112014 Alcohol dehydrogenase, zinc-binding
Spoth1[46981 Dehydroquinase class I
Spoth1]52160 Glycosyl hydrolase, family 88

Spoth1]52463

Pectate lyase/Amb allergen

Spoth1]52525

NULL

Spoth1|52713

Pectin lyase fold/virulence factor

Spoth1|71204

Pectate lyase/Amb allergen

Spoth1|71406

No domain

Spoth1]79295

Oxidoreductase, N-terminal

Spoth1|81869

Mandelate racemase/muconate lactonizing enzyme, C-terminal

Spoth1[82505

Mandelate racemase/muconate lactonizing enzyme, C-terminal

Spothl |87557

[T KN KV EVN RV KON RV KV RV RV KV RV RV RV RO7) KV () VN [N NS (NS IS IS (NS (NS) S F'SS

Dihydrodipicolinate synthetase

Spoth1]90594 5 Pectate lyase/Amb allergen
Spoth1]95168 No domain
Spoth1]97342 RTA1 like protein
Spoth1]98480 Lipase, GDSL

Spoth1[100518

Glycoside hydrolase, family 61

Spoth1|103537

Glycoside hydrolase, family 61

Spoth1[109508 No domain
Spoth1[110117 unknown
Spoth1|113698 unknown
Spoth1]43353 NULL

Spoth | 52068

Glycoside hydrolase, family 5

Spoth1|71222

Phosphate transporter

Spoth1|73312 unknown
Spoth1|74713 unknown
Spoth1|74716 unknown
Spoth1|76393 No domain

Spothl |84297

Glycoside hydrolase, family 5

Spoth1]90655

Glycoside hydrolase family 2, immunoglobulin-like beta-sandwich

Spoth1]95378

No domain

Spoth1[97137

Glycoside hydrolase, family 7

Spoth1[97899

Glycosyltransferase sugar-binding region containing DXD motif

Spoth1[100838

unknown

Spoth1]102522

Pectin lyase fold/virulence factor

Spoth1[102694

Glycoside hydrolase, family 81

w|oo|oo|w]|w|ow|w]|w|w]|w|w|w|w |||]u|lu|lw

Spoth1]106218 unknown
Spoth1]108784 unknown
Spoth1|110315 unknown
Spoth1|111165 NULL
Spoth1|111313 No domain
Spoth1[111908 unknown
Spoth1]111909 unknown
Spoth1|112308 unknown
Spoth1]116694 unknown
Spoth1]12427 unknown

Continued on next page

133

Table 17: continued

Gene

Module Number

Annotation

Spoth |48666

unknown

Spoth1]50608

Glycoside hydrolase, family 18, N-terminal

Spoth1]50987

FAD linked oxidase, N-terminal

Spoth1|54328 unknown
Spoth1|56454 No domain
Spoth1]77995 unknown
Spoth1]79865 unknown
Spoth1[82368 unknown
Spoth1[84416 unknown

Spoth1]90182

Glycoside hydrolase, family 16

Spoth1[96790 No domain
Spoth1[100103 No domain
Spoth1]100909 unknown
Spoth1[102138 No domain
Spoth1]104825 unknown

Spoth1[106768

Nitroreductase

Spoth1[108831 unknown
Spoth1]109821 unknown
Spoth1]109823 unknown
Spoth1]109909 unknown
Spoth1|110063 No domain
Spoth1[110461 unknown
Spoth1[110491 unknown
Spoth1[110916 unknown
Spoth1[111289 unknown
Spoth1|111331 unknown
Spoth1|111567 unknown
Spoth1]111620 unknown
Spoth1|111708 No domain
Spoth1[111914 unknown
Spoth1]111934 unknown
Spoth1|112305 unknown
Spoth1|112338 unknown
Spoth1]112430 unknown
Spoth1|112431 unknown
Spoth1|112433 unknown
Spoth1|112477 unknown
Spoth1|112908 unknown
Spoth1|113582 unknown
Spoth1|114529 unknown
Spoth1|115479 No domain
Spoth1|115802 unknown
Spoth1|117357 unknown
Spoth1]23680 unknown

Spoth1]38458

Phospholipase A2, prokaryotic/fungal

oleleo|leleo|lo|lo]|le|e|lo|le|o]leo|lo|lo|o|c]le|lo|lo|o|lec|lo|lo|o|v|lo|lo|c|o|lo|lo|e|c]lele|lc|e|le|le|lo|o|o]|le|lc|lc|c|o]|v]|o|w|w|w]|w]|ow|w]|w]|ow|o]|w]|ow

Spoth1]40689 unknown
Spoth1]43088 unknown
Spoth1[44749 unknown
Spoth1|53851 unknown
Spoth1|56170 unknown
Spoth1]60177 unknown
Spoth1]63495 unknown
Spoth1]64356 unknown
Spoth1]64893 unknown
Spoth1]66848 unknown
Spoth1|68674 unknown
Spoth1]69394 unknown
Spoth1|71748 unknown
Spoth1]73461 unknown
Spoth1]78858 unknown
Spoth1|81466 No domain

Continued on next page

134

Table 17: continued

Gene Module Number Annotation
Spoth1]82399 9 unknown
Spoth1[83451 9 unknown
Spoth1|84480 9 unknown
Spoth1|86807 9 unknown
Spoth1|87390 9 unknown
Spoth1|87485 9 unknown
Spoth1|88885 9 unknown
Spoth1]95475 9 No domain
Spoth1]106502 10 Calycin-like
Spoth1|110778 10 No domain
Spoth1[110783 10 NULL
Spoth1[112714 10 FAD-dependent pyridine nucleotide-disulphide oxidoreductase
Spoth1|114666 10 Alcohol dehydrogenase, zinc-binding
Spoth1|114670 10 No domain
Spoth1]75151 10 Methyltransferase type 12
Spoth1]78013 10 AMP-dependent synthetase and ligase
Spoth1|78019 10 Tetracycline resistance protein, TetB
Spoth1]87202 10 No domain
Spoth1]98002 10 Methyltransferase type 11
Spoth1]102354 12 unknown
Spoth1[109981 12 unknown
Spoth1[110193 12 unknown
Spoth1]110306 12 unknown
Spoth1]110422 12 unknown
Spoth1]110889 12 unknown
Spoth1]110946 12 unknown
Spoth1[111041 12 unknown
Spoth1|111449 12 unknown
Spoth1]111487 12 unknown
Spoth1|111963 12 unknown
Spoth1]112204 12 ATPase, FO complex, subunit C
Spoth1]112294 12 unknown
Spoth1|112644 12 unknown
Spoth1|112673 12 unknown
Spoth1|114719 12 unknown
Spoth1|115855 12 unknown
Spoth1]27308 12 unknown
Spoth1]43545 12 No domain
Spoth1]45292 12 No domain
Spoth1]45938 12 unknown
Spoth1|57398 12 No domain
Spoth1[57901 12 No domain
Spoth1|75824 12 unknown
Spoth1]75993 12 unknown
Spoth1|79085 12 unknown
Spoth1]82782 12 Major facilitator superfamily MFS-1
Spoth1[83475 12 D-dependent epimerase/dehydratase
Spoth1|84481 12 unknown
Spoth1[86076 12 unknown
Spoth1|86826 12 unknown
Spoth1|87434 12 unknown
Spoth1[105197 13 Zinc linger, AN1-type
Spoth1]105969 13 No domain
Spoth1[106527 13 Signal transduction response regulator, receiver region
Spoth1[109138 13 Major facilitator superfamily MFS-1
Spoth1[109157 13 unknown
Spoth1[109510 13 Heat shock protein Hsp20
Spoth1[109691 13 unknown
Spoth1]110220 13 unknown
Spoth1[110317 13 L-lactate/malate dehydrogenase
Spoth1]110342 13 unknown

Continued on next page

135

Table 17: continued

Gene Module Number Annotation
Spoth1]110532 13 Heat shock protein Hsp20
Spoth1|111479 13 unknown
Spoth1|111656 13 No domain

Spothl | 112322 13 Globin, subset
Spoth1|112686 13 unknown
Spoth1|115756 13 unknown
Spoth1|116156 13 unknown
Spoth1]16943 13 unknown
Spoth1]20534 13 unknown
Spoth1]28069 13 Zinc finger, RING-type
Spoth1]61543 13 No domain
Spoth1|76301 13 unknown

Spothl |76670 13 DH:flavin oxidoreductase/NADH oxidase, N-terminal
Spoth1|76752 13 unknown
Spoth1]80427 13 Chaperonin clpA/B
Spoth1]84198 13 unknown
Spoth1|84852 13 unknown
Spoth1]85648 13 unknown
Spoth1|88496 13 unknown
Spoth1[89097 13 No domain
Spoth1]97046 13 unknown
Spoth1]103580 14 No domain
Spoth1]109532 14 unknown
Spoth1]109720 14 unknown
Spoth1[109978 14 Pyruvate carboxyltransferase
Spoth1[110427 14 unknown
Spoth1]110586 14 unknown
Spoth1]111339 14 unknown
Spoth1|111693 14 unknown
Spoth1]111780 14 unknown
Spoth1]112284 14 unknown
Spoth1]112362 14 Regulator of G protein signalling superfamily
Spoth1|112637 14 unknown
Spoth1|113666 14 unknown
Spoth1|115646 14 unknown
Spoth1|115983 14 No domain
Spoth1]43157 14 unknown
Spoth1]46070 14 No domain
Spoth1]57926 14 unknown
Spoth1]60294 14 unknown
Spoth1|60509 14 Amino acid transporter, transmembrane
Spoth1|70089 14 Bacterial transferase hexapeptide repeat
Spoth1|78828 14 No domain
Spoth1]80072 14 unknown
Spoth1[80133 14 No domain
Spoth1[86146 14 No domain
Spoth1[89037 14 No domain
Spoth1[90641 14 Tetracycline resistance protein, TetA
Spoth1]94208 14 unknown
Spoth1|100068 15 Cellulose-binding region, fungal
Spoth1]103032 15 Glycoside hydrolase, family 43
Spoth1]103054 15 Neuraminidase
Spoth1[108917 15 No domain
Spoth1]109444 15 Glycoside hydrolase, family 12
Spoth1[109943 15 Glycoside hydrolase, family 18, catalytic domain
Spoth1|111088 15 Cellulose-binding region, fungal
Spoth1]39279 15 Glycoside hydrolase, family 62
Spoth1]49824 15 Glycoside hydrolase, family 11
Spoth1]51596 15 unknown
Spoth1]55869 15 Cellulose-binding region, fungal
Spoth1]55982 15 Glycoside hydrolase, family 62

Continued on next page

136

Table 17: continued

Gene Module Number Annotation
Spoth1]56237 15 Glycoside hydrolase, family 11
Spoth1|79765 15 Glycoside hydrolase, family 61
Spoth1[85556 15 Glycoside hydrolase, family 61
Spoth1|89603 15 Glycoside hydrolase, family 11
Spoth1]92668 15 Glycoside hydrolase, family 61
Spoth1]96478 15 Esterase, PHB depolymerase
Spoth1]98122 15 Glycoside hydrolase, family 61
Spoth1]99678 15 Lipase, GDSL

Table 17: S. thermophile gene module assignment

Gene

Module Number

Annotation

Phchrl [00431

1

408 ribosomal protein S21

Phchr1]00436

Heat shock protein 90 homolog

Phchr1]00439

Nascent polypeptide-associated complex subunit alpha

Phchr100639

Arginase

Phchr1]01404

Tubulin beta chain

Phchr1]01553 1 60S ribosomal protein L38
Phchr1]01653 1 60S ribosomal protein L8
Phchr1]02127 1 unknown

Phchr1]02159

408 ribosomal protein S16

Phchr1]02166

60S ribosomal protein L13

Phchr1]02226

408 ribosomal protein S11

Phchr1]02233

Isopentenyl-diphosphate Delta-isomerase

Phchr1]02292

60S ribosomal protein L32-A

Phchr1]02329

Polyubiquitin

Phchr1]02508

Farnesyl pyrophosphate synthase

Phchr1]02616

408 ribosomal protein S14

Phchr1]02643

60S ribosomal protein L24

Phchr1]02655

Hydrophobin-1

Phchr1]02674

Glucosamine 6-phosphate N-acetyltransferase 1

Phchr1]02744

60S ribosomal protein L23

Phchr1]03099

Protein priA

Phchr1]03367

408 ribosomal protein S28

Phchr1|03374

60S ribosomal protein L22

Phchr1]03563

unknown

Phchr1|04170

Protein SnodProt1

Phchr1|04571

V-type proton ATPase 16 kDa proteolipid subunit

Phchrl [04674

60S ribosomal protein L25

Phchr1]04812

408 ribosomal protein S9-B

Phchr1]04813

60S ribosomal protein L21-A

Phchr1]05242

40S ribosomal protein S7

Phchr1]05252

Ribonucleoside-diphosphate reductase small chain

Phchr1|05456

60S ribosomal protein L2

Phchrl|05544

408 ribosomal protein S1

Phchr1]05715 1 unknown
Phchr1]05908 1 60S ribosomal protein L6-2
Phchr1]05913 1 60S ribosomal protein L36

Phchr1|05923

60S ribosomal protein L9-A

Phchr1]06594

408 ribosomal protein SO

Phchr1]06651

60S ribosomal protein L5-B

Phchr1]06871

40S ribosomal protein S2

Phchr1]07055

60S ribosomal protein L1-B

Phchr1]07088

40S ribosomal protein S12

Phchr1]07275

Probable 60S ribosomal protein L37-B

Phchr1]07311

60S ribosomal protein L35a-4

Phchr1|07335

Histone H4

Phchr1|07336

Histone H3.2

Continued on next page

137

Table 18: continued

Gene Module Number Annotation
Phchr1]07358 1 Histone H3.2
Phchr1]07359 1 Histone H4

Phchr1|07452

17.7 kDa class I heat shock protein

Phchr1|07508

408 ribosomal protein S15

Phchr1|07509

608 acidic ribosomal protein P2

Phchr1|07678

60S ribosomal protein L37a

Phchr1|07717

Delta(24(24(1)))-sterol reductase

Phchr1]07942

Ubiquitin-40S ribosomal protein S27a-2

Phchr1]07987

60S ribosomal protein L11

Phchr1|08256

40S ribosomal protein S10-B

Phchr1|08895

UPF0368 protein YPL225W

Phchr1|09016

ATP synthase subunit gamma, mitochondrial

Phchr1]09047

60S ribosomal protein L27-A

Phchr1]09253

408 ribosomal protein S22

Phehrl [09254

408 ribosomal protein S17-B

Phchr1|09257

unknown

Phchrl [09342

unknown

Phchr1]09531

60S ribosomal protein L31

Phchr1]09535

608 ribosomal protein L34-A

Phchr1]09608

60S ribosomal protein L20

Phchr109768

608 ribosomal protein L14-A

Phchr1]09993

Guanine nucleotide-binding protein subunit alpha

Phchr1[10122 1 408 ribosomal protein S23
Phchrl|10245 1 408 ribosomal protein S8
Phchrl[10264 1 408 ribosomal protein S5
Phchr1]10392 1 60S ribosomal protein L30-1
Phchr1|10648 1 NA

Phchr1|10865

Chaperone protein dnaJ

Phchr1|10890

10 kDa heat shock protein, mitochondrial

Phchr1|11273

408 ribosomal protein S6-B

Phchrl|11376 1 Histone H2B
Phehrl|11377 1 Histone H2A
Phchrl[11379 1 C-8 sterol isomerase
Phchr1|11388 1 60S ribosomal protein L28
Phchrl|11463 unknown
Phchrl|11514 Histone H2A
Phchrl|11515 Histone H2B

Phchrl|11766

60S ribosomal protein L17

Phchr1|12086

Meiotically up-regulated gene 158 protein

Phchr1]00243

unknown

Phchr1|00766

unknown

Phchr1]00827

Alpha-amylase 1

Phchr1]01202 unknown
Phchr1|01871 unknown
Phchr1]02423 unknown
Phchr1]02619 unknown
Phchr1]02748 Chitinase 1

Phchr1]02807

Carboxyvinyl-carboxyphosphonate phosphorylmutase

Phchr1]02849

unknown

Phchr1]02950

unknown

Phchr1]03012

Glucan 1,3-beta-glucosidase

Phchr1|03558 unknown
Phchr1]03574 unknown
Phchr1]03897 unknown
Phchr1]04168 unknown
Phchr1]04588 unknown
Phchr1|04738 unknown
Phchr1]04749 unknown
Phchr1]04847 unknown
Phchrl[04864 unknown

Phchr1[05130

(S} ESY ENY AY FO) SN FNY A)) Y) FNY NOY) Y NN NNY N) NN FEY EY BN I B s I e

Endothiapepsin

Continued on next page

138

Table 18: continued

Gene

Module Number

Annotation

Phchr1]05316

Trihydroxybenzophenone synthase

Phchr1]05318

Chalcone synthase G

Phchr1]05549

unknown

Phchr1|05816

Probable beta-glucosidase I

Phchr1|05879 Spherulin-1B
Phchr1]06351 unknown
Phchr1|06413 unknown
Phchr1|07450 unknown
Phchr1]07820 Lipase
Phchr1]07823 unknown
Phchr1|08035 unknown

Phchr1|08417

Acyl-CoA-binding protein

Phchr1|08509 Chitinase 2
Phchr1|08824 unknown
Phchr1]09281 unknown
Phchr1|09818 Aspergillopepsin-2
Phchr1]09978 unknown
Phchrl|10224 Probable glycosidase C21B10.07
Phchr1|10253 unknown
Phchrl|10594 unknown
Phchrl|11843 Thaumatin-like protein 2
Phchrl|12104 Polyporopepsin
Phchrl]12132 Polyporopepsin
Phchrl[12220 unknown
Phchrl|12733 unknown
Phchrl|12771 unknown
Phchr1]00240 unknown

Phchr1]00539

[K%Y ECY FY FNY FNY ENY NY IO NN FY BOY) FNY FEY [) FO) FSY NNY N) NC) FOY FNY FNY RCY) N}

Pentachlorophenol 4-monooxygenase

Phchr1]00812 3 unknown
Phchr1|01054 3 18.1 kDa class I heat shock protein
Phchr1]01068 3 17.7 kDa class I heat shock protein
Phchr1]01470 3 Tripeptidyl aminopeptidase
Phchr1]02232 3 unknown
Phchr1]02429 3 unknown
Phchr1]02450 3 unknown
Phchr1]02601 3 unknown
Phchr1]02677 3 unknown
Phchr1]03318 3 unknown
Phchr1]04613 3 unknown
Phchr1]05120 3 unknown
Phchr1|05315 3 unknown
Phchr1]05860 3 unknown
Phchr1|07014 3 unknown
Phchr1|07017 3 unknown
Phchr1|07115 3 Calcium/calmodulin-dependent protein kinase type I
Phchr1]07118 3 unknown
Phchr1|07154 3 unknown
Phchr1|07420 3 Uncharacterized protein C17G6.02¢
Phchr1|07432 3 Uncharacterized protein C17G6.02¢
Phchr1|07888 3 unknown
Phchr1]07902 3 Hydroxymethylglutaryl-CoA synthase, cytoplasmic
Phchr1]08200 3 unknown
Phchr1]08202 3 unknown
Phchr1]08225 3 Ferric reductase transmembrane component 6
Phchr1]08422 3 unknown

Phchrl |08986 3 unknown

Phchrl 09449 3 unknown
Phchr1|10116 3 Diphosphomevalonate decarboxylase
Phchr1]10189 3 unknown
Phchrl[10254 3 unknown
Phchr1]10302 3 unknown

Continued on next page

139

Table 18: continued

Gene Module Number Annotation
Phchr1|10549 3 unknown
Phchrl|11154 3 Lathosterol oxidase
Phchr1|11270 unknown
Phchrl|12119 unknown
Phchrl|12218 unknown
Phchr1|12229 unknown
Phchrl|12244 unknown
Phchrl|12488 unknown
Phchrl|12842 unknown
Phchrl|12932 unknown
Phchr1]00028 unknown

Phchr1]00560

Dicarboxylic amino acid permease

Phchr1|00789

Probable sulfate permease C869.05¢

Phchr100858

Tetracycline resistance protein, class H

Phchr1|00948

Probable E3 ubiquitin ligase complex SCF subunit sconB

Phchr1]01308 unknown

Phchr1|01317 O-acetylhomoserine (thiol)-lyase
Phchr1|01461 Alpha-ketoglutarate-dependent taurine dioxygenase
Phchr1|01806 Alpha-ketoglutarate-dependent sulfonate dioxygenase
Phchr1|01819 Putative carbonate dehydratase-like protein Rv1284

Phchr1]02353

unknown

Phchrl [02838

N amino acid transport system protein

Phehrl |02839

Alpha-ketoglutarate-dependent taurine dioxygenase

Phchr1]02992

Polyporopepsin

Phchr1]03041

Probable quinone oxidoreductase

Phchr1]03043

Probable quinone oxidoreductase

Phchr1]03225

Uncharacterized transporter YIL166C

Phchr1]04988

Uncharacterized transporter C1002.16¢

Phchr1]05400

unknown

Phchr1]05519

Peroxiredoxin-6

Phchr1]05946 unknown
Phchr1]06101 unknown
Phchr1]07147 Aorsin

Phchr1|07153 unknown
Phchr1]07936 unknown
Phchr1]08232 unknown

Phchr1]08233

1-aminocyclopropane- 1-carboxylate oxidase

Phchr1]08234

Pantothenate transporter liz1

Phchr1]08283

Zinc-binding alcohol dehydrogenase domain-containing protein cipB

Phchr1|08350

Alpha-ketoglutarate-dependent sulfonate dioxygenase

Phchr1]08983

Flavonol synthase/flavanone 3-hydroxylase

Phchr1]09283

Dehydrogenase/reductase SDR family member 2

Phchr1]09299

Cystathionine gamma-lyase

Phchr1]09309 unknown
Phchr1]09672 unknown
Phchr1]09686 unknown

Phchr1]09789

Alpha-ketoglutarate-dependent taurine dioxygenase

Phchr1|10589 unknown

Phchr1|10776 unknown

Phchrl|11294 High-affinity methionine permease
Phchrl|11486 unknown

Phchrl | 11487 Uncharacterized protein ycaC
Phchrl|11500 Uncharacterized protein ycaC
Phchr1|12163 unknown

Phchr1|12930 Uncharacterized transporter YIL166C
Phchrl \00047 ATP synthase subunit beta, mitochondrial
Phchr1]00321 unknown

Phchr1]00579

Heat shock protein HSS1

Phchr1]00653

Uncharacterized MFS-type transporter C409.08

Phchrl [01182

Uncharacterized protein C13G6.15¢

Phchr1]01568

[T EVN RV RO RV KV (NN N VS NS (NN (N (S (NS [E NS (NS NS (S F NS NS SS PSS ESS ENY ES) S S N N S S N NS ES ES Y EY S RS E N E N N E S E N RN R S S NS E S ES A K22 ey ey ey ey povy oy

unknown

Continued on next page

140

Table 18: continued

Gene Module Number Annotation
Phchr1]01967 5 unknown
Phchr1]02030 5 unknown

Phchrl \02 185 5 ADP,ATP carrier protein
Phchr1]02194 5 unknown
Phchr1]02243 5 Chaperone protein ClpB
Phchrl \02304 5 Aspartate aminotransferase, mitochondrial
Phchr1]02406 5 unknown
Phchr1]02679 5 unknown
Phchr1]02823 5 Heat shock 70 kDa protein
Phchrl |02952 5 60S ribosomal protein L28-1
Phchr1|03376 5 unknown
Phchr1]03861 5 60S ribosomal protein L12
Phchr1|04185 5 Lanosterol 14-alpha demethylase
Phchr1]04193 5 608 acidic ribosomal protein PO
Phchr1|04663 5 unknown
Phchr1]04747 5 unknown
Phchr1]04859 5 UDP-glucose 4-epimerase
Phchr1]04950 5 unknown

Phchrl 04962 5 Peroxiredoxin 1
Phchr1]05066 5 Putative fungistatic metabolite
Phchr1|05166 5 Chitin synthase 1
Phchr1]05238 5 60S ribosomal protein L3
Phchr1]05495 5 UDP-glucuronic acid decarboxylase 1
Phchr1]05853 5 Uncharacterized protein C553.10
Phchr1]05856 5 Uncharacterized protein C553.10
Phchrl|06235 5 Siderophore iron transporter 3
Phchr1]06450 5 Alternative oxidase, mitochondrial
Phchr1]07506 5 unknown
Phchr1]07558 5 ATP synthase subunit alpha, mitochondrial
Phchr1|08004 5 unknown
Phchr1]08141 5 unknown
Phchr1]08246 5 unknown
Phchr1|08265 5 60S ribosomal protein L4-B
Phchr109038 5 Peptidyl-prolyl cis-trans isomerase D
Phchr1]09609 5 Tron transport multicopper oxidase fiol
Phchr1]09610 5 Plasma membrane iron permease
Phchr1]09674 5 3-hydroxy-3-methylglutaryl-coenzyme A reductase 2
Phchr1|10548 5 unknown
Phchrl|11114 5 Probable glucosamine—fructose-6-phosphate aminotransferase [isomerizing]
Phchrl|11158 5 Probable phosphoketolase
Phchrl|11272 5 408 ribosomal protein S13
Phchr1|11951 5 unknown
Phchr1|12397 5 unknown
Phchr1|12406 5 unknown
Phchr1|12521 5 unknown
Phchr1]01973 6 unknown
Phchr1]02322 6 G1/S-specific cyclin CLN1
Phchr1]02323 6 unknown
Phchr1]02432 6 Sorbose reductase soul
Phchr1]02701 6 unknown
Phchr1|04558 6 Proteasome subunit beta type-1
Phchr1[04610 6 Protein VTS1
Phchr1|05308 6 Iron sulfur cluster assembly protein 1, mitochondrial
Phchr1]05503 6 unknown
Phchr1]06685 6 unknown

Phchrl |06982 6 unknown
Phchr1]07069 6 unknown
Phchr1]07444 6 unknown
Phchr1]07758 6 3-dehydroquinate synthase
Phchr1|07927 6 unknown
Phchr1[08579 6 Aldehyde reductase 1

Continued on next page

141

Table 18: continued

Gene Module Number Annotation

Phchr1]09185 6 Sexual differentiation process protein isp4
Phchr1]09264 unknown

Phchr1]09559 ATP-dependent permease PDR12
Phchr1]09859 unknown

Phchr109904 unknown

Phchr1|10403

Cysteine proteinase 1, mitochondrial

Phchr1|10791

Alcohol oxidase

Phchr1|11069

Negative regulator of sexual conjugation and meiosis

Phchrl|11360 Sorbitol dehydrogenase
Phchrl|11523 unknown
Phchrl|12016 Elongation factor 3
Phchrl|12227 Glycerol dehydrogenase
Phchr1|12230 unknown
Phchrl|12455 unknown
Phchr1]12802 unknown
Phchr1]00058 unknown

Phchr1 00641 Oligopeptide transporter 3
Phchr1]00642 Oligopeptide transporter 7
Phchr1|01000 OV-16 antigen
Phchrl|01424 unknown
Phchr1|01425 unknown
Phchr1]01927 Chitin deacetylase
Phchr1]02053 unknown
Phchr1]02221 unknown
Phchr1[02334 unknown

Phchrl 02336

UPF0654 protein C11D3.01¢

Phchr1]02463

Probable urea active transporter 1

Phchr1]02581

unknown

Phchr1]02719

unknown

Phchr1]02752

Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial

Phchr1]02771 Zinc-type alcohol dehydrogenase-like protein PB24D3.08c
Phchr1]02792 unknown
Phchr1]04046 Tripeptidyl-peptidase SED2

Phchr1|04141

Choline dehydrogenase

Phchr1|04142

unknown

Phchr1|04806

Putative dioxygenase C576.01c

Phchrl|04824 Histone H3.2
Phchr1]05208 unknown
Phchr1]05897 unknown
Phchr1]06343 unknown
Phchr1]06371 unknown

Phchr1|06544

Lactoylglutathione lyase

Phchr1]06564

Lysine-specific permease

Phchr1|06760

Purine permease

Phchr1|06777 unknown
Phchr1|07124 unknown
Phchrl|07214 Conidiation-specific protein 6

Phchr1|07445

Succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial

Phchr1|07780

Pyranose 2-oxidase

Phchr1|07808

Protein AIM2

Phchr1|08454

Uncharacterized permease C1683.05

Phchr1]08520

Oleate-induced peroxisomal protein POX18

[CY S [RC) BSY BRY BN BNC) RC) BGY B B RC) IBCY ISY I G [SC) N3 RO S C) XY BN IEN] [BN]) [BS [EN3 U] BRC) SR CY BN BN RC) ISR BRY IO NS BCY PSR IR) RCH RN IO) [Fo) RCN) - NG RN [RCN) IRCN) IS NG [N RGNS - (R -

Phchr1[10299 unknown

Phchr1|10726 Putative fumarate reductase
Phchr1|10771 unknown

Phchr1|10798 unknown

Phchrl 10907 Protein FDD123

Phchrl|11143 unknown

Phchrl|11163 unknown

Phehrl | 11648 Sexual differentiation process protein isp4
Phchrl[11839 Altered inheritance rate of mitochondria protein 38

Continued on next page

142

Table 18: continued

Gene Module Number Annotation

Phchr1|11856 unknown

Phchr1|12085 unknown

Phchrl \ 12231 Aconitate hydratase, mitochondrial
Phchrl|12647 Sexual differentiation process protein isp4

Phchrl|12814

Zinc-type alcohol dehydrogenase-like protein C1773.06¢

Phchr1|12843

unknown

Phchr1]00620

Uncharacterized GST-like protein yfcG

Phchr1]00743 unknown

Phchr1]01227 unknown

Phchr1|01617 Putative peroxiredoxin (Fragment)
Phchr1]02190 Probable glutamine amidotransferase DUG3
Phchr1]02935 unknown

Phchr1|03136 unknown

Phchr1|03146

Glutaredoxin-C1

Phchr1]04361

unknown

Phchrl[04384

Protein FDD123

Phchr1[05094

Beta-1,3-glucan-binding protein

Phchr1]05426

Uncharacterized amino-acid permease C794.03

Phchr1|06155

Probable glucan 1,3-beta-glucosidase D

Phchr1]06353

Epoxide hydrolase 1

Phchr1|07379

unknown

Phchr1]07393

unknown

Phehrl 07535

Uncharacterized 21.2 kDa protein

Phchr1[07730

Oligopeptide transporter 6

Phchr1]08138 unknown
Phchr1|09811 Aspergillopepsin-2
Phchrl|10456 unknown
Phchr1|10731 unknown

Phchrl|11427

NADP-dependent malic enzyme

Phchr1|11490

Uncharacterized protein ycaC

Phchrl|11768 Oligo-1,6-glucosidase
Phchrl[12126 Phosphatase yfbT
Phchrl|12458 unknown
Phchr1]00076 unknown

Phchr1|00195

Small COPII coat GTPase SAR1

Phchr1]00320

Syntaxin-like protein psy1

Phchr1]00333

unknown

Phchr1]00369

unknown

Phchr1]00502

GTP-binding nuclear protein spil

Phchr1|00576

Plasma membrane proteolipid 3

Phchr1]00589

60S ribosomal protein L26-2

Phchr1]00593

Adenylate kinase 2

Phchr1]00780

Cytochrome b-c1 complex subunit 7

Phchr1]|00814

Multiprotein-bridging factor 1

Phchr1|01174

CBM21 domain-containing protein CG9619

Phchr1]01217

Inositol polyphosphate multikinase

Phchrl|01824

Probable Ras-related protein Rab7

Phchr1|01888

408 ribosomal protein S27

Phchr1]02109

Putative acyl carrier protein, mitochondrial

Phchr1]02263

40S ribosomal protein S24-1

Phchr1]02280

40S ribosomal protein S3-A

Phchr1]02411

unknown

Phchrl [02584

unknown

Phchrl [03435

Protein wos2

Phchr1]03463

408 ribosomal protein S29

Phchr1]03469 Cytochrome P450 61
Phchr1]03631 60S ribosomal protein L19-3
Phchr1]03641 Protein YOP1
Phchr1]03652 unknown

Phchrl |04260

Cytochrome ¢ oxidase subunit 4, mitochondrial

Phchr1[04269

oleleo|leleo|lo|lo|le|e|lc|lo|o]|lo|lo|lo|o|oc]|lec|lo|lo|o]|lc|le|o|o|v]|v|o|w]|w]|w|ow]|ow|[ow]|w]|ow|ow|w|ow|ow|ow|[ow|w]|w]|ow]|w|w|w]|w]|oww|[w|w|w]|w|ow|]a]||x]|<|[<

unknown

Continued on next page

143

Table 18: continued

Gene

Module Number

Annotation

Phchr1]04437

unknown

Phchr1]04676

Protein vipl

Phchr1|04721

unknown

Phchr1]05209

Isocitrate dehydrogenase [NAD] subunit 2, mitochondrial

Phchr1]05403

Vacuolar aspartic protease

Phchr1|05417

unknown

Phchr1|05459

40S ribosomal protein S25-A

Phchr1]05469

60S ribosomal protein L18-B

Phchr1|05475

ATP synthase subunit d, mitochondrial

Phchr1]05678

14-3-3 protein homolog

Phchr1]06051

60S ribosomal protein L35-3

Phchr1|06144

Actin-1

Phchr1|06458

Delta(12) fatty acid desaturase

Phchr1|06734

Microsomal glutathione S-transferase 3

Phchr1]07028

Protein mago nashi homolog

Phchr1[07100

608 acidic ribosomal protein P1-alpha 1

Phchr1]07207 unknown
Phchr1]07495 Histone H2A
Phchr1|07655 unknown

Phchr1|07766

UPF0357 protein C1687.07

Phchr1|08597

Programmed cell death protein 6

Phchr1]08839

Serine hydroxymethyltransferase, cytosolic

Phchr1 09510

unknown

Phchr1]09585

unknown

Phchr1[09639

408 ribosomal protein S26

Phchr1]09833

unknown

Phchr1]09910

GTP-binding protein rhoA

Phchr1]10233

ADP-ribosylation factor 6

Phchr1|10326

Prenylated Rab acceptor 1

Phchr1]10520 unknown
Phchr1|10827 ATP synthase subunit g, mitochondrial
Phchr1[10880 408 ribosomal protein S20

Phchr1[10940

Cytochrome ¢ oxidase subunit 6B

Phchr1|11016

60S ribosomal protein L10

Phchrl|11135

Nascent polypeptide-associated complex subunit beta

Phchr1|11409

Ubiquitin-conjugating enzyme E2-16 kDa

Phchrl|11545

NA

Phchrl|11546

Plasma membrane ATPase 3

Phchr1|11738

40S ribosomal protein S27

ololo|le|lo|lo|lo|lo|efeo|le|lo|leo|o|lo|le|oc|e|o|le|lo|loc|o]|lo|e|ec|lo|lo|lo|le|o|lele|lo|le|[o]|le|lv|o|le|lo]lo|lo|lv|vo]e

Phehrl|11871 Histone H3
Phchrl|11916 unknown
Phchr1|11925 Thioredoxin-1
Phchr1|12073 unknown

Phchrl 12076 Cofilin

Phchrl|12405 unknown
Phchrl|12494 Pre-mRNA-splicing factor srpl
Phchrl|12872 Probable elongation factor 1-beta
Phchr1 |00555 10 Protein FDD123
Phchr1|01095 10 Glutathione reductase
Phchr1]02018 10 Bifunctional nitrilase/nitrile hydratase NIT4
Phchr1]02780 10 unknown
Phchr1]03587 10 Homoserine O-acetyltransferase
Phchr1]04992 10 Uncharacterized protein C4H3.07¢
Phchr1]05138 10 Probable aspartate-semialdehyde dehydrogenase
Phchr1]06094 10 unknown
Phchr1|07839 10 unknown
Phchrl|07994 10 unknown
Phchr109678 10 Probable aspartokinase
Phchr1|10076 10 unknown
Phchr1]10120 10 unknown
Phchrl|11382 10 Probable homoserine dehydrogenase

Continued on next page

144

Table 18: continued

Gene Module Number Annotation

Phchrl|11423 10 unknown

Phchrl|12215 10 Acetyl-coenzyme A synthetase
Phchr1]00626 11 Exoglucanase 3

Phchr1|00718 11 unknown

Phchr1|01140 11 Sodium/potassium-transporting ATPase subunit alpha-4
Phchrl \02102 11 Probable mannan endo-1,4-beta-mannosidase C
Phchr1]02642 11 unknown

Phchr1|04401 11 High-affinity glucose transporter
Phchr1]07536 11 Exoglucanase 1

Phchr1]07690 11 High-allinity glucose transporter SNF3
Phchr1|08445 11 Diacetyl reductase [(S)-acetoin forming]
Phchr1|08641 11 unknown

Phchr1|08642 11 Probable 1,4-beta-D-glucan cellobiohydrolase C
Phchr1|08751 11 unknown

Phchr1]09040 11 unknown

Phchr1]09318 11 unknown

Phchr1[09454 11 unknown

Phchrl|11106 11 unknown

Phehrl|11751 11 unknown

Phchrl|12695 11 unknown

Phchr100595 12 unknown

Phchr1]00759 12 Autophagy-related protein 8
Phchr1]01152 12 Cell division control protein 42 homolog
Phchr1[01419 12 Extracellular metalloproteinase 4
Phchr1]01566 12 Myosin regulatory light chain cdc4
Phchr1[01816 12 unknown

Phchr1]01902 12 unknown

Phchr1]02094 12 Phosphatidylglycerol/phosphatidylinositol transfer protein
Phchr1]03152 12 unknown

Phchr1]03211 12 unknown

Phchr1]03436 12 unknown

Phchr1]04750 12 unknown

Phchr1]07181 12 3-ketoacyl-CoA thiolase, peroxisomal
Phchr1|07489 12 Psi-producing oxygenase C
Phchr1|10099 12 unknown

Phchr1]10932 12 Fructose-bisphosphate aldolase
Phchr1]00099 13 S-adenosylmethionine synthase
Phchr1]00447 13 unknown

Phchr1]00458 13 NA

Phchr1]02260 13 Protein priA

Phchr1]03694 13 O-methyltransferase mdmC
Phchr1|05918 13 5-methyltetrahydropteroyltriglutamate—homocysteine methyltransferase
Phchr1]06325 13 Putative sterigmatocystin biosynthesis peroxidase stcC
Phchr1]07320 13 Zinc-regulated transporter 1
Phchr1]09505 13 unknown

Phchr1|10706 13 unknown

Phchrl|12155 13 unknown

Phchrl|12421 13 Alpha-amylase mde5
Phchr1|12905 13 Uncharacterized bolA-like protein C8C9.11
Phchr1]00752 14 unknown

Phchr1|00768 14 unknown

Phchr1]01096 14 Manganese peroxidase H3
Phchrl]04126 14 Manganese peroxidase 1
Phchr1]04129 14 Manganese peroxidase 1
Phchr1|04494 14 Aspartic protease

Phchr1]05059 14 Ligninase LG5

Phchr1|08551 14 unknown

Phchr1]09298 14 Manganese peroxidase H4
Phchrl|11305 14 Manganese peroxidase H4
Phchr1]00166 15 E3 ubiquitin ligase complex SCF subunit sconC
Phchr1|00387 15 unknown

Continued on next page

145

Table 18: continued

Gene Module Number Annotation

Phchr1]00434 15 Protein translation factor suil
Phchr1]00446 15 Protein FDD123
Phchr1|00547 15 unknown

Phchr1]|00700 15 Pyruvate dehydrogenase E1 component subunit alpha, mitochondrial
Phchr1|00705 15 unknown

Phchr1|00778 15 Probable transketolase
Phchr1]00781 15 Nucleoside diphosphate kinase
Phchr1]00859 15 unknown

Phchr1]00883 15 Phosphoglycerate kinase
Phchr1|01101 15 Nuclear transport factor 2
Phchr1|01498 15 unknown

Phchr1|01832 15 6-phosphogluconate dehydrogenase, decarboxylating
Phchr1]02096 15 unknown

Phchr1]02182 15 unknown

Phchr1|02248 15 unknown

Phchr1]02249 15 Elongation of fatty acids protein 2
Phchr1]02290 15 Elongation factor 1-alpha
Phchr1]02615 15 unknown

Phchr1]02639 15 unknown

Phchr1]02687 15 Calmodulin

Phchr1]02726 15 Profilin-1B

Phchr1]02934 15 unknown

Phchr1]02944 15 Enolase (Fragment)
Phchr1]02969 15 Thioredoxin

Phchr1]03115 15 unknown

Phchr1]03261 15 Inorganic pyrophosphatase
Phchr1]03289 15 Elongation factor 2
Phchr1]03730 15 Accumulation of dyads protein 2
Phchr1|04171 15 unknown

Phchr1]04259 15 unknown

Phchr1]04387 15 Protein FDD123
Phchrl|04438 15 unknown

Phchr1]04630 15 NAD-specific glutamate dechydrogenase
Phchr1]05054 15 unknown

Phchr1]05488 15 unknown

Phchr1]05502 15 unknown

Phchr1]05580 15 unknown

Phchr1]05582 15 unknown

Phchr1]05824 15 unknown

Phchr1|05876 15 Glutamine synthetase
Phchr1]05928 15 Altered inheritance rate of mitochondria protein 38
Phchr1]06150 15 Probable malate dehydrogenase, mitochondrial
Phchr1]06208 15 unknown

Phchr106648 15 Translationally-controlled tumor protein homolog
Phchr1|06745 15 Protein disulfide-isomerase
Phchr1|07143 15 Small ubiquitin-related modifier 1
Phchr1|07369 15 Phosphate carrier protein, mitochondrial
Phchr1|07555 15 Tropomyosin-2
Phchr1|07706 15 unknown

Phchr1|07716 15 unknown

Phchr1|07836 15 Transitional endoplasmic reticulum ATPase
Phchr1|08263 15 unknown

Phchrl|08488 15 Eukaryotic translation initiation factor 1A, X-chromosomal
Phchr1]08647 15 Inositol-3-phosphate synthase
Phchr1|08756 15 unknown

Phchr1|08829 15 L-threonine 3-dehydrogenase
Phchr1 09280 15 ATP-citrate synthase
Phchr1]09317 15 unknown

Phchr1]09433 15 Peptidyl-prolyl cis-trans isomerase
Phchr1|09528 15 unknown

Phchr1]09532 15 unknown

Continued on next page

146

Table 18: continued

Gene Module Number Annotation

Phchr1]09599 15 Adenosylhomocysteinase
Phchr1]09602 15 unknown

Phchr1]09896 15 Transcription factor prrl
Phchr1]09991 15 Heat shock protein homolog SSE1
Phchr1|10011 15 Chitinase Al
Phchr1]10241 15 Probable UTP—glucose-1-phosphate uridylyltransferase
Phchr1|10262 15 unknown

Phchr1|10284 15 ATP synthase subunit delta, mitochondrial
Phchr1]10593 15 Serine proteinase inhibitor IA-1
Phchrl|10612 15 unknown

Phchrl|10814 15 Probable aspartic-type endopeptidase CTSD
Phchr1|10822 15 Cystathionine beta-lyase

Phchrl \ 10944 15 Citrate synthase, mitochondrial
Phchrl|11330 15 unknown

Phehrl|11343 15 mRNA export protein mlo3
Phchrl|11417 15 C2 domain-containing protein C31G5.15
Phchrl[11694 15 unknown

Phchrl|11711 15 unknown

Phchrl|11828 15 unknown

Phchrl|11829 15 unknown

Phchrl|11905 15 Heat shock protein 83
Phchr1[12017 15 Mitochondrial outer membrane protein porin
Phchrl[12064 15 unknown

Phchrl]12094 15 Pyruvate decarboxylase

Phchrl | 12438 15 unknown

Phchrl[12440 15 unknown

Phchrl|12520 15 Glyceraldehyde-3-phosphate dehydrogenase
Phchrl|12573 15 78 kDa glucose-regulated protein homolog
Phchrl|12633 15 unknown

Phchr1|12651 15 Eukaryotic translation initiation factor SA
Phchrl|12775 15 Elongation factor 1-gamma 3
Phchrl]12832 15 unknown

Phchrl | 12865 15 unknown

Phchr1|12871 15 unknown

Phchr1]00364 17 GTP-binding protein yptl
Phchr1|01372 17 Histone H4

Phchr1]03258 17 Histone H4

Phchr1]03972 17 unknown

Phchr1]04598 17 unknown

Phchr1]05235 17 unknown

Phchr1]05721 17 Uncharacterized protein C11D3.13
Phchr1]06504 17 unknown

Phchr1|07429 17 Heat shock protein 16
Phchr1]07986 17 unknown

Phchr1|08301 17 Cytochrome ¢
Phchr1|08353 17 unknown

Phchr1]09086 17 NA

Phchr1]09087 17 NA

Phchr1]09312 17 Ammonium transporter 1
Phchrl|11209 17 unknown

Phchrl|11663 17 unknown

Phchrl|11730 17 unknown

Phchr1[11790 17 unknown

Phchr1|12898 17 unknown

Phchr1]00086 18 unknown

Phchr1|00646 18 unknown

Phchr1|01605 18 unknown

Phchr1]01829 18 Nucleolysin TIAR
Phchr1|01873 18 Protein yippee-like At3g08990
Phchr1|02035 18 unknown

Phchr1]02121 18 Uncharacterized protein YKR043C

Continued on next page

147

Table 18: continued

Gene Module Number Annotation

Phchr1]02742 18 Uncharacterized protein C4H3.03¢
Phchr1]02743 18 Uncharacterized protein C4H3.03¢
Phchr1]02811 18 unknown

Phchr1]03090 18 Putative voltage-gated potassium channel subunit beta
Phchr1|03170 18 unknown

Phchr1]03914 18 29 kDa ribonucleoprotein, chloroplastic
Phchrl \03985 18 Glucan 1,3-beta-glucosidase
Phchr1]04048 18 Polyubiquitin

Phchr1]04308 18 Peroxiredoxin HYR1
Phchr1|04379 18 Glutathione S-transferase 2
Phchr1|05127 18 NEDDS8

Phchr106095 18 O-methylsterigmatocystin oxidoreductase
Phchr1]06363 18 unknown

Phchr1]06503 18 unknown

Phchr1]07860 18 unknown

Phchr1[07954 18 unknown

Phchr1]08660 18 Subtilisin-like serine protease pepC
Phchr1|08870 18 Uncharacterized protein C32A11.02¢
Phchr1|08887 18 Putative sterigmatocystin biosynthesis peroxidase stcC
Phchr1|09021 18 Protein rds1

Phchr109158 18 L-threonine 3-dehydrogenase
Phchr1|09178 18 Uncharacterized protein C32A11.02¢
Phchr1]09754 18 Ubiquitin-conjugating enzyme E2 2
Phchr1]10026 18 unknown

Phchr1[10439 18 unknown

Phchrl[10564 18 unknown

Phchr1|10702 18 unknown

Phchrl|11228 18 unknown

Phchr1|11319 18 Trehalose-phosphatase
Phchrl|11410 18 unknown

Phchr1]12032 18 O-acetylhomoserine (thiol)-lyase
Phchrl|12123 18 unknown

Phchrl|12258 18 unknown

Phchr1|12437 18 unknown

Phchr1|12538 18 unknown

Phchr1]00024 19 unknown

Phchr1]00732 19 Heat shock protein sks2
Phchr1]01320 19 C-4 methylsterol oxidase
Phchr1|01565 19 unknown

Phchr1]02110 19 60S ribosomal protein L16
Phchr1]02407 19 Probable serine hydrolase C5E4.05¢
Phchr1]04296 19 unknown

Phchr1|04633 19 Mitochondrial-processing peptidase subunit beta
Phchrl \04765 19 Cytochrome c oxidase subunit 6, mitochondrial
Phchr1]05546 19 Acetyl-CoA acetyltransferase, mitochondrial
Phchr1]05871 19 ADP-ribosylation factor
Phchr1]06390 19 unknown

Phchr1|07818 19 unknown

Phchr1|08119 19 unknown

Phchr1]09645 19 60S ribosomal protein L44
Phchr1|10311 19 Guanine nucleotide-binding protein subunit beta-2-like 1
Phchrl|10475 19 ATP synthase subunit 5, mitochondrial
Phchr1]10601 19 unknown

Phchr1|10656 19 Uncharacterized membrane protein C576.04
Phchrl|11138 19 Sterol 24-C-methyltransferase
Phchrl|11742 19 Multidrug resistance protein 3
Phchrl|11846 19 Mitochondrial protein import protein mas5

Phchr|12970

GTP-binding protein rho2

Table 18: Phanerochaete chrysosporium gene module assignment

148

No Gene Annotation

1 Phchr1]00028 Unknown

2 Phchr1]00560 Dicarboxylic amino acid permease

3 Phchr1]00789 Probable sulfate permease C869.05¢

4 Phchr1]00858 Tetracycline resistance protein, class H

5 Phchr1]00948 Probable E3 ubiquitin ligase complex SCF subunit sconB
6 Phchr1]01308 Unknown

7 Phchr1[01317 O-acetylhomoserine (thiol)-lyase

8 Phchr1]01461 Alpha-ketoglutarate-dependent taurine dioxygenase

9 Phchr1]01806 Alpha-ketoglutarate-dependent sulfonate dioxygenase

10 Phchr1]01819

Putative carbonate dehydratase-like protein Rv1284

11 Phchr]02353

Unknown

12 Phchr1]02838

N amino acid transport system protein

13 Phchr1]02839

Alpha-ketoglutarate-dependent taurine dioxygenase

14 Phchr1]02992

Polyporopepsin

15 Phchr1[03041

Probable quinone oxidoreductase

16 Phchr1]03043

Probable quinone oxidoreductase

17 Phchrl]03225

Uncharacterized transporter YIL166C

18 Phchr1]04988

Uncharacterized transporter C1002.16¢

19 Phchr1]05400

Unknown

20 Phchr1]05519

Peroxiredoxin-6

21 Phchr1]05946 Unknown
22 Phchr1[06101 Unknown
23 Phchr1|07147 Aorsin

24 Phchr1]07153 Unknown
25 Phchr1]07936 Unknown
26 Phchr1]08232 Unknown

27 Phchr1]08233

1-aminocyclopropane- 1-carboxylate oxidase

28 Phchr1]08234

Pantothenate transporter liz1

29 Phchr1]08283

Zinc-binding alcohol dehydrogenase domain-containing protein cipB

30 Phchr1]08350

Alpha-ketoglutarate-dependent sulfonate dioxygenase

31 Phchr1]08983

Flavonol synthase/flavanone 3-hydroxylase

32 | Phehrl|09283

Dehydrogenase/reductase SDR family member 2

33 Phchr1]09299

Cystathionine gamma-lyase

34 Phchr1]09309 Unknown
35 Phchr1]09672 Unknown
36 Phchr1]09686 Unknown

37 Phchr1]09789

Alpha-ketoglutarate-dependent taurine dioxygenase

38 Phchr1|10589

Unknown

39 Phchr1|10776

Unknown

40 Phchrl|11294

High-affinity methionine permease

41 Phchrl|11486

Unknown

42 Phchrl|11487

Uncharacterized protein ycaC

43 Phchrl|11500

Uncharacterized protein ycaC

44 Phchrl[12163

Unknown

45 Phchr1|12930

Uncharacterized transporter YIL166C

Table 19: Annotation of genes in module 4 in the Phanerochaete chrysosporium dataset

No Gene Annotation

1 Phchr1]00058 Unknown

2 Phchr1|00641 Oligopeptide transporter 3
3 Phchr1]00642 Oligopeptide transporter 7
4 Phchr1]01000 OV-16 antigen

5 Phchrl]01424 Unknown

6 Phchr1]01425 Unknown

7 Phchr1]01927 Chitin deacetylase

8 Phchr1]02053 Unknown

9 Phchrl]02221 Unknown

10 Phchr1]02334 Unknown

Continued on next page

149

Table 20: continued

No Gene Annotation

11 Phchr1]02336 UPF0654 protein C11D3.01c

12 Phchr1]02463 Probable urea active transporter 1

13 Phchr1[02581 Unknown

14 Phchr1]02719 Unknown

15 Phchr1]02752 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial
16 Phchr1[02771 Zinc-type alcohol dehydrogenase-like protein PB24D3.08c
17 Phchr1]02792 Unknown

18 Phchr1|04046 Tripeptidyl-peptidase SED2

19 Phchrl|04141 Choline dehydrogenase

20 Phchr1]04142 Unknown

21 Phchr]04806 Putative dioxygenase C576.01c

22 Phchrl]04824 Histone H3.2

23 Phchr1]05208 Unknown

24 Phchr1]05897 Unknown

25 Phchr1]06343 Unknown

26 Phchr1]06371 Unknown

27 Phchrl]06544 Lactoylglutathione lyase

28 Phchrl]06564 Lysine-specific permease

29 Phchr1]06760 Purine permease

30 Phchr1]06777 Unknown

31 Phchr1]07124 Unknown

32 Phchr1]07214 Conidiation-specilic protein 6

33 Phchrl1]07445 Succinate dehydrogenase [ubiquinone] cytochrome b small subunit, mitochondrial
34 Phchr1]07780 Pyranose 2-oxidase

35 Phchr1]07808 Protein AIM2

36 Phchrl1]08454 Uncharacterized permease C1683.05

37 Phchr1]08520 Oleate-induced peroxisomal protein POX18

38 Phchr1]10299 Unknown

39 Phchr1]10726 Putative fumarate reductase

40 Phchrl[10771 Unknown

41 Phchr1]10798 Unknown

42 Phchr1]10907 Protein FDD123

43 Phchrl|11143 Unknown

44 Phchrl|11163 Unknown

45 Phchrl|11648 Sexual differentiation process protein isp4

46 Phchr1|11839 Altered inheritance rate of mitochondria protein 38
47 Phchrl|11856 Unknown

48 Phchrl]12085 Unknown

49 Phchrl[12231 Aconitate hydratase, mitochondrial

50 Phchrl|12647 Sexual differentiation process protein isp4

51 Phchrl|12814 Zinc-type alcohol dehydrogenase-like protein C1773.06¢
52 Phchrl|12843 Unknown

Table 20: Annotation of genes in module 7 in the Phanerochaete chrysosporium dataset

No Gene Annotation

1 Phchr1]00076 Unknown

2 Phchr1]00195 Small COPII coat GTPase SAR1

3 Phchr1]00320 Syntaxin-like protein psy1

4 Phchr1]00333 Unknown

5 Phchr1]00369 Unknown

6 Phchr1]00502 GTP-binding nuclear protein spil

7 Phchr1]00576 Plasma membrane proteolipid 3

8 Phchr1]00589 60S ribosomal protein L26-2

9 Phchr1]00593 Adenylate kinase 2

10 Phchr1]00780 Cytochrome b-c1 complex subunit 7

11 Phchr1]00814 Multiprotein-bridging factor 1

12 Phchr1]01174 CBM21 domain-containing protein CG9619

Continued on next page

150

Table 21: continued

No Gene Annotation

13 Phchr1]01217 Inositol polyphosphate multikinase
14 Phchr1]01824 Probable Ras-related protein Rab7
15 Phchr1]01888 40S ribosomal protein S27

16 Phchr1]02109 Putative acyl carrier protein, mitochondrial
17 Phchrl]02263 408 ribosomal protein S24-1

18 Phchr1]02280 40S ribosomal protein S3-A

19 Phchrl[02411 Unknown

20 Phchr1]02584 Unknown

21 Phchr1]03435 Protein wos2

22 Phchr1]03463 40S ribosomal protein S29

23 Phchr1]03469 Cytochrome P450 61

24 Phchr1[03631 60S ribosomal protein L19-3

25 Phchr1[03641 Protein YOP1

26 Phchrl|03652 Unknown

27 Phchr1]04260 Cytochrome ¢ oxidase subunit 4, mitochondrial
28 Phchrl]04269 Unknown

29 Phchr1]04437 Unknown

30 Phchr1]04676 Protein vipl

31 Phchrl[04721 Unknown

32 Phchr1]05209 Isocitrate dehydrogenase [NAD] subunit 2, mitochondrial
33 Phchr1]05403 Vacuolar aspartic protease

34 Phchr1]05417 Unknown

35 Phchr1]05459 40S ribosomal protein S25-A

36 Phchrl1]05469 60S ribosomal protein L18-B

37 Phchr1]05475 ATP synthase subunit d, mitochondrial
38 Phchr1]05678 14-3-3 protein homolog

39 Phchr1]06051 60S ribosomal protein L35-3

40 Phchrl|06144 Actin-1

41 Phchrl1]06458 Delta(12) fatty acid desaturase

42 Phchrl1]06734 Microsomal glutathione S-transferase 3
43 Phchr1]07028 Protein mago nashi homolog

44 Phchr1]07100 608 acidic ribosomal protein P1-alpha 1
45 Phchr1]07207 Unknown

46 Phchr1|07495 Histone H2A

47 Phchr1]07655 Unknown

48 Phchr1|07766 ‘UPF0357 protein C1687.07

49 Phchr1]08597 Programmed cell death protein 6

50 Phchr1]08839 Serine hydroxymethyltransferase, cytosolic
51 Phchr1]09510 Unknown

52 Phchr1]09585 Unknown

53 Phchr1]09639 40S ribosomal protein S26

54 Phchr1]09833 Unknown

55 Phchr1]09910 GTP-binding protein rhoA

56 Phchr1]10233 ADP-ribosylation factor 6

57 Phchr1[10326 Prenylated Rab acceptor 1

58 Phchr1[10520 Unknown

59 Phchr1|10827 ATP synthase subunit g, mitochondrial
60 Phchr1|10880 408 ribosomal protein S20

61 Phchr1|10940 Cytochrome c oxidase subunit 6B
62 Phchrl|11016 60S ribosomal protein L10

63 Phchrl|11135 Nascent polypeptide-associated complex subunit beta
64 Phchrl|11409 Ubiquitin-conjugating enzyme E2-16 kDa
65 Phchrl|11545 Unknown

66 Phchrl|11546 Plasma membrane ATPase 3

67 Phchrl|11738 408 ribosomal protein S27

68 Phchrl|11871 Histone H3

69 Phchrl|11916 Unknown

70 Phchr1]11925 Thioredoxin-1

71 Phchr1]12073 Unknown

72 Phchr1]12076 Cofilin

73 Phchrl|12405 Unknown

Continued on next page

151

Table 21: continued

No Gene Annotation
74 Phchrl|12494 Pre-mRNA-splicing factor srpl
75 Phchrl|12872 Probable elongation factor 1-beta
Table 21: Annotation of genes in module 9 in the Phanerochaete chrysosporium dataset

152

