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ABSTRACT

LINEAR FEEDBACK, IRREDUCIBILITY, M-MATRICES AND
THE STABILITY-HOLDABILITY PROBLEM

Steve Hardy

Consider a control system of n linear,
time autonomous, ordinary differential equations
x(t) = A x(t) + B u(t) . By letting u(t) be a linear
feedback control, that is, u(t) = X x(t) , we study the

impact on the system of making the further restrictions of

holdability and stability of R, . The holdability
restriction will be seen as equivalent to the essential
non-negativity of the matrix A+BX . Stability, on the other
hand, is equivalent to the moduli of all the eigenvalues
of A+BX being less than 1. The combined properties
are equivalent to A+BX being a non-singular M-matrix. By
allowing the matrix X to wvary , we study the restrictions
that holdability and stability of R: impose on X . In
either the scalar or non-scalar input case, these result 1in
some interval conditions on X, provided by the elements of

A and B, and certain polynomials. The structure of these

polynomials is studied.

(111)
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1 . INTRODUCTION .

A system of n homogeneous , linear , time
autonomous ordinary differential equations can be written
as

x(t) = A x(t) . “o <t < m

where t € R represents a scalar variable ( usually time ) ,

AeR™ is a constant matrix ,

x(t) = (x(£) w €),...,x (£)" , and
x(t) = S x(t) i=1, 2 n
i “‘HE— ’ 1 ’ 7

Note that since t represents a scalar time variable ,
it is quite natural to restrict t to ([o,o) , which is

assumed from here on without further comment.

An important property which is often required is that
the state x of the system be constrained to a particular
set I' for various reasons, including the possibility that
the dynamics of the model break down outside of T.

Therefore it becomes imperative to know if the trajectory

x(t) is contained in I for all t = 0. In such cases x(t) is




said to be holdable in I' .This problem was presented in a
paper by Berman and stern although results concerning it
are almost historical. Bellman gave one of the fundamental
characterization which is still the basis for a whole area
of research in stability and control theory. The
holdability property is illustrated by the following

example

Example 1 . ( Symbiotic species )

Consider an ecological system ( possibly a bhacterial

culture ) in which there are n species . For 1 =1, 2 ,

, n , let xi(t) denote the biomass of species 1 at
time t . Suppose that a linear system of differential
equations Xx(.) = A x(t) serves to model the interaction

of the n species . Then aij , the (i,j)cn entry of A, 1s a
coefficient which determines the effect of the biomass of
species j on the rate of change of the biomass of species
i . Note then that a, represents the difference between

the birth rate and death rate of species 1

Clearly the dynamics of the above model make senee:
only as long as the biomass vector satisfies x{t) =0 . In
other words , for any initial ( non-negative ) bilomuss
vector , no species’ biomass can ever become negative

thus causing a breakdown in the dynamics of the model




Hence it is desirable to formulate a condition on A such

that the trajectory x(t) is holdable in !Ri1

Another interesting system capability is that the
trajectory goes to the origin with time ( i.e. x(t) — 0
as t — o ) . In such cases the system is said to be
stable . In terms of the symbiotic species model , this is
equivalent to all the populations being doomed to

extinction

In reality , very few linear system possess either

one of these two properties . A simple way to overcome this
nXn

problem is to add a control function u(t) e R to the
original model . The new control system

x(t) = A x(t) + B u(t)
where B ¢ R™™ provides some degree of freedom , and one

can now ask under what conditions the controlled system can

be made holdable and/or stable

In the case , where u(t) e R,

B u(t) b u{t) +b_u (t) + ... +b u (t)
- 1 -2 2 -n n

-1

where b is the i column vector of B . Again , in

terms of the symbiotic species model , the control function
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component uj(t) may be interpreted as the addition of a
chemical Jj acting either as a neutral element , poison or
protein on species i according to whether sign (bij) is

zero , negative or positive , respectively

The addition of a control may be restricted furth.:

by requiring that the control function satisfy a lincar

e

feedback law , that is , uft) = X x(t) where X e R

This latter requirement for the s mbiotic species model
could mean that a distributor exists which administers the
chemicals automatically in a linear fashion as a function

of the biomass of the species

This thesis shall investigate the joint capability of
holdability and stability through the application of a
linear feedback control . A similar attempt can be found in

Berman and Stern [4].

Chapter 2 is devoted to an extensive development ot

matrix theory background . The theory of non-negative
matrices ( i.e. matrices with non-negative entries ) i
introduced concurrently with reducible matrices ( 1

matrices permutationally similar to matrices of the form

[g g] where B and D are both square matrices ). We shall

demonstrate that for non-negative matrices, irreducibility




of a matrix A is equivalent to the entries of the powered
matrix A% being strictly positive for some q . A small
diversion into graph theory is given in order to provide a
method of verifying the reducibility property of a matrix.
The spectral analysis of non-negative irreducible matrices

is reviewed

Then , actention is shifted to the review of required
results from the theory of M-matrices ( matrices of the
form sI-B where B =2 0 and s = p(B) ,the spectral radius ).

Finally , the chapter 1is <closed with two Dbasic
applications of M-matrices, The Leontief economic

input-output model and the Jacobi iteration procedure

Chapter 3 is concerned with the Stabilizability -
Holdability problem, denoted SH, or equivalently the
problem of finding a linear feedback law u(t) = X x(t) such

that the system
x(t) = A x(t) + B u(t)

goes to the origin as t — o ( i.e. stabilizability ) and

is constrained within a certain set I' ( i.e. holdability ).

The set T' considered will be assumed to be R® in most
+

instances but results readily extend for general simplicial




cones X ( i.e. cones of the form X = 0Q IR': for a

non-singular matrix Q e R™" ) . The uncontrolled system

x(t) = A x(t)

is first analysed and results are demonstrated concerning

the equivalence of the positive invariance of R': (i.e. for

all x e R, e®® x R' for all t = 0 ) and the essential
non-negativity of the matrix A ( 1i.e. atij z 0 for all
i #= 3j ) . The equivalence of the strict positive invaviance
of R ( i.e. for all x e K , x = 0 , et x  only has
positive components for all t = 0 ) and the essential

non-negativity and irreducibility of the matrix A is also

demonstrated . The study of the controlled system

and its holdability in (Rf follows. Letting u(t) = X x(t) ,
!Ri1 is seen to be holdable if and only if a matrix X can be
found such that (A+BX) :O ( i.e. the matrix (A+BX) is
essentially non-negative ) . The chapter is closed with the

stabilizability-holdability problem where the equivalence
of (SH) and the non-negativity of A+BX with positive
leading principal minors is shown in the case of scalar

input (i.e. B € ™)




Chapter 4 begins hy analysing the stabilizability -

holdahility problem in the case of scalar input . Certain
bounds for the solution are defined and an algorithm is
developed via transformation of variables such that the
resulting problein becomes a vector inequality for which

certain solution procedures are discussed.

The case for which one or two variables are totally
unbounded is analysed and is shown to introduce a reduction
in the complexity of the problem. A simple algorithm is
provided to expand the existing set of solutions within the
feasible convex solution set. The analysis then proceeds
with the stabilizability-holdability problem in the case of
non-scalar input. Some interesting generalizations of the
scalar theory are developped and a procedure to reformulate
the prcblem as a non-linear programming problem is
provided. The chapter 1is <closed by analysing the

stabilizability - holdability problem for

x(t) = A x(t)
where the freedom of adding a linear feeback control
function u(t) = B X x(t) 1is given . It will be shown that
through a certain similarity transformation, the solution

becomes apparent




This problem was originally solved by Berman and
Stern [4] in the case of scalar input, but their method
made use of linear programming which, as we shall see, for
a whole class of problems is unecessary. So we refine the
procedure within that context and extends certain results

for non-scalar input.

Before proceeding any further , a remark concerning
the referencing is in order . The internal referencing is
provided by three numbers representing , in order : the
chapter , the section and the result . In the case where
the result is provided within the same chapter , the
chapter number is omitted . A similar convention is adopted
for sections . The square brackets following most results
indicate the reference(s) in the bibliography where the
result can be found.The reader will note, however, that
most of the background theory can be found in Berman and

Plemmons [3].




2 . MATRIX THEORY BACKGROUND

1 . Introduction .

In this chapter we consider square non-negative
matrices ( 1i.e. matrices whose elements are all
non-negative ) . The material developed here will be used
extensively later , both implicitly and explicitly

Section 2 is devoted to the study of non-negative and
irreducible matrices and their spectral properties . Then ,
attention is focused on a particular set of matrices called
M-matrices . Finally , in section 4 , the chapter is closed

with some interesting applications




2 . Irreducible and Non-Negative Matrices .

nxn

Let A = (adﬂ € R . Then we say that A 1s a
non-negative matrix if a, = 0 for all i , j which we
denote by A = O . The special case where Az O hut

A # O 1is denoted by A > O , that is , a, = 0 for ual!

i, 3 with strict inequality for at least one a,

Similarly , we write A >> O for a positive matrix A 1

a, > 0 for all i, jJ

Definition 2.1 . An nxn matrix A is said to be

reducible if there exists a permutation matrix P  such

[s5)

where B , D are both square matrices , or if n = 1 then

that PAP' has the form

A =0 . Otherwise , A 1is said to be irreducible

As a consequence of the definition we have the

following theorem .

Theorem 2.2 . [{8] Let A be an nxn matrix then ,

(a) If aU # 0 for all 1, 3 ( 1i.e. A has no
zero elements ) , then A 1is irreducible
(b) If a =0 for all i and a = 0 for all

ii i)

i# 4, then A 1is irreducible

10



(c) If A 1is reducible then it must have at least

n-1 elements equal to zero
(d) If A has at least one row or column of zeroes,

then A 1is reducible

Corollary 2.3 . [10] Let A be an nxn positive matrix then
A is irreducible .

Proof : Immediate from Theorem 2.2 (a)

It is obvious that if A = 0 , then a° = O for any
positive integer p . We might also expect that if A has
a sufficiently high density of non-zero elements then , for
large enough p , we would obtain AP >> O . The following

result is of this kind .

Theorem 2.4 . [19] Let the matrix A e 8"  be non-
negative and irreducible .Then (I+A)™! >> O .

Proof : Consider the vector y e R° such that y > 0

and write

z = (I+A) y (1)

Since A = O , the product Ay =2 0 , and so z has at

least as many non-zero ( and hence positive ) elements as
y . If y 1is not already positive , we shall prove that z

has at least one more non-zero element than y . Indeed ,

if P is a permutation matrix such that Py = ( ET , 0T )T

11




where u >> 0 , then it follows from eq.(l) and the

—

relation P' P = I that

pz = |2| « pap |1 (2)
0 9
Hence , if we partition z and P A P' consistently with
the partition of y ,
v T AL An
Pz = [ —] , PAP = -
W A A
— 21 ladel
Then eq.(2) implies
v = u+A_ u and w = A u (3)

11

T

Now observe that the matrix PAP is non-negative

and irreducible. In particular, we have A =0 , A > O,

and it follows from equation (3) that v >> 0 . But u -> 0

so therefore , w > 0 . Thus 2z has at least one more
positive element than y . If (I+A) is not already
positive then , starting again with the element
(I+d) z = (I+A)2 Y and repeating the a.gument , it

follows that it has at least two more positive elements
than y . Continuing this process , we find , after at most

)n-l

n-1 steps , that (I+A y > 0 for any y > Q0 . Putting

y = e for § =1, 2 , ... , n vyields the required

Observe that there is a simple result in the other
direction . If (I+A)? >> O for some A ¢ B and any
positive integer j , then A must be irreducible

12




Otherwise , assuming A is reducible we easily obtain a

contradiction to the hypothesis .

We now proceed to examine more closely the structure
of a non-negative irreducible matrix A and the elements
of the powers of A . We first start with the following

definition .

Definition 2.5 . Let ag’ denote the (i,j)th element of
ad |
With the above definition at hand , we can now state

the following theorem .

Theorem 2.6 . [19] A non-negative matrix A 1is irreducible
if and only if for every (1,3) there exists a natural

number g such that ag’ > 0

Proof : 1If : Suppose aS’ > 0 for some q . Assume A

is reducible . Then

B Q
A% = (T Ef%p = P a P
O D
for some matrix Q = O , where
P A PT _ B C
O D
But this is a contradiction to ai? > 0 v i,7 . Thus
13




A 1is irreducible
Only if : By Theorem 2.4 , (I+A)"" > O . So let
B = (I-:—A)"'1 A . As a product of a positive and an

irreducible matrix , B 1is itself positive . Let

i

B = A"+c A4+ ... +c A where ¢ ["'1]
n-1 1 i i-1
Then

_ (n) (n-1})
bij = @, +¢ a8, + ... +cCcoa, > 0
So for each (i,3j) there exists a positive integer g such

that ai‘;’ >0

REMARK : In view of the preceding proof , an upper
bound can actually be stated for q , namely , 1 s g s n

This fact shall be used in the proof of Theorem 13

The characterization of irreducible matrices provided
in the last theorem has a wuseful graph theoretic

interpretation

Definition 2.7 . [5] The associated directed gragh ,

denoted by G (A) , of an nxn matrix A consists of n

R where an edge leads

vertices P , P , P
1 2 3 n

14




from Pi to Pj if and only if aij z 0

1 0 2 0
Example 2.8 . Let A= g g g é then the
0 8 9 1
associated directed graph G (A) 1is given by
e, () Qe
Definition 2.9 . [5] A directed graph G is strongly
connected if for any ordered pair | Pi , Pj ) of vertices
there exists a sequence of edges ( i.e. a path ) which

leads from Pi to P],

One may verify that the graph in Example 2.8 1is
strongly connected . We now state the relation between an

irreducible matrix and its associated directed graph .

Theorem 2.10 . [19] A matrix A is irreducible if and only
if G (A) 1is strongly connected

Proof : If : We shall prove the contrapositive of the

15




claim ( i.e. If A is reducible then G (a) is not
strongly connected ) . Let us first argue that the graph of
P AP is obtained from A just by renumbering the nodes ,
and this operation does not affect the connectedness of tho
graph . So , without loss of generality , we may assumoe
that the matrix A 1is already in reduced form . In other

words ,

A = [ B C ] where B e RKXK . D e {R(n-k)}((n—k)
O D

Consider any directed path from a node i with 1 > k

The first segment of the path is determined by the presence
of a non-zero element a, in the i row of A . This
row has zeros in the first k portions , so it is possible
to make a connection from node i to node j only if j > k

Similarly , the path can be extended from node J only to
another node greater than k . Continuing in this way , it
is found Lhat the directed path from node i with 1 > k
cannot be connected to a node less than k+l1 . Hence we
conclude that the directed graph is not strongly connected.
Only if : If A 1is irreducible , then by Theorem 2.6 this

implies that a'? > ¢ v i,3 which in turn implies

13
that , for some g , there is a sequence of q edges from Px

to 13’j v i,3 ( i.e. G (A) is strongly connected )

16



Note that it readily follows from the previous
theorem that if A is irreducible , then A has at least n

non-zero entries. The interested reader may find an

alternate proof in Horn and Johnson ( [11} , ©.361 ) which
relies on the graph theoretical properties of
irreducibility . A final algebraic characterization of

irreducible matrices is provided here for the interest of
the reader . In what follows, " &8 " will denote the

boundary of a set.

Theorem 2.11 . [14,1i9] The following two conditions
characterize the irreducibility of a non-negative matrix A

of order n > 1

n

(a) No eigenvector of A belongs to 8 R+

(b) A has exactly one ( up to scalar multiplication )
non-negative eigenvector , and this eigenvector

is positive

We now diverge slightly from irreducible matrices in
order to state a fundamental result in the theory of
non-negative matrices . It 1is part of the classical

Perron-Frobenius theory .

Theorem 2.12 . [14,19]) Let A be a non-negative square
matrix . Then

(a) pld) , the spectral radius of A , 1is an

17
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eigenvalue .

(b) A has a non-negative eigenvector corresponding

to p.a)

Note that one can easily show that if A 1in the
preceding theorem is assumed to be irreducible then this
guarantees p(A) > 0 . The proof follows directly from
Theorem 2.11 . A major consequence of the previous theorem

is the so called subinvariance theorem which follows

Theorem 2.13 . [19] Let A be an irreducible non-negative
matrix , s a positive number , and let y > 0 be a vector

satisfying Ay s sy . Then

(a) y > 0
(b) s = p(A) . Moreover , s = p(A) 1if and only
if Ay = p(A) vy
Proof : (a) Suppose at least one element , say the it
of y 1is zero . Then since A* y s skz it follows

that ,

n

§ (k) K
S
aij yj yl.

j=1

1A

Now since A is irreducible , for this i and any 3J .

there exists a k such that ai? > 0 , and since

y, > 0 for some j , it follows that y, > 0 . But this

is a contradiction . Thus y >> 0

18




(b) Now premultiplying the relation A y = sy by X' ,

a positive left eigenvector of A corresponding to p(A) ,

yields

s x'y = XAy = pA) Xy

1% >

(i.e. s =z p(A) ). Now suppose A Yy < p(A}) y . Then the
preceding argument , on account of the strict positivity of
Ay and p(A) y , Yyields p(A) < p(A) , which is

impossible . The implication s = p(A) follows from

Ay =sy similarly

We now extend the notion of inequality to matrices in
general by denoting
A =B if and only if B-A =z 0O ,
A < B 1if and only if B-A > 0 , and

A << B if and only if B-A >> O

The following theorem relates inequalities between matrices
and their spectral radii . These results are readily
obtained using the Perron-Frobenius theory and Theorem 3.4

to be introduced in the next section.

Theorem 2.14 . (3] (a) If O =A sB then p(A) s p(B)

(b) If O s A << B then p(A) < p(B)

19




Note that the statement of part (b) of the preceding

theorem could have been phrased differently as
»Tf O s A < B, B irreducible , then p(A) < p(B) ".

Definition 2.15 . Let A e R . Then we define the

i

leading principal submatrices A , 1=1, 2, ., n

to be the matrix consisting of the first i rows and

columns of A

We are now able to relate the relationship between

the spectral radius of A and the spectral radii of A

Corollary 2.16 . [3] Let A = O belong to R . Then ,
for i =1, 2, ... ., n , p{*A) = p(a)
Proof : Immediate from Theorem 2.14

20




3 . M - MATRICES

Of special interest and closely related to the set of

non-negative matrices is the set of Z-Matrices , denoted by

2" Tt is composed of all matriccs B such that the

off-diagonal entries of -B are non-negative . This is
e

denoted by -B = O . We then say that -B is essentially

non-negative ( i.e. —bij =0 VvV 1=# 3j ) . Hence

Z X {Aeanxn: A:sI-B,B:O,seIR}

e
= { A e R -AzO}

The aim of this section is to provide a
characterization of a certain subset of Z-matrices called

M-matrices .

Definition 3.1 . [3] A matrix A = sI-B, B=0 , s € R is
called an M-Matrix if and only if s =z p(B) . IfE s > p(B)

then we obtain a Non-Singular M-Matrix .

We now delay our discussion of M-Matrices so that
certain background theory may be introduced . The following

elementary lemma will be used later

Lemma 3.2 . Let & {x) = det(xI-A) . Then ¢ (X) — o as

X =™ o .

21




Definition 3.3 . A matrix B is said to be convergent if

. K B . .
lim B exists and is the zero matrix
k200

We now state a theorem due to Varga and Oldenburger

( [20] , p.13 )

Theorem 3.4 . [2,20] For a matrix A e X" , the following
are equivalent
(a) plA) <1
(b) A is convergent
2]
(c) (I-A) 1is non-singular and (I-a)"! = Z ar,
k=0
where the notation A "' =1I is adopted
Proof : (a) & (b) The equivalence between (a) and (b)

readily follows from the Jordan canonical form and 1is

therefore omitted .

(b) & (c) We now proceed to the equivalence of (b) and

(c} . First note that ,

(I-A) - (I +A+2% +2a + ... 2"y = 1-2Af
Now for k sufficiently large , A® is uniformly close to
the zero matrix , and so I - Af is to I , and is
therefore non-singular . More specifically , by the

continuity of the eigenvalues of a matrix if its elements

are perturbed , the eigenvalues ( I - A ) must be close

22




to those of I for large k , the latter being all 1 .
k)

Hence ( I- A has no zero eigenvalues , and 1is

therefore non-singular . Taking determinants yields

det (I-A) - det{ I + A + A* + A%+ ... + 2N

Therefore ,

det( I-a ) = 0 » ( I-A )" exists

and

T +2+2a2+ 2%+ ...+ 2%t 2 (I—A)'l' (1 - a%)

Letting k — o completes the proof of the assertion .

The converse is proved by contradiction . Suppose A
2]

is not convergent . Then Z A" could not possibly
n:O‘

converge to any matrix . Thus we obtain our contradiction.
]

We now provide an interesting characterization of the
positive solvability of the linear system
(sI-A) x = ¢ where ¢ >0 ,

and A 1is a non-negative irreducible square matrix
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Theorem 3.5 . [1l9] A necessary and sufficient condition

for a solution x >> 0 to the equation

(sI-A ) x = ¢ (1)
to exist for any ¢ > 0 , where A 2 0 and irreducible ,
is that s > p(A) ( i.e. sI-A is a non-singular M-matrix )
In this case there is only one soluticn x , which is
strictly positive and given by

x = ( sI-A )" ¢ .

Proof : Suppose first that for some c > 0 .2

non-negative non-zero solution x to equation (1) exists

Then

c+AXx = s5X ( i.e. Ax < sx )
This 1is impossible for s s 0 , and if s > 0 , the
subinvariance theorem ( Theorem 2.13 ) implies that
s > pl(B) . Now suppose s > p{A) . Then since

k
[A/Sx] — O as k —» w it follows that
[+4]
(sI-a)' = st (1 -sta) s st Z(S—IA)k
k=1

exists from Theorem 3.4 and moreover , since for any

ordered pair ( i, ) , ag) > 0 for some k = £(i,3) ,
by irreducibility ( Theorem 2.6 ) , it follows that the
right hand side is a strictly positive matrix . Hence

( sI-A )Y >> O so that
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(sI-A)'¢c > 0 forany ¢ >0,

and clearly x = (sI-A)'¢c > 0.

It readily follows from Theorem 3.5 that ( sI-A )

is positive . Furthermore , if we are willing to settle for

x > 0 , then the assumption A = O , as we shall see later ,
e

could be weakened to A =2 O but not necessarily

irreducible

Before we state a fundamental characterization of
M-Matrices which we will use extensively later , we must

introduce the following basic definition

pPefinition 3.6 . Let A e R Then the leading
principal minors of A , denoted by A i=1, 2,
, n , are defined to be the determinants of the leading

principal submatrix ‘A, that is , Ai = det (*a)

Theorem 3.7 . {19] A matrix A = sI-B , B=z0O , is a

non-singular M-matrix ( i.e. s > p(B) ) if and only if
the leading principal minors of A , denoted by Ai(s) , are
positive

Proof : Assume first that s > p(B) . Then

An(s) = det( sI-B ) = ¢ (s) > O
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since it is known that ¢ (X) — o as X — o , and s

lies beyond the largest real eigenvalue p(B) of B
Moreover , since p(iB) s p(B) < s ( by Corollary 2.16 )

it similarly follows that

Ai(s) >0 for i =1, 2, .., n where n > |
Assume now that Ai(s) > 0 for 1 =1, 2, ..., n
holds for some fixed s . Since each of the Ai(s) is a
continous function of the entries of B , it follows that

it is possible to replace all the zero entries of B by

sufficiently small positive entries to produce a positive

matrix B with p(g) z p(B) ( by Theorem 2.14 ) for which
still Ai(sS >0 , 1i=21, 2, .., n . Thus if we can
prove that s > p(E) , this will suffice . It follows ,

then , that it suffices to prove that Ai(s) >0, 1 =1,
2, ... ,n , implies s > p(B) for a positive matrix B
We proceed by induction on the order of the matrix B.

If n=1, Ai(s) > 0 implies

Suppose the proposition is true for matrices of order n ,
and for a matrix B of order n+1 assume Al(s) > 0,

i=1, 2, ..., n+tl . We have by the induction hypothesis
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that s > p("B) . Let

K = [An‘s’/a (s)] > 0
n+1

n+l

and consider the.uniqgue solution X = a . of the system

-+

( sI-B ) x = e.. (2)
Since
-1
a = { sI-B ) e ’
-n+l —n+l
it follows that the (n+l)th element of a is K . If we
-1+l n+l
rewrite a = (a T,K )T it follows that X = a must
-+l n n+l - -n
. n n —
satisfy ( sI-B ) x =d , whered =Db K > 0 for
i =1, 2, ..., n . But since s > p("B) , Theorem 3.5

implies that the unique solution a is strictly positive
Hence a = >> 0 and the subinvariance theorem (Theorem

2.13) applied to (2) now implies s > p(B) , as required

For the sake of completeness and the reader’s
interest , we now state without proof a £few other
characterizations of M-matrices . A proof may be found in

Berman and Plemmons ( (3] , p.134 )
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Theorem 3.8 . [3,6,9,16,17] 1If then the

following are equivalent

(a) A 1is a non-singular M-matrix

{(b) All of the principal minors of A are positive
(¢) A+al is a non-singular matrix for each « 2 0

(d) A 1is positive stable { i.e. every real par

of each eigenvalue of A 1is positive )

(e) A 1is inverse positive ; ( i.e. There exists .an
A" such that A >0)

(£) A is monotone ; ( i.e. Ax =0 =» x=z=0 ftor
all x e R )

(g) A has a convergent regular splitting ; ( 1.e.
A= M-N where M'>0 , N=O and M N

is convergent )

(h) There exists x > 0 such that A x >> 0

Although we are dealing only with non-singular
M-matrices , there is a natural extension of the previous
theory to singular M-matrices ( i.e. s = p(B) ). Much of
the results stay the same but one interesting failure 1is
that the non-negativity of the leading principal minors 1is
not equivalent to non-negativity of the principal minors a3

demonstrated by the following counter example
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Then it is

>
i

Example 3.9 . Let

easily verified that the leading principal minors are

8, = 0 and A, = 0 whereas the principal minors Mij are

2
glvenbyMu=0 ] M12=0 , M21=0 , and M22=-1.
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4 . APPLICATIONS OF M - MATRICES .

A : Leontief’s input-ocutput model .

Leontief’s input-output analysis deals with what
level of output should each of n industries in a
particular economy produce , in order that it will just be
sufficient to satisfy the total demand of the economy for
that product .

We assume that each industry produces a single kind
of commodity , and production means the transformation of

several kinds of goods into a single kind of good

th

To produce one unit of the j good , ti) units of
the i™ good are needed as inputs for i =1, 2, ... ,
n in industry 3j , and A units of output of the 3"
good requires A tij units of the it good . The
magnitudes t are called input coefficient and are

i3

usually assumed to be constant
Let x  denote the output of the i good per
fixed unit of time . Part of this gross output is consumed

as the input needed for the production activities of the n

industries . Thus }E: tU s is consumed in the
i=1 o

production , leaving di = X - }Z: tij . xJ units of
j=1

the i*™ good as the net output . Hence we obtain the

linear system
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(I"T)_}S:é

The solvability of the above system in the

non-negative unknowns x = 0 means the feasibility of the

Leontief model . The model just described is called the

open Leontief model since the open sector lies outside the

system . If this open sector is absorbed into the system as
just another industry , the model is called a closed

Leontief model . We now state the conditions for the

feasibility of the open Leontief system

Theorem 4.1 . [3,19] The open Leontief model with input
matrix T and A = I - T 1is feasible if and only if A

is a non-singular M-matrix .

Proof : 1If : This direction of the proof readily follows
from Theorem 3.8 (h) . ( i.e. There exists x > 0 , with
Ax = d > 0 )
only if : By Theorem 3.8 (e) , A" > O . Thus x = A% d
which clearly 1is non-negative ( i.e. the system 1is
feasible )

|}
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B : Jacobi iteration procedure .

We now provide a simple iterative procedure for which
M-matrices are particularly well suited . Given a system A
X = b, we write A as D-B where D 1is a non-singular

diagonal matrix . Therefore ,

Then 1in order to solve the system we use an initial
(0)

estimate X and set
x" = p'Bx” +D' b
x? = ptB x4
and in general ,
E(IH-].) - D~l B }f_(k) + D-l 9
Let x be a solution . If || - || denotes some vector

norm on R and the corresponding matrix norm || DB | < 1,

(k)

then | x - x| —0as k — « . Now,
¥ - x = (D'BXx® +D'b) - (D' Bx + D" b )



;—(-(2) _5 = (D'].Bzc—(l) +D-1.b-) - (D‘1B£+D‘12)
- p!g (?Em"ZS)
- (p'B)? (0)’2‘5) ,
and in general |,
ZS(M"’_‘. - (D-IB)k (35(0)_5) ,
and
hx™ - x ] = footEf (£ - x|
s et B e -x) |
s JeptB) e ex -x)

—» 0 as k — e

since | (D" B) || <1

The following theorem provides an interesting
convergence result concerning the iteration procedure

discussed above

Theorem 4.2 . (1,12] Let gc_m be an arbitrary vector in

K" and define x'"** = p* B x'

, n . If x is the solution to x = D

then a necessary and sufficient condition for x™ — x

is that p(D'B) < 1
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The proof , although fairly simple , relies on the
Jordan Form of DB and is rather messy , SO we choose to
omit it here

Now if we assume from the start that A is a
non-singular M-matrix then we may use the natural
splitting A = sI-B and then

D=sI & D' = (1/s) I.

Furthermore , if B e X" then

p(D'B) = ( 1/s ) p(B)
< 1 since p(B) < s
Hence , the convergence of the procedure 1is

guaranteed by Theorem 4.2 in the case of an M-matrix
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3. A STABILIZABLITY - HOLDABILITY PROBLEM

1. Introduction

Consider the following linear autonomous control
system of differential equations
x(t) = A x(t) + Bul(t) , t=0. (P)

m

where A e B , B e R and u(t) € R The class of

admissible controls is the set of all continuous functions

U R — R" , denoted by U . The variation of parameters
formula provides the solutions for each initial state X,

and each control u e U . This is given by

x(t) = x(t,x ., u) i

= %A X + eth J e A B u(s) ds

0

n

We say that I ¢ R is holdable with respect to (P)

if for any initial state X, €T there exists a control
u € U such that the trajectory §(t,§o,y_) stays in T for
all t = 0 . The interested reader can find an extensive
development of the previous theory in Lee [13] and Macki

(157.

In Section 2 , we review the holdability problem in




the uncontrolled case . We shall see this problem has the

following matrix-theoretic rephrasing.

(MTL) Given A € R™ and B ¢ R™™ find , if possible ,
e

a matrix X e R°" such that A+BX = 0 [4].

Problem (MT1l) is concerned with the existence of a

linear feedback law ult) = X x(t) such that for any
x, =20, x(t,x,u) =2 0 v £ > 0 , or equivalently
et (A+BX) pr o RRy e =0 (15].

Section 3 is concerned with the holdability problem

n

for IR+ in the controlled case, while section 4 is devoted
to finding , if possible , a linear feedback law
u(t) = X x(t) such that for any x =z 0 we obtain
x(t,x,u) =0 vt=0,and x(t,x,u) — 0 ast —a

This is referred to as the * stabilizability-holdability
problem ", denoted by (SH) . It will be seen that this

problem has the following matrix-theoretic rephrasal

(MP2) Given A ¢ gXn and B e R find , if possible ,
a matrix X e R™™ such that - (A+BX) 1s a non-singular

M-matrix [4].

It is worth noting that all our results generalize to
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a simplicial cone K ( i.e. X =Q RT for a non-singular

matrix Q € ) This 1is accomplished via the
transformation of coordinates y(t) = Q x(t) , for which

(P) becomes

v(t) = QAaQ 'ylt) +QBuut) ,t=0 (B)
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2. Uncontrolled System

We now consider the system (P) when B = O . In the
uncontrolled case , holdability of a set r ¢ [Ri1 means
that e rer vt =0 . We will then call T positively
invariant . Furthermore , we say that T is strictly

positively invariant if

e (r/ (0311 € dnt (r)vezo

Theorem 2.1 . (4,18] Let A € R™ . Then the non-negative

orthant Rr: is positively invariant with respect to A 1t
and only if A 1is essentially non-negative

e
Proof : Let A = O . Then 2A+al 2O for some o € R and

=1e) et(A+°‘I) >0 vtzz0 . Since et(AmI) = et® oth . 1t
fcllows that e > 0 YV t =2 0 , implying IR‘? is
positively invariant

To complete the proof , suppose A 1s not
essentially non-negative . Then 2 has a negative entry
a , 1+ 3J . We want to find x = 0 such that etA X oo 1)

ij

for some positive t . Now choose X =g and consider

tA _ £? 2

e _e_j_§j+tA§j+TA e, *
row (O\ (0\
0 0 0
: : ¢ ;

= 1 + tA 1 + a’ 1 +
0 0 K 0
LOJ LO xO)
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Observe that

tA _
(e 95)1 = 0+ ¢t a + glt)
g(t) _
where € >0 as t —» 0 . Then it follows that
( A e ), g(t)
1 = aij *o— < 0 for small t, which
t

implies that ( etA)ij < 0

Further assumptions improve the statement of the last
theorem yielding the following result ( which is not

required in the sequel )

Theorem 2.2 . [4] Let A € R . The non-negative orthant
is strictly positively invariant with respect to A if and

only if A 1is essentially non-negative and irreducible
e

Proof : Let A =20 . Then for some a« > 0 , A+al =2 O
Furthermore , ( A+l )" e >> 0 for some m > 0 since A
is irreducible ( Theorem 2.2.4 ) . Therefore ,
t? 2
e + t (A+al) e + (A+aI)" & + ...>> 0 vt >0
2
ot (A+al) e, e int (/")

» eth e, € int (R )
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+ e x e int ( R ) v xe R / {0)
Conversely , let rRi1 be strictly positively
e
invariant . Then by Theorem 2.1 , Az O . We need only

show that A 1is irreducible . Suppose A 1is reducible

Then we will show that [R’+1 could not be strictly invariant

Consider the matrix A = [ g g ] where B e RF ,
m
D e RA®*MKk  £0r 1 <k =n . Then A" = { g gm ]

vm=0 . Now look at

2 3 4
eAe=Igl+A_e_+Ae+Ae+Ae+

S S A S
> 0

But e® e, is not strictly positive since [ et e ] = 0.
ksl

Therefore this implies that

eAgl ¢ int (R )

contradicting the strict positive invariance of R"

+
Therefore A 1s irreducible . Actually one can see that

all the i components of eA e, are zero for each

i= k+1
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3 . Holdability of zRf .

The focus of this section is to provide a simple
characterization of the holdability of Rf , which is the

content of the following theorem .

Theorem 3.1 . (4] The non-negative orthant R is holdable
with respect to system (P) if and only if there exists an
X e R which solves problem (MT1) .
Proof : It is readily noted that lRi1 is holdable if and
only if for each ¢  there exists a vector Xx e R" such
that
j> = <Ae +Bx , 3>

= 0

" at

+ ~1i

for every outward pointing normal vector j to R
Holdability of the non-negative orthant is then equivalent

mxrn

to the existence of a matrix X = [ x :x: ] € R

HEO D ¢
2 -n
e

such that A+BX =z O

A more precise proof using the concept of

subtangentiality may be found in [5], chapter 7.

Hence , checking holdability of lR': is equivalent to
solving for , if possible , a matrix X such that A+BX is

essentially non-negative . This involves checking the
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consistency of the system of n°-n linear inequalities

(*) a_+bix z 0 for i=1, 2
ij - —j

P
j=1121

whenever i = j

where b' is the i*® row of B and X, is the i*" column

of X

In a lot of problems , the artificial variable method of

linear programming accomplishes this task .
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4 . a Stabilizability-Holdability Problem .

We now look at the stabilizability-holdability

problem (SH) , or equivalently , problem (MT2) : Find
u(t) = X x(t) such that for any x =0, x(t,x,u) =0
vt=0 and x(tx,u) — 0 as t — e . This is
equivalent to finding a matrix X such that etc =0 Vvt =20

and etc —3 0 as t — o where C = A+BX . Note that

the first condition of problem (MT2) simply means that
e

C =z 0 ( by Theorem 2.1 ) and the second condition 1is

characterized by

Theorem 4.1 . (4,10] x(t) — 0 V x e R® in system (P)
with u(t) = X x(t) if and only if Re (A) < 0 ¥ A e spec (C)

where C = A+BX .

The proof of the latter is a direct consequence of

the Jordan form and its expcnentiation .

Recalling Theorem 2.3.8 (d) we conclude that the two
criteria of the control theoretic problem (SH) posed above
are identical to -C being a non-singular M-matrix ; In
other words , X solving (MT2) . Using Theorem 2.3.7 ,

implies that an alternate form for problem (SH) is given by
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Theorem 4.2 . [4] Let C = A+BX . Then u(t) = X x(t) solves

the control problem (SH) if and only if

(1) ¢, =0 whenever 1 =i = 3j sn
and
(i) (-1 8 >0 for k=1, 2, , n
Now in the case of scalar input ( i.e. B e R

the inequalities (ii) above are linear . To show this , Llet
’i‘A be the matrix obtained by taking the leading principal
matrix of A of order k and replacing the i*™™ column by
the first k components of B , where we adopt the

convention that ';A is the leading principal matrixz of

order k . Hence ,

8 = det[ K (A+BX) ]

= det(’;A) + x det ( ’;A) + x, det( ’Z‘A)+

+ x det{ a)
K K

since all other determinants would have two identical
columns , namely )3 . Therefore Theorem 4.2 for B e R
is equivalent to the system of linear inequalities

(1) a., =0 whenever 1 =<1 # j sn

and
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Example 4.3 . Solve problem (SH) when

-1 1 1 0
A = 1 0 1 , B = 1 , X = (xl,xz,x3)
-1 0 -2 -1

Soln.

The above inequalities are

(A+BX)12 z 0 3 1 +0=20
(A+BX)13 z 0 > 1+0=20
(A+BX)21 =0 3 1 + x1 =0 > X, =z -1
(A+BX)23 z 0 = LI X, = 0 > X, =z -1
(A+BX)31 =z 0 > - - x1 =0 3 xls -1
(A+BX)3220 > O-x2 z 0 > xst
Therefore X = -1, X, <= 0 and x, = -1 . Also ,
--A1 = 1 > 0
A2=-x1—x2-l>0 > -x2>0 3 x2<0
-A3=—x1—x2-1>0 > -x2>-0 3 x2<0
so finally X = -1, X, < 0 and X, = -1 is the desired

solution by Theorem 4.2 and the discussion which followed .

For instance one may verify that x = (-1,-1,0) yields
1 -1 -1
- (A+BX) = 0 1 -1
0 -1 2

and that this is indeed a non-singular M-matrix .
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4 . THE GENERAL STABILIZABILITY-HOLDABILITY PROBLEM

1 . Introduction

This chapter looks more closely at the problem of
finding a matrix X e R such that -(A+BX) 1is a
non-singular M-matrix , where A e R and B e R™
Certain necessary and sufficient conditions shall be stated
in Section 2 . Section 3 concentrates on particular cases
in which the solvability of the aforementioned problem is
simplified . An algorithm to expand a given solution set is
developed in Section 4 . Section 5 will be concerned with
the extension of the matrix X to R™" , where B e R'"
Some of the theorems in the scalar input case shall be
generalized, and an analysis of the resulting structure of

the problem shall follow . Section concludes by

v e O

demonstrating how given A e R, a

o we can
introduce a linear feedback control function B X x(t) to
the system x(t) = A x(t) (i.e. consider the system
x(t) = A x(t) + B X x(t) such that the solution of the

system of differential equations Dbecomes both stable and

holdable.




2 . Scalar Input

This section is devoted to the analysis of the scalar
input problem . An alternative to linear programming is
also introduced for certain type of problems . Consider
problem (MT2) where A € e , B e R and X e B . We
wish to find X such that - (A+BX) is a non-singular
M-matrix . The following definitions are provided in order

to simplify the analysis

Definition 2.1 . Let b be the i*™ component of B .

Then I = (i : sign (bi)=l}
J={j:sign(bj)=-l}
Now ,
(A+BX)“.>.O for 1 =1, 2, ..., n
j=1,2, ... ,n

whenever i # j

e
and so A+BX =z O only if

r -~
= "9y if ielI
X 4 1
] -a
< i3 if ied
! b,




Definition 2.2 . Let Bj

"
=
| d
o]
A,
1
cfl o
o
e
-
H#
.
P
m
(]
N

and
_alj
aj = max —B:__ 1 #3, L el
for all =1, 2 , , N

Note that Bj provides an upper bound for X,
Similarly , o becomes a lower bound . Armed with
Definition 2.2 , we state a necessary , although
insufficient condition for the solvability of Problem

(MT2)

Lemma 2.3 . Problem (MT2) is solvable only if for all
j =1, 2, ... , n we have , ajsﬁj

Corollary 2.4 . If X solves (MT2) , then X, € [ LA BJ ]

for all j=1, ,2 , ... , n

Note that Corollary 2.4 can be refined by a further

assumption on the bounds

Corollary 2.5 . If (MT2) 1is solvable and @ = B] for
all j =1 , 2 , ... , n ., then the
solution is unique

Proof : The statement follows trivially since the
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essential non-negativity conditions are satisfied by a

unique vector X = (xj) where X, = a = Bj

The second criterion for the solvability of (MT2) ,
by Theorem 3.4.2 , is that ak > 0 for k=1,2, ...,
n ,where S, is the leading principal minor of order k of

-/A+BX) . This last criterion becomes the following

o 1 1
61 = [ det ( oA) + X det ( lA) ] >0
_ 2 2 2
52 = det{ 0A) + X det ( lA) + X, det ( 2A) > 0
L 3 3 3
8, = [det( OA) + X det ( 1A) ol F X det ( 3A) } > 0
5 = (-1)° [det( A ) + x det( "A ) +
n 0 1 1
.+xdet(“A)]>o
n n
. 141 i i i
Defining cij = (-1) det { jA) and w,o= (=1)" det( 0A) '
we obtain the triangular system
( \ [ /
c, © o ce.. O %) W,
c,, C,, © e o X, w,
(MT3) €31 C52 G35 e © %, << W3
c c c ve.. C X w
\ nl n2 n3 nn | L B ) \ B
By using the simple transformation bi =W - £ where
c1>0 for i=1,2, ... , n , we obtain
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( 3 ( (

<., o X, W b )

21 Ca2 X, b:
(MT3') €3 C32 Cyy v © X, s bn

\ cnl CnZ Cn3 cnn ) an ) Lbn )
n

Remark : If g = ¢ > 0 for all i and x|.x| c, * v
then it is easily verified if X = C' b  satistics
Corollary 2.4 . If so , then x is a solution and we cun

use the procedure to be described in Section 4 below 1in

order to construct alternate solutions

Assume that none of the X, are totally unbounded
We will see in Section 3 how this particular case can only
arise with a special type of matrix B , which actually
simplifies the work . Of course X, could still be
unbounded from above or below , but not both . Applying
either the transformation X, = @+ € or x = Bj - €
depending upon whether xj is bounded below or above , to

problem (MT3) yields , after rearrangement , th

]

triangular system

(MT3/ ) where ¢

1]
—~
]
[y}
]

T is then the matrix C in problem (MT3) with perhaps
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some columns negated and v 1is the vector obtained by the

vector subtraction v = w - T § , where £ is a combination

of « and B, - Here v, € { 0, «) is determined by the
interval conditions ; that is , o, = B -« . ( Note that
the inequality above becomes strict if ¢, — ) . Hence

the above criteria provides a sufficiency condition

Remark : The possibility of ¢, = 0 has been omitted
since it would imply the wvariables X and therefore €
are already known and this would simply reduce the

complexity of the problem

Definition 2.6 . A vector t is said to be recessive to a
vector v , with respect to 0 s e s M , for some M e RY ,

provided ¢ t:i < v, for all i and weakly recessive if sign

(ti ) = 0 for those i for which the inequality fails

Obviously a negative vector t is always weakly

recessive to any vector v  and recessive if ¢ is

unbounded . In light of this new terminology , problem
(MT3’’) is now viewed as the vector equation ,

*

(*) e L v b+ ve £ << ¥

where t is the i column vector of the matrix T .

One simple verification for the solvability of (*) is
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to let g = ¢ for each 1 . Ther the equation (*) reduces

to

[y)
jer?

<< v where tE = zz: £,

Returning to the general equation (*) , an orde:

reduction of the problem can be introduced by choosing ¢

1

as close as possible to L provided that , for some j

£, is weakly recessive to v . Further reduction can b«

introduced if -gj is weakly recessive to v by letting

g, = 0 . Note that if &5 is weakly recessive to v lor

some j and we have

t

Vi
o > max s b2 0
3 15 i3

then the problem is solved by letting

v
max j
= m _ , 0
ej ax { ] [ tu tij + 0 ] }

and g = 0 for all 1= j

Once the above assignments have been done , equation
(*) is rewritten as

e L +e Ei t ... +g B << V-2
1 1 2 2 m m
where m s n and z = E GRS for some subset x of
i€k
{1, 2, ... ,n} . The same procedure is then applied to
this new equation until the vector equation 1s no longer

decomposable . Then one of two things occurs
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(1) The system has been solved .

{a) All € have been chosen , or

(b) v - Z e £ << 0 for some subset
iex
x of {1, 2, ... ,n} . Then all

the other e:j are set to zero

( i.e. those € for which j ¢ x )

|<t

(2) The system has a non-decomposable form C g <<
where all the columns of C have a positive
component for a corresponding non-positive

component of v .

Unfortunately , very little can be said about case
(2) and che alternate procedure is to rely on the theory

of linear programming for the existence of a solution

Example 2.7 . Find a matrix X such that -~ (A+BX) 1is a

non-singular M-matrix where

-3 0 -1 -1 1
_ 4 0 4 4 _ -2 a
A= 5 2 -6 5 B = -1 X = R X1 X X, )
1 -4 -3 -62 4
Soln. : First note that I={1,4}and J={2,3}
from which we obtain
al=max(—l/4]=-1/4 Bl=min[2,5)=2
azzmax[0,1]=l Bz=min[2]=2
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Therefore Corollary 2.4 tells us that x €€ [ -1/4 , 2|

X, € [ ‘ ]
X, € { y 2]
and the system (MT3) becomes
1 0 0 0 3
0 -2 0 0 x < 0
-4 -10 -4 0 a3 < -16
-148 -282 -132 -16 -592
Letting X, = -1/74 + £ £, € { 0, 9/4 )
x2 = 1 + €, e, € [0, 1]
where “
X, = 1 + £, e, € { 0, 1]
X = 1l + ¢ € e [0, 1]
4 4 4
yields T & << V
1 0 0 0 13/4
0 -2 0 0 << 2
-4 -10 -4 0 & -3
-148 -282 -132 -16 -199

Note that all the columns are weakly recessive with respect

to their corresponding € - One may verify that the wvector

e =(5/4,0,0,1 )T is a possible solution , that is T ¢ <«
v which yields X = (1,1,1,2)T . Then the non-singular

M-matrix -~ (A+BX) becomes
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0 -1
-2 0

7 -3
-1 54

-1
2
-1
0

2
-2
-4
-5

|

- (A+BX)




3 . Totally Unbounded Variables .

In Section 2 , the assumption was made that none of
variables X, ~were totally unbounded . It turns out that
if , say X, is totally unbounded , then the order of the
problem 1is considerably reduced . ( Actually , the

reduction is proportionnal to the magnitude of 1 . )

Theorem 3.1 . Consider Problem (MT3) and suppose X

th

the 3J component of the row matrix X , 1s totually
unbounded . Then bi , the it component of the column
matrix B , is equal to zero ( 1i.e. b = 0 ) for every
i+ 3
Proof : The essential non-negativity condition states that
aij + bi xj L v 1= 3
= bisz-aij v 1 =3
but x is totally unbounded . This implies that bx = 0

b
for all 1 = 3

In view of the last theorem, the following remark
readily follows.
Remark 3.2 . Consider Problem (MT3) . If both %, and
x  are totally unbounded , whzre j # k , then B =0

Hence this situation could never happen , since the problem
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is non-existent in such cases.

We can deduce even more from Theorem 3.1 about the other

variables

Corollary 3.3 . 1If X, is totally unbounded then for j = i,

—a N
[ y bi,w] if b >0

X €
1 [-m ,'au/bi] if b <0
Proof By Theorem 3.1 the matrix A+BX 1is given by
\
( a, B, e a n
an Q2 q2n
+bx a_+bx ...,
i ; 52 + bjx sn + bjx
= N S
\ nl n2 nn

and the essential non-negativity condition yields

g ¥ bi X = 0 Y j o+ 1
> bi x:l = _aij v 3 =1 ,
and so
-a .

z 1j/bi if bi > 0

X

] -a

< ij/bi if bi < 0
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It follows from Corollary 3 that the problem reduces

to verifying that j:(—A) is an M-matrix ., a, = 0 for

k # 1 , and solving the system (MT3’’) , which simplifies

to
( 0 ... 0 )
0 oooooo 0 4 e } 4 v |
. 1 1
. € v,
0 0o ..., 0 ‘. v,
tjl tjz ...... 0 <<
tj“'1 t:j*l'2 ...... 0
> v
E .t .. £ LN [ Va )
L nil n2 nn |
where 0 s € < w for all j = i . Now the system viewed
as a vector equation becomes ,
[ & 3 ( t A ( 0 \ (v )
ji j2 3
j+1,1 tj+1,2 0 vjol
€ + e + ... + € <<
1 2 n
. tnl / \ tnz / L t:nn / Y

Of course if v, s 0 forany i=1,2, ..., j-1 , then
the problem is unsolvable . Also note that this is still a
triangular system starting at the variable €, Hence the

algorithm of Section 2 is readily applied . Again , if two
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different components of € are totally unbounded then
this is equivalent to the matrix B = O . With this latter
case , the problem is , therefore , nonexistent , so this

possibility is omitted .

The following theorem provides a simple criteria for

the non-solvability of a problem

Theorem 3.4 . Consider problem (MT3’’) and let
K:{k: tkizo foralll}
v, < 0

If for any k € K then Problem

(MP3/’) is unsolvable

The following corollary can also be used as a

criteria for the non-solvability of a problem .

Corollary 3.5 Consider problem (MT3‘’) , Te << v . If
n
Zvjv(tn) t:ij = v, for any i where
j=1

0 if sign (tij) z 0

V(tU) =

1 if sign (t:U) < 0

and o, = Bj - then problem (MT3’’)

is unsolvable
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4 . Expansion of Existing Solutiomn .

This section is devoted to the construction of a
simple algorithm to expand the set of solutions of problem
(MT3’’) given an initial solution . The idea is to let
be a known solution .{ i.e. T g << v ) . Then we findl

¥ > 0 such that ,

T (g +3) << V
> T 3 << v-Te = 1u where u >> 0
— 1 u .
Let ¥y, = litzn { [ i /tiJ 2ot > 0 } and

¥ = min
} jsi=n
E 1
3 !
or let 3y ~—> o 1if t s 0 for all i . Then any

€ € [ej,ej+7j]n[0,f3.-a]

will also be a solution to (MT3’’)

Note that this algorithm is simply the construction
of an "e-cube" around the solution which is known to exist

since the inequalities are all strict.

The following example is designed to 1illustrate how
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to use the preceding algorithm .

Example 4.1 . Recall Example
T ¢ << v was given by
0 0
0 ~2 0
-4 -10 -4
-148 -282 -132 -16

.
had a solution ¢ = [ 5/4,0,0,1 ]

2.7 where the system
£ 13/4

£, < 2

£, -3

P ~-199 !

Then the system T %

<<

12

are all negative

are all negative .

<< v -Teg =u yilelds ,
0 0 0
-2 0 0
-4 -10 -4 0
-148 -282 -~132 -16
Choose
¥y. = min [ 2 ] = 2
1 T
=>E-71_t_1=[0,2,10,308]
» 7, — ® Since t22 , t23 , £ -
r, — ® Since t33 . t34

Since t“ is negative .

Then ,
e e [5/4,13/41 n [0, 9/4]1 = [5/4, 9/4]
e, e [0,e) n [0,1] = [0,1]
e, e [0,w) o (0,11 = [0,1]
e, e (1,w) o [0,11 = (1}

6l




So for any

the vector

A
Teg << V.

e
€

€, € [ 5/4 , 9/4 ]
€, e [0, 1]
e, € { o, 1]
e e {11}

is also a solution to
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5§ . Non-Scalar Input ( i.e, B € R , m>21 )

In section 3.4 , it was seen that in the case of
scalar input , the determinant of the leading principal
submatrix led to linear polymomials in the components of
X . It turns out that a similar structure arises in the

case of non-scalar input

Theorem 5.1 . Let A € R, B e R°™ , and X e R
Then det (A+BX) is a polynomial of degree not exceeding
min (n , m)
Proof : The proof follows from the multilinearity of the
determinant function and the fact that ,
(1) (A+BX) has n columns , so at most n variables
can be extracted from the determinant
(2) B has at most m linearly independent columns
which will provide a variable to be factored

out
]

The interested reader will find all the necessary

background theory in "riedberg [7].

An even stronger version of Theorem 5.1 can be
formulated which will actually specify the coefficients of
det (A+BX) , but its introduction must be delayed in order

to introduce the following concepts ,
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Definition 5.2 . Define xnm to be the set of all vectors

_z_=(zl,zz,...,zn)T,zie{O,l,...,m}
and where the integers 1 , 2, ..., m are not allowed to
repeat .( i.e. For i = j , z, - zj # 0 implies z, ® 21)

For instance , the vector z = ( €,0,2,1,7,0 ) = N
but x=(20,1,2,4,2,5 )T R,
Definition 5.3 . Let A e R™ arnd B e R™™ . ‘The
define A , where 2z e R . + to be the matrix obtained

from A Dby replacing the i column of A by the ;T

column of B while leaving unchanged the i™ column of
A if 2z =0
i

The following example is provided to i3llustrate

definition 5.3 ,

Example 5.4 . Let

a a a a b b b b
11 12 13 14 11 12 12 N
a a a a b b b b
A = 21 22 23 24 B = 21 22 23 oA
a a a a b b o} b
31 32 13 34 11 32 13 14
a a a a b b b
41 42 43 44 41 42 47 i
and z = (2,0,1,0 )7 e » Then ,
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b12 a12 bll ald
b a b a
A = 22 22 21 24
z baz 2, bn 434
b a b a
42 42 4 44
Given a product of x,, from the polynomial
det (A+BX) , there exist a vector z e R =~ associated

with the given product and is constructed as follows ,

Let the product be xij X, cee Xy , k = n,
171 272 k" k
where ik # il and jk # j1 for k # 1 . Define a vector
z such that z, = i and all other components are zero
k

For instance , the product of X, %, would result in
z=(2,o,1)T e X
- 3,m

Armed with this concept we can now formulate one of

the main result of this section

Theorem 5.5 . Let A e ®R™® , B e " and X = R

The coefficient of the product x, X cee X ’
13 43, L3k

k s n , of the polynomial det(A+BX) 1is given by det[ zA)

where z e X 1s as described above and the constant term

is given by det( A )
Proof : The proof readily follows from the multilinearity
of the determinant function and a simple analysis of the
X, ‘s position
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In view of this new terminology , the stronger

version of Theorem 5.1 can now be given

nXn nxXm

Theorem 5.6 . Let A e R , B e R and X € R

Then :
(a) The polynomial det (A+BX) is of degres not

exceeding min (n , rank ( B ) )

(b) There exists no variable of the form x = fo:
m>1
(c) Only one variable from each row of X can

appear in each term of the polynomial
(d) Only one variable from each column of X can
appear in each term of the polynomial

Proof : The proof is immediate from Theorem 5.1 and 5.5

Further results may be obtained from the analysis of

the lower degree terms of det (A+BX)

Theorem 5.7 . Let A e R , B ¢ R°" and % e R
Then det (A+BX) has no terms of degree less than
rank ( A )

If E = -(A+BX) then finding an X such that E 15

a non-singular M-matrix must satisfy the following two
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criteria . First , the essential non-negativity condition
of -E leads to a multivariate system of linear
inequalities and second , the leading principal minor

conditions leads to a series of possibly increasing degree
polynomials in X, 's

Let p = det { "E ) . Then the problem is to find an

X such that ,

P, > 0 . k=1,2, ... , n
and
e
A+BX =z O
Unfortunately , very little can be said about this
system 1in general even with the known structure . One

alternate way of finding a solution is tc try to solve the

non-linear programming problem ,

Maximize P,
Subject to p > 0 , k=1,2, ..., n-1
e
A+BX = O

If a positive maximum exist then the X found by the

preceding non-linear problem is a solution to the problem .
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6 . PERMUTATIONS

Given a linear system x(t) = A x(t) , A e R

e
A = O , the problem of how one can introduce a linear
feedback control function u(t) = B X x(t} such that the

stabilizability-holdability problem is easily solved is now.
addressed
First note that given x (t) = A x (t) + B X x ("

and P 1is a permutation matrix then ,

P x(t) = P A x(t) + P B X x(t)

PAIXx(t) +PBXI x(t)

PAP Px(t) +PBXP Px(t) Since P'P = I

PAP y(t) + PBXP ylt)

by letting y(t) = P x(t)

P (A+BX) P' y(t)

Note that yl(t) = P x(t) . Hence the above equation

becomes
y(t) = P (A+BX) P' y(t)

We therefore have the following.

Theorem 6.1 . Let x(t) be the solution of =x(t) = A x(t)
and y(t) Dbe the solution of i(t) =paApP y(t) where P
is a permutation matrix . Then y(g) = P x(t) and

furthermore x (t}) — 0 1if and only if y(t) — 0

Proof : The proof of the first statement follows from the
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construction above and the second claim follows from the 4

fact that P 1is invertible.

In view of this last discussion one can use the

similarity transformation P AP , P a permutation
matrix , so as to obtain a matrix Q = P A P’ such that
(n-i)Q D

L @]
]

| F

where (""“(—Q) is the maximal M-submatrix and D, E, F

are permutated entries of A. Add a matrix B e R
defined as follows
B=le ve v v g,
For the case i = 1 the procedure yields ,
0
0
e + . ( S TERNPY X )
0
1
(g o S q q )
11 12 1,n-1 1n
a,, Qyy e qz'n-1 a,,
qn-l,l qn—l,?. """""" qn-l,n-l qn-l,n
T, X, R PRI 9 a1t o Tant X
This system can easily be solved using xlj =z - qnj for
] = 1, ;... 0- -
J 2 n-1 and X< Q.
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In the general case we obtain ,

X D, S 2
11 12 In
2 ay Tt X,
Q+ (e, e ,..., & . .
-n -n-1 —n-i+1 . .
X X e e e e 2
i1 i2 in
or equivalently ,
( 3
qll q12 qln
qn-i.,l qn—i,z ’ qn—j..n
+X +X
qn—i+1,1 i1 qn-i+1,2 i2 qn-hl, n in
+X +X P +X
qn-:l.+2,1 i-1,1 qn-i+2,2 i-1,2 qn-iol’, n t-1,n
+X +X +X
qn—l,l 21 qn-1,2 22 qn-l,n 2n
+X +X +X
\ qnl 11 qnz 12 qnn in )
Then letting x . = - for k =1 2 i
g k1 qn-k+1,l ! ! !
1 =1 ' 2 ' . N
k =1
and b d < -q
k,n-k+1 n-k+1l,n-k+ 1
for k=1, 2, ..., 1

solves the problem. In other words , for the entries below
row n-i , make the off-diagonal entries equal to zero and
the diagonal entries negative . Then the above assignment
completely solves Q . Hence the linear feedback function
u(t) becomes B X x(t) and the linear system

x(t) = (A+BX) x(t) is both stables and noldable.
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One can see from the previous analysis that the
e
assumption A =0 is stronger than what 1is actually

required and can be weakened to a,, 2z 0 for all k and 3

for which

qkj = 0 V k = 1 ¢ 2 ' “ e s n-i
n-i+1 , n-i+2 , ...,n.
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