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Abstract 
 

Sandwich beam structures have many applications in various fields of engineering 

including especially in aerospace and transportation industries. Using the 

viscoelastic material as the core layer in these structures, one could include 

significant amount of damping with minimum impact on the total mass of the 

structure. In the current study, vibration damping analyses of the sandwich beam 

structure using the finite element formulations are presented. These formulations 

are developed based on the linear and non-linear displacement fields in the 

viscoelastic core layer. Results obtained from the present study were compared 

with those reported in literature and it is shown that the non linear displacement 

field exhibits more accurate damping response than the linear model. Parametric 

sensitivity analysis has been carried out to show the damping behavior of partially 

treated sandwich beam under different configuration.  Genetic algorithm is utilized 

in finding the optimum configuration to achieve the highest damping. Results show 

that for damping behavior of beam with the clamped-clamped boundary condition, 

the partially treated beam structure is more effective than the fully treated one. Also 

the effect of the heat dissipation in the damping layer of the beam on the damping 

performance of the viscoelastic material is investigated under the steady-state 

harmonic excitation. The generated heat has been taken into the consideration by 

implementing the finite difference formulation based on the irregular grids. Results 

obtained clearly indicate that the temperature gradient developed in the structure 

and hence the amplitude of the response increases after every cycle.  
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CHAPTER 1 

1 INTRODUCTION AND LITERATURE SURVEY 

1.1 Motivation and Objectives 

Vibration directly influences the performance and life of engineering structures, and 

invariably, damping in the structures influenced its vibration behavior.  Various 

types of damping mechanisms have been developed over time to control the 

undesired vibration of structures. Damping basically refers to the extraction of the 

mechanical energy from a vibrating system, mainly by converting the mechanical 

energy into heat energy by means of some dissipation mechanism. Although all 

materials exhibit certain amount of internal structural damping, most of the time it 

is not substantially effective to suppress the vibration around resonant frequencies.  

However, by bringing these materials in contact with the highly damped and 

dynamically stiff material, it is possible to control the vibration. Viscoelastic 

materials are one such type that are capable of storing strain energy when they are 

deformed, while dissipating a portion of their energy through hysteresis. 

Viscoelastic damping property is exhibited by the large variety of polymeric 

materials, ranging from natural/synthetic rubbers to various 

thermoplastic/thermoset materials used in different industries. Due to large 

molecular order and having tangled molecules, polymers display rheological 

behavior intermediate between a crystalline solid and a simple fluid. Of great 

importance is the dependency of both the stiffness and damping parameters on the 

frequency and temperature. These viscoelastic materials offer a wide range of 
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possibilities for developing desire level of damping, provided the designer has 

thoroughly comprehended their mechanical behavior. The mechanical energy is 

dissipated via cyclic shear and normal deformation of the viscoelastic material. 

There are broadly two ways to  apply viscoelastic material on structure:  free layer 

damping treatment, here mainly it goes under normal deformation as the structure 

bends, and by incorporating a constrained layer over the free layer treatment, which 

will enhance the shear strain in the viscoelastic material, also known as constrained 

layer damping treatment. 

 The frequency and temperature dependencies of the passive damping mechanism 

must be taken into account during the design. To achieve a proper damping value, 

two conditions must be fulfilled: 1. significant strain energy must be engaged into 

the applied viscoelastic material for all modes of interest, so that the energy in the 

viscoelastic material can be dissipated in the form of heat energy, 2. the heat 

generated must be conducted away either from the viscoelastic material through 

structure or directly to environment because the damping properties of viscoelastic 

material are very sensitive to temperature. 

 To achieve both conditions, an accurate mathematical model either analytical or 

numerical model of the damped structure is to be developed. The model must be 

numerically stable to accommodate the small changes in the design and can be 

easily integrated with the optimization algorithm to perform multiple parameter 

optimizations. Considering above, the objectives of this research could be specified 

as: 
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1. To develop a finite element model of a viscoelastic sandwich beam for 

symmetrical/unsymmetrical constrained layer and partially treated layer 

configurations under different boundary conditions. The developed model 

should be validated against previously published theories and experiments. It 

should also be numerically stable, computationally efficient and the results 

comparable to classical models.  

2. To digitize the given mechanical properties of the viscoelastic material, being the 

modulus and loss factor as function of temperature and frequency from the 

available nomogram and efficiently incorporate them into the developed finite 

element model. 

3. To study the effect of the thickness of the viscoelastic layer on the damping 

performance of the system. 

4. To optimize the location and area of the partially treated damping layers for a 

viscoelastic sandwich beam in order to maximize the damping performance 

under given constraints. 

5. To develop a central finite difference model, for evaluating the temperature 

gradient developed in all layers due to the internal heat generated. 

1.2 Damping treatment design 

There are different ways to apply viscoelastic material to structure and design 

viscoelastic sandwich structure which includes: (i) the full treatment of 

unconstrained viscoelastic material layer, (ii) the full treatment of constrained 

viscoelastic material layer and (iii) the partial treatment of viscoelastic layers. 
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1.2.1 Free (unconstrained) Layer Damping (FLD) 

FLD treatment is unconstrained layer construction with viscoelastic layer bonded 

using an adhesive to one or both sides of a base layer. When the base layer is 

deflected in bending, the viscoelastic layer undergoes extension and compression in 

planes parallel to base layer. The hysteresis loop of the cyclic stress and strain 

dissipates the energy in the form of heat. The degree of damping is constrained by 

the thickness and weight limits.  Figure (1.1) illustrates portion of a structure 

treated with a free viscoelastic layer.  

 
Figure 1.1 Free Layer Damping 

The vibration analysis of a beam with a viscoelastic layer was first conducted by 

(Kerwin, 1959). The viscoelastic material’s characteristic was modeled using 

complex modulus approach. It was found that the system loss factor in a free layer 

treatment increases with thickness, storage modulus and loss factor of the 

viscoelastic material layer.  

1.2.2 Constrained Layer Damping (CLD). 

The constrained layer damping, shown in Figure (1.2) consists of an additional top 

layer on the free layer damping treatment. 
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Figure 1.2 Constrained Layer Damping 

 When the base structure undergoes bending vibration, the viscoelastic material is 

forced to deform in shear because of the upper stiff layer. The constrained layer 

damping is more efficient than free layer damping because the core layer can store 

more strain energy and therefore dissipates more energy. The symmetric design in 

which base layer and top constraining layer is of same thickness is most effective 

configuration as it maximizes the shear strain in the core layer. The CLD can be 

extended to multiple constrained layers, which is very effective for obtaining 

damping over wide temperature and frequency ranges.  Also to reduce the weight of 

structure, the constrained layers are implemented in patches as partial treatment 

shown in Figure (1.3). 

 
Figure 1.3 Partial Constrained Layer Damping 

1.3 State-of-the-art 

1.3.1 Viscoelastic Material 

Concepts of passive damping and methods to determine damping are elegantly 

presented in the book (Nashif, et al., 1985). The book thoroughly discusses the 

viscoelastic material behavior and typical properties and modeling of structural 

response of damped systems. Nashif, Jones and Henderson (Nashif, et al., 1985) 

represented viscoelastic material using a complex modulus in the frequency 



6 
 

domain. The complex modulus model is motivated by observing the relation 

between applied sinusoidal stress and sinusoidal strain developed in viscoelastic 

material. When the single degree of freedom system is excited by a harmonic force 

of constant amplitude, the steady state response of the system can be used to 

determine the damping through the amplitude of response at resonance, Half-power 

Bandwidth, Nyquist diagram, hysteresis loops, and dynamic stiffness. Typical 

damping properties of viscoelastic material depends on various factors like 

frequency, temperature, dynamic strain, static preload, and other environmental 

factors like aging, pressure, oil exposures, though the effects of environment factors 

can be observed only under extreme conditions. Factors that influence the behavior 

of viscoelastic material predominately are frequency and temperature. The 

temperature nomogram was developed by the Jones (Jones, 1978) to represent 

elastic modulus and loss factor of material in a master curves that are convenient for 

practical applications. Several of these master curves are shown in (Jones, 2001) 

and appendices of (Nashif, et al., 1985). 

Damping models for the viscoelastic materials must capture the frequency 

dependent complex modulus in the frequency domain and also exhibit the creep and 

relaxation properties in the time domain. Shaw and MacKnight (Shaw, et al., 2005) 

reviewed damping models including the Maxwell, the Kelvin, and the Zener model 

(Zener, 1948). These models have some drawbacks and cannot capture the real 

behavior of the viscoelastic materials. The creep function predicted by the Maxwell 

model does not converge to steady state value but keep on increasing with time and 

the relaxation function predicted by the Voigt model keeps constant throughout the 
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time. The Zener model can predict both creep and relaxation functions well but 

when one compare the complex modulus to experimental data; the variation with 

frequency is much more rapid. Generalized standard models consist of large number 

of elements combining both Maxwell and Voigt elements which may greatly improve 

the creep and relaxation functions; however, it significantly increases the 

mathematical complexity. However, modeling viscoelastic material has been 

simplified with respect to frequency domain, using the fractional derivate model 

approach. Bagley and Torvik (Bagley, et al., 1983) have improved the damping 

model by reducing the parameters considerably, as required by the generalized 

standard model. The advantage of the fractional derivates models is not only their 

capabilities for representing dynamic behavior, but they are simple enough for 

engineering calculation. Golla, McTavish and Hughes (GHM) model (Golla, et al., 

1985; McTavish, et al., 1993) represent a viscoelastic material by introducing 

internal variable (Auxiliary dissipation coordinates) to account for viscoelastic 

relaxation and, thus damping. They represented shear modulus function in the 

Laplace domain using series of mini-oscillatory. Christensen (Christensen, 1971) 

developed a time domain model using a relaxation function which can be 

transformed into frequency domain, thus obtaining a complex modulus. The 

properties of the relaxation function were based on the physical principles. But it is 

very difficult to transform such relaxation function to capture a complex modulus in 

the frequency domain. There are other models such as Augmenting 

Thermodynamics Fields (ATF) (Lesiutre, et al., 1990) and Anelastic Displacement 
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Fields (ADF) (Lesieutre, et al., 1995) method. These models can also be used to 

account for the frequency dependent complex modulus of viscoelastic material. 

1.3.2 Sandwich Beams 

For damping treatment with viscoelastic materials Grootenhuis (Grootenhuis, 1970) 

summarized prior research. There are mainly two types of surface damping 

treatment: unconstrained and constrained. In the unconstrained layer treatment, a 

layer of viscoelastic material is applied with adhesive to the surface of structure. 

The energy is dissipated by the cyclic tensile and compressive strain when structure 

is in bending motion. In the case of constrained layer treatment, a stiff layer is added 

with adhesive to the top surface of viscoelastic layer so that the viscoelastic layer is 

sandwiched between the main base structure and elastic top layer. In this case, 

when the sandwich structure undergoes bending motion, the constrained layer 

causes significant shear deformation in the viscoelastic layer. The constrained layer 

damping treatment is more efficient because the viscoelastic materials dissipate 

energy mainly by the shear deformation and the constrained layer augments the 

magnitude of shear deformation significantly. 

 Kerwin (Kerwin, 1959) has presented the first analysis of the simply supported 

sandwich beam using a complex modulus to represent the viscoelastic core. He 

stated that the energy dissipation mechanism in the constrained viscoelastic core is 

because of shearing. His model predicted attenuation of a traveling wave on a 

simply supported and an infinite long beam (neglecting the end effects), vibrating at 

a natural frequency. Di Taranto (DiTaranto, 1965) extended Kerwin’s work using 
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same basic assumption and derived a sixth-order, homogeneous equation in terms 

of the longitudinal displacement for free vibration of a constrained layer beam. 

Damping of the beam is considered due to complex shear modulus of the 

viscoelastic layer. The sixth-order, homogeneous equation yields natural frequency 

and associated loss factor subjected to boundary conditions. Assuming that the 

shear strains in the base layer and constrained layer, longitudinal stresses in the 

core, and the transverse strains in all three layers are negligible, Mead and Markus 

(Mead, et al., 1969) proposed a sixth-order differential equation of motion in terms 

of the transverse displacement for three layer sandwich beam with viscoelastic as 

core layer. They also found expression for transverse displacement for different 

boundary conditions of the beam.  Yan and Dowell (Yan, et al., 1972) proposed a 

fourth-order equation of motion for beams and plates. The top and bottom layer’s 

shear deformation, and longitudinal and rotary inertia were considered to derive 

sixth-order differential equations which are then ignored so as to acquire a 

simplified fourth-order differential equation. Mead (Mead, 1983) examined the 

preceding theories of Yan and Dowell, Di Taranto, and Mead and Markus and 

concluded that most authors have made the same basic assumptions including: (i) 

the linear viscoelastic core carried only shear stress and had complex shear 

modulus; (ii) Top and bottom layers were elastic and isotropic going under shear 

deformation normal to the surface; (iii) The inertial forces of transverse flexural 

motion were dominant; (iv) Transverse displacement at all points on area normal to 

axis was the same; (v) No slip occurred at the interface of the core and top and 

bottom layers (perfect bonding). He also concluded that the Di Taranto and Mead 
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and Markus equations yield accurate results provided the flexural wavelength is 

greater than about four times the top and bottom layers thicknesses. The Yan and 

Dowel equations yield reliable values at much longer wavelengths or when the core 

layer is very thick (Mead, 1983).  Kung and Singh (Kung, et al., 1999) proposed an 

analytical method considering, longitudinal, rotational and shear deformations in all 

layers of sandwich beams with constrained layer damping patches. The results for 

single patch were verified by comparing with reported results by Lall, Asnani and 

Nakra (Lall, et al., 1988). Bai and Sun (Bai, et al., 1995) eliminate the assumptions 

that there is perfect interface between sandwich layers and also that the top and 

bottom layers goes under constant transverse displacement. The core is modeled as 

frequency dependent viscoelastic materials and top and bottom layers considered 

as elastic beams. The Bai and Sun theory incorporate a shear deformation by using a 

second order displacement field, which allows core to deform in a non-linear 

manner through the thickness. Later Baber, Maddox and Orozco (Baber, et al., 1998) 

have presented a finite element model that is derived using the Bai and Sun 

assumption of nonlinear displacement field in the core but neglecting the slippage 

between the layers and considering classic theory of beam in top and base layers. 

The presented model contains 12 degree of freedom per element.   

One of the objectives of the present study is to compare the results of assuming 

linear displacement fields in core or nonlinear displacement fields.  Finite element 

model by (Baber, et al., 1998) is modified for the nonlinear displacement field, and 

for linear displacement field in core a separate Finite element model is developed.  
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1.4 Models to characterize the behavior of Viscoelastic Material  

The damping phenomenon in viscoelastic material arises from the relaxation and 

recovery of the polymer network after it has been deformed. As the name 

viscoelastic implies, it shows characteristics of both viscous fluid and elastic solid 

material.  In the viscous fluid the mechanical energy is dissipated in the form of heat 

and in elastic solid the energy is stored in the form of strain energy. This 

combination of properties makes the viscoelastic material to behave uniquely, such 

that in addition to undergoing instantaneous strain it also undergoes creep after the 

application of constant sudden load. Alternatively, one can say that the force 

required for maintaining constant strain will decrease over the period of time. In 

order to develop constitutive relation between stress and strain, one need to do 

transient or dynamic analysis. Under the sinusoidal strain loading of frequency , 

experimental results (Shaw, et al., 2005)  clearly show that the stress and strain of a 

linear viscoelastic material oscillate at the same frequency but with a phase 

difference of  δ. 

 
Figure 1.4 Stress and Strain under sinusoidal strain loading (Shaw, et al., 2005) 
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As shown in Figure (1.4), the strain rate has maximum value as it passes through 

zero and corresponding stress τ’’ is the stress as if the sample would behave purely 

as in a viscous. Alternatively as the strain rate becomes zero when strain reaches its 

maximum value, corresponding stress τ’ is the stress as if the sample would be 

purely elastic. 

1.4.1 Constitutive Equation of Viscoelastic Material 

Boltzmann superposition principle helps greatly to develop the constitutive 

equation for viscoelastic material. It states that each loading step makes 

independent influence on loading history and total strain of sample is linear 

summation of all the strains. In a Creep test where shear stress τo is applied 

instantaneously at time zero and strain is measured over the time, the resulting 

shear creep compliance can be written as  

o

t
tJ



 )(
)(   (1.1) 

This can also be written as 

)()( tJt o   (1.2) 

In general the stress τo can be applied at any arbitrary time r1. Then the equation 

(1.2) takes the form of  

)()( 11 rtJt   1rt   

(1.3) 

0)( t  
1rt   
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 If one consider both loading steps of stress at time equal to zero and t1. After 

applying Boltzmann superposition principle as defined above, one can write: 

)()()( 11 rtJtJt o    (1.4) 

For more general loading one can consider number of discrete stress increments

n ,.....,, 321  applied at time nrrrrt ,.....,, 321  and then one can extend the Eq. (1.4) 

into the following form: 





n

i

ii rtJt
1

)()(   (1.5) 

Instead of discrete increment of stress τi considering a continuous stress τ(r), the 

increment of stress is just derivative of τ(r) times the increment of time dr. One can 

then easily replace the summation in Eq. (1.5) by the integration as: 

drrtJ
r

r
t

t

)(
)(

)( 



 




  (1.6) 

Lower limit of integration is  , so that influence of complete loading history can 

be considered for observed strain.  Using the same analogy, one can derive an 

expression of stress τ(t) for a sample which has continuous strain history of γ(t). 

drrtG
r

r
t

t

)(
)(

)( 



 




  (1.7) 

By setting (t-r) equal to new variable b and taking care of new limits, Eq. (1.7) 

becomes 
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







  (1.8) 

Now under the application of harmonic shear strain at any time b, one can write: 

)(

0)( btiebt    (1.9) 

Substituting the Eq. (1.9) into Eq. (1.8) and after the integration and simplification 

yields a complex modulus as: 

)()(*  GiGG   (1.10) 

here G’(ω) is the storage shear modulus and G’’(ω) is the loss shear modulus. The 

loss factor η(ω) of a material can be defined as the non-dimensional quantity 

computed by dividing G’’(ω) the loss shear modulus by G’(ω) the storage shear 

modulus as: 

 )(i1)(*  GG  (1.10a) 


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


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




G

G
 (1.10b) 

The loss factor indicates the ratio of average energy dissipated from the viscoelastic 

material to the maximum strain energy stored under a harmonic force over the 

period of one cycle.  A complex modulus that illustrates the steady state harmonic 

response of the viscoelastic material is also used to obtain the characteristics of the 

viscoelastic material. As discussed in the introduction, the mechanical properties of 

viscoelastic material depend not only on the frequency but also on the temperature, 

and so is the complex modulus. There are various procedures for determining the 

complex modulus of viscoelastic materials through experiments. The details of test 
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setup, specimen selection criteria and test procedures are described in (Nashif, et 

al., 1985) and (Jones, 2001). The important characteristics of damping materials are 

shown in a temperature nomogram. The concept of nomogram was developed by 

Jones (Jones, 1978) and is considered as a standard presentation of complex 

modulus data. The data for the nomogram of viscoelastic materials are provided by 

the manufacturers for a particular lot. The storage and loss factor of the material can 

be obtained from the nomogram. 

1.4.2 Damping Models 

To comprehend the effect of relaxation behavior of viscoelastic material and to 

represent it mathematically, the need of specific mechanical analog model arises. 

Simplest way to capture both elastic and relaxation nature of polymers is by 

developing a model consisting of both elastic solid and viscous fluid dashpot. 

Various models with different combinations of solid and viscous fluid dashpot have 

been developed and here in the following we will briefly discuss Maxwell, Voigt, 

Zener Models known as Standard Solid Models, Generalized standard model and 

Fractional derivate (FD) method (Bagley, et al., 1983). We will show that Maxwell 

and Voigt models are not able to replicate the complete behavior of viscoelastic 

structure but the improved generalized standard and Fractional derivate models 

comparatively capture the behavior. Further we will discuss some modern 

approaches like the Augmenting Thermodynamics Fields (ATF) (Lesiutre, et al., 

1990) method, the Anelastic Displacement Field (ADF) (Lesieutre, et al., 1995) 

method and the Golla-Huges-McTavish (GHM) method (Golla, et al., 1985). The 

merits and demerits of these methods will also be discussed.  
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Before discussing these models, it may be better to briefly go over the constitutive 

equation for elastic solid and viscous fluid (Dashpot). 

 

Elastic Solid: 

 Elastic spring in Figure (1.5) can easily replace for elastic solid. Here the linear 

spring constant is the modulus of elasticity. The relation between the elastic strain 

εe and elastic stress σe can then be described by the Hook’s relation as: 

 
Figure 1.5 Elastic Spring 

ee E   (1.11) 

where E is Young’s Modulus of elasticity.  

Here stress and strain are independent of time. 

Viscous Fluid Dashpot: 

Viscosity is the dominant nature of fluids in viscous fluid dashpot as shown in Figure 

(1.6). 

 
Figure 1.6 Viscous Dashpot 
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The constitutive equation of viscous fluid is governed by the Newtonian law of 

viscosity, which implies stress in fluid is linearly proportional to strain rate as: 

dt

d v
v


   (1.12) 

where, µ is known as coefficient of viscosity. 

The ratio of µ to E is defined as relaxation time of element. 

E
Tr


  (1.13) 

Maxwell Model:  

In the Maxwell model elastic spring and dashpot are connected in series as shown in 

Figure (1.7) to approximate the mechanical response of viscoelastic material. 

  
Figure 1.7 Schematic representation of Maxwell Model 

If a stress σ is applied at one end of this model stresses in both spring σe and 

dashpot σv can be written as 

ve    (1.14) 

And total strain ε in the element is linear summation of strain in elastic spring εe and 

strain in viscous dashpot εv can be written as 

ve    (1.15) 
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Differentiating the above Eq. (1.15) with respect to time and considering Eqs. (1.11), 

(1.12) and (1.14), one may write the governing differential equation for Maxwell 

model as: 






dt

d

Edt

d 1
 (1.16) 

This governing differential equation can be solved for three types of loading. 

Under the Creep loading, the stress is suddenly applied to previously unstrained 

sample and maintained at constant value, and thus stress can be written as: 

)()( tHt o   (1.17) 

where H(t) is the Heavyside function and is defined as 

00)(

01)(





tfortH

tfortH

 

Replacing the stress from Eq. (1.17) into the Eq. (1.16) and then integrating with 

respect to time yields: 

)(
1

)( tH
t

E
t o 











   (1.18) 

)()( tDt o   (1.19) 

where D(t) is creep compliance. 

Alternatively, if strain is suddenly applied and maintained at a constant value, then 

dt

d
 is zero, which makes the Eq. (1.16) to take a form of 
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0
1






dt

d

E
 (1.20) 

This equation can easily be integrated from σo at time equals to zero to σt at time 

equals to t to have: 













tE

ot lnln  (1.21) 

Taking exponential from both sides of Eq. (1.21) and considering σo =E εo yields: 



tE

ot Ee


  (1.22) 

On the other hand, if the loading is harmonic in nature with frequency ω, the strain 

produced will also be harmonic with same frequency but with phase difference δ. 

Harmonic stress can be represented as 

ti

ot e    (1.23) 

Here σo is amplitude of stress and ω is frequency (radian/s). Replacing the stress 

from Eq. (1.23) in Eq. (1.16) yields: 

titi eei
Edt

d 






 00   (1.24) 

Integrating the Eq. (1.21) with respect to time from time equals to t1 to time equals 

to t2 gives 

)()()()( 1212 00
12
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tt
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Rearranging one get 
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We can write 













11* i
E

D  (1.27) 

where D* is the complex tensile compliance, from here we can easily calculate the E*, 

the complex tensile modulus, as 

*

* 1

D
E   (1.28) 

EiEE *  (1.29) 
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Voigt Model  

In the Voigt model, the spring and dashpot are connected in parallel to each other as 

shown in Figure (1.8) which results into the equation for stress as: 

ve    (1.32) 

where, σe is the stress in the elastic spring and σv is the stress in the viscous dashpot. 

Strain produced in the elastic spring εe and viscous dashpot εv is the same. 
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ve    (1.33) 

 
Figure 1.8 Schematic representation of Voigt Model 

Using the stress and strain constitutive relation from Eq. (1.11) and Eq. (1.12) 

governing differential equation for Voigt model can be written as 

dt

d
E


   (1.34) 

Under creep test, stress is suddenly applied and maintained at constant value as 

defined in Eq. (1.17), thus we can write: 

dt

d
EtH


 )(0  (1.35) 

Multiplying both side of Eq. (1.35) by 


Et

e gives: 

dt

ed
tHe

Et
Et

)(
)(0





   (1.36) 

Integration both side of Eq. (1.36) with respect to time, we have: 

)(1)( 0 tHe
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22 
 

)(1* tHeD

Et



















 (1.39) 

D* is known as Creep Compliance. 

Alternatively, if strain is suddenly applied and maintained at a constant value which 

means 
dt

d
 is zero, then Eq. (1.34) takes the following form as: 

 E  (1.40) 

Under the harmonic loading, taking the analogy as discussed previously for the 

Maxwell model, one can reach to E* 
= E’ +i E’’ complex tensile modulus as: 

EE   (1.41) 

E  (1.42) 

Zener Model 

In Zener model, two elastic springs are attached with a single dashpot in serial and 

parallel combination as shown in Figure (1.9).  The constitutive equation for this 

model can be written as 

dt

d
EE

dt

d 



   (1.43) 

 
Figure 1.9 Schematic representation of Zener Model 

The parameters α, β, E   in Eq. (1.38) are defined here 
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In which E1 and E2 are the spring constants of springs in series and in parallel with 

dashpot, respectively. 

Under the creep test, stress is suddenly applied and maintained at constant value as 

defined in Eq. (1.17) which yields the following relation considering Eq. (1.43): 

dt

d
EE


   (1.47) 

Now Eq. (1.47) can be easily solved and results in: 




t

o Ce
E



  (1.48) 

The constant of integration C can be obtained from the initial conditions. Here, one 

may consider that the sample was not initially strained ( 0  at 0t ) which results:  

E
C o  (1.49) 

Substituting the value of C from Eq. (1.49) in Eq. (1.48) yields: 
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Alternatively, if the strain ε = εo is suddenly applied on stress free sample (σ = 0 at 

t=0) and maintained at a constant value ( 0
dt

d
 at t=0), then by using Eq. (1.43) one 

can write: 

oE
dt

d



   (1.51) 

and its corresponding solution is  
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On the other hand if we apply harmonic stress σ = σoe
iωt and strain ε = εoe

iωt, then 

solution of equation Eq. (1.43) becomes:  




















i

i
E o

1

1
 (1.53) 

which can be simplified to: 

 EiEo
  (1.54) 
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(1.56) 

As it has been already discussed, there are two unique properties of viscoelastic 

material; a) Creep and b) Relaxation. Figure (1.10) describes the time history of the 

creep functions of the above discussed three models and Figure (1.11) describe the 

time history of the relaxation functions of the above discussed three models. The 
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characteristics of creep function ideally should increase with time and converge to a 

steady state final value and characteristics of relaxation function ideally should 

decrease with time and converge to a steady state final value.  

 
Figure 1.10 Creep function for three models 

 
Figure 1.11 Relaxation function for three models 

We can easily observe that both, the creep function predicted by the Maxwell model 

and relaxation function predicted by the Voigt model are impractical. The creep 

function predicted by the Maxwell model does not converge to steady state value 

but keep on increasing with time and the relaxation function predicted by the Voigt 

model keeps constant throughout the time. Therefore, it is clear that both the 
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Maxwell and Voigt models fail to replicate time domain characteristics of 

viscoelastic materials, whereas, the Zener model can reasonably predict both creep 

and relaxation function in time domain.  

All three models are able to predict complex modulus in frequency domain; 

however Zener model better reflects the aspects of real viscoelastic behavior. It 

should be noted that when we compare the E* complex modulus to experimental 

data, the variation with frequency is much more rapid. Therefore, even the Zener 

model is only an approximation and requires an improvement.  

Generalized standard model 

The limitation of the simple Zener model can be overcome by considering additional 

derivate of σ and ε in Eq. (1.43) to give 
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  (1.57) 

This generalized standard solid model improves the Zener model but there is major 

disadvantage as there is substantial number of terms of αn and βn that need to be 

calculated over the wide range of frequencies. This is inconvenient but not 

impossible.  

Fractional Derivates Model 

In order to reduce the number of terms needed by the generalized standard model 

Bagley and  Torvik (Bagley, et al., 1983) developed a fractional derivative model to 
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represent viscoelastic behavior. The complex modulus of viscoelastic material can 

be represented in Laplace domain as: 


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The five parameters Eo, E1, b, α, β are used to accurately curve fit the data 

acquired through experiments. The advantage of this model is that it accurately fits 

the experimental data over the wide range of frequency. The model is good in 

frequency domain only, because it is difficult to take the inverse Laplace transform 

of a frequency domain complex modulus based on a fractional derivates. 

GHM, ATF and ADF Models 

The GHM model represents a viscoelastic material by introducing internal variable 

(Auxiliary dissipation coordinates) to account for viscoelastic relaxation and, thus 

damping. The shear modulus function in the Laplace domain can be represented as 

series of mini-oscillatory terms (McTavish, et al., 1993): 
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The mini-oscillatory term in summation series depends upon the three material 

constants jj  ˆ,ˆ and j̂ , which can be evaluated from the curve-fitting of the 

viscoelastic material master curves. The number of terms N, in the expression is 

determined from the high or low dependence of the complex modulus. 
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The ATF modeling method (Lesiutre, et al., 1990) was a time–domain continuum 

model of material damping that preserves the frequency-dependent damping and 

modulus of real material. Irreversible thermodynamics processes were used to 

develop coupled material constitutive equations of evolution. As GHM, ATF also 

used additional coordinates to predict damping more accurately.  

The ADF method was based on a decomposition of the total displacement field into 

two parts: elastic and anelastic. The anelastic part of displacement describes that 

part of strain that is not instantaneously proportional to stress. The details of model 

were presented by Lesieutre and Bianchini (Lesieutre, et al., 1995). 

Both ATF and ADF methods lead to first order damping model, which can be 

implemented only in state space forms when combined with structural analytical 

models. However, because of second order form, GHM is less efficient as a general 

model of material behavior. Also, GHM, ATF and ADF methods use additional 

internal dissipation coordinates which increase degrees of freedom of the system.  

1.4.3 Behaviors and Typical Properties of Viscoelastic Material 

An understanding of the variation of mechanical and damping properties with 

frequency and temperature is essential the design of effective vibration control 

treatments. The following sections will describe how these factors affect the 

properties of typical viscoelastic material and explain the techniques used to 

establish the properties of viscoelastic material.  
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Effect of Temperature 

Temperature is considered to be the most important environmental factor affecting 

the properties of viscoelastic material. This effect can be observed in Figure (1.12) 

for four distinct regions. The first is the so-called glassy region, where material is 

dynamically very stiff with high storage modulus but behaves poorly in damping 

with very low loss factor. The storage modulus in this region changes slowly with 

temperature, while the loss factor increases rapidly. In the transition region, 

material changes from glassy state to rubbery state in which the material storage 

modulus decreases rapidly with temperature, while loss factor attains its maximum 

value. The third is the rubbery region, here both the modulus and loss factor take 

somewhat low values and vary insignificantly with temperature. The flow region is 

typically for a few damping materials, like Vitreous enamels and thermoplastics, 

here material continues to soften with temperature rise while the loss factor takes 

on very high value. 

 
Figure 1.12 Variation of storage modulus and loss factor with temperature (Nashif, et al., 1985) 
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Effect of Frequency 

The most important effect of frequency is that the storage modulus always increases 

with increasing frequency. It means that viscoelastic materials become dynamically 

stiffer. The rate of increase is small in both the glassy and rubbery regions, and 

reaches its maximum in transition region, whereas loss factor first increases with 

frequency increase, attains its maximum value and then decreases. Variation of the 

damping properties with frequency at particular temperature is expected to take 

the form illustrated in Figure (1.13). Examination of Figures (1.13) and (1.14) 

reveals that, the effect of frequency on storage modulus is qualitatively the inverse 

of the effect of temperature. To a lesser degree; it takes several decades of frequency 

to show the same change of behavior as few degree of temperature. This 

phenomenon is most important aspect of Viscoelasticity. This behavior provides the 

basis for the temperature-frequency superposition principle that is used to 

transform material properties from the frequency to temperature domain (Jones, 

1990).     

 
Figure 1.13 Variation of storage modulus and loss factor with frequency (Nashif, et al., 1985) 
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Combined Effect of Temperature and Frequency 

To consider the effect of both frequency and temperature on damping behavior of 

material, one of the useful techniques for presenting the experimental data is the 

temperature-frequency equivalence (reduced frequency) principle for linear 

viscoelastic materials (Ferry, 1980), (Jones, 2001). The principle of temperature-

frequency equivalence is based upon assumption that complex modulus values at 

any given frequency ω1 and temperature T1 are similar to those at any other 

frequency ω2 and temperature T2 ; which must be selected, in such way that: 

))((),( 22

*

11

* TETE    (1.60) 

The factor α(T) is called shift factor of the material and can be determined 

empirically. The factor ωα(T) describes the combine effect of both frequency and 

temperature into a single variable, which is referred as the reduced frequency.  

One of the most popular shift factor α(T) used to describe the temperature-

frequency superposition principle is WLF (Williams-Landel-Ferry) equation which 

can be written as  

 
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
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ref
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110 )(log   (1.61) 

where C1 and C2 are constants, and Tref is the reference temperature, to be 

determined for particular material. The reference temperature Tref can be chosen 

arbitrarily. Once the parameters of the WLF equation are determined, master curves 

known as nomogram which can display E  (real part of complex modulus) and η 
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(loss factor) against ωα(T) (reduced frequency) in one diagram can be created. It is 

extremely useful and directly used to extrapolate or interpolate the test results 

between different temperature and frequency.  

In the present study, the complex modulus approach is adopted with temperature 

and frequency dependent values of E’ and η. The viscoelastic material used is Viton-

B and its properties were obtained from the nomogram as shown in Figure (1.14), 

(1.15) & Figure (1.16) provided in (Nashif, et al., 1985). Master curves showing real 

part of complex Young’s Modulus E  (Psi) and loss factor η against reduced 

frequency fα(T) (Hz) and temperature T in Fahrenheit, are digitized. Further values 

of α(T) shift factor is obtained against temperature T in Fahrenheit by interpolation 

using neural network toolbox of MATLAB. 

 

 
Figure 1.14 Young’s Modulus of Viton-B (Nashif, et al., 1985) 
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Figure 1.15 Loss factor of Viton-B (Nashif, et al., 1985) 

 
Figure 1.16 Nomogram Viton-B (Nashif, et al., 1985) 



34 
 

1.4.4 Energy Dissipation Mechanism 

 If sinusoidal force F(t) is applied to a linear viscoelastic structure, then, its result 

will also be a sinusoidal displacement X(t) with phase difference at the point of force 

application (Ungar, et al., 1962). Thus we can write: 

)sin()( 0   tFtF

   

 (1.62) 

)sin()( 0 tXtX 

 

(1.63) 

Now expanding F(t) in Eq. (1.62), one may write: 

 )cos()()sin()()( 0 tKtKXtF    (1.64) 
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K’(ω) is the stiffness derived from the storage modulus of viscoelastic core and 

K”(ω) from the loss modulus. Now considering Eq. (1.63) and the identity

1)(cos)(sin 22  tt  , Eq. (1.64) can be written as:  
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Figure 1.17 Hysteresis loop for linear viscoelastic material 

Bishop (Bishop, 1955) has shown that Eq. (1.67) represents an ellipse as shown in 

Figure (1.18) and the energy D dissipated per cycle is given by: 

  2

0XKFdXD   (1.68) 

Loss Factor 

Loss factor of the system can be defined as the ratio of the dissipation energy to the 

maximum strain energy in the system 
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1.5 Scope of the Present Research 

Based on the literature reviews, sandwich beams have been well studied. However 

improving the effectiveness and accuracy of solutions for these structures is still an 

active research area. Moreover design optimization of fully and partially treated 

viscoelastic sandwich beam to efficiently suppress the vibration in a desired 

frequency range has not received appropriate attention by the research community. 
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Moreover, few studies have addressed the effect of temperature on vibration 

characteristics of viscoelastic sandwich beams.  Considering above, the main scope 

of the present research is to systematically address the above mentioned shortages.  

 As the effectiveness of formulation strongly depends upon the assumptions made, 

which further depends upon the geometry of structure, the governing equations 

have been formulated here considering both linear and nonlinear displacement field 

in the viscoelastic core layer in order to seek some basic guidelines in terms of 

geometry, boundary conditions and also frequency range where formulations based 

on linear and nonlinear assumptions deviate from each other. Further, we formulate 

a formal design optimization methodology to study the effectiveness of partial 

treated beam, and optimize the parameters like length and location of treated 

segments for increasing the damping, as partial treatment has great advantage of 

weigh reduction.  

 As discussed, the effect of temperature on the viscoelastic material cannot be 

ignored. In this study, the internal heat generation due the dissipated energy and its 

effect on vibration and damping characteristics of viscoelastic sandwich beam has 

been studied. As the viscoelastic sandwich beam deforms, the viscoelastic core layer 

goes under shear strain which varies along the length of the beam. Areas which go 

under more strain dissipate more energy and, therefore, heated more. Here, to 

calculate the temperature gradient developed in the viscoelastic core a finite 

difference model is developed to gauge the temperature of core along the length of 

beam.   
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1.6 Thesis Organization 

In the first chapter of this study, literature review and relevant works reported in 

the literature are highlighted. Also different models representing the mechanical 

properties of the viscoelastic material are compared. The scope of the dissertation is 

subsequently formulated on the basis of the reviewed studies.  In the second chapter 

the finite element model for three-node beam element is formulated. Both linear 

and nonlinear displacement fields are separately considered in the formulations. 

The validity in finite element formulations is demonstrated by comparing the 

results with those obtained from experiment available in literatures.  Parametric 

study and comparison between different finite element models are presented 

according to different thickness of the core layer at different modes. In Chapter 3, 

partially treated sandwich beam is analyzed using the finite element method and 

parametric studies are presented to show the damping behavior of the sandwich 

beam for different configuration of the patches and cuts. The designed optimization 

problem is then formulated to achieve maximum damping by combining the finite 

element analysis with genetic algorithm to find the optimum number and the 

distribution of the patches. In chapter 4, effect of heat dissipation in the core layer is 

considered by solving the heat equation using finite difference method based on 

irregular grids. And in the chapter 5, major contribution and conclusion are 

summarized and finally the recommendations for future studies are discussed. 
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CHAPTER 2 

2 FINITE ELEMENT MODELING OF A SANDWICH BEAM  

2.1 Introduction 

The analytical solutions are only suitable for very simple structures under 

homogenous boundary conditions. In reality, it is often desired to design a damped 

structure with complex geometry, complicated loading and boundary conditions, 

and also considering material discontinuities within the structures. As a result, it is 

justified to exploit the benefit of Finite Element Method (FEM) in analyzing the 

behavior of sandwich structures. In the following section brief literature review 

regarding the previous study for finite element modeling of sandwich structure is 

presented. These analyses include definition of displacement field through the 

thickness of the sandwich structure and implementation of methodology to 

establish equations of motion using energy principle. Both Hamilton’s principle and 

Lagrange equation can be used to drive equations of motion from energies. Linear 

and nonlinear modeling has been suggested for displacement field through 

thickness of viscoelastic layer. These models are explained and also an alternative 

method is presented to solve differential equations resulting from nonlinear 

modeling. 

2.2 Literature Review 

Numerous studies have been done in this area and many finite element techniques 

have been developed to determine the behavior of sandwich structures. Johnson, 
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Kienholz and Rogers (Johnson, et al., 1981) have developed the three dimensional 

brick model for sandwich beams using the MSC/NASTRAN application.  They 

explained the three finite element methods to predict response of damped sandwich 

structures. The first is the Complex Eigen-value method. In this method, a complex 

stiffness matrix is formulated by using complex modulus of viscoelastic material, 

which is not dependent on frequency and is used to determine the free vibration 

response. An extra damping term can be added to consider viscous damping which 

varies with frequency. The resulting equations of motion can be then solved as 

Eigen-value problem with complex Eigen-values and Eigen-vectors.  

The next method described was the modal strain energy method.  The basic 

assumption of the modal strain energy method is that the loss factor of damped 

structure can be predicted by approximating the mode shape of damped structure 

as that of non-damped structure mode shape. Then, for a particular mode of 

vibration, the composite loss factor can be obtained by equating the ratio of 

composite loss factor to the loss factor of viscoelastic material with the ratio of 

elastic strain energy in the viscoelastic material to the total strain energy in the 

structure at the time of deformation in a particular non damped mode shape. The 

modal strain energy method was also adopted by Soni (Soni, 1981) in his finite 

element analysis. Johnson, Kienholz and Rogers (Johnson, et al., 1981) and Soni 

(Soni, 1981) presented experimental data to demonstrate their methods on simple 

problems. But Mace (Mace, 1994) in his study mentioned that this 3D modeling 

approach can be very complex and costly to implement and highlighted the 
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difficulties in creating the meshes used for analysis and the complexity of the 

analysis. 

The third finite element method described is that of direct frequency method.  In 

this method harmonically forced vibration response is analyzed using complex 

stiffness which is frequency dependent. Mace (Mace, 1994) considered very thin 

viscoelastic layer and neglected the inertial effects of the viscoelastic layer. The 

stiffness matrix was presented in two separate matrices one for the elastic top and 

bottom layers and the second a complex stiffness matrix for viscoelastic layer.  

In the present study, two finite element models are introduced, which are 

compatible to both symmetrical and unsymmetrical configuration of sandwich 

beams. The models are based on discrete displacement approach, which means that 

all the layers in sandwich structure will have separate displacement field; there is 

no global displacement field. The compatibility of displacement field is taken care of 

by maintaining the displacements of all layers at interference boundaries. In the first 

model, a linear displacement field is assumed, which means all the layers including 

the viscoelastic core layer have linear displacement variation through the thickness 

and do not undergo any compression or extension in transverse direction. The 

second model is based upon the work done by Bai and Sun (Bai, et al., 1995). They 

incorporated a shear deformation by using a second order displacement field in 

transverse direction and third order displacement field in axial direction, which 

allow core to deform in a non-linear way through the thickness. It also allows the 

core layer to undergo normal compression and extension in transverse direction. 
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Bai and Sun derived these displacement fields in core from linear elasticity 

principles by assuming that the axial stress developed in viscoelastic core layer is 

negligible.  They also included the slippage between the layers in their analysis and 

solved the governing equations analytically. Later Baber, Maddox and Orozco 

(Baber, et al., 1998) developed the finite element model for sandwich beam using 

Bai and Sun theory of second order displacement field in core by neglecting the 

slippage between the layers. They solved the governing differential equation 

resulted from nonlinear modeling by assuming a very thin viscoelastic core and thus 

simplifying it to linear equation by ignoring the higher order derivatives.  In the 

present study an alternative method is presented to solve the governing differential 

equation resulting from nonlinear modeling without ignoring the higher order 

derivatives. To demonstrate the validity of developed models, validation examples, 

with various geometries are conducted.  

2.3 Finite Element Model Based on Linear Displacement Field at Core 

Layer (FEM 1) 

As, we discussed earlier, the first developed model is based upon the assumption 

that all the layers of sandwich beam undergo linear displacement variation and 

there is no compression or extension in the transverse direction.  

2.3.1 Kinematics of the model 

The geometrical characteristics of a sandwich beam are shown in Figure (2.1). The 

present model is based upon the following assumptions. 

I. The cross-section of each layer will remain plane after deformation. 
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II. All layers are perfectly bonded; this means that there is no slippage at the 

interface of layers. 

III. The axial displacement and rotation in top and bottom elastic layers are 

independent of each other. 

IV. The core layer consists of viscoelastic material which is assumed to be 

incompressible through thickness; this means that the transverse 

displacement of all layers is same. 

 

Figure 2.1 Sandwich beam 

2.3.2 Displacement fields 

Local coordinate system for all three layers is adopted and shown in Figure (2.2). It 

is noted that the origin of the coordinate system is placed at the centroid of the 

individual layer. The schematic deformed configurations of the layers are also 

shown in Figure (2.3). 

 
Figure 2.2 Local coordinates in layers 
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Figure 2.3 Deformed configuration of layers 

Longitudinal and transverse displacement fields for the base (bottom) layer are 

given by: 

),(),(),,( 0 txztxutzxu bbbbb   (2.1) 

),(),,( 0 txwtzxw bbb   (2.2) 

where  

bu =  longitudinal displacement in the base layer for any (x,z) location 

0

b
u = longitudinal displacement at the centroid of the base layer  

bz = distance from centroid of base layer in transverse direction 

b = rotation in the base layer 

bw = transverse displacement in the base layer for any (x,z) location 

0

bw = longitudinal displacement at the centroid of the base layer 

Similarly, for the top layer, the displacements are taken as: 

),(),(),,( 0 txztxutzxu ttttt   (2.3) 

),(),,( 0 txwtzxw ttt   (2.4) 

where  
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tu =  longitudinal displacement in the top layer for any (x,z) location 

0

tu = longitudinal displacement at the centroid of the top layer  

tz = distance from centroid of top layer in transverse direction 

t = rotation in the top layer 

tw = transverse displacement in the top layer for any (x,z) location 

0

tw = longitudinal displacement at the centroid of the top layer 

Core layer is made of viscoelastic material and its displacement field may also be 

described as: 

),(),(),,( 0 txztxutzxu vvvvv   (2.5) 

),(),,( 0 txwtzxw vvv   (2.6) 

where  

vu =  longitudinal displacement in the core layer for any (x,z) location 

0

vu = longitudinal displacement at the centroid of the core layer  

vz = distance from centroid of core layer in transverse direction 

v = rotation in the core layer 

vw = transverse displacement in the core layer for any (x,z) location 

0

vw = longitudinal displacement at the centroid of the core layer 

Considering above there would be nine degrees of freedom to describe the 

displacement field for all layers; however some of the degrees of freedom can easily 

be eliminated by utilizing the assumption mentioned above. Because of the assumed 
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perfect bonding of the layers, the axial displacement must remain continuous at the 

interface between two consecutive layers. To impose this continuity, the subsequent 

conditions are written: 

),2/,(),2/,( tHxutHxu ttvv    (2.7) 

),2/,(),2/,( tHxutHxu bbvv    (2.8) 

Basically Eq. (2.7) and Eq. (2.8) state the continuity of displacement in axial 

direction at the interface of viscoelastic layer and top constrained layer and 

interface of viscoelastic layer and base layer. Using Eq. (2.1), Eq. (2.3) and Eq. (2.5) 

and considering the continuity conditions in Eqs (2.7) and (2.8) one may write the 

degrees of freedom associated with the viscoelastic core layer with respect to those 

of top and bottom layers as:  

  )),(),((25.0)),(),((5.0),( 000 txHtxHtxutxutxu ttbbtbv    (2.9) 

)),(),((5.0)),(),(()/1(),( 00 txHtxHtxutxuHtx bbttbtvv    (2.10) 

Now, by substituting Eqs (2.9) and (2.10) back into Eq. (2.5), the complete 

displacement field for viscoelastic core layer in axial direction can be obtained.  Here 

two degree of freedom, one is related to the axial displacement at the neutral axis of 

viscoelastic core and the other is rotation at the core layer are eliminated in terms of 

rotation in top and bottom layers and axial displacement at neutral axis of top and 

bottom layers. Thus applying the displacement continuity at the interfaces can 

reduce the total number of degrees of freedom from nine to seven. We can further 

reduce the degrees of freedom by using the assumption that there is no compression 

in layers in the transverse direction, which means all the layers move the same 
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displacement in transverse direction. This assumption can reduce the three degrees 

of freedom in transverse direction to only one degree of freedom as: 

),(),,(),,(),,( 0 txwtzxwtzxwtzxw vvttbb   (2.11) 

Considering above discussion, the generalized degrees of freedom to be used in the 

analytical formulation can be written as: 

   000 wuuq ttbb   (2.12) 

2.3.3 Strain-Displacement relations 

Using the assumed expression for displacement fields mentioned before, we can 

easily formulate the strains developed in all three layers as: 
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where  

i = Axial strain in the thi layer. 

i = Shear strain in the thi layer. 

Writing Eq. (2.13) for each layer, we have: 
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in which axial displacement functions for the bottom, top and core layers have been 

described in  Eq.(2.1) , Eq.(2.3) and Eq.(2.5).  

2.3.4 Stress –Strain relations 

From the strain field obtained previously, the stress field in the beam, according to 

Hooke's generalized law, is written as: 

 xx

ii

xx

i E   
),,( tvbi   (2.17) 

xz

ii

xz

i G 
 

where 

iE = Young’s Modulus of the thi layer. 

iG = Shear Modulus of the thi layer. 

i = Normal stress in the thi layer. 

i = Transversal shear stress in the thi layer. 

In case of viscoelastic core layer Young’s modulus and shear modulus is complex. 

2.3.5 Strain Energy 

By taking account of the previously mentioned stress strain behavior, and within the 

outline of linear elasticity, the internal strain energy of all the three layers can be 

written as: 
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where D is the width of the beam. Now, the total strain energy of the beam can be 

calculated by the sum of strain energies of each layer in the sandwich beam as: 

tvb UUUU  )(  (2.20) 

As discussed before, the Young’s modulus and shear modulus of viscoelastic 

material depends on excitation frequency ω and so the strain energy of viscoelastic 

layer 
vU )( is also function of ω. Moreover it is important to note that the strain 

energy 
vU )(  includes the energy dissipation as well.  The stiffness and damping of 

the system are calculated together by the use of complex shear and Young’s 

modulus for viscoelastic material.   

2.3.6 Kinetic Energy 

The kinetic energy of all the three layers can be written as: 

 dVwuT
V

iii   22

2

1
   (2.21) 

 ),,( tvbi    

 dAwuDT
A

iii   22

2

1
   (2.22) 

 

Similarly, the total kinetic energy of the beam can be written as the sum of the 

kinetic energies of each layer of the sandwich beam as: 

tvb TTTT   (2.23) 

2.3.7 Work of external forces 

Consider uniformly distributed loads P. The associated work is defined by: 
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
x

qPdxW  (2.24) 

2.3.8 Finite element formulation based on the linear displacement fields 

The finite element formulation of the three layers uniform sandwich beam based on 

the linear displacement field at the core layer is explained in this section. Beam is 

discretized into number of elements. The proposed element has three nodes and 

considering the generalized degrees of freedom  000 wuuq ttbb  , each node 

has five nodal displacement degrees of freedom as shown in Figure (2.4). Three 

nodes are important as it leads to quadratic interpolation function which eliminates 

shear locking in the element.  

 

Figure 2.4 Three-node beam element having five degrees of freedom per node 

The generalized degrees of freedom q are related to the elementary nodal degrees of 

freedom qe through interpolation or shape function matrix N as follows: 

eNqq 
 

(2.25) 
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(2.27) 

where the N1, N2 and N3 are Lagrangian interpolation functions described as:  

000 33333 wuu ttbb   
000 22222 wuu ttbb   

000 11111 wuu ttbb   
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where, Le is the length of the element. 

2.3.9 Equations of motion 

Here the equations of motion for the element described before have been 

formulated using the Hamilton’s principle: 

   0
2

1

 dtWUT

t

t

  (2.31) 

By substituting the expression for the kinetic energy, strain energy and work done 

explained before into Eq. (2.31) and integrating over the time, we obtain: 

        0)()(  tFqKqM eeeee   (2.32) 

where [Me], [Ke]and {Fe} are the element mass matrix, stiffness matrix and force 

vector, respectively. As discussed above the strain energy of viscoelastic layer is a 

complex quantity and function of excitation frequency, so the stiffness matrix 

obtained from the summation of all strain energies is also a function of frequency 

and is a complex matrix. Thus the stiffness matrix can be split into two matrices as:  

           0)()()(  tFqKiKqM eeeeee   (2.33) 

These element matrices and vectors will be further assembled to obtain the system 

matrices and vectors to derive equations of motion for the system as: 
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           0)()()(  tFqKiKqM   (2.34) 

 Now let us consider a harmonic load described as: 

    tieFtF 
0)(   (2.36) 

where  is the frequency of applied harmonic load. Both amplitude and mode of 

vibration depends on the exciting frequency. It can be assumed that the response 

due to this applied harmonic load will also be harmonic in nature and at the same 

frequency. Then: 

    tieQq   (2.37) 

    tieQq  2
 

(2.38) 

By substituting Eqs. (2.36)-(2.38) into Eq. (2.34),  the governing equations of motion 

can be written as: 

  0

2)()( FQMKiK    (2.39) 

where the brackets in Eq. (2.39) have been removed for the sake of simplicity with 

understanding that K and K  and M are matrices and Q and F0 are vector 

quantities. 

Solution of Eq. (2.39) can easily be obtained for every frequency after applying the 

corresponding boundary conditions by using the inverse of the matrix inside the 

parenthesis on the left hand side. But generally, we are not interested in the 

response for every exciting frequency. Only when the exciting frequency gets closer 

to the natural frequency of the system, the response of the system elevated as 

inertial forces become prominent along external exciting forces.  Natural 

frequencies and the associated mode shapes of the system can be obtained by 

equating the exciting force amplitude in the Eq. (2.36) to zero as: 
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  0)()( 2  QMKiK   (2.40) 

This equation cannot be solved directly as eigen value problem to obtain natural 

frequencies because the stiffness matrix is implicitly dependent on the frequency 

itself, which makes the problem nonlinear and iteration method should be adopted. 

A very efficient inverse iteration method was described by Chen and Chan (Chen, et 

al., 2000) to calculate the eigen values (natural frequencies) and corresponding 

eigenvectors. This method has been utilized in this study and has been briefly 

explained here.  With a starting value of ω0 , the iteration procedure is as follows: 

1. 
0,0   nn  

2. Calculate )()(  KiKKn
  

3. Inverse iteration for the generalized linear eigenvalue problem 
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where ѱn+1 is a complex eigenvector. The complex eigenvalue is then updated 

by 
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4. Continue steps 1 through 3 until the following convergence is approached 
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
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 ,     ∆=10-5 

Once the eigenvalues and the corresponding eigenvectors are obtained, one could 

easily determine the natural frequencies and the corresponding modal loss factors 

and the vibration response. 
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2.4 Finite Element Model Based on Nonlinear Displacement Field at 

Core Layer (FEM 2) 

The viscoelastic Young’s modulus is very low as compared to elastic layers, so by 

ignoring the axial longitudinal stress in viscoelastic layer and by following the 

elasticity analysis, Bai and Sun (Bai, et al., 1995) has developed a nonlinear variation 

of displacement field for viscoelastic core layer. The model allows the viscoelastic 

layer to undergo compression in transverse direction and permits a more general 

shear deformation through thickness of the core to accommodate thicker core layer. 

They also considered an imperfect adhesive layer between the interference of the 

core and top & base layers. Because the adhesive layer thickness is very low 

comparing to the viscoelastic core layer, the effect of adhesive layer is not significant 

unless the adhesive layer is significantly softer than the core layer. For this reason 

perfect bonding between the layers at interference is suitable assumption for most 

sandwich beams.  

2.4.1 Displacement field 

Local coordinate system for all three layers is adopted and shown in Figure (2.2). 

Origin of the coordinate system is placed at the centroid of the individual layer. The 

longitudinal and transverse displacement fields for the base and top constrained 

layers are the same as those given in Eqs. (2.1)-(2.4). 

Core layer is made of viscoelastic material and its displacement field is derived by 

linear elasticity analysis by assuming that the axial stress in the viscoelastic core 

layer is negligible (Bai, et al., 1995):  
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where  

vu =  longitudinal displacement in the core layer for any ),( zx location 

0

vu = longitudinal displacement at the centroid of the core layer  

vz = distance from centroid of core layer in transverse direction 

 = shear deformation in core 

 = transverse normal deformation in core 

vw = transverse displacement in the core layer for any ),( zx location 

0

vw = transverse displacement at the centroid of the core layer 

e = )1(2 v  

v = Poisson ratio of viscoelastic core. 

As it can be realized to describe the displacement field for the core layer, four 

generalized degrees of freedom  0

vu  , 0

vw ,   and   are required. Unlike linear model 

where transverse displacement of all layers are the same and continuity of only 

axial displacement at interference of layers was considered, here, nonlinear 

displacement field of core viscoelastic layer allows the transverse displacement of 

top constrained layer and base layer  to remain independent of each other. That led 

to transversal compression and extension of core layer. But still the continuity of 

axial and transverse displacement prevails at the interface of layers which lead to 
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boundary condition equations for axial displacement as discussed earlier in Eq. (2.7) 

and Eq. (2.8) and for transverse displacement as follows: 

),2/,(),2/,( 0 tHxwtHxw ttvv    (2.43) 

),2/,(),2/,( 0 tHxwtHxw bbvv    (2.44) 

 After substituting the displacement fields of the core layer from Eq. (2.41) and Eq. 

(2.42) into Eqs (2.7), (2.8), (2.43), and (2.44), it is possible to eliminate three of the 

four degrees of freedom in the core explicitly through the following relations 


























 b

vb
t

vt
btv

HHHH
uuu 

42422

1 000   (2.45) 

x

Hww
w vbt

v










82

200
0

 
(2.46) 

v

bt

H

ww 00 
   (2.47) 

The fourth degree of freedom for the core layer, ),( tx , cannot be eliminated 

directly; but it is related to the variables of top and base layers by the following 

partial differential equation: 
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Considering above discussion, the generalized degrees of freedom, q for the case of 

nonlinear model can be described as: 

  0000

tttbbb wuwuq   
(2.50) 
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It should be noted that the partial differential equation in Eq. (2.49) can be 

converted into the ordinary differential equation for steady state harmonic 

response (independent of variable time t) as:  
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 (2.51) 

 Solution of the obtained ordinary differential equation is given by the sum of 

homogeneous solution 
h  and particular solution p  which is discussed in the next 

section. 

2.4.2 Finite element formulation 

Here the finite element formulation of the three layers uniform sandwich beam 

based on the nonlinear displacement distribution at the viscoelastic core layer is 

discussed. Beam is discretized into number of elements. Similar to the linear 

formulation, the proposed element has three nodes and considering the generalized 

degrees of freedom given in Eq. (2.50), each node has six nodal displacement 

degrees of freedom as shown in Figure (2.5).  

 

 
Figure 2.5 Three-node beam element having six degrees of freedom per node 

The generalized degrees of freedom q are related to the elementary degrees of 

freedom qe through the shape function matrix N as follows 

eNqq   (2.52) 

  000000000000 333333222222111111 bttbbbtttbbbtttbbbe wuwuwuwuwuwuq 
(2.53) 

0000 111111 tttbbb wuwu   

0000 222222 tttbbb wuwu   
0000 333333 tttbbb wuwu   
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(2.54) 

Until now the shear deformation α has not been explicitly written in terms of q. To 

do this, first let us discuss about the homogenous and particular solutions for α 

according to Eq. (2.51). The homogenous solution of Eq. (2.51) can easily be 

calculated as 
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(2.55) 

As, we can see none of degrees of freedom are included in the exponential terms, 

which suggests that the homogenous solution of the Eq. (2.51) has less influence and 

can be ignored.  Moreover it was discussed by Baber, Maddox, and Orozco (Baber, et 

al., 1998) that 
h  dissipate rapidly from the boundaries. The particular solution can 

be approximated by the polynomial series and here is regarded as the total solution: 

2

210 xaxaap   (2.56) 

The coefficient of Eq. (2.56) can easily be derived by replacing αp as a polynomial 

series and the generalized degrees of freedom in terms of elementary degrees of 

freedom qe in Eq. (2.51) and then equating the coefficient of x0, x1 and x2 from both 

sides of equation. The detail of the coefficient is provided in the Appendix A.  
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2.4.3 Strain-Displacement relations 

Using the assumed expression for displacement fields mentioned above, we can 

easily formulate the strains developed in all three layers. It should be noted that, 

because of nonlinear displacement field in core, normal strain in the transverse 

direction in core layer is not zero anymore: 
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where  

i = Axial strain in the thi layer. 

i = Shear strain in the thi layer. 

Eq. (2.57) can be extended for the bottom, top and core layers as:  
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in which axial displacement functions have been described in  Eqs. (2.1)-(2.4) for 

the top and bottom layers and Eqs (2.41) and (2.42) for the viscoelastic core layer. 

2.4.4 Strain Energy 

By taking account the previously mentioned stress strain behavior in Eqs. (2.58)-

(2.60), and within the outline of linear elasticity, the internal strain energy of the top 

and bottom layers can be written as: 
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The strain energy in the core layer has additional term related to the normal strain 

developed in transverse direction and is given by 
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where again D is the width of the beam. As mentioned before in section 2.4, the axial 

longitudinal stress in viscoelastic layer has been ignored for this case. 

The total strain energy of the beam can be calculated by the sum of strain energies 

of each layer in the sandwich beam as: 

tvb UUUU  )(  (2.65) 

2.4.5 Equation of motion 

There is no change in the formulation of kinetic energy as compared with that for 

linear model so; the kinetic energy of all the three layers is formulated as mentioned 

in Eq. (2.23). 

Equation of motion for element can be formulated using the Hamilton’s principle 

given in Eq. (2.31). The detail of matrices developed is provided in appendix A. As 

discussed in section (2.3.9), the equations can be solved by the same technique for 

harmonic loading and free vibration. Only difference arises for the transverse 

response because the top and base layer undergoes different displacement, and 
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hence, average response of both layers is considered to calculate the transverse 

displacement.  

2.5 Modal Loss factor 

Loss factor for the each mode can be obtained by definition defined in (Ungar, et al., 

1962) as the ratio of dissipation energy to the maximum strain energy in a cycle for 

particular mode and can be extended to finite element model using Eq. (1.69) 

discussed in Chapter 1: 
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  m= 1,2,3,… (2.59, 2.66) 

 where m is the mode number. 

2.6 Numerical Results and Validation 

This section presents validation cases for the presented finite element models for 

the viscoelastic sandwich beam. Fifteen elements are used to represent the 

sandwich beam.  The Finite element model based on the linear and non-linear 

displacement fields at core are referred as FEM 1 and FEM 2, respectively.   

The natural frequencies and loss factor of fully treated sandwich beam with clamped 

free boundary conditions is compared to the experimental data (referred to as Exp) 

provided by Leibowitz and Lifshitz  (Leibowitz, et al., 1990) and results of numerical 

model (referred to as Num) developed by Lifshitz and Leibowitz (Lifshitz, et al., 

1987).  Leibowitz and Lifshitz provided experimental data and numerical results 

from their finite element model based on linear displacement fields at core layer for 

cantilever sandwich beam with various configurations. The length and width of 
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beams in all configurations remain constant and are 180 mm and 12mm, 

respectively.  The heights of all three layers for various beams are provided in Table 

2.1. 

Table 2.1 Geometric Configuration of beams (Leibowitz, et al., 1990) 

Beam Hb (mm) Hv (mm) Ht (mm) 

1A 4.5 0.7 1.1 

2A 5.5 0.8 2.0 

4A 3.7 1.2 3.7 

7A 1.0 2.7 5.0 

10A 2.0 3.0 5.0 

11A 4.0 1.7 4.0 

The sandwich beams are made by molding a Neoprene CR-602 layer between the 

2024 Aluminum layers. The Young’s modulus E= 71 GPa and density 2766 Kg/m3 is 

used for Aluminum layers. The density of Neoprene is taken as 1230 Kg/m3 and 

dynamic properties of the viscoelastic core provided in (Leibowitz, et al., 1990) are 

given by 

G’(f) = 1.007×10-3f + 1.386 MPa (2.67) 

η(f) = 1.608×10-4 + 0.256 (2.68) 

The natural frequency and loss factor for each mode is calculated by method 

described in section 2.3.9. Figures (2.6) and (2.7) show the first and second natural 

frequencies using FEM1 and FEM2 for different configurations and their compassion 

with numerical and experimental results reported in the literature. 
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Figure 2.6 Comparison of first Natural frequency of clamped free with experimental data (Leibowitz, et 

al., 1990) and numerical results (Lifshitz, et al., 1987) 

 
Figure 2.7 Comparison of second Natural frequency of clamped free with experimental data (Leibowitz, 

et al., 1990) and numerical results (Lifshitz, et al., 1987) 

The presented results clearly demonstrate that the frequencies calculated by the 

presented FEM models are in accordance with experimental results for various 

beam configurations.  In fact, the second natural frequency based on the FEM 2 is 

closer to the experimental data than that based on FEM 1, as the thickness of the 
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core layer increases in the configuration 7A and 10A. This shows that FEM2 model 

provides more accurate results for thick viscoelastic core. 

The loss factor for all beam configurations is also compared with experimental data 

and numerical results. Figures (2.8) and (2.9) also shows the loss factors for modes 

1 and 2 for different sandwich beam configurations and their comparison with 

experimental and numerical results reported in the literature. 

 

 
Figure 2.8 Comparison of Loss factor (Mode1) of clamped free with experimental data (Leibowitz, et al., 

1990) and numerical results (Lifshitz, et al., 1987) 
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Figure 2.9 Comparison of Loss factor (Mode1) of clamped free with experimental data (Leibowitz, et al., 

1990) and numerical results (Lifshitz, et al., 1987) 

As it can be realized, the agreement between simulated and experimental loss 

factors is not good, particularly in the case of second mode. This can be attributed to 

the fact that damping measurement are known to have large variation, which 

become larger for higher modes. Moreover the internal structural damping in the 

elastic layers of aluminum is not considered in FEM models, which can lead to some 

differences with the experimental readings.  

2.7 Parametric studies and Comparison of FEM 1 and FEM 2 models 

Having established confidence in the FEM models for calculating the modal 

parameters like natural frequency and loss factor, we can now investigate for the 

effect of varying the height of viscoelastic core layer under various boundary 

conditions. As we have already observed in Figs. (2.7) and (2.9) for beam 7A and 

10A which have thicker core layer,  non-linear displacement field in the core 

provides more accurate results for natural frequency and loss factor at mode 2. This 
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difference between the two FEM models and more accuracy of nonlinear 

displacement field at relatively thick core encourages us to further investigate the 

accuracy of FEM model with linear displacement field compared with the nonlinear 

displacement field at the core for higher modes under different boundary 

conditions. Thickness of the core has practical importance, as the damping of the 

structure is mainly due to the viscoelastic layer. We will investigate the results for  

natural frequencies and loss factors of sandwich beam with varying height of 

viscoelastic core layer for the first three modes considering two boundary 

conditions (Clamped-Free and Clamped-Clamped) using both linear and nonlinear 

FEM models. The base and top constrained layers are made of Aluminum and 

viscoelastic core layer is made of Neoprene CR-602 which is similar to the material 

chosen by Leibowitz and  J.M. in their experiment (Leibowitz, et al., 1990). The 

mechanical properties of the materials are similar to those given in section 2.6. The 

geometric dimension of layers for the sandwich beam is provided in Table 2.2 

Table 2.2 Geometric dimension in (mm) of sandwich beams for analysis 

Geometric Dimension of Sandwich Beams for comparison analysis 

Specification Clamped-Free Beam Clamped-Clamped Beam 

(Length of Beam) L 180 360 

(Width of Beam) D 15 15 

(Height of base layer) Hb 5 5 

(Height of top constrained layer) Ht 2.5 2.5 

(Ratio of core layer to base layer heights) Hv/Hb Varies (0.1 to 2) Varies (0.1 to 2) 

A comparison of the natural frequencies and Loss factors of the sandwich beams 

with different thickness of viscoelastic layer for the clamped- free and clamped-

clamped end conditions for the first three modes has been performed and results 
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are shown in Figures (2.10) to (2.15) for the clamped-free sandwich beam and in 

Figures (2.16) to (2.21) for the clamped- clamped sandwich beam. 

 

Figure 2.10 Comparison of first Natural Frequencies obtained by FEM1 and FEM2 models, by varying 
ratio of viscoelastic core to base layer heights for Clamped-Free beam 

 

Figure 2.11 Comparison of Loss Factors (mode 1) obtained by FEM1 and FEM2 models, by varying ratio 
of viscoelastic core to base layer heights for Clamped-Free beam 
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Figure 2.12 Comparison of second Natural Frequencies obtained by FEM1 and FEM2 models, by varying 
ratio of viscoelastic core to base layer heights for Clamped-Free beam 

 

Figure 2.13 Comparison of Loss Factors (mode 2) obtained by FEM1 and FEM2 models, by varying ratio 
of viscoelastic core to base layer heights for Clamped-Free beam 
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Figure 2.14 Comparison of third Natural Frequencies obtained by FEM1 and FEM2 models, by varying 
ratio of viscoelastic core to base layer heights for Clamped-Free beam 

 

Figure 2.15 Comparison of Loss Factors (mode 3) obtained by FEM1 and FEM2 models, by varying ratio 
of viscoelastic core to base layer heights for Clamped-Free beam 
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Figure 2.16 Comparison of first Natural Frequencies obtained by FEM1 and FEM2 models, by varying 
ratio of viscoelastic core to base layer heights for Clamped-Clamped beam 

 

Figure 2.17 Comparison of Loss Factors (mode 1) obtained by FEM1 and FEM2 models, by varying ratio 
of viscoelastic core to base layer heights for Clamped-Clamped beam
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Figure 2.18 Comparison of second Natural Frequencies obtained by FEM1 and FEM2 models, by varying 
ratio of viscoelastic core to base layer heights for Clamped- Clamped beam 

 

Figure 2.19 Comparison of Loss Factors (mode 2) obtained by FEM1 and FEM2 models, by varying ratio 
of viscoelastic core to base layer heights for Clamped- Clamped beam 
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Figure 2.20 Comparison of third Natural Frequencies obtained by FEM1 and FEM2 models, by varying 
ratio of viscoelastic core to base layer heights for Clamped- Clamped beam 

 

Figure 2.21 Comparison of Loss Factors (mode 3) obtained by FEM1 and FEM2 models, by varying ratio 
of viscoelastic core to base layer heights for Clamped- Clamped beam 

As it can be realized results from both FEM models generally show a decrease in the 

natural frequencies and increase in loss factor with increase in thickness of 

viscoelastic layer. The results shows that in both clamped-free and clamped-

clamped sandwich beam , for all ratios of core layer to the base layer heights, no 

substantial deviation exists between the first mode natural frequency and loss 
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factor obtained from FEM 1 and FEM 2 models. However, for the second and third 

mode, results based on FEM 1 and FEM 2 starts deviating with increasing the height 

of viscoelastic layer. This deviation is more pronounced for the loss factor. 

Generally, FEM 2 model tends to generate lower natural frequency and higher loss 

factor as compare with those based on FEM 1 model. This can be attributed due to 

the fact that nonlinear displacement field for the viscoelastic layer treats the 

viscoelastic material in less stiff way because of nonlinear terms in displacement 

fields and permission of compression in transverse direction. Compression damping 

in transverse direction leads to more heat dissipation, which is closer to the realistic 

behavior of viscoelastic material, thus leads to lower natural frequencies and higher 

loss factor as compared with linear displacement field assumption. This difference 

becomes more prominent for the thick viscoelastic layer at higher frequency range. 

This can be explained as the modulus and loss factor of the viscoelastic material is a 

function of frequency, thus at the higher frequency range, nonlinear terms in 

displacement fields become more significant.  It is also interesting to note that first 

mode loss factor for both boundary conditions initially decreases by increasing the 

viscoelastic height and until reaches to a minimum value at certain viscoelastic 

height and then increases by increasing the viscoelastic height. For instance for the 

clamped-free boundary condition, the first mode loss factor becomes minimum at 

ratio of 0.6. This behavior is less observed for higher modes. For the second mode, 

the loss factor sharply decreases to its minimum values and then steadily increases 

and for the third mode, the loss factor is merely constant over a wide range of the 

viscoelastic core to base layer thickness ratios. 
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2.8 Conclusion 

In this chapter, vibration response of a sandwich beam with a core viscoelastic layer 

between two layers of the continuous elastic structure has been analyzed. 

Mathematical modeling was developed in finite element form to simulate the 

dynamic response of the sandwich beam. Two different theories were implemented 

in the displacement field of viscoelastic layer. First theory takes linear assumption 

in displacement field of viscoelastic layer and the second considers higher order 

nonlinear displacement field in transverse and axial direction. An alternative 

method is presented to solve differential equation resulted from the second theory 

of nonlinear displacement modeling without ignoring the higher order derivatives. 

The validity of the both developed finite element formulation has been 

demonstrated by comparing the results with experimental data and other numerical 

model.  Furthermore, it has also been demonstrated that the thickness of 

viscoelastic layer plays an important role in variation of natural frequencies and loss 

factors. It has been observed that the natural frequency at all modes decreases with 

increase in the thickness of the viscoelastic layer. However, the loss factor could be 

increased when the thickness ratio of the viscoelastic layer with the elastic base 

layer exceeds certain value. Further it was demonstrated, that the nonlinear 

assumption in viscoelastic layer displacement fields yields more accurate results 

than linear displacement field. The deviation between two theories becomes more 

as the ratio of the viscoelastic layer with the elastic base layer exceeds certain value. 

Difference becomes more prominent with thick viscoelastic layer at higher 

frequency range. This can be explained as the modulus and loss factor of the 



74 
 

viscoelastic material is a function of frequency, so that at higher frequency range, 

nonlinear terms in displacement fields become more relevant. 
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CHAPTER 3 

3 VIBRATION ANALYSIS AND OPTIMUM DESIGN OF A 

PARTIALLY TREATED SANDWICH BEAM 

3.1  Introduction   

In view of the increased cost and weight with complete viscoelastic layer in most 

real-life conditions, partial damping treatment where only a portion of the base 

layer is covered with viscoelastic and elastic constrained layers is clearly more 

practical. Nokes and Nelson (Nokes, et al., 1968) were among the first investigators 

to present the solution of a partially covered sandwich beam. They presented the 

theoretical and experimental results but without conducting any optimization 

formulation. A more thorough analytical study for eigenvalue problem for a partially 

treated sandwich beam was carried out by Lall, Asnani, and Nakra (Lall, et al., 1988).  

They used three different approaches (two formulations based on simplified 

methods and one based on an exact method) to analyze the vibration and damping 

behavior of the beam. In the first formulation, an expression for the modal system 

loss factor is obtained by the ratio of energy dissipated to the maximum strain 

energy during a cycle in which the modes of vibration are assumed to be the same as 

that of the base beam. In the second formulation, they carried out the analysis by a 

Rayleigh-Ritz method. The assumed mode shapes satisfy the boundary conditions, 

leading to the complex eigenvalues defining the resonance frequencies and the 

associated modal system loss factors. In the third formulation, they employed the 

classical Euler beam theory for the uncovered portion of the beam, and the 
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sandwich beam theory for the covered portion, with implementing the continuity 

conditions at the common interface sections. 

Aspiring to maximize the vibration damping of structures with minimum 

viscoelastic and constrained layer materials, some efforts have been also put forth 

to optimally design partial treatments of vibrating structures. For fully covered 

sandwich beams, Lifshitz and Leibowitz (Lifshitz, et al., 1987) determined the 

optimal layer thickness of the viscoelastic core layer.. In another optimization 

research by Lall, Asnani and Nakra  (Lall, et al., 1987) for the partially covered plate, 

the objective function was to maximize the system loss factor of a specific mode, 

with design parameters as dimensions of the patch, and the thicknesses of 

constraining layer and viscoelastic layer while keeping patch coverage area 

constant. 

In this chapter, the properties and vibration response of partially constrained layer 

damping (PCLD) for beam is investigated. The governing equations of PCLD treated 

beam are formulated using the finite element method. As it is verified in Chapter 2 

that the nonlinear displacement field in viscoelastic layer is more accurate, here in 

this section nonlinear displacement field in viscoelastic core layer is utilized. The 

properties of different configurations of a PCLD treated beam are evaluated to 

investigate the influences of the location and length of the PCLD patch for different 

boundary conditions. Later in chapter, the emphasis is placed on determining the 

optimal location and number of patches of PCLD to maximize the modal loss factor. 

The loss factor correspond to the specific mode is evaluated by implementing the 
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energy dissipation method explained in section 2.3.9.  Finally, an optimization 

problem is formulated and solved using the Genetic Algorithm (GA) to identify the 

optimum location and number of treated patches simultaneously.   

3.2 Finite Element Modeling of a Partially Treated Beam 

 A partially-treated sandwich beam can be modeled on the basis of finite element 

models developed for a fully treated beam. The beam structure with multiple 

patches of constrained layer treatment can be modeled by treating each patch 

independently and then coupling with the adjacent segment to assure compatible 

deformation and continuous response of the composite structure. This could be 

achieved by imposing compatibility conditions which are identical displacements 

and the slopes at the boundaries of the adjacent segments. For the sake of simplicity, 

the length of the segment treated or untreated is constrained by the length of the 

single element in the finite element model. Thus to vary the length of the treated 

area, we have to add an adjacent element as treated element or untreated element. 

Therefore two kinds of element matrices are developed for both mass and stiffness 

matrices.  The development of the element matrix for the treated part using 

nonlinear displacement field at core viscoelastic core layer is thoroughly explained 

in section 2.4.  In this section we discuss about the development of element matrix 

for the untreated part of beam, which is the bare base beam.  

The displacement fields for bare base beam have already been discussed in section 

2.3.2 and provided in Eq. (2.1) and Eq. (2.2) for axial and transverse directions. 
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Considering this, the generalized degrees of freedom for bare beam in analytical 

form can be written as: 

   00 wuq bb   (3.1) 

The expression for normal and shear strains for the bare base beam is expressed in 

Eq. (2.14).  The Strain and kinetic energy for the bare base beam can also be 

evaluated by the expression expressed in Eqs (2.19) and (2.22), respectively. 

The finite element formulation of the bare beam is explained in this section. The 

proposed element has three nodes and considering the generalized degrees of 

freedom given in Eq. (3.1), each node has three nodal displacement degrees of 

freedom as shown in Figure (3.1).  

 

Figure 3.1 Three-node beam element having three degrees of freedom per node 

The generalized degrees of freedom q are related to the elementary nodal degrees of 

freedom qe through the shape function matrix N as:  
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The interpolation functions are similar to those in Eqs (2.28)-(2.30). Equations of 

motion for the element can be formulated using the Hamilton’s principle expressed 
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in Eq. (2.31). Now by substituting the expression for the kinetic energy, strain 

energy and work done and integrating over the time, we obtain: 

      0 ebeebe qKqM   (3.5) 

where Mbe and Kbe are the mass and stiffness matrices of an element for the bare 

beam, respectively.  

Now, mass and stiffness matrix of treated beam and bare beam in Eq. (3.5) are 

assembled accordingly to obtain the mass and stiffness matrix of the partially 

treated beam. As discussed in section (2.4.5) the equations can be solved by the 

same technique for harmonic loading and free vibration.  

3.3 Parametric Studies  

The properties of a partially treated sandwich beam are strongly influenced by the 

number, size and location of the treated segments. Here in this study, the finite 

element model formulated in section 3.2 is used to investigate the effects of 

variations in the location and length of the treated segments of the beam on the 

natural frequencies and loss factor under different boundary conditions. The height 

(thickness) of all the three layers is kept constant. The base and top constrained 

layers are made of Aluminum and the core layer is made of viscoelastic material 

Neoprene CR-602 which is similar to that chosen by Leibowitz & J.M (Leibowitz, et 

al., 1990) in their experiment (Leibowitz, et al., 1990). The mechanical properties of 

the materials are discussed in section 2.5. The total length of the multi-layer beam is 

divided into 18 segments of equal length. The geometric dimension of layers for 

sandwich beam is provided in Table 3.1. 
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Table 3.1 Geometric dimension of partially treated sandwich beams 

Geometric Dimension of Sandwich beams for parametric studies 

Specification Clamped-Free Beam Clamped-Clamped Beam 

(Length of Beam) L (mm) 180 180 

(Width of Beam) D (mm) 15 15 

(Height of base layer) Hb (mm) 5 5 

(Height of top constrained layer) Ht (mm) 2.5 2.5 

(Height of viscoelastic core layer) Hv (mm) 5 5 

 Three different cases for parametric studies have been investigated for both the 

clamped-free and clamped-clamped boundary conditions. In the first case, length of 

50mm on beam is kept bare, which is equal to the length of 5 elements and rest of 

the length is treated with the viscoelastic core and top constrained layers. Position 

of this cut in is varied from the left clamped side of clamped-free and clamped-

clamped beam. Influence of the position of the cut on the natural frequency and loss 

factor for the first vibration mode is investigated. In the second case, only 50 mm of 

the length of beam is treated with the viscoelastic core and top constrained layers 

and rest of the area is kept bare. Position of this treated patch is also varied from the 

left clamped side of clamped-free and clamped-clamped beam to investigate the 

effect of the position of patch on the natural frequency and loss factor for the first 

vibration mode. Finally for the last case, the length of the treated patch is increased 

further keeping the patch position fixed at left clamped side of clamped-free and 

clamped-clamped beam until it cover the whole length of the beam. The objective in 

this case is to examine the effect of the length of patch on the natural frequency and 

loss factor for the first mode. 
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3.3.1 Effect of location of the cut on the natural frequency and loss factor (Case 1) 

Position of cut is defined from the clamped left side of the clamped-free and 

clamped-clamped beam. The length of the cut as discussed earlier is 50 mm and is 

kept constant in this case. Figure (3.2) illustrates the discretized model of beam, 

which is partially treated with a viscoelastic core and top constrained layers.  

 
Figure 3.2 Discretized model of partially treated beam with a cut in core and constrained layers 

 The position of cut is varied from the left clamped side of both clamped-free and 

clamped-clamped beam, initially at the extreme left end and then shifting towards 

the right side, till the right side of the cut reaches the extreme right side of beam, 

which in case of clamped-free beam is free side.   

The natural frequency and loss factor of the first vibration mode is evaluated as the 

position of cut shifts towards right by one element each time.  Both the natural 

frequency and loss factor as shown in Figures (3.3) and (3.4) respectively, increases 

as the position of cut gradually moves towards the free side of clamped-free beam.  

Basically placing the cut at the vicinity of the cantilever end will separate the 

viscoelastic treated part from the cantilever end. This will cause maximum 

reduction in the stress induced in the viscoelastic treated part and subsequently 

maximum reduction in natural frequency and loss factor of the sandwich beam. As 

the cut moves forward to the free end, the effect of stress reduction due to 

introduction of the cut would be less and thus causing increase in natural frequency 

and loss factor. 
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In the case clamped-clamped beam, the natural frequency and loss factor as shown 

in Figures (3.5) and (3.6) respectively, increases and become maximum as the 

position of cut reaches to the center of the beam and symmetrically decrease as the 

position of cut moves further towards the other end, which is expected due to the 

symmetric nature of boundary condition in clamped-clamped beam. The above 

results evidently demonstrate the sensitivity and importance of position of cut to 

optimize the stiffness and damping of the sandwich structure.  

 
Figure 3.3 Variation of first natural frequency with position of cut in partially treated clamped-free 

beam 
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Figure 3.4 Variation of Loss factor (Mode 1) with position of cut in partially treated clamped-free beam 

 
Figure 3.5 Variation of first natural frequency with position of cut in partially treated clamped-clamped 

beam 
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Figure 3.6 Variation of Loss factor (Mode 1) with position of cut in partially treated clamped-clamped 

beam 

3.3.2 Effect of the location of treated patch on the natural frequency and loss factor 

(Case 2) 

Position of the patch is defined from the clamped left side of the clamped-free and 

clamped-clamped beam. The length of the patch as discussed earlier is 50 mm and is 

kept constant in this case. Figure (3.7) illustrates the discretized model of beam, 

which is partially treated with a viscoelastic core and top constrained layers.  

 
Figure 3.7 Discretized model of partially treated beam with a patch of core and constrained layers 

 The position of the patch is varied from the left clamped side of both clamped-free 

and clamped-clamped beam, initially at the extreme left end and then shifting 

towards the right side, till the right side of the patch reaches the extreme right side 

of beam. 
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Similar to the Case 1, the natural frequency and loss factor of the first vibration 

mode is evaluated as the position of patch shifts towards right by one element each 

time, for both boundary conditions. Results for natural frequency and loss factor for 

the cantilever-free sandwich beam are shown in Figures (3.8) and (3.9), 

respectively. As it can be realized, both natural frequency and loss factor decreases 

as the position of cut gradually moves towards the free side of clamped-free beam. It 

should also be noted that there is a drastic reduction in the loss factor once the 

patch is separated from the cantilever end and then decreases steadily as the patch 

moves towards the free end. As discussed before this can be attributed to the fact 

that when the patch is separated from the cantilever end, then it becomes free from 

both sides which significantly reduces the stress induced in the patch. 

For the clamped-clamped beam, results for natural frequency and loss factor are 

shown in Figures (3.10) and (3.11), respectively. It can be seen that, natural 

frequency and loss factor are maximum at the fixed ends and then decreases 

symmetrically as the position of patch moves towards the center. It should be noted 

that for the clamped-clamped condition, the loss factor start increasing slightly, after 

the initial sharp reduction, as the patch moves toward the center of the beam. This 

can be attributed to the fact that beam bends in symmetric form and at the centre of 

the beam rotational degree of freedom is negligible which act as induced boundary 

condition and induce shear stress either sides of it. The above results again exhibit 

the significance of position of patch to optimize the stiffness and damping of 

structure.   
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Figure 3.8 Variation of first natural frequency with position of treated patch in partially treated 

clamped-free beam 

 

Figure 3.9 Variation of Loss factor (Mode 1) with position of treated patch in partially treated clamped-
free beam 
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Figure 3.10 Variation of first natural frequency with position of treated patch in partially treated 

clamped-clamped beam 

 
Figure 3.11 Variation of Loss factor (Mode 1) with position of treated patch in partially treated clamped-

clamped beam 

3.3.3 The effect of length of the patch on natural frequency and loss factor (Case 3) 

Length of the patch is defined from the clamped left side of the clamped-free and 

clamped-clamped beam. The initial length of the patch as discussed earlier is 50 mm 

and increased towards the extreme right side gradually by one element length at 

each time. Figure (3.12) illustrates the discretized model of beam, which is partially 

treated with a viscoelastic core and top constrained layers.  
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Figure 3.12 Discretized model of partially treated beam with varying patch length of core and 

constrained layers 

The natural frequency and loss factor of the first vibration mode is evaluated as the 

length of patch increases towards right side by one element each time, for both end 

conditions. The results for the natural frequency and loss factor for the clamped-free 

beam are shown in Figures (3.13) and (3.14). The result shows that the natural 

frequency initially increases as the length of patch increases, but after certain length 

(around 10 mm) the natural frequency decreases as the length of patch increases.  

This may be due to the fact that the further increase in patch length does not 

augment stiffness, as the free side of clamped-free undergoes less stress relative to 

the fixed end, but the mass of the system is increasing at the same rate, thus leading 

to decrease in natural frequency. But the loss factor as shown in Figure (3.14) 

increases gradually with increase in the patch length.   For the case of clamped-

clamped beam, the results for natural frequency and loss factor are shown in 

Figures (3.15) and (3.16), respectively. As it can be realized, here for the case of 

clamped-clamped boundary condition, natural frequency decreases as the length of 

patch increases until it reaches to its minimum value at the length of about 160 mm. 

However, the loss factor generally increases by increasing the patch length while 

experiencing one local maxima and minima in the given range.  
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Figure 3.13 Variation of first natural frequency by varying the length of treated patch in partially treated 

clamped-free beam 

 
Figure 3.14 Variation of Loss factor (Mode 1) by varying the length of treated patch in partially treated 

clamped-free beam 
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Figure 3.15 Variation of first natural frequency by varying the length of treated patch in partially treated 

clamped-clamped beam 

 
Figure 3.16 Variation of Loss factor (Mode 1) by varying the length of treated patch in partially treated 

clamped-clamped beam 

 

3.4 Formulation of the optimization problem 

Previous parametric studies demonstrated that in order to design a partially treated 

sandwich beam, it is necessary to obtain an appropriate layout of a structure so that 

it yields the maximum shear energy distribution resulting in maximum modal loss 

factor. As discussed in section 3.3, it becomes evident that the location and size of 
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patches and cuts considerably affect he natural frequency and modal loss factor. 

Thus, it is essential to optimize the number and location of segments treated and 

untreated in order to maximize the modal loss factor with minimum possible 

increase in the weight of structure.  In this study, an optimization problem is 

formulated for the partially treated sandwich beam with viscoelastic and 

constrained layers to achieve maximum modal damping factor corresponding to the 

first vibration mode. The problem is formulated for two different end conditions 

namely clamped-free and clamped-clamped boundary conditions, while the height 

(thickness) of both core viscoelastic and top constrained layers kept constant. 

Similar to that in previous section 3.3, the base and top constrained layers are made 

of Aluminum and the core layer is made of viscoelastic Neoprene CR-602 same as 

that chosen by Leibowitz & J.M. (Leibowitz, et al., 1990) in their experiment. 

(Leibowitz, et al., 1990) The mechanical properties of the materials are discussed in 

section 2.5. Also, the total length of the multi-layer beam is divided into 18 segments 

of equal length. The geometric dimension of layers for sandwich beam is provided in 

Table 3.1. The optimal locations and numbers of the elements to be treated are 

sought for two different cases. The objective here is to maximize the modal loss 

factor related to the first vibration mode. The loss factor for the first mode is 

calculated by the method described in section 2.5 in Eq. (2.66) as:  
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where m is the mode number , n is the number of treated  elements, and pn is the 

location number of the treated elements associated to the finite element model of 

total N elements. The matrix X defines as the number and the locations of the 

treated patch along the beam length based on the element segment number. This 

has been done by the binary numbers, in which zero is regarded as the untreated 

element and one is for the treated element.  

3.5 Optimization Method and results 

 The optimization problem defined in section 3.4 is solved to identify the global 

optimum locations and numbers of treated segments.  A number of optimization 

algorithms are available to seek solutions of such types of problem. The vast 

majority of the gradient-based optimization algorithms tend to easily converge to 

the local optima. Alternatively, non-gradient stochastic search algorithms such as 

Genetic Algorithms (GAs) may be used to locate the global optimum point with 

reasonable accuracy in a more efficient manner (Muc, et al., 2001).  Here, the 

optimization problem has been solved using the GA available in the MATLAB 

optimization toolbox. The results are obtained for two cases of clamped-free and 

clamped-clamped boundary conditions.  Table 3.2 provides the optimal numbers 

and locations of the treated elements together with the optimal modal loss factor 

and natural frequency for the first vibration mode derived from the GA technique.   
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Table 3.2 Optimum number and location and values for Loss factor and natural frequency 

Optimum number and location and values for Loss factor and natural frequency 

Boundary 

Conditions 
Number Location 

Loss 

Factor 

Natural 

Frequency 

(Hz) 

Clamped-

Free 
18 

 
0.0625 110.34 

Clamped-

Clamped 
15 

 
0.0106 679.85 

It can be realized that for the case of clamped-free beam, the maximum loss factor is 

achieved when the whole beam is covered by the constrained viscoelastic layer 

(fully treated viscoelastic beam). However for the case of clamped-clamped 

boundary condition, the maximum loss factor occurs when the treated elements are 

mainly clustered at the end points (partially treated viscoelastic beam). 

3.6 Conclusion 

In this chapter, the damping performance of a partially treated sandwich beam was 

studied in terms of the modal loss factor and natural frequency. First, the modal loss 

factor and natural frequency corresponding to the first vibration mode of the 

partially treated sandwich beam have been evaluated using the finite element model 

developed for a partially treated sandwich beam. The effect of location of the cut in 

viscoelastic and constrained layers of a partially treated sandwich beam on the first 

modal damping factor is demonstrated under different end conditions. It was shown 

that the location of cut plays an important role on the variation of the modal 

damping factor irrespective of the end conditions. It was also concluded that the 

clamped-free and clamped-clamped end conditions yield the highest and lowest 

modal damping factors respectively among the end conditions considered 
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irrespective of the mode of vibration. It is also verified that location and length of 

treated patch have great influence on the both natural frequency and modal loss 

factor. Then a design optimization methodology to maximize the modal loss factor 

with minimum possible number of treated segments for first vibration mode has 

been formulated by combining the developed finite element analysis and 

optimization algorithms based on Genetic Algorithm.  It is shown that for the 

clamped-free end condition, all the segments must be treated with viscoelastic and 

constrained layers in order to achieve maximum loss factor, but for the clamped-

clamped end condition, it is proved that partially treated beam leads to greater 

damping behavior than fully treated beam. This leads to the reduction of the weight 

of structure.    
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CHAPTER 4 

4 THERMAL ANALYSIS OF SANDWICH BEAM UNDER 

HARMONIC LOAD 

4.1 Introduction  

We have discussed earlier that, mechanical and damping properties of viscoelastic 

material are not only function of the excitation frequency but also function of the 

temperature.  In the chapter, we will account the effect of heat generation on the 

properties of viscoelastic core layer while the sandwich beam structure undergoes 

harmonic loading. The effect of temperature developed is observed on the material 

properties like modulus and loss factor of viscoelastic layer. Later the result of 

variation in material properties is observed on the transverse response of beam.  

Energy dissipation due to the cyclic loading discussed earlier in section (1.4.4) leads 

to generation of heat. This heat is generated within the viscoelastic core and varies 

with strain developed in the viscoelastic core material along the axial direction of 

the sandwich beam. As the viscoelastic materials are also known for their heat 

insulation properties, thus the heat generated might not readily transfer to the 

environment from the top and bottom faces of elastic layers by convection after 

conducting through the thickness of base and top layers. As a result, the spatial 

variation of the temperature occurs in transverse and axial direction across all the 

layers with time. So the complex shear modulus of the viscoelastic core needs to be 

updated incrementally after each cycle. The temperature rise in elastic top and base 

layers has negligible effect on their mechanical properties as it is not high enough. 



96 
 

But as the viscoelastic material is very sensitive to small change in temperature, 

thus the effect of temperature cannot be ignored. The temperature rise within the 

viscoelastic material shows its effect in G’(ω,T) and G’’(ω,T) by replacing the T  by 

T+∆T (Soong, et al., 1997) .  The dissipated energy discussed in Eq. (1.68) can be 

utilized to calculate the energy dissipated in each element of the finite element 

model (FEM) and can be written as 

    eeee qKqD )( 
  (4.1) 

 where De is the energy dissipated from an element. By replacing the associated 

nodal displacement values for each element in Eq. (4.1), the value of De is evaluated 

for each element of the viscoelastic layer. The obtained dissipated energy from FEM 

model is then used as an input heat in the relative heat transfer equation to obtain 

the transient temperature developed in all layers.  

4.2 Central Finite Difference Model  

Each layer of sandwich structure within a single element of FEM is divided into 

seven rectangular cells along the axial direction and two cells in thickness. Vertices 

of rectangular cells are considered nodes. Moreover to consider the heat transfer 

through convection to environment and isolated boundaries additional cells are 

introduced at the boundaries. As the heights of each layer are different and length of 

cell in axial direction is fixed, finite difference formulation using irregular grid has 

been employed as shown in Figure (4.1). The heat transfer along width direction is 

ignored due to small amount of the heat which is transferred directly to the 
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environment by convection through the small area of the lateral sides of the 

sandwich structure.  

 
Figure 4.1 Finite difference model of Sandwich Beam 

 

4.3 Heat Equation 

Here the finite difference model discussed in previous section is used to derive the 

heat transfer equation. Each node in the model represents a region called a control 

volume as shown in Figure (4.2). 

 
Figure 4.2 Cell Control Volume around a typical node P in 2-D coordinate 

Energy balance method is considered to derive the equation of heat transfer. 

According to this principle, summation of the net rate of heat flow that enters the 
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control volume by conduction through each surface of the control volume and the 

rate of generated heat inside the control volume should be in equilibrium with the 

rate of increase of internal energy of the control volume. These energies can be 

described as:  
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Rate of  the internal heat generated 

in the control volume 
HV  (4.6) 

Rate of increase of internal energy of 

the control volume 
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in which k is the conductivity between different nodes, V is the control volume, SS, 

SN, SE, SW, SI and SO are non-dimensional ratios to represent the spacing between the 

point P to N, S, E, W, I and O, according to the reference value of ∆ as shown in 

Figure 4.2, where point I and O are points normal to paper inside and outside 

directions, which represent the lateral direction of the sandwich beam and H is the 

rate of generated heat per unit of volume. ∆ is arbitrary value and here is considered 

to be the height of the base layer. CP is specific heat, ρ is density and ∆T/∆t is the 
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rate of rise in temperature. Since the material properties inside the control volume 

are not uniform, an effective (ρCP)eff should be used in each finite difference 

equation. The detail process of deriving above described energy terms is described 

in Appendix B.  After manipulating the above energy terms, the transient finite 

difference equation for node P can be written as: 
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After assembling the equations for all nodes and applying the boundary conditions 

for clamped-clamped beam (convection at the top and bottom of the beam and 

isolation at the end sides), the unknown temperature at the left side of the Eq. (4. 8) 

can be determined according to the known temperature at the right side trough the 

implicit method during each increment ∆t. The dissipated energy per unit volume 

defined in Eq. (4.1) can be substituted into the Eq. (4.8) for H after each cycle. The 

material properties of the viscoelastic layer now are updated according to the new 

state of the temperature at each element which is the average values calculated 

from the seven cells of viscoelastic layer in finite difference model.  

4.4 Numerical Result and Validation of the Finite Difference Model 

This section presents validation case for the presented finite difference model for 

sandwich beam. Total 114 cells are used in axial direction and 7 cells in transverse 

direction to cover all the three layers to represent the finite difference model of 

sandwich beam. The Finite difference model referred here as FDM. The model is 
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validated by the numerical results generated using the ANSYS model of composite 

beam of three layers similar to the sandwich beam (referred as ANSYS). It is 

assumed that all three layers are initially at temperature 0 oC and then temperature 

of the base layer is suddenly increased to 40 oC and kept constant along the length 

while the top elastic layer is maintained at 0 oC along the length.   The temperature 

at two points is observed transiently, one in the middle of the viscoelastic core layer 

height and second at the middle of the top layer height at the center of the beam.    

The length and width of the sandwich beam is considered to be 1m and 30 mm, 

respectively.  The height of all three layers is provided in Table 4.1. 

Table 4.1 Geometric Configuration of beam for thermal analysis 

Beam Hb (mm) Hv/Hb Ht/Hb 

Clamped-Clamped 10 0.5 0.5 

The viscoelastic layer is made of a Viton-B and top and base layers are made of 2024 

Aluminum layers. The Young’s modulus E= 71 GPa and density 2766 Kg/m3 is used 

for Aluminum layers. The density of Neoprene is taken as 1050 Kg/m3 and dynamic 

properties of the viscoelastic core provided in (Nashif, et al., 1985) are given in 

Figures (1.14a), (1.14b) and (1.15). Figure (4.3) shows the transient temperature at 

the selected points evaluated by the developed FDM model and that of ANSYS 

model. As it can be realized, excellent agreement exists between two models 

confirming the accuracy of the developed FDM model for the further study. 
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Figure 4.3 Validation of FDM model with ANSYS numerical model for transient Temperature 

4.5 Thermal Analysis 

 Having established confidence in the FDM model for calculating the transient 

temperature, we can now investigate the effect of temperature increase due the 

generated heat in vibration response of the fully treated clamped-clamped sandwich 

beam under harmonic loading excitation. The configuration of the beam is the same 

as that in previous section. The beam is excited with harmonic load with amplitude 

of 100N and excitation frequency of 45 Hz at the center of the beam in transverse 

direction. The initial temperature of the structure is that of environment, which in 

this case is assumed to be 23oC. The variation in temperature developed in 

viscoelastic layer and transverse response are evaluated over a period of time and 

the results are shown in Figures 4.4 and 4.5, respectively. As, we can observe the 

large variation of temperature along the length, which can be attributed the 

variation of shear stress developed in core layer and to the fact that viscoelastic 

material has low heat conductivity, so, heat generated accumulate in specific areas. 

The transverse response at the mid-span of the beam shown in Figure 4.5 elevates 
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over the period of time, this shows the importance of considering the temperature 

developed in viscoelastic layer. As we can observe that, the areas where 

temperature is developed are away from the mid-span, but still there is rise in 

response, this proves the fact that overall damping of the system has been reduced.  

 

Figure 4.4  Temperature gradient developed long the length of beam in viscoelastic layer over the time 

 

 
Figure 4.5 Variation in transverse response at mid- span of beam over the time 
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4.6 Conclusion 

In this chapter, the damping performance of fully treated sandwich beam with 

clamped-clamped boundary condition under steady state harmonic load at the mid 

span is evaluated, while considering the effect of internal heat generation in the 

viscoelastic material. A finite difference model has been developed to evaluate the 

transient temperature in sandwich layers.  It is shown that the temperature gradient 

is developed within the viscoelastic layer over the time. Further, it is demonstrated 

that damping performance of structure is reduced due the internal generated heat 

which subsequently causes the transverse response at the mid span of beam to 

increase over the time.  
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CHAPTER 5 

5 CONTRIBUTIONS, CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 

5.1 Major Contributions 

This dissertation research is focused on the damping potentials of structures treated 

either fully or partially by viscoelastic material with constrained layer on top. 

Analytical and experimental studies have already been contributed to the 

understanding of vibration suppression capabilities of the viscoelastic treated 

sandwich beams and the effectiveness of the partially treated sandwich structure on 

vibration control. However, very few studies have been done on the significance of 

nonlinear displacement fields that lead to higher order shear stress theory in the 

sandwich core layer. Furthermore, the study of internal heat generation in the 

viscoelastic layer has been, confined to very few cases that are only in the pure 

shear modes. The effects of internal heat generation on the viscoelastic material and 

its damping properties in a sandwich structure haves not yet been explored 

theoretically. A comprehensive research has been carried on the effectiveness of the 

partially treated structures compared to the fully treated structures. The foremost 

contributions of the dissertation research are summarized below: 

i. A numerical model of a fully treated viscoelastic sandwich beam using the 

finite-element method with linear displacement field at core is formulated. 

Theoretical investigation on the dynamic characteristics of the viscoelastic 

sandwich beam with different boundary conditions has been carried out. 
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ii. Formulation of a numerical model of a fully treated viscoelastic sandwich 

beam using the finite-element method with nonlinear displacement field at 

core and the development of an alternative method to solve the governing 

differential equations resulted from the nonlinear modeling without ignoring 

the higher order derivatives have been done. 

iii. Comprehensive study of the linear and nonlinear model assumptions of 

displacement fields at core is done and the deviation between two theories 

by varying the thickness of core layer for different modes is demonstrated. 

iv. Numerical models of a partially treated viscoelastic sandwich beam with 

different end conditions are developed and investigation on its dynamic 

characteristics as functions of cut and patch locations, length and the number 

of treated and untreated segments has been done, theoretically. 

v. An optimization procedure is given to determine the optimal number of 

treated segments and simultaneously their locations in order to maximize 

the modal damping factor corresponding to the first vibration mode for 

different end conditions. 

vi.  A finite difference model is developed to investigate the temperature 

gradient resulted over the time in the viscoelastic layer by the internal heat 

generation and examined its effect on the steady-state harmonic transverse 

response with time.  
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5.2 Major Conclusions  

  The major conclusions drawn from this research are summarized below:  

i. The variations in the natural frequencies and the loss factors depend strongly 

on the thickness of the viscoelastic core layer. The natural frequencies 

corresponding to all the considered vibration modes decreases with an 

increase in the viscoelastic layer thickness, while the loss factors are 

increased for all modes. 

ii. The nonlinear assumption in the displacement field of viscoelastic layer gives 

lower values of natural frequency and higher values of loss factor rather than 

for linear assumption of displacement field in viscoelastic core layer. 

iii.  The nonlinear assumption in the viscoelastic core layer presents more 

accurate results, whenever the ratio of the viscoelastic layer with the elastic 

base layer exceeds a certain value. The variations between two displacement 

theories become wider at higher range of frequencies. 

iv.  Partial-treatments of structures offer added design flexibility. Apart from the 

natural frequencies, the modal loss factors of the partially-treated 

viscoelastic sandwich beam could be controlled by placing both the treated 

and untreated segments within the beam span, irrespective of the boundary 

conditions. 

v. Optimized partially treated clamped-clamped sandwich beam offer higher 

damping value than fully treated sandwich beam thus leads to the reduction 

in the weight of the structure. 
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vi. Internal generated heat in viscoelastic layer, subjected to under harmonic 

load, leads to the development of temperature gradient in the core layer and 

thus would affect the damping properties of the viscoelastic material. 

vii. The variations in the damping properties of viscoelastic layer leads into the 

augmented steady-state harmonic response over a period of time.   

5.3 Future Recommendations 

In the present dissertation, the main parameters contributing to the damping 

behavior of the sandwich beam structure are investigated. Additional efforts may be 

required to extend the present analysis further as listed in the following: 

i. The developed finite element model can be further enhanced to consider the 

vibration damping analysis of both the sandwich plate and shell structures.  

ii. The optimization problem in partially treated sandwich beam can be solved 

to find the optimum damping for the higher modes. 

iii. The damping can be controlled using the standard control methodology to 

reduce the environmental disturbances such as the ambient temperature. 

iv. Effects of the heat dissipation can be formulated by considering the heat 

conduction in the lateral direction. Considering this problem, the heat 

transfer equation should be solved using the finite difference method for 

three dimensional irregular grids.  
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Appendix A 
The detailed expression for the coefficients of the assumed polynomial series in Eq. 

(2.56) discussed in section 2.4.2 are given here. 
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Appendix B 
The detailed discussion on heat flow rate, presented in section 4.3, is described. 

According to the Fourier law of heat conduction the rate of heat flow between the 

node N and the adjacent node P is calculated as 

NP
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NPNPNP
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  (B.1) 

where kNP is the thermal conductivity , ANP is the area normal to the direction of 

heat flow between N and P, LNP is the distance between the two nodes N and P and 

TN and TP are the nodal temperatures. The control volume can then be measured as 
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The area normal to the direction of the heat flow between N and P is given by 
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Which can be simplified, by using Eq. (B.3), to the following expression 
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The distance between the nodal point N and P is represented by the non-

dimensional term according to the reference value ∆ is 

 NNP SL  (B.5) 

From the above, the heat flow rate from N to P can be written as 
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Similarly, rate of heat flow between other nodes can be formulated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


