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Abstract 

A Scheduling Framework for a Heterogeneous Parallel Architecture 

Wei Zhang 

Scheduling on heterogeneous parallel and distributed computing environment has been 

studied for decades. Based on different assumptions, researchers have proposed several 

algorithms and heuristics aiming to improve the performance of parallel applications. 

Most of these works focus on clusters of CPUs or grid-based environments where 

heterogeneity is created by processors and networks of varying speeds. However, in 

recent years, there has been wide spread use of another type of heterogeneous parallel 

computing environment, even on regular PCs and workstations, which comprise of 

multi-core CPUs and many-core GPGPUs (General Purpose Graphic Processor Units). 

Heterogeneity in this new generation of computers is even more pronounced due to the 

significant differences in architectures and programming models between CPUs and 

GPGPUs. The scheduling problem on a heterogeneous environment is known to be 

NP-Complete. Consequently, this research proposes several approximate strategies to 

solve this problem on a heterogeneous CPU-GPGPU environment. As a focus of this 

research, the strategies utilize the structural and behavioral characteristics of patterns in 

parallel programming to facilitate scheduling decisions. The parallel pattern extensively 

studied in this research is the farm pattern, which is used in a wide range of parallel 

applications. For the purposes of scheduling, the farm pattern is further classified into 

several categories and subsequently scheduling strategies for each of these categories are 

proposed. The similar strategies can be employed for the scheduling of some other 
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patterns, e.g., data flow and pipeline. Since characteristics of the patterns and the features 

of the CPU-GPGPUs environment are both considered in making scheduling decisions, 

the proposed strategies are found to deliver better performances as compared to other 

contemporary strategies.  

A scheduling framework has been designed and implemented based on these strategies 

for the classified farm patterns. The framework not only intends to hide the complexity of 

parallel programming but also can automatically schedule tasks and balance loads among 

processors, relieving these burdens from the programmer. In addition, the framework 

serves as a test bed for newer scheduling heuristics on the target heterogeneous system, 

and also as an experimental verifier of the proposed hypothesis that use of patterns can 

facilitate in making better scheduling decisions. 
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Chapter 1 Introduction 

Parallel computing has been widely explored for decades for solving problems fast and 

efficiently. Currently it has been widely employed in a variety of fields, from physics to 

biology, as well as from climatology to geology, to name a few.  

With the advent of commodity parallel computing platforms like clusters, general 

purpose graphics processor units (GPGPUs) with hundreds of cores, and multi-core CPUs, 

parallel programming is becoming even more widespread and commonplace using 

regular PCs and workstations. However, compared with sequential programming, parallel 

programming has several additional issues. 

Some of these issues are that parallel application development brings in some additional 

burdens such as effective partitioning of a given problem into sub-problems (i.e., tasks) 

that can be executed by processes/threads, process and thread creation and management, 

mapping processes to processors, performing efficient communication between different 

processes, scheduling and load balancing, etc. To address these issues, hundreds of 

parallel programming models and tools have been developed over the years. Some of the 

them targeted for current commodity platforms include PVM [1] and MPI [2] for clusters 

and network of workstations, TBB [3] and CUDA [4] for multi-core CPU and 

massive-core GPGPU [5] respectively, and OpenMP[6] for multiprocessors and 

multi-core CPUs. 

One extremely important issue in parallel program execution is to obtain a high 

efficiency and a minimized makespan, i.e., the time interval between the start of the first 

process and the end of the last process. Efficiency will become high if any processor 
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idling due to load-imbalance or communication overhead is minimized. In order to 

achieve low makespan and high efficiency, it is very important to have proper mapping 

and scheduling of tasks to processor. The issues of scheduling and load-balancing during 

parallel program execution on a heterogeneous CPU-GPGPU environment are the 

focuses of this research. 

Scheduling in the areas of parallel and distributed processing has been studied for 

decades, and several scheduling algorithms have been proposed by researchers on 

different parallel platforms. A basic goal of task scheduling is to map tasks to processors 

in such a way that the idling time of each processor is minimized, and all processors 

complete their computation at almost the same time. In a heterogeneous parallel 

computing platform with varying processor speeds and varying interconnection 

bandwidths, scheduling is a challenging problem and is known to be NP-complete [7][8]. 

Hence, many times precise scheduling may not be possible to be obtained in a reasonable 

computational cost, and hence heuristics need to be designed.  

The issue of scheduling in the area of parallel programming can be application developer 

transparent, semi-transparent or fully developer assisted. In the first category, the parallel 

programming model or the development tool hides the details of task scheduling from the 

application developer. In the second category, the developer provides some suggestions 

to the underlying system. In the third category, the developer is responsible for 

everything. For example, in MPI and socket-based programming, the developer has to 

handle many of the issues of scheduling. TBB, on the other hand, has a scheduler that 

uses work stealing [10] strategy to balance loads among cores in a CPU. CUDA's 

scheduler uses a greedy scheduling strategy [11] to distribute and balance loads among 
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cores in a GPU. In OpenMP, a set of scheduling methods such as static, dynamic and 

guided [6] are provided as options for users; thus it will fall in the semi-transparent 

category. 

1.1 Objectives of This Research 

This research focuses on transparent to semi-transparent scheduling on a heterogeneous 

parallel computing environment comprising of multi-core CPU and many-core GPGPUs. 

Though scheduling on heterogeneous systems has been extensively researched in the past, 

many of those approaches deal with heterogeneity due to varying processor speeds and 

varying network bandwidths. In contrast, the heterogeneous system that we are dealing 

with has processors of not only varying speeds but also of different architectures (e.g., 

MIMD in CPU cores versus hybrid model in GPU cores), each supporting a different 

programming model (e.g., task-parallel and data-parallel are both equally supported in 

CPUs, while data-parallel are more likely to have a better performance than task-parallel 

in GPUs). Moreover, with increasingly fast interconnection links between CPU and 

GPUs with emerging technologies like PCI bus and its extensions [12], bandwidth is less 

a concern than in the previous works. All these issues render the previous heuristics for 

heterogeneous systems not to be directly applicable to a CPU-GPGPU system. All these 

issues are further elaborated in the following chapters of the thesis. 

This research is on scheduling of parallel applications on a heterogeneous CPU-GPGPU 

system and it uses patterns in parallel programming to achieve its objectives. The 

research is based on the hypothesis, as proposed by us, that different patterns in parallel 

computing need different scheduling criteria. For example, scheduling strategies of a 
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farm pattern consisting of independent tasks could be different from a task-graph 

consisting of some forms of dependencies (i.e., control and/or data). Consequently, if the 

pattern(s) of an application is known in advance then better scheduling decisions can be 

applied as compared to ad hoc strategies that are usually employed. Some of the 

commonly used patterns in parallel programming are: task and data farm, master-worker, 

pipeline, divide and conquer, systolic array, to name a few [13]. The research makes 

further classifications of some of these patterns based on scheduling needs. New 

heuristics are developed which used some of the generic characteristics of the patterns. 

Finally, a scheduling framework is developed based on some of these patterns with the 

objectives of achieving load-balanced execution of parallel programs with reduced 

makespan, and also with an objective of verifying our proposed hypothesis. 

Traditionally, design pattern concepts have been used towards the design and 

development of parallel programs. The term skeleton has been conventionally used to 

represent behavioral abstractions of patterns as pre-implemented code. The term 

algorithmic skeleton [15] has been traditionally used to represent algorithmic abstractions 

of patterns, which are best represented in functional forms and best implemented by 

functional programming languages. On the other hand, the term architectural skeleton 

[16] has been used to represent architectural abstractions of patterns. Architectural 

skeletons can be thought of as building blocks for parallel virtual machine on which an 

application developer builds the application. Architectural skeletons are behavior free and 

have been implemented using an object-oriented paradigm. The common objective of 

these skeleton-based approaches is to aid the programmer in the design and development 

phases of parallel programs, purely from the application and its algorithms perspective. 
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There are several skeleton-based approaches to parallel program design and development 

that can be found in the literature [14][15][16][17][18]. 

The aforementioned skeleton-based approaches to parallel programming concentrate 

solely on the algorithm-specific aspects of a parallel program, and do not employ patterns 

for other low-level system-specific uses such as scheduling, load-balancing, and 

fault-tolerance. This research is a step towards the application of patterns to scheduling 

and load-balancing of parallel programs. We use the term parallel systems skeletons to 

represent those skeletons (i.e. pre-implemented building blocks) that assist in 

patterns-specific scheduling and load balancing. The scheduling framework, by definition, 

is a collection of such skeletons. 

In the literature, very limited amount of works can be found that uses patterns for the 

purposes of scheduling in the CPU-GPGPU heterogeneous system consisting of one CPU 

and multiple GPUs which are connected through the bus on motherboard. These works 

deal with heterogeneity in a cluster or grid environment arising from processors of 

varying speeds and interconnection links of varying bandwidths. In contrast, as discussed 

before, the requirements in this research are quite different due to a different type of 

heterogeneity.  

The type of heterogeneous system of our interest, a commodity platform made of CPU 

and GPGPUs, is gaining commonplace in high-performance parallel computing due to its 

price-performance benefits. Multi-core CPUs, with two or more cores, are becoming 

commonplace, providing a (shared-memory) multiprocessor environment with regular 

PCs and workstations. Combined with GPGPUs, which are composed of hundreds of 
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cores designed for general purpose computing, it has provided a powerful parallel 

programming environment at minimal cost. GPU cores are organized into blocks, with 

each block providing a SIMD [21] style of architecture that supports data-parallelism [21]. 

On the other hand, CPU cores support MIMD [21] style of architecture that supports 

task-parallelism [21]. CPU and GPGPUs are connected in the motherboard via special 

high-bandwidth bus (e.g., PCI bus or its extensions [10]), which tries to overcome data 

transfer overhead. The heterogeneous architecture and its programming environment are 

further discussed in a following chapter.  

1.2 Contributions of This Research 

In this research, we propose the hypothesis that different patterns in parallel 

programming need different scheduling strategies for near optimal performance. We first 

investigate our hypothesis for the farm pattern. To achieve this goal, we need to redefine 

the farm pattern into two parts: task (function) farm and data (load) farm. We further 

sub-classify the task and data farm patterns for our purposes of scheduling. Subsequently, 

we discuss how the scheduling of the farm pattern can be applied in scheduling a pipeline 

and more generally a data-flow pattern. 

As discussed before, this research focuses on a new type of heterogeneous parallel system, 

consisting of CPUs and GPGPUs, which is gaining immense interest these days as a 

commodity platform of choice for parallel programming due to its high 

performance-price benefits. Unlike the previous scheduling strategies developed for 

heterogeneous systems, these strategies are not straightway applicable to a CPU-GPGPU 

system due to differences in system constraints and programming models. As a result, 
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new scheduling heuristics have been developed for the farm pattern and its variants. To 

note that some of these new heuristics developed make use some of the previous 

heuristic(s).  

Finally, a pattern-based scheduling framework has been proposed. The framework can 

serve as a test bed for newer scheduling heuristics on the target heterogeneous system, 

and also serve as an experimental verifier of the proposed hypothesis. These 

contributions are further elaborated in a following chapter.  

1.3 Organization of the Thesis 

The next chapter discusses some backgrounds and related works: it first discusses the 

characteristics of the CPU-GPUs architecture; followed by a discussion on some of the 

skeleton based approaches to scheduling and load-balancing. The details of conventional 

farm pattern, which is one of the principal focuses of this thesis, are presented and 

different approaches based on the parallel patterns are further elaborated. Some existing 

scheduling strategies relevant to this research are also revisited in this chapter. Chapter 3 

introduces a further classification of farm pattern for the purpose of scheduling and some 

of the scheduling strategies of these classified patterns on the CPU-GPGPUs architecture 

are presented. It also discusses how the scheduling of the data-flow graph pattern can be 

mapped to the scheduling of the farm pattern. Chapter 4 discusses the experimental 

performances of the previous strategies and compares the results with some existing 

approaches. Chapter 5 discusses an implementation of the scheduling framework and 

illustrates its use in order to develop parallel applications on CPU-GPGPUs architecture. 
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Finally, chapter 6 concludes the thesis with a discussion on the existing problems and 

other issues that need to be resolved in the future. 
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Chapter 2 Background 

2.1 GPGPU and CPU-GPUs Architectures 

2.1.1 General Purpose GPU 

 

GPU (Graphic Processing Unit) is a special microprocessor initially designed to process 

graphics applications and then output them to monitors in an efficient and rapid manner. 

Since graphics is comprised of independent vertices and fragments that can be processed 

in parallel, GPUs are naturally designed as massive-core processors for the purposes of 

manipulating these elements using stream processing. Here a stream is a set of data that 

require the same operations and stream processing is akin to SIMD (Single Instruction, 

Multiple Data) in parallel computing. The number of cores in modern GPUs can range 

from dozens to hundreds. An example of the architecture of nVidia’s GPGPU is shown in 

Figure 1. In this architecture, SP (stream processor) is the processing unit performing 

computation. SM (stream multiprocessor) is a set of SPs that share a local memory and 

all the SPs in one SM perform operations in a SIMD fashion. One GPU contains multiple 

SMs. MT and IU are non-related components for general-purpose computation. 

 

Figure 1: The architecture of nVidia's Tesla GPGPU 
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Recently, GPGPU (General-Purpose Graphics Processing Unit), which is introduced as a 

technique to leverage the excellent parallel computing power of GPUs to accelerate the 

solving of some general problems, has been studied by many researchers. With the help 

of certain auxiliary development tools such as CUDA (Compute Unified Device 

Architecture) from nVidia, programming on GPUs to perform general-purpose 

computation is becoming feasible.  

Nearly all GPGPUs are present on video cards (also known as video adapter, graphics 

accelerator card, display adapter, or graphics card) which are normally connected to a 

CPU via the bus on motherboard of a PC or workstation. Another component that resides 

on a video card is video memory (also known as graphics memory). This memory is 

dedicated for GPU computing, which means that it is only accessible directly by GPUs; 

likewise, a GPGPU cannot access the data residing on the main memory of a PC or 

workstation directly. The data required by GPUs' computation must be copied and 

transferred from the main memory to the video memory and the results also have to be 

transferred back.  

Nowadays, the GPGPU market is dominated by two manufacturers: nVidia and AMD. 

Since nVidia first released a series of GPUs supporting general purpose computing and 

provided corresponding programming tools and SDKs to users, its GPGPUs are currently 

more popular and are installed more widely. Therefore, in this thesis we will take 

nVidia's GPGPU and programming tools as our subjects of study. 
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2.1.2 The Characteristics of GPGPU Computing 

 

(1) Since a GPU is traditionally connected to a CPU via the bus on the motherboard, the 

bandwidth between the GPU and the CPU is quite large, normally from several 

gigabytes per second to over ten gigabyte per second. With newer interconnection 

technologies like PCI bus and its extensions [10], this bandwidth is even getting 

higher. Therefore, the latency caused by data transferring between CPU and GPU is 

far less than that of transferring data over the network of general clusters or grids. In 

the network of a cluster or a grid, as the latency of data transfer is high, the overhead 

of message start-up (the process of packing the message as low-level network packets 

that can be transferred through the physical network and initialization cost of the data 

transfer environment) is often small enough to be neglected. However, in data 

transferring between a GPU and a CPU, since the data transfer time is reduced 

significantly due to the large bandwidth while the message start-up cost remains the 

same, the message start-up cost cannot be neglected any more. Therefore, the 

message start-up cost can even dominate the total overhead of passing a message 

between a CPU and a GPU when the message size is fairly small. To address such 

issues, we apply task bundling in our strategies to minimize the message start-up cost.  

(2) Nowadays, the high-end GPUs for parallel computing have hundreds of cores and 

support hundreds of thousands of concurrent threads. A relatively small task that 

cannot take full advantage of these cores and threads would underutilize the 

computing capability of the GPUs. For example, if a task can only spawn 10 threads 

during its execution, computing it on a GPU that has 160 cores and supports 65535 

concurrent threads would lead to 150 cores stay idle, which is a significant waste. 



 12 

Furthermore, in our study, the GPUs used in our experiments do not support multiple 

concurrent kernels (i.e., the function running on a GPU thread), meaning that it is 

infeasible trying to assign multiple small tasks implemented by different kernels 

simultaneously to a GPU to reduce its underutilization. Therefore, without concerning 

about the video memory size constraints, increasing the size of a task (i.e., increasing 

the number of threads the task will spawn) assigned to a GPU is more likely to make 

the best of its computing power. The task bundling strategy mentioned above can also 

be applied to increase the size of a task and therefore reduce the occurrence of 

underutilization of GPU’s computing capability. 

(3) In GPGPU computing, the data transferring and kernel execution are difficult to be 

carried out concurrently. Taking CUDA as an example, although using pinned 

memory (i.e., the block of memory whose content will not be swapped out to 

secondary storage by operating systems; more details can be found in [32]) makes the 

concurrency of data transferring and kernel execution possible [33], it is still not a 

satisfactory approach because the size of pinned memory is limited; otherwise the 

performance of the whole system would be compromised. Therefore, overlapping of 

data transfer and computation, as many researchers did in the grid or cluster 

environments to improve performance, is not a practically feasible option in the 

CPU-GPGPU architecture of our study.  

(4) GPU is actually a peripheral device for the CPU; the latter has to interact with the 

former via a device driver. A function call on this device (i.e., the kernel function call) 

through the device driver is not as cheap as compared to a function call on CPU. Take 

CUDA architecture as an example: the overhead of one GPU function (kernel 
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function) call, which is named as kernel start-up overhead, is approximately 9 µs. 

This time is quite significant compared with the average 3 ns overhead of a CPU 

function call [36]. The task bundling aforementioned can also be applied in here to 

reduce the kernel start-up latency. 

(5) Considering that the original intention of introducing GPUs is for graphics rendering, 

and both the programming paradigm and the execution model of GPUs are for this 

purpose, GPUs are designed as a massive core processor suitable for stream 

processing. Hence the ideal GPGPU applications [33] should have large data sets, 

high parallelism, and minimal dependency between data elements. Although GPGPU 

is ideal for data-parallel computation, task-parallelism can also be achieved in this 

architecture using code branches in a kernel. In GPGPU, all the SPs (streaming 

processors) in one multiprocessor perform their execution in a SIMD fashion, while 

all multiprocessors are independent of each other. Therefore theoretically, these 

multiprocessors can concurrently go through different control flows and therefore 

exhibit the capability to execute in a task-parallel way. This characteristic will be 

considered when we develop the scheduling strategies for certain sub-categories of 

farm pattern, which will be elaborated in the following chapter. 

2.1.3 CUDA 

 

CUDA (Compute Unified Device Architecture) is developed by nVidia as a parallel 

computing architecture allowing users to program and carry out general-purpose parallel 

computing effortlessly on its GPGPU. CUDA includes C-extension programming syntax, 

runtime environment, complier, API and SDK. The syntax is simple and compatible with 
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C. The following is an example code showing how to design a kernel function (the 

function called by the CPU and running on a SP of the GPU) and call it on a GPU using 

CUDA. 

const int N = ...; // the size of the array for the computation 
 
//definition a kernel function called by the CPU and executing on the GPU 
__global__ void mykernel(int* a, int* b, int* c, int N) 
{ 
 int i = blockDim.x*blockIdx.x + threadIdx.x; 
 if(i<N) 
  c[i] = a[i] + b[i]; 
} 
 
 
//host code 
int main(void) 
{ 
 int size = N*sizeof(int); 
 
 //Allocate memory for vector a and b on the CPU's memory 
 int* h_a = (int) malloc(size); 
 int* h_b = (int) malloc(size); 
 int* h_c = (int) malloc(size); 
 
 //Initialize vector h_a and h_b 
 ... 
 
 //Allocate memory for vector a and b on the GPU's memory 
 int* d_a, d_b, d_c; 
 cudaMalloc(&d_a, size); 
 cudaMalloc(&d_b, size); 
 cudaMalloc(&d_c, size); 
 
 //Copy vector h_a and h_b to the GPU's memory 
 cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice); 
 cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice); 
 
 //Indicate the number of blocks and the number of thread in each block 
 int blockNum = ...; 
 int threadNumPerBlock = ...; 
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 //call kernel 
 mykernel<<<GridDim, BlockDim>>>(d_a, d_b, d_c); 
 
 //Copy the result back to the CPU's memory 
 cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost); 
 
 //Release the GPU's memory 
 cudaFree(d_a); 
 cudaFree(d_b); 
 cudaFree(d_c); 
} 

A kernel is a function executing on the GPU and it is defined using __ global__ 

declaration specifier. The symbol <<<..., ... >>> is the execution configuration syntax for 

indicating the number of CUDA threads that will be spawned to execute the kernel. 

GridDim indicates the number of thread blocks that will be yielded and BlockDim indicates 

the number of threads in one block. For example:  

mykernel<<<4, 256>>>(d_a, d_b, d_c); 

In above code, the number of blocks is 4 and the number of threads in each block is 256. 

So the total number of threads to be spawn by calling this function is 1024. In the 

mykernel function, each thread is mapped to a different element in the input arrays, as 

shown in the above code, by using the thread ids as index.  

In CUDA's execution model, the thread distribution mechanism is based on blocks and 

“warp” [33]. In CUDA, multiple CUDA threads are organized as a block and multiple 

blocks are organized as a grid. So when calling a kernel, users need to specify the number 

of threads in one block and the number of blocks in a grid. CUDA runtime environment 

maintains a “block pool” on a GPU and assigns a block in the pool to one multiprocessor 
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(i.e., SM) once it becomes idle. When a multiprocessor is running, it is dedicated to its 

assigned block. Concurrent blocks assigned to one multiprocessor are not supported. 

Once a block is assigned to a multiprocessor, it will be partitioned into small pieces 

called “warps”. The multiprocessor will pick up one warp piece and execute it in a SIMD 

fashion on its SPs. Since the number of SPs in one multiprocessor is 8 for most nVidia 

GPUs, if the size of the block is too small (e.g., there is only one thread in a block), only 

a part of the SPs in the multiprocessor would be used and all other SPs would stay idle. 

This leads to a severe underutilization of GPU's power.  

 

Figure 2: The model of thread distribution in CUDA 

 

In practice, users are allowed to spawn much more CUDA threads than the number of 

SPs in a GPU in order to avoid I/O waste. It means while some threads wait for I/O, the 

processors still have other threads to execute. It implies that multiple thread warps in 
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CUDA run on processors concurrently. The CUDA runtime environment will map these 

threads to SPs automatically and users do not have to be concerned about the task 

distribution and load balancing among the SPs.   

The programming model of CUDA is akin to SPMD (Single Program Multiple Data). In 

this model, users write one program—a kernel function, and specify the amount of 

threads to execute this program and each thread works on different data. This model is 

ideal for data parallel architectures, especially for GPGPU, since a GPU is a stream 

processor as aforementioned. On the other hand, although task parallelism is as well 

possible to be achieved in this model using program branches (e.g., if/else statement), too 

much extra programming effort would fall on users, not to mention extra branches in this 

parallel environment making programs more error-prone. Therefore, task parallelism is 

not encouraged for CUDA programming model. Nevertheless, under certain situations, 

this kind of parallelism can be exploited as an alternative to reduce, to some extent, the 

severe underutilization of GPU power. We will elaborate this in the following chapter. 

2.1.4 Multi-core CPU 

 

In the last several years, as the manufacture technology of microchips keep improving, 

the architecture of mainstream CPUs for PCs and workstations has shifted from 

single-core to multi-core. Nowadays, increasing the number of cores of CPUs has 

become a trend, from the initial dual-core to today’s sixteen-core of certain high-end 

CPUs. Figure 3 is the example of Intel Core i7 processor's architecture [34]. This 

multiple cores structure is suitable for parallel computation: all the cores can perform 

computation concurrently.  
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Figure 3: The architecture of the Intel’s i7-970 multi-core CPU 

 

For CPUs with parallel architecture, certain programming tools such as Intel TBB 

(Thread Building Blocks) are released in order to help users to leverage its computing 

power conveniently and efficiently without concerning data distribution and load 

balancing. TBB is a C++ template library containing several data structures and 

algorithms that relieve programmer's burden to manually deal with many issues arising 

from multi-thread programming, such as synchronization, creating and terminating 

threads, and load balancing among different threads, by using some native threading 

libraries like Windows threads and POSIX threads. 

Current mainstream multi-core CPUs normally have no more than 16 cores, which is a 

quite small quantity compared with a mainstream GPGPU that could have hundreds of 

cores. But regarding each core's speed, normally a CPU will surpass a GPU. Therefore, 

CPUs and GPUs are suitable for different types of tasks. Certain type of tasks would have 

good performance on CPUs while others may have a less execution time on GPUs. 

Generally speaking, for a high-parallel task with a large input data set, GPGPUs are more 

likely to have a better performance than CPUs. On the other hand, if a task is 
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single-threaded, or with a small number of threads, assigning it to a CPU would get a less 

execution time than doing it on a GPU. 

2.1.5 CPU-GPGPUs Architecture 

 

The combination of CPU and GPUs conforms to a message-passing model, which means 

that they communicate with each other by passing messages via the bus on the 

motherboard of a machine, while both CPU and GPUs are also shared-memory 

architectures per se. This combination of message-passing and shared-memory parallel 

architectures provide a two-level parallelism to applications: coarse grain parallelism 

among CPU and GPUs and fine grain parallelism in CPU and GPUs. In addition, the 

CPU cores are independently clocked and hence they don’t work under tight 

synchronization unlike the SPs inside a GPU’s SM. Consequently, the CPU with its cores 

can be thought of as a multicomputer that supports task-parallelism; on the contrary each 

SM inside the GPU is a SIMD multiprocessor that supports tightly synchronous 

data-parallel computation, while these SMs are independent to each other. More 

characteristics about this architecture will be explored in next chapter while discussing 

the approaches for solving the scheduling problems on this platform. 
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Figure 4: An example of CPU-GPUs parallel architecture with one CPU and three 

GPUs 

 

The topology of CPU-GPUs architecture is a typical star-network. In this network, CPU 

is the center node and all GPUs are connected to it directly, and there is no direct 

connection among all the GPUs. The network connecting these processors is the bus on 

the motherboard of a PC or workstation. 

It must be noticed that in our assumption, the architecture contains one CPU and a limited 

number of GPUs (Single-CPU-Multi-GPUs architecture), which is the common 

configuration of today’s PCs and workstations. The number of GPUs in these machines is 

normally less than 3 and these GPUs communicate with the CPU through the same bus. 

Since the number of GPU is small and the bandwidth is quite high, the bus contention is 

not an issue. However, as the number of GPUs increases, the bus contention and the 
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shared bandwidth must be taken into consideration while designing scheduling strategies 

for this architecture.   

Regarding Multi-CPUs-Multi-GPUs architecture, the today’s operating system can hide 

the complexity of the multiple CPUs architecture and handle load balancing among these 

CPUs automatically, so from user’s perspective the system contains only one CPU. 

Therefore this architecture does not have difference from Single-CPU-Multiple-GPUs 

architecture, so the scheduling strategies developed for the latter can also be applied to 

the former. 

2.2 Framework Embedded with Scheduling Strategies 

ASPARA (Adaptive Structured Parallelism) [20], as the succeeding work of eSkel [17], 

was developed at the University of Edinburgh in 2010. ASPARA is not a specific 

algorithmic skeleton, but a generic methodology to optimize the performance of skeletons 

in a grid. It proposes a way to embed scheduling strategies with algorithmic skeletons [15] 

and therefore it creates a scheduling-strategies-embedded (SSE) framework for parallel 

computing on heterogeneous distributed systems. The following example shows the 

application interfaces of a farm pattern and a pipeline pattern written in ASPARA. As 

shown in the example, the skeletons are built on MPI, which means that it is designed for 

message-passing parallel platform such as clusters and grids. It should also be noticed 

that, the skeleton for the farm pattern has a parameter that indicates which scheduling 

strategy will be applied as a suggestion from the application developer.  
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“ASPARA comprises a set of rules to be embedded with skeletons, where every rule 

essentially defines an application scheduling scheme which is parameterized in terms of 

the existing system resources” [20]. Since, as aforementioned, the behaviour of an 

application’s pattern is known a priori to its execution, this behavioural information can 

be exploited by ASPARA to guide the scheduling of tasks in the application. Application 

development using ASPARA contains four steps: programming, compilation, calibration 

and execution.  

In [20], the researchers make use of the methodology defined by ASPARA to address the 

scheduling problems of farm and pipeline applications. In the farm pattern, they assume 

that the workers are all identical and the tasks can be arbitrarily divided, which is akin to 

Divisible Load Scheduling problems [22] discussed later in this chapter. ASPARA uses a 

property called Fitness (F) to evaluate each processor. For a processor, a greater F value 

means more tasks will be assigned to it. Suppose the size of the input task is a, the 

number of available processor is N and the size of tasks assigned to processor i is   . 

Then, 

  ∑  

 

   

 

Furthermore,     can be calculated using F as:        .  
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The value of F can be determined by several methods. The simplest choice is to use the 

execution speed of each processor.  

Based on the F value, ASPARA presents two ways to handle a farm application’s 

scheduling: single-round scheduling and multi-round scheduling. In the single round 

scheduling, F is computed and the input task is divided in terms of F (size of tasks 

assigned to processor i is      where   is the size of the input task) and scheduled in 

one time. On the other hand, in multi-round scheduling, tasks are divided and assigned in 

multiple times. Since ASPARA is built on a heterogeneous distributed environment and 

resources in this environment is non-dedicated, the availability and performance of the 

processors do not remain constant, which means that the value of F may change from 

round to round. Therefore, in this multi-round strategy, F is recomputed in every round, 

and hence the sizes of tasks assigned to processors will also be recomputed.  

For the pipeline pattern, ASPARA employs a similar strategy: use Fitness F to evaluate 

each processor which acts as a pipeline stage. Once the value of F of a processor is no 

longer acceptable, it will drain the pipeline and hence replace the processor with another 

one with a better F to resume the data flow.  

APSARA is built for grid and cluster computing platforms consisting of CPUs, where the 

value of the fitness function F can be easily computed in terms of the execution time of a 

CPU. On the other hand, in the CPU-GPGPU architecture of our interest, the GPUs and 

their execution behaviours are different from that of the CPUs. Furthermore, in ASPARA, 

the cost model of the worker processes is linear, which means that more loads lead to 

more execution time of a worker. On the contrary, for GPUs the cost model is sometimes 
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nonlinear. e.g., it can have the same execution time for tasks of different sizes in certain 

situations. For example, addition of two vectors of 10 dimensions will take approximately 

the same time as the addition of two vectors of 100 dimensions on a GPGPU with 128 

cores. This difference arises due to difference in the programming models of CPUs and 

GPGPUs.  

Furthermore, the multi-round scheduling strategy of one divisible load in ASPARA 

would cause too many kernel calls and too many message transfers, both of which have 

high start-up overheads as discussed before. Consequently, the strategies employed in 

APSARA are not straightaway applicable in our work. 

2.3 Task Farm Pattern 

The farm pattern is widely used in parallel programming. In this thesis, we study 

scheduling of the farm pattern and its variants on the heterogeneous system discussed 

before. Further classifications of the farm pattern for the purpose of our work are 

discussed in the next section. Furthermore, scheduling techniques for the farm pattern can 

be applied to the scheduling of some other patterns, e.g. data-flow and its specific 

form—pipeline. 

According to the definition by Berna L. [13], a farm pattern consists of the following key 

components: a master (also known as farmer or task generator), multiple workers and a 

collection of independent tasks. In our work, we add another component—a scheduler to 

this pattern. The functionality of each component is as follows: 

 Task Generator: generating tasks and putting them into a “pool”; 
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 Worker: accepting tasks assigned by scheduler, performing the indicated 

computations, returning the results; 

 Scheduler: assigning tasks in the task pool to workers based on certain 

scheduling policies. The goal is to minimize the makespan. Scheduler is an 

application independent module and its behaviour is irrelevant to masters and 

workers. 

The task generator, master and worker are defined by users, therefore these components 

are application-specific. There are additional application-specific plug-ins to the 

scheduler (e.g., partitioner), which will be elaborated in the following chapters. 

Another key component of a farm pattern is a collection of independent tasks which are 

held by the task pool. However, a formal and precise definition for these “tasks” has not 

been given so far. M. Danelutto et al [35] indicated in their work that a “task” in a farm 

pattern is a data item in an input stream. In this case, the scenario is that all the workers 

carry out the same computation on different data items, which is akin to the SPMD 

(Single Program Multiple Data) programming model. This scenario yields a data-parallel 

farm. One example of this type of farm is searching through a database: each task has a 

sub-seachspace and all worker processes can concurrently perform the same searching 

strategy on different sub-searchspaces assigned to them by the scheduler. However, 

confining the type of tasks to data stream restricts the applicability of the farm pattern. 

Moreover, “task” in traditional computing terminology usually means some 

computational control flow (for instance, a task carried out by a function) that operates on 

input data. In practice, the farm pattern should cover a wild variety of problems, as long 
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as they contain a collection of independent tasks, no matter if the tasks are different data 

items or different control paths. We will elaborate this in the following chapter. 

2.4 Existing Scheduling Strategies Applicable to the Farm Pattern 

Tasks in a farm pattern based application, by definition, are independent of each other. In 

some farm pattern applications, the independent tasks can be further divided arbitrarily. 

Therefore, the scheduling in a farm pattern can be regarded as either divisible load 

scheduling (DLS) [22] problem or an independent task scheduling [23] problem. These 

two categories of problems have been studied for quite a time and many scheduling 

approaches have been put forward.  

2.4.1 Divisible Load Scheduling (DLS) 

 

A definition of divisible load scheduling problem is as follows: divide an input load into 

small chunks and assign them to processes in a way which can minimize the total idle 

time of the processes and hence minimize the makespan. In the case of a divisible load, 

the load can be further divided arbitrarily without violating any dependency constraints. 

An example of DLS problem is processing a large image file in a parallel environment. 

The large image file consists of a set of pixels which can be processed independently. 

Therefore, this image can be divided into smaller blocks and assigned to different 

processors for the purpose of speeding up the processing. The divisible load scheduling 

strategies focus on what is the near-optimal way to divide this image in order to minimize 

the makespan. In a farm pattern based application, when the size of a load is quite large 

and it is divisible, dividing it into smaller chunks and distributing the chunks to worker 
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processes in a load-balanced way is the basic idea of scheduling. One example SSE 

framework that employs this divisible load scheduling model is ASPARA [20]. 

As far as we know, most works in the field of divisible load scheduling are based on the 

network-based distributed architectures such as cluster and grid. Several approaches 

[24][25][26] are proposed for solving the DLS problems on grid. These approaches can 

be broadly classified into two categories: single-round divisible load algorithms and 

multi-round algorithms. Single-round algorithms divide the input load into multiple 

blocks whose amount is exactly as same as the number of processes. For example, if 

there are k processes available for the computation, single-round algorithms will divide 

the input load into k blocks. Therefore, each process will be assigned one block. On the 

contrary, multiple-round algorithm will divide the in a way where the number of blocks is 

more that the number of processes. Every process is assigned exactly one block in one 

round, and therefore it requires multiple rounds to complete this assigning, so each 

process will be assigned more than one block eventually. In practice, multi-round 

algorithm assigns more than one block to each process in a pipelined fashion, in order to 

overlap the data transfer time and computation time. 

In [25], O. Beaumont et al proposed a single-round algorithm for star networks, which is 

also the topology of CPU-GPUs architecture (CPU is    and GPUs are        ).  
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Figure 5: A star network 

 

It employs a linear programming approach to solve the problem. The following lists the 

constraints of their linear programming. 

 

Where    is the number of units of load sent to worker    , and p is the number of worker 

processes, hence the number of divided blocks is the same as the number of worker 

processes, which makes this method the single-round algorithm.        is the whole 

input data,    is the total execution time (i.e., makespan).    and   are linear cost 

model: it takes      time units to execute   units of load on worker     and 

similarly it takes     time units to send   units of load from    to    . In the 

constraints, the first communication means assigning the block to worker process 1, while 

the i-th communication means assigning the block to worker process i. However, as 

previously discussed, the GPU does not have such a linear cost model    when the size 

of tasks is small. 
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Regarding multi-round algorithms for DLS problems, the main purpose of these 

approaches is to overlap the data transferring time and the computation time, which is a 

direct consequence of the assumption that data transferring and computation can be 

carried out concurrently in their models. However, in the current CPU-GPUs 

architectures as discussed before, the data transferring and kernel execution in a GPU can 

hardly be carried out concurrently. Therefore, these approaches are not applicable to 

contemporary CPU-GPU architecture of our interest. 

For CPU-GPUs architectures, to the best of our knowledge, Qilin [30] is the only 

approach that focuses on divisible load scheduling. It employs an adaptive mapping 

scheme that introduces a training phase. The training phase interpolates a system of linear 

equations based on empirical results from adaptive mappings, whose solution provides 

the best partitioning among the CPU and the GPUs. To be more specific, they firstly 

build linear equations:            for CPU and           for GPU, where t 

is the execution time and s is the size of the input data. Then they use the following graph 

to find the near-optimal partition. 

 

Figure 6: Task distribution curve in Qilin 
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In Figure 6, time means the execution time and β is the proportion of loads assigned to 

CPU, so it ranges from 0 to 1. The β value at the point of intersection of the two curves 

can yield the near-optimal partition.  

However, as analyzed before, the linear model is applicable for GPU when the load size 

is fairly small. Besides, considering that they exploit the curve intersection approach, the 

current Qilin is only applicable for a single-CPU-single-GPU environment. Its extension 

to single-CPU-multiple-GPU environment may not be straightforward and could not be 

found in available literatures.  

2.4.2 Independent Task Scheduling 

 

Independent task scheduling problem focuses on generating a schedule for a set of 

independent tasks on a set of processing units, for the purpose of minimizing the total 

execution time. The tasks are independent, meaning that there are no communication or 

precedence constraints among them. 

If the loads in a farm application are comparatively small and hence need not be further 

partitioned, then scheduling of a set of these small loads can be regarded as an independent 

load scheduling problem, which is akin to independent task scheduling as the terms load 

and task have been intermixed in several of these works. Note that we will further elaborate 

on the terms “load” and “task” in the next chapter. There is a considerable amount of work 

towards independent load scheduling in the last few decades, and the proposed approaches 

are applicable in cluster and grid environments. A survey of these approaches can be found 

in [27][28], out of which min-min heuristic is found to perform as the best [27]. In min-min, 

the next minimum load is always picked up for scheduling as compared to max-min in 
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which the maximum load is scheduled next. These approaches are designed for 

independent tasks scheduling.  

 

Figure 7: The min-min heuristic 

 

The Min-min heuristic shown in Figure 7 is presented in [27]. The input of the algorithm is 

a set of independent tasks (i.e., meta-task). 

“In the figure,    is used to denote the expected time that machine    will become ready 

to execute a task after finishing the execution of all tasks assigned to it at that point in time, 

and     is used to denote the execution time of task    on machine   . First the   is the 

matrix of completion time and     entries are computed using the    and    values. For 

each task   , the machine that gives the earliest expected completion time is determined by 

scanning the ith row of the c matrix (composed of the     values). The task    that has the 

minimum earliest expected completion time is determined and then assigned to the 

corresponding machine. The matrix c and vector r are updated, and the above process is 

repeated for tasks that have not yet been assigned a machine” [27]. 
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However, the performance of directly applying these approaches to loads scheduling in 

CPU-GPUs environment would not be acceptable due to several reasons. Firstly, these 

heuristics assign loads to processors one by one, which would cause too many message 

start-up calls and kernel calls and the overhead of these calls are non-trivial. Also, 

considering that the size of loads is quite small in some cases and the number of cores in 

GPUs is large, assigning the small loads one by one would lead to severe underutilization 

of the computing capability of GPUs. Moreover, most of these heuristics are static. Though 

dynamic versions for some heuristics have been designed [28], they are more applicable 

for a cluster and a grid environment where constraints are different. Lastly, most of these 

heuristics are applicable when the execution time is proportional to the load (data) size, 

which may not be always the case as discussed in the next chapter. 
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Chapter 3 Scheduling for Farm Pattern Based Applications 

In this chapter, we propose several approaches to solve the task scheduling problems of the 

farm pattern based applications on a CPU-GPGPUs platform. These approaches make use 

of the underlying infrastructure and characteristics of the farm pattern when assigning 

tasks to processors. Similar approaches can be applied to the scheduling of pipeline and 

data-flow graph patterns and these are discussed at the end of this chapter. The next chapter 

elaborates the experimental results comparing the new approaches with some of the 

traditional approaches. As mentioned in the previous chapter, the characteristics of the 

tasks will affect the scheduling policy. In this chapter we first classify the farm pattern into 

several sub-categories based on the features of the tasks. Then we propose a set of 

scheduling strategies called HASS (Heterogeneous Architecture Scheduling Strategies) 

for these sub-patterns. 

3.1 The Architecture 

In general, the software architecture of a task farm pattern comprises of the following 

components: one or more task generators, a task pool where tasks are deposited by the 

generators, worker processes/threads that execute tasks from the task pool, a result pool 

where results are deposited, and result collector(s) (Figure 8). It must be noticed that 

workers not only consume tasks from task pool, they also generate tasks and deposit them 

to the task pool, i.e., workers also can act as task generators. This gives more flexibility in 

the use of the pattern. 
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Figure 8: A task farm architecture 

 

In the traditional task farm architecture, an idle worker pulls work from the task pool. 

However, since the GPU being a subordinate processor of the CPU, its work load needs 

to be pushed. The CPU still pulls its workload. Parts of these functionalities are 

performed by the scheduler. 

The scheduler is an intermediate layer that sits between the task pool and the workers. It 

is responsible for ideal scheduling of tasks to workers so that all loads are well balanced 

and the total processing time is minimized. In our discussion, the scheduler is called 

HASS (Heterogeneous Architecture Scheduling Strategy) and is elaborated in the 

following sections.  

Figure 9 illustrates the general configuration of a single-CPU-multiple-GPGPU 

architecture. The CPU is the predominant processor and each GPU is a subordinate 

processor under the control of the CPU. The CPU has multiple cores (e.g., 2 to 8) which 

can execute different codes, thus resulting in task-parallelism. In comparison, the GPU 
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has many more cores (e.g., from dozens to hundreds). The GPU cores are grouped into 

physical units, called streaming multiprocessors (SMs). Each SM is comprised of 

streaming processors (SPs) which communicate via shared memory and its execution 

model is SIMD, i.e., the SPs inside a SM synchronously execute the same code (also 

known as kernel code) but on different data. Hence the corresponding programming 

model inside an SM is of data-parallelism. Each SM can run different kernel codes, thus 

resulting in task-parallelism. In general, the GPU is more suited for data-parallel 

computation which results in less idling of its cores and thus more utilization of its 

resources.  

 

Figure 9: The CPU-GPGPU architecture 

 

The following are some of the features of a contemporary CPU-GPGPU architecture which 

need to be considered while designing a scheduling strategy for such architectures. Firstly, 

in contemporary architectures the interconnection bandwidth between CPU and GPU is 
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fairly high, of the order of 10 gigabytes per second or even more with newer 

interconnection technologies like PCI bus and its extensions [12]. Considering this high 

bandwidth, data transfer time between the CPU and the GPUs is much smaller as compared 

to a cluster or a grid environment. Sometimes this message start-up cost becomes the 

predominant factor in the total data transferring cost between the CPU and the GPUs, 

especially when the size of data to be transferred is small. 

Secondly, the architecture of an SM is SIMD and hence the GPU is more suited for 

data-parallel model of computation.  All cores (SPs) inside an SM execute identical code, 

but on different parts of the input data. Consequently the bigger the size of the load, 

(whether divisible or indivisible), the more of the GPU cores can be kept busy, thus better 

utilizing the available cores. A smaller load could keep some of the cores idle, e.g., if the 

SM has 64 cores and the load can be utilized by only 20 cores then the remaining 44 cores 

will be idling. Though multiple SMs could run different kernel code, thus resulting in 

task-parallelism, this may not be achieved in a straightforward way in many existing 

GPGPUs.  

Thirdly, in the contemporary GPU computing, it is difficult to overlap data transferring 

with concurrent kernel execution in a GPU. Take CUDA as an example [4], where this type 

of overlapping can be achieved only with great difficulty, e.g., using pinned memory which 

is limited in size and its use might negatively affect the performance. As a result, 

commonly used performance measures like overlapping of computation with 

communication as in a traditional cluster or grid environment may not be feasible in the 

CPU-GPGPU architecture. 
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Lastly, a GPU is a peripheral device for the CPU. Consequently, any kernel function call 

has to be done via device driver and thus has a much higher start up latency as compared to 

a function call in the CPU. For example, in CUDA, a GPU kernel call can have start-up 

latency about 3000 times higher than a CPU function call. 

Since the CPU is the dominant processor and each GPU works under the control of the 

CPU, in our design the task pool and the result pool of the farm reside in the main memory 

of the CPU. Loads are subsequently distributed to the memory of the graphics card as will 

be discussed in the following strategies. The worker threads run on the CPU and the GPU: 

they will be called CPU workers and GPU workers respectively. Note that the CPU and 

GPU workers perform identical works; however their codes are different due to the 

difference in their architectures and programming models. 

3.2 A Classification of the Farm Pattern 

In this section we propose a new way to classify the farm pattern based on the type of the 

tasks in this pattern. For each category, we propose a corresponding heuristics to solve 

the scheduling problem on the CPU-GPGPUs platform. 
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Figure 10: A taxonomy of farm pattern in terms of the type of the tasks and the 

corresponding heuristics 

 

Figure 10 presents an entire classification of the farm pattern and the heuristics, which 

will be elaborated in the following. It should be noted that for the farm pattern, all tasks 

are independent irrespective of which category it falls into. 

In the literature, the tasks in the task pool of a farm pattern are regarded as data items. In 

[35], the author explicitly defines the tasks in a farm pattern application as data items and 

the task pool as a data stream. In [20], a task is defined as a divisible load which is a 

synonym of data. This assumption implies that the worker processes are all identical and 

the only difference is that they take different data as input. Hence, this task farm pattern is 

essentially a data-parallel model of computation. 

However, to be more flexible, the types of tasks in the farm pattern need not be restricted to 

only data items; they can be functions as well. Therefore, we classify a farm pattern into 
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two sub-categories: data (or load) farm and function farm (Figure 9). In the data farm, the 

task pool is essentially a data pool, and a load in the pool is a collection of data elements 

where each data element is a portion of the load on which a worker operates. . For 

example: in a matrix-matrix multiplication, a load comprises of the two matrices to be 

multiplied and if a worker is responsible for producing an entry of the result matrix then the 

corresponding (input) data element for the worker is a row of the first matrix and a row of 

the second matrix. In the case of GPGPU computing, each data element is usually 

mapped to one worker. Therefore, the number of workers in GPGPU computing depends 

on the number of data elements of a load. Many of such workers can in turn be mapped to 

a GPGPU core (Figure 11). On the contrary, for CPU computing, multiple data elements 

could be mapped to each worker, i.e., it is a many-to-one mapping. For example, each 

worker is in charge of one or several rows or columns of the result matrix. As in a 

GPGPU, more than one worker can be mapped to a CPU core (Figure 11). 

 

Figure 11: (a) the mapping of data and worker in CPU; (b) the mapping in GPGPU 
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On the other hand, in the function farm each task is a function together with its input data. 

Each function is mapped to a worker and thus the workers could carry out different 

computations by receiving different tasks (Figure 12). Hence, the computational model in 

this case is of task-parallel. As discussed previously, task-parallel computations are best 

carried out in the CPU due to its MIMD architecture. However, considering the GPU's 

potential to execute task-parallel applications as discussed before, function farm 

applications can as well be implemented on GPGPUs. By designing the farm's scheduling 

strategies carefully, we can have a function farm with good performance. Even though 

sometimes these task-parallel applications can cause severe wastage by idling the GPU 

cores, a well-designed scheduler is able to reduce this waste as much as possible and thus 

make the performance more acceptable. Some examples of the task farm pattern are the 

ready queue in DAG scheduling and the PCB queue in an operating system.  

 

Figure 12: Comparison of data farm and function farm 

 

3.3 Further Classifications of the Data Farm Pattern 

This section presents a further classification for the load (data) farm pattern based on the 

divisibility of the loads: the farm with divisible loads and the farm with indivisible loads, 
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which are called as divisible and indivisible load farm respectively in the following 

discussion.  

In the divisible load farm, each load can be arbitrarily partitioned into independent smaller 

loads. On the other hand, in the indivisible load farm, the workers operating on different 

elements of a load have inherent dependencies and hence the load cannot be arbitrarily 

divided.  

Besides the classification mentioned above, the scheduling of divisible load farm can have 

two broad classifications: large load scheduling versus small load scheduling (Figure 10). 

In the large load scheduling case, the size of each input load is fairly large, based on certain 

parameters of the underlying architecture, e.g., number of cores in a GPU block. Such a 

load must be partitioned into multiple smaller loads (Figure 13). Therefore, this situation is 

called the partition case. For this case, it can also be further be classified into two 

sub-categories: known size task case and unknown size task case. The known size task 

means the execution time of the tasks which take the loads as input is proportional to the 

size of the loads, while the unknown size task means the execution time is 

non-proportional to the size of the loads. An example of the known size task case is 

image processing, where each pixel needs to be processed. On the other hand, an example 

of the unknown size task case is searching through a text space to find out the first words 

with a certain pattern. The known size task case is akin to a divisible load scheduling 

(DLS) problem. In this case, the goal of our strategy is the same as that of Qilin[30] system: 

trying to find an optimum partition of the input load with the intention of minimizing the 

makespan. Compared to the Qilin approach, the improvement of our approach is that it is 

applicable to the single-CPU-multiple-GPU environment, whereas the approach in Qilin 
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system only works in the single-CPU-single-GPU environment.       (p means 

partition case) is the proposed heuristic in this category. On the other hand, if the task size 

is unknown then we propose a modified greedy strategy (Figure 10).  

 

Figure 13: The execution model of partition case 

 

In the small load scheduling case, the size of each load is comparatively small based on 

similar parameters of the underlying architecture. Therefore, it is unnecessary to further 

partition a load, and scheduling of these independent small loads boils down to the 

independent task scheduling problem. Instead of being partitioned, loads assigned to the 

GPUs need to be bundled for the purpose of reducing their execution time (Figure 14). The 

need for load bundling is further discussed in section 3.4.1. Hence this scenario is also 

called the load combination case. In case can also be further classified into several 

categories: known size task case and unknown size task case, and the known size task 

case also has two situations: all tasks have equal size or different. For this scenario, we 

propose two different strategies:        (c represents combination or bundling and e 

represents equal sized tasks respectively) for the farm pattern with equal task sizes; 
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       (d stands for distinct task sizes) for the farm pattern with distinct task sizes. A 

modified greedy scheduling strategy is proposed for the unknown size task case. 

 

Figure 14: The execution model of combination case 

 

Although we have this large load case and small load case classification, in practice, it is 

difficult to determine whether a load is large or small in an abstract way, since it is 

dependent on the configuration of the underlying infrastructure and so far a standard rule 

which can differentiate these two cases in terms of the configuration of a system has not 

yet been proposed. Therefore, in this research, we only broadly put forward these two 

cases so that for each case we can design certain scheduling strategies. 

All the aforementioned approaches are for the divisible load farm. Regarding the 

indivisible load farm, the strategy       is proposed. These strategies are elaborated in 

the following sections. 
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3.4 New Approaches for the Divisible Load Farm 

3.4.1 The Impact of Load Bundling in GPU Performance 

 

Load bundling means to bundle multiple small loads into a single large load and assign this 

one large load to the GPU. Therefore, in this case, the requirement is that all small loads 

must be able to be bundled. For a divisible load, since it can be arbitrarily partitioned into 

smaller loads, so these smaller loads can also be bundled arbitrarily. 

 

Figure 15: An example of load bundling for a GPU 

 

 

The advantages of one single large load versus several small loads are that the message 

start-up latency, associated with each message between CPU and GPU, and kernel function 

start-up latency, associated with each GPU kernel call, are significantly reduced. 

Furthermore, considering that in CUDA programming, each data element in a load is 

mapped to one thread, i.e., worker, and one or more threads are mapped to a GPU core, if a 

load is too small, i.e., the number of its data elements is small, not enough threads can be 

spawned to take advantage of all the cores in a GPU. By applying load bundling, the 

bundled large load can relieve this underutilization by augmenting the amount of data 
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elements and consequently increasing the number of concurrent threads on a GPU. Based 

on the above discussion, it is preferred that the GPUs are assigned large size loads, as 

determined by the number of cores inside the GPU. Figure 16 gives an example of the 

influence of load bundling on the GPU’s execution time. 

message startup time data transferring time

kernel startup time kernel execution time
 

Figure 16: Impact of load bundling 

 

Figure 17 is an example of searching through an array of 40 elements using a GPU with 80 

cores. As shown in the figure, half of the cores are unused and therefore the GPU is 

severely underutilized. 

 

Figure 17: An example of underutilization of a GPU. 
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By bundling many small loads into a large load, we can reduce the occurrence of this 

underutilization problem. The following figure is an example of traversing arrays. In this 

example, the two small arrays are combined into one large array and then be assigned to a 

GPU. All the cores of the GPU are involved in the computation and the underutilization 

problem is eliminated.  

 

Figure 18: An example of full utilization of a GPU 

 

3.4.2 The Heuristics for Divisible Load Scheduling 

 

The following heuristics comprise of the following: (i) independent load scheduling, (ii) 

work stealing, (iii) load bundling, and (iv) learning and adaptation. As discussed before, a 

divisible load is first partitioned into independent smaller loads. An effective independent 

load scheduling strategy (e.g., Min-min) is first applied to do an initial distribution of the 

(partitioned) independent loads to the processors. This initial distribution may not be the 

best and hence it might need to be adjusted in subsequent assignments. Work stealing is a 

way to adjust the loads, where the idling GPUs steal work from CPU and vice versa. This 
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leads to a learning and adaptation phase, during which load distribution to the processors is 

adjusted for near-optimal performance. The discussion assumes a 

single-CPU-multiple-GPU architecture. The CPU and each GPU has its own buffer (in 

main memory) where loads are assigned. Subsequently the assigned loads are transmitted 

to the GPU with or without bundling, depending on the strategy employed.  

We start with basic HASS, which is used inside some of the other heuristics presented here. 

In basic HASS, the input is a set of independent loads. Basic HASS is a two-phase 

approach: the first phase is the mapping phase. In this phase, certain traditional 

independent task scheduling heuristic (e.g., Min-min) is used to generate an initial 

mapping from loads to processors. The loads mapped to each processor are stored in the 

processor’s buffer (in main memory). In Execute phase, loads are transmitted from 

processor’s buffer to the processor for execution. In transmitting to a GPU, the loads inside 

the GPU’s buffer are bundled together and assigned to the GPU as a whole for the purpose 

of removing the influence of underutilization of GPU and the overhead caused by message 

and kernel start-up latency, as discussed before. Therefore, a load bundler is needed by the 

scheduler (Figure 19). In addition, basic HASS rebalances the load between the CPU and 

the GPUs by using a work stealing strategy: Once a GPU becomes idle, it will request loads 

from the CPU’s buffer. This load rebalancing strategy can ensure the CPU and the GPU 

complete their execution at almost the same time with minimized idling.  

It should be noted that Min-min requires the estimated execution time of a task. In basic 

HASS, the size of a load is used to estimate the execution time of the associated task. It is 

assumed that the execution time is linear to the size. However, as was discussed before, 

when the size of a load is small (i.e., the number of data elements is less than the number of 
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cores in a GPGPU), its execution time is not linear to the size, and it can cause an incorrect 

time estimation of Min-min when applied to GPGPU scheduling. When this situation 

happens, the computing power of GPGPU would be underestimated. For example, suppose 

the linear model of size and execution time is      , where   is the execution time and 

  is the size, then a load with size 10 would have execution time 20 units and a load with 

size 20 would have execution time of 40 units. However, in a GPGPU with more than 40 

cores, these two loads will have the same execution time. Hence estimation for Min-min 

will not be accurate. Therefore, in the following heuristics, min-min is used for initial 

mapping and subsequently load-bundling and/or work stealing are applied to handle any 

inaccuracies of Min-min.  

 

Figure 19: The scheduling model of divisible load 
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Figure 20: An example of using basic HASS on a CPU-GPUs system 

 

 

Basic HASS is presented in the following: 

Algorithm 1: HASS 
Input: A set of independent loads D = {d1, d2,...,dm}.  
/*The loads are to be executed on processors P = {pc, pg,1, pg,2, ..., pg,n}; pc is the CPU and 
pg,i is a GPU*/ 
Output: Loads executed with minimized makespan. 
Begin 
    {Mapping phase} 
    1. Apply min-min heuristic to map loads to processors. 
    Loads are first assigned to processor’s buffers residing on 
    main memory: bc is the CPU buffer and bg,i is a GPU buffer. 
    2. After mapping is complete, go to the execute phase 
     /*step 3 below*/.   
    3. {Execute phase} 
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    for i = 1 to n do 
   { 

         Bundle all loads in bg,i into a single load Dg,i. 

         Assign Dg,i to pg,i. 

    } 

    while bc is not empty do 

    { 

         if pc is idle then remove a load di from bc and assign to pc. 

         for each GPU pg,k 

             if pg,k is idle then  

                 /*Steal work from CPU’s buffer*/ 

                  remove a load dm from bc and assign it to pg,k 

    } 

end 

 

Basic HASS employs work stealing to re-balance loads among the CPU and the GPUs. 

The next heuristic       , which is applicable for equal sized independent loads, 

employs learning and adaptation strategy in multiple rounds to re-balance the loads. 

       employs basic HASS during the first round of scheduling. The scheduling 

information (i.e., the ratio of loads executed by each processor over the total loads) is 

recorded, and this record is used to guide the scheduling in the following round. In the 

next round, all loads from the task pool are retrieved and mapped to the processors based 

on the recorded information from the previous round. Any load re-balancing is done if 

necessary and any change in scheduling ratio is recorded for the next round.  

Algorithm 3: HASSce 
Input: A set of loads is generated by task generator and deposited to the task pool 
continuously. 
/*The loads are to be executed on processors P = {pc, pg,1, pg,2, ..., pg,n}; pc is the CPU and 
pg,i is a GPU*/ 
Output: Loads executed with minimized makespan. 
Begin 
     1. Initialize variables i and jk to 0;  

/*Here i is the proportion of the work that has to go to the CPU and jk is the      
proportion of the work that has to go to GPU k*/ 

     2. Extract all loads from the task buffer and use Lq to denote the loads 
     3. Apply HASS to schedule loads in Lq. 
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     4. Update i and jk for each pg,k based on the scheduling in 3 above. 
     5. Go to the adaptation phase /*step 6 below*/. 
     6. {Adaptation phase}  
      while task generator is still generating loads 

      { 

       Extract all loads from the task buffer and use Lq to denote the loads          

for k =1 to n do  

{ 

       put q  jk loads into GPU buffer bg,k. 

       bundle all loads in bg,k and assign the single bundled load to pg,k. 

       put q  i loads into CPU’s buffer bc. 

} 

    while bc is not empty do 

    { 

          if pc is idle then remove a load di from bc and assign to pc. 

          for each GPU pg,k 

          { 

   if pg,k is idle then  

             /*Steal work from CPU’s buffer*/ 

                remove a load dm from bc and assign it to pg,k.  

} 

           update i. 

           for each GPU pg,k  

             update jk. 

          } 

        } 

     }  

end  

 

       is developed for the case when the loads are of different size for the independent 

task scheduling. The difference of        from        is that, since the size of each 

load is different in every round, there is no useful scheduling information from the previous 

round to guide this round. Therefore, in each round, traditional scheduling heuristics must 

be used and the GPU workers have to steal loads from the CPU worker. However, instead 

of asking the GPU workers to steal one load each time as        does, the GPU 

workers in here steal 
 

     
 tasks from CPU, where M is the number of tasks in CPU 

worker’s buffer, and n is the number of processors. The reason to replace the 
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“single-stealing” with this “multi-stealing” is that stealing one task per time would cause 

both probable GPU underutilization and a large number of work stealing, which would 

consequently lead to much many message transferring and kernel calling. This 

multi-stealing strategy may cause an over-stealing (i.e., GPU workers stealing too many 

tasks and leaving the CPU has no tasks), but the time reduced by this multi-stealing can 

amortize the loss caused by over-stealing. It should be noticed that this multi-stealing 

strategy is not suitable to       , in which case the scheduling information from the last 

round is exploited to guide the scheduling of the next round. Over-stealing would 

generate incorrect scheduling information that is useless for the next round scheduling. 

The following is the algorithm of       , where K is used to denote all the tasks in task 

pool. 

Algorithm 3: HASScd 
Input: A set of loads is generated by task generator and deposited to the task pool 
continuously. 
/*The loads are to be executed on processors P = {pc, pg,1, pg,2, ..., pg,n}; pc is the CPU and 
pg,i is a GPU*/ 
Output: Loads executed with minimized makespan. 
Begin 
     1. Extract all loads from the task buffer and use Lq to denote the loads 
     2. Apply basic HASS to schedule loads in Lq. 
     while loads are still generated by the task generator do 

     { 

       Extract all loads from the task buffer and use Lq to denote the loads          

for k =1 to n do 

{ 

       put q  jk loads into GPU buffer bg,k. 

       bundle all loads in bg,k and assign the single bundled load to pg,k. 

       put q  i loads into CPU’s buffer bc. 

} 

     while bc is not empty do 

     { 

           if pc is idle then remove a load di from bc and assign it to pc. 

           for each GPU pg,k 

           { 
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    if pg,k is idle then  

              { 

/*Steal work from CPU’s buffer*/ 

the amount of tasks in bc is M. 

remove M/(n+1) loads from bc, bundle them and assign the bundled 

load to pg,k.  

} 

} 

         } 

      }  

end  

 

The previous three algorithms are for divisible loads which do not need any further 

partitioning. However, if a load needs to be further partitioned into smaller loads then the 

next algorithm,       is proposed. In this algorithm, the scheduler needs a partitioner, 

as a plug-in module, to partition each input load into smaller loads (Figure 21). 

 

Figure 21: The scheduling model of divisible load 

 

In       , the size of the input load is large and hence it needs to be divided into smaller 

loads prior to assigning to processors. The purpose of this algorithm is to find a nearly 

optimal way to divide the input so as to balance the load among the processors. The 

HASS algorithm is also the basis for        (p here stands for partitioning). The 

       algorithm works on multiple rounds: in round i, a divisible load is partitioned into 
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chunks of smaller loads of equal size using the partitioner and then HASS is employed to 

schedule those independent loads. The near-optimal scheduling obtained by HASS (after 

work stealing) in round i is recorded, and this information is used in round i+1. Thus, 

       is an adaptive algorithm similar to        discussed before, i.e., in each round, 

it applies the partitioning information from the previous round(s) and as a result the 

balancing of loads improves from round to round. Figure 22 is the flowchart of 

the       algorithm: 

        

 

Figure 22: The flow chart of       

 

Algorithm 4: HASSp 
Input: A set of loads is generated by task generator and deposited to the task pool 
continuously. 
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/*The loads are to be executed on processors P = {pc, pg,1, pg,2, ..., pg,n}; pc is the CPU and 
pg,i is a GPU*/ 
Output: Loads executed with minimized makespan. 
Begin 
     1. Initialize variables i and jk to 0;  

/*Here i is the proportion of the work that has to go to the CPU and jk is the 
proportion of the work that has to go to GPU k*/ 

2. Extract a load from the task buffer, partition it into smaller blocks with size e 
and use Lq to denote these blocks 

      /*      {             } where     is the number of cores in     */ 
     3. Apply basic HASS to schedule loads in Lq. 
     4. Update i and jk for each pg,k based on the scheduling in 3 above. 
     5. Go to the adaptation phase /*step 6 below*/. 
     6.  {Adaptation phase}  
      while task generator is still generating loads 

      { 

       Extract a loads from the task buffer, and suppose its size is S. 
if( i is unchanged compared with its previous value) /* An near-optimal 
schedule is generated*/ 
{ 

       Assign a block with size Si to pc. 

        for all the GPU pg,k 

            assign a block with size S jk to pg,k 

      
} 
else 
{ 

Partition the load into smaller blocks with size e and use Lq to denote the 
loads          

for k =1 to n do  
{ 

         put q  jk loads into GPU buffer bg,k. 
          bundle all loads in bg,k and assign the single bundled load to pg,k. 

         put q  i loads into CPU’s buffer bc. 
} 

     while bc is not empty do 
     { 

            if pc is idle then remove a load di from bc and assign to pc. 
            for each GPU pg,k 
            { 

     if pg,k is idle then  
               /*Steal work from CPU’s buffer*/ 
                  remove a load dm from bc and assign it to pg,k.  
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 } 
             update i. 
             for each GPU pg,k  
               update jk. 
           } 
        } 
     }  
} 

end  

 

The e value in the algorithm can guarantee that all cores of each GPUs will be utilized 

when compute the smaller blocks. Therefore, the possibility of overestimating execution 

time of tasks by Min-min, which is described in the case of       , can be eliminated 

since the size of the smaller blocks are not “small”(i.e., the size of the blocks are greater 

than the amount of the cores of the GPUs) 

All the algorithms presented before are for the cases when the estimated task size 

associated with a load is known a priori. If the size is unknown, we propose a modified 

greedy scheduling approach based on naive greedy scheduling. For naive greedy 

scheduling, once a processor becomes idle, it will request a task from the task pool. In 

contrast, in the modified greedy, we take advantage of task bundling to improve the 

performance: if a CPU worker is idling, it requests one load from the load pool; if the 

GPU workers are idling, they request multiple loads from the load pool. The reason why 

the GPU requests multiple loads is same as the “multi-stealing” in       . 

3.5 A Different Approach for the Indivisible Load Farm 

Compared with a divisible load which can be arbitrarily divided into independent smaller 

loads, an indivisible load has internal dependences among the tasks processing it and hence 

it cannot be partitioned arbitrarily. These internal dependencies in processing of an 
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indivisible load restrict its scheduling on contemporary GPUs that have a special thread 

distribution model. 

3.5.1 The Thread Distribution of GPU  

 

As discussed before, when programming with CUDA on GPUs, users need to map each 

data element of an input load to one CUDA thread, and the CUDA runtime environment 

will distribute the threads among the GPU cores. To be specific, the threads are first 

organized as blocks and the way to organize the threads must be indicated when the kernel 

function is called using two specifiers: the number of threads in one block, and the total 

number of blocks (therefore the total number of threads is the number of threads in one 

block multiplied by the total number of blocks). 

During execution, the CUDA runtime will organize the threads into blocks as indicated and 

put them into a block pool. Then these blocks will be assigned to multiprocessors (i.e., SMs) 

in a greedy fashion: once a multiprocessor becomes idle, it will be assigned a block if the 

block pool is not empty. These multiprocessors are independent of each other and there is 

no synchronization mechanism among them. Hence the thread blocks are also independent 

of each other. This thread distribution model is ideal for divisible load scheduling because 

such loads can be arbitrarily divided and the blocks are totally independent. However in the 

case of indivisible loads, the threads might need to interact with one another (via shared 

memory) due to inherent dependencies and hence organizing all threads of an indivisible 

load into a single block is a necessity.  

When employing the one-load-one-block strategy, it must be noticed that, no matter how 

many threads are contained in a block, it can only be executed by one multiprocessor while 
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all other multiprocessors remain idle. This is a huge wastage of the GPU’s power. 

Therefore, instead of asking a GPU to compute one indivisible load at a time, N loads can 

be assigned to the GPU as a whole (N is the number of multiprocessors in the GPU), and 

each block is mapped to one multiprocessor. This can be implemented using code 

branches: 

__global__ void kernel () 
{ 
 if(blockIdx.x = = 0) 
    compute one indivisible load; 
  
   else if (blockIdx.x = = 1) 
      compute another indivisible load;  
}  
 
 
Suppose block 0 is assigned to multiprocessor A and block 1 is assigned to multiprocessor 

B, then A and B will compute two different indivisible loads concurrently. In such a case, if 

one of them finishes earlier, it must wait for the completion of other multiprocessors. If one 

multiprocessor is assigned a very large indivisible load and hence performs the 

computation for a very long time, all other multiprocessors which complete their 

executions earlier have to remain idle until this one finishes its computation, before another 

kernel can be invoked. 
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Figure 23: A Gantt Chart of the execution of multiprocessors on loads of different 

sizes 

 

The previous discussion on the thread distribution model of contemporary GPUs is the 

basis for the following strategy on indivisible load scheduling. 

3.5.2       : A Strategy for Indivisible Load Farm Scheduling 

 

For indivisible load scheduling in the CPU-GPUs environment, a greedy style strategy is 

proposed: once a processor becomes idle, it will be assigned loads if the load pool is not 

empty. While assigning loads to a GPU, N different indivisible loads with similar sizes are 

extracted from the  pool and mapped to N CUDA blocks, where N is the number of 

multiprocessors in that GPU. This policy can guarantee that every multiprocessor can have 

a load to compute. The reason why the loads must have similar sizes is that they can assure 

the multiprocessors will finish computation almost simultaneously so that none of them 

has to wait. In order to achieve this, the loads need to be first sorted according to their 

sizes. 

Furthermore, when picking up loads from the pool, the largest loads are chosen first for the 

GPUs. We call it the Largest Load First (LLF) rule for GPU. The reason behind this rule is 
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that during a time interval, the amount of small tasks computed by a GPU is more than the 

amount where the size is large. 

 

Figure 24: Comparison of the amount of large tasks computed by a GPU and the 

amount of small tasks during a same time interval 

 

However, every task is associated with one message start-up latency and one kernel 

start-up latency and these overheads are quite significant, as discussed before. Compared 

with one large task computing, computing many small tasks will lead to more idle time of 

cores as the message start-up and kernel start-up will take more time, while at the same 

time, the smallest loads can be left for the CPU to compute, which is called the Shortest 

Task First (STF) rule for CPU.  

 

Figure 25: The LTF rule for GPU and STF rule for CPU 
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3.6 Function Farm 

For function farm patterns, the tasks in the task pool are objects that consist of a function 

and an input. Workers are assigned the objects and they execute the functions using the 

inputs. The parallelism in this kind of farm pattern is essentially task-parallel. Unlike the 

data farm pattern where tasks are data items, tasks in function farm cannot be bundled or 

divided. Therefore, the strategies exploited for scheduling loads in the data farm pattern 

are not applicable to this pattern.  

3.6.1 Parallelism of a Function in the Function Farm 

 

The parallelism of a function is its potential to be computed in parallel by a multi-core 

processor so as to yield output in a shorter time. Usually the type of this parallelism is 

data-parallel. For example, as shown in the following, the function paraFunc has such a 

parallelism. 

void paraFunc(int* aInt, unsigned int size) 
{ 
 int a = 10; 
 for(int i = 0; i< size; i++) 
 { 
  aInt[i] += a; 
 } 
} 
 
In paraFunc, the inputs are an array of integers and the array’s size. By calling this 

function, each element of the array is added by an integer value 10. It is obvious that this 

function can be computed in parallel, by dividing the array into blocks and assigning the 

blocks to the cores of a parallel processor. We use the term parallel function to refer to 

the function that can be computed in parallel. The reason why we focus on the parallelism 
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of a function is that, the objects in the task pool of the function farm pattern may contain 

parallel functions, and such functions are likely to have shorter execution times on the 

GPUs than on the CPU in the CPU-GPGPUs environment, since the GPU has much more 

cores than the CPU. Considering the importance of parallelism of a function for 

scheduling in CPU-GPGPUs environment, we attach an attribute: parallelism degree (PD) 

to each object in the task pool of the task farm pattern. PD reflects the maximum number 

of threads (workers) needed to execute the function. Take paraFunc as an example: 

assuming that the value of input size is 1000, so it can be computed by at most 1000 

threads, each of which is in charge of one element of the array. Therefore, the value of 

PD for this function based on this input is 1000.  

3.6.2 Revisiting the GPGPU Computing  

 

As shown in Figure 2, a GPGPU in our model is comprised of a set of streaming 

multiprocessor (SM) and a streaming multiprocessor consists of multiple streaming 

processors (SP). The multiprocessors carry out executions independently of each other, 

while the SPs in one multiprocessor perform computation in a SIMD fashion. It is 

possible to ask each multiprocessor to run different control flows concurrently using 

certain techniques such as code branches. It should be noticed that in our system model, a 

GPGPU does not support concurrent kernels. Therefore, the approaches invoking several 

kernels and assigning different kernels to multiple multiprocessors is not feasible in our 

work. Moreover, it is also impossible to ask the SPs in one multiprocessor to run different 

control flow concurrently using code branches. This is because in the SIMD execution 

mode of the SPs, the execution of code branches will be serialized: when one SP executes 
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one code branch, the SPs which are assigned other branches must stay idling until that 

one finishes.  

3.6.3 An Approach for Scheduling Tasks in the Function Farm Pattern 

 

In this section we propose a heuristic       to schedule tasks in function farm on the 

CPU-GPGPUs environment. For the function farm pattern, the tasks are distinguished in 

terms of their PDs. In the task pool, tasks with a PD value equal to one (i.e., to execute 

the task, only one thread will be spawn) are placed into one set, and the tasks with PD 

value greater than one (i.e., to execute the task, multiple threads will be spawn) are put 

into another set. For the convenience of description, we refer the tasks whose PD values 

are equal to one as SPD (Simplex PD) tasks and the tasks whose PD values are greater 

than one as MPD (Multiplex PD) tasks, and also name the set of SPD tasks as SPD set 

and the set of MPD tasks as MPD set. 
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Figure 26: The classification of tasks in the task pool of the function farm 

 

 

As mentioned in chapter 2, the GPUs are suitable for data-parallel tasks. In our 

assumption, the execution mode of the GPU is dedicated, which means that one task will 

monopolize a GPU while others must wait even if some cores of the GPU are idle due to 

underutilization caused by the task. Therefore, the tasks in the MPD set are more suitable 

for GPUs to compute than those in the SPD set, considering that the former will invoke 

multiple GPU threads while the latter can only use one thread, which leads to a severe 

underutilization of GPU’s power.  

The scheduling of this pattern exploits the greedy strategy: once a processor becomes idle 

it will request tasks from the task pool. Several rules are set to regulate the scheduling for 

the purpose of minimizing the total execution time.  
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To assign tasks to the GPU workers, the MPD set is first examined. If the set is not empty, 

a task is selected based on the Largest Task First (LTF) rule (refer to section 3.5.2) and 

assigned to the requesting processor. The reason is the same as in the scheduling of 

indivisible loads.  

If the MPD set is empty, the GPU workers will select tasks from the SPD set. Suppose 

the number of multiprocessors of a GPU worker is M. Then M tasks with similar 

execution times are chosen, and are assigned to the processor in a way that one task is 

mapped to one multiprocessor by using code branches as discussed before. Since the 

tasks have similar execution times, all the multiprocessors have minimum idling times 

based on the previous discussion. When selecting tasks from the SPD set for the GPU 

workers, the LTF rule is employed again for the same reason. 

 

Figure 27: The selection of tasks for a GPU in the function farm 

 

When assigning tasks to the CPU, the SPD set is first examined. If the SPD set is not 

empty, then a task is chosen and assigned to the CPU. To choose a task, the Shortest Task 
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First (STF) rule (section 3.5.2) is applied for the same reason. If the SPD set is empty and 

the MPD set is not empty, then a task is chosen from the MPD set by following the STF 

rule and is then assigned to the CPU.  

3.6.4 An Implementation of the Dataflow Pattern as a Function Farm Pattern 

 

As discussed below, a dataflow pattern can be implemented as a function farm and hence 

the same scheduling strategies of a function farm pattern can be applied to a dataflow 

pattern. 

 

Figure 28: Two examples of dataflow pattern applications 

 

In the data flow pattern, the participants are a set of functions with precedence constraints. 

Each function receives input dataflows generated by its predecessors, performs 

computation on these data, and sends the results to its successors.  

For a dataflow application, when a function node generates a result and sends it to its 

successor function, then this successor can start the computation based on this input. This 

conduct can be viewed as the predecessor function “generating” the successor function, 
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since the successor function can be called once the predecessor functions finish. All of 

these functions can be regarded as tasks in the task pool of the function farm pattern. 

Therefore, the behaviour of this dataflow pattern can be represented from the perspective 

of function farm: the tasks in the task pool are the functions that have obtained input and 

are ready to be called. Once a function is executed by a worker, its successor function 

will be generated and put back to the task pool. Since the dataflow pattern can be 

represented by the function farm pattern, the scheduling strategy designed for function 

farm can be implicitly applied to the dataflow pattern. 

A pipeline (Figure 28(b)) is a special type of the linear data flow pattern that is widely 

used in parallel applications. The same strategies can be employed to implement a 

dynamically scheduled pipeline, i.e., a pipeline whose stages are dynamically scheduled 

to processors.  
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Chapter 4 The Performance Evaluation of HASS 

In the section, we discuss the performance results comparing HASS with some of the 

contemporary heuristics. In that regard, we implement a simple string searching 

application over a large text file to benchmark our algorithms. The application finds out 

all strings in the test file which conform to certain patterns. The system configuration is: 

Intel Xeon E5540 processor with 4 cores; 6 gigabytes of main memory; nVidia Tesla 

C1060 GPU which has 30 Stream Multiprocessors (SM) and each of them has 8 stream 

processors (SP) (i.e., totally 240 SPs); nVidia Quadro FX1800 GPU which has 8 SMs 

and each of them has 8 SPs (i.e., totally 64 SPs); and Windows 7 64-bit. The large input 

search-space can be divided into smaller sub-search-spaces, and these sub-search-spaces 

can be assigned to different processors to be searched concurrently and independent of 

one another. So this search problem falls into divisible load category of data farm pattern. 

In the following discussion, the term task is used to indicate a search over a subset of 

strings from the text file and the term load is used to indicate a sub-search-space. 

Figure 29 shows a comparison among four approaches for scheduling loads of equal sizes 

for the above application. Min-min is chosen as a comparison subject based on the 

experimental results presented in [27], where Min-min gives better performance than 

most of other independent task scheduling heuristics. When implementing Min-min, we 

use the sizes of the tasks to estimate their execution times: we assume that the execution 

time is proportional to the size. In order to yield the estimated execution time, we choose 

a load, perform the computation on each processor, and record the execution time of this 

load. Subsequently, we compare the size of other loads with this one and estimate their 
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execution time based on the comparison results. However, as discussed before, when the 

size of a task is too small, the execution time may not be proportional to the load size in 

the case of GPU computing. Therefore, in order to eliminate this anomaly of small loads, 

the loads chosen for these experiments have the size that is not less than the number of 

SPs of the GPU with most SPs. In our experiment environment, the GPU having most 

SPs is Tesla C1060 with 240 SPs. Therefore, the sizes of the loads in our experiment are 

all more than 240. To be more specific, each load contains more than 240 strings. 

 

Figure 29: Comparison of four scheduling algorithms on tasks of equal sizes 

 

In the above experiment, the same amount of load (a set of strings) is scheduled to the 

system in each round, and four different strategies are applied. The above experiment 

result demonstrates that        is an adaptive heuristic since this approach can exploit 

the scheduling result from the last round to adapt its scheduling decision in this round. 

Therefore, for       , the scheduling result is better and better as the round number 

increases. In contrast,        is not an adaptive approach, and its performance is not as 
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good as       . Besides, in this experiment, the reason why Min-min and the naïve 

greedy have similar result is that Min-min has to yield a schedule on the fly before the 

loads are assigned to the processors, while the naïve greedy does not have this latency. In 

this experiment, the total makespan is the combination of the execution times of all 

rounds. By minimizing the execution of each round, a minimum makespan can be 

generated. Therefore, among the four approaches,        would produce the minimum 

makespan according to the experiment results. 

Figure 30 shows a comparison among four approaches for scheduling tasks with unequal 

sizes for the search application, which means when reading data from the text file to the 

main memory, the data blocks with the different size are created.  

 

Figure 30: Comparison of four scheduling algorithms on tasks of unequal sizes 

 

The above figure shows that        outperforms other three approaches for 

unequally-sized tasks, and modified greedy works better than the naïve greedy and 
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Min-min. The reason why Min-min and the naïve have the similar results is same as the 

experiment shown in Figure 29.  

Figure 31 shows the results of comparing       with Qilin approach in a 

single-CPU-single-GPU configuration. The system configuration is the same as before: 

Intel Xeon E5540; 6 gigabyte main memory; nVidia Tesla C1060 GPU; and Windows 7 

64-bit. The size of each load is 240, which is the number of SPs in the GPU. In each 

round, 500 loads are scheduled to the system by using HASS and Qilin respectively. 

During the time interval between round 1 and round 7, Qilin is performing a training 

phase to yield a near-optimal schedule. Starting from round 8, the execution times 

yielded by HASS and Qilin are approximately equal to each other. As demonstrated in 

[30], Qilin can generate approximately optimal schedules for one-CPU-one-GPU system. 

Therefore, HASS can also yield a near-optimal schedule, as discussed at chapter 3. 

 

Figure 31: Comparison of        and QILIN 
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The Figure 32 shows the distribution of tasks among three processors by using        

in the experiment shown in Figure 26: one CPU and two GPUs. In the first round, 53% 

tasks are assigned to the CPU, 32.2% tasks are assigned to GPU 1 and 14.8% tasks are 

assigned to GPU 2. As the round number increases, the distribution among the three 

processors keeps changing and the execution time keeps decreasing, which implies that 

the load is more and more “balanced”. 

 

Figure 32: The distribution of tasks among the three processors when using the 

HASS algorithm 

 

For the unknown-sized task scheduling category, the modified greedy heuristic (Chapter 

3) is found to give a smaller makespan as compared to the naive greedy heuristic. Figure 

33 presents the experimental results in applying both the modified and the naive greedy 

heuristics to schedule an identical set of tasks. Each task works on a search space to find 

a target pattern. However, in contrast to the previous application, in this case a task stops 

once the target is located in the sub-search-space. Therefore the execution time is not 
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proportional to the size of the search space but depends on the location of the target in the 

search space, and hence the time cannot be predicted a priori. As a result, heuristics like 

Min-min and HASS cannot be applied in this case and a greedy approach is the only 

feasible way to proceed. Compared with the naive greedy heuristic, the modified greedy 

heuristic takes advantage of load bundling which helps reduce the makespan 

significantly. 

 

Figure 33: A comparison of naive greedy and modified greedy 

 

According to the above benchmarks, HASS is found to perform better as compared to 

min-min and the naïve greedy strategies for the farm patterns with known load sizes. For 

a single-CPU-single-GPU environment, HASS gives approximately the same 

performance as Qilin, but Qilin in its current form cannot be applied to multiple-GPU 

environments. For the unknown size category, the greedy strategy with load bundling is 

found to perform better in comparison with a naïve greedy strategy. 
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Besides the experiments presented above, other two experiments: matrix multiplication 

and calculation of   using Monte Carlo simulation [38] are also conducted to verify the 

performance of the scheduling strategies. These experiments yield the similar results as 

those in the above experiments. The results also demonstrate that our strategies promise a 

good performance for farm pattern applications on the CPU-GPU architecture. 
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Chapter 5 An Implementation of the Scheduling Framework  

This chapter presents an implementation of the scheduling framework. This framework is 

designed for CPU-GPUs environment. It takes advantage of the scheduling strategies 

discussed in chapter 3. The framework provides pre-implemented building blocks to 

users to help them develop parallel applications on CPU-GPUs efficiently. The current 

application interfaces are for the farm pattern(s) discussed in the previous chapters. 

5.1 The Application Interfaces 

The scheduling framework is implemented using C++. The object-oriented techniques of 

generic programming are also applied in the implementation. We implement the 

following four interfaces for different categories of farm pattern.  

template<typename T> 
void dataFarmPT(void (*cpuWorker)(T*), void (*gpuWorker)(T*), void 
(*generator)(vector<T>* ), void (*partitioner)(T), void (*bundler)(vector<T>), void* 
resultPool);    
     (a) 
 
template<typename T> 
void dataFarmCB(void (*cpuWorker)(T*), void (*gpuWorker(T*)), void 
(*generator)(vector<T>* ), void (*bundler)(vector<T>), void* resultPool, enum farmKind 
kind);  
     (b)  
Template<typename T> 
void dataFarmIL(void (*cpuWorker)(T*), void (*gpuWorker(T*)), void 
(*generator)(vector<T>* ), void* resultPool); 
     (c)   
      
void FunctionFarm(void (*generator)(vector<Wrapper*>* ), void* resultPool); 
     (d) 

 

Figure 34: The interfaces for different categories of farm pattern 
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Function dataFarmPT (Figure 34(a)) is for the partition case of data farm pattern. The 

interface is implemented using C++ template; hence it is a generic function and can be 

instantiated by users. As shown in the prototype of the function, users must provide two 

implementations of workers: one is for the CPU and another is for the GPUs. This is 

because the programming models of the CPU and the GPU are different, so a universal 

implementation of worker functions for both CPU and GPU is impossible. When 

implementing CPU and GPU worker functions, programmers need to use of some 

existing development tools such as TBB or OpenMP for the CPU and CUDA for the 

GPU. Another parameter of function dataFarmPT is a task generator and its input 

parameter is the task pool which is a container accepting tasks produced by the generator. 

The task pool is a component of the build blocks and it is implemented using vector from 

STL (Standard Template Library) [31] of C++. The next two parameters of dataFarmPT 

are partitioner function and bundler function. Partitioner is used to partition a task into 

small blocks and bundler is for task bundling. These two methods are provided by users 

to the interface as function pointers. The last parameter is the resultPool which is used to 

return the computational results to users. 

Function dataFarmCB (Figure 34(b)) is for the combination case of data farm pattern. It is 

similar to dataFarmPT except for two parameters. It does not have a partitioner, since the 

tasks are quite small and are unnecessary to be partitioned. This function requires another 

parameter: kind, which is of enumerated type and is used to indicate the type of the farm: 

the sizes of the tasks are the same, the sizes are distinct, or the sizes are unknown. kind is 

one of Equal, Distinct, or Unknown. The value of kind decides the scheduling strategy 

that is going to be chosen. 
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Function dataFarmIL (Figure 34(c)) is for indivisible load farm. Since in this type of farm, 

the loads cannot be partitioned or bundled arbitrarily, the partitioner and the bundler are 

unnecessary. Hence the input parameters of this function are a CPU worker function, a 

GPU worker function, the task generator and the result pool.  

Function functionFarm (Figure 34(d)) is for the function farm pattern. Since in this pattern, 

the tasks are objects that encompass functions and the relevant input data, it is impossible 

to partition them. Therefore neither a partitioner nor a bundler is needed. The only two 

parameters are the task pool that contains the objects and the result pool that return the 

computation results to users. It should be noted that the type of tasks in the task pool is 

pointers pointing to an object Wrapper. Wrapper is an abstract base class that must be 

inherited by the user-defined task classes. This Wrapper class contains one virtual 

member function: callFunction(), and two attributes: exeTime and PD. callFunction() works 

as an adapter wrapping the function given by programmers. When this function is called, 

it will subsequently call the functional member function with the input specified by users. 

This adapter function allows the framework to designate one worker to execute a function 

(i.e., a task in this pattern) abstractly without knowing the specific function name and 

parameters. The attributes exeTime and PD are used for yielding a scheduling strategy 

and they are indicated by users. The scheduler of the framework will read the value of 

these two attributes and exploit them to make scheduling decisions as discussed in 

chapter 3. 
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5.2 Components of the Scheduling Framework Applications 

 

Figure 35: The components of an application developed using dataFarmPT 

 

An application developed using dataFarmPT is comprised of nine components that are 

classified into two parts: one is the application-specific part provided by programmers, 

the other is the application-independent part provided by the skeleton. The components 

from the former part include: CPU worker, GPU worker, Partitioner, Bundler, Load 

Generator and Result pool. Their functionalities of them have been discussed in the last 

section. The second group of components are hidden from users by the skeleton includes: 

CPU Worker Wrapper, GPU Worker Wrapper, Load Pool and Scheduler. CPU Worker 

Wrapper and GPU Worker Wrapper are used to map the CPU worker function and GPU 

worker function to CPU processor and GPU processors. The reason behind these 

wrappers is that, even if GPU worker is a function mainly performing computation on 

GPU, it is called by CPU and all relevant works, except computing the input tasks, such 
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as initializing GPU environment, transferring data and calling kernel, are carried out on 

the CPU, which means that for the execution of GPU worker function, it still requires 

some execution time on CPU. Therefore, mapping CPU worker wrappers and GPU 

worker wrappers to different CPU threads can improve the performance. Another 

component of the skeleton is the Load Pool. It contains loads produced by the generator. 

The last component, Scheduler, is the key constituent that implements the scheduling 

approaches discussed in the last chapter. The functionalities of this component are to 

retrieve loads from the load pool, make scheduling decisions based on certain criterions 

discussed before, and then assign the tasks to the CPU and the GPUs. 

 

Figure 36: The components of an application developed using dataFarmCB  

 

An application implemented using the dataFarmCB has a similar structure as the previous 

one. The difference is that there is no Partitioner, but another component—Type Indicator. 

Type Indicator is used to indicate the type of the pattern for the Scheduler. For different 

javascript:void(0);
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types (e.g., tasks with equally-size, and tasks with unequally-size), Scheduler will apply 

different strategies as discussed in a previous chapter.  

The structure of applications derived from functionFarm is relatively simple. Only four 

components exist in the application: Task Generator, Result Pool, Task Pool and 

Scheduler. The functionalities of these components are similar to the previous cases and 

hence are not elaborated.  

 

Figure 37: The components of an application developed using functionFarm  

 

An application developed using the dataFarmIL has the similar structure as the one 

presented in Figure 37.  
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5.3 An Example of Developing Applications using the Scheduling 

Framework 

Considering the following problem: the input is a large database of personal information, 

and the requirement is to find out all persons whose birthday is later than 1965 and the 

salary is above $1000 as quickly as possible. This problem can be solved using the farm 

pattern: a set of data records are retrieved from the database and put into load pool, and 

then are divided into different blocks (i.e., a sub-set of data records) and assigned to CPU 

and the GPUs for searching.   

 

Figure 38: The flow of developing an application using the framework 

 

The above figure shows the development flow using the framework. Users firstly build 

several necessary components and then call the interface functions by using these 

components as input parameters. Subsequently, the program can be compiled and run on 

any CPU-GPGPUs systems.  
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During the execution, Task Generator is responsible for reading data items from the 

database and put them into the Task Pool. The amount of data items is dependent on the 

size of the main memory. After the reading finishes, Scheduler employs the approaches 

presented in chapter 3 to divide the input task and assign different blocks to CPU and 

GPUs. 

#include “farmPattern.h” 
#include <vector> 
using namespace std; 
 
//the data structure to store the record reading from the database 
struct PersonalInfo  
{ 
  int birthday; 
  int salary;   
  // other information; 
} 
 
 
 
// definition of CPU worker 
void cpuWorker(vector<PersonalInfo> task) 
{ 
 unsigned int size = task.size(); 
 for(int i = 0; i < size; i++) 
 { 
  if(task[i].birthday>1965 && task[i].salary > 1000) 
   //put task[i] into the result buffer; 
} 
}  
 
//the kernel function that performs the searching using GPU 
__global__ void kernel(PersonalInfo* personalInfo, PersonalInfo* results, int* 
resultSize) 
{ 
 Int index = threadIdx.x+blockIdx.x*blockDim.x; 
 if(*(personalInfo+index).birthday>1965 && *(personalInfo+index).salary>1000) 
 { 
  *(results+index).birthday = *(personalInfo+index).birthday; 
  *(results+index).salary = *(personalInfo+index).salary; 

file://put
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  //copy all other information from personalInfo to results; 
  atomInc(resultSize); // increase resultSize atomically to avoid race condition 
 } 
} 
 
//definition of GPU worker 
void gpuWorker(vector<PersonalInfo> task) 
{ 
 unsigned int taskSize = task.size()*sizeof(PersonalInfo)); 
 PersonalInfo* h_task = (PersonalInfo*)malloc(taskSize); 
//copy all data from vector to a C-like array, since CUDA can only copy array            
 for(int i = 0; i<task.size(); i++) 
 { 
h_task[i] = task[i];  
} 
 PersonalInfo* d_personalInfo; 
 PersonalInfor* results; 
 //allocate the memory 
 cudaMalloc(&d_personalInfo, taskSize); 
 cudaMalloc(&results, taskSize); 
 cudaMemcpy(d_personalInfo, h_task, taskSize, cudaMemcpyHostToDevice); 
 int resultSize; 
 kernel<<<256, task.size/256+1>>>(d_personalInfo, results, &resultSize); 
 int copySize = resultSize*sizeof(PersonalInfo); 
 PersonalInfo* h_results = (PersonalInfo*)malloc(copySize*sizeof(PersonalInfo)); 
cudaMemcpy(h_results, results, copySize, cudaMemcpyHostToDevice); 
 
//copy the results from the array to the result vector 
for(int i = 0; i<copySize; i++) 
   resultVec[i] = h_result[i]; 
 
// release the memory 
cudaFree(d_personalInfo); 
cudaFree(results); 
free(h_results); 
}  
 
void partitioner(vector<PersonalInfo> task, int& chunkNum,  
vector< vector<PersonalInfo>* >& smallBlockBuffer) 
{ 
 int size = task.size(); 
 chunkNum = size/M; // M is the number of SPs of the GPU with maximum SPs 

for(int i=0; i<chunkNum; i++) 
  smallBlockBuffer.push(&task + i*M); 
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} 
 
void bundler(vector<PersonalInfo>* bundledTask, 
vector< vector<PersonalInfo>* >& smallBlockBuffer)  
{ 
 //bundle all the small data blocks together  
} 
 
void taskGenerator(vector<PersonalInfo>* taskPool) 
{ 
 // read a group of personal information from the database; 
} 
int main() 
{ 
 vector<PersonalInfo> taskPool; 
 vector<PersonalInfor> resultPool; 
 dataFarmPT(cpuWorker, gpuWorker, taskGenerator(&taskPool), partitioner, 
bundler, &resultPool); 
} 
 
As shown in the above code segment, by using the scheduling framework, users only 

need to focus on the programming of the functional part of the application. Once the 

functional part is implemented, users can call the APIs and provides the implementation 

as input parameters to the framework which can handle all other application-independent 

issues such as spawning and termination of threads, task distribution and dynamic load 

balancing.  

The development process shown above demonstrates that the scheduling framework can 

significantly simplify the construction of parallel applications on CPU-GPGPUs platform, 

because the programmer is liberated from the complex systems-specific issues of the 

underlying platform.  
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Chapter 6 Conclusion and Future Work 

Compared with sequential application development, parallel application development has 

to deal with additional and complex issues such as creation and termination of processes, 

mapping processes to processors, communication and synchronization among the 

processes, and so forth. In parallel programming, besides the programming-related issues, 

a key issue is task scheduling. In the past several decades, several algorithms 

[23][24][25][26][27] were proposed to solve different kinds of scheduling problems, e.g., 

divisible load scheduling [22], independent task scheduling [9] and DAG scheduling [8]. 

Most of these algorithms are designed for CPU clusters and Grid. In recent years, a 

newly-arising parallel system, the CPU-GPGPUs platform which has some different 

features from the CPU clusters and the grid, has been intensively studied. The scheduling 

problem on this platform is the focus of this thesis.   

In order to design scheduling strategies for the CPU-GPGPUs platform, we first explore 

its architecture and compare it with some other traditional parallel computing systems 

such as cluster, grid, and multi-core CPU. This architecture is a combination of 

message-passing and shared-memory models: the association of CPU and GPUs yields a 

distributed memory system and they communicate with each other through messages. 

Since CPUs and GPUs are multi- and many-core processors respectively, each of them is 

also a shared-memory parallel system. Furthermore, the GPUs for general-purpose 

computing are quite different from multi-core CPUs in several aspects, including the 

architecture, the programming model (i.e., MIMD versus SIMD) and the execution 

model.  
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Another focus of this research is parallel patterns [13]. Parallel patterns are used to 

describe recurring problems in the parallel computing field and to abstract the common 

characteristics of a group of problems. Traditional uses of patterns are to facilitate in 

application design and development. However, as is one focus of this research, these 

common characteristics can also be used to guide the task scheduling of a parallel 

program. In this thesis, we thoroughly study one classic pattern—the farm pattern. We 

first classify the farm pattern and for each category we propose heuristic(s) to solve its 

scheduling problem.  

The farm pattern can be classified into two broad categories: data farm and function farm. 

Two variations of data farm includes: divisible load farm and indivisible load farm. 

Divisible load farm further has three variations: the one with equal size tasks, the one 

with distinct size tasks and the one with unknown size tasks. Another taxonomy of 

divisible load farm is based on the scale of the task size: if the task size is fairly large, 

then the scheduling of tasks in this farm falls into Divisible Load Scheduling (DLS) 

problems. If the task size is comparatively small, the farm will employ Independent Task 

Scheduling strategies.  

Based on the classifications mentioned above, we propose a set of scheduling strategies 

(HASS: Heterogeneous Architecture Scheduling Strategies).       is the heuristic for 

divisible load farm with equal task size and unequal task size using divisible load 

scheduling model;        uses independent task scheduling model to solve divisible 

load farm with equal task size; and        is for the farm whose tasks are of distinct 

sizes.       is for the task scheduling of indivisible load farm and       is for 
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function farm. The major differences between these strategies and the traditional 

approaches are that the former make use of the features of the underlying CPU-GPGPUs 

system, based on classifications of the pattern(s), into consideration while assigning tasks 

to workers, which contribute towards improved performance. 

The same scheduling strategies for the farm pattern can be extended to some other 

patterns, e.g., data-flow and pipeline. 

As the scheduling strategies have been developed, we further implement a scheduling 

framework, based on the classified farm patterns, on the CPU-GPGPUs system. The 

framework hides some complexities arising from parallel application development. It 

abstracts the application-independent parts which contain the structural information and 

parameterizes the application-specific functional components. The applications 

developed using the framework is comprised of two parts: A functionality part provided 

by users, and another part that is implemented in the framework, encompasses the 

pattern-related information such as the participants and their relations, and the scheduling 

strategies. The evaluation results of the framework are also presented using a simple file 

searching application. 

Since we only focused on the farm pattern in this research, as a future work, we intend to 

move on to other patterns and address their scheduling strategies. We need to analyze all 

variations of each pattern since current experiences show that different variations can 

have different scheduling strategies.  
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