
A Scheduling Framework for a Heterogeneous Parallel Architecture

Wei Zhang

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

November 2011

© Wei Zhang, 2011

 ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Wei Zhang

Entitled: A Scheduling Framework for a Heterogeneous Parallel

Architecture

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

_____________________________________Chair

Dr. E. J. Doedel

__________________________________ Examiner

Dr. T. Eavis

__________________________________ Examiner

Dr. S. P. Mudur

__________________________________ Supervisor

Dr. D. Goswami

Approved by __

 Chair of Department or Graduate Program Director

__________20_____ __

 Dr. Robin A. L. Drew, Dean

 Faculty of Engineering and Computer Science

 iii

Abstract

A Scheduling Framework for a Heterogeneous Parallel Architecture

Wei Zhang

Scheduling on heterogeneous parallel and distributed computing environment has been

studied for decades. Based on different assumptions, researchers have proposed several

algorithms and heuristics aiming to improve the performance of parallel applications.

Most of these works focus on clusters of CPUs or grid-based environments where

heterogeneity is created by processors and networks of varying speeds. However, in

recent years, there has been wide spread use of another type of heterogeneous parallel

computing environment, even on regular PCs and workstations, which comprise of

multi-core CPUs and many-core GPGPUs (General Purpose Graphic Processor Units).

Heterogeneity in this new generation of computers is even more pronounced due to the

significant differences in architectures and programming models between CPUs and

GPGPUs. The scheduling problem on a heterogeneous environment is known to be

NP-Complete. Consequently, this research proposes several approximate strategies to

solve this problem on a heterogeneous CPU-GPGPU environment. As a focus of this

research, the strategies utilize the structural and behavioral characteristics of patterns in

parallel programming to facilitate scheduling decisions. The parallel pattern extensively

studied in this research is the farm pattern, which is used in a wide range of parallel

applications. For the purposes of scheduling, the farm pattern is further classified into

several categories and subsequently scheduling strategies for each of these categories are

proposed. The similar strategies can be employed for the scheduling of some other

 iv

patterns, e.g., data flow and pipeline. Since characteristics of the patterns and the features

of the CPU-GPGPUs environment are both considered in making scheduling decisions,

the proposed strategies are found to deliver better performances as compared to other

contemporary strategies.

A scheduling framework has been designed and implemented based on these strategies

for the classified farm patterns. The framework not only intends to hide the complexity of

parallel programming but also can automatically schedule tasks and balance loads among

processors, relieving these burdens from the programmer. In addition, the framework

serves as a test bed for newer scheduling heuristics on the target heterogeneous system,

and also as an experimental verifier of the proposed hypothesis that use of patterns can

facilitate in making better scheduling decisions.

 v

Acknowledgments

This work would not have been possible without the technical and moral support of my

supervisor Dr. D. Goswami. He opened a door for me in the research field and his

enthusiastic supervision has been a continuous force driving my research in the right

direction. I am so fortunate that I had his valuable guidance.

I am grateful to my parents for their both financial and moral support. I am very thankful

to them for all they have given me in my life, for sharing ups and downs, and for

reminding me, when necessary.

I am also thankful to Dr. Zunce Wei, who gave me many useful suggestions when I

completed my thesis.

Finally, I am very thankful to everyone who has directly and indirectly helped me, in any

way, to accomplish this research.

 vi

Table of Contents

Abstract .. ii

Acknowledgments ... v

Table of Contents ... vi

List of Figures ... ix

List of Terms .. xi

Chapter 1 Introduction... 1

1.1 Objectives of This Research ... 3

1.2 Contributions of This Research .. 6

1.3 Organization of the Thesis .. 7

Chapter 2 Background ... 9

2.1 GPGPU and CPU-GPUs Architectures .. 9

2.1.1 General Purpose GPU .. 9

2.1.2 The Characteristics of GPGPU Computing ... 11

2.1.3 CUDA .. 13

2.1.4 Multi-core CPU .. 17

2.1.5 CPU-GPGPUs Architecture ... 19

2.2 Framework Embedded with Scheduling Strategies .. 21

2.3 Task Farm Pattern ... 24

2.4 Existing Scheduling Strategies Applicable to the Farm Pattern 26

2.4.1 Divisible Load Scheduling (DLS) ... 26

 vii

2.4.2 Independent Task Scheduling .. 30

Chapter 3 Scheduling for Farm Pattern Based Applications 33

3.1 The Architecture ... 33

3.2 A Classification of the Farm Pattern ... 37

3.3 Further Classifications of the Data Farm Pattern .. 40

3.4 New Approaches for the Divisible Load Farm ... 44

3.4.1 The Impact of Load Bundling in GPU Performance 44

3.4.2 The Heuristics for Divisible Load Scheduling ... 46

3.5 A Different Approach for the Indivisible Load Farm ... 56

3.5.1 The Thread Distribution of GPU ... 57

3.5.2 : A Strategy for Indivisible Load Farm Scheduling 59

3.6 Function Farm ... 61

3.6.1 Parallelism of a Function in the Function Farm ... 61

3.6.2 Revisiting the GPGPU Computing .. 62

3.6.3 An Approach for Scheduling Tasks in the Function Farm Pattern 63

3.6.4 An Implementation of the Dataflow Pattern as a Function Farm Pattern 66

Chapter 4 The Performance Evaluation of HASS ... 68

Chapter 5 An Implementation of the Scheduling Framework 75

5.1 The Application Interfaces .. 75

5.2 Components of the Scheduling Framework Applications 78

5.3 An Example of Developing Applications using the Scheduling Framework 81

Chapter 6 Conclusion and Future Work .. 85

 viii

Bibliography .. 88

 ix

List of Figures

Figure 1: The architecture of nVidia's Tesla GPGPU ... 9

Figure 2: The model of thread distribution in CUDA ... 16

Figure 3: The architecture of the Intel’s i7-970 multi-core CPU 18

Figure 4: An example of CPU-GPUs parallel architecture with one CPU and three GPUs

... 20

Figure 5: A star network ... 28

Figure 6: Task distribution curve in Qilin ... 29

Figure 7: The min-min heuristic ... 31

Figure 8: A task farm architecture .. 34

Figure 9: The CPU-GPGPU architecture .. 35

Figure 10: A taxonomy of farm pattern in terms of the type of the tasks and the

corresponding heuristics ... 38

Figure 11: (a) the mapping of data and worker in CPU; (b) the mapping in GPGPU 39

Figure 12: Comparison of data farm and function farm ... 40

Figure 13: The execution model of partition case .. 42

Figure 14: The execution model of combination case .. 43

Figure 15: An example of load bundling for a GPU ... 44

Figure 16: Impact of load bundling .. 45

Figure 17: An example of underutilization of a GPU. .. 45

Figure 18: An example of full utilization of a GPU ... 46

Figure 19: The scheduling model of divisible load .. 48

Figure 20: An example of using basic HASS on a CPU-GPUs system 49

Figure 21: The scheduling model of divisible load .. 53

Figure 22: The flow chart of ... 54

Figure 23: A Gantt Chart of the execution of multiprocessors on loads of different sizes59

Figure 24: Comparison of the amount of large tasks computed by a GPU and the amount

of small tasks during a same time interval .. 60

Figure 25: The LTF rule for GPU and STF rule for CPU .. 60

Figure 26: The classification of tasks in the task pool of the function farm 64

 x

Figure 27: The selection of tasks for a GPU in the function farm 65

Figure 28: Two examples of dataflow pattern applications .. 66

Figure 29: Comparison of four scheduling algorithms on tasks of equal sizes 69

Figure 30: Comparison of four scheduling algorithms on tasks of unequal sizes 70

Figure 31: Comparison of and QILIN ... 71

Figure 32: The distribution of tasks among the three processors when using the HASS

algorithm ... 72

Figure 33: A comparison of naive greedy and modified greedy 73

Figure 34: The interfaces for different categories of farm pattern 75

Figure 35: The components of an application developed using dataFarmPT 78

Figure 36: The components of an application developed using dataFarmCB 79

Figure 37: The components of an application developed using functionFarm 80

Figure 38: The flow of developing an application using the framework 81

 xi

List of Terms

GPGPU General Purpose Computing on Graphics Processing Unit

CUDA Compute Unified Device Architecture

TBB Intel’s Thread Building Blocks

SIMD Single Instruction Multiple Data

MIMD Multiple Instructions Multiple Data

DLS Divisible Load Scheduling

SP Streaming Processor

SM Streaming Multi-processor

HASS Heterogeneous Architecture Scheduling Strategies

LTF Largest Task First

STF Shortest Task First

PD Parallelism Degree

SPD Simplex Parallelism Degree

MPD Multiplex Parallelism Degree

 1

Chapter 1 Introduction

Parallel computing has been widely explored for decades for solving problems fast and

efficiently. Currently it has been widely employed in a variety of fields, from physics to

biology, as well as from climatology to geology, to name a few.

With the advent of commodity parallel computing platforms like clusters, general

purpose graphics processor units (GPGPUs) with hundreds of cores, and multi-core CPUs,

parallel programming is becoming even more widespread and commonplace using

regular PCs and workstations. However, compared with sequential programming, parallel

programming has several additional issues.

Some of these issues are that parallel application development brings in some additional

burdens such as effective partitioning of a given problem into sub-problems (i.e., tasks)

that can be executed by processes/threads, process and thread creation and management,

mapping processes to processors, performing efficient communication between different

processes, scheduling and load balancing, etc. To address these issues, hundreds of

parallel programming models and tools have been developed over the years. Some of the

them targeted for current commodity platforms include PVM [1] and MPI [2] for clusters

and network of workstations, TBB [3] and CUDA [4] for multi-core CPU and

massive-core GPGPU [5] respectively, and OpenMP[6] for multiprocessors and

multi-core CPUs.

One extremely important issue in parallel program execution is to obtain a high

efficiency and a minimized makespan, i.e., the time interval between the start of the first

process and the end of the last process. Efficiency will become high if any processor

 2

idling due to load-imbalance or communication overhead is minimized. In order to

achieve low makespan and high efficiency, it is very important to have proper mapping

and scheduling of tasks to processor. The issues of scheduling and load-balancing during

parallel program execution on a heterogeneous CPU-GPGPU environment are the

focuses of this research.

Scheduling in the areas of parallel and distributed processing has been studied for

decades, and several scheduling algorithms have been proposed by researchers on

different parallel platforms. A basic goal of task scheduling is to map tasks to processors

in such a way that the idling time of each processor is minimized, and all processors

complete their computation at almost the same time. In a heterogeneous parallel

computing platform with varying processor speeds and varying interconnection

bandwidths, scheduling is a challenging problem and is known to be NP-complete [7][8].

Hence, many times precise scheduling may not be possible to be obtained in a reasonable

computational cost, and hence heuristics need to be designed.

The issue of scheduling in the area of parallel programming can be application developer

transparent, semi-transparent or fully developer assisted. In the first category, the parallel

programming model or the development tool hides the details of task scheduling from the

application developer. In the second category, the developer provides some suggestions

to the underlying system. In the third category, the developer is responsible for

everything. For example, in MPI and socket-based programming, the developer has to

handle many of the issues of scheduling. TBB, on the other hand, has a scheduler that

uses work stealing [10] strategy to balance loads among cores in a CPU. CUDA's

scheduler uses a greedy scheduling strategy [11] to distribute and balance loads among

 3

cores in a GPU. In OpenMP, a set of scheduling methods such as static, dynamic and

guided [6] are provided as options for users; thus it will fall in the semi-transparent

category.

1.1 Objectives of This Research

This research focuses on transparent to semi-transparent scheduling on a heterogeneous

parallel computing environment comprising of multi-core CPU and many-core GPGPUs.

Though scheduling on heterogeneous systems has been extensively researched in the past,

many of those approaches deal with heterogeneity due to varying processor speeds and

varying network bandwidths. In contrast, the heterogeneous system that we are dealing

with has processors of not only varying speeds but also of different architectures (e.g.,

MIMD in CPU cores versus hybrid model in GPU cores), each supporting a different

programming model (e.g., task-parallel and data-parallel are both equally supported in

CPUs, while data-parallel are more likely to have a better performance than task-parallel

in GPUs). Moreover, with increasingly fast interconnection links between CPU and

GPUs with emerging technologies like PCI bus and its extensions [12], bandwidth is less

a concern than in the previous works. All these issues render the previous heuristics for

heterogeneous systems not to be directly applicable to a CPU-GPGPU system. All these

issues are further elaborated in the following chapters of the thesis.

This research is on scheduling of parallel applications on a heterogeneous CPU-GPGPU

system and it uses patterns in parallel programming to achieve its objectives. The

research is based on the hypothesis, as proposed by us, that different patterns in parallel

computing need different scheduling criteria. For example, scheduling strategies of a

 4

farm pattern consisting of independent tasks could be different from a task-graph

consisting of some forms of dependencies (i.e., control and/or data). Consequently, if the

pattern(s) of an application is known in advance then better scheduling decisions can be

applied as compared to ad hoc strategies that are usually employed. Some of the

commonly used patterns in parallel programming are: task and data farm, master-worker,

pipeline, divide and conquer, systolic array, to name a few [13]. The research makes

further classifications of some of these patterns based on scheduling needs. New

heuristics are developed which used some of the generic characteristics of the patterns.

Finally, a scheduling framework is developed based on some of these patterns with the

objectives of achieving load-balanced execution of parallel programs with reduced

makespan, and also with an objective of verifying our proposed hypothesis.

Traditionally, design pattern concepts have been used towards the design and

development of parallel programs. The term skeleton has been conventionally used to

represent behavioral abstractions of patterns as pre-implemented code. The term

algorithmic skeleton [15] has been traditionally used to represent algorithmic abstractions

of patterns, which are best represented in functional forms and best implemented by

functional programming languages. On the other hand, the term architectural skeleton

[16] has been used to represent architectural abstractions of patterns. Architectural

skeletons can be thought of as building blocks for parallel virtual machine on which an

application developer builds the application. Architectural skeletons are behavior free and

have been implemented using an object-oriented paradigm. The common objective of

these skeleton-based approaches is to aid the programmer in the design and development

phases of parallel programs, purely from the application and its algorithms perspective.

 5

There are several skeleton-based approaches to parallel program design and development

that can be found in the literature [14][15][16][17][18].

The aforementioned skeleton-based approaches to parallel programming concentrate

solely on the algorithm-specific aspects of a parallel program, and do not employ patterns

for other low-level system-specific uses such as scheduling, load-balancing, and

fault-tolerance. This research is a step towards the application of patterns to scheduling

and load-balancing of parallel programs. We use the term parallel systems skeletons to

represent those skeletons (i.e. pre-implemented building blocks) that assist in

patterns-specific scheduling and load balancing. The scheduling framework, by definition,

is a collection of such skeletons.

In the literature, very limited amount of works can be found that uses patterns for the

purposes of scheduling in the CPU-GPGPU heterogeneous system consisting of one CPU

and multiple GPUs which are connected through the bus on motherboard. These works

deal with heterogeneity in a cluster or grid environment arising from processors of

varying speeds and interconnection links of varying bandwidths. In contrast, as discussed

before, the requirements in this research are quite different due to a different type of

heterogeneity.

The type of heterogeneous system of our interest, a commodity platform made of CPU

and GPGPUs, is gaining commonplace in high-performance parallel computing due to its

price-performance benefits. Multi-core CPUs, with two or more cores, are becoming

commonplace, providing a (shared-memory) multiprocessor environment with regular

PCs and workstations. Combined with GPGPUs, which are composed of hundreds of

 6

cores designed for general purpose computing, it has provided a powerful parallel

programming environment at minimal cost. GPU cores are organized into blocks, with

each block providing a SIMD [21] style of architecture that supports data-parallelism [21].

On the other hand, CPU cores support MIMD [21] style of architecture that supports

task-parallelism [21]. CPU and GPGPUs are connected in the motherboard via special

high-bandwidth bus (e.g., PCI bus or its extensions [10]), which tries to overcome data

transfer overhead. The heterogeneous architecture and its programming environment are

further discussed in a following chapter.

1.2 Contributions of This Research

In this research, we propose the hypothesis that different patterns in parallel

programming need different scheduling strategies for near optimal performance. We first

investigate our hypothesis for the farm pattern. To achieve this goal, we need to redefine

the farm pattern into two parts: task (function) farm and data (load) farm. We further

sub-classify the task and data farm patterns for our purposes of scheduling. Subsequently,

we discuss how the scheduling of the farm pattern can be applied in scheduling a pipeline

and more generally a data-flow pattern.

As discussed before, this research focuses on a new type of heterogeneous parallel system,

consisting of CPUs and GPGPUs, which is gaining immense interest these days as a

commodity platform of choice for parallel programming due to its high

performance-price benefits. Unlike the previous scheduling strategies developed for

heterogeneous systems, these strategies are not straightway applicable to a CPU-GPGPU

system due to differences in system constraints and programming models. As a result,

 7

new scheduling heuristics have been developed for the farm pattern and its variants. To

note that some of these new heuristics developed make use some of the previous

heuristic(s).

Finally, a pattern-based scheduling framework has been proposed. The framework can

serve as a test bed for newer scheduling heuristics on the target heterogeneous system,

and also serve as an experimental verifier of the proposed hypothesis. These

contributions are further elaborated in a following chapter.

1.3 Organization of the Thesis

The next chapter discusses some backgrounds and related works: it first discusses the

characteristics of the CPU-GPUs architecture; followed by a discussion on some of the

skeleton based approaches to scheduling and load-balancing. The details of conventional

farm pattern, which is one of the principal focuses of this thesis, are presented and

different approaches based on the parallel patterns are further elaborated. Some existing

scheduling strategies relevant to this research are also revisited in this chapter. Chapter 3

introduces a further classification of farm pattern for the purpose of scheduling and some

of the scheduling strategies of these classified patterns on the CPU-GPGPUs architecture

are presented. It also discusses how the scheduling of the data-flow graph pattern can be

mapped to the scheduling of the farm pattern. Chapter 4 discusses the experimental

performances of the previous strategies and compares the results with some existing

approaches. Chapter 5 discusses an implementation of the scheduling framework and

illustrates its use in order to develop parallel applications on CPU-GPGPUs architecture.

 8

Finally, chapter 6 concludes the thesis with a discussion on the existing problems and

other issues that need to be resolved in the future.

 9

Chapter 2 Background

2.1 GPGPU and CPU-GPUs Architectures

2.1.1 General Purpose GPU

GPU (Graphic Processing Unit) is a special microprocessor initially designed to process

graphics applications and then output them to monitors in an efficient and rapid manner.

Since graphics is comprised of independent vertices and fragments that can be processed

in parallel, GPUs are naturally designed as massive-core processors for the purposes of

manipulating these elements using stream processing. Here a stream is a set of data that

require the same operations and stream processing is akin to SIMD (Single Instruction,

Multiple Data) in parallel computing. The number of cores in modern GPUs can range

from dozens to hundreds. An example of the architecture of nVidia’s GPGPU is shown in

Figure 1. In this architecture, SP (stream processor) is the processing unit performing

computation. SM (stream multiprocessor) is a set of SPs that share a local memory and

all the SPs in one SM perform operations in a SIMD fashion. One GPU contains multiple

SMs. MT and IU are non-related components for general-purpose computation.

Figure 1: The architecture of nVidia's Tesla GPGPU

 10

Recently, GPGPU (General-Purpose Graphics Processing Unit), which is introduced as a

technique to leverage the excellent parallel computing power of GPUs to accelerate the

solving of some general problems, has been studied by many researchers. With the help

of certain auxiliary development tools such as CUDA (Compute Unified Device

Architecture) from nVidia, programming on GPUs to perform general-purpose

computation is becoming feasible.

Nearly all GPGPUs are present on video cards (also known as video adapter, graphics

accelerator card, display adapter, or graphics card) which are normally connected to a

CPU via the bus on motherboard of a PC or workstation. Another component that resides

on a video card is video memory (also known as graphics memory). This memory is

dedicated for GPU computing, which means that it is only accessible directly by GPUs;

likewise, a GPGPU cannot access the data residing on the main memory of a PC or

workstation directly. The data required by GPUs' computation must be copied and

transferred from the main memory to the video memory and the results also have to be

transferred back.

Nowadays, the GPGPU market is dominated by two manufacturers: nVidia and AMD.

Since nVidia first released a series of GPUs supporting general purpose computing and

provided corresponding programming tools and SDKs to users, its GPGPUs are currently

more popular and are installed more widely. Therefore, in this thesis we will take

nVidia's GPGPU and programming tools as our subjects of study.

 11

2.1.2 The Characteristics of GPGPU Computing

(1) Since a GPU is traditionally connected to a CPU via the bus on the motherboard, the

bandwidth between the GPU and the CPU is quite large, normally from several

gigabytes per second to over ten gigabyte per second. With newer interconnection

technologies like PCI bus and its extensions [10], this bandwidth is even getting

higher. Therefore, the latency caused by data transferring between CPU and GPU is

far less than that of transferring data over the network of general clusters or grids. In

the network of a cluster or a grid, as the latency of data transfer is high, the overhead

of message start-up (the process of packing the message as low-level network packets

that can be transferred through the physical network and initialization cost of the data

transfer environment) is often small enough to be neglected. However, in data

transferring between a GPU and a CPU, since the data transfer time is reduced

significantly due to the large bandwidth while the message start-up cost remains the

same, the message start-up cost cannot be neglected any more. Therefore, the

message start-up cost can even dominate the total overhead of passing a message

between a CPU and a GPU when the message size is fairly small. To address such

issues, we apply task bundling in our strategies to minimize the message start-up cost.

(2) Nowadays, the high-end GPUs for parallel computing have hundreds of cores and

support hundreds of thousands of concurrent threads. A relatively small task that

cannot take full advantage of these cores and threads would underutilize the

computing capability of the GPUs. For example, if a task can only spawn 10 threads

during its execution, computing it on a GPU that has 160 cores and supports 65535

concurrent threads would lead to 150 cores stay idle, which is a significant waste.

 12

Furthermore, in our study, the GPUs used in our experiments do not support multiple

concurrent kernels (i.e., the function running on a GPU thread), meaning that it is

infeasible trying to assign multiple small tasks implemented by different kernels

simultaneously to a GPU to reduce its underutilization. Therefore, without concerning

about the video memory size constraints, increasing the size of a task (i.e., increasing

the number of threads the task will spawn) assigned to a GPU is more likely to make

the best of its computing power. The task bundling strategy mentioned above can also

be applied to increase the size of a task and therefore reduce the occurrence of

underutilization of GPU’s computing capability.

(3) In GPGPU computing, the data transferring and kernel execution are difficult to be

carried out concurrently. Taking CUDA as an example, although using pinned

memory (i.e., the block of memory whose content will not be swapped out to

secondary storage by operating systems; more details can be found in [32]) makes the

concurrency of data transferring and kernel execution possible [33], it is still not a

satisfactory approach because the size of pinned memory is limited; otherwise the

performance of the whole system would be compromised. Therefore, overlapping of

data transfer and computation, as many researchers did in the grid or cluster

environments to improve performance, is not a practically feasible option in the

CPU-GPGPU architecture of our study.

(4) GPU is actually a peripheral device for the CPU; the latter has to interact with the

former via a device driver. A function call on this device (i.e., the kernel function call)

through the device driver is not as cheap as compared to a function call on CPU. Take

CUDA architecture as an example: the overhead of one GPU function (kernel

 13

function) call, which is named as kernel start-up overhead, is approximately 9 µs.

This time is quite significant compared with the average 3 ns overhead of a CPU

function call [36]. The task bundling aforementioned can also be applied in here to

reduce the kernel start-up latency.

(5) Considering that the original intention of introducing GPUs is for graphics rendering,

and both the programming paradigm and the execution model of GPUs are for this

purpose, GPUs are designed as a massive core processor suitable for stream

processing. Hence the ideal GPGPU applications [33] should have large data sets,

high parallelism, and minimal dependency between data elements. Although GPGPU

is ideal for data-parallel computation, task-parallelism can also be achieved in this

architecture using code branches in a kernel. In GPGPU, all the SPs (streaming

processors) in one multiprocessor perform their execution in a SIMD fashion, while

all multiprocessors are independent of each other. Therefore theoretically, these

multiprocessors can concurrently go through different control flows and therefore

exhibit the capability to execute in a task-parallel way. This characteristic will be

considered when we develop the scheduling strategies for certain sub-categories of

farm pattern, which will be elaborated in the following chapter.

2.1.3 CUDA

CUDA (Compute Unified Device Architecture) is developed by nVidia as a parallel

computing architecture allowing users to program and carry out general-purpose parallel

computing effortlessly on its GPGPU. CUDA includes C-extension programming syntax,

runtime environment, complier, API and SDK. The syntax is simple and compatible with

 14

C. The following is an example code showing how to design a kernel function (the

function called by the CPU and running on a SP of the GPU) and call it on a GPU using

CUDA.

const int N = ...; // the size of the array for the computation

//definition a kernel function called by the CPU and executing on the GPU
__global__ void mykernel(int* a, int* b, int* c, int N)
{
 int i = blockDim.x*blockIdx.x + threadIdx.x;
 if(i<N)
 c[i] = a[i] + b[i];
}

//host code
int main(void)
{
 int size = N*sizeof(int);

 //Allocate memory for vector a and b on the CPU's memory
 int* h_a = (int) malloc(size);
 int* h_b = (int) malloc(size);
 int* h_c = (int) malloc(size);

 //Initialize vector h_a and h_b
 ...

 //Allocate memory for vector a and b on the GPU's memory
 int* d_a, d_b, d_c;
 cudaMalloc(&d_a, size);
 cudaMalloc(&d_b, size);
 cudaMalloc(&d_c, size);

 //Copy vector h_a and h_b to the GPU's memory
 cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);

 //Indicate the number of blocks and the number of thread in each block
 int blockNum = ...;
 int threadNumPerBlock = ...;

 15

 //call kernel
 mykernel<<<GridDim, BlockDim>>>(d_a, d_b, d_c);

 //Copy the result back to the CPU's memory
 cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);

 //Release the GPU's memory
 cudaFree(d_a);
 cudaFree(d_b);
 cudaFree(d_c);
}

A kernel is a function executing on the GPU and it is defined using __ global__

declaration specifier. The symbol <<<..., ... >>> is the execution configuration syntax for

indicating the number of CUDA threads that will be spawned to execute the kernel.

GridDim indicates the number of thread blocks that will be yielded and BlockDim indicates

the number of threads in one block. For example:

mykernel<<<4, 256>>>(d_a, d_b, d_c);

In above code, the number of blocks is 4 and the number of threads in each block is 256.

So the total number of threads to be spawn by calling this function is 1024. In the

mykernel function, each thread is mapped to a different element in the input arrays, as

shown in the above code, by using the thread ids as index.

In CUDA's execution model, the thread distribution mechanism is based on blocks and

“warp” [33]. In CUDA, multiple CUDA threads are organized as a block and multiple

blocks are organized as a grid. So when calling a kernel, users need to specify the number

of threads in one block and the number of blocks in a grid. CUDA runtime environment

maintains a “block pool” on a GPU and assigns a block in the pool to one multiprocessor

 16

(i.e., SM) once it becomes idle. When a multiprocessor is running, it is dedicated to its

assigned block. Concurrent blocks assigned to one multiprocessor are not supported.

Once a block is assigned to a multiprocessor, it will be partitioned into small pieces

called “warps”. The multiprocessor will pick up one warp piece and execute it in a SIMD

fashion on its SPs. Since the number of SPs in one multiprocessor is 8 for most nVidia

GPUs, if the size of the block is too small (e.g., there is only one thread in a block), only

a part of the SPs in the multiprocessor would be used and all other SPs would stay idle.

This leads to a severe underutilization of GPU's power.

Figure 2: The model of thread distribution in CUDA

In practice, users are allowed to spawn much more CUDA threads than the number of

SPs in a GPU in order to avoid I/O waste. It means while some threads wait for I/O, the

processors still have other threads to execute. It implies that multiple thread warps in

 17

CUDA run on processors concurrently. The CUDA runtime environment will map these

threads to SPs automatically and users do not have to be concerned about the task

distribution and load balancing among the SPs.

The programming model of CUDA is akin to SPMD (Single Program Multiple Data). In

this model, users write one program—a kernel function, and specify the amount of

threads to execute this program and each thread works on different data. This model is

ideal for data parallel architectures, especially for GPGPU, since a GPU is a stream

processor as aforementioned. On the other hand, although task parallelism is as well

possible to be achieved in this model using program branches (e.g., if/else statement), too

much extra programming effort would fall on users, not to mention extra branches in this

parallel environment making programs more error-prone. Therefore, task parallelism is

not encouraged for CUDA programming model. Nevertheless, under certain situations,

this kind of parallelism can be exploited as an alternative to reduce, to some extent, the

severe underutilization of GPU power. We will elaborate this in the following chapter.

2.1.4 Multi-core CPU

In the last several years, as the manufacture technology of microchips keep improving,

the architecture of mainstream CPUs for PCs and workstations has shifted from

single-core to multi-core. Nowadays, increasing the number of cores of CPUs has

become a trend, from the initial dual-core to today’s sixteen-core of certain high-end

CPUs. Figure 3 is the example of Intel Core i7 processor's architecture [34]. This

multiple cores structure is suitable for parallel computation: all the cores can perform

computation concurrently.

 18

Figure 3: The architecture of the Intel’s i7-970 multi-core CPU

For CPUs with parallel architecture, certain programming tools such as Intel TBB

(Thread Building Blocks) are released in order to help users to leverage its computing

power conveniently and efficiently without concerning data distribution and load

balancing. TBB is a C++ template library containing several data structures and

algorithms that relieve programmer's burden to manually deal with many issues arising

from multi-thread programming, such as synchronization, creating and terminating

threads, and load balancing among different threads, by using some native threading

libraries like Windows threads and POSIX threads.

Current mainstream multi-core CPUs normally have no more than 16 cores, which is a

quite small quantity compared with a mainstream GPGPU that could have hundreds of

cores. But regarding each core's speed, normally a CPU will surpass a GPU. Therefore,

CPUs and GPUs are suitable for different types of tasks. Certain type of tasks would have

good performance on CPUs while others may have a less execution time on GPUs.

Generally speaking, for a high-parallel task with a large input data set, GPGPUs are more

likely to have a better performance than CPUs. On the other hand, if a task is

 19

single-threaded, or with a small number of threads, assigning it to a CPU would get a less

execution time than doing it on a GPU.

2.1.5 CPU-GPGPUs Architecture

The combination of CPU and GPUs conforms to a message-passing model, which means

that they communicate with each other by passing messages via the bus on the

motherboard of a machine, while both CPU and GPUs are also shared-memory

architectures per se. This combination of message-passing and shared-memory parallel

architectures provide a two-level parallelism to applications: coarse grain parallelism

among CPU and GPUs and fine grain parallelism in CPU and GPUs. In addition, the

CPU cores are independently clocked and hence they don’t work under tight

synchronization unlike the SPs inside a GPU’s SM. Consequently, the CPU with its cores

can be thought of as a multicomputer that supports task-parallelism; on the contrary each

SM inside the GPU is a SIMD multiprocessor that supports tightly synchronous

data-parallel computation, while these SMs are independent to each other. More

characteristics about this architecture will be explored in next chapter while discussing

the approaches for solving the scheduling problems on this platform.

 20

Figure 4: An example of CPU-GPUs parallel architecture with one CPU and three

GPUs

The topology of CPU-GPUs architecture is a typical star-network. In this network, CPU

is the center node and all GPUs are connected to it directly, and there is no direct

connection among all the GPUs. The network connecting these processors is the bus on

the motherboard of a PC or workstation.

It must be noticed that in our assumption, the architecture contains one CPU and a limited

number of GPUs (Single-CPU-Multi-GPUs architecture), which is the common

configuration of today’s PCs and workstations. The number of GPUs in these machines is

normally less than 3 and these GPUs communicate with the CPU through the same bus.

Since the number of GPU is small and the bandwidth is quite high, the bus contention is

not an issue. However, as the number of GPUs increases, the bus contention and the

 21

shared bandwidth must be taken into consideration while designing scheduling strategies

for this architecture.

Regarding Multi-CPUs-Multi-GPUs architecture, the today’s operating system can hide

the complexity of the multiple CPUs architecture and handle load balancing among these

CPUs automatically, so from user’s perspective the system contains only one CPU.

Therefore this architecture does not have difference from Single-CPU-Multiple-GPUs

architecture, so the scheduling strategies developed for the latter can also be applied to

the former.

2.2 Framework Embedded with Scheduling Strategies

ASPARA (Adaptive Structured Parallelism) [20], as the succeeding work of eSkel [17],

was developed at the University of Edinburgh in 2010. ASPARA is not a specific

algorithmic skeleton, but a generic methodology to optimize the performance of skeletons

in a grid. It proposes a way to embed scheduling strategies with algorithmic skeletons [15]

and therefore it creates a scheduling-strategies-embedded (SSE) framework for parallel

computing on heterogeneous distributed systems. The following example shows the

application interfaces of a farm pattern and a pipeline pattern written in ASPARA. As

shown in the example, the skeletons are built on MPI, which means that it is designed for

message-passing parallel platform such as clusters and grids. It should also be noticed

that, the skeleton for the farm pattern has a parameter that indicates which scheduling

strategy will be applied as a suggestion from the application developer.

 22

“ASPARA comprises a set of rules to be embedded with skeletons, where every rule

essentially defines an application scheduling scheme which is parameterized in terms of

the existing system resources” [20]. Since, as aforementioned, the behaviour of an

application’s pattern is known a priori to its execution, this behavioural information can

be exploited by ASPARA to guide the scheduling of tasks in the application. Application

development using ASPARA contains four steps: programming, compilation, calibration

and execution.

In [20], the researchers make use of the methodology defined by ASPARA to address the

scheduling problems of farm and pipeline applications. In the farm pattern, they assume

that the workers are all identical and the tasks can be arbitrarily divided, which is akin to

Divisible Load Scheduling problems [22] discussed later in this chapter. ASPARA uses a

property called Fitness (F) to evaluate each processor. For a processor, a greater F value

means more tasks will be assigned to it. Suppose the size of the input task is a, the

number of available processor is N and the size of tasks assigned to processor i is .

Then,

 ∑

Furthermore, can be calculated using F as: .

 23

The value of F can be determined by several methods. The simplest choice is to use the

execution speed of each processor.

Based on the F value, ASPARA presents two ways to handle a farm application’s

scheduling: single-round scheduling and multi-round scheduling. In the single round

scheduling, F is computed and the input task is divided in terms of F (size of tasks

assigned to processor i is where is the size of the input task) and scheduled in

one time. On the other hand, in multi-round scheduling, tasks are divided and assigned in

multiple times. Since ASPARA is built on a heterogeneous distributed environment and

resources in this environment is non-dedicated, the availability and performance of the

processors do not remain constant, which means that the value of F may change from

round to round. Therefore, in this multi-round strategy, F is recomputed in every round,

and hence the sizes of tasks assigned to processors will also be recomputed.

For the pipeline pattern, ASPARA employs a similar strategy: use Fitness F to evaluate

each processor which acts as a pipeline stage. Once the value of F of a processor is no

longer acceptable, it will drain the pipeline and hence replace the processor with another

one with a better F to resume the data flow.

APSARA is built for grid and cluster computing platforms consisting of CPUs, where the

value of the fitness function F can be easily computed in terms of the execution time of a

CPU. On the other hand, in the CPU-GPGPU architecture of our interest, the GPUs and

their execution behaviours are different from that of the CPUs. Furthermore, in ASPARA,

the cost model of the worker processes is linear, which means that more loads lead to

more execution time of a worker. On the contrary, for GPUs the cost model is sometimes

 24

nonlinear. e.g., it can have the same execution time for tasks of different sizes in certain

situations. For example, addition of two vectors of 10 dimensions will take approximately

the same time as the addition of two vectors of 100 dimensions on a GPGPU with 128

cores. This difference arises due to difference in the programming models of CPUs and

GPGPUs.

Furthermore, the multi-round scheduling strategy of one divisible load in ASPARA

would cause too many kernel calls and too many message transfers, both of which have

high start-up overheads as discussed before. Consequently, the strategies employed in

APSARA are not straightaway applicable in our work.

2.3 Task Farm Pattern

The farm pattern is widely used in parallel programming. In this thesis, we study

scheduling of the farm pattern and its variants on the heterogeneous system discussed

before. Further classifications of the farm pattern for the purpose of our work are

discussed in the next section. Furthermore, scheduling techniques for the farm pattern can

be applied to the scheduling of some other patterns, e.g. data-flow and its specific

form—pipeline.

According to the definition by Berna L. [13], a farm pattern consists of the following key

components: a master (also known as farmer or task generator), multiple workers and a

collection of independent tasks. In our work, we add another component—a scheduler to

this pattern. The functionality of each component is as follows:

 Task Generator: generating tasks and putting them into a “pool”;

 25

 Worker: accepting tasks assigned by scheduler, performing the indicated

computations, returning the results;

 Scheduler: assigning tasks in the task pool to workers based on certain

scheduling policies. The goal is to minimize the makespan. Scheduler is an

application independent module and its behaviour is irrelevant to masters and

workers.

The task generator, master and worker are defined by users, therefore these components

are application-specific. There are additional application-specific plug-ins to the

scheduler (e.g., partitioner), which will be elaborated in the following chapters.

Another key component of a farm pattern is a collection of independent tasks which are

held by the task pool. However, a formal and precise definition for these “tasks” has not

been given so far. M. Danelutto et al [35] indicated in their work that a “task” in a farm

pattern is a data item in an input stream. In this case, the scenario is that all the workers

carry out the same computation on different data items, which is akin to the SPMD

(Single Program Multiple Data) programming model. This scenario yields a data-parallel

farm. One example of this type of farm is searching through a database: each task has a

sub-seachspace and all worker processes can concurrently perform the same searching

strategy on different sub-searchspaces assigned to them by the scheduler. However,

confining the type of tasks to data stream restricts the applicability of the farm pattern.

Moreover, “task” in traditional computing terminology usually means some

computational control flow (for instance, a task carried out by a function) that operates on

input data. In practice, the farm pattern should cover a wild variety of problems, as long

 26

as they contain a collection of independent tasks, no matter if the tasks are different data

items or different control paths. We will elaborate this in the following chapter.

2.4 Existing Scheduling Strategies Applicable to the Farm Pattern

Tasks in a farm pattern based application, by definition, are independent of each other. In

some farm pattern applications, the independent tasks can be further divided arbitrarily.

Therefore, the scheduling in a farm pattern can be regarded as either divisible load

scheduling (DLS) [22] problem or an independent task scheduling [23] problem. These

two categories of problems have been studied for quite a time and many scheduling

approaches have been put forward.

2.4.1 Divisible Load Scheduling (DLS)

A definition of divisible load scheduling problem is as follows: divide an input load into

small chunks and assign them to processes in a way which can minimize the total idle

time of the processes and hence minimize the makespan. In the case of a divisible load,

the load can be further divided arbitrarily without violating any dependency constraints.

An example of DLS problem is processing a large image file in a parallel environment.

The large image file consists of a set of pixels which can be processed independently.

Therefore, this image can be divided into smaller blocks and assigned to different

processors for the purpose of speeding up the processing. The divisible load scheduling

strategies focus on what is the near-optimal way to divide this image in order to minimize

the makespan. In a farm pattern based application, when the size of a load is quite large

and it is divisible, dividing it into smaller chunks and distributing the chunks to worker

 27

processes in a load-balanced way is the basic idea of scheduling. One example SSE

framework that employs this divisible load scheduling model is ASPARA [20].

As far as we know, most works in the field of divisible load scheduling are based on the

network-based distributed architectures such as cluster and grid. Several approaches

[24][25][26] are proposed for solving the DLS problems on grid. These approaches can

be broadly classified into two categories: single-round divisible load algorithms and

multi-round algorithms. Single-round algorithms divide the input load into multiple

blocks whose amount is exactly as same as the number of processes. For example, if

there are k processes available for the computation, single-round algorithms will divide

the input load into k blocks. Therefore, each process will be assigned one block. On the

contrary, multiple-round algorithm will divide the in a way where the number of blocks is

more that the number of processes. Every process is assigned exactly one block in one

round, and therefore it requires multiple rounds to complete this assigning, so each

process will be assigned more than one block eventually. In practice, multi-round

algorithm assigns more than one block to each process in a pipelined fashion, in order to

overlap the data transfer time and computation time.

In [25], O. Beaumont et al proposed a single-round algorithm for star networks, which is

also the topology of CPU-GPUs architecture (CPU is and GPUs are).

 28

Figure 5: A star network

It employs a linear programming approach to solve the problem. The following lists the

constraints of their linear programming.

Where is the number of units of load sent to worker , and p is the number of worker

processes, hence the number of divided blocks is the same as the number of worker

processes, which makes this method the single-round algorithm. is the whole

input data, is the total execution time (i.e., makespan). and are linear cost

model: it takes time units to execute units of load on worker and

similarly it takes time units to send units of load from to . In the

constraints, the first communication means assigning the block to worker process 1, while

the i-th communication means assigning the block to worker process i. However, as

previously discussed, the GPU does not have such a linear cost model when the size

of tasks is small.

 29

Regarding multi-round algorithms for DLS problems, the main purpose of these

approaches is to overlap the data transferring time and the computation time, which is a

direct consequence of the assumption that data transferring and computation can be

carried out concurrently in their models. However, in the current CPU-GPUs

architectures as discussed before, the data transferring and kernel execution in a GPU can

hardly be carried out concurrently. Therefore, these approaches are not applicable to

contemporary CPU-GPU architecture of our interest.

For CPU-GPUs architectures, to the best of our knowledge, Qilin [30] is the only

approach that focuses on divisible load scheduling. It employs an adaptive mapping

scheme that introduces a training phase. The training phase interpolates a system of linear

equations based on empirical results from adaptive mappings, whose solution provides

the best partitioning among the CPU and the GPUs. To be more specific, they firstly

build linear equations: for CPU and for GPU, where t

is the execution time and s is the size of the input data. Then they use the following graph

to find the near-optimal partition.

Figure 6: Task distribution curve in Qilin

 30

In Figure 6, time means the execution time and β is the proportion of loads assigned to

CPU, so it ranges from 0 to 1. The β value at the point of intersection of the two curves

can yield the near-optimal partition.

However, as analyzed before, the linear model is applicable for GPU when the load size

is fairly small. Besides, considering that they exploit the curve intersection approach, the

current Qilin is only applicable for a single-CPU-single-GPU environment. Its extension

to single-CPU-multiple-GPU environment may not be straightforward and could not be

found in available literatures.

2.4.2 Independent Task Scheduling

Independent task scheduling problem focuses on generating a schedule for a set of

independent tasks on a set of processing units, for the purpose of minimizing the total

execution time. The tasks are independent, meaning that there are no communication or

precedence constraints among them.

If the loads in a farm application are comparatively small and hence need not be further

partitioned, then scheduling of a set of these small loads can be regarded as an independent

load scheduling problem, which is akin to independent task scheduling as the terms load

and task have been intermixed in several of these works. Note that we will further elaborate

on the terms “load” and “task” in the next chapter. There is a considerable amount of work

towards independent load scheduling in the last few decades, and the proposed approaches

are applicable in cluster and grid environments. A survey of these approaches can be found

in [27][28], out of which min-min heuristic is found to perform as the best [27]. In min-min,

the next minimum load is always picked up for scheduling as compared to max-min in

 31

which the maximum load is scheduled next. These approaches are designed for

independent tasks scheduling.

Figure 7: The min-min heuristic

The Min-min heuristic shown in Figure 7 is presented in [27]. The input of the algorithm is

a set of independent tasks (i.e., meta-task).

“In the figure, is used to denote the expected time that machine will become ready

to execute a task after finishing the execution of all tasks assigned to it at that point in time,

and is used to denote the execution time of task on machine . First the is the

matrix of completion time and entries are computed using the and values. For

each task , the machine that gives the earliest expected completion time is determined by

scanning the ith row of the c matrix (composed of the values). The task that has the

minimum earliest expected completion time is determined and then assigned to the

corresponding machine. The matrix c and vector r are updated, and the above process is

repeated for tasks that have not yet been assigned a machine” [27].

 32

However, the performance of directly applying these approaches to loads scheduling in

CPU-GPUs environment would not be acceptable due to several reasons. Firstly, these

heuristics assign loads to processors one by one, which would cause too many message

start-up calls and kernel calls and the overhead of these calls are non-trivial. Also,

considering that the size of loads is quite small in some cases and the number of cores in

GPUs is large, assigning the small loads one by one would lead to severe underutilization

of the computing capability of GPUs. Moreover, most of these heuristics are static. Though

dynamic versions for some heuristics have been designed [28], they are more applicable

for a cluster and a grid environment where constraints are different. Lastly, most of these

heuristics are applicable when the execution time is proportional to the load (data) size,

which may not be always the case as discussed in the next chapter.

 33

Chapter 3 Scheduling for Farm Pattern Based Applications

In this chapter, we propose several approaches to solve the task scheduling problems of the

farm pattern based applications on a CPU-GPGPUs platform. These approaches make use

of the underlying infrastructure and characteristics of the farm pattern when assigning

tasks to processors. Similar approaches can be applied to the scheduling of pipeline and

data-flow graph patterns and these are discussed at the end of this chapter. The next chapter

elaborates the experimental results comparing the new approaches with some of the

traditional approaches. As mentioned in the previous chapter, the characteristics of the

tasks will affect the scheduling policy. In this chapter we first classify the farm pattern into

several sub-categories based on the features of the tasks. Then we propose a set of

scheduling strategies called HASS (Heterogeneous Architecture Scheduling Strategies)

for these sub-patterns.

3.1 The Architecture

In general, the software architecture of a task farm pattern comprises of the following

components: one or more task generators, a task pool where tasks are deposited by the

generators, worker processes/threads that execute tasks from the task pool, a result pool

where results are deposited, and result collector(s) (Figure 8). It must be noticed that

workers not only consume tasks from task pool, they also generate tasks and deposit them

to the task pool, i.e., workers also can act as task generators. This gives more flexibility in

the use of the pattern.

 34

Figure 8: A task farm architecture

In the traditional task farm architecture, an idle worker pulls work from the task pool.

However, since the GPU being a subordinate processor of the CPU, its work load needs

to be pushed. The CPU still pulls its workload. Parts of these functionalities are

performed by the scheduler.

The scheduler is an intermediate layer that sits between the task pool and the workers. It

is responsible for ideal scheduling of tasks to workers so that all loads are well balanced

and the total processing time is minimized. In our discussion, the scheduler is called

HASS (Heterogeneous Architecture Scheduling Strategy) and is elaborated in the

following sections.

Figure 9 illustrates the general configuration of a single-CPU-multiple-GPGPU

architecture. The CPU is the predominant processor and each GPU is a subordinate

processor under the control of the CPU. The CPU has multiple cores (e.g., 2 to 8) which

can execute different codes, thus resulting in task-parallelism. In comparison, the GPU

 35

has many more cores (e.g., from dozens to hundreds). The GPU cores are grouped into

physical units, called streaming multiprocessors (SMs). Each SM is comprised of

streaming processors (SPs) which communicate via shared memory and its execution

model is SIMD, i.e., the SPs inside a SM synchronously execute the same code (also

known as kernel code) but on different data. Hence the corresponding programming

model inside an SM is of data-parallelism. Each SM can run different kernel codes, thus

resulting in task-parallelism. In general, the GPU is more suited for data-parallel

computation which results in less idling of its cores and thus more utilization of its

resources.

Figure 9: The CPU-GPGPU architecture

The following are some of the features of a contemporary CPU-GPGPU architecture which

need to be considered while designing a scheduling strategy for such architectures. Firstly,

in contemporary architectures the interconnection bandwidth between CPU and GPU is

 36

fairly high, of the order of 10 gigabytes per second or even more with newer

interconnection technologies like PCI bus and its extensions [12]. Considering this high

bandwidth, data transfer time between the CPU and the GPUs is much smaller as compared

to a cluster or a grid environment. Sometimes this message start-up cost becomes the

predominant factor in the total data transferring cost between the CPU and the GPUs,

especially when the size of data to be transferred is small.

Secondly, the architecture of an SM is SIMD and hence the GPU is more suited for

data-parallel model of computation. All cores (SPs) inside an SM execute identical code,

but on different parts of the input data. Consequently the bigger the size of the load,

(whether divisible or indivisible), the more of the GPU cores can be kept busy, thus better

utilizing the available cores. A smaller load could keep some of the cores idle, e.g., if the

SM has 64 cores and the load can be utilized by only 20 cores then the remaining 44 cores

will be idling. Though multiple SMs could run different kernel code, thus resulting in

task-parallelism, this may not be achieved in a straightforward way in many existing

GPGPUs.

Thirdly, in the contemporary GPU computing, it is difficult to overlap data transferring

with concurrent kernel execution in a GPU. Take CUDA as an example [4], where this type

of overlapping can be achieved only with great difficulty, e.g., using pinned memory which

is limited in size and its use might negatively affect the performance. As a result,

commonly used performance measures like overlapping of computation with

communication as in a traditional cluster or grid environment may not be feasible in the

CPU-GPGPU architecture.

 37

Lastly, a GPU is a peripheral device for the CPU. Consequently, any kernel function call

has to be done via device driver and thus has a much higher start up latency as compared to

a function call in the CPU. For example, in CUDA, a GPU kernel call can have start-up

latency about 3000 times higher than a CPU function call.

Since the CPU is the dominant processor and each GPU works under the control of the

CPU, in our design the task pool and the result pool of the farm reside in the main memory

of the CPU. Loads are subsequently distributed to the memory of the graphics card as will

be discussed in the following strategies. The worker threads run on the CPU and the GPU:

they will be called CPU workers and GPU workers respectively. Note that the CPU and

GPU workers perform identical works; however their codes are different due to the

difference in their architectures and programming models.

3.2 A Classification of the Farm Pattern

In this section we propose a new way to classify the farm pattern based on the type of the

tasks in this pattern. For each category, we propose a corresponding heuristics to solve

the scheduling problem on the CPU-GPGPUs platform.

 38

Figure 10: A taxonomy of farm pattern in terms of the type of the tasks and the

corresponding heuristics

Figure 10 presents an entire classification of the farm pattern and the heuristics, which

will be elaborated in the following. It should be noted that for the farm pattern, all tasks

are independent irrespective of which category it falls into.

In the literature, the tasks in the task pool of a farm pattern are regarded as data items. In

[35], the author explicitly defines the tasks in a farm pattern application as data items and

the task pool as a data stream. In [20], a task is defined as a divisible load which is a

synonym of data. This assumption implies that the worker processes are all identical and

the only difference is that they take different data as input. Hence, this task farm pattern is

essentially a data-parallel model of computation.

However, to be more flexible, the types of tasks in the farm pattern need not be restricted to

only data items; they can be functions as well. Therefore, we classify a farm pattern into

 39

two sub-categories: data (or load) farm and function farm (Figure 9). In the data farm, the

task pool is essentially a data pool, and a load in the pool is a collection of data elements

where each data element is a portion of the load on which a worker operates. . For

example: in a matrix-matrix multiplication, a load comprises of the two matrices to be

multiplied and if a worker is responsible for producing an entry of the result matrix then the

corresponding (input) data element for the worker is a row of the first matrix and a row of

the second matrix. In the case of GPGPU computing, each data element is usually

mapped to one worker. Therefore, the number of workers in GPGPU computing depends

on the number of data elements of a load. Many of such workers can in turn be mapped to

a GPGPU core (Figure 11). On the contrary, for CPU computing, multiple data elements

could be mapped to each worker, i.e., it is a many-to-one mapping. For example, each

worker is in charge of one or several rows or columns of the result matrix. As in a

GPGPU, more than one worker can be mapped to a CPU core (Figure 11).

Figure 11: (a) the mapping of data and worker in CPU; (b) the mapping in GPGPU

 40

On the other hand, in the function farm each task is a function together with its input data.

Each function is mapped to a worker and thus the workers could carry out different

computations by receiving different tasks (Figure 12). Hence, the computational model in

this case is of task-parallel. As discussed previously, task-parallel computations are best

carried out in the CPU due to its MIMD architecture. However, considering the GPU's

potential to execute task-parallel applications as discussed before, function farm

applications can as well be implemented on GPGPUs. By designing the farm's scheduling

strategies carefully, we can have a function farm with good performance. Even though

sometimes these task-parallel applications can cause severe wastage by idling the GPU

cores, a well-designed scheduler is able to reduce this waste as much as possible and thus

make the performance more acceptable. Some examples of the task farm pattern are the

ready queue in DAG scheduling and the PCB queue in an operating system.

Figure 12: Comparison of data farm and function farm

3.3 Further Classifications of the Data Farm Pattern

This section presents a further classification for the load (data) farm pattern based on the

divisibility of the loads: the farm with divisible loads and the farm with indivisible loads,

 41

which are called as divisible and indivisible load farm respectively in the following

discussion.

In the divisible load farm, each load can be arbitrarily partitioned into independent smaller

loads. On the other hand, in the indivisible load farm, the workers operating on different

elements of a load have inherent dependencies and hence the load cannot be arbitrarily

divided.

Besides the classification mentioned above, the scheduling of divisible load farm can have

two broad classifications: large load scheduling versus small load scheduling (Figure 10).

In the large load scheduling case, the size of each input load is fairly large, based on certain

parameters of the underlying architecture, e.g., number of cores in a GPU block. Such a

load must be partitioned into multiple smaller loads (Figure 13). Therefore, this situation is

called the partition case. For this case, it can also be further be classified into two

sub-categories: known size task case and unknown size task case. The known size task

means the execution time of the tasks which take the loads as input is proportional to the

size of the loads, while the unknown size task means the execution time is

non-proportional to the size of the loads. An example of the known size task case is

image processing, where each pixel needs to be processed. On the other hand, an example

of the unknown size task case is searching through a text space to find out the first words

with a certain pattern. The known size task case is akin to a divisible load scheduling

(DLS) problem. In this case, the goal of our strategy is the same as that of Qilin[30] system:

trying to find an optimum partition of the input load with the intention of minimizing the

makespan. Compared to the Qilin approach, the improvement of our approach is that it is

applicable to the single-CPU-multiple-GPU environment, whereas the approach in Qilin

 42

system only works in the single-CPU-single-GPU environment. (p means

partition case) is the proposed heuristic in this category. On the other hand, if the task size

is unknown then we propose a modified greedy strategy (Figure 10).

Figure 13: The execution model of partition case

In the small load scheduling case, the size of each load is comparatively small based on

similar parameters of the underlying architecture. Therefore, it is unnecessary to further

partition a load, and scheduling of these independent small loads boils down to the

independent task scheduling problem. Instead of being partitioned, loads assigned to the

GPUs need to be bundled for the purpose of reducing their execution time (Figure 14). The

need for load bundling is further discussed in section 3.4.1. Hence this scenario is also

called the load combination case. In case can also be further classified into several

categories: known size task case and unknown size task case, and the known size task

case also has two situations: all tasks have equal size or different. For this scenario, we

propose two different strategies: (c represents combination or bundling and e

represents equal sized tasks respectively) for the farm pattern with equal task sizes;

 43

 (d stands for distinct task sizes) for the farm pattern with distinct task sizes. A

modified greedy scheduling strategy is proposed for the unknown size task case.

Figure 14: The execution model of combination case

Although we have this large load case and small load case classification, in practice, it is

difficult to determine whether a load is large or small in an abstract way, since it is

dependent on the configuration of the underlying infrastructure and so far a standard rule

which can differentiate these two cases in terms of the configuration of a system has not

yet been proposed. Therefore, in this research, we only broadly put forward these two

cases so that for each case we can design certain scheduling strategies.

All the aforementioned approaches are for the divisible load farm. Regarding the

indivisible load farm, the strategy is proposed. These strategies are elaborated in

the following sections.

 44

3.4 New Approaches for the Divisible Load Farm

3.4.1 The Impact of Load Bundling in GPU Performance

Load bundling means to bundle multiple small loads into a single large load and assign this

one large load to the GPU. Therefore, in this case, the requirement is that all small loads

must be able to be bundled. For a divisible load, since it can be arbitrarily partitioned into

smaller loads, so these smaller loads can also be bundled arbitrarily.

Figure 15: An example of load bundling for a GPU

The advantages of one single large load versus several small loads are that the message

start-up latency, associated with each message between CPU and GPU, and kernel function

start-up latency, associated with each GPU kernel call, are significantly reduced.

Furthermore, considering that in CUDA programming, each data element in a load is

mapped to one thread, i.e., worker, and one or more threads are mapped to a GPU core, if a

load is too small, i.e., the number of its data elements is small, not enough threads can be

spawned to take advantage of all the cores in a GPU. By applying load bundling, the

bundled large load can relieve this underutilization by augmenting the amount of data

 45

elements and consequently increasing the number of concurrent threads on a GPU. Based

on the above discussion, it is preferred that the GPUs are assigned large size loads, as

determined by the number of cores inside the GPU. Figure 16 gives an example of the

influence of load bundling on the GPU’s execution time.

message startup time data transferring time

kernel startup time kernel execution time

Figure 16: Impact of load bundling

Figure 17 is an example of searching through an array of 40 elements using a GPU with 80

cores. As shown in the figure, half of the cores are unused and therefore the GPU is

severely underutilized.

Figure 17: An example of underutilization of a GPU.

 46

By bundling many small loads into a large load, we can reduce the occurrence of this

underutilization problem. The following figure is an example of traversing arrays. In this

example, the two small arrays are combined into one large array and then be assigned to a

GPU. All the cores of the GPU are involved in the computation and the underutilization

problem is eliminated.

Figure 18: An example of full utilization of a GPU

3.4.2 The Heuristics for Divisible Load Scheduling

The following heuristics comprise of the following: (i) independent load scheduling, (ii)

work stealing, (iii) load bundling, and (iv) learning and adaptation. As discussed before, a

divisible load is first partitioned into independent smaller loads. An effective independent

load scheduling strategy (e.g., Min-min) is first applied to do an initial distribution of the

(partitioned) independent loads to the processors. This initial distribution may not be the

best and hence it might need to be adjusted in subsequent assignments. Work stealing is a

way to adjust the loads, where the idling GPUs steal work from CPU and vice versa. This

 47

leads to a learning and adaptation phase, during which load distribution to the processors is

adjusted for near-optimal performance. The discussion assumes a

single-CPU-multiple-GPU architecture. The CPU and each GPU has its own buffer (in

main memory) where loads are assigned. Subsequently the assigned loads are transmitted

to the GPU with or without bundling, depending on the strategy employed.

We start with basic HASS, which is used inside some of the other heuristics presented here.

In basic HASS, the input is a set of independent loads. Basic HASS is a two-phase

approach: the first phase is the mapping phase. In this phase, certain traditional

independent task scheduling heuristic (e.g., Min-min) is used to generate an initial

mapping from loads to processors. The loads mapped to each processor are stored in the

processor’s buffer (in main memory). In Execute phase, loads are transmitted from

processor’s buffer to the processor for execution. In transmitting to a GPU, the loads inside

the GPU’s buffer are bundled together and assigned to the GPU as a whole for the purpose

of removing the influence of underutilization of GPU and the overhead caused by message

and kernel start-up latency, as discussed before. Therefore, a load bundler is needed by the

scheduler (Figure 19). In addition, basic HASS rebalances the load between the CPU and

the GPUs by using a work stealing strategy: Once a GPU becomes idle, it will request loads

from the CPU’s buffer. This load rebalancing strategy can ensure the CPU and the GPU

complete their execution at almost the same time with minimized idling.

It should be noted that Min-min requires the estimated execution time of a task. In basic

HASS, the size of a load is used to estimate the execution time of the associated task. It is

assumed that the execution time is linear to the size. However, as was discussed before,

when the size of a load is small (i.e., the number of data elements is less than the number of

 48

cores in a GPGPU), its execution time is not linear to the size, and it can cause an incorrect

time estimation of Min-min when applied to GPGPU scheduling. When this situation

happens, the computing power of GPGPU would be underestimated. For example, suppose

the linear model of size and execution time is , where is the execution time and

 is the size, then a load with size 10 would have execution time 20 units and a load with

size 20 would have execution time of 40 units. However, in a GPGPU with more than 40

cores, these two loads will have the same execution time. Hence estimation for Min-min

will not be accurate. Therefore, in the following heuristics, min-min is used for initial

mapping and subsequently load-bundling and/or work stealing are applied to handle any

inaccuracies of Min-min.

Figure 19: The scheduling model of divisible load

 49

Figure 20: An example of using basic HASS on a CPU-GPUs system

Basic HASS is presented in the following:

Algorithm 1: HASS
Input: A set of independent loads D = {d1, d2,...,dm}.
/*The loads are to be executed on processors P = {pc, pg,1, pg,2, ..., pg,n}; pc is the CPU and
pg,i is a GPU*/
Output: Loads executed with minimized makespan.
Begin
 {Mapping phase}
 1. Apply min-min heuristic to map loads to processors.
 Loads are first assigned to processor’s buffers residing on
 main memory: bc is the CPU buffer and bg,i is a GPU buffer.
 2. After mapping is complete, go to the execute phase
 /*step 3 below*/.
 3. {Execute phase}

 50

 for i = 1 to n do
 {

 Bundle all loads in bg,i into a single load Dg,i.

 Assign Dg,i to pg,i.

 }

 while bc is not empty do

 {

 if pc is idle then remove a load di from bc and assign to pc.

 for each GPU pg,k

 if pg,k is idle then

 /*Steal work from CPU’s buffer*/

 remove a load dm from bc and assign it to pg,k

 }

end

Basic HASS employs work stealing to re-balance loads among the CPU and the GPUs.

The next heuristic , which is applicable for equal sized independent loads,

employs learning and adaptation strategy in multiple rounds to re-balance the loads.

 employs basic HASS during the first round of scheduling. The scheduling

information (i.e., the ratio of loads executed by each processor over the total loads) is

recorded, and this record is used to guide the scheduling in the following round. In the

next round, all loads from the task pool are retrieved and mapped to the processors based

on the recorded information from the previous round. Any load re-balancing is done if

necessary and any change in scheduling ratio is recorded for the next round.

Algorithm 3: HASSce
Input: A set of loads is generated by task generator and deposited to the task pool
continuously.
/*The loads are to be executed on processors P = {pc, pg,1, pg,2, ..., pg,n}; pc is the CPU and
pg,i is a GPU*/
Output: Loads executed with minimized makespan.
Begin
 1. Initialize variables i and jk to 0;

/*Here i is the proportion of the work that has to go to the CPU and jk is the
proportion of the work that has to go to GPU k*/

 2. Extract all loads from the task buffer and use Lq to denote the loads
 3. Apply HASS to schedule loads in Lq.

 51

 4. Update i and jk for each pg,k based on the scheduling in 3 above.
 5. Go to the adaptation phase /*step 6 below*/.
 6. {Adaptation phase}
 while task generator is still generating loads

 {

 Extract all loads from the task buffer and use Lq to denote the loads

for k =1 to n do

{

 put q  jk loads into GPU buffer bg,k.

 bundle all loads in bg,k and assign the single bundled load to pg,k.

 put q  i loads into CPU’s buffer bc.

}

 while bc is not empty do

 {

 if pc is idle then remove a load di from bc and assign to pc.

 for each GPU pg,k

 {

 if pg,k is idle then

 /*Steal work from CPU’s buffer*/

 remove a load dm from bc and assign it to pg,k.

}

 update i.

 for each GPU pg,k

 update jk.

 }

 }

 }

end

 is developed for the case when the loads are of different size for the independent

task scheduling. The difference of from is that, since the size of each

load is different in every round, there is no useful scheduling information from the previous

round to guide this round. Therefore, in each round, traditional scheduling heuristics must

be used and the GPU workers have to steal loads from the CPU worker. However, instead

of asking the GPU workers to steal one load each time as does, the GPU

workers in here steal

 tasks from CPU, where M is the number of tasks in CPU

worker’s buffer, and n is the number of processors. The reason to replace the

 52

“single-stealing” with this “multi-stealing” is that stealing one task per time would cause

both probable GPU underutilization and a large number of work stealing, which would

consequently lead to much many message transferring and kernel calling. This

multi-stealing strategy may cause an over-stealing (i.e., GPU workers stealing too many

tasks and leaving the CPU has no tasks), but the time reduced by this multi-stealing can

amortize the loss caused by over-stealing. It should be noticed that this multi-stealing

strategy is not suitable to , in which case the scheduling information from the last

round is exploited to guide the scheduling of the next round. Over-stealing would

generate incorrect scheduling information that is useless for the next round scheduling.

The following is the algorithm of , where K is used to denote all the tasks in task

pool.

Algorithm 3: HASScd
Input: A set of loads is generated by task generator and deposited to the task pool
continuously.
/*The loads are to be executed on processors P = {pc, pg,1, pg,2, ..., pg,n}; pc is the CPU and
pg,i is a GPU*/
Output: Loads executed with minimized makespan.
Begin
 1. Extract all loads from the task buffer and use Lq to denote the loads
 2. Apply basic HASS to schedule loads in Lq.
 while loads are still generated by the task generator do

 {

 Extract all loads from the task buffer and use Lq to denote the loads

for k =1 to n do

{

 put q  jk loads into GPU buffer bg,k.

 bundle all loads in bg,k and assign the single bundled load to pg,k.

 put q  i loads into CPU’s buffer bc.

}

 while bc is not empty do

 {

 if pc is idle then remove a load di from bc and assign it to pc.

 for each GPU pg,k

 {

 53

 if pg,k is idle then

 {

/*Steal work from CPU’s buffer*/

the amount of tasks in bc is M.

remove M/(n+1) loads from bc, bundle them and assign the bundled

load to pg,k.

}

}

 }

 }

end

The previous three algorithms are for divisible loads which do not need any further

partitioning. However, if a load needs to be further partitioned into smaller loads then the

next algorithm, is proposed. In this algorithm, the scheduler needs a partitioner,

as a plug-in module, to partition each input load into smaller loads (Figure 21).

Figure 21: The scheduling model of divisible load

In , the size of the input load is large and hence it needs to be divided into smaller

loads prior to assigning to processors. The purpose of this algorithm is to find a nearly

optimal way to divide the input so as to balance the load among the processors. The

HASS algorithm is also the basis for (p here stands for partitioning). The

 algorithm works on multiple rounds: in round i, a divisible load is partitioned into

 54

chunks of smaller loads of equal size using the partitioner and then HASS is employed to

schedule those independent loads. The near-optimal scheduling obtained by HASS (after

work stealing) in round i is recorded, and this information is used in round i+1. Thus,

 is an adaptive algorithm similar to discussed before, i.e., in each round,

it applies the partitioning information from the previous round(s) and as a result the

balancing of loads improves from round to round. Figure 22 is the flowchart of

the algorithm:

Figure 22: The flow chart of

Algorithm 4: HASSp
Input: A set of loads is generated by task generator and deposited to the task pool
continuously.

 55

/*The loads are to be executed on processors P = {pc, pg,1, pg,2, ..., pg,n}; pc is the CPU and
pg,i is a GPU*/
Output: Loads executed with minimized makespan.
Begin
 1. Initialize variables i and jk to 0;

/*Here i is the proportion of the work that has to go to the CPU and jk is the
proportion of the work that has to go to GPU k*/

2. Extract a load from the task buffer, partition it into smaller blocks with size e
and use Lq to denote these blocks

 /* { } where is the number of cores in */
 3. Apply basic HASS to schedule loads in Lq.
 4. Update i and jk for each pg,k based on the scheduling in 3 above.
 5. Go to the adaptation phase /*step 6 below*/.
 6. {Adaptation phase}
 while task generator is still generating loads

 {

 Extract a loads from the task buffer, and suppose its size is S.
if(i is unchanged compared with its previous value) /* An near-optimal
schedule is generated*/
{

 Assign a block with size Si to pc.

 for all the GPU pg,k

 assign a block with size S jk to pg,k

}
else
{

Partition the load into smaller blocks with size e and use Lq to denote the
loads

for k =1 to n do
{

 put q  jk loads into GPU buffer bg,k.
 bundle all loads in bg,k and assign the single bundled load to pg,k.

 put q  i loads into CPU’s buffer bc.
}

 while bc is not empty do
 {

 if pc is idle then remove a load di from bc and assign to pc.
 for each GPU pg,k
 {

 if pg,k is idle then
 /*Steal work from CPU’s buffer*/
 remove a load dm from bc and assign it to pg,k.

 56

 }
 update i.
 for each GPU pg,k
 update jk.
 }
 }
 }
}

end

The e value in the algorithm can guarantee that all cores of each GPUs will be utilized

when compute the smaller blocks. Therefore, the possibility of overestimating execution

time of tasks by Min-min, which is described in the case of , can be eliminated

since the size of the smaller blocks are not “small”(i.e., the size of the blocks are greater

than the amount of the cores of the GPUs)

All the algorithms presented before are for the cases when the estimated task size

associated with a load is known a priori. If the size is unknown, we propose a modified

greedy scheduling approach based on naive greedy scheduling. For naive greedy

scheduling, once a processor becomes idle, it will request a task from the task pool. In

contrast, in the modified greedy, we take advantage of task bundling to improve the

performance: if a CPU worker is idling, it requests one load from the load pool; if the

GPU workers are idling, they request multiple loads from the load pool. The reason why

the GPU requests multiple loads is same as the “multi-stealing” in .

3.5 A Different Approach for the Indivisible Load Farm

Compared with a divisible load which can be arbitrarily divided into independent smaller

loads, an indivisible load has internal dependences among the tasks processing it and hence

it cannot be partitioned arbitrarily. These internal dependencies in processing of an

 57

indivisible load restrict its scheduling on contemporary GPUs that have a special thread

distribution model.

3.5.1 The Thread Distribution of GPU

As discussed before, when programming with CUDA on GPUs, users need to map each

data element of an input load to one CUDA thread, and the CUDA runtime environment

will distribute the threads among the GPU cores. To be specific, the threads are first

organized as blocks and the way to organize the threads must be indicated when the kernel

function is called using two specifiers: the number of threads in one block, and the total

number of blocks (therefore the total number of threads is the number of threads in one

block multiplied by the total number of blocks).

During execution, the CUDA runtime will organize the threads into blocks as indicated and

put them into a block pool. Then these blocks will be assigned to multiprocessors (i.e., SMs)

in a greedy fashion: once a multiprocessor becomes idle, it will be assigned a block if the

block pool is not empty. These multiprocessors are independent of each other and there is

no synchronization mechanism among them. Hence the thread blocks are also independent

of each other. This thread distribution model is ideal for divisible load scheduling because

such loads can be arbitrarily divided and the blocks are totally independent. However in the

case of indivisible loads, the threads might need to interact with one another (via shared

memory) due to inherent dependencies and hence organizing all threads of an indivisible

load into a single block is a necessity.

When employing the one-load-one-block strategy, it must be noticed that, no matter how

many threads are contained in a block, it can only be executed by one multiprocessor while

 58

all other multiprocessors remain idle. This is a huge wastage of the GPU’s power.

Therefore, instead of asking a GPU to compute one indivisible load at a time, N loads can

be assigned to the GPU as a whole (N is the number of multiprocessors in the GPU), and

each block is mapped to one multiprocessor. This can be implemented using code

branches:

__global__ void kernel ()
{
 if(blockIdx.x = = 0)
 compute one indivisible load;

 else if (blockIdx.x = = 1)
 compute another indivisible load;
}

Suppose block 0 is assigned to multiprocessor A and block 1 is assigned to multiprocessor

B, then A and B will compute two different indivisible loads concurrently. In such a case, if

one of them finishes earlier, it must wait for the completion of other multiprocessors. If one

multiprocessor is assigned a very large indivisible load and hence performs the

computation for a very long time, all other multiprocessors which complete their

executions earlier have to remain idle until this one finishes its computation, before another

kernel can be invoked.

 59

Figure 23: A Gantt Chart of the execution of multiprocessors on loads of different

sizes

The previous discussion on the thread distribution model of contemporary GPUs is the

basis for the following strategy on indivisible load scheduling.

3.5.2 : A Strategy for Indivisible Load Farm Scheduling

For indivisible load scheduling in the CPU-GPUs environment, a greedy style strategy is

proposed: once a processor becomes idle, it will be assigned loads if the load pool is not

empty. While assigning loads to a GPU, N different indivisible loads with similar sizes are

extracted from the pool and mapped to N CUDA blocks, where N is the number of

multiprocessors in that GPU. This policy can guarantee that every multiprocessor can have

a load to compute. The reason why the loads must have similar sizes is that they can assure

the multiprocessors will finish computation almost simultaneously so that none of them

has to wait. In order to achieve this, the loads need to be first sorted according to their

sizes.

Furthermore, when picking up loads from the pool, the largest loads are chosen first for the

GPUs. We call it the Largest Load First (LLF) rule for GPU. The reason behind this rule is

 60

that during a time interval, the amount of small tasks computed by a GPU is more than the

amount where the size is large.

Figure 24: Comparison of the amount of large tasks computed by a GPU and the

amount of small tasks during a same time interval

However, every task is associated with one message start-up latency and one kernel

start-up latency and these overheads are quite significant, as discussed before. Compared

with one large task computing, computing many small tasks will lead to more idle time of

cores as the message start-up and kernel start-up will take more time, while at the same

time, the smallest loads can be left for the CPU to compute, which is called the Shortest

Task First (STF) rule for CPU.

Figure 25: The LTF rule for GPU and STF rule for CPU

 61

3.6 Function Farm

For function farm patterns, the tasks in the task pool are objects that consist of a function

and an input. Workers are assigned the objects and they execute the functions using the

inputs. The parallelism in this kind of farm pattern is essentially task-parallel. Unlike the

data farm pattern where tasks are data items, tasks in function farm cannot be bundled or

divided. Therefore, the strategies exploited for scheduling loads in the data farm pattern

are not applicable to this pattern.

3.6.1 Parallelism of a Function in the Function Farm

The parallelism of a function is its potential to be computed in parallel by a multi-core

processor so as to yield output in a shorter time. Usually the type of this parallelism is

data-parallel. For example, as shown in the following, the function paraFunc has such a

parallelism.

void paraFunc(int* aInt, unsigned int size)
{
 int a = 10;
 for(int i = 0; i< size; i++)
 {
 aInt[i] += a;
 }
}

In paraFunc, the inputs are an array of integers and the array’s size. By calling this

function, each element of the array is added by an integer value 10. It is obvious that this

function can be computed in parallel, by dividing the array into blocks and assigning the

blocks to the cores of a parallel processor. We use the term parallel function to refer to

the function that can be computed in parallel. The reason why we focus on the parallelism

 62

of a function is that, the objects in the task pool of the function farm pattern may contain

parallel functions, and such functions are likely to have shorter execution times on the

GPUs than on the CPU in the CPU-GPGPUs environment, since the GPU has much more

cores than the CPU. Considering the importance of parallelism of a function for

scheduling in CPU-GPGPUs environment, we attach an attribute: parallelism degree (PD)

to each object in the task pool of the task farm pattern. PD reflects the maximum number

of threads (workers) needed to execute the function. Take paraFunc as an example:

assuming that the value of input size is 1000, so it can be computed by at most 1000

threads, each of which is in charge of one element of the array. Therefore, the value of

PD for this function based on this input is 1000.

3.6.2 Revisiting the GPGPU Computing

As shown in Figure 2, a GPGPU in our model is comprised of a set of streaming

multiprocessor (SM) and a streaming multiprocessor consists of multiple streaming

processors (SP). The multiprocessors carry out executions independently of each other,

while the SPs in one multiprocessor perform computation in a SIMD fashion. It is

possible to ask each multiprocessor to run different control flows concurrently using

certain techniques such as code branches. It should be noticed that in our system model, a

GPGPU does not support concurrent kernels. Therefore, the approaches invoking several

kernels and assigning different kernels to multiple multiprocessors is not feasible in our

work. Moreover, it is also impossible to ask the SPs in one multiprocessor to run different

control flow concurrently using code branches. This is because in the SIMD execution

mode of the SPs, the execution of code branches will be serialized: when one SP executes

 63

one code branch, the SPs which are assigned other branches must stay idling until that

one finishes.

3.6.3 An Approach for Scheduling Tasks in the Function Farm Pattern

In this section we propose a heuristic to schedule tasks in function farm on the

CPU-GPGPUs environment. For the function farm pattern, the tasks are distinguished in

terms of their PDs. In the task pool, tasks with a PD value equal to one (i.e., to execute

the task, only one thread will be spawn) are placed into one set, and the tasks with PD

value greater than one (i.e., to execute the task, multiple threads will be spawn) are put

into another set. For the convenience of description, we refer the tasks whose PD values

are equal to one as SPD (Simplex PD) tasks and the tasks whose PD values are greater

than one as MPD (Multiplex PD) tasks, and also name the set of SPD tasks as SPD set

and the set of MPD tasks as MPD set.

 64

Figure 26: The classification of tasks in the task pool of the function farm

As mentioned in chapter 2, the GPUs are suitable for data-parallel tasks. In our

assumption, the execution mode of the GPU is dedicated, which means that one task will

monopolize a GPU while others must wait even if some cores of the GPU are idle due to

underutilization caused by the task. Therefore, the tasks in the MPD set are more suitable

for GPUs to compute than those in the SPD set, considering that the former will invoke

multiple GPU threads while the latter can only use one thread, which leads to a severe

underutilization of GPU’s power.

The scheduling of this pattern exploits the greedy strategy: once a processor becomes idle

it will request tasks from the task pool. Several rules are set to regulate the scheduling for

the purpose of minimizing the total execution time.

 65

To assign tasks to the GPU workers, the MPD set is first examined. If the set is not empty,

a task is selected based on the Largest Task First (LTF) rule (refer to section 3.5.2) and

assigned to the requesting processor. The reason is the same as in the scheduling of

indivisible loads.

If the MPD set is empty, the GPU workers will select tasks from the SPD set. Suppose

the number of multiprocessors of a GPU worker is M. Then M tasks with similar

execution times are chosen, and are assigned to the processor in a way that one task is

mapped to one multiprocessor by using code branches as discussed before. Since the

tasks have similar execution times, all the multiprocessors have minimum idling times

based on the previous discussion. When selecting tasks from the SPD set for the GPU

workers, the LTF rule is employed again for the same reason.

Figure 27: The selection of tasks for a GPU in the function farm

When assigning tasks to the CPU, the SPD set is first examined. If the SPD set is not

empty, then a task is chosen and assigned to the CPU. To choose a task, the Shortest Task

 66

First (STF) rule (section 3.5.2) is applied for the same reason. If the SPD set is empty and

the MPD set is not empty, then a task is chosen from the MPD set by following the STF

rule and is then assigned to the CPU.

3.6.4 An Implementation of the Dataflow Pattern as a Function Farm Pattern

As discussed below, a dataflow pattern can be implemented as a function farm and hence

the same scheduling strategies of a function farm pattern can be applied to a dataflow

pattern.

Figure 28: Two examples of dataflow pattern applications

In the data flow pattern, the participants are a set of functions with precedence constraints.

Each function receives input dataflows generated by its predecessors, performs

computation on these data, and sends the results to its successors.

For a dataflow application, when a function node generates a result and sends it to its

successor function, then this successor can start the computation based on this input. This

conduct can be viewed as the predecessor function “generating” the successor function,

 67

since the successor function can be called once the predecessor functions finish. All of

these functions can be regarded as tasks in the task pool of the function farm pattern.

Therefore, the behaviour of this dataflow pattern can be represented from the perspective

of function farm: the tasks in the task pool are the functions that have obtained input and

are ready to be called. Once a function is executed by a worker, its successor function

will be generated and put back to the task pool. Since the dataflow pattern can be

represented by the function farm pattern, the scheduling strategy designed for function

farm can be implicitly applied to the dataflow pattern.

A pipeline (Figure 28(b)) is a special type of the linear data flow pattern that is widely

used in parallel applications. The same strategies can be employed to implement a

dynamically scheduled pipeline, i.e., a pipeline whose stages are dynamically scheduled

to processors.

 68

Chapter 4 The Performance Evaluation of HASS

In the section, we discuss the performance results comparing HASS with some of the

contemporary heuristics. In that regard, we implement a simple string searching

application over a large text file to benchmark our algorithms. The application finds out

all strings in the test file which conform to certain patterns. The system configuration is:

Intel Xeon E5540 processor with 4 cores; 6 gigabytes of main memory; nVidia Tesla

C1060 GPU which has 30 Stream Multiprocessors (SM) and each of them has 8 stream

processors (SP) (i.e., totally 240 SPs); nVidia Quadro FX1800 GPU which has 8 SMs

and each of them has 8 SPs (i.e., totally 64 SPs); and Windows 7 64-bit. The large input

search-space can be divided into smaller sub-search-spaces, and these sub-search-spaces

can be assigned to different processors to be searched concurrently and independent of

one another. So this search problem falls into divisible load category of data farm pattern.

In the following discussion, the term task is used to indicate a search over a subset of

strings from the text file and the term load is used to indicate a sub-search-space.

Figure 29 shows a comparison among four approaches for scheduling loads of equal sizes

for the above application. Min-min is chosen as a comparison subject based on the

experimental results presented in [27], where Min-min gives better performance than

most of other independent task scheduling heuristics. When implementing Min-min, we

use the sizes of the tasks to estimate their execution times: we assume that the execution

time is proportional to the size. In order to yield the estimated execution time, we choose

a load, perform the computation on each processor, and record the execution time of this

load. Subsequently, we compare the size of other loads with this one and estimate their

 69

execution time based on the comparison results. However, as discussed before, when the

size of a task is too small, the execution time may not be proportional to the load size in

the case of GPU computing. Therefore, in order to eliminate this anomaly of small loads,

the loads chosen for these experiments have the size that is not less than the number of

SPs of the GPU with most SPs. In our experiment environment, the GPU having most

SPs is Tesla C1060 with 240 SPs. Therefore, the sizes of the loads in our experiment are

all more than 240. To be more specific, each load contains more than 240 strings.

Figure 29: Comparison of four scheduling algorithms on tasks of equal sizes

In the above experiment, the same amount of load (a set of strings) is scheduled to the

system in each round, and four different strategies are applied. The above experiment

result demonstrates that is an adaptive heuristic since this approach can exploit

the scheduling result from the last round to adapt its scheduling decision in this round.

Therefore, for , the scheduling result is better and better as the round number

increases. In contrast, is not an adaptive approach, and its performance is not as

 70

good as . Besides, in this experiment, the reason why Min-min and the naïve

greedy have similar result is that Min-min has to yield a schedule on the fly before the

loads are assigned to the processors, while the naïve greedy does not have this latency. In

this experiment, the total makespan is the combination of the execution times of all

rounds. By minimizing the execution of each round, a minimum makespan can be

generated. Therefore, among the four approaches, would produce the minimum

makespan according to the experiment results.

Figure 30 shows a comparison among four approaches for scheduling tasks with unequal

sizes for the search application, which means when reading data from the text file to the

main memory, the data blocks with the different size are created.

Figure 30: Comparison of four scheduling algorithms on tasks of unequal sizes

The above figure shows that outperforms other three approaches for

unequally-sized tasks, and modified greedy works better than the naïve greedy and

 71

Min-min. The reason why Min-min and the naïve have the similar results is same as the

experiment shown in Figure 29.

Figure 31 shows the results of comparing with Qilin approach in a

single-CPU-single-GPU configuration. The system configuration is the same as before:

Intel Xeon E5540; 6 gigabyte main memory; nVidia Tesla C1060 GPU; and Windows 7

64-bit. The size of each load is 240, which is the number of SPs in the GPU. In each

round, 500 loads are scheduled to the system by using HASS and Qilin respectively.

During the time interval between round 1 and round 7, Qilin is performing a training

phase to yield a near-optimal schedule. Starting from round 8, the execution times

yielded by HASS and Qilin are approximately equal to each other. As demonstrated in

[30], Qilin can generate approximately optimal schedules for one-CPU-one-GPU system.

Therefore, HASS can also yield a near-optimal schedule, as discussed at chapter 3.

Figure 31: Comparison of and QILIN

 72

The Figure 32 shows the distribution of tasks among three processors by using

in the experiment shown in Figure 26: one CPU and two GPUs. In the first round, 53%

tasks are assigned to the CPU, 32.2% tasks are assigned to GPU 1 and 14.8% tasks are

assigned to GPU 2. As the round number increases, the distribution among the three

processors keeps changing and the execution time keeps decreasing, which implies that

the load is more and more “balanced”.

Figure 32: The distribution of tasks among the three processors when using the

HASS algorithm

For the unknown-sized task scheduling category, the modified greedy heuristic (Chapter

3) is found to give a smaller makespan as compared to the naive greedy heuristic. Figure

33 presents the experimental results in applying both the modified and the naive greedy

heuristics to schedule an identical set of tasks. Each task works on a search space to find

a target pattern. However, in contrast to the previous application, in this case a task stops

once the target is located in the sub-search-space. Therefore the execution time is not

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

N
u

m
b

er
 o

f
Ta

sk
s

Round Number

CPU

GPU1

GPU2

%

 73

proportional to the size of the search space but depends on the location of the target in the

search space, and hence the time cannot be predicted a priori. As a result, heuristics like

Min-min and HASS cannot be applied in this case and a greedy approach is the only

feasible way to proceed. Compared with the naive greedy heuristic, the modified greedy

heuristic takes advantage of load bundling which helps reduce the makespan

significantly.

Figure 33: A comparison of naive greedy and modified greedy

According to the above benchmarks, HASS is found to perform better as compared to

min-min and the naïve greedy strategies for the farm patterns with known load sizes. For

a single-CPU-single-GPU environment, HASS gives approximately the same

performance as Qilin, but Qilin in its current form cannot be applied to multiple-GPU

environments. For the unknown size category, the greedy strategy with load bundling is

found to perform better in comparison with a naïve greedy strategy.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

Ex
e

cu
ti

o
n

 T
im

e
(s

)

Round Number

Comparison of Naive Greedy and Modified Greedy for
Scheduling Tasks of Unknown Size

naïve greedy

modified greedy

 74

Besides the experiments presented above, other two experiments: matrix multiplication

and calculation of using Monte Carlo simulation [38] are also conducted to verify the

performance of the scheduling strategies. These experiments yield the similar results as

those in the above experiments. The results also demonstrate that our strategies promise a

good performance for farm pattern applications on the CPU-GPU architecture.

 75

Chapter 5 An Implementation of the Scheduling Framework

This chapter presents an implementation of the scheduling framework. This framework is

designed for CPU-GPUs environment. It takes advantage of the scheduling strategies

discussed in chapter 3. The framework provides pre-implemented building blocks to

users to help them develop parallel applications on CPU-GPUs efficiently. The current

application interfaces are for the farm pattern(s) discussed in the previous chapters.

5.1 The Application Interfaces

The scheduling framework is implemented using C++. The object-oriented techniques of

generic programming are also applied in the implementation. We implement the

following four interfaces for different categories of farm pattern.

template<typename T>
void dataFarmPT(void (*cpuWorker)(T*), void (*gpuWorker)(T*), void
(*generator)(vector<T>*), void (*partitioner)(T), void (*bundler)(vector<T>), void*
resultPool);
 (a)

template<typename T>
void dataFarmCB(void (*cpuWorker)(T*), void (*gpuWorker(T*)), void
(*generator)(vector<T>*), void (*bundler)(vector<T>), void* resultPool, enum farmKind
kind);
 (b)
Template<typename T>
void dataFarmIL(void (*cpuWorker)(T*), void (*gpuWorker(T*)), void
(*generator)(vector<T>*), void* resultPool);
 (c)

void FunctionFarm(void (*generator)(vector<Wrapper*>*), void* resultPool);
 (d)

Figure 34: The interfaces for different categories of farm pattern

 76

Function dataFarmPT (Figure 34(a)) is for the partition case of data farm pattern. The

interface is implemented using C++ template; hence it is a generic function and can be

instantiated by users. As shown in the prototype of the function, users must provide two

implementations of workers: one is for the CPU and another is for the GPUs. This is

because the programming models of the CPU and the GPU are different, so a universal

implementation of worker functions for both CPU and GPU is impossible. When

implementing CPU and GPU worker functions, programmers need to use of some

existing development tools such as TBB or OpenMP for the CPU and CUDA for the

GPU. Another parameter of function dataFarmPT is a task generator and its input

parameter is the task pool which is a container accepting tasks produced by the generator.

The task pool is a component of the build blocks and it is implemented using vector from

STL (Standard Template Library) [31] of C++. The next two parameters of dataFarmPT

are partitioner function and bundler function. Partitioner is used to partition a task into

small blocks and bundler is for task bundling. These two methods are provided by users

to the interface as function pointers. The last parameter is the resultPool which is used to

return the computational results to users.

Function dataFarmCB (Figure 34(b)) is for the combination case of data farm pattern. It is

similar to dataFarmPT except for two parameters. It does not have a partitioner, since the

tasks are quite small and are unnecessary to be partitioned. This function requires another

parameter: kind, which is of enumerated type and is used to indicate the type of the farm:

the sizes of the tasks are the same, the sizes are distinct, or the sizes are unknown. kind is

one of Equal, Distinct, or Unknown. The value of kind decides the scheduling strategy

that is going to be chosen.

 77

Function dataFarmIL (Figure 34(c)) is for indivisible load farm. Since in this type of farm,

the loads cannot be partitioned or bundled arbitrarily, the partitioner and the bundler are

unnecessary. Hence the input parameters of this function are a CPU worker function, a

GPU worker function, the task generator and the result pool.

Function functionFarm (Figure 34(d)) is for the function farm pattern. Since in this pattern,

the tasks are objects that encompass functions and the relevant input data, it is impossible

to partition them. Therefore neither a partitioner nor a bundler is needed. The only two

parameters are the task pool that contains the objects and the result pool that return the

computation results to users. It should be noted that the type of tasks in the task pool is

pointers pointing to an object Wrapper. Wrapper is an abstract base class that must be

inherited by the user-defined task classes. This Wrapper class contains one virtual

member function: callFunction(), and two attributes: exeTime and PD. callFunction() works

as an adapter wrapping the function given by programmers. When this function is called,

it will subsequently call the functional member function with the input specified by users.

This adapter function allows the framework to designate one worker to execute a function

(i.e., a task in this pattern) abstractly without knowing the specific function name and

parameters. The attributes exeTime and PD are used for yielding a scheduling strategy

and they are indicated by users. The scheduler of the framework will read the value of

these two attributes and exploit them to make scheduling decisions as discussed in

chapter 3.

 78

5.2 Components of the Scheduling Framework Applications

Figure 35: The components of an application developed using dataFarmPT

An application developed using dataFarmPT is comprised of nine components that are

classified into two parts: one is the application-specific part provided by programmers,

the other is the application-independent part provided by the skeleton. The components

from the former part include: CPU worker, GPU worker, Partitioner, Bundler, Load

Generator and Result pool. Their functionalities of them have been discussed in the last

section. The second group of components are hidden from users by the skeleton includes:

CPU Worker Wrapper, GPU Worker Wrapper, Load Pool and Scheduler. CPU Worker

Wrapper and GPU Worker Wrapper are used to map the CPU worker function and GPU

worker function to CPU processor and GPU processors. The reason behind these

wrappers is that, even if GPU worker is a function mainly performing computation on

GPU, it is called by CPU and all relevant works, except computing the input tasks, such

 79

as initializing GPU environment, transferring data and calling kernel, are carried out on

the CPU, which means that for the execution of GPU worker function, it still requires

some execution time on CPU. Therefore, mapping CPU worker wrappers and GPU

worker wrappers to different CPU threads can improve the performance. Another

component of the skeleton is the Load Pool. It contains loads produced by the generator.

The last component, Scheduler, is the key constituent that implements the scheduling

approaches discussed in the last chapter. The functionalities of this component are to

retrieve loads from the load pool, make scheduling decisions based on certain criterions

discussed before, and then assign the tasks to the CPU and the GPUs.

Figure 36: The components of an application developed using dataFarmCB

An application implemented using the dataFarmCB has a similar structure as the previous

one. The difference is that there is no Partitioner, but another component—Type Indicator.

Type Indicator is used to indicate the type of the pattern for the Scheduler. For different

javascript:void(0);

 80

types (e.g., tasks with equally-size, and tasks with unequally-size), Scheduler will apply

different strategies as discussed in a previous chapter.

The structure of applications derived from functionFarm is relatively simple. Only four

components exist in the application: Task Generator, Result Pool, Task Pool and

Scheduler. The functionalities of these components are similar to the previous cases and

hence are not elaborated.

Figure 37: The components of an application developed using functionFarm

An application developed using the dataFarmIL has the similar structure as the one

presented in Figure 37.

 81

5.3 An Example of Developing Applications using the Scheduling

Framework

Considering the following problem: the input is a large database of personal information,

and the requirement is to find out all persons whose birthday is later than 1965 and the

salary is above $1000 as quickly as possible. This problem can be solved using the farm

pattern: a set of data records are retrieved from the database and put into load pool, and

then are divided into different blocks (i.e., a sub-set of data records) and assigned to CPU

and the GPUs for searching.

Figure 38: The flow of developing an application using the framework

The above figure shows the development flow using the framework. Users firstly build

several necessary components and then call the interface functions by using these

components as input parameters. Subsequently, the program can be compiled and run on

any CPU-GPGPUs systems.

 82

During the execution, Task Generator is responsible for reading data items from the

database and put them into the Task Pool. The amount of data items is dependent on the

size of the main memory. After the reading finishes, Scheduler employs the approaches

presented in chapter 3 to divide the input task and assign different blocks to CPU and

GPUs.

#include “farmPattern.h”
#include <vector>
using namespace std;

//the data structure to store the record reading from the database
struct PersonalInfo
{
 int birthday;
 int salary;
 // other information;
}

// definition of CPU worker
void cpuWorker(vector<PersonalInfo> task)
{
 unsigned int size = task.size();
 for(int i = 0; i < size; i++)
 {
 if(task[i].birthday>1965 && task[i].salary > 1000)
 //put task[i] into the result buffer;
}
}

//the kernel function that performs the searching using GPU
__global__ void kernel(PersonalInfo* personalInfo, PersonalInfo* results, int*
resultSize)
{
 Int index = threadIdx.x+blockIdx.x*blockDim.x;
 if(*(personalInfo+index).birthday>1965 && *(personalInfo+index).salary>1000)
 {
 *(results+index).birthday = *(personalInfo+index).birthday;
 *(results+index).salary = *(personalInfo+index).salary;

file://put

 83

 //copy all other information from personalInfo to results;
 atomInc(resultSize); // increase resultSize atomically to avoid race condition
 }
}

//definition of GPU worker
void gpuWorker(vector<PersonalInfo> task)
{
 unsigned int taskSize = task.size()*sizeof(PersonalInfo));
 PersonalInfo* h_task = (PersonalInfo*)malloc(taskSize);
//copy all data from vector to a C-like array, since CUDA can only copy array
 for(int i = 0; i<task.size(); i++)
 {
h_task[i] = task[i];
}
 PersonalInfo* d_personalInfo;
 PersonalInfor* results;
 //allocate the memory
 cudaMalloc(&d_personalInfo, taskSize);
 cudaMalloc(&results, taskSize);
 cudaMemcpy(d_personalInfo, h_task, taskSize, cudaMemcpyHostToDevice);
 int resultSize;
 kernel<<<256, task.size/256+1>>>(d_personalInfo, results, &resultSize);
 int copySize = resultSize*sizeof(PersonalInfo);
 PersonalInfo* h_results = (PersonalInfo*)malloc(copySize*sizeof(PersonalInfo));
cudaMemcpy(h_results, results, copySize, cudaMemcpyHostToDevice);

//copy the results from the array to the result vector
for(int i = 0; i<copySize; i++)
 resultVec[i] = h_result[i];

// release the memory
cudaFree(d_personalInfo);
cudaFree(results);
free(h_results);
}

void partitioner(vector<PersonalInfo> task, int& chunkNum,
vector< vector<PersonalInfo>* >& smallBlockBuffer)
{
 int size = task.size();
 chunkNum = size/M; // M is the number of SPs of the GPU with maximum SPs

for(int i=0; i<chunkNum; i++)
 smallBlockBuffer.push(&task + i*M);

 84

}

void bundler(vector<PersonalInfo>* bundledTask,
vector< vector<PersonalInfo>* >& smallBlockBuffer)
{
 //bundle all the small data blocks together
}

void taskGenerator(vector<PersonalInfo>* taskPool)
{
 // read a group of personal information from the database;
}
int main()
{
 vector<PersonalInfo> taskPool;
 vector<PersonalInfor> resultPool;
 dataFarmPT(cpuWorker, gpuWorker, taskGenerator(&taskPool), partitioner,
bundler, &resultPool);
}

As shown in the above code segment, by using the scheduling framework, users only

need to focus on the programming of the functional part of the application. Once the

functional part is implemented, users can call the APIs and provides the implementation

as input parameters to the framework which can handle all other application-independent

issues such as spawning and termination of threads, task distribution and dynamic load

balancing.

The development process shown above demonstrates that the scheduling framework can

significantly simplify the construction of parallel applications on CPU-GPGPUs platform,

because the programmer is liberated from the complex systems-specific issues of the

underlying platform.

 85

Chapter 6 Conclusion and Future Work

Compared with sequential application development, parallel application development has

to deal with additional and complex issues such as creation and termination of processes,

mapping processes to processors, communication and synchronization among the

processes, and so forth. In parallel programming, besides the programming-related issues,

a key issue is task scheduling. In the past several decades, several algorithms

[23][24][25][26][27] were proposed to solve different kinds of scheduling problems, e.g.,

divisible load scheduling [22], independent task scheduling [9] and DAG scheduling [8].

Most of these algorithms are designed for CPU clusters and Grid. In recent years, a

newly-arising parallel system, the CPU-GPGPUs platform which has some different

features from the CPU clusters and the grid, has been intensively studied. The scheduling

problem on this platform is the focus of this thesis.

In order to design scheduling strategies for the CPU-GPGPUs platform, we first explore

its architecture and compare it with some other traditional parallel computing systems

such as cluster, grid, and multi-core CPU. This architecture is a combination of

message-passing and shared-memory models: the association of CPU and GPUs yields a

distributed memory system and they communicate with each other through messages.

Since CPUs and GPUs are multi- and many-core processors respectively, each of them is

also a shared-memory parallel system. Furthermore, the GPUs for general-purpose

computing are quite different from multi-core CPUs in several aspects, including the

architecture, the programming model (i.e., MIMD versus SIMD) and the execution

model.

 86

Another focus of this research is parallel patterns [13]. Parallel patterns are used to

describe recurring problems in the parallel computing field and to abstract the common

characteristics of a group of problems. Traditional uses of patterns are to facilitate in

application design and development. However, as is one focus of this research, these

common characteristics can also be used to guide the task scheduling of a parallel

program. In this thesis, we thoroughly study one classic pattern—the farm pattern. We

first classify the farm pattern and for each category we propose heuristic(s) to solve its

scheduling problem.

The farm pattern can be classified into two broad categories: data farm and function farm.

Two variations of data farm includes: divisible load farm and indivisible load farm.

Divisible load farm further has three variations: the one with equal size tasks, the one

with distinct size tasks and the one with unknown size tasks. Another taxonomy of

divisible load farm is based on the scale of the task size: if the task size is fairly large,

then the scheduling of tasks in this farm falls into Divisible Load Scheduling (DLS)

problems. If the task size is comparatively small, the farm will employ Independent Task

Scheduling strategies.

Based on the classifications mentioned above, we propose a set of scheduling strategies

(HASS: Heterogeneous Architecture Scheduling Strategies). is the heuristic for

divisible load farm with equal task size and unequal task size using divisible load

scheduling model; uses independent task scheduling model to solve divisible

load farm with equal task size; and is for the farm whose tasks are of distinct

sizes. is for the task scheduling of indivisible load farm and is for

 87

function farm. The major differences between these strategies and the traditional

approaches are that the former make use of the features of the underlying CPU-GPGPUs

system, based on classifications of the pattern(s), into consideration while assigning tasks

to workers, which contribute towards improved performance.

The same scheduling strategies for the farm pattern can be extended to some other

patterns, e.g., data-flow and pipeline.

As the scheduling strategies have been developed, we further implement a scheduling

framework, based on the classified farm patterns, on the CPU-GPGPUs system. The

framework hides some complexities arising from parallel application development. It

abstracts the application-independent parts which contain the structural information and

parameterizes the application-specific functional components. The applications

developed using the framework is comprised of two parts: A functionality part provided

by users, and another part that is implemented in the framework, encompasses the

pattern-related information such as the participants and their relations, and the scheduling

strategies. The evaluation results of the framework are also presented using a simple file

searching application.

Since we only focused on the farm pattern in this research, as a future work, we intend to

move on to other patterns and address their scheduling strategies. We need to analyze all

variations of each pattern since current experiences show that different variations can

have different scheduling strategies.

 88

Bibliography

[1]. PVM: Parallel Virtual Machine. http://www.csm.ornl.gov/pvm/.

[2]. MPI. http://www.mcs.anl.gov/research/projects/mpi/.

[3]. Intel Thread Building Blocks. http://threadingbuildingblocks.org/.

[4]. CUDA architecture. http://www.nvidia.com/object/cuda_home_new.html/.

[5]. General-Purpose Computation on Graphics Hardware. http://gpgpu.org/.

[6]. OpenMP Architecture. http://openmp.org/wp/.

[7]. J. Ullman. NP-complete scheduling problems. Journal of Computer and System

Sciences, 10: 384-393, 1975.

[8]. H. El-Rewini, T.G. Lewis, and H. H. Ali. Task Scheduling in Parallel and

Distributed Systems. Prentice-Hall, Inc. Upper Saddle River, NJ, NY, USA, 1994.

[9]. W.W. Chu, L.J. Holloway, L. Min-Tsung, and K. Efe. Task allocation in distributed

data processing. Computer, 13(11): 57-69, 1980.

[10]. R.D. Blumofe, C.E. Leiserson. Scheduling multithreaded computations by work

stealing. In 35th Annual Symposium on Foundation of Computer Science.

November 20-November 22, 1994. Santa Fe, FM, USA.

[11]. A. Aiken, A. Nicolau. Optimal loop parallelization. In Proceedings of the ACM

SIGPLAN 1988 conference on Programming Language design and implementation,

July 1988, New York, NY, USA

[12]. PCI and PCI Express. http://en.wikipedia.org/wiki/PCI_Local_Bus.

http://en.wikipedia.org/wiki/PCI_Express.

[13]. B. L. Massinggill, T. G. Mattson and B. A. Sanders. Patterns for Parallel

Application Programs. In PLoP Conference, 1999.

http://www.csm.ornl.gov/pvm/
http://www.mcs.anl.gov/research/projects/mpi/
http://threadingbuildingblocks.org/
http://www.nvidia.com/object/cuda_home_new.html
http://gpgpu.org/
http://openmp.org/wp/
http://en.wikipedia.org/wiki/PCI_Local_Bus
http://en.wikipedia.org/wiki/PCI_Express

 89

[14]. T.G. Mattson, B.A. Sanders, B. L. Massingill. Patterns for Parallel Programming

1st edition. Addison-Wesley Professional, Sep 25 2004

[15]. M.I. Cole. Algorithmic Skeletons: structured management of parallel computation.

MIT Press, Cambridge, MA, USA, 1989

[16]. D. Goswami. Parallel Architectural Skeletons: Re-Usable Building Blocks in

Parallel Applications. PhD thesis, Department of Electrical and Computer

Engineering, University of Waterloo, 2001

[17]. M. Cole. Bring skeletons out of closet: a pragmatic manifesto for skeletal parallel

programming. Parallel computing, 30(3): 389-406, 2004

[18]. D. Caromel, L. Henrio, and M. Leyton. Type safe algorithmic skeletons. In

Proceedings of the 16th Euromicro Conference on Parallel, Distributed and

Network-based Processing, page 45-53, Toulouse, France, Feb. 2008. IEEE CS

Press.

[19]. D. Goswami, A. Singh, and B. R. Preiss. From design patterns to parallel

architectural skeletons. J. Parallel Distrib. Comput., 62(4): 669-695, 2002

[20]. H. Gonzalez-Velez, M. Cole. Adaptive structured parallelism for distributed

heterogeneous architectures: a methodological approach with pipelines and farms.

Concurrency and Computation: Practice and Experience, 22: 2073-2094, 2010

[21]. A. Grama, G. Karypis, V. Kumar, A. Gupta. Introduction to Parallel Computing 2

edition. Addison Wesley, Feb 17 2003

[22]. V. Bharadwaj, D. Ghose, and T.G. Robertazzi. Divisible Load Theory: A New

Paradigm for Load Scheduling in Distributed Systems. Cluster Computing, 6: 7-17,

2003

 90

[23]. O.H. Ibarra and C.E. Kim. Heuristic algorithms for scheduling independent tasks

on nonidentical processors. J. Assoc. Comput. Mach. 24, 2: 280-289, Apr. 1977.

[24]. D. Yu and T. G. Robertazzi. Divisible Load Scheduling for Grid Computing. In

Fifteenth IASTED International Conference on Parallel and Distributed Computing

and Systems, 1: 1-6, Marina del Ray, CA; USA, 2003.

[25]. O. Beaumont, H. Casanova, A. Legrand, Y. Robert and Y. Yang. Scheduling

Divisible Loads on Star and Tree Networks: Results and Open Problems. IEEE

Transaction on Parallel and Distributed Systems. 16: 207-218. 2005.

[26]. Y. Yang, K. Raadt and H. Casanova. Multiround Algorithms for Scheduling

Divisible Loads. IEEE Transaction on Parallel and Distributed Systems. 16:

1092-1102. 2005.

[27]. T. D. Braun, H. J. Siegel and N. Beck. A Comparison of Eleven Static Heuristics

for Mapping a Class of Independent Tasks onto Heterogeneous Distributed

Computing Systems. Journal of Parallel and Distributed Computing, 61: 810-837,

2001.

[28]. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F. Freund. Dynamic

Mapping of a Class of Independent Tasks onto Heterogeneous Computing Systems.

Journal of Parallel and Distributed Computing, 59: 107-131, 1999.

[29]. Q. Hua, Z. Chen and C. M. Lau. A New Method for Independent Task Scheduling

in Nonlinearly DAG Clustering. In International Symposium on Parallel

Architectures, Algorithms and Network, Hong Kong, SAR, China, 2004.

 91

[30]. C. K. Luk, S. Hong and H. Kim. Qilin: Exploiting Parallelism on Heterogeneous

Multiprocessors with Adaptive Mapping. In 42nd Annual IEEE/ACM International

Symposium on Microarchitecture, New York, NY, USA, 2009.

[31]. P.J. Plauger, A. Stepanov, M. Lee and D.R. Musser. The C++ Standard Template

Library, 1st edition. Prentice Hall. 2001.

[32]. Virtual memory. http://en.wikipedia.org/wiki/Virtual_memory.

[33]. NVIDIA CUDA C Programming Guide version 3.2.

[34]. Intel Core i7-970 architecture. http://akensai.com/intel-i7-970.

[35]. M. Danelutto. Task Farm Computation in Java. High Performance Computing and

Networking. Lecture notes in Computer Science, 1823:385-394, 2000.

[36]. M. Boyer, D. Tarjan, S.T. Acton, and K. Skadron. Accelerating leukocyte tracking

using CUDA: A case study in leveraging manycore coprocessors. In IEEE

International Symposium on Parallel&Distributed Processing. Rome, Italy, 2009.

[37]. G. Horacio, L. Mario. A survey of algorithmic skeleton frameworks: high-level

structured parallel programming enablers. Software: Practice and Experience,

40(12): 1135-1160, 2010.

[38]. Berman Kenneth A, Paul Jerome L. Algorithms: Sequential, Parallel, and

Distributed. Course Technology. Boston, USA, 2005.

http://en.wikipedia.org/wiki/Virtual_memory
http://akensai.com/intel-i7-970.
http://en.wikipedia.org/wiki/Boston

