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ABSTRACT 

 Skin Friction of Micropiles Embedded in Gravelly Soils 

Abdul Karim Elsalfiti 

 

Micropiles are small in diameter (less than 300 mm) cast-in-place replacement piles, composed 

of steel reinforcement and placed or injected grout. They can withstand axial 

(compressive/tensile) and lateral loads, and work as components in a composite soil/pile mass or 

as small-diameter substitutes for conventional piles. Micropiles are used as underpinning 

elements to enhance bearing capacity of existing foundations and prevent excessive settlements. 

They can also be used as foundations for new structures and land stabilization. 

Micropiles are distinguished in providing innovative drilling and grouting techniques, which in 

return enhance load resistance. Reinforcement steel elements compromise to about 50 percent of 

the pile‟s volume and is considered to be the main load bearing element, while the grout serves 

to transfer the load to the surrounding soils.  

To evaluate the skin friction of micropiles embedded in gravelly soils, a numerical model was 

developed using the geotechnical software program GEO5 for piles. The model was validated 

using existing field tests. Upon achieving satisfactory results, the model was used to generate 30 

load tests that were performed on micropiles in three types of gravelly soils, ranging from Silty 

Gravel (GM) to Well graded Gravel (GW). Load-Displacement curves were then developed and 

carefully examined. The parametric factors and geotechnical properties that could affect the skin 

friction were examined in a detailed manner. Present capacities measured from the Load-

Displacement curves were then compared with existing design equations proposed by Reese and 
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O‟Neill, Hassan and O‟Neill and Kulhawy. Based on all the information gathered, modifications 

to existing design equations were developed when needed to predict the skin friction for 

micropiles embedded in Gravelly Soils, while providing a marginal factor of safety. 
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     CHAPTER 1 

INTRODUCTION 

 

1.1 OVERVIEW 

 

In 1952, an Italian contracting company began designing piles with diameters smaller than 

anticipated by several construction codes of that time. These piles were first introduced as Pali 

radice (Bruce, 1994).  Two decades later, the technique was brought to North America by the 

same company, where micropiles were used for several underpinning jobs in the city of New 

England, Massachusetts. The technique was viewed with skepticism in the U.S for years and its 

rapid growth did not begin until 1987. Today, micropiles are widely used for underpinning 

elements to arrest settling existing structures, as a form of enhancement to bearing capacity, and 

to support existing foundations when excavations are proceeding adjacent or right below them. 

Micropiles have been also applied for in situ soil reinforcement projects needed to strengthen the 

underlying soils and to stabilize slopes and landslides. They have gained enormous popularity in 

the deep foundations domain, knowing they can be drilled through difficult subsoil conditions, 

and cause minimal disturbance to the existing structure and its surroundings (Bruce et al, 1999). 

In addition, micropiles have also the advantage of being drilled under difficult conditions with 

equipments operating at low headroom and confined spaces.  

In spite of all the benefits micropiles bring for foundation support and in situ soil reinforcement, 

their applications are scarcely applied in North America. Further research is consequently needed 

in order to enhance their use. Most of the studies conducted on drilled shafts and micropiles in 

particular were based on analytical and field results in sand and clay where the soil-pile interface 
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is relatively smooth. In consequence, design equations under these conditions may not fully 

adhere to micropiles embedded in gravelly soils where the roughness of the soil-shaft interface 

and the impact of dilatancy can both increase the bearing capacity. A detailed study on 

micropiles embedded in gravelly soils is therefore needed. 

The purpose of this report will be to examine some important aspects in the theory of micropiles, 

and provide design procedures that quantify and classify the skin friction of micropile 

foundations embedded in gravelly soils.  

 

1.2 THESIS OBJECTIVES 

 

The major components of this report will be: 

a) To provide a literature review on micropiles and their applications. 

b) To carefully examine the design procedures of micropiles in granular soils. 

c) To develop a numerical model capable of measuring the skin friction of micropiles 

embedded in gravelly soils. 

d) To validate the numerical model with existing field test results. 

e) To generate data from the numerical model in order to evaluate the skin friction of micropiles 

embedded in gravelly soils.  

f) To conduct a parametric study on the capacity of micropiles embedded in gravelly soils. 

g) To develop a design approach for skin friction of micropiles embedded in gravelly soils. 

h) To present conclusions on skin friction of micropiles embedded in gravelly soils based on the 

findings of this present report. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 PILE FOUNDATION OVERVIEW 

 

Piles consist of long, slender pre-fabricated or cast-in-place structural members that are 

constructed to support new structures. They are mainly used when the bearing strata are found at 

great depths below the ground level and/or the structural loads are so high that spread footings 

would not withstand. Piles can also be adapted to support existing foundations undergoing 

significant settlements or suspected to fail, a technique often referred to as underpinning. 

Piles are available from a wide range of types, all falling within the categories of displacement or 

non displacement types (Thoburn and Hutchison, 1985). 

Displacement piles are forced or driven into the ground by vibratory or hammering methods, 

whereas non displacement piles are formed or placed in a hole excavated by augering methods, a 

technique also referred to as drilled shafts (Coduto, 2001).  

The material used for pile foundation generally consists of steel and pre-cast concrete for 

displacement piles, or grout (sand-cement water mix) reinforced with steel for non-displacement 

piles. The shapes and materials of piles are generally dictated depending on the requirements of 

each project.  

Piles are designed to withstand axial loads which are either compressive or tensile, and lateral 

loads. When compressive loads are applied, conventional piles resist the loads using both side 
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friction and toe bearing resistance (Coduto, 2001). Tensile loads, generally occurring from uplift 

pressure of the soil, are resisted by the skin friction and the weight of the pile itself. Lateral loads 

exert shear and moment on a pile, which are resisted by the stiffness of the pile and its 

surrounding soil. Figure 2.1 illustrates the transfer of structural loads from a conventional pile 

into the surrounding soil: 

M

V

P

WfWf

P

Pt

Ps

 

Figure 2.1. Transfer of structural loads from a conventional pile to the surrounding ground: 

Compressive loads, axial tensile loads, lateral loads. 
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2.2 LITERATURE REVIEW OF MICROPILES 

 

Bruce et al. (1999) defined a micropile as a small-diameter (less than 300mm) non displacement 

pile composed of placed or injected grout, and having some form of steel reinforcement to resist 

high proportions of the design load. The load exerted on the micropile is essentially absorbed by 

the steel, which occupies up to 50% of the entire micropile volume, and transferred through the 

injected grout to the surrounding rock or soil mass. The steel reinforcement is the major element 

carrying the load, and the grout serves to transfer the latter, by friction, to the surrounding soil. 

End bearing contribution is minimal in micropiles, given the nominal geometries involved. The 

grout/ground strength is achieved majorly by the subsoil conditions and the grouting method 

used (Armour and Groneck, 1998). The drilling technique could also play a significant role, yet 

less well quantified. Figure 2.2 illustrates the typical construction sequence of a single micropile. 

 

Figure 2.2. Typical construction sequence of a single micropile (Armour and Groneck, 1998). 
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Micropiles range between 100 and 250 mm in diameter, 20 to 30 m in length, and 300 to 1000 

kN in compressive or tensile loads, although compressive loads of over 5000 kN have been 

recorded (Bruce et al., 1999).  

Other technical terms have been used to define micropiles, including pinpiles, minipiles, needle 

piles, pali radice and root piles. However, these terms all refer to the “special type of small 

diameter bored pile” as described by Koreck (1978). 

Micropiles provide practical solutions for structural support and for In situ soil reinforcement 

(Armour and Groneck, 1998). Their applications are mainly used in the following domains: 

a) Underpinning of existing foundations. 

b) Foundation for new structures. 

c) Enhancement of bearing capacity for existing structures. 

d) Settlement reduction. 

e) Soil strengthening and landslide stabilization. 

f) Structural stability. 

 Micropiles can be favored over other piles, because they can be drilled under difficult subsoil 

conditions and the drilling equipments can function under limited overhead clearance. In 

addition, they allow minimum settlements to the existing and surrounding structures, and they 

provide high unit loads ranging from 300 kN to 5000 kN. 

In 1997, The Federal Highway Administration (FHWA) of the United States of America 

provided a comprehensive literature review on micropiles that included laboratory and field 

testing data, design methods, construction methodologies, site observations and monitored case 

studies. The report, entitled Drilled and Grouted Micropiles, State-of-the-Practice Review 
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(Bruce and Juran, 1998), contains a unique and innovative classification system for micropiles 

based on two main criteria: 

a) Philosophy of behavior (design) 

b) Method of grouting (construction) 

The philosophy of behavior establishes the method used in designing the micropile, while the 

method of grouting dictates the grout/ground bond capacity, which is generally the major 

constructional element for pile capacity. The same report discussed a classification system that 

contains a two-part designation: a number that denotes the type of design that shall be used, and 

a letter assigned to the method of grouting. 

 

According to Bruce and Juran (1997a), the philosophy of behavior can be classified in two 

principle cases: 

1. Case 1: directly loaded piles (individual or group of piles), whether for axial or lateral 

loading conditions. The pile reinforcement in this case resists most of the applied load.  

2. Case 2: „root piles‟, with support and stabilization by locking onto a three dimensional 

network of reticulated piles forming a soil/pile composite structure. The latter is referred 

to as a reticulated pile network. 

 

Case 1 micropiles can be used as alternatives to transfer the structural loads to a deeper and 

stronger soil layer. In this case, the applied load is primarily resisted by the steel reinforcement 

and transferred to the soil through the injected grout.    
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Case 2 micropiles, also known as a reticulated pile network, are mainly used for stabilization and 

support. In this case, the structural support is resisted by the entire reinforced soil mass. 

The method of grouting directly affects the grout/ground bond capacity. The classification in this 

case consists of a letter designation (A through D), based on the following criteria:  

a) Type A: grout is placed in the pile under gravity head only. Sand cement mortars, as well 

as neat cement grouts, can be used because the grout column is not pressurized. 

b) Type B: neat cement grout is injected into the drilled hole as the temporary steel drill 

casing is withdrawn. Pressures are typically in the range of 0.3 to 1 MPa. 

c) Type C: neat cement grout is placed in the hole, as done for type A. After 15 to 25 

minutes, before hardening of this primary grout, similar grout is injected once via a 

preplaced sleeved grout pipe at a pressure of at least 1 MPa. This type of pile is common 

practice only in France. 

d) Type D: neat cement grout is place in the hole, as done for Type A. Some hours later, 

when this primary grout is hardened, similar grout in injected via a preplaced sleeved  

Grout pipe. In this case, however, a packer is used inside the sleeved pipes so that 

specific horizons can be treated several times if necessary, at pressures of 2 to 8 MPa. 
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Figure 2.3. Classification of a micropile based on the method of grouting 

(Armour and Groneck, 1998). 

Armour and Groneck (1998) stated prominent factors that influence the type of micropiles to be 

chosen: 

a) Physical Considerations: 

Micropile drilling equipments have the advantage of being installed in restricted areas with 

low headroom and confined space. Unlike conventional piles, micropiles can be installed 
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within a few millimeters of existing walls or foundations and the equipments can be 

mobilized in up steep slopes and remote locations.  

b) Subsoil Conditions: 

Micropiles have the benefit of being installed through difficult subsoil conditions, ranging 

from cobbles and boulders to loose granular soils and soft clays. In addition, high 

groundwater conditions cause minimal disturbance to micropile installations and are an 

especially favorite option where there are subsurface voids caused by karstic limestone. 

c) Environmental Conditions: 

Because of their parametric configurations, micropiles cause less spoil from drilling than 

other conventional pile systems. The grout mix can be designed to withstand chemically 

aggressive ground water and soils. Installation of micropiles causes less disturbance and 

noise then conventional piling techniques, thus minimizing disturbance of adjacent 

foundations. The latter is a major benefit for projects conducted in congest urban areas.  

 

2.3 THE USE OF MICROPILES IN UNDERPINNING  

 

Bullivant and Bradbury (1996) acknowledged that settlement problems have occurred with us 

since the earliest times. Science was then limited in the design of foundations, and any 

knowledge regarding the existing soils and structures was acquired from local experience and the 

skills handed down by the artisans. It wasn‟t till the seventeenth century that a scientific 

approach was actually applicable, when lime came into use as the matrix for mortars and 

concretes made it more practicable to improve defective foundations. Almost exclusively, the 
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work involved techniques that can be grouped under the heading „traditional underpinning‟ 

(Bullivant and Bradbury, 1996). This technique involves the casting of mass concrete beneath 

the existing foundation and hence transferring the load to deeper and more competent strata. The 

method involves excavation of the soil beneath the existing foundation to a depth typically not 

exceeding 1.5m, and filling the void created with concrete. The traditional approach is widely 

used today, yet it has drawbacks and relies often on the arbitrary approval of an excavated base 

beneath the existing foundation, usually conducted without an adequate soil investigation, thus 

making it a risky process.  

The introduction of pile foundation has brought an innovative perspective in geotechnical 

engineering. The latter enabled foundations to reach more competent strata and gave the 

opportunity to design  foundation on the basis of the load bearing capacity of a single pile which 

could be verified by direct load test (Lizzi, 1982). However, conventional piles are quite 

troublesome when used for underpinning elements. Driven piles generally cause major 

disturbance to nearby structures and are therefore disregarded. Cast-in-situ piles (vertical, 

minimum diameter 400mm) are sometimes applied for underpinning. The shafts are casted right 

next to the walls and then connected the structure by reinforced concrete beams. This method 

involved the some cutting of the nearby walls, which is troublesome and dangerous during the 

construction period.  

The introduction of „palo radice‟ (root piles) in 1952 by the Italian firm Fendedile of Naples 

marked a major milestone in the restoration of old structures. The latter is constructed in the 

same fashion as a single micropile, shown earlier in figure 2.2 of this report. 
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Lizzi (1982) wrote that micropiles are ideal underpinning elements for the following reasons: 

a) Their execution did not introduce, even temporarily, any undue weakness or overstress in 

the structure as well as the soil. 

b) They responded immediately to additional structural movement. 

c) „pali radice‟ can be drilled under difficult subsoil conditions, including boulders, old 

foundations or other obstructions it may contain. 

d) They enabled the assessment of a new factor of safety (n), which will be n = nfound + npile. 

Lizzi (1982) elaborates that a „pali radice‟ used in underpinning is not completely utilized, 

compared to its full capacity: it could always bear much more than the assigned load, but it 

would lead to unwanted settlement in the existing foundation. He introduced, as shown in the 

advantages mentioned earlier, a new factor of safety for foundations underpinned with „pali 

radice‟: 

n = nf + np 

Where: 

nf> 1   factor of safety for the existing foundation 

np = Pult/Pall  factor of safety for the additional piles (Pult = ultimate load, Pall = allowable load).  

In the early stages, the factor of safety consists of both the safety of the existing foundation and 

that of the pali radice. The latter is due to the fact that pali radice function is complimentary and 

will only contribute when necessary; Once the structure undergoes settlement, the piling 

responds immediately and takes part of the total load, thus reducing the stress imposed on the 
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subsoil. Subsequent settlement would impose more loads on the piles until, eventually, the entire 

foundation is fully supported by them, and thus nf becomes negligible.  

Bruce and Juran (1997a) acknowledged that micropiles are widely used as underpinning 

elements, mainly to enhance bearing capacity and reduce settlements of existing foundations. 

Other purposes may include: 

a)  Arresting and preventing structural movement. 

b)  Repairing/replacing deteriorating or inadequate foundations. 

c)  Adding scour protection to their original elevation. 

d)  Transferring loads to deeper strata. 

 

Tsukada et al. (2006) provided an extensive investigation on the enhancement of the bearing 

capacity of existing footings reinforced with micropiles. The aim of the study was to examine 

some important aspects which classify and quantify the development of bearing capacity in 

micropiles foundations. Model tests were thus performed with and without micropiles 

reinforcement on different layers of sandy soils which are loose, medium dense and dense. Three 

types of micropiles with different bending stiffness and surface roughness were used.  The model 

tests consisted of circular footings that were reinforced with a group of micropiles and the 

arrangement of the micropiles was varied as well as the inclination of the micropiles. In the 

model tests, parametric variations of the number, length, and the inclination of the micropiles 

were adopted.  

Figure 2.4 illustrates the series of loading tests that were conducted in the investigation. The first 

test, denoted by the authors as F-T shown by figure 2.4 (a), was conducted to observe the load-
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displacement behavior of the circular footing without any reinforced micropiles. The second 

series of tests, denoted as MP, were conducted on a circular footing model suspended from the 

ground and reinforced with a series of micropiles, as shown Figure 2.4 (b). The type, length, 

number and skin roughness of micropiles were modified in this series. The third series of tests, 

denoted as FT-MP were conducted on circular footing models reinforced with vertical or 

inclined micropiles. Similar to the second series, the length, number, and skin roughness were 

modified in each test.  

 

Figure 2.4. Schemes of the loading tests: (a) FT-Tests, (b) MP – Tests, (c) MP FT-Tests with 

vertical micropiles and (d) MP-FT-Test with inclined micropiles (Tsukada et al., 2006). 

The FT- tests results were compatible with the existing theoretical models. In the case of the 

dense sand, the behavior was of the general shear type. Failure was thus noticed on the surface 

plane.  For medium and loose sand, the behavior was of the local shear type. Failure in these 

cases did not appear on the surface plane. The differences in the shear failure and loading 

behavior would be attributed to the dilative properties of sand as a function of the relative 

density.  
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The MP- tests revealed that the bearing capacity of the medium and loose sand happens to be 

less than half than that of the dense sand. This remarkable difference in bearing capacity with the 

reduced relative density can be attributed to several factors, including the reduction in the angle 

of internal friction, and the reduced values in the confining stress around the micropiles as 

induced by the contractive nature of medium and loose sand.  The influence of surface roughness 

was also remarked. The tests revealed a 50% improvement in the bearing capacity due to the 

improvement of the fixity of micropiles within the sand, as well as a slight increase in the 

diameter. The group effect of micropile, which is followed by the reduction in the bearing 

capacity per pile with increasing number of piles, was not recognized.  

For MP-FT tests, the dilative properties of sand played an important factor on the type of shear 

and displacement behavior. In dense sands, the horizontal displacement of the sand would be 

confined within a group of micropiles in the loading process, and the confinement would modify 

the end bearing and the skin friction of the micropiles. Hence, if the sand is dense and dilative, 

the confining pressure would increase more, otherwise it would decrease. The tests revealed that 

the bearing capacity of micropile groups in loose and medium dense sands is less than half of 

that in dense sand. It remains to be seen whether such conclusions can be made with gravelly 

soils. 

This study proved existing theoretical facts; an increase in the confining pressure on the surface 

of micropiles due to the dilatant behavior of dense sand would raise remarkably the skin friction 

of micropiles. An increase in the relative density brought about an increase in the ultimate unit 

skin friction fs for micropiles. The study also concluded that the ultimate unit skin friction fs and 

bending stiffness of micropiles are essential in increasing the bearing capacity of micropiles.  



16 
 

2.4 REVIEW OF CURRENT DESIGN PROCEDURES FOR MICROPILES  

 

The design of micropiles differs little from that required for any type of conventional piles: the 

system must be capable of sustaining the anticipated loading requirements within acceptable 

settlement limits, and in such fashion that the elements of that system are operating at safe stress 

levels.  

Although conventional piles are usually governed by external carrying capacity, Bruce (1994) 

stated that micropiles are majorly controlled by the internal designs, which are the pile 

components. That latter reflects both the relatively small cross section available and the 

unusually high grout/ground bond capacities that can be mobilized, as a consequence of the 

micropile installation methods.  

According to Dringenberg and Craizer (1990), there are three essential causes for the failure of a 

pile: 

1. Failure of the ground (External Design) 

2. Buckling of the pile. 

3. Internal failure of the pile. 

Mascardi (1982) added that the ultimate load that can be supported by a single micropile is 

defined by three lowest of the causes mentioned above.  
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Bruce and Juran (1997b) have later classified the general design of micropiles into two major 

categories: 

a) Evaluation of the structural (or internal) resistance of the (composite) micropile section that 

is governed by its area and the strength of the reinforcement provided. 

 

b) Geotechnical (or external) evaluation of the ultimate capacity of the micropile, which 

requires appropriate determination of the grout/ground bond interface parameters and the 

initial state of stress in the ground after micropile installation. 

This thesis is intended to focus on the geotechnical features of micropiles embedded in gravelly 

soils. Yet, a brief section is allocated to the internal design of micropiles. 

 

2.4.1 Internal Design of Micropiles 

 

The two major components for the internal design of a micropile are steel reinforcement and 

grout. Several factors dictate the nature of the reinforcement used, including the scope of the 

project, the required working load and permissible elastic deflection. Grout, which consists of 

water and cement, is measured by the water to cement ratio (w/c). The latter usually fluctuates 

from one case to another, depending on the nature of the groundwater or by the strength/time 

requirements (Bruce, 1994).  

Lizzi (1982) argued that relatively small-capacity Pin Piles designed to act only in compression 

usually comprise either a cage of high yield reinforcement bars supported by helical 

reinforcement, or a very limited number of high-strength bars. When such piles have to act in 
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tension, the latter solution is adopted. Thus, the internal design of a micropile would differ 

depending on whether it‟s subjected to compression loads or tensile loads.  

The design in compression for a micropile is numerically calculated using the following equation 

(Bruce and Juran, 1997b): 

Qw = g x f
‟
c x Ac + s x fy. x Ay   

For tension micropiles, the equation is: 

Qw = s‟ x fy x Ay    

Where 

Qw  = Design ultimate axial load. 

f‟c  = Characteristic unconfined compressive strength of the grout. 

Ac  = Area of pile grout. 

fy = Characteristic yield stress of reinforcing steel. 

Ay  = Area of steel reinforcement. 

g,s, and s‟ = Partial factors for the materials that ensure that the mobilized stress levels in the 

steel and grout are limited to acceptable values (values specified by the design codes). 

Table 2.1 summarizes the allowable design stresses in steel and grout cement in accordance to 

American design codes, including AASHTO (1992), MBC (1988), and BCNYC (1992). 
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Table 2.1. Allowable stress level in steel and grout cement in accordance to BCNYC (1991), 

AASHTO (1992) and MBC (1988). 

Codes BCNYC AASHTO MBC 

Casing/pipe 0.35 fy 0.25 fy 0.4 fy 

Grout cement 0.25 f'c 0.40 f'c 0.33 f'c 

Core/Rebar 0.5 fy 0.25 fy * 0.4 fy 
* with casing, without casing: Rebar = 0.2975 fy and grout = 0.253 f‟c 

 

The allowable working load is conducted by dividing the ultimate axial load by an appropriate 

factor of safety. According to AASHTO (1992), a factor of safety of 1.5 is normally adopted. 

Gouvenot (1975) and Mascardi (1982) both concluded that failure of micropiles through 

buckling may only take place in soils with deplorable mechanical properties such as loose silts, 

plastic clay or peat. 

In general, buckling of piles depends on the soil-pile interaction, which involves the pile section 

and elastic properties, soil strength and stiffness as well as the eccentricity of the applied load. 

Buckling is generally not the decisive factor for the micropile design (Bruce, 1994). 

 

2.4.2 External Design of Micropiles  

 

The load transfer mechanism of micropiles depend on several parameters, including the 

installation technique; drilling and grouting pressure; initial state of stresses; engineering 
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properties of the underlying soils (relative density, permeability, and shear strength properties) 

(Bruce and Juran, 1997b). 

Hanna and Nguyen (2003) stated that the load transfer from the micropile to the adjacent ground 

requires some relative movement. The latter is controlled by the elastic modulus of the 

composite-reinforced micropile and the load transfer mechanism.  

Some micropiles are fully bonded along their entire lengths, while other micropiles are partially 

bonded where casing is kept through the upper soft layers to prevent negative skin friction.  

 

Figure 2.5. Typical load-transfer curves from a “partially bonded” and a “fully bonded” 

micropile to the soil (Lizzi, 1982). 

Micropiles can be subjected to both tensile and compressive loading. Generally, the shape of the 

load displacement curves obtained from axial compression and tension tests are similar, although 
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movements are larger in tension. Therefore, most of the existing methods for analyzing 

compression tests can also be applicable to tensile results (Hirany and Kulhawy, 1989).  

When compressive axial loads are applied on a micropile, the load carrying capacity Q is ideally 

transferred to the soil by both the ultimate skin friction capacity Qs and the end-bearing capacity 

Qp of the pile. Thus, the total load is equal to 

 

Q = Qp + Qs    (1)   (Bruce and Juran, 1997b) 

Qs Qs

Qp

P

W

 

Figure 2.6.  Load-transfer behavior of a drilled shaft subjected to an axial compressive load. 
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However, the geotechnical design of micropiles is conducted in a fashion where the load transfer 

to the ground occurs mainly through the grout-to-ground skin friction, neglecting any 

contribution from end bearing (Bruce, 1994; Bruce and Juran, 1997b). The latter is due to the 

following reasons: 

a) The high grout-to-ground bond capacities that can be attained as a consequence of the 

micropile installation methods.  

 

b) The area available for the skin friction is significantly greater than that for end bearing. For a 

pile that is 200 mm in diameter with 6 m long bonded length, the area available for skin 

friction is 120 times greater than that available for end bearing. 

 

 

c) The pile movement needed to mobilize frictional resistance is significantly less than that 

needed to mobilize end bearing. Brown et al (2010) acknowledged that maximum frictional 

resistance occurs at a relatively small displacement and is independent of the shaft‟s 

diameter, while end bearing resistance occurs at a relatively large displacement and is a 

function of shaft diameter and geometry type. 

 

Bruce et al. (1999) stated that end bearing would only be realistic for moderately loaded 

micropiles founded on competent rock. Therefore, the end-bearing load Qp becomes negligible 

from equation (1). 
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Jeon and Kulhaway (2002) acknowledged that micropiles have a high ratio of the circumference 

to the cross-section area, and therefore rely essentially on skin resistance for the load transfer. 

They added that tip resistance is negligible in most cases.  

Lizzi (1985) provided the following empirical formula to quantify the ultimate skin friction 

capacity Qs of a micropile: 

Qs = π x D x L x K1 x I 

Where 

D =  Drilling Diameter of Pile. 

L =  Length of the Pile. 

K1 = Coefficient representing average bond  between pile and soil. 

I =  Non-Dimensional coefficient of form. 

The ultimate skin friction capacity Qs was then developed by the following equation: 

Qs = π x D x Σ fsi dli   (2)  (AASHTO, 1992) 

 
 

 

Where: 

 

fsi =  Ultimate unit skin friction for the soil layer i. 

D = Effective diameter of the micropile. 

m = Number of soil layers. 

dli = Depth of considered layer. 
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The ultimate skin friction capacity Qs is a product of the ultimate unit skin friction fs and the 

cylindrical surface area over which skin friction develops at the micropile interface (Brown et al., 

2010). 

The ultimate unit skin friction fs  varies upon several factors, including the installation method, 

drilling and grouting pressure, loading type (tension and compression), initial state of stresses, 

engineering properties of the soil and its relative density (Bruce and Juran, 1997b). The grain 

size and porosity of the soil in place govern the grout penetrability through the surrounding soils. 

In granular soils (gravel, sand) and weathered rock, with relative high permeability, grout will 

penetrate through the surrounding pores. In fine grained cohesionless soils, penetration of the 

grout through the pores would be problematic; thus increasing the grout pressure would provide 

a higher radius of grout permeation into the ground and a more effective densification of the 

surrounding ground. The latter would enhance the grout/ground interface properties and increase 

the micropile‟s axial capacity.  

The computation of the ultimate unit skin friction fs is often computed depending on the 

micropile type (A, B, C or D) and the ground type (cohesionless soils and cohesive soils, soils 

and rock).  

 

For type A micropiles, the ultimate unit skin friction fs   in cohesionless soils is calculated using 

the beta  method (Bruce and Juran, 1997b): 

 

fs = ‟vz  (3)  

 

Where σ‟
vz is the vertical effective stress at depth z and  is the proportionality coefficient. 
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There are several factors affecting the coefficient of proportionality , such as local variations to 

the earth pressure from one site to another, soil characteristics (effective pore size, initial angle 

of shearing resistance, and soil compressibility) as well as the construction techniques.  

 

Reese and O‟Neill (1988) provided an empirical method to measure the coefficient of 

proportionality  based on a series of 41 drilled shaft load tests. The ultimate unit skin friction in 

sand was computed by 

 

fs =‟vz < 200kPa limit  (4) 

 

Where: 

 

1.5 – 0.245 z
0.5

  with limits of  1.2 >  > 0.25 

 

The parameter  depends only on the depth and is totally independent of the soil density, 

although the vertical effective stress found in equation 4 is a function of density. 

 

With subsequent testing, Hassan and O‟Neill (1994) provided an empirical relationship 

correlating values with the SPT count N. The relation was provided by the following equation 

 

For N > 15 nominal= 1.5 – 0.42[z(m)]
0.34

 , 1.2 > > 0.25   (5) 

For N < 15  = nominal  N/15 
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The Kulhawy method (1991) to determine the ultimate unit skin friction fs is based on soil 

mechanics principles. As illustrated in Figure 2.7, the ultimate unit skin friction fs is directly 

proportional to the normal stress acting on the soil-shaft interface.    

The ultimate unit skin friction fs for the Kulhawy method is given by equation (3) and the 

coefficient of proportionality is given by the equation 



 = K x tan δ   (6) 

 

Where: 

K = coefficient of earth pressure at the wall of the drilled shaft at side shear failure.  

δ = effective stress angle of friction for the soil-shaft interface. 

 

 



fs ‟h tan 

'h = K ‟v

 

 

Figure 2.7. Model of unit skin friction for drilled shafts in cohesionless soils (Brown et al, 2010). 
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Kulhawy (1991) proposed that δ can be expressed as a fraction of the angle of shearing 

resistance of soil . A sound construction technique with a rough interface alongside the shaft, 

the fraction becomes equal to 1. For calculations in this thesis, the fraction δ/is assumed to be 

1.0.The coefficient of lateral earth Pressure K is a difficult parameter to determine. Lateral Earth 

Pressure K is a function of the original at rest earth pressure K0, and the stress changes caused by 

the construction, loading and desiccation. Field tests have shown K values ranging from 0.1 to 

over 5. A simple relationship to compute K0 based on the angle of shearing resistance of soil 

and the overconsolidation ratio (OCR) is provided by Mayne and Kulhawy‟s (1982): 

 

K0 = (1- sin) OCR
sin 

Where OCR refers to the over-consolidation ratio.  

 

The typical values for the angle of shearing resistance and OCR, depending on the type of soil 

are provided in the following table: 

Table 2.2. Typical values for angle of shearing resistance of Soil and Overconsolidation Ratio 

(Jeon and Kulhawy, 2002). 

Soil Type deg) OCR 

Loose Sand 28-32 1-3 

Medium Dense Sand 32-38 3-10 

Dense Sand, Gravel 38-45 10-20 
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By investigating hundreds of load tests, Kulhawy found that K/Ko varies between 0.67 and 1. 

The main factor affecting this ratio would be the construction method and its influence on the in 

situ stress.   

 

Hanna and Al-Romhein (2008) conducted an experimental investigation on the at-rest pressure 

of overconsolidated cohesionless soil acting on retaining walls. The tests results compared well 

with Kulhawy‟s empirical formula.  The authors further proposed the following empirical 

formula: 

K0 = (1- sin) OCR
(sin-0.18) 

 

Rollins et al. (2005) collected and studied the results of 28 axial tension (uplift) load tests that 

were performed on drilled shafts in soil profiles ranging from uniform medium sand through 

well-graded sandy gravel. The purpose of the study was to evaluate skin friction of drilled shafts 

in gravelly soils. Typical load displacement curves were developed to assess the skin friction. 

Based on measured skin friction and the angle of shearing resistance, the coefficient of lateral 

earth pressure K were computed for the load tests. The back-calculated K values were plotted 

versus depth and the best-fit equation for K was found to be 

 

K = 4.62e
(-0.137z)

  (7) 

Where z signifies the depth below the ground surface. 

 

Using this empirical relationship, the ultimate unit skin friction fs was then computed using 

equation (6) and (3). The computed and measured ultimate unit skin friction fs values from the 
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field tests are plotted in figure 2.8 and there‟s a significant spread about the line indicating 

perfect agreement. It is revealed form the graph that the computed capacities are no greater than 

two times the measured values; hence a factor of safety of 2.0 would be ideal in using this 

particular method. Rollins et al. modifications to Kulhawy‟s method (1991) were effective for 

drilled shafts embedded in gravelly soils. 

 

 

Figure 2.8. Comparison of measured and computed skin friction for load tests in gravel using 

Kulhawy method (1991) with K estimated in Eq. (7) (Rollins et al., 2005). 

 

Other relationships of β vs. depth have been anticipated by several authors, but no unique 

relation was developed due to the various factors affecting the coefficient of proportionality  

(Bruce and Juran, 1997b).  
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The ultimate skin friction capacity Qs for type B micropiles in cohesionless is measured through 

the following expression: 

Qs = π x D x Σ fsi dli  

 

Where: 

fsi =  Ultimate unit skin friction for the soil layer i. 

D = Effective diameter of the micropile. 

m = Number of soil layers. 

dli = Depth of considered layer. 

 

This is the same expression used to calculate the skin resistance for type A micropiles. Yet, the 

ultimate unit skin friction fs is measured using the following equation: 

fs = pg . tan Ø’    

 

Where: 

pg  =  Grout pressure. 

Ø
’ = Effective angle of shearing resistance for the soil, usually obtained from empirical    

Correlations of SPT vs. Ø.  

The β method used for type A micropiles has been also used for pressure grouting type B 

micropiles, given by the following expression: 

 

β = K1K2 tan Ø’ 
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Where: 

K1 = Earth pressure coefficient. 

K2 = Coefficient representing the increase in effective diameter of the pile shaft due to grouting 

pressure. 

 

Littlejohn (1970) has recommended values for K1 that range between 1.4 and 1.7 for compact 

sand (Ø
‟
 = 35

0
) and compact sandy gravel (Ø

‟
 = 40

0
), with K2 varying ranging between 1.2 and 

1.5 for dense sand, 1.5 and 2 for medium sand, and 3 and 4 for coarse sand and gravels.  

 

Littlejohn (1980) also recommends a combined K
‟
 factor (i.e., K1 x K2) ranging from 4 to 9, with 

K
‟
= 4 for finer gravel and K

‟
= for coarser materials. The latter is only applied for type B 

micropiles, where grout injection pressures range between 0.3 and 0.6 MPa.  

 

Types C and D micropiles are installed using high pressure grout surpassing 1MPa. The latter is 

conducted using multiple grouting sessions or innovative grouting techniques. High pressure 

grout could cause fissure that interlocks with the surrounding ground, thus increasing 

considerably the axial loading capacity of the micropile. Types C and D micropiles are usually 

selected when the subsoil conditions are loose and high pressure grouting is needed to create a 

stronger grout-ground bonding. The scope of this current thesis will be to focus on micropiles 

type A where the grout is poured through gravity head only. 
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CHAPTER 3 

NUMERICAL MODEL 

 

3.1 GENERAL 

 

In micropiles, skin friction resistance is considered to be the essential element carrying the 

applied loads.  End bearing resistance is negligible given the micropile‟s parametric 

configurations. For micropiles embedded in gravelly soils, the grout is generally applied using 

gravity head only. Hence, type A micropile is generally ideal for design. Grouting with pressure 

as executed by type B, C and D is not necessary, because there is enough friction between the 

surrounding soil and the grout to generate adequate resistance with relatively small movement. 

Multiple grouting is generally needed when the surrounding soil consists of fine sand, silt or clay 

where pressure is needed to allow grouting to interlock with the surrounding pores.   

Current design equations are mostly attributed for sand and clay where the soil-shaft interfaces 

are much smoother. Such theories may provide conservative results for gravelly soils, where an 

increase in the capacity can be anticipated because of the roughness of the soil-shaft interface. 

Figure 3.1 reveals the difference in the soil-shaft interface roughness between sand and gravel.  
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Figure 3.1. Roughness of the soil-shaft interface for Sand (top) and Gravel (bottom) 

 (Rollins et al., 2005). 

 

This present study investigates the current design equations concerning skin friction for drilled 

shafts in cohesionless soils, and develops a numerical model capable of generating data that is 

needed in order to present innovative design procedures for the skin friction of micropiles 

embedded in gravelly soils. 
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The study will be conducted on micropiles that abide to the following conditions: 

1) Pile/Soil interaction: 

Type 1 micropile, load applied directly under axial loading conditions. 

2) Grouting Technique: 

Type A, grout is placed under gravity head only. The micropile is fully bonded with the 

surrounding soils. 

3) The cross-sectional radius will be uniform along the interface, but may vary in dimension 

from one test to another  

 

3.2 GEO5 SOFTWARE PROGRAM OVERVIEW 

 

Several computer programs currently exist in the civil engineering field that provide the 

practitioner engineers with adequate solutions needed in their respective professions. These 

software programs serve a wide variety of civil engineering disciplines, including geotechnical 

engineering, structural engineering, hydraulic engineering, transportation engineering and 

environmental engineering. In the geotechnical engineering domain, the software programs allow 

to solve numerous foundation problems including bearing capacity of strip and raft foundations, 

ultimate and allowable loads of pile foundations, slope stability, retaining walls, earth retaining 

structures, embankments, tunnels and underground structures. 

GEO5 software program kit allows the user to solve a variety of geotechnical engineering 

problems that are mentioned above. Each program is used to analyze a different geotechnical 

task but all modules communicate with one another to form an integrated suite. The program has 

enjoyed wide success in the geotechnical engineering domain for its user-friendly interfaces and 
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its versatility to solve a wide range of problems. The programs are based on typical analytical 

methods and the Finite Element Method (FEM). 

 

3.3 GEO 5 PROGRAM FOR PILES 

 

The software program GEO5 for piles analyzes the limit loading curve, distributions of forces 

and displacements developed along the pile through the vertical spring method. The program 

includes a Finite Element Method (FEM) approach, where the pile is represented by standard 

beam elements, and the response of surrounding soil follows from the solution of layered subsoil 

as a generalization of the Winkler and Pasternak models. The Winkler model has been used 

effectively in geotechnical analyses of a beam on an elastic soil layer and pile behaviors resulting 

from horizontal loads (Tanahashi, 2007). The model originated from Winkler's hypothesis, 

which states that the deflection at any point on the surface of an elastic continuum is proportional 

only to the load being applied to the surface and  is independent of the load applied to any other 

points on the surface (Winkler, 1867). This hypothesis leads to a mechanical model of a 

continuum that is assumed to consist of mutually independent vertical linear springs. 

In the Finite Element Method (FEM), the elastic rigid plastic response in shear is assumed along 

the soil pile interface in view of the Mohr-Coulomb failure criterion. The normal stress acting on 

the pile is determined from the geostatic stress and soil pressure at rest.  

The influence of groundwater is introduced into the shear bearing capacity and the depth of 

influence zone below the pile heel. 
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The pile could attain incompressible subsoil, which substantially influences its response. This 

effect is also taken into account in the program. The pile settlement can also be influenced by the 

settlement of the surrounding terrain. In particular, settlement of soil may reduce the pile bearing 

capacity. The pile settlement increases without increasing load. This phenomenon usually exists 

in cohesive soils and is known as negative skin friction. The latter is not in the scope of this 

current thesis.   

The solution procedure for the bearing capacity of the pile in the Finite Element Method consists 

of several steps: 

1) The pile is represented as a member composed of several beams. The minimum number 

of beams is 10. 

2) Each element is supported at its bottom node by a spring. The spring stiffness serves to 

model both the shear resistance of skin and the pile heel the stiffness of soil below the 

pile heel. 

3) For each element the limit value of shear force transmitted by skin Tlim is determined. 

4) The pile is loaded at its top end by increments of the vertical load. For each load 

increment the magnitude of spring force for each element is determined. This value is 

then compared with the value of Tlim for a given element. If a certain spring force exceeds 

the value of Tlim its magnitude is set to Tlim. Analysis for this load increment is then 

repeated so that the force is redistributed into other springs. Such an iteration within each 

load increment proceeds as long as each currently active spring does not transmit force 

that is less than its corresponding Tlim. Gradual softening of individual springs results in 

deviation of the limit loading curve from linear path. It is evident that for a certain load 

level all springs will no longer be capable of increasing its force and the pile begins to 
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settle in a linear manner supported only by the heel spring that has no restrictions on the 

transmitted force. 

5) As a result, the analysis provides the limit loading curve, forces developed in the pile and 

a graph showing variation of shear as a function of deformation at a given location.  

For each element of the analyzed pile, the program determines the limiting value of the force that 

can be transmitted by the pile skin at the location of a given element. Its value depends on the 

geostatic stress  

z = ∑ x h 

 

Where: 

 

= unit weight of soil 

 

h = height from ground surface 

 

Summation sign denotes the geostatic stress is summed over the individual layers of the soil. 

 

The allowable shear stress is then given by 

 

 
 

c + z k tan 

Where: 

c = cohesion of soil at the location of beam. 

 = angle of shearing resistance of soil. 

k = coefficient of increase of allowable skin friction due to technology. 

 

The allowable shear force then follows from: 

 

Tlim = OL 
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Where: 

O = length of perimeter of pile skin. 

L = length of pile beam. 

 

3.3.1 Coefficient of Skin Friction 

 

A specific input parameter is the coefficient of skin friction k due to applied technology of 

construction. By default the value of this coefficient is set equal to one. There is no 

recommendation by standard for its specific value. It has been found from field tests on piles that 

the value of k is usually greater than 1 and may reach the value of 1.5. Theoretically, however, it 

may attain values even less than 1 (GEO5, User Guide). 

 

3.3.2 Depth of Deformation Zone 

 

The suggested depth of influence is a variable which considerably influences the stiffness of soil 

below the pile heel. The deeper the influence zone, the smaller the stiffness of subsoil. When the 

depth of influence zone approaches in the limit zero, the stiffness of subsoil tends to infinity. 

The depth of the influence zone depends both on the subsoil parameters and magnitude of the 

applied surcharge, thus on stress below the pile tip. The GEO5 program for piles assumes that 

the depth of influence zone is found in the location, where the stress below the tip equals the 

geostatic stress. Such an idea is illustrated in the following figure: 
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Figure 3.2. Determination of the depth of influence zone below the pile heel (GEO5 User Guide). 

 

 

3.3.3 Skin Resistance of Pile 

 

The skin resistance of pile is the analysis represented by stiffness of springs supporting 

individual beams of a pile. This stiffness is associated with material parameters of the Winkler-

Pasternak model C1 and C2. The values of C1 and C2 are determined from parameter Edef, 

known as the deformation modulus of subsoil. They depend on the depth of influence zone, 

which varies with the pile deformation (settlement). The variability of influence zone is in the 

analysis determined such that for zero deformation it receives the value of 1x the pile diameter 

and for deformation at the onset of skin failure equals 2,5x the pile diameter (GEO5, User 

Guide). 
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The decisive parameter for the determination of magnitudes of C1 and C2 is the deformation 

Modulus. Caution must be taken when estimating the value of Edef from deformational 

characteristics of soil using standards. In particular, in case of long piles we are essentially 

dealing with deep seated foundations and the soil at the pile heel will certainly experiences 

higher stiffness than that proposed by the standard for spread footings. This holds particularly for 

cohesive soils. The most reliable estimates are of course those obtained directly from 

experimental measurements. 

Formulas given below serve to determine the stiffness of springs representing the shear 

resistance of pile skin as a function of computed parameters of the elastic subsoil. They depend 

on the shape of cross-section and for the implemented cross-sections they receive in the form of 

a circle: 

 

Where: 

r  =  radius of the pile cross section. 

C1, C2 = Subsoil Parameters 

K1(a r), K2(a r) = Values of the modified Bessel functions. 

The parameter  attains the value: 


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3.3.4   Increments of Vertical Loading 

 

The analyzed pile is loaded gradually in ten increments. The magnitude of load increments in 

individual steps is determined prior to the actual analysis. In particular, the program searches for 

such a magnitude of load that causes the pile to exceed the limiting value of settlement specified 

for the computed limit loading curve (GEO5, User Guide). 

 

3.4 MODEL COMPOSITION 

 

The following criteria were used to create the model: 

1) Micropile will be subject to axial compressive loading. 

2) Grout will be placed under gravity head only (Type A). 

3) Micropile fully bonded along the soil/shaft interface. 

4) Micropile will have a uniform cross sectional radius along the interface, yet the 

dimensions may vary from one test to another. 

5) Boundary condition 50 times the pile radius in the lateral direction and 2 times the pile 

length below tip. 

6) Finite Element Method (FEM) will be used to quantify behavior of micropile. 

7) Micropile will be tested through three different types of gravelly soils. The geotechnical 

properties for these soils are indicated in table 3.2 of this present report. The micropile 

will be embedded either in a single type gravelly soil or through two different types of 

gravelly soils overlying one another. 
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8) The unit weight of the grout will be taken at 23kN/m
3
 and catalogue standard C 20/25 for 

concrete will be opted throughout the investigation.  For the reinforcement bars, standard 

catalogue B500 will be used. 

Model will be used to study relationships between length (L), diameter (D), slenderness ratio 

(L/D), and angle of shearing resistance () for micropiles embedded in gravelly soils. Present 

values obtained from the model will then be compared with existing theoretical equations 

that were discussed in Chapter 2 of this present report.  

 

3.5 NUMERICAL MODEL STEP BY STEP PROCEDURE USING GEO5 FINITE       

      ELEMENT METHOD (FEM) 

 

In order to establish a numerical model capable of generating accurate data, the user in the GEO5 

FEM program for piles is ought to fill out a step-by-step procedure that includes several frames, 

which are the following: 

1. The Project Frame:  This frame serves to input the basic project data and to specify the 

overall setting of the analysis run. The frame contains an input form to introduce the 

basic data about the analyzed task: Project general information, the Project description, 

date and location. The frame also allows the user to choose analysis units from metric to 

imperial. 

2. The Analysis Method Frame: This frame provides standards or methods to be used in 

the analysis of the pile. The user needs to select the type of analysis for the tested pile: 
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a) Classical theory. 

b) Finite Element Method (FEM). 

The Finite Element Method (FEM) was chosen throughout this present study. 

3. The Profile Frame: This frame contains a table with a list of inputted interfaces. The 

thickness of each individual subsoil layer is indicated in this section.  The program allows 

for raising or lowering the top point of a pile in relevance to the ground level. 

4. The Soils Frame: This frame contains a table with a list of inserted soils. The table also 

provides information about currently selected soil displayed in the right part of the frame. 

The basic soil data needed for the program are the following: 

 

a) Unit weight of soil,  

b) Angle of  shearing resistance,  

c) Cohesion, c 

d) Void‟s ratio, v 

e) Saturated unit weight, s. 

f) Oedometric modulus EOD. 

The basic soil data that were inserted for the present load tests are provided in table 3.2 of this 

current report. 
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Figure 3.3. Frame (Soils) in GEO5 for piles. 
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Figure 3.4. Dialogue window for insertion of soil data under the Soils Frame. 

5. The Assign Frame: The Assign frame contains a list of soil profiles that were 

constructed in the previous frame. Each profile is graphically represented. The user 

assigns the soil profile to its respective layer. In this report, the load tests were conducted 

through three main types of soil profiles: 

a) Silty Gravel (GM). 

b) Gravel with traces of Fines (G-F). 

c) Well Graded Gravel (GW). 
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Figure 3.5. Frame “Assign” in GEO5 for piles. 

 

6. The Load Frame: This frame contains a table with a list of inputted loads. The user 

assigns the magnitude and scale of vertical force, the bending moment and the horizontal 

force. The vertical force was constantly given a magnitude of 500kN for all the load tests 

that were conducted in this report. 
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Figure 3.6. The Frame “Load” in GEO5 for piles. 

7. The “Geometry” Frame: allows for specifying the pile cross-section (circular, variable, 

rectangle, I-type, cross-section) based on the theory of analysis specified in the Analysis 

frame. The selected shape with graphic hint is displayed in the central section of the 

frame. Input fields serve to specify dimensions of the selected cross-section. Cross 

sectional characteristics are computed by default, but they can also be specified (tubes, 

hollow cross-sections, steel, I-profiles. 

Given the pile is analyzed using the Finite Element Method, it is possible to account for 

the influence of pile technology by selecting the specific type of pile or directly by 
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inputting coefficients. In this study, the cross section of the micropiles testes were 

circular and the type of pile was chosen to be continuous flight auger Pile 

 

Figure 3.7. The Frame “Geometry” in GEO5 for piles. 

8. The Material Frame: This frame allows the user to specify the material parameters. The 

bulk weight of the structure and material of a pile (concrete, timber, steel) are introduced 

and inputted in this frame.  

The elastic and shear modulus need to be specified when assuming timber or steel piles.  
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In the case of a concrete pile, the concrete material and the parameters of transverse and 

longitudinal steel reinforcements are required. The user can either opt to insert the 

required information manually or choose from the existing catalogue of materials. In this 

report the unit weight of the grout was taken at 23kN/m
3
 and catalogue standard C 20/25 

for concrete was taken throughout the investigation.  For the reinforcement bars, standard 

catalogue B500 was taken throughout the report. 

 

 

Figure 3.8. The Frame “Meterials” in GEO5 for piles. 
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9. The Water Frame:  This frame serves to specify the depth of ground water table. The 

latter is always in relevance to the ground surface.  

 

10. The Negative Skin Friction: This frame serves to specify the settlement of surrounding 

soil and the depth of influence zone. This frame is only available when the Finite Element 

Method is selected for analysis. Negative skin friction occurs when the excess pore water 

pressure held in cohesive soils begins seeping, thus causing the pile to undergo excessive 

settlements and leading to a downdrag force along the pile‟s interface. This phenomenon 

exists in cohesive soils and therefore not covered in this current thesis. 

 

 

3.6 TYPICAL LOAD DISPLACEMENT RESULTS 

 

The load displacement results describe the variation of vertical carrying capacity load Q as a 

function of the pile displacement. GEO5 FEM program for piles offers the construction of this 

curve for the maximal value of settlement equal to 25 mm. This magnitude, however, can be 

adjusted up to the value of 100 mm before running the calculation. In this report, the load 

displacement values taken from GEO5 FEM program for piles were plotted in the graph software 

program DPlot. The graph software program was used to obtain précised load-displacement 

curves. A typical load-displacement curve for a single micropile embedded in gravelly soil is 

shown in Figure 3.9. 
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Figure 3.9. Load-Displacement curve for a single micropile embedded in Well Graded Gravel 

(GW) taken from GEO5 program for piles and plotted through DPLOT. 

 

The load carrying capacity of deep foundations is often assessed through load displacement 

curves obtained from axial compression and uplift tests. These curves generally exhibit any one 

of the three shapes show in Figure 3.10 (Hirany and Kulhawy, 1989). Peak A and the asymptote 
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of B clearly define the ultimate capacity of the foundation in question. However, if the load 

displacement curve resembles C, the load carrying capacity of the foundation is not clearly 

defined as the previous two shapes. Load displacement curves for non-displacement foundations 

(drilled shafts, augercast piles, and micropiles) ideally fall under Curve C (Kulhawy, 2002). The 

load displacement curves computed for micropiles in GEO5 software perfectly fit criterion C. 

 

Fig 3.10. Typical load-displacement curves for deep foundations (Kulhawy and Hirany, 2002). 
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Davisson (1972) proposed a method to define the failure load from the load displacement curve 

under shape C: 

1. Drawn the load-displacement curve. 

2. Drawn a tangent line through the initial points of the load-displacement curve. 

3. Drawn a line parallel to the tangent line, at an offset equal to 0.15 + D/120 (where D is 

the pile diameter in inches). 

4. The load corresponding to the intersection of the load-displacement curve and this offset 

is the slop tangent load (Lst). 

Hirany and Kullhawy (1989, and 2002) suggested that the failure load should be taken at L2, that 

is the failure curve threshold that follows when the non-linear load-displacement response 

occurs. Lst and L2 points are illustrated in Figure 3.11. The Lst value falls in the non-linear region, 

which is considerably very low to regard it as a failure point. Jeon and Kulhawy (2002) 

conducted several studies on the relationship between Lst and L2 through drilled shafts, augured 

cast-in-place piles and pressure-injected footings and found that L2 can be consistently evaluated 

at 1.18 Lst. In this current study, L2 values will be taken to evaluate the measured capacities. 



54 
 

 

Figure 3.11. Illustration of points LST and L2 on a load displacement Curve  

(Jeon and Kulhaw, 2002). 

 

3.7 MODEL VALIDATION 

 

The numerical model developed in the present study was used to compute the skin friction of 

micropiles embedded in gravelly soils. 

To validate the numerical model, six full-scale field tests taken from three different sites were 

used for comparison. The site location, micropile type, geotechnical data and failure loads (Lst) 

recorded from the field tests are indicated in table 3.1. 
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Table 3.1. Comparison of field tests with numerical model obtained from GEO5 FEM program 

for piles. 

1 – Koreck (1978); 2 – Jones and Turner (1980); 3 – (Jeon and Kulhawy, 2002). 

Test Site No. GWT 

(m) 

Shaft 

Diameter  

(m) 

Shaft 

Depth  

(m) 

Load 

Carrying 

Length               

(m) 

Pile 

Type 

LST            

(kN) 

LST 

from  

Model 

(kN) 

Error     

% 

Germany
1 

1 3.9 0.18 8 8 D 578 509 12 

Germany 2 3.9 0.18 10 10 D 476 581 -22 

Germany 3 4.7 0.15 16 5 D 979 860 12 

Westbourne, 

UK
2
 

4 - 0.15 9 9 D 329 312 5 

Coney Island, 

NY
3
 

5 1.2 0.17 10.7 3 B 347 295 15 

Coney Island, 

NY 

6 1.2 0.19 13.7 6.1 B 472 443 6 

 

The soil parameters taken from the field tests (unit weight of soil (), the angle of shearing 

resistance of soil (, cohesion (c), coefficient of lateral Erath Pressure at rest (K0), void‟s ratio 

(v), the saturated unit weight (s) and the groundwater depth) were executed in the numerical 

model and the results were used for validation. The slope tangent values (Lst) for the numerical 

model were obtained from the load-displacement curves using Jeon and Kulhawy‟s method 

(2002).  Failure loads (Lst) values obtained from the Numerical Model are included in table 3.1. 

The results revealed in Table 3.1 show reasonable agreements between the field tests and the 

Numerical Model results. In test 4, a marginal error of 22% could be due from the overvalued 

soil parameters assumed in some cases by the authors (Jeon and Kulhawy, 2002). 
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3.8 MODEL TEST RESULTS 

 

 The Numerical Model obtained from the program GEO5 Finite Element Method for piles was 

successfully validated. The model was then used to generate data for a broad range of 

parameters. The micropiles were embedded in three different types of gravelly soils: Silty Gravel 

(GM), Gravel with traces of Fines (G-F) and Well Graded Gravel (GW). The first nine tests were 

conducted in single layered gravelly soils, while the twenty-one others were conducted in multi-

layered gravelly soils. The length, diameter and slenderness ratio (L/D) were modified on several 

occasions to examine the dimensional effects. In total, 30 load test data were carefully examined. 

The soil layers applied in the tests, including the geotechnical properties and the load test results 

are provided in table 3.2 and 3.3, respectively. For analysis purposes, the soil layers were divided 

into three main categories: Well Graded Gravel (GW), Gravel with traces of Fines (G-F) and 

Silty Gravel (GM) based on the Unit Soil Classification System.  

Table 3.2.Geotechnical properties of tested soils. 

Soil Properties  

Soil Characteristics  ( 

kN/m
3
 

 ()    

(
o
) 

     c      
       
(kPa) 

 E             
(Mpa) 

 (s)  

kN/m
3
 

Gravel 

% 

Well Graded Gravel 

(GW) 

21 40 0 0.2 450 22 60-75% 

Gravel with traces of 

Fines (G-F) 

19 35 0 0.2 120 20. 55-60 

Silty Gravel (GM) 19 3 0 0.3 95 20.5 40-45 
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Table 3.3. Load test data generated from GEO5 FEM for piles. 

         Present Backcalculated 

Test  Type(s) Thickness of 

layer(s)  

Pile 

(L) 

Pile 

    (D) 

Slenderness 

Ratio 

Applied 

Load 

Parametric 

Area 

Failure 

Load 

Lst 

Failure 

Load 

L2 

Skin Friction          

(fs) 

No.  of 

Soil(s) 

H1        

(m) 

H2 

(m) 

(m) (m) (L/D) (kN) (m
2
) (kN) (kN) (kPa) 

1  (GW) 10.00 - 10.00 0.20 50.00 500.00 6.28 678 800 127 

2  (GW) 14.00 - 14.00 0.20 70.00 500.00 8.80 1200 1416 161 

3  (GW) 16.00 - 16.00 0.20 80.00 500.00 10.05 1390 1640 164 

4  (G-F) 10.00 - 10.00 0.20 50.00 500.00 6.28 490 578 92 

5  (G-F) 14.00 - 14.00 0.20 70.00 500.00 8.80 845 996 113 

6  (G-F) 16.00 - 16.00 0.20 80.00 500.00 10.05 1126 1329 132 

7  (GM) 10.00 - 10.00 0.20 50.00 500.00 6.28 404 476 76 

8  (GM) 14.00 - 14.00 0.20 70.00 500.00 8.80 743 877 100 

9  (GM) 16.00 - 16.00 0.20 80.00 500.00 10.05 854 1108 111 

10  (GM) / 

(GW) 

5.00 5.00 10.00 0.20 50.00 500.00 6.28 623 735 117 

11  (GM) / 

(GW) 

7.00 7.00 14.00 0.20 70.00 500.00 8.80 1140 1345 153 

12  (GM) / 

(GW) 

8.00 8.00 16.00 0.20 80.00 500.00 10.00 1330 1570 157 

13  (GM) / 

(G-F) 

5.00 5.00 10.00 0.20 50.00 500.00 6.28 475 560 89 

14  (GM) / 

(G-F) 

7.00 7.00 14.00 0.20 70.00 500.00 8.80 801 946 108 

15  (GM) / 

(G-F) 

8.00 8.00 16.00 0.20 80.00 500.00 10.00 1085 1286 129 
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         Present Backcalculated 

Test  Type(s) Thickness of 

layer(s)  

Pile 

(L) 

Pile 

    (D) 

Slenderness 

Ratio 

Applied 

Load 

Parametric 

Area 

Failure 

Load 

Lst 

Failure 

Load 

L2 

Skin Friction          

(fs) 

No.  of 

Soil(s) 

H1        

(m) 

H2 

(m) 

(m) (m) (L/D) (kN) (m
2
) (kN) (kN) (kPa) 

            

16  (G-F) / 

(GW) 

5.00 5.00 10.00 0.20 50.00 500.00 6.28 638 753 120 

17  (G-F) /  7.00 7.00 14.00 0.20 70.00 500.00 8.80 1156 1364 155 

18  (G-F) / 

(GW) 

8.00 8.00 16.00 0.20 80.00 500.00 10.00 1378 1580 158 

19  (GW) 14.00 - 14.00 0.16 87.50 500.00 7.04 930 1098 156 

20  (GW) 14.00 - 14.00 0.24 58.33 500.00 10.56 1480 1746 165 

21  (G-F) 14.00 - 14.00 0.16 87.50 500.00 7.04 660 779 111 

22  (G-F) 14.00 - 14.00 0.24 58.33 500.00 10.56 1102 1300 123 

23  (GM) 14.00 - 14.00 0.16 87.50 500.00 7.04 551 650 92 

24  (GM) 14.00 - 14.00 0.24 58.33 500.00 10.56 913 1077 102 

25  (GM) / 

(GW) 

7.00 7.00 14.00 0.16 87.50 500.00 7.04 673 794 113 

26  (GM) / 

(GW) 

7.00 7.00 14.00 0.24 58.33 500.00 10.56 1387 1637 155 

27  (GM) / 

(G-F) 

7.00 7.00 14.00 0.16 87.50 500.00 7.04 608 717 102 

28  (GM) / 

(G-F) 

7.00 7.00 14.00 0.24 58.33 500.00 10.56 1032 1218 115 

29  (G-F) / 

(GW) 

7.00 7.00 14.00 0.16 87.50 500.00 7.04 772 911 129 

30  (G-F) / 

(GW) 

7.00 7.00 14.00 0.24 58.33 500.00 10.56 1405 1658 157 
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3.9 PARAMETRIC STUDY 

 

As mentioned earlier, the ratio of circumference to the cross sectional area in micropiles is very 

high, hence their capacities rely fundamentally on the parametric area. The end bearing capacity 

is negligible.  

The Length (L), the Diameter (D) and the slenderness ratio (L/D) are expected to have a direct 

impact on the capacity of the micropile. A direct increase in the Length (L) should anticipate a 

direct increase in the capacity of the micropile. The latter is primarily due to an increased load 

carrying length which thus results in an increased effective stress. Increasing the Diameter (D) of 

the micropile should have a similar outcome. 

3.9.1 Effect of Length (L) 

In micropiles embedded in well graded Gravel (

, an increase in the length (L) and 

slenderness ratio (L/D) resulted in a noticeable increase in the ultimate unit skin friction, as 

revealed in figure 3.12. For a 60% length increase of L=10m to L=16m with a constant diameter, 

the ultimate unit skin friction (fs) increased from 127kPa to 164kPa, thus an elevation of 30%. 

For micropiles embedded in Gravel with traces of Fines (G-F), the results reveal an increase of 

44% in ultimate unit skin friction (fs) following a 60% increase in length with constant diameter. 

As for Silty Gravel, the same increase in length resulted in a 46% increase in the ultimate unit 

skin friction (fs).  

Overall, the results reveal that an increase in length (L), which accompanies an increase in 

slenderness ratio (L/D) results in a significant increase of the ultimate unit skin friction (fs). The 
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latter revealed a lower impact with an increasing Gravel content.  This could be explained from 

the dilatant behavior of gravelly soils, which tends to rise with an increase in the gravel content. 

 

Figure 3.12. Length of Micropile vs. Unit Skin Friction in uniform gravelly soils. 

For micropiles embedded in multi-layered gravelly soils, similar trends were noticed. With a 

60% increase in the length and given a constant pile diameter of 0.2m, micropiles embedded in 

Silty Gravel (GW) overlying Gravel with traces of Fines (G-F) recorded the highest increase in 
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ultimate unit skin friction with 45%. Compared to 34% increase for Silty Gravel (GM) overlying 

Well graded Gravel (GW) and 32% for Gravel with traces of Fines (G-F) overlying Well graded 

Gravel (GW). 

 

Figure 3.13. Length of Micropile vs. Unit Skin Friction in multi layered gravelly soils. 
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3.9.2 Effect of Diameter (D) 

Figure 3.14 and 3.15 reveal the effect of diameter (D) on the ultimate unit skin friction fs for 

micropiles embedded in uniform and multi-layered gravelly soils, respectively. The results 

illustrate modest effects when compared to the influence of length (L). Given a constant length, 

increasing the diameter of the micropile which automatically reduces the slenderness ration 

(L/D) results in a moderate increase of the ultimate unit skin friction fs for gravelly soils.  

 

Figure 3.14. Diameter of Micropile vs. Unit Skin Friction in uniform gravelly soils. 
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Figure 3.15. Diameter of Micropile vs. Unit Skin Friction in multi-layered gravelly soils. 

 

 The rise of the ultimate unit skin friction fs depends on the parameters L and D. With a constant 

D, increasing L of which directly increases the slenderness ratio (L/D) results in higher fs values. 

With a constant L, increasing D of which directly decreases the slenderness ratio (L/D) results in 

high fs values as well.  
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3.10 ANGLE OF SHEARING RESISTANCE OF SOIL 



The angle of shearing resistance of soil (is expected to contribute heavily on the skin friction. 

The embedded soil is cohesionless and therefore its resistance relies, according to Mohr-

Coulomb, on vertical effective stress ‟ and the tangent of the angle of shearing resistance of soil 

tan . 

 

Figure 3.16. Angle of shearing resistance vs. Unit Skin Friction for uniform gravelly soils. 
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Figure 3.16 and 3.17 reveal the impact of the angle of shearing resistance of soil on the ultimate 

unit skin friction fs. For a slenderness ratio (L/D) of 50, an increase of 21% in the ultimate unit 

skin friction fs was noticed from  = 30
0
 to  = 35

0
, while a significant increase of 67% was 

recorded from  = 30
0
 to  = 40

0
. For slenderness ratio (L/D) of 70, an increase of 13% was 

recorded between  = 30
0
 and  = 35

0
 and 61% between  = 30

0
 and  = 40

0
.  For slenderness 

ratio (L/D) of 80, the ultimate skin friction fs recorded an increase of 19% between  = 30
0
 and  

= 35
0
 and 48% between  = 30

0
 and  = 40

0
. It is safe to state that an increase in the angle of 

shearing resistance of soil for micropiles embedded in gravelly soils would result in an increase 

in the ultimate unit skin friction fs and ultimate skin friction capacity Qs. With higher slenderness 

ratio (L/D), the increase in ultimate unit skin friction fs was less apparent.  

  

Figure 3.17. Angle of shearing resistance vs. Unit Skin Friction for multi layered gravelly soils. 
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3.11 THEORY  

 

According to Bruce and Juran (1997b), the load carrying capacity Q is given by 

Q = Qs + Qp    (1) 

Where 

Qs  =  Ultimate skin friction capacity. 

Qp = End bearing capacity. 

As explained earlier, the ratio of circumference to the cross sectional area in micropiles is very 

high, hence End Bearing capacity becomes negligible and the load carrying capacity equation 

becomes 

Q = Qs    (2) 

Several authors evaluated ultimate skin friction capacity of drilled shafts through design 

equations. According to Meyerhof (1976), Reese and O‟Neill (1988), Kulhawy (1991) and 

Hassan and O‟Neill (1994), the ultimate skin friction capacity Qs is given by the following 

equation 

Qs = fs x As   (3) 

Where: 

fs = ultimate unit skin friction of soil.  

As= surface area of shaft producing skin friction. 
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Reese and O‟Neill (1988) provided an empirical method based on a set of 41 drilled shaft loads. 

The ultimate unit skin friction in sand is given by 

fs = ‟z ≤ 200 kPa limit (5) 

Where: 

‟z = vertical effective stress in soil at depth z. 

proportionality coefficient that depends on various factors, including construction 

techniques, soil characteristics, and particularly the initial state of stress characterized by the 

ambient coefficient of earth pressure at rest, Ko. Reese and O‟Neill (1988) recommended 

coefficient to be 

 z
0.5

,   (6) 

With limits of 1.2 ≥ ≥0.25,  where z = depth below ground surface (m). 

O‟Neill and Hassan (1994) suggested an empirical relationship between values and the SPT 

blow count N. The in sand is hence provided by the following equation 

For N≥15 nominal = 1.5 – 0.42 [z (m)]
0.34

 , 1.2.≥≥ 0.25  (7) 

For N<15  = nominal N/15 

Kulhawy (1991) provided a method based on soil properties. The ultimate unit skin friction is 

hence given by the following equation: 

fs = ‟z K tan    
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Where: 

K = coefficient of lateral earth pressure. 

effective stress angle of friction for the soil-shaft interface. 

Kulhawy (1991) suggested that can be expressed as a fraction of the angle of shearing 

resistance of soil With good slurry conditions and sound construction methods, a rough skin 

develops along soil/pile interface, and hence would be equal to 1.0. Poor slurry conditions 

could make the ratio 0.8 or lower. In this thesis, the ratio is assumed to be 1.0. 

The coefficient of lateral earth pressure K is a function of the original in situ horizontal stress 

coefficient K0.  As indicated in chapter 3, Mayne and Kulhawy (1982) provided a relationship to 

determine K0 based on the angle of shearing resistance of soil  and the overconsolidation ratio 

(OCR) using the following equation 

K0 = (1- sin) OCR
sin

 

Table 3.4. Typical values for angle of shearing resistance of soil and Overconsolidation Ratio 

(Jeon and Kulhawy, 2002). 

Soil Type deg) OCR 

Loose Sand 28-32 1-3 

Medium Dense Sand 32-38 3-10 

Dense Sand, Gravel 38-45 10-20 
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The lateral earth pressure K were computed as suggested by Rollins et al. (2005), by the equation 

K = 4.62 e
(-0.137z)

   (9) 

Where 

z = depth below ground surface. 

The lateral earth pressure K was modified to accommodate for drilled shafts embedded in 

gravelly soils. The lateral earth pressure K values for Kulhawy‟s method will be taken from 

equation (9) of this present report. 

The above noted theories will be examined and compared with the present capacities from the 

numerical model. 

 

3.12 COMPARISON OF PRESENT AND COMPUTED CAPACITIES 

 

Existing theories for drilled shafts in cohesionless soils were compared with the present 

capacities from the load-displacement curves obtained through the numerical model. Ultimate 

unit capacity QL1 was measured from the Davisson method (1972) and was multiplied by a factor 

1.8 to give QL2.  QL2 loads were chosen for the Present values. Figure 3.18 shows a typical load 

displacement curve taken from test no.1 of this current study. 
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     Figure 3.18. Load-Displacement curve for Test no.1.
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     Present Calculations Computed Calculations 

 
Test 

 

Type(s) 

of soils  

Pile 

(L) 

Pile 

(D) 

Slenderness 

Ratio 

Failure 

Load Lst 

Failure 

Load L2 

 

 (fs) from QL2           

Reese and 

O‟Neill 

(1988) 

Hassan and 

O‟Neill 

(1994) 

Rollins et 

al. 

(2005) 

No. (m) (m) (L/D) (kN) (kN) (kPa)  (kPa)  (kPa)  (kPa) 

1  (GW) 10.00 0.20 50.00 678.00 800.00 127.00 152.00 122.00 207.00 

2  (GW) 14.00 0.20 70.00 1200.00 1416.00 161.00 172.00 138.00 166.00 

3  (GW) 16.00 0.20 80.00 1390.00 1640.00 164.00 175.00 141.00 145.00 

4  (G-F) 10.00 0.20 50.00 490.00 578.00 92.00 138.00 110.00 155.00 

5  (G-F) 14.00 0.20 70.00 845.00 996.00 113.00 155.00 125.00 126.00 

6  (G-F) 16.00 0.20 80.00 1126.00 1329.00 132.00 158.00 128.00 106.00 

7 (GM) 10.00 0.20 50.00 404.00 476.00 76.00 138.00 110.00 129.00 

8 (GM) 14.00 0.20 70.00 743.00 877.00 100.00 155.00 125.00 103.00 

9 (GM) 16.00 0.20 80.00 854.00 1108.00 111.00 158.00 128.00 88.00 

10  (GM) / 

(GW) 

10.00 0.20 50.00 623.00 735.00 117.00 145.00 116.00 167.00 

11  (GM) / 

(GW) 

14.00 0.20 70.00 1140.00 1345.00 153.00 162.00 132.00 134.00 

12  (GM) / 

(GW) 

16.00 0.20 80.00 1330.00 1570.00 157.00 166.00 134.00 117.00 

13  (GM) / 

(G-F) 

10.00 0.20 50.00 475.00 560.00 89.00 138.00 110.00 142.00 

14  (GM) / 

(G-F) 

14.00 0.20 70.00 801.00 946.00 108.00 155.00 125.00 115.00 

15  (GM) / 

(G-F) 

16.00 0.20 80.00 1085.00 1286.00 129.00 158.00 128.00 97.00 

16 (G-F) / 

(GW) 

10.00 0.20 50.00 638.00 753.00 120.00 145.00 116.00 181.00 
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Table 3.5.Test Results for Present and Computed Capacities. 

     Present Calculations Computed Calculations 

 
Test 
No. 

 

Type(s)  

of 

Soil(s) 

Pile 

(L) 

Pile 

(D) 

Slenderness 

Ratio 

Failure 

Load 

QL1 

Failure 

Load 

QL2 

 

 (fs) from QL2 

Reese and 

O‟Neill 

(1988) 

Hassan and 

O‟Neill 

(1994) 

Rollins et al. 

(2005) 

(m) (m) (L/D) (kN) (kN) (kPa) (kPa)  (kPa) (kPa) 

17 (G-F) / 

(GW) 

14.00 0.20 70.00 1155.00 1364.00 155.00 163.00 132.00 146.00 

18 (G-F) / 

(GW) 

16.00 0.20 80.00 1378.00 1580.00 158.00 166.00 134.00 126.00 

19 (GW) 14.00 0.16 87.50 930 1098 156 172.00 138.00 166.00 

20 (GW) 14.00 0.24 58.33 1480 1746 165 172.00 138.00 166.00 

21 (G-F) 14.00 0.16 87.50 660 779 111 155.00 125.00 126.00 

22 (G-F) 14.00 0.24 58.33 1102 1300 123 155.00 125.00 126.00 

23 (GM) 14.00 0.16 87.50 551 650 92 155.00 125.00 103.00 

24 (GM) 14.00 0.24 58.33 913 1077 102 155.00 125.00 103.00 

25 (GM)/ 

(GW) 

14.00 0.16 87.50 673 794 113 162.00 132.00 134.00 

26 (GM)/ 

(GW) 

14.00 0.24 58.33 1387 1637 155 162.00 132.00 134.00 

27 (GM) / 

(G-F) 

14.00 0.16 87.50 608 717 102 155.00 125.00 115.00 

28 (GM) / 

(G-F) 

14.00 0.24 58.33 1032 1218 115 155.00 125.00 115.00 

29 (G-F) / 

(GW) 

14.00 0.16 87.50 772 911 129 163.00 132.00 181.00 

30 (G-F) / 

(GW) 

14.00 0.24 58.33 1405 1658 157 163.00 132.00 181.00 
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Table 3.6. Present and Computed Load Capacities. 

 

 

Test Type(s)  Failure 

Load 

Lst 

Failure Load 

L2 

Reese and 

O'Neill 

(1988) 

Hassan and 

O'Neill (1994) 

Rollins 

et al. 

(2005) 

No. of Soil(s) (kN) (kN) (kN) (kN) (kN) 

1  (GW) 678 800 955 766 1300 

2  (GW) 1200 1416 1513 1214 1460 

3  (GW) 1390 1640 1750 1410 1450 

4  (G-F) 490 578 867 691 973 

5  (G-F) 845 996 1364 1100 1109 

6  (G-F) 1126 1329 1580 1280 1060 

7  (GM) 404 476 867 691 810 

8  (GM) 743 877 1364 1100 906 

9  (GM) 854 1108 1580 1280 880 

10  (GM) / (GW) 623 735 911 729 1049 

11  (GM) / (GW) 1140 1345 1426 1162 1179 

12  (GM) / (GW) 1330 1570 1660 1340 1170 

13  (GM) / (G-F) 475 560 867 691 892 

14  (GM) / (G-F) 801 946 1364 1100 1012 

15  (GM) / (G-F) 1085 1286 1580 1280 970 

16  (G-F) / (GW) 638 753 911 729 1137 

17  (G-F) / (GW) 1119 1320 1434 1162 1285 

18  (G-F) / (GW) 1378 1580 1660 1340 1260 

19  (GW) 930 1098 1211 972 1169 

20  (GW) 1480 1746 1816 1457 1753 

21  (G-F) 660 779 1091 880 887 

22  (G-F) 1102 1300 1637 1320 1331 

23  (GM) 551 650 1091 880 725 

24  (GM) 913 1077 1637 1320 1088 

25  (GM) / (GW) 673 794 1140 929 943 

26  (GM) / (GW) 1387 1637 1711 1394 1415 

27  (GM) / (G-F) 608 717 1091 880 810 

28  (GM) / (G-F) 1032 1218 1637 1320 1214 

29  (G-F) / (GW) 772 911 1148 929 1274 

30  (G-F) / (GW) 1405 1658 1721 1394 1911 
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3.12.1  Comparison between Present and Reese and O’Neill values 

 

Reese and O‟Neill (1988) method was intended for cohesionless Sand; therefore the computed 

results were increasingly conservative with an increase in gravel content. 

 

Figure 3.19. Comparison between Reese and O‟Neill and Present capacities from numerical 

model, for homogenous gravelly soils. 
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On average, the Reese and O‟Neill method revealed ultimate skin friction capacities that were 

10% higher than the present capacities. For Gravel with traces of Fines (G-F) and Silty Gravel 

(GM), the Reese and O‟Neill values for ultimate skin friction capacities were on average 35% 

and 60% higher than the present capacities, respectively. 

 

Figure 3.20. Comparison between Reese and O‟Neill and Present capacities from the numerical 

model, for multi-layered gravelly soils. 
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The gap between present and computed capacities tends to narrow with an increase of gravel 

content, as shown in figure 3.19 and 3.20. A typical factor of safety of 2.0 would suggest 

exceedingly conservative values for well graded Gravel (GW) in the Reese and O‟Neill method.  

 

3.12.2  Comparison between Present and Hassan and O’Neill Values 

 

Regarding the Hassan and O‟Neill (1994) method, the computed ultimate skin friction capacities 

reveal exceedingly conservative values with an increase in gravel content. The method was 

essentially designed for sandy soils, thus the effect of dilation that results from the increase in 

gravel content was not accommodated in the equation, which may explain the conservative 

results recorded for Well Graded Gravel (GW), as shown in figure 3.21. On average, the 

computed capacities for Well graded Gravel (GW) were 12% lower than measured capacities, 

suggesting 23% discrepancy with that of the Reese and O‟Neill method. A minimum factor of 

safety of 2 would unveil exceedingly conservative values. The computed ultimate skin friction 

capacities for Gravel with traces of Fines (G-F) and Silty Gravel (GM) were on average 8% and 

29% higher than present capacities, respectively. Hassan and O‟Neill method suggest moderately 

conservative results with a decrease in the gravel content, as revealed in Figure 3.21 and 3.22. 
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Figure 3.21.  Comparison between the Hassan and O‟Neill and the Measured Capacities from the 

numerical model for gravelly soils. 
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Figure 3.22. Comparison between the Hassan and O‟Neill and the Present Capacities from the 

numerical model in multi layered gravelly soils. 
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3.12.3  Comparison between Present Values and adapted Kulhawy 

 

The Kulhawy method was adapted by Rollins et al. (2005) to accommodate for gravelly soils. 

The authors suggested an empirical relationship to determine the lateral earth pressure K given 

by 

K = 4.62e
(-0.137z)

 

The adapted Kulhawy method was used in this study to calculate the computed capacities. The 

results revealed consistency between different types of gravelly soils. For Well graded Gravel 

(GW), the computed ultimate skin friction capacities were on average 12% higher than present 

capacities. Both Gravel with traces of Fines (G-F) and Silty Gravel revealed similar results with 

a rise of 15% and 13% from the measured capacities, respectively.  

For multi-layered gravelly soils, Silty Gravel (GM) overlying well graded Gravel gave the most 

conservative results with an average increase of 2.4% over the measured capacities.  
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Figure 3.23. Comparison between the adapted Kulhawy method and the Present Capacities from 

the numerical model in gravelly soils. 
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Figure 3.24. Comparison between the adapted Kulhawy method and the Present Capacities from 

the numerical model in multi layered gravelly soils. 
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Overall, the modifications to Kulhawy equation for gravelly soils, proposed by Rollins et al. 

(2005) for drilled shafts revealed moderately conservative results when compared with present 

capacities, as shown in Figure 3.23 and 3.24, respectively. The computed ultimate skin friction 

capacities reached to a maximum of 70% greater than the present capacities, which suggests that 

a minimum factor of safety of 2.0 would be acceptable in using this method for micropiles. 

However, there are also a number of cases, as shown in figure 3.23 and 3.24, where the present 

capacities are slightly greater than predicted by the equation, which suggests that a factor of 

safety of 2.0 would reveal conservative values. 

 

3.12.4 Results 

 

The results of this study indicate that modifications to the Reese and O‟Neill (1988) and Hassan 

and O‟Neill method (1994) are appropriate to bring about accurate computation for the ultimate 

skin friction capacity Qs of micropiles in gravelly soils. The suggested modifications are based 

on data measured from the numerical model that was constructed in GEO5 Finite Element 

Method program for piles. Each modification is directly tied to the Davisson (1972) method used 

to determine the ultimate skin friction Capacity.  
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3.13 MODIFICATIONS TO DESIGN EQUATIONS 

 

As revealed earlier in this chapter, the Reese and O‟Neill equation multiplies the vertical 

effective stress by factor to determine the ultimate unit skin friction on the shaft (see equation 

5 of this present chapter).  

Ten load tests were performed in the numerical model to evaluate micropiles embedded in Well 

Graded Gravel (GW) using the soil properties indicated in table 3.2.  Load displacement curves 

were obtained. Backcalculated  values from previous and current load tests are plotted as a 

function of depth in Well graded Gravel, precisely where the gravel content exceeds 60%. As 

part of this analysis, the best-fit curves was determined for backcalulated  values using the 

software program DPlot.  

Table 3.7. Backcalculated Beta (valuescaptured for Well graded Gravel (GW). 

QL1 

Depth 

from 

Surface 

Diameter Backcalculated 

Beta 

(kN) (m) (m) 

678 10 0.2 0.49 

1200 14 0.2 0.46 

1396 16 0.2 0.41 

930 14 0.16 0.45 

1430 14 0.24 0.46 

2000 27 0.25 0.19 

650 8 0.25 0.62 

520 12 0.12 0.46 

840 28 0.14 0.12 
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Table 3.7 reveals the backcalculated values of  for Well graded Gravel, using the soil properties 

that are indicted in table 3.2. 

 

Figure 3.25. Back calculated values from GEO5 FEM program for piles. 
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Where: 

Z = depth below ground surface (m). 

Solving for gives 

Z    Where 0.1 ≤ ≤

Hirany and Kulhawy (2002) recommended that a factor of safety be chosen such that the design 

load is equal to or less than QL1. Given that all the back calculated values for were measured 

from QL1 , the Best-fit curve should be multiplied by 2, which is usually the minimum factor of 

safety chosen for deep foundations. Hence the Best curve fit for  becomes 

1.52 – 0.044Z    Where 0.2 ≤  ≤ 1.52   (10) 
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3.14 DESIGN PROCEDURE 

 

The adopted design procedure should respect the following conditions: 

1) Diameter of micropile ≤ 0.30m (as indicated in the definition of a micropile by Bruce, 1994). 

2) Micropile is fully bonded along the soil-shaft interface. 

3) Uniform cross-sectional radius along the micropile‟s interface. 

4) Micropile subject to direct axial compressive loading. 

5) Grout poured under gravity head only (Type A micropile). 

 

3.14.1 Computation of Ultimate Skin Frictionfor a single micropile embedded in 

cohesionless gravelly soils (Gravel content < 60%). 

 

The Ultimate skin friction capacity Qs is computed using the following equation: 

Qs =  z‟ x As 

And the allowable (Qs)allowable is given by 

(Qs)allowable = (Qs)/F.S.     

Where F.S. = Factor of Safety. 

Reese and O‟Neill (1988) and Hassan and O‟Neill (1994) methods for computing in sand, as 

indicated in equation 6 and 7 of this present chapter, appear to be acceptable for micropiles 

embedded in gravelly soils where the gravel content does not exceed 60%, or the angle of 
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shearing resistance of soil  is less than 35
0
. The resulting values may generally be conservative 

but within the acceptable range. The adapted Kulhawy method suggested by Rollins et al. (2005) 

could be used as well with efficient results. 

3.14.2 Computation of Ultimate Skin Friction for a single micropile embedded in 

cohesionless gravelly soils (Gravel content > 60%). 

For gravelly soil layers where the gravel content exceeds 60%, is calculated using equation 

(10) of this present chapter 

1.52 – 0.044Z    Where 0.2 ≤  ≤ 1.52  

Once  is determined, the ultimate skin friction capacity (Qs) and the allowable skin friction 

capacity (Qs)allowable are then computed in the same fashion as indicated in 3.14.1. 

3.14.3  Computation of Ultimate Skin Friction for a single micropile embedded in multi-

layered gravelly soils. 

For each layer the ultimate skin friction is computed using the appropriate  method for each soil 

type. The vertical effective stress is computed for each layer and the ultimate skin friction 

capacity for a single micropile becomes the summation 

Qs = ∑  Qs = ∑  z‟ x As 

And the allowable Qs is then given by 

(Qs)allowable = (Qs)/F.S.  

 It is important to mention that the Factor of Safety should be at least 2.0 for design calculations.  



88 
 

3.15 EXAMPLE 

 

Given: A 0.20m micropile is to be constructed to a depth of 15m in the soil profile shown in 

figure 3.26. The soil profile consists of a 5m layer of Silty Gravel containing  15% of gravel 

content, overlying a 5m layer of Gravel with traces of fines that has 50% of gravel content, 

which in turn underlain by a 5m layer of Well graded Gravel containing over 60% of gravel size 

particles. Groundwater is located at a depth of 18m below the ground surface.  

( 15% Gravel )

 = 19kN/m
3

(G-F) (50 % Gravel)

 = 20kN/m
3

(GW) (Gravel > 60%)

 = 21kN/m
3

5
m

5
m

5
m

0. 20m

(S-G)

 

Figure 3.26. Dimensions of the micropile and the soil profile for the example. 
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Wanted: The ultimate skin friction capacity Qs and the allowable carrying capacity Qallowable. 

Solution: For each given layer, the ultimate unit skin friction fs is calculated using the appropriate 

Beta  method. The following table summarizes the skin friction calculations for each of the 

layers shown in figure 3.7 

Table 3.8. Summary of skin friction calculations for example problem. 

Soil Type Depth   'z As ∆Qs 

Interval  

  (m)  K 

 

kN/m
2
 m

2
 kN 

Sand with traces of 

Gravel 

0-5 0.953  47.5 3.15 143 

Gravel with traces of 

Fines 

5-10 - 1.17 195 3.15 534 

Well Graded Gravel 10-15 0.84  248 3.15 656 

         Total Qs 1333 

 

Qs  =  ∑ Qs = ∑ ‟z * As 

 

For Sand with traces of Gravel, the adapted Kulhawy method used by Rollins et al. (2005) will 

be used: 

K = 4.62e
(-0.137z) 

      =  4.62e
(-0.137(10)) 

      = 1.17 

Soil Pile friction was taken to be at 1. 
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For Well graded Gravel, equation 10 was taken to compute 



1.52 – 0.044z 

   = 1.5 – 0.044(15) 

   = 0.84 

 

The ultimate Qs is then given by 

(Qs) =  ∑ Qs = 143 + 534 + 656 = 1333kN 

And the allowable Qs is computed by 

(Qs)allowable = Qs/Factor of Safety 

Taken the factor of safety at 2,  

(Qs)allowable = 667kN. 
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CONCLUSIONS 

 

This report provided a general review on pile foundation and a detailed theoretical assessment on 

micropile design procedures and applications. A numerical model was developed to evaluate the 

skin friction of micropiles embedded in gravelly soils. The model was conducted through the 

software program GEO5 Finite Element Method for piles. The model was successfully validated 

with existing field test data. 30 load tests were then generated from the numerical model in order 

to assess the skin friction of micropiles embedded in gravelly soils. The load tests were 

performed in three types of gravelly soils, ranging from Silty Gravel (GM) to Well graded 

Gravel (GW). Typical load displacement curves were then developed. Present capacities were 

evaluated from the load displacement curves and then compared with capacities using equations 

proposed by Reese and O‟Neill (1988), Hassan and O‟Neill (1994) and the adapted Kulhawy 

method by Rollins et al. (2005). A parametric study on micropiles embedded in gravelly soils 

was carefully conducted. Based on the findings, the following conclusions could be made: 

 

1. Ultimate skin friction capacity increases due to an increase in angle of shearing resistance 

of soil for micropiles embedded in gravelly soils.   

 

2. Ultimate skin friction capacity increases due to an increase in gravel content for 

micropiles embedded in gravelly soils. This increase could be attributed to the rise in the 

lateral earth pressure caused by dilation of the soil and the roughness of the soil-skin 

interface. 
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3. With a constant diameter, increasing the length of a micropile embedded in gravelly soils, 

which automatically increases the slenderness ratio, results in a rise of the ultimate unit 

skin friction. In general, this rise seems to be less significant with an increase in both 

gravel content and angle of shearing resistance of soil.  

 

4. With a constant length, increasing the diameter of the micropile embedded in gravelly 

soils, which automatically decreases the slenderness ratio, results in a rise of the ultimate 

unit skin friction. 

 

 

5. The Reese and O‟Neill equation (1988) and the Hassan and O‟Neill equation (1994) were 

both designed for drilled shafts in sand, thus they both provided over conservative values 

for micropiles embedded in gravelly soils, given that a minimum factor of safety of 2.0 

would be taken to compute the allowable skin friction capacity. Both equations become 

more conservative with an increase in gravel content. 

 

6. The Reese and O‟Neill (1988) equation and the Hassan and O‟Neill (1994) equation are 

improved for micropiles (Type A) by using a modified proportionality coefficient for 

soil layers where the gravel content exceeds 60% : 

1.52 – 0.044Z    Where 0.2 ≤  ≤ 1.52  

A minimum factor of safety of 2 is used to compute the allowable skin friction capacity. 

7. The adapted Kulhawy method provided by Rollins et al. (2005) for drilled shafts in 

gravelly soils can be safely used for micropiles embedded in gravelly soils for depths less 

than 20m. 
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RECOMMENDATIONS FOR FURTHER RESEARCH 

 

Following the current study conducted in this present thesis, the following recommendations can 

be proposed for future research: 

1) To examine the skin friction of micropiles embedded in cohesive soils. 

2) To study the group efficiency of micropiles. 

3) To study the effect of cyclic and seismic loads on micropiles. 

4) To examine micropile/raft interaction. 

5) To study the performance of micropiles under inclined axial load. 
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