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ABSTRACT 

 

Finite element mesh optimization using the partial p-adaptive method for stress analysis 

of underground excavations 

Diego Garcia Rosero, MASc 

Concordia University, 2011 

 

 Savings in computational resources have become a main subject of study in 

geomechanics due to the complexity of the problems analyzed. This thesis develops and 

evaluates the performance of a partial p-adaptive mesh optimization method for stress 

analysis of underground excavations. The method uses transition finite elements in order 

to connect a mesh of quadratic (triangular or quadrilateral) elements with a mesh of 

linear (triangular or quadrilateral) elements. The analysis is performed using SIMFEM, a 

computer program that solves plane strain problems and is able to handle this type of 

mixed meshes. After the formulation of 4 types of transition elements (5-node, 7-node 

quadrilateral, 4-node and 5-node triangle), which were incorporated into the code, 57 

models (including the analysis of a pressurized cavity) were run, analyzed and for some 

of the models, the results obtained were compared to commercial software, as to ensure 

the correct behaviour of these elements in a finite element mesh. A final application was 

performed modeling a continuum with two circular excavations, surrounded by a linear 

elastic material in a biaxial stress field, obtaining favourable results.  The global stiffness 

matrix size was reduced by 85.4% and by 74.1% for the models using triangles and 

quadrilaterals respectively, as a result, the calculation times were considerably reduced. 

The average percentage of error with respect to the models without optimization, 

measured at eight critical points, was 0.15% and 2.63% in the case of triangular and 

quadrilateral elements respectively. 
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NOMENCLATURE 

A   Equilibrium matrix 

a  Radius of a circular opening (m) 

B  Compatibility, deformation-displacement, strain-displacement matrix 

D  Disturbance 

E  Modulus of Elasticity (MPa) 

f  Vector of forces 

h   Depth of overburden (m) 

K  Stress ratio (horizontal stress/vertical stress) 

K  Stiffness matrix 

Ni  Shape function for the i-th node 

r  Radial distance from center of an opening (m) 

S  Rigidity, material, constitutive matrix 

u  Vector of displacements (m) 

   Unit Weight (kN/m3)  

   Density of rock mass (kg/m3) 

   Natural coordinate for quadrilateral elements 

     Natural coordinate for quadrilateral elements 

    Natural coordinate for triangular elements, i = 1, 2 or 3 

   Poisson’s ratio 

    Radial stress (MPa) 

    Tangential stress (MPa) 

        Horizontal pressure in situ (MPa) 

    Geostatic overburden pressure (MPa) 

    Major principal stress in a biaxial stress field (MPa) 

    Minor principal stress in a biaxial stress field (MPa) 

     Horizontal stress (MPa) 

     Vertical stress (MPa) 

   Central angle with x-axis (CCW is positive) 

     Shear stress related to    and    (MPa) 

     Shear stress related to    and    (MPa) 

ux  Displacement in horizontal direction (m) 

uy  Displacement in vertical direction (m) 

uT  Total displacement (m)
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1. INTRODUCTION 

 

The optimization of resources in computational sciences has been an important concern 

since the beginning of their application in engineering, and will be a matter of 

discussions and new developments as long as the science continues advancing. The 

application of methods and theories, especially the latest developments in the field of 

engineering imply the usage of important quantities of computational resources, which 

in some cases do not seem to evolve as fast as the theory requires. 

In order to solve problems in geomechanics, a considerable amount of computational 

resources is required by all the different numerical methods available, due to the nature 

of these problems, which imply “involving nonlinear and time dependent material 

behaviour, arbitrary geometries, initial or in situ conditions, multi-phase media, different 

loadings (static, quasi-static, cyclic and dynamic), and such environmental factors as 

temperature, fluids and pollutant movement” (Desai, and Gioda, 1990). Thus, the 

implementation of these numerical methods has taken place progressively, starting by 

the least expensive method in terms of computational resources to the most complex 

and complete. For better understanding of this thesis, a very brief and conceptual 

explanation of the most popular numerical methods in geomechanics are stated in 

chapter 2. 

 All these approaches have been implemented to describe the behaviour of 

geomaterials throughout engineering’s history and a good example is the Finite Element 

Method (FEM), which is the method used in this thesis. The FEM, whose first developments 

were done in early 1940s by Hernnikoff and Courant, who proposed radically opposite 

approaches of the discretization of a domain. However, it was only a few decades ago, 

when the computer capacity required became available, that these works caught the 

attention of the engineering community (Rao, 2011). 

 Despite undeniable advances of computer science and software engineering, 

complex and large problems in geomechanics, especially those involving 3 dimensions 

require a considerable amount of memory and the use of state-of-the-art processors to 

be run, nevertheless the processing times are in the order of magnitude of days or even 

weeks, which leads to endless calculations an extremely high engineering cost. 

 Due to the nature of the geotechnical engineering, repetitive calculations or ever 

changing conditions and parameters are always obstacle for the engineer, long 

calculation times are seldom afforded by the projects and it is reflected either in delays 
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or last minute decision-making meetings, where the expert staff involved comes up with 

a design solution taking as criteria only the experience and a good judgement, setting 

aside the advantages of a calculation tool.  

 Aiming to implement these extensive models that can provide invaluable 

forecasting in geotechnical problems, several methods were developed to reduce the 

calculation times by essentially reducing the number of nodes and/or elements which 

subsequently decreases the size of the matrices and vectors required to solve the 

problem. 

 One of the ways to reduce the size of the problem without affecting the 

accuracy or the quality of the solution is the adaptive re-meshing. This method modifies 

an existing mesh used to discretize a given media either by changing the elements, the 

nodes or the order of the elements. The types of mesh refinement are listed at this stage 

nonetheless are further elaborated on subsequent pages;  

- r-adaptivity 

- h-adaptivity 

- p-adaptivity 

- hp-adaptivity

  

 In this thesis, a p-refinement process is implemented through the modeling of 

plane strain problems that included as main test the modeling of two excavations 

assumed to be of circular shape in a continuum of elastic medium; and the stresses in 

the elastic medium caused by these openings were calculated following the analytical 

solution given by Kirsch (1898) (Ramamurthy, 2007) for infinite plates with circular holes. 

The elements changing their order were those where the percentage of disturbance 

caused by the excavation was below a defined value (Zsaki et al, 2005).  

 

Figure 1. Transition elements (shaded) in meshes with quadrilateral and triangular elements 
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 The elements used to discretize the zone were assumed as linear order (with 

respect to displacement) and in zones where the percentage of disturbance was above 

the set value, the elements were assumed as quadratic order (with respect to 

displacement); this criterion implied the formulation of transition elements, which are 

located in the zones where the quadratic order elements meet with the linear order 

elements (Figure 1). 

 To execute this process, the formulation of transition elements was necessary and 

eventually these elements intended to perform the stress analysis were tested for their 

accuracy and behaviour through several tests whose characteristics and results are 

shown and discussed in chapter 5. 

 Since there is no relevant commercial software in the context of geomechanics, 

that is able to include in a given FEM both linear and quadratic order elements and the 

transition elements, the development of a new tool was necessary. The SIMFEM (Zsaki, 

2010) code is program written in C++ intended for research purposes that solves plane 

strain problems and allows including the formulation of transition elements within the 

code. 

 Some of the main features of the SIMFEM code include the capability to output 

all the results of the calculation including stresses and displacements either by text files or 

graphic files. The results obtained are shown throughout this thesis. 

 

1.1 THESIS OBJECTIVE 

 

The objective of this thesis is to evaluate the possibility in the reduction of the calculation 

times and the computer memory usage by reducing the degrees of freedom used to 

solve a finite element model, without affecting the quality of the solution. This is achieved 

by removing a certain amount of nodes in the elements comprising the model. Evidently, 

in order to maintain the mathematical coherence of matrices and vectors involved in 

the operations, this process has to comply with a set of criteria. 

 

1.2 DETAILED OBJECTIVES 

 

- Implement and test the accuracy of the transition elements. The elements to be 

included in this formulation and later testing are: a 7-node quadrilateral element, 
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a 5-node quadrilateral element, a 5-node triangular element and 4-node 

triangular element (Gupta, 1975, Felippa, 2010). 

- Define a disturbance percentage in the media assumed. This parameter is used 

to define the boundary where quadrilateral elements are replaced by linear 

elements and, consequently, define the location of the band of transition 

elements. 

- Use the analytical solution given by Kirsch (1898) for an infinite plate with circular 

holes in order to define the Excavation Disturbed Zones (EDZ) and therefore 

define transition zones from quadratic order to linear order elements. This is 

applied with the modelling of two circular excavations in an elastic continuum. 

- Change the amount of nodes and the types of elements (quadrilateral, linear 

and transition) by applying the mesh optimization process, in order to compare 

the quality and memory usage of several numerical solutions. 
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2. LITERATURE REVIEW – NUMERICAL STRESS ANALYSIS IN GEOMECHANICS 

 

In order to create a context for this thesis, the main concepts necessary to understand 

the algorithm applied to improve the stress analysis for underground excavations are 

compiled in this chapter. The review will cover the numerical techniques for finding 

approximate solutions to Partial Differential Equations (PDE) in geomechanics and 

presents an overview of mesh optimization techniques. 

 The numerical techniques summarized are: Finite Difference Method (FDM), 

Discrete Element Method (DEM), Boundary Element Method (BEM) and Finite Element 

Method (FEM). The method implemented in this thesis is the FEM, thus an extensive 

description is provided and includes most of main concepts of the method. 

 The versatility of the FEM to solve partial differential equations over complex 

domains makes it one of the best choices in geomechanics, still, complex domains imply 

the usage of a considerable number of elements in a mesh (refer to chapter 2.4), which 

is closely related to the computational cost. In order to reduce the computational cost, 

mesh optimization techniques are often applied. These are summarized as well in the 

subsequent pages. 

2.1 FINITE DIFFERENCE METHOD (FDM) 

 

The FDM, along with the FEM, this is one of the often-used methods to solve PDE’s and 

also was the first one applied to solve problems in geomechanics (Desai, 1977). It consists 

of the division of a continuum into several parts and the nodes comprising these parts 

must have the same distance between each other (magnitude of  x and  y shown in 

Figure 2). This dictates one of the most important restrictions of the method as a result of 

the existence of irregular geometries often seen in geomechanics. This implies the 

requirement of a special treatment of the points not coinciding exactly with the 

boundary of the problem, thus adding a procedure to alter the finite difference 

equation.  

 The procedure consists of transforming the partial derivatives of the PDE by the 

ratio of change in a variable over a small, but finite increment, as shown in equation ( 1 ). 

 

  

  
        

  

  
 

  

  
                    ( 1 ) 
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After this substitution, a differential equation is converted into a difference equation that 

can be evaluated by three approximations, as it is presented for the first derivative in the 

direction of the x-axis: 

Central difference   
  

  
 

             

   
        

Forward difference   
  

  
 

           

  
               ( 2 ) 

Backward difference   
  

  
 

           

  
       

Equation ( 2 ) can then be arranged in matrix form including all the points of interest and 

then solved obtaining the values of u (displacements) at all the points. 

 

Figure 2. A Finite Difference Mesh 

 

2.2 DISCRETE ELEMENT METHOD (DEM) 

 

The DEM is often applied in geomechanics as well, especially when the problem 

considers materials found in nature as a discontinuous granular medium (soils) or bonded 

medium, such as sandstone (Figure 3). 

 The DEM allows treating the media as discontinuous and emphasizes the 

mechanics of the contact between distinct blocks. Therefore, each element can possess 

different displacements and rotations, and also might be assumed as rigid or 

deformable. The method requires the repeated application of Newton’s laws of motion 
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to each particle and contact surface, while constantly updating the location of the 

elements. 

 

Figure 3. Idealized sandstone modeled with DEM in an unconfined compressive strength test 

 

2.3 BOUNDARY ELEMENT METHOD (BEM) 

 

This method solves a set of integral equations that connect the boundary. Considering its 

formulation, only the boundaries of the problem are required to be discretized (Figure 4) 

and the solution is only found at the boundary in the first stage reducing the dimensions 

of the problem by one; then the solutions within the body or domain are obtained 

numerically (Bekker, 1992).  

 This implies less data preparation time, faster re-meshing (if it is required), less 

calculation time and less storage space. Yet, in BEM, the element integrals are harder to 

evaluate and require a fundamental solution of the PDE, as a starting point for the rest of 

the solution. 

 

Figure 4. a) Discretization in FEM (left) and b) BEM (right)  
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2.4 FINITE ELEMENT METHOD (FEM) 

 

The FEM is one of the most popular methods to solve problems in continuum 

geomechanics that are described by a PDE. The main principle of the FEM consists of 

dividing a domain into a finite number of elements (discretization). These elements are 

interconnected by a number of nodes (Figure 1 and Figure 4a). 

 The points where the variable under consideration has known values across the 

domain are introduced in the model (boundary conditions) and the variation of the 

variable is solved across each element using the stiffness matrices based on a particular 

set of shape functions (also called interpolation functions). 

2.4.1 SHAPE FUNCTIONS 

 

The essence of the FEM is the approximation of the PDE that govern the problem. This 

approximation has to be done locally on each element by shape functions and can be 

summarized with the following mathematical expression: 

  ∑      
 
                       ( 3 ) 

where N corresponds to the interpolating or shape functions and a is a set of unknown 

parameters. In the case of stress analysis, these functions represent the element 

geometry and the unknowns by interpolating the internal displacements directly from the 

nodal values. Specifically, they are responsible for representing any displacement in the 

elements and also provide the required consistency in the model (Felippa, 2010). 

 

Figure 5. Different behaviors that must be represented by the shape functions. A) Deformed cantilever beam B) 

Behavior of hatched element 
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In order to obtain a difference as small as possible between the analytical solution 

(called exact solution) and the result obtained from the FEM, three requirements must be 

satisfied: proper set of shape or interpolation functions which represent adequately the 

behaviour of the object modeled (Figure 5), consistency and stability. These are the so-

called convergence requirements. 

 

2.4.2 REQUIREMENTS FOR CONSISTENCY 

 

To achieve consistency in a FEM, it is required to fulfill the compatibility and 

completeness requirements that are explained as follows: 

 

COMPATIBILITY: Has to be attained at two locations in the element, its boundary and 

within the element. Compatibility at the edge is achieved when the sharing edges of two 

elements have the same polynomial order and the same displacements (piecewise 

differentiable), so they do not leave a gap between them; for instance, when a load is 

applied (Figure 6). Changing the shape functions allowing displacement continuity 

between the elements repairs this. As an axiom of compatibility, “the node 

displacements for several elements meeting in the same node must be the same” 

(Felippa, 2010). 

 

Figure 6 "Gap or penetration occurs along a transition element edge if quadratic displacement interpolation is 

employed by the transition element along the transition edge" (Rao, 2010) 

 

Compatibility within the element is when the shape functions are single-valued and 

continuous. An easy way to verify the compatibility is by ensuring that any side of the 

element that has a polynomial order m must contain m+1 nodes. The elements satisfying 
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this requirement are called conforming. For two neighbouring elements sharing an edge, 

compatibility is formulated as follows: 

{  
 }   {  

 } + {  
 }               ( 4 )  

Where   
  is the vector of clearances, and   

  and   
  are the vectors of displacement of 

reaction points, vector of displacements at contact points and the vector of 

displacement where external forces are applied all together for elements A and B. 

 COMPLETENESS: It is defined as the approximation power of the shape functions 

to the behavior of the mathematical model. Thus, these must be able to represent the 

rigid body displacement and the constant strain state, implying by this that the shape 

function must represent all polynomial terms of order m (Felippa, 2010). If this is satisfied, 

the shape functions are called m-complete. In order to satisfy the completeness of the 

shape functions, the sum of these must be unity and the element must be compatible. 

The sum may be verified, once the formulation of the elements is derived and evaluated 

for every node in one element. 

   ∑              

 

   

  
  

     ∑   
  

      ∑     
  

      ∑     
  

                       ( 5 )  

              

  ∑   
  

      ∑     
  

     ∑     
  

      

     

2.4.3 STABILITY 

 

The stability of a system of finite element equations involves two aspects: rank sufficiency 

and a positive Jacobian. 

RANK SUFFICIENCY: It is an aspect of the element stiffness matrix. An element “is 

considered to be rank sufficient if its only zero-energy modes are rigid-body modes” 

(Felippa, 2010). 

POSITIVE JACOBIAN: The determinant of the Jacobian matrix must be positive within the 

element. This quantity relates the natural and the Cartesian coordinates. 
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2.5 MESH OPTIMIZATION DURING MESH GENERATION 

 

Mesh optimization includes all the methods to improve the quality (the convergence of 

the computational schemes and the accuracy of the results (Pascal et al. 2008)) of a 

mesh. Usually, some form of a priori optimization takes place in all the commercial 

software as a part of the mesh generation process. 

 The criteria used to optimize a finite element mesh may include changing the size 

of the elements uniformly or only in certain areas and the aspect ratio control (Section 

2.6.2) in order to avoid extremely acute or obtuse angles in the elements. 

 The mesh optimization may include changing the shape and size of the elements; 

also the removal of certain amount of nodes, thus changing the number of elements in 

the mesh and the mesh adaptivity techniques, which are covered in the following 

section. 

 

2.6 MESH ADAPTIVITY TECHNIQUES 

 

More advanced implementations (adaptive finite element methods) utilize a method to 

assess the quality of the results (based on error estimation theory) and modify the mesh 

during the solution. This aims to achieve an approximate solution within some bounds 

from the 'exact' solution of the continuum problem. Mesh adaptivity may apply various 

techniques, of which the most popular are: 

 Moving nodes (r-adaptivity) 

 Refining (and coarsening) elements (h-adaptivity) 

 Changing order of base functions (p-adaptivity) 

 Combination of the above two (hp-adaptivity) 

 

2.6.1 p-ADAPTIVITY 

 

The p-refinement or p-adaptivity technique only increases the order of the interpolation 

functions when the convergence error is large; the size and location of element remains 

unaltered. This technique may also be implemented in certain areas of a finite element 

mesh where the error obtained is greater than a reference value, however, when this 

technique is not applied to all the elements, an incompatibility between two elements is 

caused and the addition of transition elements is necessary (Figure 1). 
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 This method has a limitation as the number of increases available in the order of 

the functions. If a mesh is not fine enough, the convergence error might not be reduced 

below a reference value. The p-adaptive technique is identified for increasing the ability 

of the elements to capture more deformations in large elements, but it is also expensive 

in computational terms. 

 

2.6.2 r-ADAPTIVITY 

 

In r-adaptive methods the nodes are relocated. Essentially, more nodes are placed in 

regions of larger error. The amount of nodes and subsequently, the amount of elements, 

in the mesh is kept unaltered. This method is sometimes found in literature as a sub-class 

of the h-refinement, due to the fact that there are no changes in the number of degrees 

of freedom in the problem. 

 Since there are no increases in the degrees of freedom, at first glance, this 

method optimizes the usage of resources. However, extreme changes in the location of 

the nodes may lead to elements with high aspect ratios (Defined as the ratio between 

the largest and smallest dimension of the elements) (Figure 7). “As a rough guideline, 

elements with aspect ratios exceeding 3 should be viewed with caution” (Felippa, 2010).  

 

 

Figure 7. Good (left) and bad (right) aspect ratios in finite elements 
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2.6.3 h-ADAPTIVITY 

 

This method involves the modification of the finite element mesh. This is achieved by 

subdividing the medium into smaller elements at the zones where a better accuracy is 

preferred, which increases the amount of degrees of freedom in the global stiffness 

matrix. However, the order of the interpolation functions has to remain unchanged. 

 The subdivision is either performed by diving the existing elements in a fixed 

number of new elements or by generating a completely new mesh. 

 

2.6.4 hp-ADAPTIVITY 

 

In this case, the size of the elements and the polynomial degree of the interpolation 

functions are changed. This is a combination of the h-refinement and the p-refinement 

method. Generally, this is implemented in stages by first obtaining an acceptable 

accuracy using h-refinement methods and then by using p-adaptive methods to acquire 

precise results in specific regions. All the methods might be summarized schematically on 

Figure 8. 

 

Figure 8. Mesh refinement methods. From left to right 1) Original mesh 2) Uniform h-refinement  

3) Uniform p-refinement 4) An r-refinement 

 

2.7 EXCAVATION DISTURBED ZONE (EDZ) 

 

In order to apply the concept of partial p-adaptivity, which is extensively covered in 

chapter 3, it is compulsory to mention at this point that this type of refinement considers 

the change in the order of the interpolation functions of the elements in certain areas of 

the continuum. A higher order of the functions will be maintained in zones where higher 

accuracy is required, in the specific case of this thesis; this zone is referred to as 

Excavation Disturbed Zone.  

 The EDZ is defined as the region in the FEM where the excavation(s) induce(s) a 

change in the initial conditions of the model. In this thesis, the boundaries of an EDZ are 
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defined using the percentage of disturbance with respect to the in situ biaxial stress field 

defined in the model (Martin et. al., 1992). 

 The method of adaptive meshing proposed in this thesis, considers the EDZ’s as 

the zones where accurate results are sought and therefore these correspond to the 

locations where the elements with higher polynomial order must be placed. The 

threshold that defines whether a linear order or a quadratic order element must be 

located depends on the percentage of disturbance. 

 

2.8 PERCENTAGE OF DISTURBANCE 

 

It is defined as the change in the initial conditions as an effect of the modification in any 

of the variables taken into account (e.g. in situ stresses, geometry, etc.) in the model. In 

this thesis, the sources of disturbance are the excavations and the percentage is 

evaluated with respect to the stresses after these are computed, compared to the in situ 

stresses. This percentage of disturbance (Zsaki, 2005) is defined as: 

 

    |
  
          

        

  
       |                     ( 6 ) 

Where i = 1, 2, 3 denotes the major, intermediate and minor principal stresses.  

 

Since a theoretical formulation taking into consideration the interaction between two 

circular openings is not available, the disturbance caused by these is assessed 

individually.  
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3. PARTIAL P-ADAPTIVE MESH OPTIMIZATION PROCEDURE 

 

This research applies a partial p-adaptive method to stress analysis problems. Therefore, 

after the optimization is executed, the only changes that are reflected in the mesh are 

the total number of nodes and, consequently, the existence of quadratic, transition and 

linear elements. 

 The process starts from a mesh completely composed of quadratic elements (8-

node quadrilaterals or 6-node triangles) and, after applying an algorithm, some of the 

mid-side nodes are removed, converting quadratic into linear order elements and 

generating a band of transition elements (Section 3.2). As an example, the mesh 

optimization procedure implemented in this thesis is comprised of a partial p-adaptivity 

refinement applied to a continuum containing two excavations of different radii (Table 

2) which represent a typical tunnel construction where a main tunnel is excavated at a 

relatively close distance from the service tunnel. The geomechanical properties of the 

final application are listed in Table 1 and the geometric properties are shown in Figure 9. 

 

PROPERTIES UNIT VALUE 

W kN/m3 0 

E kPa 1.0E+06 

  - 0.3 

 1 kPa 10 

 3 kPa 7.5 

 z kPa 10 

  ° 20 
Table 1 Application to underground excavations - Model material properties 

 

The initial mesh is changed by reducing the order of the interpolation functions of some 

elements, thus a controlled quantity of these are reduced to a linear order, and a 

determined quantity of elements are formulated as a transition from quadratic to linear 

order elements. These elements are necessary to make a changeover between the two 

main types of elements aforementioned and are called transition elements (Figure 1). 

 

 

LEFT EXCAVATION 

  

RIGHT EXCAVATION 

 

Excavation 1  Excavation 2 

 

X (m) Y (m) X (m) Y (m) 

Coordinates Center 43 18 61.0 13.0 

Radius (m) 2.6 5.4 

Table 2 Location and radii of the excavations modeled 
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The partial p-adaptive refinement, considers the modification of the order of the 

interpolation functions in the elements found outside the EDZ of each excavation. The 

threshold defining the EDZ will be set as a percentage of disturbance of 5% (Zsaki, 2005), 

calculated as mentioned in section 2.8. The EDZ’s are considered to be zones where less 

accuracy in the solution is accepted since it is located at points where the excavations 

have inappreciable or no effect in the medium. 

 

3.1 DETERMINING EDZ’s 

 

The distribution of stresses around each circular excavation are found using the 

analytical solution for holes in infinite plates proposed by Kirsch (1898) (Figure 10 and 

Figure 11), the values obtained from the analytical solution are compared to the biaxial 

stress field thus finding the distance from the center of each excavation where a 

percentage of disturbance is achieved. 

 
Figure 9 Scheme of the example problem 

 

The EDZ’s are defined by those nodes that are located in the elastic medium undergoing 

more than 5% of the disturbance, with respect to the initial stresses given by the biaxial 
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stress field (principal stresses). These zones are determined by using the analytical solution 

formulated by Kirsch (1898). The stresses generated around the excavation are governed 

by the following equations (Figure 10). 

   
 

 
       (  

  

  )  
 

 
       (  

   

   
   

  )                 ( 7 ) 

   
 

 
       (  

  

  )  
 

 
       (  

   

  )                 ( 8 ) 

     
 

 
       (  

   

   
   

  )                   ( 9 ) 

 

Figure 10. Circular hole in an infinite plate (Kirsch, 1898) 

 

The radial (   , the tangential (    and the shear stresses (     are evaluated for each 

excavation. This evaluation is done for a quarter of each circular excavation (First 

quadrant) due to symmetry. For each 10ª, from 0ª to 90ª iterating the value taken by r 

from a to 15*a (ensuring a value large enough to find minimum disturbances) in 

equations ( 7 ), ( 8 ) and ( 9 ). The values previously obtained are then converted from 

polar coordinates system to Cartesian coordinate system with the following stress 

transformation equations: 

                                        ( 10 ) 

                                        ( 11 ) 

                            
                 ( 12 ) 

 The radii where     is equivalent to        or        , and where     is equivalent to 

       or         (where    and    correspond to the horizontal and vertical stresses 
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caused by the initial biaxial stress field) are stored, then the largest value from the 

previous four is chosen to be the distance from the center of the excavation where the 

band of transition elements will be located. The value      was neglected in the 

comparison since, it tends to reach any percentage of disturbance at a more distant 

point (approximately 7 times the radius of the excavation for 5% of disturbance) 

compared to     or    , which would lead to a less significant optimization. 

 Therefore, a transition zone (from quadratic to linear elements) can be defined 

and a new mesh including quadratic, transition and linear elements can be generated 

with quadratic order elements positioned where a percentage of disturbance is higher 

than 5%; the rest of the continuum will be comprised of transition and linear order 

elements, and will be considered as the area where less accuracy in the solution is 

accepted since it is outside the EDZ. 

 

 

Figure 11 Stress distribution around a circular opening K = 0.25 (Ramamurthy, 2007). 

 

3.2 MESH OPTIMIZATION ALGORITHM 

 

As mentioned, the partial p-adaptive method proposed involves the application of an 

analytical solution to the problem before the optimized models are generated. The 

complete procedure passing through the mesh generation until the full recovery of 
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results is explained step by step along the next lines and might be summarized in the 

algorithm shown in Figure 12: 

 

 

Figure 12. P-adaptive method proposed for circular underground excavations 

 

1. PROBLEM GENERATION: Using Phase2 (Rocscience, 2007), the geometry, load 

conditions, boundary conditions and mesh used to discretize the medium are generated. 

In this specific case, two circular excavations of different size were included (Figure 9). 

The size of the model was defined large enough to avoid any boundary effects on both 
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excavations. The input file generated by Phase2 is then subjected to several 

modifications. 

2. FILE ALTERATION: The original input file includes all the elements, including those that 

have to be removed in the excavation. In addition to that, several changes in the file 

syntax are necessary in order to make the file readable by SIMFEM. These changes were 

carried out with the help of spreadsheets: 

-  Element elimination: Corresponding to the elements present in the excavations. 

-  Element renumbering: The element elimination requires a renumbering. 

- Node renumbering: All the internal elements belonging to the excavations were 

eliminated. Therefore, the nodes composing these elements, had to be removed as well 

and a node renumbering had to take place. 

-  Boundary Conditions renumbering: The boundary conditions list had to be rearranged, 

as a consequence of the elimination done in the previous step. 

- Addition of excavations characteristics: This is required to execute the analytical 

solution and the subsequent determination of the regions disturbed. The characteristics 

added were: amount of excavations, center of the excavations (coordinates) and radii 

of the excavations. 

- Addition of percentage of disturbance: Set to determine the extent of the EDZ’s. 

- .Sfi File Generation: An .sfi file is generated. This file is read by the UNDEROPT code in 

order to determine the EDZ’s and the location of the band(s) of transition elements. 

3. UNDEROPT: This is a fragment of code especially developed for circular openings in 

infinite plates. Using the .sfi generated before, this code is in charge of determining the 

EDZ’s and determines where to locate linear, transition and quadrilateral elements. It has 

to undertake activities related to element, nodes and boundary conditions renumbering 

and rearrangement. 

4. FINAL .sfi GENERATION: An .sfi file is generated and it is completely ready to be run by 

SIMFEM. This file includes the linear, transition and quadratic elements. 

In order to formulate a transition element, a proper set of shape functions must be 

implemented recalling that these govern the displacements at the element level and 

hence the stresses in it.  

The elements to be formulated are isoparametric, that is to say that the element shape 

coordinates and displacements are given by using the same shape functions, mainly 

because of their versatility, since with these functions is possible to have curved 

boundaries by only introducing a natural coordinate system. 
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4. FORMULATION OF FULL ORDER AND TRANSITION ELEMENTS 

 

The transition elements will allow the interconnection of linear order elements with 

quadratic order elements. The formulations of the transition quadrilateral and triangular 

elements are found throughout the literature (Felippa, 2010; Gupta, 1975) and are 

compiled in this chapter. 

 The element formulation, programming and how they are included into the 

solution algorithm of the FEM for the plane-strain stress problem are shown, although no 

extensive treatment has been given to the mathematical procedure necessary to 

achieve the solution in FEM problems. 

4.1 TRIANGULAR ELEMENTS 

 

The formulation for isoparametric 6-node quadratic triangular elements, 5-node 

isoparametric transition triangular elements, 4-node isoparametric transition triangular 

elements and 3-node isoparametric linear triangular elements are presented in this 

section. For convenience, the complete formulation of the elements is given only for the 

quadratic elements. The transition elements are derived from this one, and the only 

change is found in their shape functions. The shape functions and the partial derivatives 

of the shape functions for the triangular elements are summarized in Table 3. 

 

ELEMENT 
SHAPE FUNCTIONS 

AT EACH NODE 

SHAPE FUNCTIONS 

DERIVATIVES 

   

   

 
   

   

 
   

   

 

6-NODE QUADRATIC TRIANGLE 
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ELEMENT 
SHAPE FUNCTIONS 

AT EACH NODE 

SHAPE FUNCTIONS 

DERIVATIVES 

5-NODE TRANSITION TRIANGLE 

 
                        

                      

                         

                   

                   

4-NODE TRANSITION TRIANGLE 

 

                        

                         

            

                   

3-NODE LINEAR ORDER TRIANGLE 

 

                       

                       

                       

Table 3 Shape functions and partial derivatives of shape functions - Triangular Elements 
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Let us consider the shape functions ∑   
 
   , where n correspond to the number of nodes 

representing any triangular element. Be the shape functions partial derivatives 
   

   
,  

   

   
  

and  
   

   
 with respect to each one of the axis in the triangular coordinate system. Let us 

consider a generic scalar function             that is interpolated over the triangle by: 

                                         ( 13 ) 

  may stand for any element-varying quantity such as thickness, temperature, etc. In the 

case of the plane strain problem, this quantity is the displacements. Finding the partial 

derivatives of the shape functions with respect to x and y and applying the chain rule, 

we obtain: 

  

  
 ∑
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 ∑

   

  
 ∑   (

   

   

   

  
 

   

   

   

  
 

   

   

   

  
) 

   
 
     

 

Where n is the number of node. Equation (14) in matrix form is: 
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            ( 15 ) 

 

If we choose w=1, x, y and transposing both sides of equation ( 15 ) yields: 
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         ( 16 ) 

 

Since 
  

  
 

  

  
   because x and y are independent coordinates and 
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therefore: 
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If ∑   
   , then the first row is equal to a constant C and since the right side of the matrix 

equation is null, this C can be replaced by unity, obtaining a linear system of equations 

of order 3, which is called the Jacobian matrix Eq. 19 
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In equation ( 19 ), if J ≠ 0 and solving for P we have: 
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]               ( 20 ) 

 

                  and                  

The Jacobian   
 

 
     

 

 
(                 )        ( 21 ) 

 

Substituting into equation ( 14 ), we get: 
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Weights and coordinates for numerical integration at the Gauss points in two different 

cases for triangular elements: 

 

1 point         

     
 

 
,    

 

 
,    

 

 
 

3 points    
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The Stiffness matrix for these elements, after the formulation is done, a procedure that 

allows a program to form and evaluate the integrated stiffness matrix in global 

coordinates is executed. The numerically integrated stiffness matrix is: 

  ∫        
 

 ∑               
 
    ∑      

     
            ( 24 ) 

 p indicates the number of sample points of the Gauss rule used.    is the 

integration weight for the ith sample point. h indicates the thickness of the element, which 

in this case is taken over the element and corresponds to unity (plane strain). The 

integration over two-dimensional element areas consists of evaluating the integrand at 

optimally selected integration points within the element (Gauss points), and forming a 

weighted summation of the integrand values at these points. 

 The solution is computed at the Gaussian integration points. Therefore, in order to 

recover the stresses at the nodes of the elements (corner or mid-side nodes), an 

extrapolation function given by a matrix equation must be implemented. 
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4.2 QUADRILATERAL ELEMENTS 

 

The formulation of isoparametric 8-node quadratic quadrilateral elements, 7-node 

isoparametric transition quadrilateral elements, 5-node isoparametric transition 

quadrilateral elements and 4-node isoparametric linear quadrilateral elements are 

presented in this section. For convenience, the complete formulation of the elements is 

given only for the quadratic elements; the transition and linear elements are derived 

from this one, and the only change is found in their shape functions. This formulation is 

following Gupta (1975). The shape functions and the partial derivatives of the shape 

functions for the quadrilateral elements are summarized in Table 4. 

 

 

ELEMENT 
SHAPE FUNCTIONS AT 

EACH NODE 

SHAPE FUNCTIONS DERIVATIVES 

   

  
 

   

  
 

8-NODE QUADRATIC ORDER QUADRILATERAL 
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ELEMENT 
SHAPE FUNCTIONS AT 

EACH NODE 

SHAPE FUNCTIONS DERIVATIVES 

   

  
 

   

  
 

7-NODE TRANSITION QUADRILATERAL 

 

   
 

 
           

 

 
   

 

 
      

 

 
       

 

 
      

 

 
       

   
 

 
           

 

 
   

 

 
   

 

 
            

 

 
            

   
 

 
           

 

 
   

 

 
    

 

 
             

 

 
            

   
 

 
           

 

 
   

 

 
      

 

 
        

 

 
      

 

 
       

   
 

 
                    

 

 
        

   
 

 
            

 

 
                

   
 

 
                    

 

 
        

5-NODE TRANSITION QUADRILATERAL 
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ELEMENT 
SHAPE FUNCTIONS AT 

EACH NODE 

SHAPE FUNCTIONS DERIVATIVES 

   

  
 

   

  
 

4-NODE LINEAR ORDER QUADRILATERAL 

 

   
 

 
           

 

 
      

 

 
      

   
 

 
           

 

 
      

 

 
       

   
 

 
           

 

 
      

 

 
      

   
 

 
           

 

 
       

 

 
      

Table 4 Shape functions and partial derivatives of shape functions - Quadrilateral Elements 

 

Let us assume the shape functions ∑   
 
   , where n correspond to the amount of nodes 

present in any triangular element. Be the shape functions derivatives 
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. Finding 

the Jacobian and inverse Jacobian (J and JT) 
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Finding the shape function derivatives by the chain rule 
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Differentiating with respect to the quadrilateral coordinates, where n is the number of 

nodes:
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The determinant of J (Jacobian) 
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Inverse of J 
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( 40 ) 

In the case of small strains in plane strain conditions, the strain-displacement relation is 

given by the Strain Displacement Matrix (n corresponds to the number of nodes in the 

element) 
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Weight and coordinates of Gaussian points for numerical integration in three different 

cases for quadrilateral elements: 

1 point         

          

4 points        

                       
√ 
   

√ 
               ( 42 ) 

     
 

√ 
  

 

√ 
                          

9 points     
 ⁄      ⁄    ⁄  

    √ 
 ⁄      √ 

 ⁄   

     √ 
 ⁄      √ 

 ⁄  

 

The canonical form of the Gaussian quadrature for isoparametric quadrilateral elements 

is given as: 

∬          
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Where: 

 f =   ∫        
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For all Gauss integration points the program must: 

 

1) Evaluate  
   

  
  and  

   

  
 

2) Evaluate  
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3) Evaluate det J = 
  

  
 
  

  
 

  

  
 
  

  
 

4) Evaluate  

                
  

  
 

 

    

  

  
 

                
  

  
  

 

    

  

  
 

  

  
  

 

    

  

  
 

  

  
  

 

    

  

  

5) Evaluate 

        
   

  
 

   

  

  

  
 

   

  

  

  
 

   

  
 

   

  

  

  
 

   

  

  

  
 

6) Assemble the stiffness matrix (eq (43)) 
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5. PERFORMANCE EVALUATION OF TRANSITION ELEMENTS 

 

Once the theoretical formulation and the subsequent addition of these elements into the 

SIMFEM code was carried out, a testing process to assess the performance of several 

configurations of the elements was done using three different FEM programs SAP2000® 

(CSI Inc., 2007), Phase2 and SIMFEM. Since stresses and forces are derived quantities from 

the general matrix stiffness equation ( 49 ), the displacements at several points of the 

geometry of the element were chosen to be the parameter of performance of the 

elements. 

                   ( 49 ) 

All the tests are subdivided into two categories: 

Type I Models: These models contain 1 or 2 elements, depending on whether triangles or 

quadrilaterals were used. Further specifications are given throughout the next pages. 

Type II Models: These models contain 9 or 18 elements, depending on whether triangles 

or quadrilaterals were used. Further specifications are given through the next pages. 

 

5.1 TYPE I MODELS 

 

All the type I models were designed with the same geometric and material properties. 

For the lower edge, where the base is located, fixed type supports were assumed. In the 

case of quadratic edges, three supports were installed; two at the extremes and one at 

the midside node. In the case of linear edges, two fixed type supports were installed; one 

at each extreme (Figure 13). The vertical distributed load applied in the upper part of the 

models was 2 kN/m/m had to be transformed into an equivalent nodal load (Nikishov, 

2007). This transformation depends on what type of edge the load is being applied on 

and can be better explained as follows. 

 

Figure 13 Nodal equivalent forces for quadratic and linear edges 
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It is also necessary to take into account the Gauss integration points, which are 

mandatory to perform the numerical integration. These points are used to evaluate the 

stresses in the element stiffness integration, which are later extrapolated to the element 

node points.  The triangular elements were tested assuming 3 integration points and in 

the case of quadrilateral elements, the amount of integration points was set to be 9. The 

SIMFEM code has the capacity to consider 1 or 3 integration points in triangular elements 

and 1, 4 or 9 integration points in quadrilateral elements. 

Figure 14. Type I model - General sketch (a) and Equivalent nodal loads (b) 

 

The dimensions of all the arrangements of elements are of 10 m by 10 m and the material 

constituting the continuum was assumed to be linear elastic. Other properties are listed in 

the following table: 

 

PROPERTY UNIT VALUE 

  kN/m3 0.02 

E kPa 1000 

ν - 0.3 
Table 5. Type I and type II models properties 

 

5.1.1 TYPE I MODELS USING TRIANGLES – RESULTS 

 

A total of 32 type I models were evaluated, taking into account several geometric 

configurations of the nodes along the models as is shown in the column “scheme” in the 

APPENDIX 2. TYPE I MODELS USING TRIANGULAR ELEMENTS - RESULTS for a better 

understanding of the appendix presented, the column named “LOC” indicates at what 

corner or midside points the displacement is measured. As a key, the reader must use: UR 
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(Upper Right), UM (Upper Medium), UL (Upper Left), C (Center), ML (Medium Left), MR 

(Medium Right), LL (Lower Left), LM (Lower Medium) and LR (Lower Right). The results of 

the calculations are shown in Table 6 through Table 9. By plotting the displacements of 

the upper nodes of the models, the behaviour of the elements under same load and 

support conditions can be compared. 

 Due to the large number of results to be plotted, three plots were necessary. In 

the first two plots, only the models done with 3-node and 6-node triangles are included. 

 

Figure 15. Models using elements with 3 and 6 nodes. Displacements at the upper edge – Left corner. 

 

 

Figure 16. Models using elements with 3 and 6 nodes. Displacements at the upper edge – Right corner 
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In Figure 15 and Figure 19 only the linear models TRI3NB and TRIB_SAP, which are 

modeled with a diagonal edge in a different direction (refer to APPENDIX 2. TYPE I 

MODELS USING TRIANGULAR ELEMENTS - RESULTS), present a different behavior. Yet, their 

displacements are very close, despite using two different programs for the modeling 

(Figure 17 and Figure 18) (SAP2000® and SIMFEM). The effect of the direction of the 

diagonal seems to disappear in the quadratic elements, since all the models using them 

present comparable displacements (PHASE6Q, TRI6NA and TRI6NB), as shown on Figure 

15 and Figure 16.  

 

 
 

Figure 17 Model TRIA_SAP (Left: Loads assignments - Right: Deformed model) (Units kN, m) 

 

Figure 18 Model TRIB_SAP (Left: Loads assignments - Right: Deformed model) (Units kN, m) 
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After evaluating all the displacements of the model, it was inferred that the dispersion in 

the results at the upper part of the model is the most evident. Therefore the comparison is 

also based on this edge of the model. Specifically, the displacements of the nodes were 

compared at the upper left node of the models. There was also the possibility of 

evaluating the displacements at the mid-part of the element, but as can be observed in 

the displacements results, the dispersion is not as evident as at the other location, 

provoking non-representative percentage errors. Besides, some of the models were not 

assigned mid-side nodes as is shown in the scheme column of appendix 1 and 2, which 

would lead to an incomplete evaluation of results. 

 The performance evaluation was done based on the displacements at certain 

points. These displacements were normalized with respect to results obtained in Phase2, a 

FEA software intended for geotechnical engineering with the capability of formulate 

either linear or quadratic elements. The other software package used was SAP2000®; this 

program allows only the use of linear elements. The percent error in X and Y directions 

were derived using the following: 

       
                                  

              
                      ( 50 ) 

 

ELEMENTS Ux (m) Uy (m) 

TRI3NA -0.00578 -0.019186 

TRI3NB -0.0018992 -0.015304 

TRIA_SAP -0.0058 -0.0192 

TRIB_SAP -0.0017 -0.0146 

WITH RESPECT TO     

PHASE3L -0.0062603 -0.018818 

AT UL 

  ERROR IN X ERROR IN Y 

% E TRI3NA WRT PHASE3L 7.67% 1.96% 

% E TRI3NB WRT PHASE3L 69.66% 18.67% 

% E TRIA_SAP WRT PHASE3L 7.35% 2.03% 

% E TRIB_SAP WRT PHASE3L 72.84% 22.41% 

Table 6 Comparison of linear triangles in SIMFEM, Phase2 and SAP2000® 

 

In Table 6, only the models with linear triangular elements are analyzed. The effect of the 

inverted diagonal may dictate the tendency of the displacements at Figure 19, Figure 16 

and Figure 23, where we can appreciate the two zones (left and right side of the plot) 

where these are located. When the same geometry was modeled in different programs 

the greatest error found was around 7.5%. 
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ELEMENTS Ux (m) Uy (m) 

TRI6NA -0.005064 -0.01885 

TRI6NB -0.005064485 -0.018856 

WITH RESPECT TO     

PHASE6Q -0.0050645 -0.018856 

AT UL 

  ERROR IN X ERROR IN Y 

% E TRI6NA WRT PHASE6Q 0.01% 0.03% 

% E TRI6NB WRT PHASE6Q 0.00% 0.00% 

Table 7 Comparison of quadratic triangles in SIMFEM and Phase2 

Only the quadrilateral triangles were evaluated in the previous table. In this case, for two 

different programs replicating the same model the displacements are almost identical. In 

the next two figures only the models using 4-node triangles are plotted. 

 

Figure 19. Models using elements with 4 nodes. Displacements at the upper edge – Left corner. 

 

Figure 20. Models using elements with 4 nodes. Displacements at the upper edge – Right corner. 
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Figure 19 and Figure 20 show a disperse behavior of the displacements not as defined as 

in the previous figures, let us recall that only 4-node transition elements are included, in 

addition to the position of the fourth node or transition edge and the direction of the 

diagonal change in each model. Although the tendency of similar models to tilt towards 

the same directions and with the same order of magnitude of displacements is observed, 

for instance the models with the forth node located in the center of the model (TRI4NAC 

and TRI4NBC) tend to have similar displacements. The same analysis might be depicted 

for the models TRI4NAH, TRI4NAM1 and TRI4NAM2 that have their diagonal edge in the 

same direction and present similar tendency. Models TRI4NBV and TRI4NBH, that have 

the diagonal edge in the same direction, also show similar tendencies, located in similar 

zones at upper left and upper right node. 

 

ELEMENTS Ux (m) Uy (m) 

TRI4NBC -0.005895 -0.01827 

TRI4NBV -0.006819 -0.0204 

TRI4NBH -0.002553 -0.01665 

WITH RESPECT TO     

PHASE3L -0.0062603 -0.018818 

AT UL 

  ERROR IN X ERROR IN Y 

% E TRI4NBC WRT PHASE3L 5.84% 2.91% 

% E TRI4NBV WRT PHASE3L 8.92% 8.41% 

% E TRI4NBH WRT PHASE3L 59.22% 11.52% 

Table 8 4-node triangular transition elements – Inverted edge 

The element TRI4NBH shows the largest errors, even though, the values obtained remain 

within the same order of magnitude. These large errors lead to the design of further tests 

on the elements with the objective of performing a further evaluation of the transition 

elements. 

 

ELEMENTS Ux (m) Uy (m) 

TRI4NAC -0.00538 -0.01776 

TRI4NAV -0.00538 -0.01776 

TRI4NAH -0.00538 -0.01776 

WITH RESPECT TO     

TRI3NA -0.00578 -0.019186 

AT UL 

  ERROR IN X ERROR IN Y 

% E TRI4NAC WRT TRI3NA 6.92% 7.43% 

% E TRI4NAV WRT TRI3NA 6.92% 7.43% 

% E TRI4NAH WRT TRI3NA 6.92% 7.43% 

Table 9. 4-node triangular transition elements compared to linear triangular elements 

As can be seen in the data tables listed in the appendix, there is also a tendency for all 

the triangular transition elements formulated to behave similarly as the models where 
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triangular quadratic elements were used. The results obtained from the models 

developed only using quadrilaterals are shown on the next section. 

 

Figure 21. Models using elements with 5 nodes. Displacements at the upper edge – Left corner. 

 

In Figure 21 the models TRI5NAB, TRI5NBV, TRI5NAV, that have quadratic edges in the 

base and the upper part of the models (edge carrying the distributed load) tend to 

behave similarly and their displacements are located in the left side of the graph. The 

other models, that either have a linear edge at the base or at the upper part, display 

similar displacements located at the right side of the previous chart. 

 

Figure 22. Models using elements with 5 nodes. Displacements at the upper edge – Right corner. 
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Figure 22 shows a more clustered plot, since all the models tend to have the same 

displacements except for the model TRI5NAB. Some of the models were not included on 

the plots since not every one using triangles has a node located at the middle of the 

upper edge. The addition of these could lead to non-representative results. The data 

remaining was sorted in two different plots; the first one includes models using 5-node 

triangles and the second one, models using 4-node and 6-node triangles. 

 

 

Figure 23. Models using elements with 5 nodes. Displacements at the upper edge of the models – Midside 

nodes (where available) 

 

Figure 24. Models using elements with 4 and 6 nodes. Displacements at the upper edge of the models – Midside 

nodes (where available) 
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In Figure 24 models PHASE6Q and TRI6NB show the same displacements despite being 

modeled with different programs. Other models seem to behave according to the 

orientation of the diagonal edge, which was seen in mostly all the models. In the models 

where a diagonal comes from the lower left node towards the upper right node, the 

model tilts to the left and vice versa.  

 

ELEMENTS Ux (m) Uy (m) 

TRI5NAH -0.006529 -0.01897 

TRI5NAB -0.006529 -0.01897 

TRI4NBH -0.002553 -0.01665 

TRI4NBV -0.006819 -0.0204 

WITH RESPECT TO     

PHASE3L -0.0062603 -0.018818 

AT UL 

  ERROR IN X ERROR IN Y 

% E TRI5NAH WRT PHASE3L 4.29% 0.81% 

% E TRI5NAB WRT PHASE3L 4.29% 0.81% 

% E TRI4NBH WRT PHASE3L 59.22% 11.52% 

% E TRI4NBV WRT PHASE3L 8.92% 8.41% 

Table 10 5-node triangular transition elements – Diagonal inverted 

The tendency of displacements mainly obeys to the orientation of the diagonal edge in 

the triangular elements, rather than problems in the formulation of the elements, as can 

be seen in APPENDIX 2. TYPE I MODELS USING TRIANGULAR ELEMENTS - RESULTS; 

nevertheless, it is to notice, that the right upper corner node always tilts towards the 

negative vertical axis and the negative horizontal axis. Correspondingly, the same 

behavior is noticed in the upper right corner node, where all the nodes are displaced 

towards the positive horizontal axis and the negative vertical axis. 

 In the case of the upper mid-side nodes the absence of displacement in the 

horizontal direction is palpable. The most considerable displacements are shown in the 

vertical direction. 

 

ELEMENTS Ux (m) Uy (m) 

TRI5NBB -0.0067612 -0.01975 

TRI5NBV -0.005754 -0.01907 

TRI5NBH -0.0067612 -0.01975 

WITH RESPECT TO     

TRI6NB -0.005064485 -0.018856 

AT UL 

  ERROR IN X ERROR IN Y 

% E TRI5NBB WRT TRI6NB 33.50% 4.74% 

% E TRI5NBV WRT TRI6NB 13.61% 1.13% 

% E TRI5NBH WRT TRI6NB 33.50% 4.74% 

Table 11 4-node triangular transition elements 
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In all cases, the elements present an error approximate by 10%; except for the error in x-

direction of the element TRI4NBH. Most likely, in this case, the absence of a support 

causes the difference. In Table 11, the errors in the y direction are almost 

undistinguishable. Yet, the errors in the horizontal direction obtain values around 30%. The 

difference is mainly caused by the location of the quadratic edges; elements with similar 

location of the quadratic edges show a similar behavior. 

 

5.1.2 TYPE I MODELS USING QUADRILATERALS 

 

The same performance evaluation applied for the models comprised by triangular 

elements was applied to the quadrilaterals. Several models were run in three different 

programs: SAP2000®, Phase2 and SIMFEM. 

 

ELEMENTS Ux (m) Uy (m) 

PHASE6Q -0.0050645 -0.018856 

PHASE3L -0.0062603 -0.018818 

QUAD_SAP -0.0061 -0.0182 

WITH RESPECT TO     

QUA4N -0.005117 -0.01705 

AT UL 

  ERROR IN X ERROR IN Y 

% E PHASE6Q WRT QUA4N 1.03% 10.59% 

% E PHASE3L WRT QUA4N 22.34% 10.37% 

% E QUAD_SAP WRT QUA4N 19.21% 6.74% 

Table 12 Comparison of triangular and quadrilateral elements 

In Table 12, the behaviour of quadratic and linear elements is evaluated. Some values of 

the percentage of error are above 15%. Nevertheless, the tilting direction of all the 

elements is towards the negative horizontal axis and the negative vertical axis (same 

direction as the load). The comparison was done between models using triangular 

elements and models using quadrilateral elements. 

 Replicating the plots shown for triangular elements, similar plots for quadrilateral 

elements are considered. In the next two plots, only the models using 4-node 

quadrilaterals and 5-node quadrilaterals are displayed. The location of the quadratic 

edge in the 5-node quadrilaterals is described in APPENDIX 1. TYPE I MODELS USING 

QUADRILATERAL ELEMENTS – RESULTS. 

 In Figure 25 and Figure 26, a perfect match is observed between models QUA4N 

and QUA5ND. Model QUA5ND has the quadratic edge located in the base, 

consequently, the edge carrying the load and the lateral edges remain linear, and this 

implies the similar conditions between these and the linear models, and the perception 
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of similar displacements as a result. The other models present similar displacements, due 

to the location of the quadratic order diagonal.  

 

Figure 25. Models using elements with 4 and 5 nodes. Displacements at the upper edge – Left corner 

 

Figure 26 Models using elements with 4 and 5 nodes. Displacements at the upper edge – Right corner 

ELEMENTS Ux (m) Uy (m) 

QUA5NA -0.0029174 -0.016381 

QUA5NB -0.0052813 -0.01832 

QUA5NC -0.005742 -0.01829 

QUA5ND -0.0051168 -0.017056 

WITH RESPECT TO     

QUA4N -0.005117 -0.01705 

AT UL 

  ERROR IN X ERROR IN Y 

% E QUA5NA WRT QUA4N 42.99% 3.92% 

% E QUA5NB WRT QUA4N 3.21% 7.45% 

% E QUA5NC WRT QUA4N 12.21% 7.27% 

% E QUA5ND WRT QUA4N 0.00% 0.04% 

Table 13 5-node quadrilaterals transition elements 
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Despite the fact that error values below 10% were reached in all the elements, in the 

vertical direction, these values are greater than 35% in the case of those elements that 

count with quadratic edges where the displacements were being measured. It is 

important to observe that the displacements obtained are always oriented to the 

predicted direction, although the influence of different types of edges in the element is 

noticeable. 

 

Figure 27. Models using elements with 7 and 8 nodes. Displacements at the upper edge – Left corner 

 

Figure 28 Models using elements with 7 and 8 nodes. Displacements at the upper edge – Right corner 

 

In Figure 27 and Figure 28, QUA8N (quadratic) and QUA7NA (only has a linear edge 

located at the edge that carries the load) show the same displacements. Models 

QUA7NC and QUA7ND that have the linear edge at the right and left edge of the model 

respectively, show similar displacement in the x-axis direction. The nature of the model 
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QUAD_SAP, which has no quadratic edges, is reflected in having no similar 

displacements compared to its quadratic or transition counterparts. 

 

 
Figure 29. Models using 5 and 7-node elements. Disp. at the upper edge – Midside nodes (where available) 

 

Similar displacements are observed in the mid-node located at the upper edge of these 

models. It can be said that model QUA7NB presents a different behavior, but this is only 

noticeable because of the scale used for the plots. The missing diagonal in these models 

may lead to a more uniform displaced shape compared to the models type I using 

triangular elements. 

 

ELEMENTS Ux (m) Uy (m) 

QUA7NA -0.003524 -0.017515 

QUA7NB -0.003714 -0.017789 

QUA7NC -0.004724 -0.01787 

QUA7ND -0.004742 -0.018406 

WITH RESPECT TO     

QUA4N -0.005117 -0.01705 

AT UL 

  ERROR IN X ERROR IN Y 

% E QUA7NA WRT QUA4N 31.13% 2.73% 

% E QUA7NB WRT QUA4N 27.42% 4.33% 

% E QUA7NC WRT QUA4N 7.68% 4.81% 

% E QUA7ND WRT QUA4N 7.33% 7.95% 

Table 14 7-node quadrilaterals transition elements – 4-node quads. 

The same analysis performed to the 5-node elements might be applied in the case of 7 

node elements. The percentage of error remains within the same values as those 

presented in Table 13. 

 



 

 

46 

ELEMENTS Ux (m) Uy (m) 

QUA7NA -0.003524 -0.017515 

QUA7NB -0.003714 -0.017789 

QUA7NC -0.004724 -0.01787 

QUA7ND -0.004742 -0.018406 

WITH RESPECT TO     

QUA8N -0.003712 -0.01778 

AT UL 

  ERROR IN X ERROR IN Y 

% E QUA7NA WRT QUA8N 5.06% 1.49% 

% E QUA7NB WRT QUA8N 0.05% 0.05% 

% E QUA7NC WRT QUA8N 27.26% 0.51% 

% E QUA7ND WRT QUA8N 27.75% 3.52% 

Table 15 7-node quadrilaterals transition elements – 8-node quads. 

Similar values for the percentage of error were obtained when the comparison was 

normalized with respect to a quadratic quadrilateral. However, values greater than 7% 

were reached only in the elements where the quadratic edges are located in the lower 

part of the model, and there is one more support located in the mid-side node. 

 After these results were analyzed and the performance was classified as 

satisfactory for presenting percent errors as similar as those related to the same model 

run in three different programs (SIMFEM, SAP2000® and Phase2). Larger scale models 

were developed and tested, ensuring a good performance of the transition elements 

when these are included systematically into a finite element mesh.  

 

5.2 TYPE II MODELS 

 

Once the results obtained from the type I models were analyzed and were classified as 

satisfactory, more comprehensive tests were carried out in order to evaluate the 

performance of the transition elements in larger models. Several models, including the 

aforementioned transition elements were developed, where the same mesh was 

assumed for either quadratic, linear or transition elements. The load scheme and 

geometry assumptions are shown in Figure 30. The material properties that were assigned 

to the models are shown in Table 5.  

 Regarding the boundary conditions of the model, roller type supports were 

placed in the left and lower boundaries. In the case of the lower left corner of the model, 

any displacement at the vertical and horizontal axis was restricted (fixed type support). 

The assumptions taken for the boundary conditions were the same on the type II models 

for both quadrilateral elements and triangular elements. 
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Figure 30 Type II model. Load and geometry assumptions (Using triangular elements) 

 

5.2.1 TYPE II MODELS UTILIZING TRIANGULAR ELEMENTS 

 

A total of 5 models utilizing triangular elements were developed. One of them was 

modeled in SAP2000® and the other four were modeled using the SIMFEM code, with the 

next specifications: 

- TRI3N: The elements were assumed as 3-node linear triangles (Figure 31 left) 

- TRI4N: The elements were assumed as 4-node transition triangles (Figure 31 right) 

 

Figure 31 Type II models TRI3N and TRI4N 

- TRI5N: The elements were assumed as 5-node transition triangles (Figure 32 left). 

- TRI6N: The elements were assumed as 6-node quadratic triangles (Figure 32 right). 

- TRI3N_SAP2000: All the elements were assumed as 3-node linear triangles. Same 

conditions as TRI3N model. 
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Figure 32 Type II models TRI5N and TRI6N 

The results obtained exhibited a good agreement between all the models. A maximum 

percent error of 5.16%, was found at the upper right node of the model done using 

quadratic triangles run in SIMFEM with respect to the model done with linear triangles run 

in SAP2000®. For a better understanding of the following tables, the reader should refer 

to the first paragraph of this subchapter. 

 

MODEL  Ux (m) Uy (m) 

TRI3N 0.02558 -0.06277 

TRI4N 0.02566 -0.06324 

TRI5N 0.02525 -0.06249 

TRI6N 0.02428 -0.0614 

WITH RESPECT TO 

  TRI3N_SAP2000 0.0256 -0.0628 

AT CORNER 

  Upper Right 

  %E TRI3N WRT TRI3N_SAP2000 0.08% -0.05% 

%E TRI4N WRT TRI3N_SAP2000 0.23% -0.70% 

%E TRI5N WRT TRI3N_SAP2000 1.37% -0.49% 

%E TRI6N WRT TRI3N_SAP2000 5.16% -2.23% 

Table 16 Type II models at the upper right corner normalized with respect to FEM in SAP2000®. 

All the differences in the values obtained were below 6%, which corresponds to the 

model developed with quadratic elements. If the values were only compared between 

transition elements and linear elements, the results would not be greater than 1.37% in 

either direction (x or y axis). 
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MODEL Ux (m) 

TRI3N 0.0281 

TRI4N 0.02808 

TRI5N 0.0283 

TRI6N 0.02892 

WITH RESPECT TO 
 

TRI3N_SAP2000 0.0281 

AT CORNER 
 

Lower Right 
 

%E OF TRI3N TO TRI3N_SAP2000 0.00% 

%E OF TRI4N TO TRI3N_SAP2000 0.07% 

%E OF TRI5N TO TRI3N_SAP2000 0.71% 

%E OF TRI6N TO TRI3N_SAP2000 2.92% 

MODEL Uy (m) 

TRI3N -0.062538 

TRI4N -0.06208 

TRI5N -0.06286 

TRI6N -0.06329 

WITH RESPECT TO 
 

TRI3N_SAP2000 -0.0625 

AT CORNER 
 

Upper Left 
 

%E OF TRI3N TO TRI3N_SAP2000 -0.06% 

%E OF TRI4N TO TRI3N_SAP2000 -0.67% 

%E OF TRI5N TO TRI3N_SAP2000 -0.58% 

%E OF TRI6N TO TRI3N_SAP2000 -1.26% 

Table 17 Type II models (Triangles) at the lower right corner normalized with respect to FEM in SAP2000®. 

The model has a boundary condition in the x direction for the node of interest as shown 

in Figure 31 and Figure 32. Thus, only displacements at the vertical direction were 

obtained. The greatest percentage of error was 1.26% in the vertical direction and 2.92% 

in the horizontal direction. For better understanding of the numbers presented before, a 

series of plots were developed and the results are presented as follows: 

 

 

Figure 33 Horizontal displacements of corner nodes at Y = 10 m 

 

The lines drawn in Figure 33 through Figure 38 and in Figure 41 through Figure 46 do not 

represent a regression of the results; only connect the data belonging to the same 

element facilitating the discernment of the plots. 
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Figure 34 Horizontal displacements of corner nodes at Y = 20 m 

 

Figure 35 Horizontal displacements of corner nodes at Y = 30 m 

Analyzing the displacements in the x-axis direction, the similarity is noticeable between all 

the models using triangles. In Figure 35, the displacements obtained from the model 

composed of only quadratic order elements, show greater displacements than the 

others. Still, its displacements only present a percentage of error of 2.92% with respect to 

the model built with linear order elements. The models exhibit similar displacements at 

different vertical coordinates (Y=10m, Y=20m and Y=30m). 
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Figure 36 Vertical displacements of corner nodes at Y = 10 m 

 

Figure 37 Vertical displacements of corner nodes at Y = 20 m 
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Figure 38 Vertical displacements of corner nodes at Y = 30 m 

 

The role of the transition nodes is more noticeable on the displacements in the vertical 

direction; this tendency is kept with all the models plotted in Figure 36 through Figure 38 

(TRI3N, TRI4N, TRI5N and TRI6N). The scale of the plots may affect the perception of the 

differences between the models, which show different tendencies. Once, the numerical 

evaluation of the displacements is carried out, the percentages of error are found in the 

range of 2% to 3%. As mentioned before, none of the models presented percentages of 

error in the vertical direction above 6%. As seen in the plots and in the data analysis, a 

very high equivalence of displacements was found using SIMFEM and SAP2000®. 

 

5.2.2 TYPE II MODELS UTILIZING QUADRILATERAL ELEMENTS 

 

Five models utilizing quadrilateral elements were developed. One of them was modeled 

in SAP2000® and the other four were modeled using the SIMFEM code with the next 

specifications: 

- QUA4N: Elements assumed as 4-node linear quadrilaterals (Figure 39 left) 

- QUA5N: Elements assumed as 5-node transition quadrilaterals (Figure 39 right)
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Figure 39 Type II models QUA4N and QUA5N 

- QUA7N: Elements assumed 7-node transition quadrilaterals (Figure 40 left) 

- QUA8N: Elements assumed as 8-node quadratic quadrilaterals (Figure 40 right) 

- QUA4N_SAP2000: Elements assumed as 4-node linear quadrilaterals.

 

Figure 40 Type II models QUA7N and QUA8N 

 

The results show an equivalence between the models developed using SIMFEM 

regardless the amount of nodes in the elements, although the same differences in the 

percentage of error are observed among all the models run in SIMFEM and the model 

run in SAP2000®. This is most likely caused by the element formulation done by SAP2000®, 

which assumes only four integration points. Nine integration points were assumed in the 

models run using SIMFEM and the extrapolation necessary to recover the stresses at the 

nodes affected the results. 
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MODEL Ux (m) Uy (m) 

QUA4N 0.02341 -0.05467 

QUA5N 0.0239733 -0.05467 

QUA7N 0.02342 -0.05468 

QUA8N 0.0234 -0.05466 

WITH RESPECT TO 
  QUA4N_SAP2000 0.0247 -0.0616 

AT CORNER 
  Upper Right 
  %E OF QUA4N TO QUA4N_SAP2000 5.22% -11.25% 

%E OF QUA5N TO QUA4N_SAP2000 2.94% -11.25% 

%E OF QUA7N TO QUA4N_SAP2000 5.18% -11.23% 

%E OF QUA8N TO QUA4N_SAP2000 5.26% -11.27% 

Table 18. Type II models (Quadrilaterals). Upper right corner with respect to FEM with SAP2000®. 

 

MODEL Ux (m) 

 

MODEL Uy (m) 

QUA4N 0.02345 

 

QUA4N -0.05468 

QUA5N 0.02344 

 

QUA5N -0.05468 

QUA7N 0.02345 

 

QUA7N -0.05467 

QUA8N 0.02345 

 

QUA8N -0.05468 

WITH RESPECT TO 
 

 

WITH RESPECT TO 
 

QUA4N_SAP2000 0.0287 

 

QUA4N_SAP2000 -0.0633 

AT CORNER 
 

 

AT CORNER 
 

Lower Right 
 

 

Upper Left 
 

%E OF QUA4N TO QUA4N_SAP2000 18.29% 

 

%E OF QUA4N TO QUA4N_SAP2000 -13.62% 

%E OF QUA5N TO QUA4N_SAP2000 18.33% 

 

%E OF QUA5N TO QUA4N_SAP2000 -13.62% 

%E OF QUA7N TO QUA4N_SAP2000 18.29% 

 

%E OF QUA7N TO QUA4N_SAP2000 -13.63% 

%E OF QUA8N TO QUA4N_SAP2000 18.29% 

 

%E OF QUA8N TO QUA4N_SAP2000 -13.62% 

Table 19 Type II models (Quadrilaterals). Lower right and upper left corners with respect to FEM with SAP2000®. 

The model done in SAP2000® does not have the same displacements as those modeled 

using SIMFEM. All the other models work similarly. 

 

Figure 41 Horizontal displacements of corner nodes at Y = 10 m 
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Figure 42 Horizontal displacements of corner nodes at Y = 20 m 

 

 

 

Figure 43 Horizontal displacements of corner nodes at Y = 30 
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As mentioned in the numerical evaluation of results, in the plots it is observed that the 

model developed in SAP2000® does not reflect the same behavior as the other models. 

 

 

Figure 44 Vertical displacements of corner nodes at Y = 10 m 

 

Figure 45 Vertical displacements of corner nodes at Y = 20 m 
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Figure 46 Horizontal displacements of corner nodes at Y = 30 

 

Despite the performance shown by the QUA4N_SAP2000 model, all the models 

developed with SIMFEM presented similar behavior regardless of the presence of 

transition elements. Therefore, another test has to be performed successfully having as an 

objective the testing of different transition zones in the same model. 
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6. VERIFICATION OF PRACTICAL PERFORMANCE - PRESSURIZED CAVITY 

 

For another validation of performance of the transition elements, a third test was 

performed on a quarter of a pressurized cavity modeled according to the load and 

geometric conditions shown in Figure 47. In this case the unit weight of the material 

surrounding the opening was neglected, while the modulus of elasticity of the material 

assumed was 1 x 106 kPa and its Poisson’s ratio was 0.3. 

 

 

Figure 47 Load, boundary and geometric conditions for the pressurized cavity – Transition zones also shown 

 

The main purpose of this model was to test the transition band, which was located at 3 

different radii arbitrarily chosen. For each case, the criterion to determine which nodes 

are taken into account is quite simple. In both cases (quadrilateral and triangular 

elements), all the nodes inside the given radius are considered; therefore, all the 

elements have quadratic edges if they are located inside the radius. However, for those 

outside of the stated radius, only the nodes comprising the linear elements (corner 

nodes) are considered. The radii considered were 7.5m, 10m and 12.5m (Figure 47). 
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Figure 48 Pressurized cavity using linear triangles - Mesh, geometry, load and boundary conditions for Phase2 

(left) and SIMFEM (right) 

Figure 49 Pressurized cavity with quadratic quadrilaterals - Mesh, geometry, load and boundary conditions for 

Phase2 (left) and SIMFEM (right) 

 

The models composed of only quadratic or linear order elements were modeled in 

SIMFEM and Phase2, and the undeformed meshes as output of the programs are shown 

in Figure 48 and Figure 49. The same location of nodes and elements and the boundary 

conditions are defined in both programs.  
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6.1 EQUIVALENT NODAL LOADS 

 

The uniformly distributed load applied in the Phase2 model was also transformed into a 

nodal equivalent load, in a similar way as it was done with the Type II models, where a 

uniformly distributed load at the top of the model was converted as well. In the 

pressurized cavity, a uniform load of 1.2785 kN/m/m was applied; depending on the 

order of the element where the load is applied (quadratic or linear), the load is divided in 

two or three fractions. 

 

Figure 50.  Equivalent nodal load in the pressurized cavity 

 

6.2 PRESSURIZED CAVITY RESULTS ANALYSIS 

 

In order to evaluate the behaviour of the models, a comparison of the stress contours of 

all the models and the displacements along both axes was performed. The 

displacements were compared at three different regions: the lower boundary, where 

due to the support condition only displacements at the horizontal direction were 

permitted; the left boundary, where due to the boundary conditions only vertical 

displacements were permitted and a diagonal axis, starting from the lower left corner of 

the model and projected in a direction of 45 degrees towards the opposite corner 

(Figure 47). 

 For this comparison a total of fourteen models were run. Seven models were 

composed by triangular elements and the remaining models were composed by 

quadrilateral elements.  
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6.3 MODELS USING TRIANGULAR ELEMENTS 

 

Seven models were developed in SIMFEM and Phase2. These models included those 

composed only by quadratic triangles and linear triangles, which were run in SIMFEM and 

Phase2. The models that included linear, transition and quadratic elements were 

developed in SIMFEM. The models are: 

3NTRI-SIMFEM:  Composed of linear triangular elements. Run in SIMFEM  

3NTRI-Phase:  Composed of linear triangular elements. Run in Phase2 

6NTRI-SIMFEM:  Composed of quadratic triangular elements. Run in SIMFEM  

6NTRI-Phase:  Composed of quadratic triangular elements. Run in Phase2 

 

Figure 51 Model 6NTRI-SIMFEM     contours 

 

TRI-TRANS1: Composed of linear, transition and quadratic triangular elements, run in  

  SIMFEM with a transition zone located at 7.5m from the lower left corner. 
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TRI-TRANS2:  Composed of linear, transition and quadratic triangular elements, run in  

  SIMFEM with a transition zone located at 10.0m from the lower left corner. 

TRI-TRANS3:  Composed of linear, transition and quadratic triangular elements, run in  

  SIMFEM with a transition zone located at 12.5m from the lower left corner. 

 

Figure 52. Model TRI_TRANS1     contours 

The graphic output of the program shows a close correspondence between the different 

models, as can be seen in Figure 51 and Figure 52. Nevertheless, for the acute eye, it is 

evident that not very rounded contours were achieved, which is result of a poor mesh 

discretization, which can be fixed either by adding elements (h-adaptivity) or by 

increasing the order of the elements (p-adaptivity). In this specific case, where the order 

of the elements was diminished in certain areas in order to evaluate their performance, a 

not continuous contour behaviour is observed, especially at the lower part of the model 

(Figure 52). 
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 After all the models were run using SIMFEM, the displacements in the nodes were 

extracted and analyzed, as mentioned at the beginning of this subchapter. In this case, 

several plots were drawn in order to analyze all the raw data, which is also considerable 

in size. The displacements were evaluated by region. The first one at the left boundary of 

the models, the second one at the bottom of the models and the third one along the 

line at 45 degrees, in reference to Figure 49. 

 

Figure 53 Displacements at left boundary of models 3NTRI SIMFEM, 3NTRI Phase, 6NTRI SIMFEM and 6NTRI Phase 

 

The models using triangles were analyzed at their left boundary, where only vertical 

displacements are allowed due to the boundary conditions imposed to the model. 

Figure 53 presents the displacements of the models that use only quadratic or linear 

elements. No transition elements are present in any of the models plotted in Figure 53. 

The models were run with SIMFEM and Phase2. The displacements presented by the 

quadratic models are greater than those presented by the linear elements. This 

tendency has been seen throughout the previous tests. 
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Figure 54 Displacements at left boundary of models TRI_TRANS1, TRI_TRANS2 and TRI_TRANS3 

 

 

Figure 55 Displacements at lower boundary. Models 3NTRI SIMFEM, 3NTRI Phase, 6NTRI SIMFEM and 6NTRI Phase 
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In Figure 54, the similarity in magnitude of the displacements using transition elements is 

noticeable. No matter where the band of transitions elements is located (7.5m, 10m and 

12.5m). Seeking neatness and clarity on the plots presented, not all the models were 

included in only one plot. Nevertheless, the author did plot the results merging Figure 53 

and Figure 54 while analyzing the results. The results obtained from the models, including 

transition elements, tend to overlap the displacements obtained from the quadratic 

elements. In similar way, the plot merging was also performed for Figure 55 and Figure 56. 

 

 

Figure 56 Displacements at lower boundary. Models TRI_TRANS1, TRI_TRANS2 and TRI_TRANS3 

 

In case of Figure 55 and Figure 56, the same tendencies as the ones observed in Figure 

53 and Figure 54 are present, where the linear and the quadrilateral models show very 

similar displacements. The models using transition elements also overlap the models using 

quadrilateral elements. 
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Figure 57 Total Displacements - UT - at the diagonal. 6NTRI, 3NTRI, TRI-TRANS1, TRI-TRANS2 and TRI-TRANS3 

 

Lastly, the analysis of the displacements along the diagonal was performed and is shown 

in Figure 47. The results obtained in Phase2 are not included, so to prevent an overload of 

the plot. It is to recall, that the results acquired from SIMFEM and Phase2 are remarkably 

close. 

 A tendency of the models using transition elements to behave as the models 

using linear order elements was observed. In this case, the displacements are not as 

predictable as the displacements at the left and lower boundary, where if a line were 

drawn joining the points it would not show any peaks along its path. Thus, the differences 

between the models is due to an interpolation that has to be effected to obtain the 

displacements at points close to those that the diagonal was crossing. 

 

6.4 MODELS USING QUADRILATERAL ELEMENTS 

 

Seven models were developed in SIMFEM and Phase2 for this case. These models include 

those composed only by quadratic order quadrilaterals and linear order quadrilaterals, 

which were run in SIMFEM and Phase2. The models that included linear, transition and 

quadratic order elements were developed in SIMFEM. The models are: 
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4NQUAD-SIMFEM:  Composed of linear quadrilateral elements. Run in SIMFEM  

4NQUAD -PHASE:  Composed of linear quadrilateral elements. Run in Phase2 

8NQUAD -SIMFEM:  Composed of quadratic quadrilateral elements. Run in SIMFEM  

8NQUAD -PHASE:  Composed of quadratic quadrilateral elements. Run in Phase2 

 

Figure 58 8NQUAD-SIMFEM     contours 

QUAD-TRANS1: Composed of linear, transition and quadratic quadrilateral elements. Run 

in SIMFEM with a transition threshold located at 7.5m from the lower left corner. 

QUAD-TRANS2: Composed of linear, transition and quadratic quadrilateral elements. Run 

in SIMFEM with a transition zone located at 10.0m from the lower left corner. 

QUAD-TRANS3: Composed of linear, transition and quadratic quadrilateral elements. Run 

in SIMFEM with a transition zone located at 12.5m from the lower left corner. 
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Figure 59 QUA_TRANS3      contours

Replicating the analysis performed on the models made using triangular elements, the 

vertical displacements along the left and lower boundary were also analyzed with the 

quadrilateral elements. 
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Figure 60. Uy at left boundary. Models 4NQUAD SIMFEM, 4NQUAD Phase, 8NQUAD SIMFEM and 8NQUAD Phase 

  

 

Figure 61 Displacements at left boundary of models QUA_TRANS1, QUA_TRANS2 and QUA_TRANS3 

 



 

 

70 

 

Figure 62 Displacements at lower boundary. 4NQUA SIMFEM, 4NQUA Phase, 8NQUA SIMFEM and 8NQUA Phase 

 

 

Figure 63 Displacements at lower boundary. Models QUAD_TRANS1, QUAD_TRANS2 and QUAD_TRANS3 
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Similarly to the results obtained from the models using quadrilateral elements, the 

similarities between equivalent models either linear (4NQUAD SIMFEM and 4NQUAD 

Phase) or quadratic (8NQUAD SIMFEM and 8NQUAD Phase) are evident. Larger 

displacements are also observed in the models using quadratic elements. The 

displacements presented by the models using transition elements also have similar 

behavior to the models using only quadratic elements. The results obtained from the 

models utilizing transition elements would also overlap the data obtained from the 

models utilizing quadratic elements. 

 All the models using transition quadrilateral elements showed similar 

displacements behaviour. As in the plots corresponding to the left boundary and the 

models using triangles, the behaviour of the transition quadrilateral elements tend to 

behave similarly to the quadratic quadrilateral elements. 

 

 

Figure 64 Total disp. – uT - at the diagonal. 4NQUA, 8NQUA, QUATRANS1, QUATRANS2 and QUATRANS3 

 

In Figure 64, the displacements taken at several points of a diagonal, starting from the 

point x = 3,53 and y = 3.53, corresponding to the intersection of a line with an angle of 45ª 

emerging from the origin (lower left point) of the model, and the pressurized cavity 

directed towards the opposite corner of the model (Refer to Figure 47). All the models 

that use transition elements and presented in Figure 64 were run in SIMFEM. 
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 With these analyses from the data obtained, it is possible to conclude the good 

and suitable performance of the transition elements and their further applicability in the 

field. 

 

6.5 RESULTS OF THE OPTIMIZATION WITH RESPECT TO TIME AND BENCHMARKS 

 

After all the data extracted from the pressurized cavity models was analyzed and the 

reliability of the different types of transition elements (quadrilaterals and triangles), 

located at different positions was verified, it is possible to conclude that the inclusion of 

these in a finite element mesh is feasible. As the next step, an analysis regarding the 

computational resources was conducted. 

 The computer used to run the analyses was a Macintosh with a 2.4 GHz Intel Core 

Duo processor, 2 Gb in RAM at 667 MHz type DDR2 running under MAC OS X Operating 

System version 10.6.8.  XCODE version 3.2.3 running in 64 bit mode was the software suite 

used to develop SIMFEM. A complete summary that indicates the different effects of the 

mesh optimization is presented in the next three tables. The conjugate gradient method 

was the algorithm used by SIMFEM to solve the system of linear equations. 

 

MODEL No. OF NODES 
No. OF 

ELEMENTS 

No. OF FREE DEGREES 

OF FREEDOM 

SIZE OF GLOBAL 

STIFFNESS MATRIX (bytes) 

3NTRI - SIMFEM 149 248 252 508,032 

TRI - TRAN1 188 248 327 855,432 

TRI - TRAN2 228 248 405 1,312,200 

TRI - TRAN3 260 248 468 1,752,192 

6NTRI - SIMFEM 531 248 972 7,558,272 

4NQUA - SIMFEM 126 108 206 339,488 

QUAD - TRAN1 157 108 265 561,800 

QUAD - TRAN2 184 108 318 808,992 

QUAD - TRAN3 215 108 377 1,137,032 

8NQUA - SIMFEM 359 108 628 3,155,072 

Table 20 Characteristics of the several models and the computational resources involved 

 

In Table 22, the models 3NTRI – SIMFEM and 4NQUA – SIMFEM, are taken as the 

benchmark for each set of models (Set of models using quadrilaterals models and set of 

models using triangles). 
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MODEL 
ITERATION 

STEPS 

CONVERGENCE 

THRESHOLD 

SOLUTION 

TIME (sec) 

3NTRI - SIMFEM 414 1.00E-12 0.627 

TRI - TRAN1 1,669 1.00E-12 4.239 

TRI - TRAN2 2,042 1.00E-12 7.952 

TRI - TRAN3 2,209 1.00E-12 11.496 

6NTRI - SIMFEM 2,504 1.00E-12 56.232 

4NQUA - SIMFEM 343 1.00E-12 0.348 

QUAD - TRAN1 1,085 1.00E-12 1.817 

QUAD - TRAN2 1,450 1.00E-12 3.478 

QUAD - TRAN3 1,628 1.00E-12 5.486 

8NQUA - SIMFEM 1,694 1.00E-12 15.872 

Table 21 Solution computational times 

 

MODEL 
SIZE OF MATRICES 

RATIO (LINEAR MODEL) 

ITERATION STEPS RATIO 

(LINEAR MODEL) 

SOLUTION TIME RATIO 

(LINEAR MODEL) 

3NTRI - SIMFEM 1.0 1.0 1.0 

TRI - TRAN1 1.68 4.03 6.76 

TRI - TRAN2 2.58 4.93 12.68 

TRI - TRAN3 3.45 5.34 18.33 

6NTRI - SIMFEM 14.88 6.05 89.68 

4NQUA - SIMFEM 1.0 1.0 1.0 

QUAD - TRAN1 1.65 3.16 5.22 

QUAD - TRAN2 2.38 4.23 9.99 

QUAD - TRAN3 3.35 4.75 15.76 

8NQUA - SIMFEM 9.29 4.94 45.61 

Table 22 Ratio of computational resources for the different models 

 

After the analysis presented in the previous pages, it is depicted that there is no reason to 

think that the presence of quadratic, linear and transition elements in a finite element 

mesh would affect quality and convergence of a solution. 

 The user might be concerned in getting very accurate results in zones where the 

geometric or physical characteristics are highly changing or unpredictable, thus after 

setting a theoretically valid assumption to decide where to locate this zone of transition 

or interest the user might obtain highly reliable results, saving considerable and expensive 

time of engineering and resources. 

 The savings in computational resources in all the cases analyzed are 

considerable. For example, comparing the model 6NTRI (mesh composed exclusively of 

quadratic triangular elements) and model TRI – TRAN1 which has a band of transition 

elements located at 7.5m, it is possible to notice that both have the same amount of 

nodes located on the boundary, which allows the user to recover stresses from the 

circumference at twice as many points as the 3NTRI model (mesh composed exclusively 

of linear order triangles), and obtaining reliable results in 7.5% of the time required to run 
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the 6NTRI model, being the time one of the most noticeable parameters to evaluate the 

convenience of a calculation. 

 Also, the size of the global stiffness matrix is reduced in 90% and thus the size of 

the output files is also diminished in similar proportions. The same analysis may be applied 

in the case of the models with quadrilateral elements. The immediate significance of the 

application of the mesh optimization proposed, means an enhancement of the response 

capacity of an engineering team who would be able to analyze complex geometries 

and load conditions within shorter time without affecting the quality of the solution. 
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7. APPLICATION OF PARTIAL P-ADAPTIVE MESH OPTIMIZATION TO UNDERGROUND 

EXCAVATIONS 

 

The application of the use of transition elements in mesh optimization to circular 

excavations is explained as such:  

 The state-of-the-art in tunnelling and mining techniques, the Tunnel Boring 

Machines (TBM) have been used as the most versatile and fastest technique to excavate 

tunnels. The machines perform these works with a circular cross section and with the last 

advances in engineering; these machines are able to drill through almost any 

geomaterials, from soft clays to hard rock.  

 

Figure 65 Scheme of an Earth Pressure Balance TBM (Herrenknecht, 2011) 

 

Furthermore, the possibility of approximating any shape of excavation (depending on 

the state of stresses and the zone of influence of the excavation), to a circular/elliptical 

approximation in 2D or, if the problem is established in 3D any excavation might be 

approximated to a spherical/ellipsoidal. This is achieved by implementing an algorithm 

based on an object-aligned minimum-area/volume bounding rectangle in 2D or box in 

3D, to fit an circle/ellipse or sphere/ellipsoid (Figure 66) to an excavation (Zsaki, 2005).  
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Figure 66 Ellipsoidal approximation of an excavation (Zsaki, 2005) 

 

Thus, the final application and verification of the mesh optimization strategy is based on 

modelling two circular underground excavations (Chapter 3). Applying the analytical 

solution formulated by Kirsch (1898), which is commonly found in the bibliography as 

“infinite plate with circular opening” (Ramamurthy, 2007) (Figure 10), four models were 

analyzed. In the first one, quadratic triangles were used to form the finite element mesh. 

In the second one, quadratic quadrilaterals were assumed in the entire continuum. The 

last two models were used to apply the optimization, then, these models include 

quadratic, linear and transition triangular or quadrilateral elements. For this specific case, 

the excavation located at the left side of the model is called “excavation 1” and the 

excavation located at the right side is called “excavation 2”. 

 

7.1 RESULTS OF THE UNOPTIMIZED MODEL (UM) 

 

A model with the geometric properties indicated in Figure 9 and the material properties 

listed in Table 1 is used to perform this evaluation. The material assigned to the continuum 

is assumed to be linear-elastic and weightless. 

 

7.1.1 UNOPTIMIZED MODEL (UM) USING TRIANGLES 

 

All the elements included in this model, were defined as quadratic triangles and there is 

no presence of transition and linear elements. With a total of 16724 degrees of freedom, 

this finite element mesh is composed of 4090 elements (Figure 67). 
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Figure 67. Finite element mesh of UNOPTIMIZED model using triangular elements 

 

 

Figure 68. UNOPTIMIZED model using triangular elements - Contours     Enlarged view 
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The boundary conditions were not plotted for appearance purposes. Phase2 was the 

software used to generate the finite element mesh (location of nodes and elements). This 

file is then manipulated to generate the input file used by SIMFEM. This process is 

repeated in the next three models.  

 An enlargement on the excavations of the unoptimized mesh is shown in Figure 

68. The presence of the quadratic order elements is reflected by the presence of mid-

edge nodes on every element. This figure shall be compared with Figure 72 where the 

elements located outside the EDZ are defined as transition and linear elements. 

 

7.1.2 UNOPTIMIZED MODELS (UM) USING QUADRILATERALS 

 

Replicating the process carried out with the triangular elements, a similar process was 

applied in the case of quadrilaterals.  

 
Figure 69 Finite element mesh of UNOPTIMIZED model using quadrilaterals elements 
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A very dense mesh comprised only by quadratic quadrilateral elements was used. With a 

total of 22314 degrees of freedom, the finite element mesh has a total of 3756 elements 

(Figure 69), where the boundary conditions were not plotted similarly to the mesh 

presented for the unoptimized model using triangles. The software used to generate the 

finite element mesh was Phase2. 

 

Figure 70 UNOPTIMIZED model using quadrilateral elements - Contours   . Enlarged view 

 

In Figure 70, the existence of quadratic elements is depicted from the nodes located 

between the corners of the quadrilaterals (mid-edge nodes). 

 

7.2 RESULTS OF THE OPTIMIZED MODEL (OM) 

 

After running the UNDEROPT on the mesh proposed on Figure 9, which applies the 

concepts developed in section 3.1, two values for the location of the band of transition 

elements were found. Each one corresponds to the distance from the center of 

excavation 1 or 2, and dictates the location of the transition zone. 

 

Transition zone from center of excavation 1: 10.4 m 

Transition zone from center of excavation 2: 21.6 m 

 

After the transitions zones were defined, both optimized models comprising quadrilateral 

and triangular elements were run. For the specific parameters assumed on the model, 
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the percentage of disturbance was found at approximately 4 times the radius of the 

excavation. 

 The general specifications of the four models run in SIMFEM are shown in Table 23. 

An analysis is carried out in order to evaluate the reductions in the number of nodes, the 

number of elements, the number of boundary conditions, the number of unrestrained 

degrees of freedom, the size of the global stiffness matrices and the solution time (this last 

variable depends on the speed of the processor, although it is included for information 

purposes). 

 

MODEL 
No. OF 

NODES 

No. OF 

ELEMENTS 

No. 

OF BC 

No. OF 

FREE DOF 

SIZE OF GSM 

(bytes) 

SOLUTION 

TIME (sec) 

TRIANGLES                  

(UNOPTIMIZED MODEL) 
8341 4090 204 16724 2,118,744,608 11121 

QUADRILATERALS           

(UNOPTIMIZED MODEL) 
11465 3756 308 22314 3,116,505,280 25193 

TRIANGLES              

(OPTIMIZED MODEL) 
3209 4090 102 6214 308,910,368 877 

QUADRILATERALS 

(OPTIMIZED MODEL) 
5171 3756 154 10034 805,449,248 4066 

Table 23 Models with two circular excavations – Specifications 

In terms of computational resources, the savings obtained are shown in Table 24. The 

ratios shown are obtained after a comparison between the models using quadrilaterals 

elements and the models using triangles. In the case of the models using triangular 

elements, the size of the global stiffness matrix was reduced by 12.68 times with respect 

to the matrix obtained in the unoptimized model. In a similar way, the ratio obtained in 

the models using quadrilaterals was 6.2. 

 

MODEL 

SIZE OF MATRICES 

RATIO (LINEAR 

MODEL) 

ITERATION STEPS 

RATIO (LINEAR 

MODEL) 

SOLUTION TIME 

RATIO (LINEAR 

MODEL) 

TRIANGLES                  

(UNOPTIMIZED MODEL) 
6.86 1.38 12.68 

QUADRILATERALS           

(UNOPTIMIZED MODEL) 
3.87 1.13 6.20 

Table 24 Models with two circular excavations - Optimization results 
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7.2.1 OPTIMIZED MODEL (OM) USING TRIANGLES 

 

In the graphic output of SIMFEM, it is possible to observe the bands of transition elements 

and where both excavations are located. In Figure 71, the darker elements indicate the 

location of the bands of transition elements. 

Figure 71 Finite element mesh of OPTIMIZED model using triangular elements. Enlarged view 

 

Figure 72 OPTIMIZED model using triangular elements              . Enlarged view 
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Figure 72 represents a fraction of the optimized model using triangles and might be 

compared to Figure 69, which corresponds to the unoptimized model using triangles. In 

both cases, the same variable uT (total displacements) is plotted and the results are 

substantially similar as shown in a subsequent section. 

 

7.2.2 OPTIMIZED MODEL (OM) USING QUADRILATERALS 

 

In this model, the amount of nodes was reduced. On the graphic output, Figure 73, the 

darker elements indicate the location of the bands of transition elements, indicating the 

existence of a transition from quadratic to linear order elements are observed. 

Figure 73 Finite element mesh of OPTIMIZED model using quadrilaterals elements. Enlarged view 
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Figure 74 Zoom in on OPTIMIZED model using quadrilateral elements               

Figure 74 can be compared to Figure 70. Despite the presence of transition elements in 

one of them, the contours plotted for the variable total displacements (uT) present the 

same tendency, These figures might also be compared to those plotted for the models 

using triangular elements, where the same behavior has also been observed. 

 

7.3 EVALUATION OF RESULTS 

 

The reliability of the transition elements was evaluated with the analysis of results of 4 

models, that assumed the same material and geometric properties including two circular 

excavations, having different type of elements used to form the finite element mesh 

(triangles or quadrilaterals) and the presence or absence of transition elements. 

 

Figure 75. Points analyzed on the surface of excavations 
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When comparing the unoptimized models (using only quadratic order elements) and the 

optimized models (OM) (using quadratic, transition and linear elements), similar results 

are depicted from the graphical output. Nevertheless, in order to evaluate the quality of 

the solution (From Table 26 to Table 29), an assessment had to be performed.  In 

addition, the savings in computational resources were compared. 

 As a comparative assessment, the displacements at 8 nodes in each model were 

analyzed. In each excavation, the nodes chosen to be analyzed were those located at 

0° (point 1), 90° (point 2), 180° (point 3) and 270° (point 4) (Figure 75). Since Phase2 does 

the mesh generation automatically, the nodes to be analyzed are not located precisely 

at each     on the excavation. Their exact location is stated in Table 25. 

 

NODE NUMBER 

IN MODEL 

LOCATION IN MODEL 

X (m) Y (m) 

0 45.5429 17.8526 

8 42.8977 20.5211 

15 40.4950 18.1393 

23 43.1402 15.4708 

30 66.2014 12.8861 

37 61.4709 18.1575 

45 55.6165 12.9038 

53 61.4534 7.63058 

Table 25 Location of analyzed nodes 

 

Table 26 through Table 29, display the results of the mesh adaptivity process are 

presented. The percentage of error is calculated with respect to the unoptimized models 

(UM) (Equation 51). The tables show the percentage of error for each excavation and 

mention the type of elements forming the meshes (triangles and quadrilaterals). Firstly, 

the model using triangular elements is analyzed: 

                     |
                                                           

                             
|       ( 51 ) 

 

POINT 

ANALYZED 

THEORETICAL LOCATION 
Ux (m) Uy (m) 

% ERROR IN 

X AXIS 

%ERROR IN 

Y AXIS X Y 

1 45.6 18.0 
-9.14E-06 -7.66E-06 

0.16% 0.07% 
-9.15E-06 -7.65E-06 

2 43.0 20.6 
2.89E-06 -3.73E-05 

0.06% 0.07% 
2.89E-06 -3.72E-05 

3 40.4 18.0 
2.99E-05 2.93E-06 

0.04% 1.04% 
2.99E-05 2.90E-06 

4 43.0 15.4 
1.72E-05 3.45E-05 

0.27% 0.08% 
1.71E-05 3.45E-05 

Table 26 Error analyses - Models using triangles, left excavation 
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The left excavation is analyzed in Table 26. The maximum percentage of error found was 

7.74% at point 1 in the vertical direction. The minimum percentage of error was 0.07% at 

point 3 in the horizontal direction. 

 

POINT 

ANALYZED 

THEORETICAL LOCATION 
Ux (m) Uy (m) 

% ERROR 

IN X AXIS 

%ERROR 

IN Y AXIS X Y 

1 66.4 13.0 
-4.78E-05 -1.12E-05 

0.00% 0.14% 
-4.78E-05 -1.12E-05 

2 61.0 18.4 
-1.77E-05 -6.93E-05 

0.09% 0.03% 
-1.77E-05 -6.93E-05 

3 55.6 13.0 
4.60E-05 1.26E-05 

0.02% 0.06% 
4.60E-05 1.26E-05 

4 61.0 7.6 
6.13E-06 6.67E-05 

0.17% 0.03% 
6.12E-06 6.67E-05 

Table 27 Error analyses - Models using triangles, right excavation 

In Table 27, the right excavation in the models using triangles is evaluated. These nodes 

present a smaller percentage of error compared to the left excavation analyzed 

previously, exhibiting their maximum at point 4 in the vertical direction with 0.58%. The 

minimum percentage of error was found at point 4 in the horizontal direction with 0.01%. 

 

POINT 

ANALYZED 

THEORETICAL LOCATION 
Ux (m) Uy (m) 

% ERROR 

IN X AXIS 

%ERROR 

IN Y AXIS X Y 

1 45.6 18.0 
-9.34E-06 -8.25E-06 

4.89% 2.00% 
-9.79E-06 -8.42E-06 

2 43.0 20.6 
2.75E-06 -3.75E-05 

5.45% 1.48% 
2.90E-06 -3.70E-05 

3 40.4 18.0 
2.98E-05 3.19E-06 

1.69% 4.68% 
3.03E-05 3.04E-06 

4 43.0 15.4 
1.72E-05 3.45E-05 

1.10% 2.21% 
1.74E-05 3.37E-05 

Table 28 Error analyses - Models using quadrilaterals, left excavation 

In Table 28, the displacements in the left excavation are evaluated. These show greater 

values than those obtained from the models using triangular elements (Table 26 and 

Table 27), having two important maximum values at point 1 with 10.95% in the vertical 

direction and at point 3 with 66.14% in the vertical direction. 

 

POINT 

ANALYZED 

THEORETICAL LOCATION 
Ux (m) Uy (m) 

% ERROR 

IN X AXIS 

%ERROR 

IN Y AXIS X Y 

1 66.4 13.0 
-4.79E-05 -1.11E-05 

0.28% 7.66% 
-4.78E-05 -1.03E-05 

2 61.0 18.4 
-1.78E-05 -6.93E-05 

1.05% 0.87% 
-1.80E-05 -6.87E-05 

3 55.6 13.0 
4.62E-05 1.26E-05 

1.35% 1.96% 
4.56E-05 1.23E-05 

4 61.0 7.6 
6.19E-06 6.67E-05 

5.29% 0.11% 
5.86E-06 6.67E-05 

Table 29 Error analyses - Models using quadrilaterals, right excavation 
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The values reached in the right excavation in the models using quadrilaterals are in 

average smaller than those obtained in the left excavation. However, these values are 

also greater than the average values obtained in the models using triangular elements.  

With the purpose of evaluating the displacements obtained at the eight nodes 

aforementioned in a global context, column charts that gather all the percentages of 

error corresponding to the right and left excavations are presented in Figure 76 and 

Figure 77. The legend of these figures must be read as follows: 

 

First fragment (X or Y): Indicates the direction (horizontal or vertical). 

Second fragment (TRI or QUAD): Indicates the type of elements used in the model. 

Third fragment (1, 2, 3 or 4): Indicates the point in the excavation where the percentage 

of error was measured. Refer to Figure 75. 

 

 

Figure 76 % of error at the left excavation. Models with quadrilaterals and triangles in the X and Y direction 

 

In the previous figure, the percentages of error at the left excavation are plotted. Both 

types of elements (triangles and quadrilaterals) are included. The maximum value 

reached is 5.45% at point 2 in the horizontal direction, in the model using quadrilaterals. 

The minimum value is 0.06% at point 2, in the model using triangles, in the horizontal 

direction. The average percentage of error is 1.58% for both models at the left 

excavation. The average percentage of error for the models using triangles at the left 

excavation is 0.22%, and for the models using quadrilaterals is 2.94%. 
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  Figure 77 % of error at the right excavation. Models with quadrilaterals and triangles in the X and Y direction 

 

In Figure 77, the percentages of error at the right excavation are plotted. Both types of 

elements (triangles and quadrilaterals) are included. The maximum value reached is 

7.66% in the model using triangles, at point 1 and in the vertical direction. The minimum 

value is 0.001% in model using quadrilaterals, at point 1 and in the horizontal direction. 

The average percentage of error is 1.20% for both models at the right excavation. The 

average percentage of error for the models using triangles at the right excavation is 

0.07%, and for the models using quadrilaterals is 2.32%. 

 The average percentage of error for all the models at both excavations using 

triangular elements is 0.15% and for quadrilateral elements is 2.63%.  

 

 

Figure 78 Diagonal connecting the excavations 
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In order to perform a further evaluation of the behavior of the optimized models versus 

the unoptimized models, the displacements between the excavations are also 

evaluated. For that purpose the displacements of the models were compared on 15 

points located along a diagonal connecting the excavations (Figure 78). The starting 

point of this diagonal is at point 1 on the left excavation (refer to Figure 75), finishing on 

the second excavation (right excavation) at point 3. The coordinates of the 15 points 

chosen to evaluate the displacements are listed in Table 30. 

 The method implemented in sections 6.3 and 6.4, to find the displacements along 

a similar diagonal was also applied in the case of the diagonal connecting the 

excavations. A mathematical interpolation is also performed in order to find the 

displacements at the exact locations listed in the table below. 

 

  
X Y 

QUAD QUAD OPT 
%e 

TRI TRI OPT 
%e 

  UT UT UT UT 

0 45.60 18.00 1.61E-05 1.64E-05 2.33% 1.58E-05 1.58E-05 0.03% 

1 46.27 17.67 4.62E-06 4.84E-06 4.61% 8.81E-06 8.82E-06 0.17% 

2 46.93 17.33 5.09E-06 4.85E-06 4.75% 3.27E-06 3.27E-06 0.15% 

3 47.60 17.00 5.09E-06 4.85E-06 4.75% 6.27E-06 6.26E-06 0.19% 

4 48.27 16.67 7.79E-06 7.38E-06 5.23% 9.33E-06 9.32E-06 0.15% 

5 48.93 16.33 1.03E-05 9.83E-06 4.37% 9.33E-06 9.32E-06 0.15% 

6 49.60 16.00 1.33E-05 1.28E-05 3.63% 1.26E-05 1.25E-05 0.10% 

7 50.27 15.67 1.33E-05 1.28E-05 3.63% 1.26E-05 1.25E-05 0.10% 

8 50.93 15.33 1.55E-05 1.49E-05 3.31% 1.69E-05 1.68E-05 0.07% 

9 51.60 15.00 1.77E-05 1.72E-05 2.95% 1.69E-05 1.68E-05 0.07% 

10 52.27 14.67 2.23E-05 2.18E-05 2.53% 2.00E-05 2.00E-05 0.05% 

11 52.93 14.33 2.23E-05 2.18E-05 2.53% 2.39E-05 2.39E-05 0.04% 

12 53.60 14.00 3.18E-05 3.12E-05 1.89% 2.68E-05 2.68E-05 0.03% 

13 54.27 13.67 3.18E-05 3.12E-05 1.89% 3.34E-05 3.34E-05 0.03% 

14 54.93 13.33 4.52E-05 4.46E-05 1.42% 3.95E-05 3.95E-05 0.03% 

15 55.60 13.00 4.79E-05 4.72E-05 1.40% 4.77E-05 4.77E-05 0.02% 

Table 30. Total Displacements on the diagonal connecting the excavations 

 

The models using quadrilateral and triangular elements are treated separately. Thus, in 

Figure 79, only the total displacements obtained from the models composed of 

quadrilateral elements are evaluated. 

 In Figure 79, the points located along the diagonal in the optimized models show 

smaller displacements placing them beneath the displacements obtained in the 

unoptimized model. If the displacements are evaluated normalized with respect to the 

unoptimized model, the differences between both models fluctuate in a range of 1% 

and 5%. The average percentage of error in the model with quadrilateral elements is 

3.20%. The displacements obtained are shown on Table 30. 
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Figure 79 Displacements along the diagonal connecting the excavations - Models with quadrilateral elements 

 

Figure 80 Displacements along the diagonal connecting the excavations - Models with triangular elements 
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The total displacements of the models composed of triangles (only linear order elements 

or linear, transition and quadratic elements), shown in Figure 80, present similar behavior. 

The percentages of error between the displacements in the optimized model and the 

displacements in the unoptimized model vary in small values percentages. The maximum 

percentage of error obtained is 0.19% and the average of the percentage of error for 

the 15 points evaluated is 0.09%. 

 The results in the numerical assessment of the points at the edge of the 

excavations and along diagonal traced between them (Figure 78), show smaller values 

of the percentage of error in the models using triangles, leading to conclude the superior 

behavior of triangular elements in a FEM and their better performance when mesh 

adaptivity methods are applied. 

 The tendency of quadrilateral elements to behave with less accuracy was 

verified by D’Azevedo (2000), where he found that “for approximating a convex 

function, although bilinear quadrilaterals are more efficient, linear triangles are more 

accurate and may be preferred in finite element computations”. Therefore, we can 

depict that the high values of percentage of error found in the models using 

quadrilateral elements, is a consequence of the quadrilateral element per se, rather than 

due to the p-adaptive mesh refinement procedure or any imprecision in the formulation 

of the quadrilateral transition elements. 

 Felippa (2010) also found a better behavior in triangular elements at the time of 

computing the stresses at the element nodal points. His findings showed at the time of 

evaluating stresses at the element nodes or at the Gauss integration points (and then 

extrapolating to the element nodes), that in triangular elements both approaches deliver 

similar results, in the mean time the quadrilateral elements deliver better results when the 

stresses are evaluated at the Gauss integration points and not at the elements’ nodes. 
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8. CONCLUSIONS 

 

After implementing and testing the formulation of transition elements and carrying out a 

final application to underground excavations, where a mesh optimization process has 

been applied with successful results without reducing the quality in the solution as 

documented in the previous pages. 

 It is possible to derive that this thesis has proposed a reliable approach to 

optimize the stress analysis in geotechnical problems, which leads to the next 

conclusions: 

 

- The addition of transition elements allowing the combination of linear and quadratic 

elements, for application to geotechnical engineering problems, in one finite element 

mesh is a realistic possibility from the results obtained in this thesis. 

- The inclusion of analytical solutions for generic and common problems in 

geotechnical engineering has shown to pay off with considerable savings in 

computational resources. It is up to the software developers to include these features 

or to take in the concept of a mesh with three types of elements (quadratic, linear 

and transitional), which potentially optimizes any software’s performance. 

- The amount of RAM available in a computer seldom corresponds to the total RAM 

installed. It is to recall that each process run by the computer occupies a certain 

amount of RAM, which decreases the available space to perform a calculation. 

Smaller models (in computational terms) also lead to reduce the possibility of having a 

full RAM and the chances to have a poor computer performance when a different 

task needs to be carried out simultaneously with the model calculation process.  

- Researchers interested in the behaviour of transitional elements now can count on a 

work that compares the performance of state-of-the-art formulations of the elements. 

It might awake the curiosity of those interested in a more accurate formulation and 

also introduces the SIMFEM software package that they might be used to test their 

mathematical formulations. 

- During the performance evaluation of the transition elements, especially during the 

test of models type I, the percentages of error (normalized to either a linear or a 

quadratic element) were around 30%. Nevertheless, these values were dramatically 

reduced when testing the models type II using triangles where the percentages of 

error were not greater than 6%, even modeling in 2 different programs. 



 

 

92 

- In the case of models type II using quadrilaterals; the percentage of error was around 

18%. If the results created in SAP2000® were neglected, the percentage of error would 

be close to 0%. This difference was attributed to factors such as the amount of 

integration points (4 in SAP2000® and 9 in SIMFEM) or not having the option in 

SAP2000® to deactivate features as the thickness normal strain, displacements at the 

thickness direction and others. 

- The savings in the time of calculation is an uncertain parameter to evaluate the 

effectiveness of the optimization process, since it depends on the specifications of the 

computer used. The most reliable parameter to measure the savings, is the size of the 

global stiffness matrix which was reduced more than 10 times in the case of the 

meshes composed of triangular elements and more than 5 times in the case of the 

meshes composed of quadrilaterals. 

- The reduction of computer resources is not only reflected in a less memory usage and 

faster solution times, implications such as having smaller output files and easier 

numerical data to be analyzed, that implies faster visualization and transmissions of 

files, are features that should be also considered. 

- With a reduced amount of nodes in the model, the chances to fill up the RAM in the 

computer used to run the models are reduced. As it is known, once the process 

completes the RAM capacity of the computer, this has to use part of the hard drive(s) 

as a RAM (disk swapping), but the accessibility to this memory is not achieved at the 

same speed and a remarkable increase in the calculation times is the consequence. 

- Throughout the testing process of the transition elements, a tendency of the triangular 

elements to present smaller values of error over the quadrilateral elements was 

noticed. 
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9. RECOMMENDATIONS FOR FUTURE WORK 

 

In this case, the application was done using percentages of disturbance based on 

the Kirsch theory for circular holes in infinite plates, similar concepts might be used to 

optimize other type of problems in FEM and not only in the geotechnical area. For 

example consider shallow footings, groundwater flow, stress concentration, 

Boussinesq approximation, slope stability, local stability problems in excavations, and 

similar problems. 

 The application of the concept of transitional elements may take an important 

place in mathematically more complex problems such as the FEM theory in 3 

dimensions, where the sizes of the global stiffness matrices are highly increased due 

to presence of an extra dimension. These problems may see their calculation times 

reduced radically without altering the quality of the final solution. 

 To achieve this application, a new bibliographical compilation must be done in 

order to find the formulation of transition elements in 3D, which are generally 

tetrahedral or hexahedral elements. In this case, the work done by Brethauer (1974) 

in his work titled “Stress Around Pressurized Spherical Cavities In Triaxial Stress Fields” 

might be used to evaluate the location of a surface of transition elements.  
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APPENDIX 1. TYPE I MODELS USING QUADRILATERAL ELEMENTS – RESULTS 

      DISPLACEMENT   

SCHEME NAME SOFTWARE Ux (m) Uy (m) LOC 
 

QUA4N 

& 

QUAD_SAP 

SIMFEM 

0 0 LL 

0 0 LR 

0.005117 -0.01705 UR 

-0.005117 -0.01705 UL 

0 0 LL 

 

QUA5NA SIMFEM 

-0.0029174 -0.016381 UL 

-0.0036185 -0.007506 ML 

0 0 LL 

0 0 LR 

0.005742 -0.018293 UR 

-0.0029174 -0.016381 UL 

 

QUA5NB SIMFEM 

0.0053813 -0.01832 UR 

-2E-12 -0.01659 UM 

-0.0052813 -0.01832 UL 

0 0 LL 

0 0 LR 

0.0053813 -0.01832 UR 

  

QUA5NC SIMFEM 

0 0 LR 

0.0036185 -0.007506 MR 

0.002917 -0.016381 UR 

-0.005742 -0.01829 UL 

0 0 LL 

0 0 LR 
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      DISPLACEMENT   

SCHEME NAME SOFTWARE Ux (m) Uy (m) LOC 
 

QUA5ND SIMFEM 

0 0 LL 

0 0 LM 

0 0 LR 

0.0051168 -0.017056 UR 

-0.0051168 -0.017056 UL 

0 0 LL 

 

QUA7NA SIMFEM 

-0.003524 -0.017515 UL 

-0.003772 -0.00838 ML 

0 0 LL 

0 0 LM 

0 0 LR 

0.003777 -0.003891 MR 

0.003547 -0.01753 UR 

-0.003524 -0.017515 UL 

  

QUA7NB SIMFEM 

0 0 LR 

0.003737 -0.008498 MR 

0.003714 -0.017789 UR 

3E-10 -0.0174 UM 

-0.003714 -0.017789 UL 

-0.003737 -0.008498 ML 

0 0 LL 

0 0 LR 

  

QUA7NC SIMFEM 

0.004739 -0.01839 UR 

0 -0.01697 UM 

-0.004724 -0.01787 UL 

-0.004 -0.008264 ML 

0 0 LL 

0 0 LM 

0 0 LR 

0.004739 -0.01839 UR 
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      DISPLACEMENT   

SCHEME NAME SOFTWARE Ux (m) Uy (m) LOC 

  

QUA7ND SIMFEM 

0 0 LL 

0 0 LM 

0 0 LR 

0.004002 -0.008265 MR 

0.004724 -0.01787 UR 

0 -0.01697 UM 

-0.004742 -0.018406 UL 

0 0 LL 

  

QUA8N SIMFEM 

0 0 LL 

0 0 LM 

0 0 LR 

0.003737 -0.008497 MR 

0.003712 -0.01778 UR 

0.00000003 -0.017402 UM 

-0.003712 -0.01778 UL 

-0.003737 -0.008497 ML 

0 0 LL 
 

QUAD_SAP SAP2000® 

0 0 LL 

0 0 LR 

0.0061 -0.0182 UR 

-0.0061 -0.0182 UL 
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APPENDIX 2. TYPE I MODELS USING TRIANGULAR ELEMENTS - RESULTS 

   
DISPLACEMENT 

 
SCHEME NAME SOFTWARE Ux (m) Uy (m) LOC 

 

Phase3L Phase2 

0 0 LL 

0.001787 -0.014346 UR 

-0.0062603 -0.018818 UL 

0 0 LL 

0 0 LR 

0.001787 -0.014346 UR 

 

Phase6Q Phase2 

0 0 LL 

-0.000281438 -0.0085912 C 

0.0036954 -0.018710024 UR 

-0.0007276 -0.018078 UM 

-0.0050645 -0.018856 UL 

-0.0040408 -0.0097888 ML 

0 0 LL 

0 0 LM 

0 0 LR 

0.0032644 -0.0087553 MR 

0.0036954 -0.018710024 UR 

 

TRI4NAC SIMFEM 

0 0 LL 

0 0 LR 

-0.0001026 -0.008305 C 

-0.00538 -0.01776 UL 

0 0 LL 

0 0 LR 

0.00589 -0.01827 UR 

-0.00538 -0.01776 UL 

 

TRI4NBC SIMFEM 

0 0 LL 

0 0 LR 

0.005382 -0.01776 UR 

0.0001026 -0.008305 C 

0 0 LL 

-0.005895 -0.01827 UL 

0.005382 -0.01776 UR 



 

 

101 

   
DISPLACEMENT 

 
SCHEME NAME SOFTWARE Ux (m) Uy (m) LOC 

 

TRI4NAV SIMFEM 

0 0 LR 

0.004978 -0.02179 UR 

0 -0.0161645 UM 

-0.002553 -0.01665 UL 

0 0 LR 

0 0 LM 

0 0 LL 

-0.002553 -0.01665 UL 
 

TRI4NBV SIMFEM 

0 0 LL 

0 0 LM 

0 0 LR 

0.0011419 -0.01527 UR 

0 0 LL 

-0.006819 -0.0204 UL 

-0.002429 -0.01703 UM 

0.0011419 -0.01527 UR 

 

TRI4NAH SIMFEM 

0 0 LR 

0.003603 -0.010429 MR 

0.005544 -0.01948 UR 

-0.00116 -0.01674 UL 

0 0 LR 

0 0 LL 

-0.003521 -0.007827 ML 

-0.00116 -0.01674 UL 

 

TRI4NBH SIMFEM 

0 0 LL 

0.0014183 -0.017209 UR 

-0.00485 -0.01892 UL 

-0.00335 -0.01021 ML 

0 0 LL 

0 0 LR 

0.003726 -0.0080688 MR 

0.0014183 -0.017209 UR 
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DISPLACEMENT 

 
SCHEME NAME SOFTWARE Ux (m) Uy (m) LOC 

 

TRI4NAM1 SIMFEM 

0 0 LR 

-0.0012729 -0.01548 UL 

0 0 LL 

0 0 LM 

0 0 LR 

0.003531 -0.010213 MR 

0.005862 -0.01936 UR 

-0.0012729 -0.01548 UL 
 

TRI4NAM2 SIMFEM 

-0.0015552 -0.0169 UL 

-0.003734 -0.007964 ML 

0 0 LL 

0 0 LR 

-0.0015552 -0.0169 UL 

0.001662 -0.01768 UM 

0.005929 -0.0199 UR 

0 0 LR 

 

TRI5NAB SIMFEM 

0 0 LL 

0.001329 -0.01285 UR 

-0.002585 -0.015802 UM 

-0.006529 -0.01897 UL 

-0.0034017 -0.009711 ML 

0 0 LL 

0 0 LM 

0 0 LR 

0.010252 0.002562 MR 

0.001329 -0.01285 UR 
 

TRI5NBB SIMFEM 

-0.002866 -0.01736 UL 

-0.00443 -0.008314 ML 

0 0 LL 

0 0 LM 

0 0 LR 

-0.002866 -0.01736 UL 

0 -0.01791 UM 

0.003723 -0.0193 UR 

-0.00251 -0.01005 MR 

0 0 LR 
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DISPLACEMENT 

 
SCHEME NAME SOFTWARE Ux (m) Uy (m) LOC 

 

TRI5NAV SIMFEM 

0 0 LL 

-0.000186 -0.008244 C 

0.004786 -0.01789 UR 

-0.00089944 -0.0177 UM 

-0.0067612 -0.01975 UL 

0 0 LL 

0 0 LM 

0 0 LR 

0.004786 -0.01789 UR 

 

TRI5NBV SIMFEM 

0 0 LR 

0.005758 -0.01854 UR 

0 -0.01769 UM 

-0.005754 -0.01907 UL 

-0.00011907 -0.008283 C 

0 0 LR 

0 0 LM 

0 0 LL 

-0.005754 -0.01907 UL 

 

TRI5NAH SIMFEM 

0.004201 -0.01897 UR 

-0.00418 -0.01759 UL 

-0.003853 -0.009249 ML 

0 0 LL 

-0.0001351 -0.008675 C 

0.004201 -0.01897 UR 

0.003456 -0.00892 MR 

0 0 LR 

0 0 LL 

 

TRI5NBH SIMFEM 

-0.002585 -0.01733 UL 

-0.00296 -0.008145 ML 

0 0 LL 

0 0 LR 

0.000453 -0.008633 C 

-0.002585 -0.01733 UL 

0.005837 -0.01924 UR 

0.004353 -0.010108 MR 

0 0 LR 
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DISPLACEMENT 

 
SCHEME NAME SOFTWARE Ux (m) Uy (m) LOC 

 

TRI6NA SIMFEM 

0.003695 -0.01871 UR 

-0.0007276 -0.0180778 UM 

-0.005064 -0.01885 UL 

-0.00404 -0.009788 ML 

0 0 LL 

-0.0002814 -0.008591 C 

0.003695 -0.01871 UR 

0.003264 -0.008755 MR 

0 0 LR 

0 0 LM 

0 0 LL 
 

TRI6NB SIMFEM 

0 0 LR 

-0.0002814 -0.008591 C 

-0.005064485 -0.018856 UL 

-0.0040408 -0.0097888 ML 

0 0 LL 

0 0 LM 

0 0 LR 

0.0032644 -0.0087553 MR 

0.0036954 -0.01871 UR 

-0.000727692 -0.018077876 UM 

-0.005064485 -0.018856 UL 

  

TRI3NA 

& 

TRIA_SAP 

SIMFEM 

& 

SAP2000® 

-0.0058 -0.0192 UL 

0 0 LL 

0 0 LR 

-0.0058 -0.0192 UL 

0.0019 -0.0153 UR 

0 0 LR 

  

TRI3NB 

& 

TRIB_SAP 

SIMFEM 

& 

SAP2000® 

0.0058 -0.0187 UR 

-0.0017 -0.0146 UL 

0 0 LL 

0.0058 -0.0187 UR 

0 0 LR 

0 0 LL 
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GLOSSARY 

 

BEM:   Boundary Element Method 

DEM:   Discrete Element Method 

EDZ:   Excavation Disturbed Zone 

FDM:   Finite Difference Method 

FEA:   Finite Element Analysis 

FEM:    Finite Element Method 

PDE:   Partial Differential Equation 

TBM:   Tunnel Boring Machine 

 

 

 

 

 

 

 

 


