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ABSTRACT

INDEX PARTICIPATION UNITS AND THE PERFORMANCE OF INDEX
FUTURES MARKETS AND INDEX OPTIONS MARKETS

Samia Zghidi

In response to the need for a simple financial instrument that enables retail
investors to easily and quickly participate in the US equity market and for a vehicle that
facilitates basket trading by institutions, the American Stock Exchange introduced

Standard and Poor’ s Depository Receipts (SPDRs) on January 29, 1993.

The purpose of this study is to determine the effects of the introduction of SPDRs
on the pricing efficiency of S&P 500 futures market and S&P 500 options market. Using
a measure of efficiency that is based on the signed difference between the observed
futures price and the theoretical futures price as per the Cost of Carry model, we find that
the positive mispricing is reduced when SPDRs are introduced. When the absolute
values of the differences are used as the measure of efficiency, the results also show an
improvement in the pricing efficiency of the futures markets. Using an ARIMA(4,0,4)-
TGARCH(1,1) model, rather than the OLS model, provides us with a more precise test of
the mispricing series and supports the findings above. Tests of pricing efficiency of the

index options market are conducted by measuring the frequency and magnitude of



violations of the no-arbitrage conditions as per the Put-Call Parity. Results from the
index options market indicate that arbitrage opportunities do exist but no clear cut
conclusion could be made regarding the effect of SPDRs on the index options market.
When taking transaction costs into consideration, it is clear that both the frequency and

the magnitude of arbitrage opportunities are reduced.
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INTRODUCTION

Most pricing models are developed under the assumption of perfect markets in
which arbitrage between the contingent claim and the underlying security is riskless and
costless. An arbitrage based model like the Put-Call Parity or the Cost of Carry, derives
the theoretical equilibrium value for an option or a futures contract respectively, as part of
a specific riskless trading strategy. In a perfect market that strategy will dominate price
determination since arbitrageurs will stand ready to take advantage of any possible
arbitrage opportunities. In the real world, however, transaction costs, execution
problems, and other market imperfections impede the arbitrage needed to maintain the
theoretical price structure. The impact of those market frictions is considerably magnified
when it comes to index arbitrage. Such arbitrage is difficult to implement, and does not
fully eliminate risk. For instance, when pursuing an arbitrage opportunity for the S&P 500
index, a precise number of shares of the component stocks must be bought or sold short.
This creates the risk that prices can change on several of the stocks while the arbitrage
process is occurring. In fact, it is risk free only if one can execute all of the stock trades at
the anticipated price. Delays involved in executing trades on five hundred or more stocks
introduce risk by causing the actual traded price to differ from the anticipated price. In
addition, odd lots must be traded and both commissions and bid-ask spreads increase the
cost of trading. Finally, when the arbitrage strategy calls for taking a short position in the
stock, the “uptick rule™’, the inability to use the proceeds of shares sold short, and limited

availability of shares to borrow can introduce additional delays in trading. Instead of



trying to replicate the index, index arbitrageurs can design portfolios that closely mimic

the index and include as many stocks as required through “basket trading”.

Over the past several years, the popularity of “basket trading” has increased with
both institutional traders and with retail investors. In general, a basket is a portfolio of
stocks that moves with general market trends. The most popular baskets have been those
that replicate the performance of some popular market index, such as the S&P 500.
Trading baskets of stocks can be difficult and expensive. For example, in stock index
arbitrage one must simultaneously take offsetting positions in the stock index future and in
every stock in the corresponding index. On the part of retail investors, there has been
strong interest in investment products that replicate the performance of an index, such as
Vanguard Index 500, an open-ended, no-load mutual fund that attempts to replicate the

performance of the S&P 500.

In response to the need for a simple product that both enables retail investors to
easily and quickly participate in the US equity market and facilitates basket trading by
institutions, PDR Services, a wholly owned subsidiary of the American Stock Exchange,
introduced a new investment product: Standard and Poor’s Depository Receipts, or
SPDRs (pronounced “spiders”). SPDRs began trading on the AMEX on January 29,
1993 with over one million shares trading on the first day. Volume has remained strong

with a current average daily volume of over 2.5 million shares’.

' One barrier to an arbitrage strategy that involves shorting the index in the uptick rule, which prevents
investors from shoming the stock on a negative tick of the stock price.

* On July 22, 1797. when the Dow Jones Industrial average surged SS points, trading in SPDRs hit a
record high of 4 2 Million shares. See A. Bary, “Well Kept Secrets,” Barrons, July 28, 1997, p. 36.
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The popularity and success of “basket trading” as witnessed by TIPs® and SPDRs
led the American Stock Exchange, on March 18, 1996, to introduce the World Equity
Benchmark Shares (WEBS) which are portfolios of stocks designed to track the
performance of selected Morgan Stanley Capital International (MSCI) country indexes.
On June 5, 1997, the Dow Jones & Company proposed to introduce DIAMONDS, an
exchange-traded fund based on DJIA. Each of the DIAMONDS will be valued at one-
hundredth of the Dow and they are scheduled to begin trading on the AMEX in late

1997,

1. Standard and Poor’s Depository Receipts: SPDRs

SPDRs are a premier retail security which tracks the overall stock market as
represented by the well-known S&P 500 index. Each SPDR represents a claim against a
portfolio, administered by State Street Bank & Trust Company of Boston, that
approximates the S&P 500 Index. Unlike options, futures, or other derivative securities
with a short-term life, SPDRs are tradable equity shares in a 25-year open-ended unit
investment trust holding all 500 stocks in the index.

SPDRs have ranked among the top five most actively traded securities by dollar

volume on the AMEX since trading began on January 29, 1993. The S&P 500 SPDR has

3 TIPs are index participation units that represent an interest in a trust that holds baskets of the stocks in
the Toronto 35 Index. TIPs were introduced in March 9, 1990. As of September 1996, $2.5 billion of
TIPs were issued and outstanding.

“See F. Norris, “After 15 years, Dow Jones Lets Futures Trade on its Average”, New York Times, June 6,
1997, p. DI.



enjoyed one of the fastest fund launches in history, surpassing $1 billion by the end of
1995 - less than three years from start-up. In comparison, it took Vanguard fund about
twelve years to reach $1 billion in assets. With a price at about one tenth the S&P 500
index, SPDRs are as easy to track as they are to trade. In addition to that they are
extremely liquid with an extremely tight bid/ask spread of about three cents (1/32). Like
many financial instrument prices, SPDR prices are linked to net asset value by an arbitrage
mechanism. If the price is more than a few cents above or below net asset value, a dealer
will sell the overpriced SPDRs or buy the underpriced SPDRs, buy or sell the underlying
stock portfolio, and do a creation or redemption transaction with the trustee. The pricing
mechanism is practically identical to the mechanism for stock index arbitrage between the

stock market and S&P 500 futures contracts.

Low cost is not the only interesting feature of SPDRs. Like stocks, SPDRs can be
owned and traded through an ordinary brokerage account. They can be purchased or sold
with market, limit, stop, or stop-limit orders to help individual investors exercise control
over their price exposure in entering or exiting the market. SPDRs can be sold short like
any individual stock, and are generally eligible for inmediate margining under the same
terms that apply to common stocks. In addition to that, they are exempt from the uptick
rule that requires shares to be sold short only on a plus tick (a price higher than the last
sale at a different price). SPDRs also pay dividends quarterly based on the composite
yield of the S&P 500.

Like mutual funds, SPDRs give investors overall market exposure through a single

investment, which immediately gives diversification across S00 top stock and ninety



different industry categories, and eliminates the guesswork in stock picking or
sector/theme investing. As Exhibit 1 illustrates, SPDRs provide a number of features that
are not available to other mutual funds. Unlike traditional mutual funds or index funds’,
SPDRs are available for purchase or sale during the day like a share of stock (from 9:30
a.m. to 4:15 p.m.), rather than at closing net asset value. If the market were to decline or
jump, SPDR holders could execute their trades during the day, mutual fund investors
would have to wait until after the close. The difference in entry and exit techniques gives
a SPDR’s investor more flexibility in timing orders. The combination of the ability to buy
or sell at an intraday price and to use any type of stock order gives SPDR investors a wide
range of opportunities to reduce their transaction cost and/or to implement any price-
sensitive or market-timing strategy. SPDRs’ annual expenses are comparable to those of
an indexed mutual fund®. The ongoing SPDRs’ expenses of 18 basis points are cheaper
than for most no-load mutual funds. However, brokerage commissions apply when buying
or selling SPDRs, and can be viewed as the price to obtain the flexibility to enter or exit

the market during the day’.

SPDRs real advantage is their close imitation of the index. But how closely do the
returns of SPDRs match those of the index? Returns are determined by three variables:
price change, dividends paid, and reinvestment income. When holding the S&P 500 index,

an investor receives dividends at the time of the payment and may immediately reinvest

5 Index funds are mutual funds, usually open-ended, whose portfolios consist of the same stocks, in the
same proportion, as the index itself.

SAs of March 1997, there is about $2 billion in the trust that holds the S&P securities.

” The management fee for the Vanguard Group Index Trust 500 is 20 basis points. This is about 100 basis
points lower than the usual fee charged by a mutual fund. Commissions at discount brokers are on the
order of $10 for 100 shares of SPDRs, compared to $100 at a full-service house. Total commissions for
SPDRs are thus similar to those of a standard mutual fund, even when dealing with a retail broker.

5



depending on his/her preferences. In contrast, the SPDR trust accrues all dividends
received over the course of the quarter, during which time their value is added to the unit
price. When the SPDR trust goes ex-dividend at the end of the quarter, its price is
reduced to the base cash price of the index. As a result, SPDRs’ retumns differ somewhat

from those of the index.

SPDRs are intended to appeal to both retail investors and institutional traders®.
SPDRs offer the retail investor a more flexible alternative to an indexed mutual fund.
Mutual funds trade only at the end of the day and may not be bought on margin or
shorted. With SPDRs, the investor can buy or sell at an intraday price using market, limit,
or any type of order available for stocks. The investor can write options against a SPDR
and can short a SPDR, even on the down-tick with no minimum purchase account. The
cost of this flexibility is that SPDR trades generate brokerage commissions whereas the
trades of no-load mutual funds do not. SPDRs offer institutional traders an attractive
alternative to basket trading. By using SPDRs, rather than stock, the institutional trader
can avoid the delays that increase the risk associated with stock index arbitrage. Also the
manager of an equity portfolio may choose to use SPDRs, rather than futures contracts, to
reduce the effective cash balances that must be held for liquidity purposes. SPDRs can
also be used by managers attempting to keep all of their funds in equities rather than
money market instruments. Index funds and portfolios managers who invest in large-
capitalization companies to replicate the index need to constantly think about reinvesting

dividends and other monies they generate without affecting their investment strategies. It

8 According to AMEX vice-president Jay Baker, individual, as opposed to institutional investors are
responsible for about 35% of SPDR trading volume.



would cost tens of thousands of dollars to buy enough shares of each S&P 500 stock to
match the index’ weighing. One alternative is to invest in short-term instruments until
enough cash is available for a meaningful equity investment. Another alternative would be
to invest in SPDRs. The managers keep buying units until they reach a $50,000 market

value at which point they can exchange the SPDRs for their underlying stocks.

Exhibit 1: Comparison: SPDRs vs. Typical Mutual Fund

Investment Features SPDRs Typical No-Load Mutual
Fund
Regulated under Investment Yes Yes
Company Act of 1940
Assets held by Trustee Bank Yes Yes
Immediate Diversification, Yes Yes
Professional Administration
Market Access Throughout the Trading Forward Pricing Only at
Day, 9:30 am - 4:15 pm NY 4:00 pm NY
Account Requirements Ordinary Brokerage Separate Mutual Fund
Account Account
Automatic Dividend Yes Yes
Reinvestment Available (Beginning 1/1/94)
Minimum Investment About $45 ( 1 SPDR) $2,000
Can Purchase on Margin Yes No, marginable only 30 days
after purchase.
Can be Sold short Yes No
(even on down-tick)
Can Write Options Against Yes No
(e.g., 1 short SPX call is
covered by 1,000 SPDRs)
Expense Ratio 19 bps through 1996 30 - 50 bps or more
Brokerage Commissions Ordinary stock commissions None
apply

Sources: American Stock Exchange
Angel J. J. , D. M. Chance, J. C. France, and G. L. Gastineau, “Comparison of Two Low-Cost
S&P 500 Index Funds”, Derivatives Quarterly, Spring 1996.




2. Implications of SPDRs on stock index futures and stock index options

Before SPDRs were introduced, investors basically had four ways to match the
S&P performance. First, they could purchase the entire basket of 500 stocks, which for
most individuals is prohibitively expensive and therefore impractical. Second, they could
buy futures and options on the index: because these instruments have relatively short lives
and pay no dividends, they are used mainly by large institutional investors for hedging and
by smaller investors for speculating. A third option was to buy into index funds: the

fourth, to invest in the NYSE’s “Exchange Stock Portfolio” or AMEX’s SuperUnit Trust.

If index participation units, SPDRs in particular, provide more diverse payoffs to
investors than the existing securities, the capital market will be. more complete. One way
to observe any benefits arising from the trading of SPDRs is to test the market efficiency
of products based on the index. Stock index options and futures rank among the most
remarkable financial innovations the securities markets have witnessed. In particular, a
futures contract based on the Standard and Poor’s (S&P) 500 Index was launched on
April 21, 1982, by the Chicago Mercantile Exchange (CME). This instrument has evolved
into the most successful and viable stock index futures contract. Due to the success of
this contract, the CME introduced options on the S&P 500 futures on January 28, 1983.
The popularity of the S&P 500 index also paved the way to another derivative product.
On July 1, 1983, the Chicago Board Options Exchange (CBOE) started trading in S&P
500 (SPX) index option contracts. Noting that these derivative securities are all based on

the same under.ying asset, the S&P 500 stock index, it is to be expected that they are



interrelated with SPDRs. If SPDRs truly make it easy to track the market movement and
to arbitrage away any discrepancy between the index and the index products, trading in
index products becomes more active. With increased activity, the index futures markets

and the index options markets may exhibit more efficiency in revealing price information.

The large daily trading volume of SPDRs coupled with their redemption option
may generate increased activity in the underlying 500 stocks. At the same time, SPDRs
trading may take away some trading volume from the S&P 500 component stocks if some
investors are mainly interested in those stocks for a diversified portfolio that tracks the
general market movement. If SPDRs are indeed easily used in index arbitrage, activities of
index futures and index options would also rise. However, if SPDRs take away the
market indexing functions of, for instance, index futures used in portfolio management, the
presence of SPDRs may hamper the activities in the futures market. Since the SPDRs
holders receive quarterly dividends, they are not subject to the dividend uncertainty as is
the case with index futures and index options holders. Unlike futures, SPDRs do not have
to be rolled over and they may be attractive to small investors who cannot afford large
denominations associated with index futures. Since SPDRs do not expire and are less
volatile than futures, their margin requirements are lower than that of index futures.
Finally, several empirical studies show that index futures lead the index in price and
volume indicating that investors with new information are more likely to use index futures
than the stocks underlying the index. With the presence of SPDRs, such trading
information can be shifted from index futures since investors may find the fixed maturity

and margin requirement associated with futures unattractive. If SPDRs act as a close



substitute for index futures, the volume in the futures markets would decline. On the
other hand, if SPDRs create new interest in market indexing and become an easy tool for

index arbitrage, the volume in the futures market would be expected to increase.

SPDRs are designed as an alternative to trading S&P 500 stocks and the S&P 500
futures contract. However, that does not necessarily imply that the introduction of SPDRs
reduced the volume or efficiency of those markets. Park and Switzer (1995) find that
when similar index participation units are introduced into the Toronto market in March
1990, the trading activity of the T35 Futures Contract increased and the trading activity of
stocks in the index showed little change. They also find a significant reduction in the
discrepancy between prices of the stocks in the index and the price of futures contracts on
the index. They suggest that this increased volume and improved efficiency may be

attributed to the role index participation units play in facilitating stock index arbitrage.

Of course, results found in Canadian financial markets do not necessarily apply to
the US markets. Trading volumes on the S&P 500 futures contracts are very large
compared to those of the T35. Moreover, the discrepancy between the prices of the
stocks in the S&P 500 index and the price of the futures contract are very small in
magnitude (MacKinlay and Ramaswamy, 1988). Given the differences between the
markets, the introduction of SPDRs may have a very different effect upon the volume and

efficiency of the S&P 500 futures contracts or, perhaps, no effect at all.
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The purpose of this study is to examine the effects of SPDRs trading on the index
derivatives market, more specifically on the pricing efficiency of index futures and index
options contracts. The first part deals with SPDRs and their effects on the index futures
market. In the first section, the relevant literature on the subject is reviewed. The second
section includes the theoretical framework for index futures valuation using the Cost of
Carry Model. Based on this model, a pricing efficiency measure is defined, specifically as
the mispricing or the deviation of the actual index futures prices from their theoretical
values as suggested by the Cost of Carry model. In the empirical tests, the generated
index futures mispricing series are examined before and after the introduction of SPDRs.
The mispricing series are then described under different models in order to provide a more
rigorous test of mean differences in mispricing than the usual Ordinary Least Square
method. The models tested in this study are the ARIMA(4,0,4) model, GARCH(1,1)
model, GJR-GARCH(1,1) model, and T-GARCH(1,1) model. Finally, a brief summary
and conclusions are provided.

The second part deals with SPDRs and their effects on the index options market.
The first section includes an overview on previous relevant empirical studies on index
options. In the second section, a theoretical framework for index options valuation using
Put-Call Parity is designed. Based on this model’s no-arbitrage arguments, three
boundary conditions are formulated. Pricing efficiency in this case is measured by
calculating the magnitude and the frequency of violations of those boundary conditions.
The third section covers the empirical tests on the effects of SPDRs on the index options
markets and also the effects of various option characteristics such as maturity and whether

the options are out-, at- or in-the-money on the occurrence of violations tested. The
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fourth section includes the results of tests regarding the nature of the index options market
over time. Two hypotheses are tested. The first hypothesis investigates whether the
magnitude of a violation decreased in the second half of the testing period. The second
hypothesis examines whether the frequency of violations changed after the introduction of
SPDRs. In the fifth section, the effect of transaction costs on the results obtained in the

previous sections is investigated and the sixth provides summary and conclusions.

This study differs from previous studies in numerous ways. First, a longer and
more recent testing period is considered (January 2, 1990 to June 3, 1996). Second,
intradaily data on index futures and index options are used. Problems of non-synchronous
prices are reduced by using intradaily data and also by considering only trades that occur
at the exact same time to the second. Third, so far, this is the first study that investigates
the relationship between index participation units and index options. Moreover, the index
options analysis controls for some market impediments such as transaction costs and bid-
ask spread. Fourth, the mispricing series of index futures are thoroughly investigated by
fitting different models and allowing for different distributions in order to provide a

rigorous test of the effect of the introduction of SPDRs on the index futures market.
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STANDARD AND POOR’S DEPOSITORY RECEIPTS AND THE PERFORMANCE

OF THE S&P 500 INDEX FUTURES MARKET

INDEX FUTURES

Stock index futures contracts began trading on February 24, 1982 when the
Kansas City Board of Trade introduced futures on the Value Line Index. About two
months later, the Chicago Mercantile Exchange introduced its S&P 500 futures contract;
by 1986, the latter became the second most actively traded futures contract in the world,
with over 19.5 million traded in that year’. In May 1982, the NYSE Composite Index
futures contract began trading on the New York Futures Exchange. In July 1984, the
Chicago Board of Trade gave up on its attempts to trade futures on the Dow Jones
Industrial Average (DJIA) and instead, began trading its Major Market Index (MMI)

futures contract.

In their short history of trading, stock index futures contracts have had a great
impact on the world’s securities markets. These instruments have become very useful to
both individual and institutional investors. Individual investors have found the stock index
futures contracts to be a low-cost and efficient vehicle for trading on expectations of

future movements in the equity markets. Before the introduction of stock index futures,

° The 1987 stock markei crash caused trading in stock index futures to shrink. Volume in the S&P 500
futures contracts declined to 19.04 million contracts in 1987 and to only 11.4 million contracts in 1988
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investors had to buy and sell large portfolios of stocks in order to be able to trade on
broad market movements. The transaction costs of such strategies were extremely high,
and their executions were slow. With stock index futures, investors can carry out the
same trades by making one simple transaction. In fact, institutional investors have come
to rely on stock index futures to hedge their portfolios and to allocate their assets among
cash, equity, and long-term debt investments. Nevertheless, stock index futures trading
has been accused of making the world’s securities markets more volatile than ever before.
Critics claim that individual investors have been driven out of the equity markets because
the actions of institutional traders, both in the spot and futures markets, cause stock values
to fluctuate with no links to their fundamental values. Many market participants and
political figures have even called for a ban on stock index futures trading. Whether stock
index futures trading is a blessing or a curse is debatable. However, it is certainly true that

its existence has revolutionized the art and science of institutional equity portfolio

management.

1. The S&P 500 Stock Index Futures:

The S&P 500 index futures contract is traded on the Chicago Mercantile Exchange
(CME). To define the dollar size of an index futures contract, the CME gives the contract
a nominal value of 500 times the futures index level. The minimum fluctuation in the
futures price is 0.05 index points, worth $25 in settlement variation. Therefore, a change
of one full point is worth $500 in settlement variation. The contract expires at 3:30 P.M.

E.S.T on the Thursday preceding the third Friday of the delivery month. Futures contracts
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on stock indices are settled in cash and not by delivery of the underlying asset. The final
settlement price is based upon the prices of the 500 stocks on the New York Stock
Exchange’s Friday opening and is set equal to the computed S&P 500 index using those
opening prices. This procedure is designed to avoid some of the problems associated with
“triple witching hour”, that is when stock index futures, stock index options, and options
on stock index futures all expire on the same day. On positions initiated during
Thursday’s trading session, the settlement variation is computed using the difference
between the final settlement price and the trade-initiating price. After payment of this final

day’s settlement variation, the contract positions are erased from the books.

The following exhibit summarizes some details on the S&P 500 stock index futures

contracts.
Exhibit 2: S&P 500 Futures Contract Specification

Contract Standard and Poor’s 500 Index

Exchange Chicago Mercantile Exchange

Quantity $500 times the S&P 500 Index

Delivery Months Mach, June, September, December

Last Trading Day Thursday prior to third Friday of delivery month

Delivery Specification Cash settlement according to the value of the index at the
opening on the Friday after the last day of trading: if a
stock does not open on Friday, its last sale price is used

Minimum Price Movement 0.05 index points, or $25 per contract
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LITERATURE REVIEW

Most studies on stock index futures pricing have concluded that arbitrage
opportunities do frequently exist for short periods of time. However, arbitrageurs’ trades
quickly correct the mispricing. For example, if the futures price is too high, arbitrageurs
will initiate cash-and-carry arbitrage trades. In the process, their purchase of the
underlying security (i.e. the index) will raise stock prices and their sale of the futures
contracts will lower stock index futures prices. Hence, equilibrium will be reestablished.
To profit from such arbitrage opportunities, investors must be able to trade millions of

dollars of stock at low transaction costs.

When Stock index futures first began to trade in 1982, the major puzzle was the
persistent and substantial underpricing of futures contracts relative to their theoretical
values. The standard Cost of Carry model reflects the equivalence between the forward
and futures prices when interest rates are non-stochastic. Since the market interest rates
historically exceed the dividend yield on common stocks, one might except that the futures
price given by the model will trade at a premium compared to the price of the index.
Surprisingly, observations from earlier contracts show that when a futures price is
different from its implied theoretical value, such mispricing is usually negative; in other

words, the futures contract is trading at a discount.

Cornell and French (1983a, 1983b) attribute this discount primarily to a tax effect

which Constantinides (1983) refers to as the “timing option”. Stockholders have a
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valuable timing option because they can reduce their taxes by realizing capital losses and
deferring capital gains. In addition, before 1987, such gains could eventually become
long-term capital gains subject to lower tax rates. Futures traders, however, do not have
this option. All capital gains and losses must be realized either at the end of the year or at
maturity of the futures contract, whichever comes first. Thus, a trader who is long in the
stock receives not only the cash flows from the equivalent futures portfolio, but also has
the opportunity to defer taxes on any realizable capital gains. Because of this tax timing
option, stocks may represent a more attractive investment alternative than futures.
Therefore, to make the two alternatives equivalent, futures would have to be priced below
the theoretical prices as per the Cost of Carry model. The difference represents the value
of the tax timing option. However, if the marginal investor is tax-exempt, the timing

option would be worthless and the perfect markets’ pricing model should work.

Though Comell’s (1985) empirical work does not support the tax timing option
hypothesis, his results do not refute the possibility that it may have been at least partially
responsible for the underpricing of US stock index futures prices early in their trading
history. Instead, Comnell suggests that the early mispricing of stock index futures
contracts was a result of traders’ early perceptions that futures prices were too volatile.
Like Figlewski (1984b) and Peters (1985), he notes that the pricing of stock index futures

contracts improved as the markets matured.

Figlewski (1984b) points out that in their first year of trading, stock index futures

prices were persistently too low. He shows that approximately 70% of arbitrage
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opportunities due to mispricings disappear by the close of the following day. He claims
that mispricings are due to ‘noise’ and they will disappear with time as markets mature.
Figlewski concludes that the early discounts were “a transitory phenomenon caused by
unfamiliarity with the new markets and institutional inertia in developing systems to take
advantage of the opportunities presented” (pp. 43). In other words, investors were
unfamiliar with the marking to market of stock index futures contracts, uncertain about
legal aspects and accounting procedures for futures trading, and unsure about how these
contracts should be theoretically priced. As investors became more familiar with these
issues, the early discounts disappeared. Stoll and Whaley (1986) and Billingsley and
Chance (1988) also support Figlewski’s explanation. For instance, Stoll and Whaley
(1986) report frequent violations of the model in excess of transaction costs using hourly
S&P 500 index and index futures data during the period April 1982 through December
1985. The frequency of violation is nearly 80 percent for the June 1982 contracts,
however, for more recent contract maturities, this frequency is below 15 percent.
MacKinlay and Ramaswamy (1988) report similar results for the S&P 500 futures
contracts expiring in September 1983 through June 1987. Using 15-minute price data,

they find that, on average, the Cost of Carry relation is violated 14.4 percent of the time.

Bhatt and Cakici (1990) not only confirm the gradual disappearance of the earlier
discount, but they also point out the emergence of a premium. Using daily closing values
of the S&P 500 index and its two nearest maturity futures contracts for 1982-1987, Bhatt
and Cakici show that: (1) the mispricing is positively and significantly related to time to

maturity and dividend yield, rather than being random; (2) futures prices become more



efficient relative to the Cost of Carry model price as futures market matured, (3) more
contracts sell at a premium than at a discount. The evidence that mispricing increases on
average with maturity is consistent with the findings of MacKinlay and Ramaswamy

(1988).

MacKinlay and Ramaswamy (1988) employ intradaily data to investigate two
scenarios. First, they suppose that the actual futures price exceeds its theoretical price
plus the transaction costs involved in performing cash-and-carry arbitrage (which are
arbitrarily set at 0.6 percent of the index level) and that the futures price subsequently
returns to its equilibrium value. Their results show that it is almost three times more likely
that the futures price will again become too high than it is that the futures price will
become too low. In the second scenario, MacKinlay and Ramaswamy assume that the
S&P 500 futures price falls below its theoretical price and consequently goes back to its
equilibrium level. Under these circumstances, they find that it is almost twice as likely that
the futures price will subsequently fall below its theoretical price again than it is that the
futures price will rise above its maximum value. They attribute these findings to the fact
that many arbitrageurs prematurely unwind their positions. Thus, if the futures price is
initially too high, arbitrageurs will buy stocks and will sell futures. When the futures price
returns to its correct value, they will unwind by selling the stocks and buying back the
futures. Consequently, their purchase of futures contracts tends to drive the futures prices
higher again and their sale of stocks will lower spot prices as well. The resulting effect is
that the upper pricing bound is more likely to be crossed again than is the lower pricing

bound.
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MacKinlay and Ramaswamy (1988) also document that the variability of futures
price changes exceeds the variability of changes in the spot price of the S&P 500 index,
even after controlling for the non-synchronous prices in the index quotes. This finding is
in contrast to Cornell (1985) who finds that the two variabilities are similar in most cases.
The only exception is for the September 1982 contract whereby the variability of the

futures price changes exceeded that of the stock index by about 25 percent.

Modest (1984) provides an analysis of the relationship between spot and futures
prices in stock index futures market while paying special attention to the impact of
dividends and stochastic interest rates. When transaction costs or uncertain future
dividends are recognized, he shows that the discounted futures prices can fluctuate within
a bounded interval without giving rise to arbitrage profits. Modest also examines the
impact of stochastic interest rates and marking to market on equilibrium futures prices.
The simulation analysis suggests that these two factors have a minimal effect on

equilibrium prices.

Interestingly, foreign stock index futures prices exhibited similar underpricing in
their early years. Brenner, Subrahmanyam, and Uno (1989) find that Japanese stock index
future sold at a discount relative to their theoretical values during the first two years they
traded and that this mispricing declined over time. Yadav and Pope (1990) find that
before Great Britain deregulated its financial markets in October (1986), the FTSE-100,
an index contract on British stocks trading on the London International Financial Futures

Exchange (LIFFE), was aiso trading at a relatively lower price than its theoretical value.
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In contrast, when evaluating the pricing and hedging performance of the stock index
futures contract on the Swiss Market Index (SMI), Stulz, Wasserfallen, and Stucki (1990)
show that pricing is in accordance with standard principles, allowing no arbitrage profits

to be made.

Violations of the Cost of Carry model may appear for a variety of reasons. Some
are purely technical. An important one is the infrequent trading of stocks within the index.
Consequently, stock index prices, which are averages of the last transaction prices of the
component stocks, may not reflect actual developments in the stock market. Lo and
MacKinlay (1988) model the effects of infrequent trading on index returns under
restrictive assumptions. Assuming that index futures prices instantaneously reflect new
information, observed futures returns should be expected to lead observed stock index
returns because of infrequent trading of individual stocks even though there is no solid
economic significance to this behavior. Another reason for violating the Cost of Carry
relation has to do with time delays in the computation and reporting of the stock index
value. Once a transaction in the stock market takes place, the transaction information is
entered into a computer and transmitted to the particular service that updates and
transmits the index level. Three time delays are therefore possible: (a) the delay in
entering the stock transaction into the computer, (b) the delay in computing and
transmitting the new index value; and (c) the delay in recording the stock index value at
the futures exchange. If new information arrives in the stock and futures markets

simultaneously and price changes in the futures market are recorded instantaneously, the
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possible delays mentioned above may cause the futures market returns to lead the stock

index returns.

Several papers have analyzed the lead-lag relationship between the stock market
and the stock index futures. Most have concluded that the futures market lcads the spot
market. The lead-time has been estimated to be between five and forty five minutes'®.
Kawaller, Koch, and Koch (1987), for instance, find that the S&P 500 futures prices and
the index are simultaneously related on a minute-to-minute basis throughout the trading
day. Significant lag coefficients suggest that the lead from futures to cash prices extends
for between twenty and forty five minutes, while the lead from cash price to futures prices,
though significant, rarely extends beyond one minute. Stoll and Whaley (1990) investigate
the time series properties of intradaily returns of stock index and stock index futures
contracts. After accounting for the individual stocks’ infrequent trading and the bid/ask
price effects, they find that S&P 500 and MMI index futures returns lead stock index
returns by about five minutes on average and occasionally by as long as ten minutes or
more. They also find a weak positive predictive effect of lag stock index returns on
current futures returns. This effect has become even smaller as the futures markets have

matured.
Another possible explanation for violating the Cost of Carry relation is that an

arbitrageur is not allowed to use the total amount of short sale proceeds. Modest and

Sundaresan (1983) show that if short sellers of stock cannot use their short sale proceeds,
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then actually there are no pure arbitrage opportunities implicit in the low stock index
futures prices of 1982. This explanation of futures mispricing, however, fails to realize
that quasi-arbitrage'' also serves to enforce the Cost of Carry pricing model. However,
and as pointed out by Figlewski (1984), this may explain why a discount is sustained, but
it does not explain why a discount came about in the first place. If the actual futures price
is higher than the theoretical price, then an arbitrageur would buy the index and sell the
futures until equilibrium is achieved. In this case, the problems that arise as a result of

short sales would not apply.

Potential impediments to arbitrage include nontrivial transaction costs, the uptick
rule in the stock market, limitations on the amount of the short sale proceeds that can be
used, and the pcsition limits in the futures market'2. With such impediments to arbitrage,
mispricing of index futures may arise and persist over time. When investigating the
efficiency of the market for stock index futures and the profitability of index arbitrage for
MMI contracts, Chung (1991) accounts for transaction costs, execution lags, and the
uptick rule for short sales of stocks”. His results indicate that the size and the frequency

of boundary violations are substantially smaller than those reported by earlier studies and

10 See Kawaller, Koch, and Koch (1987), Finnerty and Park (1987), Herbst, McCormack, and West
(1987). Laatsch and Schwarz (1988), Swinnerton, Curcio, and Bennett (1988), and Stoll and Whaley
(1990b).

' A quasi-arbitrageur is a trader who begins with a spot position and then moves to an equivalent position
superior to the initial one. For example, quasi-arbitrageurs who already own the underlying stocks of the
index may find it preferable to sell those stocks out of their portfolios, receive the full proceeds from the
sale, and buy index futures contracts. In contrast, pure arbitrageurs would sell the component stocks short
and buy index futures contracts if that would lead to an arbitrage profit.

'2 A person shall not own or control more than 10,000 futures contracts net long or net short in all
contract months combined.

'3 An arbitrageur attempting to sell short a basket of 500 stocks must wait for an uptick (or a zero uptick)
in each of the 500 stocks for an S&P 500 arbitrage. As a result, an arbitrageur may be unablie to establish
a short position that properly represents the index.
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have declined sharply with time for both ex post and ex ante tests. The frequency of
violations declines substantially with the assumed level of transaction costs and the
assumed length of the execution lag. He also notes that ex ante arbitrage profits are not
riskless as evidenced by their large standard deviations and by their substantial differences
from mispricing signals. Another interesting result is that the size of arbitrage profits from
executable short arbitrages is much smaller and more volatile than that from long

arbitrages'*.

Empirical tests of the proximity of stock index futures prices to their theoretical
values as per the Cost of Carry model depend to a certain extent on the reliability of the
underlying assumptions and the existence of market imperfections. Regarding the
assumptions, evidence suggests that the existence of unknown and stochastic interest rates
is likely to have an insignificant effect on index futures pricing. Cox, Ingersoll and Ross
(1981), French (1982), Jarrow and Oldfield (1981) and Richard and Sundaresan (1981)
have theoretically shown that stochastic interest rates can cause disparity between forward
and futures prices. In contrast, Cornell and Reinganum (1981), Elton, Gruber, and
Rentzler (1982), and Rendleman and Carabini (1979) suggest that the difference is not
significant. Although no direct empirical tests are available for the S&P 500 futures
contracts, Cornell (1985) suggests that the effect is not likely to be significant for S&P
500 futures due to the low correlation between the index price changes and the changes in

the short term interest rates. Bailey (1989) compares the pricing models with stochastic

' When the futures actual price is higher than its theoretical value, a “long arbitrage™ can be conducted
by buying the stocks underlying the index and shorting futures contracts. If the futures price is less than
the theoretical price, profits can be made through “short arbitrage™, that is, shorting the stocks underlying
the index and taking a long position in futures contract.
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and non-stochastic interest rates for the Japanese stock index futures, and concludes that
the more complex model provides no improvement over the Cost of Carry model. Bailey
attributes this finding to the low variance of Japanese interest rates. Cakici and Chatterjee
(1991) show, however, that the stochastic interest rate model may give significantly
different and substantially better prices compared to the non-stochastic interest rate model.
On the other hand, the uncertainty associated with the dividends over the life of an index
futures contract significantly affects the formidability of correctly specifying a normative
price for index futures contracts. The problem stems from the facts that the numerous
dividends associated with indices are difficult to estimate without error and that the
appropriate discount rates to apply against these dividends are most of the time even more
difficult to estimate. Indeed, the necessity to estimate dividends makes the arbitrage
argument itself invalid. Sunders and Mahajan (1988) propose an arbitrage model of index
futures pricing which does not require the estimation of dividend uncertainties and
controls for the influence of non-synchronous pricing for index futures and spot index
values. Their results are consistent with the proposed model implying that as the index
futures market has matured with the passage of time, systematic and significant arbitrage
opportunities have disappeared. The observed correlation between daily index futures
prices and daily spot index values is consistent with market efficiency and supports

efficiency of the index futures market.

Until June 19, 1987, stock index futures, index options, and individual stock
options all expired at the same time of the same day four times a year (in March, June,

September, and December). On these “triple witching days”, the exchanges, particularly
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the NYSE, were drowned with trade orders at the close of the day. Large last-minute
trading volumes occurred and were caused mainly by investors placing “market on close”
orders to unwind the arbitrage positions they have entered into previously. Some critics
claimed that the stock market experienced a large amount of volatility because of these
trades, particularly if the majority of the shares involved were on one side of the market.
If the futures price was more often too high than it was low during the previous month or
two, then arbitrageurs bought stock and sold futures. Most or all of the arbitrage
unwinding would probably then involve stock selling. If the futures price was below its
theoretical value much more often than it was above, then most or all of the market on
close orders would be to buy stock. However, Stoll and Whaley (1986a) and Merrick
(1989 find that predicting which way the market will move on expiration day closings is
not possible. Merrick (1989) and MacKinlay and Ramaswamy (1988) suggest that such
predictions are made impossible due to the unwinding and/or rolling over of previously
placed arbitrage trades to the delivery date probably. As a direct result of those concerns,
the Chicago Mercantile Exchange in 1987 decided to alter settlement procedures for the
S&P 500 futures. Expiration procedures were revised in an attempt to reduce spot
expiration day volatility. Instead of expiring at the close of trading on the third Friday of
the delivery month, the S&P 500 contract now has a final settlement based on a special
opening quotation for the spot of S&P 500 index at the start of trading on the third
Friday". Thus, trading ceases at the close of the Thursday before the third Friday. Herbst

and Maberly (1990) investigate whether the CME decision has been effective. They find

1S Prior to June 15. 1984, the last day of trading for the S&P 500 stock index futures contract was the third
Thursday of the delivery month, and the last mark to market was based on the last spot S&P 500 index
value on that day. From June 15, 1984 until March 20, 1987, the last trading day was the third Friday of
the delivery month.
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that on a close-to-close basis, no substantive change in volatility has occurred due to the
change in settlement procedures. However, the observed decrease in triple witching hour
volatility associated with the new settlement procedures coincides with an approximately
equal increase in first hour volatility. They concluded that the volatility increase was
transitory;, a move in one direction at the close of trading on a triple witching day was

usually reversed on the next Monday.

THE THEORETICAL FUTURES PRICE AND THE MISPRICING OF INDEX

FUTURES

The conventional approach to the valuation of commodity futures is the theory of
storage (See Fama and French, 1987). In a perfect market, the futures price for a non-

dividend paying stock must equal the deferred value of the current stock price,

FC(LT) = P;e““) (l)

where F°. 1) is the futures price at time t for a contract that matures at time T, P, is the
index at time t times the multiplier specified in the index futures contract, and r is the risk
free interest rate. The Cost of Carry for a non-dividend paying stock is equal to the
interest rate. Therefore, if the futures price does not equal the deferred value of the stock
price, traders can form a riskless arbitrage portfolio - making no investment and yet

receiving a guaranteed profit. If the futures price exceeds the cost of purchasing the stock
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Adding dividends to the model reduces the futures price. Again, compare an
investor who purchases the stock at time t with an investor who uses a futures contract to
purchase the stock at time T. The stockholder pays P, at time t. At time T, he owns one
share of stock worth Py. In addition, he owns the dividends, D,r, that have accumulated
over the investment period. The futures trader buys one futures contract and invests P, in
bonds at time t. At time T, he receives Pr - Fy 1) from the contract and Pe™ from the
bonds. The stockholder and the bondholder make the same initial investment, P..
Assuming that dividends are known at beforehand, these investors bear the same risk.

Therefore, their portfolios must have the same terminal values,

Pg + D(I.T) = pg - Fc(l,T) + P.e'ﬂ'" (2)

Rearranging this equation yields

Fon =P - Dy1) (3)

The second term on the right hand side is the cumulative value of the dividends paid over
the remaining life of the contract, assuming reinvestment at the riskless interest rate. The
futures price equals the deferred value of the current stock price minus the deferred value
of the dividends that will be paid over the contract period. This equation is enforced by
cash-and-carry and reverse cash-and-carry arbitrage between the stock and the stock index

futures markets. If at time t, the index futures price exceeds its theoretical price, an
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arbitrageur can earn a cash-and-carry arbitrage profit by: (1) buying the portfolio that
mimics the index, (2) borrowing to finance the portfolio purchase, and (3) going short the
index futures. Between t and T, the arbitrageur collects the dividends on the portfolio and
invests them until time T. When the futures contract matures, the arbitrageur (1) sells the
portfolio, (2) repays the borrowed funds, (3) closes out the futures using cash settlement,
and (4) obtains proceeds from invested dividends. Similarly, if the futures price is less
than its theoretical price, one can make profit through reverse cash-and-carry arbitrage'’.
Thus, arbitrage profits can be calculated as the mispricing or the deviation of the actual
index futures prices from their theoretical values. The mispricing in the futures contract is

defined by the following equation:

X = (Fen - l:‘e(x.T))/ P 4)

where F(t,T) is the actual index futures price.

Cornell and French (1982) examine the special case of a stock with a constant

dividend yield d. They show that the futures price for this stock can be approximated by

Fun = Pe"™ (5)

17 At time t, (1) sell short the portfolio that mimics the index, (2) lend the proceeds from the portfolio sale,
(3)go long the index futures. Between t and T, borrow to pay dividends on the portfolio. At time T, (1)
buy the portfolio and cover the short positions, (2) receive proceeds from the loan, (3) close out the futures
using cash settlement, and (4) pay back loans taken out to pay dividends.
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The idea behind Equation (5) is straightforward. Dividends partially offset the
interest cost of carrying stock. An arbitrageur who purchases the stock and carries it until
the futures contract matures, foregoes the interest on his funds, but he receives the
dividends from the stock. With a constant dividend payout, the Cost of Carry is
approximately equal to the difference between the interest rate and the dividend yield.
Therefore, the futures price equals the spot price grossed up by this difference. Note that
in this formulation the riskless rate of interest and the dividend yield on the underlying
stock index are assumed to be known-constant-continuous rates.

The mispricing expression that corresponds to equation (6) is defined as follows:

x, = In Fo1) - In P, - (r-d)(T-t) (6)

The Cost of Carry model takes no account of marking to market of the futures,
essentially treating it as a forward contract. Although the theoretical importance of
marking to market has been discussed'®, efforts to determine the economic significance of
this factor suggest that it is rather small'>. Another factor left out of this model is the
value of the tax timing option discussed by Cornell and French (1983). If a deviation from
the equilibrium futures prices is simply due to noise, arbitrage trading should tend to bring
it back into line. But if mispricing is the result of specific factors like the tax timing
option, it should persist over long periods. Whether and how quickly the basis moves

toward its theoretical level can yield some insight into the causes of futures mispricing.

18 See Richard and Sundaresan (1981) or Cox, Ingersoll, and Ross (1981), for example.
' See Elton, Gruber, and Rentzler (1983) or Hill, Schneeweis, and Mayerson (1982).
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Index arbitrages are similar to stock arbitrages except that they require the
arbitrageurs to buy or short an entire portfolio of stocks and account for the dividends on
that portfolio. One approach for buying and selling stock portfolios is to design portfolios
that closely mimic the index underlying the futures but include fewer stocks than the index.
This technique, however, introduces basis risk into the trade if the mimicking portfolio
does not move directly with the index. Program trading instead, allows arbitrageurs to
place orders in many stocks simultaneously and thus to reduce the risk that only part of a
portfolio will be bought or sold. However, after the introduction of index participation
units, index arbitrageurs in the index futures markets do not need to worry about
mimicking the index underlying the futures or figuring out what orders to place through
the DOT system. One way to test the effect of these index participation units is to look at
the mispricing series or the deviations of the index futures prices from their theoretical
values. A comparison of the mispricing series before and after the introduction of IPUs
may shed more light on the economic role of those new financial instruments. If SPDRs
create new interest in market indexing and become an easy tool for index arbitrage, the
index futures price is expected to adjust better to its theoretical value after the
introduction of SPDRs. The average mispricing in the second half is expected to be lower

than the average deviations in the first half.
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DATA

The data in this study are from the “time and sales” files for the S&P 500 index
futures market for January 2, 1990 to June 3, 1996. These files, provided by the Chicago
Mercantile Exchange (CME), consist of the price and time (recorded to the second) of
every nonzero price change. For each day in the sample period, we use the nearby
Chicago Mercantile Exchange (CMER) S&P 500 futures contract to estimate the
mispricing as defined by equation (6)®°. The S&P 500 futures trade till 4:15 pm. ES.T.
whereas the S&P 500 closes at 4:00 p.m. To synchronize the trading time of the price
series, we match the end of day quotations for the S&P 500 Index with the 4:00 p.m.
E.S.T. futures prices. A daily dividend series for the S&P 500 was obtained from
Standard and Poor’s 500 Information Bulletin. Actual dividend yields are used for
equation (5). Daily three- and six-month Treasury Bill rates are used for the riskless rate
of interest. The daily data set consists of 1584 observations.

Because a contract loses most of its open interest with hedgers unwinding their
positions and the mispricing becomes negligible in the final week, another data set is
constructed where the nearby contracts are rolled over to the next contract one-week

before expiration.

* Equation (3) and (5) provide upwardly biased estimates of the futures price because they omit the
effects of daily marking-to-market. As a result, there will be 2 negative bias in the mispricing estimates
generated by equatiun (4) and (6). We have ignored these biases because they are generally presumed to
be very small (Hill. Schneeweis, and Mayerson (1982), Elton, Gruber, and Rentzler (1984), and Cornell
and French (1983)). Moreover, there is no reason to assume that the size or direction of these biases will
be related to the introduction of SPDRs.
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Many empirical studies have examined intraday patterns of index futures and stock
price changes; however, little empirical analysis of the intraday co-movement of the prices
of index futures and stocks in more normal®’ and recent periods has appeared. Stoll and
Whaley (1986), (1987) examine minute-by-minute price change behavior of the S&P 500
and Major Market Indexes in the days surrounding the expirations of the S&P 500 and
MMI futures contracts, but do not examine non-expiration days. Kawaller, Koch, and
Koch (1987a), (1987b) use intraday data to examine price changes of the S&P 500 index
futures; however, they examine only three quarters of the data and do not correct for
infrequent trading. MacKinlay and Ramaswamy (1988) also use intraday data, but they
focus on deviations from the Cost of Carry equilibrium. Ng (1987) uses intraday data to
investigate the price behavior of the S&P 500 index futures prices and its ability to predict
the S&P 500 Index level. Chan, Chan, and Karolyi (1990) use intraday price data to

examine the transmission of volatility between the stock and index futures markets.

In this study, a longer and more recent time interval (1990 to 1996) is considered.
Only trades of the S&P 500 index futures and stock index, occurring at the same time, to
the second, are selected. Again, the S&P 500 index futures trades occurring after 4:00
p.m. E.S.T were not considered since the S&P 500 closes at 4:00 while the index futures
continue trading till 4:15. This will rule out any errors due to a non-synchronous sample.
When examining the characteristics of a time series, it is desirable to use data measured at
fairly fine intervals of time. In this case, the data set consists of the last transaction trade

recorded at the end of each hour. The intraday data set includes 11088 observations from

' Most empirical studies deal with periods where index futures were first introduced or include the
market crash of 1987; two factors that might affect their findings enormously.

34



January 2, 1990 to June 3, 1996. The daily TB rates and dividend yields are assumed to

be continuous and constant intraday.

MISPRICING RESULTS

Similar to MacKinlay and Ramaswamy (1988) and Bhatt and Cakici (1990), we
find the average mispricing of S&P 500 Index futures is significantly positive, but very
small in magnitude. The positive value implies that the market price was, on average,
higher than the Cost of Carry model value. The summary statistics on the average daily
mispricing are reported in Table 1.

MacKinlay and Ramaswamy find that mispricing increases on average with
maturity. The average maturities of the futures before and after January, 1993 are
compared to assure that the maturities of the futures within the two periods are
comparable. As Table 1 shows, the average daily and average intradaily days to maturity
are not different between the first half and the second half of the testing period. However,
the average daily mispricing of S&P 500 index futures decreases significantly in the second
half.

If the Cost of Carry model produces the true futures value, the difference between
the market and model prices represents the possible profit to an arbitrageur using the

model. The average absolute value of the mispricing gives the average size of the

available arbitrage profit. Table 1 shows that the absolute value of mispricing decreases in
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the second half but not significantly. However, the variability of mispricing is substantially
smaller during the second time interval. The decrease in the value and the variability of
mispricing implies that after the introduction of SPDRs, market prices of S&P 500 index
futures are much closer to their theoretical values as calculated by the Cost of Carry

model.

Table 1.a: Summary Statistics on the Daily Differences between
Actual and Theoretical Futures Prices: Jan. 90 — Jun. 96.

Jan. 90 - Jan. 93 Feb. 93 - Jun. Jan. 90 - Jun. 96

96

Number of Observations 759* 825 1584
Average Mispricing 0.319 0.124 0.217
(x10?) (1.298) (1.214) (1.258)
t-stat. for HO: mean = 0 6.761* 2.924* 6.864*
Average Absolute Mispricing 1.008 0.944 0.974
(x10?) (0.878) 0.773) (0.825)
t-stat for HO: mean =0 31.628* 35.080* 47.002*
Average days to Maturity 0.1237 0.1221 0.1228

(0.0712) (0.0705) (0.070)

Standard deviations are in parentheses
¢ t-stat for mean equal to zero is significant at the 1% level of significance
a The sample includes January 1993.

Table 1.b: Summary Statistics on the Intradaily Differences
between Actual and Theoretical Futures Prices: Jan. 90 - Jun. 96.

Jan. 90 - Jan. 93 Feb. 93 - Jun. Jan. 90 - Jun. 96

96

Number of Observations 5313° 5775 11088
Average Mispricing 0.339 0.080 0.204
(x107) (1.259) (1.139) (1.203)
t-stat for HO: mean =0 19.634* 5.392* 17.901*
Average Absolute Mispricing 0.995 0.890 0.940
(x10?) (0.843) (0.708) 0.777)
t-stat for HO: mean =0 86.030* 95.512¢ 127.354*
Average days to Maturity 0.1237 0.1221 0.1228

(0.0712) (0.0705) (0.070)

Standard deviations are in parentheses

* (-siat for mean equal 10 zero is significant at the 1% level of significance
a The sample includes January 1993.

2 Summary Statistics on Daily and Intradaily mispricing for rolled over contracts are reported in the
appendix: Table la.
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The first hypothesis tested examines whether the average mispricing value has
changed after the introduction of SPDRs. If SPDRs are an easy tool for index arbitrage,
the pricing efficiency of index futures contracts should increase. The null hypothesis in
this case is that there is no change between the first half and the second half average
mispricing, and the alternative hypothesis is that the magnitude of mispricing has been
reduced. Looking at the hypothesis testing results reported in Table 2%, we can see that
the null hypothesis is rejected for the daily signed mispricing. The average daily difference
between aciual and theoretical futures prices has significantly decreased in the second half
of the testing period. The null hypothesis could not be rejected when comparing the
average absolute mispricing of the first half and the second half. When examining the
intradaily mispricing data, the null hypothesis was rejected for both the signed and
absolute value series. Index futures prices seem to conform much better to their Cost of
Carry theoretical values after the introduction of SPDRs. It is proven that index futures
contracts are priced more efficiently after the introduction of SPDRs. Even though
mispricing was reduced, it is not totally eliminated. The positive average mispricing is

small but still significant.

 Difference in means and difference in variance tests for rolled over contracts are presented in Appendix
1 Table 2a.
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Table 2.a: Daily Difference In Means and Variances
Average Mispricing:

Mean StdDev Std Error Minimum Mszimum

Before 759 0.00031861 0.00129819 0.00004712 -0.00567163 0.01081758
After 825 0.00012359 0.00121382 0.00004226 -0.00678787 0.00352526
Variances T DF  Prob>|T|
Unequal 3.0810 1547.0 0.0021
Rqual 3.0896 1582.0 £.0020

For HO: Variances are equal, F=1.14 DF =(758,824) Prob>F = 0.0588
Absolute Average Mispricing:
N

Mesan StdDev Std Error Minimum Maximum

Before 759 0.00100761 0.00087768 0.00003186 4.0270E-06 0.01081758
After 825 0.00094370 0.00077267 0.00002690 8.5744E-07 0.00678787
Variances T DF  Prob>T|
Unequal Js28 1515 0.1255
Equal 1.5409 1582.0 0.1235

For HO: Variances are equal, F = 1.29 DF =(758,824) Prob>F' = 0.0003
Average Maturity

N Mean StdDev StdError Minimum Maximum

Before 759 0.12373934 0.07118616 0.00258389 0.00274000 0.26027000
After 825 0.12208600 0.07051495 0.00245502 0.00274000 0.26027000
Variances T DF  Prob>{T)
Unequal 0.4639 1568.5 0.6428
Equal 0.4641 1582.0 0.6427

For HO: Variances are equal, F'=1.02 DF =(758,824) Prob>F =0.7894

Table 2.b: Intradaily Difference In Means and Variances
Average Mispricing:

Mean Std Dev Std Error Minimum Maximum

Before 5313 0.00033925 0.00125944 0.00001728 -0.01596300 0.01081800
After 5775 0.00008046 0.00113402 0.00001492 -0.00691500 0.00439000
Variances T DF  Prob>{T|
Unequal 11.3352 107100 0.0001
Equal 11.3847 11086.0 0.0000

For HO: Variances are equal, F'= 1.23 DF =(5312,5774) Prob>F" = 0.0000

Absolute Average Mispricing:
N Mean StdDev Std Error Minimum Mazimum

Before 5313 0.00099511 0.00084312 0.00001157 0 0.01596300
After §775 0.00088959 0.00070779 0.00000931 0 0.00691500
Variances T DF Prob>{T)|
Usequal 7.1055 10408.0 0.0001
Equal 7.1570 11086.0 0.0000

For HO: Variances are equal, = 1.42 DF =(5312,5774) Prob>F = 0.0000
Average Maturity

N Mean StdDev StdError Minimum Maximum

Before 5313 0.12375378 0.07112821 0.00057583 0.00274000 0.26027000
After $775 0.12210355 0.07046500 0.00092725 0.00274000 0.26027000
Varisnces T DF  Prob>iT|
Unequal 1.2259 10991.4 0.2203
Rqual 12264 1108690 2201

For HO: Variances are equal, F'= 1.02 DF =(5312,5774) Prob>F = 0.4856
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The second hypothesis looks at the change in variability of the mispricing series. 1f
the index futures market is more efficient, then the deviation between the theoretical and
actual prices should narrow. This can be tested by comparing the variances of the daily
mispricing series for before and after the introduction of SPDRs. The null hypothesis
would be that the variances are the same and will be tested against the alternative
hypothesis that the variance of the mispricing series in the second half is smaller than that
in the first half Results are presented in Table 2. Again, the findings are in favor of the
alternative hypothesis implying that deviations from the Cost of Carry prices, are smaller
after the introduction of SPDRs. The same results are discovered when the equality of

variance test is conducted on the intradaily mispricing series.

1. OLS estimates

The following expression provides the standard OLS model for the mispricing series

X, = a, +adum, +¢,
g~ N(0,h)
Where € is the error term or the unexpected component in the mispricing series and h, the
variance of the error term, is a constant. Dum, is a dummy variable that takes on the value

of “0" before January 29, 1993 and “1" after that date. Thus, the mispricing is assumed to

hover around the value of a, before January 29, 1993 and around a, + a, thereafter. The
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coefficient of the dummy variable, o, captures any structural shift that exists after the

introduction of the SPDRs.

Table 3 shows the results of the OLS estimation on the mispricing series using
daily prices from the nearby contracts held until expiration. In other words, for a given
contract, we use prices from each trading day from the day the previous contract expires
until the day that contract expires.* The parameter estimates indicate that there is a
structural shift in the futures prices coincident with the introduction of SPDRs. Both
parameter estimates are highly statistically significant. The estimate of o is small and
positive, indicating that there is a small positive pricing error before the introduction of
SPDRs. The estimate of o, is negative but smaller than o in absolute value, indicating

that the positive pricing error was reduced after the introduction of SPDRs.

Table 3: OLS Estimates for Daily Futures Mispricing

Coefficient Std. Error t statistic P value
L 7Y 0.000319  0.00004555 6.994 * 0.0001
a,y 0.000195 0.00006312 -3.090 * 0.0020

¢ Statistic is significant at the 1% level

In the previous analysis, positive and negative elements in the mispricing series
offset each other. This may be inappropriate because the costs associated with positive
and negative mispricing do not offset each other. Table 4 shows the results when we

repeated the analysis using the absolute value of the pricing error. Like the parameters

2We also performed the analysis rolling over each of the expiring contracts to the next contact one week
before the expiration date. The results are unaffected.
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estimated from the signed data, the parameters estimated from the absolute values indicate

a structural shift in the futures market coincident with the introduction of SPDRs. The
estimate of a, is positive and highly significant, indicating positive pricing errors before
the introduction of SPDRs. The estimate of a, is negative, but small relative to a,,

suggesting that there was a small reduction in mispricing upon the introduction of SPDRs.

Table 4: OLS Estimates for Daily Absolute Value of Futures

Mispricing
Coefficient Std. Error  t statistic P value
(s PN 0.001008 0.00002993 33.662* 0.000!
ay <0.000063 0.00004148 -1.541 0.1235

* Statistic is significant at the 1% level

To model intraday futures mispricing, the following regression model is used

X, = a, + a,dum, + a.dumo, + a,dumc, + a dumw, + €,

As mentioned earlier, Dum, is a dummy variable to control for the introduction of
SPDRs. Dumo, is a dummy variable that takes the value unity each time the market
opens. Dumc, captures the end of the day effect by taking on the value 1 when the market
closes. Dumw, controls for the weekend effect by taking the value unity on Mondays.
The error term ¢, from the mispricing series is assumed to be normally distributed with a
zero mean and a constant variance. Table 5 shows the parameter estimates of the above

regression model.
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Table S: OLS Estimates for Intradaily Futures Mispricing

Coefficient Std. Error t statistic P value

ao 0.000350 0.00601875 18.667* 0.0001
ay <0.000259 0.00002272 -11.382* 0.0001
a3 -0.000110 0.00003258 -3.384* 0.0007
ay 0.000000215 0.00003324 0.006 0.9949
aqy 0.000028319 0.00002908 0.974 0.3301

¢ Statistic is significant at the 1% level

The coefficient of the dummy variable that controls for the introduction of SPDRs
is negative and significantly different from zero. This implies that futures mispricing has
decreased on average. The mispricing seems to be lower on the open and higher, but not

significantly, on the close and on the weekend.

The above results should be interpreted with caution. In particular, the Ljung-Box
(1978) portmanteau test statistic for up to twentieth order serial correlation in the
residuals from the above OLS model takes the value Q(20) = 53396 which is not
insignificant at any reasonable level in the corresponding asymptotic ¥ 25 distribution. In
addition to that, the squared residuals series is clearly correlated over time, as reflected by
the highly significant Ljung-Box test statistic for absence of serial correlation in the
squares, Q*(20) = 3326 distributed asymptotically as a x % distribution. This presence of
serial dependence in the conditional first moments along with the dependence in the
conditional second moments is one of the implications of the ARIMA and GARCH (p, q)
models. Furthermore, the unconditional sample kurtosis k = 5.06 exceeds the normal
value of three by several asymptotic standard errors. This is also in accordance with the

implications of the GARCH(p,q) model.
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the t-statistic associated with the intervention variable determines whether the introduction

of SPDRs is associated with a structural change in the futures mispricing time series.

Different ARIMA specifications were tried, and it was found that the ARIMA
(4,0,4) model provides the best fit for the mispricing series. The results of the ARIMA
(4,0,4) model and general descriptive statistics of the daily and intradaily mispricing series
are presented in Table 6 and Table 7 respectively. The coefficient of the intervention
variable is negative but not significantly different from zero. This implies that after the

introduction of SPDRs, the futures mispricing decreased in value but not considerably.

The Ljung-Box test statistics for the daily residuals and the intradaily residuals
from the estimated ARIMA (4,04) model take the value of 16.90 and 18.36 respectively.
These values are not significant at the 1% level and thus do not indicate any further first
order serial dependence. The Ljung-Box statistics for the squared residuals are however,
indicative of misspecification, and the very high values for Q’(20) for both the daily and
intradaily mispricing series, strongly suggest the presence of conditional
heteroskedasticity. Skeweness and Kurtosis are also significant indicating that a GARCH
model would be appropriate. This conclusion is supported by the results of Engle Arch

tests shown in Table 2.1 and Table 2.2 of the appendix.



Model :

x, = a, + a,dum, +Z¢x, ,+Z€s +¢,

Table 6: Estimates of ARIMA (4,4) Model for Daily

Futures Mispricing: Jan 1990-Jun. 1996

Coefl. Std Error T-Stat P-Value
o 0.000308 0.000159 1.93179 0.053565
& 0.464005 0.285375 1.62595 0.104161
¢ -0.20872 0.327571 0.63717 0.524106
¢ 0.06407 0.317052 -0.20208 0.839877
&3 0.607604 0.241758 2.51328 0.012061
& -0.24559 0.290334 <0.84588 0.397746
0, 0.337086 0.273397 1.23295 0.217779
0, 0.189225 03119 0.60669 0.544147
0, 045174 0.194197 -2.32619 0.020135
oy <0.00018 0.000215 -0.82855 0.407485
Log Likelihood 10003.45
Number of Observations 1584
Skeweness 0.03969
Kurtosis 9.30828
Q20) 16.9018
Q(20) 35.2081*

¢ statistics is significant at the 5% level

Q(20) and Q*(20) denote the Ljung-Box (1978) portmanteau tests for up to twentieth order serial

correlation in the levels and the squares respectively.

Table 7: Estimates of ARIMA (4,0,4) Model for Intradaily

Futures Mispricing: Jan 1990-Jun. 1996

Coefl. Std Error T-Stat P-Value
o 0.0003005 0.0001495 2.01063 0.0444
¢ 0.6926395 0.1724401 4.0167 0.0001
& 0.4140275 0.2051035 2.01863 0.0436
& 0.1590905  0.1950653 0.81558 0.4148
ds 02764756  0.1210429 -2.28411 0.0224
0, -0.3659653 0.173422 -2.11026 0.0349
0, £0.3707546  0.1629785 -2.27487 0.0229
0, 02277399  0.1740368 -1.30857 0.1907
0, 0.1101962 0.079825 1.38047 0.1675
o <0.0002111 0.000198 -1.06594 0.2865
Log Likelihood 73148.475
Number of Observations 11088
Skeweness 0.79358
Kurtosis 15.62224
Q(20) 18.3652
Q(20) 644.5493*
* Statistic is significant st the 5% level.

Q(20) and Q(20) denote the Ljung-Box (1978) portmanteau tests for up to twenticth order serial
respectively.

correlation in the levels and the squares
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3. Mispricing under a GARCH Model

3.1. GARCH Model

The patterns of mispricing shown in Figure 1 and Figure 3 (see appendix 6) depict
a typical pattern exhibited by a series with autocorrelation and heteroskedasticity. The
variance of mispricing seems to change over time and the changing variance is related to
the previous level of mispricing. Such a time varying variance can be modeled using the
Generalized Autoregressive conditional Heteroskedastic (GARCH) framework of Engle
(1982) and Bollerslev (1987).

Standard OLS regression relies on the assumption that the variance of the
dependent variable is constant over time, an assumption that fits few financial time series.
Since the variance of the mispricing of S&P 500 Index futures may not be constant, a
GARCH model [Engle (1982), Bollerslev (1987)] will provide a more rigorous test for a
structural shift in the mispricing at the time of the introduction of SPDRs. Over the past
few years, the GARCH (1,1) specification has emerged as the most frequently used
alternative to OLS regression in testing for structural shifts in financial time series. The
ARIMA(4,0,4) model tested above allowed to get rid of first order autocorrelation.
However, as demonstrated by the Ljung-Box statistics, severe second order serial
correlation still persists after fitting the ARIMA model. Thus fitting the unexpected
component or the error term of the ARIMA model to a GARCH model may solve the
problem.

The following evpression provides the ARIMA(4,0,4)-GARCH(1,1) model for the

mispricing time-series:



4 4

X, =a, +adum + §x,, + 0., +¢
1=] 7=l

g, ~N(,h)

h = B, + P&, + B:h,_, + Bdumo, + fdumc, + Bdumw

Where the first equation is the ARIMA(4,0,4) equation and is the same as the one
specified in the previous section. x, is the index futures mispricing at time t, & is the error
term from the ARIMA model, and A, is the conditional variance of the error term.

The maximum likelihood approach is used to estimate the parameter coefficients, given by

T
L(6)= Zlogf(grl'l’:-l)

Where & denotes all the unknown parameters in the model and T is the sample size.

The OLS model could be regarded as a special case where 8, and B, are both zero.
h, is the conditional variance of the error term. As in the OLS model, Dum, is a dummy
variable that takes on the value of “0" before January 29, 1993 and “1" after that date.
The coefficient of this dummy variable, a,, captures any structural shift that arises after
the introduction of the SPDRs. The other dummy variables are as specified in the OLS
model. This time, these variables are included in the variance equation to capture any
volatility intraday pattern. It is documented that returns volatility is high near the open
and the close resulting in a U-shaped intraday pattern®™. Several theories relate some or all
of these patterns to changes in information trading across the day. These explanations of

the observed patterns suggest that there are many information traders active near the

¥ See Wood, Mclnish, and Ord (1985), Harris (1986), Jain and Joh (1988), Neal (1988), Jordan et al.
(1988), French and Roll (1986), Ekman (1992) etc...
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open, and, perhaps, many liquidity traders active near the close. Other explanations should
be considered. These include: (1) the patterns are sample specific, i.e., they only occur in
the relatively short periods studied; (2) the patterns are caused by institutional factors, i.e.,
different patterns may occur in different markets; and (3) some of the pattems may be

caused by the effects of non-synchronous trading on intraday indices.

3.2. GJR GARCH Model

The GJR GARCH, proposed by Glosten, Jagannathan and Runkle (1993), is a
similar model except that the conditional variance equation has a somewhat different
specification. As well as using the lagged squared residual, and lagged conditional
variance in the conditional variance equation, the model includes a dummy variable which
represents the square of the lagged residual when this residual is negative and “0”
otherwise. The reason behind including the dummy variable is that volatility may be
different if we have negative mispricing as opposed to positive mispricing. In fact, when
prices are falling, there is a higher tendency to get negative mispricing and therefore higher
volatility. This model thus captures the effect that a negative mispricing term will have on

the conditional variance of the hourly index futures mispricing.

4 s
X, =@, +adum, + §x,_ + Y0e,_, +¢
=1 =]
£, ~N(@©,h)
h = B, + P&, + B.S, &, + Bh,_, + . dumo, + B,dumc, + B.dumw

Where S ., is a dummy variable that takes the value 1 when €., is negative, and 0 when



€. is positive. The other variables are the same as in the GARCH(1,1) model described

above.

3.3. TGARCH Model

TGARCH model is another GARCH model that is used as an alternative
specification. Bollerslev (1987) extends the GARCH model developed in Bollerslev
(1986) to allow for conditionally t-distributed errors by specifying the conditional
distribution of the errors to be a transformed inverted gamma-1 distribution. Bollerslev’s
development permits a distinction between conditional heteroskedasticity and a
conditional leptokurtic distribution, either of which could account for the observed

unconditional kurtosis in the data.

4 4
x, = a, +a,dum, + Z¢,x,_, +Y 0., t+¢
J=l

8:['/’1-—! -~ .fd(grl'l’r-l)
h =B+ Bl + B:h,_, + B,dumo, + B dumc, + Bdumw

The loglikelihood function for the TGARCH model is similar to the one for a simple

GARCH model but it includes an additional parameter for the degrees of freedom.

T
[1(5) = Zlog.ﬂ:(ﬂl%-n)
=1
Where & denotes all the unknown parameters in the model, 4 is the degree of freedom

parameter, and T is the sample size.
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The idea behind using a GARCH model is to relax the assumption of a constant
variance that is encountered in OLS or ARIMA models. According to ARCH and
GARCH models the conditional error distribution is normal, but with conditional variance
equal to a linear function of past squared errors and past conditional variances. Thus,
there is a tendency for extreme values to be followed by other extreme values, but of
unpredictable sign; a behavior that is observed in most financial time series. In addition to
the ability of modeling volatility, the GIR-GARCH model investigates leverage effects on
the volatility of the time series by examining the effect of negative error terms on the
conditional variance. Despite the advantages of GARCH models, it is not clear whether
these models sufficiently account for observed fat-tailed distribution of certain financial
time series. The T-GARCH model presented in the previous section with conditionally t-
distributed errors may have a greater descriptive validity. Thus, these three GARCH

models will permit to evaluate different aspects of the index futures mispricing series.

For all the GARCH models described above, the mispricing is assumed to hover
around the value of a, before the introduction of SPDRs, and around the value of a, plus
a, after January 29, 1993. The coefficient of the dummy variable thus captures any

structural shift that arises after SPDRs are introduced.



4. Results of Garch Models

The various sign tests described by GIR and by Engle and Ng (1993)* were used
to check the specification of the various models. The results of the different sign tests run
on the daily and intradaily mispricing models (Appendix 1: Table 3.1 and 3.2 respectively)
were in favor of the ARIMA(4,0,4)-TGARCH(1,1) for both the daily and the intradaily
mispricing series. None of these tests are significant, meaning that the conditional
variance equation of the model does not seem to require a further parameter representing
the direction of the error term. The same conclusion is reached when comparing the
models according to the Ljung-Bex Portmanteau test. A summary of the Q and Q
statistics of the various mispricing models discussed in this paper is provided in Table 4.1
and 4.2 of the appendix. Maximum Likelihood estimates of the parameters of the
ARIMA(4,0,4)-TGARCH(1,1) model are presented in Table 8 and Table 9%’ along with
asymptotic standard errors. The estimates are obtained by the BHHH (Berndt, Hall, Hall

and Hausman (1974)) algorithm.

Tables 8 and 9 demonstrate that using the ARIMA(4,0,4)-TGARCH(1,1) model,
rather than the ARIMA(4,0,4) model, has an effect upon our results for both the daily data
and the intradaily series. As mentioned before, the error terms of the ARIMA(4,0,4)
model do not exhibit any first order serial correlation. However, second order serial
dependence was substantial. This absence of first order serial dependence along with the

second order serial independence is one of the implications of a GARCH model. The

% A definition for the sign tests is included in the appendix.
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Ljung-Box test statistic for the daily (intradaily) standardized residuals and the
standardized squared residuals from the estimated ARIMA(4,0,4)-TGARCH(1,1) model
take the values Q(20) = 17.15 (0.71) and Q*(20) = 5.66 (0.001), respectively, which are
not significant at the 5% level, and thus do not indicate any further first or second order

serial dependence in neither the daily nor the intradaily series.

In Table 8 we show the results of the ARIMA(4,0,4)-TGARCH(1,1) estimation on
the daily-signed data from the mispricing series. The size, sign, and significance level of
the o, and o, terms are consistent with those shown in Table 6. The estimate of ay is
significantly positive, once again indicating that there is a small positive pricing error
before the introduction of SPDRs. The estimate of a, is negative but not significantly
different from zero. It is also smaller than the estimate of o in absolute value, indicating
that the positive pricing error was reduced but not significantly after the introduction of
SPDRs. Both the estimate for the coefficient of the square of the previous error term (1)
and the estimate for the coefficient of the previous variance term (B2) are highly

significant.

27 Results of th> cther tested models fitted to daily and intradaily series are included in Appendix 2 and
Appendix 3 respectively. Results for rolled over contracts are in Appendix 4 and Appendix 5.

52



4 4
Model:  x, =a,+adum +) @x,_,+D 0,  +&,
i=l Jj=l

h =8+ ﬂlstz—l +ﬂ2hr-l

Table 8: Estimates of ARIMA(4,4)-TGARCH(1,1) Model for
Daily Futures Mispricing: Jan. 1990-Jun 1996)

Variable Coefficient Std Error T-Stat P-Value
o 7.25E-05 3.51E-05 2.06488* 0.0389
& 0.425 0.13 3.27855* 0.0010
6, -8.19E-02 0.163 0.50373 0.6145
'Y 0.285 0.151 -1.88828 0.0590
b4 0.733 0.107 6. 84263* 0.0000
0, 0.174 0.138 -1.26394 0.2063
0 0.234 0.145 1.60938 0.1075
0, 0.409 0.147 2.78371* 0.0054
04 0.497 8.82E-02 -5.63672* 0.0000
a -1.71E-05 4.37E-05 <0.38973 0.6967
Bao 1.78E-08 7.71E-09 2.31564* 0.0206
B 3.07E-02 9.03E-03 3.39893* 0.0007
B4 0.952 1.37E-02 69.39854* 0.0000
d* 5.776 0.661 8.73946* 0.0000

Log Likelihood 19903
Number of Observations 1584
Skeweness -1.01451
Kurtosis 16.48864
Q(20) 17.1569
Q(20) 5.6645

* Statistic is significant at the 5% level.
of freedom parameter in the loglikelihood function.
Q(20) and Q*(20) denote the Ljung-Box (1978) portmanteau tests for up to twentieth order serial
correlstion in the levels and the squares respectively.

adisthe degree

In Table 9 we provide the results of the ARIMA(4,0,4)-TGARCH(1,1) estimation
on the intradaily mispricing series. The size, sign, and significance level of the oo and a,
terms are similar to those generated by the ARIMA(4,0,4) analysis (Table 7). Once again,
the estimate of o indicates positive pricing errors before the introduction of SPDRs. The
negative estimate of a;, which is almost equal to the estimate of o in absolute value,
indicates that there was a significant reduction in mispricing upon the introduction of

SPDRs. The estimated coefficient for the square of the previous error term () and the

estimated coefficient for the previous variance term are both highly significant.
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Table 9: Estimates of ARIMA(4,4)-TGARCH(1,1) Model for
Intradaily Futures Mispricing: Jan. 1990-Jun 1996

Variable Coeff Std Error T-Stat P-Value
o S41E-04 9.63E-05 5.61812* 0.0000
o -2.92E-02 0.152 -0.19208 0.8477
¢ 8.86E-02 2.35E-02 3.76612* 0.0002
& 0.959 1.74E-02 55.25633* 0.0000
b4 -8.84E-02 0.149 -0.59393 0.5526
o 0.228 0.162 1.41073 0.1583
6- 8.72E-02 $.01E-02 1.74099 0.0817
0, -0.759 2.57TE-02  -29.51536* 0.0000
0, 3.87E-02 0.126 0.30833 0.7578
o <5.15E-04 1.27E-04 -4.05546* 0.0001
Bo -5.63E-09 3.06E-09 -1.83675 0.0662
B -1.87E-02 1.37E-03  -13.63261* 0.0000

N 0.753 6.99E-03 107.65707* 0.0000
B 2.45E-06 2.20E-07 11.12833* 0.0000
Ba 2.59E-06 2.54E-07 10.18651* 0.0000
Bs 1.32E-06 1.42E-07 9.26919* 0.0000
d* 8.104 0.918 8.82604* 0.0000

Log Likelihood 61516.701
Number of Observations 11088
Skeweness <0.93991
Kurtosis 10.12769
Q20) 0.7085
Q°(20) 1.7377e-003

* Statistic is significant at the 5% level.

a d is the degree of freedom parameter in the loglikelihood function.

Q(20) and Q°(20) denote the Ljung-Box (1978) portmanteau tests for up to twenticth order serial
correlation in the levels and the squares respectively.

In this model, in addition to the lagged conditional variance, and the lagged
squared unexpected component of the intradaily futures mispricing, the conditional
variance equation includes three dummy variables: dumo,, dumc, and dumw. These
variables are included to see if there is any intraday pattern in the mispricing volatility.
The estimated coefficients of these variables are all positive and significantly different from

zero. This implies that the volatility of the mispricing series is high near the open and the



close and also on Mondays indicating the presence of the familiar U-shaped intraday

pattern.

SUMMARY

This section examines the effect of SPDRs’ trading on the pricing efficiency of the
S&P Index futures contracts. Easy availability of a security that tracks the movement of a
stock index can contribute to increased activity and market efficiency of other index
related products. But if such a security provides a better substitute for other index
products in tracking general market co-movement, these other index products will show
reduced activity and market efficiency. One attribute of efficiency in the S&P 500 Index
futures markets is mispricing which is tested to observe any change after the introduction

of SPDRs.

When the measure of efficiency is based on the daily signed difference between the
observed futures price and the theoretical futures price, we find a very small, but
statistically significant positive pricing error before the introduction of SPDRs, which is
eliminated or reversed when SPDRs are introduced. However, signed differences may not
accurately reflect the costs associated with mispricing. When the absolute value of the
daily differences are used, the results unambiguously show an improvement in the pricing
efficiency of the futures markets upon the introduction of SPDRs. Using the ARIMA

(4,04) with an intervention variable and the ARIMA(4,0,4)-TGARCH(1,1) models, rather
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than the OLS model, has very little effect upon our results for either the daily signed data
or the absolute values, even when the estimated coefficients for the square of the previous

error terms and the previous variance terms are statistically significant.

The analysis was extended using intraday price data for the futures contract and
the S&P 500 Index. When using the OLS model, the intradaily mispricing results were
similar to those of the daily results. However, the ARIMA(4,0,4) and the ARIMA(4,0,4)-
TGARCH(i,l) models added a substantial improvement to the analysis.  The
ARIMA(4,0,4) model solves the problem of first order serial correlation in the intradaily
futures mispricing series. The unexpected component of the mispricing series, after fitting
the ARIMA(4,0,4) model, is approximately uncorrelated over time but characterized by
tranquil and volatile periods. The standardized t-distribution fails to take account of this
temporal dependence, and the GARCH models with conditionally normal errors do not
seem to fully capture the leptokurtosis. Instead, the TGARCH(1,1) model fits the data
series quite well. Estimates based on this model prove that deviations from theoretical
prices are much smaller after the introduction of SPDRs. The positive mispricing is
reduced and almost eliminated in the second half of the testing period that is after January
29, 1993. This means that the S&P 500 index futures prices are more in compliance with
their theoretical values and that the performance of the index futures market seems to have

improved with SPDRs.

Since GARCH models permit for the variance to be non-constant, we took the

opportunity to investigate whether previously observed intraday patterns are present in the



S&P 500 index futures mispricing series. Three dummy variables were included in the
conditional variance equation to capture the open effect, the close effect, and the weekend
effect. The estimated coefficients of these three dummy variables were positive and
significantly different from zero. The results refer to the famous volatility U-shaped
intraday pattern where the volatility is high near the open and the close. One possible

explanation for these patterns is that both the S&P 500 stock index and the S&P 500

index futures exhibit similar volatility patterns®.

3Ekman (1992), “Intraday Patterns in the S&P 500 Index Futures Market”, Journal of Futures Markets,
Vol. 12, No. 4, p. 365-381
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STANDARD AND POOR’S DEPOSITORY RECEIPTS AND THE PERFORMANCE

OF THE S&P 500 INDEX OPTIONS MARKET

INDEX OPTIONS:

1. An Overview of Index Option Contracts:

Index options began trading in the United States on March 11, 1983. The first was
the CBOE 100 and was later renamed the S&P 100. It is now frequently called the OEX.
By the end of 1983, options on different indices traded not only on the CBOE, but also on

the American, Philadelphia, and New York Stock Exchanges.

An index option is a contract that transfers equity market risk from the buyer to
the seller. The option buyer is willing to pay a price — known as the premium - for the
right to benefit from an increase or a decrease in the value of the underlying index with the
risk of limited loss to the premium paid. The seller of an index option is willing to grant
that right and accepts the risk of market variability in return for this premium. Each
CBOE index option contract represents $100 (the index multiplier) times the current value
of the index. For example, when the index is at 550, the underlying dollar value of 1 index
option contract i> equal to $55,000. An index call gives the holder of the option the right,

but not the obiigation, to buy $100 times the index value at a predetermined price -
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known as the exercise price. The value of an index call option at expiration, or upon
exercise, is the amount by which the settlement value of the index exceeds the strike
(exercise) price times the index multiplier. The settlement value may be based on either
the closing of the primary market for the underlying securities in the index or, in some
cases, the opening of all the component securities. The value of an index put option at
expiration, or upon exercise, is the amount by which the value of the index is below the
strike price. The option contract requires cash settlement so that a writer, on being

assigned an exercise of a call, delivers in cash the difference between the index value and

exercise price.

Index options offer investors an efficient way to speculate on the future direction
of the stock market and a way to effectively buy the market today at a low cost. This is
particularly advantageous for investors with low cash positions but wishing to bet on the
direction of the market. Index options can also be used to hedge an existing portfolio

against a systematic decline in equity value.

Amongst the most heavily traded index option contracts are the S&P 500 index
contracts. These options are European in nature”. There are actually three types of
contracts: the SPX, SPL, and NSX contracts. SPX, the Standard & Poor’s 500 Index
Option continues to be the world’s leading exchange-traded European-style index option.
Since its introduction in 1983, SPX option volume has grown to reach an average daily
contract volume of more than 105,000 in 1995. CBOE'’s options on the S&P 500 index

posted the second highest volume year ever in 1995 with 26,726,023 contracts. The SPX
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contract has up to six expiration months available for trading: the two nearby months and
as many as four months from the March-June-September-December cycle. The expiration
date is usually the Saturday immediately following the third Friday of the expiration
month. Trading in SPX options will ordinarily cease on the business day (usually
Thursday) preceding the day on which the exercise settlement value is calculated. SPX
options generally may be exercised only on the last business day before expiration. The
settlement value is calculated using the opening reported sales price in the primary market
of each component stock on the last business day (usually a Friday) before the expiration
date. If a stock in the index does not open on the day on which the settlement value is
determined, the last reported sales price in the primary market will be used instead. The
SPL contract has expiration months in June and December, up to two years in the future
providing investors, particularly institutional investors, with longer-term options on the
market. The NSX option was introduced in order to allow investors to escape the price
volatility caused by “triple witching days”. For SPX and SPL contracts, the final
settlement price is based on the closing prices of the underlying stocks on the third Friday
of the expiration month. In contrast, the NSX final settlement price is based on the
opening prices of the index component stocks on the third Friday of the delivery month.
Other index options introduced by CBOE include the OEX LEAPS (Long Term Equity
Anticipation Securities) and SPX LEAPS. These have the same properties like the regular

SPX except that they have times to maturity as long as three years.

® Before April 1986, S&P 500 options were American options.
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2. Difference Between Index Options and Stock Option Contracts:

There are important discrepancies between index options and stock options which
may give rise to possible changes in option pricing and strategy between the two forms of
contracts and lead to greater mispricing potential in index options. The four main
differences are: (1) the underlying asset for the index option is a portfolio rather than a
single common stock; (2) index options are cash settled (3) the dividend stream on the
index is more complex than that on a common stock; and (4) the distribution of the
underlying index might not be approximated by the lognormal:

1. Underlying Asset is a Portfolio: Hedging with stock option contracts is both easy
and very straightforward. This is not the case with index options, since the underlying
security is a portfolio, i.e. the index, and an investor who wishes to arbitrage between
the option and the underlying assets has to follow more complicated procedures. This
is particularly true with the S&P 500: to create a riskless hedge, an investor needs to
accumulate the proper number of shares of each of the 500 stocks at the existing spot
price. In practice, however, it is almost impossible to construct a portfolio that exactly
reproduces the index. Since there is no simple arbitrage between the option and the
underlying index, as there is with stock options and their underlying assets, it is
conceivable that arbitrage forces are not as powerful with index options and hence
index options may display greater pricing errors than do stock options.

2. Cash Settlement: Another major difference between index options and stock
options is that index contracts are cash settled. Since it would be quite difficult and

costly to accumulate each of several hundred stocks in their proper weights in order to
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make or take delivery, index options do not permit the delivery of the underlying asset.
Instead, on the exercise of an index call, the assigned writer is obligated to pay the
exercising holder cash equal to the difference between the closing level of the index on
the exercise date and the exercise price. Thus, when an investor exercises an option,
the exact amount of cash that will be received is only known after the market has
closed.

3. Dividend Stream on the Index: It is now widely known that the dividend payments
on stocics have a major impact in the pricing of stock options (Merton 1973). The
dividend stream for index options is more difficult to predict than that of an individual
stock. This has offsetting impacts: first, there is much more research required in
estimating an accurate dividend stream for index options. However, the resultant
dividend stream looks more continuous than that of a stock option. This problem is
not too serious when dealing with European style options such as those on the S&P
500 index (SPX, SPL, NSX) since one need not worry about possible early exercise.

4. Distribution of index returns: Most of the theoretical pricing formulas for options
rely upon the fact that the return distribution of the underlying asset is lognormal with
constant variance. For individual stocks this assumption may be quite reasonable.
However, this is not necessarily the case for an index. The latter is more likely to show

significant non-stationarity in return.

The actual impact of these issues on the mispricing of options on indices is an

empirical question on which we shall attempt to shed some new light in this study.
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LITERATURE REVIEW

The original Put-Call Parity model was developed by Stoll (1969) and later
extended and modified by Merton (1973). Both models were empirically tested by Stoll
(1969) and Gould and Galai (1974) for over the counter put and call options. While these
studies basically supported the Put-Call Parity theory, some inefficiencies in the
relationship were also found to exist. Gould and Galai (1974), however, find that the
basic model is not supported unless rather large transaction costs are included. In fact,
these costs were found to wipe out any exploitable profit opportunities in the OTC

options market for the 1967-1969 period.

Galai (1978) examines daily closing prices of the CBOE during the exchange’s first
6 months of operation. Two hypotheses are formulated. The first hypothesis argues that
the stock and options markets are well synchronised so that simultaneous closing prices
are within their theoretical boundaries. Results of the ex post test are inconsistent with
this hypothesis especially for options with short maturity. The second hypothesis claims
the market is efficient. Ex ante tests indicate that, on average, positive profits could have
been exploited especially for deep in the money options with a short time to maturity, but
the returns per transaction could not be expected to be non-negative. The frequent
deviations could neither be explained by the assumption of perfect knowledge of the future

dividends nor by the possible inaccuracy of the data.
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Klemkosky and Resnick (1979) have extended the theoretical Put-Call Parity
models developed by Stoll (1969) and Merton (1973) by including a dividend term and
assuming that neither the call nor the put would be exercised early and that future
dividends are known with certainty. Utilising CBOE American options for the period of
July 1977 to June 1978, the empirical results are consistent with Put-Call Parity theory.
The study also shows that many reverse conversions™ appear to be conditionally profitable
at initiation. Whether this profit will be realised is uncertain and dependent upon the
premature exercise of the put. The reported $20 profitability level is not an adequate
compensation given that the arbitrageur now operates in markets where the options are
not dividend-payout protected and that option prices and stock prices change
continuously. Klemkosky and Resnick (1980) tested the profitability of those hedges in an
ex-ante manner using the ex post results as a signal to trigger investment decisions. The
long hedge results indicate an overall tendency for ex ante profitability to be less than ex
post profitability and for price corrections to take place rapidly enough to eliminate most if
not all of the possible arbitrage profits. Those profits are sensitive to the level of
transaction costs and are unlikely even for member firms. Returns on long hedges are
positive on average even after considering transaction costs and higher than the returns on
the short hedge investments. This is expected as long hedges are riskless while short

conversions are risky because of the possibility of premature termination of the position.

Using bid-ask prices of options traded on the CBOE for the period August 1976 to

June, 1977, Bhattacharya (1983) performs lower boundary conditions tests based on the

30 A reverse conversion or a short hedge can be set up by writing a put, shorting the stock, buying a call,
and lending an amount equal to the present value of the exercise price at the risk free rate.
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rational pricing of call options and an implied standard deviation test. He finds small and
infrequent violations of the boundary conditions. However, the returns resulting from the
executed hedges are on average positive only when transaction costs are ignored.
Frequent violations of the tighter boundary conditions in the implied standard deviation
test are reported but the estimated profits cannot be unambiguously attributed to option

market inefficiency.

Using TSE option and stock transaction data for the period 1978-1979, Halpern
and Turnbull (1985) investigate (1) the conformance of observed prices to various
boundary conditions without accounting for the bid-ask spread, (2) the evolution of the
market over time, and (3) the efficiency of the market. They find that violations did occur
but rarely when the option is out of the money. They observe almost no relationship
between the number of days to maturity on the option and the number of violations.
However, when considering the average size of the violation, they show that: (i) there
tends to be a positive relationship between the number of days left to maturity and the
average dollar size of the violation; (ii) the size of the violation tends to be greater for
deep in the money options than for in the money options, and (jii) the average size of the
violation tends to increase with the number of dividends expected to be paid before the
exercise date. When looking at the nature of the market over time, two hypotheses are
considered. The first examines whether the probability of observing a violation changed
over time. The second hypothesis concerns the magnitude of the violations. They
demonstrate that both the frequency and the magnitude of violations tend to increase

rather than decrease. To test for market efficiency, they use the occurrence of a violation
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as a signal to implement a trading rule. It is found that the arbitrage mean dollar returns
are positive and statistically different from zero. These results strongly suggest that the
TSE option market over the sample period was inefficient. The authors note that the
sample period exhibited substantial growth in interest in the option market, and argue that
the above results should be treated with caution and should not be generalised to periods

where the market has matured and its growth has levelled off.

Evnine and Rudd (1985) examine the pricing of the options on the S&P 100 and
the Major Markets Index using intradaily prices from June till August 1984. Their
findings suggest that American index options on the S&P 100 and the MMI were both
overpriced and underpriced relative to both European and American PCP. The
overpricing is found to be a reflection of the early exercise feature. As for the
underpricing, it is suggested that it might reflect non-synchronous data. Evnine and Rudd
also observe substantial deviations between market prices and theoretical prices derived
from the binomial option-pricing model. They suggest that tests of option pricing models
might be more difficult than was previously realised due to non-synchronous prices. They
conclude that the market is inefficient to some degree and that much of this inefficiency

might be explained by the inability of investors to arbitrage the index options at low risk.

Chance (1987) tests Put-Call Parity for index options using a data base of bid and
ask prices of S&P 100 index options for the first four months of 1984. He observes
frequent violations that represent a potential source of abnormal returns for index options

traders. However, he suggests that when accounting for dividend reinvestment (financing)



by buying (selling short) additional shares of the index, the subsequent transaction costs
would almost surely exceed the potential returns. Chance also provides another way of
testing for parity: the box spread strategy’’. He finds that index option prices are
consistent with the box spread rule. According to Chance, this consistency is due to the
fact that the necessary arbitrage cannot be executed at sufficiently low cost to support the
parity rule, so index option traders, by necessity, choose spreads and straddles as their
predominant transactions. Chance (1988) uses the same database again to determine
whether the prices at which trades can be executed adhere to rational boundary conditions.
The relationship between pairs of options is also examined through the vertical spread
test’? and the butterfly spread test’>. Only a small number of violations is reported.
Chance concludes that index options are priced consistently with rational boundary

conditions.

Using data from the Finnish Options Index (FOX), Puttonen (1993) tests the
rational lower boundary conditions for call options as well as put options as determined by
the futures price instead of the index price. The study also provides a comprehensive
analysis of the relevant transaction costs related to the boundary conditions. Only one

violation of the put lower boundary is found, and several violations of the call lower

3 Box Spread: Long position in a call with low exercise price (X,) and a put with high exercise price (X2),
short positions in a call with high exercise price (X.) and a put with low exercise price (X:), and a short
ition in risk free bonds having face value (Xz-X)).

? Vertical spread test: one call with low exercise price X; is sold at Cyy, one call with high exercise price
X. is bought at C,, and bonds having face value (X;-X;) are bought. Cash flows at expiration are non-
negative implying that the portfolio requires a positive cash outflow, that is: -Cyp + Czs + (X2-X1) e" 20
3 Butterfly spread test: Three options with exercise prices X;<X;<Xs. A portfolio is constructed
consisting of a long position in a units of the call priced at C;, and (1-a) units in the call priced at Cs,, and
a short position in one unit of the call priced at Cx» where a = (X3-Xo)/(X5-X)). The portfolio has non-
negative cash flows at expiration so it must have a negative initial cash flow. Therefore:
aC,-Cx» +(1-3)C3, 20
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boundary are observed for deep in the money and at the money categories. The results are
consistent with Halpern and Turnbull (1985), except that violations on the FOX market

are of greater magnitude.

Kamara and Miller (1995) perform Put-Call Parity tests on S&P 500 index options
using daily data from May 1986 to May 1989 and intradaily data for the first three months
of 1989. The study documents some deviations from PCP during 1986 to 1989 with less
frequent and smaller deviations in 1989 than in earlier years. The deviations are also less
frequent and smaller than those found in earlier PCP studies using American options. The
results suggest that the trading strategies underlying PCP are subject to significant
liquidity (or, immediacy) risk of adverse price movements from order submission until
order execution. Kamara and Miller (1995) find a systematic relation between those
deviations and proxies for liquidity risk in the stock and option markets. As liquidity risk
increases, the frequency and size of the deviations increase. In other words, the bid prices
of call and put options rise relative to their PCP implied bid prices and the ask prices of
call and put options fall relative to their PCP implied ask price. When investigating PCP
violations in intraday transaction data, it is found that almost half of these arbitrage
opportunities result in a loss when execution delays are assumed to be equal to the median

time between option quote update.

Figlewski (1988) examines call options on the NYSE Composite index from
September 1983 to September 1984 using the Black-Scholes option valuation model. He

finds that the model captures the major portion of option price determination in the market



place. However, not all encountered arbitrage opportunities are eliminated. When the
sample is broken down according to “moneyness”, Figlewski finds that out of the money
options were relatively more overpriced than those at or in the money options. There is a
better fit to the model for options with longer time to expiration, and for sub-samples in
the later period than in the first period. Along the lines of Brenner, Courtadon, and
Subrahmanyam (1987), Figlewski proposes the possibility that stock index options may
not be priced off the spot index value, but rather off the futures price. Thus, he
investigates the alternative of taking an offsetting position not in the cash index but in the
index futures. Option prices are found to be closer, on average, to model! values based on
the actual cash index than to model values based on “implied cash index” derived from the
futures price. However, regressions including both model values as explanatory variables
showed that the futures market had a markedly greater influence on the price behaviour of
the NYSE call options. It is also noted that the closer the match expirations of the option
and the futures contract, the larger was the relative influence of the futures based model

value on the market place.

Cotner and Horrell (1989) evaluate the Black-Scholes option-pricing model with
respect to the pricing of call options on the S&P 100 index for the period March 1983
through December 1985. The mean pricing errors from the tested model are relatively
small and decline greatiy as the options approach maturity. The average size of the errors
using the implied variance (instead of historical variance) is much smaller at all days to
maturity. The results are also remarkably similar to those of Evnine and Rudd (1985) who

used closing prices for their study. The analysis reveals that the level of the risk free rate
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of interest, the time to maturity, the level of the index return estimate, the type of variance
estimate, and the degree to which the option is out or in the money, all have statistically

significant effects on the level of the mean pricing errors.

Most valuation models predict that option prices should increase monotonically
with the variability of the underlying asset. It is therefore not surprising that much
empirical work has been aimed at testing the efficiency of the option market and models of
option pricing by comparing the historical variability of the underlying asset with the
variability implicit in option prices. Barone-Adesi and Morck (1991) test whether option
prices predict ex-post variability efficiently and the rational expectation of investors using
S&P 100 options for the sample period of December 1983 to December 1988. Their
results suggest good predictions of index variability over the remaining life of the option
before the 1987 stock market crash. No reliable conclusions could be made for after the
crash; option prices have not yet recovered their power of predicting future index

volatility.

In general equilibrium, the volatility of the index is expected to be negatively
related to the rate of interest. Consequently, it is not possible to consider the effect of
stochastic volatility on index option prices without at the same time allowing the interest
rate to vary stochastically. Bailey and Stulz (1989) investigate the pricing of stock index
options in a general equilibrium model by allowing the interest rate and the volatility of the
index to change randomly over time and to be related to each other. They show that in

some cases, ihie sign of the Black-Scholes bias depends on whether the link between index

70



volatility and interest rates is taken into account. They also find that, for one model of
interest rate dynamics, the index option prices in their model are higher than Black-
Scholes prices for deep in the money options when the interest rates are negatively related

to the level of the index and lower otherwise.

Rindell (1995) test the Amin and Jarrow (1992) version of Merton’s (1973)
stochastic interest rate option pricing formula for stock options. In their model, the
interest rate dynamics are given by the Heath et al. (1992) term structure model. The
empirical results, using data on European stock index options from the Swedish option
market covering a time period from January 2" to December 30" 1992, show that the
Amin and Jarrow model clearly outperforms the Black-Scholes model. Furthermore, the
time to maturity bias, found in tests of the Black-Scholes model, disappears when the

options are priced with the Amin and Jarrow model.

Using transaction data on the S&P 100 index options, Harvey and Whaley (1991)
study the effect of valuation simplifications that are commonplace in previous research on
the time series properties of implied market volatility. More particularly, previous
research generally assumes that the S&P 100 index option is European-style. This option
is actually American-style. It is also commonly to assume that the dividend yield is
constant. In his study, the dividends are not constant and exhibit distinct seasonal
patterns. Their results show that large pricing errors can be induced in the option prices if
the American feature and the discrete dividends are ignored. Moreover, these option

pricing errors also translate into errors in the implied volatility estimates. Harvey and
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Whaley (1991) find that spurious negative serial correlation in implied volatility changes is
induced by non-simultaneously observing the option price and the index level and by a

bid/ask price effect if a single option is used to estimate implied volatility.

Manaster and Rendleman (1982), Bhattacharya (1987), and Stephan and Whaley
(1990) provide empirical evidence relating asset prices inferred from risk-neutral option
valuation models to future asset prices. The first two studies find that option prices lead
stock prices. Stephan and Whaley (1990), on the other hand, conclude the opposite. One
possible explanation for the conflicting results obtained in these studies is the problem of
volatility estimation. Finuance (1991) uses a different approach that does not require the
specification of an option pricing model or the estimation of the volatility of the underlying
asset. He derives a measure of relative prices from the put-call parity for index options
and applies it to a three-year sample of OEX option transactions. His study examines the
hypothesis that in the presence of market friction, relative put and call prices contain
information concerning future returns of the underlying asset. The results provide support
for the notion that option prices can contain information concerning expected returns.
The tests indicate that the measure of deviation from put-call parity leads returns on the
S&P 100 by at least 15 minutes. However, a trading strategy based upon the signal of the
deviation does not provide returns that are large enough to compensate for the transaction

costs that would be incurred in trading the S&P 100 basket.

In short, the conclusions of most of the empirical studied mentioned above, are

best summarised by noting that while most of the tested option pricing models hold, on

72



average, violations are frequent and substantial. One problem in interpreting these results
is that most previous studies that, for instance, test the Put-Call Parity using American
options. As Merton (1973) shows, PCP need not hold for American options because the
possibility of early exercise cannot be completely ruled out when the portfolio is
established. Thus, it is not possible to conclude whether those violations are a result of
market inefficiency or a failure to fully account for early exercise. Another possible
explanation for those reported violations, is that the existing market imperfections such as
the transaction costs and the bid/ask spread may wipe out any possible arbitrage profits

when included in the analysis.

VALUATION OF INDEX OPTIONS:

Using simple dominance arguments™, Merton (1973), Smith (1976), and Galai
(1978) demonstrate that under very general conditions, the price of a call option must lie
within certain upper and lower bounds. Observations, whereby the market price of an
option did not conform to these bounds, would indicate the possible existence of arbitrage
opportunities. The appeal of this principle is that it only requires a few rational agents
who stand ready to eliminate any arbitrage opportunity. The Put-Call Parity condition
(PCP) formalised by Stoll (1969) uses the no-arbitrage principle to price put (call) options
relative to call (put) options. Many empirical studies that test the PCP ignore the

possibility of early exercise when the portfolio is established. While some of these studies
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attempt to reduce the effects of possible early exercise on their tests, they have not been
able to fully account for the effect of early exercise. This problem is avoided in this study
by simply testing European options on the S&P 500 stock index traded on the Chicago

Board Options Exchange.

The value of a call option at any time, as explained by Merton (1973), is a function
of the price of the underlying asset (S), the exercise price of the option (X), the time to
maturity (T), the risk free rate of interest (r), and the variance of the return on the
underlying asset (G°). Based on these factors, a continuous time option pricing formula
has been derived by Black and Scholes (1973). Using the same factors, a binomial model
was later derived independently by Cox, Ross and Rubinstein (1979) and Rendleman and
Barter (1979). For the purpose of this study, we will just focus on the Put-Call Parity

relationship.

The theoretical framework for the arbitrage strategies is first developed.
Specifically, SPX call and put options with the same exercise price and S&P 500 index are
employed to establish an arbitrage position that yields a zero net cash flow position at
expiration. Since SPX options are European options, early exercise is not of any concern
in this study’s framework. To prevent arbitrage profits, the arbitrage position should
produce a non-positive initial net cash flow. The strategies employed in this study initially
assume two conditions: (1) there are no transaction costs and (2) the borrowing and the

lending rates are equal.

M Existence of a dominant asset means that with a zero investment position, one can derive non-negative
(not necessarily constant) retums under all states of the world.
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The relationship between puts, calls, and the underlying asset is described by the

well-known Put-Call Parity model,

C=P+S-Xe" (1)
Where C is the call price, P is the put price, S is the stock price, X is the exercise price, r
is the risk-free rate, and T is the time to expiration. Equation (1) holds for European
options but not for American options due to the possibility of their early exercise,
especially for dividend paying stocks™. If the stock pays dividends, for instance at time t,,
then equation (1) becomes

C=P+S-Xe"-de™ (1a)
If dividends are paid continuously but at a constant yield D, then equation (1) becomes

C=P+Se”"-Xe™ (1b)
In dealing with index options the dividend structure of the underlying asset would seem
more appropriately specified as being a continuous yield. Letting I be the current level of

the index and D its dividend yield, the capital value of the index is I e,

As Phillips and Smith (1980) and Baesel, Shows, and Thorp (1983) note, a
significant transaction cost of option trading is the bid-ask spread. Since the database in
this study contains bid and ask prices, it is appropriate to derive the put-call parity formula
under the assumption that trades must be conducted with market makers.

Put-Call Parity requires that the underlying instrument, in this case the index, is a
marketable asset. In order to empirically test the Put-Call Parity, it is assumed that the

index can be freely purchased and sold short at the current index level. This assumption

35 See Merton (1973), “The Relationship Between Put and Call Option Prices: Comment™
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denies the fact that constructing the index would be costly and that bid and ask prices on
the individual component stocks would have to be considered.

Two types of portfolios will be constructed. The first is referred to as portfolio A
and consists of a long position in e®" calls, a short position in ™" puts, a short position in
the index, and a long position in risk-free bonds having a face value of X e’ Let C, and
Cs be the ask and bid prices of the call and P, and P, the ask and bid prices of the put. The
upper half of Table A illustrates the payoffs from this portfolio.

It is assumed that as dividends are paid on the short index, the investor sells short
additional shares and uses the proceeds to pay the dividends. At expiration, the investor
will have accumulated short positions in the index at a rate D. The portfolio has a zero net
cash flow at expiration; thus, its current cash flow must be non-positive. Otherwise, the
portfolio would have a positive cash inflow up front with no outflow at expiration. That is

I-XePe™-eP(C,-Py)<0o0r

C,-P,+XeT-1ePT 20 ()

Portfolio B consists of long position in the index and e®" puts, and short positions
in €7 calls and risk free bonds having a face value of Xe”'. As dividends are received
from the stocks in the index, they are used to purchase additional shares of the index. The
number of shares will accumulate at a rate D. This portfolio has a zero cash flow at
expiration; therefore, its current value must be negative. Otherwise, a positive cash flow
will occur up front with no obligation at expiration. That is, I - Xe”'e*™ + €”'(P.-Cy) < 0,
therefore

L .Cp-XeT+1ePT 20 (3)
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The lower part of Table A illustrates the payoffs from portfolio B.

Table A. Put-Call Parity for Index Options

Cash Flow at Expiration

Portfolio A Current Cash Flow IrsX Ir>X
Short index + 1 - Ie™ -Ie”
Buy bonds - Xe"Te"" Xe™" Xe""
Buy call - &'C, 0 e"(lr- X)
Sell put +¢"'P, -7 (X-Iy) 0
Total <0 0 0

Cash Flow at Expiration

Portfolio B Current Cash Flow Ir<X LI>X
Buy index -1 e e’
Sell bonds + XePTe*T - XeP' - Xe"
Sell call +¢”'C, 0 -e"T(Ir - X)
Buy put - é°'p, "1 (X-1y) 0
Total <0 0 0

The basic lower pricing condition for call options is that the call ask price should
be nonnegative and no less than the underlying index price; i.e., C, 2 I - X, where C, is the
call ask price at time t. In theory, if this boundary condition is violated, purchasing the call
and selling the index could result in arbitrage profits. However, the act of selling the index
requires the simultaneous short selling of several stocks, which is difficult to accomplish.
Also, purchasing the call and then immediately exercising it is not riskless since the

relevant index value is also its value at the close.

Empirical tests of put-call parity can then be performed by computing the

following values;



€,=C.-Pp+XeT-1e™" @)
€2=P,-Cpo-XeT+1e" 5)

83=C.'I+x (6)

If the options are priced correctly, then €1, €2, and €3 should be nonnegative. If any of

the €; are negative, then there is a type i violation.

DATA

To eliminate problems of non-synchronous prices, intradaily data on index options
is used. Employing intradaily observations on the derivative securities lends greater

credibility to the empirical tests than the use of end-of-day observations.

The intradaily S&P 500 index option data used in this study are taken from the
Chicago Mercantile Exchange (CME) tapes which consist of time-stamped SPX put and
call trade prices and bid and ask quotes for each trading day from January 2, 1990 to June
3, 1996. Bid-ask quotes of put and call options are assumed to be valid until a trade
occurs. For each SPX put and call option transaction, the bid/ask transaction price, the
time at which the transaction took place, the exercise price, and the expiration date, are

recorded. To construct the right portfolios that will be used to test for Type 1 and Type 2
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violations, the bid (ask) call option transactions are matched with the nearest ask (bid) put
option transactions that have the same maturity date and exercise price. Intraday S&P
500 cash index levels, updated every 15 seconds, are provided by the New York Stock
Exchange (NYSE). The combined put-call transactions are then merged with index
quotes that have the nearest time-stamp to the index call options and are within 10
seconds of the SPX call time-stamp. The requirement that transaction prices of the three
instruments match up in time constrains the sample to a total of 18,864 portfolios to test
for Type 1 violations, and 18,936 portfolios to test for Type 2 violations. Portfolios used
to test for Type 3 violations, were constructed differently since they consisted only of
index call options and their underlying security. 81, 670 portfolios were used to test for

Type 3 violations. Overall, there were a total of 119,470 different portfolios used to

conduct the study.

Dividend data for the S&P 500 index were collected from the Standard and Poor’s
500 Information Bulletin. In dealing with index options the dividend structure of the
underlying asset would seem more appropriately specified as being a continuous yield.
Therefore, letting I be the current level of the index and D its dividend yield, the capital

value of the index is I e®T.

Interest rate data are gathered from Bloomberg and assumed to be constant
intraday. The borrowing and lending rates are also assumed to be equal. For 1-to 120-
day maturities, the three-month treasury bill interest rate was used. For maturities that are

greater than three months, the six-month treasury bill rate was applied.
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The frequency distribution of the sample by year, contract maturity category, and

out-, at, and in-the money category is provided in Table 1.

Table 1: Distribution by Year, Maturity Category, and Moneyness Category of Intraday
Observations for S&P 500 Index Put and Call Option and Index Prices Matched in Time

Distribution rvati Year
1990 1991 1992 1993 1994 1998 1996
Sample 1 4631 2521 3446 2655 2675 2138 800
Sample 2 4705 2537 3304 2635 2496 2412 848
Sample 3 15714 14332 12709 10487 11661 11068 5699
Distribution of Observations Bv Maturit te.
Day 0 1-7 8-15 16 - 45 > 45
Sample 1 362 2590 3856 8630 3428
Sample 2 368 2804 4044 8585 3136
Sample 3 1013 8618 11950 32613 27476
Distribution of Qbservations By In At the Mon t
At In Out
Sample 1 12 7762 11092
Sample 2 4 8375 10558
Sample 3 26 21142 60502

There are two potential problems in using intraday data over an entire trading day.
First, the trading mechanism at the opening of the day at the CBOE differs from the
trading mechanism during the rest of the day. The opening mechanism is a clearing
transaction in which all market orders and relevant limit orders are executed at a single
opening price, whereas the trading mechanism over the rest of the day is a continuous
trading mechanism with orders executed in the sequence of arrival. Thus, intraday PCP
quotes at the CBOE opening are generated by two different trading mechanisms. Amihud
and Mendelson (1987) and Stoll and Whaley (1990) document that differences in trading
mechanisms affect equilibrium prices on the NYSE, as well as traders’ ability to execute
orders at desired prices. Also , Stoll and Whaley (1990) document that trading in some

S&P stocks stops about 15 minutes before the NYSE closes.



EMPIRICAL RESULTS

A given put-call combination can be classified as a violation where €, is negative, a
violation where €; is negative, a violation where €; is negative, or a non-violation in which
€1 , €, and €; are nonnegative. Of the 37,800 put and call portfolios considered, 6,135
portfolios had violations where €, is negative, 14,322 portfolios had violations where €; is

negative. Only 131 of the 81,670 portfolios examined had violations where €; is negative.

Transaction costs, other than the bid-ask spread, were not included in the computations

but will be discussed later.

Since the portfolios are guaranteed to produce nonnegative cash flows at
expiration, the presence of a negative €, or a negative €; or a negative €; represents a
positive cash inflow today of the amount of -€; or €; or -€;. To determine whether these

values are significantly different from zero, the t-statistics for the distribution of the mean

values of €,, £, and €; were computed. The results are presented in Table 2.

Table 2: Put-Call Parity Violations
Numberof  Frequency Mean®  Std. Dev.  t-statistic  p-value
observations _of violation

Type 1 18,866 6135 42.365 45.673 72.652 0.0001
Type 2 18,937 14322 102.47 96.857 126.605 0.0001
Type 3 81,670 131 56.007 138.345 4.633 0.0001

a A violation should occur when €,0r :0¢ 53 are negative. The data and discussion in the text are presented with the sign
reversed in order to facilitate the i




Table 2 shows that Type 2 violations are more frequent and higher in magnitude

than Type 1 violations. The average violation per contract for €, was $42.36 while the

average violation for €, was $102.47. Both figures are significantly different from zero at
the 1% level. Using almost the same number of pairs of puts and calls, it is found that
Type 2 violations take place 75.63% of times and Type 1 violations occur in only 32.52%

of the cases. A violation on €, would be exploited by assuming short positions in the

index and the put and long positions in risk free bonds and the call. A violation on €;
would be exploited by taking long positions in the index and a put and short positions in
the call and risk free bonds. Therefore, since a Type 2 violation would be easier to
exploit, it would be most likely to occur less often than a Type 1 violation. Similar to
Klemkosky and Resnick (1980), the results show that Type 2 violations are more frequent

than Type | violations.

Type 3 violations are less frequent than the other violations. Only 131 violations
were detected. The average dollar size for €3 was $56.00. This value is also significant at
the 1% level. These violations measure the infraction of the lower boundary condition for
a call option. They are much easier to exploit than Type 1 and Type 2 violations. If a
Type 3 violation occur, arbitrage profits could be made by purchasing the call and selling
the index. If markets were functioning properly, one would expect to find few, if any,

Type 3 violations and more Type | and Type 2 violations.
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1. The effect of Option Maturity:

In Table 3, the total number of violations by type and days to maturity are

presented, along with the average dollar violation per contract.

Table 3: The Effects of Option Maturity
Violation
Type 1 Type 2 Type 3
Maturity Avg. S of Avg. Sof Avg. S of
(days) No. o, Violation No. o, Violation No. o, Violation
0 84 23.20 43.464 315 8560 143.038 37 365 35.973
1-7 644 2486 32308 2390 8524 118.044 75 087 39.440

8-15 1157 3001 37.790 3370 83.33 107.928 4 003 14.000
16 -45 2851 33.04 41974 6499 75.70 101.159 12 0.04 170.667
>45 1399 4081 51.392 1748 55.74 68.218 3 0.01 314.667
Total 6135 14322 131
Maturity Category
0 1-7 8-15 16 - 45 > 45

Dollar Amount

Of Violation * NO. % No. % No. % No. % No. %

$0-$30 102 2339 899 2859 1305 28.80 2969 31.71 1206 38.29
$30 - $70 92 21.10 761 2448 1277 28.18 2847 3041 1055 33.49
>$70 242 5551 1459 4693 1949 4302 3546 37.88 889 2822

Total 436 3109 4531 9362 3150

% of Violations ® 66.48% 66.71% 66.91% 62.51% 50.94%

A Violations are expressed in dollar units where one transaction represents 100 calls, 100 puts. and 100 “units” of the index.
B % of violations is the weighted average of the frequency of a type “i” violation per cach class of maturity. The weights are
calculated as the number of violations per type of violation divided by the total number of violations.

The results in the top portion of Table 3 reveal that for Type 1 violations, the
relationship between the number of days to maturity and the frequency of violations is
positive. In this table, the frequency of a violation (%) is calculated as the frequency of a
Type “i” violation for a given option maturity category. For instance, to test for a Type 1
violation occurring on “Day 0”, 362 portfolios were used. Of these 362 portfolios, 84

Type 1 violations were detected. Thus the frequency of a Type 1 violation occurring on
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“day 0" is 23.20% (or 84/362). It is observed that the frequency of a Type 1 violation
increases monotonically with the number of days left to the option maturity. In contrast,
this relétionship is negative for both Type 2 and Type 3 violations. Most of these
violations take place on the expiration day. For instance, 85.60% of the portfolios used to
test for the occurrence of a Type 2 violation on the expiration day, compared to 55.74%
of the portfolios that fall in the maturity category of 45 days or more, violated the second
Put-Call Parity condition that was developed in this study. Similar results are observed for
Type 3 violations where the frequency of a violation decreases with the number of days
left to maturity with most of the violations occurring during the last week of the option’s
life.

As for the relationship between the number of days left to maturity and the average
dollar size of a violation, it is observed that this relation is negative for Type 2 violations
and positive for Type 3 violations for all maturity categories. Most arbitrage profits from
a Type 2 violation are made on expiration day whereas the highest arbitrage profits from a
Type 3 violation are realised when the option is more than 45 days to maturity. For Type
1 violations and for option maturities that are one day or more, the average dollar size of
the violation increases with the number of days left to maturity with arbitrage profits being
highest in the last maturity category. However, and similar to Type 2 violations, arbitrage

profits are also high on the expiration day.

In the bottom portion of Table 3, the relation between option maturity and dollar
size of violation is investigated. For the first two classes of Dollar Amount of Violation, it

is seen that as the maturity of the option increases, the frequency of the violations also



increases. If we look at the (0 - $30) class, we can see that for the 0-days to maturity, the
frequency of a less than $30 violation is 23%, whereas for options with maturities greater
than 45 days, the frequency of a less than $30 violation is 38%. The opposite relation is
observed when the dollar amount of violation exceeds $70; the frequency of the dollar size
of violation decreases as the option maturity increases. Almost 56% of the violations that
occur on the expiration day compared to 28% of the violations with more than 45 days to
maturity, exceed $70 in magnitude. It is also observed that for option maturities that are
less than 45 days, most violations have a dollar amount that is greater than $70 per
contract. This implies that as the life of the option gets shorter, the average size of a

violation is higher in magnitude.

Overall, the frequency of a violation is almost the same for the first three maturity
categories (66.48% for “day 0”, 66.71% for “1 to 7" days-, and 66.91% for “8 to 15”
days-to maturity). However, the frequency of observing a violation decreases to 62.51%
for options that have 16 to 45 days to maturity and goes down to 50.94% for options that
have 45 days or more to maturity. Thus, the frequency of violations decreases with option
maturity with the majority of the violations occurring when the option’s life is two weeks

or less.

85



2. In-, At-, and Out-of-the-Money Options:

The propensity for violations to occur when the option is in-, at- or out-of-the
money was examined. Out of the total sample of option transactions, there are 30 at-the-
money options, 29,512 in-the-money options, and 71,054 out-of-the-money options.

Table 4 divides the sample by type of violation and out-, at-, and in-the-money category.

Table 4: The Effect Of The Option’s Category

Violation
Out-of-the Money At-the Money In-the Money
Type of Avg. $ of Avg. $ of Avg. S of
Violation No. o, Violation No. o, Violation No. o, Violation
1 3463 31.22 44.64 4 3333 7446 2668 3437 39.36
2 8211 77.77 114.68 3 7500 3039 6108 7293 86.09
3 0 0.00 0 0 000 0 131 0.22 56.01
Total 11674 7 8907
%"® 63.40 % 62.11 % 60.98 %

b %o of violations is a weighted average of the number of violations per category. The weights are calculated as the number of
violations per type of violation divided by the total number of violations.

In Table 4, the frequency of a violation is calculated as the frequency of a type “i”
violation per a given “moneyness” category. For instance, 11092 portfolios that fall in the
“out-of-the money” category were used to test for a Type 1 violation. Of these portfolios,
a Type 1 violation was observed 31.22% of the time. The results in Table 4 reveal that
Type 1 violations are more frequent for in-the money options. In contrast, most of Type 2
violations are observed for out-of-the money options. Similar to Puttenon (1993), all
Type 3 violations occurred for in-the-money options. However, the frequency of these
violations is very small. For all types of violations, the average dollar size is higher for
out-of-the money options than for in-the money options. Also, the highest magnitude or

possible arbitrage profit is detected for out-of-the money options and Type 2 violations.



Overall, it is observed that the frequency of violation per “moneyness” category is almost
the same with out-of-the money options having the highest frequency of violation

(63.40%) and in-the money options having the lowest frequency of violation (60.98%).

Table 5 divides the sample by type of violation, number of days to maturity, and
out- and in-the money options. Given the low frequency of at-the-money options, they are

not reported as a separate group™®.

The top portion of Table 5 show that the frequency of Type 1 violations increases
with the number of days to maturity. Only 24.31% of portfolios with zero days to
maturity violate the first Put-Call Parity condition, whereas 40.81% of portfolios with
maturity of 45 days or more, have Type 1 violations. This frequency is higher for in-the
money options than for out-of-the money options for all maturity categories. For instance,
on the expiration day, 36.17% of in-the money options versus 16.82% of out-of-the
money options violate the first parity condition. As for the average dollar size of a Type 1
violation, it is observed that most of these violations are $30 or less. It is also observed
that the higher the average dollar size, the lower the frequency of a Type 1 violation.

Again the relationship between the number of days to maturity and the frequency
of Type 2 violations is negative. In other words, as the life of the option increases the
frequency of detecting a Type 2 violation goes down. However, this time, the frequency
of observing a Type 2 violation per a given maturity category is higher for out-of the

money options than in-the money options for all maturity categories except for options

* At-the-money options are included with in-the-money options.
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that have 45 days or more to maturity. It is also observed that most of Type 2 violations

have an average dollar size of $70 or more.

As noted before, all Type 3 violations are observed for in-the money options. Most
of these violations occur when the life of the option is less than one week. However, out
of the 131 detected Type 3 violations, 63.36% are less than $30 in dollar size and only

15.27% are more than $70 on average.

Table 5: Number of Violations By type of Violation, Dollar Amount of
Violation, Number of Days to Maturity, and The Out, At, and In-the-

Money Category
0 1-7 8-15§ 16 - 4§ > 45
Dollar Amount
Of Violation In Out In Out In Out In Out In Out
No. % Violation Category: Type 1

0-30 3021 49.24 27 14 227 169 294 318 640 764 205 363
30-70 2098 34.20 18 13 8 95 180 215 422 568 187 314

>70 1016 16.56 6 10 30 37 60 90 186 267 101 229
%A 32.52% 36.17 16.82 29.42 21.14 31.69 28.71 35.23 31.47 40.15 41.24
Grand % * 24.31% 24.86% 30.01% 32.99% 40.81%
No. % Violation Category: Type 2

0-30 3367 23.51 25 18 260 179 362 326 725 833 303 334
30-70 3906 27.28 19 30 270 297 452 430 824 1029 246 308
>70 7049 49.21 45 178 526 857 713 1086 1096 1991 242 315

% 75.63% 68.46 94.96 80.43 89.46 81.53 84.88 71.88 78.58 57.36 54.47
Grand % 85.60% 85.20% 83.31% 75.69% 55.74%
No % Violation Category: Type3

0-3 83 63.36 19 0 53 0 4 0 6 0 1 0
30-70 28 2137 14 0o 13 0 0 0 1 0 0 0

>70 20 15.27 4 0 9 0 0 0 5 0 2 0
% 0.16% 777 000 195 000 0.10 000 0.15 0.00 007 000
Grand % 3.65% 0.87% 0.03% 0.04% 0.01%

__Gram¢ ~» IO O
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divided by the number of violations per maturity category.
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3. The effects of The Introduction of SPDRs:

Table 6 divides the sample into two sub-samples: the first (Panel A) investigates
the violations by type, dollar amount, number of days to maturity, and out- and in-the-
money categories before the introduction of SPDRs. Panel B looks at the relationship
between the frequency and magnitude of violations and these option characteristics.

To assure that the two panels are comparable, we looked at the different relationships that
were discussed in the previous sections and we found that the same relations exist for

before and after the introduction of SPDRs for all types of violations.

After the introduction of SPDRs, the frequency of Type 1 violations is lower for
options’ maturities that are less than one week and higher for those that are more than one
week. Overall, it seems that the frequency of a Type 1 violation has increased from
31.90% in the first period to 33.40% in the second period. Again, the frequency of Type
1 violations is higher for in-the money options. When looking at the dollar amount of the
violations, it is observed that most violations are less than $30 in dollar size for before and
after the introduction of SPDRs (52.99% and 44.39% respectively). The frequency of
violations that are less than $70 in magnitude is reduced (from 86.82% to 79.06%), but

violations more than $70 in value have increased from 13.18% to 20.94%.
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Table 6: Violations Before and After the Introduction of SPDRs
n PDRs:
Panel A: Number of Violations By type of Violation, Dollar Amount of Violation, Number of
Days to Maturity, and The Out, At, and In-the-Money Category

0 1-7 8-15 16 - 45 > 45
Dollar Amount
Of Violation In Out In Out In Out In Out In Out
No % Violation Category: Type 1
0-30 1834 5299 13 8 127 111 183 166 356 446 158 266
30-7 1171 33.83 9 9 4 46 91 112 225 291 130 214
>70 456 13.18 4 9 15 18 17 32 60 106 59 136
% 31.90% 34.21 20.00 29.90 21.50 31.49 25.85 34.35 29.79 40.63 40.18
Grand % 25.24% 25.14% 28.31% 31.60% 40.34%
No % Violation Category: Type 2
0-30 2048 2485 12 11 143 89 211 170 449 493 219 251
30-70 2262 2744 9 10 139 139 239 245 486 605 168 222
>70 3932 4771 26 8 318 468 391 616 597 1097 144 189
% 76.34% 61.04 90.68 82.19 89.23 84.02 8563 74.37 79.99 60.00 55.26
Grand % 78.97% 85.83% 84.90% 77.58% 57.27%
No. % Violation Category: Type 3
0-30 43  65.15 9 0 28 0 2 0 3 0 1 0
30-70 13 19.70 6 0 6 0 0 0 1 0 0 0
>70 10 1515 3 0 2 0 0 0 4 0 1 0
% 0.15% 7.50 000 167 000 009 000 0.18 000 007 0.00
Grand % 3.28% 0.75% 0.03% 0.05% 0.01%

After The Introduction of SPDRs:
Panel B: Number of Violations By type of Violation, Dollar Amount of Violation, Number of
Days to Maturity, and The Out, At, and In-the-Money Category

0 1-7 8-15 16 - 45 > 45
Dollar Amount
Of Violation In OQut In Out In Out Im Out In Out
No. % Violation Category: Type 1
0-30 1187 44.39 13 7 100 S8 111 152 284 318 47 97
30-70 927 3467 9 4 42 49 8 103 197 277 57 100
>70 560 20.94 2 1 15 19 43 58 126 16l 42 93
% 33.40% 36.92 13.33 28.86 20.66 31.93 32.23 36.22 33.59 39.04 43.67
Grand % 23.23% 24.52% 32.10% 34.71% 42.00%
No. % Violation Category: Type 2

0-30 1319 21.69 13 8 118 90 151 15 276 340 84 83
30-170 1644 27.04 10 20 131 159 213 185 338 424 78 86

>70 3117 51.27 19 92 208 389 322 470 499 8% 98 126
% 74.73% 79.25 100 78.39 89.86 78.67 83.95 68.70 76.79 52.63 52.77

Grand % 93.64% 84.69% 81.45% 73.33% 52.71%

No. % Violation Category: Type 3

0-30 40 61.15 10 0 25 0 2 0 3 0 0 0
30-70 15 23.07 8 0 7 0 0 0 0 0 0 0
>70 10 1538 1 0 7 0 0 0 1 0 1 0
% 0.17% 805 000 229 000 0.11 000 011 000 006 0.00

Grand % 4.09% 1.02% 0.04% 0.03% 0.01%




After the introduction of SPDRs, the overall frequency of Type 2 violations
slightly went down from 76.34% to 74.73%. The frequency is also lower for all maturity
categories. Again, the frequency of violations decreases with the number of days to
maturity. Also, the frequency of violations is higher for out-of-the money options than for
in-the money options for all maturity categories. Violations that are more than $70 in
value are more frequent after the introduction of SPDRs. In Panel A, most violations have
dollar amount that is more than $70 (47.71%), whereas in Panel B, 51.27% of the
violations have a dollar value that is more than 70 dollars. This suggests that after the

introduction of SPDRs, the magnitude of the violations has increased.

The frequency of Type 3 violations is almost the same in Panel A and Panel B.
Violations were detected only for in-the-money options and most of these violations are
less than 30 in dollar size. Even though the change in frequency is not significant, one can
notice that, after the introduction of SPDRs, the frequency of Type 3 violations increased
for less than two weeks option maturities and increased for more than two weeks option

maturities.

To summarize, the results in Panel A and Panel B show that before and after the
introduction of SPDRs, the relationships between the frequency of a Type “i” violation
and its average dollar size and the different examined option’s characteristics, are the
same. However, the magnitude of all types of violations has increased in the second

period. The frequencies of both Type 1 and Type 3 violations have increased and the
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frequency of Type 2 violations has decreased. The effect of the introduction of SPDRs

will be further discussed in the following section.

THE NATURE OF THE MARKET OVER TIME:

Figure 1 shows the annual trading volumes of SPX options. As one can see, the observed
trading volumes exhibit an increasing pattern. In 1983, the volume of trading in S&P 500
index options totalled over 14,093 contracts. Volume grew to over 12 million, 16 million,

and 24 million in 1990, 1993, and 1996 respectively.
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Given the rapid growth in volume of S&P 500 index options trading over the
sample period, it might be expected that the nature of the market has changed as investors

and traders became more familiar with the pricing of options and the market gained more
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liquidity. In addition to that, with the existence of the S&P Depository Receipts, index

arbitrage is easier to accomplish than before. Instead of trying to replicate the index by

simultaneously purchasing or selling the component stocks with the proper weights

through numerous transactions, investors and arbitrageurs can “trade” the index by

conducting only one transaction through SPDRs. As a result, one might expect to detect a

decline in the frequency and magnitude of the violations.

Table 7: Frequency of Violations

Violation No. Of

Year Type 1 Type 2 Type 3 Transactions

44.948 126.035 125.083 20419
1990 (53.965) (105.267) (343.989)

(1223) (3672) 12)
Frequency 4631 4705 15714

42.394 99.298 70.733 16869
1991 (57.005) (74.527) (74.618)

(514) (2178) (15)
Frequency 2521 2537 14332

35.247 50.030 23.421 16013
1992 (38.658) (43.764) (25.903)

(1623) (2198) (38)
Frequency 3446 3304 12709

33.731 53.352 36.250 13122
1993 (34.690) (43.251) (49.287)

(806) (2094) (20)
Frequency 2655 2635 10487

53.664 71.022 36.892 14157
1994 (45.755) (60.486) (37.850)

(1329) (1472) 37)
Frequency 2675 2496 11661

37.355 165317 337.400 13480
1995 (34.915) (123.486) (340.705)

454) (2020) (5)
Frequency 2138 2412 11068

56.242 186.527 27.000 6547
1996* (50.664) (119.622) (8.524)

(191) (688) @)
Frequency 800 848 5699

Note: The numbers in parentheses are the estimated standard deviation and the number of Type i violations per year,

respectively.

* The sub-sample for 1996 is from Jan. 2to Jun 3, 1996
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However, looking at the evolution of the market during the period covered in this
study (Table 7), it is observed that the number of matched index option transactions has
decreased over time. This suggests that trading in the index option market is more

frequent in the earlier years.

The first hypothesis to be tested examines whether the probability of observing a
violation changed over time. If investors have become more knowledgeable about the
pricing of index options, then, ceteris paribus, it might be expected that the probability of a
violation occurring would have decreased over time. However, other things did not remain
constant since there was a rapid growth not only in index option trading but also in a
variety of optionable securities. Thus both liquidity and the ability to analyse and price
index options may actually have decreased with the growth in options markets. The null
hypothesis is that there is no change, and the alternative hypothesis is that the probability
of observing a violation has changed.

The sample was split into two three-year intervals for before and after the
introduction of SPDRs. The probability of a violation occurring is estimated by the
frequency of a given type of violation to the total number of transactions used to calculate
that violation during the interval. Assuming that violations of a given type are independent
events, a Z-statistic for testing the equality of the probabilities for two Bernoulli random
variables is constructed; the statistic is asymptotically normally distributed. The results are
shown in Table 8 where it is seen that the null hypothesis, that the probability of a
violation has not changed over the six-year period, can be rejected. The results indicate

that while the probability of a Type 1 violation has significantly increased over time, the
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probability of a Type 2 violation has decreased. However, Type 2 violations are still more
frequent than Type 1 violations. The frequency of occurrence of a Type 3 violation has

also increased but not significantly.

Table 8: Frequency of Violations Test

Violation
Year Type 1 Type 2 Type 3
Before 3461 8242 66
Jan 90 - Jan 93 31.89% 76.31% 0.15%
(10856) (10800) (43641)
After 2674 6080 65
Feb 93- Jun 96 33.38% 74.72% 0.17%
(8010) (8137 (38029)
Z statistic 2.177* 2.529* -0.701

The numbers in parentheses are the total number of transactions used to calculate Type i violation.
* Suatistically significant at the 5% level.

Those results should be interpreted with caution. One cannot conclude that the
introduction of SPDRs had no effect on the options market. In fact, the increase in the
frequency of violations might be due to other market factors. In order to lessen the effect
of other factors that might spur violations of arbitrage boundary or Put-Call Parity
conditions, we focused on just one year before and one year after the introduction of
SPDRs. The sample was divided into two one-year periods and the probability of a Type
“” violation happening was recalculated again using the same procedure as before. Table
9 summarises the findings of the frequency of violations test. It can be observed from this
table that, opposite to the above results, the probability of a Type 1 and the probability of
a Type 3 violation have decreased whereas the probability of a Type 2 violation had

increased.
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Table 9: Frequency of Violations Test

Violation

Year Type 1 Type2 Type 3

Before 1621 2197 38
Jan 92 - Dec 92 47.09% 66.55% 0.30%
(3442) (3301 (12679)

After 1143 2333 28
Feb 93 - May 94 35.15% 73.53% 021%
(3252) 3173) (13342)

Z statistic 9.922* 6.117* 1.440
The numbers in parentheses are the total number of transactions used to caiculate Type i violation.

¢ Statistically significant at the 5% level.

The second hypothesis concerns the magnitude of the violations. Irrespective of
whether the probability of a violation occurring has changed or not, the mean magnitude
of the violations of a given type might have changed over the six-year period. The null
hypothesis is that the mean value has not changed, and this is tested against the alternative
hypothesis that the mean has changed. The test statistic is described by a t-distribution
which, given the large number of observations, is asymptotically normally distributed. The

results are shown in Table 10.

Table 10: Mean Magnitude of Violations Test

Violation No. of
Year Type 1 Type 2 Type 3 Transactions
Before 39.426 96.681 52.500 65282
Jan 90 - Jan 93 47.419) (89.293) (152.229)
(3461) (8242) (66)
After 46.168 110.319 59.569 54167
Feb 93 - Jun 96 (43.021) (105.749) (123.756)
(2674) (6080) (65)
t statistic -5.820%* -8.14]%¢ 0.292*

(0.0001) (0.0001) (0.771)

The numbers in parentheses are the standard devistion and the total sumber of Type i violations per interval of time.
* The variances are found to be equal at the 1% significance level
** The vasiances are found to be unequal at the 1% significance level.
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The null hypothesis can be rejected for Type 1 and Type 2 violations. The
difference in mean magnitude of violations between the two time intervals is different from
zero at the 1 percent level of significance. The violations occurring in the second interval,
that is after the introduction of SPDRs, have a higher dollar size, and also a higher
variability. This implies that both the magnitude and the variability of the violations have
increased over time. The null hypothesis is accepted for Type 3 violations implying that
the difference in mean magnitude between the two time intervals is not significantly
different from zero.

The same tests were performed on a two one-year sample. The results are shown

in Table 11.
Table 11: Mean Magnitude of Violations Test
Violation No. Of

Year Type 1 Type 2 Type 3 Transactions
Before 35.202 50.048 23.421 20337
Jan 92 - Dec 92 (38.661)" (43.765) (25.902)

(1621)° (2197) (38)
After 40.569 53.426 34.321 20119
Feb 93 -~ May 94 (38.111) (42.821) (42.594)

(1143) (2333) (28)
t statistic -3.615* -2.625* -1.200%*

(0.0003)° (0.0087) (0.2368)

The numbers in parentheses ase (a) the standard deviation, (b) the total number of Type i violations per interval of time, and
(c) the p-value.

¢ The variances are found to be equal at the 1% significance level

** The variances are found to be unequal st the 1% significance level.

Again, the null hypothesis that the mean value of violations has not changed over
time, is rejected. The difference in mean magnitude of violations between the first and

second period is statistically different from zero for Type 1 and Type 2 violations at the 1



percent level of significance. This implies that the average value has changed over time.
More precisely, since the difference is positive, one can conclude that the magnitude of a
Type 1 or a Type 2 violation has increased. The null hypothesis could not be rejected for
Type 3 violations. This implies that there was no significant difference between the two

periods.

The results suggest that over the six-year period, the frequencies of Type 1 and
Type 3 violations, have increased. Moreover, the magnitude of all types of violations has
increased implying that those detected arbitrage opportunities are more profitable in the
second period. The volume of index option trading underwent rapid growth during the six
—year-period. In 1990, SPX volume was around 12 million contracts. In 1996, trading
volume grew to almost 25 million contracts. The results might be due to the inability of
the market to adjust to such changes. When focusing on one year before and one year
after the introduction of SPDRs, evidence suggests that the frequencies of Type 1 and
Type 3 violations have decreased over time. However, the dollar size of all violations is

still higher in the second time interval.

The above results suggest that put-call parity violations are frequent and a
potential source of abnormal returns for index options traders. Again, these results must
be interpreted with caution. A number of points should be noted:

First, the dollar size of the violations discussed so far represents ex post figures. In
fact, the profitability of those arbitrage opportunities identified upon the presence of a

violation is somewhat questionable. Since there is no guarantee that the prices used in the



arbitrage strategy are equal to the prices at the time of the violations, there is no guarantee
that the arbitrage opportunities will still be profitable. Hence, the occurrence of a
violation should rather be considered as a signal. As a consequence, one should look at
the profitability of the trading strategy implemented upon the observation of the signal.
Second, although the transactions required to build the portfolio should be made
simultaneously, the way the data file was set in this study, forces a sequential strategy.
The call option trade was matched with the closest put option trade that occurred at or
after the call option trade. Then, the combined call-put trade was matched with the
closest cash index trade. Due to this sequential order and the resulting time delays in
achieving the required portfolio, the risk of the strategy is increased. This problem of non-
simultaneity of the data biases the results against finding that the market is inefficient.
Third, in addition to time delays that might be caused by the way the portfolios are
constructed in this study, Stephan and Whaley (1990) and Chan, Chung, and Johnson
(1993) find that stocks lead options by fifteen to twenty minutes”’. Chan, Chung, and
Johnson (1993) propose an explanation for the lead of stocks over options. Since option
prices do not move as much in absolute terms as the underlying stock, a stock price will
not cause any move in the option unless the stock price change is big enough to cause the
)3.

market price of the option to move a tick (the minimum price change)™. Thus, the option

will trade after the stock has made more than one move in the same direction. In other

¥ Manaster and Rendleman (1982), Bhattacharya (1987), Anthony (1988), and Finucane (1991) find
evidence that options lead stocks.

% The minimum move or tick for a stock is typically one-eight. The tick for options with prices greater
than three dollars is also an eight, but entails a much larger percentage move in the option price. Thus,
small moves in the stock will usually not be immediately reflected in the option because the change in
theoretical value of the option is less than the tick and so the option does not trade. For options with
prices below dollars, the tick is one-sixteenth, but the same effect should still occur.
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words, the tick size prevents options from trading immediately in response to small price
changes. This infrequent trading of options might cause put-call parity violations to arise.
Finally, to determine the actual extent of the financing required to build the
appropriate arbitrage portfolios, transactions costs should be included in the analysis.
Even though, bid and ask spreads for the index options were used, additional costs would
also be incurred, for instance, on replicating the index or on borrowing or simply on
commissions. It is not clear whether the estimated arbitrage profits can absorb those
overlooked costs. The following section discusses the profitability of the detected

arbitrage opportunities after accounting for transaction costs.

TRANSACTION COSTS:

For index options, transaction costs are not fixed but vary with the price of the
option. Also, in the index option market, investors pay commissions twice; at the time of
initial trade and then to close out the position (unless the position is allowed to expire
unexercised). In general, one-way commission and bid/ask spreads are all combined and
are charged to institutional investors. In this section, the same transactions costs employed
by Lee and Nayar (1993) are used. In the empirical tests, it is assumed that double the
one-way transaction costs (one-way commissions plus the bid/ask spread) are incurred
even if the option is allowed to expire unexercised. Thus, an overestimate of transaction
costs is used. Violations that arise despite this indicate strong evidence of existence of

arbitrage opportunities. To be conservative, Lee and Nayar (1993) used the costs charged
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by a typical leading full service (not discount) commission brokerage firm. Their estimates
of transactions costs that are employed are consistent with those charged by Merrill Lynch

and are the following:

Base commission = ($14 + 0.016 * option price * $100) per contract

Subject to a maximum of 17% of principal value.

Less: 0.03 * base commission

With the following exceptions:

If the commission calculated is less than $30, then there is a minimum charge of: $30
on orders of principal value of $187.50 and greater or 16% of principal value on orders
less than $187.50. The maximum charge per contract can never exceed $92.00

In Kamara and Miller (1995), commissions and bid-ask spreads of the S&P 500
component stocks are estimated to be 0.38%, on average, of S&P 500 cash index value.
Also, Kawaller (1991) estimates the transaction costs of replicating the S&P 500 index to
be 0.36% of the S&P portfolio value.

In this study, tests are conducted using Lee and Nayar (1993) transaction cost
structure for index options. Kamara and Miller (1995) estimates for commissions and
bid/ask spread of replicating the S&P 500 are applied. Rearranging condition (4), (5), and

(6) to account for transactions costs lead to the following no-arbitrage relationships:

€=C,-PotXeT-1e"T+(T.+ T, + Th) (4a)
€=P,-Cp-XeT+1e +(T.+ T, + T) (5a)
€:=C-1+X+(T.+Th) (62)

Where T, T, and T; are the transaction costs of buying or selling call options, put options
and the S&P 500 index respectively. Again all the € are supposed to be positive

otherwise arbitrage opportunities exist.
As one can see from Table (12), when the assumed actual transaction costs are

used, the majority of the sample appears to comply with the no-arbitrage bounds
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developed earlier. There are only 27 (0.14% of Sample 1) Type 1 violations and 846
(4.48% of Sample 2) Type 2 violations compared to 6135 and 14322 respectively. Only 5
violations of the lower boundary condition (Type 3) were detected. The average arbitrage
profits from these opportunities amount to $88.56, $56.03, and $391.23 per contract,
respectively.

The hypothesis that the mean value of the arbitrage profit is different from zero, is
tested. The results indicate that the mean magnitude of Type 1 and Type 2 violations is
statistically different from zero at the 1% level of significance. These profits are defined as
ex post profits because it is assumed that trades can be consummated at those very prices
that are identified as profitable opportunities by the arbitrage model. In practice,
transactions can rarely be conducted at the prices that violate the no-arbitrage bounds but
instead at the next occurring trades. On an ex ante basis, where the ex post violations are
used as a signal to form arbitrage positions, most of the Finance literature in this area™,
show that the profits disappear, and the transactions produce increasing losses as time
elapses after the initial violation. Thus, the only way one can make profit out of these
arbitrage opportunities is to act at the same time of the ex post signal. Unfortunately, this

might be possible only in theory.

% Galai (1978), Klemkosky and Resnick (1980), Halpern and Tumnbull (1985), Chance (1987), Puttonen
(1993)
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Table 12: Put-Call Parity Violations (per contract) Using Transaction Costs

Numberof  Frequency Mean"®  Std. Dev. t-statistic p-value
cbservations  of violstion

Type 1 Violation
18,864 6135 42.365 45.673 72.652 0.0001
Assuming No Type 2 Violation
Transaction 18,936 14322 102.47 96.857 126.605 0.0001
Costs Type 3 Violation
81,670 131 56.007 138.345 4.633 0.001
Type 1 Violation
18,864 27 88.668 130.262 3.573 0.0015
Assumed Type 2 Violation
Transaction 18,936 846 56.036 49.566 32.883 0.0001
Costs Type 3 Violation
81.670 S 373.945 391.230 2.137 0.0994

a A violation should occur when & or &;0r £ are negative. The data and discussion in the text are presented with the sign
reversed in order to facilitate the presentation.

After accounting for transaction costs, whether SPX options have better
conformed to their theoretical value after the introduction of SPDRs is assessed once
more by comparing the frequency and magnitude of the occurring violations in the first
and second half of the testing period. In Table 13, the decrease in the frequency and
magnitude of Type 1 and Type 2 violations is evident. In the second period, only 0.04%
of Type 1 violations and 3.06% of Type 2 violations are detected compared to 0.22% and
5.53% in the first period. The decrease in the frequency of Type 1 and Type 2 violations
is statistically significant at the 1% level. This indicates that violations of the no-arbitrage
conditions are less frequent after the introduction of the Standard and Poor’s Depository

Receipts.
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Table 13: Frequency and Magnitude of Violations: Before and After the

Introduction of SPDRs
Violation
Year Type 1 _Type2 Type 3
Before 24 597 2
Jan 90 - Jan 93 95.381 60.691 $20.389
(10856) (10800) (43641)
After 3 249 3
Feb 93- Jun 96 34.968 44 877 276.314
(8010) (8137) (38029)
Z statistic 3.297* 8.137* <0.602
t-statistic 1.825** 3.821* 0.629

The number in parentheses is the total number of transactions used to calculate Type i violations.

The Z-statistic tests the hypothesis that the frequency of a Type i violation did not change over the two time periods.

The t-statistic tests the hypothesis that the true means of the two periods are the same. The underlying assumption is that
the variables are normally and independently distributed within each group.

* Statistically significant a1 the 1% level.

** Statistically significant at the 10% level.

The null hypothesis that the mean value of a violation has not changed after the
introduction of SPDRs is tested. The mean differences in the dollar size of all types of
violations are negative suggesting that there is a decrease in the magnitude of the
violations in the second half The difference is statistically significant at the 1% level for
Type 2 violations. For Type 1 and Type 3 violations, even though the decrease in the
dollar size of the violations is apparent, it may be questionable whether the t-test remains

appropriate when the number of observations is very small®.
Thus after accounting for transactions costs, both the frequency and magnitude of

violations have decreased substantially after the introduction of SPDRs. The dollar size of

the violations is still positive, and as mentioned before, there is no guarantee that those
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profitable opportunities will persist over time. In addition to that, dividends paid on a long
(short) portfolio must be reinvested (financed) by buying (selling short) additional shares
of the index. The transaction cost of managing such a portfolio would surely exceed these
potential returns. For example, the maximum Type 1 violation was $587.45 based on 100
units of the index valued at $39035S. Thus, the abnormal return without those transaction
costs is about 1.5% of the index. The maximum Type 2 violation was $645.54 based on
an index portfolio worth about $46122 or a profit of about 1.4% of the index. Thus,
unless the index could be replicated at a transaction cost of less than 1.4 - 1.5%, these
profits could not have been obtained. The management fee of SPDRs amounts to 20 basis
points which are above the estimated transaction cost. Another source of transaction
costs that was not accounted for is the Treasury bill commission. Apparently, the market
recognizes this fact and allows frequent violations of the put-call parity rule since
transaction costs will wipe out any possible arbitrage profits. Any attempt to exploit those

violations of no-arbitrage conditions will rarely succeed.

“ Given the small number of observations (27 Type 1 violations and 5 Type 3 violations), the normality
assumption is not valid anymore. The results are not statistically reliable.
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SUMMARY AND CONCLUSION

The violation definitions developed earlier assume all relevant data are recorded at
the same point in time. Given the absence of continuous trading in stock and option
markets, any empirical test is faced with the problem of non-synchronous trading. Even
though this study uses intradaily data, the problem of non-synchronous trading still
persists. The reported spot index is based on the last trade price of each of the 500 stocks
in the index. It does not represent the prices at which an arbitrageur could actually trade
the stocks. This may lead to the illusion of arbitrage opportunities. Therefore, the resuits

of this study, and any other studies in this area, must be carefully translated.

If an investor could enter the market and transact at the option and stock prices
that generated an observed violation, then, ignoring transactions costs, it would be
possible to construct a portfolio that generates positive cash flows at its creation with zero
cash flows at expiration. This implies that the options market is inefficient since an
investor is able to consistently earn an above normal rate of return for the level of risk
taken. The ex post results of this study show that there are significant violations of the
arbitrage condition and put/call parity. Even after acknowledging the difficulty of earning
risk free profits due to the difficulty of replicating the index or the fact that an arbitrageur
has to wait till the end of the day to know the exact payoffs of his/her arbitrage strategy,
the violations that were observed were substantial.

Considering all three types of violations and assuming no transaction costs, there

are four general observations that can be made. First, for Type 1 violations, there is a
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positive relationship between the frequency of violations and the number of days to
maturity of the option. For Type 2 and Type 3 violations and similar to Galai (1978) and
Halpern and Turnbull (1985), this relationship is negative. The average dollar size of the
violations seems to increase with the option’s maturity for Type 1 and Type 3 violations.
For Type 2 violations, the average magnitude seems to decrease with the number of days
to maturity. Second, violations of the Put-Call Parity are more frequent when the call
options are out-of-the money. Also, the size of the violation tends to be greater for out-
of-the money call options than for in-the money call options. This can be explained by the
fact that out-of-the money call options are less liquid than in-the-money call options.
Third, Type 3 violations are not very frequent and are observed only for in-the-money
options. Fourth, when looking at the frequency and magnitude of violations before and
after the introduction of SPDRs, the same relationships are detected implying that the two

sample periods are comparable.

The effect of the introduction of SPDRs was first investigated in the absence of
transaction costs. No solid conclusion concerning the frequency of violations could be
reached at that point. However, it was obvious that the magnitude of the violations were
much higher in the second period. When taking transaction costs into account, only few
violations of the no-arbitrage conditions were detected. Both the frequency and the
magnitude of the violations are considerably reduced after the introduction of SPDRs.

However, the dollar size of these violations was still substantial.
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CONCLUSION

After the introduction of SPDRs, market participants began to wonder how index
participation units were going to fare in the presence of index futures, options, and mutual
funds. The easy availability of a security, such as SPDRs, that tracks the movement of a
stock index, such as the S&P 500, can contribute to increased activity in and market
efficiency of other index related products. At the same time, if such a security provides a
better substitute for other index products in tracking general market co-movement, these
other index products will show reduced activity and market efficiency. This paper
examines the effects of SPDRs’ trading on the pricing efficiency of the S&P 500 index
futures contracts and the S&P 500 index options contracts. For index futures, pricing
efficiency is tested by looking at the difference between actual prices and theoretical prices
as per the Cost of Carry model. As for index options, one attribute of efficiency is the
frequency and magnitude of Put-Call Parity violations. These two measures are tested to

observe any change or trend after the introduction of SPDRs.

Similar to MacKinlay and Ramaswamy (1988) and Bhatt Cakici (1990), we find
the average daily mispricing of S&P 500 Index futures is positive but very small in
magnitude. The average daily mispricing and its variability as measured by the standard
deviation both significantly dropped after the introduction of SPDRs. Based on those
results, we concluded that index futures mispricing has decreased and became less
frequent. When looking at the average absolute value of mispricing, we observed that

mispricing has indeed decreased the results were not significant. The same analysis was
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conducted using intradaily prices. This time we found that the average mispricing, the
absolute value of the average mispricing, and their respective variances, have considerably
decreased in the second half of the tested period. The mispricing series were characterized
by high levels of autocorrelation and heteroskedasticity. In order to provide more
rigorous tests, we modeled the mispricing series by fitting ARIMA and GARCH models.
Results have shown that the ARIMA(4,0,4)-TGARCH model fits both the daily and
intradaily series quite well. Based on the results of this model, we find that after the
introduction of SPDRs, the S&P 500 index futures prices have much better conformed to

their theoretical values.

Tests on the S&P 500 Index options show that overall, there are significant
violations of the arbitrage conditions as per the Put-Call Parity. Similar to Galai (1978)
and Turnbull (1985), we found a negative relationship between the options’ maturity and
the frequency of violations for Type 2 and Type 3 violations but not for Type 1 violations.
A positive relationship between the option’s maturity and the magnitude of the violation is
detected for both Type 1 and Type 3 violations. Also, the dollar size of the violations
tends to be greater for out-of-the money options than for in-the-money options that may
be due to the fact that out-of-the money options are less liquid than in-the-money options.
Similar to Puttenon (1993), all Type 3 violations occurred for in-the money options. The
same relations were observed when dividing the sample into before and after the

introduction of SPDRs.
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The effect of SPDRs was investigated by testing two hypotheses. The first one
concerns whether there was any change in the frequency of a type “i” violation after the
introduction of SPDRs. The second hypothesis deals with the magnitude of a type “i”
violation and tests whether there was a change in the dollar size of the violations in the
second half of the testing period. Assuming no transaction costs and focusing on one year
before and one year after the introduction of SPDRs, we found that, unlike the probability
of a type 2 violation, the probability of a type 1 violation and the probability of a type 3
violation were reduced. As for the magnitude of these violations, it was shown that the
average value of a type 1 violation and a type 2 violation had increased. Unfortunately, in
this case, no clear-cut conclusion about the effect of SPDRs’ trading was reached. When
taking transaction costs into consideration, it was observed that the frequency and
magnitude of violations had dropped dramatically. The dollar size of these violations,
however, was still substantial and would require further inspection. Nevertheless, one
should not forget that these figures are ex post and that there is no guarantee that those

profitable arbitrage opportunities would persist over time.

According to the findings of this study, the effect of SPDRs’ trading is more
apparent in the index futures market than in the index options market. However, these
results may be caused by economic reasons other than the presence of SPDRs in the
market. To arrive at a solid conclusion on the effects of SPDRs, one should examine
other factors that are attributes of market efficiency such as basis risk, marking-to-market,
or trading volume. Also, since the index futures, the index options, and SPDRs, are all

based on thc same underlying asset, the S&P 500 stock index, it is to be expected that
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their prices be interrelated with one another and the underlying stock index itself. If prices
of the different instruments and/or the index itself do not satisfy the relevant inter-market
relationships, the relative mispricing should be instantaneously corrected given efficient
markets and the high degree of sophistication of market participants. The price
adjustments could be accomplished by a variety of cross-market strategies. For future
research, the relationship between, for instance, S&P 500 index futures, index options, and

SPDRs should be examined.
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APPENDIX 1: SUMMARY STATISTICS OF DAILY AND INTRADAILY INDEX

FUTURES MISPRICING SERIES

Table 1.a: Summary Statistics on the Daily Differences between
Actual and Theoretical Futures Prices: Jan. 90 - Jun. 96

Jan. 90 - Jan. 93 Feb. 93 - Jun. Jan. 90 - Jun. 96

96

Number of Observations 756" 832 1594
Average Mispricing 0.360 0.176¢ 0.264
(x10?) (1.326) (1.257) (1.293)
t-stat for HO: mean =0 7.473* 4.057* 8.1374*
Average Absolute Mispricing 1.044 0.988 1.015
(x10*%) (0.892) (0.796) (0.843)
t-stat for HO: mean =0 32.203* 35.924¢ 48.0577*
Average days to Maturity 0.142 0.139 0.141

(0.0726) (0.0719) (0.0722)

Standard deviations are in parentheses
* tstat for mean equal (o zero is significant at the 1% level of significance
a The sample includes January 1993.

Table 1.b: Summary Statistics on the Intradaily Differences
between Actual and Theoretical Futures Prices: Jan. 90 - Jun. 96

Jan. 90 - Jan. 93 Feb. 93 - Jun. Jan. 90 - Jun. 96

96

Number of Observations 5292" 5866 11158
Average Mispricing 0.367 0.140°¢ 0.248
(x107) (1.285) (1.183) (1.237)
t-stat for HO: mean =0 20.808* 9.072* 21.166*
Average Absolute Mispricing 1.022 0.929 0.973
(x10?) (0.861) (0.746) (0.804)
t-stat for HO: mean =0 86.348* 95.349* 127.844¢
Average days to Maturity 0.142 0.139 0.141

(0.0726) (0.0719) (0.0722)

Standard deviations are in parentheses

* 1-stat for mean equal 10 2ero is significant at the 1% level of significance
2 The sample includes January 1993.
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Table 2a: Hypotheses Tests for Futures Mispricing Series:

t-stat For Daily Difference In Means (rolled over contracts)

Average Mispricing:
DUM

N Mean Std Dev Std Error Minimum Maximum
0 756 0.00036034 0.00132577 0.00004822 -0.00%567163 0.01081758
1 838 0.00017620 0.00125706 0.00004342 -0.00678787  0.003523526
Variances T DF Prob>(T)
Unequal 2.8377 1554.2 0.0046
Bequal 29453 13920 0.0045
For HO: Variances areequal, F = 1.11 DF =(755,837) Prob>F = 0.1333
Absolute Average Mispricing:
DUM N Mesn Std Dev Std Ervor Minimum Maximum
0 756 0.00104449 0.00089179 0.00003243 4.02780E-06  0.01081758
1 838 0.00098805 0.00079617 0.00002750 8.57744E-07  0.00678787
Variances T DF Prob>(T!
Unequal 13272 1521.8 0.1846
Equal 1.3350 1592.0 0.1821
For HO: Vanances are equal, F = 1.25 DF =(755,837) Prob-F = 0.0014
Average Maturity
DUM N Mean Std Dev Sid Ervor Minimum Maximum
0 756  0.14202025 0.07264910 0.00264222 0.01918000 0.27945000
1 838 0.13952031 0.07195787 0.00248574 0.01918000 0.27945000
Vanances T DF Prob>(T}
Unequal 0.6891 1572.1 0.4908
Equal 0.6895 15920 0.4906
For HO: Variances are equal, F = 1.02 DF = (755,837) Prob>F =0.7867
t-stat For Intradaily Difference In Means (rolled over futures contracts)
Average Mispricing:
DUM N Mean Std Dev Std Error Minimum Maximum
0 5292 0.00036748 0.00128469 0.00001766 -0.01596300 0.01081800
1 $866 0.00014012 0.00118299 0.00001545 -0.00691500 0.00716400
Variances T DF Prob>(T}
Unequal 9.6907 10787.4 0.0001
Equal 9.7318 11156.0 0.0000
For HO: Variances are equal, F = 1.18 DF = (5291,5865) Prob>F = 0.0000
Absolute Average Mispricing:
DUM N Mean Std Dev Std Error Minimum Maximum
0 5292 0.00102185 0.00086088 0.00001183 0 0.01596300
1 5866 0.00092869 0.00074598  0.00000974 0 0.00716400
Variances T DF Prob>(T]
Unequal €07%0 10528.6 Q0001
Equal 6.1227 11156.0 0.0000
For HO: Variances are equal, F = 1.33  DF = (5291,5865) Prob>F = 0.0000
Average Maturity
DUM N Mean Std Dev Sud Esvor Minimum Maximum
0 5292 0.14202284 0.07260636 0.00099308 0.01918000  0.27945000
I 5866 0.13952919 0.07192319 0.00093%07 0.01918000  0.27945000
Variances T DF Prob>{T}
Unequal 1.8196 11016.6 0.0688
Equal 1.5203 111569 0687

For HO: Variances arc equal, F' = 1.02  DF = (5291,5865) Prob>F = 0.4804
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Table 1.1: Unit Root Tests for Daily Futures Mispricing Series:

Signed Data:
Unit Root Tests on Daily Futures Mispricing

PP PPT DF DFT
Contracts Held Till Maturity -25.513¢* -25.603* -25.497* -25.578*
Contracts Rolled Over One Week Before Maturity | -24.240* -24.303* -24.225¢* -24.280*
Unit Root Tests on First Difference of Daily Futures Mispricing

PP PPT DF DFT
Contracts Held Till Maturity £66.953* -66.952* £66.910* -66.889*
Contracts Rolled Over One Week Before Maturity | -67.593* -£7.593* -67.550* 6£7.529*
Absolute Value:
Unit Root Tests on Daily Futures Mispricing

PP PPT DF DFT
Contracts Held Till Maturity -32.379* -32.634* -32.358* -32.603*
Contracts Rolled Over One Week Before Maturity | -30.805* -30.987* -30.786* -30.958*
Unit Root Tests on First Difference of Daily Futures Mispricing

PP PPT DF DFT
Contracts Held Till Maturity £8.314* 68.314* 68.271* -68.249*
Contracts Rolled Over One Week Before Maturity | -68.301* -68.301* -68.258* -68.237*

PP: Phillips-Perron test statistic for unit root without time trend
PPT: Phillips-Perron test statistic for unit root with time trend

DF: Dickey-Fuller test statistic without time trend
DFT: Dickey-Fuller test statistic with time trend
* Statistic is significant at 1% level
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Table 2.1: Q and LM Tests for ARCH Disturbances in Daily Futures Mispricing:

Q and LM Tests for ARCH Disturbances in Daily Futures Mispricing:
Jan. 1990 — Jun. 1996

Order Q Prob>Q LM Prob>LM
1 10.1264 0.0015 10.1258 0.0015
2 17.5359 0.0002 16.2624 0.0003
3 19.4082 0.0002 17.1881 0.0006
4 21.317 0.0003 18.2682 0.0011
5 28.5063 0.0001 23.8286 0.0002
6 28.8436 0.0001 23.8296 0.0006
7 31.0374 0.0001 24.961 0.0008
8 31.1255 0.0001 24.9686 0.0016
9 31.6389 0.0002 25.0658 0.0029
10 33.1156 0.0003 25.7455 0.0041
11 36.6304 0.0001 27.9787 0.0033
12 37.0117 0.0002 27.9787 0.0056

Q and LM Tests for ARCH Disturbances in Intradaily Absolute
Values of Futures Mispricing: Jan. 1990 - Jun. 1996

Order Q Prob>Q LM Prob>LM
1 2.793 0.0947 2.7884 0.0949
2 3.3692 0.1855 3.2647 0.1955
3 3.3899 0.3353 3.2712 0.3517
4 3.5364 0.4724 3.3985 0.4935
5 5.0116 0.4145 4.7796 0.4434
6 5.0776 0.5339 4917 0.5545
7 5.0825 0.6499 4.9255 0.669
8 5.0975 0.7471 49387 0.7641
9 5.1566 0.8205 4.9759 0.8364
10 5.268 0.8726 5.151 0.8809
11 5.6261 0.8971 5.5123 0.9038
12 5.6829 0.9312 5.5399 0.9375
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Sign Bias Tests:

The various sign tests described by GJR and by Engle and Ng (1993) were used to check

the specification of the various models.

These tests are as follows:

iii)

The sign test: a regression of the square of the standardized residuals on a constant
and a dummy variable S, that takes the value 1 when the lagged error term is
negative, and O when this term is positive. The sign bias test is the t statistic of the
coefficient of the dummy variable. This test examines the effect of a positive or
negative error term from the previous observation on volatility, which has not beer.
captured by the model.

The negative sign bias test is the t statistic of a similar regression run on a constant
and the term S € ;. This test considers the effects that large and small negative
returns have on the volatility, which were not captured by the model.

The positive sign test is the t statistic of the S°.; € i term from the same
regression model as above. S’y is a dummy variable that is equal to 1- S'€.,. This
test considers the effects that large and small positive returns have on the volatility,

which were not predicted by the model.
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Table 3.1: Sign Tests for Daily Futures Mispricing:

Test GARCH(L,1) GIR(1,1) TGARCH(1,1)

| Sign Bias Test -0.1267 0.0736 0.6284
Negative Sign Bias Test <0.3651 0.1794 1.0142
Positive Sign Bias Test <0.2182 0.0472 -0.0138
Joint Test 0.9707 0.0361 0.3555
¢ tstatistic is significant ot the 1% level of significance

2. Absolute Value Futures Mispricing Series for Contracts Held till Maturity: Jan. 1990 - Jan. 1996.

Test GARCH(1.1) GIR(1.1) TGARCH(1.1)
Sign Bias Test 0.4529 -4.2078* 0.3635
Negative Sign Bias Test 0.0576 -2.0285 0.0400
Positive Sign Bias Test 0.9301 2.7683 <0.2434
Joint Test 0.2896 11.6238* 0.1727
* 1 statistic is significant at the 1% level of significance

Table 4.1: Summary Statistics of Daily Futures Mispricing

Signed Data:
ARIMA(4.4) GARCH(1.1) GJR(1.1) | TGARCH(1.1)
Skewness 0.0344 -0.49170 -0.47066 -1.01451
Kurtosis 9.2538 8.4942 8.07994 16.48864
Qo 17.1541 14.6211 14.5505 17.1569
Qo 37.0760* 18.1720 16.6676 5.6645
Absolute Value:
ARIMA(4,4) GARCH(1,1 GJR(1,1) | TGARCH(1.,1)
Skewness 2.64139 2.8753 1.44358 3.5594
Kurtosis 21.6347 23.3559 18.8929 35.1625
Q0 5.2841 9.2448 11108.74* 26.4835*
Q’x 8.7338 3.4248 $.8309 1.37177
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Table 1.2: Unit Root Tests for Intradaily Futures Mispricing Series

Signed Data:
Unit Root Tests on Intradaily Futures Mispricing

PP PPT DF DFT
Contracts Held Till Maturity -47.9421* | -48.2860* | -47.937* -48.279*

| Contracts Rolled Over One Week Before Maturity | -46.630* 46.849* -46.626* | -46.843* |

Unit Root Tests on First Difference of Intradaily Futures Mispricing

PP PPT DF DFT
Contracts Held Till Maturity -167.175* | -167.175* | -167.160* | -167.152*
Contracts Rolled Over One Week Before Maturity | -169.350* | -169.350* | -169.335* | -169.327*
Absolute Value:
Unit Root Tests on Intradaily Futures Mispricing

PP PPT DF DFT
Contracts Held Till Maturity -63.207* -63.888* -63.201* -63.879*
Contracts Rolled Over One Week Before Maturity | -61.249* 61.751* -61.2448* | -61.743*
Unit Root Tests on First Difference of Intradaily Futures Mispricing

PP PPT DF DFT
Contracts Held Till Maturity -168.566* | -168.566* | -168.550* | -168.543*
Contracts Rolled Over One Week Before Maturity | -170.795* | -170.795* | -170.779* | -170.772*

PP: Phillips-Perron test statistic for unit root without time trend
PPT: Phillips-Perron test statistic for unit root with time trend

DF: Dickey-Fuller test statistic without time trend
DFT: Dickey-Fuller test statistic with time trend
* statistic is significant at 1% level
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Table 2.2: Q and LM Tests for ARCH Disturbances in Intradaily Futures
Mispricing

Q and LM Tests for ARCH Disturbances in Intradaily Futures
Mispricing: Jan. 1990 - Jun. 1996

Order Q Prob>Q LM Prob>LM
1 532.707 0.0001 532.519 0.0001
2 837.898 0.0001 694.084 0.0001
3 1435.92 0.0001 1048.68 0.0001
4 1778.01 0.0001 1129.24 0.0001
S 2100.29 0.0001 1202.59 0.0001
6 2328.75 0.0001 1220.4 0.0001
7 2437.08 0.0001 1220.41 0.0001
8 2535.46 0.0001 1220.86 0.0001
9 2628.52 0.0001 1222.76 0.0001
10 2698.71 0.0001 1224.34 0.0001
11 2793.58 0.0001 1236.36 0.0001
12 2874.65 0.0001 1243.48 0.0001

Q and LM Tests for ARCH Disturbances in Intradaily Absolute
Values of Futures Mispricing: Jan. 1990 - Jun. 1996

Order Q Prob>Q LM Prob>LM
1 147.825 0.0001 147.784 0.0001
2 216.63 0.0001 195.853 0.0001
3 433.999 0.0001 368.869 0.0001
4 543.406 0.0001 419.806 0.0001
5 662.112 0.0001 476.505 0.0001
6 754.198 0.0001 503.93 0.0001
7 769.569 0.0001 504.194 0.0001
8 783.336 0.0001 504.232 0.0001
9 793.375 0.0001 504.421 0.0001
10 800.158 0.0001 504.422 0.0001
11 813.153 0.0001 506.76 0.0001
12 820.402 0.0001 507.712 0.0001
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Table 3.2: Sign Tests for Intradaily Futures Mispricing Series

Test GARCH(l1.1) GJR(1.1) TGARCH(1.1)

| Sign Bias Test -2.6208* -1.1418 0.1609
Negative Sign Bias Test -20.2721* <0.4202 -0.6754
Positive Sign Bias Test 9.3185* -0.3513 0.0003
Joint Test 168.9770* 0.4927 0.3156
*_t statistic is significant at the 1% level of significance

2. Futures Mispricing Series for Con 1l Week re ity: Jan. 1990 — Jan. 1996.

Test GARCH(L,1) GIR(LLD) TGARCH(1.1)

| Sign Bias Test 0.6288 1.0651 4.7909*
Negative Sign Bias Test <0.7022 0.0556 0.1962
Positive Sign Bias Test 0.7249 1.1313 <0.9740
Joint Test 0.5763 0.5596 26.136*
¢ tstatistic is significant at the 1% level of significance

Table 4.2: Summary Statistics of Intradaily Futures Mispricing Series

Contracts Held Till rify:

ARIMA(4.9) |  GARCH(1.1) GJR(1.1) | TGARCH(l.1)
Skewness -0.79358 -0.74503 -0.73851 -0.93991
Kurtosis 15.62224 9.98537 15.22343 10.12769
Qo 18.3652 2220.6042* 28.1609 0.7085
Qx 644.5493* 5894.0785* 2.6109 1.7377¢-003
ont Roll T W
ARIMA@4.4) | GARCH(l.1) GIR(1.1) | TGARCH(l.1)
Skewness 0.78346 20.713736 0.12111
Kurtosis 15.67992 15.44255 1.00335
Qo 23.9137¢ 29.7342¢
L Q0 668.3458* 31.0426*
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APPENDIX 2: RESULTS OF MODELS FITTED ON DAILY FUTURES

MISPRICING

A. Models for Daily Futures Mispricing

1. ARIMA(4,0,4) Model :

4 4
xl = aO +alduml + z ¢1xf-r + Zajgl-j + gt
1=] 7=l

Where,
ap = constant term,
¢i = ith autoregressive parameter,
6; = jth moving average parameter,
€: = the error term at time t

Estimates of ARIMA(4,4) Model for Daily Futures Mispricing
Jan 1990-Jun. 1996

Variable Coefl, Std Ervor T-Stat P-Value

o 0.000308 0.000159 1.93179 0.053565
'Y 0.464005 0.285375 1.62595 0.104161
o -0.20872 0.327571 £0.63717 0.524106
'Y <0.06407 0.317052 <0.20208 0.839877
s 0.607604 0.241758 2.51328 0.012061
6, -0.24559 0.290334 <0.84588 0.397746
0, 0.337086 0.273397 1.23295 0217779
0, 0.189225 0.3119 0.60669 0.544147
0, 0.45174 0.194197 -2.32619 0.020135
o <0.00018 0.000215 0.82855 0.407485

Log Likelihood 10003.45

Number of Observations 1584
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2. ARIMA(4,0,4)-GARCH(1,1) Model :

4 4
x, = a, +a,dum, + z Px,., + 2018,_ ,+E,
=1 J=1
g, ~ N(@,h)
h=p+ ﬂlslz-l +Bah,,

Estimates of ARIMA(44)-GARCH(1,1) Model for Daily Futures
Mispricing: Jan. 1990 - Jun. 1996)

Variable Coeff  Std Error T-Stat P-Value
Qo 5.78E-06 4.18E-06 1.38284 0.1667
o 2.072 8.63E-02 24.01634 0.0000
¢ -2.214 0.119 -18.6622 0.0000
s 1.731 0.139 12.44041 0.0000
04 -0.605 9.13E-02 -6.62865 0.0000
8, -1.804 9.76E-02 -18.4909 0.0000
0 1.882 0.123 15.35099 0.0000
0, -1.399 0.143 -9.76189 0.0000
9, 0.402 8.20E-02 4.90697 0.0000
a -2.17E-06 4. 17E-06 -0.5203 0.6029
Bo 8.14E-09 2.05E-09 397143 0.0001
B 3.20E-02 4 43E-03 7.23842 0.0000
B2 0.961 4.67E-03 206.0698 0.0000

Log Likelihood 10067.09
Number of Observations 1584
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3. ARIMA(4,0,4)-GJR(1.1) Model :

4 4
X, =y +adum +Y gx,_ + 0 +¢E
=t

=]

&, ~N(O,h)

h = By + PEL, + P &L, + Bh,

Estimates of ARIMA(4,4)-GJR(1,1) Model for Daily Futures Mispricing
Jan. 1990 - Jun. 1996

Variable Coeff Std Error T-Stat P-Value
o 5.87E-06 4.25E-06 1.38176 0.1670
o 2.076 8.51E-02 24.38362 0.0000
¢ -2.221 0.117 -18.9284 0.0000
$ 1.736 0.137 12.64807 0.0000
b4 -0.606 8.94E-02 -6.78435 0.0000
6, -1.808 9.62E-02 -18.8009 0.0000
8- 1.889 0.121 15.63282 0.0000
0, -1.402 0.141 -9.94699 0.0000
0, 0.403 8.01E-02 5.03032 0.0000
o, -2.30E-06 4.14E-06 -0.55572 0.5784
Bo 8.35E-09 2.13E-09 3.9274 0.0001
B 2.59E-02 5.27E-03 4.91954 0.0000
B> 0.962 4 83E-03 199.2133 0.0000
83 1.00E-02 9.13E-03 1.09709 0.2726

Log-Likelihood 10067.38
Number of Observations 1584
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4. ARIMA(4,0 4)-TGARCH(1,1) Model

4 4
x, =a,+adum +Y @x,_+Y 0 +¢
i=l 1=l

3:"/’:-1 ~ j;(s:l'l’:-l)

h' = ﬂo + ﬂlé',z_l +ﬂ2ht-l

Estimates of ARIMA(4,4)-TGARCH(1,1) Model for Daily Futures

Mispricing: Jan. 1990-Jun. 1996)

Variable Coeff  Std Error T-Stat P-Value
Qo 7.25E-05 3.51E-05 2.06488 0.0389

¢ 0.425 0.13 3.27855 0.0010

¢ -8.19E-02 0.163 -0.50373 0.6145

) -0.285 0.151 -1.88828 0.0590

ds 0.733 0.107 6.84263 0.0000

6 0.174 0.138 -1.26394 0.2063

6~ 0.234 0.145 1.60938 0.1075

(s2Y 0.409 0.147 2.78371 0.0054

0, 0.497 8.82E-02 -5.63672 0.0000

a, -1.71E-05 4.37E-05 -0.38973 0.6967

Bo 1.78E-08 7.71E-09 2.31564 0.0206

B 3.07E-02 9.03E-03 3.39893 0.0007

B2 0.952 1.37E-02 69.39854 0.0000

d 5.776 0.661 8.73946 0.0000
Log Likelihood 19903

Number of Qbservations 1584
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B. Models for Daily Futures |Mispricing|

L ARIMA(4,0.4) Model :

4 4
x| = @, +a,dum, + Z¢,x,_, + Z B¢, +¢,
=1 =]

Estimates of ARIMA(4,4) Model for Daily Futures Mispricing
Jan 1990-Jun. 1996

Variable Coefl. Std Error T-Stat P-Value
o 0.000991 6.47E-05 15.31543 0.0000
& -0.28303 0.340479 0.83126 0.4060
&2 1.121931 0.226732 4.94826 0.0000
' 0.340921 0.251063 1.35791 0.1747
da 0.33259 0.203601 -1.63352 0.1026
0, 0.442836 0.345389 1.28214 0.2000
0, <0.9478 0.27482 -3.44881 0.0006
0, <0.3928 0.194784 -2.01661 0.0439
0, 0.23823 0.183486 1.29835 0.1944
a, -4.6E-05 8.82E-05 -0.52064 0.6027

Log Likelihood 18874
Number of Observations 1584
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2. ARIMA(4,0,4)-GARCH(1.1) Model :

4 4
x| =a, +adum +> ¢x,_,+3 0¢_ +¢,
=] j=l

g, ~N(@©,h)
h=p8+ ﬂlelz-l +Boh,

Estimates of ARIMA(4,4)-GARCH(1,1) Model for Daily Futures
Mispricing: Jan. 1990 - Jun. 1996)

Variable Coeff  Std Error T-Stat P-Value
o 5.37E-06 6.23E-06 0.86107 0.3892
& 0.104 0.119 0.8748 0.3817
o 1.295 0.121 10.73142 0.0000
o 0.147 9.42E-02 1.56326 0.1180
b4 -0.552 8.81E-02 6.26717 0.0000
6, 5.31E-02 0.126 0.42061 0.6740
0- -1.15 0122 -9.41301 0.0000
0, -0.264 9.92E-02 -2.65935 0.0078
04 0.391 9.39E-02 4.15964 0.0000
ay 2.31E-07 1.14E-06 0.20254 0.8395
Bo 4.30E-09 1.41E-09 3.03993 0.0024
B 3.84E-02 6.86E-03 5.59728 0.0000
B2 0.957 6.38E-03 150.119 0.0000

Log Likelihood 10538.07
Number of Observations 1584
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3. ARIMA(4.0,4)-GJR(1,1) Model :

4 4
lxll = ao + aldumr + Z ¢|xt-u + z 0]£l~j + 8:
i=] J=1

&~ N(@O,h)

h=p8+ ﬂ‘gf_l + ﬂzst-lglz-l +Bh,

Estimates of ARIMA(4,4)-GJR(1,1) Model for Daily Futures Mispricing
Jan. 1990 - Jun. 1996

Variable Coeft Std Ervor T-Stat P-Value
[ 78 -3.25E-05 4.95E-07 -65.7765 0.0000
$ -1.711 9.11E-07 -1877398 0.0000
o 9.12E-02 3.38E-05 2699.851 0.0000
3 1.735 1.22E-06 1426813 0.0000
ds 0.905 8.21E-07 1101368 0.0000
0, 1.75 2.04E-06 857564.2 0.0000
0, -2.47E-02 1.55E-05 -1598.48 0.0000
0, -1.728 4.04E-06 427347 0.0000
0,4 -0.922 5.25E-06 -175673 0.0000
Q, 1.60E-05 1.54E-06 10.38605 0.0000
Bo 2.62E-08 7.53E-09 3.47848 0.0005
B 9.62E-02 1.41E-02 6.82952 0.0000
B 0.816 2.57E-02 31.78021 0.0000
B3 0.259 3.08E-02 8.38582 0.0000

Log-Likelihood 10488.62
Number of Observations 1584
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4. ARIMA(4,0,4)-TGARCH(1,1) Model

4 4
x| = @, +adum, +3 ¢x,_, + Y ¢, +¢,
=1 Jj=t

srl'/,r—l - fv(grl'/’l-l)

h =B, + B+ Boh,

Estimates of ARIMA(4,4)-TGARCH(1,1) Model for Daily Futures

Mispricing: Jan. 1990-Jun 1996)

Variable Coeff  Std Error T-Stat P-Value
oo 0.000494 0.000187 2.64644 0.0081
d -1.23848 0.364524 -3.39752 0.0007
bs 0.386551 0.412319 0.9375 0.3485
& 0.931103 0.27971 3.32882 0.0009
ds 0.291342 0.316298 09211 0.3570
0, 1.399804 0.363121 3.85492 0.0001
0. -0.03851 0.465747 -0.08268 0.9341
0, -0.70828 0.181823 -3.89546 0.0001
0, 0.25684 0.256452 -1.0015 0.3166
ay -4E-05 4.33E-05 0.92178 0.3566
Bo 5.1E-08 1.5E-08 3.51407 0.0004
B 0.099235 0.026438 3.75355 0.0002
B2 0.80794 0.040177 20.10949 0.0000
d 5.188971 0.438757 11.82652 0.0000

Log Likelihood 10137.11
Number of Observations 1584
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APPENDIX 3: RESULTS OF MODELS FITTED ON INTRADAILY FUTURES

MISPRICING SERIES

1. ARIMA(4.0.4) Model :

4 4
x, = a,+adum +) §x,, + Y 6, +¢
=1 J=t

Where.
ap = constant term,
¢; = ith autoregressive parameter,
6; = jth moving average parameter,
€, = the error term at time t.

Estimates of ARIMA(4,4) Model for Futures Mispricing
Contracts Held Till Maturity: Jan 1990-Jun. 1996

Variable Coefl. Std Ervor T-Stat P-Value
oo 0.0003005 0.0001495 2.01063 0.0444
() 0.6926395 0.1724401 4.0167 0.0001
¢ 0.4140275 0.2051035 2.01863 0.0436
¢ 0.1590905 0.1950653 0.81558 0.4148
') 0.2764756  0.1210429 -2.28411 0.0224
6, -0.3659653 0.173422 -2.11026 0.0349
0, 0.3707546 0.1629785 -2.27487 0.0229
0, 0.2277399 0.1740368 -1.30857 0.1907
0, 0.1101962 0.079825 1.38047 0.1675
o <0.0002111 0.000198 -1.06594 0.2865

Log Likelihood 73148.475
Number of Observations 11088
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2. ARIMA(4,0,9)-GARCH(1.1) Model :

4 4
X, = @y +aum, + 3 45, + D 0, , + ¢,
i=) 1=l

£ ~ N(0,h)

h = By + B, + B.h,_, + Bdumo, + B dumc, + B dumw

Estimates of ARIMA(4,4)-GARCH(1,1) Model for Futures Mispricing
Contracts Held Till Maturity: Jan. 1990 - Jun. 1996

Variable Coeff  Std Error T-Stat P-Value
t 3.66E-04 7.12E-05 5.13707 0.0000
& 3.64E-02 0.153 0.23814 08118
(% -0.249 3.62E-02 -6.87997 0.0000
& 0.949 4.29E-02 22.1274 0.0000
') 0.147 0.155 0.94922 0.3425
6, 0.212 0.141 1.50042 0.1335
0, 0.439 3.25E-02 13.52091 0.0000
0, 0.655 6.12E-02 -10.69795 0.0000
0, 0.132 0.115 -1.14393 0.2527
a, -3.43E-04 542E-04 0.63174 0.5276
Ba 3.32E-07 9.29E-08 3.57217 0.0004
B <6.19E-02 4.93E-03 -12.55621 0.0000
B2 0.726 1.73E-02 41.92653 0.0000
Bs 4.55E-06 5.02E-07 9.06594 0.0000
Ba 2.39E-06 3.23E-07 7.39412 0.0000
Bs 4.29E-06 3.72E-07 11.52169 0.0000

Log Likelihood 60694.699
Number of Qbservations 11088
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3. ARIMA(4,0.4)-GJR(1.1) Model :

4 4

X, =@, +adum + Y 9x,_ +3 0,6, +¢,
i=1 =1

£ ~N(O,h)

h = B, + Bl + Bosi. €l + ik, + Budumo, + Bdume, + Pdumw

Estimates of ARIMA(4,4)-GJR(1,1) Model for Futures Mispricing
Contracts Held Till Maturity: Jan. 1990 - Jun. 1996

Variable Coeff  Std Error T-Stat P-Value
o 8.16E-06 2.39E-06 3.41809 0.0006
& 0799  4.26E-02 18.73555 0.0000
é- -0.297 7.41E-03 -40.06729 0.0000
o 1.104 8.57E-03 128.83011 0.0000
) 0.619 4.18E-02 -14.80162 0.0000
8, -0.436 4.59E-02 -9.49686 0.0000
0, 0.307 4.89E-03 62.64754 0.0000
0, 0.976 1.77E-02 -55.28914 0.0000
0, 0.331 3.49E-02 9.48176 0.0000
a, -5.35E-06 2. 48E-06 -2.15678 0.0310
Bo -2.96E-08 8.57E-10 -34.50101 0.0000
B 2.66E-02 2.22E-03 11.96408 0.0000
B2 0.936 2.12E-03 441.69699 0.0000
Bs 5.21E-02 3.31E-03 15.77059 0.0000
Bs 6.35E-08 5.10E09 12.44419 0.0000
Bs 2.07E-07 §.23E-09 39.55486 0.0000
Bs 1.79E-10 2.23E-09 0.08045 0.9359

Log-Likelihood 73725.706
Number of Qbservations 11088
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4. ARIMA(4,0.4)-TGARCH(1.1) Model

4 4
X, = a, +adum, + Z gx,. .+ Z ojsr-j +é&
i=1 J=1

& I'/’:-l ~ ./;(£IIWI—I)

h = B, + B’ + P:h_, + Bdumo, + . dumc, + B.dumw

Estimates of ARIMA(4,4)-TGARCH(1,1) Model for Futures Mispricing
Contracts Held Till Maturity: Jan. 1990-Jun 1996

Variable Coeff Std Error T-Stat P-Value
o 5.41E-04 9.63E-05 5.61812 0.0000
& -2.92E-02 0.152 0.19208 0.8477
o, 8.86E-02 2.35E-02 3.76612 0.0002
d3 0.959 1.74E-02 55.25633 0.0000
b4 -8.84E-02 0.149 -0.59393 0.5526
0, 0.228 0.162 1.41073 0.1583
0. 8.72E-02 5.01E-02 1.74099 0.0817
6, 0.759 2.57E-02 -29.51536 0.0000
0, 3.87E-02 0.126 0.30833 0.7578
o -5.15E-04 1.27E-04 -4.05546 0.0001
Bo -5.63E-09 3.06E-09 -1.83675 0.0662
B -1.87E-02 1.37E-03 -13.63261 0.0000
B 0.753 6.99E-03 107.65707 0.0000
Bs 2.45E-06 2.20E-07 11.12833 0.0000
Ba 2.59E-06 2.54E07 10.18651 0.0000
Bs 1.32E-06 1.42E-07 9.26919 0.0000
d 8.104 0.918 8.82604 0.0000

Log Likelihood 61516.701
Number of Observations 11088
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APPENDIX 4: RESULTS FOR DAILY MISPRICING SERIES USING

CONTRACTS ROLLED OVER ONE WEEK BEFORE EXPIRATION

1. Q and LM Tests for ARCH Disturbances in Daily Futures Mispricing:

Q and LM Tests for ARCH Disturbances in Intradaily Futures
Mispricing: Jan. 1990 - Jun. 1996

Order Q Prob>Q LM Prob>LM
1 13.9759 0.0002 13.9695 0.0002
2 24 8163 0.0001 22711 0.0001
3 28.3857 0.0001 24.4707 0.0001
4 32.3103 0.0001 26.6233 0.0001
5 43.3701 0.0001 34.4913 0.0001
6 44.5685 0.0001 34.5693 0.0001
7 46.4627 0.0001 35.063 0.0001
8 46.8559 0.0001 35.0703 0.0001
9 47.9596 0.0001 35.3034 0.0001
10 49.0865 0.0001 35.5272 0.0001
11 53.4516 0.0001 38.105 0.0001
12 53.9882 0.0001 38.1064 0.0001

Q and LM Tests for ARCH Disturbances in Intradaily Absolute
Values of Futures Mispricing: Jan. 1990 — Jun. 1996

Order Q Prob>Q LM Prob>LM
1 3.3557 0.067 3.3516 0.0671
2 4.0206 0.1339 3.8892 0.143
3 4.1074 0.2501 3.9381 0.2682
4 4.3875 0.3561 4.1763 0.3827
5 5.9751 0.3086 56172 0.3453
6 5.9751 0.426 56337 0.4654
7 6.0248 0.5369 5.7075 0.5743
8 6.0453 0.6422 5.729 0.6776
9 6.1632 0.7235 5.7999 0.7598
10 6.2896 0.7904 6.0147 0.814
11 6.5654 0.8331 6.2817 0.8539
12 6.5883 0.8836 6.2896 0.9008

140



2. Summary Statistics of Daily Futures Mispricing

Signed Data:
ARIMA(4.4) GARCH(1.1) GJIR(1.1) TGARCH(1,1)
Skewness 0.01130 041103 0.01238 0.77986
Kurtosis 9.23564 7.82128 9.26107 12.35361
Q0 33.4752¢* 27.7010* 32.1070* 26.3980*
(5"30 38.4423* 33.3082°* 39.5158* 92573
Absolute Value:
ARIMA(®4.4) GARCH(1,1) GJIR(1.1) TGARCH(1.1)
Skewness 2.56346 441195 £0.10853 3.42156
Kurtosis 21.64323 §9.3203 0.99356 34.7501
Q-0 8.9923 69.696* 1409.709* 96.9801*
Q:m 7.6558 6.2007 3471.593* 1.3583*
3. Sign Tests:
3.1 Signed Data
Test GARCH(1.1) GJR(1,1) TGARCH(1.])
| Sign Bias Test -1.3288 -1.2710 -0.6942
Negative Sign Bias Test -1.3514 -1.1859 0.5048
Positive Sign Bias Test <).5821 0.3608 -0.8108
Joint Test 0.8024 0.6728 0.4894
* 1 satistic is significant at the 1% level of significance
3.2. Absolute V;
Test GARCH(1,]) GJR(1,1) TGARCH(1.1)
| Sign Bias Test 0.3357 £0.3983 0.6063
| Negative Sign Bias Test -1.3581 -2.9159* -0.1548
Positive Sign Bias Test 1.9242 3.5328* 0.0024
Joint Test 1.8490 7.1597* 0.3076
* 1 statistic is significant at the 1% level of significance




4. Models

4.1 ARIMA(4.0.4) Model:

Estimates of ARIMA(4,4) Model for Daily Futures Mispricing

Jan 1990-Jun. 1996

Variable Coefl. Std Error T-Stat P-Value
oo 0.000352 0.000178 1.97736 0.0482

& 0.560812 0.375801 1.49231 0.1358

[ 0.31696 0.44171 0.71758 0.4731

'Y 0.032414 0.428845 0.07558 0.9398

b4 0.546113 0.322382 1.69399 0.0905

0, <0.32248 0.380178 -0.84823 0.3964

6, 0.427863 0.35798 1.19521 0.2322

0, 0.112411 0.414433 0.27124 0.7862

0, 0.39215 0.247707 -1.58311 0.1136

o 0.00017 0.000238 0.71672 0.4737
Log Likelihood 10077.33

Number of QObservations 1594

Estimates of ARIMA(4,4) Model for Daily Futures [Mispricing]

Jan 1990-Jun. 1996

Variable Coefl. Std Error T-Stat P-Value
oo 0.001035 6.85E-05 15.12409 0.0000
) -1.02433 0.241232 -4.24626 0.0000
¢ 0.609138 0.186127 3.2727 0.0011
s 0.825153 0.174006 4.7421 0.0000
ds 0.07179 0.157221 0.45662 0.6480
9, 1.207018 0.242784 497158 0.0000
0- -0.27039 0.233245 -1.15926 0.2465
S B -0.64652 0.124806 -5.18023 0.0000
0, 0.06078 0.131744 0.46135 0.6446
ay -4.6E-05 9.35E-05 0.49275 0.6223

Log Likelihood 10545.37
Number of Observations 1594
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4.2 ARIMA(4,0,4)-GARCH(],]1) Model:

Estimates of ARIMA(4,4)-GARCH(1,1) Model for Daily Futures
Mispricing: Jan. 1990 - Jun. 1996)

Variable Coeff  Std Error T-Stat P-Value
oo 1.78E-06 1.27E-06 1.39993 0.1615
& 2.161 4.50E-02 48.04298 0.0000
& -2.302 9.14E-02 -25.1908 0.0000
& 1.899 9.98E-02 19.02714 0.0000
ds -0.761 4.97E-02 -15.3087 0.0000
6, -1.881 5.56E-02 -33.8546 0.0000
0, 1.958 9.40E-02 20.82581 0.0000
Y -1.596 9.42E-02 -16.9421 0.0000
O, 0.543 4.76E-02 11.41522 0.0000
a, -7.98E-07 1.21E-06 0.65942 0.5096
Bo 8.25E-09 2.17E-09 3.81043 0.0001
B 3.63E-02 4.93E-03 7.37296 0.0000
B2 0.957 4.79E-03 199.6428 0.0000

Log Likelihood 10146.22
Number of Observations 1594

Estimates of ARIMA(4,4)-GARCH(1,1) Model for Daily Futures
[Mispricing| : Jan. 1990 - Jun. 1996)

Variable Coeff Std Error T-Stat P-Value
oo 7.71E-04 1.50E-04 5.15055 0.0000
& -1.882 6.53E-02 -28.8104 0.0000
¢ -0.143 7.90E-02 -1.8158 0.0694
& 1.529 6.79E-02 22.52846 0.0000
s 0.779 $.53E-02 14.08656 0.0000
0, 2.085 6.94E-02 30.03883 0.0000
0, 0.677 0.111 6.12531 0.0000
0, -1.049 9.16E-02 -11.4473 0.0000
0, .63 5.51E-02 -11.4234 0.0000
a -8.99E-05 3.43E-05 -2.61821 0.0088
Bo 4.23E09 1.49E-09 2.83325 0.0046
B 4.61E-02 7.12E-03 6.47506 0.0000
B 0.951 $.46E-03 174.3604 0.0000

Log Likelihood 10602.8
Number of Observations 1594
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4.3 ARIMA(4,0,4)-GJR(1,1) Model:

Estimates of ARIMA(4,4)-GJR(1,1) Model for Daily Futures Mispricing
Jan. 1990 - Jun. 1996

Variable Coeft Std Error T-Stat P-Value
ao 1.77E-06 1.25E-06 1.4207 0.1554
& 2.16 4.58E-02 47.15197 0.0000
& -2.297 9.52E-02 -24.1275 0.0000
& 1.89 0.103 18.30565 0.0000
b4 0.757 $.06E-02 -14.9737 0.0000
0, -1.878 $.61E-02 -33.5006 0.0000
6, 1.95 9.72E-02 20.06335 0.0000
0, -1.585 9.70E-02 -16.3489 0.0000
0, 0.538 4 81E-02 11.17279 0.0000
o -8.42E-07 1.19E-06 -0.71008 04777
Bo 8.51E-09 2.23E-09 3.82477 0.0001
B 2.70E-02 6.71E-03 4.02499 0.0001
B, 0.958 4 91E-03 195.166 0.0000
Bs 1.47E-02 1.09E-02 1.34808 0.1776

Log-Likelihood 10146.74
Number of Observations 1594

Estimates of ARIMA(4,4)-GJR(1,1) Model for Daily Futures
[Mispricing] :Jan. 1990 - Jun. 1996

Variable Coeff Std Ervor T-Stat P-Value
Qo 2.56E-04 2.31E-05 11.11665 0.0000
'Y -1.745 5.89E-03 <296.297 0.0000
¢ 3.44E-02 7.07E-03 4.86694 0.0000
ds 1.663 8.51E-04 1955.327 0.0000
dq 0.847 3.33E-03 254.4402 0.0000
6, 1.86 501E-03 371.2582 0.0000
0. 0.248 2.26E-03 109.4486 0.0000
04 -1.421 9.86E-03 -144.15 0.0000
0, 0.774 8.22E-03 -94.0983 0.0000
a 1.63E-06 1.68E-05 0.09702 0.9227
Bo -9.96E-09 2.22E-09 -4.4831 0.0000
B 4.04E-02 7.09E-03 5.69248 0.0000
B. 0.952 7.53E-03 126.5156 0.0000
Bs 0.118 2.56E-02 4.62509 0.0000

Log-Likelihood 10528.13
Number of Observations 1594
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4.4 ARIMA(4,0 4)- :

Estimates of ARIMA(4,4)-TGARCH(1,1) Mode! for Daily Futures

Mispricing: Jan. 1990-Jun 1996)

Varisble Coeff  Std Error T-Stat P-Value
(V' 5.94E-05 347E0S 1.71385 0.0866

& 0.932 0.558 1.67029 0.0949

¢, 0.718 0.712 -1.00505 0.3149

() 0.328 0.667 0.4911 0.6234

b4 0.315 0.461 0.68369 0.4942

0, -0.659 0.562 -1.1733 0.2407

0. 0.746 0.562 1.3274 0.1844

0, 0.151 0.618 <0.24508 0.8064

0,4 <0.184 0.327 0.56303 0.5734

o, -1.30E-05 3.38E-05 0.38312 0.7016

Po 1.88E-08 7.96E-09 2357713 0.0184

B 3.55E-02 1.01E-02 3.53466 0.0004

B2 0.946 1.47E-02 64.28229 0.0000

d 6.231 0.745 8.36525 0.0000
Log Likelihood 9660.165

Number of Observations 1594

Estimates of ARIMA(4,4)-TGARCH(1,1) Model for Daily Futures
[Mispricing| : Jan. 1990-Jun 1996

Variable Coefl Std Error T-Stat P-Value
g 0.000622 0.000151 4.11025 0.0000
¢ -1.64311 0.230608 -7.12512 0.0000
o 0.038533 0.248544 0.15503 0.8768
b 1.26923 0.195394 6.49574 0.0000
() 0.580684 0.197631 2.93822 0.0033
0, 1.829048 0.23133] 7.90663 0.0000
0, 0.442747 0.294823 1.50174 0.1332
0, -0.85086 0.137915 -6.16944 0.0000
0., 0.45944 0.157516 -2.91675 0.0035
@ «6.3E-05 4.57E-05 -1.3741 0.1694
Bo 4 4E-08 1.3E-08 3.50035 0.0005
B 0.105936 0.0266 3.98249 0.0001
B2 0.815526 0.036903 22.09929 0.0000
d 5.646528 0.486902 11.59684 0.0000

Log Likelihood 10186.91
Number of Observations 1594
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APPENDIX S: RESULTS FOR INTRADAILY MISPRICING SERIES USING

CONTRACTS ROLLED OVER ONE WEEK BEFORE EXPIRATION

1. Q and LM Tests for ARCH Disturbances in Intradaily Futures Mispricing

Q and LM Tests for ARCH Disturbances in Intradaily Futures
Mispricing: Jan. 1990 - Jun. 1996

Order Q Prob>Q LM Prob>LM
1 618.905 0.0001 618.698 0.0001
2 1006.12 0.0001 820.605 0.0001
3 1713.81 0.0001 1216.63 0.0001
4 214425 0.0001 1312.58 0.0001
5 2537.57 0.0001 1389.58 0.0001
6 2855.48 0.0001 1417.72 0.0001
7 3021.01 0.0001 1418.05 0.0001
8 3169.33 0.0001 1419.09 0.0001
9 3310.84 0.0001 1421.69 0.0001
10 3429.54 0.0001 1425.12 0.0001
11 3565.98 0.0001 1436.65 0.0001
12 3685.77 0.0001 1444.14 0.0001

Q and LM Tests for ARCH Disturbances in Intradaily Absolute
Values of Futures Mispricing: Jan. 1990 - Jun. 1996

Order Q Prob>Q LM Prob>LM
1 172.309 0.0001 172.264 0.0001
2 263.654 0.0001 236.002 0.0001
3 519.838 0.0001 433.449 0.0001
4 666.548 0.0001 501.483 0.0001
5 807.785 0.0001 561.836 0.0001
6 941.771 0.0001 603.986 0.0001
7 973.662 0.0001 604.024 0.0001
8 999.988 0.0001 604.082 0.0001
9 1020.41 0.0001 604.117 0.0001
10 1039.08 0.0001 604.581 0.0001
11 1061.63 0.0001 607.179 0.0001
12 1075.82 0.0001 608.258 0.0001

146



2. Models:

Estimates of ARIMA(4,4) Model for Intradaily Futures Mispricing

Variable Coef. Std Error T-Stat P-Value
(o 7 0.000323 0.00017 1.89546 0.0581
& 0.760164 0.17238 4.41057 0.0000
o> 0.376888 0.21142 1.78265 0.0747
& 0.112225 0.202729 0.55357 0.5799
by -0.25759 0.12484 -2.06335 0.0391
6, -0.44436 0.173313 -2.56395 0.0104
0, <0.34857 0.170211 -2.04787 0.0406
0, 0.179 0.180082 <0.994 0.3202
0, 0.102207 0.083576 1.22293 0.2214
o 1) <0.00017 0.000222 0.78413 0.4330

Log Likelihood 73409.699
Number of Observations 11158

Estimates of ARIMA(4,4)-GARCH(1,1) Model for Futures Mispricing

Variable Coefl Std Error T-Stat P-Value
oy 3.44E-06 1.93E-06 1.78556 0.0742
& 0.538 3.89E-02 13.85239 0.0000
$- 0.238 1.56E-02 15.24951 0.0000
s 0877 1.62E-02 54.12171 0.0000
s -0.663 3.79E-02 -17.4913 0.0000
0, -0.208 4.25E-02 -4.90088 0.0000
04 0.138 1.93E-02 <7.14672 0.0000
0, 0.864 1.58E-02 -54.8394 0.0000
0, 0.383 3.38E-02 11.33407 0.0000
a -2.05E-06 2.29E-06 -0.89507 0.3707
Bo -1.31E-09 1.66E-09 -4.39896 0.0000
B 5.92E-02 2.19E-03 27.01488 0.0000
B, 0.928 2.82E-03 329.5084 0.0000
Bs 3.17E-08 1.17E-08 2.71702 0.0066
Be 9.93E-08 6.47E-09 15.35982 0.0000
Bs -1.10E-08 3.21E-09 -3.43468 0.0006

Log Likelihood 74630.77
Number of Observations 11158
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Estimates of ARIMA(44)-GJR(1,1) Model for Futures Mispricing

Variable Coeff Std Error T-Stat P-Value
oo 3.77E-06 1.87E-06 2.01098 0.0443
o 0.714 3.80E-02 18.77387 0.0000
¢ -6.92E-02 2.61E-03 -26.4699 0.0000
'S 1.02 3.14E-03 324.8817 0.0000
b4 0.674 3.75E-02 -17.9745 0.0000
6, <0.382 4.17E-02 -9.17027 0.0000
0, 0.11 7.48E-03 14.65726 0.0000
0, 0.957 1.03E-02 -92.6188 0.0000
0, 0.394 3.36E-02 11.72164 0.0000
a -3.75E-06 2.25E-06 -1.66484 0.0959
Bo -5.76E-09 1.71E-09 -3.37872 0.0007
B 4.95E-02 3.89E-03 12.72962 0.0000
B, 0.923 3.15E-03 293.6044 0.0000
Bi 2.33E-02 4.29E-03 5.42323 0.0000
Bs 2.79E-08 1.22E-08 2.29011 0.0220
Bs 1.02E-07 6.57TE-09 15.46257 0.0000
Bs -1.02E-08 3.24E-09 -3.14345 0.0017

Log Likelihood 74637.007
Number of Observations 11158

Estimates of ARIMA(4,4)-TGARCH(1,1) Model for Futures Mispricing

Variable Coeff  Std Error T-Stat P-Value
o 2.80E-04 7.57E-05 3.69232 0.0002
' 0.492 6.75E-02 7.29515 0.0000
¢ 0.307 1.51E-02 20.38431 0.0000
b 0.909 1.20E-02 75.81915 0.0000
by 0.718 6.96E-02 -10.3127 0.0000
0, 0.215 8.34E-02 -2.57617 0.0100
0- 0.207 2.29E-02 -9.0468 0.0000
0, -0.881 1.30E-02 -67.6402 0.0000
0,4 0.434 7.77E-02 5.58427 0.0000
a -1.54E-04 1.01E-04 -1.52999 0.1260
Bo 1.84E-07 6.22E-08 2.95259 0.0032
B -6.07E-02 8.87E-03 -6.84042 0.0000
B 0.772 1.42E-02 54.4065 0.0000
Bs 1.11E-05 1.37E-06 8.09033 0.0000
Ba 4.67E-06 7.32E07 6.37355 0.0000
Bs 9.25E-06 1.04E-06 8.91024 0.0000
d 14.629 5.812 2.51679 0.0118

Function Value 51988.64
Number of Observations 11158
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APPENDIX 6: INDEX FUTURES MISPRICING SERIES
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* Introduction of SPDRs: Jan.. 29Y. 1993
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Figure 2
* Inroduction of SPDRs: Jan.. 29. 1993.

Daily Mispricing of S&P 500 Index Futures: Jan. 90 - Jun. 96
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Figure 3

* Introduction of SPDRs: Jan. 29, 1993
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Figure 4

* Introduction of SPDRs: Jan. 29, 1993,
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