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Abstract: This paper presents an approach for incorporating reliability on initial 

performance prediction models developed from as little as two time series predictors. It 

employs a novel methodology to provide apparent ages as surrogate of condition and in 

addition applies multilevel Bayesian regression to calibrate mechanistic empirical models 

to local conditions. The paper develops an IRI deterministic performance model for the 

Costa Rica road network and, further shows the procedure for obtaining a probabilistic 

multilevel Bayesian model which includes distributions of the mechanistic parameters 

and confidence intervals for the predicted performance. Bayesian statistics are also 

deployed for calibrating pavement strength coefficients to local observations. 
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INTRODUCTION 

Strategic and long-term planning for sustainable civil infrastructure, including 

pavements and other transportation systems, relies on performance prediction models. 

Investment decisions (such as what budget strategy would sustain the asset value in the 

long run) require the ability to predict future asset conditions under each investment 

strategy. However, despite the maturity of pavement management systems in developed 

countries (such as the US and Canada), good quality data for performance modeling is 

always the biggest challenge in initial implementations of comprehensive asset 

management systems that are capable of full optimization and trade-off analyses. On the 

other hand and, despite the existence of large data depositories and performance models 

in developed countries, no such model have been able to capture uncertainty associated 

with its predictions. 

The objective of this paper is to demonstrate using a case study a modeling 

approach that can be used to estimate performance models capable of accounting for 

uncertainty even in situations where there is very limited historical data available.  

 REVIEW OF PERFORMANCE MODELING 

 Selection of Model Formulation 

 

Performance prediction model formulations are generally classified into two 

categories: deterministic or probabilistic (George et al. 1989, Prozzi and Madanat 2003). 

Deterministic model forms are those that generate a single value of the response variable 

(a performance indicator, output of yield, e.g., International Roughness Index (IRI)) for a 

given set of independent variables (e.g., time, age, traffic loading, usage rate, 

environmental exposure, preservation activity level, etc.). The most common analysis 



technique for deterministic models is the statistical regression analysis. On the other hand 

probabilistic models generate a statistical distribution for the response variable (i.e., 

performance indicator) of any asset. Most common probabilistic models include: Markov 

chain (MC), survivor curves and Bayesian regression. Given the current asset condition 

(state i), the MC technique predicts the future condition of the asset (state j) as probability 

distribution. Bayesian regression modeling was proposed at the end of the nineties (C-

SHRP 1997, Li and Haas 1996). The key advantage of the Bayesian regression model 

formulation is the power to incorporate uncertainty – which is a reality in all design and 

planning processes for transportation infrastructure. The other advantage is the ability to 

rapidly incorporate expert opinions to supplement historical data where quality data is 

unavailable. This paper applied the Multilevel Bayesian Regression formulation because 

of these advantages. The multilevel component of the proposed model becomes natural 

when dealing with families of pavements in order to capture group-characteristics and 

regional differences (Pedigo et al. 1981, Butt et al. 1987). 

The Bayesian Regression Model 

Bayes theorem (Equation 1) is a useful form for combining prior knowledge of certain 

event probabilities with observed data (likelihood) in order to produce an adjusted 

expression of the event probabilistic distribution, called the posterior. According to Hong 

and Prozzi (2006) the denominator (known as the normalization constant) ensures that the 

sum of the probabilities reaches one (100%). Equation 1 is composed of three terms: the 

posterior P(θ/data) which is given in terms of the likelihood of the data given a vector of 

parameters θ, times the prior knowledge P(θ). Choosing the right prior has been a matter 

of debate (Spienhalter and Lunn 2009, Bishop 2006). In general the likelihood is given by 

the available data, and the prior should come from either previous investigations or expert 

criteria. Priors can be informative or non-informative. Non-informative priors are 



preferred whenever little is known about the phenomena under study, although the 

posterior will tend to mimic the likelihood. Informative priors –whenever there is 

sufficient knowledge- will get mixed with the likelihood and most likely produce an 

enhanced posterior distribution. 
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 Simulation for Bayesian Inference 

As explained by Freitas (1999), sampling can be used as a manner of approaching the 

true value of complex integrals (areas under certain probabilistic distribution p(x)) by 

generating random values and counting their frequency within the limits of p(x). 

An alternative to solve complex functions such as the (sometimes intractable) 

integral on the Bayesian theorem denominator is that of sampling. Several techniques for 

sampling have been tested through history, being the most important: rejection sampling, 

importance sampling, sampling importance re-sampling, and Markov Chain Monte Carlo 

(MCMC). The most comprehensive among MCMC is the Metropolis-Hasting and others 

derived from it, such as the particular case of Gibbs sampling (Andrieu et al. 2003). 

According to Gamerman and Lopez (2006), Gibbs sampling is a particular case of 

Metropolis-Hasting for acceptance (A) either 1 or 0. Gibbs sampling is a very attractive 

method of setting up a MCMC algorithm for getting the joint posterior distribution of all 

parameters (causal factors). ―The idea behind Gibbs sampling is that we can set up a 

Markov chain simulation algorithm from the joint posterior distribution by successfully 

simulating individual parameters from the set of p conditional distributions‖ (Albert 

2007). The procedure goes by simulating in turn one value of each individual parameter 

which is called one cycle of Gibbs sampling.  



 

 Multilevel Regression Modeling 

Traditional regression models treat all data as individuals belonging to the same 

population and sharing the same characteristics, therefore, they are said to pool all data 

and obtain values for the regression parameters to produce the best fit to the completed 

pooled model. The most popular approaches for fitting such models are: minimum least 

square distances and maximum likelihood (Bishop 2006). According to Gelman and 

Hill (2007) approaches such as maximum likelihood can work well with ―models with 

few predictors‖ and large datasets. However, perfect separation and/or co-linearity issues 

may arise; producing bad estimation of the regression coefficients because of interactions 

between predictors, hence a non linear transformation (i.e., exponential) is typically used 

to provide such a required separation.   

The use of regression models containing fixed parameters often produce bad fit 

(with high dispersion) translated into unreliable predictions. Rather, the recognition of 

multiple-levels (or hierarchies) allows the experimenter to improve the calibration of the 

regression coefficients. It is equivalent to accept different intercepts and slopes for a 

linear fit. According to Gelman and Hill (2007) multilevel regression models recognize 

such nature by considering that the data is structured within different levels. Bayesian 

multilevel regression models go beyond by returning probabilistic distributions of the 

parameters instead of presuming them being fixed values (Bishop 2006). 

Multilevel Bayesian models not only produce a more efficient inference of the 

regression parameters, but also enhance the overall prediction by borrowing information 

across the groups to improve predictions for those clusters with few data (Spiegelhalter et 

al. 1994, 2002). Figure 1 illustrates four cases of groups with different levels of data and 



how partially pooled regression lines perform better as compared to complete and no-

pooled models. Only observations for the no-pooled model are shown. 

The Bayesian model proposed here assumes model coefficients to be stochastic 

variables and estimates a posterior probabilistic distribution from a combination of expert 

criteria and the observed data. Any Bayesian Regression modeling requires prior 

information for the stochastic nodes (variables). A functional form is used to represent 

the mean, E{*} accompanied by a variance term, VAR{*}. Finally, both elements are 

embedded in a probabilistic distribution (normal in this paper) and a few thousand 

iterations are performed employing a MCMC simulation, which is divided in two steps: 

the first part (known as the ―burn-in‖) consisted of a few thousand iterations conducted 

until the convergence of the model. The second part consisted of some extra few 

thousand more iterations and its results produce the posterior distributions of the 

parameters and the predictive model for pavement deterioration. 

 

Figure 1 Comparison of homogeneous groups with different availability of data 

 



In summary, the use of Multi-level Bayesian regression modeling has several 

advantages: (1) it provides a probabilistic estimation of expected responses (condition) at 

any point in time; (2) it is capable of estimating parameters from observed data (hence the 

ability to re-calibrate the model to local conditions); (3) it is possible to incorporate 

expert criteria; (4) it weighs the expert opinions, knowledge and reasonable expectations 

with observed data to produce a better prediction; and (5) it borrows strength across 

groups in order to improve predictions on those with few observations. 

 

DATA ANALYSIS PROCESS 

 Construction of a Database for the Costa Rica Road Network 

The available information for the Costa Rica road network consisted of linearly 

referenced International Roughness Index (IRI) data and point-data Falling Weight 

Deflectometer (FWD) measurements. Both data sets were collected by the University of 

Costa Rica’s National Laboratory of Materials and Structural Models (LANAMME). 

 Traffic volume data was also available but in non spatial format. Traffic data was 

mostly available in Excel files with values given for some control points along the major 

routes. Traffic data was transformed into single axle loads (ESAL) employing the load 

equivalency factors proposed by the Road Transportation Association of Canada (RTAC 

1986) as exemplified by the Transportation Association of Canada (TAC 1997). Manual 

location of the traffic load (ESALs) across the network was required in this case. Data for 

the international roughness index (IRI) for both 2004 and 2006 was available in 

geospatial format with line segments every 100 m. Data for the pavement structure 

thickness (from coring data) was available every 500 meters. A linearly referenced base 

map was created with segments of pavement every 100 meters containing all data 

merged.  



 Characterization of Traffic Loading  

The truck traffic in Costa Rica consists mainly of 3 to 5 axle trucks and a small 

percentage of buses. The trucking industry in Costa Rica has predominantly relied on pre-

owned trucks imported from North America, mainly the US and Canada. The legal axle 

load limits are also comparable to those in North America although the level of 

enforcement may be much lower. It was therefore justified to use truck factors from 

North America. The truck factors were estimated based on the Transportation Association 

of Canada (TAC) 1986 data. The truck factors adopted were 2.652, 3.027, 4.385 and 

4.445 for 2-, 3-, 4- and 5-axles truck, respectively. The buses were given a truck factor of 

2.5 (Hajek 1995). The average daily truck traffic data were converted into ESALs per 

lane per year by multiplying the truck counts in each lane by the corresponding truck 

factor by class.  

 Pavement Families  

The first step in developing performance models for network-level long-term planning is 

to separate the road network into homogeneous groups of similar characteristics. The 

characteristics of interest here are those that have an effect on the causal variables for the 

performance model such as initial structure, as-built quality, environmental exposure, 

traffic loading and maintenance practice. The concept of similar families of pavements is 

not new; it has been extensively used by others (Pedigo et al. 1981, Li and Haas 1996, 

Mauch and Madanat 2001) to analyze large databases and enhance reliability of the 

performance models.  

The next step is to decide on the causal factors that affect the deterioration process 

that can realistically be included in the performance model. Traffic load intensity has 

been as recognized as the most significant factor affecting pavements deterioration 



(Watanatada 1987). This is especially the case when traffic loads are moderate to high as 

noted in the national road network in Costa Rica. For the purposes of developing initial 

estimates of performance models, availability of network condition data is a critical 

constraint. This is certainly the situation in Costa Rica. In such situations, the decision of 

which causal variable to include or not to include in the model is largely driven by the 

availability of data. This research employs traffic loading and pavement structure as the 

primary causal variables in the performance model.  

Data on material types, soil strength, etc. as well as the region specific 

environmental exposure was not available. The estimated initial performance model used 

only the traffic loading (ESALs) as the key causal factor. In the absence of data on the 

absolute age of assets, the current condition of the asset element (i.e., pavement) was 

used to group the pavements into apparent age groups. The condition classes based on IRI 

were broken at four levels: good, fair, poor and very poor, while traffic load intensity was 

divided into three levels: high, medium and low traffic. With this classification we 

established 12 groups of pavements corresponding to each pair of traffic-apparent age 

level as shown in Table 1.  

Table 1. Summaries of Pavement Groups Assumed Untreated over the Period 2004 

– 2006 

Group 

IRI 2006 

Range 

(m/km) 

Rut depth 

Range 

(mm) 

Condition 

Class 

ESAL / 

year 

(thousands) 

Traffic 

Class 

1 1.0 - 2.8 < 5  Good > 308 3 

2 2.8 – 5.0 5-10  Fair > 308 3 

3 5.0 – 7.0 10- 20 Poor > 308 3 

4  7.0 - 20 > 20 Very Poor > 308 3 

5 1.0 - 2.8 < 5  Good 131 – 308 2 

6 2.8 – 5.0 5-10  Fair 131 – 308 2 

7 5.0 – 7.0 10- 20 Poor 131 – 308 2 

8  7.0 - 20 > 20 Very Poor 131 – 308 2 

9 1.0 - 2.8 < 5  Good < 131 1 

10 2.8 – 5.0 5-10  Fair < 131 1 



11 5.0 – 7.0 10- 20 Poor < 131 1 

12  7.0 - 20 > 20 Very Poor < 131 1 

Key: Traffic classes: 3 = high, 2=medium, 1 = low 

MODEL SPECIFICATION 

 Mechanistic Model for International Roughness Index  

A deterioration performance model for roughness was constructed employing the 

first term of the incremental roughness model as proposed by Watanatada (1987), 

Equation 2 shows such term which was then incorporated as the rate of a linear, 

exponential functional form. A conversion from the old roughness scale of quarter-car 

(QI) into the International roughness index (IRI) was necessary to fit the format of the 

available data (Equation 2). Equation 3 shows the deterministic IRI prediction model in 

the exponential form that (after several trials) was found to better capture the observed 

data. 

 

 














5

023.0

1

134
13

SNCK

ESALe
QI

Age

    [2] 

 

Where; SNCK = 0.0394 (a1H1+a2H2+a3H3) + SG, with a1 to a3 pavement strength 

coefficients, H1 to H3 pavement layer thickness and SG = 3.51 log CBR — 0.85 (log 

CBR)
2
 - 1.43, in which CBR = California Bearing Ratio. ESAL = Equivalent Single Axle 

Loads, Age = number of years since last major rehabilitation, t = time in years 
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The effect of the term Agee 023.0  (which accounts for the elapsed time since the roads last 

rehabilitation, reconstruction, or construction) was left variable under a normal 

distribution ranging from 1 to 2, which corresponds to ages from new to thirty years old. 



As observed in Figure 2 no ages above 20 years old are expected for local pavements in 

the Costa Rica road network.  

Equation 3 was used as the mean expectation of IRI for predicting the 

performance progression of IRI across time. The term in brackets in Equation 3 was 

embedded in a normal distribution for a multilevel Bayesian regression model in order to 

obtain probabilistic distributions of the pavement strength coefficients. The multilevel 

Bayesian model carries computations across groups and returns probabilistic distributions 

of every parameter per group.  

 

 Generating Apparent Ages  

 

The Costa Rica data consist of only two data points along the time axis. In other words, 

the starting model would only have two ordinates making it impossible to establish the 

curvature of performance progression. However, one knows that in any network of assets, 

the condition survey of a given year provides assets in almost all age classes – from very 

young to very old. One also intuitively knows that the age of the asset relates to its 

condition in some fashion. In the absence of the asset age, the condition of the untreated 

asset can be used as a surrogate for its age. The first step in the analysis is to separate out 

those assets that were treated in the 2004 – 2006 time window.  

The remainder of the sections showing an increase in IRI (or rut depth) from 2004 

to 2006 were used to estimate apparent ages for the performance models. The mean 2004 

and 2006 IRI values presented in Table 2 are based on this later subset of the network 

utilized for performance modeling. As expected, the averages of IRI for 2006 were higher 

than those for 2004 for each pavement group. It is worth noting that the starting IRI 

breakpoints between good – fair, fair – poor and, and poor – very poor (i.e., 2.8, 5 and 7, 

respectively) were arbitrarily selected.   



Table 2. Summary of Pavement Groups Mean Condition, 2004 – 2006 

Group 
Traffic 

Class 

Condition 

Class 

Mean 2004 

IRI (m/km) 

Mean 2006 

IRI (m/km) 

Mean 2004 

Rut depth 

(mm) 

Mean 2006 

Rut depth  

(mm) 

1 3 Good 1.93 2.27 2.73 3.43 

2 3 Fair 2.95 3.75 4.39 7.28 

3 3 Poor 4.20 5.97 7.00 14.39 

4 3 Very Poor 5.54 8.76 13.59 20.94 

5 2 Good 1.95 2.25 2.51 3.29 

6 2 Fair 2.98 3.76 4.61 7.21 

7 2 Poor 4.44 5.94 7.59 14.09 

8 2 Very Poor 5.92 9.30 14.06 41.44 

9 1 Good 1.96 2.29 2.05 3.13 

10 1 Fair 3.21 3.89 4.01 7.20 

11 1 Poor 4.61 5.94 6.66 13.91 

12 1 Very Poor 6.53 9.62 15.91 43.65 

Key: Traffic classes: 3 = high; 2=medium; and 1 = low. 

According to TAC (1997) minimum values of IRI for new pavements may be as 

low as 1 m/km, while maximum values for damaged pavements can be expected to 

approach 12 m/km. Hence, an IRI apparent age scale with new pavements starting at 1.5 

m/km was established (this assumed intercept will be later adjusted by the Bayesian 

regression model). Maximum apparent age was determined by the fitting technique 

subsequently explained.  

The procedure starts by assuming an apparent age )( 1AGE of zero for the first IRI 

breakpoint )( 1BP of 1.5 (m/km). This arbitrary assumption can be changed as needed. 

Secondly, the apparent age )( 1AGE  for the first pair of average good IRI points 

(
GoodGood

20062004 ,  ) was determined by finding the value of age of the second break point 

)( 2AGE  that achieve the objective of separating the first pair of average IRI points 

(
GoodGood

20062004 ,  ) by a distance of 2 years (because of the time elapsed between condition 

surveys). The apparent age )( 3AGE for the third breakpoint )( 3BP  use the just 



established apparent-age of the second breakpoint )( 2AGE  and find the value of the 

corresponding age of the third break-point )( 3AGE that achieves a distance of 2 years 

between the second pair of average fair IRI points (
FAIRFAIR

20062004 ,  ). This procedure 

continues in this fashion using the Poor and Very Poor pairs of average condition until all 

apparent ages have been established. Equation 4 was used for finding the apparent-age of 

each brake point and then it was modified to obtain Equation 5, which is an expression to 

obtain the individual values of age of each pair of average IRI points. Figure 3 shows the 

deterministic performance model final results. 
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where, BPj = break point of group j; AGEt= apparent age of the group in year t; and 2004 

= the mean condition (IRI) of the group in year 2004. Apparent ages for the break points 

of the traffic intensity groups were used as a basis to assign apparent ages for the entire 

database of observations. A direct formulation given by Equation 6 facilitates the direct 

computation of apparent ages for every observation 
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In Equation 6 the variable x represents individual observations of IRI values at 

certain point in time. Figure 2 shows a scatter plot graph of IRI observations (from the 

high traffic class) versus apparent ages and, classical best fit exponential line trend; 

models for the medium and low traffic categories can be developed similarly, rather this 

research builds a multilevel Bayesian model –as presented below- from the basis of the 



deterministic case. As demonstrated by Amador and Mrawira (2008) lifespan of roads in 

Costa Rica are not expected to overpass 20 years (see also Figure 3) 

 

Figure 2 Progression of IRI versus apparent ages for high intensity of traffic loading 

 

Figure 3 Deterministic IRI versus apparent age by traffic intensity 



 

 Multilevel Bayesian Regression Modeling for Costa Rica 

 

Regular Bayesian models contain several terms; (1) the mean expectation of the response 

and (2) the variability represented by the standard deviation or the precision (square 

inverse of the standard deviation), (3) the prior believes, (4) probabilistic distributions of 

the parameters and some initial guess or starting point for the parameter values and (5) 

the observed data 

A multilevel probabilistic model contains –on top of the aforementioned- the 

assumption of probabilistic distributions for every parameter per class or group of which 

it depends. Two separate multilevel models were analyzed: (a) one for estimating the 

pavement layer strength coefficients and (b) another one for producing the probabilistic 

performance deterioration. Both for the international roughness index (IRI). Models as 

the herein presented can be extended to rut depth or other condition indicators. 

The IRI model introduced by Equation 3 corresponds to a complete pooled data 

model which disregards traffic intensity, environmental zones, and any other criteria for 

creating families of pavements or homogeneous groups. Therefore a multi-level model 

considering traffic intensity (the only available criteria) was developed. Such a model 

was expected to produce three IRI performance models.  

Hence, the model presented by Equation 3 was used as the mean expectation for 

IRI which was accompanied by an expression for precision. As aforementioned one can 

study the complete pooled data model: where no consideration to group level parameters 

is done, the no-pooled data: where effects amidst groups are neglected, or the partially 

pooled group where a multilevel structure (nested or not) is set in place.  

Results were summarized into 2 parameters for easy comparison: initial IRI was 

summarized by β, an stochastic node with a normal distribution N(1.5,1) which allow it to 



fluctuate between 1 and 2. The β parameter is thought to be strongly related to the as-

built quality. Another parameter α was introduced for capturing the rate of deterioration 

on the power of the exponential. This model produces part of the results discussed in the 

next section. 

Another model was developed to tackle the issue that the pavement strength 

coefficients (a1, a2, and a3) were unknown. This model estimates them from local 

observations. Hence, each layer coefficient was given normal probabilistic distributions. 

Because these coefficients may respond differently according to the type of material, a 

non-nested multilevel model was used to estimate coefficients per type of material in both 

the surface structure a1 and the base a2. Table 3 presents the grouping categories. The 

type of subgrade material was so extent that it would have required an enormous effort to 

create tens of group categories for a coefficient whose contribution in the overall 

pavement structure is very limited. It is worth noticing that the information regarding 

types of subgrade-soil may have been used in other groups for determining the 

contribution of the subgrade in the modified structural number (SNCK), however it was 

held constant at a value of 1.6 that corresponds to a CBR of 30% which is typical for soils 

in Costa Rica (Bogantes 1999). This assumption does not contribute substantially to the 

final result because this term plays a minor role with a theoretical maximum value of 2.1. 

Table 3. Levels for Surface and Base Layer Types 

Pavement  surface class a1 

AC 1 0.2 to 0.45 

ST 2 0.2 to 0.40 

BASE Base class a2 

GRAVEL 1 0.07 to 0.14 

Stabilized 2 0.1 to 0.24 

AC.MIX 3 0.2 to 0.32 

Key: AC=Asphalt Pavement, ST = Surface Treatment, AC.MIX= Full Depth Asphalt Mix 

 



 RESULTS AND DISCUSSION 

The software suite WinBUGS (Lunn et al. 2000) was employed for running multilevel 

Bayesian regression modeling. Results from two main models are presented below, and 

as mentioned before, they were intended for: (1) calibration of pavement layer strength 

coefficients from local observations, (2) production of probabilistic performance models 

per traffic intensity group.  

Calibration of Pavement Layer Strength coefficients 

 

The estimation of pavement layers structural coefficients from the data was 

equivalent to calibrate the model to local conditions. Equation 2 was used for this 

purpose. The software used such equation as the mean response of the differential IRI and 

by processing a sample of 4500 data points (and running 120,000 samples) the model 

produced the probabilistic distributions of the pavement layer strength coefficients (a1, a2, 

a3) per type of material shown on Table 4. 

 

Table 4. Probabilistic distributions of pavement strength coefficients  
Node mean sd MC error 0.0250 median 0.9750 start sample 

a1[1] 0.3304 0.0604 3.97E-04 0.2123 0.3300 0.4482 20000 120002 

a1[2] 0.3298 0.0608 4.06E-04 0.2110 0.3297 0.4484 20000 120002 

a2[1] 0.1990 0.0604 3.90E-04 0.0798 0.1996 0.3158 20000 120002 

a2[2] 0.1990 0.0598 4.08E-04 0.0818 0.1987 0.3166 20000 120002 

a2[3] 0.1999 0.0599 3.79E-04 0.0835 0.2005 0.3172 20000 120002 

a3[1] 0.1000 0.0201 1.34E-04 0.0604 0.0999 0.1392 20000 120002 

a3[2] 0.0999 0.0199 1.25E-04 0.0604 0.1000 0.1388 20000 120002 

a3[3] 0.0999 0.0200 1.30E-04 0.0604 0.0998 0.1390 20000 120002 

KEY INDEXING a[b]: a=layer (1=asphalt, 2=base, 3=subbasel), b=material type, 

for a1 (1 =asphalt cement, 2=surface treatment), for a2 (1=gravel, 2=stabilized 

base, 3=Full depth asphalt mix) and, for a3 (1=stabilized, 2=gravel, 3=soil) 

 

 

Results from Table 4 show that it is not possible to observe differences by material type 

when estimating values of the pavement layer strength coefficients. Hence, one can 

assume –for this case- that values of the coefficients do not vary by material type.  Values 



of coefficient a1, reflect a distribution centered on 0.330 with a 95% confidence that 

values of this coefficients vary from 0.211 to 0.448. The coefficient for the base layer (a2) 

has a mean expectation of 0.199; its values may range from 0.08 to 0.31 with a 95% 

confidence and, the strength of the sub-base (a3) can be expected to range from 0.0604 to 

0.139 for the same confidence. These values reflect characteristics of local materials 

estimated from the observed data. 

Producing probabilistic performance models per traffic intensity group 

 

Two different approaches were utilized to produce performance models per traffic 

intensity: (1) Independent Bayesian models (i.e., no-pooled data) per traffic intensity 

group and, (2) Multilevel (i.e., partial-pool) Bayesian Regression model, which estimates 

group level parameters while considering interactions between groups. 

 

Results from Independent Bayesian Models  

Because the independent Bayesian model (i.e., no-pooled data model) is equivalent to 

analyze individual groups without considering cross interactions, individual results of it 

were used to establish a base case as presented in Table 6. Estimated probabilistic 

distributions for the intercept β and the estimated rate α for the high traffic class are 

presented by Figure 4.  

 

Figure 4 Probabilistic distributions of parameters α and β on High traffic class 

 
 



The intercept mean expectation was found to be located at a value of (initial as-

built quality of IRI) 1.626 m/km with a very narrow range of variation ranging from 

1.544 to 1.712 for the 95% confidence interval. Results of the IRI’s rate of deterioration 

showed a mean value of 0.0855, also with a very narrow variation for the 95% confidence 

interval ranging from 0.0803 to 0.0884. Chains were found to have good convergence 

and mixture after 10,000 samples even though they depart from dissimilar points (Figure 

5). 

 

Figure 5 Chains Convergence for parameter α and β on the high traffic class 

 

Comparison of traffic classes for the complete-pooled models presents unexpected 

trends with higher deterioration rates for lower exposure to traffic; this can be explained 

in part because of the decrease in the intercept of the models but mostly because of the 

lack of consideration of how the data obey to a structure with traffic classes. Also 

because the Break Points used to generate pairs of apparent age – IRI values constrained 

the levels of age-IRI pairs to be confined below the corresponding break point, creating 

flat platoons at every break point level as one can observe in Figure 2. This situation 



effectively affects the fitting process returning an exponential curvature that tries to 

adjust to the observations but fails to recognize the existence of traffic classes.  

 

Results from multilevel model  

Results from the multilevel model provided a better estimation of the parameters. The as-

built and rate of deterioration for the low and medium traffic intensity groups were the 

same, though the high traffic intensity group presented a higher rate of deterioration and a 

higher initial value (intercept) which corresponded to reasonable expectations.  

 

Table 5. Value of Parameters for the partial-pooled model 

Node mean sd MC error 2.50% median 97.50% 

alpha[1] 0.07998 0.009926 1.03E-04 0.06035 0.08008 0.09906 

alpha[2] 0.08003 0.01002 1.01E-04 0.06047 0.07998 0.09949 

alpha[3] 0.08435 0.001233 7.85E-05 0.08185 0.08441 0.08657 

beta[1] 1.4 0.2481 0.002603 0.9092 1.401 1.882 

beta[2] 1.398 0.2509 0.002278 0.9067 1.399 1.889 

beta[3] 1.627 0.02675 0.001648 1.579 1.626 1.681 

 

Comparison of Results 

 

Table 6 compares the no-pooled model base case per traffic class with the multilevel 

model. As seen models from low and medium traffic intensity can be merged into one 

category, this confirms preliminary observations from the deterministic performance 

model on Figure 3. 

Table 6. Comparison of Values of parameters for the no-pooled and multilevel 

models 

Parameter / 
Traffic 
Class 

Base Case: No-pooled Model Multilevel (partial-pooled model) 

Low Medium High Low Medium High 

α 0.0843 0.0960 0.1083 0.0798 0.0800 0.0844 

β 1.628 1.269 1.110 1.400 1.400 1.627 
 

 



 

Figure 6 presents an example of a deterministic performance model for the low 

traffic intensity class; enveloping curves for the 95% confidence interval demonstrate the 

model capability to capture associated uncertainty. A similar model can be prepare for the 

high traffic intensity class. 

 

Figure 6 Deterioration model with variability for 95% confidence interval 

 

CONCLUSIONS  

This paper has presented an approach for developing reliable performance 

prediction modeling in the presence of limited historical data. Information from condition 

surveys conducted at only two different times were used for this task. The pavement 

deterioration mechanistic model suggested by the World Bank with international 

roughness index (IRI) as the response in terms of traffic loading (ESALS) and pavement 

strength (thickness) was  modified for such purpose. However, the development of a 



novel approach to provide ―age‖ to the condition observations was required. Hence, the 

use of an apparent age as a surrogate for the current level of condition was a key 

component for developing an initial performance curve. Therefore, the next step was to 

develop a multilevel Bayesian regression modeling which extends that initial model to 

account for reliability in the prediction. The case study of the Costa Rica network 

demonstrated that it is possible to create a performance model from only two time steps 

of historical observations of the causal factors.  

Moreover this Bayesian regression model was used to calibrate several 

mechanistic model parameters at once, unlike inefficient traditional approaches when 

calibrations are done one at a time by fixing the rest of the model parameters. It was 

demonstrated that Bayesian regression modeling is capable of estimating the AASHTO 

pavement layer coefficients for the Costa Rica road network. Values of structural layer 

coefficient for the surface layer (a1) reflect a distribution centered at 0.330 with a 95% 

confidence that ranges from 0.211 to 0.448. The structural coefficient for the base layer 

(a2) has a mean of 0.199 and values varying from 0.08 to 0.310 for a 95% confidence 

interval. The AASHTO layer coefficient strength of the sub-base (a3) was found to range 

from 0.060 to 0.139 at 95% confidence with a mean of 0.099. 

 

Multilevel modeling proved to take into consideration the way in which data is 

structured and interrelated, delivering better estimation of the parameters and therefore 

improving the reliability of the performance model.  
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