-

National Library
of Canada

Biblioth
du Canada

nationale

Canadian Theses Service Service des théses canadiennsas

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
guality of the original thesis submitted for microfilming.

very effort has beenmade to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some Pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (r.88/04)c

AVIS

La qualité de cette microforme dépend grandement de la

qualité de la thése soumise au microfilmage. Nous avons

:put fait pour assurer une qualité supérieure de reproduc-
ion.

S'il manque des pages, veuillez communiquer avec
Funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées A l'aide d'un ruban usé ou si f'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise A la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

e T e e

S T T T e

Machine Learning of Logical Inference Rules

Michael Assels

A Thesis
in
The Department
of
Computer Science
Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at

Concordia University
Montréal, Québec, Canada

April 1991

©Michael Assels, 1991

i+

National Library Bibliothéque nationale

of Canada du Canada

Canadian Theses Service Service des théses canadiennes
Ottawa, Canada

K1A ONd¢

The author has granted an itrevocable non-
exclusive licence alloving the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irévocable et
non exclusive permettant a la Bibliothdque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a (a disposition des personnes
intéressées.

Lauteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent é&tre

imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-64704-3

Canadi

ABSTRACT

Machine Learning of Logical Inference Rules

Michael Assels

We develop a “neural network” method for learning logical inference rules, using
a technique closely related to Pao’s functional extension of pattern vectors.

We consider logical inference in a purely syntactical way as a two-step process:
structural pattern recognition and classification, followed by vector transformation.
Propositions are represented as vectors of integers, functionally extended in the
manner of Pao. We show how a flat neural network consisting of linear thresh-
old units, using a simple and strictly local learning rule, can learn to distinguish
between suitable and unsuitable premises for any propositional inference rule and
to infer the correct conclusion for most propositional rules — the exceptions being
the conjunction and addition rules. A simulator has been written which builds and
trains a collection of such networks, and uses them successfully to construct direct

proofs.

il

s

M

R Sl o)

Aol

- - i SR LU

Dedication

To Irene

OdlarTa! OalarTal

- Xenophon, The Anabasis

iv

Contents

1 Introduction 1
11 TheProbleminBrief 1

1.2 An Important Disclaimer 3

2 Background Work 5
2.1 The Delta Rule and Backpropagation 5
2.2 Adaptive Resonance Theory 7
2.3 The Functional Link Net 11
2.4 Neoral Networksand Logic. 16

3 Neural Network Architecture for Inference Learning 17
3.1 Input Units, Qutput Units, and the Bad Flag 17
3.2 The Vector Representation of Propositions 20
3.2.1 Thebasicvector, 21

322 Theextendedvector o.o... 23

33 Network Training 24
3.3.1 The “lecture” learningphase 26

3.3.2 The “lab” learningphase 29

34 UnlearnableRules., 30

4 Conclusion and Discussion

4.1 Another Possible Approach

A The Simulator Code

B Some Simulator Proofs

3.5 TheSimulator @ i i v it it e et e et e e e e e

vi

35

36

42

84

List of Figures

2.1

2.2

3.1

3.2

3.3

An ART1 architecture. Top-down and bottom-up LTM connections
are shown only for one node in each direction.

Flat network with single output unit

Network for learning an arbitrary inference rule (external control sig-
nalsomitted) o
The simulated architecture with local “reset”

The simulated architecture with global control instead of “reset”

vii

8

List of Tables

4.1 Error frequencies for a flat network

viii

Chapter 1

Introduction

1.1 The Problem in Brief

Consider the following inferences:

1. It’s raining, and if it’s raining then the streets are wet. Therefore the streets

are wet.
2. It’s snowing, and if it's snowing then it’s not July. Therefore it's not July.

3. It’s sunny, and if it’s sunny then the sky is blue. Therefore the sky is blue.

These inferences clearly share a common pattern, and it is this common pattern
that is the essence of an inference rule — Modus Ponens in this case. The Modus

Ponens rule is traditionally represented as a template to be matched:

PA(PDQ)
Q

The three inferences fit the template in the appropriate way — each is a substitution

(1.1)

instance of the template — so they are justified by it; i.e., if Modus Ponens is a
valid rule then these are valid inferences. This kind of pattern matching is well

understood, and forms the basis of programming languages such as Lisp and Prolog.

This is easy enough if the template is given, with certain symbols clearly marked
as variables to be instantiated, and others as logical constants. But what happens if
we approach from the other direction? Suppose we are given a collection of concrete
inferences and we are required to abstract a rule from the inferences. How is this
done? In particular, how can it be done by a “neural network” with no built-in
inference rules, and with no built-in semantics?

In this work we will look at propositions as concrete patterns, devoid of any

meaning whatever, and we will look at inference as consisting of two steps:

1. A pattern classification process in which it is verified that the input pattern

— the premise — has the correct structure, and

2. A pattern transformation process in which an output pattern — the conclusion

— is generated from the input.

We will discuss some difficulties associated with some known neural network
techniques, and then show how an important class of inference rules can be learned
by a neural network with a very simple two-layer architecture, using entirely local
learning and activation rules. The locality of rules is important in two respects:
First, neural networks are intended to be construed as networks of simple and inde-
pendent parallel processors, operating without global control. Local rules have the
advantage of minimizing communication traffic by requiring communication only
among immediate neighbors.

We have implemented a simulation of this network. Its code is listed in Appendix

A, and some sample deductions are shown in Appendix B.

1.2 An Important Disclaimer

Where neural networks are concerned, it is always important to stake out one’s
ground carefully. In particular, one must be state clearly whether one is doing
psychology or computer science, since work that is useful in one area is often of
little value in the other. The earliest work in the field (McCulloch and Pitts, [13])
was openly and unashamedly an attempt to provide a mathematical formalism for
the description of biological neurons, and its authors had no claims to make about
such issues as industrial applications or efficiency. They were doing theoretical work
in the cause of an empirical science, so the value of their work is to be judged on
the basis of its success or failure as a modeling tool for neurologists.

On the other hand, the backpropagation (BP) technique of Rumelhart, Hinton
and Williams (17], has enjoyed considerable success in many applications, but it is
open to serious challenge on at least three grounds if it is held out as a plausible
model of biological processes:

First, BP’s learning rule may be spatially local, but it is temporally non-local.
The modification Aw;; of the connection strength between two processing elements
and j which occurs as a consequence of the activity of 7 and j is not computable im-
mediately following that activity (unless j is an output unit); the computation must
be deferred until the completion of analogous updates for all processing elements
lying between j and the output layer.

Second, the BP algorithm requires the computation and propagation of error
signals through the network. Grossberg [5] observes that the backward pass of the

BP algorithm can have no plausible physical instantiation in the brain; it would

require a duplicate nervous system, operating in reverse, to transport error signals
through the network. Schmidhuber [19] argues that a mechanism can be postulated
to avoid this problem, but even with this addition, BP would too complex to be
plausible as a neurological hypothesis.

Third, BP is a form of supervised learning whose “teacher” can have no place in
a model of genuine biological neurons. For each processing element 7 in the output
layer, the teacher must compare i's actual output o; with its target output ¢;, and
compute an error signal §; which is a function of the difference ¢; — o; and the first
derivative of the activation function of element i. This is obviously a nontrivial
computation, and it is not credible that it could be accomplished by element 7 itself,
simply upon being presented with the target ¢;. If BP is to be taken seriously as a
biological model, some physical mechanism must be postulated to play the role of
teacher.

We explicitly disavow any claim that the neural network architecture presented
here represents any structure in a human brain. On the contrary, what is presented
here is concerned only with syntactical manipulation, and it seems to us highly
unlikely that human reasoning is fundamentally syntactical. Johnson-Laird [7], and
Johnson-Laird, Byrne and Tabossi [8] offer persuasive arguments to suggest that
what goes on in natural reasoning has more to do with model-building or semantic
inference than with syntactical manipulation of propositional symbols. The models
of Grossberg [5], Carpenter and Grossberg, [2], [3], and Kohonen [10] are possible
candidates for psychological reality, but ours is not. Qur metivation is simply to
investigate the possiblity of machine learning of inference rules with a local learning

rule.

Chapter 2
Background Work

In this chapter we examine some neural network techniques that are relevant to
our approach: backpropagation, adaptive resonance, and the functional link net-
work. There are numerous other architectures that present interesting possibilities,
especially Kohonen’s “seif-organizing feature maps” ([10]) and Kosko’s “adaptive
bidirectional associative memory” ([11]), but we have limited ourselves to these

three.
2.1 The Delta Rule and Backpropagation

The “perceptron,” a single-layer network of linear threshold units (Rosenblatt {16]),
was an early machine learning architecture that used the “delta rule” for modifying
the weight w;; of a connection between an input unit i and with output o; and an

output unit j with output o; when the target output of j was t;:

Aw;; = n(t; - 0j)o; (2.1)

where 7 is the learning rate — a constant. In 1969, Minsky and Papert [14] showed
that certain simple problems were inherently insoluble by perceptrons. The classical

example of a perceptron-uncomputable function is the XOR function of two binary

5

S VRN e TR

et SR

inputs. These functions can, in principle, be computed by multi-layered perceptrons,
but no general .lea,rning rule exists for these networks.

In 1985, Rumelhart, Hinton and Williams [17] showed that it is possible to for-
mulate a general learning rule for multi-layered networks of semi-linear threshold
units (i.e., threshold units with differentiable and nondecreasing activation func-
tions). This rule, called the generalized delta rule, minimizes the error (in the sense
of least squares) at the output layer by performing gradient descent on the error

surface in weight space, and is given by

Aw;; = nb;o; (2.2)

where §; is the error signal at unit j, given by

(5 0iwi; + 6;)(t; — 0;) if 7 is an output unit
b; = (2.3)

FI(Zioiwi; + 0;) Tk bxwjx otherwise

where f’ is the first derivative of the semilinear activation function f, tjis the desired
output of unit j, o; is the actual output of unit j, and §; is the threshold of unit j.

A commonly used activation function is

1

0; = f(;oewej +0;) = 14 o= (5, 0i; +6,) (2.4)
The first derivative of this function is
f’(z o;w;; + 0,-) = Oj(l - 0_.,') (2.5)

Substituting equation (2.5) in equation (2.3), we get

0;(1 — 0;)(t; — 0;) if j is an output unit
6 = (2.6)
0j(1 — 0;) T bxwjx otherwise

From equations 2.2 and 2.6, it is evident that the Aw;, are recursively com-
putable, beginning from the output layer. This is the basis of the well-known back-
propagation technique in which activation is propagated in a forward pass, and the
error signal used for weight adjustment is propagated in a separate backward pass.

Backpropagation networks are generally capable of a settling into a weight as-
signment which minimizes the average error of the network’s output as against the
target, and this is indeed a highly desirable property, but there is a price paid: As
mentioned in the introduction, backpropagation is temporally nonlocal, requiring a
great deal of communication traffic within the network at training time to pass error
signals from the output layer to the input layer. Moreover, for each layer in the net

there is a propagation delay, and it would be desirable to eliminate this if possible.
2.2 Adaptive Resonance Theory

The work of Grossberg and Carpenter on Adaptive Resonance Theory (ART) follows
an entirely different strategy. ART networks are unsupervised; i.e., the model does
not require a teacher to present “correct” patterns. On the contrary, the notion of
correctness plays no real part in the model; the dominant concept is similarity. An
ART network learns to classify patterns according to their resemblance to previously
presented patterns.

Figure 2.2 shows an ART1 architecture, which is significantly simpler than its
ART?2 counterpart, but classifies only binary-valued patterns. Broad white arrows

indicate excitatory connections, striped arrows indicate inhibitory connections, the

Orienting
subsystem

Figure 2.1: An ART1 architecture. Top-down and bottom-up LTM connections are
shown only for one node in each direction.

“reset” connection enduringly inhibits all active F2 nodes. A rough sketch of the

model’s behavior follows:

1. A pattern is presented at the input “bus,” exciting the corresponding STM
nodes in F1, as well as the gain control units and the orienting subsystem
(whose internal details we can ignore). All of the F1 units also receive exci-

tation from gain control (G1). STM units, in both F1 and F2, obey a “2/3

Rule”: They become active if, and only if, they receive excitatory input from

R =

two sources. In the present case, this means that F1 nodes copy the input

pattern.

2. The activity in F1 inhibits the “orienting subsystem” A, counterbalancing the

excitation of it receives from the input and effectively preventing a reset signal.

At the same time, F'1 stimulates F2 by way of the bottom-up LTM counections.

. F2 nodes compete amongst themselves by means of mutual inhibition (not
shown in Fig. 2.2) until only one — the one that received the greatest net
excitation from F1 — remains active. This node represents the class to which
the input pattern has been tentatively assigned, subject to verification in sub-

sequent steps.

. The active F2 node, say [, stimulates an F1 node, say ¢, in proportion to the
strength of the top-down LTM connection #;; between them. The top-down
LTM connections from ! to the nodes of F1 constitute a “template” pattern
for node I. Because the gain control unit G1 is inhibited by I, the 2/3 Rule
ensures that an F1 node, say j, will be active if, and only if, it represent a

feature that is present in both the input pattern and node I’s template pattern.

. Some number é§ (possibly zero) F1 nodes will be turned off by the top-down
template, and the inhibitory signal to the orienting subsystem A will be re-
duced by an amount proportional to 6. Note that § is the Hamming distance

between the input vector and the top-down template.

. If § < p, where p is an arbitrary “vigilance” parameter representing a threshold
for the orienting subsystem A, then A will remain inactive. In this case,
equilibrium has been reached, and the system resonates in its current state
until the input pattern is removed. During this period, both the top-down and
the bottom-up LTM connections learn quickly, effectively adding the current
input pattern to the class recognized by node I, and slightly altering the top-

down template for [so as to reflect the new influence of the current pattern.

9

7. If § > p, then A is activated, and a “reset” signal is sent to F2. This is an
enduring inhibitory stimulus that affects only the active node of F2 — in this
case, |. The effect is to turn [off, and keep it off for a relatively long time.
This extinguishes both the top-down template from ! and the inhibition of
G1, thus allowing the reestablishment of the input pattern in F1. The process
returns to step 2, and continues until an equilibrium is reached, possibly by
creating a new recognition class for the present input pattern alone, if no

suitable template is generated by any of the committed nodes of F2.

Given that our problem is at least partly a pattern classification problem, it
might seem at first as though an ART network would be an appropriate choice.
Unfortunately, there is a problem here. ART networks learn to group patterns
together into clusters whose members are all similar. But what does similar mean?
Inevitably, it means “within p distance units of the top-down template,” where
p is the vigilance parameter. In the case of ART1, described above, distance is
the Hamming distance; in ART2 it can be, e.g., the Euclidean distance. In any
case, ART nets will depend implicitly on some metric as the classification criterion
for patterns. Moreover, the metric must be built-in rather that learned, since the
classification decision is effectively made at A, based on signals received along non-
LTM paths from F1 and from input.

For many pattern classification purposes this may well be quite adequate, but
for classifying premises according to applicable inference rules, it is not. Consider

the premises

1. (ADB)AA

10

2.(PDoQAP

w

. ((AVP)D(QAB)A(AVP)

4. (ADB)AB

5 (P>Q)vVvP

6. (AVP)D(QAB))A((AVP)D(Q A B)).

Is there a metric that will allow us to classify 1, 2, and 3 in a cluster that does not
contain any of 4, 5, and 67 The question is perhaps premature, because we have
not yet settled on any particular vector representation of propositions, but we may
at least say that it will be a formidable task to find a metric that puts 1 closer to 3
than to 4.

Moreover, distancr . ns an inappropriate concept where inference is concerned.
A proposition is or is not correct as a premise for a given rule, so distance from a
cluster center ought not to be significant. Instead of a distance metric, what we
really need is a structural identity criterion for propositions that is implicit in their
representation; i.e., we need a representation for propositions that carries with it a
simple indication of the proposition’s structure, such that a network can compare
the structure with a template and determine whether they are identical. Such a
representation can be obtained by extending a basic vector representation to express

“higher order” information about the proposition.
2.3 The Functional Link Net

The idea of extending a basic vector is due to Pao and Klassen [15] [9], and is

supported by the work of Sobajic [20], who showed that the difficulties exposed by

1l

x1 X2 xa Xn

Figure 2.2: Flat network with single output unit

Minsky and Papert [14] could be overcome in a flat network whose input nodes
were “functionally extended” so as to increase the dimensionality of the pattern.
Consider a set of P independent patterns, each with N features. Let each pattern
#1) be associated with a singie value y(¥). The task is to train a flat network like the
one shown in figure 2.2 to produce the output y(*) when presented with the input
0,

For simplicity, we assurne that the input units are simply placeholders (i.e., their
output is identical to their ‘uput), and that the output unit has the linear activation

function

12

N
Y= zwi (2.7)

i=1

Then our problem is to find values for the w; such that

&
yM = Zwixi

i=]

N
y@ = Zwezgz)

=1

N
y® = Y wil?

=1

This is essentially the problem of solving the linear matrix equation

:cgl) oo g® w; y)
: .o = (2.8)
P ... o w, y(P)
or more briefly
Xw =7 (2.9)

Solving for 0 is trivial when P < N. The case where P > N is both more
interesting and more likely to arise in a real pattern recognition context. In this
case, we can increase the number of input nodes in the network by P — N, and
present not just the original pattern vectors #{¥), but vectors of size P consisting
of #) and P — N orthogonal functions of the elements of #?). (The orthogonal
functions can be taken from the Fourier expansion, for example.) Then we solve a

new equation

13

Xextu';ext = 37 (2-10)

for wey¢. In this equation, Xext has dimensionality P x P, eyt has dimensionality

P x 1, and § has dimensionality P x 1, so

Wext = Xé-;tg‘- (2.11)

Since equation 2.11 is a linear matrix equation, it’s solution can be found by
a flat network, similar to the network of figure 2.2, but with more input nodes.
Moreover, this result is quite general: Anything that can be learned by a multilayer
network using the generalized delta rule of equation 2.2 can, in principle, be learned
a flat network with functional extension of the input vectors. In practice, however,
it is unreasonable to follow this method strictly. In most interesting cases, there
will be many more patterns (P) than features (N), or perhaps an indefinite number
of patterns, so the addition of P — N functions to each input vector will be either
too expensive or impossible. The practical approach is to compromise: Use data
compression techniques where possible to reduce P; extend the input vectors by
fewer than P — N functions, and settle for a “best fit” solution instead of an exact
solution.

As an example of suitable functional extensions, Pao takes the vector “outer
product”, in which each pair of elements of the vector is multiplied together. This

can be iterated as often as seems appropriate. Thus, for an original pattern vector

[31, T2, 333],

a fully extended vector after one iteration would be

14

[331, g, T3,T1T1, 122, T1Z3, T2T1. T222, T2T3, T3T1, T3T2, -'03333]-

We can remove those vector elements with repeated subscripts, and since multi-
plication is commutative, we can immediately eliminate obvious redundancies to

maintain a manageable vector size:

[-’L‘l, T2.T3,T1T2, X173, 1721‘3]-

In a typical pattern recognition context, we might further reduce the size of the
vector by using straightforward statistical methods to weed out higher-order features
that are uncorrelated with the target outputs.

The advantages of the fun:tional link net over standard backpropagation (BP)

are fairly clear:

1. Reduced learning time: In effect, the BP net’s hidden nodes must learn to

compute the functions that the functional link net takes as input.

2. Reduced network size: If a net has M inputs and N outputs, then adding one
hidden node adds M + N weights, whereas adding one input node adds only

M weights.

3. Reduced complexity: Since functional link nets are flat, they can be trained
using the delta rule of equation 2.1 rather than the generalized delta rule of
equation 2.2, which is required for BP. This makes coding easier, and may

even strengthen the claim to biological plausibility.

There is one main drawback to the function link approach: It's cheating! In

reality, only the easiest aspect of the learning problem is being learned. The rest —

15

the part that requires hidden layers in BP nets — is handled algorithmically by the
preprocessing that computes the functions that extend the input vector. Of course,
if the objective is pattern recognition, then cheating of this kind is to be encouraged;
nothing in the rules of the pattern recognition game requires that problems be solved
by learning. Our objective is different, however: We are interested in learning per

se, and wish to avoid “hard-wired” computation wherever possible.
2.4 Neural Networks and Logic

Some attention has been paid in the literature to issues relating neural nets and logic.
For example, Ballard and Hayes [1] looked at unification in neural networks, using a
local representation; Touretzky and Hinton [21] presented a distributed architecture
capable of performing rudimentary inferences on clauses possibly containing a single
variable 1n a fixed position. (Both of these studies used built-in inference rules.)
Williams [22] studied the logical aspects of activation functions. There does not

seem to be much literature on the learning of inference rules.

16

Chapter 3

Neural Network Architecture for
Inference Learning

3.1 Input Units, Output Units, and the Bad Flag

For learning a single inference rule, we use an architecture (see Figure 3.1) that is
similar in some respects to those of Carpenter and Grossberg (2], (3], and in other
respects to the functional link architecture of Pao [15]. It consists of an array of
input units compietely linked to an array of output units by connections of variable
strength. Following a long tradition, we sometimes refer to the activity of the units
as “short term memory (STM),” and to the variable connection strengths as “long
term memory (LTM).” There is also a special classifying unit, which we call the “bad
flag.” It is very much like an output unit, but it has a strong inhibitory connection
to the input units, which effectively shuts down the network when it becomes active.
We interpret the activity of the bad flag as a measure of the inappropriateness of
the premise (the input vector) for the inference rule.

Each array has one unit for each element of the propositional vector. Each unit
in the input array has a connection of variable strength with each output unit, and
with the classifying unit. The LTM connection strengths, often called “weights,”

vary continuously on the unit interval.

17

All units in the network are linear threshold units with threshold zero, except
the bad flag, whose threshold may be slightly higher to allow some error.

The input units receive excitatory stimuli from sources outside the network,
which may be other networks, or perhaps simply a bus from a connected source of
propositions, as in our simulation. The function of these stimuli is straightforward:
They cause a proposition to become active in the input STM. The STM of the
input units is propagated by way of plastic (i.e., modifiable) connections to both
the output and the bad flag units.

The output units are functionally identical in all respects to the input units,
but receive different stimuli: External control (active omnly during the “lecture”
phase of learning), and excitatory stimuli from the input STM, filtered by the LTM
connections. %xternal control stimuli serve to hold the correct proposition in STM
during learning, but after learning has been completed, this function is taken over by
the input STM. It is assumed that the output STM will be propagated beyond the
network by some means, as approy riate (e.g., by bus to a store, as in our simulation).

Like the output u..its, the bad flag receives stimuli from external control during
lecture iearning only, but the control stimuli are always overwhelmingly inhibitory,
forcing the bad flag’s STM to zero. It also receives excitatory stimuli from the input
units (filtered through LTM connections). The bad flag’s special purpose is to turn
off the input units if their STM does not represent a legitimate premise for the
inference rule that has been learned by the network. This is accomplished by means
of a simple “reset” mechanism, simi' . to that “orienting subsystem” of the ART1
architecture of Carpenter and Grossberg ([2]): The strong inhibitory connections

from the bad flag to the input units overwhelm the excitatory control signals and

18

Output STM

Classifying unit
("bad flag")

O

0

77

7%

’////@

L
=™
777777

o

Ol

input STM

Figure 3.1: Network for learning an arbitrary inference rule (external control signals
omitted)

19

-

reduce their activation below their threshold whenever the bad flag is active.

The inhibitory connections emanating from the bad flag are not LTM connec-
tions; i.e., their strengths do not change with time or “experience.” But the con-
nections from the input units to the bad flag are LTM connections, so the bad flag

can learn how to classify properly.
3.2 The Vector Representation of Propositions

For representing propositions, we take an approach that is closely related to Pao’s:
We augment the representation of propositions by adding strictly redundant infor-
mation that is functionally dependent on the original information. However, we are
not subject to the restriction that binds Pao. His functional link network architec-
ture is intended to be extremely general in its applicability to pattern recognition
problems, but we are concerned only with inference rules. Consequently, we do not
need to respect the requirement that the extending functions be mutually orthogo-
nal. We need only show that the extensions will be appropriate for our particular
purpose.

Pao uses the outer product expansion for binary-valued data or the Fourier ex-
pansion for continuous data. We choose to use only the absolute difference function,
since this function provides a convenient measure of “sameness” for components of

the basic vector:
lz-y|=0&z=y

In this scheme, a basic vector is extended by adding the absolute difference of each

pair of basic vector elements.

20

Our scheme differs from Pao’s in another important respect: Pao’s scheme makes
explicit use of preprocessing to generate a functional extension for each basic vector
presented to the network. We take a different approach. We assume that the
extended vector is the only data structure presented to the network. When the
network learns, we expect it to learn how to deduce a proposition’s extension as well
as its basic vector. This leaves the preprocessing task only to the input system.

Note that the distinction between “basic” and “extended” parts of a vector is not
essential to the internal functioning of the system, but is useful in communication
between the network and the user, as well as in the exposition of the representation
scheme. The network need not at any point explicitly extend a “basic” vector by
computing the absolute differences of pairs of iic elements. On the contrary, the
basic and extended parts are treated in precisely the same way.

As an aside, it might be noted that the basic part of the vector could, in principle,
be derived from the extension. The entire network could function quite correctly
using the extension alone. However, it is convenient, and not too costly, to use the

basic vector for easier communication with the user.

3.2.1 The basic vector

Propositions are represented in a prefix form, using the propositional connectives A,

V, and D. Negation is represented internally in terms of implication:

-P¥pPp> 1.

The size of the basic vector used to represent a proposition is determined by the
maximum permitted depth of nesting of propositional connectives, which we will

call the “complexity”:

21

basic vector size = 2°t1 —1 (3.1)

where ¢ is the maximum complexity. We will generally work with ¢ = 3, which is
sufficient to permit expression of the premise of the Destructive Dilernma rule—the
most complex rule we consider. Hence, our basic vector size is generally 15.

To represent atomic propositions, we use the ASCII codes of uppercase letters
A (65) to Z (90). (This choice is for computational convenience only, and does not
represent any fundamental limitation to a small range of atoms.) The other symbols

are given the following arbitrary encodings:

0

10
20
30

< > U
I

An atomic proposition is represented by filling all vector elements with its code.

For example, the representation of Z (ASCII code 90) in a vector of size 15 is
[90,90,90,90,90,90,90,90,90,90,90,90,90,90,90].

For notational convenience in our discussion, we will usually write the symbol

itself in place of its code, so we write the above vector as
2,2,2,2,2,2,2,2,2,2,2,2,Z,2,7).

Compound propositions are represented as follows: (1) the first vector element
is given the code of the connective; (2) the first operand is represented in the first
half of the remaining vector; and (3) the second operand is represented in the last

half. For example:

22

AAB

becomes

[AALALAAALAAB,B,BB,B,B,Bj,

-A(¥A>5L)

becomes

[D,AAJAAJALAA L L L L L 1],
and

(-Cv-D) A ((ADC) A (BDD))

becomes

[A’V7D’C7"LID’D)'L’A7D’A,C’D)B’D]'

3.2.2 The extended vector

The extended vector is a function of the basic vector (and conversely, but we ignore

this fact). Its elements are

1. all elements of the basic vector,
2. the logical connectives (D, A and V), and

3. the absolute differences of pairs from 1 and 2.
It is computed by the following algorithm:

ALGORITHM extend
INPUT a basic vector b of size sb
OUTPUT the extended vector e of b
BEGIN extend
FOR ::=1TO s DO
efé] := B[z
e[sb+1]):=D
e[sb+2]):=A
efsb+3):=V
k:=sb4+4
FOR::=2TO sb+3 DO
FOR j:=1TO:DO
e[k] := |e[i] — e[j]|
k:=k+1
END extend

23

i
R

Thus, for each element of the basic vector, the extension contains elements “com-
paring” it with each other element of the basic vector, as well as with the three
connectives. For convenience, when we show an extended vector, we will show basic
vector and the three connectives on the first line, and we will break the remaining
elements of the extension into rows of different length, so that it will be possible to
tell at a glance which pair of elements were compared to produce a given element.

For example, for the proposition A O B, the basic vector of size 3 is

[D’A’B]’

and the extended vector is

[D’ A, B’ D, A? v’

59,
56, 1,
0, 55, 56,

10, 45, 46, 10,
20, 35, 36, 20, 10].

The size of the extended vector is (n? + Tn + 12)/2, where n is the size of the

basic vector.
3.3 Network Training

We use the following notation:

wi; : The weight of the connection from input unit : to output unit j.
wip : The weight of the connection from input unit j to the bad flag.
o0; : The output signal of unit z.

0 : The output signal of the bad flag.

7 : The learning rate — a parameter chosen by the user.

24

The activities of the input units are set by the user by presenting a propositional
vector. The activity o; is deemed to be equal to the value of the i** element of the
input vector, and ranges between 0 and 90.

The output units, as well as the bad flag, are forced to the desired values during
training time, but otherwise their activities are determined by the activation rule

Yioiwg; if 35, 0w < 90

0; = (32)
90 otherwise

where 90 (= Z) is (arbitrarily) the maximum output.
All weights w;; are initialized to 1 before learning takes place. Learning occurs

according to the rule

Aw;; = —nwijlo; — oj] (3.3)

That is, connections between input and output units are initially very strong, but
are progressively weakened by “unharmonious” activity. Note that this rule differs
significantly from both the “delta rule” (Equation 2.1) and the “generalized delta

rule” (Equation 2.2). In our view, this difference is justifiable for several reasons:

1. It is entirely local, depending only on the current weight w;;, and the current

outputs of the connected units and j.
2. It does not permit weights to vary in sign.
3. It constrains weights to take a values from a limited range.
4. It does not require comparison of output against a “target” value.

5. It can remain in effect at all times; not only during an formal learning period.

25

6. It works.

The learning strategy we use is to present correct premise-conclusion pairs at
random to the input and output arrays, while forcing the output of the appropriate
classifying unit to zero. If a sufficiently large number of random pairs are presented,
most weights will fall to zero, leaving non-zero weights only between units whose
activities are always equal when the inference rule is used correctly. In particular,
the classifying unit will receive non-zero weights only from units that always have
zero activity.

When this process is completed, weights will generally be either 1 or 0. This,
in itself, is not sufficient to guarantee correct performance, since there will usually
be cases in which several input units have the same activity as the target output
unit. Given the activation rule above, the inputs will be summed, resulting in an
excessive output. This problem can be solved by “practice,” however: By allowing
the learning rule to remain in effect at all times, even after training, we ensure that

the weights will soon fall off until o; = 0; whenever w;; # 0.

3.3.1 The “lecture” learning phase

Although there is only a single learning rule, the training regimen is divided into
two distinct phases, which we will call “lecture” and “lab”. In the “lecture” phase,
an input vector is presented to the input array, and the correct output vector is
presented to the output array. At the same time, the “bad flag” is held at zero, so
that inhibitory learning will take place at any link where the input and output units
have different activities. This learning obeys the usual rule given in Equation 3.3,

above. Observe that Aw;; will be zero if, and only if, o; = o;. After a sufficiently

26

large number of training presentations, clearly all the w;; will be reduced to zero,
with the exception of those cases where o; = 0; in every presentation; in these cases,
w;; retains its original value.

Since the “bad flag” unit is qualitatively identical to the output units, links from
the input array to the bad flag learn in the same way. Since oy is forced to zero by

control stimuli, however, thevlea.rning rule in this case reduces to:

Awgp = —nw;po;. (3.4)

Here, the Aw;; will be zero if, and only if, o; = 0. So after training, the w,
will be zero if the o; have taken nonzero values during training, and will retain their
original values whenever the o; have had zero values throughout training. The latter
cases are of special interest, since they effectively identify the cases where the input
vector represents a premise that is suitable for the inference rule being learned.

Consider, for example, the Modus Ponens inference rule as it applies to premises
with complexity < 3. Here are some examples:

PoQAP

(ADZ)AA
((AVB) D =C) A (AVB)

The basic vectors representing these examples are, respectively:

(A’ D’ P’ P’ P’ Q’ Q’ Q’ P7 P’ P) P) P’ P’ P)
(Av D, Ay A A 2, Z, 2, A, A A A A A A)
(A’ D) V, A, B) D’ C‘) J“) V? A’ A1 A") B’ B’ B)

These generate the extended vectors:

217

A B i TR 2

o TR R AT T e

(A,
10,
60,
60,
60,
61,
61,
61,
60,
60,
60,
60,
60,
60,
60,
10,

10,

(A,
10,
45,
45,
45,
70,
70,
70,
45,
45,
45,
45,
45,
45,
45,
10,

10,

s

70,
70,
70,
71,
71,
71,
70,
70,
70,
70,
70,
70,

0,
10,
20,

2

55,
55,
55,
80,
80,
80,
55,
55,
55,
55,
55,
55,
55,

10, 45,
20, 35,

v

v @ e e - e e e -
- e - . W W e e -

-
-

OO0 OO | mOOO
OO0 0000 MR HEMHO

-
-

-3
o
-3
o

[=2]
o
[=2]
P

<]
o

- w

-

- e e e -

-

- w e

-3
oOOOpoooHuH

-

[=2]
o

50,

>

25,
25,
25,

- - -

-

Goocooso e

b

35,

L I Y S Iy

et b ek b b s O O

-

p—

-

- - -

-

OO O OO

P, P, P, P, P, P, D, AV,

-

-

-

o = — i =

70,
60,
50,

-

-

0
0
0
0,

0,

80, 55, 55, 55, 55, 55, 55,
70, 45, 45, 45, 45, 45, 45, 45, 10,
60, 35, 35, 35, 35, 35, 35, 35, 20, 10

28

- -

-3
o000

50, 20, 10]

Ay D, V, A, B, D, C, L, V, 4 A A B, B, B, DO, AV,
10,

10, 20,

45, 55, 35,

46, 56, 36, 1,

10, 0, 20, 55, 56,

47, 57, 37, 2, 1, 57,

20, 10, 30, 65, 66, 10, 67,

10, 20, O, 35, 36, 20, 37, 30,

45, 55, 35, 0, 1, 55, 2, 65, 35,

45, 55, 35, 0, 1, 55, 2, 65, 35, 0,

45, 55, 35, 0, 1, 55, 2, 65, 35, 0, O,

46, 56, 36, 1, O, 56, 1, 66, 36, 1, 1, 1,
46, 56, 36, 1, O, 56, 1, 66, 36, 1, 1, 1, 0,

46, 56, 36, 1, 0, 56, 1, 66, 36, 1, 1, 1, 0, O,

10, O, 20, 55, 56, O, 57, 10, 20, 55, 55, 55, 56, 56, 56,

0, 10, 10, 45, 46, 10, 47, 20, 10, 45, 45, 45, 46, 46, 46, 10,

10, 20, o0, 35, 36, 20, 37, 30, O, 35, 35, 35, 36, 36, 36, 20, 10]

The boldface zeros mark the positions in the input vectors where zeros must
occur in any Modus Ponens premise by virtue of the rules for representation of
compound propositions given on page 22. Recall now the assertion of Equation 3.4:
that the Aw;, vary with the o;. Since all weights are initialized to 1 before training,
this means that in these positions we will always have w; = 1, as long as the
network is trained only for Modus Ponens. If the output threshold of the bad flag

unit is sufficiently low, then, the bad flag unit will fire a reset wave each time the a

non-Modus Ponens proposition is presented at the input array.

3.3.2 The “lab” learning phase

The lab learning phase involves no teaching — only practice on correct examples.
That is, correct premises for the rule being learned are presented at the input array,
and no external control is applied to the output array or the bad flag. The only
influences on the output and bad flag units, therefore, are the STM signals from the

input array, filtered by the LTM that has just finished the lecture learning phase.

29

The LTM weights, as we observed in the last section, will have been either reduced
to zero or left undisturbed in their initialized state (i.e., = 1). The zero weights
are of no concern to us now, as they have already acquired their desired state, but
many of the other weights are still too strong. Specifically, whenever an inference
rule requires that an atom (or connective) occur at least once in the conclusion —
say at position j — and at least twice in the premise — say at positions 7,,...,1,,
the weights between the corresponding units will be excessive. The activation rule

of Equation 3.2 reduces to

Tk=10i, Wiy i if 3k, 05 w;,; <90
Oj = (3-5)
90 otherwise

and, since all the w;,; = 1 and all the o;, are equal, this is further reducible to

(3.6)

no;, if no;, <90
0; =
90 otherwise

This is incompatible in general with the requirement of the hypothesis that after
learning, o; = o;, for each k.

The solution is simple, however. We just allow the activation rule and the learn-
ing rule to act in tandem. The result: after a sufficiently large number of iterations,

each of the n weights w;,; decays to 1/n.
3.4 Unlearnable Rules

When the bad flag does not fire, the trained network infers a conclusion from its
premise by copying components of the premise vector to the appropriate location in

the conclusion vector. This points to a limitation of the method: If the conclusion

30

of an inference rule has content that is absent in the premise, then the rule cannot

be learned. What rules does this exclude? Surprisingly few. One might think, for

example, that DeMorgan’s law

~(PVQ)
~PA-Q

would be unlearnable because the conclusion contains the symbol ‘A,’ which is absent
in the premise. However, it is the extended vector, not the basic vector, that we
must examine. Recall that the extended vector always contains all of the logical
connectives.

Only rules that introduce new non-connective elements are unlearnable. Among

the usual propositional rules, only addition and conjunction

P P

Q.
FugAdd) (Conj.)

TPAQ
fail on this account. Addition fails for the obvious reason that @ is missing. Con-
junction fails because, although P and @ are both present in the premise, their
absolute difference |P — Q)| is not.

The inability of the architecture to learn addition is perhaps not a serious draw-
back, but conjunction is a problem that cannot be swept aside so easily. In principle,
we could resolve it by changing the architecture so as to use only binary threshold
units, with each atom being represented by a binary code spread over six units. This
would leave only ‘1’s and ‘0’s to be copied, and we are already assured that some
of each will occur in every extended vector. However, this would give an extended
vector size of 4371 units — an unacceptably large number in practice. It make better

sense to treat conjunction in our simulations as a special case of a hard-wired rule.

31

3.5 The Simulator

To test the ideas discussed above, we have developed a program that creates an array
of networks of the kind just described, trains them to perform any of several inference
rules, and then uses the array to do proofs in a bottom-up fashion. The program
effectively simulates the architecture shown in Figure 3.2, but to save both space and
time, it actually simulates the equivalent architecture of Figure 3.3. The difference is
that the purely local reset mechanism has been replaced by global control: When the
bad flag is activated for a given rule, rather than use the computationally expensive
reset to prevent a conclusion from being drawn, the simulator allows the conclusion
to be inferred, but does not copy it to memory.

The memory store contains propositions represented in their fully extended form,
so it is not necessary to extend them explicitly (except in the conjunction unit). This
resolves the “cheating” problem that we pointed out with respect to Pao’s functional
link net; the networks themselves take care of the extension as part of the inference
process.

The code for the simulator, in “C,” is reproduced in Appendix A, and some

sample proofs are shown in Appendix B.

32

mmn-—-—sSmXITD

Conjunction
Unit P&Q
P Q
N/
MEMORY

C

o)

N

c

L

Figure 3.2: The simulated architecture with local “reset”

33

Conjunction
Unit P&Q
P Q
N/
MEMORY

c 0 A
0 (o] o
N N N
c C C
L L L

mow-—<Sm3I o

Figure 3.3: The simulated architecture with global control instead of “reset”

34

Chapter 4

Conclusion and Discussion

We have shown how it is possible, for a flat neural network to learn most inference
rules of propositional logic, the exceptions being Addition and Conjunction.

Propositions are represented as vectors of integers, extended by adding logical
connectives, and the absolute differences of the basic vector components. The net-
work itself, for a single rule, consists of two arrays of linear threshold units with the
usual linear activation rule. It uses a local learning rule which we have proposed
especially for this purpose.

Simulations show that the network is indeed capable of learning and performing
interesting inferences.

Several interesting issues remain to be addressed. First, it would be a valuable
step to find a way around the disappoirting exceptions. This may require some
alterations to the particular representation we have used, or to the learning rule,
but it is at least an open question whether the problem is soluble. Secondly, it
would be interesting to know whether the same technique (or a similar one) can be
extended to deal with first-order logic with individual variables and quantifiers.

Finally, since the network does not depend on any semantic aspects of propo-

sitional logic, it can be viewed more generally as a machine for learning “pattern

35

inference.” We may well ask whether there are applications other than propositional

logic to which this technique could be applied.
4.1 Another Possible Approach

The failure of our architecture to learn the Conjunction rule is, as we have men-
tioned, a consequence of our choice of learning rule (Equation 3.3) and activation
rule (Equation 3.2), which together ensure that inference consists in the copying
of appropriate vector elements from premise to conclusion. This turns out to be
quite adequate in most cases, effectively blocks successful learning whenever the
conclusion vector contains new elements.

Can this obstacle be overcome by using different rules? In view of the fact
that our representation of propositions contains a great deal of information about
pairwise joint activities of units, it is reasonable to enquire whether the delta rule,
or perhaps the generalized delta rule, might be capable of producing better results.
We have taken some preliminary steps towards answering this question, which we
describe here briefly.

In our first experiment, we simulated a flat two-layer network using our activation
rule (Equation 3.2) and the simple delta rule (Equation 2.1) for learning. The
network was trained for a given rule by presenting correct premise/conclusion pairs
at the input and output layers. No attempt was made to train the network with
incorrect pairs; nevertheless, the network was unable to learn any rule satisfactorily;
i.e,, in every case, there was at least one element of the conclusion vector whose
value was incorrect. Essentially the same result was obtained when the generalized

delta rule (Equation 2.1) was substituted for the delta rule.

36

We interpret these results as indicating that the delta rules are inappropriate

for use in networks where the output of an individual network element is given a
nonbinary interpretation. Unfortunately, a binary interpretation would require us
to use 4371 units to represent a proposition of complexity 3 with its full functional
extension, so this avenue would seem closed.

Our second experiment, however, presents an interesting prospect. In this case,
the idea of functional extension was abandoned in favor of a simple binary represen-
tation of the basic vector: The basic vector was formed as described in Section 3.2.1,
above, but each element was further encoded into five binary units, giving a 75-
element vector for a proposition of complexity 3. Again, a two-layer flat network
was used, but this time with the generalized delta rule and a sigmoid activation
function. This network was trained with correct premise/conclusion vector pairs,
intermingled in equal proportions with random/zero vector pairs to see whether
the network could perform the dual functions of recognition and transformation of
vectors.

The results are summarized in Table 4.1. The error frequencies seem to indicate
that the flat delta rule network can learn effectively when the rule being learn=d
requires the transcription of only a portion of the premise to the conclusion. In par-
ticular, the Repetition and Conjunction rules, which require complete copying of the
input vector, have very high error rates compared with Double Negation Elimination
and Destructive Dilemma, which transcribe only relatively small portions.

Some remarks are in order: First, the apparently small error rates are mislead-
ing in that they reflect only the network’s ability to discriminate between correct

premises and random bit vectors. A more complete study, which is beyond our

37

Inference Rule Proposition Errors (%)

Repetition 6.84
Conjunction 6.40
Double Negation Introduction 5.49
Implication Elimination 1.60
OR-Commutativity 0.51
AND-Commutativity 0.50
Modus Ponens 0.14
Constructive Dilemma 0.05
Hypothetical Syllogism 0.03
Implication Introduction 0.02
Simplification 0.002

Modus Tollens

Disjunctive Syllogism
Contraposition

AND-OR DeMorgan’s Law
OR-AND DeMorgan’s Law
Double Negation Elimination
Destructive Dilemma

[en i ao B «n B ov Bl e I o B e

Table 4.1: Error frequencies for a flat network

present scope, would need to compare correct premises with incorrect premises that
are legitimate propositions. Second, an error rate of 1% is too high for most practical
purposes, especially if a chain of inferences is required. It should also be noted that
the performance of the network for Conjunction is less than spectacular, in view of
the fact that we first turned to it in the hope of learning that rule. Nevertheless,
these results suggest that it might be possible, with some further work, to train delta
rule networks to perform probable inference in contexts where some error in results
can be tolerated. Other preliminary trials indicate that the introduction of a small
random error (one inverted bit in every hundredth premise) in the correct premises
does not significantly impair the capacity of the network to learn, so networks of
this kind might be useful where the training set is imperfect.

This approach is in a sense, complementary to the one which forms the basis of

38

avoid catastrophic failure. The other is slower and subject to residual error, but has
at least some robustness in the presence of flawed training data. It is not impossible

that both should find applications.

39

D Py

S TR N TR T

Bibliography

[1]

[2]

13]

(4]

[5]

[6]

[7]

(8]

[9]

10]

[11]

[12]

Ballard, D, H. and Hayes, P. J., “Parallel T.ogical Inference,” Proceedings of the
Sizth Annual Conference of the Cognitive Science Society, Boulder, Co., June,
1988.

Carpenter, G. and Grossberg, S., “A massively parallel architecture for a self-
organizing neural pattern recognition machine,” Computer Vision, Graphics,
and Image Processing, 37, pp. 54-115, 1987.

Carpenter, G. and Grossberg, S., “ART2: Self-organization of stable category
recognition codes for analog input patterns,” Applied Optics, 26, pp. 4919-4930,
1987.

Copi, I. M., Introduction to Logic. New York: Macmillan Publishing, 3rd ed.,
1978.

Grossberg, S. “Competitive Learning: From Interactive Activation to Adaptive
Resonance,” Cognitive Science, 11, pp. 23-63, 1987.

D. O. Hebb. The Organization of Behaviour. New York: Wiley, 1949.

Johnson-Laird, P. N. Mental Models: Towards a Cognitive Science of Lan-
guage, Inference, and Consciousness. Cambridge, England: Cambridge Univer-
sity Press, 1983.

Johnson-Laird, P. N., Byrne, R. M. J. and Tabossi, P. “Reasoning by Model:
The Case of Multiple Quantification,” Psychological Review, 96, No. 4, pp. 658-
673, 1989.

Klassen, M. S. and Pao, Y. H., “Characteristics of the functional link net: A
higher order delta rule net,” in IEEE Proceedings of 2nd Annual International
Conference on Neural Networks, 1988.

Kohonen, T., Self-Organization and Associative Memory. Heidelberg: Springer-
Verlag, 1984, 3rd ed., 1989.

Kosko, B., “Adaptive bidirectional associative memories,” Applied Optics, 26,
No. 23, pp. 4947-4960, 1987.

Kurfess, F. and Reich, M., “Logic and Reasoning with Neural Models,” in Pfeif-
fer, R., Schreter, Z., and Fogelman-Soulié, F., Eds., Connectionism in Perspec-
tive. North-Holland: Elsevier Science Publishers, pp. 365-376, 1989.

40

[13] McCulloch, W. §. and Pitts, W. H., “A Logical Calculus of the Ideas Immanent
in Nervous Activity,” Bulletin of Mathematical Biophysics, 7, pp. 89-93, 1913.

[14] Minsky, M. and Papert, S., Perceptrons: An Introduction to Computational
Geometry. Cambridge, MIT Press, 1969. (Expanded edition, 1988).

[15) Pao, Y.-H., Adaptive Pattern Recognition and Neural Networks. Reading, Mass.:
Addison-Wesley, 1989.

[16] Rosenblatt, F., Principles of Neurodynamics. New York: Spartan, 1962.

[17) Rumelbart, D. E., Hinton, G. E., and Williams, R. J., “Learning Internal Rep-
resentations by Error Propagation,” in Rumelhart, D. E. and McClelland, J.
L., Eds., Parallel Distributed Processing: Ezplorations in the Microstructure of
Cognition. Cambridge, Mass.: MIT Press, pp. 318-362, 1986.

[18] Rumelhart, D. E. and McClelland, J. L., Eds., Parallel Distributed Processing:

Ezplorations in the Microstructure of Cognition. Cambridge, Mass.: MIT Press,
1986.

[19] Schmidhuber, J., “The Neural Bucket Brigade,” in Pfeiffer, R., Schreter, Z.,
and Fogelman-Soulié, F., Eds., Connectionism in Perspective. North-Holland:
Elsevier Science Publishers, pp. 429-437, 1989.

[20) Sobajic, D., Neural Nets for Control of Power Systems, Ph.D. Thesis, Computer
Science Dept., Case Western Reserve University, Cleveland, Ohio, 1988.

[21] Touretzky, D. S. and Hinton G. E. “Symbols among the neurons: Details of a
connectionist inference architecture,” in Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 238-243, 1985.

[22] Williams, R.. J., “The Logic of Activation Functions,” in Rumelhart, D. E. and
McClelland, J. L., Eds., Parallel Distributed Processing: Ezplorations in the
Microstructure of Cognition. Cambridge, Mass.: MIT Press, pp. 423-443, 1986.

41

Appendix A

The Simulator Code

9 sk o b s kol o s o oo s b o ks s o o e s ok o o e sl ok sl sl ok s ol ol ok ok o kol oo o sl sl sl sk ok sk ook sk ok okok /
/e s o ok ok o sk e ke sk ok
4 s e e s o ok ko sk ok ok o o
7/ s o e s s o o o s s ok e ok s ok
/93 s s o ook s ks s e s s ks s koo o ok e sl o e i ol s o s ool o ke s ool o o o ok ke ok ko sk oo sk koo /

#include <stdio.h>
#include <ctype.h>
#include <strings.h>
#include <memory.h>

neurnets.h

ok ook o s ok sk ok o ook ok ok /
ok ook o o o bk ok ok e e sk e ok /
stk oo ok o sk sk o ok e ok e ok /

/A=snsunsssssezsn=znzs CONSTANTS AND MACROS Exsszzxcsscxzeresxznk/

#ifdef __TURBOC__
#include <stdlib.h>

#define
#define
#else
#define
#define
#endif

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

RANDOM_INT(x)
SEED_RANDOM

RANDOM_INT(x)
SEED_RANDOM

MAX_COMPLEXITY
PROP_SZ
EXT_SZ
VEC_SZ
WT_SCALE
ETA
THRESHOLD
MAX_ACT
SQR(x)
MAX(x,y)
ABSDIF (x,y)
MAX_RULES

((random(32767)>>8) % (x))
(randomize())

((random()>>16) % (x))
(srandom(getpid()))

2 /% should be 2 or 3 */

((1 << (MAX_COMPLEXITY+1)) - 1)

((((PROP_SZ+3)*(PROP_SZ+2)) >> 1)+3)
(PROP_SZ + EXT_SZ)

17

8

1

90

((x) * (x))

C () 2 (x) : (y))
¢ ((x)>(y)) 72 ((x)=-(y))
20

((y)-(x)))

42

#define ERROR -1
#define FAILURE 0
#define SUCCESS 1
#define TRUE 1
#define FALSE 0
#define LPAR i
#define RPAR 2
#define BOTTOM 0

4

#define CONTRADICTION 0
#define NEG 0

#define IMPL 10
#define CONJ 20
#define DISJ 30

#define NUM_CONNECTIVES 4

#define MAX_CONNECTIVE DISJ

#define ATOM(x) CrQCEx) < A7) 1 Cx) > 122)))
#define IS_CONNECTIVE(x) (!(ATOM(x) |l ((x)%10)))

#define RANDOM_CONNECTIVE (RANDOM_INT(NUM_CONNECTIVES) * 10)

#define RANDOM_ATOM (RANDOM_INT(26) + ’A’)
#define FIFTY_FIFTY (RANDOM_INT(2))
#define CLEAR_SCREEN printf("%c", (char) 12)

/*=es==zsuzsxcxzxe=s=== TYPE DEFINITIONS sxzEmsrresczczrsxaznnny /

typedef struct rule_struct
{
int (*premise) (), (*conclusion)();
char *name;
} RULE;

typedef int PROPOSITION[VEC_SZ];
#define SAME_PROP(p1,p2) !memcmp((char *)(p1), \
(char *)(p2), sizeof (PROPOSITION))

typedef struct prop.list

PROPOSITION prop;
struct prop.list *next;
} »PROP_LIST;

/¥nsuanssnaxssxssnsss EXTERNAL DECLARATIONS mssssssscssssssssswk/

/* defined in rules.c */
extern void extend();
extern void conjoin();
extern int select_rules();

43

extern

int

read_net();

extern RULE #*get_rule();

/* defined in parse.c */

extern

int

str_prop();

extern int prop_str();

/* defined in memarch.c */

extern
extern
extern
extern
extern
extern
extern

/* defined in

extern
extern
extern
extern
extern

void
int
void
void
int
int
void

int
int
void
int
char

flush_memory();
get_prop();
next_prop();
memorize_premises();
memorize_inference();
print_proof();
print_memory();

utility.c */
yes();
get_option();
pause() ;
all_white();
*all_scan();

44

/**#***#********##********/

J 900k o ok o ek s ok o ko e ok ook ofe o e kol ke ok ok ok ok f
4 ok ok o ek o o sk ook o o sim.c Ao oo o o ok o ook o g ok /
£ ko ok s ok ook K ok koo ook o ok ok okokok /

/***#***************/

#include "neurnets.h"
\begin{verbatim}
e e global variables ---=--=-=-=-cwc—c--coo- */
PROPOSITION in, out[MAX_RULES]; /* input & output vectors */
int bad_flag[MAX_RULES] ; /* one "bad_flag per rule */
int w[MAX_RULES] [VEC_SZ] [VEC_SZ] ; /* weights from in to out */
int bf _w[MAX_RULES] [VEC_SZ];/* weights from in to bad_flag */
RULE rules [MAX_RULES]; /* array of rules to learn */
int rule_count; /* number of rules to learn */
e ittt init wts =-=--=-c-c-c--- bbb bt It */
/* Set all weights for rule to 1 (times a scaling factor). */
L */
void init_wts(rule)
int rule;
{

int i, j;

for (i=0 ; i<VEC_SZ ; i++) {
bf_wlrule] [i] = 1<<WT_SCALE;
for (j=0 ; j<VEC.SZ ; j++)
wlrule] [i]1[j] = 1<<WT_SCALE;

}
}
[Hemmmmmencccccccnr e encne learn =wve-srcomcrccconnccccnrans */
/* Adjust the weights between "in" and "out[rule]" and its */
/* bad_flag according to the standard learning rule. */
[¥mm———— - ———— —emcccccccre .- »/

void learn(rule)
int rule;

{
int i, j;
for (i=0 ; i<VEC_SZ ; i++) {
bf_wlrule][i] ~= (bf_wlrulel[i] * in[i]) >> ETA;
for (j=0 ; jJ<VEC_SZ ; j++)

45

wlirulel [i]1[j] == (wlrulel[il[j] *
ABSDIF(in[i] ,out{rulel[j]1))

>> ETA;
}
}
[¥emmmmemmmcc e ncccancaeae update =—---=-==-c--scsccccocccccaoo */
/* Compute new activation values for out[rule] and its */

/* bad_flag according to the standard activation rule. If the */
/* bad_flag is activated above threshold, suppress learning. =/

P cmmmmccc s e e c e ———- %/
void update(rule)
int rule;
{
int i, j, sum, bf_sum;
bf_sum = 0;

for (i=0 ; i<VEC_SZ ; i+») {
bf_sum += in[i]J*bf_w[rule] [i];
sum = Q;
for (j=0 ; jj<VEC_SZ ; j++)
sum += in[j] * wlrulel [j1[il;
out [rule] [i] = sum >> WT_SCALE;
if (ovt[rule][i] > MAX_ACT)
out[rule] [i] = MAX_ACT;
}
bad_flag[rule] = bf_sum >> WI_SCALE;
if (bad_flag[rule] > MAX_ACT)
bad_flag[rule] = MAX_ACT;
if (bad_flag[rule] < THRESHOLD)
learn(rule);

}

F e e train =-----crereccccmcccccecncnne- */
/* For each rule being learned, present premise/conclusion */
/* pairs at random for "lecture" learning, then random */
/* premises alone for "lab' learning. */
T el - cememcccr—e———— */
void train()

{

int i, rule, cycles;
char str[50];
PROPOSITION temp;

printf("Training cycles: ");
fgets(str, 50, stdin);

46

sscanf(str, "/d", &cycles);
for (rule=0 ; rule.rule_count ; rule++) {
printf("\n%s\n", rules[rule].name);
printf("\tLecture...\n");
bad_flag(rule] = 0;
for (i=0 ; i++<cycles ;) «
(*(rules[rule] .premise)) (in);
(*(rules[rule].conclusion))(in, out[rulel);
learn(rule);
if ('(i%100)) printf("\t\t/d cycles\n", i);
}
printf("\tLlab...\n");
for (i=0 ; i++<cycles ;) {
(*(rules[rule] .premise)) (in);
update(rule);
if (1(i%100)) printf("\t\t%d cycles\n", i);

L L DL U ST test ~=eccmemrcccccccrcccscrccncce-

/* Activate all rules and print conclusions for those rules
/* whose bad_flags remain below threshold. Called either by
/* auto_test() or by manual_test().

AT I e e L S T L L e b LS L LD L L L L
void test()
{
int i, j, r;
char str[50];
for (r=0 ; r<rule_count ; r++) {
update(r);
if (bad_flag[r] < THRESHOLD) {
if (prop_str(out{r], str) == FAILURE)
printf("Unprintable conclusion by %s\n",
rules[r] .name);
else
printf("Conclusion by %s: ¥%s\n",
rules(r] .name, str);
}
}
3
F e auto_test --~---=-e---c-cecmccoceaco-

47

e IR

void auto_test()

{
char str[50];
do {
(*(rules [RANDOM_INT (rule_count)] .premise))(in);
prop_str(in, str);
printf("Premise: %s\n", str);
test();
} while (yes("\nAnother?"));
}
Y R manual_test —----===s----c—ccscocomcoo- */
/* Get a premise from the keyboard and call test() */
2 T e e m et - —————— */
void manual _test()
{
int i;
char str[50];
do {
printf ("Enter a premise: ");
fgets(str, 50, stdin);
i = strlen(str);
if (str[--i] == ’\n’) str[i] = ’\0’;
if (str_prop(str, in) == FAILURE) {
printf(“Cannot parse %s\n", str);
continue;
}
test();
} vhile (yes("\nAnother?"));
}
[¥eemeem e enen e ana— show_vectors ==--==--e-cccccccccacccn- */

/* Display both the actual output vector and the target vector */
/* for each rule whose bad_flag is below thresbsid. Otherwise */

/* display bad_flag activation. */
L T —— D */
void show_vectors()
{

int i, j, k, rule;

char str[50];
for (rule=0 ; rule<rule_count ; rule++) {
if (prop.str(in, str) == FAILURE)
prinif("\nUnprintable input propesition.\n");

48

else

printf ("\nInput proposition: %s\n", str);
if (bvad_flaglrule] >= THRESHOLD) {

printf ("%s: badness = %d\n",

rules[rule] .name, bad_flaglrule]);

pause("Press <return> to continue...");

continue;
}
printf("\nDutput vector for %s:\n", rules[rule].name);
printf("8:zagss::srs-z-s-u.::zzs::-sa:xs---sc-ass\n");
k=0;
for (i=0 ; i<(PROP_SZ+3) ; i++)

printf ("%6d", out[rule] [k++]);
printf("\n");
for (i=0 ; i<(PROP_SZ+3) ; i++) {

for (j=0 ; j<i ; j++)

printf("%6d", outlrule] [k++]1);
printf("\n");

}
(*(rules[rule].conclusion))(in, out[rulel);

printf("\nTarget vector for %s:\n", rules[rule].name);
printf(":s8=s:s8s-tsllsBs-::s::sns.nzs:::s::a:s:z\n");

k=0;

for (i=0 ; i<(PROP_SZ+3) ; i++)
printf ("/6d", out[rule] [k++]);

printf("\n");

for (i=0 ; i<(PROP_SZ+3) ; i++) {
for (j=0 ; j<i ; j++)

printf(“%6d", outl[rule] [k++]);

printf("\n");

}
pause("Press <return> to continue...");
}
}
[¥=mmeecmm e e e e save_net ====v----ccecccrccccccana- */
/* Save all weights for all active rules to a file. */
[- i e T TR */

void save_net ()

{
FILE *fp;
char filename[50], *p;
int i, j, rule;

if (yes("Save weights?")) {
printf("Enter file name: ");
fgets(filename, 50, stdin);

49

e AL TR a0

p = (char %) strchr(filename,’\n’);
if (p != NULL) *p = *\0’;
fp = fopen(filename, "w");
fprintf(£fp, "%d\n", rule_count);
for (rule=0 ; rule<rule_count ; rule++) {
fprintf(fp, "¥%s\n", rules[rule].name);
for (i=0 ; i<VEC_SZ ; i++) {
fprintf(£p, "%d\n", bf_wlrule][i]);
for (j=0 ; J<VEC_SZ ; j++)
fprint£(fp, "%d\n", wlrulel[il[j]);
}
}
fclose(fp);

----------------- get_premises_kbd --------mr-s—cecoo—ae

/* Get premises from the keyboard, and insert them in
/* simulated memory, along with conjunctionms.

JLe——

void

{

L —

get_premises_kbd()

PROP_LIST head, temp;
char p-str[50], #end;

printf("Enter propositions (blank line to exit):\n");
head = (PROP_LIST) malloc(sizeof(struct prop_list));
head->next = NULL;

while((fgets(p_str,50,stdin) != NULL)

}

&% 'all_white(p_str)) {

end = (char *) strchr(p_str, ’'\n’);

if (end != NULL) *end = ’\0’;

end = all_scan(p_str);

if (®end !'= *\0’) {
printf("Cannot scan ¥s. Try again.\n", p_str);
continue;

}

if (str_prop(p.str, head->prop) == FAILURE) {
printf("Cannot parse %s. Try again.\n", p_str);
continue;

}

temp = head;

head = (PROP_LIST) malloc(sizeof (struct prop_list));

head->next = temp;

memorize_premises(head->next) ;
while (head != NULL) {

50

temp = head->next;
free(head);
head = temp;

}
}
/=== - saturate ----—----c-ccescsccccccooo */
/* Fire all active rules while new premises are available in */
/* simulated memory queue, adding conclusions to queue. */
T e L e T */
void saturate()
{
int r;
while (get_prop(in)) {
for (r=0 ; r<rule_count ; r++) {
update(r);
if (bad_flaglr] < THRESHOLD)
memorize_inference(out[r]l, rules[r].name);
}
next_prop();
}
}
F D et e Prove --=-e-—-scsccccccsmccccococo */
/* Look for goal proposition in memory queue while saturating */
/* memory queue. If found, print proof; otherwise fail. */
L ettt L L L E LT P L */
void prove()
{
PROPOSITION p;
char p-str(50], *end;
int r;

printf("Enter proposition to prove: ");
fgets(p_str, 50, stdin);
end = (char *) strchr(p_str, ’\n’);
if (end != NULL) *end = ’\0’;
if (str_prop(p_str, p) == FAILURE)
printf("Parse error. ");
else {
vhile (get_prop(in)) {
if (SAME_PROP(p,in)) {
print_proof(p);
return;

51

for (r=0 ; r<rule_count ; r++) {
update(r);
if (bad_flag[r] < THRESHOLD) {
memorize_inference(out[r], rules[r].name);
if (SAME_PROP(p,out(r])) {
print_proof(p);
return;

}
}

next_prop();

3

pause("Proof not found.

main

Press <return>");

}
}
/%
/*
main()
{

int

rule, old_count, option;

rule_count = 0; /#* default network has no rules */
SEED_RANDOM;
printf("\n");

do {

CLEAR_SCREEN;

printf("

Options\n");

printf("::-::8=:sn:-s::s-s:zaunnss===:=====\n");

printf("1..
printf(“2..
printf("3..
printf("4..
printf("s..
printf(“6..
printf("7..
printf("8..
print£("9..
printf(“A..
printf("B..
printf("C..
printf("D..
printf("Q..

.Create a new network\n");

.Read a network from a file\n");

.Add rules to current network\n");
.Train current network\n");

.Display current output vectors\n");
.Automatic network test\n");

.Manual network test\n");

.Enter propositions from keyboard\n");
.Prove proposition\n");

.Saturate memory\n");

.Flush memory\n");

.Print memory\n");

.Save current network\n");

.Quit\n");

printf("sa::nns:s::sn::s:s::g-:s-szs:g:n:\n");

option = get_option("Choose...", "123456789ABCDQ");

52

CLEAR_SCREEN;
switch (option) {
case ’1’ : /% Create a new network */
rule_count = select_rules(rules);
for (rule=0 ; rule<rule_count ; rule++)
init_wts(rule);
break;
case ’2’: /* Read a network from a file */
rule_count = read_net(rules, bf_w, w);
if (rule_count == ERROR) rule_count = 0;
break;
case ’3’ : /* Add rules to current networks/
old_count = rule_count;
rule_count = add_rules(rules, rule_count);
for (rule=old_count ; rule<rule_count ; rule++)
init_wts(rule);
break;
case ’4’ : /* Train current network */
train();
break;
case ’5’ : /* Display current output vectors */
show_vectors();
break;
case ’6’ : /* Autoumatic network test */
auto_test();
break;
case ’7’ : /* Manual network test */
manual _test();
break;
case ’8’ : /* Enter propositions from keyboard */
get_premises_kbd () ;
break;
case ’9’ : /* Prove proposition */
prove();
break;
case ’A’ : /* Saturate memory */
printf ("Saturating memory...\n");
saturate();
pause("Memory saturated. Press <return>...");
break;
case ’B’ : /* Flush memory */
flush_memory();
break;
case ’C’ : /% Print memory */
print_memory();
break;
case 'Q’ : /* Quit: fall through save option first */

53

case ’'D? : /* Save current network */
save_net();
break;
}
} while (option != 'Q’);

54

/***************************************#*****************t*****/

7 ek o e sk s ksl s ook Aok ok ok Kk ok ok ok /
[Aok ok ok ok ok ok ok rules.c sk ok ok koo ok ok ok
J ek kel Rk ok ok s ook ok T L ey

/***/

#include “"neurnets.h"

[¥=mmmmcrennccecnnccenenaaa make_prop ===-=-=-=-- et */
/* Create a random propositional vector "vec" of length "size" */
[¥mrme e cc e cnn e m e v cnmrr e rr e ca e ———— L x/

static void make_prop(vec, size)
int vecl[]);

int size;

{

int i, start, newsize, atom, connective;

if (size == 1)
vec[0] = RANDOM_ATONM;
else if (FIFTY_FIFTY) {
atom = RANDOM_ATOM;
for (i=0 ; i<size ; i++)
vec[i] = atom;

}
else {
connective = RANDOM_CONNECTIVE;
newsize = size >> 1;
make_prop(&vec[1], newsize);
start = newsize + 1;
if (connective == NEG) { /* =P <=> P -> BOTTOM */
vec[0] = IMPL;
for (i=start ; i<size ; i++)
vec[i] = BOTTOM;
}
else {
vec[0] = connective;
make_prop(&vec[start], newsize);
}
}
}
[¥=emmmmmmn cesemsesesecceee COpy.prop =----- meessececssccosonns */
/* Transform propositional vector "src" of length "src_sz" to */
/* another propositional vector "dst" of length "dst_sz". */
/* Caller must ensure that dst is large enough to accommodate */
/* a copy of src. */

55

S —— S S —

static void copy_prop(src, src_sz, dst, dst_sz)
int src[], src_sz, dst[], dst_sz;
{

int i;

if ((src_sz == 1) || (dst_sz == 1))
for (i=0 ; i<dst_sz ; i++) dst[i] = src[0];
else {
dst[0] = src[0];
Brc_sz >>= 1;
dst_sz >>= 1;
copy_prop(&src(1], src_sz,
&dst[1], dst_sz);
copy_prop(&src[src_sz+1], src_sz,
&dst[dst_sz+1], dst_sz);

}
3
J 4 extend ~=--ereccccccecccnacecnnaa" */
/* Functionally extend vector “"vec", assumed to have PROP_SZ */
/* significant elements, to VEC_SZ significant elements */
e i */
void extend(vec)
PROPOSITION vec;
{

int i, j, k;

k = PROP_SZ;

vec[k++] = IMPL;

vec[k++] = CONJ;

vec[k++] = DISJ;

for (i=1 ; i<(PROP_SZ+3) ; i++)

for (j=0 ; j<i ; j++)
vec[k++] = ABSDIF(vec[il, vec[j]);

}
[pemmrenmmmccceccccacacae Inference rules ~=====cecccccccccccnc- */
/* The premise functions return random premise vectors */
/* matching the templates of their inference rules. The */
/* conclusion functions return the correct conclusions for the */
/* argument premises. Note that "conjoin" is different: It */
/* is not learned by the system; it is provided as a built-in */
/* supplementary rule to be used by the proof system. */
J A T e e T TP R S S Y SpRp *x/

/*-z:.-..::sn.s:-nss. CONJOIN (special case) -s:s-u-nc-a-:-----*/
/% P and Q => (P & Q) */

void conjoin(p, q, p_and_q)
PROPOSITION P> 4, p-and_q;

{
p-and_q[0] = CONJ;
copy.prop(p, PROP_SZ,
&p_and_q[1), PROP_SZ>>1);
copy.prop(q, PROP_SZ,
&p_and_q[(PROP_SZ>>1)+1], PROP_SZ>>1);
extend(p_and_q);
}
/*eszzczsszcccsczsncxzsunsx REPETITION EEEERcEsssEssszsszxxsazszk/
/* P =>P %/
static int premiseREP(vec)
PROPOSITION vec;
{

make_prop(vec, PROP_SZ);
extend(vec);

)

static int conclusionREP(invec, outvec)
PROPOSITION invec, outvec;
{
copy_prop(invec, PROP_SZ,
outvec, PROP_SZ);
extend(outvec);

}

/*=cxszascescexsxnzsnsznsxs MODUS PONENS EEssEEsEcRssssaEssEsRssEX /

/* ((P->Q) &P) =>Q=*/

static int premiseMP(vec)
PROPOSITION vec;
{

vec[0] = CONJ;

vec[1] = IMPL;

make_prop(&vec[2], PROP_S2>>2);

copy.prop(&vec[2], PROP_SZ>>2,
&vec[(PROP_SZ>>1)+1]), PROP_SZ>>1);

make_prop(&vec[(PROP_SZ>>2)+2], PROP_SZ>>2);

extend(vec);

57

A F A .

}

static int conclusionMP(invec, outvec)

PROPOSITION invec, outvec;

{ .

copy_prop(&invec[(PROP_SZ>>2)+2], PROP_SZ>>2,
outvec, PROP_SZ);

extend(outvec);

}

/*=xnsczsnnssnunsszss HYPOTHETICAL SYLLOGISM m==szzzzazssssxmsxzzk/
/* C(P->Q)&(Q->R)) =>(P->R) »/

static int premiseHS(vec)
PROPOSITION vec;
{

vec[0] = CONJ;

vec[1] = vec[(PROP_SZ>>1)+1] = IMPL;

make_prop(&vec[2], PROP_SZ>>2);

make_prop(&vec[(PROP_SZ>>2)+2], PROP_SZ>>2);

copy.prop(&vec[(PROP_SZ>>2)+2], PROP_SZ>>2,
&vec[(PROP_SZ>>1)+2], PROP_SZ>>2);

make_prop(&vec[PROP_SZ-(PROP_SZ>>2)], PROP_SZ>>2);

extend(vec);

}

static int conclusionHS(invec, outvec)

PROPOSITION invec, outvec;

{
outvec[0] = IMPL;
copy_prop(&invec[2], PROP_SZ>>2, &outvec[1], PROP_SZ>>1);
copy._prop(&invec[PROP_SZ-(PROP_S2>>2)], PROP_SZ>>2,

&outvec[(PROP_SZ>>1)+1], PROP_SZ>>1);

extend(outvec);

}

/*=nuszanxnzszzns=czz DISJUNCTIVE SYLLOGISM 883888282..‘.8=====f/
/* C(P1Q)&~"P)=>0Q+ |

static int premiseDS(vec)
PROPOSITION vec;
{

int i;

vec[0] = CONJ;

vec[1] = DISJ;
vec[(PROP_SZ>>1)+1] = IMPL;
make_prop(&vec[2], PROP_SZ>>2);

58

make_prop(&vec[(PROP_SZ>>2)+2], PROP_SZ>>2);
copy.prop(&vec(2], PROP_SZ>>2,
&vec [(PROP_SZ>>1)+2], PROP_SZ>>2);
for (i=PROP_SZ-(PROP_SZ>>2) ; i<PROP_SZ ; i++)
vec[i] = BOTTOM;
extend(vec);

}
static int conclusionDS(invec, outvec)
PROPOSITION invec, outvec;
{
copy.prop(&invec[(PROP_SZ>>2)+2], PROP_SZ>>2,
outvec, PROP_SZ);
extend (outvec);
}
/*=zmazzazsnrzsnzensnszee MODUS TOLLENS szszzsus sensuusk/
[+ ((P=>0) & Q) = “P*/
static int premiseMT(vec)
PROPOSITION vec;
{
int i;
vec[0] = CONJ;
vec[1] = vec[(PROP_SZ>>1)+1] = IMPL;
make_prop(&vec[2], PROP_SZ>>2);
make_prop(&vec[(PROP_SZ>>2)+2], PROP_SZ>>2);
copy_prop(&vec[(PROP_SZ>>2)+2], PROP_SZ>>2,
&vec[(PROP_SZ>>1)+2], PROP_SZ>>2);
for (i=PROP_SZ-(PROP_SZ>>2) ; i<PROP_SZ ; i++)
vec[i] = BOTTOM;
extend(vec);
}
static int conclusionMT(invec, outvec)
PROPOSITION invec, outvec;
{
int i;
outvec[0] = IMPL;
copy.prop(&invec[2], PROP_SZ>>2,
goutvec[1], PROP_SZ>>1);
for (i=(PROP_SZ>>1)+1 ; i<PROP_SZ ; i++)
outvec[i] = BOTTOM;
extend(outvec);
}

59

/*---::zcssa-nsnnu DOUBLE NEGATION ELIMINATION -:-==s==========*/
/% ~“P => P x/

static int premiseDNE(vec)
PROPOSITION vec;

{
int i;
vec[0] = vec[i] = IMPL;
make_prop(&vec[2], PROP_SZ>>2);
for (i=(PROP_S2>>2)+2 ; i<PROP_SZ ; i++)
vec[i] = BOTTOM;
extend(vec);
}
static int conclusionDNE(invec, outvec)
PROPOSITION invec, outvec;
{
copy.prop(&invec[.], PROP_SZ>>2,
outvec, PROP_SZ);
extend(outvec);
}

/¢eeununszxxzzszxx DOUBLE NEGATION INTRODUCTION zraz=cnazssnzxzzk/
/% P => ""P %/

statac int premiseDNI(vec)
PROPOSITION vec;
{

PROPOSITION p;

make_prop(p, PROP_SZ>>2);
copy.prop(p, PROP_SZ>>2, vec, PROP_SZ);
extend(vec);

}
static int conclusionDNI(invec, outvec)
PROPOSITION invec, outvec;
{
int i;
outvec[0] = outvec[1] = IMPL;
copy.prop(invec, PROP_SZ, &outvec[2], PROP_SZ>>2);
for (i=(PROP_SZ>>2)+2 ; i<PROP_SZ ; i++)
outvec[i] = BOTTONM;
extend(outvec);
}

60

[¥enmnnzssnsnsnsnsnszsssz SIMPLIFICATION sassssszsusszszs=asszsnk /

/* (P&Q) => P x/

static int premiseSIMP(vec)
PROPOSITION vec;

{
int i;
vec[0] = CONJ;
make_prop(&vec[1], PROP_SZ>>1);
make_prop(&vec[(PROP_SZ>>1)+1], PROP_S2>>1);
extend(vec);
}
static int conclusionSIMP(invec, outvec)
PROPOSITION invec, outvec;
{
copy_prop(&invec[i], PROP_SZ>>1, outvec, PROP_SZ);
extend(outvec);
}

[¥ee=xmzcxcaszsxsrxxexs QR-COMMUTATIVE LAW =zssccassesxaxsssszzxk/

/(P |1 Q) => (Q | P) */

static int premiseCOM_OR(vec)
PROPOSITION vec;

{
vec[0] = DISJ;
make_prop(&vec[1], PROP_SZ>>1 };
make_prop(&vec[(PROP_SZ>>1)+1], PROP_SZ>>1);
extend(vec);
}
static int conclusionCOM_OR(invec, outvec)
PROPOSITION invec, outvec;
{
cutvec[0] = DISJ;
copy.prop(&invec[i], PROP_SZ>>1,
goutvec[(PROP_SZ>>1)+1], PROP_SZ>>1);
copy_prop(&invec[(PROP_SZ>>1)+1], PROP_SZ>>1,
&outvec[i], PROP_SZ>>1);
extend(outvec);
}

[4szenczscaxzzzexcxass AND-COMMUTATIVE LAW sszmzsssess=sszszzxk/
/* (P &Q) => (Q&P) */

static int premiseCOM_AND(vec)

61

PROPOSITION vec;

{
vec[0] = CONJ;
make_prop(&vec[1], PROP_SZ>»1);
make_prop(&vec[(PROP_SZ>>1)+1], PROP_SZ>>1);
extend(vec);
}
static int conclusionCOM_AND(invec, outvec)
PROPOSITION invec, outvec;
{
outvec[0] = CONJ;
copy.prop(&invec[1], PROP_SZ>>1,
&outvec [(PROP_SZ>>1)+1], PROP_SZ>>1);
copy_prop(&invec [(PROP_SZ>>1)+1], PROP_SZ>>1,
&outvec[1], PROP_SZ>>1);
extend(outvec);
}

/*enssznunzzsszsxzzex CONSTRUCTIVE DILEMMA s=sszzssaxzczzzzsszzk/
/* ((P | Q)& ((P->R) &£(Q ->5))) => (R | S) %/

static int premiseCD(vec)
PROPOGSITION vec;
{
vec[0] = vec[(PROP_SZ>>1)+1] = CONJ;
vec[1]) = DISJ;
vec [(PROP_SZ>>1)+2] = vec [PROP_SZ- (PROP_SZ>>2)] = IMPL;
make_prop(&vec[(PROP_SZ>>1)+3], PROP_SZ>>3);
make_prop(&vec[(PROP_SZ>>1)+(PROP_SZ>>3)+3], PROP_SZ>>3);
make_prop(&vec[PROP_SZ-(PROP_SZ>>2)+1], PROP_SZ>>3);
make_prop(&vec[PROP_SZ-(PROP_SZ>>3)], PROP_SZ>>3);
copy_prop(&vec[(PROP_SZ>>1)+3], PROP_SZ>>3,
&vec[2], PROP_SZ>>2);
copy_prop(&vec[PROP_SZ-(PROP_SZ>>2)+1] ,PROP_SZ>>3,
&vec[(PROP_SZ>>2)+2], PROP_SZ>>2);
extend(vec);

}

static int conclusionCD(invec, outvec)
PROPOSITION invec, outvec;
{
outvec[0] = DISJ;
copy._prop(&invec [(PROP_S7Z>>1)+(PROP_SZ>>3)+3], PROP_SZ>>3,

&outvec[i], PROP_SZ>>1);
copy_prop(&invec [PROP_SZ-(PROP_SZ>>3)], PROP_SZ>>3,
&outvec [(PROP_SZ>>1)+1], PROP_SZ>>1);

extend(outvec);

62

¥

/d=nasssznnssssannnzsz DESTRUCTIVE DILEMMA ssxsssssznssssszzmssi/

/* (CCR1 °8) & ((P->R) &(Q ->8))) => (P | ~Q) */

static int premiseDD(vec)
PROPOSITION vec;

{

}

int i;

vec[0] = vec[(PROP_SZ>>1)+1] = CONJ;
vec[1] = DISJ;
vec[2] = vec[(PROP_S2Z>>1)+2] = vec[PROP_SZ~-(PROP_SZ>>2)]
= vec[(PROP_SZ>>2)+2] = IMPL;
for (i=0 ; i<(PROP_SZ>>3) ; i++)
vec[(PROP_SZ>>3) +3+i] =

vec[(PROP_SZ>>2)+(PROP_SZ>>3)+3+i] = BOTTON;
make_prop(&vec[(PROP_SZ>>1)+3], PROP_SZ>>3);
nake_prop(&vec[(PROP_S2>>1)+(PROP_SZ>>3)+3], PROP_SZ>>3);
nake_prop(&vec[PROP_SZ-(PROP_SZ>>2)+1], PROP_SZ>>3);
nake_prop(&vec[PROP_SZ-(PROP_SZ>>3)], PROP_SZ>>3);
copy_prop(&vec[(PROP_SZ>>1)+(PROP_SZ>>3)+3], PROP_SZ>>3,

&vec(3], PROP_SZ>>3);
copy._prop(&vec[PROP_SZ-(PROP_SZ>>3)], PROP_SZ>>3,
&vec[(PROP_SZ>>2)+3], PROP_SZ>>3);

extend(vec);

static int conclusionDD(invec, outvec)
PROPOSITION invec, outvec;

{

}

outvec[0] = DISJ;
outvec[1] = outvec[(PROP_SZ>>1)+1] = IMPL;
copy_prop(&invec[(PROP_SZ>>1)+3], PROP_SZ>>3,

&outvec[2], PROP_SZ>>2) ;
copy._prop(&invec [PROP_SZ-(PROP_SZ>>2)+1], PROP_SZ>>3,
&outvec [(PROP_SZ>>1)+2], PROP_SZ>>2) ;

copy.prop(&invec[(PROP_SZ>>3)+3), PROP_SZ>>3,
&outvec [(PROP_SZ>>2)+2], PROP_SZ>>2);
copy._prop(&invec[(PROP_SZ>>3)+3], PROP_SZ>>3,
&outvec [PROP_SZ- (PROP_SZ>>2)], PROP_SZ>>2);
extend(outvec);

[*szzunznasszxczusaszxns CONTRAPOSITION sszszszxzmzzzszsac=sszsk/

/* (P => Q) => (Q =>P) +/

static int premiseCONTRA(vec)

63

PROPOSITION vec;
{

int i;

vec[0] = vec[1] = vec[(PROP_SZ>>1)+1] = IMPL;
for (i=0 ; i<(PROP_SZ>>2) ; i++)
vec [(PROP_SZ>>2)+2+i] =
vec[PROP_SZ-(PROP_SZ>>2)+i] = BOTTOM;
make_prop(&vec[2], PROP_SZ>>2);
make_prop(&vec [(PROP_SZ>>1)+2], PROP_SZ>>2);
extend(vec);

}

static int conclusionCONTRA(invec, outvec)
PROPOSITION invec, outvec;

{
outvec[0] = IMPL;
copy.prop(tinvec[(PROP_S2>>1)+2], PROP_SZ>>2,
&outvec(i], PROP_SZ>>1);
copy.prop(&invec[2], PROP_SZ>>2,
toutvec [(PROP_SZ>>1)+1], PROP_SZ>>1);
extend(outvec);

X

/#=s=nsssscnsussse= IMPLICATION INTRODUCTION ssssscazzzzssxszzcs/
[« (P 1 Q) = (P->Q) */

static int premiseIMPL1(vec)
PROPOSITION vec;
{

int i;

vec[0] = DISJ;
vec[i) = IMPL;
for (i=0 ; i<(PROP_SZ>>2) ; i++)
vec [(PROP_SZ>>2)+2+i] = BOTTOM;
make_prop(&vec[2], PROP_SZ>>2);
make_prop(&vec [(PROP_SZ>>1)+1], PROP_S2>>1);
extend(vec);

}

static int conclusionIMPL1(invec, outvec)
PROPOSITION invec, outvec;

{

outvec[0] = IMPL;

copy.prop(&invec[(PROP_SZ>>1)+1), PROP_SZ>>1,
&outvec[(PROP_SZ>>1)+1], PROP_SZ>>1);

copy.prop(&invec[2], PROP_SZ>>2,

64

&outvec[1), PROP_SZ>>1);
extend(outvec);

}

/¥=senxnaxzazzxsnss IMPLICATION ELIMINATION sssszssssxzzxssssszzmk/
/* (P =>Q) = (P | Q) */

static int premiseIMPL2(vec)
PROPOSITION vec; :
{

PROPOSITION p;

vec[0] = IMPL;

make_prop(p, PROP_SZ>>2);

copy.prop(p, PROP_SZ>>2, &vec[1], PROP_SZ>>1);
make_prop(&vec[(PROP_SZ>>1)+1], PROP_SZ>>1);
extend(vec);

X

static int conclusionIMPL2(invec, outvec)
PROPOSITION invec, outvec;

{
int i;
outvec[0] = DISJ;
outvec[i] = IMPL;
copy.prop(&invec[1], PROP_SZ>>1,
&outvec[2], PROP_SZ>>2);
for (i=(PROP_SZ>>2)+2 ; i<(PROP_SZ>>1)+1 ; i++)
outvec[i] = BOTTOM;
copy_prop(&invec[(PROP_SZ>>1)+1], PROP_SZ>>1,
&outvec [(PROP_SZ>>1)+1], PROP_SZ>>1);
extend(outvec);
}

/*snunnssznznsnnsz DEMORGAN’S LAW (AND => QR) =s:s=zsazzssssss=k/
/(P& Q)= (P | Q) =/

static int premiseDM1(vec)
PROPOSITION vec;
{

int i

vec[0] = IMPL;

vec[1] = CONJ;

for (i=(PROP_S2>>1)+1 ; i<PROP_SZ ; i++)
vec[i] = BOTTOM;

make_prop(&vec[2], PROP_S2>>2);

65

make_prop(&vec[(PROP_SZ>>2)+2], PROP_SZ>>2);
extend(vec);

}
static int conclusionDM1(invec, outvec)
PROPOSITION invec, outvec;
{
int i;
outvec[0] = DISJ;
outvec[1] = outvec[(PROP_SZ>>1)+3i] = IMPL;
for (i=0 ; i<(PROP_SZ>>2) ; i++)
outvec[(PROP_SZ>>2)+2+i] =
outvec [PROP_SZ~(PROP_S2>>2)+i] = BOTTOM;
copy._prop(&invec[2], PROP_SZ>>2,
&outvec[2], PROP_SZ>>2);
copy_prop(&invec[(PROP_SZ>>2)+2], PROP_SZ>>2,
&outvec[(PROP_SZ>>1)+2], PROP_SZ>>2);
extend (outvec);
}

/*unzxsnsnsssszns= DEMORGAN’S LAW (OR => AND) ==zzzzzczsazszsszzx/
/#* (P 1 Q) = (P & ~Q) =/

static int premiseDM2(vec)
PROPOSITION vec;

{
int i;
vec[0] = IMPL;
vec[1] = DISJ;
for (i=(PROP_SZ>>1)+1 ; i<PROP_SZ ; i++)
vec[i] = BOTTOM;
make_prop(&vec[2], PROP_SZ>>2);
make_prop(&vec[(PROP_SZ>>2)+2], PROP_SZ>>2);
extend(vec);
}
static int conclusionDM2(invec, outvec)
PROPOSITION invec, outvec;
{

int i;

outvec[0] = CONJ;
outvec[1] = outvec[(PROP_SZ>>1)+1) = IMPL;
for (i=0 ; i<(PROP_SZ>>2) ; i++)
outvec[(PROP_SZ>>2)+2+i] =
outvec [PROP_S2- (PROP_SZ>>2)+i] = BOTTOM;

66

copy_prop(&invec[2], PROP_SZ>>2,
toutvec[2], PROP_SZ>>2);
copy.prop(&invec[(PROP_SZ>>2)+2], PROP_SZ>>2,
&outvec[(PROP_SZ>>1)+2], PROP_SZ>>2);
extend (outvec);

}

/*==zsz=x=zzexcxz=== ARRAY OF INFERENCE RULES ExEsEcccEREREEEEsk [
/* NOTE: RULE_TOTAL and RULE must be updated whenever a new */
/* inference rule is added . */

#define RULE_TOTAL 17

static RULE rule_set[] =
{
{ premiseREP, conclusionREP, "Repetition" },
{ premiseMP, conclusionMP, "Modus Ponens" },
{ premiseMT, conclusionMT, "Modus Tollens" },
{ premiseDS, conclusionDS, "Disjunctive Syllogism" },
{ premiseHS, conclusionHS, "Hypothetical Syllogism" },
{ premiseDNE, conclusionDNE, "Double Negation Elimination" },
{ premiseDNI, conclusionDNI, "Double Negation Introduction" },
{ premiseSIMP, conclusionSIMP, “Simplification" },
{ premiseCOM_OR, conclusionCOM_OR, "OR-Commutativity" },
{ premiseCOM_AND, conclusionCOM_AND, "AND-Commutativity" },
{ premiseCD, conclusionCD, "Constructive Dilemma" },
{ premiseDD, conclusionDD, "Destructive Dilemma" },
{ premiseCONTRA, conclusionCONTRA, "Contraposition" },
{ premiseIMPL1, conclusionIMPL1, "Implication Introduction" },
{ premiseIMPL2, conclusionIMPL2, "Implication Elimination” },
{ premiseDM1, conclusionDMi, "AND=>OR DeMorg" },
{ premiseDM2, conclusionDM2, "OR=>AND DeMorg" }

};
Y A it select_rules =-=--~e-crcecceconeacas */
/* Get user’s choice from available inference rules. Return */
/* number of rules selected. */
DT bt e LT T TRy Splpipe */
int select_rules(rule)
RULE rule[];
{

int r, rcount;

char answer [50], *p;

rcount = 0;
for (r=0 ; r<RULE_TOTAL ; r++) {
do {

67

printf (“"Include rule \"4s\"? (Y/N) *,
rule_set[r].name);
fgets(answer, 50, stdin);
p = (char *) strchr(answer,’\n’);
if (p != NULL) *p = '\0’;
} while ((strlen(answer) != 1) ||
!strspn(answer,"yYnN"));
if (strspn(answer,"yY")) {
rule[rcount] .premire = rule_set[r].prenise;
rule[rcount] . conclusion = rule_set [r].conclusion;
rule{rcount] .name = rule_set[r].name;

rcount++;
}

}

return(rcount);
)
[¥=mmmeceemc e mccen e add_rules —==—-----===-cc--cccocoooo */
/* Let user select previously unselected inference rules. */
/* Return number of rules added. x/
R e x/
int add_rules(rule, old_rcount)
RULE rulel];
{

int c, i, r, rcount, ok;

char answer [50], *p;

rcount = old_rcount;
for (r=0 ; r<RULE_TOTAL ; r++) {
do {
ock = 1;
for (i=0 ; i<old_rcount &% ok ; i++)
if (rule[i].premise == rule_set [r].premise)
ok = O;
if (ok) {
printf("Include rule \"¥%s\"? (Y/N) ",
rule_set[r] .name);
fgets(answer, 50, stdin);
P = (char %) strchr(answer,’\n’);
if (p != NULL) =p = *\0O’;
}
} while (ok && ((strlen(answer) != 1) ||
Istrspn(ansver,"yYnN")));
if (strspn(answer,"yY") && ok) {
rule[rcount] .prenise = rule_set[r].prenise;
rule[rcount] .conclusion = rule_set[r].conclusion;
rule[rcount] .name = rule_set [r].name;

68

rcount++;
}
}

returmn(rcount);

----------------------- read_net ~---~==c----c—wecccceoo-

/* Read rule array and network weights from a file. In case of */

/* success, return number of rules; otherwise, return error.

int
RULE
int
int

{

read_net(rule, badflag wt, wt)
ruleld;

badflag_wt[MAX_RULES] [VEC_SZ];
wt [MAX _RULES] [VEC_S2] [VEC_SZ];

FILE *£p;
char str[50], *p;
int i, j, r, rules.in_file;

printf ("Enter name of network file to read: ");
fgets(str, 50, stdin);
p = (char =) strchr(str,’\n’);
if (p !'= NULL) #»p = ’\0’;
if ((fp = fopen(str, "r")) == NULL) {
printf ("Error opening %s for reading\n", str);
return{ ERROR);
}
fscanf(£fp, "{d\n", &rules_in_file);
for(r=0 ; r<rules_in_file ; r++) {
fgets (str, 50, fp);
i = strlen(str);
if (strl--i] == '\n’) str[i] = ’\0’;
for (i=0 ; strcmp(str, rule_set[i] .name); i++) {
if (i==RULE_TOTAL) {
print£("Rule %s does not exist\n", str);
return(ERROR);
}
}
rule{r] .premise = rule_set [i].premise;
rule[r].conclusion = rule_set[i].conclusion;
rule[xr] .name = rule_set[i] .name;
for (im0 ; i<VEC_SZ ; i++) {
fscanf(£fp, "Yd\n", &badflag_wt[rl[i]);
for (j=0 ; j<VEC_SZ ; j++)
fscanf(fp, "Yd\n", &wt[x] [i1[j]);

69

*/

fclose(fp);
return(rules_in_file);

}
[¥ me e e e get_rule -------ce--eccccosccconcooo */
/* Return a pointer to the rule whose name is r_name if the */
/* rule exists in rule_set; otherwise, return NULL. */
P LTI L - e L L */
RULE *get_rule(r_name)
char *r_name;
{

int i;

-for (im0 ; i<RULE_TOTAL ; i++)
if (!stremp(r_name, rule_set[i] .name))
return(&rule_set[i]);
return(NULL);

70

/*************************#*#************#***#**#**#***********#/

[Aok ok s s s sk sk ok o s ok ok ok ok ek ok ok sk ok ool ok /
[k sk ok ok ks ook ok ok parse.c sk ok ok ook ok ook ok ok ok ok /
[A0k sk e sk s ook o e ok sk o e sl ok o s ek sk s e /

et ok o ok ook ke koo o o o ok sl ok ok ok kool o o o ok koo o o o ok ol o o ok o ook ook /
/* GRAMMAR:

Sentence =---> atom

Sentence ---> # (# means "bottom")
Sentence ---> * Sentence

Sentence ---> (Sentence Binary

Binary ~-=> | Sentence)
Binary ---> & Sentence)
Binary ---> ~> Sentence)
Binary ~--->)

*/

#include "neurnets.h"

/* Forward declaration needed due to mutual recursion */

static char s*sentence();

[¥=mmmmmemeee B St scan ------ mmmmescemecscocseno—ao */
/* Cut first token from str, returning the remaining string. */
/* On return, token points to the token type, or FAILURE. */
f T B -- e x/

static char *gcan(str, token)

char *xstr;
int *token;
{

if (wstr == ’\0’) {
*token = FAILURE;
return(str);

}

for (; isspace(*str)

switch (*str) {
case *(? : *token = LPAR;

stret);

break;

case ')’ : *token = RPAR;
break;

case ‘"7’ : *token = NEG;
break;

11

case ’|’ : »token = DISJ;

break;
case ’&’ : *token = CONJ;
break;
*case '#’ : »token = CONTRADICTION;
break;
case -’ : *token = *{++str) == ’>’ ? IMPL : FAILURE;
break;
default: *token = isupper(*str) ? *str : FAILURE;
}
Str++;
return(str);
}
/¥ mmec e cc e binary =-==-c-e-cccccccccacncncaaa */
/* Transcribe string form proposition to vector form using the */
/* grammar above. Mutually recursive with sentence(). */
L D L L T L U SR S *®/
static char *binary(vec, str, size, tokenp, result)
int vec[];
char *str;
int size, *tokenp, *result;
{
int last;
str = scan(str, tokenp);
switch (*tokenp) {
case RPAR : *result = SUCCESS; return(str);
case DISJ :
case CONJ :
case IMPL : str = sentence(vec, str, size, result);
if (*result == FAILURE)
return(str);
str = scan(str, &lasi);
if (last == RPAR)
*result = SUCCESS;
else
*result = FAILURE;
return(str);
}
*result = FAILURE;
return(str);
}
A e it DL L sentence -=--------meccecccceeeceo- */
/* Transcribe string form proposition to vector form using the */
/* grammar above. Mutually recursive with binary(). */

72

static char xgentence(vec, str, size, result)
int vec(];

char *gtr;

int size, *result;

{

int i, token, newsize;

str = gcan(str, &token);

if (isupper(token) || token == CONTRADICTION) {
for (i=0 ; i<size ; i++) vec[i] = token;
*result = SUCCESS;
return(str);

}

newsize = gized>>1;

if (token == LPAR) {
str = sentence(&vec{1], str, newsize, result);
if (*result == FAILURE) return(str);
str = binary(&vec[newsize+i], str,

newsize, &vec[0], result);

return(str);

}

if (token == NEG) {
vec[0] = IMPL;
for (imnewsize+l ; i<size ; i++) vec[i] = BOTTOM;
str = sentence(&vec[1]), str, newsize, result);
return(str);

}

*result = FAILURE;

return(str);

}

[¥m=mmmmecec e ccncne e prop_to_string -===---c-=ce-cemmcoo—-o */
/* Transcribe the vector vec to string form str. */
et e et T */
static int prop_to_string(vec, size, str)

int vec(];

int size;

char *str;

{

int smaller, temp;

if (size ¢ 1) return(FAILURE);
if (ATOM(vec[0])) {

x(str++) = vec[0];

xstr = °\0’;

return (SUCCESS);

73

}
if (vec[0] == BOTTOM) {
*(str++) = '8
*str = 2\0’;
return(SUCCESS);
}
smaller = size>>1;
if ((vec[0] == IMPL) && (vec[smaller+i] == BOTTOM)) {
*(str++) = 170,
*str = '\0’;
return(prop_to_string(&vec[i], smaller, str));

}
else {
*(str++) = ' (7;
*str = ’\0’;
if (!prop_to_string(&vec[1], smaller, str))
return(FAILURE);
switch(vec[0]) {
czse IMPL: strcat(str, " => "); break;
case DISJ: strcat(str, " | "); break;
case CONJ: strcat(str, " & "); break;
default: return(FAILURE);
}
temp = prop_to_string(&vec[smaller+1],
smaller, strchr(str,’\0’));
if (temp) {
strcat(str, ")");
return(SUCCESS);
}
else
return (FAILURE);
}
}
e StI_prop ~===-=--=-=-scocccccooo---

/* Convert string form proposition (str) to vector form (vec).

int str_prop(str, vec)
char *str;
int vec[];
{
int result;

str = sentence(vec,str,PROP_SZ,&result);
if ((result == SUCCESS) &¢
(str != NULL) && (*str == ’\0’)) {
extend(vec);

74

return(SUCCESS);

}
else
return(FAILURE);
}
L et D et Str_prop -—----==--s-sc-cese-maccooe */
/* Convert vector form proposition (vec) to string form (str). =/
[hommmm oo oo - S . */

/% prop_str() converts a proposition to a string */

int prop.str(vec, str)
int vecll;

char *str;

{

return(prop_to_string(vec, PROP_SZ, str));
}

75

/] e ok o e s e o o sk oo 3 ol o o o o ke ol o o ok o 3 oo ok e sl 3 o okl e ol ke ke oo sk o o sl e ook ool ke o ok ook /

/s s ok ok s ok o oo ok o o o o ook o o ke ok ook ok ok /
/Ao st ok ook ok s ok ok memarch.c ek koo o ok o o ko ko ook /
/oo e ok ok ok ok ok sk ok ok o o sk ok ok ok ook e ok /

/#******************#******#**************#*********#***********/

#include ‘neurnets.h"
#define EMPTY(q) ((q) == NULL)

typedef struct mem.q {
PROPOSITION prop;
char *inf_rule;
struct mem_q *supportl, *support2, *next;
} *MEM_Q;

~tatic MEM_Q head_q = NULL;
static MEM_Q crnt_q = NULL;
static MEM_Q tail_q = NULL;

[Hommmmm e flush_memory ==----===c--cccccccoccco—-- */
/* Empty memory queue and return memory to system. */
D T L TT S S R */
void flush_memory()

{

MEM_Q temp_q;

wvhile(!EMPTY(head_q)) {
temp_q = herd_q;
head_q = head_g->next;
free(temp_q); .

}

crnt_q = tail_q = NULL;
}
[*ecemmmcm e cn e get_prop —==----cccccccmcrmc e */
/* Copy the current proposition in memory into parameter p. */
[R rmmmme e T e */

int get_prop(p)
PROPOSITION P

{
if (EMPTY(crnt_q))

76

return(FAILURE);
else {
memcpy{ (char *)p, (char *)crnt_q->prop,
sizeof (PROPOSITION));
return(SUCCESS);

3
}
[H=mmmmmmmmes oo next _prop --=-—------ssssessssosocoooo */
/* Advance the current proposition pointer. */
L e et L EE L L LS S P e x/
void next_prop()
{
if ('EMPTY(crnt.q)) crnt_q = crnt_qg->next;
}
A ittty complexity ==—--=-===-=sc-c-coccocooo- */
/* Return depth of nesting of comnectives in proposition p. */
J 2 s L e et b CE L L L L PR L L L LR e P L x/
static int complexity(p, size)
int pll, size;
{
int newsize, left, right;
switch(p[0]) {
case IMPL :
case DISJ :
case CONJ :
nevsize = size > 1;
left = complexity(&p[il, newsize);
right = complexity(&plnewsize+1], newsize);
return(1 + MAX(left,right));
}
return(0);
}
[Hmmmm e e ancc e aeee find_prop --=-e--e-s-csccccccccoce- */
/* Return location of p in memory queue, or NULL if not found. */
f T e e L L DL L DL L L LR E L L Lt x/

static MEM_Q find_prop(p)
PROPOSITION P

{
MEM_Q q;

q = head_gq;

77

while(!'EMPTY(q) && !'SAME_PROP(q->prop, p)) q = q->next;
return(q);

}

[#=emmmemccrccccccccncanecaa insert ====r=-ecscrecccceccncnaaa- */
/* Insert p in memory if not there. Record premises si and s2 =*/
/* from which p was derived, and the inference rule used. */
/* Return a pointer to the proposition in memory. */
D e e L R */

static MEM_Q insert(p, si, s2, rulename)
PROPOSITION P

MEM_Q s1, 82;
char *rulename;
{

MEM_Q q;

if (tail_q == NULL) {
tail_q = (MEM_Q) malloc(sizeof(struct mem_q));
head_q = crnt_q = tail_q;

}
else {
q = find_prop(p);
if (EMPTY(q)) {
tail_g->next = (MEM_Q) malloc(sizeof (struct mem_g));
tail_q = tail_g->next;
}
else
return(q);
}
if (tail_q == NULL) {
pause ("'\nMemory insertion error. Press <return>...");
exit(-1);
}

memcpy((char *)tail_g->prop, (char *)p, sizeof (PROPOSITION));
tail_g->supportl = si;

tail_g->support2 = s2;

tail_q->inf_rule = rulename;

tail _q->next = NULL;

return(tail_q);

}

L conjoin_all =====----==---cccmacaa- ~*/
/* Form all possible conjunctions of p and propositions in the */
/* memory queue and add insert them into the queue. */
J D T T . */

static void conjoin_all(p)

78

R

T e

MEM_Q P

{
PROPOSITION conj;
MEM_Q q;
if (complexity(p->prop, PROP_SZ) >= MAX_COMPLEXITY) return;
q = head_q;
while(!'EMPTY(q)) {
if (complexity(q->prop, PROP_SZ) < MAX_COMPLEXITY) {
conjoin(p->prop, gq->prop, conj);
insert(conj, p, q, "Conjunction");
}
q = q->next;
}
}
/¥mmmmemme e memorize_premises ------=<-s---------oo */
/* Record all premises (and conjunctions) in memory queue. */
T ittt it */
void memorize_premises(p_list)
PROP_LIST p-list;
{
MEM_Q P
while ('EMPTY(p._list)) {
p = insert(p_list->prop, NULL, NULL, "Premise")
conjoin_al1(p);
n_list = p_list->next;
}
}
[#emmmmmmm e memorize_inference =---==~==-s---=-c--o-- =/
/* Record inference (and conjunctions) in memory queue. */
f T Rt ettt bttt */
int memorize_inference(conclusion, rulestr)
PROPOSITION conclusion;
char *rulestr;
{
MEM_Q P;

if (EMPTY(crnt_q)) return(FAILURE);
p = insert(conclusion, crnt_q, NULL, rulestr);
conjoin_all(p);
/* crnt_q = crnt_q->next; */
return(SUCCESS);

79

-

[Hommmmmmm o ae build_proof =~=<---===cc--coccocooo- */
/* Print proof of q by preorder traversal of "support tree" */
P4 T e e e L L L */

static void build_proof(q)
MEM_Q q;
{

char str[50];

if ('EMPTY(q)) {
prop_str(q->prop, str);
if (g->supportl == NULL)
printf("%s is a premise.\n", str);
else {
printf("%s follows from ", str);
1 prop_str((q->supportl)->prop, str);
i if (q->support2 == NULL)
' printf("Y%s by ¥%s.\n", str, q->inf_rule);
: else {
printf(“"%s and ", str);
prop_str((q->support2)->prop, str);
. printf("Y%s by ¥%s.\n", str, q->inf_rule);
h }
‘ }
build_proof(gq->supporti);
build_proof(q->support2);

-

}
| }
Lttt pPrint_proof ----------esccccscocoooo */
; /* If p is in memory, print its proof and return success; */
f /* othervise return failure */
, [—————— e cccrcccc e ccacr e, e, —cee e —————— */

int print_proof(p)
PROPOSITION pP;

{
MEM_Q q;

q = find_prop(p);
if (EMPTY(q))
return(FAILURE);
else {
build_proof(q);
pause("\nPress <return>.");

80

O TarA, e

return(SUCCESS);

}
}
Y e e Tt print_memory =---=-----s-cccccccecea. */
/* Display the contents of the memory queue in string form »/
TS S U S ' */
void print_memory()
{
char str[50];
MEM_Q q;
CLEAR_SCREEN;
printf(“Contents of memory\n");
printf(spzxzsszszczccsx===\n");
q = head_q;
while (!EMPTY(q)) {
prop_str(gq->prop, str);
printf("%s\n", str);
q = gq->next;
}
pause("Press <return>...");
}

81

/********************#********#*******#*************************/

/83 o s ook o o o ook o oo ok ko o ke ok ok ok ok ok ok ook ok /
JALITE P2 utility.c oo ook o sk koo e ook sk ook ok ok f
[ko oo ok o s ook ok ook ok ook ok ok ok ek o ok ok ok ko ok ok /

/****#*******##**#**t***#**#***#********#***********************/

#include "neurnets.h"

e e e get_option =----=-----=-c=--cococano- */
/* Display prompt and wait for valid selection from optioms. */
[rmm e ccccc e m e m e e ca et m et e — s c e e —————— x/

int get_option(prompt, options)
char *prompt, *optioms;

{

char str{50], *pos;

do {

printf("“%s ", prompt);

fgets(str, 50, stdin);

pos = (char *) strchr(str,’\n’);

if (pos) *pos = ’\0’;

if ((strlen(str) == 1) && islower(*str))
*str = toupper (*str);

} while ((strlen(str) != 1) || !strspn(str,options));

return(*str);

}

e yes =---=s--cecccccmccmcccccean- */
/* Display prompt and wait for yes or no answer. */
[Hmm e ccme et cccccmc e c e ——— e —————e */

int yes(question)
char *question;

{

char prompt[50];

strcpy(prompt, question);
strcat(prompt, " (Y/N) ");
return(get_option(prompt, "YN") == 'Yy’);

}

L e pause ----sccecsecccm——occecooao. */
/* Display prompt and wait for carriage return. */
J A T S, */

void pause(prompt)

82

char *prompt;

{

char str{50];

printf("%s", prompt);
fgets(str, 50, stdin);

3

[Hmmemmmmmec e e e ce e e oo all_vhite =--=--=-c=ccccccmcocmeon- ./
/* TRUE iff string s consists entirely of whitespace. */
T ettt »/
int all_vhite(s)

char *s;

{

for (; *s ; s++)

if (!isspace(*s)) return(FALSE);

return{ TRUE);

)

[Hememmmmmmmmec e e e all_scan -=-=-=-=-=cc--ccs=com-oo- */
/* Return pointer to first invalid character in s. */
/* characters are valid return pointer to terminal null byte. */
DT ettt it */
char *all_scan(s)

char *s;

{

return(s +

}

strspn(s,"ABCDEFGHIJKLMNOPQRSTUVWXYZ()|&”-> \t\n"));

83

Appendix B

Some Simulator Proofs

The following proofs were constructed by the simulator. The problems were chosen
from a set of exercises in Copi’s Introduction to Logic ([4]), an undergraduate logic
textbook. The proofs are nearly verbatim transcripts of the simulator output; the
only changes are the deletion of intervening menus, and the addition of whitespace

for greater legibility on paper.

Enter propositions (blank line to exit):
(A -> B)
(A &0
Enter proposition to prove: B
B follows from

((A ->B) &4

by Modus Ponens.
((A => B) & A) follows from

(A ->B) and A

by Conjunction.
(A -> B) is a premise.
A follows from

(A &0)

by Simplification.
(A & C) is a premise.

Enter propositions (blank line to exit):
(R =>58)

RIT

(T -> V)

Enter proposition to prove: (S | U)

84

(S | U) follows from
(RIT &(R->8)&(T=>U))
by Constructive Dilemma.

(RIT) & (R=>5S) & (T->U))) follows from
(R T)and ((R=>8) & (T ->U))
by Conjunction.

(R 1 T) is a premise.

((R ->8S) & (T -> VU)) follows from
(R => 8) and (T -> V)
by Conjunction.

(R -> S) is a premise.

(T -> U) is a premise.

Enter propositions (blank line to exit):
(C(vew) | (X->Y))
(Z => X)
(VW
Enter proposition to prove: (Z => Y)
(Z -> Y) follows from
((z->x) & X->Y))
by Hypothetical Syllogism.
((Z ->X) & (X => Y)) follows from
(Z ->X) and (X ->Y)
by Conjunction.
(Z -> X) is a premise.
(X => Y) follows from
(vew | X=>M)&"(Vew)
by Disjunctive Syllogism.
((VeEwW | X->Y))& (Ve W) follows from
((vew | (X=>Y)) and (V& W)
by Conjunction.
((ve&ew | (X=->Y)) is a premise.
“(V & W) is a premise.

Enter propositions (blank line to exit):

((A ->B) & (C ->D))

(B -> D)

((B->D) ->(A | C))

Enter proposition to prove: (B | D)

(B | D) follows from
(A1 C)& ((A->B) & (C~->D)))
by Constructive Dilemma.

(A1 C) & ((A->B) & (C->D))) follows from
(A | C) and ((A ->B) & (C -> D))

85

S T TR B e TR T R

by Conjunction.

(A | C) follows from
(((B->D) => (A | C)) & (B ->D))
by Modus Ponens.

(((B ->D) -> (A | C)) & (B -> D)) follows from
((B->D) -> (Al ©) and (B -> D)
by Conjunction.

((B=>D) => (A | C)) is a premise.

(B -> D) is a premise.

((A ->B) & (C -> D)) is a premise.

Enter propositions (blank line to exit):
(E | ~F)
(F => ~G)
“E
Enter proposition to prove: ((F -> “G) & “F)
((F => "G) & “F) follows from
(F -> “G) and °F
by Conjunction.
(F -> "G) is a premise.
“F follows from
(CE| “F) & "E)
by Disjunctive Syllogism.
((E | "F) & "E) follows from
(E | “F) and "E
by Conjunction.
(E | "F) is a premise.
“E is a premise.
R R R E P E R EEEEEEEESRERNEEERER =

Enter propositions (blank line to exit):
(A -> B)
(A 10
“B
Enter proposition to prove: (C & ~A)
(C & “A) follows from
C and "A
by Conjunction.
C follows from
(A1 C)e& ~a)
by Disjunctive Syllogism.
(CA | € & ~A) follows from
(Al C) and ~aA
by Conjunction.
(Al C) is a premise.

86

“A follows from
(A -> B) & °B)
by Hypothetical Syllogism.
((A -> B) & “B) follows from
(A -> B) and "B
by Conjunction.
(A -> B) is a premise.
“B is a premise.
~“A follows from
((A -> B) & “B)
by Hypothetical Syllogism.
(C(A -> B) & “B) follows from
(A ->B) and "B
by Conjunction.
(A -> B) is a premise.
"B is a premise.

Enter propositions (blank line to exit):
((0lP) -> Q)
o & ")
Enter proposition to prove: “(O|P)
~(0 | P) follows from
(o1 P)->0Q &"Q
by Hypothetical Syllogism.
(0 | P) -> Q) & “Q) follows from
(0 | P) ->Q) and "Q
by Conjunction.
((0 | P) -> Q) is a premise.
“Q follows from
"qQ & -0)
by Simplification.
("Q & “0) is a premige.

Note the curious invocation of the Hypothetical Syllogism rule in the last proof.
This can be explained with reference to the fact that —Q is represented internally
as QOL, so that Modus Tollens becomes merely a special case of Hypothetical

Syllogism.

87

