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ABSTRACT

Matrix analysis of bowstring arches is presented in this
dissertation. The arch is considered as a curved member in the flexi-
bility method, and is discretized into sfraight members in the stiff-
ness method. The fesults of the two methods are compared. The flexi-
bility method is a suitable method for the analysis of bowstring
arches, however, it is advantageous to use the stiffness method if
the cross sections of the structural members vary. There are no
thermal stresses in a single span bowstring arch as the result of
temperature changes, if the structure is made of one material. A
computer program is developed for the flexibility method for prac-
tical applications. Preliminary design results obtained by the sim-
plified method, may be used as input data in the computer program.
Final analysis is carried out by computer program. In a bowstring
arch of a given span, the choice of the geometry of the arch and
the selection of suitable proportion of sectional properties of the
arch and the girder are the important factors for the optimum design.
The final result is not much affected by neglecting individual axial
deformation, such as the shortening of arch rib, or the elongations
of the tie girder and the hanger rods. However, the result may be
significartly changed, when axial deformations in &1l members of the

structural system are neglected.

iii



ACKNOWLEDGHENT

The suthor wishes to express his special appreciation to
Dr. Pen Jeng Fang who gave inspiration and guidance during the
course of this study. The help of Dr. Matthew McC. Douglass is

also gratefully acknowledged.

. Montreal, Canada

March, 1971 L. W. Wong

iv



TABLE OF CONTENTS

Chapter Page
INTRODUCTION L BN B B ] _. S 0 ¢ ¢ 0 9 0 5 6 8 0 0 T 98GO O PV O EO S 9 OS EE O S 2 0a l
1' THEORETICAL ANALYS]:S ® 0 ¢ 00 0 008 8 0PSO RSO OO P ISV QEC OO LoD 3

1.1 Analysis by Flexibility Method ¢cccececececssaccasas 3

1.1.1 Derivation of Basic FOrmulae ...cceecescscccss 3
2 Matrix [F] 2, .ueeeeeceooscanssssssessasesoncees 10
Matrix [FH] “eeevecococcasccansoasssccssconvcans 13
Matrix [F] Sieeepecceccvosgecccactscccoscscncsecne 14

Matrices [pQL] and [pQL] tcessseanscesassceces 16

sis by Stiffness Method cecccecveccccccccccnees 18
Basic POIMULAC ecececccsosscsssssccersncacsesas 19
Approximate Method e..eeccececssccccacsccssees 21

+2.3 Member Stiffness Matrix [Sylee.ccecieieereinin 21

1.2.4 Construction of the Stiffness Matrix [Si]..... 24

1.3 Thermal FPOTrCeB cesececcscasasacscsscscsasscvscsocscsas 21

N G NP

1
l
1
1
1.2 An 1
1
1
1l

2., PRACTICAL APPLICATION AND EXAMPIE ceceeotsccccccccccceee 30

2,1 Preliminary DesSifh eeeeeececccvcvaccssoassnacccsasss 30
2,1.1 Geometry of Structure ...cceccececccecccceccess 30
2.1,2 Preliminary Design of Structural Members ..... 31

2.2 EXAMPlE ceccoccovesassocccscsssscssssccascsascncooas 37
2.2.1 Dead Load An8lysSisS ceececccccccscccscscscccsses I8
2.2,2 Live Load AnalysiS eceececccccsscccecscscecancs 39

3. COMUTER PROGRAIﬂ 'YEEEEEENEEENRENNE NI I NE B B R BE B BAE BB N 46
3.1 General Description of the Program .....seeeeeeecss. 46
4. DISCUSSIONS AND CONCLUSIONS ceccevovsascessscsccsccscasss 49

4.1 Comparison of the Methods .e.cceeceececcrcercncaccss 49
4.1.1 Choice Of MEthOGQS eeeesccccncsssccscccscscaass 49
4.1.2 Comparison of Numerical Results of the Flexib-.

ility Method and the Stiffness Method(Approxi-
mate Method) seececececscsccssccsascscssssssns 50

4,2 Effects of Shortening of Arch and Elongation of Tie
Girder and Hanger TOAS coecesescscassssccsssasscssee 22

4.3 Effect of Section Properties of Arch and Tie Girder. 53
4,3.] Hanger FOTCE seeesccosnsescscstscccacssonsaces D3
4.3.2 Axial Force in the Arch and Tie Girder ....... 55
4.3.3% Bending Moment in the Arch and the Tie Girder. 55

4,4 DePlection eeeecessoesesscsocssscccscscsssccccsosone D1
4,4,1 Comparison of the Results of Flexibility lMeth-

0d and Stiffness Method(Approximate Method)... 57
4.4,2 Dead Load and Live Load Deflection .cseeceseees 59



4.5 Effect of Geometry O0f ATCh ccevveeesoscrcrccacannnne
4.5.1 Bending Moments and Hanger FOrceS...ececeeecees.
4.5.2 AXial FOYCEB cuveeovevacoacoscacsccsocnossanaoes

4.6 CONClUSIONS eevesecavantncsssoccesosacoscscsaasnsese

BIBLIOGRAPHY

APPENDIX A.

0% 05000004609 0¢ ¢80 OO0 EES0CLNESIBIEIPLOEIPPOITTIOIOEO

FLO% CHARTS AND FORMULAE cieececccsccscsces

A.l COmputer Flow Charts €@ 6 0000000000000t ssOLsOes0s S

A.2 List

APPENDIX B.

of Basic Formulae in the Subroutines ......

DERIVATION OF CURVED MEMBER STIFFNESS
M-ATRIX ............‘...O........'......I....

vi

60
60
62
63

65
67

68

75

81



INTRODUCTION

The bowstring arch, also called girder-tied arch, is a struc-
ture consisting of an arch rib and a tie girder. The arch and the tie
girder are fastened together at the suhports and connected to each
other between the supports by meens of equally spaced vertical sus-
pension rods as shown in Fig.(1-1).

Sometimes in practice, the system is analyzed regaerding the
girder as a tie to absorb the horizontal force of the arch at the
sqpports. The approach considerably simplifies thé analysis, which
is similar to the analysis of a two-hinged arch, except that the
effect of the tie girder elongation must be accounted for. However,
the arch and the tie girder act jointly to resist any loads on the
tie girder, resulting in a highly indeterminate structure.

While the analysis of such a struc%ure is usually time-consu-
ming.by hand calculation, the development of high-speéd electronic
computer and matrix methods of structural analysis make it possible
to use a rigorous analysis, thus‘leading to more economiceal design.

This investigation deals with the analysis of a bowstring
arch bridge consisting of steel members. The scope of the study
includes specifically the following problems:

1. Analysis bf a single spén bowstring arch by matrix methods.

(flexibility and stiffness methods).

2., Proof df absence of thermal stresses.

3, Practical application with example.

4, Computer programs for practical applications.

5. Discussion and comparision of the resuliis of the two

methodse.

[Ed



2
6. Investigation of the effects of member axial deformations,
properties of the members, and the geometry of the struc-

ture.



CHAPTER 1
THEORETICAL ANALYSIS

1.1 Analysis by Flexibility Method

1.1.1 Derivation of Basic Formulae
The structure to be analyzéd is shown in Pig.(2-1), which has

a hinged connection at the left support, end a roller support at the-

-right,  with hanger rods connecting the archJand the tie-girder,

—T | T

e

7 B LY
L |

Pig.(1-1)

As the rigidity of the hanger is much smaller than that of
the arch and of the tie gider, we may approximate the hanger rod
connections to be hinged as shown.

Vith the above simplification, we consider the structure as
& plane frame, being statically determinate externally, but indeter-
minate internally. The degree of indeterminacy cen be determined
~ by the following formulae:

n

]

3 - (m + 2n + 1 ) (1-1)

where n

1

the number of redundants :

m = ithe number of members in the framework;



J = the number of Joints;
nh = the number of hangers, and is equal to h-é
The released structure obtained by cutting all the hanger rods
and replacing the rigid joints at the junctures of the arch and gird-
er, by pins, is shown in Pig.(1-2), where the unknown forces Qi act-

ing at the hinged joints have replaced the hanger rods and the inter-

nal moments at the rigid joints.

Y
—
h
Q Q, 4 Q
01‘2' 1 1 ' ’ 1 1 b _ -X
o T i
L L

Pig.(1-2)

It is important to note at this point that the released sirue-
ture is’ mnot determinate, but is indeterminate to one degree, hence
there will be one less release than the number of redundants. In
usual structural analysis, a released structure is statically deter-
minate, whereby the complication of finding the [F] matrix is avoided.
In the particular structure under consideration, it is advantageoug
" not to release the horizontal thrust at the right hand end in order
to satisfy the boundery conditions. Had it been ortherwise, an extra
set of eguilibrium equations would be necessery to satisfy the boun-

dary conditions in order to close the gap between the cut c¢f the tie



(2)

girder and the arch .

The following symbols are used in the analysis:
n The number of releases; n = n, - 1
Q The redundants;
DbLi The displacements in the released structure corresponding to
the redundants and due to the applied load;
Fij The displacements in the released structure corresponding to
the redundants and due to unit values of the redundants;
DQi The actual vertical displacements corresponding to the rgdun—
dants.
It is convenient to divide the structure into two parts; name-
ly, the arch, and the tie girder. Superscript 'a' refers to the arch,

and 'g' to the girder.

The equilibrium condition for the arch may be written as:

a a a .a a a a .a
DQ1 = DQLl + F11Q1 + F1202 + eee *+ Fann
a a a a a a a a
Dao = Dopp *+ FpyQy + Fiplp * ooe + FipQy

© 0000000000080 0000ccacese0sss P ILLRNO

a a a _a a .8 a .a
DQn - DQLn + Flel * Fn2Q2 toeee anQn

In matrix form, the above equations become,

-

Do1

Dy2

a

or ’D'I

DQL

|

1

a

F11

F21

F12

F22

F

13

F

23°

L 2 F

L) F

1n

2n

(1-2)



Similarly for the tie girder,

g _ g 8,18 _
[2q® = P+ [1°[] (1-3)
Let Dh Dh . Dh denote the elongations‘of the hangers
Q1’ “Q2’ °°° “an’

under the action of the redundants.

= h -h
Do Qb
E A
o | =|%Ps (1-4)
Q2 -
E A
2
Q.h
D nn
Qn t? A
. p_ n_

where hyy hy, ...y h , are the lengths of the hangers, (hl= h = 0),
and Al’ A2, cescy An’ are the areas of the hanger cross sections.
Consider the whole structure next. The vertical displacement
of the girder at the point of redundant action is equal to the sum
of the displacements corresponding to the same point in the arch,

and the elongation of the corresponding hanger rod, i.e.y

g - [ +[2]" -

Substituting Equations (1-2), (1-3) and (1-4) into Equation (1-5),

Per)® + [1°[a]f = Pl  [21[dl" + [2d"

Rearranging,

bl - [l - [P - (e
[o - [ L] -

9] (1-7)

we have

Since,



Let [DQL] = [ZDQL]g - [DQL]a ' (1-7a)

and [F] = [F]a +[F]g +[1] [B] (1-7b)
where [I] is a unit matrix,

- -1

h

=

|

g 5
N -

=

S eee -3

[8] =

(158)

N

t!JI
>
=4

n

Upon substituting Equations (1-7a) and (1-7b) into (1-7), and solv-

ing, the result is
[Q] =- [F]—l [D QI] (1-9)

The elongation of the hangers is small relative to the defl-
ections of the ‘arch -and the tie "girder, and can ‘be neglected. Thus,
Equation (1-7b) is reduced to

[#] - [=]* + [s]¢ (a-e)

The effects of elongation on the hanger forces can be checked
by comparing the [Q] values obtained when [F] is determined by Egs.
(1-7b) and (1-7c¢) respectively.

The vertical deflection of the arch and the tie girder can
be obtained by substituting the [Q] values into Equations (1-2) and
(1-3).

The horizoﬁtal displacement of the arch and the tie girder
does not affect the solution for the redundants; however, such inf-

ormation is sometimes needed for cambering and for the clearancé of

expansion Jjoint .While the hori

[\

ontal displacemeni of the tie girder

can be found readily, the calculation of %the horizonial displacement



of the arch is more involved. The latter will be discussed in the
following.

Suppose the structure is subjected to a set of external loads
as shown in Fig.(l—l). Assume Tirst that the tie girder is inexten-
sible under the action of the axial force which is induced from the
external load. Under this assumption the tied arch approximates a
two-hinged arch with moments applied at the two ends. The flexibility
matrix of the horizontal displacement of the arch ﬁﬁﬂa'is next found.

Actually the tie girder is elongated under the action of the
axial force. The elongation at any point i on the girder can be exp-
ressed according to Hooke's law

a, =+ %

i
EA
4

(1-10)

where T is the axial force, X1 is the distance from left support to
point i. Since the structure is hinged at the.left end, and supported
by a roller at the right end, the horizontal displacement will be
from left to right. To satisfy the boundary condition at the right
end, the horizontal displacement of the arch and the tie girder
must be equal; i, e.,

TL

@ =—or

EA
&

The second step is to find the horizontal displacement of the
untied arch, under the action of a horizontal force T' at the right
end, which causes the horizontal displacement at the right end of

the arch equal to



since f T'Y2 (as) = a
o EIa
¥ 2
hence 7' =4 EIa// S YS (as) (1-10a)
0

The horizontal displacement at any point of the arch under the second
condition can be determined by the unit load theorem.

L

., = i (as) (1-11)
hi = ¢ EI,
where M =177,
| m, =Y - VX, oéXéxi 3
m = Y:l - vix, Xiéx.él, .

Pinally, the true displacement of the arch will be obtained
by combining conditions one and two, as depicted by the following

figure.

Fig.(1-3)

Phe total horizontal displacement at any point on the arch can be
expressed as
[or] ® = [[Q] + [P]a] ’ ] ® + [a]® (1-12)
The horizontel thrust TH in the actual structure can be found
by the formula
s = [8][q] (3-13)

where [H] is the matrix of the horizontal thrusts due to unit loads
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on the released structure corresponding to the reaundants.

The axial force and shear force in the arch are, respectively,

]
[}

V sing + (TH) cosg (1-14)

and v V cosf - (TH) sing (1-15)

where V is the vertical shear at section‘i s ¥ the angle of tangent
of the curve with respect to the horiéontal axis at point i.

Other actions such ;s momeﬁts can be found from stdtic equil-
ibrium. |

The basic formulae having been esteblished, the related matr-

ices shall next be derived.

1.1.2 Matrix [F|®
The flexibility matrix [F]® , for vertical displacements of

the arch , can be found.by the unit load method.

Fig.(1-4)

Since the released structure is indeterminate to one degree, it is
necessary first to establish the thrusi matrix {H] before the

matrix [F]a is formulated.

A -~ ), 1

1 £ - s 3 + LT IEN it 3 & 87
Wher o unit load is applied at anv point i on the erch,
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moment and axial force will be induced in the arch. Applying the

strain energy theorem we have,

S S
m ds .S
U= % 21:1 2 (1-16)
where m,= ViX - HiY ’ : OéXéXi;
m,=V.X - B.Y - ( x-xi) y X EXEL;
n,= Visin{d + Hicos¢ ’ o/_—x./:xi;
= Vieinfé - sing + Hicosﬂ ’ Xi-éxél- .
These can also be written in the form ‘
m=m -HY, n-= Vosin¢ + Hicos¢ (1-17)

in which m, is the moment of a simple beam, and Vo is the vertical
shear of a simple beam.
By Castigliano's theorem, the horizontal displacement is

evaluated by

S m. S dni

m — ds ni ds

S0 _ . dH
SH™ 4 1, 0 EA

EA

S S S

v
5 Y2ds i -SmoY ds+j Osinﬁcos}éds
0 4) 0 a

Since in the released structure the arch and the girder are
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we have
BU_'HiI'
SH ~ EA
4
S
§ moY ds 5 Vosin¢ cosd ds
0 EI - EA
By so—e 20 2 (1-18)
Sle ds +.S coszg ds + L
EI EA EA
0 a 0o g
Neglecting the effect of Vo s we have
S m _Yds
5 °
0 EIa ‘
N 2 P cosz¢ ds L (1-100)
SYdS +5-—-—- +TA—
0 EIa 0 EAa f:4

Similarly, we cen apply a unit load at any other point to find the
corresponding tprust thus generating the matrix [H] .

After finding the horizontal thrust due to a unit load corre-
sponding to redundant by Eq.(1-18), the moment and axial force at
any point on the arch due to the applied unit load can be defined.

The deflection at point 1 is

2 2
mi ds ni ds

Byy = (1-19)

EA
-1

EI
a

ol
+
ol u

To determine the deflection at point j due to the applied unit load

at point i, we write

S S
m m,ds n_n_ds
i i
Py D ¢ j 5 (1-20)
0 a e a
where m. and n, are the moment 2nd exiel forece, repectively; due to
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In formulae (1-15) and (1-16), the first term is predominant;
the second term represents the influence of the axial force and is

(3)

usually small, consequently it may be neglected .

1.1.3 Matrix [Fﬁ]a

| As before we can also find the flexibility matrix of horizon--
tal movement of the arch due to the verticél load by the unit }oad
method. As the released structure is indeterminate, we must first

determine the horizontal thrust.

Y
1.1 —
h
s
By 1-KH!
1l
ua 4
Vi X i
|
L

Applying a unit load on the released structure, as shown in
Pig.(1-5) the horizontal thrust, Hi, will be induced at the left
end of the arch, and (1~H;) at the right end.

Referring to Article 1, the tie girder is first assumed to be
inextensible under the action of the applied load. The horizontal
movement at both supports of the arch must be equal to zero. This

condition can be exnressed by the area moment theorem:

j=7
[
[} )k.ﬂ"\ wn
]
/l\.
Q
0
N
]
o
—~
ot
]
N)
o}
N~
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where m! = - HIY + VIX , 04£X4X
13 (1-210)
{ IS T2 1 -
m} = - HIY + ViX + (Y Yi), xiéXéL .
Substituting m, into Equation (1-21)
Xy L
g (FHY VX)L 5Y (Y + VX + (-1,)) 45 o
EI, Y EI =
0 i .8
L L, L
S xvas + § ¥°as - v, § vas
or Hy = 0 Xy Xy (1-22)
I
5 Y2ds
0

The horizontal thrust due to the applied horizontal unit load on the
arch is determined by Equation (1-22). Once H, is known, the moment

mi on the arch is defined. The general expression for matrix [FH]a

is similar to Equations (1-18) and (1-19).
1
mmi

134,

EIa

(1-22a)
i3
BI

(0]

L

-S m,m
. FHiJ = ds

o a
where m; end m, are es defined in the Equations (1-18) and (1-19),

and m} , ms ere defined by Equation (1-21a).

l.1.4 Matrix [F}g

The flexibility matrix [F]g of the vertical displacements

of the tie girder for the released structure can 2lso be found by

the unit load theorem.
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Because the released structure are tied at the Jjunctions of
the arch and the tie girder, horizontal thrust will be induced when
the arch is loaded. However, this‘horizontal thrust has only a small

influence on the [F]g matrix and hence may be neglected.

Y 1 —
iL//’—_ ‘\\\
// \\
s ~
pd N
Ni / 1‘ : N N
_ N4 . X
1 “i"ﬁw-_.Jﬁm___"__,_____¥;tw — T
Yy S | s
L I
Fig.(1-6)

A unit load is applied on the arch and on the tie girder

simultaneously at the corresponding points i lying on the same ver-

tical line. ILet AY be the general expression of the deflection of -

the tie girder, then the deflection at point i is given by

L
j mi ax
B, = )| ——
ii
0 EI

g
= - £Y<L .
where m = VX Ni(AY) , 0£XE£X, 3
= - - - £ X<
my = V.X Ni(AY) (x xi) s XEXELD
Since Ni and AY are small quantities, NiQﬁY) is also small in com-

parison with the other terms in the above formula and may be

neglected.
m = VX , 0£X<£X, 3
m, = [ = X - X £ Y<£
g = X ( ni) s XEXEL .

ssion

41

milarly we cen write the approximate expr

deflection at point j due to unit load at i as
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m.m
ijdx

EI
€

Fij =

ol

P

A more precise form of I_I"‘_I"5 can be derived using the formulaze give:

)

ot

by Timoshenko(e).Refering to Fig.(1-7), the following expressions

are obtained:

peflection ¥ = - SinAP(I-X,) (1-x, )X
—_———= sinhPX + i’
N.,P sinhPL —_—
i NI
0£X4X,, (1-23)
Slope Y sinhP(L-X i) (1-x i) : : :
rda - ———————=—c¢oshFX + ——,
N,P sinhPL N.L
. i i
sinhPX, Xi(L-X)
Deflection Y = - m sinhP(Z-X)+ ¥ ’
‘ X£X£L , (1-24)
sinhPX X
Slope % = i coshP(I-X) - ﬁ
N,P sinhPL i7 ?

I Ni
where P = 1

s o a g
1.1.5 Matrices [DQL] and [DQL]

The column matrices [DQL:'a and [DQIJg are the deflections

of the arch and the tie girder, respectively, in the released

(o]
ct
ju

gtructure due to the applied loads corresponding i

- le
1

3
Liud

[\
]

(]

ki
E
<]

[}
(]

]

4]

I5
£y
[

Q
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IR R S I R R IR B A

- : .
Fig.(1-8)

[Pos]® = [=1° [2° (1-25)

[e® - 21 [=1¢ (1-26)

where matrices [P]a and [P]g are the loads applied to the arch and

the tie girder, respectively.
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1.2 Analysis by Stiffness Method

While in the flexibility method the unknown quantities are
the redundant actions, in the stiffness method the unknowns are the
Joint displacements in the structure; therefore, in the latter meth-
od, the number of urknowns is equal to the number of degrees of fre~
edom of the joints (i.e., degree of kinematic indeterminacy). Ip‘a
plane frame, the maximum number of degrees of freedom at a joint is
is the number of degrees of freedom, n the number

T J
of joints, and n.o the number of restraints in the structure, we

3. Assuming n

have the following formula:

n, = an -n, (1-27)
The total number of degrees of freedom of a bowstring arch

is very large. There are three restraints in a single-~span bowstr-

ing arch. Substituting n.o =3 into the above formula, the number

of degrees of freedom of a single épan bowstring arch can be read-

11y written as

n, =3 ( rid -1) (1-272a)

An example is shown in Fig. (1-9)
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l.2.1 Basic Formulae
Suppose the structure in the original system is subjected to

the external loads P, P,y <. , Pn,'as shown in Fig.(1-10), then a

2?
set of equilibrium equations for the structure can be written. At
each end of a member we shall put a restraint on each corresponding

degree of freedom, resulting in fixed end actions being developed at

each joint in the structure.

Y

] N\\\\j

h
0 X
} — ”TV -
|
Fig.(1-10) %
Let ADLl’ ADL2’ ceey ADLn’ be the forces due to external

loads in the restrained structure corresponding to the unknown dis-
placements, Dl, D2, oy Dn, denote the unknown displacements, and

S ceey Snn’ the actions in the restrained structure due to

117 S127

unit values of displacements corresponding to the unknown displacem-

ents repectively. It ADl’ A IRRY) ADn’ are the actions in the actf

D

ual structure corresponding to the unknown displacements, then the

equilibrium equation is written as follows:
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Ap | S S12 Sy Sip D,

Apo Ao Sp1 Spoeee Sy D,
= +

An | Apin 501 Spott Sun| | Pa

[ADL] * [S] [D] (i-zs) |
[S]-l{ [AD] - [Am“ (1-29)

For the external loading as shown in PFig.(1-10),
oy = []
end [D] [s]“1 [AD] (1-30)

where the matrix [S] is the stiffness matrix of the structure.

or

—
o o
I IU
i} #

- After the Jjoint displacement matrix [D] is obtained, the next
step is to find the member end actions and the reactions, for which

the equilibrium equations are,

[AM]1= [AML] i, [sm]i[a']i[DJ]i , (1-31)
[AR] = [ARI] * [SRI;I [D] : (1-32)

1n.which_[An]iis the matrix of member end actions in the actual
structure; [ éliis the member end actions in the restrained
structure; [?Mi]iis the member stiffness matrix with respect to the
member axes; {AR] is the matrix of reactions in the actual structure;
PRIJ ig the Qatrix matrix of support reactions in the restrained
structure due to loads; and [éﬁﬁ] is the matrix of support reactions

ro-
due to unit values of the joint displacementsy LDJJi ig the vector

~
~

)

joint displacements tor the ends of member i
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1.2.2 Approximate Method
While the arch is a curved member, it can be analyzed by

discretizing the arch into a series of straight members as shown.

Fig.(1-11)

We shall assume that all the nodee are within the curve of
fhe arch and that they coincide with the panel points. Elementel
members are formed by jointing adjacent nodes with straight lines
rather than curved segments. The tie girder is also divided into
discrete members by the panel points. Such a modification will
transform the originally complicated structure into a simplified
straight member structure, which can easily be solved by any common
method~of structural analysis,

Before proceeding wiﬁh the solution to the problem, construc-

tion of various relevant matrices will be discussed briefly.
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1.2.3 Mcmber Stiffness Matrix [SM]

The stiffness matrix of a prismatic beam element with refer-

ence to its coordinates can be shown to be as follows(l).
y
X | b
u
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?1 — X
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The member stiffness matrix with respect to the system axes

can be expressed as

o - [T e

where [R] is the transpose of [RJ which has the form

[ cosf  sing 0 | ]
- sind cosg O : 0
0 o 1|
B I
0 }-sin,d cosf 0
i o 0 1|

in which & is the angle between the member axes and system axes. The
menber axes of tie girder, which is horizontal, conincides with the

system axes, hence for the girder

) [ = [54] (1-36)

The member stiffness matrix of a henger rod can be determiggd
in the following manner.

The characteristics of the hanger rods are : 1) all hangers
are in vertical position, # = 90° ; 2) the structural function of
the hanger rod is to transfer the vertical load from the bottom gi-
rder to the arch. The hanger is a tension member and its bending ri-
gidity is small in comparison with that of the arch and the tie gir-

der, and can be neglected. From Equation (1-33) we have,
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i —%A— 0 o -—%‘5 o 0
o o o O 0 O
. | o o o o o o
[SM] = o o (1-37)
B o o 3 00
o o0 0o O O O
l o0 o o o o0 o

Substituting this expression into Equation (1-34), we have the

member stiffness matrix of the hanger in the system coordinates.

[~ 1
0 0O O 0 O o
EA -EA
0 I 0 0 = 0
0 0 (o] 0 0 0]
h T h
[sm)] = [2]* [s4 " [r] = (1-38)
L 0 0O © 0 0 O
-EA EA
0 = 0 0 I 0
| 0 0 -0 0 0 O
In the next step, the

over-all joint stiffness matrix [Sﬂ
of the entire structure will be formulated.

1.2.4 Construction of the Stiffness Matrix

In the formulation of the system stiffness matrix, the known
and unknown displacements of each joint have

to be appropriately
coded.It is convenient to code the joint with unknown displacements

4

£irst, numbering first the horizontal translation, and subsequently

ertical translation and the rotation. Fig. (1-13) demonstrates
numberin TS
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Fig.(1-13)

There are three members meeting at each internal joint, and
two members at each of support joints. The value of the stiffness at
each joint is the sum of the stiffnesses of the three individual
members meeting at that joint. By the above numbering system of the
structure, the over-all joint stiffness matrix will apﬁear as in the

following typical form.

mim 0O

11

2]
1

O

m
O

mr—
e:l)
[ I
1
-

O
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The following notations are used in [gi] above.

represents the values of two overlapping members

e

represents three values of three members overlapping in the
central area of the square.

repressents the right upper corner or left lower corner of

[o]

the member stiffness matrix of the hanger.

[]

repressents the right upper corner or left lower corner of
the member stiffness matrix of the arch or the tie girder,
The over-all joint stiffness matrix [si] contains terms for all
possible joint displacements, including thbse restrained by the
supports, while the stiffness matrix [S] excludes those displacem-
ents restrained by the supports. To obtain [S] ’ [Sﬂ can be rear-
ranged'by interchanging rows and columns in such a manner that the
stiffnesses corresponding to the actual degree of freedom are listed
first,and those corresponding to support restraints listed second.

Thus the matrix [SJ] cen be written as follows:

ses o

e cevm e e . ——— — — — — - —— o) l
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or [s J] = - | (1-39)

1.3 Thermal Forces

If & structure is restrained, either fully or partially,
self-equilibrating stresses will be induced in the structure due to
temperature changes. Thermal ‘stresses arise in an indeterminate
structure usually because of boundary constraints.

The structure shown in Fig. (1-14) is determinate externally,
but indeterminate internally, where no thermal stresses will arise
as a result of temperature change. To prove this statement, we need
only to verify that the movements due to the change of temperature
at any part of the structure are not restrained; i.e., they are not
restricting each other.

As the structure is a plane frame, it is implied that movemeel
nts are in the plane of the structure and have components in the
vertical and horizontal directions. If these two movements are not
restricting each other, there will not be any stresses as a result
of the movements. It is convenient to separate the structure into
two parts( arch and tie girder) for the purpose of discussion.

Y ds Ags i wat
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Consider an element ds of the arch which is subjected to
temperature change, whose elongation or contraction equal Ads.

If the temperature expansion coefficent is o (assuming same
material for the entire structure ) and‘the change of temperature
is AT, then

Ads = «L( AT) (ds) (1-40)
The horizontal displacement is

AU = cosf(Ads) =L(AT )( .ds )(cos@) (1-41)
The total horizontal displacement of the arch is then

v® - :SS(AU)(ds) = oL AT ) § cosf ds
0 0

dx
Since cosf = is
L .
v? = o(Aar) é dx = L(AT)L (1-42)

The total horizontal displacement of the tie girder is

5]

(AT L

hence o - v8 | (1-43)
The vertical displacement of the arch element can be evalu-

eted es »
AV = L{AT)( ds) sing (1-44)

Therefore the vertical displacement of the arch at a point Xl is

S
V2 = &(AT) 5lsin¢ ds (1-45)
0
Since ging = 4y
ds
Yl
a
so that v =o<,(AT)5 dy =a<,(AT)Y1 (1-46)
0
The change of length ¢f hanger a2t ¢ nt X

vV = oL(AT)Yl (1-462)
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It is obvious that

Vv | (1-47)

The above analysis of movement of the structure due to temp-
erature change shows .

1) that the horizontal movement at any point on the arch is
equal to the horizontal movement corresponding to same point on the
girder; and

2) that the vertical movement at any hanger connection point
on the arch is equal to that hanger elongation or contraction.

One can draw a conclusion that no restraiﬁing effzcts exist
within the structural system and hence temperature change does not
give rise to thermal stresses, provided that the members of the

structure are made of the same kind of material.



CHAPTER 2

PRACTICAL APPLICATION AND EXAMPLE

2,1 Preliminary Design

In this chapter we shall discuss the practical application of
the theory that has been discussed previously. As a point of depar-
ture some preliminary consideration of the design problems will be
given, followed by the establishment of influence lines for live
load and dead load.

Many bowstring arch bridges have been designed on the assu-
mption that the tie girder takes axial force only. Such an assump-

tion is approximately true provided certain conditions are met. If
the bending moment in the structure is minimum, and the moment of
inertia of the tie girder is very small in comparison with that of
the arch, then the tie girder will beéome almost an axial member.
The above case occur only if the structure is under dead load
action (symmetrical loading) alone. As the bridge is subjected to
moving and unsymmetrical loads, considerable bending moments in
the structure will arise. The distribution of méments in the aréh
and on the tie girder is dependent on the relative rigidities of
the members, and on the geometry of the arch. The momentless tie
girder is not praciical in the bridge system, and moreover, the tie
girder should share moment resistance from the viewpoint of egcon-

omical design.

The first step of the design considers the geometry of the
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structure. The axis of the arch may assume the same shape as the pre-
ssure line ( axial force ) of the arch due to dead load. The effect
of this approach is to minimize the bending moment in the arch,where-
by the deflection of the structure will also be minimized. Yhile it
is difficult to achieve this , the arch curve should be made close
to the pressure line of the arch due to dead load. A parabolic curve
normally can achieve the above purpose in this type of bridge. Taking
the origin of the coordinates of the structural system at the left

suppott, the general expression for the axis of the arch is

Y = % ( 1x-x?) (2-1)
L
where h = the rise of the archj;

L = the span of the arch;
X,Y = the abscissa and ordinate, respectively.

The ratio of rise to span length, h/IL, usually ranges from 1/7 to
1/3 . The higher the h/L ratio, the less stable the structure is
against overturning wind force.

In practical design, & slight camber of flat parabolic shape
is given to the tie girder to suit the roadway geometry or for the
purpose of drainage. However, in this presentation, the tie girder

will be treated as a straight horizontal member for simplicity.

2.1.2 Preliminary Design of Structural Hembers

The arch in many bowstring arch bridges has variable cross
sections, small at the crown, and increasing toward the supports.
The moment of inertia at any section along the axis of the arch can

be expressed as follows:
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ds -
I=1Igsech=1,% (2-2)

Q

ax | (2-3)

HlH

hence ds =
C

where Ic js the moment of inertia at the crown.
A similar expression can be written for the cross~-sectional area of
the arch. By this transformation, the integral calculation in the
computation of stresses can be made with respect to the X~-axis ins-
tead of the arch axis. The axial force is predominant in the arch,
which increases from the crown to the supports, therefore the cross
section should also vary accordingly to achieve an economical use of
material. In practice,for reasons of neatness and esthestics of the
structure, and of simplicity in fabrication and construction, it is
preferable t0 keep the depth of the cross section constant and make
only ‘the top-end bottom flanges wariable.

The loading on the bridge should be discussed at this point
before considering the preliminary design. Along the tie-girder,
the applied loads are concentrated at the panel points, and the deck
slab dead load of relatively small magnitude is uniformly distrib-
uted on the tie girder. Theoretically these distributed loads should
be itransformed into egquivalent Joint loads(l). For simplicity the
bridge loads are assumed to bve concentrated at the panel points

of the bottom girder as shown in Pig,(2-1).

———

e o e e

— |
— | ——
L/

Pig.(2-1)
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The following two cases of load transmission may be consider~
ed according to the relative rigidities of the arch and the tie gir-
der.

1. If the bending rigidity of the arch is very large compared
to the rigidity of the tie girder, the structure becomes similar to
the two hinged arch structure. The loads applied at the panel points
would be transmitted directly to the arch through the hanger rods.
The tie girder would act as a pure tie rod resisting the arcﬁ thrust.

2, If the bending rigidity of the arch is very small compared
to the rigidity of the tie girder, the structure would be similar to

Aa simply supported beam column with small axial force and moments
applied at the supports.

The above fwo cases are the extreme limits of the system. In
the first case,_the arch resists bending and axial force, while the
tie girder absorbs only axial force. In the second case, the girder'is
almost the only member that resists the external loads. Hence we can
deduce that it is possible to proportion the moments of inertia of
the arch and the tie girder to share the role of resisting both ben-
ding and axial force in the structure,

It ijs difficult to determine the exact dimensions of the str-
ucture to resist the external loads at the outset.However it is re-
latively easy to size the members under case 1 condition. Consequently
4t is convenient to find the dimensions of the structure under case 1
condition first, then subsequently modify these dimensions according
to our purpose and experience. The initial size may be used as input
data for the computer analysis, By a trial procedure, modification

of member sections can be carried out until satisfactory dimensions
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are reached.

A procedure for determing the initial dimensions oI the struc-
ture under case 1 condition will be outlined below.

l. Dead ILoad

M
a
_l_npe,(; T

;_FD } ,
TR T
1/2 L

Pig.(2-2)

In the frée body diegram shown in Fig. (2-2), the following

equilibrium conditions can be written. Taking the sum of moments abo-

ut point C,

¢

Ma + HDh +-2Pidi - R

Nt

RL
hence Hp = (-2— ~-EP.a,- M )/ h (2-4)

It is known that in an arch design, the pressure line of dead load
closely coincides with axis of the arch, so that Ma is small and can

be neglected, then HD can be computed by

H = (—? -x?.4, )/n (2-5)
2. Live Load
If the lane load governs the design, the analysis can be the
same as the dead analysis. Otherwise the bridge under truck load
action should be analyzed. Now the difficulty is to find in which

position the truck will cause maximum sitresses in the bridge.However,
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in the preliminary design, a simplification may be made in such a
way that, the truck is placed at midspan of the bridge. Now taking
the free-body as in the preceeding case shown in Fig. (2-3), and us-

ing the equilibrium condition of moment about point C, we write

H Ma
7——L—€?¥E—-\‘\~
h
1y
NE o )
g 1/2 L R=P/2
Fig.(2-3)
L .
M +Hh-R5=0 (2-5a)
HL can be found approximately by,
H =(c)P _ (2-5)

where C, the influence line coefficient of horizontal thrust of a

two hinged &rch, are given by James Michalos(z). Then Ma can be
defined as
RL RL
M, =% -Hh= 3= - (¢c)pn (2-6)

The total horizontal thrust in the tie girder is

H = HD + HL (2-7)

The maximum axial force in the arch can be determined by the follo-
wing formula,

¥ = Vsing + Hcosd (2-8)
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The dimensions of the cross sections of the arch and the tie
girder can be computed from the forces obtained from Equations (2-7)
and (2-8). This approximation will result in oversizing of the arch
and undersizing of the tie girder. Successive modifications must be
made to achieve an optimum design.
The first approximate dimensions being determined, the bend-
ing moment distribution is next evaluated for the purpose of modifi-

cation of member sizes.,
M

T

\
h
¥
gl _¢
N\ P
i R
1/2 L
Pig.(2-4)

Referring to the free-body diagram shown in Fig. (2-4), the

moment at the cut section is
M= HY + M+ Mg (2-9)

If the elongation of the hangers is neglected, the deflections
of the arch and the tie girder will be the same at each panel point.
Furthermore it is assumed that the changes of slope along the arch

and along the tie girder are equal, thus by the firsi Area-Moment

principle
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M I cosg
or Ma - a (2_10)
I
& g

In Equation (2-10) to solve for M, and Mg, we have

( MO- HY ) Ia cosﬁ

M, (2-11)
( Iacos¢ + Ig )
( M - BY ) I

Mg =T Iacosﬁ + Iéf (2-12)

Under the above assumptions, Equations (2-11) and (2-12) give appro-
ximate values when the structure is subjected a single external load

action.

2.2 EXAMPLE

Having obtained the geometry and the approximate dimensions
of the arch and the tie girder, further modification to the final de-
sign will be made by the use of a computer program. An illustrative

example is given in the following.

Y
/,/”’—'_———_Q‘\\‘\\, K
™
0 £ X
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10 x 28' = 280" _J
|

g
(7Y

nt
o



38

The geometry of the axis of the arch is

4x51

2802

Y = ( 280x - x2)

The nonvarying cross sections of the arch and the tie girder are

assumed to be

I =0.75 £ttt A = 0.4 £4°
a a
4 2
I = 1.50 ft A =0.5ft
g . g .
and the hanger rods to have 3 inches diameter,
I = neglected A = 0.05 £t°

h h

2.2,1 Dead Load

It is reasonable to assume that the dead 16ad of the bridge is
concentrated at the panel points of the bottom girder as shown in
Fig.(2-5) and the dead load of_the arch is neglected for’simplicity.

The internal forces due to dead load are shown in Tables (2-1), (2-2)

and (2-3)
PABLE (2-1)
Stations
Arch 0.0L 0.1%L 0.2L 0.3%L 0.4L 0.5L

Axial Porce -694.,27 | =693.32|-645.99 {-612,62 | -588.78 | ~576.53

Moment 44.86 | 314.85| 311.42| 346.81 | 365.88 | 372.24

0.0%L 0.1L 0.2L 0.3L 0.4L 0.5L
mi

Axial force 576.53 | 576.53| 576.53| 576.53 | 576.53 | 576.53%

T

Homent 44.86 | -190.01| -89.47| -55.51 | =33.06 | -25.44
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Table (2-3)
Stations
0.0L 0.1lL 0.2%L 0.3%L 0.4L 0.5L
Hangers
Axial Force - 93.7745|82.6225 | 84.5885[84.,4705184.4559
Note: Unit : k-ft
Moment [

Sign : compression on top fiber (+)
Unit : k

Axial Force{Sign : compression (-) , tension (+)

2.2,2 Live Load

Since the live lbads on the bridge are mbving loads, the 1live
load stresses can be obtained from influence lines. The influence
lines for momenie, and axial forces in the arch and the fie girder
are shown in Fig.(2-6) to Pig. (2-8). The influence line for the axi-
al force in the tie girder is same as for the arch at the crown, ex-

cept the sgigns are opposite,



At 0.11L

At 0.2L

40

56 112 280

At 0.3L

56 112

56 112

Fig.(2-6)

Influence Lines for Bending Moment in the Arch
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At 0.4L

280

At 0.5%L

4

0 - 112 168 \_-/so

The scales for the above diagrams are:
Horizontal; 1/2 in. = 28 ft.

Vertical; 1/4 in. 1 ft-k

Influence Lines Tfor Bending Moment in the Arch
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At 0.1L
4 ] +
0 I 1 1 [
0 - 56 ' 280
At 0.2L
8
+
4
0 © 56 112
At 0.3L o
8
4 +
O 1 I i i
o 56 112 280

[} }

1z {o.7)

)

Influence Lines for Bending Moment in the Tie Girder
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At 0.4L

280

At 0‘- SIJ S

0 - 112 168 - %80

The scele of the above diagram are:

Horizontal; 1/2 in.

28 ft.

]

Vertical; 1/8 in. 1 ft-k

Pig.(2-7) (Cont'd)

iz.

Influence Lines for Bending Moment in the Tie Girder
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At 0,1L

O.S 9 . . -

0 56 112 168 224 280

At 0.2L

0.5 1

(0] 56 112 168 224 280 -

At 0.3L

0 56 112 168 224 - 280

Influence Lines for Axial force in the Arch
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At 0,41
1
o (] { 1 1
0 56 112 168 224 280
At 0.5L
l -
o i3 ] 1 i
0 56 , 112 168 224 280

FRote: Axial force values are at the left hand side of the section

under consideration.

Scales:

28 ft.

Horizontal; 1/2 in.

vertical; 1 in.

1 kip

Fig.(2-8) (Cont'd)

Influence Lines for Axial Force in the Arch



CHAPTER 3

COMPUTER PROGRAM

3.1 General Description of the Program

The computer progrem is written for the analysis of a single
span bowstring arch bridge by the flexibility method. It consists of
the main program and seven subroutines, named THRUST,FLEXA,FLEXG,
MAINV, THRUSTH, FLEXAH, and FLEXAR. The first three subroutines furnish
the related matrices to the main program for solving redundante.The
fourth subroutine MAINV is a matrix inversion subroutine. The last
three subroutines do not participate in solving for the redundants,
their functiqn is to generate related matrices for the main program
to compute the horizontal displacement of the aréh.

Subroutine THRUST establishes matrix [H] s which gives the
horizontal thrusts due to vertical unit loads corresponding to the
redundants.

Subroutines FLEXA and FIEXG set up flexibility matrices [E]a
and [F]g of vertical displacements of the arch and the tie girder,
respectively corresponding to the redundants in the released struc-
ture.

THRUSTH finds the horizontal thrust due to unit horizontal
loads corresponding to redundants in the released structure.,

FLEXAH determines the horizontal displacements of a two hinged
arch due to unit verticel loads corresponding to the redundants,and
FLEXAR computes the horizontal displacement of the arch with a hinge
end a roller suppori, due %o a unit horizonial loead epplied at the

roller support.
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In this program, it is assumed that the respective cross sec-
tions of the arch and the tie girder are constant. It accomodates
different materials for the arch and the tie girder.

The geometry of the bowstring arch is standardized in the
program. The tie girder is a horizontal straight member, and the axis
of the arch is a pafabolic curve, The origin of the structural system
is located at the left hinged support; the X-axis is positive in the
left to right direction, and the Y-axis is positive in the upward
direction. The equation of the axis of the arch is

)

L2

Y (1% - X% )

The over all strucfure.of the program is outlined by the flow
charts in Appendix A. However, several points in the construction of
this program merit special discussion.

A number.of integral operatioﬁs need be carried oﬁt in the
successive applications of the unit load method to evaluate the def-
lections at the points where the unit loads are applied. The compl-
exity of the integration is compounded because the analysis involves
the curved member, namely, the arch. The expressions of deflections
are compiled for each subroutine in Appendix A.

The following six types of integrations are involved in the

subroutines:

A =5d9

B =fxas
{

Cc ;)Yds

N Y

D =)Xids
(.2
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F =3Y2d8
where as =A1 + (¥1)2 ax ;

Y=-512‘—(L-2x) ;
L

Y'=—4%( L - 2X )
L

The above integrations can be found with the aid of the following

substitution:
W=1L--2X
dv = -24X
: L-W
or X = >
av
aX = - 5

Phe results of the derivation are given in Appendix A, The actual
operation are performed by the subroutines for the pertinent limits
of integrafion involved.

The program is written in FORTRAN IV language, the run time
on the CDC 3300 computer at the Sir George Williams University
Computer Centre is about 1 minute and 30 seconds.

There are three types of input data. The first type includes
the geometry,; the number of redundants, the span length of the bridge
and the riserof the arch. The second type consists of the properties
of structural members, i.e., the moments of inertia of the arch and
the tie girder, the cross sectional area of the arch,the tie girder
and the hanger rods. The third type is the external loads data.

The output gives the redundants, the moments, the axial forces
and ine shear force et the panel points of the structure, the vertic-
21 and horizontal deflections of the arch and the tie girder

resctions at the supports.



CHAPTER 4

DISCUSSIONS AND CONCLUSIONS

4.1 Comparison of the Methods

4.1,1 Choice of Methods

The principal differences between the flexibility and stiffn-
ess methods are the choice of unknowns and the computational path
leading to the calculation of stresses and deformations. The flexib-
1lity method seems simpler than the stiffness method in the bowstring
arch analysis because the number of kinematical conditions is much
greater than the number of statical indeterminecy in a bowstring
arch bridge. Hence the stiffness method involves an inversion of a
large matrix. Although electronic computers are available, it is
stil]l time-consuming and will increase the chances of errors in the
structurel anélysis.

The advantage of the stiffness method is its ease in genera-
ting the stiffness matrix of a structure with variable cross sect-
tions such as in the arch and the tie girder, while it is comparat-
ively difficult to form the flexibility matrix. However, the effect
of variable cross section maey be neglected in the flexibility method,

if the variation of their moments of inertia is small(s).

49
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4,1.2 Comparison of Numerical Results of the Flexibility Method and
the Stiffness Method ( Approximate Method )

The configuration of the analyzéd structure is shown in Fig.

(41)

3 5 S
6
34!
1 7 X
2 3 114 5 6 Pt 2
1K
6 x 30 = 180'
Fig(4-1)

Constaent cross section of the arch and of the tie girder is

assumed. The cross sectional properties are:

4 o 4
Ia = 0.5 £t Ig = 0.5 £t
2 2
Aa = 0.25 £t Ag = 0,25 £t
The diameter of the hanger rods is 3 inches
2
I. = neglected A, = 0,05 ft

h h
An external load of 1 kip is applied at the middle panel
point of the tie girder. The results of the two methods for this

problem are given in Tabilie ( 4-1) .
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Table (4-1)
Panelf i
Pts. 1 2 3 4 5 6 7
Items
Hanger|®.M.| —— | 0.1516| 0.1467| 0.593%6| 0.1467| 0.1516|
Forde |AM.| — 0.1143] 0.1787| 0.6035| 0.1787 0.1143] ——
Moment| F.M.| 0.0895|-1.4230| 0.2627| 5.2941| 0.2627|-1.4230| ©0.08395
in .
Arch |A.m.| 0.4163|-3.6637]-2.4010] 2.2642|-2.4010|-3.6637| 0.4163
Moment| P.M. | -0.0895|-2.9438|-1.2496| 4.8458|-1.2496|-2.9438|-0.0895
in .
Girder|A.M.|-0.4163|-3.2588|-2.6723| 3.2752|-2.6723|-3.2588| -0.4163
Axial F.M- ’1-1768 "1' 1153 ‘10 0667 -100253 -l- 0667 "‘101153 "111768
Foin [, y.|-1.2980| -1.2980| -1.1893| -1.1893| -1.2555| -1.2555
Arch ~1.2555|-1.2555| -1.1893| -1.1893| -1.2980| -1.2980
Note: 1) Units: Moment , k-ft ; Axial Force , k.

2) P.M. = Plexibility Method

s A.M. = Approximate Method.

From the above results, the difference in the results obtain-

ed by the two methods is significant, especially in the bending mom-

ents. It should noted that the axial force in the arch is always

significant. In the approximate method used, an idealization of the

structure is made such that the arch.is discretized to consist of

straight members. The result is that the axis of the arch changes

in a discrete manner so that extra moments

lized structure. Therefore, the deflection

affected.

improve as the number of straight elements

The accuracy of the solution by the

—

are created in the idea-

of the structure is also

approximate method will

is increased, but the

disadvantage is that the number of unknowns will rapidly increase
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to such én extent that it might be too large for é limited capacity
computeb to handle.

It follow$ that the approximate method mey not be an ideal
method to use in bowstring arch analysis. For a more rigorous analy-
gis it is desirable to derive the stiffness matrix of a curved
member to replacé that of the stréight member in the stiffness
method., In this thesis, only the theoretical derivation of the stif-
fness matrix of a chrved memberlwill be given in the appendix, which
can be utilized for further investigation. |

.

4,2 Effects of Shortening of Arch and Elongation of Tie Girder and

Hanger Rods.

Table(4-2)
Neglecting |Horizontal Redundant Moment of | Moment of
Cases Items Thrust Q Arch at Girder at
(x) (x) 0.5L (k-£t)| +1L (k-ft)
Arch
Shortening )
Hanger-rod ’
2 577.4668 84.6057 315.0689 -178.9839
Elongation
Tie girder .
% 577.1383 84.4564 341.6118 | -190.1057
Elongation
Omiting
4 lltgm83 578.4097 84.6341 | 263.7031 | -167.3286
Considering B ~ o
5 576.53%35 B4,4555 372.2354 -159¢.0cc88
All Effects
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In Table (4-2) is shown a summary of case studies, comparing
the effects of neglecting the deformations of arch, tie girder and
hanger rods, as reflecting in the values of computed internal forces
in the structural system under the external loading shown in Fig.(2-
5). It should be pointed out that shear force effect is not included ‘
in a1l of the cases, which is thought to be negligible.

The teble indicates that discarding an individual deformation
of arch, tie girder, or hanger rods leads to no great change in the
computed resulté. The bending moments appear to'have lower values,
but the axial forces in the structurel members increase slightly.
However, if all deformations ere not accounted for, the collective
effects result in 81gn1f1cantly lower values of bendlng moments,and
the gain in axial forces mey not offset the decrease in the bending

moments.

4.3 Effect of Séction Properties of Arch and Tie Girder

4,3,1 Hanger Force
In a bowstring arch of given geometry, fhe most significant

fgctor~ influencing the hanger force distribﬁtion is +the moment

of inerties of the arch and the tie girder. If the moment of inertia
of the arch constant or decreases, the increese in the moment of
inertia of the tvie giraer would cause decrease in the sum of the
hanger forces. Theoretically the sum of hanger forces could approa-
ch zero, if the moment of inertia of the tie girder is increased to
infinity. However, convergence to this limit is quite slow. Let

Ig and Ia.be'the moment of inertia of the girder and the arch res-

pectively, and @ the angle of the tangent with respect to X-axis &t
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the panel point under consideration. The maximum individual hanger

force under the action of & single load P at the panel point is close

I cosd
to the value __ 8 P. This is indicated in Fig.(4-2)
Ig+ Iacos¢
Il\
.5. I
J _‘_;g =.}..._—_ 1 r\x, \ I
i, 1 g_15_,
IN T =75~
a

Ag 19 //

—2 == =1 A
«25- / a ¢

/// AN
’_—————-——"’/' \-\.._
—= e
. o + 4 ; N
o . © 56 112 168 224 280
Scalesﬁ
" Horizontal; 1/2 in. = 28 ft.
Vertical; 1 in. = .5 kip

Fig.( 4-2 ) is the influence line of hanger No.5 of the structure

shown in Fig.(2-5).
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4.3.,2 Axial Force in the Arch and Tie Girder

'Re}ative size of the arch and the tie girder affects the dis-
tribption‘of internal forces in the system. Since the axial forces
in these two members are transmitted through the bangers, the rela-
tion between the stiffnesses of the two members and their axial for-
cees is similar to that between the stiffnesses bf two members and
the hanger forces° However, the axial forces in the arch and the tie
girder are not sensitive to’the change in their relative values of
stiffness in a normal range. Pable(4~3) shows the influence.line
values for the arch at 0.5L, the geometry is similar to the struct-

‘ure shown in Pig.(2-5), but with defferent section properties as

1ndicated;‘
Pable(4-3)

Points 0.0L 0.1L 0.2L 0.3L | 0.4L 0.5L
Properties (k) - (k) (x) (k) (k) (%)
Ig/Ié:l/l =1 : _ ‘

: 0 | 0:3376 | 0.6372 | 0.8701 | 1.0172 | 1.0674
Ag/Aa = .5/.5=1 :
: Ig/I =1.5/.75=2
a 0 0:3366 | 0.6358 | 0,8690 | 1.0165 | 1.0669
A /A =.5/.4=1.25 ,

4.3.3 Bending Moment in the Arch and the Tie Girder
Figs.(4-3) and (4-4) show the moment influence lines at 0.2L
for the arch and the tie girder respectively. They are obtained for

the system shown in Pig.(2-5), but with different section properties.
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12

//N\ s 1 Ag 49

8 / \ %=T=1’ —A—= 3—4-—9- =]
/ \</, “a a
4 / N .fﬁ#.l:?—g _fg— 5 1.25
/ I .75 A ¥
/ 8 a
0 L N .

Fig.(4-3)

Influence line for Bending Moment in Arch at 0.2L

Fig.{(4~4)

Influence Line for Bending Moment in Tie Girder at 0.2L
The scales for the above diagrams are:

28 ft.

Horizontal; 1/2 in.

Vertical; 1/8 in. = 1 ft-k



57

For a structure with prescribed geometry, the total moment due to a
single load at a section ( M~ HY ) appears to be distributed between

the arch and the tie girder according to their relative stiffnessgs;

this fact can be seen from Fig.(4-3), and (4-4).

4.4 Deflection

4.4, Comparison of the Results of Flexibility Method and Stiffness
Method ( Approximate Method )

In Tables ( 4-4 ) and ( 4-5 ) are shown the results of defle-
ction analyéis for the structure under the loading condition shown

in Fig. (4-1), which will give a comparison of the two methods.

Table (4-4)
Points | 1| 2 3 4 5 6 {7
Methods (rt.) (£t.) (£t.) (£t.) (£¢.)

Vertical|Flex.
Displ. Method
of Approx.
Arch  |Method

Vertical|Flex.
Displ. |Method
of Approx.
Girder |Method

0 |{.0003%66 |-.000110(-.000660 |-.000110 |.000366 | O

0 |.000033%|-,000406|-.000912|-.0004C6 |.000033 | O

0 |.0003%53|-,000130|~-,.000754|-.000130}.,000353 | O

0 }.000023|-,000431|-.001007]-.000431|.000023| O




58

Table (4-5)
Points 2 3 4 5 6 7

Methods (£t.) (£8.) | (£t.) [(£t.) (£t.) [(£t.)
Horiz.| Flex. '

Displ.| Method -.00018% 0.0 |.000086 |.000172|,000355 |.000172
of | Approx.

Arch | Method -.000063|.000065 | .000096 | 0001227 { 000255 | ,000192
Hordz.| Flex. .000029|.000057|.000085 | .000114|.000142}.000171
Displ.| Method

of Approx.
Girder] Method .000032].000064 | .000096 | .000128| .000160].000192

It can be observed that considerable discrepancies exist

between the results by the different analytical procedures. When the

structure is subjected to symmetrical loading, the vertical displac-

ements obtained by the approximate (stiffness) method apparently

have higher values. However, higher values are obtained by the flex-

ibility method when the structure is subjected to unsymmetrical load-
ing. Table (4-6) shows the displacements of the arch loaded unsymmet-

rically by placing a 1 kip load at panel point 5 for the structure

shown in PFig.(4-1).
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Table (4-6)

Pts. 2 3 4 5 6 7
Method (£t.) (£t.) (£t.) (£t.) (£t.) |(£t.)
VYert,. [P .M.

- = - b

Displ. .001363| .001320(-,000109]-,001498;-.001157 0]

of
Arch A.M. 000309 .000%47{-.000410|-,001065|-.000480 0
Horizdem.| 0 | -.000820 |-.000822(-.000661] -.000810|-.000631 |.00015
Displ.

of A M. -.000226}-.000269|~.000199| -.000306 | -.000116 |.00015
Arch

F.M, = Flexibility Method; A.M. = Approximate Method.
The discrepancies may be attributed to the following reason:

Sidesway effect due to unsymmetrical loading would have greater in-
fluence on the actual structure than on the idealized system that
is used in the approximate stiffness method, leading to greater de-
flections based on the flexibility method. Under symmetrical loading,
the pressure line of the actual structure is closer to the axis of
the arch than in the idealized system, so that the actual structure

would have less deflections than the idealized system.

4.2.2 Dead Load and Yive Load Deflection

The dead load distribution of a bowstring arch is always
symmetrical, while the live load is unsymmetriéal. The dead load
deflection of the structure can be reduced by choosing the curve of
the arch axis maiching, or close 1o, the shape of the pressure line

of the arch due to dead load. The result of unsymmetrically distrib-
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uted loads is more significant because of the fact that the patiern
of loading induces considerable moments in the arch. This can be

seen from the numerical results given in Table ( 4-7 ). The data in
Table ( 4-7 ) is the arch deflection of the structure shown in Fig.

(2-5) for symmetrically and unsymmetriéally loaded conditions,

Table ( 4-7 )

Load

Condition (£t.) | (£t.) (£t.) | (£t.) | (£%.)
85 K acting at

all panel 0 |-.002246|.006108 | .016015| .023936}.026876
points .

85 K acting at

panel point No4 0 .126683%|.225400 | .243314| .147780]|-.00505
only '

4,5 Effect of Geometry of the Arch

4.5.1 Bending Moments and Hanger Forces

If the span and cross sectional dimensions of individual
members in the bowstring arch bridge are held fixed, variation of
the rise to span ratio does not appreciebly affect the internal
moments in the siructure. This is substantiated by the numerical
results tabulated in Table ( 4-8 ).

It is important to note that for a given rise-span ratio, the
sum of the absolute values of bending moments in the section at or
near mid-span is almost constant. This implies that the total weight
at those sections is not affected very much by the change of bending
momentS. The hanger forces are also not significently influenced by

the variation of the rise-span ratio, under the above conditions.
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61

Location .
0.0L | 0.1lL 0.2L 0.35L 0.4L 0.5L
h/L Ratio
Arch 44.47 314.94| 312.34 | 348.44 367.91 | 374.28
0.179
Girder|-44.47 | -189.17 -88,76 | -54.99 |-32.54 |-24.98
Arch 48.55 316.72| 307.26 | 337.61 354,76 |360.28
0.215
Arch 52.95 | 322.59 308,52 | 335.03 | 350.87 |355.94
G.250 A {
Girder -52'95 -207-46 ‘103084’ "66. 39 -43085 -36. 13
Arch 57.68 330,94 | 313.43 | 337.16 352.23 | 357.04
0.286
Girde!‘ "57'68 -217-73 "112017 “73.00 "50. 33 -42057
Table (4-9) Hanger Forces (kips)
h/L Ratio 0.1L 0.2L 0.3L 0.4L 0.5L
0.179 93,7541 | 82.6201 | 84.5956 84.4700 | 84.4565
0.215 93,9727 | 82.6353 | 84.5286 84,4723 | 84,4515
0.250 94,2187 [ 82.63%69 | 84.4647 84,4710 | 84.4481
$.286 94,4865 | 82,6285 1 84.4110 84.4675 | 84.4456




4,5.2 Axial Force

There is & definite relationship between the geometry of the
system and the magnitude of axial forces. It can be shown that the
axial force decreases as the ratio of the rise to the span length

jnereases; hence lighter sections can be used. Conversely, if the

ratio decreases, axial forces in the members increase. Therefore,

the rise-to-span ratio affects the determination of the sections of
the members in the structure. Howevef, the increase or decrease of
the rise-to-span ratio also means corresponding increase or decrease
of the arch length. Therefore, it can be thought that there exists
a rise-to-span ratio that will yield & most economical design.Table

(4-10) shows the variation of the axial force in the arch for differ-

ent rise-to-span ratios.

Table (4-10) Axial Force of Arch (kips)

Location
h/L Ratio 0.0L 0.1L OfZL 0.3L 0.4L 0.5L
0.179 703.81 702.88 | 656.25 | 623.44 | 600.02 | 588.01
0.215 624.69(623.72 | 570.44 | 532.33 | 504.69 | 490.33
0.250 571.66|570.69 |511.68 | 468.78 | 437.11 | 420.43
0.286 534.46|533.51 [ 469.57 | 422.40 | 386.93 | 367.94
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4.6 Conclusions

(1) The flexibility method is a suitable method for the anal-
ysis of bowstring arch, However, it would be advantageous to use the
stiffness method when the cross sections of the structural members
are not constant. |

(2) Neglecting either arch rib shortening, elongation of tie
girder, or the elongation of the hanger rods alone, does not have a
great effect on final results. But when all of thé deformations are
neglected together, the error in the result may be quite significant.

(3) For a given layout of a bowstring arch, the relative size
of the arch to the tie girder governs the distribution of the inter-
nal forces in the system. If loaded by & single load, the moments in
a vertical section through the stpucture are distributed in proport-
ion to the relafive moments of inertia of the arch and the tie gird-
er. The maximum hanger force is approximately close to P(Iacos,d)/(I8
+ Iacosﬂ),where P is the load at a panel point, and @ the angle of
the tangent with respect to X-axis at the panel point under consider-
ation.

(4) Normally, the vertical displacements due to dead load are
less important, if the arch axis is laid out to match the shape of
the pressure line curve pf dead load in the arch. Live load deflec-
tions are often more critical than the dead load deflections.

(5) The actual structure is more flexible with regard to sid-
esway than the approximate structure when it is subjected to unsymm-
etrical load actions. However, it is stiffer against vertical defle-
ctions than the approximate structure when it is subjected to symme-

trical load actions such as dead load.
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(6) For a given span of bowstring arch and a loading condit-
ion, the magnitude of axial force in the structure is greatly affect-
ed by lay-out of the arch. For optimum design, the geometry of the.

system should be further investigated.
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Al Computer Flow Charts

©

f

MAIN PROGRAM CALCULATE VERTICAL
BOWSTRING ARCH DISPLACEMENTS

[InIT

[ INITTALIZATION CALCULATE HORIZONTAL

i

READ N, SL, CH DISPLACEMENT OF GIRDER

!

READ Aa,Ag,Ia,lg

!

[rEAD P(1) | - | ca1L FIEXAR

CALL FLEXAH

[carn riexa |

CALCULATE HORIZONTAL
DISPLACEMENTS OF ARCH

CALL FILEXG |

CALCUIATE DIAGONAL STOP
MATRIX FHD(I,J)

- END

CALCULATE FLEXIBI-
LITY MATRIX F(I,J)

!

CALL MAINV,INVERSE
MATRIX F(I,J)

)
CAICUIATE REDUNDANTS
o(1)
[cazr  maRust |

[ cALCULATE REACTIONS |

CALCULATE MOMENTS
OF ARCH AND GIRDER

!

CALCULATE SHEAR
OF ARCH AND GIRDER
]

-]

o/




Subroutine
FLEXA (PA)

!

INITIALIZATION

!

| cALL THRUST |

69

FA(N,N)=]| [Pa(¥,1)=
L Mmas L Mmas
) EI 0 EI
YES
Xi
D':ijdS 0 X
0 EI
A'=
G._SJ[mds ')‘cgiMmds
5B (e BT
i =
PA(N,I) L X3imas
=D'+G! 5 BRI
Xi

S\/g\ws
1 YWESJ=1 YNO{J=N)} NOQ|D=

X3
Mmde
D=
5 BI
ES YES I
PA(1,1)= [ FA(1,N)= nds
L Mmds }J Mmds G=x EX
“®I ||0 TEI 3
[ 1;\;
xi= | lra(,d) L
SMmds* = D+G
o EL
B=
Lﬁﬁﬁmds*
25 EL

PA(I,J)=A+B+C
OR = A'+B'+C!

{

WRITE

FA(1,7)

i

RETURN
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SUBROUTINE
PIEXG (FG)
[1N1TIATIZATION
IS N\¥Es ¥o/ 5 \rd gM‘Q‘T‘s
I=1 =N (o
YES YES
Do : F6(1,1)| |Fe(1,N) = ’FG(l,J)
)—(SiMmds NO RN ..?Mmds §'Mmds §'Mmds = D46
EI = EL
0 J
IYES YES NO 1 1
G'= Fe(N,N)| |Pe(N,1) £ A=
L L L YE \YE [X3
NMmds= =5 Mmds Mmds XX J S _SM!;%S
%3 EI § EI o EI 0
8 i ] NO NO
Al= B=
|| P6(N,J) X 4o [ ZES YES| Xdp oo
= D'+G" é I "—‘EI
XJ
RO KO
1 -
| XJB = lys . C= FG(I,J)__
Mmds 5 Mmds =A+B+C
EI EI
Xi i
vo [ !
Fe(I1,J) | 1C'=
A ] ]
=A'+B'+C SMmds
.
W
WRITE
re(1,J)
RETORN
!.
END




SUBROUTINE
THRUST(H)

| 1nIT1ALIZATION]

x=st|" — | c, =JYds
I ! 1 ={XYds
Cl=Sngs
C=C_=~C
x=0| | 2z =§oxvas Po2n
K=1 0 2
F1=SgY ds
Xi
o - M Yas|YE
)% [
C,.=C 0
2 1 YE NO
S
Z2=Z1
P =F X=SL P _E‘M_O_Yds
271 HO J=1 279 EI
- Xi
c=02‘-cl N\ \’No
2=2 =27
- ‘ M= 1
CALCULATE CALCULATE
H(1),H,(1) H(1),H2(I)
I=1 \
X.= sI M CALCULATE I=I+1
1 o3 1(N),H2(N) X ox_ +.50
171N -1
N.=0
1
N,=0
M=0
J=0

WRITE
H(1),H2(I)

1
RETURN |

—1
|_EED i
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SUBROUTINE
FLEXAH (FH)

[IvITIALIZATION |

[ cALL THRUST |

| cALL THRUSTH |

g

FH(1I,d) ]
=A+B+C
=A'+B'+C!




SUBROUTINE
PHRUSTH(H)

: (]
[ENTTIALIZATION |

i
[ 121, H(1)=0 |

I=I+1
YES
l\

x(1)=x(1-1)+ﬁ%I

1

x=x(1)

)
Yds

13

X=SL
M=1
K=0

Xi
SO Yds/EI

Xi
50 XY¥ds/EI

Sfi Ydas/E1

0
]

L 5

SXiY ds/EI
@

x4
L
Jki

XYds/EI

va~/RT
ANEOS At

CALCULATE

H(I)

XYds

des

1
C1=C
21=2
F1-F

g N Q
noun o

YES

<O

C=02-Cl
2=22-21

F=F2-Fl

YES

O

(x)

o]
1}
o

!".LI--LT;‘ F(! T ‘ l‘

{RETURN

C2=cl
X2=21
F2=F1




SUBROUTINE
FLEXAR(FHH,YSIN)

[ INTTIALIZATION |

¥
[ I=1, FH(I)=0 |

X=SL

CALCULATE

1 x(1),¥(1)
v(1)

=X(I)

c2=Cl
YES 722=21
F2=F1

C=C2-Cl
2=22-21
F=F2-F1

'

M=1
KB=1
K=0

CALCULAT%
FEH1(I)

CALCULATE
FHH2(I)
!

FHA(1)=FHH1(I)+PHH2(T)

{M=1,K=0,1L=0]

FHH(X¥)=0

{vRiTE PHH(I)|

| RETURN

[_END i

T4
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A.,2 Iist of Basic Formulae in the Subroutines

Subroutine YTHRUST'

L [

1. -
)
Xi 1L
—1—{[(1-—’51)2] +[x1c-§z]‘£
2. m(1) = E2 L 0 L “dxi
v
_1.[_z_]I’
3, H(N):EIa L1O
v
I 2
2 L Ah 4hy2
where DV =[§1a]o + o o8 (18 +A1+ (D7) v g5
Subroutine 'FLEXA®
1. PA(1,1) =gk [A--—B —omic+P+EHLZ 4 HL F]
2, FA(1,3) E%aI[Vj B-HjC- —Jn s (% H)_ui vy )z +HiH) é]
[;3 A+2(Vj-1)B - ( Hj +HL X§)C - Q_Xl%_l_) D
+(-——HiV;j+Hi )Z+H1H3F]x3}
I
1 [B D H
3., FA(1,N) =zTa [z-njc-; + (3 —L—)Z+H1Hj F]o
4. FA(1,1) = ilyi B-Hi C - —— D + ( - Hj Vi )2 + Hi H} 3]0
+[§1 A + 2(Vi-1)B- (Hi+H3 Xi ) C - (—!liZQE-) D

1
+(-;£‘—Hj Vi + Hj )Z+HiHjF]XJ

5. a) Case 1, XixX}j

1

=5t i[v1 ViD-( ViVvij+ VjHi ) 2 + Hi HJ FJ

Fa(1,d) =

+ [v1 Xj B-( Vi Hj + V3§ Hi )2+ vi( vj-1) D - Xj HiC
1Xi
+ Hi HJ F_ij +[x1 x5 8+ (XjVi+XiVy-Xi-Xj)B
{

I~ g Vi TS
1L v a1 &

N

"o
v T

L

[N
[N

v
-\ & o0y ]

11 Hj P - HjVi + Hi Vj- Hi-Hj)Z

- '_)L
+ (vi-1)( vi- 1 J j
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8, b) Case II , XJdXi

FA(1,d) =.E_%.;[[v1 ViD- (ViHJ+V)EL)Z+HiH] F]

Xi
0

+[ViXJB-(ViHj+HiVj-Hj)Z+Vj(Vi—l)D
1%3

+HiH;F-cx1n;j]n+[x1x3A+(x;)v1+x1v;]

—Xi - Xj )B - ( Hj Vi + Hi Vj - Hi' - Hj )z + (Vi

L
-1)( v3 - 1)p - ( XjHi + Xi Hj )6 + Hi HJ F] }
XJ

X1
- owali.E) = — {1 . vi 4+ Bd : F ] [2(_1 -
6. A_u,u_EIa{[LD—(HJ.VJ+L)Z+H1H;}F0+LB

#

. L
(—-ﬁi——l—)n + HiHJF :l

o

njx10+(%3+HJVi-Hj Y2 +

X3
7. FA(N,J) = i—%{[{—an - ( BHi V) + -I%J)z + Hi Hj F]o +[%1 B -

(VJ-l)]H

.HinC-(—%—l+HiVj-Hi)z+ =

Hi Hj FJL}

X3
L
1B D Hi_Hj i ]
8. FA(N,l)_EIaL-HiC- >+ (T-1% )z + Hi Hj F
L 0
1 [D Hi 2 ]I’
9. PFA(N,N) = ﬁa[—z -23- Z+H P
L 0
Subroutine " FLEXG "
L
1. Fe(1,1) = - 51g
2. F6(1,3) = i .1_x32_lf_3. s (vs-1)01%-x359) - (v3-1)
. ) = 515 12 3L ¢ 2 3 = 5p

( - x3°) + x3( - X3 ) —% ( £? - x5 )J

3, ®e(1,J) = F6(I,1) , when I=J

4. Fc(1,N) = '6_1{31—g

3
) 1 Vi Y4 1,
?6(1,9) = o3 [—:—vﬂ xid+ L vi( vi- 1)( x4 - x17) +%Xi X3

W
Wi



PG(1;N)

Case 1II ,

Pe(1,d)

Pe(x,J)

PG(¥,1) =

F6(N,N) =

17

( x32- x12) +-%;( vi -1 )( vj - 1)( - x3°) + %?(V1

-1 ) 1°- x32) +-%-X1(Vj-l)( 12x3%) + x1 x3( T - x;ﬂ
XjDX1

1

Hg[%- Vi vy X350+ %3( vi- 1( x17- x3%) + ( x4?

Xj Vi
2

- x32) + ("i—;l)( vi- 1)( 13- xi%) + 3 vie 1)( 12

- xi%) 4 Xi( vy - 1)( 1% Xi 2y ¢ x1 3( L - xi )]
AN 1 Xi
5ty 13 V4 X124+ 2 ( vi- 1)( 1’ x37) + 3 L2-X12)]

i (3 xo®d (vi- 0P B e x52)

L

6EIg

- 5L
3Elg

Subroutine 'THRUSTH'

1.

H(1) =

2. u() = waflslE + (41, - ve [o1L] /0]

30

H(N) =

Subroutine 'FLEXAH'

1.

2.

FH(1,1)

Fﬁ(l,J)

FH(;,N)

FH(I,1) =

a) Casz 1

0

X3
ﬁla{[- Vi B+ HjC +%1D+ ( Hi Hj-%i)z - Hi Hj F]O
+[YJ A-(vi+ %F)B + { H} - 1 - Hi HJ)C + %P D

L
+ (Hi V- Q-E%Zl))z - Hi ( Hj - l)F’] }

0

0

0

b



78

1 ' XJ
FH(I,J) =’ET£{[( Vi Hj + Vj Hi ) 2- Vi Vj D + Hi HJ F]o
+[[v1 ( Hj-1) + v} Hi] Z- Vi V§ D - Bi ( Hj-1)F
Xi
+ ViYjB-HiYj C]xj + [( Vi-1) Vj D - Hi(Hj-1)F
+f( i -1) v3- vy vi] B+ [(HI-1)xi - HiHy Y5 ]cC
: L
+ X1 Y5 A +[( Vi-1)(H3-1)+V3 Hi Z]n}

5. b) Case II , X3iMXi

FH(IJ)_ {[(ViHj-erHl )z-vlv3n+nlnjr]

+[[( Vi - 1) Hj + V3 Hi]2 - Vi(Vi-1)D- Hi Hj P

| X3
- Vi Xi B+ HjXi c]Xi +[x1 Y5 A + [( vi-1) ¥3
-vixi] B+ [( vi-1)(Bs-1) + vy HL JE - ( Vi- 1
) VID+ [( Hj-1) Xi - Bi Y§ | C - Bi(Hj-1) F]m

6. FH(I N) =0

Xj
7. FH(N,J)=E%;{[ ¥ p (B +H1VJ)E-H1H3F]O +[l£-3-

-mnc-—n (ﬂ-l+niv3)Z+(Hi-Hinj

) 7] ]
8. PFH(W,1) =0
9. FH(N,N) =
Subroutine !'FLEXAR'
1. H(1) =
2. E(I) = Efaz F - Vi z} - LYi C - Vi zJ j
™~

3, H(N) = T
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where

[w vZiw? s U log(W+,\]U+W)]
X2
B = [w v2e w2 4+ U log (W +/\]U + W ):l +[—hz,:| (U2+ w2)3]x1
3L
. 2
¢ = -l‘-é [w v2s W2 + 02 log ( W +/~]U2+ ‘.‘.’2)] + —g-;-l- [-% AI(U2+ wz)3
L .

L

'
]

2
U ‘2 vt ]
-g ¥ v2s w2 -5 log ( W + 024 w2 )JXI "
D=——E[WA]U2+W + 02 log (W +/\IU2+ W )]Xl +3%[(Uz+ W2)3]x1
X2
__h_[%,\l 2, )- —W/\IU+W -— log(w+ 02+w)]Xl
I-
n2 (% w2 0% w2 n2 755 |2
Z = - ——[W U™+ W +U log(W+U+\l )] +-—2[(U+W)]x1
2L 31
12
[w ,]( U+ W )3 -—W,\]U+W --—1og ( W+/\lU+W )]
W[ 22 | W2 3]
‘17[ 5 15U JA (0% )
3 3
F = —13—[ U+Y‘ . T 1og('v+,~]U+w):| 42 [‘%-,I(anz)3
2
L
2
-% W/JU2+W -——log("l+,,|UE+ ..;)] [W ,I(U+Vx2)3
- 3U2 [1 hi( Ul W )3 W/JU + W —-log (w +AIU2+ .72))]
12
U= -
w=1L-2X
Y-8 (m x? )
I

Vi , Vi = thé reactions at the left support due to uniti load actions
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Xi, X3j, Yi, YJ = the coordinates of point point i, and J, respective-
ly with respect to the structural system.

Hi, Hj = the horizontal‘thrusts at the left support due to unit load
at i and at j corresponding to redundants.

Aa, Ag = the cross sectional areas of the arch and the tie girder

respectively.



APPENDIX B

DERIVATION OF CURVED MEMBER STIFFNESS MATRIX

Consider a curved member shown in Pig.(x), in which P is an

arbitarary point on the curve.

V,yV
212 N ,u
a 2 2772
1 4
M2,62
vl’Yl P
a .
1 72
91’M3j<f | .
ul,Nl
Pig.(x)

The bending strain energy is given by

'1 2
U=-2§i M~ ds

The bending moment at point P is

M= Ml + Nld1 - V1d2

where d, = (x-xl)sinﬁl- (Y-Yl)cos¢1 ;
d, = (X-Xl)cos¢1+ (Y-Yl)sin¢l ;
Xl, Y1= the coordinates of the structural system

at node 1 ;-

12, Y2= the ccordinates of the structural system

we obiain the
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171

ém .|1 . (T )2

ev

. ” |
=—1—; (m, +Na -Vd)d‘\ll+(Y') ax

v 90 1
1°9V, T E

N\.AN

1

| 2
- '
EIS(M1+Ndl Vid,) dN1 + (Y')° ax

X
, X
X
= -E—% 5 ( M, + N4 - Vldz),;ll + (12 ax

X

[

]
"

2 2
{[sin 8, (p- 2X)B + XjA ) - ain2¢l( E - YB-X0C

+

V2 2
C+Y7A )]Nl- Vl[sin g,( B- 1B

2
X, 7,4 ) +cos ¢1(F-2Y 1

1 1

1
X,C + X Y,A ) -3 sin2¢£ F-D-2Y

2
1€+ 2XB + A( Y]

2 2 [
X;)) - cos"f (E - Y.B-X0C+ X,Y.A )]+Lsin¢1(3

- XA ) - cos,dl( C - YA )] MJ

1 2
v, = N,[sinngl(E-Y

1
1° - % B - X,C+ XY 1A) -—sinzyf (P

1

2
-D -2Y.C +2X_ B + A(Yl- x?) - cos?ﬁl(E-YlB-ch +x1Y,A)]
p- LS L & -
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-[sinzﬁl(l? -2Y,C + YiA) + 8in2f (B - Y.B- X.C + X.Y

1 1 1Y24)

+ cos2¢1(D-2XIB+ x2a)] V.4 [sinﬁl(c-YlA) +cosp(B-X )] Ml}

Ql=%-1{[sin,0'l( B - XA ) - cosﬁl( C- YA )]N1 -[sinﬁl( C -

Y A ) + cosﬂl( B - X,A )]v1 + AMI}

/\]1 + (Y')2 dx

>
= e

where A=
X
B= S x,ll + ()2 ax
X

A1 + (11)2 ax

x2,J1 + (Y')2 dx

Q
[}
H“L./\N Hbtfs >t

xY A1l + (¥')? ax

2 A1 + (1) ax

=
]
I-'NL/\N HNL/\N

) .2 2
let a = [sin 80D -2x3+x%) - sin2f ( E - Y.B - X, + X,¥,4)

2 2
+cos¢l(F—2YC+YlA)]

1

b=-[sin2¢(E-YB-XC+XYA)--1—sin2;J(F-D-2Yc
1 1 1 11 2 1 1

) ) - cos?g

+2X1B+A(Y -X

= N
b= N



(2]
|

[+ 7]
]

(1]
il

The

sinﬁl( B - X,A ) - cosﬁl( c - YlA’)

2
sin ¢1( F - 2Y,

2
+ COos ¢1( D - 2%,

;[sinﬁl( G - YlA ) + cosg ( B - XlA )]

A

2
B + XJA )

C o+ YiA ) + sin2g (B - ¥

1

1

B-XC+ XY

171

A)

displacements at node 1 may be expressed in matrix form as

-uﬂ -
1 a
v 1
o= E P
5) c
| 1] 5

'h;- | 1-a
Vl = EI b
gt ¢
.ki] _é
or W= |k
le —i
Where
g = ar - 2 ; h=
3 =(ar- ) 5 k=
¢ = adf - aeg - b2f -c

b' c
d e
e g

b 67

d e

e b g

.
h i-

j k

k 1
- bf + ce

- ae + be

2
“d + 2bce

-e

be - cd

ed - b

(1)

(11)

84
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The relationship between the displacément and forces at node 1 is
thus established., Equation (i) gives the flexibility relationship
at node l,whose flexibility matrix can be inverted to find the

‘stiffness relationship at node 1, and it is given in Eq.(ii).

We shall denote the stiffess matrix by S11 s 1.4y
g h i
1= .
[sl%l B j k
i k¥ 1

Now let us consider the forces at node 2, and find out the
corresponding displacements at node 1. From Fig.(x), we have the
following equilibrium equations.

0

SH=0; Nlcosﬁ1 + Vlsinﬁl + Nzcosﬁ2 + V281n¢2

Sv 0 (i11)

0 ; lein¢l - Vlcosﬁl + stin¢2 - V2cos¢2
EMg,= 0 ; M1+N1[(xz-xl)sinﬁl-(Yé-Yl)cosﬁl]fvl[(xz-xl)cos¢l+(Y2-Yl)
sinﬁl] +M,=0

Equation (iii) can be solved for F, and V,

N = ( cos¢l+ sinﬂltgn¢2) ( sin¢1 - cosﬂltan¢2)

cos¢2+ sin¢2t3n¢2 N1 * cos¢2+ sinﬂztanﬁ2 vy

(cos¢l+ sinﬁltanﬁz)

Y, = sinﬂ +
2 1 cot¢2+ tan¢2 N1 - ( cosﬂl-
slnﬁl— cosﬁltanﬂz-) .
cot¢2+ tan¢2 1
r. . . P ] r,
= - - - oV 7o - )
M, L ( X, Xl)sinQ1 (v, ‘I)COSleNl + L X, Xl)cosﬁ1
7 v - - Ay . - —l.... - _‘_
+ { Y- Y,)sing |V, - W

The above cquations in matrix form can be rewritien as



86

N2 cos¢1+sin¢1tan¢2 sinﬁl-cosfdltanﬁz . (‘Nl
cos¢2+s1n¢2tan¢2 cos¢2+sin¢2tan¢2 .
; stud. + cos¢1+sin¢ltan¢2 —cosd.+ sinﬂl-cosﬂltan;aQ o v
o|= 1 cof;ﬂz + tan¢2 1 cot¢2 + tan¢2 1
._M2J | - AXsin¢1+ AYcos¢:L AXc95¢1+ AYsinﬂl _1_1 _Ml_J

where AX = ( X,- xl) , AY = ( Y- Yl)

" h o] . ]
N2 Nl - % N
or v, =[B] v, .=[B:| [sn] v, | = [512] v,
M2 My | %1 M

B (2] Fd

From reciprocal theorem, we have

[s1d = [s2]

So far the only unknown we don't find out is the displacement

at node 2 due to the forces at node 2. i.e., I:SZZ:I . Because [522]

must be identical with [Sll] , with possible sign changes on the:

off-diagonal eélements.So that we write

4 -h i
[522] =|-n 3§ -k
1 -k i

The stiffness equation for a curved member is
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