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Abstract

Matrix Inequalities and their Applications to Statistics

by

Rakesh Rajan Singh Bisen

The thesis consists of a survey of matrix inequalities and their applicanons 1o
statistics. Chapter one provides some definitions which are used in the sequel. In chapter
two a matrix generalisation of Minkowski, Cauchy-Schwartz incqualities along with the
inequalities concerning positive definite, Hermitian matrices, A and P matrices. The third
chapter includes a variety of results on the localisation of the characteristic roots of & matria
and inequalities thereof.

This thesis concerns further with the application of some of the inequalities

statistics.
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Special Notations

R the set of all real numbers.

C the set of all complex numbers,

0O Zero matrix.

I identity matrix.

AT transpose of A (A'or A).

A’ conjugate transpose of A,

A conjugate of A.

A inverse of A.

A" generalized inverse.

Aij cofactor of Q.

AdjA adjoint of A.

A®B direct sum.

A®B Kronecker product.

Tr(A) trace of the matrix A (ortr A).

r(A) rank of the matrix A.

A eigenvalue, or parameterin (A -ADX = B.
li, X, eigenvalues and corresponding eigenvectors of matrix, wherei = 1, .. .
w subspace of vectors orthogonal to W.

diag(a,,...,a, )the diagonal matnx witha,...,a, down the main diagonal.
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CHAPTER 1

Introduction

Matrix theory started with the work of Hamilton, Cayley and Sylvester. The fact,
the term "Matrix"” was coined by J. J. Sylvester in 1850. Even though its one of the recent
mathematical development, it has become a great tool of research workers in almost every
discipline; for example in Quantum Theory, Classical Mechanics, Aeronautical,
Mechanical, Electrical Engineering, Linear Programming, Economics, Environmental
Studices, Psychology and Statistics. Thus the knowledge of matrix analysis has become
must forresearchers in almost every branch of knowledge.

The modern research in matrix analysis blends an extraordinary variety of
mathematical tools; tuis is one of the features that makes matrix analysis exciting, as well as
adds to the vitality of mathematics by linking many mathematical subjects to applications.
The restof this chapter includes the preliminaries for the development of the subject matter
included in the thesis.

Preliminaries

Basic Definitions

Singular Value: If A is a general mxn matrix, g is @ nonzero number, and U, V are
vectors such that AU =p Vv, Alv= p U, then pt is called a singular value of A and U,V
are called a pair of singular vectors corresponding to A.

. 9 . .
Involutory: A square matrix A such that A< =11is called involutory.



Normal Matrix: A matrix A is said to be normal it and only it AltA = A Al Simple
examples of normal matrices are unitary, hermitian, and skew-hermitian matrices, and
diagonal matrices with arbitrary elements.
Definition: A point x € R is called a contact point of a sct M C R it every neighborhood
of x contains at least one point of M. The set of all contact points of a set M is denoted by
[M] and is called the closure of M. Obviously M c [M], since every point of M is a
contact point of M.
Matrix Norms.
Definition: The matrix norm of a square matrix A is a non-negative number denoted by
IF A 1L, associated with A, such that
(a) TANI>0forA#0, lAll=0 = A=0
(b) Ik All=k Il All forany scalar k.
(©) NTA+BISITAIT+IBI
(d) NTABI<UANINBI

A matrix norm is said to be compatible with a vector norm Il X lif
(e) NTAXU<IANNXI

We now show how to derive, from a given vector norm, a matrix norm that is

compatible with the vector norm. Since we must have TA X HE<HA HHX N, we define

HAXI
TAIl = s ——
All=Sup X
Where sup denotes least upper bound for all X # (). If we introduce 7, = "’; i

TAX 1

_RT:“AZ”

we seethat 1 Z =1 and



HAll = sup WAZI (H
IVAES

Definition: A matrix norm constructed by means of (1) is said to be the natural norm
associated with the vector norm. We also say that the matrix norm is subordinate to, or
induced by the vector norm.

Spectral matrix: Let A be an nxn matrix that has n linearly independent eigenvectors X,

Xy - . .,X,, which correspond to the eigenvalues A,A, ..., A . Define

- -
A, 0 ... 0
0 A...0
M={X,X,...X,] and D=| |
00 A,

Here M is called a modal matrix, and D is called a spectral matrix for A.

Kronecker Product: If A =| ayle My andB=[b, e Mp'q are given, then their

m,n
Kronecker product A®B ( also called the tensor product) is the mp-by-ng matrix la,B].
Hadamard Product: The Hadamard product of two matrices A = | 4, land B =| bij |

with the same dimensions (not necessarily square) with entries in a given ring is the entry-

wise product A°B = [ ay by, |, which has the same dimensions as A and B. For example, if

1 23 im0 i 2 0

A= and B= then AvB =
4 56 e 0 1 4 0 6

Il A and B are matrices with the same dimensions but not square, then the ordinary matrix
product is not defined, but AvB is defined; in the square case both products are defined.

Stadle Matrix: A matrix A is called stable if the real parts of all its eigenvalues are less

than zero.



Lyapunov Equation: In the study of stability of local equilibria for a systems of ordinary
differential equations, one is naturally led to consider matrices whose cigenvalues all lie in
the half-plane; a square complex matrix is said to be positive stabie if all its cigenvalues
have positive real part. A positive definite matrix is positive stable, of course, but there is a
more subtle connection between the positive definite matrices is positive stable matrices. A
celebrated theorem of Lyapunov says that a given matrix A € M is positive stable if and
only if there is a positive definite G € M, such that the Hermitian matrix (GA) + (GAY =
GA + A*G is positive definite.

Diagonal Dominant: A square matrix A is said to be diagonal dominant, if nan matrix

A having this property,

n
la. | > E fa.l, i=1,2,....n
i ij

j=1,j=i

Spectral Radius: The spectral radius of an nxn (complex) matrix A having cigenvalues

A, ..., A, is defined by

P

p(A) = lmziv((nl Al

<

Companion Matrices: The nth degree polynomial

n n-1 n-2
aA)=A +ald +ak +--+a,

an nxn companion matrix (the nxn matrix having 1's along the diagonal immediately

above the principal diagonal, having last row |-a,, —a ooy, iy, and zero

n-1’

everywhere else.)

for which



_——-————ﬁ

det (Al - C) = a(A).
Block Companion Matrices: A second , and quite different , type of primeness
associated with two polynomial matrices involves their determinants. Suppose that the nxn

matrix

M M-1
BM) =BA +BA +---+By A+ B,
where cach B, is a constant nxn matrix B(A) having degree M is regular, so that we can

sct By = 1. By analogy with the companion matrix associated with a scalar polynomial we

define the nMxnM hlock companion matrix

r —
0 I,
0 I, 0
I
CB= ‘ ) ’
In
N BM _BM—I ’Bz _Bl
_ A

which has the fundamental property

det (MnM - CB) = det B(A).

When n = 1, Cj; reduces to the companion matrix C.



CHAPTER 2

Matrix Inequalities

2.1 Minkowski inequality and M-Matrices.
The well known Minkowski's inequality (Magnus and Neudecker [75]) in its most

simple form is given as follows:

1/p

ip
p p '] 1} ) y Mp
[ (X, +y) + X, +,) ] o8+ + o +y)

2.1.hO
for every non-negative X,, X,, ¥, ¥o, and p > 1. Itis noted that (2.1.1) can be extended in

the following two directions. We hive

1/p

(i("ﬁya)pJ < [i"?] + (iyl] (2.1.2)

i=1 i=1

forevery x; 20, y; 2 0 and p > 1; and also

l— ‘|]/p
- P n p . ’
(] (Bl g e
= = )=

1/p

for every X, 2 0, Y2 0 and p > 1. Notice that if in (2.1.3) we replace X, by x}/p’ y, by Y,

and then p by 1/p, we obtain

1/p 1/p ) 1/p

("Zuﬁyﬁpj 2 (zn:"f ] ¥ (ZYJPJ (2.1.4)

j=1



forevery x;20,y,20and0<p< 1.

It is not difficult to see that all these cases are included in the following inequality.
Let X = (x;;) be a non-negative mxn matrix (that is, xj20fori=1,...,mandj=1,..

.,n), and let p > 1. Then

o ‘Illp 1p

[/ . [
l_El 21 X _: <, / Zl xli)j (2.1.5)
1=1= j=1\i=
with equality if and only if 1(X) = 1.

The extension of the above matrices follows as given below. Let A and B be two
positive semidefinite matrices of the same order, then for p > 1,we have

lra+B) 17 < (ea”)P+ (wB”)”. (2.1.6)
with equality if and only if A = uB where (> 0) is a real number.
The proof of this is straight forward (Magnus and Neudecker [75]).

We now state the Minkowski's determinant theorem [84].
Theorem 2.1.1 : If A and B are each nxn positive definite (symmetric) matrices, then

A B < 1a+BI 2.1.7)

where LI denotes determinant. An analogue of the above result for the M—matrix can be
obtained. First we define an M-matrix.
Definition 2.1.1 : An M-matrix is a square matrix whose off-diagonal entries are
nonpositive and which has all positive principal minors.

Using the M-matrices an analogue of the Minkowski's determinant theorem can be

proved as follows.



Theorem 2.1.2 [79] : Suppose each of A and B is an nxn M-matrix with the property
that there is a vector u > 0 such that Au> 0 and Bu > (. Then

IAl+ IBI<S1A+BI

and

A+ 1B <A +B

Proof : Since Au > 0, there is a positive diagonal matrix D such that AD is row diagonally
dominant. In fact D can be chosen as D = diag(uy,. . . ,u,) where uj are co-ordinates of u.
Similarly, for the same diagonal matrix D, we have that BD is row diagonally dominant,
and also (A+B)D is row diagonally dominant. Haynsworth [50] proved that if A and B are
diagonally dominant nxn matrices with positive diagonal, then

IAl+ IBI < IA+BI
Hence we have | (A +B)D | 21 AD [ + 1 BD |, and the first determinantal inequality holds.
Since | A-11>0and | B-11>0, then we have

ATITA+BIIBH 2 TATTI{(IAI+IBI}IBT
and the second inequality follows.

Observation about the above theorem. If

[1 ~1] [1 0}
A= and B =
0 1 1

where B is the transpose of A, then

(1 -1 u,
> = u, -u, >0, u,>0.
(0 1)\ Y 0 b2 2



and

I 0 Y 0
> = u]>0, -u

u +u, > 0.
~1 1 2 0

1

Thus uy - uy >0 and u, —u; > 0is a contradiction.

Therefore it is obvious that strong row diagonal dominance does not necessarily imply
(2.1.7).

2.2 Comparison of H-matrices with M-matrices.

Recently multicolinearity in the design matrix in linear models have been talked
about in the literature to a great extent. Several methods have been designed in numerical
analysis to determine the inverse of such matrices which could provide meaningful least
square estimate. These methods depend upon the condition number of the matrix in the
question. H-matrices produce an equality which helps us in estimating the condition
numbers and constructing the error bounds for the solution of equations. In order to
proceed we first provide some definitions.

Definition 2.2.1 (Comparison matrix) : ( Ostrowski [90] ) Associates with every matrix A

= (a,,.) the comparison matrix
ik

1 ifi=k
(A) = (& lag!), €, = 2.2.1)
-1 otherwise

(A) is obtained from A if we replace the diagonal entries by their absolute values, and the
off-diagonal entries by their negative absolute values. The matrix A is an M-matrix if (A) =
A and if there is a vector u > with Au > (.

Definition 2.2.2 : The matrix A is called an H-matrix if there is a vector u > ( with



(A)u >0, where (A) is the comparison matrix corresponding to A.

An old theorem of Ostrowski states that the absolute value of the inverse of an -
matrix is, componentwise, bounded by the inverse of a related M-matrix.
Ostrowski [90] showed that for H-matrices

TAT1 £ (A)] (2.2.2)
Equation (2.2.2) is relevant in the context of estimating matrix condition numbers and
constructing error bounds for solutions of equations.

Theorem 2.2.1 [86] : Let A be an H-matrix and

A:=1-Diag(A)'A, (2.2.3)
-1
Q:=(1-1a1) (1a]1-4) (2.2.4)

Then Q20 and
AT < (AT 1+ Q) 1AL (2.2.5)
Corollary 2.2.1 : Under the hypothesis of Theorem 2.2.1,

iaticll < lay'ell < a+wlliaticll (2.2.0)

for all ¢ > 0 and every monotone matrix norm with 1l ll=1and 1Al < I;

here
hiai-all
STToWAT 2.2.7)
Theorem 2.2.2 : Let A be a nonsingular nxn matrix possessing a decomposition A = LR
into the product of two triangular matrices. Then
IATIS(RY (LY (2.2.8)

Moreover, if A is an H-matrix then

10



1At g (RY (LY <(Ay ! (2.2.9)

The proofs are given in Neumaier [86] .
2.3 Variations on Cauchy-Schwartz inequality.

Let V be an n-dimensional inner product space, and let A, B, P, Q be linear on V.
What relations must exist among these operators so that the inequality (Marcus [77])

(Av, u)(Bu, v) £ (Pu, u)(Qv, v) 2.3.1)
holds for all u and v in V. If V is Euclidean (i.e the underlying field is R), the situation can
be chaotic. For example, take A = I, B = -1, P skew-symmetric, Q arbitrary then (2.3.1)
holds.
Theorem 2.3.1: Let V a unitary space, dim V 2 3, and assume that A, B, P, Q are
nonsingular. Then (2.3.1) holds for all u and v iff
) P =aH, Q =BK, aff =€ =+1, H and K are definite Hermitian and
(i)  A¥=AB, Areal, so that (1) reads

Al (Buy) 2 £ € (Huu)(Kv,v) (2.3.2)
and
(i) Ife =1,A>0, then H and K have the same sign (i.e both positive definite or both
negative definite) and

Ay (PTAQIB) <1 (2.3.3)
or
(iv) Ife =1,A <0, then H and K have the same sign; or
v) If € =-1,A >0, then H and K have opposite signs

and

11



A PTAQIB) < 1. (2.3.4)
(vi) Ife =-1,A <0, then H and K have opposite signs.

A

max 1S the maximum eigenvalue of the indicated operator.)

It should be noted that for n = 2 the inequality (2.3.2) can hold with both 1 and K

indefinite. Simply take

The inner product in V induces an inner product in the second tensor space VOV that
satisfies

(x®y, u®v) = (x,u)(y,v) (2.3.5)
with respect to inner product (2.3.5) the interchange operator 6 : VO V- VOV

ox®y = y®x
is obviously Hermitian and satisfies 62 = L. It is convenient to interpret (2.3.1) in terms of
mappings on VOV. Let

L=P®Q-(A®B)o, (2.3.6)
and note that

(Lu®v, u®v) = (Pu,u)(Qv,v) — (Av,u)(Bu,v). (2.3.7)
Let D denote the set of decomposable elements in VOV, i.e. elements of the form u®v,
where u & vin V. Then we see from (2.3.6) and (2.3.7) that (2.3.1) holds iff

(Lz,z) 2 Oforallze D. (2.3.8)
We remark that the condition (2.3.8) is not equivalent to L 20 (i.e L positive
semidefinite). Let S, =1+ ¢, S, =1 -0 on span of dimension 2 and compute that

(S, - Szvl®v2, v1®v2) =per A —det A,

12



where A is a 2x2 matrix
A =l:("1' v vy Vz):I
(Vo)) (Vg V)
An inequality of Schur {99] states that per A 2 det A, However
(5, - S9)$,v,®v, =-28,v,®v,.
Lemma 2.3.1 : If Lis any linear operator on V®V, then L =0 iff (Lz,z) =0
forallze D.
Lemma 2.3.2 : (a) P®Q is Hermitian iff P = «H, Q = BK, where H and K are Hermitian
and lal=1Bi=1,0f =€ ==I.
(b)  A®Bo is Hermitian iff A* = AB, B* = uA, A and p are real and Ap = 1.
Lemma 2.3.3 : The inequality (2.3.1) holds iff
(Lz,2) 20, allz=u®ve D (2.3.9)
for the operator
L=€eH®K-A(B*®B)o, Ae R, € =*1.
Note that (2.3.11) is precisely the same as
€ (Hu,u)(Kv,v) = A I(Bu,v)I2, uveyv (2.3.10)
Lemma 2.34 :Ife =1, A >0, then (2.3.1) holds iff H and K are definite of the same
sign and
A PTAQIB) < L
Lemma 2.3.5 : If € =~1, A > 0, then (2.3.1) holds iff H and K are definite of opposite
signs and

A...(PTAQIB) < 1 (2.3.11)

fix

13



Lemma 2.3.6 : Let n 2 3; assume that B, H, K are nonsingular and that H and K are
Hermitian. Then

I(Bu, v)I2 2 (Huu) (Kv,v), uvevV (2.3.12)
iff H and K are of opposite signs.
Proof of Lemmas: See [77] .
The Theorem 2.3.1 is now simply a combination of Lemmas 2, 4, 5, and 6. We remark
that replacing A by —A and P by —P in the inequality

(Av, u) (Bu,v) 2 (Pu,u) (Qv,v) (2.3.13)
reduces (2.3.13) to (2.3.1) and the theorem can be applied to the operators A, B, P, Q.
2.4 A roots of an A-matrix.

It is well known that the eigenvalues play an important role in the study of matrices.
So in the following, we give the relationship of the eigenvalues of M-matrices.

Let A =IA"+ A A" + A 024 0 +A A+ A,

n-1
be the A-matrix where the coefficients A, are sxs complex matrices,

Aje M (C), (i=1.2,..n).
The latent roots A of A(A) are the zeros of det A(A). Denoting by C the block companion
matrix of A(\), forming a matrix CHC; letting

D = diag ( WA T A LT AN T 1), where L, (i = 1, o) is a scalar norm;
For B = (Bij) € M (C), we let

s ;

1Bl i Max “s{;'&,'}, IBI, : = iyli,l%(....,s{;'ﬁui}

and take the scalar norm ILH, of each block of CcHC- so obtaining a matricial norm D, =

1, oo ) as follows (Vitoria [ 105}])

14



( . )

|

|

o' c'cp) < ]
i ) < 1 (%)

n
H H . H
\”An.]IIi A HATIL AL 12 ALl VAL
=1

(i=1,00).
Given matrix M we have the following relations.

P(M) < P((Di(M)) where P is spectral radius, CDi(M) is matricial norm. We specialize (%) in
two way

(i) By taking a (scalar) norm, we get the following inequality
. 112
H
Al < (‘ +Z"A1 A "s} : (i=1, o). (2.4.1)
I=1

(ii) By calculation of the eigenvalues, one obtains

1/2
n n 2
H H H
1+Z||Al LA, “ﬁ\/( 1 +Z||Al LA ) —40AL AL
Al < 1=1 1=1
\ 2 )
(2.4.2)

(i=1, )
which gives a sharper bound, but is less simple.
A particular case is given with respect to the complex polynomial
I

M 2 ; .
p@)=z"+a 27 + ... +a  z+a,

We have respeciively, from (2.4.1) and (2.4.2):




n , 1/2
lz] € 1+2Iail

i=1

which is an inequality by Vitoria [105] and

n n 4

2 23\ 2

e 14y Ta e [(1+Y 10 F) -4t
)

1/2

an inequality by Parodi [91].

2.5 Determinantal inequality involving the Moore-Penrose
inverse.

The inverse of a matrix is defined when the matrix is square and non-singular. for
many purposes it is useful to generalize the concept of invertibility to singular matrices and,
indeed, to non-square matrices. Ore such generalization that is particularly useful because
of its uniqueness is the Moore-Penrose inverse.

Let A be a rectangular matrix of complex numbers whose m rows of A € ("< are

partioned into r arbitrary blocks:

A=| - |, AeC , =1, ki +--+k =m

Definition: The Moore-Penrose inverse of a matrix A, i =1, .. ,ris the unique matrix

o .
A, satisfying the relations
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+ + + + + + + . +

AAA =A, AAA =A, (AiAi)* =AA, (AA)T=AA;
where * denotes the conjugate transpose. These are used to form the matrix B = (AT, ..
,A:) € Cnxm‘

Clearly, the determinant of the mxm matrix AB will be zero unless A has fuli row
rank. Therefore, from now on, it will assumed that rank(A) = m £ n. Thus

+ » | )
A|=A|(AiAi) . i=1,...,n

hence

where D is mxm. This leads to

det (AA¥)
r 2.5.1)
T dercam

i=1

det(AB) = det(AA*) det(D) =

cqual to a real positive number. We will show that det(AB) < 1.

Observe that

( )

AAT T L AA]

AB: . . . !

AA, ... 1)
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and consequence of the formula

M, M,

det = det (M,) det (M, —M;M ' M,)

M, M,

M, nonsingular, is the relation

2
det (AB) = det (T-ATA ) (A, ...
Ar
= det (AGA¥)det (D) ,
where o
A2
A= . G=I-AA,
A,

+

’Ar )

. + .. .
Since G and A A, are both Hermitian and idempotent,

(AG) (AG)" = AGA* = AA* - (AA'A)) (AA A )*,

(2.5.2)
((AZA;)“' 0 1
and D=
k 0 AA) }
(2.5.3)

The two matrices on the right can be simultaneously reduced to the diagonal form. Indeed,

let V be the unitary matrices which reduces the Hermitian positive definite matrix AA* (o

diag(y,, . .

18
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T = dis =112 -2y _ p*

E = diag (0% ... ,},Lm_kl) = E*,
then (2.5.3) becomes

(EVAG) (EVAG)" = 1-(EVAATA ) (EVAAIA )’
Now let U be the unitary matrix which reduces the last matrix on the right to diag(o;, . .
,Gm_kl), G; 2 0. Then

(UEVAG) (UEVAG)* = diag (1-0,,...,1-6_, ).

1
But, from (2.5.1) and (2.5.2), AGA* is nonsingular, so that the Hermitian matrix on the
left is positive definite. Thus 0 < o, <I,i=1,..,m-k, and taking determinants on each

side yields,

m-k,

det (AGA) = det €. [[ (1 -0
1=1

m-h m-k,

“Jwa-o) < []u = der RA.
i=1

i=1

In view of (2.5.2), we have

det (AB) £ det A

Replacing the same procedure, we find, eventually (Lavoie {70]) that

det (AB) < det (AA) =1,
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This completes the proof.
2.6 Inequality of Goldberg and Straus.

Letc = [cj} and z = {zJ} be sequences of complex numbers forj = 1,2, . . .m
with m 2 2. Leaving c fixed but permuting z, we can form various sums of the products,
such as

P=clzl+czzz+...+c y4

mmm
Q= C1Z,+CoZ +... +C 2
R= C1Z,+CoZy +... +C 120 €27y

It is desired to find at least one expression like this which is large. More specifically, one

would like to find a positive constant C such that
m
max,, Zcizn(i) 2 Cmax. |z |
= = ite (2.6.1)

where 7 denotes a permutation of (1, 2, . . ., m), the sequence ¢ is fixed and z is arbitrary.
One cannot have C > 0 in (2.6.1) if the sum of all the ¢ is O, since then we could
take z,= 1. If all the ¢; are equal, the inequality fails again since we could choose z, 1o be
any numbers whose sum if 0. Hence the constant C in (2.6.1) ought to involve at least the
two parameters
s=lcp+cp+ .. +cyl and d=max; lc -cl (2.6.2)
Theorem 2.6.1 : If sd # 0 inequality (2.6.1) holds with C = sd/(2s + d )
For the proof see Goldberg and Straus [43].
Goldberg has asked whether the constant C given by Theorem 2.6.1 is sharp. The answer

of this question is given in the following theorem.
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Theorem 2.6.2 : If sd # 0, the best value of the constant C in (2.6.1) satisfies

sd <CSmin(S’2 ZSd 2d
2s+d—2s/m | 2s+d-2s/m-2d/m,

and the inequality on the right becomes an equality when ¢ and z are real.

This shows that,while the Goldberg-Straus constant is not cptimum for any m, it is
the best that can be chosen independently of m even if the sequences are real. We shall see
that Theorem 2.6.2 remains valid when ¢ € v, z; € C or c;€ C, z € V, where V is an
arbitrary vector space over the complex field C. The fact that the optimum constant
(independent of m) is the same for this case as for the real case is another surprising aspect
of Theorem 2.6.1.

Proof of the left hand inequality.

Let the Z, be so numbered that Izml = max lzjl, and so that

|2y - 2, I=muxj|zm—zjl=tlzml, (2.6.3)

where t is defined by this equation. We suppose the C; numbered so thatd = I —¢,l.
Subtracting the above expressions P, R we then get

2max (IPLIRI) 2 17-RI 2 dtlz, .

This shows that the constant C always satisfies C 2 dt/2.

Now let us make a cyclic permutation of z; to get Pj SOt CT Tt e

(For a notational convenience, z

IP1+P2+...+P

m

=z,) Then

‘m+1

l=slz+2,+. .. +2z,]

2
=slmzy, + (2, - z) +(2,-2,) +. .. + (.~ zm)!

28 lz,l {m - (m - ],




where the last expression follows from (2.6.3). Since the largest P s at least equal to the

average, it follows that

max, IPJ.I 2 slz | [1-(1-1/m)t]

and hence C 2 s — st + st/m. Thus

C 2 max(dt/2,s—st+st/m)
no matter what value t 2 0 may have. The choice of t giving the poorest value of C is that
for which the two expressions are equal. This completes the proof.
Proof of the right hand inequality : ¢, and z; are real. Since ¢; can be multiplied by -1,
we assume s > (; and since the desired inequality is homogeneous, we let max lzl=1.

Multiplying Z; by —1, if necessarv we see that there is no loss of generality in assuming

c, < c, £..%Chy» -1 < Z, < z, .Sz, =1, (2.6.4)
as well as
CiteCyt .4 =5>0, ¢ —c¢;=d (2.6.5)

We refer to (2.6.4) & (2.6.5) as the constrains.
With P and Q as above, the value of the sum for any permutation satisfics
Q<Y CiZniy S P
(The general case follows from the case m = 2.)
Hence the constant C for the given choice of ¢ and z satisfies
C(c,z) = max(P, -Q).
The problem is choice of ¢ and z, subject to the constraints, in such a way that the
expression C(c,z) is minimized.

Lemma 2.6.1: Let ch and bj be increasing sequences of real numbers for j= 1,2, .. ,nand
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let

p=a;by+ab, +---+ab, q=ab, +ab +---+ab,.
Then if all a, are replaced by their arithmetic mean, the value of p is not increased, and
value of q is not diminished.

Let P; denote the sum obtained by cyclic permutation of the a;, add the inequalities q
Sp,Sp, and divided by n.
According to the Lemma, we can replace the values 20,2y - 32 by their mean which
we denote by t. This change preserves the constraints and it does not increase P or diminish
Q, as will now be shown. We have

P=(c;z+ - +c 12, ) +¢,2, 2 t(c; +-- -4 D+cz

Q=Ciz, + (2, + - +¢C

mZ) S ¢z Ht(Cy - 4c ),

where we have ap,lied the Lemma, with n = m — 1. In the first case, =1, bj = in the
second case Q=2 bj = Ciyr
In view of constrains,

P =c, +t(s—c ) QM =Pt ~d(l-t)
Evidently P and Q are linear and P(1) = Q(1) = s. The constant associated with these
sequences

C(t) = max [P(1), —Q()]
and we want to choose t, -1 <t < 1, so that this is minimum.
Case 1: s+ d >ms. In this the constant on the right in Theorem 2.6.2 is 5. Since €< Cps
we have s +d Smc_; hence ms < me, in other words, s < c_. This shows that P(t) is
decreasing. The value of C(t) is least when t = 1, and in that case C(t) = s. This gives the

desired result.
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Case 2: s+d<ms, P(-1) + Q(-1)> 0. If C,, 2§ We can reason as in case 1 and get the
value C=P(1) =s. Since this is the larger than the constant in Theorem 2.6.2, we consider
sequence with ¢ | < s. In this case P(t) is increasing and, since P(-1) + Q(-1) > 0, it is
readily checked that the t is minimum C(t) is t = —1. The value of minimum is C(-1) =
P(-1) =2c_ -s.

Case 3: s +d<ms, P(-1) + Q(-1) < 0. In this case the value of 1 for minimum C(1)

satisfies
PO+ Q=0, SESESH
— _ _ sd
C(t) - P(t) = _Q([) = (2S +d-— 2cm) ‘ (2.()())

Evidently C(t) is minimum when ¢_ is least, and since

CptCyt---+c +2c =d+s,
¢, is minimized by taking C;=Cp for j 2 2. The value ¢, is then determined by ¢ - ¢, = d.
Thus the critical sequence are

c={c1,c c

m Sl
withc —c; =d, ¢;+ (m-1)c =s.
Thus mc_ = d + s and (2.6.6) reduces to expression in Theorem 2.6.2. The hypothesis
P(-1) + Q(-1) £ 0 is equivalent to d +s = 2¢_ and it holds since d + s =mc  and m 2 2.
This completes the proof.
2.7 Lower bounds for singular values of matrix sums.

It is pointed out by the Lemma 2.7.1 that the result on lower bounds for the

absolute singular values of sum of matrices given in Marshall and Otkin {80. p.243 &

p.246] is not valid. So in the following, a new result is established on such lower bounds.
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Let A and B be nxn complex matrices. The absolute singular values of A, G;,(A),
are defined as k:/z(AA*) and the real singular values of A, p;(A), are defined as
A (A+A*/2). The singular values are ordered so that they are nonincreasing; ¢.g. 6,(A) 2.
.. 2 6,(A). The result on lower bound for the absolute singular values of C=A + B in
terms of 6,(A) and 6,(B) proved in Marshall and Olkin [80, p. 243 and 246} is not valid by
a counterexample. A result on lower bounds for ¢ (C) is derived in terms of the real
singular values, p;(A) and p;(B).

Lemma 2.7.1 : If A and B are nxn complex matrices, then

i (A +B) 2 i G(A) + i S,in1(B) (2.7.1)
i=1

i=1 i=1
fork=1,..,n
For a counterexample to the above Lemma, let A =1 and B = -1 where 1 is the
identity matrix. This leads to obviousty false inequalities. Apparently, the following crucial
step used in 'proving' (2.7.1].
k
min R tr UBV* = Z o_...(B)

i
where minimum is over kxn unitary matrices U and V, is not valid.

It might be added in passing that the bounds on the eigenvalues of HA, where H is
a Hermitian positive definite matrix and A is Hermitian matrix, given in [80, p.510] do not
hold in general, unless A is also positive definite. This can easily seen by setting A =-H
which leads to obviously invalid inequalities.

Theorem 2.7.1: For nxn complex matrices A, Band C=A + B,
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m n

io’i,+j;+m—s—n(c) 2 Zpis(A) + ZPJ‘(B) (2.7.2)

s=1 s=1 s=1
where
1<€i <...<ip=n
. . ) (2.7.3)
1<j,<...<jnSn L+j, 2n+2-m
Proof : For any nxn complex matrix C, it is shown in |32, p. 112] that
6, (O 2 p(O) (2.7.4)
fork=1,...,n. WithC = A + B in (4) we have,
o) > A [A+A*+B+B*1 (2.7.5)
oks()_ks\2 2
where
1 Skg=ig+j+m-s-n<n (2.7.6.)

For Hermitian matrices G and H, with (2.7.3) and (2.7.3) holding, it is shown in [ 102, p.

369] that
m m m
DN GHH) 2 YA+ ) A H) (2.7.7)
s=1 s=1 s=1

Summing (2.7.5) over s = 1 to m and using (2.7.7) in the right hand side of the resultant
inequality, yields (2.7.2).
2.8 Intervals of P-matrices and related matrices.

We consider the set of the reai nxn matrices the usual partial ordering is defined
entrywise. We call an interval of matrices with respect to this partial ordering a matrix
interval. We consider matrix intervals which contain only P-matrices or related matrices. A

matrix is a P-matrix if all of its principal minors are positive.
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All matrices and vectors are assumed to be real and uf order n (matrices are square).
If A is a matrix, its entries are denoted by a;;. For matrices A = (3;), A=( 'ziij ) satisfying A
< A the matrix interval [A| = [A, Al is defined by [A, Al: = (A1 A <A <A). Vector
intervals are defined in an analogous way.
With matrix interval [A] we associate the three subsets,
(i) V,[A], the set of all matrices A for which a; € {a_ij, ﬁij}, i,j=1(1)n;
(ii) V,[Al], the set of all matrices A V,[A] for which for i = 1(1)n, a; = a;;, and if a;
= (respectively, ﬁij) then 4 = gj; (respectively, ﬁji), j=i+ 1(1) n; and
(iti)  V;3[A], the set of all matrices A € V,[A] which can be transformed by simultaneous
interchange of rows and columns to a matrix partitioned as

B, €

B ’

C2 2

where B,, B, are square and the entries of B, and C; are entries of A and A, respectively, i
=1, 2.

Then we can readily confirm that the cardinalities of V,[A], V,|A] and V,[A] are at

n? . n(n-1)2 n-1 . . .
most 2 ,2 ,and 2" respectively. We write V,, V, and V3 when the matrix

interval in the question can be inferred from the context.
We shall consider the following classes of matrices;

P: of all matrices whose principal minors are positive, the P matrices;

A:  ofall matrices A for which a positive definite diagonal matrix D exists such that
AD + DAT is positive definite, the diagonally stable matrices;

Theorem 2.8.1 [18] : Let [A] be a matrix interval. Then
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() [A]CP iffV,C P,

(i) [A]€ A iff V,  P.

Proof : (i) We make use of the following characterization of P-matrices |64, pY§]: A e P

iff for every signature matrix (i.e. diagonal matrix with diagonal elements 1) S, there

exists a vector x > O such that SASx > ().

LetV;C Pand A € [A], let S be any signature matrix, and set J := { i 8, =

Define the matrix B by

& if jelJ
b. :=9_ . for ie ],
Y i, ifjel

Eij if je J
b. := e forieJ.
ij a. if jel

Y

Then B € V,, and by the above characterization a vector x exists such that SBSx > ().

Since

v

E a. x. — E a. X, E a. x. — Z Q.. X. for 1€,
ijoj i ij 7] ij o

jel jel jel je

z a.x., — Z a. X. - 2 q. X for 1¢ )
1 ) vl 1)

jel jel jel jel

[\
=
>

we have SASx = SBSx. Hence A € P.

1}.

(ii) Let V, © A and A € [A]; Let C be any nonzero positive semidefinite matrix. Then for

alli z Cik kx_z Ck & * Z'.kaki'

k= Cy 20 Cy <
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Define the matrix B by

a, if ¢ 20,

T, ifg <0 PITHOW

then B € V,,and the ith entry of the diagonal of CA is bounded below by the ith entry of
the diagonal of CB. The matrix CB has a positive diagonal entry by the theorem of Barker,
Berman and Plemmuons {11], which completes the proof.

2.9 Hermitian matrix inequalities and a conjecture.

In many ways Hermitian matrices resemble real numbers. Indeed, all eigenvalues of
a Hennitian matrix are real and the matrix is diagonalizable.This similitude may lead an
unwary mind to wrong conclusions.This is true in the - 'y of inequalities involving
Hermitian matrices.

In the sequel we use capital letters A, B, . . ,X, etc, to denote nxn Hermitian
mutrices where n is some integer greater than 1; A = A* where A* denotes the conjugate of
the transpose of A. We use u and v to denote complex column vectors in C" furnished
with the usual inner product (u,v). We define
1. A2 (>) Oif all eigenvalues of A are nonnegative (positive) or equivalently if (u, Au) =
(>) 0 for all nonzero vectors ue C",

2. A2(>) Bif A - B 2 (>) O,0r equivalently if (u, Au) = (>) (u,Bu) for all nonzero vectors
ue Ch.

This ordering is only a partial one. Thus it is not true that if A is not greater than or
equal to B then A must be smaller than B. Another source of trouble is the fact that matrix
multiplication is not compatible with the ordering (unless all matrices involved are mutually
commutative). Most inequalities involving multiplications of real numbers cease to hold
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when the real numbers are replaced by Hermitian matrices. For example:

1. It is not true that A 20 and B 2 0 imply that AB + BA > (). Simply take

2 0 1 1
A= and B=
0 1 1 1

2. ltisnot true that A =B 2 0 implies that A2 > B2, Take
2 1 1 0
A= and B=
1 0 0
To illustrate the delicacy of Hermitian inequalities further,
3. Let A and B be nonnegative Hermitian such that A + B > 0,and let X be an nxn
Hermitian matrix that satisfies the inequality
(A+B)X + X(A +B) 2 AB + BA.

In the scalar case (n = 1), it is obvious that the real number X must be positive. However

that is not always true for n 2 2. A counterexample is

oo b )

A= , B= , X=

0 O 3 3 1 -1

Then (A+B)X + X(A +B) 2 AB + BA but X 2,

Some general results are provided below.

Theorem 2.9.1 : Let A, B, C, D be nxn Hermitian matrices. Suppose that A commutes
with C and B commutes with D. If A2B =2 0 and C 2D 20, then for any positive rand s
such thatr+s < 1 wehave A'C’ 2 BD’,

Theorem 2.9.2 : If A> B 20, then A2 > B2,

Theorem 2.9.3 : If A= B 2 (,then A'2 B forall r e [0,1].

Lemma 2.9.1 : Suppose C and P are square matrices of the same size with C > (). The
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equation CX + XP =P has a unique solution X. Moreover if P 2 0, then so is X.

L.emma 2.9.2 : Suppose C 2 (. Then A 2B implies that CAC 2 CBC. If furthermore C >
0, then the converse also holds.

Lemma 2.9.3: If A2B 20, then B-1 2 AL

Proof of the theorems and Lemmuas can be found in Chan and Kwong [22].

A Conjecture (Chan and Kwong [22]) : Taking square roots of course restores the
inequality that is destroyed after squaring. It is interesting to ask if the following sequence
of operations will preserve the inequality;

1. Squaring the sides of the inequality A> B 20 to get ( A2, B?).

2. Multiplying both on the right and on the left by some C > O to get ( CA2C, CBZ(C).
3. Taking square roots .

The question is whether

A0 > (B o)'”.

4.116681..  1.679158...
1.679158..  0.134061... )

E = (CA2C)”2 _ (CBzc)lﬂ _ (

The eigenvalues of E are -0.479. .. and 4.730.Thus

(CA2C)1’2 4 (C82C)”2.

K]



The inequality persists with the special choice C =B or A.
If A2B20, then

(BA2B)12 > B2 (2.9.1)
and  A? 2 (AB2A)12 (2.9.2)
Second inequality is a consequence of the first one. We may assume that without loss of
generality that B > 0 so that B-! exists. By hypothesis, B! > A"l > 0. The first inequality
then gives ( A'IB2A-1)12 > A-2 Taking inverse now gives (2.9.2).
Now (AB2A)12 > B2 (2.9.3)
also follows from the hypothesis of the conjecture. If this were true, then by transitivity, it

would follow that AZ > B2, which we know is false. Repeated use of (2.9.1) shows that

(B3 A2]33)1/2 S B4,

and more generally

2Bm-1)1/2 > Bm (2.9.4)

B™'A
form=2%; where k = 1, 2, . . . We conclude that (2.9.4) is true in two dimensional case
but it is not true in general.

2.10 A counterexample to a conjecture regarding a Hermitian matrix
inequality.

Let A, B and C be nonnegative Hermitian matrices such that A < C, B £ C. Chan

and Kwong [22] posed a question, wheather it is true that (/\.2 + 82)” 2< V2 ¢y

Now take
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2 -1
and C=A+B=
101

A, B and C satisfy the hypothesis of the problem. And

D=42 C - (A% +B}"?

The eig values of D are -0.154214. . . and 1.5989. ..

Conscquently

A*+8H"? ¢ 12 C

2.11 Inequality concerning minors of a semidefinite matrix.

LetS = (A BJ be 4 Hermitian nxn matrix of complex numbers, where A, B
B* C

and C are its submatrices of size mxm, m by (n-m), and (n-m) by (n-m), respectively (0 <
m < n). Here M* denotes the complex conjugate of the transpose of a matrix M.
Theorem 2.11.1: If S is semidefinite ( either positive or negative ) then

ldet St < IdetA -detCl (2.11.1)
FFor definite S cquality in (2.11.1) holds iff B = 0.
Incquality (2.11.1) was proved originally by E. Beckenbach and R. Bellman [13].
An alternative proof of (2.11.1) which is purely algebraic is given by Kimelfeld [66].

2 2 1

Remark 2.11.1 : The exampleof S= | 2 with m = 2 shows that the word

2 1
o2
“definite” in the last assertion of the theorem cannot be replaced by "semidefinite".

Using the theorem for m = 1, and proceeding inductively, one derives the following



well-known corollary.

Corollary 2.11.1: If S is semidefinite, then | det S | is less than or equal to absolute vutue

of the product of all elements of the main diagonal of S. For definite S the equality occurs

iff S is diagonal.
2.12 Bergstrom's Inequality.

For all positive definite matrices A and B the inegnality

det(A+B)  detA 4 detB
det (A +B) - detA, ' detB,

is valid.
Proof : For all x,z € R" the inequality
(Ax, x)12. (A"lz, 2)12 2 (%, 2)
Equality is attained iff the vectors z and Ax are proportional.
By virtue of the inequality (2.12.1) one has

(A'lz, z)'] = mi% (Ax, x2)
T (%, 2)

setting z = (0, . . ,0,1) one gets the equality [14]

detA _ .
det A min, (Ax, X)

from which there follows, by the criteria

"The pointwise supremum f(x) = sup, f (x)of an arbitrary collection of convex functions

(f,(x), M) is convex on the set {x € M | f(x) < + eo}", the concavity of the function

detA
det A,

on the convex cone of positive definite matrices.
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2.13 Generalization of AcA"l > 1,

A matrix inequality is obtained, in an elementary way, for the Schur product of two
positive definite matrices. If A = (aij) and B = (bij) are nxn matrices, let A°B denote their
Schur ( or Hadamard) product; thus AcB = (aijbij). If A is Hermitian positive definite
(semidefinite) matrix, we write A > () (A 2 0). It is a basic result of Schur [15, p.95] that if
A20,B20,then AcB 20.If A=20,B =0, then A = B will mean that A — B is positive
semidefinite. The determinant, the complex conjugate, and transpose of the matrix A are
denoted by | A |, A, and AT respectively.

Theorem 2.13.1 [10] : If A > (), then AocA-1 > 1,

Alternative proofs as well as generalizations of Theorem 2.13.1 have been given by
Johnson [57] and Ando [4]. A result which is much more general than Theorem 2.13.1. is
provided in 2.13.2. First we require the following lemma.

Lemma 2.13.1 : Let A > 0 be an nxn matrix, and suppose

B C
A=
C* D

where B is a square matrix. Then

(i) B > CD-IC*,

cp'lc*
(ii) 2 0.
c* D

Proof (i):

| B C)f 1
B-CD c*=(1 CD") y >0
C* DJ{ D 'C*

(ii):



T ST

colcx c¢) (cp'”

= 12

o N J(D'WC* D) > 0.

The following is the main result.

Theorem 2.13.2 : Let A, B be positive definite nxn matrices, and suppose A, A1, B, B!

are conformally partioned as follows :

X Y L [X Y
A= : AT = ,
Y* Z Yt Z

VY L (o @
B = . B =
VAR vV w
Then
-1
ASB > XoU 1O
0 Z oW
In particular,
-1
1 XOX ()
AocA 2 als
0 ZoZ

Proof : It is well known that

1 i 1 .
Z-7 =Y*X'Y  ad U-0 =vw'v*

Thus, by (ii) of Lemma 2.13.1,
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-1
X Y -7
( _1) 20 and u-u v 20,

Y™ Z-7 V* W
and hence
X Y a!
_1|o u-u v 20.
Y* Z-7Z V* W

A trivial simplication of the above inequality gives the first part of the theorem. To prove

the second part, set B = A1, and the proof is complete.

2.14 The relationship between Hadamard and conventional
multiplication for positive definite matrices.

If A is positive definite Hermitian, then A A-! > [ in the positive semidefinite
ordering. The new result of Johnson and Elsner [59] is a converse to this inequality : under
certain weak regularity assumptions about a function F on the positive definite matrices,
A-F(A) 2 AF(A) for all positive definite A iff F(A) is a positive multiple of A-l. In
(ABT), for A, B

addition to inequality A« Al > [ and furthermore X_. (A:B) > A

min min

positive definite Hermitian. We also show thatA_. (A-B) <A_. (AB) and note that A_ .

'min min

(AB)and A_. (ABT) can be quite different from A, B positive definite Hermitian.

min
Let P, denote the set of nxn positive definite Hermitian matrices, while P, denote
its closure, If we take P, and P, to be partially ordered via
B2A ifandonlyif B-A €P,
B>A ifandonlyif B-A€P .

the positive semidefinite and positive definite orderings, respectively.

The Hadamard ( or entrywise ) product of two matrices A = (aij) and B = (bij) of
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the same dimensions is denoted and defined by [56]

A-B = (3;;b;)
while conventional matrix multiplication is indicated, as usual, by juxtaposition.

It is often attributed to Schur and has been shown that P_ (as well as P, ) is closed
under the Hadamard product (see [56]).

Theorem 2.14.1 : If A, B e P_ (respectively P), then A-B e P_ (respectively P,).

It is easy to observe thatif Ae P and B e P, then A-B e P,, unless B has a
diagonal entry equal to 0. Of course P_ is not closed under conventional multiplication, but
A, B € P_ does imply that the eigenvalues of AB are positive real numbers and thus that
AB e P if Aand B commute (For details see [53]).

It was first noted by Fiedler [33, 34] that
Theorem 2.14.2a : IfAe P, then

AATT >
This inequality cannot be strict; for letting e = (1,1, .. ,1)T, one has (Ac(AHe = ¢, so
that 1 is an eigenvalue of A-(A™).

It was noted by Johnson {57] that
Theorem 2.14.2b : If Ae P, then

A-Al>1

It is possible for this inequality to be strict when A is complex. For example, let

Of course Theorem 2.14.2.a and 2.14.2.b coincide when A is real. The maps A —
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A-Aland A 5 A- AT are quite interesting and have been given in Johnson and Elsner

[58].
For nxn matrix A , all of whose eigenvalues are real, denote the ( algebraicaliy ) smallest of

inese eigenvalues by A_. (A )and the largestby A, (A).

Theorem 2,14.3a : For A,B e P, we have

Apin (A¢B) 2 A, (ABT),

min
Theorem 2.14.3b : For A, B € P, we have

Ay (A<B) 2 A_. (AB).

min
Theorem 2.14.3a and 2.14.3b coincide if A and B are real ( in fact, if A or B is real ). But

if A and B are complex, the eigenvalues of AB and ABT can be quite different, and Ain

(AB)and A_. (ABT) can differ. For example, if
(2 ] M3 ol
A=l | and B=| |
| - 1 | L 2i 2 |

then

G(AB) = (2+42 }, 6(AB”) = (6434 ) and 6(A-B) = {4 + /B };

and we have A ;. (A-B)=4-/8 > A, (AB)=2-J2 5 A, (ABT)=6-/34.
The inequality of the Theorem 2.14.2b may be rewritten as
Al 2 AAT,
so that the Hadamard multiplication dominates the conventional multiplication when the two
multiplicands are functionally related (namely by the inversion function ). Of course the left

hand side is positive definite by Theorem 2.14.1, but that it should dominate the usual
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product is remarkable. The implication of the converse is that inversion is essentially
unique in this regard.

We say that F: P, — P_ is an ordinary function on P, if,for A € P, with unitary
diagonalization

A = U* diag(A, ... A, U,

F(A) = U* diag( Y (/TR iy R N (. ,?»n)) U for some given functions f;:

+ + . . . I ooy e . .
R, - R, i =1, . . ,n. Polynomials with positive coefficients, inversion, and

exponentiation are examples of ordinary functions on P, but in cach of these cases f
depends only upon A; for all f;.
Theorem 2.14.4 : Let F be an ordinary function on P, . Then
A-F(A) 2 AF(A) forall Ae P
iff for each A € P_, F(A) is a positive scalar multiple of AL,
Proof : See Johnson and Elsner [59].
2.15 1Inequality for the second immanant.
For nxn complex matrix we use the notation A = () to denote that A is positive
semidefinite. Suppose that A is any ( irreducible, complex ) character of a subgroup G of

S, the nth symmetric group. The generalized matrix function corresponding to A is defined

on nxn complex matrices by

d\(A) = ) M) f[ Yot

ceG i=1
and is referred to as an Immanant when G =S . The characters §_ are indexed by partitions
of n via the theory of Young Diagrams, and when A corresponds to a partition of the (k,1,.
. ,1) we call the corresponding character a single hook character, and use the notation A, .
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For example, if we let fix(c) denote the number of fixed points G € S, then

kn (o) = 1, the principal character,
A (0) = fix(c) - 1,

A (0)

€ (0) (fixcoy-1),

A, (@)

€(0), the alternating character.

The immanants d, and d, are therefore the familiar permanent and determinant functions.

The Hadamard Determinant Theorem states that

n
I1- 2 daay, al A20.
i=1
Schur [99] proved that for any (irreducible, complex) character of a subgroup of S_
d\(A)
A(id)

2 det(A), all  A20,

which reduces to Hadamard's Theorem by letting G = {id} and A = 1.

Marcus' [ 76] proved the following permanental analogue of Hadamard's Theorem:

n
per(A) 2 H s al A0
i=1

Marcus' result suggests : Is it true for any (irreducible, complex) character of a subgroup G

of Sn that

, for all A=20?

Lieb {72}, showed that if

All A12

A= 2 0, A,, square,

A21 A22
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then

per(A) 2 per(A“) per(An).

Pate [92], has shown that if A = [Aij] 2 () where Aij ismxm,alli, j=1,.. .k, then

per(A) > perl per(A;) 1

except perhaps for finitely many values of m for any fixed k. It is also casy to sce from

per(A) 2 det(A) =20 that

n

per(A) 2 alt(A) = Z H L

geven = |

and Merris and Watkins [81] have shown that

per(A) > G (A) I A20
£ T a 20,
Xn_l(xd)
and
d ,(A)
er(A) > L al A0,
P A ,(d) '
L] d A)
Theorem 2.15.1: pCT(A) > 2(. , all A>0
12(1d)

Furthermore, equality holds iff A is diagonal or has a zcro row. Since 12( id) = n-1, this
result can also be stated as

(n-1) per(A) 2 d,(A), all A20,
with equality iff A is diagonal or has a zero row.

The proof of the theorem can be found in Grone {46].
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2.16 Fischer inequality for the second immanant.

Let M be the space of nxn complex matrices. Let H, © M, be the cone of positive
semidefinite Hermitian matrices, and C, © H_ the compact convex subset consisting of
those matrices all of whose main diagonal entries equal 1 (e.g. the correlation matrices). Let
d, be the generalized matrix function (or immanant) afforded by the symmetric group S
and irreducible degree n-1 character corresponding to the partition (2,1,1, .. ,1).

Suppose A € H_ is partioned into blocks,

A11 AQ

A=| ,
Aa Ay

If n 2 4, then d,(diag(A,,, A,,) 2 d,(A). This follows from the fact that d, is a Schur-
concave function of the spectrum for A e C_.
Let G be a subgroup of the symmetric group, S, and let X be an irreducible

character of G. The generalized matrix function (GMF) afforded by G and X is defined by

d(A) = Z X(o) H sy * (2.16.1)

ceG t=1

Where A = (aij) € M. If G =§ , then (following Littlewood) d is an immanant, and if G

n’
= {id}, then d is Hadamard function :

h(A) = In] e

t=1

. ) - d(A)
.; : :. A - ————
In case X(id) > 1, the normalized GMF, d(A) XGd)

An explicit formula for X is X(0) = € (o) (f(6) — 1), where € is the alternating or signum

character and f(o) is the number of fixed points of s. [ Note that X(id) = n-1]. The
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immanant d, is referred to as the second immanant and satisfies [ 73, 81]

I
dy(A) = D 2, det AQ) —det A,

(2.16.2)

t=1

Where A(t) € M_ , is the principal submatrix of A obtained by deleting i row and column.
Theorem 2.16.1 : If n 2 4, and d,(A) is a Schur-concave function of the spectrum of A

on C_. Furthermore, d, is strictly Schur-concave on the matrices in C, of rank at leastn-1.

Theorem 2.16.2 : Suppose A € H, is partioned as

An o Ap
A=
2 An

where A, and A,, are square. Let

In n 2 4, then d,(A) 2 d,(A) with equality iff A = A, A has a zero row (and column), or
rank A < n-1.
Corollary 2.16.1 : If Ae H_, n 2 4, then (_12(/\) < h(A) with equality ift A is cither
diagonal or has a zero row (and column).
Proof : See Grone and Merris [47).
2.17 A note on the analogue of Oppenheim's inequality for
permanents.
All matrices are nxn Hermitian matrices which are positive definite or semipositive

definite. John Chollet [27] asked if there was a permanental analogue for the Hadamard
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product to Oppenheim's inequality for determinants : i.e. it is true that

per (A © B) = per A per B?
He showed that if suffices to prove only

per (Ao A) < (per A)?, (2.17.1)
where A is complex conjugate of A.

Suppose A is positive semidefinite (or definite) Hermitian 2x2 matrix, say

Then per A=d,d, +xx
and  per(AoA)= dfdi +(xX )2.

In a positive semidefinite matrix d,, d, 2 0, then clearly (per A)2 2 per(A o A), since XX =

fx1220.
Suppose
d x5y
VRIS
Note that
1 x vy
X 1

per A, =d,d,d, per| * Z | = d;dydyper A,

y z 1
where A is again positive semidefinite Hermitian, and if per (A 0 A) < (per A)?2, then

per(A, o KI) < (per A1)2. Thus we consider matrices A having ones down the main

diagonal
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We have

perA=1+xyz+xyz+ xlP+lyPeizl

and

=22, 2.2 4 4 a
(per A2 =1+xF 22+ X224 1x 1 +1yl' +12]

r2(xyz+5yz) (1+1xP+tyleiz?)+21x Py izl

2(xP+iylrizP+ix Py Peix izl 1y fizt).
Interchange the underlined terms and write
(2 )2 + Ryz )2 = (xyz +Xyz)? - 21xPly izl
to get,
(per AY2=per (Ao A) + (xyz +xyz 2 +2 | (1xP1yP=ixPiylfizt)
v {(xyz+>'cyz)(1+lx|2+1y12+|z|"")+Ixl2+Iy12+lzl2 }

2 2 2 2
sixPizP ety izl ]

The principal minors of A are nonnegative, so | z 12 < 1, from which it follows that
IxPry?-1xP1yf1z iz 0.
If Xyz + XyZ = 2 Re( Xyz ) 2 0,then all terms in (per A)? - per(Ae A) are nonnegative and

the result follows.

Suppose that Re( Xyz ) < 0. Note | Re( xyz) I<ix {1y !zl To bound
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I x {1y I izlapply the inequality of the geometric mean and arithmetic mean to get

3
2 2 2
IZSHXI +lyl+lzl |

)

2 2
[xI"lyl"lz

Expandingdet A 20,
1>1+2Re(xyz) 21x P+iyF+1z1,

3R
1 2 2 2
so Ixllylzis (ix P +1yl +1z1°)
/27

< -%— (le2+lylz+lzlz).

Hence

l(xyz+5yz) (1+1xPatyP+iz) < 2txtiytizt (1+1xPatyP+iz?)
s%(lxlz+lyl2+lzlz) 2.17.2)
(Sincelx P+ |yF+1zf < 1)

< le2+ly12+lzI2.

It follows that the term

{(x7z+5y2) (14 1xP+iyPatz?)+IxPetyl+izi” )
is positive in the expression for (per A)? — per (A o A). Since all remaining terms are
nonnegative,

(per A)2 2 per (A 0 A).
2.18 An inequality for sum of elements of matrix power.

Let su denotes the sum of elements, then inequality 3 su A3 2 su A su A%, is
known to hold for any symmetric nonnegative 3x3 matrix A. This section presents some
sharpened version of this inequality.
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We study real matrices only. It is known {74} that

nsuA3>suAsuA? (2.18.1)
for any symmetric (elementwise) nonnegative nxn matrix A if (and only if) n < 3, with
equality iff A or A? has equal row sums.

The case n =1 is trivial and n =2 is easy to verify.

We now give a sample proof for n = 3.

Write
a b ¢
A=lb d e| 20,
kc e f J
and denote

f(A)=3suAd-suAs .3
rp=a+b+c, y=b+d+e, ry=c+e+f, R=(r, )", E=(11, DT,
Then (see Kankaanpaa [60] for details)
f(A) =(E'E) (ETA’E) - (ETAE) (ETA%E)
=E'(EE'A-AEENA’E =E'(ER" -RE)AR =....
= (r1 - rz)z(r1 +1, -~ 3b) + (r1 - r3)2(rl +ry - 3c) + (r2 - rq)2(r2 +1, - 3¢)=....
=@, -1) Qa+d + 2+ ) +(r,— 1) (a+ 2b +d + 20)
+ 2(r1 - r2)(r2 - r3)(a +b+e+f-C).
assuming, without loss of generality, r; 2 r, 2 15, we have
fA) 2@+d+0; -1t +(@+d+Dr, )2 + 2@ -d + D) (r) - r,) (1, - 1)

2(a+d+Hr —1'2)2 +@+d+ f)(r2 —r3)2 ~2a+d+ f)(r; = r,)(ry ~ry)
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=@a+d+ 0 -1~ (- )P =tr A (r; + 13 - 2r))%
Thus

3suA’-suAsuA? 2 rA (suA-3r,) (2.18.2)
for any symmetric nonnegative 3x3 matrix A. Here r,, denotes the second largest row
sum.

An obvious way to sharpen (2.18.1) is by applying it with A replaced by A —al, o
< min, a;;. Then, assuming n <3 and denoting
f(A) =nsuA’-suASuA? s _=suAk
we obtain by (2.18.1)

0 < f(A —al) = n (s; — 3as,+ 30%s, - an) - (s; — an)(s, — 20, + o?n)

= f(A) - 20(ns, — 52).
Thus f(A)2 Za(nsz-s%), and since ns,— s% > 0, the right hand side is best for o =
min, a., and we have (Kankaanpaa, Merikoski and Virtanen [61])

n suA3-suAsuA?>2min a; [ nsuA?-(suA)].
2.19 A note on the variation of permanents.

For any two nxn complex matrices A, B the inequality

I per(A) - per(B)| < nllA-Blimax (1AL 1B )™
holds, if Il-It is either the row sum or the column sum norm, It is conjectured that this result
holds for any operator norm.

R. Bhatia [17] has proved that for any two nxn matrices A, B the inequality

| per(A) —per(B)| < nllA—B ll, max (kA ll, I B, -t (2.19.1)

holds. Here Il-Il, denotes the spectral norm.
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An analogous result for the row-sum and the column-sum norm can also proved.

Recall that

1AL =max Y Ta 1,
k

DAl =max ) la|
i

are the operator norms corresponding to the vector norms

n
Ikl = Y Ikl and  Hxlo=mplx]
1

i=1
respectively, where A = (ay), x = (x;, . . ,x,)T. We show

Iper(A)—per(B)l £ nllA-B IIp max (1A I B IIp )"“’ p=lee. (2.19.2)

P

As TA N =l ATIl__ , it suffices to prove the case p = 1. We make use of the result in |83,

p-113]
IperAls<iia Il all ... .Na 0,

where A =(a;,...,a)) and g, denotes the ith column of A If B = (b}, . ... b,), define
Ay=@pa,,...8,b ,...,b), k=1,...,n-1,

Ag=Band A=A . Then

I per(A;,) - per(A; ) | =1 pera, a,, ... Wiy, @, - b, b

<t b [Tuwam Juon.

i<i 1>

b

[

4
Hence |per(A) —-per(B)| < Z I per(A)) —per(A; )|

i=1

b, e ([ o, T oo0,)
nmfxllai blll] m;:x( II‘1JIIl .b}lll

J<i 1>

N
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n-1
< nllA-BIl max(lA I, UBI) .
This establishes (2.19.2).
Conjecture of Elsner [29]: If Il Il denotes any operator norm for nxn matrices, then
I per(A) —per(B) 1 < nllA~Bllmax (AN, I B Il )L
2.20 Matrix trace inequality.
Theorem 2.20.1 [110] : If A and B are two nxn positive definite matrices, then

(1) r (AB)>0and

a1y Y (AB) < EA—JE—B—) :
Proof : Let P be an orthogonal matrix such that
P'AP = diag (k;, .. k) =1J.
Then
tr(AB) = ir(P'ABP) = tr(P'APP'BP) = tr(JC) (2.20.1)
where C = P'BP is still a positive definite matrix.
Now we have

IC = diag (ky, ...k . ;)

(kncn \

* Iy
l\n('xm

and  uw(JC)=kic; +....+kc, > 0 (2.20.2)



On the other hand, we can compute
(tr] + rC)? — 4tr(JC) = (k; — ;) + ... + (k, — c,,)* + Positive terms > 0. (2.20.3)

from (2.20.1) and (2.20.2) we get (I). From (2.20.1) and (2.20.3) we get

R
(trJ+trC)2 _ (trA+u- BT
4 .

tr(AB) = r(JC) < S

From the proof we see that the same is true for Hermitian matrices.
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CHAPTER 3

Inequalities for Eigenvalues

The matrix eigenvalue problem arises in a wide variety of areas in the physical and
social sciences as well as in engineering, most typically, for example, in the stability
analysis of physical systems that are modeled by linear systems of equations, differential
cquations, and so on.

3.1 The largest and the smallest characteristic roots of a positive
definite matrix.

Let A be a positive definite matrix. It follows then that all the characteristic roots
are real and positive. Furthermore, we know that the characteristic roots of the powers of
A are the corresponding powers of the characteristic roots of A. We also know that the
trace, the sum of the elements along the main diagonal, is the sum of the characteristic
roots.

Consider the sequence A, AZ,..., A", .... Let us define

u, = tr (A"). 3.1.1)

Then for the largest eigenvalue A,

u
+1 1/
uo Sh Suwt (3.1.2)

A simple application of Cauchy-Schwarz inequality [75, 16] shows that the lower

bound is monotone increasing. A simple result from the theory of inequalities shows that



* RN

e

the upper bound is monotone decreasing.

Let us now examine the arithmetic. It takes the same labor to multiply two matrices
together as to square a matrix. Hence, we consider the sequence A, A% LAY
Here, each matrix is the square of the preceding. Let us now define the sequence

v, = r (A2"), (3.1.3)

Then, we have the inequalities
A
n+1l 12"
( Va ]S A S e (3.1.4)

As before, the upper bound is monotone decreasing. A simple application of
Holder's inequality shows that the lower bound is monotone increasing.

We see that we have to take 2"th roots. This can be done in several ways. We can
use logarithms. Or, we can take repeated square roots. Here, we can use the simple
recoverance relation of Hiro and obtain arbitrary accuracy. Even if we have a computer
with a limited number of significant figures, a simple use of algebra can overcome this.

In the following we will discuss the accuracy of the estimates.

Let A; denote the largest characteristic value, and A, denote the next largest. The
accuracy of the bounds depends upon the ratio A; to A,. We shall obtain estimates for this
ratio by obtaining estimates for A A,.

Consider the elementary sum Z 7\?»]-. We can obtain an expression for this

i#j
directly from the matrix. However, it is easier to proceed as follows. We have the

elementary identity :
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2
2y A = [Z Xi} -2 (3.1.5)
i]j 1 i

This is equal to
(rA)2 —tr (A2). (3.1.6)
We can now proceed as above and obtain similar bounds.
The same method may be employed to obtain the bound for the smaller
characteristic root using the inverse matrix.
3.2 Inequality between the diagonal elements and the cigenvalues
of an oscillating matrix.

A real matrix A is totally nonnegative (totally positive) if all the minors of A are
nonnegative (positive); A is oscillating if it is totally nonnegative and if some power of it is
totally positive. Gantmacher and Krein [38] have shown that in particular case each totally
positive matrix is an oscillating matrix.

WOHIfA= (aij) is an nxn totally nonnegative matrix, then A is an oscillating matrix
iff det A #0 and O i1 Qg1 > 0, i1=1(1)n-1.

(i) If A is an oscillating matrix, then any principal submatrix formed from consecutive
rows and columns of A is an oscillating matrix.
(iii) If A is an oscillating matrix, then the eigenvalues of A are positive and simple, and
strictly interlace those of the two principal submatrices of A of order n-1 obtained by
deleting the last row and column or the first row and column.

The eigenvalues and the diagonal elements of a matrix A arranged in decreasing

order will be denoted by A;(A) and 8;(A), respectively . Trace of A is denoted by trA.
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Theorem3.2.1: Letn22and A = (aij) be an n by n oscillating matrix. Then

k k
PRI I WISE k=1(1)n-1 (3.2.1)
i=1 i=1

The theorem can be easily proved by induction. From (3.2.1) it follows that, in particular,
31(A) < A1(A), du(A) > AL (A).
The following corollary follows from the above theorem.

Corollary 3.2.1 : If n 2 2 and A and B are nxn oscillating matrices, then

wAB> ¥ A(A)A__. (B) (3.2.2)

n
i=1
Proof : See Garloff [39].
3.3 Eigenvalue bounds for algebraic Riccati and Lyapunov
equations.
Consider the algebraic Riccati equation
A*K + KA -KRK =Q 3.3.1)
and the Lyapunov matrix equation
A*K+KA=-Q (3.3.2)
with A being a stable matrix, K a Hermitian positive definite matrix, and Q and R being
Hermitian positive semidefinite matrices. It is well known [21] that (3.3.1) ariscs in the
fields of optimal control and filtering theory and (3.3.2) in the study of stability of time-
invariant linear system.
We now proceed to obtain information on the stability and settling time of the lincar

time-invariant system,

X =Ax(®), x(t)=xq.
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All matrices are nxn, A,(X) denote the eigenvalues of a matrix X, Re A;(X) denote the real
part of A;(X), and Tr(X) denotes the trace of X. The eigenvalue of a matrix X are ordered
such that the real parts are nonincreasing, i.e.
Re A;(X) 2 Re Ay(X) 2... . ZRed (X).
Lemma 3.3.1[2] : For Hermitian matrices V and W , with 1 €i,j<n
Aigja (VW) € (V) + 4(W) 5 i4j S n+] (3.3.3)

and A

i+j-n

(V+W) 2 Xj(V) +A(W) 5 i+ 2 n+l. (3.3.4)

Lemma 3.3.2 (2], [31] : For Hermitian nonnegative definite matrices X and Y , with

1 <i,j<n.
Xiﬂ-_](XY) < Xj(X) A (YD) i+j < n+l (3.3.5)
A +j_n(X Y)2 lj(X) (YY) i+j = n+l (3.3.6)
Theorem 3.3.1 : For the algebraic Riccati equation (3.3.1), with m=1,2,....,n.
m m
Z 2 ReA,; (A) € Z A, (RK - K1Q) (3.3.7)
i=1 i=1
m m
- z 2Re Ay (A) - Z Apois (RK - K'1Q) (3.3.8)
i=1 i=1

where the equality holds form = n.

This result with R = 0 was originally obtained by Wimmer [109] for the Lyapunov

cquation (3.3.2) using the following result due to Fan [30].

Lemma 3.3.3 [30]: IfA,, ... A, are the eigenvalues of Z and «;,... 0, are

(Z +Z%)
2

eigenvalues of ,thenform=12,...n
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ReM@< D, o (3.3.9)

i=1

G

with the equality being true form =n.

For proofs of (3.3.7) and (3.3.8) see Wimmer [109].

Proof of Theorem 3.3.1 : Since K is a Hermitian positive definite matrix, it has a unique
square root matrix, K!/2,that is also Hermitian positive definite [93]. Now define the
matrices

B=KIZAK" 12

D=K 2 (KRK -~ Q X2 (3.3.10)
so that
B +B* = K'/2(KA+AYK)K 12
or using (1)
B+B*=D (3.3.11)
from Lemma 3.3.3 to (3.3.11) and the facts that the eigenvalues of B are the same as those
of A and the eigenvalues of D are the same as those of
K12DK2=RK-K!Q
yields (3.3.7) , similarly (3.3.8) follows by writing (3.3.11) as
~-(B+B*)=-D
and noting that A;(-x) = — A;,_;.1(x). This completes the proof.
Several bounds on the extrem:! eigenvalues of K can be obtained via Theorem

3.3.1. To simplify the nctation, define
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In= D MQ
j=1

dn= 2y My (@
j=1

am =- 2,‘ Re?\.J(A)
)=

a-m

~ Y Rehy i, 1(A)
i=1

so that g, =q_, =Tr(Q) and a, = a_, = - Tr(A)
Lemma 3.3.4 : The maximum eigenvailue of algebraic Riccati equation (3.3.1) satisfies the

inequalities,

4m
an + [‘lrzn + m}‘|(R) Am

KI(K) 2 ]1/.2 form=1.2,...n

Lemma 3.3.5 : The minimum eigenvalue of K of(3.3.1) satisfies the inequalities

C
I for m=1,2,. . .,n.

Qg+ [n?m'*' m}"n(R) U

For proofs of Lemma 3.3.4 and Lemma 3.3.5 (see Karanam [63]).

34 The product of complementary principal minors of a positive
definite matrix.
An upper bound is given for the product of complementary principal minors of a

positive definite matrix in terms of its eigenvalues.
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Let H be an nxn positive definite matrix (i.e. H has real entries, H'=H and all the
eigenvalues of H are positive). Let the eigenvalues of Hbe &, &,, . . ., & where &) > @,

2...2 0 Letrbean integer with 1 <r < n-1, and H be partitioned in the form

(1, ]
H=
LH; H3_{
where Hj is rxr.
A lower bound for the value of the product detH;.detH; by E. Fischer |36] 1s
detH;.detH; 2 detH,
or equivalently, in terms of the eigenvalues of H,
detH;.detHy 2 &, .0, . . O,
This note gives an upper bound for detH;.detH; in terms of the eigenvalues of 1.

Lemma 3.4.1 : Let A be a nonsingular nxn matrix. Let r be an integer with ISt <n-1. Let

A and A~ be partitioned
A A, B, B

1 2
A= and A =

A, A, B, B, |

where A4 and B, are both rxr. Suppose that A; is nonsingular. It then follows that
detA, = detA.detB,. (3.4.1)

Proof : See Aitken [1, p.99].

Theorem 3.4.1 : Let H be a positive definite nxn matrix with eigenvalues ®,,0,,. . . 0.

where &, 2 &, >, > O  Letr be an integer with 1<r < n-1. Let H be partitioned

60



{H Hz—}
[z ]

where Hy is r by r. Let ¢ = min(r, n-r). Then

q
+ o
detH].dCtHS < aq+1.aq+2. . .an -q H (a n- k+1\ (3.4.2)

Proof : See Murphy [85].
3.5 Diagonal elements and eigenvalues of a symmetric matrix.
Let A be a real symmeuric matrix of order m with eigenvalues A <A, < ... <A,

A.Horn [51]ifd| sd, <....€d, are real numbers such that

and i d. = i A, (3.5.1)

Then there exists an orthogonal matrix P of order m such that the diagonal elements of
' D .

P'AP are dy, d,, . .. N .

We may assume, without loss of generality, that the matrix A is diagonal (with

diagonal elements A, A, . . . ,A,, arranged in scending order of magnitude), and proof

follows by induction. For m = 2 condition (3.5.1) becomes A; <d; <d, <A, and d) = A,

+ Xy —d,. If A = A,, the theorem is trivial. Otherwise, if Ay < A,, write

Nosxpces)

P=,a)" |

RCET ]
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P is orthogonal and P'AP has d| and dj as diagonal elements. Hence the theorem holds tor
m=2,
Now suppose the theorem holds for m 2 2 and let L = diag(A,, . . Apy.p) be

diagonal matrix of order m+1 with diagonal elements A; SA,< .. <X .. Since

condition (3.5.1) implies A; £d; £d, .1 €A, 1» we can find the least integer j >1 such

that lj-l £d; < Kj. There is always a permutation matrix Py such that

A

P'IAPI =diag(?\,1, A’_]’ lz,- . ,l j+l" .

j.l! !l

m+l)
For submatrix diag(},, 7\.1-) of order 2, since
Ay Smin {d}, A, + Kj— d;} Smax {d;. A} + lj—dl} S?Lj,
there exists an orthogonal matrix Q of order 2 such that the matrix Q'diag(A,, KI)Q has

diagonal elements d, and 7&,+Xj—d1, in view for the case m=2. Consider the orthogonal

matrix (of order m+1)

o ol
P,=| I,
LO 1]

where I is identity matrix of order m —1 and O is an approximate zero matrix. Then

d, b
b A

where Ay =diagy + A, —dp, Ay, .o Ay Ay, - - Agy) and bis an appropriate columin

vector. The m diagonal elements of A} and m numbers dj, . .. ;4 satisfy condition

(3.5.1). In fact, as A; <d, foralli=2, ... j-1, we have

k k
Ddo2k-1d 2 YA, k=2, (3.5.2)
i=2 i=2
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fork =j,..,m+1, we have

~d, 2 Ek:x d-(x+x—d)+2x+2x (3.5.3)

i=2 i=1 1=1 i=2 “j+1

[\:],r

The right-hand sides of (3.5.2) and (3.5.3) are not less than the sum of the smallest k-1
elements of A;. Under the inductive assumption, there exists therefore an orthogonal
matrix Q; of order m such that the diagonal elements of Q,AQ, are precisely dy, . . . dppy-

We now set

I O

=l o q

Thus P = P, P,P5 is the required orthogonal matrix (see [23]).
3.6 A note on the Hadamard Product of Matrices.

The smallest eigenvalue of the Hadamard Product A x B of two positive definite
Hermitian matrices is bounded from below by the smallest eigenvalue of ABT.

The Hadamard (or Schur) product of two matrices A =(ay,), B =(by,)
of the same dimensions is the matrix A%B = (a;, b,,). If C=(c,,) is a square complex
matrix, g(C) the spectral norm (the matrix norm generated by the Euclidean vector norm),
i.c. VA, where A is the maximum eigenvalue of CC* or C*C; N(C) the Frobenius norm of

Cie.

N(C) _( z Ic; l\l‘-) = (rCC*)12

If C has all real eigenvalues, m(C) will mean the smallest eigenvalue of C. The set
of all complex nxn matrices will be denoted by M.

Theorem 3.6.1 [35]: IfAe M ,Be M, are both positive definite Hermitian, then

n’
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m(A*B) > m(ABT);
equality is attained iff ABT is a multiple of L.
Proof : We shall need two well-known results of Householder [54] and Schur [98].
formulated as following Lemmas.
Lemma 3.6.1 : For any matrices A€ M, Be M,
N(AB) < g(A) N(B)
Corollary 3.6.1 : For any invertible A€ M andB€ M,,
N(AB) 2 [g(A™D)]"! N(B).
It is easily seen that if B is nonnegative, then equality is atained in cach of these
inequalities iff A is a multiple of unitary matrix.
Lemma 3.6.2 : For any diagonal X € M_ and any invertible S € M,
N(S7IXS) 2 N(X).
To return to the proof, let x = (xy, .., x)T, X = diag{x;}.

Then, for A, B positive definite,

n
m(A*B) = min{ Z X DXy 5 ""‘=l}

ik=1

=min { tr(AX*BTX); N(X)=1)}

=min { N3(BT)2XA2}; N(X) = 1)

=min { N3(BT)!12 A2 A-12ZXAM2), N(X) =1}

2min { [g([(BT)!2AI2] 1) 2 N2 (A2XAIR); N(X)=1)
2 (g (BT)2A121 1|2 = m(ABT),

Since



g([(BT)l/Z A]/?.]-l) = m{(BT)Uz A2 pA1/2 (BT)I/Z}]-IIZ
= [m(ABT)|" V2.
Let equality be attained. Then (BT)//2 A2 is a multiple of a unitary matrix, i.e. ABT isa
multiple of identity matrix, and

m{Ax(AT) > 1,

since A*(AT) - I is positive semidefinite singular (Fiedler [33]).
3.7 Perturbation theorems on matrix eigenvalues.

The perturbation theorems on matrix eigenvalues which are concerned with
localization of eigenvalues, i.e,, to produce region in the complex plane in which
eigenvalues of a given matrix lie.

The vector and matrix norms are taken as usual g-norm ( or Zq-norm ), 1 (<o,
Foreachn=1.2,..... , let E" denote a real or complex vector space of column vectors of
dimension n, x = (X{,X,, . . ,xn)T. The q-norm on E" is defined as follows:

x=(x],....xp)7 € E"=

Ixlly=(Ix [+, +1x,10)0, 1<q<eo

(3.7.1)

xll =max Ix;l, q=co
Let B be any nxp real or complex matrix. Let lIBllq,q. denote the norm of B as a linear
transformation from EP to E", where E" is given the q-norm and EP is given the ¢’-norm
ie.

IIB Ilq.q' =max { IIBy!Iq/ Ilyllqv :y#0,ye EP} 3.7.2)
B Ilq'q- will be denoted by simply 1| B lIq if ¢ = ¢'. From the definition of the matrix norm

II-IIq‘q-, we have
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IIByIIq < IIBIIq‘q- Jiylly,  ye EP (3.7.3)
We now consider some examples.

Example 1[101, p.179] : Let B be any nxp matrix. Then

n
IBIl; = foax, bl , matrix column-sum nor;
i=
n
IIBIl, = {1(1.;1()( E Ibijl , Mmatrix row-sum nomy,
s15n
=1

IIBII“,,] =1$isl}11'3{(5jsp|bijl , infinity norm.

Example 2[89, p.52] : By diag{dy, .. .d,} we denote the diagonal matrix with diagonal
elements dy, .. ..d,,. Then

lidiag{dy, . . .dp}llg,q = max idl , 1sg<qse (3.7.4)

In particular Il I IIq q =1, 1<q'sSq<ee. Inequality (3.7.4) is generally false if '> . For
example Il I Il1 =n, where I is the n-th order identity matrix.
Fundamental Inequality : Let A, X and B be nxn, nxp and pxp matrices, respectively,

where p < n. Let B be an eigenvalue of B but not of A. Then for 1 € (|, 'S oo,

min (Xylly/ llylly ) < WA - B! (AX - XB)l, (3.7.5)

Proof: Let Bv = Bv, v # 0. Since P is not an eigenvalue of A, (A - BI)~! exists and we
compute

X Vil = IA ~ 1A -BI) Xvll,

]

(A - BI)"T (AX - XB) vily
< A = BDT (AX = XB)l - VIl by (3.7.3).

From this (3.7.5) follows.
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3.8 Simple estimates for singular values of a matrix.

For eigenvalues of a square matrix A = (a;;) there is widely used Gerschgorin
theorem (Stewart [101}).
Theorem 3.8.1 : LetA = (aij) e CXD Then each eigenvalue of A lies in one of the disks

in the complex plane

={}\.: |)\.—aii| < ri = Z laijl} , i=1,..,n (38.1)

j=1, j#i

Furthermore, if k disks continue a connected region but are disconnected from the
other n-k disks, then exactly k eigenvalues lie in the region.

For singular values [88, p.446] of a rectangular matrix A, we can apply
Gerschgorin Theorem to A*A to get estimates. However, there are two disadvantages : (I)
it is little complicated to use the elements of A*A; (II) the smallest singular value will be
very badly conditioned in this process [44]. In many cases, we cannot use this process to
give a nonzero lower bound for the smallest singular value.

The estimation Theorem 3.8.2 uses only the elements of A itself. For a square
matrix A = (“ij)' this Theorem 3.8.2 simply uses n real intervals

((,. ) , B
B.:=m {l[ldiil “%L gl + bij , i=1,...n (3.8.2)

to replace the n disks in Theorem 3.8.1, where

-m.tx( 2 o z 4 I) i=1,...n (3.8.3)
N

a for a real number a, we denote  a_ : = max(0,a)
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this theorem gives a sharper bound for the smallest singular values of A than the
Gerschgorin Theorem applied to A*A.
Suppose A = (a)) € CMXDyrite

n m

.= = , N 2 0 o= |
I Z Iaijl » G Z Idjil yoS m.lx[\ri, “i; at=lhl (3.8.4)
j=1 3=1
j#i J#i

fori=1,2, .. ,min(m,n). For m # n, define

( 3

m I

n+1asxi <m Z I‘lijI form>n,
\J=!

-

(_m
max a.
Lm+ls isn 2"‘]1' form<n.
\J=1

We consider the theorem for m 2 n. For m < n, the result is similar.

Theorem 3.8.2 : With the above notation, each singular value of A lies in one of the real

intervals
B, =1 (g - sy ajtsil, i=1,...,n
B+ = [0s8] (3.8.5)

Ifm=norifm>nanda;2s;+s,i=1,..,nthen By, is not needed in the above
statemeat. Furthermore, every component interval of the union of B, i = 1,2, . . ,n+i(n
for m = n), contains exactly k singular values if it contains k intervals By, .. By,
Proof : See Qi {96].
3.9 Perron-Frobenius eigenvector for nonnegative integral
matrices whose largest eigenvalue is integral.
If A is an integral nonnegative irreducible k x k matrix whose largest nonnegative

eigenvalue is an integer n, then the right eigenspace for n is spanned by a positive vector
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with integer components.
Lemma 3.9.1 : If A is a k x k nonnegative real matrix with largest nonnegative eigenvalue
Ay, then
k .k

ldet\l - Al <A™~ A, (A <A)
Proof : The proof of lemma proceeds by induction on k. For k = 1 is clear. Since A is
nonnegative, the (k-1) x (k-1) matrix A(ili) obtained by deleting the ith row and ith column
from A has largest nonnegative eigenvalue A, SA o

k-1 k-1

ladj(A -A); = | det(M - AGili) 1<A" -2¥! <2 (A <2

i
By the definition of det, we have

k
d S o
Lt AI-A)= ) adj I -A),.

i=1

k
. |dedet A=A <D kdAI- Ay ISk (<A

i=1

Hence

A
datht-A)1s [ =t -ag @y <.
A

0

In extreme case of equality. If A = 0, then A is nilpotent and the characteristic

k .k .k :
polynomial of A is A", so det(Al -A)=A =14 —A, . Otherwise, we have

Lemma 3.9.2 : If A is k x k nonnegative real matrix with largest nonnegative eigenvalue

}‘o > 0, and there isa A > ?\0 with

detM - A) = A" -1,

then A=AD'PD,
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where D is a diagonal, nonnegative matrix,and P is a cyclic permutation matrix. Moreover,
A can be expressed uniquely, up to a scalar multiples of D.
Proof : See Ashley [5].
3.10 The distance between two permanental roots of a matrix.

The permanent spread of a complex square matrix A is defined to be the greatest
distance between two roots of the equation  per(zl — A) = 0.

Let A be a complex matrix, , n 2 2, and let A, A5, ..., A, be its characteristic
roots. By @y, . . . ,@, we denote the roots of equation

per(zl -A) =0, (3.10.1H)
where per is the permanent function, z a complex variable , and I the identity matrix. The

numbers @y, . . . ,®,, will be referred to as the permanental roots of’ A.

The symbols
sy(A)=max | A, -4 (3.10.2)
i,) ! J
and Sp(A)=“}3j"|“’i—“’j| (3.10.3)

are the determinental spread of A and the permanental spread of A respectively. And the
numbers Sd,R(A)’ Sd,I(A) by replacing A; in (3.10.2) with Re A;, Im A, respectively, and
numbers spR(A), sp’I(A) by replacing w; in (3.10.3) with Re o, Im w,, respectively.

Two nxn matrices A and B will be called PD-similar if there exists an nsn
permutation matrix P and a nonsingular nxn diagonal matrix such that

B=D"IP"lAPD (3.10.4)
or

B =D-1p-1ATPD (3.10.5)

The transformations of A given by (3.10.4) and (3.1€).5) are special cases of those lincar
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mappings which preserve the permanent of matrix (78] ,{20]).
Lemma 3.10.1: If A and B are are PD-similar matrices, then
per(zl - A) = per(zl - A) (3.10.6)

Lemma 3.10.2 : If A is a semitriangular square matrix, then

55(A) = s4(A) (3.10.7)
spR(A) =S4 R(A) (3.10.8)
5.1 (A) =541 (&) (3.10.9)

Proposition 3.10.1 : If A is an n by n matrix, , n 2 2 then

54.1(A) < {IAI2 - Re[tr(A2)] - (2/n)[Im(wrA) 2} V2 (3.10.10)
Equality occurs in (3.10.13) if and only if A is normal and the imaginary parts of the
characteristic roots of A are segment bisecting points.
Proposition 3.102 : If A = (aij) is a normal square matrix then

Sa1A) 2 max la, —a (3.10.11)

Proof : See Krauter {68].
3.11 Bounds for the real eigenvalues of a cascade matrix.
Bounds are derived for the real eigenvalues of a special matrix. Consider the real

nxn matrix

a -b
0 a -b 0
< 0 a-b
A, =
0 < 0 a -b
0 ¢ 0 a
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where b, ¢ > 0. Such matrices arise in the design of two-up one down cascades for isotope

separation. Geldenhuys and Sippel [40] derived bounds independent of n for the real

eigenvalues of A .

Write A, =al- B, and letA (A) =det (B, - Al).

then A ) = A, A) + b2cA (A,  n23, (3.11.1)
AM) =1, AR =-A, D,A)=2A% (3.11.2)

considering only real values of A.

By using a generating function for A (1)

(/3] (y _
An(l)=z(n 2k)
k=0

2 .k n-3k
b c) (-A , (3.11.3)
- )( c) (M)

where [n/3] denotes the integral part of n/3.

For n 2 3, B, is an irreducible nonnegative matrix. Then it follows from the
Perron-Frobenius Theorem that B, has a unique maximum real eigenvalue y,. From Verga
[103]

Yn < Yo forn=2,3,. .. (3.11.4)

The difference equation (3.11.1) has the characteristic equation

fr) =P +Ar2-bk =0

The function values at the turning points of f(r) are f(0) = -b%c and 1(-2A/3) = 40}/ (27-

bc). The only real values of A that will make the second of these function values zero is

(2 \1/3
l=1:=3|Lc_|

k4

This implies that f(-2A/3) > 0 when A > 1.
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Theorem 3.11.1: All real eigenvalues of B, are less than t.
Proof : 1is not an eigenvalue of B, since if A = 1, we find from the solution of (3.11.1)
with initial conditions (3.11.2) that

A(T) = (1/9) [1 + (-2)" (8+6n)] (b%c/4)™3
which can not be zero.
For A > 1, if x,y and z are the three distinct zeros of f(r),we find from the initial conditions
(3.11.2) that the constants ¢, ¢, ¢3 appearing in the solution A (A) =¢,;x™ + c,y" + c5z"

have the values

¢ = QHy)Atz
T (x-y)(x-2)
o o (00+)
2 (y-x)(y-2)

_ (Ax)(A+y)

3T ey
without loss of generality we assume x <y <0 < z. Note that f(-A)= - b, so that -A < x.
Then

(A + x)(A +y)(x-y)z" < 0,
and for n even and positive

A+Y)A+2)y-2x"+ A+ x)A +2)(z-x)y" <0
These two inequalities show that, for n an even, positive integer, it is impossible for A to
be an eigenvalue of By, that is, to satisfy

A+ YA +2)(y - X" + A + X)X + 2)(z - x)y" + (A + X)X + y)(x - y)z" = 0.
Thus, the only real eigenvalue of Bjis 0 and 0 < T. We have Yy, <71 forn=1,2,..., and

from (3.11.4) we know thaty, <7, ., forn=273,...
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3.12 The monotonicity theorem, Cauchy's Interlace Theorein, and

the Courant-Fischer Theorem.,
The simple dimensional identity

dim(§,MS,) = dimS; +dimS, - dim(S+S,) (3.12.1H)
where S; and S, are subspaces of a finite dimensional vector space. The following basic
facts used in the subsequent proofs (a) the eigenvalues of a Hermitian matrix are real and
the corresponding eigenvector maybe taken to be orthonormal (b) letting o, <. . ..<o,
denote a subset of eigenvalues of a Hermitian matrix A and letting u,. . . ,u, denote
orthonormal set of corresponding eigenvectors , we have o) < xHAx < o, forany xin the
span of u,,.. . ,u, where xHx = 1 (the symbol "H" denotes conjugate transpose).
The Monotonicity Theorem [55]: Let A and B be Hermitian and let A + B = C. Let the
eigenvalues of A, Band Cbe o, <.. <0, B;<..<B and ¥, S.. .. S, respectively.
Then

(1) o +Bi.j+1 <Y, izj)

(2) v, < o, + Bi.jm (i<))

(3) o, +B; sy, <o B,
Proof : Let Au,=a,u;, Bv,=B,v;, Cw;=m1w

H, - =
U Uj—Vi j-\Vi

consider first the casei 2 j and let

H H

wj= aij' i,j=1,2,..,n.
S;=span{u,..,u,}, dim$§; = n-j+1;

82 = span[vi_j+1, c 2Vl dimS, = n-i+j;
S3 = span{wy,...,w;}, dimS; =i
Then (3.12.1) gives
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dim(S,mSzr\S3) 2dim§; + dim$, + dimS3 -2n=1
This assures the existence of anx € SlmSZr\S3 such that xHx = 1. For this x we have

o + Bi-j+l < xHAx + xHBx = xHCx < Yy
proving (1). Application of (1) to (-A) + (-B) = C proves (2) . Setting i = jin (1) and (2)
gives (3).

Cauchy Interlace Theorem [55): Let

B C
A=y
C D

be nxn Hermutian matrix, where B has size mxm. Let eigenvalues of A and B be ;<. ..

<o, and B<. .. <P, respectively. Then

akSBkS(XkH]_m k=1,..,ln.
Proof : Let Au; = oju;, Ui““j =3, ij=1,..n,
Bv,=Bvi, vHv.=3 ij=1 m
i [N § ) 1)’ v.]" s o oo olily
[v]
wi=| | i=1,...m
L0)
Let 1€k <mand let
S =spanf{uy,..,u,}, dimS; = n-k+1
Sy =span{w,..,w}, dimS, =k.

Again by (3.12.1), the existeace of an x € §;MS, such that xHx =1 is assured and we
have

oy S xMAx <P,
Application of this inequality to -A gives B, S oy,

The Courant-Fischer Theorem (Minimax Characterization) : Let A be Hermitian
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and let o< .. <o be eigenvalues of A. Then fork =1,.. n.

H

. k
ak=nug1max{vHAv:ve S ,viiv=1)
S
. H k-1 H
=m&i‘cn11n{v Av:v.lS ,viv=1},

S

where Sk denotes an arbitrary k-dimen«ional subspace of complex n-vectors.

Proof : Let Au;=oqu;,  uHu =8,

i = Oijs =1, ...

Let

S;= span{uk, coug) and Sy = Sk (any k-dimensional subspace)
Then (3.12.1) guarantees the existence of an x € SlﬁSk, xHx =1, giving xHAX > oy -
on the other hand ,for any u € span{uy, .. ,u.}, a k-dimensional subspace, we have ul'Au
< oy and ukHAuk = 0y proving the first equality of the theorem.
To prove the second equality, choose

S, =spanfu;,. ,u.}, Sy = (Sk'l)l,
and proceed with the same argument as above.
3.13 Matrices with some extremal properties.

Let A be an nxn complex matrix. The eigenvalues of Hermetian matrices (A+A#)/2
and (A-A*)/2 are called the real singular values and imaginary singular values of A
respectively.

We adopt the following notation:

Chxn : algebra of all nxn complex matrices.

U,(C) : group of all nxn unitary matrices.

cn : linear space of complex row vector(xy, ..., X,).
Sy : symmetric group of degree n.
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Al : transpose of A.

A* : conjugate transpose of A.
trA : trace of A.
AjDA, : direct sum of the square matrices A, and A,.

diag(a, . . ) : diagonal matrices with diagonal entries ., . . 0.

1, .
We always assume that a matrix A € C, - has singular values 0,2 . .. 2 o; real singular
values A2 A2 . .. 2A,; imaginary singular values u; 2. .. 2u; eigenvalues o, . . ,0,

with lol 2. . .2 lagl.
We now discuss in detail the singular value and eigenvalues of matrices.

Let A € Cpxn. Weyl [42, (p. 35-36)] has shown that

k
I_:Iaj < H“; k=1,...n-1), (3.13.1)
i j=1
n n
j=1 J=1

all the inequalities (3.13.1) become equalities simultaneously if and only if A is normal.

Horn [52] proved the converse theorem, namely if x;2...2x,20andy; 2...2y,20
satisfy
n

k k
Hyjsl—[xj k=1,..,n-1) and ﬁy}.:HxJ.,
j=1 j=t

=1
then there exists A€ €, such that loyjl = yjand aj; = x; (=1,...n). Now consider the

condition on the matrix A for which one of the inequalities in (3.13.1) becomes equality.
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Lemma 3.13.1:Let A= (aij) g Chxn- IFA = (“ij)lsi,]sk has singular values a,
then A = A) @ Ay, where Ay = (0 < j<n.
Proof : Let A satisfy the hypothesis of the lemma. Then
Y= ol s PITED I
1sjskJ 1< i.j sk ! I<i<n ’ ISjSkJ

Is)<k

( the last inequality holds because the sum of the first k diagonal elements of A*A is not
greater than the sum of its k largest eigenvalues [80, p.218] ).

Hence 05 = 0 for those (i, j) pairs with 1Sj<k <i<n or I€i <k <j<n It follows that
A =A®BA,.

k h
Theorem 3.13.1 : Let A e Cmm and 1<k <n. Then |H otJ | = l—[ a it
)=1 )-1

(i) A is of rank less thank,or

(ii) A is unitarily similarto A; @ A,,where A| € Ckxk has singular values aj, . .. ..

k k
Proof: If IH o, | = H a = (O,then the rank of A is less than k. Suppose
j=1

=1

J

k k
II I o, | = I I a. > (. By the Schur Triangularization Lemma (see [71]), A is unitarily
i=1 j=1

similarto A' = (aij) in the lower triangular form with diagonal entrics oy, . . . Leta')2
K

. .. 2a', be singular values of (aij)ISi,jSk' We have a'j <y G=1,...k). As l_l a‘j =
11

J

k k
ITTe =12 >0t follows that a=a; G=1, .. k). By Lemma 3.13.1, A" = A, @
j=1 ji

A, as required.
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k

If the rank of A is less than k, than |H o = H a = 0. Suppose A is unitarily similar
)=l i=

o A} @ Ap,where Ay € Cy,y has singular values aj, .. ,a,. Let ail, Ce ,aik (Isi<

.<i; < n) be the eigenvalues of A|.Then

k k k

||a=ldetAI=|||a ’SI I Ia |

J 1 1 |
=1 j=1

)=l

n n
Corollary 3.13.1 : Let A € C,,, be nonnegative and 1<k <n.Then || I o, | = I I &
1=k+1 J=k+1

ift condition (ii) of Theorem 3.13.1 holds.

n n
Proof : By the fact that || I o | = l I a iff A is nonsingular matrix .
1=k+1 1=k+1

Apart from (3.13.1) and (3.13.2) there is another set of inequalities |80, p.232]

related to the eigenvalues and singular values of a matrix A in Cp,,  namely,

2 i k=1,...0. (3.13.3)
j=1

In the case that an equality holds,we have

k
Theorem 3.13.2 : Let A € C,, and 1<k <n. Then Zlal < )4 ifflogl = =1,

j=1 j=1
. k) and A is unitarily similar to diag(o.;, . . ,0) @ B.

Proof : Suppose A is unitarily similarto A' = (O‘ij) in the lower triangular form with
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A A
Theorem 3.13.2:LetAe C and 1€k <n. Then Il £ a iftlol=a (=1,
nxn ) ) | JU
i=1 3=l

.,k) and A is unitarily similar to diag(a.,, . . ,0,) @ B.

Proof : Suppose A is unitarily similar to A’ = (o;; ) in the lower triangular form with

A A
diagonal entries a.;, . . ,&,. By Gogberg and Kerin {42, p.39-41}, if Z |(le < Z &

then lajl =3 (g=1,...k)

Moreover, since

gaf JZlon D o Z

1€i<n
1< )<k

we have ;= 0 for all (i,j) pairs with and 1 € j <k and j <i. Hence A'= diag(a, .. . .o)

@ B.
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CHAPTER 4

Applications of Matrix Inequalities to
Statistics

The theory of the linear model and multivariate analysis include important areas in
statistics, such as design of experiments, correlation, analysis of variance, regression, least
squares, components of variance-areas that comprise a large segment of the matrix theory
and application of statistics. Matrices originated in mathematics more than a century ago,
but their broad adaptation in science is relatively recent, prompted by the widespread
acceptance of statistical analysis of data, and of computers to do the analysis; both statistics
and computing rely heavily on matrix algebra.

4.1 Generalized Hadamard's inequalities and their applications to

Statistics.
Let A= (uij) be p.d. (positive definite real symmetric) NxN matrix. Then the most

famous inequality is due to Hadamard (see [75)):
N
Al < I-][aii , 4.1.1)
1=

where the equality holds iff a; = 0 Gi=j).

Let us partition A as follows



(All A12 Alk\

Ay Ay o Ay

A= . . . » where Aj (1 <i<K)is the square matrix.

\Akl A - Akk)

Then the Fischer's inequality is

k
1Al SHIAiiI : (4.1.2)

i=1

where the equality holds iff A; =0 (i # j).
A number of inequalities in multivariate statistical analysis can be derived by the
inequality (4.1.2).
i1 %p
Example 1: Let ¥ = s ( pxp, p-d. ) be the covarience matrix of a random
21 2

vector X'= (X, Xp, .. .,X, ). Then the square of multiple correlation coefficient

between X; and (X,, ... ,X,)) is given by

11 12
o? _ 1% (4.1.3)
L@ ....p) o”|222I

2
Thus the inequality (4.1.2) shows that 0 < pi @..m< 1and Py (2 m=0ifto,=0.
Example 2: Let p-dimensional random vector X be distributed according to N (M, 2). We

partition Y, as
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EI] z“12""}:“(\
221 Z22 e zlk

2= 2k |, where T, (1 <i<k) is the square matrix of

kz."kl i:k2 Tt 2:‘kk)

order p xp;.

Let S be the matrix of the sum of cross-products from p—variate sample (X, X,, . .
n
S X,), S = 2 ( Xy — X ) (x4 — X )', which is partioned correspondingly as S = ( SU. )
a=1
where S, (1 <i<Kk) is the square matrix of order p,.
Then the likelihood ratio statistic A for testing the hypothesis H: Eij =0 (i#j)(see

Anderson [3], Ch.9) given the multivariate normal population, becomes

2/n IS

A=
Hsii

i=1

(4.1.4)

The inequality (4.1.2) implies that 0 <A < 1, and it is interesting to note A = 1 iff
S'J = O, i #_].
There is a refinement of Fischer's inequality (4.1.2) due to Faguet (Smirnov [100],

p.70):

All Al2 A22 A23
Ay Ayl (A, A
a2 2 2 P (4.1.5)
1A,
where the equality holds iff A, — A, Ay A, = 0.

For square matrices A and D, we have
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A B| JIAIID- CA'BI, whenAis nonsingular
- . 4.1.6

C D IDIIA-BD'C I, when D is nonsingular ( )

An A _
LetA= be p.d., where A, and A,, are square matrices. Then it follows

Ay Ay
that A1, A}, and A,,  are p.d. and
-1
-1
An Ap A2 AuzAlezz )
1
An Ay k A22 21 112' A +A 282 A sz"‘zz)
4.1.7)

-1
(A +ALALA, A AL A A Amw

k_A22.1 A21 Au ’ Azzx

-1
where Aij.k = Aij - Aik Akk Akj.

Lemma 4.1.1: Let A and B are p. d. matrices of order N.

(i) If x'Ax 2 x'Bx forany x then A2 B .

(i)  In addition to the conditionin (i), if x{; A x, > x|, Bx, for some x, then 1A >
IBI

Remark : This lemma is still valid for Hermite positive definite matrices because
J’{(f,’)lx'Axs 13 dudv = Yﬁ ,where x=u ++4-1 v (uand v are real N-vectors ) and

[A

V=
W T(N+1)

Proof : It is easily seen that the condition of (i) and (ii) yield the following (i)’ and (i)',
respectively.
i) ({xIxXAx<1)cC {xIxBx<1}.
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(i) (xIx'Ax <1} c {x!x'Bx <1} andthe difference set
(xI1x'Bx € 1}- {xIx"Ax < 1]} has positive Lebesgue measure. Considering the

definite integrals
Vi J’ g VN
J-{xlx'Axsl}dx_ IAll/z’ {xixBxs1} X—IB'I/Z’

N/2 ] , _
where V, = —%— js the volume of N-dimensional unit hypersphere, we have the

N
N +1
(2 )
conclusions of the theorem.
Proof of the Fischer's Inequality (2) : For k = 2, we can obtain (4.1.2) for any k

=1 .
inductively. The inequality (4.1.2) is equivalentto | Ay = A, A AL | S TA, | since

All A12

-1
A | = VAL A A AL AL and 1A 1> 0.

A

21 22

Considering Lemma (i), (ii) and positive definiteness of A_ll1 and A,, — A, A—lll Ay
we have (4.1.2).

Proof of Faguet's Inequality (4.1.5) is given in [87].

4.2 Inefficiency and correlation.

The inequality for the generalized efticiency of least squares estimates relative to
best linear unbiased estimator (Bloomfield & Watson [19]; Knott [67]) has found
applications in other areas. A con:equence was used by Venables [104] in testing for
sphericity of a Gaussian distribution, and by Khatri [65] in proving extremal results for
canonical correlations.

The common feature of all these results is the distinguished position occupied by
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certain subspaces. Suppose that U is an n-dimensional random vector with dispersion
matrix I, and the [ has eigenvalues and eigenvectors A, 2... 2% and vy,.. .. ¥,
respectively. Let M be the subspace spanned by ¥+¥n. Ya+*Yn1r - - - » YaitYa.ke1» fOF sSOmME
k< %n There is an associated subspace M' spanned by ¥,-Y,. Ya-Yn.1se-.. Note that
because of the arbitrariness of signs of eigenvectors, there are in fact 2 such pairs (M,
MY).

These subspaces appear in the work of Bloomfie'd & Watson | 19] and Knott [67].
There the aim was to find, in the linear model y = X[ +u, regression subspaces for which
the performance of the least squares estimators would be the worst when compared with
best linear unbiased estimators. The worst situations are when the columns of X span one
such subspace M.

Khatri [65] also considered these subspaces, in deriving extermal results for certain
functions of canonical correlations. The first reference to such problem is Venables [ 104].

We show that the occurrence of the same subspaces in the two different contexts of
regression and of correlation is no coincidence. We show first that the relative efficiency of
least squares is a function of the correlation between the fitted values and the residuals.

We consider the linear model y = XB+u. Weobserve y, an nx1 vector, and X, an
nxk matrix. The parameter vector P, to be estimated, is kx1 and u is a nx1 error vector
with E(u) = 0 and E(uuT) =I". We assume that rank (X) = k and rank (I') = n. We also
assume that n 2 2k.

The least squares estimator E and the best linear unbiased estimator [3 are given by

B = XTX)! XTy and ﬁ =(XTr-1Xy-! XTr-ly, respectively. Their variances are
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var B =xX"x)"' XX X'%)", var®)=T'x)".

There is no loss of generality in supposing that XTX = I,. In this framework, it is well
known that [—5 can equal ﬁ almost surely, even when I' is not a multiple of the identity
matrix when n—eo. The equulity holds whenever the columns of X span the same
subspace as the columns of I'X (Watson [106] & [107}), or equivalently, if and only if the
fitted values ¥ = XP and the residuals y — ¥ are uncorrelated.

To see this consider N, an nx(n-k) matrix such that (X: N)T(X: N) = I.. Usinga
relation for the inverses of partitioned matrices, given, for example, by ([97], p. 67), we
find that

X% =XTX - X'TN(N'TN)' N'TX.

The nonsingularity of NTT'N implies that (XT[1X)! and XTT'X are equal, or equivalently,
that B and ﬁ are equal, almost surely, if and only if XTI'X is null. Other equivalent
conditions are given by Haberman [48].

The only coordinate-free measures of efficiency are functions of the eigenvalues of
(XTT!X)! with respect to XTI'’X. However, these are the eigenvalues of
1 1

L-XTx) 2 X'TN NN NTX (XTTx) 2,

2 . . . .
and are thus of the form (1 — P,), where p, is the ith canonical correlation between the least
squares fitted values XXTy and the residuals NNTy,
Thus all coordinate-free measures of the efficiency of least squares estimates,

relative to the best linear unbiased estimates, are functions only of the canonical correlations

between the least squares fitted values and residuals,
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Let Z = (z,,...,z,) be a set of random variables such that E(Z) = 0 and E(ZZT) = 1.
Let S and T be two nxk matrices, both with rank k, such that 7T = 0, Clearly, we must
havek S%n. Let P% 2...2 Pi be the canonical correlation between $'Z and T'Z. Then
we have the following.
Lemma 4.2.1 : The product

k

[Ta-ed

i=1
is a minimum when the columns of S span M and the columns of T spun M'.

Theorem 4.2.1 : If ® is a monotone increasing convex function, then

k
> of-og (1-p)

i=1
is maximized when the subspace spanned by the columns of S is M and the subspace
spanned by the columns of T is M'. Clearly, the roles of M and M' may be reversed, and
in fact all of the possible pairs (M, M") give the same maximized value.

Proof: We start by showing that the products
i
[Ta-e» G=1...k

i=1

are all minimal when

k
[Ta-

i=1
is minimal. However, this follows from the following observations:

(i) that the lower bound for such products is
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1o
H 1 n~1+l)2m

i=1 (ll + ;"n-i+l

since if it were not we could produce a counterexample to the lemma, with k replaced by j;
and
(i1) that the product attains this bound for the subspace specified in this theorem.

We have effectively shown that the sums

;
D log (1 -pd Gi=1,...%

i=
are minimal. and hence our theorem reduces to the Theorem A.2 of Muarshall & Otkin
([801, p. 116).

4.3 A note on the matrix ordering of special C-matrices.

In statistics, the consideration of inequalities of the form A -t < A, — 1", where
= (t;». - - » ) is a positive stochastic vector in R"(t; > 0 and Zti = 1), and r is a positive
stochastic vector in R™ and A, and A, are diagonal matrices with t and r on their diagonals.
The ordering < denotes the Loewner matrix ordering (Marshall & Olkin [ 80], Ch. 16L).

The matrix A, —tt'" appears as a special case of a C-matrix (Baksalary and
Pukelsheim [7]) in experimental design theory, i.e., as the information matrix for the
treatment contrasts of an experimental design, with treatment replication vector t |93,
Theorem 4(1)] and [28, Lemma 2]. Also 4, —tt" is the dispersion matrix of a multinomial
distribution with cell probability vector t.

Theorem 4.3.1 : Suppose t and r are positive stochastic vectors of dimension n

such that t #r. Then
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A -t <A —1r 4.3.1)

if and only if there exists some subscript i such that

L>, (43.2)
§>r, forall j=#1i (4.3.3)
r.t. r.t.
i
e ) (4.4.4)
i i j#i i

Theorem 4.3.2 : Suppose t is a positive stochastic vector of dimension n. Then there

exists some positive stochastic vector r # t such that the inequality (4.3.1) holds if and only

if there exists some subscript i such that t, > -12—

Lemma 4.3.1: Suppose D is a positive definite nxn matrix, b is a nonzero vector in R?,

and o is a positive scalar. Then

D > abb o 3,1;2 b D' b

Procf : For the first part, premultiplying with b'D"! and post multiplying with its

transpose yields b D' b 2 o (' D" b)%ie.-L 2 b > b' D" b. Forthe converse part,

1
o
the Cauchy-Schwarz inequality leads to

2 <a@®D'b)(x'Dx)

a'x)’=a®D?D
for every vector x in R", Hence % >bD'b implies D = o bb'.
Proof of Theorem 4.3.1: Sincet #rand X t, =1 =X, there must exist some
subscript i such that t; > r,. Without loss of generality we may take i = 1, and thus assume

t, >r,. Define the matrix K, = I, -1, 1 [ n, where 1 is the n-dimensional vector with

all elements unity.




As all components of t are assumed to be positive, we have
. -1
A -u)YK A K, = K.
’1 . . . ' ]
Hence K, A, K, is seen to be the Moore-Penrose inverse of A, - t', and rank (A ~ 1) =
n — 1. It now follows from Theorem 4.3.1 in {82] that the inequality (4.3.1) is equivalent
to the converse ordering
-1 -1
K.A, K, 2 K A K

among the Moore-Penrose inverse. Premultiplying with (=1 1 ) and postmuliiplying

n-1
with its transpose leads to another equivalent form of (4.3.1)

D2ol 1, (4.3.5)

1 . e
-7 2 2, on its diagonal,

Where D is the (n-1)x(n-1) diagonal matrix with for o =
J

1
t
j
1
h

and 0, = . By assumption al > 0, and the forces D to be positive definite. Thus

e

(4.3.5) entails (4.3.2); and the Lemma implies.

a2 2w

>3

i.e. (4.3.4). Conversely (4.3.2), (4.3.3), (4.3.4) and the Lemma establish (4.3.5).

Proof of Theorem 4.3.2 : The inequalities t; — ti2 SrT- x% obtained from (4.3.1), and
t. >, given in (4.3.2), can hold simultaneously only if t, > 1/2and r, € [1 -5 1). "This
establishes the direct part. For converse part, choose somer; € [1-t;t), and for j # i

define

l—ri ti—ri
r. = t. =t + —21 .
J 1-t 1 J l—tiJ

Thenr = (r,..,,1,)" is a positive stochastic vector satisfying (4.3.2) and (4.3.3). Because

of
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Z I 1-1, 1 < it
r. -t t.—-r.( - < t—r
; j i i

jri P
it also fulfils (4.3.4). The inequality (4.3.1) now follows from Theorem 4.3.1.
4.4 Schur- convexity for A-optimal designs.

Consider a linear regression model

y =XB+¢g,
where y is an mx1 vector of observations, X is an mxn matrix to be called the design
matrix, B is an nx1 vector of unknown parameters, and € is an mx1 vector of random
variables with mean the mx1 zero vector and known covariance matrix A. Assume that i
2 n and denote the eigenvalues of A is ascending order of magnitude by

Ay SAyS oS A, SeooShy

For a given design matrix X of rank n, an unbiased estimate of the parameter B based on
the observation y is the ordinary least squares estimate
(X' X)' Xy,
whose convariarice matrix is given by
(X X)' XA X (X X) (4.4.1)
One of the design problems is to choose X from a given experimental region such
that the trace of the matrix in (4.4.1) is minimal. This is a problem in the A-optimal
designs of regression experiments, and the experimental region under consideration is

taken to be the set H of all mxn real matrices of rank n whose ith column has a Euclidean

norm not exceeding ¢,,i=1, ... ,n, where the ¢, are given positive numbers.
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Chan [26] shown that for any matrix X in H the trace of the matrix in (4.4.1) has a
lower bound of

-1 2
[Z CIZ) [2 x:/zj ’ (4.4.2)

i=1 i=1
and that when A, >0 and the ¢, i = [, . . . ,n, are arranged in ascending order of
magnitude, a necessary and sufficient condition for the existence of an X in H to attain the
lower bound is that

1 1
(Z “iz) i ¢ 2 (Z 7‘:/2] i AL k=1 el (443)
i=1 i=1

i:l i=]

Lemma 1.4.1 : Suppose that 0 <A €A, <... <A and O<b, <b,<...<b are
each arranged in ascending order of magnitude. Then the condition

-1,172 -141/2 -1.172
b 26 A 22 by (4.4.4)

is equivalent to the condition that for any z,, ..., z_ such that

0<z;£2,5...<2

n,
k k
ZZiSZbi, k=1,....n—1, (4.4.5)
i=1 i=1
n n
zZ. = b.,
1 1

-
[t}
—
-
n
—

there is the inequality

n

Z Zin > ) bl
1 1 1 1

i=1 i=1

=]

N
z
‘
)
,
‘
<
>

The proof of the Lemma can be found in Chan [24].
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Theorem 4.4.1 : Suppose that the positive numbers ¢;, i = 1,. . . ,n, are arranged in

n
ascending order of magnitude. Then E c;2 li is the greatest lower bound for the trace

i=1

r{ (XX)PXAX (X X))
for any X in H, if and only if

2,2 g .12
GTA Z el ML,

i=1,...n-1. (4.4.6)
Proof : See Chan [24]).

4.5 Method for discovering Kantorovich type inequalities and a

probabilistic interpretation.

2
(o, + )
4o, 0

17'n

The Kantorovich inequality (z* A z) (z* Al z) < can be proved using

convexity and elementary geometry. The inequality

2
(o, +0p)

-1
- * <
(Z"Az)(Z"A 2) £ 40"10‘n

(4.5.1)

where z is a unit vector in €7, and A = A* is a nonsingular nxn Hermitian matrix with
eigenvalues 0 <@, <...<a, ,appeared in Kantorovich [62] and is now known as the
Kantorovich inequality though an equivalent inequality is given in Hardy, Littlewood, and
Polya [49].

Let A and B be commuting nxn hermitian matrices so we may write their spectral
forms as A = Z o P, B= 2 B, P. where P,..., P, (r<n) form an orthogonal
resolution of the identity in C™ and where we will also be able to assume with no loss of
generality that the o, are the distinct eigenvalues of A. Let z be a unit vector, which may be

written
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T

z=Pz+....+Pz=z+. . 4z, sothal =zjz +... . +2] =0 +.... + w,

where w; are non negative. Thena = z7Az= Z ow andb=z"Bz= Z B. . are
1 1 1 1
convex combinations of the eigenvalues of A and B. Thus the point (a, b) lies in the

convex closure of the r points (a;, B;), a polygon. The points of this polygon may be

written as (2 o; ; 2 B w,).

To find lower and upper bonus for a function f of z*Azand z*Bz for all unit vector
z. Draw the r points in the plane, their convex closure, and the curves f(a,b) = k for

various k. Since the point (a,b) must lie in or on the polygon, it is usually matter of

inspection to find the smallest and largest possible values of k, which are the bound

sought. Watson [108] remarked that the same idea applies to functions of more than two 1

quadratic forms with commuting kernels, but the geometry becomes harder. |
To get the Kantorovich inequality, take a nonsingularand B = AL If 0 <) <. <

o, the polygon is the convex closure of r points on the positive branch of the hyperbola ab

=1. Further take f(a,b)= ab =k, so f is constant on hyperbolas. The lower bound is clearly

unity, which is also a consequence of the Cauchy incqualities. The positive branch of the

hyperbola with the maximum k must have as a tangent the line joining (ul, (—]——) and

of
(a L) . - . i sVt
P o/ The points on this line have co-ordinates a = o, 0+ ¢, (1 - ), b = ¢ O

0y (1 - @) where @ = w, lies in {0,1}. Thus the maximum k may be found by

differentiating ab with respect to ®. One finds 0 = —;—, and the maximum is the right hand

. . . (a, +a,)
side of (4.5.1). This bound is attained when z= —]—i/—2—~ » where @ and a, are unit vectors
2
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in the invariant subspaces associated with P, and P, . Thus (4.5.1) is proved. Notice that
the right hand side of (4.5.1) is the maximum, over all nonnegative w,, , adding
to unity and overall pairs i and j, of (@, o, + ; aj) (o oc;‘ + 0 ajl) .
Now we have two extensions of (4.5.1).

If A is singular, set B = A- where A" = z OL;l P, , the summation being over the
nonzero eigenvalues of A, say o, . ..,0.. When f(a,b) = ab,

2
(o, +0o,)

< (z* * AT y) €
< (z¥Az)(2* A 2) <€ s,

(4.5.2)

The lower bound is zero, because z can be an eigenvector corresponding to a zero
eigenvalue.

Suppose now that the eigenvalues o, ... o, are negative and the remainder
positive. the points (o, OL;]), i=1,...,s-1, lies on the negative branch of ab = 1, and
the remainder on the positive branch. Their convex closure is always a quadrilateral, which
may or may not cover the origin. In either case one sees that the lower bound is zero.
Note that the Cauchy inequality argument does not apply here. To get the upper bound, we
must consider the two hyperbolas touching, respectively, the sides of the quadrilateral

defined by the join of (¢, 0511) and (&, ,, @' ) and the join of (o, &' and (0, Ot;l) :

2
From the previous paragraphs the two k's will b —(051'*(15.1) _(Ots_+_ 2 ,)2 H i
3 s paragraphs the two k's will be
p paragrap b0, 4o, ence in
this case
2 2
n el (@, +a ) (o + o)
0<z*Azz*A z < max 4a1as-1 400t
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4.6 Applications in information theory.
We prove an inequality conceming A and D;AD,, where A is a non-negative matrix
and D, and D, are diagonal matrices with positive diagonal entries.

n n
If x and y are nonnegative vectors of order n, and if z X, = Z Y;, then a well-

i=1 i=1

n n
X X
known inequality asserts that H X' 2 H y; with equality iff x =y.

i=1 i=1

Here we have taken 0° = 1 and Olog(Q) = 0. The following inequality is well known and has
applications in information theory.
Theorem 4.6.1 : If xe P", y e P", then
n x n x

[I<=11

i=1 i=1
with equality iff x = y.
To describe various situations where the inequality of Theorem 4.6.1 can be applied to

obtain inequalities concerning nonnegative matrices.

m n

Let A = (;) be a positive mxn matrix, and define amap £: P7 x p' o P P s

follows :

f(x9)') = (X, i),

where
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It is shown in [8] that f maps P"™ x P" onto itself. Also it is one-one.

The following inequality was proved by Atkinson, Watterson, and Moran [6]. For

any (x,y) € P" x P",

Z Z aU' Z Z u X Y- (4.6.2) |

i=1j=1 i=1j=

Lemma 4.6.1 : Let A be a nonnegative nxn matrix and let (x,y) € P" x P". Then

3
m. _n

$$ (S8 [S 5w

s=1 r=1 i=1 =1

Now we have a result which is stronger than Lemma 4.6.1.
Theorem 4.6.2 : Let A be a positive mxn matrix and let f be defined as in (4.6.1). Then

for any (x,y) € P" x P" and for any vectors A 20, 120,

iiaijkipj > ZZaijxiyj ﬁ(;&l n (%
| ) )

1=1 5=1 =1

Proof : We will assume that x, y, A, 1 are positive, and the general case will be follow by

a continuity argument. First note that the inequality of the theorem remains unchanged if
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each A, and each H; is multiplied by the same positive constant. So we assume without loss

of generality that
m n m 1
Z z aijliuj - Z Z Ay %Y,
i=1 j=1 i=1 =1

But now the result follows, after a trivial simplification, trom the following inequality,

which is true in view of Theorem 4.6.1:

1‘1 au X y: S H 2 “u X, y;
(aij X yj) 2 (a” i pj) .
i3] L j
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