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ABSTRACT

Maximum Likelihood Sequence Estimation of
Quadraturc Pulse-Overlapping Modulated Signals

Slimane Ben Slimane, Ph.D.
Concordia University, 1992

Constant-envelope Quadrature Pulsc Overlapping Modulated (QPOM) signals have
good spectral properties suitable to applications using nonlinear or saturated power
amplifiers. In this thesis we present a Maximum Likelihood Sequence Estimation
(MLSE) receiver structure for QPOM signals and analyze its performance in both Addi-

tive White Gaussian Noise (AWGN) and fading channels.

The quadrature pulse-overlapping modulator is first decomposed into a linear
cncoder followed by a memoryless modulator. The trellis diagram representing this
inherent non-redundant coding structure is then used to construct its MLSE receiver. The
upper bounds on the average bit error probability in both AWGN and Rayleigh fading
channels are derived. Computer simulations are also used to verify the analytical results.
Performance of the introduced scheme in fast fading, shadowed mobile satellite channels
is also studied. Results show that this scheme outperforms conventional QPSK tech-
niques in fading channels. While maintaining a low constellation density of 4PSK, its
performance is comparable to those of 4-state 8PSK Trellis Coded Modulation (TCM)

schemes.

The performance of QPOM signals over fading channels can be further improved
using some extra redundancy. Based on the new representation of the QPOM scheme, an

external convolutional code is combined with the QPOM memory and considered as one
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entity to be optimized. This optimization is achieved by maximizing the minimum length
of the shortest error event path through the trellis diagram of the equivalent code as well
as the product of the squared branch distances along that error event path. The obtained

structure is then applied to M -ary QPOM signals

The constant envelope, compact spectrum, superior performance, and low complex-
ity make the QPOM scheme 2 good choice for portable/mobile satellite communications

to achieve the requirements of low cost, small size, and high power and bandwidth

efficiencies.
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CHAPTER 1
INTRODUCTION

1.1. MOTIVATION

The traditional role of fixed services satellite systems in the telecommunications
network has been so far that of providing international trunk connections. The interface
with the existing terrestrial network has been therefore limited to the highest hierarchical
level of international exchanges. In recent years, new satellite techniques are pushing
towards an innovative role which foresees the interfacing of satellite networks at lower
hierarchical levels, even at the user’s premises and paves the way for the introduction of
new applications such as business-oriented closed networks, mobile and portable per-
sonal communications. This goal can be achieved mainly if both size and cost of the
earth-stations involved in the satellite systems are reduced. Power and bandwidth
efficiencies  therefore become the important system parameters in designing

modulators/demodulators (modems) for these applications.
High power and bandwidth efficient modulation techniques are derived for portable
equipment to allow the use of
i} high-efficiency class-C, saturated solid-state power amplifiers,
i1) low-gain, small antenna, and
iii) long duration, low-cost batteries.
High power efficiency also helps to reduce space and heat dissipation and conse-
quently the size of portable equipments. In addition to spectral efficiency, modulation
techniques for mobile satellite communications should provide a constant envelope sig-

nal and be easy to implement. The first requirement is useful to increase the transmitter

power efticiency with the use of nonlinear devices, and the need to communicate over a
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channel which is corrupted by severe fading. The second follows from the desire to

maintain a low cost and small size mobile terminal.

In recent years efforts have been made in the search of power and bandwidth
efficient modulation techniques [I, 3-19]. Different techniques have been proposed.
Smoothing the pulse shape of the transmitted signal over one symbol interval is effective
[3-6]. The spectrum is improved as its side lobes are considerably reduced. However, the
main lobe gets larger, making the modulation scheme inappropriate for narrow band
applications. This leads to the adoption of a new approach. This approach consists of
spreading the pulse shape over more than one symbol interval {1, 7-17]. The spectrum is
improved at almost all frequencies with very low out-of-band. Muny modulation tech-
niques have been introduced based on this technique, namely, Interference-and-Jitter-
Free-Offset Quadrature Phase Shift Keying (IJF-OQPSK) [1}, Gaussian Minimum Shift
Keying (GMSK) [14], Tamed FSK [15], etc. Another approach to improve the spectral
properties of quadrature modulated signals has been introduced in [18]. This modulation
technique is called Quadrature-Quadrature Phase Shift Keying (Qzl’S K), and is designed
based on multi-dimensional signal space. It uses two data shaping pulses and two car-
riers, which are pairwise quadrature in-phase, and creates two more dimensions in addi-
tion to the existing two already in use by Quadrature Phase Shift Keying (QPSK) and
Minimum Shift Keying (MSK). This scheme was introduced to increase the bandwidth

efficiency without substantially altering the average bit error probability.

The performance of these modulation schemes is poor when independent symbol-
by-symbol detection is used. This is due to the fact that the type of demodulation ignores

the memory inherent in the quadrature pulse-overlapping modulation scheme.

Choosing a modulation technique depends not only on its spectral properties but on
its performance as well. The most effective way in selecting a modulation technique is to

consider its spectrum and performance simultaneously. Studies showed that using




double-interval overlapping pulse shapes is enough to generate modulated signals with
very compact spectra | 1,9, 10). These techniques are suitable because they introduce a
limited Intersymbol Interference (IST) which can be fully controlled. Furthermore, most
of these modulation techniques are generated using direct modulation where the modula-
tion process is done in baseband which facilitates the implementation of the scheme
especially if Digital Signal Processing (DSP) is to be used.

Auempts have been made in improving the performance of these schemes [20-24],
and different techniques have been used. One of the well known methods is the use of
equalization. The main objective of this method is to remove the effect of 1SI from the
received signal. Some authors have employed a demodulator that exploits the memory
introduced by the overlapping pulse shape {20, 21]. This technique observes the signal
over a sequence of symbols and decides on one of them, and is known as Maximum
Likelihood Sequence Estimation (MLSE) receiver. In AWGN channels, the bit error rate
is a function of the minimum Euclidean distance between signal points [27]. Therefore,
idealy most of these methods are optimum and the best achievable performance will be

that of the interference free system [24].

Although these demodulation techniques are optimum for the AWGN channel, it
may not be the case for the fading channel. Studies showed that the minimum Euclidean
distance of a given system is considered as a secondary parameter on fading channels
[29]. Instead. the time diversity provided by the scheme under consideration, controls the
behavior of the system performance and allows the error rate to decrease with signal-to-
noise ratio accordingly; usually faster than the inverse dependence commonly found in
Rayleigh fading channels [29]. Eventually, this property has not been used in dealing
with IS1. Hence, studying and exploiting the time diversity that can be provided by qua-
drature pulse-overlapping modulation schemes can further improve its performance in

fading channels and make it suitable to portable/mobile communication systems.



1.2. THESIS OUTLINE

The main objective of this research is to present a maximum likelihood sequence
estimation receiver structure for quadrature pulse-overlapping modulated signals in both
AWGN and fading channels. Rather than using coded schemes to achieve this goal, the
proposed detection technique makes use of all the memory introduced by the overlapping
pulse shape into the modulated signal with no extra redundancy. This detection technique
is optimum and can be applied to any double-interval overlapping pulse shupe. In fact,
the performance of the system is expressed in terms of the pulse shape giving the possi-
bility to select a pulse shape for a compact spectrum and a good performance simultanc-
ously. This technique will make Quadrature Pulse Overlapping Modulation (QPOM)
schemes more complete and suitable to applications such as mobile communications and

personal communications.

After this introduction, a review concerning the spectral properties of both lincar
and hard-limited QPOM signals is given in Chapter 2. Chapter 2 starts with the well
known QPSK modulation scheme and continue up to the recently developed power and
bandwidth efficient modulation schemes. We discuss some of the techniques available in
choosing good overlapping pulse shapes, and their effect on the performance of the sys-
tem. The motivation for the research work, described in the subscquent chapters, will be

highlighted and discussed throughout Chapter 2.

In Chapter 3 we introduce a new detection scheme in order to improve the perfor-
mance of quadrature pulse-overlapping modulated signals. Based on the structure of
QPOM signals, a new configuration is obtained. The QPOM modulator then takes the
form of a coded scheme defined by two separate blocks. The first block represents the
memory introduced by the overlapping pulse shape, and the second block represents a
memoryless modulator. Based on this new configuration and the maximum likelihood

sequence estimation the demodulator is structured, and its performance over AWGN



channels is derived. The upper bound on the bit error rate is derived in a general form as
a function of the transmitted pulse shape. Simulation results are then given for some
specific pulse shapes to verify the analytical results. Chapter 3 contains two main parts.
The first part deals with linear QPOM signals, and the second part with hard-limited

QPOM signals. We also study the performance of Offset-QPOM signals.

In Chapter 4 we analyze the performance of QPOM signals in fading channels. In
particular, we are interested in exploiting the time diversity provided by the memory of
the overlapping pulse shape in the benefit of optimizing the MLSE receiver. We start
Chapter 4 with a general description of the statistical behavior of the fading channel.
Then, we derive an upper bound on the bit error rate of QPOM signals in Rayleigh fading
channels. This upper bound is given as a function of the transmitted pulse shape. This
form of upper bound 1is very important for the development of good
modulation/demodulation schemes. We then discuss the effect of pulse shaping on the
performance. Finally we compare QPOM schemes to ideal coherent QPSK and some

coded schemes of the same complexity and the same net throughput.

Chapter 5 presents the structure, performance, and realization of combined hard-
limited QPOM schemes and convolutional codes for fading channel applications. As a
direct result of the structural analysis, we provide solutions to the problem of how to
optimize the combined coding/modulation for hard-limited QPOM schemes. The main
result of this chapter is the way of combining the memory of the QPOM scheme and that
of the outer convolutional code. This result calls for a proper way of defining the memory

of the modulation scheme.

Higher bandwidth efficiency can be obtained using multi-level schemes In Chapter
6 we study the application of the results obtained in the previous chapters for the case of
M -ary QPOM schemes. The first part of Chapter 6 deals with the performance and reali-

zation of uncoded and coded linear 16-QPOM schemes. The second part deals with a
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power efficient 16-QPOM scheme. This modulation scheme is designed using two hard-
limited QPOM schemes. We provide a comparison between the two schemes in terms of
performance and complexity. The coding scheme used is a rate 1/2 convolutional code.

The coded scheme is compared to uncoded QPOM and some TCM 8PSK schemes.

Finally, Chapter 7 presents the conclusions and a summary of suggested future

research directions.




CHAPTERII

QUADRATURE PULSE-OVERLAPPING MODULATION SCHEMES

The efficient use of frequency spectrum is of great importance for transmission of
information in terrestrial, and mobile communication systems. For spectrum conserva-
tion, the band occupancy of the chosen modulation scheme has to be small so that as
many channels as possible can be used in a given band. This calls for modulated signals
with compact spectra.

The main objective of this chapter is to review a class of power and bandwidth
cfficient modulation techniques known as Quadrature Pulse-Overlapping Modulation
(QPOM) schemes. As the name indicates, these schemes use the technique of overlap-
ping pulse shapes in improving their spectral properties.

We start this chapter with a general description of a digital modulated signal. This
description is then used to represent and compare two classes of modulation schemes,
Quadrature Amplitude Modulation (QAM) and Continuous Phase Frequency Shift Key-
ing (CPFSK) schemes. This comparison shows that QAM schemes are better choice for
mobile satellite communication systems due to their ease of implementation by using
direct modulation. The second part of this chapter deals with the spectral properties of
QAM schemes. We describe the well known QPSK and MSK. From the discussion of
their spectral properties as well as their performance, the need for more power and
bandwidth efticient modulation schemes is justifyed. We then continue with considering
the spectral properties of quadrature pulse-overlapping modulated signals. Reviewing the
performance of these modulated signals and the effect of the overlapping pulse shape on

the bit error rate, a more efficient detection scheme then seems inevitable.



2.1. REPRESENTATION OF DIGITAL MODULATED SIGNALS

A digital modulated signal can be written in its general form as follows:

s(t)=y(t)cos[2nf .t +6(1)], 2.

where y (1) denotes the amplitude (envelope) of s (¢), 6(t) denotes the phase of s(f), and

f, represents the carrier frequency of the modulated signal.

By expanding the cosine function in (2.1) a new representation of s(f) is obtained

as

s(t)=s,(tdcos2nf .t + 5,5(2)sin2nf 1, (2.2)

where the signals 5 (t) and ) (1), called in-phase and quadrature components of s (), are

defined as:

5;(t) =y (t)cosO(r) (2.3a)

So @)==y (@)sin0(@). (2.3b)

Since the frequency content of these components is concentrated at low frequency

(around f = 0), they are called baseband (low-pass) components.

Consider the complex envelope S (¢ ) defined as

S(t):s,(t)+st(t) (2.4)

so that

janf.e ]

s(t)=Re [S(r)e , (2.5)

where Re[ ] denotes the real part of the complex-valued quantity in the brackets.



The signal waveform S(t) depends on the method by which the binary information
sequence is mapped into the set of transmitted waveforms. For example, if {c, }
represents the sequence of binary data appearing at the input of the modulator at a bit
rate of 1/T, bits/s, then the complex envelope can be written as

+on

Siy= Y I ptt—nl), (2.6)

n =—oo
where {1} is a complex-valued sequence that depends on the modulation technique and
the sequence {c, }, T is the symbol interval, and the function p () is a pulse shape whose
selection constitutes an important signal design when there is a bandwidth limitation on
the channel. Bandwidth limitation exists in most communication channels such as mobile
satellite communication and indoor communication channels. Hence, power and

bandwidth efficient modulation techniques are needed.

From the above representation of digital communications signals, it is observed that
the signal is modulated in baseband and then up-converted to the carrier frequency. Thus,
a digital modulated signal is completely defined by its complex envelope representation.
This representation helps us to reduce the complexity of implementation and gives more

flexibility in designing good digital modulation schemes.

The modulated signal s(t) can be generated using the block diagram of Fig. 2.1.
This block diagram consists of a baseband modulator and an oscillator. Therefore, in
order to generate a new modulated signal we need only to modify the baseband modula-
tor. Depending on the modulation scheme, this modification can be very simple espe-
cially when digital signal processing is used [28]. In such a situation only some software

need to be changed and no hardware is involved.

Although all modulation schemes can be generated using the block diagram of Fig.

2.1, we emphasize on the two most important classes of bandwidth efficient modulation
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schemes, namely, Quadrature Amplitude Modulation (QAM) {24] and Continuous Phase
Frequency Shift Keying (CPFSK) [5, 17]. During the past years these two classes have
been studied extensively and modulated signals with compact spectra have becn

obtained.

2.2, QAM AND CPFSK SCHEMES

The equivalent baseband complex envelope of a QAM signal is represented as

S)= X (A +jB,)p(t-nT), @.7)

n=—oco

where

A .,B

n n

=%1,43,..,£M - 1),
with equal probability. Using Eq. (2.7), the transmitted signal s (t) becomes

+00 +oo0
s)= Y A p-rT)co2nf t+ ¥ B p(- nT )sin2nf 1. (2.8)

n=—co n=—co
We notice that s(¢) can be obtained by extracting two separate symbols a, and b,
from the data stream {c, }, and then apply them to two double sideband (DSB) modula-
tions as shown in Fig. 2.2. It is observed that the block diagram of the QAM scheme is
similar to the one given in Fig. 2.1. Furthermore, the implementation of this scheme is

straightforward since only two low-pass filters are needed.

The power spectral density (PSD) of these signals has the same shape as that of the

pulse shape p (¢). In fact, the baseband power spectral density can be written as

1 2
Ss(f)=—T—lP(f)l. (2.9)
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Fig. 2.1 - The block diagram of direct quadraturc modulator.
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Fig. 2.2 - The block diagram of a QAM scheme.
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where P (f ) represents the Fourier transform of the pulse shape p(¢). By properly choos-
ing this pulse shape, it is possible to generate QAM signals with compact spectra.
Now consider the case of CPFSK modulation schemes. The equivalent baseband

complex envelope signal can be written as [24]:

!

S (1) = exp{j (2nf I mdT + §)}, (2.10)

0
where f, is called the peak frequency deviation and ¢ is a uniformly distributed initial
phase of the carrier. The signal m (t) is used to frequency-modulate the carricr, and is

defined as

m()= Y, Inp(t——nT), 2.1

n=—oo
where in this case /_ is obtained by mapping k-bit blocks of binary digits from the

sequence {c, }, and p (t) is the pulse shape defined earlier.

We notice that the equivalent complex envelope of the CPFSK scheme is very com-
plicated compared to that of the QAM scheme. For example, if p(t) is a rectangular

pulse, S (r) takes the following form [24]:

OETAD>

n=-oco

i2 T +(t~nT )l
ej nfd[(l,, +(t~n )n]p (t "nT), (2.]2)

where o, is defined as

n-1
o =3I, (2.13)

k =—oo

We observe that the complex baseband representation of the CPFSK scheme is not as
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simple as that of the QAM scheme. The implementation of its baseband modulator is
quite complicated even for the simple rectangular pulse shape. To generate bandwidth
efficicnt CPFSK signals, more spectral efficient pulse shapes are needea. In this case,
evaluating the integral in (2.10) becomes questionable and obtaining a compact form for
S (1) may not always be possible.

Studies [ 1, 3-19] showed that by properly choosing the pulse shape p (¢), bandwidth
cfficient modulation schemes can be obtained using either QAM or CPFSK. Because they
are easier to implement, quadrature amplitude modulation schemes are more suitable for
mobile satellite communications applications. This extra feature will help reduce the size
and the cost of the transmitter. In the following sections, we focus our studies to QAM
schemes. We describe some of the conventional schemes such as QPSK and MSK, and
continue with the technique of generating more power and bandwidth efficient modula-

tion schemes using double-interval overlapping pulse shapes.

2.2.1. Quadrature Phase Shift Keying (QPSK) and Offset-QPSK

A QPSK modulated signal can be generated using the block diagram of Fig. 2.2.
The input binary data stream {c, } with a bit rate of I/T, is demultiplexed into two data
streams {a, } and (b, } by a Serial-to-Parallel (S/P) converter. Each data stream is passed
through a low-pass filter with impulse response p (¢), and then multiplied by a sine car-

rier. The QPSK modulated signal takes the form of Eq. (2.8) with

A, =2, -1 (2.14a)

B, =2 —1. (2.14b)

The impulse response of the low-pass filter for the QPSK scheme is a single ~interval

rectangular pulse shape,
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1, It <T/2
p@)= -
0, elsewhere , 2.15)

and T = 2T,

At any given time interval, the transmitted signal s () is a function of both a, and
b,. Depending on the values of these bits, the phase difference between the in-phase and
quadrature components can take one of the values 0, 907, + 180°. A change of sign in
both streams will cause a phase transition of 180° . Usually, the transmi ted QPSK signal
is band-limited by a bandpass filter so as to reduce the out-of-bund spectral side lobes
and prevent interference with adjacent channels. A consequence of this filtering is that
the band-limited QPSK signal will no longer present a constant envelope. In fact, the
occasional 180° phase shifts occur now in a nonzero time and cause the envelope to
approach zero. This effect is highly undesirable when the signal undergoes nonlinear
amplification, as in satellite communications. Actually, a nonlincar amplificr operated at
saturation tends to restore the constant envelope of the signal, but at the same time it
enhances also the out-of-band spectral side lobes. Thus, the filtering action at the
transmitter is destroyed. As a result Intersymbol Interference (1SI) is introduced and a

degradation in the performance of the system is obtained.

A reduction of the envelope fluctuations can be obtained by delaying the quadrature
component by T, (0 < T, <T/2) seconds relative to the in-phase component. as shown
in Fig. 2.2. When T, = T/2, the modulation scheme is called Offset-QPSK or sometimes
straggered QPSK (SQPSK) [3] because the two quadrature components are offsct in
time by a bit period T, . This solution eliminates the possibility of instantancous phase
transitions of 180, In fact, phase changes of only + 90° can occur every T, scconds. As
a result, filtered Offset-QPSK signal has a much smaller envelope fluctuation than the
QPSK signal. Consequently, the absence of fast phase transitions (180" ) means that non-

linear amplification will not regenerate the undesired high-frequency components




15

originally removed by the band-limiting filter.

Experiments show that the spectrum of Offset-QPSK , unlike QPSK, remains almost
unchanged after limiting, hence retaining its band-limited nature almost in its entirely
[31]. Spectral advantages of Offset-QPSK comes mainly from the fact that this modula-
tion technique avoids the large phase transition of 180° associated with the QPSK for-
mat. This suggests that further suppression of spectral spreading in band-limited non-
lincar applications can be obtained if the Offset-QPSK signal can be modified in such a
wdy that phase discontinuities are avoided. This can be thought of as an obvious motiva-
tion for designing constant-envelope quadrature amplitude modulation schemes with

continuous phase.

2.2.2. Minimum Shift Keying Modulation

Minimum Phase Shift Keying (MSK) is a form of Offset-QPSK with continuous

phase, in which the pulse shape is chosen as

cos(mt/T), It £T/2

p)= 2.16
0, elsewhere, ( )

rather than the usual rectangular pulse shape. Because of this pulse shaping, the phase
transitions of the transmitted signal are not abrupt as in QPSK and Offset-QPSK, but
instead the phase moves linearly from one symbol interval to the next. Therefore, with its
constant envelope and continuous phase, when the MSK signal is nonlinearly amplified,
it suffers no significant spectral spreading into adjacent channels and provides faster
spectral roli-off and lower high-order spectral side lobes than the filtered Offset-QPSK
signal. However, its spectral main lobe is 50% wider than that of unfiltered QPSK and
Oftset-QPSK signals. Therefore, the MSK scheme provides better power and bandwidth

cfficiencies for wide channel spacings and worse efficiencies for narrow channel spac-
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ings, relative to QPSK and Offset-QPSK.

MSK scheme can also be viewed as a special case of continuous phase modulation
with a frequency deviation of one half the bit rate 1/2T, . In this view, it is also known as
Fast Frequency Shift Keying (FFSK) because it can transmit faster pulse trains than any
other ordinary FSK or PSK with equal bandwidth and signal-to-noise ratio.

It is well known that the Power Spectral Density (PSD) of these signals has the
same shape as that of the pulse shape p (¢). Using Eq. (2.9), the bascband power spectral
densities qusk (f)and S, , (f) for QPSK (or Offset-QPSK) and MSK are derived and are

given by

i

r4

sinnfT

S st F) = (2.17)
nfT
16 cosnfT )

Sust )= | [ |7 5 (2.1%)
o Jl1-4r°T?

where in all cases,

J.me(f)df = 1.

From these expressions, it is observed that the PSD of MSK decreases much faster than

that of QPSK.

So far we have seen that the baseband pulse shape, phase transition, and envelope
fluctuation of a modulated signal are important parameters which affect the spectral pro-
perties of a transmitted signal. Furthermore, from the expression of S (f), we notice that
the spectral properties of the QAM-type modulated signal can be improved by using

bandwidth-efficient pulse shapes. With this purpose in mind, a number of authors [1, 5-
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19] have proposed different pulse shapes to further improve the spectral properties of
these modulated signals. Constant envelope is also a desirable feature specially for non-

lincar type of channels.

2.2.3. Constant Envelope QAM Schemes

These schemes represent a special case of Offset-QAM. The pulse shape p(t) is
chosen in such way that the transmitted signal will have a constant envelope. An Offset-
QAM modulated signal can be written as

s(t) =s,(t)cos2nf 1 + 5o (t)sin2nf .t, (2.19)
where in this case

+on

s;(1)y="3% A p@—nT) (2.20a)
n=—oo
+ oo

sp) = > Bpu-nT -T/2). (2.20b)

n=—oo
The constant envelope property of the transmitted signal is retained if the pulse
shupe, p (1), s “isfies the following constraints [6]
p)=pr), Vi (2.21a)

p () + pi=1 + T12) = constant, 0< It <T/2, (2.21b)

Based on these constraints, a class of pulse shapes represented by

cos [((mt/T)-Usin@nt/T), [t1<T/2

pl)= 2.22
N elsewhere (2:22)

has been proposed [6], where U is a constant in the range {0, 1/2]. Note that for U =0
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the MSK pulse shape is obtained. The resulting modulation scheme is called Sinusoidal
Frequency Shift Keying (SFSK).

Further work has been carried out in the search of good pulse shapes [5-14]. Con-
tinuous pulse shapes, and pulse shapes with one, or several continuous derivatives have
been used [8, 12]. The results showed that it is possible to transmit constant envelope sig-
nals with very low side lobes. However, all these results indicate that even though very
low side lobes are obtained, the main lobe is always wider than that of QPSK (or Offset-
QPSK) signal. The spectral side lobes were further reduced relative to those of the origi-
nal MSK signal, but their main lobes stayed almost unchanged. Hence, these schemes are
not attractive for narrow channel spacings in which the difference of the center frequen-
cies of adjacent channels is smaller than the bit rate frequency, such in some satellite sys-

tems.

Detecting quadrature amplitude modulated signals can be done by first down-
converting the received signal to baseband, and then passing each component through a
matched filter to the pulse shape p (¢). A block diagram of the receiver which performs
coherent demodulation of the QAM signal is shown in Fig. 2.3. It has been shown in [24]
that for single interval pulse shapes, the performance of these schemes is given by

P, =

erfe (NE; ) (2.23)

1
2
where erfc represents the complementary error function, and E, /N, is the bit signal-to-

noise ratio.

The results obtained in this section show that smoothing the pulse shape over one
single interval is limited and a different technique for gencrating more bandwidth
efficient schemes is needed. In fact, it has been shown that {1, 12-19] designing modu-
lated signals with more compact spectra can be achieved by spreading the pulse shape

over more than one symbol interval, sometimes referred to as partial response schemes.
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Fig. 2.3 - The block diagram of the QAM coherent demodulator.
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By spreading the pulse shape over more than one symbol interval, the spectral properties
of the transmitted signal are improved at almost all frequencies and all side lobes
becomes considerably lower {17]. However, by doing so, intersymbol interference (IS1)
is introduced into the transmitted signal. The transmitted signal at any given symbol
interval becomes a function of the present symbol and some of the previous symbols. As
a result, independent symbol-by-symbol detection is no more optimum. To be optimum a
demodulator has to take into account the effect of the memory introduced by the overlap-

ping pulse shape.

The idea of spreading the pulse shape over more than one symbol interval came
from the fact that when a given signal is unlimited in time domain, its frequency domain
representation is completely defined over a finite bandwidth. Therefore, if the pulse
shape is defined over the interval J—ee, +eof then the transmitted signal will be completely
defined over a finite bandwidth. However, the application of this idea was complicated
causing some synchronization and delay problems. Consequently, these pulsc shapes
were truncated or others with finite length were used instead. Results showed that the use
of double interval overlapping pulse shapes is enough to gencrate modulated signals with

compact spectra |1, 9, 10].

In the following section, we study the spectral properties of a power and bandwidth
efficient transmission technique for digital communications [1]. This modulation scheme
is called quadrature pulse-overlapping modulation scheme. Modulated signals are gen-
erated by spreading the pulse shape over only two symbol intervals. Using this technique
a finite memory is introduced into the system and can be completely exploited at the
receiver. The major difficulty is the way of representing this memory in a suitable form
that can be efficiently used by the receiver without increasing its complexity substan-

tially.
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2.3. QUADRATURE PULSE-OVERLAPPING MODULATION SCHEMES

A quadrature pulse-overlapping modulated signal can be generated from the block
diagram of Fig. 2.2. The pulse shape p(t) is a double —interval overlapping pulse. The
main tool in generating QPOM signals with compact spectra is the selection of this pulse
shape.

A common requirement that has been applied in designing pulse shapes is to minim-
ize the intersymbol interference. One solution to this problem resulted in pulse shapes

having the following characteristics

pity=p(=t), It <T, (2.24a)

pit)y=20, it 2T. (2.24b)

These propertics were adopted to reduce the ISI caused by the pulse shape and particu-
larly at the sampling points hopping that the degradation in performance would not be

pronounced.

With these ideas in mind, the search for bandwidth efficient modulation schemes
was studied by different authors [1, 7-19], and several pulse shapes were introduced.
These pulse shapes were designed to reduce the out-of-band energy and provide a fast
spectral roll-off.

As an illustrative example, we consider the class of double-interval pulse shapes,

p (1), defined as [ 19]:

feosme 2T Y e <T

pit)= 2.2
0, elsewhere. (2.25)

As we can see this class of pulse shapes has N continuous derivatives over the interval

I—(N +2)

]= e, + oo[. Hence its Fourier transform P (f ) decays asymptotically as | f and its



to
to

power spectral density 1P (f)1%as 1f 17°% P 12),
The power spectral density of the modulated signal using this class of pulse shapes
is derived in [19], and is given by

2

N+ ,
\
(sin @rx)R2my) ] i“/(i2—4.r‘)‘ :

i=]

odd N

S;(x)= N2 2 (2.26)

cos (2mx) [T i = V)@ - 1)* - 16,\‘2}l . even N,

i=1

where x = fT and §_(0) = 1. Fig. 2.4 shows the normalized power spectral density of a
number of double-interval overlapping pulse shapes, p (). This figure indicates that as N
increases, the spectral roli-off of the corresponding QPOM signal becomes faster for high
frequencies while the main lobe becomes wider. As a result, the choice of the QPOM sig-
nal depends on the trade-off between the main lobe occupancy and side lobes roll-off. In
many practical applications, a spectral density of more than 40 dB below the highest
spectral density (near 0 Hz) is considered to be negligible. For this reason, pulse shapes
corresponding to N = 0 and N = 1 are more attractive. It is also seen that the spectrum is

improved at all frequencies compared to QPSK.

The double-interval pulse shapes p(t), p(t) corresponding to N =0 and N = |

are given by:

cos(mt /2T), It T
po(t =

2.27
0, elsewhere, ( )

» l(l + cos(ne/T))/2, It €T
pt)= 2.28
0, elsewhere. ( )

As shown in Fig. 2.4, the first null frequency of p ,(t) is at 0.75/T , while that of p () isat
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I/T. However, the asymptotic spectral roll-off of p (1) is of the order of If 1" while that
. -6

of p,(¢) is of the order of If | ~. Both of them show spectral advantages over conven-

tional QPSK, and MSK schemes. Note that p,(r) is also called overlapped raised-cosine

pulse shape and used in the QORC modulation scheme [9].

Amoroso [10] presented a class of quasi-band-limited double-interval pulse shapes

p (t). This class of pulse shapes is defined as

N
sin(mt/T)

, lt1 €T
nt/T

pt)=

(2.29)
0, elsewhere.

These pulse shapes are more and more band-limited by increasing N because the trun-
cated energy outside the interval |- T, + T ] is a rapidly decrcasing function of N. This
can be seen by noting that the unlimited pulse shape (sinwt/T )/(7tt /T ) is strictly band-

limited.

The power spectral density of the QPOM signal using some of these pulse shapes is
shown in Fig. 2.5. As seen from the figure, good spectral properties are obtained with this

kind of pulse shapes. Also by increasing N, very low side lobes are obtained.

The use of overlapping pulse shapes introduces ISI into the transmitted signal. This
IST affects the optimum sampling at the receiver, and therefore, degrades the perfor-
mance of QPOM signals. The evaluation of error probability in the presence of inter-
symbol interference plays a fundamental role in digital transmission systems, particularly

in baseband systems where the effect of ISI may be particularly strong.

Several authors have investigated the performance of transmitted signals affected by
ISI. Maximum likelihood decoding of these signals has been considered in [20, 21].
However, the complexity of this detector increases exponentially with the length of the

message. Forney [21] has introduced a technique in which the received signal is
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processed by a recursive structure using the Viterbi algorithm, but the implementation of
such a receiver was thought of as complex and too expensive. Instead other techniques
were used such as linear or non-linear transversal equalizers, and raised-cosine-type
receivers. These techniques showed that it is possible to improve the performance of
QPOM signals with less complexity. However, the improvement was not enough to attain
the performance of ideal coherent QPSK signals. For example, in [19] the performance
degradation with respect to ideal coherent QPSK was reduced to (.4 dB using a raised-

cosine-type filter with a roll-off factor of 0.4.

So far we have seen that power and bandwidth efficient schemes can be obtained
using double-interval overlapping pulse shapes. The cfficiency is obtained without
increasing the complexity of the modulator, but at the expense of a performance degrada-
tion. Therefore, a more efficient detection scheme is needed to mauke QPOM schemes
more suitable. Furthermore, the envelope of the modulated signal is not constant. Con-
stant envelope may be an additional desirable feature for certain nonlinear type of chan-
nels. For instance, the Traveling Wave Tube (TWT) amplifier in a satellite repeater usu-
ally converts amplitude variations to spurious phase modulation. A constant envelope for
the modulated signal may reduce this problem to a great extent [3]. Also, if there is non-
linearity in the channel due to the presence of class-C, solid state-power amplifiers, con-
stant envelope may be an additional desirable feature. It is possible to inscrt a hard-
limiter at the output of the QPOM scheme without significantly spreading the processed
signal. Thus at the output of the hard-limiter, the transmitted signal will have a constant

envelope.

2.3.1. Constant Envelope QPO M Signals

To maximize the power efficiency, the High Power Amplifier (HPA) has to operate
in a nonlinear mode. Consider the QPOM scheme followed by a saturated HPA shown in

Fig. 2.6. The saturated HPA may be modeled as an ideal hard-limiter that produces a




-

constant envelope and no change to the phase of the QPOM transmitted signal [32]. The
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transfer function characteristic of the ideal hard-limiter is shown in Fig. 2.7. Such a
model closely approximates the Gunn and Impact diode injection looked amplifiers and

is a reasonable first order approximation of saturated HPAs in general [32].

The hard-limited QPOM signal z (¢) can be represented as [4]:

2(t) = z;(t)cos ?wf .t + zQ(t)sin 2nf ¢t

=cos (2nf t +¢,(2)), (2.30)

where z,(1) and 20 (t) are in-phase and quadrature equivalent baseband components of

the hard-limited QPOM signal with

2 2
2,7 (1) + zQ(t)= 1

and

2,(1) ]

¢.(t) = ~tan”! [
25(1)

It is easy to verify that

$;(t)
()= ; 2 A (2.31a)
[s, (t) + sQ(t)]
and
5o )
20 (1) = (2.31b)

o] i ”
[s,“(t) +55(0) ]
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Fig. 2.6 - Block diagram of a QPOM modulator followed by a hard-limiter.
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Fig. 2.7 - Transfer characteristics of an ideal hard-limiter.
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where

5, () = > Ap@ —~nT)

n=—oo
and

+ o0

sp()="X B,p(t - nT).

n=—on
We notice that the two components of the transmitted signal are no longer independent,
and any change in s, (¢) (or ) (¢)) will affect both components. This has as effect to intro-

duce more ISI into the QPOM signal.

The power spectral density of this type of signals has been studied in the literature
and different techniques have been used [1-31]. In [1] a finite-state Markov chain model
was used to calculate the power spectral density of hard-limited QPOM signals. These
studies showed that the spectral regrowth of hard-limited QPOM signals depends on the

time offset 7 ,. It was shown that the spectral regrowth is minimum when T, =T/2.

As an illustrative example, we consider the spectral regrowth of hard-limited
QPOM signals having the double-interval pulse shape p,(t). The results of Fig. 2.8
confirm the above statement, and indicate that the minimum spectral regrowth is obtained

at T, = T/2. The modulation scheme with T, = T/2 is called IJF-OQPSK [1].

The eye diagrams of the equivalent baseband components of the hard-limited
QPOM signal with different values of T, are shown in Fig. 2.9. We notice that the signal
contains 1SI and jitter, and this interference effect increases with the time delay T;. It is
maximum (3 dB peak-to-peak) at 7, = T/2 and zero at T, = 0. This interference affects

the P, performance of the QPOM signal.

The results of Fig. 2.10 indicate that the hard-limited Offset-QPOM signal has more
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significant spectral advantages than the hard-limited QPSK, Oftset-QPSK, and MSK sig-
nals. Hard-limited QPOM signal has a constant envelope. Comparing its power spectral
density to those of some other constant envelope modulated signals such as TFM [ 15, 16]
and GMSK [14] indicates that for the frequency region within the bit rate frequency, the

hard-limited Offset-QPOM with the pulse shape p,(¢) has 4 more compact spectrum.

The performance of hard-limited QPOM schemes has been studied in the literature
[25, 36, 37]. It was shown that in a hard-limited signal-channel model, the QPOM
(T, = 0) scheme outperforms the Offset-QPOM (T; = T/2) scheme. This is explained by
the fact that the sampling instants of the baseband components of the hard-limited QPOM
have less intersymbol interference than those of the hard-limited Offset-QPOM due to the

in-phase-to-quadrature crosstalk (see the eye diagram of Fig. 2.9).

For its spectral advantages over many modulation techniques and its easce of imple-
mentation, the QPOM scheme is very attractive. However, a more efficient detector is
needed to make the QPOM scheme suitable to mobile satellite communication channels.
That is a major motivation behind the investigation of the performance of QPOM signals

in this dissertation.

2.4. QUADRATURE-QUADRATURE PHASE SHIFT KEYING

Quadrature-Quadrature Phase Shift Keying ( Q2PSK) is a form of direct quadrature
modulation. This modulation scheme was designed based on a 4-dimensional signal
space, thus increasing its bandwidth efficiency by a factor of two over two dimensional

schemes such as QPSK and MSK [18].

‘) . . -
A Q°PSK transmitted signal can be written as:

+ o
s(ty=Y, A"sl(t) + anz(’) + Cnsz(t) +D,5,(1), (2.32)

n=-—oo
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where A, B, ,C, , and D, are antipodal data taking the values * 1 with equal probability

n’

of '1/2. The signals {s,(t),i = 1,2, 3, 4] are defined over the interval [-T,, +T,] and are

given by
5,(t) = cos(mt /2T, )cos 2nf t (2.33a)
5,(t) = sin(nt 12T, )cos 2nf .t (2.33b)
$4(t) = cos (mt /2T )sin 2w f (2.33¢)
§4(1) = sin (1tt/2Tb )sin2nf t, (2.33d)

and identify p (t) = cos(mt/2T,) and p,(t) = sin(nt/2T}) as two double interval pulse
shapes. The signals {s;(r)} form a set of four equal-energy orthogonal signals under the

restriction

f.=n/4T,, n =integer 22.

The dimengionality of the signal set used in this scheme is four, two of them come from
the orthogonality of the carriers, the remaining two from the orthogonality of the two
pulse shapes p,(t) and p,(r). Two carriers and two data shaping pulses are pairwise qua-

drature in-phase, where the name quadrature-quadrature PSK [18].

From (2.32), we notice that Q2PSK signals can be written as the sum of two MSK
signals. Therefore, this modulation scheme can also be seen as two MSK modulators in
parallel which explains more its bandwidth efficiency. The power spectral density of this
scheme is illustrated in Fig. 2.11. It is observed that its main lobe is the narrowest com-
pared to conventional QPSK and MSK. In Chapter 6, we will study the performance of a
modulation scheme designed in a manner similar to the Q2PSK. This modulation scheme
is considered as two QPOM schemes in parallel and uses two non-linear HPAs to

increase its power efficiency.
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2.5. DISCUSSION

Power and bandwidth efficient modulated signals can be generated using direct qua-
drature modulation schemes. The transmitted signal is modulated in baseband and then
up converted to the carrier frequency. This configuration helps us to reduce both the cost
and the size of the modulation scheme. Spectral shaping is achieved using only double-

interval overlapping pulses. Thus, avoiding the use of longer pulse shapes.

The usc of these overlapping pulse shapes introduces memory into the transmitted
signal. This memory reduces the Euclidean distance between signal points and causes a

degradation in performance in the case of independent symbol-by-symbol detection.

When the signal is transmitted over AWGN channels, the Euclidean distance is the
main parameter which affects the performance. Therefore, the performance can be
improved by removing the effect of this memory (using equalization) or by exploiting it
in the benefit of the detection scheme (using maximum likelihood sequence estimation).
One way or the other, the obtained Euclidean distance will always be less or equal to the
Euclidean distance of the interference free signal. The MLSE receiver is an optimum
scheme and can exploit the memory affectively especially when this memory is well

defined.

Consider for example the in-phase component of a QPOM transmitted signal,

s)y= 3 Apt- nT).

n=—oco

Over one symbol interval [#T, (n + 1)T], the signal s;(r) can be rewritten as

s; W) =A,p-mT)Y+A _,pit—-n—1T)

A" = 2(1,, - 1.



As we can see this signal is a function of both a, and a__,. For each combination of this
pair of bits, 5, (1) is represented by a different single interval pulse. If these pulses are
defined at the receiver, then no intersymbol interference will be present and an optimum
MLSE receiver can be implemented. Furthermore, this memory can be represented in a

form which can be used affectively by the receiver [38].

In the following chapters, we introduce a technique in improving the performance
of Quadrature Pulse-Overlapping Modulated (QPOM) signals. This technique exploits
the memory introduced by the overlapping pulse shape. For fading channels, the receiver
gets a maximum use of the time diversity that can be provided by the structure of the

modulation scheme.



CHAPTERIII

PERFORMANCE OF QUADRATURE PULSE-O VERLAPPING
MODULATED SIGNALS IN AWGN CHANNELS

This Chapter treats the performance of Quadrature Pulse-Overlapping Modulated
(QPOM) signals in Additive White Gaussian Noise (AWGN) channels. The QPOM
scheme is first decomposed into a linear encoder followed by a memoryless modulator.
The trellis diagram representing this inherent non-redundant coding structure is then used
to construct its Maximum Likelihood Sequence Estimation (MLSE) receiver. We will
derive an upper bound on the average bit error probability for the QPOM scheme and
discuss the effect of the overlapping pulse shape and nonlinear channels on the perfor-
mance of the system. Computer simulation results are then given to verify the analytical

results.

3.1. LINEAR QPOMSCHEMES

Consider the block diagram of the QPOM scheme shown in Fig. 2.2. The transmit-

ted signal s () is given by

s(t) = s,(t)cos 2nf .t + sQ(t)sin 2nf.t, G.D
where

)= Y A, p(t-nT)

n =—oco

.s‘Q(t) = ¥ B, p@t—nT)

n=-—o
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are the in-phase and quadrature components of s (1).

Over one symbol interval n”T <t <(n + 1)T, the two components can be rewritten

as:

;)y=Apt—nT)+A _p@t—n-1T) (3.2a)

sQ(t) =B,pt—nT)+B,_p(t—n-1)T). (3.2h)

It is observed that at each symbol interval, the in-phase component s, (¢) is a function of
{a,,a,_,}, and the quadrature component 5o (t) is a function ot {b, . b, _,}. As {a,} and

{b,} are statistically independent, s, (¢) and 5o (t) are also independent.

The two components s, (¢) and So () take one of four possible elements

S =p@+p(-T) (3.3a)
siW=pO-p-T) (3.3b)
$,(T) = =5 ,(7) (3.3¢)
§4(T) = =5(7) (3.3d)

where0<t<Tandt=1t—nT.

The above equations indicate that for each set of bits {a,, b,,a,_,, b,_,}, a pair of
waveforms (5, (¢), 5o (t)) is transmitted. Furthermore, these waveforms are generated
independently one from the other. Therefore, it is possible to model the QPOM scheme
by a different block diagram as shown in Fig. 3.1. The two blocks B, and B, resemble a
convolutional encoder represented by the trellis diagram shown in Fig. 3.2a. The states of
this trellis diagram are represented by the contents of the shift registers of the encoder,
and all possible outputs by the set A = {0, 1, 2, 3]. This set is partitioned into two subscts

Ag=1{0,2}and A, = {1, 3}. The output of the encoder is mapped into a single-interval
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waveform based on the mapping rules of Table 3.1.

As we can see the memory of the linear QPOM scheme is well defined and can be
appropriately uscd at the receiver. Therefore, based on this model a maximum likelihood
sequence estimation receiver can be used to demodulate the transmitted signal. Further-
more, given that s, (1) and $g(7) are statistically independent, the receiver can treat each
component independently from the other without affecting the performance of the overall
system.

Table 3.1

Channel Signal Mapping for the Components
of the Linear QPOM Scheme

Mapper input | Mapper output

00 =557
01 -5,(7)
10 +5,(7)
11 +5o(D)

A convenient way to represent the set of signals {5;(t),i =0,...,3}is to use a set
of J orthonormal waveforms, with the jth waveform denoted by ¢ i (t). Thus the signal

s, (1) can be written as

J-1
5;(1) = Es‘.jq)j(t), i=0...73, (3.4
j=0
where
¢.(1)9,(Vdt= )
, 0 j=i (3:5)

This representation is useful for the error probability analysis where the performance will

depend only on the coefficient {s, ; } and the power spectral density of the noise and will



be completely independent of the actual waveforms chosen for the sct {¢ ; (0}

For the set of signals {s‘ (1)}, we notice that

1 T
J s o(t)s(8)dt = J @) = p2t - Tydt = 0. (3.6)
0 0
This means that 5 ,(T) and s,(1) are orthogonal. Note that §,(T) and §,(t) are antipodal
signals to s,(1) and s,(7), respectively. Hence, a 2-dimensional orthonormal basis
(94(T), 0,(T)) can be used to represent the four signals of Eq. (3.3). This orthonormal

basis is easily obtained from s (T) and 5,(7) as:

5o(D) T
0y(T) = ——, E,= J 5, (Ddr 37

\Eo 0

5;(® "
E = j s: (@, (3.8)

VEy 0

0,(T) =

where E; is the energy of the waveform s, (t). The energy E; can be expressed in terms of

the bit energy E, as follows;

Ey= (1 +YE, (3.9)

E,=(1-yE,, (3.10)

where v is a coefficient depending on the double-interval overlapping pulse shape p(r)

and is given by

T

2
Y= J p(t)p(t =T)dt. (3.11)
E, %
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Once an orthonormal basis {¢ ; (1)} has been adopted, each waveform
{s,(1),i =0,...,3}is completely determined by the vector of its coefficients in the signal

space (9,(1), ¢,(1)). This vector is a 2-element vector defined as;

8, = 5,00 i) (3.12)

where

r
§. = J 5; (‘t)d)j (tydt, j=0,1.

iy
0

The vector §; can be seen as a point in a 2-dimensional geometric space, called signal
space, with 2 perpendicular axes labeled ¢, ¢, or s, s, as shown in Fig. 3.3. The choice

of the set {9, (1)} depends on the actual signals {s,(17)}.

The transmitted QPOM signal is now well defined by two vectors, one vector
representing the in-phase component and the other representing the quadrature com-

ponent.

3.1.1. MLSE Receiver for Linear QPOM Signals

So far we have considered the representation of the signal waveforms {s; (1)} by the
corresponding signal vectors {s; }. It is also straightforward to recover the vectors from
the waveforms. Fig. 3.4a shows the block diagram of the QPOM system in an AWGN
channel. The MLSE receiver structure for QPOM signals is shown in Fig. 3.4b. Consider
a noise-free environment, the received signal r(¢) first passes through the coherent qua-
drature demodulator which produces the in-phase and quadrature components s,(t) and
$, (1), where ideal coherent detection is assumed. The two components are then con-
verted into the vectors 5, and S respectively, by a bank of two matched filters with

impulse responses (¢, (T —1)}. Each vector is then used by a Viterbi processor to
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reconstruct the error free transmitted data. The operation of the Viterbi processor is
based on the trellis diagram of the QPOM encoder and the mapping rules of Table 3.1. A

serial-to-parallel device is then used to reconstruct the original data.

Now consider the case when the signal s (#) is transmitted over the Additive White

Gaussian Noise (AWGN) channel, the received signal can be written as:

ri)=s0)+ n(), RAR))

where n (t) is the band pass AWGN process represented by

n(t)=n_(t)cos 27tfct + n (t)sin 2nf .1, (3.149)

and n_(t) and n () are independent, identically distributed (i.i.d) Gausstan random
processes with zero-mean and a variance of N /2. The received signal can be rewritien

as:

r(r) = [s,(t)+nc(r)]cos27tfct + [.\'Q(t)+ns(t)]sin2nf(1 (3.15)

The first task of an optinum receiver will be to extract the pair of waveforms
(s, (1), SQ(I)), which can be done by down-converting the received signal to baseband.
However, due to the noise introduced by the channel, the obtained pair of waveforms

becomes (r; (1), rQ(t)), where

rl(t)=s,(t)+nr(t) (3.164)

rot)=s,(t) +n.(2). (3.16h)

Since the two components s,(1) and SQ(I) are statisticelly independent, r, (1) and rQ(t)
are also statistically independent. Passed through the bank of matched filters, these com-

ponents are converted into r, and [Q,respectivcly. where
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=5, +n, (3.17)
ro =38y + g (3.18)

The clements of the vector n, (L'Q) are i.i.d zero-mean Gaussian random variables with
variance N /2, and the vectors 5, and 5, take the form of (3.12). Each vector is then
passed through a Viterbi processor which performs maximum likelihood sequence esti-
mation based on the trellis structure of the encoder and the mapping rules of Table 3.1.
The output of the decoder is taken as the estimate of the transmitted data.

Consider the case of maximum likelihood sequence estimation, where each one of
N possible data sequences corresponds to transmitting a distinct signal, with each distinct
signa! represented by a discrete J -element vector. The set of possible transmitted signals

can be denoted as the sequence of N -vectors

S = {80 810 e 0 Syt 3.19)

The cortesponding signal at the output of the discrete time channel is denoted by the

sequence of N -vectors r,

F={r s wIyoy) (3.20)

Then the choice of the MLSE receiver is the set of signals for which the a posteriori pro-
bability P {r | s} is the largest [27]. When all the signals are transmitted with equal pro-
bability, this is equivalent to choosing the set of signals which maximizes the conditional
probability density function (p.d.f)

N-1

pis)=TIp@,ls,). (3.21)

n =()
where p(r, 1s,) is the conditional probability density function of the vector r, given the

vector 8, is transmitted. For a given g , the elements of the received vector are i.id
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Gaussian random variables with mean 8, and variance N 0/2. i.e.,

~lr, =5, 11° ]

NiTEXp [
N()

p,ls,)=
[nN 0 ]
By combining the last two equations and then taking the natural log of the resulting equa-
tion, the maximum likelihood decoder is equivalent to one which selects the sct of vec-
tors for which the following metric
N-1

,
mr,s)==3 r, -5, II°
n=0

18 maximum.

3.1.2. Performance Analysis

Although exact derivation of the minimum attainable error probability is difficult, it
is relatively easy to obtain a useful upper bound. To derive the upper bound on the aver-
age bit error probability of this detection scheme, we use a union bound similar to that
used for upper-bounding the performance of convolutional codes {24]. The upper bound
on P, is the sum of all weighted pairwise error probabilities. The pairwise error probabil-
ity denoted as P {s — §} represents the probability of choosing the sequence of vectors
S$={Sy S .. »8_) instead of the transmitted  sequence  of  vectors

S={505 .. 38_). The MLSE decoder will decide in favor of § if and only if:

m(r,S) = m(r,s).

Hence, the pairwise error probability can be written as:

N -1
Ps=8§=P|¥ (I, -5, 12 lir,-§ 1% 20

n=()
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N-1
=P|T y, 20| (3.23)

n=()

and y_ isa random variable defined as

2 2
y,=lr, —s 17 =1Ar, =§ 1"
The random variable y, can be rewritten as:

J-1

Y = Z [2"1 (‘fni _Sni)_(fm _sm')z]
=0
J-1
=2¥n (S, s, )- I§, —s, 17, (3.24)
1=0

where £, is the 7th element of the vector _s‘n and S, is the i th element of the vector S,
Since the components {n,,i =0, ...,N-1} ~we i.i.d Gaussian random variables, then the

process y, is a Gaussian random variable with mean

"
M, == s, ~s, 117,

and variance

~ o]
<=9 - °
o, = LIPS [ Y |

N-1
Consequently, the process 3y, is also Gaussian random variable with mean

n=0)
N-1
a . 2
R TR
n=0

and variance
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-

gn—gnll.

N-1
,
o =, 3 I

n=0

Let us define the variable Dz(s, $§) as [29]:

N-1
DYs,9= X s -5 I°, (3.25)
n=0

. 2, . . .
It i> easy to see that D “(s, §) represents the squared Euclidean distance between the two

sequences s and §. Therefore, The pairwise error probability can be rewritten as

i

1 D"(s, 8)
P{s—§ =—erfc||— ]
2 Ll 4N,
-, iz
1 d=(s, §) E, ]
= —erfc N , (3.26)
2 L 4 N,

o]
where d“(s, §) is called the normalized squared Euclidean distance between the two

sequences S and § and defined as

N-1
d*s,8)=—3 s, -5 0> (3.27)
b n=0

From now on we will represent dz(s, §) by d? for the sake of simplicity.

For a given trellis diagram, there are many possible paths with different Euclidean
distances from the correct path that merge with it at the same node. Thercfore, an upper
bound on the first-event error probability P, is obtained by summing the error probability

of Eq. (3.26) over all possible distances,

172
1 e (12 Eb ]

4 N,

P, < agerfc (3.28)

d=d

mn
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where g, denotes the number of paths having a distance d ? from the correct path and
merging with the correct path for the first time. The expression in (3.28) is an upper
bound because the events which result in the pairwise error probabilities are not disjoint
[24].

In order to find the average symbol error probability, the pairwise error probability
needs to be multiplicd by the number of uncorrectly decoded information symbols during

that error event. By doing so, an upper bound on the average symbol error probability is

given by:
%
L, ST agveerfe | | —— , .
d=d, 4 NO

where v, corresponds to the number of erroneous symbols associated with a specific

error event. Consider the following inequality:

erfc(\Vx +y )Se)fc(‘/;)e_y, x,y >0, (3.30)

2

and suppose that x = d j‘mEb /AN andy = (d2 —d .. )E 14N o, then the upper bound on

the average symbol error probability can be rewritten in the following form:

d

min

2
Ey,
4 N

2
-d’E, 14N,
b

12
dl E /4N,
e MO a,v,e (3.31)

d=d,

1
P _<—erfc H
2

whete d,?“ , Tepresents the minimum normalized squared Euclidean distance of the
QPOM encoder [24]. Eq. (3.31) can be expressed in terms of a function denoted by

T(D.N),

di E,/aN, O D = o B No
e a_NT(D ,N) =e (3.32)

2
1 dmm Eb
P < —erfc m—
: o)
0 N=1 ’

4 N

-



where

400
T(O,N)= ¥ a,D'N" (3.33)
d=dg,
represents the transfer function of the encoder [24]. This function describes the weight

distribution, or the weight spectrum, of the incorrect paths and the number of symbol

errors on these paths.

The upper bound on the average bit error probability is obtained by dividing Eq.

(3.32) by k, where & is the number of bits in a transmitted symbol,

9 Y
1 d . E, 42 BN, O ~E, /AN,
P, < —erfc[ LR ‘—TWD,NY|P =¢ ! (3.34)
2% 4 N, N v

The above equation represents a general form for the upper bound on the performance of
a system with memory, where the memory has been identified by a lincar encoder. In
order to analyze the performance of a particular system, the transfer function need to be

known or at least approximated.

3.1.3. Performance of Linear QPOM Signals

Consider the case of the linear QPOM scheme. Since the in-phase and quadrature
components of the transmitted signal are statistically independent with equal probability,

the probability of error of the system can be written as:

(3.35)

where P, and PQ represent the probability of error of the in-phase and quadrature com-
ponents, respectively. In this case it is sufficient to consider only one component in

analyzing the performance.
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In general, coded modulation schemes are nonlinear and the assumption of transmit-
ting the all-zero code word cannot be used in the evaluation of the error bound of Eq.
(3.32). Instead, every possible code word should be considered as a transmitted one [41].
This requires an error evaluation algorithm which has a computational complexity

increasing with 22V, where v is the memory length of the encoder.

According to [42), it is possible to reduce the computational complexity of the error
bound if the encoder of the modulation scheme has a Uniform Euclidean Profile (UEP)
property. In this case the error bound can be found with a computational complexity
increasing with 2", the same as linear convolutional codes. This approach can be applied
to modulation schemes with the following properties:

1) The modulation scheme consists of a binary (linear) convolutional code followed
by a memoryless modulator (mapper).
2)  The weight profile of the signal subset A, for a given error event e is not a function

of the subset under consideration.

Consider the in-phase component s,(t). The trellis diagram of its linear encoder is
shown in Fig. 3.2a. Now consider the signal set of the linear encoder A = {0, 1, 2, 3} and
its two subsets A, = (0,2} and A, = {1,3}. The weight profile of these subsets with
respect to all possible values of the error event e can be obtained using the following

expression [42]

F(A,eD)=Ya, D" (3.36)

where a  is the number of channel signals in the subset A, that have a square Euclidean
distance o with respect to e. The Euclidean weight o is defined as the squared Euclidean
distance between s € A; and s +s,, where s, is the channel signal corresponding to the
error vector e. Table 3.2 shows the results for both subsets A and A,. It is observed that

these subsets have the same weight profiles with respect to e. Therefore, the in-phase



54

component of the QPOM scheme satisfies both conditions, and the transfer function of

the encoder can be obtained following the same procedure used in [42]. The modified

state diagram is shown in Fig. 3.2c. Its branches are labeled as (12N™F (A e D).

The transfer function is now obtained by solving the state equations of this state diagram

as outlined in [42], that is,

XO
TD,N)=—,
i
where
dg +dl2
X,=D X,
di+d} 4d? 4d}

X, =ND"""'X,+05N(® ° +D )X,

Solving these equations, the transfer function becomes:

NDz(dgm,’)
TWD,N)= 7

4d,
1-0.5ND " -0.5ND

4d}

where
i T
do2 = - J' sé(t)dt: 1+
E, %
and
I T
d12 =— J sf(l)dt:l—y
E, %
with
2 (!
y=—" | p(Mp(-T)dt

E, %

(3.37)

(3.38)

(3.39)
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The minimum Euclidean distance of the code can be obtained from the transfer function
as follows [43]:
2 dr (D, N)/idD

d® = lim—————— |, | =4 (3.40)
™ poo TO,NYD Y =1

Taking the derivative of Eq. (3.38) and then combining it with Eq. (3.34), the upper

bound on P, for linear QPOM signals becomes:

1

2
—1+YE/N -I—YE/N
( ) /Y0 O,S ( ) b 0]

(3.41)

1
P, < —erfc [‘/Eb/No]
2

[1 —0.5¢

Table 3.2
Weight Profile of Subsets with Respect to e
for Linear QPOM Schemes

Subset of

Channel Signal e | Weight Profile
A, 00 2
A, or| 2%
A, 0| 2
A, 11| p* 4 p*
A, 00 2
A, 0| 2%
A, 0| %
A, 1| p* +p*

At high signal-to-noise ratio E, /N ,, the coefticient multiplying the complementary

error function in Eq. (3.41) converges to one. In this situation the upper bound on the



average bit error probability becomes

1
P, < ;-erfc [‘,Eb/No]'
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which is equivalent to the performance of ideal coherent QPSK. Therefore, it is possible

to improve the performance of quadrature pulse overlapping modulated signals simply by

using the memory introduced by the overlapping pulse. Fig. 3.5 shows a plot of this upper

bound along with the performance of ideal coherent QPSK. Simulation results are also

given to verify the tightness of the upper bound. The pulse shape used for the simulation

results is p(t) = (1 + cos (7t /T))/2. The effect of the double-interval overlapping pulse

on the performance is negligible especially at high E, /N . Therefore, one can select the

appropriate pulse shape for a compact spectrum without worrying about the performance.

We have see in Chapter 2 that by spreading the pulse shape over more than two

symbol intervals, QPOM signals with more compact spectra are obtained. Consider the

case when the pulse shape is defined over the interval | -KT, KT |, i.e.,

p(t)=p(-t), It <KT

p(t) =0, It >KT.

Over one symbol interval, the two components of the transmitted become:

2K-1
s ()= Y A _pt-(n+i-K+1T)
i=0

2K-1
sQ(t) =¥ B, _pt-(n+i-K+1)T)
i=0

It 1is observed that the in-phase component becomes a  function

{a,,a,_ys ... d, x> and the quadrature component becomes a function of

of
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Fig. 3.5 - Performance of linear QPOM signals in AWGN channels.
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{b,.b,_1s .. b, sg ). In sucha situation, the QPOM encoder of each component will

n’
2K-1

have a total of 2 states.

Following the same procedure used for double interval pulse shapes, it is casy to

show that the minimum squared Euclidean distance of each component is given by:

?) K-1
2 2 .
d-=—Y jp (r —iT)dt =4,
0

which is equivalent to Eq. (3.40). Therefore, the performance of QPOM signals using this

kind of pulse shapes is comparable to that of ideal coherent QPSK.

The results of this section indicate that the performance of lincar QPOM signals is
asymptotically independent of the length of the pulse shape. However the complexity of
the receiver increases exponentially with 2K, In other words a compromise between

spectrum shaping and complexity is needed.

3.1.4. Performance of Linear Offset-QPOM signals

The only difference between Oftset-QPOM and QPOM is that a time delay of
T, =T/2 seconds is introduced at the quadrature side of the modulator. As discussed in
Chapter 2, the advantage of this time delay is apparent only when the transmitied signal

undergoes nonlinear channels.

When the quadrature component of the transmitted signal is delayed by 772
seconds, s (z) becomes
+ oo -+ o0

s(t)y= >, A,p(t —nT)cos 2nft+ Y B, p(t-nl =Tsin2nf t, (3.42)

n =—om n =-—tn

where A , B, are as defined in Eqgs. (2.14a, b). Over onc symbol interval
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nl" Zt = (n + 1)T, the signal s(t) can be rewritten as:

s(1) =57, (t)cos 2f t +s ’Q (t)sin2nf 1, (3.43)

where

s (1) =5,(1)
and

§ ’Q(t) = .s‘Q(t +T-T/2)+ So (t -T/2).

Lincar Offset-QPOM signals can be easily obtained from the block diagram of Fig.
3.2 by a simple modification. The obtained block diagram is shown in Fig. 3.6. The time
delay T, does not affect the operation of the linear encoder (block BQ). Therefore, the
demodulation of Offset-QPOM signals is expected to be similar to that of QPOM signals
with the same complexity. The optimum MLSE receiver is similar to the one given in
Fig. 3.4 with the cxception of the sampling instants of the quadrature component
(AT + T, instead of kT'), which should take into account the time delay introduced at the

modulator.

We can then conclude that the performance of Offset-QPOM signals is equivalent to
that of QPOM signals. This means that the time delay has no effect on the performance of
lincar QPOM signals as well.

For most applications using nonlinear amplification for high power efficiency, con-
stant envelope signals are desirable. In the following section we consider the perfor-
mance of constant envelope, power-efficient QPOM signals over the Z4ZWGN channel. As
discussed in Chapter 2, an ideal hard-limiter is used after the QPOM scheme to provide

an output modulated signal with constant envelope.
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Fig. 3.6 - The new configuration of linear Offset-QPOM schemes.
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3.2. NONLINEAR QPOM SCHEMES

3.2.1. Hard-Limited QPOM signals

Consider the block diagram of Fig. 2.6, the hard-limited QPOM transmitted signal
z(1)1s given by:
z(t) = z;(t)cos2nf .t + zQ(t)Sin 2nf .1, (3.44)

where z,(t) and z,(r) are in-phase and quadrature equivalent baseband components of

the hard-limited QPOM signal with

5 (t)
Z[ (’) = " ﬁ/} ) (3.453)
[slz(t) + sQ*(t)]
and
S )
20 (1) = 7. (3.45b)

[s,z(t) + Sé(’)]

The signals s (1) and 5o (1) are as defined in (2.2).

The above equations indicate that for any change in s, (¢) (or So (#)), z;(¢) and 29 @)
are affected. Therefore, hard-limiting introduces crosstalk between the in-phase and qua-
drature components of the transmitted signal, i.e., the two components of the transmitted
signal are no longer independent. In this case each component z;(t) or 29 () becomes a

function of {a,.b,.a, . b

}. Depending on the values of these bits, eight different

n-1
wavetorms are possible for each component of the transmitted signal. The first four of

these waveforms are given by:

1
Il =, 0t <T, (3.46a)

2



5o(T)
(M= : R 7y, (0<t<T, (3.46bH)
[sg(t) + sl“(t)]
§,(T)
25(0) =7 7y, 0LtT<T, (3.460)
] ~
[s(;(r) + sl‘(t)]
and
[ 1
-, 0st<TNn2
2
24(T) = y (3.46d)
-, T2 <t<T.
| 2

The remaining four waveforms are antipodal to those given above. As an illustrative
example, Fig. 3.7 shows the plots of these waveforms for the double-interval overlapping
raised cosine pulse shape 0.5(1 + cosnt/T). Table 3.3 gives the relationship between the

set [an,bn, a

el bn_l} and the transmitted pair of waveforms (z; (1), zQ(l)). This indi-

cates that it is possible to model the hard-limited QPOM scheme by two scparate blocks
as shown in Fig. 3.8. The first block (called the QPOM encoder) generates the set
{a,.b,,a, 4, b, ;}, and the second block (called the QPOM memoryless modulator)
maps this set to the corresponding pair of waveforms. We notice that this new
configuration does not contain a hard-limiter and overlapping pulse shapes, because all
these devices have been incorporated into the equivalent system. The trellis diagram of
the QPOM encoder is given in Fig. 3.9. This trcllis diagram has 4 states and is fully con-
nected. The possible outputs of the encoder are defined by the set A=(0, I,..., 15),

which is partitioned into four disjoint subsets as shown in Fig. 3.9.
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Fig. 3.7 — Example of transmitted pulses for the hard-limited QPOM schemes
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Fig. 3.9 - The trellis diagram of the hard-Iimited QPOM encoder.
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It can be seen from Eqs. (3.464, b, ¢, d) that the four waveforms are linearly
independent. Therefore, an orthonormal basir. (95(1), ¢, (1), 0,(T), ¢;(1)) can be found
(c.g., using the Gram-Schmidt procedure). Accordingly, the waveform {z,(1)} can be
writlen as:

3

2,(0= $2,0,0, i=0,...3 (3.47)
7 =0

The waveform z,(1) can then be represented by the vector of its coefficients in the signal
space (94(T), 9,(1), §,(T), §4(1)). This vector is a 4-element vector denoted as z;; (if z; (1)

represents z, (1)) or 2, (if z, (1) represents 25 (1)), and defined as:

2y, 00 2, = (2,00 S £ 230 (3.48a)
where
-
z, = J z, (D), (0)d T, [=0,...,3. (3.48b)

0

The optimum MLSE receiver of hard-limited QPOM signals needs to treat both com-
ponents 2, (1) and z, (¢) at the same time. The only way to do that is to combine the two
vectors 7, and Zoi- In this case the ith transmitted pair of waveforms (z (1), 29 (1)) can

be represented by a unique augmented vector z; defined as:

% =G 20) = w20 0 B3 g Zisr i Zip)s (3.50)

4 .l.

j :,(r)(pj(r)dr, Jj=0,...,3
(

i

I

J :Q(r)¢j_4(r)d1. j=4,..., 7.
Q0
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We can see that by using this vector representation, the MLSE receiver will see the two

components of the received signal as one entity to be estimated.

Table 3.3
Mapping Rules for Hard-Limited QPOM Schemes
Dec. Symbol Transmitted signals
a, bn an—lbn—l (sl (), ‘YQ (1))
0 00 00 (=z¢(r) —25(1))
1 00 01 =2,(t), —zz(t))
2 0010 —2Z,(t), =z,(1))
3 0011 (=z4(t), —z5(t))
4 0100 (=2,(t), +2(1))
5 0101 (=z¢(1), +2(1))
6 0110 (=z5(1), +25(1))
7 0111 (=z,(t), +2 (1))
8 10 00 (+2,(1), —2z,(1))
9 1001 (+25(1), ~23(1))
10 10 10 (+z(t), —z((¢))
11 1011 (+2,(), —z,(t))
12 1100 (+24(1), +24(1))
13 1101 (+2,(1), +2,(1))
14 1110 (+2,(1), +2,(1))
15 1111 (+z,(1), +2(1))

3.2.2. Performance of Hard-Limited QPOM Signals

The MLSE receiver for hard-limited QPOM signals is shown in Fig. 3.10. The
received signal is down-converted to bascband, then each component is passed through a
bank of four matched filters with impulse response {¢ (T — 1)} and sampled cvery T
seconds giving the elements of the augmented vector z;. This vector is then used by the
Viterbi processor to estimate the transmitted data. Compared to linear QPOM schemes,
only one Viterbi processor is needed but here the number of states is doubled.

In analyzing the performance of hard-limited QPOM signals we consider the trellis

diagram of Fig. 3.9 and Table 3.3. Using Eq. (3.36), the weight profile of the hard-limited
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QPOM scheme is calculated. These analysis showed that the weight profile is the same
for all possible subsets A,. The results with respect to all possible values of the error
event e are given in Appendix A. These results show that the hard-limited QPOM scheme
satishies the properties 1 and 2, which makes it a modulation scheme with EUP. Hence,
its transfer function can be obtained using the modified state diagram of Fig. 3.11. Using

Appendix A, the branch labels of this error state diagram are obtained as:

[ =050"+D™,  1,=D",

L=05ND"+D™,  1,=ND"
o 073 [0

ts=0.5ND +D "), te=ND

The transfer function is given by Eq. (3.37), where

Qy

X =050 +D™x, + 050" + DX, +D"X,

X, = 05ND* +D™)X, + ND™X, + ND*X, + 05N (D" + DP)X,
X,= 05N+ D™)x, + ND“x, + ND¥X, + 05N (D™ + DP)X,
X,=ND"X, + 05N @™ + D™)X, + 0.5N D™ + D™)X, + ND™X,,

and o, represents the squared Euclidean distance between two pairs of waveforms
(z, (), Z (1) and (z, (1), 2, (1)). The distance o, is normalized to the bit energy E, . The bit

energy is obtained by considering all possible pair of waveforms. This yields,

E, =TI,

and
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Fig. 3.10 - The MLSE receiver for hard-limited QPOM signals.

Fig 3.11 - Modified state diagram for computing the transfer
function of hard-limited QPOM schemes.
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u, =8, o, =41+ B), oy =4(1 - B,
3.51
u, = 4, os =401+ B), a, =4(1 -, 3.5

with B, and B, two coefficients depending on the baseband pulse shape p (t), and are

given by:

T

! '
Bo=" f Pi) 7% dt, (3.52a)
T [pz(t)ﬂ)z(t—T)]
" pwy-pu-T)
B, = JJ Pt dt, (3.52b)

!
- 13
T [1)2(r)+p2(t —T)]

respectively. Solving the state equations, the transfer function becomes [38, 45]:

Wo(DN +W (DN?

TO,N)= 5, (3.53)
1- QDN —Q (DN

wheie

o oy +Q, 2a,

2o, 2
W,»)=05D “+05D "+D +D

O+ 40 0+ Uy + 0l O +0,+0t, 0y + 0+
+D + D +D

W D)=D

O +0Ly + 01

-D —0.5p™"

0,0)=D"+2D"
and

ay+Q,

g+t

2 2
Q,0)=050"" 4 050" + DM ® 2D

The minimum normalized squared Euclidean distance of the code is obtained from the
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transfer function using Eq. (3.40), which is

,
dmm = 8(1 - Bm)’ (3.54)
where B represents the maximum between 3, and .

Combining Egs. (3.34). (3.53) and (3.54), the upper bound on the average bit error

probability is obtained as:

1 %
Py s erfc [ [2(1 ~B,)E, /NO] ]\;t(Eb/NO, B, (3.55)

where the function W(E, /Ny, B, ) is given by:

2 WD)+ QD)) + W (D)2 - QD))
V(E,N . B,)= D ;
2[1-040)-0,0)]

. —E, /4N
withD=e ° °

It is noted that at high signal-to-noise ratio, the function y(E, /N, [3, ) converges to a

m

constant C. In this situation, the upper bound on P, becomes:

C Y,
P, < '2—erfc [ [2(1 -B,, )E,,/N(,] ], (3.56)
where

C =100, B, =05
C =

C =025, B, =05

When B, = 0.5, Eq. (3.55) becomes

-F No
] 1+05¢ "
P, < ;erfc [*/Eb/No] > (3.57)

2Ny ~FaiNy
— L0

1-e¢
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which at high signal-to-noise ratio converges to the performance of ideal coherent

QPSK,
1

P, < —erfz [\{_—'Eb/NO], E INy> 1. (3.58)
2

Now consider the expression of the two coefficients B, and f,. They can be rewrit-

ten as follows:

i
-T
Bo=" f pelrel " (3.59a)
T %o e pta-m)]
12
1 - -T
Bi=" JJ pt)—pl 1) 7 d. (3.59b)
T %o [y epu-1)

Itis obscrved from the above equations that if p(¢) is a single —interval pulse shape, i.e.,

pt=T)=0, (<Tn

then the two coefficients B, and B, become equal to 0.5, and the performance of the
hard-limited QPOM scheme reduces o that of ideal coherent QPSK at high signal-to-
noise ratio.

Consider the case of double —interval overlapping pulse shapes satisfying the con-

ditions in (2.21). It is easy to show thatif 12p(t)20 V¢, then

Y4
pM)+p@-T)2 [p:(t) +1)2(1 —T)]

Hence, we conclude that

B, > 0.5
s <0s | -8, =B,205. (3.60)
<0
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This indicates that the performance of hard-limited QPOM scheme can reach that of
ideal coherent QPSK without exceeding it. Table 3.4 gives some double-interval overlap-
ping pulse shapes and their corresponding coefficients 8, . As this Table shows, it 1s pos-
sible to select a dcuble-interval pulse shape p (1) which has a coeflicient B, as close to
0.5 as possible and introduces a compact spectrum,

Table 3.4

Example of Some Double-Interval Overlapping Pulse Shapes
and their Coefficients 8

n

Pulse shape | The coefficient
p() B

cos (it 12T) 0.6366

cos>(t /2T) 0.59G17

cos’ (mt /2T) 0.55151

Fig. 3.12 gives the upper bound on P, of hard-limited QPOM signals using the
pulse shapes of Table 3.4. Also indicated in this figure is the performance of ideal
coherent QPSK. We riotice that as B, approaches 0.5, the performance of the QPOM
scheme approaches that of ideal coherent QPSK at high signal-to-noise ratios. T refore,
by an appropriate choice of the pulse shape p (t) we can cbtain a transmitted QPOM sig-

nal with a compact spectrum and a performance similar to that of ideal coherent QPSK.

Now let us consider hard-limited Offset-QPOM signals. The performance of these
signals can be analyzed following the same procedure used for QPOM signals. However,
due to the crosstalk that now exists between the two components of the transmitted sig-
nal, the analogy that has been used in linear charnels cannot be applied here, and the
time delay need to be considered from the start. The advantage of this time delay is
apparent in the power spectral density os the hard-limited QPOM scheme. Because of

this time delay, hard-limited Offset-QPOM signals exhibit a much Jower spectral
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regrowth than QPOM signals when they undergo nonlinear amplifications [32]. There-
fore, from spectral point of view hard-limited Offset-QPOM scheme is more attractive. In
the next section we will study the effect of the hard-limiter and the time delay on the per-

formance of Offset-QPOM signals.

3.2.3. Performance of Hard-Limited Offset-QPOM signals

Consider the Offset-QPOM transmitted signal s(¢) defined in (3.43). Within the

symbol interval [T, (n + 1)T |, the components of this signal can be rewritten as:

sy =Apt —-nT)+ A, _p(t—(n-1T),
S o=Bpt~m+U)T)+B, _p(t—n-1)T)+B,_,p(t-(n-32T).

When the signal s () is passed through a hard-limiter, the two components z, (¢) and
20 (1) of the obtained signal become a nonlinear function of 5, (¢) and So (t) as indicated
in (3.45). In this case the effect of the time delay cannot be removed and should be con-
sidered in describing hard-limited Offset-QPOM signals. The two components z,(t) and
2 (1) are now functions of the set {a,, b ,a,_;,b,_;, b,_,}. As it was done in the previ-
ous scction, we present the relation between this set and the transmitted pair of
waveforms in a table form as shown in Table 3.5. The 16 elements z;(1),

v(D,i =0, 1,...,7are related to the elements 5;(1),7 =0, 1as follows:

¢ SI(T)

) ; 7T 0<t<T/2
[sl“ (T) + 5, (1:+T/2)]

ym) = (3.61a)
§,(1)

173 T12<t<T

L [slz(r) + sf(r—ﬂz)]



Table 3.5
Mapping Rules for Hard-Limited Offset-QPOM Schemes

Dec. Symbol Transmitted signals
ab,a,_b b, _, (z; () :Q(t))
0 00 00 O (—Z()(l )v -V ()(’ ))
1 00001 (—:1(1‘).—\'1(:))
2 00010 (=2,(1),—v5(1))
3 00011 (—41(!) ;(1))
4 00100 (=2 4(1),=v (1))
5 00101 (-: s(’) S(1))
6 00110 (—z4(1), - ((t))
7 00111 (—~z (t) =v (1))
8 01000 (—z4 (t), +v.*(t))
9 01001 (-2 (1) +v ,,(t))
1C 01010 (—z (t),+v (1))
11 01011 (-2 (t) v (t))
12 01100 (—z7(1),+v7(t))
13 01101 (=z4(1), +v (1)
14 01110 (-2 (t) +v (t)
15 01111 (—z,4 (t) +v (1))
16 10000 (+z 4=V (1))
17 10001 (+z (t),—vs(r)
18 10010 (+z (t) —v (1))
19 10011 (+z (t) —v.,(t))
2 10100 (+z (t) =vy(1))
21 10101 (+z (t) -y (t))
22 10110 (+2 (l) -y (t))
23 10111 (+23(t) -y (t))
24 11000 (+2z4(1), +v (t))
25 11001 (+z (1),+v (t))
26 11010 (+25(t), +v5(t )
27 11011 (+2 (1), +v ,(1))
28 11100 (+2,(1), +v.,‘(t))
29 11101 (+z (t) +V,(1))
30 11110 (+z, (t) +v (t))
31 11111 (+20(t),+v0(t))




z,(1)

z5(7)

23(0)

{

_ [s W+ 20T /2)]

sl(I)

172
[5']2(1) + S22(‘C+T/2)]

s 1(‘t)

L [s,z(‘r) + s,z(r—T/Z)]

172

) l(I)

72
[slz(t) + Slz(‘HT/?.)]

5,(7)

) ) 72
k [s]‘(t) + s:,f('c—T/Z)]

s l(‘r)

172
[s 12 (T) + 322 (‘E+T/2)]

541

172

N 2(1)

172
[s22 (+s 12 (t+T /2)]

§,(7)

R R 72
‘ [SE(T) + sl“(t—-le)]

0<t<T2

TRESTLT

0t T2

TR2<t<T

0<t<T/2

TI2<t<T

01T <T/2

TRR<tT<T
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(3.61b)

(3.61¢)

(3.61d)

(3.61e)



z5(1)

z6(7)

V(D) =

) 2(I)

1/2

[s22 (0 + s22 (1+7T/2) ]

545(1)

) , 172
k [55 (1) + s]"(t—T/2)]

[ S:,_(‘C)

172
[sj(r) + s12(1+T/2)]

$5(7)

172

[Szz (1) + szz(T—T/2)]

pr—

[ § 2(1)

172
[szz(t) + s; (r+T/2)]

) 2(t)

172

| [sf(r) + sf(r—m)]

. §,(1+T12)

72
[512(17) + s12(1+T/2)]

]
sl(t+T/2)

172
t [s,z(r) + sf(r—T/z)]

0<t<T2

0<t<T2

TI2<t<T

0<t<T/2

T2<t<T

0<t<T2

TI2<t<T

17

3.610

(3.61g)

(3.61h)

(3.624a)



v(T) =

v(T) =

V3(T) =

V(D) =

—sz('c+T/2)

172
[s 12 (t) + s22 (1+T/2) ]

5,(1=T12)

172
[sf(r) + sf(r—T/:z)]

sl(‘c+T/2)

172
[s ]2 OER 12 (t+T/2)]

5,(t=T12)

172
L [sf(r) * szz('c—T/Z)]

=5,(T+T12)

172
[s L+s] (1+T/2)]

$,(t=T12)

172
‘ [s ,2 )+ sz2 (1-T/2) ]

s]('c+/2)

R N 172
[sz‘ (1) + sl“('c+T/2)]

§,(t=T12)

. . 172
[‘\‘2‘ (D+s, (T—T/?.)]

0<1<T 72

TRLTLT

0<t<T/2

T12<t<T

0<1<T /2

T2<t<T

0<1<T /2

TI2<T<LT
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(3.62b)

(3.62c)

(3.62d)

(3.62¢)
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¢ —Sl(T-‘FT/?.)
173 0<t<TN
o) 3
[sz“(t) +5,5 (‘C+T/2)]
ve(T) = (3.621)
73 TRST<T
bl n)
[s , (M + s (1-T/2) ]
, $,(t+T12)
173 0<t<T 2
R
[s; (V) + 57 (14T 12) ]
V(D) = (3.62g)
° 5,(t=T12)
73 Ti2<1<T
R
[sz“ () + sf (r—T/Z)]
r =5 ,(T+7T/2)
TP 0<T<T2
o]
[sz“ (D +s2 (¢+T/2)]
V—](T) = (3()2h)
1) T2t <T.
\ [522(1) + s22 ('c—T/Z)]

These waveforms are shown in Fig. 3.13a and Fig. 3.13b for the overlapping pulse shape

p()=0.5(1 + cosmt/T).

We notice that the hard-limited Offset-QPOM scheme has a structure similar to that
of hard-limited QPOM scheme. Therefore, it is possible to model it by two separate
blocks as it was done for the hard-limited QPOM scheme. The block diagram of the new

representation is shown in Fig. 3.14, and the trellis diagram of its encoder is shown in
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Fig. 3.15. The number of states of this encoder is double that of the QPOM schemne,
which will have as cffect to increase the complexity of the optimum MLSE receiver. The
MLSE receiver is then obtained by first finding two orthonormal basis, the first for the set
of waveforms {z (1)}, and the second for the set of waveforms {v, (t)}. From Egs. (3.61,

62), we notice that:

z2(T) + 24(T) = 2,(T) + 2,(1),
2,4(T) + 24(T) = 24(T) + 24(T),
V(1) +v4(T) = v (T) + v,(1),

V(D) + (1) = v4(T) + v (),

indicating that these waveforms are linearly dependent. Therefore, only 6 orthonormal
waveforms are needed for each basis. The pair of waveforms (z;(¢), zQ(t)) is then
represented by an augmented vector z of 12-elements. The first 6-elements of this vector
are obtained by passing the in-phase component through a bank of 6 matched filters to
the first basis, and the last 6-elements are obtained by passing the quadrature component
through 6 matched filters to the second basis as shown in Fig. 3.16.

To analyze the performance of hard-limited Offset-QPOM signals, we consider the
trellis diagram of Fig. 3.15. This encoder has 8 subsets (A,,i =0,.. ., 7}, with each sub-
set having four elements. To check the linearity of this encoder, we have computed the
weight profile of these subsets for every error event e. As it is indicated in Table 3.6, for
the error event e = 00011 the subsets (A, } have different weight profiles. This means that
the weight profile is a function of the subset of channel signals under consideration. In

such a situation, the method introduced in [42] cannot be applied.

One way to derive an upper bound on P, is to consider the method of pairwise error

states [41] which involves all possible correct paths (not only the all-zero path). The
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Table 3.6
Hard-limited Offset-QPOM
Weight Profile of Subsets with Respect to 00011
@) =0.5(1 + cosme/T))

Subset of
Channel Signal | Weight Profile
A, op 35t L ap S8
A, A 269 | opy43s
A, ap 26 L apt3s
A, oD 318 L op352
A, 2D S8 L op3S2
A, 20 4 2>
Ag 20*% 4 2p*
A, 20 4 2p?

modified state diagram then becomes an expanded set of states, namely 2% states. As we
can see, in order to derive the transfer function for this system. we necd to solve a system
of 64 equations. This computation is quite complicated or may be impossible to do
(analytically).

In order to avoid this computational complexity, we consider the weight profile dis-
tribution of the code. By using the worst weight profile for each error cvent e, it is possi-
ble to approximate the transfer function from a stite diagram containing only eight
states. With this assumption, the method of [42] can be applied, and a good approxima-

tion for the upper bound on P, can be obtained.

Using Eq. (3.34), the upper bound on P, is computed. The partial derivative of
T(D,N) is numerically computed using Appendix B. Fig. 3.17 [39] shows the perfor-
mance of  hard-limited  Offset-QPOM  signals for the pulse  shape
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p(1)=0.5(1 + cos(mtIT)). As observed from this figure, this scheme has a similar perfor-
mance compared <o hard-limited QPOM scheme. As a result we can say that the only
cffect of the time delay on the hard-limited Offset-QPOM scheme is in increasing the

complexity of the demodulator.

3.3. DISCUSSION

A maximum likelihood sequence estimation receiver for both linear and hard-
limited QPOM signals was introduced. This receiver was obtained after decomposing the
QPOM scheme into an encoder followed by a memoryless modulator. The memory was
presented in a way that could be optimally explosied by the receiver. The performance in
AWGN channels was analyzed using an upper bound technique and then verified by
computer simulations. It was shown that the performance of these schemes can be
expressed as a function of the transmitted pulse shape p (). Therefore, it is now possible
to select double-interval overlapping pulse chapes for a compact spectrum and a good
performance simultaneously. The performance of Offset-QPOM signals was also
analyzed and discussed. The time delay 7, did not affect the performance of the linear
scheme. However, in nonlinear channels, this time delay introduced more correlation into
the signal and a more complex receiver was required. It was shown that by properly
choosing the pulse shape p (1), we can achieve the performance of ideal coherent QPSK
(interference free system). This indicates that the memory has been used affectively in

optimizing the MLSE receiver.

Throughout this chapter we have seen that the memory of QPOM schemes can be
modeled as an encoder. The trellis diagram of this encoder does not have parallel paths
from one state to the next. This feature is very important when the signal is transmitted

over fading channels. This issue will be discussed in the next chapter.
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CHAPTER IV

PERFORMANCE OF QUADRATURE PULSE-OVERLAPPING
MODULATED SIGNALS IN FADING CHANNELS

Our objective in this Chapter is to treat the performance of quadrature pulse-
overlapping modulated signals over fading channels. The new representation of QPOM
schemes introduced in Chapter 3 is suitable for fading channels applications. With this
representation, QPOM schemes are expected to perform better than conventional QPSK
and will be within the range of some coded schemes of the same net throughput of 2
bits/symbol. We start this Chapter with a brief description about the physical behavior of
the fading channel, then a statistical model for this channel will be developed. The per-
formance analysis of the QPOM scheme is carried out in a general form in such a way
that it can be applied to both linear and nonlinear QPOM schemes. To better evaluate the
QPOM scheme, its performance is compared to conventional QPSK and some coded

schemes such as 4-state PSK TCM schemes.

4.1. FADING CHANNEL MODEL

In digital communication the most frequently assumed model for a transmission
channel is the Additive White Gaussian Noise (AWGN) channel model. However, for
many communication systems the AWGN channel is a poor model, and one has to resort
to more precise and complicated models. One type of non-Gaussian model which fre-
quently occurs in practice is the fading channel. Examples of such a fading channel are
the mobile satellite and indoor communication channels. These channels have been stu-

died and used exteasively in the literature [24, 51-55].
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Fading mostly occurs when the receiving antenna of a given receiver picks up mul-
tipath reflections and diffraction from surrounding objects. Which causes a time varying
behavior in the receiving signal energy, which is called fading. While there are other
degradations such as time varying dispersion, we will consider only the most basic and

common model.

Two kinds of fadings, short—term and long —term fading are often considered in
fading channels. In short-term fading the changes in channel characteristics occur within
a time scale that ranges from fraction of a second to several seconds. While in long-term
fading the variations of the channel characteristics are in the range of minutes, tens of
minutes, hours or even more. These variations often related to sclar or metcorological
influences [24]. Both kinds of variations are of course continually in process. However,
the distinction between them is extremely useful for engineering because, for most fading
channels, only the short-term fading variation affects the details of the received
waveform structure and the inter-relationships of errors within a message; while the

long-term variations determine in effect the availability of the channel.

A widely used model for the channels which suffer from short-term fading is lincar
time-varying filter model of the channel [24]. To fully characterize this propagation, it is
necessary to obtain the time-varying impulse respouse. This has been done by some
investigators, using either pulse transmission or pseudorandom binary modulation [51-
55). Important features of the impulse response are the number of different paths and the

time delay spread between them and the rate of variation of the impulse response.

If a delta function is applied at the input of the channel, at time ¢, an output k£ (¢, T)
at time ¢ + T is obtained. In the case of n distinct propagation paths of gain a; and delay

T,, We have

h(t,t)= Y a,()d(1-1). (4.1)

i=1
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The corresponding equivalent low-pass transfer function of the channel is obtained as:

T

H(f 1) = J hiz, ey, 4.2)
0

which is the Fourier transform of A (z, ¢) relative to its t-dependence.

Considering H (f, t) as a complex Wide-Sense Stationary (WSS) process [55], it

can be characterized by its covariance function defined as:

1 .
R(Af At) = —E [H(f,t)H (f+Af,t+At)], 4.3)
2

if R(Af, At) is negligible for |Att > T, and |Af | > B/, the channel is said to have a
fading bandwidth (Doppler spread), B/, time spread, T, , and coherence bandwidth
1T, 155].

The fading channel is characterized by its coherence bandwidth. If the coherence
bandwidth of the fading channel is smaller than the signal bandwidth, the signal com-
ponents with frequency separation greater than the coherence bandwidth are affected
differently by the channel. In this case the fading is said to be frequency —selective fad-
ing. On the other hand, if the coherence bandwidth is large in comparison to the
bandwidth of the transmitted signal, the channel is said to be frequency —nonselective or
flat fading. In other words all of the frequency components in the transmitted signal
undergo the same attenuation and phase shift through the channel. This kind of fading is

the most common fading channel and is used throughout the rest of the thesis.

When the channel is modeled as flat fading, its impulse response becomes

h(t.t) = a(t) 8(1)

with
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a(t) =a,(t)+ jaQ(t). (4.4)

Then, the 1eceived signal at the output of the channel is related to the transmitted signal

s(t) as:

r@)=a()s@)+n(). (4.5)

Central limit theorem arguments lead to the conclusion that [27, 55] the in-phase
and quadrature components of a(t) are statistically independent Gaussian random
processes characterized by their autocorrelation function or their power spectral density,

with bandwidth B D

4.1.1. Rayleigh Fading Channels

When the received signal consists of a large number of scattered signals of approxi-
mately the same group path, with phases differing from one another by random fractions
of a wavelength, the two processes a,(f) and ag (t) become zero-mean Gaussian

processes. Thus, the fading envelope defined as:

a= [a,2 + aQZ]y’, (4.6)

has a Rayleigh distribution with probability density function (p.d.f)

a -a‘o?

pla)= ¢ , 4.7)

Ga

2 . . .
where o, represents the variance of the constitute Gaussian random process. The average

energy of the fading envelope is related to 0'3 as:

Ela’] =20, (4.5)

The phase of the random process a is uniformly distributed with p.d.f
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p©,) = 12x, 0<¢<2m.

4.1.2. Rician Fading Channels

When there is a single dominant, nonfading component in the received signal along
with a diffused multipath fading process, a (¢) can no longer be modeled as a zero-mean
Gaussian process. This occurs when there are fixed scatterers or signal reflectors in the
medium, in addition to randomly moving scatterers. In such a case studies showed that

the envelope of the fading channel is Rician distributed, with p.d.f [29]

pla)=2a(1 +K)e K +a0+K 1 ,2a K&+ 1)), (4.9)

where /(. ) is the zero-order modified Bessel functicn of the first kind, and KX is the ratio
of the energy of direct component to the energy of the diffused multipath one. In this case
the phase is nc longer uniformly distributed, but rather is more concentrated around that
of the nonfading component. It is important to notice that for K =0, the above model

becomes that of a Rayleigh fading channel.

4.2. PERFORMANCE OF QPOM SIGNALS IN FADING CHANNELS

Quadrature pulse overlapping modulation schemes can be seen as coded schemes
even though no extra redundancy has been used. As discussed in Chapter 3, the coding
structure of these schemes is mainly due to the overlapping pulse shape and the cross
correlation caused by the hard-limiter. Coded schemes can be used for transmission of
reliable digital information over bandwidth limited fading channels. When combined
with interleaving/de-interleaving of sufficient depth, these schemes can provide good

coding gains compared to the uncoded ones [29].

The general block diagram of a QPOM system on a fading channel is shown in Fig.
4.1. The input bits are encoded by the QPOM encoder, interleaved and then mapped to

the transmitted in-phase and quadrature waveforms. Passed through the channel, the
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transmitted signal is faded and corrupted by AWGN. At the receiver, the signal is down-
converted to baseband, transformed into a vector, and then de-interleaved. This vector is
used by the Viterbi processor to estimate the transmitted information. Further improve-
ment in the performance of the system can be achieved using an estimate of the channel

in the decoding process.

Consider the block diagram of Fig. 4.1, the received signal can be written as:

rit)y=Refa(t)Z(t)} + n(t), 4.10)

where Z(t) is the equivalent complex signal of z(t), a(t) is a complex fading process,

and n(t) is the bandpass additive white Gaussian channel defined as:

n(t)=n_(t)cos 2nf .t + n (t)sin2nf ¢,
and n_(¢), ny(¢) are i.i.d Gaussian random variables with zero mean and variance N (/2.

We assume that the channel fading is sufficiently slow so that the phase shift can be
estimated from the received signal without error. In that case idcal coherent detection of
the received signal can be achieved. Under this assumption the received signal can be

rewritten as:
r)=la()lz(t) + n(t)
- [la(x)lz,(r)+nc(z)]cosznfct+ [la(t)IzQ(t)+ns(t)]sin21rfct. @.11)

The task of an optimum receiver will be to extract the pair of waveforms
(z,(1), 29 (1)), which can be done by down-converting the received signal to baseband.
However, due to the noise introduced by the channel, the obtained pair of waveforms

becomes (r, (1), o (1)), where

rit)=la()lz,(t)+n.(t) (4.12a)
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Fig. 4.1 - The block diagram of a QPOM system in a fading channel.
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and

ro(®) = la(t)lzy@) + n (). (4.12b)

If the channel is slow enough in such a way that la(¢)! remains constant over one sym-

bol interval, then the received signal can be represented by the following vector

n=az +n, t =KT. (4.13)

The elements of 1, are i.i.d zero-mean Gaussian random variables with variance N /2, z,
is the vector corresponding to the transmitted pair of waveforms (z, (1), zQ(t ) at time AT,
and a, is the amplitude of the fading channel. It is assumed that ideal interlcaving/de-
interleaving is employed to destroy the memory of the fading channel. This allows us to

consider the samples of the fading amplitude, statistically independent.

From Eg. (4.3) we notice that the received signal is a function of the fading ampli-
tude. Therefore, the implementation of the MLSE receiver will depend on the availability
of the fading amplitude. Let’s represent the transmitted signals by the sequence of N -

VECtors,

Z={£0,_Z_1,...,_ZN_1}, (4]4)

the corresponding signal at the output of the discrete time channel by the sequence of

N -vectors r, and the channel state information by the N -element vector,

P={Py PPy} (4.15)

When this vector is extracted from the received signal, the MLSE receiver will use it in

the benefit of improving the performance of the system [29].
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4.2.1. Ideal Channel State Information

The assumption of ideal channel state information is to consider that the side infor-
mation random variable p, is equal to the fading amplitude a, . Thus, since the elements

of n, are i.i.d Gaussian random variables the metric can be written as [29]:

N-1
m(r,z,p)=- X llr, —a_z II%, (4.16)
n=0

where a, is assumed to be known. Substituting Eq. (4.16) into Eq. (3.23) and condition-

ing on a the conditional pairwise error probability is obtained as

P(z—%la)< %erfc [ [dj (2, DE, 14N, ] /I] : (4.17)

Applying the Chernoff bound [23], the above equation can approximated Ly

1
P{r—>17la)<—exp [—dﬁ (z, i)Eb/4N0]
2

‘ lD d:z,12) - E, /4N,

< , D=e : (4.18)
2
where
N-1
d}@i)=—3 a’llz, -, I
Eb
n=0

represents the square of the normalized weighted Euclidean distance between the two
sequences z and Z. The pairwise error probability is then obtained by averaging Eq.

(4.18) over the random variable a, i.e.,

P{z—1} =E{P{z—ila}}. (4.19)
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An upper bound on the bit error probability is then obtained as [29]:

Py 3 a(z, 2)P ()P {2 > i)
ieC

< L-?—T(D_ ,N) (4.20)

2k oN N =1,
where P (z) is a priori probability of transmitting z, C is the set of all valid sequences,
a(z, Z) represents the number of bit errors that occur when the sequence Z is detected
instead of the sequence z, and T(D, N) is the transfer function of the scheme encoder
obtained from the state diagram whose branch label gains are modified to include the

2

_ 2
effect of the fading channel. In this case we simply replace D¢ by D (the average of p*

over the random variable a).
When the fading channel is modeled as Rayleigh fading, the multiplicative gain of

the received signal is a random variable with probability density function

2

p,(a)=2ae™", (4.21)

and a mean-square value of unity, i.e,, E {az} = 1. A normalized Rayleigh density func-
tion is chosen so that the measured signal energy at the receiver represents the average

signal energy per channel symbol, E.

The evaluation of D is then obtained as:

o
2 L2
—a? —a’liz, -7, 114N,

D = J2ae e da.
0

Evaluating this integral, D becomes

I Ak
th T 4
1+—] . (4.22)
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An upper bound on the average bit error probability is then obtained by combining

Eqgs. (4.20) and (4.22),

-1
Iz, -2, I
P,SY 3 a(z P @] [1 4o (4.23)
4N,

z,%C nemn

where 1 is the set of n for which z, # 7.

4.2.2. No Channel State Information

When no channel state information is available, the MLSE receiver will base its

decisions on the following metric [29]

N-1
m@r,zy=~ 3 llr, —z 0% (4.24)
n=0

Using Eq. (3.26), the pairwise error probability can be written as

1
P{1—>ila} = —erfc [—u/mff]
2

1 2, 2
< —exp |-u"/2067 |, (4.25)
2
where
N-1
p= ¥z 7=z, 1%
n=0
N-1
A2 2 a2
~ Ya, iz, -2 17+ Hz 17112 17, (4.26a)
n=0
and
N-1
2 A 02
o' =2V, ¥ iz, -7, 1% (4.26b)

n=0
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We notice that averaging Eq. (4.25) over the random variable a is quite complicated, and
a closed form for the pairwise error probability seems to be impossible to obtain. Eq.

(4.25) can be rewritten in terms of a variable A (Chernoff parameter) as:

(s)
=A%+ A ] (4.27)

1
P{z— %la} = —exp
2 2

It is easy to show that optimizing Eq. (4.27) with respect to A yields Eq. (4.25). There-
fore, we can average Eq. (4.27) over the random variable @ and then optimize the

obtained result with respect to A.

Rearranging terms in Eq. (4.27) and averaging over the random variable a, we get

1 bl
2

nen

E

a,

exp [-l(ln(llgn =nz 0%+ z, -2, ||2)] ] (4.2%)

where E_ { . ] represents the statistical average over the p.d.f of the random variable « .

Therefore, an upper bound on the average bit error probability for the no channel state

information case can be obtained using Eq. (4.20) with

_ 2,2 2 _ g2 RYr” 2 2
b= Dld (7. 2) + Md*(z, 0) - d (3, 0))Ea D Md (z, 2)+d (2. 0) - d*(2,1})) , (4.29)
where
2 ~ A 2
d(z,2)= Y Wz, -2 11" (4.30)

nem

For a Rayleigh fading channel, D can be derived as,



_ 2,2 a2 —d¥a.( \/7_[ 2
D= D?.d (2,%) + Md"(2.0)-d (2, )))I_I 1-— '—Cecmcrfc(CQ) .
2

nen

where

2 2 a2
C=Alz, —Z, 0"+ liz, 11°= Z, 1I%),
Using the following asymptotic expansion for erfc (x),

2

[~ 1ne?]
erfe(x)= 1 —12x71,
Y

and replacing X by MN ., D becomes

D =2D ANd“(z.2)+ Md (2, 0)~-d"(2,0))

100

(4.31)

(4.32)

(4.33)

(4.34)

The upper bound on P, is obtained by first combining Egs. (4.20) and (4.34), and then

optimizing with respect to the parameter A.

4.2.3. Indicating Parameters in a Fading Channel

Consider the upper bound on P, given by (4.23). This upper bound consists of a

sum of many terms, where each term is inversely proportional to the product of the

squared branch distances along each error event path. However, at high signal-to-noise

ratio, the upper bound on P, is dominated by the term in the summation which has the

smallest number of elements in 1. This number represents the length of the shortest error

event path, called L, and the upper bound on P, becomes

(11
P, < :

b = N L’
B’ [Eb/NO]

(4.35)
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where

) g, —2 117
B =TI (4.36)
4E,
nen

is a constant that depends on the distance structure of the code, and a, indicates the
number of paths of length L. The parameters a, B2 and L can be used as indicating
parameters for the evaluation of the performance of a given system. Based on these
parameters, it is possible to get a good estimation for the performance. For example,
trellis diagrams without parallel paths from one state to the next perform better in fading
channels than the ones with parallel paths. Because parallel paths are known to be
optimum for Additive White Gaussian Noise (AWGN) channels, where the performance
of the system depends only on the minimum squared Euclidean distance along the trellis
and not the length of the error event path [27]. Furthermore, when we have parallel paths

the length of the shortest error event path is one .

We have seen in Chapter 3 that the quadrature pulse-overlapping modulation
scheme can be decomposed into an encoder followed by a memoryless modulator. Furth-
ermore, the trellis diagram of the QPOM encoder (example, Fig. 3.9) does not contain
parallel paths from one state to the next. In fact, the length of the shortest error cvent
path through the trellis is 2. Meaning that when ideal interleaving/de-interleaving is
assumed, this scheme has a time diversity of L =2 (if the all-zero path is taken as a
reference path, any path leaving the all-zero path will merge into it for the first time at
least after 2 state transitions, the path defined by the states 00, 10, 00 in Fig. 3.9 is such
example). Therefore, using the new representation of the QPOM scheme, its performance
over fading channels is expected to improve with respect to ideal coherent QPSK duc to

the structure of the QPOM trellis diagram.
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4.3. PERFORMANCE OF QPOM SIGNALS IN RAYLEIGH FADING
CHANNELS

In analyzing the performance of these signals, we consider the representation that
has been discussed in Chapter 3, where the QPOM scheme is modeled as an encoder fol-
lowed by a memoryless modulator. With the same assumptions of section 4.2, an upper

bound on the bit error rate of these signals is obtained by using Eq. (4.20).

4.3.1 Lincar QPOM Signals

The new representation of this scheme is shown in Fig. 3.1 and the trellis diagram of
its encoder in Fig. 3.2. We assume that the two components of the linear QPOM signal
are detected independently using a block diagram similar to the one given in Fig. 3.4,

The transfer function 7(D, N) of one of the components was derived and is given by Eq.
2

d _
(3.38). To be used in Rayleigh fading channels, we justreplace D ' by D defined by Egq.
(4.22).

By doing so, the transfer function becomes:

_ ND;
TD,N)= R 4.37)
1 -0.5ND 1= O.5ND2
where

- -1

D,= |1+ E,,/2N0] . (4.38a)
B —l

D,=|1+(1+ y)Eb/NO] . (4.38b)
- -1

D,= |1 +(l~y)Eb/N0] . (4.38¢)

and v is a coefticient depending on the pulse shape p(r) (Eq. 3.39). Taking the partial
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derivative of (4.38) with respect to N and then combining it with Eq. (4.20), the upper

bound on Pb becomes:

-
-~

DO
P, < : (4.39)

-

2|1-05D, - 0.51)2]-

At high signal-to-noise ratio, higher-order terms can be neglected and the upper bound

on Pb reduces to

=2

P, <0.5 [1 + EbIZNO] b, (4.40)
indicating that the performance of linear QPOM signals is inversely proportional to the
square of the signal-to-noise ratio E,/N ;. Furthermore, we notice that for high E, /N,
the effect of the overlapping pulse shape on the performance is negligible. Hence, based
on the new configuration of the linear QPOM scheme, it is possible to select bandwidth
efficient pulse shapes without affecting the performance of the overall system. Fig. 4.2
shows the performance of this scheme over the Rayleigh fading channel. The simulation
results are obtained for the double-interval overlapping raised-cosinc pulse shape
(1 + cos (nt/T))/2. We notice that the linear QPOM scheme offers better performance
than conventional QPSK. The only drawback of this scheme is that its envelope is not

constant.

When constant envelope signals are needed, a hard-limiter is used after the QPOM
modulator. This hard-limiter introduces crosstalk between the in-phase and quadrature
components of the transmitted signal. It was shown in Chapter 3 that optimum detection
is possible only when the two components are treated simultancously. Based on that dis-
cussion the performance of hard-limited QPOM signals in Rayleigh fading channcls is

analyzed in the following section.
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4.3.2. Performance of Hard-Limited QPOM Signals

Consider the new representation of the hard-limited QPOM scheme given in Fig.
3.8. This configuration represents the memory introduced by the overlapping pulse shape

and the cross-correlation caused by the hard-limiter.

Assuming maximum likelihood sequence estimation, these signals are detected
using the block diagram of the demodulator shown in Fig. 3.10. The MLSE processor
bases its decision on the mapping rules of Table 3.3 and Eq. (4.16) (when the channel

state information is available), or Eq. (4.24) otherwise.
The modified transfer function T(D, N) is obtained by combining Eq. (3.53) and
Eq. (4.22), that is [45],
WN +W N’

TDO,N)= = (4.41)
1-QN-0QN

where

W,=05D2 +0.5D; + DD, + D2,
W, =D D,Dy+D,DDs+D DD,+D,DDs
-DD,D,~05D D} -0.5D DI 2D,
Q,=D,+2D,,
Q,=05D7 +05D2 +DDs—2DD,,
and in this case

-i -1
D,= [1+2Eb/NO] , D= [1+(1+B(,)Eb/NO] ,
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17! -1
D,= [1 +E,)/NUJ , D= [1 +(1—B0)Eb/NO] ,

-1 -1
D,= [1 +(1=BE,N, |, Ds= [1+(1 +B1)Eb/N0]

The upper bound on the average bit error probability of hard-limited QPOM signals then

becomes:

W()“ + Q]) + W1(2 _Q())

P, < (4.42)

b~ 2
4 [1 ~0,-0, ]
The important point to be observed in Eq. (4.42) is that P, depends on the baseband
pulse shape used at the transmitter.

At high signal-to-noise ratios, higher-order terms in the expression of the average

bit error probability can be neglected. Hence, Eq. (4.42) can be simplified to:

2- B() - B1)2 -2
P, <0.25 . - [Eb/NO]
(1 "Bo) (I- Bl)

@-By- By’ .
= 0.25—— [Eb /NO] . 4.43)

(1-By- By’
As we cun see the variation of 3, and B, does not affect the expression of the upper
bound considerably. Therefore, it is possible to select a double-interval overlapping pulse
shape which gives a transmitted signal with a compact spectrum and good performance.
It is also noted that P, varies inversely with the square of E,IN . Fig. 4.3 [45] illustrates
the performance of the hard-limited QPOM scheme. The simulation results are obtained

for the double-interval overlapping pulse shape (1 + cos (%t /T))/2).

Recall the performance of conventional QPSK in a Rayleigh fading environment
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given in [24]. Since the QPSK modem is treated as a memoryless channel, channel state
information is not required. Based on the same assumption of coherent detection, the pro-
bability of bit error for conventional QPSK in a Rayleigh fading environment (also the

same for BPSK) is {24, Eq. (7.3.7)]

1 E,IN, 112
P, = [1 - |-
2 1+ E,,/N0
I E,
< ; — > 1. (4.44)
4E,IN , N,

Eq. (4.44) indicates that the error rate of conventional QPSK decreases only inversely
with E, /N, while the error rate of QPOM decreases inversely with the square of E, /N,
as shown by Eq. (4.43). The results in Fig. 4.3 clearly illustrate the superior performance

of this detection scheme in Rayleigh fading channels.

The power spectral density of hard ~limited QPOM signals can further be improved
by introducing a delay of 7/2 seconds in the baseband quadrature component of the
transmitted signal. This delay does not affect the power spectrum of the modulated signal
in a linear channel and hence both QPOM and Offset-QPOM spectra have the same
shape. However, passing through a nonlinear (saturated) amplifier (or hard-limiter),
Offset-QPOM signals exhibit a much lower spectral regrowth than QPOM signals [1].
Therefore, hard-limited Offset-QPOM schemes are more attractive. In the next section,
the performance of hard-limited Offset-QPOM signal over the Rayleigh fading channel is

analyzed.

4.3.3. Performance of Hard-Limited Offset-QPOM Signals

The trellis diagram of the hard-limited Offset-QPOM encoder is shown in Fig. 3.15.
We notice that the shortest error event path of this encoder is of length 2. Therefore,

when ideal interleaving/de-interleaving is assumed, this scheme exhibits a time diversity
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of L = 2. Meaning that at high £, /Ny, its performance is expected to vary inversely with

the square of £, /N ; (same as hard-limited QPOM schemes).

An upper bound on the performance of this scheme can be obtained by first comput-
ing the squared product of Euclidean distances along the shortest path and then using Eq.
(4.20). The squared product distance is easily obtained from the trellis diagram of Fig.

3.15. Eq. (4.20) can then be approximated by [39]

-2
P, <025 [1 +(1-B, )Eb/NO] : (4.45)

where B, is as defined in Chapter 3. We notice that this equation is comparable to
(4.43). Both functions vary inversely with the square of E, /N . Therefore, the perfor-
mance of hard-limited Offset-QPOM is similar to that of QPOM, and choosing between
the two schemes will only depend on the complexity and the spectral properties of each
scheme. Fig. 4.4 gives the upper bound on P, for both schemes. As we can sce the per-
formance is comparable. At high signal-to-noise ratios, hard-limited Offset-QPOM per-

forms better than QPOM due to the structure of its trellis diagram.

So far we have considered the case of Rayleigh fading channels. In the event when
there are fixed scatterers or signal reflectors in the medium, in addition to randomly mov-
ing scatterers, which is the usual case of land mobile satellite channels, the channcl
behaves as a Rician fading channel [59-61]. In the next section we present the effect of
this kind of channel on the performance of hard-limited QPOM signals by means of com-

puter simulation results.

44. PERFORMANCE OF HARD-LIMITED QPOM SIGNALS IN RICIAN
FADING CHANNELS

The Rician fading model is based on the fast fading, shadowed mobile satellite

communications channel model [60, 61], developed for application in the Canadian
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Mobile Satellite Communication (MSAT) program.

The channel is modeled as an AWGN channel with a time varying fading process a,

representing the complex signal gain. This complex signal can be written as

_ (n) + ) .
a=n,+e +J ny,

where n, n, and n, are three independent Gaussian vandom variables with zero mean
. . 2 .

and variance b(f. bg and d,, respectively. The parameters [, by and d, determine the

degree of shadowing. In our simulation, Light shadowed fading channel is used and the

parameters of this channel are given in Table 4.1 [60]. Infinite interleaving/de-

interleaving and ideal channel state information are assumed.

The results of our simulation for light shadowed fading channel are given in Fig. 4.5
[45]. The average bit error probability of the hard-limited QPOM scheme as well as ideal
coherent QPSK are given as a function of unfaded E, /N, As observed, the QPOM
scheme has a better performance than the ideal coherent QPSK, without using any cod-
ing schemes. In fact the performance of this scheme is comparable to 4-state SPSK TCM
schemes |67, 68]. Therefore, by using this detection scheme, first, we can avoid the com-
plexity of multi-level schemes and, second, we can transmit modulated signals with more
compact spectrum.

Table 4.1

Channel Model Parameters for Light Shadowed
Rician Fading Channel

by Ho \d,

0.158 0.115 0.115




Bit Error Rate

10t ¢ — , .
: :
i . S ]
102t “ . -
i ‘%“ . \\\ B
103 e ™ . =
: e T QPsSK ]
C - ~. /-—upper bound ]
104£ PR :
i QPOM __j e ]
. Offse1-QPOM .
10- . ~ .
5 10 15 20 25
SNR, Eb/No (dB)
Fig. 4.4 — Performance comparison of hard-limited QPOM and hard-limited

Offset-QPOM signals in Rayleigh fading channels.

11



Bit Error Rate

10 ] F T T T T T T —
E 5
102 E
: :
- i
103 ¢ uncoded QPSK -
- 3
104 ¢ Tl 7]
E 4-siate TCMBPSK [68] —— / N\ = ULl 3
- uncoded QPOM ]
- 4-state TCM 8PSK [67] .
l()-S | 1 L § N N
4 6 8 10 12 14 16 18 20
SNR, Eb/No (dB)

Fig. 4.5~ Performance comparison of hard-limited QPOM signals and 4-state
8PSK TCM in Rician fading channels.

112



113

4.5. PERFORMANCE COMPARISONS AND DISCUSSIONS

We have considered the average bit error probability of both QPOM and Ofiset-
QPOM signals over fading channels. We observed that for both schemes, the bit errot
rate in Rayleigh fading channel decreases inversely with the square of E, /N . It is also
indicated that the performance of both schemes depends on the trunsmitted pulse shape.
At high signal-to-noise ratio. the performance of hard-limited Offset-QPOM is better
than that of hard-limited QPOM due to the structure of its trellis diagram and its signal
constellations. Even though the detection of hard-limited Offsct-QPOM signals is more

complex, this scheme is still more attractive due to its spectral characteristics.

Trellis-coded modulation (TCM) schemes have recently received attention on
mobile fading channels [29, 66-70]. When combined with interleaving, these schemes are
known to give better performance in fading channels compared to the uncoded schemes.
As was indicated in section 4.2.3, the design of strong TCM schemes is guided by param-
eters more than just the Euclidean distance [29]. It is shown that the length of the shortest
error event path L and the product of branch distances along that path are primary cri-
teria for strong TCM code designed on mobile fading channels. Results [29] showed that
at high signal-to-noise ratio £, /N ,, a code without parallel transitions has a better perfor-
mance than a code with parallel transitions. The reason for this is that the code without
parallel transitions contains more time diversity. This criteria has been used to design
good codes for fading channels [29, 50, 67]. Note that in the hard-limited QPOM signals,
error correcting coding is not included and the modulation is basically a 4PSK. However
the memory caused by the double-interval overlapping baseband pulse shape behaves as
an encoder. As previously discussed, the MLSE receiver is constructed by exploiting this
inherent non-redundant coding siructure. Its trellis does not have any parallel transi-
tions. This makes it suitable to combat fading. Figs. 4.5 and 4.6 show the performance

comparison of the hard-limited QPOM and some 4-state 8PSK TCM schemes in fading
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channels. Code 1 (optimum in an AWGN channel) is a 4-state one with parallel transi-
tions introduced in [6¥], and code 2 is also a 4-state code but without parallel transitions
introduced in [67]. Fig. 4.6 shows that the hard-limited QPOM scheme has a similar per-
formance as Code 2 and both outperform Code 1. This is explained by the fact that the
hard-limited QPOM and Code 2 exhibit the same diversity L =2 (represented by the
shortest error event path), while Code 1 has a diversity of L = 1. As previously stated,
larger diversity yields a better performance in fading channels. For £,/N,<13 dB, the

hard-limited QPOM outperforms both scheraes.

Consider the fact that the hard-limited QPOM is actually a 4PSK scheme while
code 2 is a 4-state 8PSK TCM scheme. It can be seen that the hard-limited QPOM
scheme is less sensitive to phase error, and both schemes have the same complexity. For
these reasons, hard-limited QPOM scheme is a better choice in practice for

portable/mobile satcllite communication systems.



Bit Error Rate

10’1 T R N 1 T T T
10-2 3
uncoded QPSK ]
103 3 b
10+ = .
C 4-state TCM 8PSK [68] 3
C uncoded QPOM ———_-//‘o ]
" 4-state TCM 8PSK 167) )
10.5 1 ' 1 [}) 1 N 1 1
5 10 15 20 25 30 35 40 45

SNR. Eb/Ne (dB)

Fig. 4.6 — Performance comparison of hard-limited QPOM signals and 4-state

8PSK TCM in Rayleigh fading channels.

115



CHAPTER V

CODED QUADRATURE PULSE-OVERLAPPING MODULATED
SIGNALS FOR FADING CHANNEL APPLICATIONS

In Chapter 4, we considered the performance of QPOM signals in fading channels.
We observed that the new configuration of the QPOM scheme is suitable to fading chan-
ncl applications. The use of this new configuration has improved the performance of the
QPOM scheme considerably compared to ideal QPSK and this is achieved without any

extra redundancy.

The performance of the QPOM scheme can further be improved by combining it
with coding schemes. This Chapter presents the structure, performance, and realization
of combining hard-limited QPOM schemes and convolutional codes for fading channel
applications. As a direct result of the structural analysis, we provide solutions to the
problem of how to optimize the combined coding-modulation for hard-limited QPOM
schemes. The optimization criterion considered is based on maximizing the length of the
shortest error event path and the product of the squared branch distances along that error

event path for a given external convolutional code.

5.1. BACKGROUND

It is well known that combining coding and modulation improves the performance
of the overall system. However, the combination of the two schemes depends on the
structure of the modulation scheme. When coding is combined with a modulation scheme
with memory, the optimum solution depends on the interaction between the memory of
the outer code and that of the modulator. Moreover, this interaction will influence the

overall performance of the signal-space code and the possible realizations for the
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encoders that can produce it.

When the modulation scheme is divided into two stages: one stage with memory
and one stage without memory, combining this modulation scheme with a convolutional
code becomes a problem of concatenating two codes. This concatenation will not affect

the operation (mapping rules) of the memoryless modulator.

An important characteristic in choosing the convolutional code is to reduce the
number of states of the overall (concatenated) encoder. The number of states of the con-
catenated code is minimum when the output symbol of the convolutional code and the
input symbol of the QPOM scheme have the same size. Since the QPOM scheme is a 4-
level scheme (2 bits/symbol), the convolutional code of interest is a rate 1/2, convolu-

tional code.

One way of describing a convolutional code is to give its generator matrix |24]. The

convolutional code under consideration has the following generators:

glzlgl.()v---agl_v] (5.1a)

82=[82‘0,---,g2‘v], (5.1b)

where g, ; is a binary number taking the value O or 1 and v represents the total memory
of the code. For each input bit a pair of bits are gencrated. For example, if the input of

this code is a,, at time #T, then the output is

v

Con = 281, - (5.2a)
=0

Cin = Eg2,i a,_i» (5.2b)
i=0

which can be written as ¢, ¢, and denoted by ¢, . Depending on the values of g, | and
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a;

the symbol ¢, can take one of the symbol values 00, 01, 10 or 11. In the following sec-
tion we study the performance and the way of combining these convolutional codes and

the hard-limited QPOM scheme.

5.2. DESIGN OF GOOD CODED HARD-LIMITED QPOM SCHEMES

The system under consideration is shown in Fig. 5.1. As we can see the concatena-
tion of the two codes will not affect the operation of the memoryless modulator. The
hard-limited QPOM encoder is a rate 2/4 linear encoder and is given in Fig. 3.9. When
this encoder is concatenated with the convolutional code having the generators of Egs.

(5.1a, b), the obtained code is also a convolutional code with rate 1/4.

When the output symbol of the external convolutional code is as given by Egs.
(5.2a, b), then from Fig. 3.9 and Table 3.3 the output of the concatenated code (denoted

by cc, = ccg,cc, cc,y,0C4,) can be written interms of ¢, as

('(',l = Cncn—l'

Therefore, the concatenated code can be seen as two convolutional codes (identical to
the external convolutional code) in parallel. The first convolutional code having as input

a,. and the second convolutional code having as inputa, _,.

The generators of the concatenated code can be then written as [81]:

81=1810-- 8,0l (5.3a)
8= 1820 -+ 85,01 (5.3b)

8:=10.8,00 .- 8y,] (5.3c)
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Fig. 5.1 - The block diagram of coded QPOM schemes.
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g4 = Iov -22,()’ LRI gz,l"" (5.3d)

As we can see the concatenated code is completely defined once the external convolu-
tonal code is known.

From Egq. (5.3), we notice that the memory of the original convolutional code has
been shifted by one. Therefore, the total memory of the concatenated code is v + 1. The
number of states of this code is then two times the number of states of the external con-
volutional code. Usually, when two codes of v, and v, states are concatenated, the
obtained code has a total of v, v, states. Therefore, when the external convolutional code
is properly chosen the number of states of the concatenated code can be reduced. In our
case the number states has been reduced by a factor of two . This reduction in number of
states will reduce the complexity of the MLSE receiver without affecting its perfor-
mance.

The above discussion shows that if the external convolutional code is defined by its
trellis diagram, then the trellis diagram of the concatenated code can be constructed
easily. Thus making the selection of codes much simpler. This method is used in the fol-

lowing sections to represent the concatenated code.

The convolutional code will reduce the connectivity of the inner trellis (the trellis of
the linear encoder alone). The number of branches leaving (or merging into) each state is
reduced from four to nwo . The next question is how to choose the convolutional code in
such a way that the performance of the entire system is optimized. To answer this ques-

tion, we start with 2-state convolutional codes.

5.2.1. Rate 1/2, 2-State Convolutional Codes
Consider the general trellis diagram of a rate 1/2 2-state convolutional code given in
Fig. 5.2. The output of the code is defined by the set of symbols {c, ¢, ¢,, ¢;}. These

symbols are distinct and are chosen from the set of symbols {00, 01, 10, 11}. From the
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previous discussion. the concatenated code should have a total of 4 states. Fig. 5.3 shows
the trellis diagram of the concatenated code. We notice that the output of this code is
given as a function of the output of the convolutional code. Therefore, with an appropri-
ate choice of the symbols {c, c;, ¢,, €3}, we can control the output of the concatenated

code in such a way that the performance of the coded scheme is improved.

Consider the performance of a memory scheme in fading channels. In Chapter 4 it
was shown that the bit error rate is a function of the length of the shortest error event
path and the product of the squared branch distances along that path. These parameters
were enough to give a good approximation for the upper bound on P,. Here, we use
these parameters as indicating parameters in designing convolutional codes and help

choose its output symbols.

From the trellis diagram of Fig. 5.3, we notice that the shortest error event path is of
length 3. This provides an increase by one from the initial encoder. As seen from the
figure, L=3 is the maximum achievable time diversity for this 4-state trellis diagram.
Therefore, the design of the convolutional code will be based on the selection of the set

of symbols {c, ¢, €5, 5}

The Euclidean distance between the output symbols of the hard-limited QPOM
encoder varies with the Hamming distance. When the Hamming distance is high the
Euclidean distance is also high. This property is used in selecting the output symbols of
the convolutional code. When the all-zero path is taken as a reference, the Euclidean pro-

duct distance along the shortest error event path is a function of the following symbols

CICO’ C1C2, C0C2.

We start by defining the all zero path of the code. For linear codes, when the code is

at state '00’ and the input is ’0’, the output will be the all zero symbol. Hence,



Fig. 5.2 - The general trellis diagram of a rate 1/2, 2-state
convolutional code.

¢S €€, 00 00
¢ ¢, 01 01
Ge, e 10 10
6o G 11 11

Fig. 5.3 - The trellis diagram of the code resulting from the concatenation
of the code of Fig. 5.2 and the QPOM encoder.
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cO=OO.

In order to choose the rest of the symbols, we have to analyze the expression of the pro-
2 . . .

duct $° and at the same time keep a balanced convolutional encoder. This last property

ensures that no state is relatively weaker (or stronger) than others seen from the

Euclidean distance distribution.

Consider the first subset of the trellis diagram of the QPOM encoder:

A, = {0, 4,8,12.

After concatenation the first subset of the obtained code must be {0, 4}, {0, 8}, or {0, 12}.
It is easy to show that if this subset is {0, 12}, the obtained code has a UEP otherwise the
code is nonlinear. From Appendix A, we notice that the weight protile of the QPOM
encoder is a function of at most two distances. When the code is nonlinear, depending on
the reference subset the weight profile becomes a function of only one of the distances. If
we consider all possible states, the minimum distance of the code will be a function of
the minimum of the two distances. Therefore for this particular case, the convolutional

code resulting in a nonlinear concatenated code is not an optimum code.

The first subset of the concatenated code then should be {0, 12},

that is,

cl=ll.

The two other symbols ¢, and ¢, are easily defined, which gives the convolutional codes

of Table 5.1.
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Table 5.1
2-State Convolutional Codes for Hard-Limited QPOM Schemes

Code co | €4 C, | Cy

codel || 00 11 01 10
code2 J| 00 | 11 10 | 01

We notice that only two codes are selected for the hard-limited QPOM schemes.
Compared to QPSK, we can say that a good code for the QPSK scheme is not necessarily
good for the hard-limited QPOM scheme. This is due to the interaction between the

memory of the QPOM scheme and the convolutional coce.

By analyzing the concatenation of the codes of Table 5.1 and the hard-limited
QPOM encoder, it is found that the two concatenated codes have the same transfer func-

tion. In other words they all have the same performance.

Consider the concatenation of code 1 and the hard-limited QPOM encoder. The
trellis diagram of the obtained code is shown in Fig. 5.4. The modified transfer function
of this code can be derived by writing the state equations and then using Eq. (3.37). By

doing so we get:

_ 025ND (D™ + D*D ™ + D™
T(D.N) = , (5.4)

1-ND*-025N (D™ + D™

where in this case

o, = 4, o = 2(1 + By, oy = 2(1 - By),

55
o, =2, as=2(1 + B,), a, = 2(1 - B,). (5-5)

The normalized squared Euclidean distance of this scheme is given by

dl =203 +B,- By

mn



0 12
2 14
11 7
9 5

Fig. 5.4 - The trellis diagram of the code resulting from the concatenation
of code 1 and the QPOM encoder.
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We notice that the performance is dependent on the pulse shape p (¢). By a proper choice
of p(t), both B, and B, become close to 0.5 and a coding gain up to 1.76 dB over
uncoded BPSK under AWGN conditions can be achieved, which is comparable to 2-state
coded QPSK. However, the complexity of 2-state coded QPSK is less than that of coded
hard-limited QPOM.

Over Rayleigh fading channels, an voper bound on the average bit error probability
of this system is casily obtained using (4.20),

0.125D (D, + D5)(D 5 + D )
P < (5.6)

h— 27
[1 -D,- 025D, +1)5)2]

with

-1
D, = [1 + a,Eb/4N0] :

At high signal-to-noise ratio, the upper bound on P, can be approximated by

E, 1" E,
, T > 1, (5.7)
Ng

1
(1-Bp)(1+B,)

b

Ny

P, <0.125D,D D=

where B, and B, are given by (3.52a, b), respectively, and are functions of the pulse
shape p(t). From Fig, 5.5 [81], we notice that this coded scheme outperforms the
uncoded QPOM by about 3 dB at a bit error rate of 107, However, comparing it to the
4-state convolutionally coded QPSK (the two schemes have the same number of states),
it is seen that the performance is about 1 dB worse. This dB difference can be reduced by

choosing the appropriate pulse shape, for which 3;and B, are close to 0.5.

Further improvement in the performance of convolutionally coded QPOM can be

achieved by increasing the number of states of the convolutional code.
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In the following, 4-state, rate 1/2 convolutional codes are considered.

5.2.2. Rate 1/2,4-State Convolutional Codes

A rate 1/2, 4-state convolutional code can also be represented by its trellis diagram
as shown in Fig. 5.6. In this figure, ¢, ¢, ¢4, €3, €y, Cs, €, and ¢, represent the output
symbols of the code. These symbols are chosen from the set of symbols {00, 01, 10, 11}.

When this code is concatenated with the hard-limited QPOM encoder, the code
having the trellis diagram of Fig. 5.7 is obtained. Its possible outputs are expres.ed in
terms of the possible outputs of the external convolutional code. This code has a total of
¥ states and the length of the shortest error event path is 4.

In designing the optimum code, we consider the parameters used in section 5.2.1,
namely, maximizing the distance between signals leaving the same state, the distance
between signals merging into the same state, and the product of the squared branch dis-
tances along the shortest error event path.

From Fig. 5.7, we notice that when the all-zero path is taken as a reference, the pro-

duct distance along the shortest error event path is a function of the following symbols

Ci€p €€y €€y Cfy.

Assuming that the all zero path is defined by the symbol ¢ ¢, i.€.,

¢, = 00,

then from the discussion of the previous section concerning the linearity of the con-

catenated code, the two symbols ¢ | and ¢, should have the fo'lowing values:

By doing so we avoid the presence of the distance 2(1 - B,) (always smaller than or

. : 2 :
equal to one) in the expression of B°. The symbol ¢, will take one of two values



(o c, 00
c, C, 01
G Cs 10
Ce c, 11

Fig. 5.6 - The trellis diagram of a rate 1/2, 4-state convolutional code.

CoCy C1€o 000 o —e (00
Qe G& 001
C,Cy C3Cy 010
(oo GG 011
CsC) C5Cy \~‘o 100
o oo T o1
CeCs CCs 110
GG GG 11

Fig. 5.7 - The trellis diagram of the code resulting from the concatenation
of the code of Fig. 5.6 and the QPOM encoder.



130

¢, =01 or 10.
The sclection of the rest of the symbols follows easily. This leads to the convolutional
codes given in Table 5.2.
The trellis diagram of the code resulting from the concatenation of code 1 and the
hard-limited QPOM encoder is given in Fig. 5.8. Its modified transfer function is derived
following the procedure used in Chapter 3,

2
025ND "D ™ + D™%)?
T(D,N)= , (5.8)

1 =ND 2 =025ND ™ + D™ -025N D™ + D™)?

where a are given by Eq. (5.5).

The minimum normalized squared Euclidean distance of this code is given by

~n

dn-nn =42+ Bmm)’ (59)
where
I3mm = min (B()’ Bl)
Table 5.2

4-State Convolutional Codes for Hard-Limited QPOM Schemes

Code Co | €4 Chp { €3 | Cq | C5 ]| e Cq

code!l || 00 | 11 1110001 | 10} 10] 01

code2 || 00 | 11 11 (00|10 01| 01] 10

In the AWGN channel, the performance of the system is upper bounded by:
1 Vi

P, < -;-erfc [ [(2 + Bmm)Eb/NO ] (5.10)



o 00

3 15 001
13 1 010
14 2 011
7 11 100
4 8 101
10 6 3 110
9 5 Tre 11

Fig. 5.8 - The trellis diagram of the code resulting from the concatenation
of code 1 and the QPOM encoder.
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Compared to uncoded BPSK, a coding gain of 10log(2 + f_.) dB is achieved. Since
B < 0.5, the maximum coding gain obtained with this scheme is 3.98 dB which is com-
parable to that of 4-state coded QPSK. This justifies once more the results of Chapter 3,
where the performance in AWGN channels is a function of the distance between set

points and completely independent of the structure of the trellis diagram of the code.

Over fading channels, the structure of the trellis diagram is important. Consider the
Rayleigh fading channel, an upper bound on the average bit error probability of the sys-

tem is given by:

0.125D2(D,+ D)’

P, < 5 (5.11)
[1 -D,-025(D,+ D)} -0.25D, + D)’
which at high signal-to-noise ratio can be approximated as:
2
Blo, + )" [E, E,
Fys———"7—|— — > 1 (5.12)
(a0 LNy No

We notice that by changing o, and o, the upper bound on P, does not change much.
Fig. 5.9 gives the performance of this coded scheme. As indicated, more coding gain is
obtained compared to the 2-state code. It is observed that coded hard-limited QPOM out-

performs 8-state coded QPSK (both schemes have the same complexity).

5.3. DESIGN OF GOOD CODED HARD-LIMITED OFFSET-QPOM SCHEMES

The hard-limited Offset-QPOM encoder is a linear encoder with rate 2/5 as shown
in Fig. 3.14. When this code is concatenated with a rate 1/2, convolutional code, the

obtained code is also a convolutional code with rate 1/5.

Consider the convolutional code having as output ¢, defined by Eq. (5.2).
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From Fig. 3.14 and Table 3.5, the output of the concatenated code can be expressed in

terms of ¢, as:

Ccn = Cll cn—lc (ﬂ -2)1 ’
where € n)l denotes the least significant bit of the symbol ¢, _,. The trellis diagram of
the concatenated code can then be derived from the trellis diagram of the external convo-
lutional code.

The generators of the concatenated code can then be written as:

81=1810p - 8,0.0] (5.13a)
82=1890 -+ 85,-0,0] (5.13b)
83=10.810--81,,0] (5.13¢)
£4=10,8200 - 8s,,0] (5.13d)
85=10.0,850 .. .85, 1 (5.13¢)

We can see in this case that the memory of the original convolutional code has been
shifted by rwo . The total memory of this code is then v + 2. Therefore, the number of
states of the concatenated code is four times the number of states of the external convo-
lutional code. This gives a reduction in the state space by a factor of two . This reduction

in number of states is similar to the one obtained for the hard-limited QPOM scheme.

In order to be able to design these codes. we consider some particular cases where

we have to fix the total memory v.

5.3.1. Rate 172, 2-State Convolutional Codes

The general trellis diagram of a rate 1/2, 2-state convolutional code is given in Fig.

5.2. When this code is concatenated with the hard-limited Offset-QPOM encoder, the
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code having the trellis diagram of Fig. 5.10 is obtained. As we can see the output is
given as a function of the output of the convolutional code. Therefore, following the
same procedure used in section 5.2 we can design convolutional codes suitable to the

hard-limited Offset-QPOM scheme [72].

In Fig. 5.10, ¢;, represents the least significant bit of the symbol ¢,. The all zero

path of the code is defined by the symbol c . Hence,

¢y =00, > co =0.

From the same figure, we notice that the only choice for ¢, is

C21 - 1,

ie., ¢, can take the value 01 or 11. Because if c,, = 0 then the obtained code is a catas-
trophic code. The product of the squared distances along the shortest error event path is

a function of the following symbols:

€1€0Car CoC0C2r €021 €261C0r-
We notice from Fig. 5.10 that if ¢ |, = 1 than ¢, has to be 0 and vis versa. Using these

restrictions, the following code is obtained:

g,=1010]

g,=1[(11]
Now consider the case when €y = 0, then the 2-state convolutional code will have

the following generators:

81=181081,4) 8,= 1820l

This means that the least significant bit of the output symbol is independent of the
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Fig. 5.10 - The trellis diagram of the equivalent code resulting from the
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concatenation of the code of Fig. 5.2 and the Offset-QPOM
encoder.
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memory of the code. From Eq. (5.3). the generators of the concatenated code can be writ-

ten as

81 = [81‘0»31‘1»0]v §-= lgg.()s 0, 0]
g3 = [Ov gl.O’ g“], 84 [0.g2'(,. 0]‘
85=10,0,8,0l (5.14)

As we can see the memory of the concatenated code has been reduced from 8 to 4.
In this case the trellis diagram of Fig. 5.10 becomes a 4-state trellis diagram. Therefore,
the complexity of the concatenated code is reduced by a factor of 4. The following con-

volutional code offers such structure:

81=[1 1]

g2=[1 0]

We have considered the two different codes. The results are illustrated in Fig. 5.11.
Code 1 is the code resulting to an 8-state Offset-QPOM scheme and Code 2 to a 4-state
coded scheme. It is observed that both codes offer comparable results. Therefore, it is

better to consider 2-state convolutional codes satisfying Eq. (5.14).

Further improvement in the performance of convolutionally coded Offset-QPOM
can be achieved by increasing the number of states of the convolutional. In the following,
4-state, rate 1/2 convolutional codes are considered. These codes are combined with the

linear encoder of the Offset-QPOM scheme.

5.3.2. Rate 1/2 4-State Convolutional Codes

A 4-state, rate 1/2 convolutional code can also be represented by its trellis diagram
as shown in Fig. 5.6. When this code is concatenated with the hard-limited Offset-QPOM

encoder, the concatenated code is also a convolutional code.
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Following the same procedure used in selecting 2-state convolutional codes, it is easy to
express the output of the concatenated code in terms of the output of the convolutional
code. The trellis diagram of this code is shown in Fig. 5.12. We notice that the length of
the shortest error even path through the trellis is L = 5, which is equal o the length of the

shortest error event path of the convolutional code plus two.

As it was the case for 2-state codes, the design is based on maximizing the distance
between signals leaving the same state, the distance between signals merging into the
same state, and the product of the squared branch distances along the shortest error event
path.

2 . . . .
The product B°, along the shortest error event path is a function of the following symbols:
C1foCorr  CofoC2  Cof2Car  C24Cur CatiCar
Assuming that the all zero path is defined by the symbol ¢ ,c,, i.e.

c0=0().

From the trellis diagram, we notice that the bit ¢, has to be:

Cq = 1.

The selection of the rest of the symbols are obtained following the sume procedure. The

design leads to the convolutional codes given in the following Table.

Table 5.3
4-State Convolutional Codes for Hard-Limited Offset-QPOM Schemes

Code ColCi | €caleg]cy|cs el g

code 1 00
code 2 {| 00

11100 f 0110 ] 10} 0Ol
11 100 ] 10|01 {0110

—
SRy

Again when we consider the case of ¢, = (), the number of states of the concatenated
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code will be reduced from 16 to 8.

5.4. DISCUSSION

The idea of combining convolutional codes and QPOM schemes has been intro-
duced and studied in this chapter. After concatenation, the memory of the two schemes is
considered as one entity to be optimized.

To get an idea of the coding gains achievable with combined convolutional codes
and Offset-QPOM scheme, some of the codes have been considered. The results are
shown in Fig. 5.13. Notice that the potential coding gains are quite significant compared
to uncoded BPSK and uncoded Offset-QPOM. By increasing the signal-to-noise ratio, the
coding gain is increased. As the memory length v is increased, the performance of the
system is also improved.

On the other hand, comparing coded Offset-QPOM with coded QPSK, superior per-
formance is obtained without much sacrifice in complexity as shown in Fig. 5.13, It is
observed from the figure that uncoded Offset-QPOM outperforms 2-state coded QPSK.

Although this coding/modulation has been done for 4-level QPOM schemes, it is
possible to apply the same idea to M -ary QPOM schemes. This matter is addressed in

Chapter 6 where more efficient schemes are discussed.
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Fig. 5.12 - The trellis diagram of the cquivalent code resulting from the
concatenation of the code of Fig. 5.€ and the Offset-QPOM
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CHAPTER VI

M-ARY QUADRATURE PULSE-OVERLAPPING
MODULATION SCHEMES

To achieve high spectral efficiency in terrestrial and satellite communication sys-
tems, a transmitted signal should retain a compact spectrum and a low spectral regrowth
after a non-linear amplification. We have seen in Chapter 2 that the use of overlapping
pulse shapes, where each pulse duration is wider than one symbol interval, is a good tool
in providing transmitted signals with good spectral properties. For highly efficient (i.c.,
more than 2 bits/s/Hz) digital systems, it is desirable to apply double-interval overlapping
pulse shapes to M-ary QAM systems [34]. In this Chapter, we apply some of the results
obtained in the previous chapters to M -ary quadrature pulse-overlapping modulated sig-
nals. We limit our study to 16-QPOM, in which we constder two cascs. The first modula-
tion scheme is based on direct quadrature modulation using double-interval overlapping
pulse shapes. The second modulation scheme is a more power efficicnt onc. It is con-
sidered as two hard-limited QPOM schemes in parallel. It uses four identical double-
interval pulse shapes and one carrier. The combination of these schemes with convolu-

tional codes 1is also studied.

6.1. A16-QUADRATURE PULSE-OVERLAPPING MODULATION SCHEME

The block diagram of a linear 16-QPOM scheme 15 shown is Fig. 6.1. This block
diagram is similar to the one given in Fig. 2.2. A conventional quadrature modulator with
two DSB-SC mixers is used as the modulator. The baseband pulse shapes are two identi-

cal double-interval pulses satisfying the conditions given by (2.244, b).
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Fig. 6.1 - The block diagram of a 16-QPOM Scheme.



The transmitted signal can be written as:

+oo +oo
sity=Y A, p(t = nT)cos 27th1 + Y B, p(t =T )sin 21rf(,t. 6.1

n=—oo n=—oo

The 2-to-4 level baseband converter converts its input data stream to 4 level, pulse ampli-

tude modulated (PAM) baseband signals having a symbol duration of

T = 4T,,

where T, representing the bit duration. At time T, the output of each converter can be

expressed in terms of its input as:

A, = 2(2an +b,)-3, (6.2a)

and

B, =202, +d,)-3. (6.2b)

We notice that the structure of the 16-QPOM modulator is similar to that of 4-level
QPOM modulator. For both schemes, the quadraturc components are generated in

baseband using direct quadrature modulation.

We have seen in Chapter 3 that when the pulse shape is defined over two symbol
intervals, at any instant the transmitted signal becomes a function of the present and pre-
vious symbols. Furthermore, the two components are independent one from the other giv-
ing the option to the receiver to treat each one separately. This last point was proven to
be very important because it simplifies the implementation of the MLSE receiver consid-
erably and allow the use of higher bit rates by reducing the delay introduced by the

Viterbi decoder.

Applying the procedure used for 4-level QPOM, the 16-QPOM scheme 15 casily

decomposed into two stages, one stage with memory and one stage without memory. As
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indicated by Fig. 6.2, each component is represented in the form of a coded scheme. The
first stage of each component is a rate 2/4 encoder, where for each pair of input bits a set
of four bits is generated. The output of this encoder is then mapped to a single interval

waveform based on the mapping rules of Table 6.1.

We notice that the structure of this scheme is the same compared to 4-level QPOM
schemes with the exception of an increase in the memory of the encoder. Therefore, most

of the results obtained in Chapter 3 can be applied here with very little modifications.

Consider the in-phase component of the modulation scheme of Fig. 6.2. Compared
to Fig. 3.8, we notice that both schemes have the same encoder. Therefore, the encoder

of Fig. 6.2 can be represented by the trellis of Fig. 3.9.

From Table 6.1, it is observed that the transmitted waveform is a function of
(s4(1), 5,(r)) defined in (3.3a, b). This implies that each component of the 16-QPOM sig-
nal is defined over the same signal space as that of the 4-level QPOM scheme. Therefore,
an MLSE receiver for these signals is obtained by using the block diagram of Fig. 3.4,
where the Viterbi processor is implemented based on the encoder of the 16-QPOM
scheme and the mapping rules of Table. t.1. This modification is easily done when Digi-
tal Signal Processing (DSP) is used. This structure can be easily generalized to M -ary
QPOM schemes. For example, if M = 2" then the M -ary QPOM encoder will be a rate

1/2 encoder with an input symbol of length n /2.

Consider the transmission of 16-QPOM signals over the AWGN channel. It is
known that the performance is dominated by the minimum squared Euclidean distance of

the encoder. Using the trellis diagram, it is easy to show that

T
d’ = J(sU(t)+sl(t))2dt=1.6Eb, (6.3)

nn
0
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where E, represents the bit energy, s(¢) and s5,(¢) are given by Eqgs. (3.3a, b). Using Eq.
(3.34), the bit error rate of 16-QPOM signals over AWGN channels is tightly upper

bounded as:

1 %
P, < —erfc [ [0‘4Eb/NO} ] (6.4)
9 .

Hence, asymptotically the performance of 16-QPOM signals converges to that of con-

ventional 16-QAM.

Now consider the case of Rayleigh fading channels. From the structure of the trellis
diagram of the 16-QPOM encoder, we notice that this scheme offers a time diversity of
length 2. Therefore, the performance is expected to vary inversely with the square of the
signal-to-noise ratio. Its performance will be better than conventional 16-QAM under the
same type of channels. Fig. 6.3 gives the performance of both schemes, it is observed that
the 16-QPOM scheme using the new configuration outperforms the conventional 16-
QAM for most signal-to-noise ratios. This explains once more the suitability of this struc-
ture in fading channels.

Combined convolutional codes and 4-level QPOM schemes was studied in Chapter
5. Results showed that it is possible to improve the performance of QPOM schemes by
properly choosing the external encoder. In the following section, the same technique is
applied for higher level QPOM schemes. We consider combined convolutional codes and
linear 16-QPOM schemes for fading channel applications. The obtained coded scheme
has a throughput of 2 bits/symbol and can be compared to most schemes studied in

Chapter 4.
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Table 6.1
Mapping Rules for the In-Phase (Quadrature)
Component of Linear 16-QPOM Schemes

Dec. Symbol Transmitted signal
a,b, a, b, _, s,(t)orsQ(t)
0 0000 =35(t)
1 0001 =25,(t) =5 ,(t)
2 0010 —s,(t) =25, (1)
3 00 11 =35,(t)
4 0100 —25,(t) +5,(1)
5 0101 —slt)
6 0110 -5,(t)
7 0111 +54(1) =25 (1)
8 10 00 ~5(t) +25 (1)
9 1001 +54(t)
10 10 10 +54(t)
11 1011 +2s0(t)—s1(t)
12 1100 +35,(t)
13 1101 +50(1) +25 (1)
14 1110 +25(t) +5,(t)
15 1111 +35(t)

6.2. CODED LINEAR 16-QPOM SCHEMES

As mentioned earlier, the two components of the linear 16-QPOM scheme are
independent from each other. Therefore, we can apply a coding scheme to each one of
them independently [80]. This technique can simplify the design of the code and reduce
the complexity of the overall system. The coded scheme used in this study is shown in
Fig. 6.4. 1t uses two identical convolutional codes, one for the in-phase component (I
channel), and one for the quadrature component (Q channel). The convolutional code is a
rate 1/2 code with a total of v memory. As it was discussed in Chapter 5, the rate of this
code is chosen in such a way that the number of states of the concatenated code is
reduced. After concatenation, each concatenated code is a rate 1/4 code with a total of

v + 1 memory, and the obtained coded scheme has a net throughput of 2 bits/symbol.
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6.2.1. Code selections

In more details, we consider the two cases studied in Chapter 5, namely, 2-state
codes and 4-state codes, which have been shown to be effective in the Rayleigh fading

environment.

We first consider the linear 16-QPOM scheme and 2-state convolutional codes.
From Chapter 5 (section 5.2.1), each concatenated code will have a total of 4 states.
Therefore, the coded scheme will have a total of 16 states. However, the configuration of
this coded scheme allows the option of independent decoding for each component. In this
case the decoding becomes much simpler, and the total number of states is reduced to 8,

4 states for the in-phase component and 4 states for the quadrature component.

In order to select the optimum convolutional code, we consider the signal constella-
tions of one of the two components of the 16-QPOM scheme shown in Fig. 6.5. In addi-
tion, the trellis diagram of the concatenated code has to satisfy the conditions of Fig. 5.6.

By doing so, the convolutional code having as generators

£, =111] (6.4a)

g,=110], ) (6.4b)

(equivalently, ¢, =00, ¢, = 11, ¢, = 10, ¢5 = 01), offers the best expected performance.
This can be seen from the obtained signal constellation of the concatenated code (Fig.
6.5). We notice that this code is one of the two codes obtained for the hard-limited

QPOM scheme.

Co.nbined with the obtained code, the performance of the coded linear 16-QPOM
scheme over the Rayleigh fading channel is studied using simulation results. The
double-interval overlapping pulse shape used in this study is p(t) = (1 + cos (rt/2T))/2.
The bit error rate is illustrated in Fig. 6.6. For the sake of comparison, the perforrmance of

of coherent QPSK, uncoded QPOM, 4-state and 8-state TCM 8PSK are also illustrated in
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Fig. 6.6. We observe that the performance improvemnent compared to uncoded QPOM is
quite significant (about 4 @B at a bit error rate of 10_4). This improvement is obtained by
simpiy using a 2-state convolutional code, which shows the importance of the interaction
between the memory of the two schemes and the way of combining them. When com-
pared to coding schemes of the same complexity, it is observed that for E,/IN,<15dB |
coded 16-QPOM performs better than 8-state TCM 8PSK. Even though the two schemes
have the same number of states (a total of § states), coded 16-QPOM scheme uses a
simpler decoding procedure. This decoding procedure allows the use of two parallel
Viterbi processors working on a trellis diagram of 4 states each. This will reduce the time
delay introduced by the Viterbi processor and gives the possibility of using higher bit
rates. In addition, the 16-QPOM scheme uses pulse shaping in gencrating the transmitted
signal. Therefore, these signals have more compact spectrum compared to uncoded
QPSK and coded PSK making coded linear 16-QPOM scheme a better choice for band-

limited channels.

With only 2-state convolutional codes, it was possible to generate good coded
schemes. By increasing the number of states of the external code, it is possible to design
better coding schemes [81]. Next we consider combined linear 16-QPOM schemes and
4-state convolutional codes. Again in this case we use the signal constellations of Fig,.
6.5. The selection of the optimumn code is done in a manner similar to the one used for
the 2-state code. From Chapter 5 (section 5.2.2), when a 4-state convolutional code is
used the concatenated code will have a total of 8 states. Therefore, for coded lincar 16-
QPOM each concatenated code has a total of § states. The coded scheme then has # total
of 64 states. However, using the option of independent decoding, the total number of
states is reduced to 16, 8 states for the in-phase component and § states for the quadrature

component.

In selecting these convolutional codes we consider the signal constellations of Fig.

6.5 and the trellis diagram of the concatenated code given in Fig. 5.7. We can sce that set
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partitioning can not be applied here due to the dependence between the subsets of the
concatenated code.

Having discussed the way of selecting the appropriate code, we now present ° :
final result without going through all the details. The obtained 4-state convolutional code

has the following generators

gy=111] (6.52)

g, =1101]. (6.5b)

Note that this code is one of the two codes selected for hard-limited QPOM schemes.

Fig. 6.7 illustrates the performance of the coded scheme over Rayleigh fading chan-
nels. For the sake of comparison, Fig. 6.7 also illustrates the performance of uncoded
QPSK, uncoded QPOM, and 8-state TCM 8PSK schemes. It is observed that increasirg
the number of states has improved further the performanc . We may also add that coded

16-QPOM schemes offer very good performance at low signal-to-noise ratio.

In M-ary QAM systems, AM/AM compression and AM/PM conversion non-
lincarity of transmit HPAs cause significant performance degradation. Thus, for a con-
ventional M -ary QAM, the transmit HPAa are required to operate in a quasi-linear mode,
that is, with a high outpnt back-off or at a low power efficiency for a good performance
[79]. Therefore, transmitters for multiple amplitude types of signals are inherently less
power efficient than those for constant envelope type of signals. For the operation of M -
ary QAM at higher power efficiency, we consider a modulation technique that may
operate through fully saturated HPAs without need for postmodulation spectral shaping
filters while retaining a compact spectrum [78). Thus a more power efficient signal can be

transmitted without significant intersymbol interference due to non-linear effects.
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6.3. POWER EFFICIENT 16-QPOM SCHEMES

Consider the 16-QPOM signal, s (¢), given by Eq. (6.1). This signal can be rewritten

as:
+en +oo
s(ty= Y, A.p(t —nT)cos2nf t + 3 B p( —nT )sin2nf .t
n =--oo0 n =—oo
+oo 400
+2 Y C.p(t-nT)cos2nf t +2 3, D p@ —nT)sin2nf t (6.6)
n=—oo n=—o0
where

A =2a,~1, B,=2b -1 (6.72)

C =2,-1, D =2 -1 (6.7b)

n
It is observed from Eq. (6.6) that the 16-QPOM signal is a linear combination of two
Quadrature Pulse-Overlapping Modulated (QPOM) signals, where each QPOM signal is
generated independently from the other. Therefore, the 16-QPOM scheme can be con-

sidered as two QPOM type signaling schemes in parallel as shown in Fig. 6.8.

In Fig. 6.8, the input data stream is split into 4 parallel streams {a_}, {b,}, {c,}, and
{d }. The data streams {a } and {b, ] are fed into the in-phase and quadrature channels
of the first QPOM scheme, respectively, and the data strearrs {c, } and {d_} are fed into

the in-phase and quadrature channels of the second QPOM scheme.

The envelope fluctuations of the QPOM signals, s,(¢) and s ,(¢), are removed after
hard-limiting. Hence, the hard-limited QPOM signals, z,(¢) and z,(¢), suffer no major
degradation due to nonlinear amplification. The output voltage of the second high power
amplifier is arranged to be twice that of the first amplifier to satisfy Eq. (6.6). The outputs

of the two amplifiers are added to give the 16-QPOM transmitted signal.
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Since the shapes of the power spectral density of both z,(¢) and z (1) are identical
and the 16-QPOM signal z(t) is a linear combination of those two signals, it can be
shown that the power spectrum of z (¢) has the same shape as that of z,(t) or z5(t) [45].
In addition, the spectral efficiency of this 16-QPOM scheme is double relative to the

QPOM scheme for the sume bit rate.

Our objective in this section is to study the performance of this scheme in both
AWGN and fading channels. The idea is to apply the results obtained in the previous
chapters. We have seen in Chapter 3 that at any symbol interval a hard-limited QPOM
signal can be represented by a vector z in the signal space. This vector is an 8-element
vector when hard-limited QPOM signals are considered, or a 12-element vector in the
case of Offset-QPOM signals. Given the relation between z (), z,(t) and z,(t), the sig-
nal space diagram of z(¢) can be derived from those of z,(t) and z,(¢) using vector addi-
tions. Therefore, if at time #T z,(t) and z,(¢) are represented by the vectorsz,,, and z,,,

respectively, then the 16-QPOM signal, z(1), will be represented by the vector

(6.8)

= 2
In + “£2n*

551
X3

This indicates that 16-QPOM signals and hard-limited QPOM signals are defined over
the same signal space.

Since 16-QPOM signals are linear combinations of two hard-limited QPOM signals,
the 16-QPOM scheme can also be decomposed into an encoder followed by a memory-
less modulator. The modulation encoder is a rate 4/8 encoder with an input symbol of
length 4 and a total of 16 states. This encoder is constructed using two hard-limited
QPOM encoders in parallel. The mapping rules of the memoryless modulator consists of
all possible combinations of z,(t) and z,(t), which gives a total of 256 different pair of
waveforms (z, (1), % (r)). Contrary to the case of section 6.1, the two components of the

this scheme cannot be treated independently due to the correlation that exists between
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them. Therefore, an optimum receiver need to treat both components simultaneously.
This means that the detection procedure will be much more complex than the one used in
the previous section. Never-the-less, the choice of the modulation/demodulation scheme

will depend on the application and the kind of compromise that can be done.

The performance of this scheme can be studied based on its trellis diagram. For

example, the minimum squared Euclidean distance is given by

dl =320~ By,

where [, is a coefficient depending on the pulse shape p (1) and is defined in (3.52a). As
B, approaches 0.5, the performance of this scheme over AWGN channels approaches that

of conventional coherent 16-QAM scheme.

Fig. 6.9 illustrates the performance of this scheme and the performance of the lincar
16-QPOM scheme that has been studied in section 6.1. Both schemes use the double-
interval pulse shape p(t) = (1 + cos (nt/2T))/2. As we can see the simulation results

agrees with the predicted ones.

The performance of this scheme over the Rayleigh fading channel can be upper

bounded as:

-2
P, <0.25[1+ 0.401- BO)EL,/NO] ,

which as expected varies inversely with the square of E, /N, Fig. 6.10 illustrates the
performance improvement of this scheme compared to conventional coherent 16-QAM.
The improvement is again due to the time diversity introduced by the memory of the
moduiation scheme. From the above discussion it is apparent that the penalty paid for
improving the performance of power efficient 16-QPOM schemes is an increase in the
complexity of the MLSE receiver. In return, the advantage of increasing M is a reduciion

in the signal-to-noise ratio per bit required io attain a specified probability of error. In the
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following scction we consider combined convolutional codes and power efficient 16-

QPOM schemes.

6.4. CODED HARD-LIMITED 16-QPOM SCHEMES

This scheme can also be combined with convolutional codes in a manner similar to
the one used for hard-limited QPOM schemes. Since the total number of states for the
uncoded scheme is already high (16 states), we will consider convolutional codes which
when combined with the uncoded 16-QPOM scheme will not increase its total number of
states. This will depend on the choice of the convo utior::i cocie. In achieving this objec-
tive, we consider rate 2/4 convolutional codes. The ouia:icd coded scheme will have a
net throughput of 2 bits/symbol and can be compared to most schemes studied earlier in

this thesis.

6.4.1. Code Selections

Even though the original uncoded scheme has a total of 16 states, it is possible to
obtain a coded scheme of only 8 states. Consider a convolutional code of rate 2/4 and a
total of 2 states. The length of its output symbol is 4 which matches that of the input sym-
bol of the 16-QPOM encoder. Depending on the input symbol, the output of this code is
{c,. i =0,1,...,7},and can take any value from 0 to 15. Since this code has a total of 2
states, then its total memory is 1. When this code is combined with the 16-QPOM

encoder, the obtained code is a rate 2/8 convolutional code.

Suppose that output of the external convolutional at time #T is given by the symbol
¢, = €€ Ca,Ca, and its input by the symbol @, b, . Because this code has only one
memory, we can say that each bit of the symbol ¢, is a function of (a,,b,,q,_,) or
(a,.b,. bn_‘). The output of the concatenated code expressed in terms of ¢, can then be

writien as:
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= ConC1nC 203 Com-1C 1= 202 - 1) 3 -1y
Therefore, each bit of the output symbol of the concatenated code becomes a function of
(a,,b,,a, _,b, y.a,5) or (a,b .a _,.b b, ;). This indicates that the total

n-1° n-1’

memory of the concatenated code is 3, and its total number of states is 8 The trellis
diagram of this cnde is shown in Fig. 6.11. As we can see it has a total of only 8 states. Of
course we do not expect a lot of gain with this code, since it offers a time diversity of
length L = 2, which is the same as the uncoded scheme. However, the complexity is
greatly reduced: First, the total number of states of the concatenated code is half that of
the uncoded scheme, and second, the inner connectivity between states is reduced from 8

(uncoded scheme) to 4 (coded scheme).

In order to select a code, we consider the rules used in the previous chapters. These
rules consist mostly on maximizing the product of the squared distances along the shor-
test path of the trellis. By doing so, the convolutional code defined by

COn = an

C2n = an + an—l

€3, =4, +bn +d,

(a, b, represents the input symbol) has been selected.

The performance of this coded scheme over Rayleigh fading channcls is shown in
Fig. 6.12. 1t is observed that its performance is comparable to that of nncoded QPOM

scheme.
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6.5. SUMMARY

In this Chapter We have studied the performance of two 16-level quadrature modu-
lation schemes. The structure of linear 16-QPOM schemes allowed the use of indepen-
dent decoding for the in-phase and quadrature components of the transmitted signal.
Thus, reducing considerably the complexity of the MLSE receiver. To save this structure,
we showed that it is possible to apply a coding scheme for each component. We con-
sidered 2-state and 4-state convolutional codes. Although these codes are not very strong
when combined with conventional schemes, the obtained results showed that by properly
combining the memory of these coded schemes and the memory of the modulation, the
performance of the system is improved. For example, in Rayleigh fading channels, this
coded scheme performs better than TCM 8PSK schemes especially for low signal-to-
noise ratio.

Hard-limited 16-QPOM scheme used two parallel hard-limited QPOM schemes. We
showed that an optimum MLSE receiver for this type of signal need to consider both in-
phase and quadrature components at the same time. Thus, its performance was slightly
better than that of linear 16-QPOM signal, but its encoder was more complex. In Ray-
leigh fading channels both schemes perform better than conventional coherent 16-QAM.
Combined convolutional codes and hard-limited 16-QPOM schemes was investigated.
By using a 2-state code, the complexity - ¢ the decoder was reduced by half and a com-

parable performance to uncoded QPOM was achieved.



CHAPTER VII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

7.1. CONCLUSIONS

A Maximum Likelihood Sequence Estimation (MLSE) receiver for Quadrature
Pulse-Overlapping Modulated (QPOM) signals for fading channels applications was
introduced. Iustead of using extra coding to achieve this goal, a detection technique

exploiting all the memory introduced by the overlapping pulse shape was used.

The QPOM scheme was decomposed into an encoder followed by a memoryless
modulator. The obtained configuration is similar to most conventional coded schemes.
The memory introduced by the double-interval overlapping pulse shape and the cross-
correlation caused by the hard-limiter are represented in a form that are fully exploited

by the receiver.

The performance of both linear and nonlincar QFOM schemes in AWGN channels
was analyzed by means of upper bound techniques and simulation results. It was shown
that the nerformance of QPOM signals can be expressed as a function of the tre smitted
pulse shape. Therefore, it is now possible to select double-interval overlapping pulse
shapes for a compact spectrum and good performance simultancously. The performance
of Offset-QPOM signals was also analyzed and discussed. It was shown that the tim
delay introduced at the quadrature component of the modulator did not affect the perfor-
mance of linear schemes. However, after nonlinear amplification this time delay intro-
duces more correlation into the transmitted signal and a more complex receiver is

required.

In Chapter 4, we considered the performance of QPOM signals in fading channcls.
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The MLSE receiver was constructed by exploiting the inherent non-redundant coding
structure of the modulation scheme. The trellis diagram of this coaing structure does not
have parallel paths from one state to the nevt, and makes it suitable to coinbat fading.
When compared to rate 2/3 4-state TCM 8PSK, it was shown that for E, < 13 dB QPOM

schemes offer a better performance.

Consider the fact that hard-limited QPOM schemes are actually 4-level PSK
schemes while the TCM is an 8-level PSK scheme. It can be seen that hard-limited
QPOM schemes are less sensitive to phase error, and both schemes have the same com-
plexity. For these reasons, Fard-limited QPOM schemes arc a better choice in practice

for portable/mobile satellite communication systems.

In Chapter 5, hard-limited QPOM schemes were successfully combined with outer
convolutional codes. Using the new configuration of these schemes, the memory of both
schemes was considered as one entity to be optimized. It was shown that by properly
choosing the convoludonal code, the complexity of the concatenated code can be
reduced. For example, the number of states of coded Offset-QPOM schemes was reduced
by a factor of four. The performance is improved in comparison with the uncoded
scheme and some convolutionally coded QPSK schemes. The main result of this Chapter
is the way of combining the memory of the QPOM scheme and that of the external
encoder. This result was presented in a general form and was easily extented to more

efficient schemes.

In Chapter 6, the performance of two different 16-level quadrature pulsc-
overlapping modulated signals was studied. As it was the case for 4-level schemes, lincar
16-QPOM schemes allowed the use of independent decoding for the in-phase and qua-
drature components of the transmitted signal. Thus, reducing the complexity of the
MLSE receiver considerably. Using this structure and applying the results of Chapter 5,

coded linear 16-QPOM was studied. The performance was improved and comparable
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results to some coded schemes were obtained. A more power efficient 16-QPOM scheme
was then considered. This scheme used two hard-limited QPOM schemes in parallel. Its
performance was comparable to that of the linear scheme, but its MLSE recetver was
more complex. In Rayleigh fading channels, both schemes performed better than conven-
tional 16-QAM. Combined convolutional codes and power efficient 16-QPOM was
investigated. By using a 2-state code, the complexity of the decoder was reduced by a
factor of two and comparable performance to uncoded 4-level QPOM schemes was
achieved.

The performance improvement of quadrature pulse-overlapping modulated schemes
with its compact spectrum and low-complexity make these schemes a good choice for
pertable/mobile satellite communications to achieve the requirement of low cost, small

size, and high power and bandwidth efficiencies.

7.2. SUGGESTIONS FOR FURTHER RESEARCH

The performance of quadrature pulse-overlapping modulated signals in both
AWGN and fading channels were extensively studied in our research. However, there

are still other aspects to be considered and studied.

Finite Interleaving:  In fading channels, we considered the assumption of ideal
interleaving/de-interleaving and ideal channel state information. In practice the depth of
interleaving is finite and chosen in relation to the maximum fade duration anticipated
[29]. 1t will be interesting to see the effect of interleaving depth and the unavailability of

the channel state information on the performance of QPOM signals.

Non-Coherent Demodulation of QPOM Signals: Throughout this thesis we
evaluated the performance of QPOM signals for idcal case of coherent detection. Non-
coherent demodulators do not need a carrier recovery and therefore are desirable for

their simple structure. For example if an independent local oscillator (same frequency as
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the carrier) is used at the receiver, the Viterbi decoder can be modified to resolve the
phase offset {28]. The study of nor-coherent detection of QPOM schemes using the

obtained new configuration may be desirable.

Block Coded QPOM Schemes:  We considered combined convolutional codes and
QPOM schemes. Block coded modulation schemes using soft-decision decoding show
good performance in Rayleigh fading channels. Furthermore, the concatenation of a
block code and a convolutional code can improve the performance. Concatenated block
codes and convolutional codes are very effective against a mixture of both random and
burst-error patterns. Since the QPOM encoder is a convolutional code, it will be interest-

ing to combine this scheme with Reed-Solomn block codes.

The Use of Different Classes of Pulse Shapes:  Throughout this thesis, we have con-

sidered doubie-interval pulse shapes satisfying the following characteristics

p)=p(=t), V1

p(t)=0, 12T
The obtained results showed that the performance of the system depends on the pulse
shape p(¢). It will be interesting to investigate the performance of QPOM signals using
different classes of double-interval pulse shapes. In this case combined

modulation/coding/pulse shaping can be considered.

Performance of QPOM Signals in Selective Fading Channels:  Throughout this
thesis we considered the performance of QPOM signals in non-selective fading channels.
However, in some cases the coherence bandwidth of the fading channel is smaller than
the signal bandwidth and the fading becomes frequency-selective channel. The effect of

this fading channel on the performance of QPOM signals is a good subject to study.
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APPENDIX A

THE WEIGHT PROFILE OF THE QPOM ENCODER

In this appendix we present the weight profile of the QPOM encoder for different

patterns e.

As an illustrative example consider the subset

Ay = {0,4,8,12).

When an error event e = 0001 occurs, the subset A0 will be decoded to the subsct

A’y=1{1,5,9,13},

causing a non-zero Euclidean distance between the original channel signal and the

decoded one. This distance is easily calculated and is given by

dist. = {0, 0,4, O, O, ).

The weight profile of the subset A, with respect to the error event e = (0001 is then

obtained using Eq. (3.36)

oy oy
F(A,0001,D)=2(D "+ D ")

Following the same procedure, the weight profile of hard-limited QPOM signals is
calculated and is given in the table bellow. The hard-limited QPOM encoder has a Uni-

form Euclidean Profile (UEP) as all subsets have the same profile.




wherei =0,1,... 3.

Subset of

Channel Signal e Weight Profile

A, 0000 4

A, 0001 | 2(D”+D™
A, 0010 | 2(0™+D™)
A, 0011 4p*

A, 0100 | 20™+D™
Iy 0101 4D ™

A, 0110 4D ™

A, o111 | 20"+
A, 1000 4D

A, 1001 4D ™

A, 1010 4%

A, 1011 | 20"+D%)
A, 1100 4D

A, 1101 | 20™+D%)
A, 1110 | 200"+D™)
A 1111 4D ™




APPENDIX B

DERIVATIVE OF A DETERMINANT OF ARBITRARY ORDER n

In this appendix, we consider the derivative of a determinant of arbitrary order n

with respect to a given variable x.

Given an nxn matrix A

a, ap a,
Ay Ay |, 4y,

A= (B1)
_anl an2 ann B

where the elements a;; ’s are differentiable functions of a variable x.
If det (A ) denotes the determinant of the matrix A then
n
d [i]
—det(A) = Y det(4d™ "), (B2)
dx

i=1

where A I£] represents the matrix A with its i th row derived with respect to x,
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(B3)

Proof

Form =2,

T A A0y,

The derivative of det (A ) with respect tox is

(¢
: TdetA)=a’jay =atay tayay-ayaty,
| oA\
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= det (A" + der (4™, (B4)

For n = 3, it is straightforward to verify that

d (1] (2] 13]
—det (A) =det (A" )+ det (A" + det(A"). (BS)
dx

Now suppose that the above statement holds for the case of (n — 1), i.e. the derivative
with respect to x of a given determinant of order » ~ 1 is given by
n—1

d :
—det(A) = ¥ der(4")), (B6)
d‘.

i=1
then what is the derivative with respect to x of the determinant of a matrix of order n? If

the matrix A is of order n, then its determinant can be written as the sum of the products

of the elements of any row and their respective cofactors, that is,

det(4) = aildet(g“) + ai?_det(giz) + .. .,aindcr(C ) (=12,...n)(B7)

—in
where g,.j isan (n — I)x(n — 1) matrix. In this way, the determinant det (A ) is defined in
terms of n determinants of order n —1. Without loss of generality, we consider the case

of i = 1. Taking the aerivative of det(A ) with respect to x gives
d
—det(A) =a’ | det (C ) +a'jdet (Cyp) + .. ., a,det(C,.)
dx

d d d
+ay,——det(C )+ a,——det(C,,) +...,a, ~—det(C L HB8)
1. T 12 n 1

However from from Eq. (B6) we have

d n—l
—det (Qi,‘) = 3 det (QJI l). (BY)
dx 1=}
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Substituting Eq. (B8) into (B9) we obtain becomes
d n n n-1
—det(4) = $a’,,det(C,,) + Ta,; 3 det(Cl)
dx . .
i=1 j=t =1
n n
= Ya’,det(Cy;)+ Laydet(C]}
i=1 i=1
n
Foow Sayder (i,
i=1
Hence,
da _alt] 2 [n]
det(A) = det(@@"™) + det (A + . .+ der (4™, (B10)

dx

which is equivalent to Eq. (B4).





