I * . National Library
ot Canada du Canada

Bibliothéque nationale

Canadian Theses Service  Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the nriginal thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

I pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r.88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
quulité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Siil manque des pages, veuillez communiquor avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut faisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aioe d'un ruban usé ou si l'université nous afait
parnvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est
soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Jed

Canadia




B

Bibliothéque nationale

National Library
du Canada

of Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

! ’auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L’auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-56041-X

Canada




P R B R S Y SR

Methodology and Tools for
Distributed Debugging

Bao Minh Dang

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montréal, Québec, Canada

December 1989
©Bao Minh Dang, 1989




ABSTRACT

Methodology and Tools for Distributed Debugging

Bao Minh Dang

Errors in distributed programs can be classified into computational bugs and
synchronization errors. The former are entirely local to a process whereas the latter
occur at the interfaces between distributed processes. The pomset model is used in
this thesis to describe the synchronization behaviour of distributed programs. Based
on this model, a synchronization specification of a distributed program can be defined
by the program designer. A synchronization error can be viewed as the failure of
an observed distributed computation to match with the given specification. Debugging
distributed programs can be done in two stages. First, any synchronization errors are
located by having the debugger compare its observation of the application program
against the given specification. Then other debugging facilities are used to examine
internal states of component processes in order to locate the computation bug. An
integrated debugging system should allow the two stages to be used interchangeably
and interactively. In this thesis, debugging techniques such as breakpointing and

tracing are studied in the context of distributed computing environments.

Based on this approach, a distributed debugger has been designed and
implemented on a network of SUN workstations. The debugger supports automatic
checking for synchronization errors, breakpointing, checkpointing and use of traces.
Debugging can be done interactively, and an integrated sequential debugger provides

access to internal variables and source codes of processes.

iii



To my parents
and

to Trang

iv



ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisors, Drs. T. Radhakrishnan
and H.F. Li. Together, they have guided me through every step of the work leading
to this thesis. This thesis would not have been completed without their invaluable
assistance. They were always available to me whenever I needed them, offering me
guidance, advice and encouragement. They have also been very patient with me even

when I failed their expectations.

I am thankful for the financial support of the Fonds FCAR, of Concordia

University and of my supervisors.

Chris Lea has been involved with the design and the implementation of the
distributed debugger. He is bright and amiable, and I have enjoyed working with
him. I believe that we have forged a lasting friendship. Dimitri Livas has helped me
in verifying the correctness of the theorems and algorithms presented in this thesis,
and has tutored me on the formalism which I have used for the project. Honna Segel
and Chris Lea have done the daunting task of proofreading this thesis. 1 want to
thank them all, along with other friends: Thomas Wieland, Jason Cheng and others,
with whom I have shared the interest of our studies, the happiness and frustration

of our progress, and the expectations of our future.

Last but not least, I would like to express my deepest gratitude to my parents who
have encouraged and supported me at every stage of my education. I would also

like to thank all my sisters, brothers and Trang for their love, patience and support.




Contents

Introduction . . . . . ... . ... .. .. ... . e
1.1  Debugging and Testing . . . . ... . ... ... ..
1.2 Sequential Debugging Techniques . . . ... .. ..........
1.3  Related ‘NVork in Distributed Debugging ... ...........
14 Ourapproach ... ........... ... .. oo, ..

Distributed Computing and Debugging
2.1  Debugging Distributed Programs .

..................

------------------

22 Timeand Chck .. .... ... ... ... ... ..
2.3  Liveness Violation .. ... ..... ... ... . ... ...
24 Probeeffects . ... . ... .. L e
An Approach to Debugging based on Pomsets . . . ..........
31 Basicmeeds .......... ... ... oo,
31,1 Global Time . ... ...... ..., .
312 Global State . . ... .... ... ... ... ...
3.1.3 Synchronization Behaviour Specification ........ ..

3.1.4 Central and Local structures
32 Designlssues ...........
3.2.1 Dependencies of debugger’s
322 Probes ...........
323 Event ............
3.2.4 Checkpointing ... .. ..

vi

modules . . ..........

------------------



3.2.5 Database

............................ 42
33 DesignChoices ... ........0 .. 52
33.1 SBSand Compiler .. .................... 52
332 Breakpoint . . . .. .. vttt it e e 56
333 Trace . ..o i vttt e e e e e e e 60
334 Tracking .. .. v ittt e e e e 68
3.3.5 Event Colors and Logical Channels . . . .......... 71
Implementation . . . .......... ... .. .. .. i 75
4.1 System Structure . . . .. . . ...t e 75
4.1.1 Central Debugger ... ....... ... . ......... 77
412 Local Debugger ... ... ...... .. ... . ...... 82
42 Main Data Structure . . . .. ... ... 85
4.3 The Sequential Debugger . . . .. .. ... .. ... ......... 8Y
4.4  Creating Checkpoints . ... ... ....... ... .. .... 91
4.5 Constraints and Limitations . . ... ................ 93
46 Module Integration . . .. .. .. ... ... e 95
Summary and suggestion for future work .. ... ........... 96
References . . . . . . .. . v i it i e e e e 102
Appendix A: A BNF Definition for SDL . . ... ............ 107
Appendix B: Distributcd Debugger - User’s Manual . .. ...... .. 112

vii




?

-,

Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Table 4.1
Table 4.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

List of Figures and Tables

Distributed Computation with timestamps in LC

Events in a distributed computation with timestamps in GC

Pomset U = CC(1,2,3) .. . @ v i it it e i ie e i
Pomset U = CC(34,1) .. .. ... . @ i,
Pomset U = CC(2,1,3) ... ... ... . ...,
Pomset U =CC(34,3) ... ... ...,

General Structure of the Debugging System . . . ... .. ...
Database before size reduction ... ...............
Database after 1st size reduction initiated by DB;

Database after 2nd size reduction initiated by DB

Database used for example 3.7 . ... ..............
Process edges in the ST-graph of example 3.7 . ... ..

The ST-graph constructed from data in figure 3.10

ST-graph and the sliding window .. ..............
A computation with coloured events being filtered.

Central Debugger modules . . . ... ... ... .........
Local Debugger modules . . ...................
Central Debugger Structure . . .. .. ... ... ... .....
Local Debugger Organization . ..................
Process Table . ... ..... .. ... ... .. ... ......
Processes and channels comresponding to data in figure 4.3 . .

Action Table . ... . ... . .. e,

viii

18

31
31
32
33
36
47
49
50
65
65
66
68
74
76
76
78
83
86

87



Figure 4.6
Figure 4.7
Figure 4.8

SBS Structure . . . . .. . et e

Manipulaticn on SBS structure . . ... ..

Sequential Debugger in a Local Debugger

ix

-----------

...........




B/D
CcC
CD
CGS
DB
DCS
FIFO
GC
GT
IPC
LC
LD
Pomset
SBS
SDL
ST
TS

List of Abbreviations

Blocked and Deadlock

Channel Counter

Central De¢bugger

Consistent Global State

Database

Distributed Computing System

First In First Out

Global Clock

Global Time

Inter Process Communication
Logical Clock

Local Debugger

Partially Ordered Multiset
Synchronization Behaviour Specification
Synchronization Definition Language
Space Time

Timestamp



Chapter 1

Introduction

Distributed computing might have been a dream a decade ago, but not any
more. Many factors have contributed to this trend. The demand for more computing
power is ever growing and at the same time workstation type computing is becoming
widespread within an organization. Local area networks connecting these machines
are invariably present. Thus connectivity is not an issue. Not all of the workstations
are busy at all times. As a result there is spare computing power available in a

decentralized way.

The development of Jistributed computing has been slow, however. The
distributed computing environment requires new solutions for the same problems that
have been long solved in a centralized system. Determination of system state,
fault-tolerance, scheduling, etc., have taken new meanings in distributed computing
systems (DCS). Although a lot of research has been done in these areas and the
nature of DCS has become better understood, software development for DCS has
been slow. The lack of a programming language for distributed program development,
and non-availability of a proven distributed operating system and proper software
development tools are the main reasons for this slow growth. One of the wols that

is probably most needed by any programmer in DCS is the distributed debugger.

In this thesis we develop an approach to debugging that is applicable to DCS.

Based on this methodology, a design for a distributed debugger is presented.

4
1
4
4
§
:
E



r -

1.1 Debugging and Testing

Before going into further discussion on debugging, we want to make the
distinction between debugging and testing. Some have considered these operations to
be the same [4], and it is true that many progiammers carry on these two stages in

program development at the same time.

According to Darlington, the main objective of testing is to derive a set of
test data that “exercises” all aspects of a program [10]. As the result, faulty components
of the program can be recognized. Therefore, testing is also seen as a process used

to show the existence of bugs [11].

On the other hand, debugging is carried out only after a program has been
detected to have bugs, either from testing or merely through regular use [32].
Therefore, in dehugging, the programmer possesses the knowledge of the characteristics
of the bug in terms of the behaviour which makes the program violate its specification.

The objective of debugging is to locate the bug and carry out the necessary correction.

Usually, afte, a program is debugged, it requires further testing to make sure
that no bug remains. If more bugs are fuund, more debugging is needed. The iteration
is repeated many times until no more bugs are found, and the program is released
for its intended application. Nevertheless, the two phases must be kept distinct: testing

determines the existence of bugs while debugging locates the bugs and removes them.



1.2 Sequential Debugging Techniques.

Debugging techniques for sequential programs have been developed constantly
since the first computer program was written. They range from adding extra statements
to a program that print messages to the console screen, to sophisticated debuggers
that allow the user to modify the contents of the processor’s registers for interactive
debugging. Basically, the process of debugging sequential programs can be viewed
as one in which the user tries to locate the position of a bug in his program where
the program’s state starts failing to match the specification, that is the programmer’s

expectation.

Formally, each program code corresponds to a sequence of atomic actions,
where each action is a statement or instruction. There is no clear definition cf an
atomic action, it depends on the debugger implementation. A program has bugs if
one or more segments of the above sequence are incorrectly defined. For instance,
the segment of computation has a fault because it manipulates a data structure
incorrectly; or it just simply has an extra instruction that had been carelessly added

by the programmer.

Debugging sequential programs can be done in two ways. The program’s
behaviour is verified by examining the sequence of events that occur when the
program is executed. This can tell where the program, considered as a sequence of
actions, starts deviating from expectation. The program’s state can also be examined,
if the bug is known to corrupt data structures or produce invalid data. Although an
undesirable state cannot tell what causes the bug, it gives a lead to the programmer

which assists in locating the bug.




Thus existing debugging techniques are based on examination of the program’s
behaviour and the program’s state. The tools that provide the user the necessary

facilities are: trace tools and controlled-execution tools.

Traces. A program trace is the record of the history of its execution. The simplest
form of trace is output statements that indicate the execution of a program’s segment.
A detailed trace can reveal the absence of a necessary event; the presence of an
extra, erroneous event; or incorrect ordering of the events. Debuggers can also provide
a trace in which a partial picture of the program’s state is recorded whenever a
specified condition occurs. Thus the user can examine whether the effect of the

events on the program’s state is as expected.

Controlled-Execution. Since the whole picture of the program’s state at any point
during its execution can be enormous in volume, a controlled-execution debugging
technique may be used in which the program execution is suspended during its
execution at some point so as to allow the user to examine the state. Because all
events in a sequential program are totally-ordered and the state is preserved, the

duration of the suspension will not affect the future state of the program.

Usually, the user specifies a suspension point, called breakpoint, in
correspondance w.:h an event. The program will be suspended when that event occurs.
Beside zllowing the user to examine the program state, breakpoints may also give
the user a general view of the program behaviour, for example, not reaching a

breakpoint indicates that the corresponding program segment is not executed.

Another form of controlled-execution is stepping, in which the program is

suspended after every step. This will give the user a step-by-step progress of the



computation. However, because the program progresses very slowly, stepping is usually

limited to a small segment in the program.

The program state can also be monitored using watchpoints. Each watchpoint
is associated with an invariant in the program. The program’s execution can be
suspended when such an invariant is violated. This technique is more useful in
program testing; in debugging, it helps to narrow down the area where a bug can

be found.

1.3 Related Work in Distributed Debugging

Garcia-Molina identifies the key difficulties in distributed debugging in [16}:
There are multiple threads of contzol in the distributed program execution and there
is random delay in inter-process communication. They propose that testing and
debugging be done together in a bottom-up manner, where component processes are
assembled to be run as one distributed program. The assembled program is then run
so that its traces are collected for examination afterward. The main disadvantage of
this approach is that it reliss on the user’s ability to identify the trouble spots in
the program using the traces of the distributed program. A more effective use of the
program trace is to use it in replay, as suggested by Curtis (9] and Miller [28].
During the replay, the program is not running. Instead, data from the trace files is
used to recreate intcr-process communication activity of the program. The replay is
done at a slow pace, allowing the user the time to observe the behaviour of the

program. With the availability of workstations with high quality graphic support, an




animation of this activity can be created, presenting a graphical image of the program’s

behaviour [6, 7, 20].

A debugging environment is suggested by Schiffenbaver [30] and Joyce [22]
where the user has control of the inter-process communication. A central controller
decides on the occurrence of every communication event in the program. Through
this controller, the user can interactively determine the order of occurrences of events.
Hence different program behaviours can be composed and examin:d. These tools,

though, are more suggestive of a program testing facility than of a debugging facility.

The Behaviourial Abstraction approach is described by Bates in [S], where
the user is allowed to define abstractions of events. When the program is debugged,
a Recognizer is used to match the program’s actual behaviour with the defined
abstractions, providing the means for automatic detection of “safety violations” [23]
in the program. One limitation with this approach is that the complexity of recognizing
a mismatch can be quite large. The second limitation is that the event abstraction
of Bates cannot efficiently describe partial order relations between different event

abstractions.

Bates and Baiardi [4] are among the first to suggest debugging of distributed
programs based on program behaviour. Baiardi’s top-down approach is opposed to
that of Garcia-Molina [16]. Testing and debugging are combined such that the
behaviour of the whole program is first checked to identify erroneous components.
The behavioural specifications of these components are given in greater detail, and
the check is then repeated to identify erroneous sub-components. This process continues
until the actual component causing the error is identified. A Behaviour Specification

of the components is provided to the debugger for the purpose of checking. The



problem with this method is that the component that displays faulty behaviour might
not be the one that causes it; for instance, it can receive invalid data generated by

another component. Approaches similar to Baiardi’s are found in [13, 18, 21].

Reproducibility is usually difficult in distributed debugging due to nondeter-
minism. Since the nondeterministic choice in one execution is not always the same
as in another, a program may not follow the same course in a subsequent execution.
A method of Instant Replay is proposed by Leblanc in [26] which makes use of
the trace information from processes to guarantee reproduction of an execution. With
this method, the program can be run in slow-motion, allowing the user to examine
it without affecting the path cf execution. Instant Replay can be very helpful if it
is complemented wita auiomatic checking of the observation against the specified
behaviour of the processes. Reproducibility is also discussed in [13] where the patterns
of interleaving of concurrent events and the non-deterministic choices are recorded
for each process and used in later execution, forcing the program to produce the

same synchronization behaviour in every execution.

Bei [6], Cameron [7] and Goldszmidt [17] suggest the use of an assertion
checker in the debugger. In this technique, predicates are inserted in the program,
and are validated by the debugger during execution. Thus the state of the program
is deemed to be verified. The detection of bugs, using this method, relies on the
user’s choice of predicates. Many iterations of execution may also be needed before

the location of bugs is determined.

Cheng presents a different use of program traces in [8]. Instead of letting the
user of the debugger examine the program history by viewing the trace, they use

the trace as input to a knowledge-based verification unit. This unit has been previously




;!
ey
‘

supplied with the specification of the program. The trace is matched against this
specification to detect errors. Since the specification is given in terms of the inter-process
communication (IPC) activities of an individual process, the verification can be done

for each process individually and concurrently.

What we find lacking in these works is a proper modeling of the distributed
programs. The models that have been used do not fully describe the nature of a
DCS and its properties. In addition, these debugging methods only go as far as
ideniifying the synchronization errors. They do not provide the means to locate the
actual programming bugz which is the source of that error. Also lacking is a well-defined
support for breakpoints. The works described above do not provide breakpoints in a
distributed environment [4, 5]. They simply allow arbitrary breakpoints at which the

program’s state may be of little use to the user.

The approaches to debugging discussed above are also limited to functional
aspects of the program, or “blackbox analysis”. The program functionality, as reflected
through by its behaviour, is checked against its specification in order to locate the
synchronization error. However, we believe that another stage of debugging, the
“whitebox analysis”, is necessary. During this stage, the internal structure of the
program is examined, with proper debugging tools, in order to locate the programming
error which is the cause of the erroneous behaviour. In other words, an integrated
hierarchical debugger is needed in order to provide an efficient debugging environment

for a DCS.



1.4 Our approach

Our approach is based on the observation that a program is considered to
have bugs when it exhibits abnorma' behaviour that can be observed from the outside
world. The abnormal behaviour is recognized when the program generates erroneous
output or follows an undesirable course of action. If the program is sequential, the
debugger is applied directly to locate the bug, which is then removed by the
programmer. In a distributed program with many processes, a similar approach can
be followed by posting an observer for every process. If the observer knows the

expected behaviour of that process, it can detect the faulty behaviour of a process.

In practice, the observer is a ‘“checking program’™ which takes into account the

specification of that process.

In principle, we follow Baiardi for debugging by checking the program’s
behaviour against the specification. However, we limit our observation to the program'’s
behaviour at the process’s interface, or the interactions of a process with other
processes. This is similar to the semantics in [8]. Moreover, finding the process
which has faulty behaviour does not mean that the bug has been found. Additional
debugging tools are needed for locating the bug. Hence they are provided as an

integral part of our debugging system.




Chapter 2

Distributed Computing and Debugging

Models are used in system analysis and problem solving for the sake of
abstraction. A model is chosen in such a way that the components and properties
of the system which are relevant to the analysis are emphasized and insignificant
details are removed [3]. Thus the model becomes a simplified and generalizing view
of the problem. We use the pomset (partially ordered multiset) theory for modeling
distributed programs. The pomset model is chosen because of its ability to describe
truly concurrent behaviours [29]. Before presenting the formalism of the pomset
model, we will state the assumptions of the system on which the model will be

applied. Some terminologies are also clarified.
Assumption: The following is assumed for a distributed program:

1. A program consists of a number of communicating processes,
where communication is done via message-passing on peer-to-peer,
unidirectional channels.

2. Primitives for message-passing are send and receive, where send
is non-blocking and receive is blocked on an empty channel.

3. Channels have infinite buffers.

4, Messages are delivered in FIFO manner, and subjected to a
variable, positive and finite delay.

5. Processing within a process is strictly sequential. 0




11

The second assumption implies that a receive event is always causally dependent

on a send event. The fourth assumption implies that the communication is reliable.

The Pomset model

Definition 2.1 A pomset p is a quadruple [V, Z, T, u] where:
14 = set of process events
)y = set of process actions

I' ¢ VXV = partial order, which is an irreflexive and transitive relation,

defined on V which expresses:

1. the expected temporal precedence among events in V,
where p describes a program’s specified behaviour;

or

2. the observed temporal precedence among events in V,
where p describes the program’s observed behaviour at
run-time; in this case, p is also called the computation
of the program.

If (e), e2) € T then the representation e; — e; means

e1 happens before e,.

1} = V — X is a many to one mapping. 0O

Each event v € V can be seen as an instance or an occurrence of an action
a defined in X, where p(v) = a, and multiple occurrences of the same action are
possible. Depending on the level of abstraction, such an action can represent a

complex operation, or just a single machine instruction.




12

If an event e; is a send event, and e; is the receive event which receives the
message sent by e;, they are called matching events, and denoted:
e;=s(ez), and ex2=r(e;).

Send and receive events are called communication events.

The algebra of pomnsets is discussed in detail in [29]; we present only those

parts that are relevant to our study:

Conjunction. Given pomsets p; = [V, Z;, Ty, ] and p; = [V2, I3, T2, H2],

1 I p2 (conjunction pomsets) is a pomset p = [V, L, T, u] where V = V; U V3,
= uX, =T uTl;z;ad g =y U 2. There is no causal dependency
between events in p; and those in p2, because there is no relation between v; € V;
and v2 € V> This construction is called concurrency in [29]. We use the term
conjunction to remove the possible implication that p; and p2 are required to occur
simultaneously. Furthermore, our definition does not require V; and V, be disjoint

as in [29].

Concatenation. The concatenation of p; to p; described as p1,p2 (or p;p2) is a pomset

p =1V, X T, u] where V = V,UV,, £ = Z,UL5, I’ = IHUINRU(VxV,),

R o= piupa. (V)xV2) is required to ensure that every pair (vi, v2), vi € V; and

v2 € Vo, isinT, ie. vi = v,

Prefix. A pomset p° is a prefix of p (p’ <k p), if p’ is obtained from p by deleting
a subset of events from p, provided that if e; is deleted and e; — e; then e; is

also deleted.

Augmentation. A pomset p’ is an augment of p (p <y p’) if they are identical

pomsets in all respects except that I’ is a superset of I



13

Projection. A pomset p° = [V', Z', I”, W’] is a projection of pomset
p=1[V, Z, T, 1] onto a set A of actions, denoted as p' = proj(p, A), if for every
event v € 7 such that }(v) € A, v is removed in V’ along with all edges in I that
associate with v. Formally:
p’ =proj(p,A) * (T =XInA,
V’={v|ve VA H(v)e X'},
' =Vxv’)nT,
W=xE)ap) 0

Definition 2.2 A distributed computation is a pomset p = [V, Z, T, u] which

takes the system from the initial state so to the current state s, written as:

Sop Sp D

Definition 2.3 A state s, recorded during a computation p is a consistent
global state (CGS) iff:

Ar<epsors) 0O

2.1 Debugging Distributed Programs

Conventional debugging techniques cannot be applied directly to distributed
programs because of the reasons discussed in chapter 1. Locating bugs in distributed
programs is also difficult because of the 2-dimensional nature (space and time) of a
DCS. In sequential programs, events are totally ordered, and from any mismatches
in the observed behaviour, one can always trace back to the cause of that misbehaviour,

which is located a certain number of events back. The same cannot be said for a




14

distributed program where the cause of the misbehaviour observed at some process
could have originated from some faulty actions in another. Thus the effect of the
error, or the bug, propagates in both time and space away from its original point

until it surfaces and is noticed by the program’s user.

An error in one process can cause another process t0 become erroneous if
the processes communicate with each other. Either the erroneous process sends invalid
dala to the other, or it causes communication events to occur with incorrect timing,
violating necessary coordination. If the computation of one process does not have
any communication events then erors in that computation will never affect other
processes. Thus communication events can be seen as having the property of being
able to spread an error from one process to another. We can thus divide events in
a distributed program into two groups: communication events and internal events,

based on the effect they might have on the propagation of an error.

Communication events are also called synchronization events. Coordination of
synchronization events is central to distributed programs. As stated earlier, a distributed
program consists of a number of individual processes, each of which carries out its
own computation and shares information with other processes through message-passing.
The synchronization specification of a program is the required behaviour of each
process with respect to the synchronization events. A pomset of these events, in
which the necessary temporal behaviour of the events are specified, is used for this

purpose.

Program failure can also be in the form of corrupted data. Synchronization
events can still occur as expected but processes may be exchanging invalid data.

However, the invalid data flow can be traced back using other means such as a




15

trace facility. Therefore, in our scope of debugging, we restrict the specification to

concern only the relative ordering of synchronization events.

Every process can be viewed as a blackbox which carries out its own
computation and has certain interactions with its sumounding environment. This
behaviour, which is observable, should conform to that required by the program’s
specification. Failing this, the program is said to have bugs. The same view can be
applied to each component of a distributed program. Each process can be seen as a
blackbox whose sole connection to the outside world is through its IPC activities.
These activities can be monitored by an observer, who is also provided with the
process’s synchronization requirements. Deviations of the observed behaviour from
the specified behaviour can be detected. Using the pomset model, the synchronization

errors, which cause erroneous oehaviour, will be formily defined.

Definiiion 2.4 A process synchronization specification is the set
P ={ pi1, p2 ...} of pomsets describing a process’s synchronization behaviour. Each

pi € P specifies a valid abstract behaviour of the process in terms of its synchronization

events.

a

In debugging a distributed program, the debugger maintains a partially ordered
history of synchronization events that have occurred. A labeled partial order o which
is isomorphic to the partial order history of events is employed to timestamp (label)

the observation. ‘Therefore, o is the equivaicnt of the actual behaviour of the process.




16

Definition 2.5 Given a specification P, an observation a is said to agree with
pi € P iff:
ABp<pi[Baar] 0

Synchrenization ~rrors can then be defined indirectly as follows:

Definition 2.6 An observed computation o is said to have synchronization
erors with respect to a specification P iff:

Apie P [ aagrees withp . O

Intuitively, o agrees with p, when every causal dependency among events in
p: is satisfied by the corresponding events in o. We say that o is a valid observed
behaviour of P. Execrtion of a distributed program can result in different computations,
each corresponding to one abstract behaviour p; in the specification P. The resulting
computation is the outcome of nondeterministic choice that is made at execution
time. Some of these computations may b. valid implementations of P while others
may not. In debugging, we want to recreate the invalid computations in order to

locate the synchronization error contained within those computations.

Detection of a synchronization error does not mean that the exact bug (or
bugs) is located. The observed error can be the result of a bug that occurred in
another process some tinie before, the effect of which might have propagated through
different events and processes until it surfaced in the form of a synchronization error
that is just detected. In such a case, the internal operations of processes need to be

examined further to locate the real bug.



17

Therefore, our debugging process consists of two main stages. First, the
synchronization eror is located. Then the information and knowledge obtained from

that is used to locate the faulty program codes which caused the violation.

2.2 Time and Clock

Time is a fundamental concept which we use to establish the order of event§
[24]. In debugging, time is important because the occurrence of an event “‘before™
or “after” another can determine the validity of a computation. However, time can
become an intriguing issue when the order of events is apparently different when
perceived by different observers. This could happen when there is an arbitrary positive
delay from the time an event occurs to the time an observer perceives that occurrence.
To retain the actual ordering of events, a clock whose value is monotonically increasing
is used, and each event is timestamped with the value the clock has when trat event

occurs.

In computer systems where a centralized control exists, there is a clock
common to all subsystems. All events are timestamped with this clock value, resulting
in a total ordering. Un the other hand, a DCS has no common clock, and values
of the local clocks by themselves are not sufficient if one wants to establish the
temporal order of events ... different nodes. To retain the temporal order, other
schemes for timestamping have been proposed: Logical Clock (LC) by Lamport in

[24] and Global Clock (GC) by Heping in [31].

In LC scheme, a counter is associated with each process in a distributed

programy. The counter’s value is the logical time for that process, and is initialized

,
4
3
]

1

oo AL



18

P1 e11[1] —— e12[2] e13 [5]

P2 621 [1] ==e€22[2] €23 [3] ——e21[4] — 621[6]

\

P3 es [1] ————— e32[2] — e33[4d] ——— €31[5)

Note: e31[1] denotes event €3; with timestamp [1]

Figure 2.1 - Distributed Compuiation with timestamp in LC

at zero. When an event occurs, and if it is a send event or an internal event, the
counter is incremented. The event is then timestamped with the counter value. For
a send event, the message sent out is also timestamped with this value. For a receive
event, it is handled a little differently. The counter value of the receiver is first
compared with that of the timestamp of the received message. If the counter’s value
is less than that of the timestamp, it is replaced with the timcstamp’s value. Then
the counter is incremented and its value is used to timestamp the receive event.
Figure 2.1 illustrates events in a distributed computation with their timestamps in
LC. If LC(e;) and LC(ez) are timestamps of events e; and ez, respectively, then the
following is always true:
e;—ex = LC(er)<LC(ez)
GC scheme also maintains counters for each process as their logical time.

However, each local logical clock is a vector of counters of N elements, where N

is the number of processes in the program. The algorithm for maintaining these



19

clocks is given in section 3.1.1. If GC(e;) and GC(e2) are timestamps of events e;
and e, respectively, the following is true:
e1—>e2 &  GC(er) «GC(e)

where the relation « is defined as follows:

Definition 2.7 Given GC; = [a}, a2, ..., as} and GCz2 = [b}, b2, ..., bs), then
GC; « GCz iff
Vie{l..n)laish)a3je {1l...n)[ai<b;) 0

Although LC is simpler to implement and has less overhead, events with these
timestamps are mapped to a total order. Therefore truly concurrent events which have
no temporal relationship between them cannot be identified. On the other hand, GC
guarantees that the real partial order of a computation is preserved through the
timestamp based on GC. Formally, a record of a computation in which events are
timestamped with GC forms a labeled partial order which is isomorphic to the
computation. Since such a record is needed for checking the synchronization error,

GC is used in our debugging system.

2.3 Liveness Violation

The detection of an error in a program, based on the checking of temporal
relationships between events, can only reveal one class of errors, which is that of
synchronization errors. This approach cannot detect the non-occurrences of an event
that is supposed to occur. This type of error will be called a “liveness violation”.

For instance, a deadlock in a system or a premature termination of a process constitutes




ro B

a liveness violation. While an observer can always tell the presence of safety violations
in a process when the observed computation does not follow the specification, he is
not able to say that a liveness violation exists just because an expected event has
not been observed. Supporting facilities can be built to aid the user in detecting this
kind of violation. Relevant parameters related to the characteristics of the application
program and of the computer system which is used to run that program are supplied.
Based on these parameters, potential liveness violations can be detected and the user
could be informed of the possible errors. For example, a timeout period can be
specified as the maximum time a process can be blocked on receiving a message.
If the process is blocked longer than this period, the user is informed of the situation.
In turn, the user can inspect the status of the process at the other end of the channel
to know the cause of the timeout. In general, the user has the ultimate decision on
whether the debugged program has violated the liveness requirements. However, in
a future version of the distributed debugger, additional information can be added to
the program’s specification so that the debugger can detect liveness violations. Such

a debugging facility is needed in particular for applications in real-time systems.

2.4 Probe effects

Probe-effect in debugging refers to the phenomenon in which the debugger
has undesired effects on the debugged programs, altering the program’s course of
execution. Two typical scenarios may arise as the result of the probe-effect. In the

first scenario, a program known to be erroneous starts to function as desired in the




21

debugging environment; the bug in the program seems to disappear under the influence
of the debugger. In the second, the opposite occurs: program that works correctly
under normal condition begins to exhibit erroneous behaviour in the debugging

environment (14, 15].

Probe-effect in the second scenario is easy to deal with, and can also be
beneficial. It helps to reveal program errors that the programmer has yet to notice.
However, the disappearance of bugs caused by the probe-effect, as in the first scenario,
can introduce difficulty to debugging. With a program that executes correctly, one

cannot get any clues that point to its defects.

One of the causes of the probe-effect is the influence of the debugger on the
patterns of interleaving of concurrent events. Operations that are defined as concurrent
can be implemented on a sequential system by interleaving their events. If some of
the patterns of interleaving cause synchronization errors, and if the debugger prevents
these patterns from taking place, then the probe-effect can be observed. The following

example illustrates this situation.

Example 2.1 Consider a process P with two input ports: a and b and an
output port c. The specification of P is:

r(a) = r(b) = s(c)
where r{a) means receiving a message through port a and s(c) means sending a
message through port c. Suppose the implementation of P has r(a) and r(b) as

concurrent events:




22

r(a)
r(c)
r(b)

Thus during execution, two possible interleaving of r(a) and r(b) can be

observed:

1. r(a) — r(b) — s(c) (valid)
and

2. rib) — r(a) — s(c) (invalid)

If, under normal condition, the second computation is always chosen between
the two as the program is executed, a synchronization error is observed. The
probe-effect arises when the program is executed under a debugging environment in

which, due to the debugger’s influence, the first computation is always observed.

O

In a rather more subtle situation, the debugger may affect the outcome of
nondeterministic choice made by the program. Recall that a program may consist of
different possible computations, one of which will be realized during an execution.
The selection process depends on both the implementation of the program and the
environment in which the program is executed. If the debugger causes the correct
computation to be selected, which would not be once the debugger is removed, then

probe-effect is again observed. This is shown in the next example:

Example 2.2 Let P = { p1, p2 ... } be the specification of a program,

Pi, pj € P are two of the possible computations that the program can have. Assume



23

that the implementation of p; is correct, and that of p; has errors. If, under normal
conditions, nondeterministic choice is always made in favor of p;, we will observe
errors on each execution of the program. However, if when the program is debugged,
the debugger causes the implementation of p; to be selected for the execution, the

program will seem to have no error. 0

It should be noted that it is possible for the correct computation to be selected
under the normal condition, and no error would be observed during that execution.
Likewise, the invalid computation can be chosen when the program is debugged, and
the error is detected. All of this depends on the influence of both the computing
and the debugging systems on the outcome of the interleaving patterns and on the

nondeterministic choice.

Probe-effect is present in any debugging system, and one should understand
its impacts in order to appropriately compensate for its effect. We do not attempt
to address this issue here. However, as shown in the experiment done by Gait in [15],
delay introduced by the debugger on synchronization events does mask some existing
synchronization errors in a concurrent program. As this delay increases, it can
completely mask out all synchronization errors. Therefore, in designing our debugger,

we have attempted to minimize this additional debugging delay as much as possible.




Chapter 3

An Approach to Debugging
based on Pomset.

As stated in chapter 2, our strategy of debugging a distributed program can
be divided into two stages: locating synchronization errors, and locating programming
bugs which cause these errors. A synchronization error is located by comparing the
actual behaviour of the program against its specification. A programming bug is
located by using debugging tools to examine the internal state and operation of

component processes.

A typical debugging session can be as follows. First the specification of the
program being debugged 1is supplied to the debugger. Then the program is executed
under the debugging environment. The debugger monitors the IPC activity of component
processes in the program and checks whether this activity follows the specification.

A synchronization error is located when a mismatch occurs.

After the synchronization error is located, the execution is suspended. The
user can then use debugging tools for breakpointing, checkpointing and tracing to
examine the internal states of the processes to narrow down the search for the cause

of the synchronization error.



25

In the following sections, the design of a debugger which is based on our
strategy is described. The discussion includes the fundamental points that are necessary

for achieving our design goal.

3.1 Basic needs

3.1.1 Global Time

As mentioned above, one of the main things we look for during a debugging
session is the correctness of the temporal orders between events, as required in the
problem specification. Therefore, events are to be labeled with timestamps so that
their causality is preserved. We employ the Global Clock algorithm of Shang [31]
for timestamping, which has properties that meet our requirement. This algorithm
uses N-dimensional vectors called Global Clocks(GC), where N is the number of

processes.

Each component of GC corresponds to a process. Each process has its own
GC. When processes exchange messages, they also exchange the values of their GC.
Each event will be stamped with the current value of the local GC, which is called
Global Time (GT), the logical time indicating the moment the event occurs. If TS(e;)
is the timestamp in GT of event e; the GC algorithm ensures that:
TS(e))«TS(e;) & e1—e

where the relation « is defined in definition 2.7.




26

Therefore, by comparing the value of their GT, one can always establish the
causality of events. Moreover, events that have no causal relationship are also identified.
When the GC are kept as part of event records in a trace file, execution history can

be fully reconstructed.

Given a distributed program with N processes, the algorithm for managing

the GC is described as follows:

Algorithm 3.1, Global Clock Algorithm,
A n-element vector of counters is associated with each process. Consider
GCk = [c1, c2, ..., ca] which is associated with process Pi.

Initialize: Vie{l.n)[a=01

For each occurrence of an event e,
Case 1: if e is a send event, then
Ck=cr+1,
TS(e)=GCy
The new value of GCy is used to timestamp the send event e as well as the

message being sent.

Case 2: if e is a receive event, then the timestamp TS of the received message is
retrieved first:
TSw=1[t1,12,..., ta),
then GCy is updated as follows:
Ce=Cr+1,
Vie {1.n)[c=maxc,t)],

TS(e)=GCx



27

P1 €11[1,0,0) — €12[2,0,0] €13[3,4,1)
\

P2 e21[0,1,0) —e22[0,2,1] €23[1,3,1] — e24[1,4,1] —e25[2,5,4]

\

P3  e3[0,0,1}——— ©32[2,0,2] —— @33 [2,1,3] ——— 034[2,1,4]

Note: €31[0,0,1] denotes event @3y with timestamp [0,0,1] .

Figure 3.1 - Events in a distributed computation with timestamps in GC

The receive event e is then timestamped with the new value of GCu. 0

Example 3.1 Figure 3.1 shows a typical distributed computation where the
events are timestamped with GC values. By comparing their timestamps, the causal
relationship of the events can be established. For instance:
€23 é3
since
[1,3,1] « [3,4,1]

where [1,3,1] and [3,4,1] are timestamps in GC of ez; and e;3 respectively.
Meanwhile, there is no causal relationship between e2; and e;2 since their

timestamps, [1,3,1] and [2,0,0] respectively, are not comparable. 0

The following are some properties of event timestamps using GC. e; denotes

the j» event in process Pi. For e; € P, TS(e;) is the timestamp of ¢; in GC and




-

28

TS(e;)[k] is the k element in TS(e;).

Property P1 For ey € Pi, ew — ¢ iff
TS(ew)[k] <TS(ey)k], if (k=1i)
TS(eu)[k] <TS(ej)[k],  if (k=1)

that is, the value of the k" element in the timestamp of event e is always greater

than or equal to those of the events that precede ej. 0O

Property P2 Define prec(eij, k) = { eu | ew € Py A ew — e }, then:
|prec(e.-,-, k) I = TS(e;i)[k], ifk=i

and | prec(eij, k) | =TS(ei)[k] - 1, ifk=i 0

Properties P1 and P2 are proved in [27].

Definition 3.1 Given a pomset p = [Vp, X, I, W] and eo € V). prefip, en)
is a pomset g = [V,, Z4, TI'y, W4l where:

Vo=( e | e e Voa(e—o>eve=e) )

S,={alee Vynple)=al,

Iy = (VgxVg) N Ty,

He = (VoxZg) O Wy 0

Lemma 3.1 Given a pomset p and ep € Vp is an event in p then:

q=pref(p.e0) = q<xp.

Proof Comes immediately from definition 3.1. 0



29

In the following discussion, for a pomset p = [V, I, I, Wgl, by referring
to a pomset g corresponding to a set of events V; ¢ V,, we assume that
q = [V,, Z; Ty Kyl where:
S ={aleeV,aple=a),
Ty = (VexVy) N Ty,

He = (VpZg) N Wy, 0
Property P3 Given a computation W whose events are timestamped with GC.
Define U = CC(cy, c2, ..., cn) as a pomset that consists of the first ¢; events in

process P, the first ¢z events in process P, and so on. If:
Jee Pi[Vke (1l.n) [Ck=TS(e.j)[k]]]
then U = pief(W, e;)

Proof In the computation W, consider the event e¢; € W and the

pomset U = CC(cy, ¢z, ..., cn) where Cx = TS(ej)[k], k € { 1...n }.

Veue W
ew € U & I < Cy
& TS(eu)[k] < TS(ey)lk] ( algorithm 3.1 )
= ey — ej VvV ey = g ( property P1 )
= eu € pref(W, e;) ( definition 3.1 )
o U = prefiW, e;) 0
Property P4 Given ¢; € P; and ew € P being events in a computation W,

the pomset U = CC(c;, ¢z, ..., c») where
cm = max(TS(ei)[m], TS(eu)[m)), m=1..n
is a prefix of W: U < W.

. i i " PRI G o



30

Proof
Vese W
ers € U e rseo
& TS(ew)[r] < TS(ez)[r] v TS(en)ir] < TS(ew)lr]
( algorithm 3.1 )
= ers € pref(iW, e;j) v e € pref(W, eu)
( property P3 )
Veune W:
Ce = Ers = ew € prefi(W, e;j) v eu € pref(W, eu)
= es € U ( definition 3.1 )
= U < W 0
Example 3.2

1. Consider event e;3 of the computation showed in figure 3.1. For any event
e2] € PZ,
€2 = €13 = TS(e2j){2] < TS(eis)[2] (=4)

For example,

€22 — e;3  since TS(ez)[2] = 2 (< 4)
e25s Hels since TS(ezs)[2] = 5 > 4)

2. Since TS(e;3)[2] = 4, there are four events in P> that happen_before ejo: ez1, ez,
e23 and ezq. Similarly, TS(e;3)[3] = 1 means that there is one event in P3 (e3;) that

happens_before ej;.

3. U = CC(1,2,3) is the pomset that consists of the first event in P; (en), the first

two events in P2 (ez;, e22) and the first three events in Pz (e3;, e32, e33) (figure 3.2).




31

e11[1,0,0]

42 {2,0,0 @2{3 4.1}
‘ 1 P o i

e, ! /“
s...,,“%‘“} .
921 [0’1 ,O] - e22 [01211] ..t“;:?..q G‘::‘; [1 031 1] i 9?4 [_1 54)1} ind a,,“} {2'5‘1-]

‘. \

831 [01011] ——t e32 [2:012] —— 633 [2,1 )3] Sy t‘:’&é {?.1 ,d}

Vo,
'~
aa,

Figure 3.2 - Pomset U = CC(1,2,3)

€11 [1,0,0] —— €12{2,0,0] - €13 (3,4,1]

]

€21 [0,1,0] — e22[0,2,1] -—2-’ €23[1,3,1] — €24 [1,4,1] - &, {2.5.4]

“erng, /
e,

5,

4
T N
L2 IO ]
~~~~~~~~~~
. 27y 2% v -, ze; ye . 2rs 4 .
€31 [0,0,1] iy 230 3328 e 225 121 3F s 4225 (72.1,4]

Figure 3.3 - Pomset U = CC(3,4,1}




32

e1[1,0,0] ——— €12[2,0,0]

LI

Figure 3.4 - Pomset U = CC(2,1,3)

Now consider ¢;3 whose timestamp is [3,4,1]: the pomset U = CC(3,4,]) which
consists of e, 212, e;3 (first \hree events in Pj), e2), e22, ex3, exq (first four events

in P2), and e3; (first event in P;) i1s a prefix of the current computation (figure 3.3).

Similarly, U’'= CC(2,1,3), obtained by applying P3 on TS(e3s), is also a prefix

of the current computation (figure 3.4)

4, Consider TS(e;3) and TS(es3) which are [3,4,1] and [2,1,3] respectively.
U = CC(34,3) is the pomset formed by applying P4 (figure 3.5). U is a prefix of

the current computation. 0O

3.1.2 Global State

The program’s global state at a point can reveal the correctness of the execution
of that program up to that point. In debugging, when a program is in an undesirable

state, we infer that a bug has already occurred. Thus one main practice in debugging



33

€11 [1 toool —— 012 [2v0vo] €13 [3p4|1]

€21 [0,1,0] —e22[0,2,1] €23(1,3,1] —e24[1,4,1] —~0,5[2.54]

\

31 [0,0,1] ———— €32(2,0,2] —— @33[2,1,3] v 224{2.1,4}

Figure 3.5 - Pomset U = CC(3,4,3)

is to examine the program’s state from time to time and narrow down the “faulty

region”.

In a centralized system, state recording is done by suspending the execution
and recording the program state information. Instant snapshot, as this technique is
called, is impossible in DCS because of the lack of a common clock. The alternative
is to obtain a consistent global state [33) since a CGS also has all the necessary

details for determining the correctness of a computation.

We have two ways to obtain a CGS. One is to suspend the whole program
at a breakpoint. With FIFO channels, the program is in a CGS when all processes
are suspended, since it sees no receive event whose corresponding send event has
not occurred. The requirement for the suspension, however, is that the program state
at that point contains information that interests the user. Therefore uncontrolled

suspension of the program is not very desirable. The breakpoint mechanism should




34

suspend the program at a point where its state can be verified. This is the objective

of breakpoints, and will be discussed in section 3.3.2.

A CGS can also be obtained without having to suspend the program by
applying the algorithm in [27)] for Spontaneous Global State Detection. This algorithm

can be used to obtain the CGS that is needed for deadlock detection.

3.1.3 Synchronization Behaviour Specification

One part of our strategy in distributed debugging is to have the debugger
check the correctness of the program’s synchronization behaviour. For this purpose,
the debugger is provided with the synchronization behaviour specification (SBS) by
the program’s designer at the beginning of a debugging session. When the program
is executed under the debugging environment, its actual synchronization behaviour is

monitored and checked against the given SBS for possible discrepancies.

If an execution of the program is viewed as a pomset of events, the SBS is
given as a set of pomsets. This set can, and in most case does, have an infinite
number of elements. Each pomset element corresponds to a possible synchronization
behaviour of the program. One obvious requirement for the SBS is that it must cover
all possible behaviours of the programs. Therefore it is more feasible to use a
behaviour generator to define the SBS. Through this generator, pomsets that compose
the program’s SBS are derived. Hence, the behaviour generator can also be called
the pomset generator. Usually, the generator is designed in the form of a specification
language. From the design of the application program, the user uses this language
to describe the program’s synchronization specification. A main requirement for this

language is that 1t should effectively describe pomsets representing any computation.



35

3.1.4 Central and Local structures

Debugging is a process that relies heavily on human intervention. The debugger
is only a tool which helps the user to examine a suspected area in the program, but
it is the user’s decision that an action should be taken in order to locate a bug.
Therefore, control of the whole debugging environment needs to be centralized.
Through a single user-interface, the user should be able to monitor the activity of

the whole system and intervene at any time if necessary.

Certain aspects of debugging, such as deadlock detection or breakpointing,
also need a global view. One approach is to assign a central site, which collects

information from all other sites and composes a global picture from that.

However, for the sake of efficiency and minimizing the potential probe-effect,
debugging operations should be distributed as much as possible. If an operation at
one site does not depend on one at another site, it should be done independently at
the local site. For instance, monitoring individual processes can be done independently

at each local site.

Thercfore, we choose a combination of central and local structures for our
debugger. This follows the same philosophy as in [16]. The debugger has one central
node, called the central debugger, which consists of the user-interface and other
modules for global operations. Local debugger modules, one per node, receive

commands from the central debugger. Figure 3.6 illustrates this organization.




2

36

Central Debugger
(CD)
Local Debugger Local Debugger Local Debugger
(LD) (LD) (LD)

Application
Process

Application
Process

Application
Process

Application
Process

Figure 3.6 - General Structure of the Debugging System



37

3.2 Design Issues

3.2.1 Dependencies of debugger’s modules

One design goal of the distributed debugger is to maximize its flexibility: the
debugger should be able to work in different computing environments. It should also
be able to support the debugging of programs written in different languages. When
moving the debugger from one computing system to another, minimal changes should
be required. For instance, the debugger needs process controllers which control the
execution of the application processes. Obviously, these modules are system-dependent. -
When the debugger is used on different systems, appropriate versions of the process
controllers are to be provided. However, the process controllers exchange information
with the rest of the debugging system using data tokens of standard format. Thus

changes are not required in the other modules, which are not system dependent.

To achieve this goal, the modules of our debugger address three classes of
dependency: system, programming language, and specification language. Each module
has its own operation and interacts with other modules through carefully designed

interfaces.

Modules that are system-dependent contain operations which relate to the
operating system and the underlying architecture. Programming-language dependent
modules are those that work with the source codes of the debugged programs. There
is also a need to have modules that are specification-language dependent. These

modules must be modified when the specification-language is changed. Since different




38

people may have different ways of specifying designs, a fixed specification language

should not be imposed on the users of the debugger.

3.2.2 Probes

To obtain internal information from processes, the debugger uses “probes™.
These probes are either inserted into the program codes, or attached to the communication
ports or data areas. Through probes, internal states of a process can be extracted for
examination by various debugging modules, and also by the user. Similar to p.obes
that are used in electrical measurement systems, debugging probes may also alter the
performance of the program. Compensation must be made to these probes in order
to eliminate or reduce the so-called “probe-effect”. As mentioned in section 2.4.3,

this topic needs a detailed study of its own.

We divide probes into two types: static and dynamic. Static probes are inserted
into the program code and remain there during the debugging process. Dynamic
probes on the other hand can be set or removed by the user as desired during a

single debugging session.

The static probes arc mostly used to detect occurrences of synchronization
events, since this information is always required during the debugging session. The
Global Clocks that are attached to each process need this information to update their
clock values. These probes send indicators of occurrences of every synchronization
event to the event processors, which distribute them to other modules. For instance,
the tracker needs this data as it monitors the behaviour of the program, and the

breakpointing facility uses this information to determine whether a breakpoint has



e

"5 TR TR R AT

Lgha i et

39

been reached. Actually, there is a static probe for every action that is defined in the
SBS.

Dynamic probes are used when the user needs to extract more information
from a process. For instance, the user may want to monitor changes of a certain
variable. A dynamic probe will be defined, which returns the new value of this
variable every time it is updated. Dynamic probes are more useful once the
synchronization error is located, and when the user is looking for the bug that caused

it.

3.2.3 Event

An event is the occurrence of a specific action in a distributed program. Each
action is characterized by the operation being carried out and the location where that
operation takes place. All operations that are internal to one process are considered
to take place at the same location. The communication ports of a process are
considered to be different locations: the sending and receiving of messages through
these ports are different actions from those internal to a process. Each port is used
for only one type of message, hence sending of messages of different types are

different actions.

Events are divided into two types: synchronization events and local events.
Synchronization events are events occurring at communication ports. The actions of
these events are defined in the SBS. In the actual computation, each event is associated
with a label indicating its related actions. A set of counters are also maintained to

keep track of the number of occurrences of each action. Through these identifiers,




40

the pomset representing the actual computation can be constructed and compared with

those in the specification.

Local events are instances of actions done inside a process. Therefore, they
have little importance when the debugger is being used to locate synchronization
errors. Once synchronization errors are identified, and the user starts to look within
a process, local events become significant. Through the use of dynamic probes, the

user can view and record local events for investigation.

During the execution of a distributed program, event information can be
collected in large volume. The user may reduce the volume of this information by
setting event filters. An event filter is defined for an action. It removes all events
of that action from the user’s view. With event filters, the amount of pertinent
information can be extracted to reflect only those activities of the program that
interest the user at that time. An event filter is to be set up as a pair. If events of
sending messages of one type are filtered cut, so must be those of the corresponding
receivings, and vice versa. Therefore, event filters can also be viewed as channel

filters.

3.2.4 Checkpointing

Debugging is an iterative process: the user executes the program again and
again, each time collecting more information about the program’s behaviour, and

narrowing down the suspected areas of the bug until the exact bug is located.

In a distributed environment, such re-execution can become very expensive.

Disiributed programs are usually complex, and it may take a lot of time to get to



41

the same point in the computation where the user is interested. Because of
nondeterminism, the new execution might not even get to the same point. Therefore,
it is useful to have a checkpointing mechanism, which allows the program to be
re-executed from certain points during the computation instead of starting from the
beginning. Checkpointing is also used in fault-tolerant computations for rollback and

TECOVery.

To be able to roll back 10 a checkpoint, the program’s state at that point
must have been previously saved. When the program is rolled back to a checkpoint,
the current state of the program is discarded, and the state saved at that checkpoint

is loaded into the system. In a DCS, the saved state must be a CGS.

Obtaining the CGS of a distributed program during its execution is not simple.
However, in our debugger, when the program is suspended at a breakpoint, its staie
is always a CGS. The user can create a checkpoint by saving this state. Therefore,
in our debugging system, the user specifies the checkpoint by specifying a breakpoint,

and then saving that state. Details on breakpoints are discussed in section 3.3.2,

The program’s states that must be saved for the future roll-back also have to
be clearly defined. However, the notion of what actually constitutes the program's
state is ambiguous. Beside the processors’ states, the program’s state consists of many
variables that are globally and locally defined, as well as port variables. Depending
on each application program, what needs to be saved as a program’s state at a
checkpoint varies. Since the debugger is designed to be used for all kinds of programs,
it must be able to identify what has to be saved in order for the program to be

rolled back and restarted later. We propose a solution for this problem in section 4.4.

e e e AN T 2 A LA L el




42

3.2.5 Database

While debugging a program, the user needs to observe and examine the
program’s states and behaviour as its execution proceeds. Because the execution
happens too fast for a human to follow, traces files are used. A trace file has records
of relevant state information, all in their proper order of occurrences, representing

the execution history that the user can examine at a slower pace.

In a DCS environment, the volume of information in a trace file is much
larger due to multiple threads of execution. Collection and maintenance of traces are

better done using the distributed database system approach.

A distributed relational database is fragmented across processes. We assume
one fragment of the database for each process in the debugged program. Details
regarding a process are stored as a fragment at the local site of the process. The
database actually consists of two tables. The first table contains information on

synchronization events. The second contains only local events. The structure of the

tables are:
- Table 1: Timestamp (Primary key)
Action
Counter

Data



TR TR AR IR AN TER ST

43

- Table 2: Timestamp (Primary key)
Action
Counter (Primary key)
Data

In table 1, Timestamp is in GT. Action is the activity done in the event.
Counter shows the number of times the same action has occurred since the beginning
of the execution. This is kept for the purpose of efficiency since one can always
obtain the value of counter by scanning through the local fragment of the table.
Data is relevant information related to the events, such as the contents of thy

messages.

The fields in table 2 are similar to those in table 1. Since in each process,
the value of the GC is changed at the occurrence of an synchronization event, several
local events may have the same TS, two fields — Timestamp and Counter — are used
as the primary key in table 2. The counrer counts the number of local events that
has occurred since the immediately preceding synchronization event. In other words,
the value of counter is reset every time a synchronization event occurs. Note that
records on local events are collected through dynamic probes. As these probes are
inserted and removed during the course of a debugging session, the set of local

events varies accordingly.

This distributed databasc system also consists of local database managers, one
for each site, which manage all database fragments at the local sites. A central
database manager will coordinate ali of these local managers and keep the whole
database in a consistent state and offer a global, singular view of the database to

the user.



Data in the database is updated when the program is executed in the debugging
environment. These data are obtained through static and dynamic probes that are
previously inscited into the program. During the execution, the “event processor” will
collec: this informaton and pass it to the local database manager, to store it in the
ri vt place. I ocal events arc always kept in relation with their preceding synchronization
events. Thercfore, in operations on the database, we are concerned only with the

synchronization events that arc kept in table 1.

For any number of records in table 1 of the database, a corresponding pomset
can always be formied based on information from these records. Each record corresponds
to an event, whot' action is specified in the actic 4 field of the records. The timestamps
of the records define their partial order. For a database which has the full recording

of a computation W, the corresponding pomset of its records is W.

The volume of data collected for a complete execution of a program can be
enorrmous, and maintaining the database becomes impractical because of limitations
oi the system resource. To cope with this a data window can be defined. When the
data window is employed, only records of a certain number of recent events are
kept. As the execution proceeds, recent records are added to the database while the
old ones are removed. Hence the size of the database will never exceed the window
size, and the window can be viewed as a moving window. The centra! database
manager will coordinate deletion of old records to keep the database in a consistent
state. Consistency of the database with respect to the deletion of records is defined

as follows:



45
Definition 3.2 Given a database of records from a distributed computation, its
consissency is defined recursively as:

1. If no record is deleted from the database, the database is
consistent.

2. Let p be the corresponding pomset of the database before a
deletion, ¢ be the corresponding pomset of records that are
deleted, and p’ be the corresponding pomset of the records that
remain in the database after the deletion. p’ is consistent iff p
is consistent and q < p. O

In practice, the user specifies the window size of the database at the beginning
of a debugging session. This value of the window size is given to the local database
managers. When the data of the progiam trace is collected, the local manager keeps
track of the size of data fragments. When the size of a fragment exceeds the window
size, the corresponding local manager will determine the cut-off point in the database
fragment. All records preceding the cut-off point are deleted so that the size of the
fragment can be reduced. The central database manager is also informed so that it
can coordinate similar deletion in other database fragment in order to keep the whole

. database consistent. The following aigorithm provides a method for reducing the size

of the database and keeping its consistency.

Algorithm 3.2, Database Size-reduction Algorithm.
Input: - Database for a distributed computation of n processes: P;, P2, ..., Pa;
DB,, DB;, ..., DB, are the database fragments coiresponding to the processes.

- a certainevent ey € P, i € { l..n}

Output: - the database in which a number cf records are dcieted.




46

Step 1 V ke {l.n) [ TSkl is sent to DBy ]
Step 2: V eu € P [ TS(eu)lk] < TS(e)[k]

=» record for eu is deleted ]. O
Theorem 3.1 Let p be the pomset corresponding to the database DB;

ej € P; be an event in p; g be the pomset corresponding to the records deleted by
applying algorithm 3.2 to DB; p’ be the pomset corresponding to the resulting database
DB’ aiter the application of the algorithm. If p is consistent then:

1. Vene Pilmsj=en€ q)

2. p’ is consistent.
Proof

1. V em € Pi:

m<s<j= TS(eim)(i] < TS(ey)(i] ( algorithm 3.1 )

= record for eim is deleted ( step 2, algorithm 3.2 )

= eim € q

2. Veue g
TS(ew)k] < TS(ei)lk] & ew e Vew=ej ( property P1)
= eu € pref(p, e;) ( definition 3.1 )
= g%p ( lemma 3.1)
= p’ is consistent. ( definition 3.2 )
O

Thus every time the size of a database fragment has to be reduced, the local
database manager for that fragment determines the record corresponding to the cut-off
point. The timestamp of the record is then sent to the central manager to initiate

the size-reduction. The central manager in turns distributes the values of the timestamp’s



47

P4

P

Ps3

DB, DB2 DBa
Event[Timestam Event{Timestam Event[Timestam
e 1,0,0 €21 0,1,0 es1 0,0,1
e12 2,0,0 €22 1,2,0 €32 2,02
e 3,10 €23 1,3,1 €33 2,0,3
€14 41,0 €24 4,41 eas 754
e1s 5,1,0 €25 4,5,1
€16 6,51 €2 4,6,3
€17 7,5,1 ez27 5,7,3

a) Records in database

€11 —s €12 —» €13 —+ 14 —= €15 ——— €16 — €17

|

€21 — €22 €23 24 25 €26

€31 €32 els

€27

a4

b) Distributed computation corresponding to records in (a)

Figure 3.7 - Database before size reduction




48

components to other local managers according to algorithm 3.2. Upon receiving these
values, and based on algorithm 3.2, the local managers can determine which records
to be deleted in response to the size-reduction so that the database can still be

consistent.

Example 3.3 The tables in figure 3.7a show a sample of the database, which
contains the recording for the computation in figure 3.7b. Each table corresponds to

one process, and contains records of events and their timestamps.

Assume that the size of DB; has exceeded the window size and e;4 and all
records preceding it must be deleted to reduce the size. While the records are removed,
DB; also sends TS(eis)[2] and TS(ers)[3], which are 1 and 0, to DB, and DB;
respectively. Upon receiving this value, DB; will delete all events ez, where TS(e2;){2]
< 1 from its database. Thus ez; is deleted from P,. It easy to see that no record is
deleted from Pz The tables after the size-reduction and the ST-graph constructed

from the data in these tables are showed in figures 3.8a and 3.8b.

Assume that P; also has to reduce its size and must delete all records up to
and including ezs. TS(e24)[1] and TS(e24)[3] (which are 4 and 1) are sent to DB,
and DB;, respectively. Since TS(e3)[3] = 1, it is deleted from P;. In P,, there is
no ey where TS(esy; < 4, none is deleted. The tables and their corresponding

ST-graph become as shown in figures 3.9a and 3.9b. 0O

Sometimes, a complete history of a process has to be preserved, such as for
use in an artificial environment to debug other processes. In that case, instead of
discarding the past records completely, they can be archived onto a backup file for

later use.



49

DB, DB: DB;
Event|Timestamp EventfTimestamp Event Timestama
&1 1.0.0 82 0,1,0 €31 0,0,1
24z 2,00 e 1,20 €32 2,02
61 3.1.0 €23 1,3,1 @33 2,03
214 4,10 024 441 €34 75,4
e1s 51,0 exs 4,51
€16 6,5,1 €26 4,6,3
€17 7.,5,1 €27 5,73
a) Records in database
P, B ey 4L s B0 e 20 s @15 e €16 —— 817
\ N e !
L e |
2N ’%
/"’J N §
P. @) e @22 _3..: €23 —» €24 e2s €26 €27
Ps es1 e €33 €34

b) Distributed computation corresponding to records in (a)

Figure 3.8 - Database after Ist size reduction initiated by DB,




|

50
DB, DB: DBs
Event{Timestamp Event|Timestam Event[Timestam
& H .t \(}.0 t'f.:i 01 1 )(} {'3'5‘- {}tot‘t
21 2;00 €42 1 ‘21{'} €32 210v2
@17 3.1.0 oy 1,3,% €33 2,0,3
B4 4.1.0 Gg 4.4.% €34 75,4
eis 51,0 ez 4,51
€16 6,5.1 €2 4,6,3
€17 7,51 ez7 57,3
a) Records in database
P, 24; e B wenen 3o ST eis €16 €17
> 3 i
\\4 H
PR ‘a
P, t:;‘.‘; ....... o D0 e N e U0y o g s €55 €26 ez7
\>\/‘
J'//, \‘\
,J’J,/ \\\
P; e - €32 ess €34
b) Distributed computation corresponding to records in (a)

Figure 3.9 - Database after 2nd size reduction initiated by DB;




51

Queries can be directed to the database by the user or by other debugging
utilities, when the program is not running. Queries are made to the central manager,
which analyses them and sends secondary queries to appropriate local managers. The
user examines the program’s behaviour and its states at various points during the
computation through such queries. Utilities can also send queries to the central
manager to retrieve information relevant to their operations. For instance, a query
requesting all event data sorted in their timestamp is made when the ST-graph is

built for figure 3.7.

The trace data collected and stored in the form of a distributed database can
be used for several purposes. First of all, the user can examine the history of an
execution of the debugged program. In another application, the user may decide to
run only one but not all distributed processes but can still have the effect of them
running. The trace information in the database is used to simulate the messages sent
to the selected process. Genuine data in these messages can also be replaced by
synthesized data before the messages are delivered to the receiving process. Thus the
user will be able to examine the behaviour of the process under different sets of

input data.




52

3.3 Design Choices

3.3.1 SBS and Compiler

We needed a language to describe the SBS which we call the specification
definition language (SDL). For our prototype distributed debugyger, we have proposed
a simple SDL that is described below. This language lacks certain features such as
allowing the use of predicates in the specification. There are also certain pomsets it

cannot define. Nevertheless, it allows us to experiment with our prototype.

The basic components of the SDL are actions and operators. Each instance
of an action represents an event. Operators define the causal relationship between

events.

In the scope of our SDL, an action is characterized by the operation being
carried out and its locality, i.e., the process in which the action occurs. Since each
process is viewed as strictly sequential, we have the following restrictions on events:

1. All events of the same locality are serialized, and

2. No two events of the same action can occur simultaneously.

These restrictions pose some limits on how a process can be specified. On
the other hand, without the restrictions, some pomsets cannot be defined using this

language.

The four operators on pomsets that we use are defined in [29]. We repeat

the definitions here, and then define their application when used on sets of pomsets.



53

Given two pomsets, p = [V, , T, y], ¢ = [V, T', T, u'], then:

Concatenation
p:q=[VUV', ZUZV(V x V'), U, pup']

We usually write p;q as pq for short.

Conjunction
plla=vuv, 2uz, rur, pup

that is, there is no ordering requirement between members of V with those of V'.

The two following operators produce a set of pomsets instead of a new

pomset.

Disjunction
p%q={p.q)
If a process is described to have a behaviour of p%gq, it is to have either p

or g as its computation for every execution, but not both.

Kleene’s star

p*=1{¢,p,pp,ppp, ... }

We extend the above operators on sets of pomsets as follows:
PQ =PQ=(pglpePrgeQ)
Plg =tplglpePage)
P%Q =P v Q
P ={p*lpepr)

where P and Q are sets of pomsets.




Example 3.4
1. af(bcd) || (efg)]h is the pomset

b —
a /
N e — f
2. [aclldylld) is the pomset
a ——— ¢
b —mmm d
3. afa ” (aa)la is the pomset

which can also be defined simply as (aaaa).

—_a

54



35

Because of our restrictions on the definition of actions and events, we cannot

have, for instance, the following pomset:

However, we will be able to define pomsets such as the one in example

3.4(2).

O

A compiler will translate the SBS of the debugged program written in SDL
into a data structure that represents the SBS internally for the debugger. In addition,
the compiler will also check for semantic correctness in the specification. For example,
it can detect if an exchange of messages between two processes is attempted without

a channel connecting them.

The use of a compiler for handling SBS allows flexibility. Different people
can have their own versions of SDL and they can de designed to suit their own
needs. Only the compiler module will have to be changed in the debugger. The
compiler can also be designed to carry out more extensive checks on the program

semantics as well as verification of certain design rules required by the organization.




56

3.3.2 Breakpoint

The use of breakpoints in debugging allows the user to examine the program’s
state on-line. When the execution reaches the breakpoint, it is suspended. The user
can then examine the program as long as is ne.czsary. Furthermore, the advantage
of breakpoints is that the execution can be resumed. The user can continue to debug
without having to restart the program from the beginning. By examining the program’s
state and its behaviour history up to the breakpoint, the user may be able to assert
the cormrectness of the preceding computation, and may gain more clues about the

location of the errors.

In conventional debugging, the breakpoint is defined in the “implementation
space”, that is the user defines a section in the code as a breakpoint. As the program
is about to execute that section, it is suspended. As discussed before (section 3.3.1),

defining breakpoints in this manner for a distributed program is not practical.

Our notion of breakpoints in distributed debugging is based on the program’s
behaviour. To be more precise, it is based on what is expected to be observed in
the program’s behaviour. In other words, the breakpoints are defined in the *““specification

space”.

In contrast with conventional breakpoints, breakpoints based on behaviour are
imprecise. In conventional breakpoints, the execution is always suspended just before
the code at a breakpoint is executed. In controlling breakpoints defined in the
specification space, the specified behaviour must be observed before the execution is

suspended. When the program’s execution is suspended, its history is supposed to



57

possess the specified behaviour corresponding to the breakpoint specification. Of

course we assume that the program’s computation contains no error up to that point.

In our design, the user chooses a breakpoint based on the program’s specitication.
Given a program specification P = { ps, ..., pa }, 1 breakpoint can he specified as

a pomset Pep, Pop Sn Pi, Pi € P. That is, pep is a prefix of a pomset in the specification.

During the execution, the debugger will compare the observed computation o
of the progiam with the specified breakpoint py,. Execution is suspended when the
following condition is true:

Joa3Plppsufsnal
In other words, o contains a prefix which agrees with the breakpoint pyp. It is
possible that for the breal.yoint pep, ppp < pi, there exists p; € F, pj # pi, such that
Pep <x pj. The breakpoint is reached, i.e., the execution is suspended, if the current

computation is the implementation of any of these p; € P.

A defined breakpoint ps, may never be reached. The actual computation does
not have the behaviour that is expected. That means, given the observed computation
o

AB[PnoAprp<aP]

One reason for a specified breakpeint not being reached is that, due to
nondeterminism in the execution, the pomset that the breakpoint is based on is not
chosen for the computation. For instance, consider a breakpoint ps, defined as:

Py <apipi€ P.
If the observed computation o agrees with p, € P, but does not with p; € P:

IBpilPpsacc]




58

then the program will aot be suspended. Neither will the breakpoint be reached if
the computation contains synchronization errors, in which case a does not agree with
any p; € P. However, the user may have to do further investigation, using other
debugging tools, in order to determine the exact reason which caused the breakpoint

not to be reached.

The breakpoint might not be reached if the computation fails the program’s
liveness requirement. For instance, the execution terminates prematurely, or enters a
deadlock. In this case, the reason for the breakpoint not to be reached is quite

apparent to the user.

The user may also want to specify the breakpoint based on a few, but not
all, actions in the computation. For example, the breakpoint is specified based on
the expected behaviour of the program with respect to only events of action a and
b in the program. In such case, the defined breakpoint ps, is a prefix of the projection
of pi onto the set of the desired actions. Formally, given the set A of actions that

interest the user, then a breakpoint can be defined as:

pep <z q, q=proj(p,, A), pi € P.

Obviousiy, two diffcrent computations, o) and o m y reach the same
breakpoint ps, which is defined in this manner, as long as the following condition
is true:

3B B < projlar, A) A B <n proj(oi, A) A poy <« B ]

The breakpoint defined in this manner corresponds to different t:haviours, all
of which pnssess common behaviour with respect to a number of actions. The program

is suspended whenever this common behaviour is observed.



59

The breakpoint specification is simply the description of the pomset pyp. The
syntax for the description, however, should be simple for the user to use in order
to specify the chosen pomset. On the other hand, the debugging system should also
be able to use the specification and match it with the actual behaviour. We use
predicates which are based on event counters for this purpose. Each predicate has
two parts: one is used to specify the required tempor. . order of events in the pomset,
the other to specify the prefix corresponding to the breakpoint. Here are a few
examples on the breakpoint specification, whose detail semantics are being worked

out at the time of this writing by Lea [25]:

Example 3.5 Given the pomset:
(a-=b->c)*
meaning that the sequence abc is to repeat ind_rinitely. If a breakpoint is to be
reached after three iterations of this sequence, it is specified as:
( C(c! < C(b) < Cla) ) (part 1)
A (Ca) =3 ACB)=3AC(c)=3) (part 2)

where C(a) denotes the number of occurrences of action a.

Part 1 of the breakpoint specification is used by the debugger to deiermine
whether the observation matches the desired pomset, ie., (@ = b — ¢ )*. Part 2
is used together with part 1 to determine tue prefix of the pomset that corresponds
to the breakpoint, which is:

a->b-c-2a-b->2c>a=bh->c 0




60

Example 3.6

For the prefix:

b b

the corresponding breakpoir. can be specified as:
(Cla)=2ACb)=2AC(c) =1 AC(d)=1)
A (Cc) €1 ACla) £C(c) +1 A C(b) <Clc) +1
A 2(C(c) + C(d)) € C(a) + C(b) ) 0

When the execution is suspended at a breakpoint, the user can examine the
current program state as well as the recent computation. Or he can step through a
local process without generating a synchronization event. He can add probes or

remove the existing probes. His ultimate aim is to locate the bug.

3.3.3 Trace

Trace is used to preserve the history of « program. As the program reaches
a “milestone” during the execution, a record is ertered into a file called the rrace
file. Thus the path of computation through which the program has gone can be
reconstructed using a trace file. Depending on the granularity of the user’s needs,
the milestones can be the procedures that have been called, the conditional branches

that have been taken, or even every statement in that program.




61

In our debugger, traces of all synchronization events are recorded in the
database. Each record has a timestamp so that the proper order of the events can
be fully reconstructed. Optionally, the user can define the local events to be recorded.

The local events are also timestamped with the current Global Clock value.

The ST-graph is used to represent the history of the program. In its graphical
form, the ST-graph gives a visual picture of the temporal order of events in a

computation. We define the ST-graph formally below.

Definition 3.3 A directed labeled graph q is a quadruple (V, I, E, ) where:
Vv = set of vertices
z = set of labels
H = V — L is a many-to-one mapping

E ¢ VxV is a non-transitive, irreflexive and

asymmetric relation. 0O

From now on we will use the name directed labeled graph to refer to the

isomorphism class [V, Z, E, u] of such a graph.

Definition 3.4 g(p) is an one-to-one and onto function from the set P of
pomsets to the set G of directed labeled graphs (where P and G are considered
universal sets) which is defined as:

Vpe P:

gpi=q o (Vi=V, L =5, p=u,

Eo= (1 v) | (1, v) e Tpa

Fvs [ v va), W, v) e, 1)) O




62

From definition 3.4, we also have:

p=glq & ( Vp = Vg Zp = Xy, Hp = Hg,

={0,v) | (v v)eEv

(3vie Vol v Wv) € Eg1) 1))

For a distributed computation W, g(W) is called the ST-graph of W. Each
pair {v;, v2) € E is called a process edge if v; and v: belong to the same process,
otherwise it is called a channel edge. There should only be a channel edge between
a matching pair of send and receive events if the graph is used to represent a
distributed computation. In debugging, to prevent having an ST-graph which has
channel edges between non-matching events, the corresponding pomsets should be
maintained so that whenever a receive event is removed from the pomset, its matching

send is also removed.

An ST-graph can always be constructed from a consistent database (definition
3.2) which keeps the partial recording of the distributed computation (section 3.2.5).

The following algorithm shows how the ST-graph can be constructed:

Algorithm 3.3 ST-graph Construction Algorithm.
Input: Database fragments DB,, DB,, ..., DB, corresponding to processes P;, Pz, ...,
Pn. Each record in the database has information on the cvent type (send or receive)

and the event timestamp in GC.

Output: An ST-graph q = [V, X, Ty, H4l.
Step 1: Vs Z; and pg can be obtained from data stored in the records.
Step 2: For every ey, ex € P;:

(ej,ex) € E; & TS(ey)i] + 1 = TS(ea)i).



63

These pairs form the process edges of the graph.
Step 3: For every send event ¢, form the set
R(ej) = { eu | (e € Pi) A (eu is a receive event) A
( TS(ew)li] = TS(ey)li] ) }.
If
3 es € R(ej) [ Feu € R(ey) | TS(ew) « TS(ers) 1 ]

then (ej, ers) € Eq.

These pairs forms the channel edges of the graph. 0

Theorem 3.2 If p is the comresponding pomset of records in a consistent
database, and g is the ST-graph obtained from applying algorithm 3.3 to the database

then

q=2g(p)

Proof
a) V ey ex € Pi
(eij, ex) € Egq
=3 (ej > ex)A(dere Pi[ e — ea near —»ex])
( definition 3.4 )
I8 ( TS(ey)li] < TS(eali] ) A
( 2 ea € Pi [ TS(ey)[i] < TS(euli]) A TS(euli]) < TS(euli]) | )
( property Pl )
= TS(ey)[i] + 1 = TS(ea)li]. { algorithm 3.1 )




b) Veje P, ese P,r#k:
(e5, es) € Eq
=3 (e is a send event A e, iS a receive event
Adeul[ei—> euneu —es]) ( definition 3.4 )
= ( e is a send event A ers is a receive event
A es € Rlej) nTeue Rlej) [ ew > es])
( property P1 and step 3 of algorithm 3.3 )
= ( ej is a send event A ey is a receive event
n es € Rley)) A Tew € Rlej) [ TS(ew) « TS(ers) 1)
( algorithm 3.1 )

O

Example 3.7 Let us use algorithm 3.3 to construct the ST-graph using the
data given is figure 3.10.
a. Process edges for events in DB; are obtained by sorting the timestamp of the

events on the i element (TS(ey)[i]). Figure 3.11 shows these edges.

b. Channel edges for event e;s can be established by first forming the set R(ezs):
R(ezs) = { e1s, €34 } (because TS(ess) = TS(e3s) = 5). Since TS(eis) = [6,5,1]1 and
TS(ess) = [7,5.4], TS(eis) € TS(esq). Therefore there is a channel edge from ezs to

e1s, and ej6 = r(ezs).

c. Consider the send event e;s, R(e;s) = @. We conclude that r(e;s) has not been

recorded.



65
DB; DB: DBs3
Event] TS | Type Eventl TS | Type Evert|] TS | Type
ei2 |2,00] Send e2 |1,2,0|Recv e3 |0,0,1|Send
e1s |3,1,0]| Recv e |1,3,1|Recv 832 |2,0,2 | Recv
eis {4,1,0]Send e |4,4,1|Recy 33 12,0,3]Send
eis |5,1,0| Send exs |4,51]|Send ess |7,54|Recv
e | 6,51 Recv ez |4,6,3|Recv
e17 7,51 | Send
Figure 3.10 - Database used for example 3.7
P4 €12 =———s €13 — €14 — €15 — €15 — €37
P2 €2 —— €23 —s €24 ——» €25 —s €2
P3 €31 €3z €a3 €34

Figure 3.11 - Process edges in the ST-graph of example 3.7

[
:
3




66

€13 —+ ©14 ~—» €15 ——s €16 — €17

T

25 —e €26

€33

€23

€34

Figure 3.12 - The ST-graph constructed from data in figure 3.i0

The full ST-graph for the database is shown in figure 3.12. Notice that the
receive events e23 and e33 have no matching send. Their matching events have been

deleted from the database. ]

After the ST-graph is constructed from the synchronization events, the local
events can be added to the graph, the TS and counter field in the database is used

to determine their positions in the graph.

An ST-graph can be very large when drawn out. A sliding window can be
used to display only a section of it. When this window is moved to another section,

that part of the graph will be shown to the user.

Conceptually, the use of the sliding window on a ST-graph g = (V, I, E, u)

is equivalent to dividing V into three disjoint partitions, Vi, V. and V,. The window



67

is moved when elements are transferred from one partition to another, The following

requirements must always be observed for the window to be correct:

1. Vi, Vm and V, are always pair-wise disjoint;
2, VviveV[iveVia(u v)e E] = vie Vg
3. VvivieV[ive VnA(v, v)e E] = vie (VivuVy)

The last two requirements ensure that for any two elements that belong to
two different partitions, the edge between them, if there is one, always goes from

Vi to V,, or from either V; or Vi, to V,.

To move the window without violating the above requirements, the following

rules can be followed:

a. No element can be transferred directly from V; to V, or vice versa;
b. For any v € Vn, v can be transferred to V; iff pred(v) ¢ V;;
c. For any v € Vi, v can be transferred to Vn iff succ(v) € ( Vm U V, )
where
pred(v) = { V' | vve VAa@Wy eE]) and
succ(v) = { V' l vveVawV)e E}
Similarly,
d. For any v € V,, v can be transferred to Vn iff pred(v) ¢ ( Vi U Vn ); and

e. For any v € Vn, v can be transferred to V, iff succ{v) ¢ V..
An example of the ST-graph and the sliding window is show in figure 3.13.

At each vertex in the graph, the user can extract more information related to
the associated event by querying the database. Queries sent to the databasc use the
timestamps and, in case of a local event, the local event counter as keys to search

for related records.

.
s
i
7




AL G L

68

P4

Ps

PR N
oo

# .

’ .

B . .

€3 ——t

--oe;a.._. €14 — 615 ——

Q32

V, partition

Vi partition V; partition

Figure 3.13 - ST-graph and the sliding window

3.3.4 Tracking

Tracking is the operation in which the observed behaviour of a program is

compared on-line against the specification of that program. Thus tracking is the main

operation in the first stage of distributed debugging. The program is set to run while

the debugger monitors the program behaviour in terms of the communicaiinn activities.

Having been provided with the SBS, the debugger will suspend the program whenever

it detects an occurrence of an event that does not follow the SBS. The user is notified

of the location of the violation.



69

The method of checking the actual behaviour of the program against its
specification has been proposed by Bates in [5] and also used in [4, 18]. Bates uses
a Shuffle Automaton for the purpose of tracking. In the Shuffle Automaton, the tokens
that cause state transitions are defined as sets of concurrent events. For example, the

Shuffle Automaton for the following sequence of events:

looks like:

o a , ‘ b, ¢ ,d} 2 e e

A tracking facility using a Shuffle Automaton can recognize any interleaving
of the concurrent events b, ¢ and d. However, a Shuffle Automaton may face a
combinatorial explosion if there are partial orders between some of the concurrent
events. For instance, the Shuffle Automaron representing the following sequence of

events:

a —p ¢
b —P d




70

Baiardi [4] and Gordon [18] use an assertion checker instead. Their approach

reduces the complexity of tracking, but it could not cover all possible errors the

program may have.

By using the pomset model, we can reduce the complexity faced by the

Shuffle Automaton approach, and still keep track of all possible moves of the program.

The tracking procedure is done basically in the following steps:

—

From the SBS, the set of pomsets R(), which represents all
possible computation of the program is built,

From this set, the set of actions that can occur, called
next_event, is formed.

If the action of the next event is not in this set, a violation
is assumed,

If the next event is valid, R(o) is updated, and a new

next_event set is built.

This method does not try to construct all possible combinations of events that

a serialized concurrent computation can have. In fact, the set next_event represent.



!

all concurrent actions, and the actual order of their occurrence is imelevant. Therefore,

the complexity that is faced by methods based on FSM is no longer present.

Tracking using the pomset approach can effectively handle concumency and
partial orders. The drawback in the pomset approach is in the way nondeterminism
is described. Every computation which cormresponds to an outcome of a nondeterministic
choice must be represented by a pomset. Thus 2 set of pomsets is used to specify
the program behaviour. Since an observation can agree with more than one of these
pomsets in the specification, more than one next_evenr set is needed for the purpose

of tracking.

Tracking is effective in locating synchronization errors. However, it does
present additional overhead to debugging operations. The application process cannot
be allowed to execute more than one event shead when the tracking module is
checking the vaiidity of the last event. As mentioned in section 2.4, the delay imposed
on the application process due to tracking can be a source of probe-effect. Therefore,
the use of tracking should be discouraged when probe-effect is suspected to be present

in the debugging system.

3.3.5 Event Colorsand L.ogical Channels

During a computation, processes can, and usually do, exchange different kinds
of messages. However, for practical reasons, these messages are sent on the same
channel that connects two processes. Internal computations of a process will decipher

the message data to know the type of the received message.

]
1
i
!
1

ataza-



72

While monitoring the program, the debugger can only perceive : 2 actiors
that are done when messages are exchanged. That is, they can only detezt that the
action 1s for sending or for receiving a messree. For the purpose of checking against
specification, this kind of information is apparently not enough. Hence, mure detail
should be obtained from the communication ports of the processes. On the other
hand, the debugger should not go too far to examine the contents of the messages,

as that will cause too much interference to the normal execution of the program.

Our solution is to assign colours to synchronization actions [19]. These actions
are divided into groups, each nf them will have a distinct colour. When an event
occurs, it will have the colour of the related action. The monitors of the debugger
are built to be colour sensitive. They recognize the colour of the events, hence the
events can be classified into groups without requiring the debugger to look into the

message contents.

In assigning colour to the synchronizauon events, we also extend the idea by
making the messages have the same colour as their corresponding sends and receive..
In effect, logicel channels can be formed by assuming that a channe! can carry only
mescages of one colour. Thus two proccsses may have more than one logical channel
connecting them, as viewed by the debugger, instead of only one physical channel

as implemented.

With events grouped together by colours, colour filters can be installed. The
filters give a projected view of the program behaviour by removing certain types of
actions frcm the whole picture. Formally, given a program behaviour
p =1V, & T, p], and a set F of actior 2 riltered, then the resulting behaviour

after filtering is the pomset p’ = proj(p, Z-F). Thus the user can screen out irrelevant



73

actions when debugging a program, keeping only those that are deemed significant
to the computation. Figure 3.14 illustrates this effect. Figure 3.14a shows a distributed
compuzation whose events have two colours, dark (e.g., e;; and ez2s) and shade (e.g.,
erz and es3). If events of shade colour are filtered out then the computation will be

perceived as shown in figure 3.14b.




74
P4 €11 —s 012 —s €13 — €14 — €15 ——, 15 —» ©17
i
\ 1
‘1
P €21 — €22 €23 €24 —» €55 €2 €27
\
\\
"
Ps €31 €32 €33 €34
a) Before filtering
P4 €3 ——+ €15 —— €15 — €17
P2 €219 ———» €22 * e-,
Ps €31 €34

b) After filtering

Figure 3.14 - A computation with coloured events being filtered.



Chapter 4

Implementation

A prototype for the distributed debugger usirg the design discussed in chapter
3 has been implemented and tested. The programming language used for the
implementation is C. The test programs for the debugger were also written in C.
The DCS that is uced for this implementation consists of four SUN workstations,
running under SUN’s UNIX. In the following sections, we will describe the structure

of the debugger, operation of the modules, and other major details of the implementation.

4.1 System Structure

The debugger is divided into two parts: the central debugger (CD) and the
local debugger (LD). Each part of the debugger is further divided into several modules
for handling different tasks. The list of the modules and their functionalities is shown
in table 4.1 for the CD and table 4.2 for the LD. In the current implementation, the
CD and LDs are treated as single processes running on their own sites. However,
the modular construction of this software allows for extensions to support multiple

processes in each site.




Table 4.1 - Central Debugger modules

W

System Programming Specification
Module Dependent | Language | Language
Dependent | Dependent
B Transformer X
SBS Compile A X
Breakpoint Coordinator
B/D Detector
Database Central Mgr.
User Interface
CO/LD Interface X
Table 4.2 - Local Debugger modules
System Programming Specification
Module Dependent | Language | Language
Dependent | Dependent
Process Controller X
Event Processor
Tracker X
Breakpoint Recognizer
Database Local Mgr. X

76



77

4.1.1 Central Debugger

There is a single CD for the whole debugging system. The CD consists of
coordinator modules which keep the operations in the LDs in synchronization. Figure

4.1 shows the general structure of the CD.

The Transformer is a preprocessor which converts the source program into
a “debuggable” version. Abstractly viewed, the transformer inserts static probes into
the program. These probes allow the debugger to detect occurrences of synchronization
events. This is achieved by adding additional codes to the program. When thesc

added codes are executed, they will send information to the debugger.

With proper annotation in the source codes by the programmer, colours can
be added to synchronization events. Thus more logical channels can be assigned to
the same physical channel, where each logical channel carries only messages of the

same colour (see 3.3.5).

By the use of the transformer, the debugger can be adapted for use with
different programming languages. In fact, a debugger can have several transformers,

one for each programming language that the debugger is intended for.

SBS Compiler eads the SBS written in SDL and generates the necessary datn
structures which define the program’s components and their synchronization. Two of
these structures are the process table and the action rable. The pracess table is the
list of all processes in the program. This list has the process names as assigned by
the user, along with their site locations, as well as the logical channels inte-connecting
them. The action table contains, for each action, its identifier, the assigned colour,

and the type of action (e.g., send or receive). The CD will distribute these tables to




78

User Interface

Breakpoint
Coordinator

B/D Detector

Database
Central Manager

SBS Compiler

Basis SBS

CD/LD
Interface

Local Local
Debugger Debugger

Figure 4.1 - Central Debugger Structure



79

all LDs; information in them is necessary for identifying various components and

events in the program.

The compiler also generates the internal representation of the SBS. This data
structure is described in detail in section 4.2.2. While generating this data structure,
the compiler also does some semantic checking, such as whether an action can occur

in a certain process.

The SBS structure that is built from SDL is called the basis SBS. This is the
program specification in its most detailed form. Prior to an execution of the debugged
program, the compiler module will read the basis SBS and generate another version
called the working SBS. In the working SBS, actions with colours that are to be
filtered will be removed. The working SBS is then distributed to the LDs. Furthermore,
an SBS for a composite process can be generated from the basis SBS. This feature

is not included in this implementation.

Breakpoint Coordinator receives breakpoint definitions frouw. the User Interface.
The condition for a breakpoint is analysed and the predicates and action counters
are identified. The counter values are sent to Breakpoint Controllers at the LDs; the
module ensures that a counter value of an action and predicates involving that action
are only sent to the node where that action is allowed to occur. For example, if the
counter part of the definition for a “reakpoint is :

aj=x;andaz=x;andaz=x; ...

where a; is an action defined for process P;, then the coordinator will send
[a; = x;] to the LD which controls P, [a2 = x2] to the LD which controls P2, and

SO on.




80

The local Breakpoint Controller will signal the BP coordinator whenever a
local action counter reaches the specified value. The coordinator will evaluate its list
of BPs, and suspend the execution if a breakpoint is reacned, i.e., all the conditions

of that breakpoint are satisficd.

Blocked and Deadlock (B/D) Detector is used to detect the condition where
an application process is blocked indefinitely on a dead channel because the process
at the other end of the channel has terminated prematurely. The detector also recognizes
deadlock condition in which a cycle of processes are all waiting for messages to be

sent from one another.

For the purpose of B/D detection, a predefined timeout value can be set for
every awaited receive event. If a process is blocked on an empty channel longer
than this timeout period, its LD will send a signal to the B/D detector. The detectcr
will obtain the execution state of the process at the other end of the channel. If it
finds out that the channel is “dead”, i.e., the process at the other end of the channel
has terminated prematurely, the whole program will be suspended, and the user will

be informed.

If the other process is also blocked on another empty channel, the detector
repeats the inquiry. A directed graph is built and updated at every inquiry. Each
vertex of the graph corresponds to a process and is timestamped with the process’s
local GC value. If a cyclic path is detected in this graph, the detector gets one more
sample of local GC values of all processes in the cycle. A deadlock is presumed to
have occurred if the current GC values are the same as those in the timestamps. In
this case as well, the execution will be suspeaded and the user will be informed of

the situation.



81

The B/D detector is implemented as an additional tool to help the user detect
liveness violations in the program. ‘The effectiveness of this module relies on appropriate
setting of the timeout value, the selection of which in turns depends on the user’s
knowledge and experience with the system. The debugger and its detection module,
however, cannot determine anything about the state of a process which is alive but
does not exhibit any activity for a long period. Such processes may be cither in an
undesirable infinite loop, or busy doing a very complex internal computation. If this
inactiveness of a process causes some other processes to “time-out”, the B/D detector

will only inform the user. The latter should decide on how to handle the situation.

Database Ccntral Manager can also be called the query processor, since it
handles only queries; the collecting and updating of data are done locally by the
database local managers in the LDs. A query is analysed and broken down into
subqueries by the CD before they are sent to LDs. Using the process table and
action table, the central manager can decide on the destination for each subquery.
For instance, if a query is for events belonging to only one process, it will be sent

to the LD thut handles that process.

User Interface. The user controls the debugger through this module. Among
the sub-modules in the User Interface are the command processor and ths ST-graph
generator. The ST-graph can be generated in different styles, using text or graphic
representation. It can also be set to grow in “slow-motion”, giving a picture of how
the computation proceeds. If graphic capabilities are available, the ST-graph can also

be used to generate an animation of a computation.

The Interface between CD and LDs. All instructions and (ata going between

the CD and LDs must pass through an interface module called the Central-Local




82

Interface (CLI). The CL' operates in two modes: idle and running. It is in idle mode
when the program is not in execution. In this mode, the CL/ reacts or -:ommands
entered through the User Interface. In other words, it is invoked directly or indirectly
by user commands. By contrast, in running mode, the C:.{ is the server for all other
modules at the CD as well as the LDs. It receives requests, instructions or data from

others, and passing them to the proper destination.

4.1.2 Local Debugger

The LD controls all application processes at the local node. Therefore there
is only one copy of a specific module in a LD. The exception is the Process
Controller, which requires one copy for every application process. The structure of

the LD 1is shown in figure 4.2.

Process Controller. This is the only module that has access to the “internal
space” of an application process. Through the process controller, dynamic probes can
be set and removed during the debugging process. It can also return any part of the
process’s state as requested. Any breakpoints that are defined in the implementation
space will be set through this module. In addition, the module is used to launch the
application process at the start of an execution, and to detect whether the process

has terminated.

Event Processor. All static probes send their signal and information to this
module, whick in turn will distribute the information to other modules that need
them, such as the tracker or the database manager. The module also manages the

Global Clock, and the timestamping of the events as they occur.



)

Central
Debugger
\
<
Event
Processor
/’

Process
|
—Controller

{

Application
Process

)

Database
Local Manager

3

Process
Controller

Application
rocess

=

O/S Communication Subsystem

Figure 4.2 - Local Debugger Organization




84

In this implementation, the event processor is also used as the central server
of the LD. It relays signals from other LD’s modules to the CD, as well as passing

requests and commands sent from the CD to the LD’s modules.

Tracker. Just before the debugged program is executed (under the debugger’s
control), the tracker receives the copies of the working SBS (from the CD) that are
pertinent to application processes at the local nodes. From this SBS, it derives the
set of events that can occur and sends to the event p.ocessor. When an event occurs,
the event processor passes the r..ated information to the tracker, which updates its

structures and derives the new list of possible next events.

Because the process for tracking is quite complex compared to the operations
of other modules, the tracker is implemented as a separate process. Thus after passing
the list of next events to the event processor, the tracker can carry out further

operation on its structures, preparing for the next step of tracking.

Breakpoint Recognizer keeps a list of action counters and predicates, updating
them from tokens sent by the event processor. There is also another list of specified
counter values related to oreakpoints. These values are sent from the breakpoint
coordinator. When an event occuss, the list of action counters are updated, and then
the list of predicates is reevaluated. Any predicatcs that are no longer valid will be
flagged; the current computation does not agree with the pomset specified with those
predicates. When a counter reaches the specified value, it generates a signal to the

coordinator, which will update its master list of breakpoints.

Database Local Manager. During the execution, the database local manager

collects data on events from the event processor and inserts them into the database,



updating the indexes accordingly. Using these indexes, it can answer queries sent by

the database central manager.

When the size of the database file exceeds a preset limit (see 3.2.5), the
module will determine the event at which all preceding events will be deleted. The
timestamp of thic event is sent to local managers at other sites through the central
manager. The lccal managers will delete old records at their sites accordingly, so

that the remaining data will be consistent.

4.2 Main Data Structure

Process Table and Action Table

The process and action tables contain the basic information about the program
to be debugged. Figure 4.3 shows an example of the process table of a distributed
program that consists of three processt.. Their communication channels are shown
in figure 4.4. Each entry in the process table consists of the process ID, its location
in the system, and all channels connected to it. The user can use this ID to identify
the process in various user commands. The channels are logical channels and each
can carry messages of one colour. Hence, a channel is identified by its direction,
the connecting process and the colour assigned to that channel. The action table has
the names assigned to every actions, along with the type of the action as well as

the assigned colour (figure 4.5).

The locations of the processes are only logical, where the nodes are identified

with numbers 1, 2, 3, ... . When the debugger is launched, the corresponding numbers




86

Process ILccation Channels
Name
P4 1 P, | Cy| |P3 Ci P3| Co
P2 2 Pi | Cy Py {Co2 Ps | Cy
P3 3 P | C2 P2 | C» I
Connecting ColourJ
Process
Figure 4.3 - Process Table
Colours
Ci
C:

Figure 4.4 - Processes and cnannels corresponding to data in figure 4.3




87

Name Type | Ccelour
ay Send Cy
az Receive Ca
by Receive Ci

Figure 4.5 - Action Table

numbers can be assigned to sach physical node by the user. The debugger will locate

and ioad the executable codes of the process accordingly.

The process table and the action table are used to identify the processes and
the actions, as well as the validity of the many operation related to them. Therefore,
these tables are not changed during a debugging session. When modification is made
to these tables, the program must be reloaded, which is equivalent to starting a new

debugging session.

SBS Structure
The internal structure of the SBS is a cyclic directed graph, where a cyclic
path represents a sequence of actions that repeatedly occur. This structure is best

explained by an example: Consider an SDL statement for the SBS: ab*c[(d%e) I (g%h)}*i



88

where a, b, ¢ ... are actions. The graph in figure 4.6 represents the SBS structure
that is generated by the cornpiler for the above statement. Because a,b,c occur in a
sequence, there is an edge going from node 1 to node 2, and another from node 2
to node 3. Since b* = { €, b, bb, ... ], there is also an edge from node 1 to node
3, as well as an edge from node 2 to itself. Where there is more than one edge
coming out from a node, it signifies the point where the common prefix of two or
more pomsets has terminated. Thus the graph section containing nodes 1, 2 and 3

represents the pomsets: ac, abc, abbe, ...

The pomsets containing conjunction actions need special nodes, as illustrated
in the graph section between nodes 4 and 11. Actions in different branches of this
section can occur in any order. However, node 5 signifies a choice between the two
actions d and e; a similar case is in node 8. Although the actions in this section
can repeat indefinitely, as illustrated by the edge going from node 11 to node 4,
the actions in all conjunction branches must be completed before the next sequence

can take place. The use of node 11 ensures that requirement.

The tracker follows the execution by keeping a list of different poruset prefixes;
the current computation has satisfied all these prefixes. Each pomset prefix has a
distinct list of actions that can be its next event. These actions form the next-event
set. For example, if g in figure 4.6 has occurred, the list will look as in figure 4.7a.
If ¢ is the action of the next event, the first entry is deleted from the list, the list
is updated (figure 4.7b), and expanded (figure 4.7c) to reflect the new prefixes that
correspond to the computation. The entry has sublists if a conjunction is encountered.
Its next-event set is the union of the next-event sets of its sublists. Such an entry is
allowed to go to the next node when all of its sublists have reached their corresponding

end-points (e.g., node 11).



89

1E

12

Figure 4.6 - SBS Structure

4.3 The Sequential Debugger

The Process Controller (4.1.2) needs the ability to start and terminate a process

as well as to access the process’s state space. We achieve this by employing a

sequential debugger. The sequential debugger is able to load a process, run it and

suspend it. It can also access any of the local variables of the process under debugging.

With a source code debugger, these operations can be done with the source programming

language.



Current Node | Antion §Next Node Current Node | Action ] Next Node
1 b 2 3 _ 4
1 c 3 3 i 12
a) b)
Current Node | Action | Next Node
3 i 12
4 d, e, g, h 11
d, e | I g h
6 d 11 9 g 1
7 e 11 10 h 11
c)

Figure 4.7 - Manipulation on SBS structure




91

The dynamic probes, which signal the occurrence of an event internal to a
process, can be made using the watchpoint facility of the sequential debugger. This
allows the user to exercise wide control over the process. When the process is
suspended at a breakpoint, the user can also “step” through statements, or set up
conventional breakpoints, as long as the effective computation does not involve any

synchronization events.

In order to use the sequential debugger, we have created a three-way connection
between the event processor, the sequential debugger and the application process, &3
in figure 4.8. While the behaviour of the process as it appears on the surface is
monitored directly by the event processor, the sequential debugger will provide the

necessary access inside the process.

44 Creating Checkpoints

To implement checkprints in our debugging system, we take advantage of the
fork() system call of UNIX [2]. When a checkpoint is to be created, all application
processes are caused to spawn identical child processes. Meanwhile, the LDs also
save all pertinent information needed for rolling-back, such as the action counters,
the Global Time and in-transit messages. The child processes are kept dormant and
their IDs are saved along with other relevant information. A checkpoint ID is given.
When the program is rolled-back, the saved information is restored. All current
application processes are killed, and the child processes are awaken from their sleep.

Thus the complete program’s state can be saved and fully restored.



92

Local Debugger

Sequential
Debugger

Application
Process

Figure 4.8 - Sequential Debugger in a Local Debugger

The drawback of this approach is that it is very expensive in terms of the
space needed to save the whole program’s code and data space. The compromise is
in limiting the number of checkpoints the user can keep at any point. In our present
implementation, only one checkpoint can be kept. Improvement on checkpointing
based on this approach can be made if the debugger is implemented in the operating
kernel, where it has access to the page table of the paging system. Multiple checkpoints
can be made without having to save the whole process space each time; only pages

oi memory which are changed since the last checkpoint need to be saved [12].



93

4.5 Constraints and Limitations

With the Global Clock scheme, it is necessary that the debugger be able to
append and extract the timestamp on the messages. However, implementation in the
user space does not allow it to do so. Our solution to this problem is to build an
additional layer between the application process and the communication subsystem.
The transformer will reroute all calls to the communication subsystem to corresponding
routines through this layer. The drawback of this approach is that in certain operating
system calls, there are features that are disabled. We cannot collect information about
them. However, this approach allows us to capture the whole information on an
application message, which may be saved in the database and can be useful in
playback. The use of an additional communication layer is also favourable in instant
replay, where the occurrence of synchronization events must be under control.
Furthermore, synthesized messages car be inserted into the channel through this layer

when an artificial environment is created.

The additional layer is not necessary if the commnication subsystem can be
modified. Since it is installed in the kemnel, it can be made to provide all the
information and features described above at minimum overhead. However, we could

not do it due to practical problems.

The structure of our testing facility also poses some potential problems. While
all the SUN workstations have their own processing power, they all share the same
mass storage. This creates a bottleneck in certain operations, especially for the
database. The operating system makes all messages go through this mass storage

device before being delivered to the destination. This in effect serializes all messages.



94

One major constraint is the lack of a sequential debugger that can be interfaced
to our system. The sequential debugger dbx is the powerful source-code debugger
on the UNIX system [1]. It offers almost every feature that a sequratial debugger
can have. However, the interface to this debugger is intended for a human user, and
is mot highly compatible to another software process. If this interface s modified
such that dbx can zxchange information with the event processor using the same

data tokens, then we can exploit the full capability of this facility to our advantage.

There are many limitations in the current implementation of the distributed
debugger. One of them is the lack of a well-designed specification language to specify
the synchronization behaviour specification. Although we use the pomset model to
describe distributed programs, our SDL is still based on regular grammar. Therefore

we cannot use SDL to effectively describe some application programs.

In addition, our implementation does not contain a transformer module. The
design calls for a preprocessor for source programs which can insert debugging codes
in them. However, this has not been implemented due to time limitation. For testing

purposes, the transformation process has been done by hand.

A database manager which can handle updates and retrievals on a large
database is also needed. Currently, the traces are kept in a sequential file, without
any indexing. Retrieval therefore is done through sequential search. A daiabase system

which can handle SQL queries is desirable.



95

4.6 Module Integration

The implementation has been done through the following stages:

Stage 1. The modules were built individually. After each module was built, its
functionality was tested. We had to write test programs to provide the test environment

and the input required for that module.

Stage 2: After the modules had been tested, we started putting them together. First,
we tested the interfaces between the CD and the LDs for proper coordination. Then
the user interface and the event processor were added. With a small test prngram,
we tested the launch of an application in the debugging environment. Then breakpointing,
deadlock detection and tracking and checkpointing modules were added. Testing was

done at every step.

Stage 3: The whole system was put together. We could start running the debugger,
using a small and simple distributed program for testing. At this stage, we used the
debugger itself for debugging. For example, the traces were coliected to determine
how far the debugger had worked before it failed. Then breakpoints were set to
suspend the application program, which in effect would also suspend the activity of
the debugger. With a few user commands installed for the purposes of debugging,
we examined the state of the debugger. This procedure was repeated until the module
which had caused the problem was identified. The sequential debugger was then used

to locate the bugs in those modules.



Chapter 5

Summary and suggestion for
future work

The lack of a well-defined methodology in distributed debugging has prompted
the study presented in this thesis. Although there are existing debugging facilities for
distributed programs, no formal model is used to formalize the problem for which

these facilities are intended. The notion of error is left to the user’s discretion.

We believe that synchronization plays an important role in the correctness of
a distributed program. Therefore, synchronization between processes in a distributed
program is our main focus. To describe the characteristics of the program synchronization
behaviour, we advocate the use of the pomset model. Based on this model, behaviour
of the program with respect to activity at the interfaces of its component processes
can be specified. The specification is given in terms of the order of occurrences of
events at the interfaces. From this abstract model, we are able to define the
synchronization specification of a process formally. A definition of synchronization
error with respect to a given synchronization specification is also stated. With this
definition of synchronization errors, we narrow the problems in distributed debugging
to that of finding an effective method for locating and removing the error from the

debugged program.



97

Based on our analysis, we propose a debugging strategy consisting of two
stages. First, the synchronization error is located. Second, the programming bug which
caused the error is located and subsequently removed. The first stage is a black-box
analysis, where the behaviour of the component processes is observed and compared
with a supplied synchronization specification. In the second stage, white-box analysis
is carried out in which the internal states of component processes are scrutinized so
that the programming bug can be found. Debugging facilities supporting these two
stages can be used alternatively during a typical debugging scssion. In other words,
an integrated debugging system which provides analysis at ooth black-box and

white-box levels is called for.

With the debugging methodology as suggested, and with the guidelines for
an effective distributed debugger given above, we propose a design for such a
debugger. Chapter 3 is the detailed discussion of this design. Among the basic notions
that are used in the design are those of a Consistent Global State in a distributed
system, and a Synchronization Behaviour Specification. We also employ the labeling
scheme called Global Clock. Timestamps with this logical clock value on events
retain true partial order between the events. Using the timestamps, we are able to
reconstruct the pomset corresponding to the actual behaviour of the program, which

is needed for our analysis.

At the conceptual level of the design, the debugger consists of two parts:
Central Debugger and Local Debuggers, each of which has different modules to
handle different operations in the debugging system. The modules are designed so
that they belong to at most one of the three dependencies: system, programming
language and specification language. Thus, only a limited number of modules need

to be changed when the debugger is used in a different environment.



98

We also present an abstract notion of the collection of ir{ormation from the
execution of the debugged program. This information is seen as being obta.ned by
means of probes that are inserted into the program. The actual implementation of
these probes is thercfore not restricted to any particular method. The probes are the
only connections between the debugger and the debugged program. Hence the influence
of the debugger on the execution of the program can be analysed at these probing
points. As the volume of information collected through the probe: can be enormous,

we suggest the use of a databasc for maintaining and manipulating this information.

As for the actual design, we provide a specification language (SDL) to describe
the SBS. Using its set of production rules which is pan of the language, SDL provides
a means for specifying the set of pomsets representing all possible behaviours of the
debugged program. However, the grammar employed by this language is similar to
those of regular expression. Therefore, SDL renders a certain degree of ambiguity
and complexity to other operations that must use the SBS, such as the racker and

the breakpoint controller.

Applying the design, we have implemented a prototype version of a distributed
debugger. The operations that were actually implemented are: SBS compiler, tracking
module, breakpoint controller, blocked and deadiock detector, checkpointing mechanism
and the probes. However, the breakpoint module has not yet provided full support
since a semantics for breakpoint specifications has not been finzalized. Also, we have
not provided support for dynamic probes. The database and related facilities are not

available at the current stage of implementation.

As one of our design goals is to provide an integraied debugging system for

black-box and white-box analysis, this objective has not been met. The program




99

behaviour is monitored and checked against the specification by the tracker, while
the integration of the sequential debugger allows internal states of component processes
to be accessible to the debugger. However, for tracing back from the location of
synchronization error to the programming bug, the debugger offers limited support
to the user. Without the database that manages the trace information, the user can
only use the integrated sequential debugger to trace to the source of the synchronization

€ITor.

By limiting each module in our debugging system to at most one of the three
defined dependencies, we have maximized the portability of our implementation.
Minimum modification is needed in order to make the aebugger workable in different
environments. Furthermore, the areas where changes might be necessary are clearly

defined based on these dependencies.

We believe that our strategy for distributed o°bugging is constructive and
productive in terms of locating the cause of errors in distributed programs. The
definition of program behaviour and synchronization error are based on a well-defined
abstract model. Therefore analysis can be done conceptually without restriction to
any particular system in application. However, our study, as a continuation of what
has been done by [19], is still in a early stage. Further studies are needed, some of

which are in the areas discussed below.

First of all, a pomset language with a well-structure semantics is much needed.
The pomset language will generate pomsets representing the program’s behaviour. It
should be simple for the user to use, and also descriptive and unambiguous for the

debugger to interpret.



100

Support for process composition is a desirable feature of a distributed debugger
that is not currently supported in our design. A composite process can be created
by grouping together several component processes. The behaviour of the composite
process is described by the interactions of the component processes within the group
with those outside. Interactions between processes of the same group are deemed to
be invisible. Wher a composite process is created, the SBS comesponding to that
new process should also be generated accordingly and automatically. One should
focus, among other things, on the problems that may arise when processes in different

nodes are to be combined.

Further studies on the application of the database are also required. The
information that is maintained in the database is potentially very useful to the analysis
of a debugged program. For example, Instant Replay allows the execution to be done
in slow motion, and relies on trace information to preserve the original ordering of
events. Thus the user can scrutinize the debugged program on-line, while still being
able to maintain the same synchronization behaviour of the program as that of a

recent execution.

In the scope of our study, we have excluded the errors that are violations to
the liveness requirements of the program. To make our debugger support the handling
this type of error, the pomset semantics have to be augmented with checkable liveness
requirements. A utility which performs the verification of the observation against
these requirements must also be added to the debugger. The findings on this particular
topic can enable the expansion of the debugger to make it applicable to real-time

systenis.




101

Finally, there have been few extensive study on probe-effect [14, 15]. We
have known that one of the sources of the probe-effect is delays in communication
caused by the debugger. However, we do not know about other possible sources of
the probe-effect. Until there is a clear understanding of the characteristics of
probe-effects, it is not possible to decide on compensation methods either to prevent

or to reduce this undesirable effect in debugging systems.

Distributed debugging is still in the early stages of development. Far more
studies have to be done before one can expect to have a debugger for use with
distributed programs that is as effective as those being used on sequential programs.
Nevertheless, we believe that this thesis has provided a structured approach to the
problem of distributed debugging. Further enhancement can be made to provide a
complete debugging environment that actually meets the needs of those who design

and implement distributed programs.



102

REFERENCES

“DBX(1),” in Commands Reference Manual, Part No. 800-1295-04, Sun

Microsystems, Inc., Mountain View, CA, September 1986.

“FORK (2),” in UNIX Interface Reference Manual, Part No. 800-1303-04, Sun

Microsystems, Inc., Mountain View, CA. September 1986.

Alford, M.\W., J.P Ansart, G. Hommel, L. Lamport, B. Liskov, G.P. Mullery,
and F.B. Schneider, “Distributed Systems — Methods and tools for specification

— An advanced course,” Lecture notes in Computer Science 190, Springer-Verlag,

1985.

Baiardi, Fabrizio, Nicoletta De Francesco, and Gigliola Vaglini, “Development
of a Debugger for a Concurrent Language,” IEEE Trans. on Software Eng.,

vol. SE-12, no. 4, pp. 547-553, April 1986.

Bates, P.C., “Debugging Programs in a Distributed System Environment,”

Ph.D. Thesis, University of Massachusetts, Massachusetts, February 1986.

Bei, James N.W. and Eric G. Manning, “CGDS: A Graphical Debugger for
a Distributed System,” in Proc. Congress 85, Canadian Information Processing

Society, pp. 166-175, Montréal, Québec, June 1985.



10.

11.

12,

13.

103

Cameron, E. Jane, “The IC System for Debugging Parallel Programs via
Interactive Monitoring and Control,” in Proc. ACM SIGPLAN & SIGOPS
Workshop on Parallel and Distributed Debugging, pp. 261-270, University of
Wisconsin, May 1988.

Cheng, Wan-Hong S. and Virgil E. Wallentine, “DEBL: A Knowledge-Based
Language for Specifying and Debugging Distributed Programs,”” Communications
of the ACM, vol. 32, no. 9, pp. 1079-1084, September 1989.

Curtis, R. and L. Wittie, “BugNet: A Debugging System for Parallel Programming
Environments,” in Proc. 3* International Conference on Distributed Computing

Systems, pp. 394-399, Fort Lauderdale, Fla, October 1982.

Darlington, IL., “The Role of Verification and Testing in Software
Development,” Microcomputers: Developments in Industry, Business and

Education, pp. 81-89, Euromicro, North-Holland, 1983.

Dijkstra, E.W,, “Notes on structured programming,” in Dahl, O.J., EW. Dijkstra
and C.A.R. Hoare, Structured Programming, Academic Press, New York, 1976.

Feldman, Stuart I. and Channing B. Brown, “IGOR: A System for Program
Debugging via Reversible Execution,” in Proc. ACM SIGPLAN & SIGOPS
Workshop on Parallel and Distributed Debugging, pp. 112-123, University of
Wisconsin, May 1988.

Fidge, C.J., “Partial Orders for Parallel Debugging,” in Proc. ACM SIGPLAN
& SIGOPS Workshop on Parallel & Distributed Debugging, pp. 183-194,
University of Wisconsin, May 1988.



14.

15.

16.

17.

18.

19.

20.

104

Gait, Jason, “A Debugger for Concurrent Programs,” Software — Practice and
Experience, vol. 15, no. 6, pp. 539-554, June 1985.

Gait, Jason, “A Probe Effect in Concurrent Programs,” Software — Practice

and Experience, vol. 16, no. 3, pp. 225-233, March 1986.

Garcia-Molina, Hector, Frank Germano, and Walter H. Kohler, “Debugging a
Distributed Computing System,” IEEE Trans. Software Eng., vol. SE-10, no. 2,
pp. 210-219, March 1984.

Goldszmidt, German S., Shmuel Katz, and Shaula Yemini, “Interactive Blackbox

Debugging for Concurrent Languages,” in Proc. ACM SIGPLAN & SIGOPS

V/orkshop on Parallel and Distributed Debugging, pp. 271-282, University of
Wisconsin, May 1988.

Gordon, Aaron J. and Raphael A. Finkel, “Handling Timing Errors in Distributed
Programs,” IEEE Trans. Sofiware Eng., vol. SE-14, no, 10, pp. 1525-1535,
October 1988.

Hamamtzoglou, loakim, “A Model and A Methodology for Distributed
Debugging,” Master’s Thesis, Department of Computer Science, Concordia

University, Montréal, Québec, July 1986.

Hough, Alfred A. and Janice E. Cuny, “Initial Experiences with a Pattern-Oriented
Parallel Debugger,” in Proc. ACM SIGPLAN & SIGOPS Workshop on Parallel
and Distributed Debugging, pp. 195-205, University of Wisconsin, May 1988.



21.

22,

23.

24.

25.

26.

27.

28.

105

Hseush, Wenwey and Gail E. Kaiser, “Data Path Debugging: Data-Oriented
Debugging for a Concurrent Programming Language,” in Proc. ACM SIGPLAN
& SIGOPS Workshop on Parallel and Distributed Debugging, pp. 236-247,
University of Wisconsin, May 1988.

Joyce, J., G. Lomow, K. Slind, and B. Unger, “Monitoring distributed systems,”

ACM Trans. Computer Systems, vol. 5, no. 2, pp. 121-150, May 1987.

Lamport, Leslie, “A Simple Approach to Specifying Concurrent Systems,”

DEC System Research Center Report 15, December 1986.

Lamport, Leslie, “Time, Clocks, and the Ordering of Events in a Distributed

System,” Communications of the ACM, vol. 21, no. 7, pp. 558-565, July 1978.
Lea, Christopher, from discussions.

LeBlanc, Thomas J. and John M. Mellor-Crummey, “Debugging Parallel
Programs with Instant Replay,” IEEE Trans. Computer, vol. C-36, no. 4, pp.
471-481, April 1987.

Li, HF. and D. Livas, “Spontaneous Global State Detection Using Global
Time,” in Proc. of the 1989 International Symposium on Computer Architecture

& Digital Signal Processing, pp. 444-449, Hong Kong, October, 1989.

Miller, Barton P. and Jong-Deok Choi, “A Mechanism for Efficient Debugging
of Parallel Programs,” in Proc. ACM SIGPLAN & SIGOPS Workshop on
Parallel and Distributed Debugging, pp. 141-150, University of Wisconsin,
May 1988.



29.

30.

31

32.

33.

34.

106

Pratt, Vaughan R., “Modeling Concurrency with Partial Orders,” International

Journal of Parallel Programming, vol. 15, no. 1, pp. 33-71, February 1986.

Schiffenbaver, R.D., “Interactive debugging in a Distributed Computational
Environment,” Master’'s Thesis, Massachusetts Institute of Technology,

Cambridge, MA, August 1981.

Heping, Shang, “Consistent Global State: Algorithms and an Application in
Distributed Garbage Collection,” Master’s Thesis, Department of Computer

Science, Concordia University, Montréal, Québec, August 1988.

Tassel, D. Van, Program Style, Design, Efficiency, Debugging and Testing,
Prenctice-Hall Inc., Englewood Cliffs, New Jersey, 1974.

Venkatesh, Krishnarao, “Global States of Distributed Systems: Classification
and Applications,” Ph.D. Thesis, Department of Computer Science, Concordia

University, Montréal, Québec, January 1988.

Wittie, Larry D., “Debugging Distributed C Programs by Real-Time Replay,”
in Proc. ACM SIGPLAN & SIGOPS Workshop on Parallel and Distributed
Debugging, pp. 57-67, University of Wisconsin, May 1988.



Appendix A

A BNF Definition for SDL

<prog_sbs> = <prog_def><sbs_def>

<prog_def> 1= process <procdei>
color <coldef>
channel <chnldef>

event <eventdef>

<procdef> = <procdesc>; | <procdesc>, <procdef>
<procdesc> u=  <pid>:<node_id>

<coldef> 2= <col_id>; | <col_id>, <coldef>
<chnldef> u=  (<src_pid>, <dst_pid>, <colspec>); |

(<src_pid>, <dst_pid>, <colspec>), <chnldef>
<colspec> u= <col_id> | <col_id>, <colspec>

<eventdef> = <eid> (<type>, <col_id>); I

<eid> (<type>, <col_id>), <eventdef>

<sbs_def> u=  <pid> { <statements> } |

<pid> { <statements> } <sbs_def>

<statements> <onestatement>, I <onestatement>, <statements>



<onestatement>

<choice_expr>

<seq_expr>

<conj_expr>

<star_expr>

<comp_expr>

<pid>

<node_id>

<col_id>

<src_pid>

<dst_pid>

<eid>

<type>

<expr_id>

<id>

<rest_of_id>

<letter>

..

e

108

<expr_id> := <choice_expr>

<seq_expr> | <sizq_expr>%<choice_expr>
<conj_expr> | <Conj_expr>;<seq_expr>
<star_expr> | <star_expr>|| <conj_expr>
<comp_gxpr> | <comp_expr>*

<expr_id> l <eid>(<pid>) | [<choice_expr>]
<id>

<id>

<id>

<id>

<id>

<id>

send | receive

<id>

<letter><rest_of_id>

<letter><rest_of_id> | <digit><rest_of_id>

AlBlcIplElFlGIH]|1]
JIklviMINlOlPlQIR]




109

siTlulviwlx|lylz]
alblcldlelflglnlil
j|k|l|m|nlo|p|q|r|

sltlulviwlxlylzl_

<digit> = 1l213l4l5]l6l718]9]0

Example A.1 Consider a distributed program consisting of four processes: Py,

P2, P; and P4. The informal specified operation of the program is:

After receiving a message from P;, depending on the contents
of that message and on its own computation, P2 will send a message
to either P; or Py, However, P; should never send two messages in
a row to P; without interleaving them with one to Ps. Also, messages
between P, and P; are of different types than those between P; and

PJ or P4.

Assume that the program is distributed over a DCS having three nodes: A,
B and C. Processes P; and P, are located at node A while P; is located at B and

P4 at C. The SBS for the above program can be given as follows:

/* Program definition part */

process Pl:A, P2:2A, P2:B, P4:C;

colour Cl, C2;

/* Cl 1is the <colour assigned to messages
between Pl and P2, C2 is assigned t»>

those between P2 and P3 or P4 */



channel

event

(P1,

(P2,

sndl, .4, Cl),

snd2 (send, C2),

/* Process

Pl {
}
P2 |
}
P3 {
}
P4 |

S1

S1
S2

S3

S1

S1

p2, c¢C1), (P2, P3, C2),

P4, C2):

rcvl (receive,

rcv2 (receive,

definition part */

sndl (P2) *.

rcvli (Pl); snd2(P3).
rcvl (P1l); snd2(P4).

[ S1; S2; [S2]* ]*.
rcv2 (P2)*,

rcv2 (P2)*,

110

Cl),
C2);



111

Note: for a process SBS, as many stattments as necessary may be given.
However, only the last statement is effective: it is used as the SBS for that process.
If the last statement contaiias the names of other statements, these names are replaced

by the corresponding specification. For example, S3 in Pz will be expanded into:

S3 := [ rcvl (Pl); snd2(P2);
rcvl (P1l); snd2(P4);

[ rcvl(Pl); snd2(P4) 1*



Appendix B

Distributed Debugger - User’s Manual

B.1 Starting the Debugger

The debugger is started b ..tering the following shell command at the site

where the CD is located:

<debugger name> node-list

<debugger name> has not been finalized at the moment. node-list is the list
of Intemet names of machines where the LDs are located. The LDs are assigned
numbers 1, 2, 3, ..., corresponding to their order in node-list. The prompt *$’ is

displayed when the debugger is ready to accept user commands.

B.2 User Commands

Name: bp_clear, bp_disable, bp_enable
Usage: bp_clear [breakpoint names...]
bp_disable  [breakpoint names...]

bp_enable  [breakpoint names...]

removes (clears), disables or enables breakpoints whose names are given.




113

Name: bp_list

Usage: bp_list -cds [breakpoint names...]
lists breakpoints; if breakpoint names are given then lists only those breakpoints.

-C: gives the list of counters in the breakpoint definitions and their

specified values

d:  gives the full definition of the breakpoint(s)

-S: gives the status of the flags defined for the breakpoint(s).
The default 13 -s.
Name: bp_sct

Usage: bp_set -cs [-f file | definition]

sets a breakpoint based on channel counter values. The actions to be taken

when the breakpoint is reached are specified using the flags:

-C: make a checkpoint (allowing the program to be able to roll-back
later; will automatically set -s flag.

-S: suspend the program

If [-f file] is specified, the breakpoint definition is read from file; otherwise

it is given in definition.
A breakpoint definition has the following format:

breakpoint-name := breakpoint-covdition



114

breakpoint-name is an identifier assigned to the defined breakpoint, break-

point-condition is a predicate of channel counter values:

counter-value [ [1][&] counter-value ... ]

where | is logical OR and & is logical AND. Each counter-value has a format

of:

[local-pid, remote-pid, event-name, value],

where event-name is the name of the action whose occurrences are counted
for the breakpoint: the counter-value is reached when the number of occurrences of
the action is greater than or equal to value. local-pid is the process-id of the process
where the action occurs. remote-pid is the process-id of the process at the other end

of the channel.

Example B.1 A typical breakpoint definition would be:

bpl:= ipl, p2, sndl, 3] & [p2, p3, snd2, 6] &
([p3, p2, rcv2, 6] l [p4, p2, rcv2, 101)

Note that the operator & has higher precedence than |, and that brackets can

be used to override the precedence.




Name: dbx

Usage: dbx pid dbx-command

exccutes a dbs command on process pid. This is similar to executing

dbx-command under dbx when the process is debugged alone using dbx.
Name: getsbs
Usage: getsbs sbs-file

reads the program’s SBS from sbs-file. This command should be executed at

the beginning of every debugging session, and it can be used only once per debugging

session.
Name: help
Usage: help

gives a list of user commands with a brief description of every command.

Name: prsbs

Usage: prsbs [-d] [ -[s|w] [process-ids ...] ]
prints the SBS.

-d:  prints the definition part only

-s: prints <he basis SBS (default)

-w:  prints the working SBS

If no process-id is given, the SBS for all processes will be printed. Otherwise,

only the SBS of the indicated process is printed.



AT e

TTRIID TR WT T WA AP S b YR fuud T

g as < ol Lot

116
Name: quit
Usage: quit
ends a debugging session.
Name: roll_back
Usage: roll_back
roll back to a previously created checkpoint (see bp_ser). The program would

be in the suspended state, and the resume command can be used to resume execution.

Name: set, reset filter
Usage: set filter colours...

reset filter colours...

removes or sets colour filters.

Name: set, reset help
Usage: set help
reset help

similar to the help command, prints the list of all set and reset commands.




117

Name: set procdefn

Usage: set procdefn process-id exec-filename [args]

specifies how a process can be executed. exec-filename is the name of the
executable file which contains the code for the process process-id. args are command

line arguments needed for starting up the process.
Name: set trace
Usage: set trace [onloff]
turns trace collection on or off.
Name: sh
Usage: sh [shell-command]

executes shell-command. If no command is given, the UNIX shell whose name
is in the SHELL environment variable is invoked. If SHELL is not defined, then

/bin/csh is used by default.

Name: start, resume
Usage: start
resume

starts the execution of the debugged program from the beginning or resumes
the execution after it has been suspended (either by reaching a breakpoint or by a

user command).



118
Name: suspend
Usage: suspend

suspends the execution. The exact point where each process is actually suspended

is undetermined.

S o A I A L

L LRy




119

B.3 A Debugging Session

For the distributed program whose SBS is given in example A.l, following

are some typical steps of a debugging session:

1. The code for every process is recompiled and then linked with the
debugging-support library so that the program can be debugged. This

is to be done by the transformer.
2. The debugger is started.

3. The program’s SBS is given to the debugger. If the program’s SBS is

stored in the file prog.sbs, then the user command will be:
getsbs prog.sbs

4. The name of the executable file for each process, along with the required
command line arguments, is specified with the set procdefn command.

For example:

set procdefn P1 Appl argl arg2
set procdefn P2 App2 argl

where Appl and App2 are the names of the executable file for processes

P; and P respectively.




120

5. The program is executed by start. If a synchronization error is suspected,
the execution is suspended and the user is informed by a message

similar to:

Synchronization error suspected in p2:
[revl(Pl); snd2(P3); rcvl(Pl); <snd2(P4)>;

[revl(Pl); snd2(P4)]1*]*

Since snd2(P4) is enclosed in angle brackets, it means that snd2(P4)
is the only event that is expected to occur in P2 but another event

has occurred instead.

6. Breakpoints can be set and the program can be restarted using the start

command. For example, if the following breakpoint command is entered:

bp_set -s bpl := [P1, P2, sndl, 1] & [P2, P1, rcvl, 1]
& [P2, P3, snd2, 1] & [P3, P2, rcv2, 1]

the program would be suspended after one message has been sent from
P; and received by P> and another has been sent from P2 and received
by P3; When the program is suspended after a breakpoint is reached,

internal variables of processes can be examined using the dbx command.

7. A checkpoint can be specified given the above program behaviour (one
send from P; to P2 and from P; to P3 and the receives corresponding

to those sends). Using the following bp_set command:




121

bp_set -c bpl := [Pl, P2, sndl, 1] & [P2, P1, rcv], 1] &
(P2, P3, snd2, 1] & ([P3, P2, rcv2, 1]

then when the program is suspended because the breakpoint bpl is
rzached, the program state is saved. Later, if the roll_back command

can be used to restart the execution of the program from this checkpoint.



