National Library
of Canada

du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has beenmade to ensure the highest quality of
reproduction possible.

if pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by thé Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

Bibliothéque nationale

Service des théses canadiennes

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
Funiversité qui a contéré le grade.

La qualité d'impression de cenaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si luniversité nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méne partiel'z, de cette microforme est
soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

[3]

Canadi

.!
Y
)

Bibliothéque nationale

National | ihrary
du Canada

of Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

IGBN 0-315-59172-2

CanadSD

VR RS

T TRV RLY

Multilevel Interface to Database Management System: MIDBMS

Li Zhang

A Thesis
in
The Department

of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 1990

©Li Zhang, 1990

ABSTRACT

MULTILEVEL INTERFACE TO DATABASE

MANAGEMENT SYSTEM: MIDBMS

Li Zhang

This thesis presents a model of a multilevel interface to a database management
system. In this interface, database users are able to pose their database queries with
different languages, such as a natural language or formal query languages, based on

their understanding of the database query system.

Under this model, a portable prototype system named Multilevel Interface to
Data Base Management System (MIDBMS) is designed and implemented for a het-
erogeneous distributed database rnanagement system (HDDBMS). The MIDBMS in-
cludes a natural language interpreter, which interprets English queries and produces
SQL queries. The MIDBMS also includes a formal query language translator, which
then translates SQL queries into Global Query and Mapping Language (GQML)

queries used in the HDDBMS.

The issues considered in building such a portable multilevel interface to a
database management system, in interpreting natural language, as well as in rep-

resenting general knowledge are discussed in this thesis.

i

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere thanks to my thesis
supervisor Dr. B. C. Desai for providing guidance, advice, and financial support
throughout this research. As well, I would like to thank him for his invaluable

suggestions in the preparation of this thesis.

I would also like to thank my colleagues and friends who have unselfishly of-
fered their comments on the thesis itself, and I would especially like to thank Russel
Krause who joined me in numerous discussions on the issues of natural language
understanding and prototype system design, proof-read the whole thesis, and who

offered many helpful suggestions and corrections.

Finally, I would like to thank my parents for their patient encouragement, my
wife, Dong, for her great understanding, my daughter, Tian, who I have not even seen
since she was born. You cannot know how much you have meant to me. Without

your love and moral support, I would never have finished this work.

v

Contents

2.2

2.3

24

1 INTRODUCTION 1
1.1 CHARACTERIZATION OFMIDBMS 1
1.2 MIDBMS SYSTEM GOALAND OUTLINE 5

2 GENERAL ISSUES IN BUILDING A MULTILEVEL INTERFACE
TO DATABASE MANAGEMENT SYSTEM 13
2.1 SYSTEM COMPONENTS OF A NATURAL LANGUAGE INTER-

FACE 13
LEXICAL ANALYSIS i i 17
SYNTACTIC ANALYSIS 23

PARSING STRATEGIES FOR CONTEXT-FREE GRAMMARS .. 29

24.1 Top-Down Strategy 29

24.2 Bottom-Up Strategy 31

2.4.3 Mixture of Bottom-Up and Top-Down Strategy 33

2.5 SEMANTIC ANALYSIS oo,

26 AMBIGUITIES i,

2.7 QUERY INTERPRETATION AND FORMAL QUERY LANGUAGE

GENERATION oo

2.8 FORMAL QUERY LANGUAGE TRANSLATION

KNOWLEDGE REPRESENTATION

3.1 GENERAL ISSUES IN KNOWLEDCE REPRESENTATION

3.2 SYNTACTIC KNOWLEDGE AND ITS REPRESENTATION

3.2.1 LexXiconm . . v v i e e e e e e e e e e e e e e e e e

322 SyntacticClass,

3.2.3 Context-Free Grammar v o v v v v v e et

3.3 SEMANTIC KNOWLEDGE AND ITS REPRESENTATION.

3.3.1 Case Grammar . . . « v v v v v v e e e e e e e e e e

3.3.2 SemanticClasso v i i i e,

3.4 DOMAIN DEPENDENT KNOWLEDGE AND ITS REPRESENTA-

53

33

55

3.5 FINAL MEANING REPRESENTATION

4 MIDBMS SYSTEM DESIGN AND IMPLEMENTATION

4.1 OVERALLSYSTEM DESIGN

42 LEXICONDEFINITION.

4.3 GRAMMARDEFINITION

4.4 SYNTACTIC ANALYSIS

4401 Lexical Analysis.

44.2 Bottom._Up Phrase Construction . . .

44.3 Top.Down GrammarParsing

4.5 SEMANTIC ANALYSIS

4.6 QUERY INTERPRETATION

4.7 SQL GENERATION i

4.8 GQML TRANSLATION,

4.9 SUMMARY OF SYSTEMDESIGN

5 CONCLUSION AND FUTURE WORK

76

76

79

84

86

86

88

91

93

95

102

104

109

110

51 CONCLUSION it i i e 110
52 FUTUREWORK 112
APPENDIXES 123
A STRUCTUREOF SYNTAX 123
B DECLARATIVE DEFINITION OF GRAMMAR 132
C STRUCTURE OF SEMANTICS 134
D DOMAIN KNOWLEDGEBASET 138
E DOMAIN KNOWLEDGEBASEIT 149
F SYSTEM MODULE DESCRIPTIONS 159

G MIDBMSUSERSGUIDE 162

Vil

List of Figures

1.1

1.2

2.1

2.3

24

2.5

2.6

2.7

2.8

2.9

Architecture of MIDBMS System 6

Reference HDDBMS Schema Architecture (from {39]) 10

General Design Architecture of a Natural Language Interface to Database

Query System i e e e e e e e e e 16
Example of Lexical Interpretations 19
Syntactic Structure for Noun Class (from [44] p518) 22

Semantic Structure with Semantic Marker and Distinguisher (from [30]

PA96) . e e e e e 23
Example of Phrase Structure Grammar 26
The Tree Structure of The Sentence “The boy is crying” 27
Top-Down Parsing Example 30
Grammar Example (from [1] p67) 31
Example of Bottom-Up Parsing Process 32

“A

2.10 Grammar Example (from [1]p61) 32
2.11 Example of Bottom-UP Parsing Process 33
2.12 Example of Mixed Parsing Strategy 35
2.13 The Rewrite Rules and the Tree Structure of Case Grammar 39
2.14 Example of the Case Frame Representation. 41
2.15 Example of the Case Frame Representation. 42
2.16 Example of GQML Query Language 50
2.17 Example of SQL Query Language 51
3.1 Example of Declarative Lexicon Entry 56
3.2 [Example of SyntacticNounClass 60
3.3 Structureof Modality 61
3.4 Example of Simple Phrase Structure Grammar 63

3.5 An Augmented Finite State Transition Network with Grammatical

Markers e e e e 65
3.6 Example of Case Grammar Graph Representation 66
3.7 Example of Case Frame Specification for Verb “teach” 67

3.8 A Semantic Network Describing Subtype Relationship (from [1] p208) 68

3.9 A Semantic Network Describing Subpart Relationship 69
3.10 Extended E-ERModel 71
3.11 Example of Database Schema 71
3.12 Example of Separated Case Frame 72
3.13 Example of Word Mapping Table 73
4.1 Architectureof the MIDBMS 77
4.2 Phrase Structure Grammar Definition 85
4.3 Example of Phrase Structures 90

4.4 Example of Augmented Finite State Transition Network with Gram-

matical Marker L L 92
4.5 Comprehensive Example of Syntactic Representation 93
4.6 Example of Semantic Representation 96
4.7 Example of Word Mapping Table 98
4.8 Example of Database Schema 99
4.9 Example of World Knowledge about Verbs 100

4.10 Syntax of SQL Specification Subset 103

4.11 Exaziple of Query Specification of SQL 105
412 GQML Operations v v vttt it e e e 105
4.13 Syntax of Subset GQML (from [39]) 107
5.1 Enhanced Architecture of MIDBMS System 118

xii

Chapter 1

INTRODUCTION

1.1 CHARACTERIZATION OF MIDBMS

A natural language interface (NLI) to a database query system provides its
users with the capability of obtaining information stored in a database by querying
the database system with a natural language, such as English or French. This ability
allows users to construct a query with the language which they are mostly familiar
with and frees them from knowing how an artificial query language is used and
how information is stored and processed in a database system. Many such NLI
systems have been developed in recent years toward this direction. These include
The PRE System[19], Team[22], Datalog[23], KID[26], and System-X[33]. Most of
the work in these systems has concentrated on the transportability, extensibility, and

the knowledge representation of natural language.

In these systems, natural language is the only language that the NLI system
intends to provide to the users to communicate with the database systems. How-
ever, natural language is, at times, syntactically and /or semanticly ambiguous[28)],
and these ambiguities cannot always be resolved completely by an natural language
interface{17]. Thus, natural language cannot always express database queries as pre-

cisely as desired. In these circumstances, the users may wish to turn to a formal

query language. Thus, it is desirable to build a database query environment in which
multiple database query interfaces can be established. At each such interface, one
type of query language would be supported. Thus, the database users could choose
one of the query languages which is the most suitable for their requirements and
their knowledge about the database system. Based on these concerns, a proposal
of “Multilevel Interface to Database Management Systems” (MIDBMS) is offered in

this thesis.

Basically, the multilevel interface system consists of three hierarchical inter-

faces. They are:

1. Natural language interface;
2. General formal query language interface;

3. Target formal query language interface.

These interfaces are at different levels in terms of the database knowledge which
users need to have and also in terms of the power of the expression which each query

language has.

The natural language interface uses a natural language. This natural language
could be English, French, or any other natural languages. The database users can
pose their database queries with one of these natural languages. These users need
not know anything specific about the database query system except some conceptual
organizations about the objects they wa'.t to query. This interface is very helpful for

those naive users who do not have much knowledge about database system or those

who just want to make some casual queries.

At the general query language interface, a general formal language for database
query is offered. This formal query language should be independent of any specific
database management system so that even though the underlying database manage-
ment system is replaced, this interface is still able to be functional. It also should
be general enough so that most of the database query operations can be included.
In addition, it should be widely accepted as a relatively standard database query
language so that the database users may have a better chance to get familiar with
it. Users working at this interface need to have some knowledge about the database

query systems. Thus, they can pose some more precise queries which cannot be made

in the natural language interface.

At the target formal query language interface, the formal query language work-
ing on the underlying database management system is open to database users. These
users have rich knowledge about this target query language and the underlying
database management system. By making use of this interface, they can make some
special database operations which are related to the database management system

and are not offered in the general query language.

As a consequence, in such an environment, the general formal query language
can be considered as a bridge linking a natural language and a target formal query
language. This can benefit those users who have different levels of knowledge about
the database query system. Based on their knowledge about the database query

system, users can choose a working interface in this environment to pose their queries.

Along with the richness of their knowledge about the database query system, they
can replace their working interface with a more complicated one so that the database

queries can be given more precisely and effectively.

Simultaneously, such an environment also improves the transportability of the
interface system, since the general formal database query language is independent
of any specific database management system. If the underlying database system
is changed, the only thing we need to do is to rewrite a query language translator
between the general formal query language and the target formal query language. The

natural language interface and general query language interface are left untouched.

The main contribution of this thesis in the area of natural language interface

to database query system are the following:

1. Offering a model of Multilevel Interface to Database Management System
in which database users are able to pose their queries with several different

query languages based on their understanding to database query system.

2. Providing a semantic compatible criterion for testing the semantic compat-

ibility between two noun phrases for handling the conjunction problem.

3. Enriching the normal E-R Model used in database management system by

adding the semantic content of the database domain knowledge.

4. Establishing a query meaning representation, which is more formal query
language oriented, for filling the syntactic gap between a general semantic
representation of a natural language sentence and a query specification of

a formal query language.

5. Combining the top-down and bottom-up parsing mechanism, which is used
for syntactic analysis, and Case Grammar, which is used for semantic anal-
ysis, for building a natural language interface which interprets English

queries and produces SQL query specifications.

These contributions are described in the remaining chapters of this thesis.

1.2 MIDBMS SYSTEM GOAL AND OUTLINE

Under the proposal given in previous section, a model and an overall design of
the MIDBMS system has been developed. For testing the design, a prototype system
has been implemented. In the prototype system, a subset of English language is

selected as a query language.

At the general formal query language interface, Structured Query Language
(SQL) [15][16] is selected as a query language. The reason for choosing SQL as
the general formal query language is that SQL is becoming the “de facto” standard
relational query language. It has clear, meaningful, and structured syntactic format
and the powerful semantic ability for database manipulation. It can be independent

of any specific database management system.

At the target formal query language interface, Global Query and Mapping
Language (GQML) working on the Heterogeneous Distributed Database Management

System (HDDBMS) [18][39] is selected. This is because the GQML provides a higher

level language interface over several different types of database products each of

Natural Language

. Interface @ = @ ==-cccmssecscmcosmcccomecconcone-
English Sentence -------~--------- >| Natural Language Interpreter |

General Formal Query

Language Interface -=-===-===r-=c-cocoomecomnnaa-
SOL Query =-—-=-r===-=-mm-mc—e—ee——— >1 GQML Translator |
GQML Query Language
Target Formal Query $

Language Interface --====--===--w--coccmc—cemonoo=
GQML Query =—----===-==-ce-—cecec-- >| GQML Global Query Processor |
jmmmmmm————————— I HDDBMS Syster |

' | l
7 U S S
Database Query Results | dBASE IIT | | KnowledgeMan |

- - . - - . - ——— - s — > - - - - -

Figure 1.1: Architecture of MIDBMS System

which has their own query language. This offers a better test bed for the multilevel
interface system. In this case, one more local query language interface can be open to
the database users. At this interface, users can use different formal query language
to give queries to the corresponding local database system. Figure 1.1 describes the

architecture of the MIDBMS system.

In the architecture described in Figure 1.1, the Natural Language Interpreter
accepts English sentences, performs the syntactic and semantic analyses, and inter-
prets the result of the syntactic and semantic analyses into the general formal query
language - SQL. At this processing stage, most of the work concentrates on the
natural language understanding. It includes lexicon organization, lexical analysis,
syntactic analysis, semantic analysis, and query interpretation. The general issues

encourtered in this processing stage are discussed in Chapter 2.

i

For performing the syntactic and semantic analyses, the syntactic and semantic
knowledge about the natural language is required. For producing the formal query
language, the database domain knowledge is required. This involves the choice of
an appropriate knowledge representation scheme to represent these different types of
knowledge. This issue is discussed in Chapter 3. At this interface, the ability of the
database update could be provided, but the current MID BMS system just deals with

database queries.

As a whole, at this processing stage, the main concern is the portability of the

natural language interface for the three types of database transfer[17):

e change of DBMS;
o change of application domain;

e conceptual reorganization of the database.

Such a goal can be achieved by applying the principle of modularity to the
system design. It includes the modularity of the system functions, such as splitting
the syntactic analysis and the semantic analysis into two separate parts, as well
as the modularity of the knowledge representation, such as splitting the syntactic
and semantic knowledge into a database domain independent part and a database
domain dependent part. For performing the principle of modularity, some techniques

are investigated and examined in the remaining chapters of this thesis.

At the general formal query language interface, the GQML translator accepts

SQL and translates it into GQML. Since GQML is working on a heterogeneous

in

distributed database management system, it has some special operations which are
related to the mapping among the heterogeneous database schemas. These special
operations are not provided in SQL. However, since both languages are working on the
same relational data model, the query specifications of these two query languages have
similarity in terms of the syntax and the semantics. Thus, it is possible to translate
SQL query specification into GQML query specification. However, the translation
from SQL to GQML is not reversible due to the schema mapping operations which
are provided in GQML but not in SQL. Therefore, it is reasonable to put GQML
into the target formal query language interface. In this sense, if database users
need to perform some schema mapping rather than query operations among the
heterogeneous database systems, they have to use GQML language at the target
formal query language interface. Except these special operations, database query
specifications can be given at each level of the interfaces. The issues encountered in

this processing stage, such as the different operations between the query specifications

from SQL and GQML, are discussed in Chapter 2.

At the target formal query language interface, the global query processor of
GQML accepts the GQML query specification and cooperates with the other part of

HDDBMS system to handle the global query processing. This includes:

o interpreting the global query into a set of local queries which are sent to the

corresponding local DBMS;

o when the local database results are ready, collecting the database results from

each of the local database systems which are involved in the global query pro-

cessing.

e combining all the collected database results and sending them back to the users.

As a result, it seems to the database users that they are facing a single con-
ventional database management system rather than a set of different products of the

DBMS systems.

For establishing such a facility, a mapping mechanism among the heterogeneous
database schemas is required. This mapping can be performed at the different levels
so that the different conflicts among the different database schemas can be resolved.
Through this mapping mechanism, an integrated view of multiple existing database
management systems can be presented to the database users. Therefore, these users
do not need to know any details about the heterogeneous and the distributed features
of the database system; these features having been absorbed by the mapping mech-
anism. Figure 1.2 shows a possible logical levels of the database schema mapping

architecture.

The levels of the schema architecture presented in Figure 1.2 are explained

below:

1. Local host schema: each site participating in the system has a local host
schema that describes the local database using the data model of the local

DBMS.

2. Translated local host schema: this is a subset of the local host schema after

translation into a global data model schema.

ositet o . Siten____ Level
external | | external | 6
schema | I ___schema
A I
integrated | | integrated | 5
schema | | schema |
Ve [
L
| global | 4
|___schema __ |
---------- I |-—--------
S T
local | | local |
participant | | participant | 3
schema | | schema |
N R - I R
translated translated
local host local host 2
schema schema
S S i S
local host local host 1
schema schema
Site 1 Site n

Figure 1.2: Reference HDDBMS Schema Architecture (from [39])

3. Local participant schema: this is defined by any number of mapping opera-
tions on the translated local host schema. This mapping may be performed

in order to solve a subset of database conflicts.

4. Global schema: this is a collection of all local participant schemas from
each site and represents the global database and the maximum amount of
DDBMS data available to any one site.

5. Integrated schema: each site has an integrated schema which is defined
by any number of mapping operations on the subset of the global schema
accessible by that site. These mapping operations resolve any remaining
database conflicts and specify integrated objects, properties, and relation-
ships.

6. External schema: when it is necessary for the global database at a given
site to be expressed in an external data model which differs from the global
data model, an external schema may be derived from the integrated schema

at that site.

Under this architecture of the schema, the problems which HDDBMS has to

deal with are the followings[4):

e resolution of naming conflicts, which typically involves either semantically equiv-
alent data items named differently in different databases, or semantically dif-

ferent data items which have the same name in different databases;

e resolution of data representation conflicts for the same data item in different

databases;

11

e resolution of data scaling conflicts, when the same data item is stored in different

databases using different units measure;

e resolution of data structure conflicts caused by using various data models by

different DBMSs;

e resolution of data inconsistencies for the same data item residing in several

databases.

Except the schema mapping mechanism of the HDDBMS system, the abilities
of constructing local query commands, distributing the local queries to the corre-
sponding local database system, and collecting the local database results are also
required. So far, a brief introduction to HDDBMS is given and this is just trying
to give some background knowledge for building the MIDBMS system. For more

details, see (3], [4], [18], and (39].

In the remaining chapters of the thesis, discussion concentrates on the general
issues of transportability, extensibility, and the knowledge representation. Chapter
2 discusses general issues in building a multilevel interface to database management
system. Chapter 3 discusses knowledge representation of the natural language un-
derstanding systems. Chapter 4 discusses the issues of the MIDBMS system design

and implementation. Chapter 5 concludes this thesis and summarizes future work.

A

RYSVETRPPRRERT IO

TR S NI YPUIT PRGN - P Y. YSNIL LT ISP DR Uty SPu e I PNISNIIIY S SR Jiha3 Spe, SR TRV LT S EE R

e s

Chapter 2

GENERAL ISSUES IN BUILDING A
MULTILEVEL INTERFACE TO DATABASE
MANAGEMENT SYSTEM

2.1 SYSTEM COMPONENTS OF A NATURAL LANGUAGE INTER-
FACE

A natural language interface to database query system is actually a language
translator which can convey the meaning of the user’s query to database query sys-
tem. However, since natural language and database query language are totally differ-
ent from each other in terms of their syntactic and semantic definitions, it is necessary
for a natural language interface to be able to understand the meaning contained in
a natural language sentence it receives. Based on this understanding, a natural lan-
guage interface should convert this natural language sentence into a target language

sentence which the database query system can understand.

Generally, in the context of the computational linguistics, natural language is
described in terms of its syntax, semantics, and pragmatics. These elements can be

characterized roughly as follows[25]:

e Syntax is concerned solely with the relations between linguistic expressions;

e Semantics is concerned with the relations between expressions and the objects

11

to which they refer;

¢ Pragmatics is concerned with the relations among the expressions, the objects

to which they refer, and the users or contexts of use of the expressions.

This suggests that natural language understanding system needs the following

processing phases:

1. Lexical analysis phase: Lexical analyst accepts a natural language sentence,
searches a dictionary or lexicon to find out a lexical definition for each word
appearing in the sentence, and produces a lexical representation which is

merely a sequence of syntactic markers, such as noun, verb, etc.

2. Syntactic analysis phase: Syntactic analyst accepts the output of the lex-
ical analysis, applies grammar rules to the lexical representation to check
if the sentence is correct grammatically. If the sentence is grammatically
correct, it must produce a syntactic representation which is a tree struc-
ture containing lexical markers, such as noun, verb, etc., phrase markers,
such as NounPhrase, VerbPhrase, etc., and the grammatical markers, such
as subject, object, etc. at the different levels. In this processing phase,

syntactic and semantic knowledge is required.

3. Semantic analysis phase: It is possible that a syntactically correct sentence
could make no sense because of the internal semantic disagreement. In such
a case, semantic analysis is required. In this processing phase, the output
of the syntactic analysis is accepted and the semantic restriction rules are
applied to the syntactic representation. If the sentence is semantically

14

T WY SRR DRRTSTO R

correct, a meaningful semantic representation is produced. This semantic
representation represents the deep structure of a sentence. For supporting

this semantic analysis, semantic knowledge is required.

. Query interpretation phase: After the above syntactic and semantic anal-

yses, a general semantic representation can be obtained. This is what the
interface system has understood. However, this meaningful representation
is generally linguistic oriented. There still exists a big gap between the
general semantic representation and the formal query langrage. Therefore,
for producing a database query, another semantic representation which is
more database query language oriented is desirable. This can be done by
introducing a query interpreter. The query interpreter has to access the
database domain specific knowledge and try vo map the general linguistic
representation to a specific database domain. If this mapping is successful,

a query meaning representation can be produced.

. Formal query language generation phase: In this processing phase, formal

query language sentences can be produced by the query language gener-
ator based on the query meaning representation. Sentence generation is
essentially the opposite of the sentence parsing. However, since the syntax
of the database query language is fairly simple compared with the syn-
tax of natural language as well as the semantics of the query language is
well defined, the query language generation is relatively easier than natu-
ral language understanding. In this phase, the knowledge about the query

language grammar is required.

15

Natural Language Sentences

Vv
I Lexical Analysis |---—==s-=es==sessemcmscoseooo-
e ccee e c——— |
| Lexical Representation |
¥ I
| Syntactic Analysis |-=---==---=cc—-s-oee | Syntactic Knowledge |
S . | —ememmmmmmme————coee
| Syntactic Represenmtation --—=-======-
e A SR U
| Semantic Analysis [~==mmmmmme e | Semantic Knowledge |
| Semantic Representation
¥
| Query Interpretation |----~==--ec--- | Domain Specific Knowledge |
| Query Meaning Representation
N

| Formal Query Language Generation |

N
Formal Query Language

Figure 2.1: General Design Architecture of a Natural Language Interface to Database Query

System

In the above processing phases, different knowledge is required. It is desirable
to represent thzse knowledge declaratively so that it is easier for a NLI system to

extend its coverage of the syntactic phenomena and improve its transportability.

A general design architecture for a natural language interface is given in Figure
2.1. This is similarly defined in [17). Each of the components of this architecture is

discussed in the following sections.

i

2.2 LEXICAL ANALYSIS ‘

The main task of a lexical analyzer is to provide an associativity between each
word in an input natural language sentence and its syntactic and semantic definitions.
In a natural language understanding system, the syntactic and semantic definitions
are expressed with the syntactic markers, such as noun, verb, adverb, etc., and se-
mantic markers, such as physical_object, abstract.object, etc. These markers are the
most basic analytical elements manipulated by the syntactic and semantic analyzers.
For being retrieved and used conveniently by the system analyzers, these markers are
stored in a dictionary or lexicon which is the major knowledge source of the natural

language understanding system.

Once a sentence is received, the lexical analyzer has to search the lexicon and
try to find a corresponding lexical entry for each word in the sentence so that the
associativity between the words and their syntactic and semantic markers can be
established. The following example shows that each word in the sentence “List the

names of the students” is associated with its corresponding syntactic marker.

Word: List the names of the students

Syntactic Marker: Vt Det N Prep Det N

These meaningful symbols construct a sequence of the syntactic markers which
presents the lexical construction of a sentence. In this thesis, this sequence of the

syntactic markers of a sentence is named as a lexical interpretation.

17

In English, since a word could play several syntactic roles and/or several se-
mantic roles, syntactic and semantic ambiguities arise. For determining a unique
meaning of a English sentence, we have to choose one of the syntactic roles and one
of the semantic roles for each word in the sentence based on the context of a discourse.
Thus, English is said to be context sensitive. The basic reason for this sensitivity of
English is that most of the English words are syntactically and/or semantically over-
loaded. This is true of other natural language as well. Taking the sentence “List the
names of the students” as an example, we can find that this sentence is syntactically
ambiguous because the words “list” and “names” are syntactically overloaded. The
word “list” has syntactic roles of noun and verb and the word “names” has the syn-
tactic roles of noun and verb as well. As for semantic ambiguity, the word “charge”
can give us an example. If we say “He charged the battery,” then the meaning of the
“charge” is to add an electrical charge to a battery. However, if we say “He charged
me,” then the meaning of the “charge” is to ask as a price. In these two sentences,
the semantic meaning of the word “charge” is different based on the context even
though it plays the same syntactic role of verb. Actually, the word “charge” is also

syntactically ambiguous since it could be a noun.

From the above discussion, we can see that in the lexical analysis phase, the
lexical analyzer should expose all the possible syntactic roles and semantic roles which
the words in a sentence possess. Based on these possibilities, one of the syntactic
and semantic meaning of those overloaded words can be chosen by performing the
syntactic and semantic analyses. As a result, a unique meaning of a sentence is

determined. For performing the syntactic and semantic analyses systematically, it

18

List the names of the students
1). N Det N Prep Det N
2). N Det vVt Prep Det N
3). Vt Det N Prep Det N
4). Vt Det Vt Prep Det N

Figure 2.2: Example of Lexical Interpretations

is desirable to produce all the possible lexical interpretations for each sentence in
this lexical analysis phase. In this case, each time just one lexical interpretation is
submitted to the syntactic analyzer. If this lexical interpretation fails to be parsed,
then the next lexical interpretation is submitted until one of the lexical interpretations
is parsed or no more lexical interpretation is left. This approach is greatly simplifies
the syntactic and semantic analyses. Figure 2.2 gives an example which shows all

the lexical interpretations for the sentence “List the names of the students.”

Producing all the possible lexical interpretations of a sentence simplifies the
syntactic and semantic analyses of a NLI system. However, it presents another
problem, that is, some of the interpretations are obviously hopeless but they are
still submitted to the syntactic analyzer to be processed. This part of the analytical
efforts done by the syntactic analyzer is totally useless. As a result, the efficiency of
the syntactic analyzer is decreased. Therefore, choosing the most promising lexical
interpretation to be submitted first to the syntactic analyzer is a key problem in the

lexical analysis phase in terms of the system efficiency.

A possible solution of this problem is to establish some heuristic functions

19

fmy -

according to the syntactic knowledge. In this way, a processing order for all the
lexical interpretations can be established. The most promising interpretation is given
the highest priority. In the example given in Figure 2.2, we may find that the third

lexical interpretation is the most promising, because:

1. A determiner or an adjective should be followed by an adjective or a noun;

2. There should be, at least, one verb in a sentence.

These two criteria could be taken as the heuristics used in the lexical analysis
phase to produce a processing order of the lexical interpretations so that the efficiency

of the syntactic analyzer can be improved.

As described above, the lexicon is the major knowledge source of the syntactic
analyzer. A lexicon consists of a set of lexical entries. Each word of the natural
language used for posing queries has, at least, one lexical entry. Each entry of
the lexicon should provide a syntactic or grammatical portion, which contains the
syntactic definition for each word; and the semantic portion, which represents each
of the distinct senses that each word has in its occurrences[30]. As a result, each

word used in a natural language can be defined uniquely in this lexicon.

In the syntactic portion of the lexicon, the syntactic markers are used to identify
the possible syntactic uses of a word. For example, the word “person” is a noun
and the word “teach” is a verb. However, some words could have more than one
syntactic roles to play as described above. The word “list” can be a noun or a

verb. This syntactic feature requires that the lexicon must provide a mechanism

an

in which a word can be defined in multiple lexicon entries based on its multiple
syntactic and /or semantic definitions. In addition, as a knowledge source, the lexicon
should be represented with an appropriate knowledge representation scheme in a
natural language understanding system. These knowledge representation schemes

and techniques are discussed in the next chapter.

Since the syntactic portion of the lexicon is defined with the syntactic markers
which express the syntactic categories for each word, a systematic organization of the
knowledge about syntactic classification for words is required. Such an organization is
provided by the linguists with word classes. In the word classes, words are classified
into groups in a way that provides a relatively small number of classes, each of
which has an internal regularity and a relatively small degree of overlap with other

classes[44]. Figure 2.3 presents a possible syntactic structure for noun class.

In the semantic portion of the lexicon definition, semantic markers are used
to distinguish the various senses of each syntactic use of a word. Katz and Fodor
developed a theory[30] which claims that a finite set of semantic markers can be
used to describe items in language and to associate the meanings betw en different
words within a sentence. This theory offers a basic foundation for semantic analysis.
However, even though a word gets a semantic marker, it is, at some time, still not
enough to resolve the semantic ambiguity. For example, the word “charge” could
be a noun or a verb. In its noun classification, the word “charge” has a semantic
marker of abstract-object. Under this semantic category, this word still could have

4

the meaning of “expense” or the meaning of “accusation.” This problem can be

= Proper
------------ |- Pronoun
- Common

- Definite
------------ | - Question
Noun | - Indefinite =--|- Quantified
Class - e

- Singular
- Number --|

- Plural

~ First
- Person --|- Second
- Third
- Determiner
l- Possessive --|

- Case ----|

- Subjective
- ... = Objective
- Reflexive

Figure 2.3: Syntactic Structure for Noun Class (from [44] p518)

resolved by introducing some semantic distinguishers so that the word sense can be
further distinguished. As described in the syntactic structure for the word ciasses,
these semantic markers also can be organized into a semantic class so that a sys-
tematic organization of the semantic distinction for word senses can be provided.
Figure 2.4 gives an example of a semantic structure with the semantic markers and

distinguishers.

The syntactic class and the semantic class discussed above are the knowledge
about the lexicon definition. They are essential for the natural language processing.
Thus, we have to find appropriate knowledge representation schemes to represent

them. This knowledge representation issue is discussed in the next chapter.

99

Bachelor

|
NOUN
/ \
/ \
/ \
(Human) (Animal)
/ \ \
/ \ \
/ \ \
(Male) [who has the (Male)
/ \ first or lowvest \
/ \ academic degree] \
/ \ \
/ \ \
[who has [Young knight [Young fur seal
never married] serving under when without
the standard of a mate during
another knight] breeding time]

Figure 2.4: Semantic Structure with Semantic Marker and Distinguisher (from [30] p496)

2.3 SYNTACTIC ANALYSIS

Before discussing the syntactic analysis, we need to review some basic concepts
of linguistics. Linguistics can be defined most simply as the study of language, in
particular, natural language. In general, linguistics is concerned with how languages
work and how they are used[25). Any kind of natural language consists of sentences.
One sentence expresses a complete thought and is made up of several phrases. In
most cases, each phrase has its unique syntactic and semantic meaning. Each phrase
is made up of several words. A word is the smallest linguistic unit which has syn-
tactic and semantic roles and is capable of expressing ideas. Based on the syntactic
and semantic analysis, a pair of roles can be decided. Thus, a unique meaning or
idea expressed with a word is determined. In this section, syntactic component of

linguistics and its analysis are discussed.

(%41

The syntactic component of a language has several syntactic roles. These roles

are noun, pronoun, verb, adjective, adverb, preposition, conjunction, and interjection.

¢ A noun is a name for something, which could stand for a person, a place, or a

thing. For example, John, Montreal, and ball.
o Pronoun is used to replace a noun when the noun is already known. For exam-
ple,

The boy had a ball, and he threw it.

where he and it are pronouns. Pronoun is changed according to the number
and person, and it must agree with the noun which they are replacing. Number

has singular and plural. Person has first, second, and third.

¢ Verb 1s used to express an action, being, or state of being. For example,
The boy threw the ball. The girl is a student.
Verbs are further classified as transitive, intransitive, and linking. In one sen-
tence, the verb plays a significant role in terms of the sentence meaning. It has
following properties: voice, tense, person, and number.

o Adjective is used to modify a noun or a pronoun. For example,
The boy has a nice shirt.

o Adverb is used to modify a verb, an adjective, another adverb, or an entire
sentence. For example,

The boy drove the red car very fast.

24

A A R C o S o S Rl bt “habi b T

R e AR I S

e Preposition establishes the relationship between a noun or noun groups and

some other part of the sentence. For example,

He will be back on Sunday morning.

e Conjunction joins words or phrases together. For example,

The boy will go home after he finishes his work.

e Interjection expresses strong feelings. For example,

Oh, no. I don’t want to go.

Phrases are composed of a string of words. Examples of phrases are noun

phrase(NP), verb group(VG), preposition phrase(PP) and so on. For example,

The teacher will give a lecture on Monday morning.

where “The teacher” and “a lecture” are noun phrases, “will give” is a verb group,

and “on Monday morning” is a prepositional phrase.

Sentences can be classified by their structures and uses. In terms of the struc-
tures, we have simple, compound, and complex sentences. In terms of the uses,
we have declarative, interrogative, imperative, and exclamatory sentences. Differ-
ent classifications of sentences have different word orders. Thus, the meaning of an

English sentence is dependent to a large extent on word order[25].

Since one of the main concerns of linguistics is how a language is used, it is
necessary to understand how an internal structure of a sentence is constructed. One of

the most famous linguists, Noam Chomsky, gives a language structure by developing

25

S =-->NP VP
NP --> Art N
VP --> Aux V
Aux --> is

V --> crying
Art --> the

N --> boy

Figure 2.5: Example of Phrase Structure Grammar

a series of generative grammars which can produce acceptable structural relations
within a sentence. Based on this linguistic research, a Phrase Structure Grammar is

defined[10][11).

A Phrase Structure(PS) grammar starts with a sentence and defines its parts,
then defines each of the sub-parts, continuing the redefinitions until a sentence has

been produced. A simple PS grammar is given in Figure 2.5.

Based on this simple grammar, we can produce a sentence “The boy is crying.”

The corresponding tree structure is given in Figure 2.6.

The PS grammar could serve both in the sentence generation and the sentence
analysis. Based on the production rules defined in a PS Grammar, we can perform
inference from the left side of the rule to the right side of the rule until the terminal
symbols are reached. This approach can be called top-down parsing strategy. If the
analysis starts from the bottom level, we can use induction mechanism to abstract
syntactic components level by level from the terminal symbols until the top level § is

reached. This can be called bottom-up parsing strategy. It is also possible to combine

26

/ / \\
/ \
/ \
NP VP
/ \ |
/ \ I
Art N Verd
I | / 0\
| | / \
I
The boy is crying

Figure 2.6: The Tree Structure of The Sentence “The boy is crying”

both top-down and bottom-up approaches into one parsing mechanism. Generally,
in the context of computational linguistics, syntactic analysis could pursue each of
these three different parsing strategies based on context-free grammars(l]. Terry

Winograd[44] has given an extensive analysis and discussion of syntactic analysis.

In syntactic analysis, another problem we need to deal with is the conjunction
problem, which is one of the most problematic fields in a NLI system. In conjunction
processing, one can simply include some rewriting rules for ‘NP —> NP Conj NP,’ ‘S
—> § Conj S, ‘PP —> PP Conj PP, etc. to combine two same type of phrases into
one. In some systems, such as LUNAR[46], rather than having separate conjunction
rules for each syntactic category in the grammar, there is special process associated
with conjunction that produces the same effect. This leads to a short grammar but

a more complex parser is required[44].

However, this pure syntactic processing approach does not always work. For

example, in sentence “List all the names and the salaries of the employees,” we can

27

combine “the names,” “and,” and “the salaries” into one noun phrase because both
the “name” and the “salary” are the attributes of the human object. But in another
sentence “List the names of the employees and their salaries,” we cannot combine
“the employees,” “and,” and “their salaries” into one noun phrase even though this
sentence contains the same syntactic structure of “NP Conj NP” as the previous
sentence. If we do combine “the employees” and “the salaries” together, then the
meaning of the sentence is becoming “List the names of the employees and the names
of the salaries.” This ¢ertainly does not make sense. The reason is that, in the first
sentence, the “name” and the “salary” have the same semantic category which is the
attribute of human object. But this condition does not hold in the second sentence
where “employees” is a human object while “salaries” is an attribute of the human
object. This indicates that the two noun phrases in the first sentence are semanticly
compatible but in the second sentence, the two noun phrases are not. Thus, we
need to define an operation in the semantic class to test the semantic compatibility
between two noun phrases associated with a conjunction. In this thesis, we provide
a criterion to test if two noun phrases are semanticly compatible. This criterion

consists of two rules:

1. If two noun phrases have the same semantic definition, then these two noun

phrases are semanticly compatible;

2. If two noun phrases are the attributes belonging to two different semantic
objects and one of the semantic object is the ancestor of the other, then

these two noun phrases are semanticly compatible.

28

With these two rules, we can handle conjunction problem conveniently. For
example, since the words “student” and “teacher” have the same semantic category
(human object), these two noun phrases are semanticly compatible based on the
first rule. If a word is “name” belonging to animate object and the other word
is “address” belonging to human object, based on the second rule, these two noun
phrases are semanticly compatible as well because the animate object is the ancestor

of the human object.

As described above, this syntactic analysis needs to access not only the syntactic
knowledge but also the semantic knowledge. This makes the syntactic analysis more

sufficient and reliable.

2.4 PARSING STRATEGIES FOR CONTEXT-FREE GRAMMARS

2.4.1 Top-Down Strategy

Top-Down parsing strategy is a goal-directed parsing mechanism. In this pars-
ing process, the rules of a grammar are used in such a way that the right-hand side of
the rules are always used to rewrite the symbols on the left-hand side. This expansion
process starts from the top level of the grammar, keeps rewriting those constituents
as well as producing the parse tree structure simultaneously until the terminal level
is reached. The most influential work employing top-down parsing strategy is Aug-
mented Transition Network (ATIN)[44][45]. Figure 2.7 illustrates a possible top-down

parsing process with the grammar given in Figure 2.5 for the sentence “The boy is

29

S --> NP VP
~-=> Art N VP (revriting NP)
-=> the N VP (rewriting Art)
--> the boy VP (revriting N)
-=> the boy Aux V (rewriting VP)
-=> the boy is V (rewriting Aux)

<-> the boy is crying (rewriting V)

Figure 2.7: Top-Down Parsing Example

crying.”

In practice, the syntactic structure that a NLI system has to analyze is more
complicated than the example given in Figure 2.7. If we try to parse the same
sentence “The boy is crying” with the grammar given in Figure 2.8, we may find
that this parsing process is not that straightforward. In this example, the parser,
using rule 1, would find a NP, “The boy,” and then using rule 6 for the VP, would
find the necessary AUX and VERB but not the following NP. Thus, it backtracks
and tries another way to find a symbol S. Rule 2 is tried, and the NP “The boy” is
parsed again but the next one is AUX instead of VERB. Thus, it backs up again and
tries rule 3. This succeeds after parsing “The boy” as a NP for the third time, “is”
as a AUX, and “crying” as a VERB. From this example, we can find that the same
part of the parsing process may be repeated many times in searching for a solution.
Therefore, with a pure top-down parsing strategy, a lot of backtracking is involved.
As a result, many pieces of the parsing results have to be abandoned. This decreases

the efficiency of the parser.

30

1) § ----> NP VP

2) § ----> NP VERB

3) § =----> NP AUX VERB
4) NP ----> ART NOUN

5) NP ----> ART ADJ NOUN
6) VP ----> AUX VERB NOUN
7 VP ----> VERB NP

Figure 2.8: Grammar Example (from (1] p67)

2.4.2 Bottom-Up Strategy

The bottom-up parsing strategy is a data-directed combination process. Com-
pared with the top-down strategy, bottom-up strategy starts with the individual
words. It looks for rules whose right-hand sides can match the sequence of adja-
cent words in a sentence. If such a match is found, these words are combined into
a constituent as identified by the left-hand side of the rule. Then, the parser tries
to combine the constituents with each other and the remaining words in the sen-
tence into a larger constituent. Simultaneously, a parsing tree structure is built
up. This process proceeds until all the constituents covering the entire input can be
combined into a single structure labeled with the distinguished symbol. The Chart
Parser[44][46] is an example of employing bottom-up parsing strategy. Figure 2.9
illustrates a possible bottom-up parsing process with the grammar given in Figure

2.5 for the sentence “The boy is crying.”

With the grammar given in Figure 2.10, we are able to parse a more complicated

sentence “The large can can hold more water.” In this example, we can get NP1 with

kY|

==> Art boy is crying
~-> Art N is crying
--> NP is crying

==> NP Aux crying
=-=> NP Aux V

-=> NP VP

--> 8

(rewriting the)
(rewriting boy)
(rewriting Art N)
(rewriting is)
(rewriting crying)
(rewriting Aux V)
(rewriting NP VP)

Figure 2.9: Example of Bottom-Up Parsing Process

1) S

2) NP
3) NP
4) NP
5) VP
6) VP

————>
———>
——>
N
-——>

——>

NP VP

ART ADJ NOUN
ART NOUN
ADJ NOUN
AUX VERB NP
VERB NP

Figure 2.10: Grammar Example (from [1] p61)

rule 2 by combining “The large can,” NP2 with rule 4 by combining “large can,” NP3

with rule 4 by combining “more water,” VP1 with rule 5 by combining “can hold”

and NP3, VP2 with rule 6 by combining “hold” and NP3, S1 with rule 1 by combining

NP1 and VP1, and S2 with rule 1 by combining NP2 and VP1. These phrases are

given in Figure 2.11.

From the above example, we find that some of the phrases, such as NP2, VP2,

and S2 never lead to a legal sentence. However, this problem cannot be found during

the parsing process until the top level of the grammar is reached. As a result, the

phrase structures established during the parsing process for the phrases NP2, VP2,

ST T UNTTTYR ST, 1Rt 27

NP1: the large can

NP2: large can

NP3: more water

VP1: can hold more water

VpP2: hold more water

St : the large can can hold more water
S2 : large can can hold more water

Figure 2.11: Example of Bottom-UP Parsing Process

and S2 have to be given up later on. Compared with the top-down parsing strategy,
the bottom-up strategy can avoid the backtracking problem encouatered in the top-
down strategy. However, it still produces some undesirable parsing results. This
seems to indicate that the mixture of the top-down and bottom-up parsing strategies

is quite promising.

2.4.3 Mixture of Bottom-Up and Top-Down Strategy

Based on the discussion and comparison made in the previous sections, we may
find that both top-down and bottom-up parsing strategies have their own advantages
and disadvantages. In top-down parsing strategy, some pieces of analytical structures
built up for keeping the syntactic analytical results have to be given up and subse-
quently backtracking is required. The reason for the backtracking is the failure of
the parser to find an appropriate phrase which can lead to a legal sentence. Such an

example is given in Figure 2.8.

In bottom-up parsing strategy, all the possible phrases are found. Based on

these phrases, the parser tries to construct larger syntactic constituents until the
entire input is combined into a single syntactic structure. However, some of these
attempts fail since some of the phrases do not lead to a legal sentence. Such an

example is given in Figure 2.11.

Since both parsing strategies discussed above involve some useless parsing ef-
forts, it is desirable to design a parser which uses varying degree of both top-down and
bottom-up parsing strategies and gains the advantages of both approaches without
the disadvantages. By analyzing both parsing strategies, we find that the problem
causing the useless efforts of the parser during its parsing process is in the phrase
construction level. If we can use bottom-up parsing strategy to construct phrases
and use top-down parsing strategy to parse these phrases based on a grammar, then
a lot of useless efforts for parsing a sentence could be avoided. For performing the

bottom-up parsing strategy mentioned above, the following three restrictions should

apply:

1. The processing order of a sentence is strictly from left to right;

2. The parser should look ahead as many words as needed for finding the

largest string match under the grammar rules used in a parsing system;

3. Any phrase cannot overlap the previously recognized phrase.

In a mixed parsing strategy with the left to right processing order, the parser can
be divided into two separate parts which are bottom-up parsing processor and top-
down parsing processor. In bottom-up parsing stage, all the phrases are found with
the restrictions described above. Then, a conventional top-down parsing mechanism

14

T Yl R SN RN L

i il

Sentence:
The large can can hold more water

Lexical Interpretations:

1) det adj aux aux vt adj n
2) det adj n aux vt adj n
3) det adj aux n vt adj n
4) det adj n n vt adj n
5) det adj aux aux n adj n
6) det adj n aux n adj n
7) det adj aux n n adj n
8) det adj n n n adj n

Legal Phrases from Interpretation 2:

NP1: The large can
VP1: can hold
NP2: more water

Figure 2.12: Example of Mixed Parsing Strategy

is employed to parse these phrases. Since most of the unreasonable phrases can be
discarded at the phrase construction stage, the useless efforts for parsing a sentence

could be reduced to the minimal level.

Example given in Figure 2.12 illustrates how such a mixed parsing strategy is

used.

In this example, all the possible lexical interpretations of the sentence “The
large can can hold more water” are listed and the grammar given in Figure 2.10
is used for parsing this sentence. Before starting the parse of this sentence, the

heuristics given in section 2.2 can be applied for removing some hopeless lexical

35

interpretations. As a result, the lexical interpretations 1, 3, 5, 6, 7, and 8 are removed.
Just the interpretations 2 and 4 are left to be parsed. In the bottom-up parsing
stage described above, the second lexical interpretations can be parsed and all the
reasonable phrases are given in Figure 2.12. However, the forth lexical interpretation
cannot be parsed. In this interpretation, the words “The large can” can be combined
into a NP but the next word “can” as a noun, cannot be combined into any phrase.
Therefore, this lexical interpretation is discarded at the phrase processing stage. In
top-down parsing stage, the phrases obtained from the second lexical interpretation

can be parsed.

Frum this example, we can see that the useless efforts for parsing a sentence
are reduced to the minimal level. Thus, the mixed parsing strategy is very helpful
for improving the efficiency of the parsing mechanism. Top-Down CFG Parser with
a Chart[1] offers another possible solution for combining top-down and bottom-up
parsing strategies to parse sentences. For more details, please refer the original

paper([44].

2.5 SEMANTIC ANALYSIS

Since English is ambiguous not only syntactically but also semanticly, there
could still exist some semantic ambiguities after the syntactic analysis. For example,
if we say “A cat teaches the course comp212,” we know that this sentence does not
rnake sense based on our general world knowledge. Because it is impossible for a cat

to teach a course. However, this sentence is syntactically correct. By analyzing this

RTY

< e

[

PRSI M A e

sentence, it can be found that the action expressed with the verb “teach” needs a
human actor as its subject instead of a animal expressed with the word “cat.” This
indicates that the action and the corresponding actor appearing in this sentence de
not semanticly agree with each other[1]. Such a problem of semantic disagreeent

has to be resolved in the semantic analysis.

In the semantic analysis, we need to find out the verb of a sentence first. Based
on the information about the verb, the semantic agreement checking can be per-
formed. In this analysis, the semantic roles of the words in a sentence are used.
These semantic roles are defined with the semantic markers and these semantic mark-
ers are stored in the lexicon as described in section 2.2. They can be manipulated
and accessed by the semantic analyzer conveniently. During the semantic analysis,
in addition to the knowledge about the semantic classification for each word, the
knowledge about the verb is also required. This knowledge includes the specifica-
tion of semantic roles required by each verb. For expressing such a knowledge and
performing semaantic analysis, it is desirable to establish a more semantic oriented
framework. In this framework, the knowledge about the verb can be represented
and a deep meaning representation of a sentence can be established. This is also
helpful to solve the problem that one meaning could corresponds to several different
syntactic structures. In practice, for expressing the same meaning, one could use
several different sentences. For example, one could say “Which courses are taken
by Backer? or “Which courses does Backer take?” to express the same question.

After syntactic analyses to these two sentences, two differeut syntactic structures

are established. This example reveals the fact that the meaning could be expressed

27

with several different synta~tic structures. Rephrasing, several different syntactic
structures could represent the same deep meaning. Therefore, if we can establish a
deep structure to represent the deep meaning that the system has understood, it will

simplify the semantic analysis and ease the query interpretation.

Many researchers have attempted different approaches to capture the deep
meaning of a sentence and representing it with a deep structure. The most influen-
tial work arnong these research is Case Grammar developed by Fillmore[6}[20]. Case
Grammar describes a natural language from a more semantically oriented perspec-
tive than the transformational grammars of Chomsky[12] and establishes a semantic

representation for expressing the deep meaning of a sentence.

Case Grammar is defined with a set of rewrite rules which are used to con-
vert the surface structure of a natural language sentence into its corresponding deep
structure. In this definition, the deep structure of a sentence consists of a modality
M and a proposition P. The modality M contains some information about verbs.
They are tense, aspect, negation, and mood. Proposition P consists of a verb and
several cases associated with the verb. From this definition, we can see that verb is
the major source of Case Grammar. This makes Case Grammar more verb-oriented.
The rewrite rules and the corresponding tree structure of Case Grammar are given

in Figure 2.13.

A list of cases which are used in Fillmore’s original Case Grammar are given

as follows.

K

P w—

Rewrite Rules:

-->M + P
--> tense, aspect, negation, and mood
>V +C1+C2+ ... +Cn
i-->K + NP
-=> proposition

QU XX Wn

=

Tree Structure:

S
/ \
/ \
/ \
/ \
/ \

M P

I I

| e —eeeee

| I I I I
Negation Verb C1 C2 ve. Cn
Tense

Aspect

Figure 2.13: The Rewrite Rules and the Tree Structure of Case Grammar

39

Agent: the instigator of the action, an animate being;

Instrumental: the thing used to perform the action, an inanimate

object;
Locative: the location of the action and other cases;
Dative: the recipient of the action;
Neutral: the thing being acted upon.

Depending on different situations, more cases could be assigned for obtaining

richer semantic roles.

In Case Grammar, a case frame specification must be set up for each verb to
indicate which case is required, optional, or not allowed. For example, the verb “give”

could have the following case frame specification.

Verb: give
Agent: optional

Instrumental: optional

Locative: not allowed
Dative: optional
Neutral: required

40

Sentence: Which courses are taken by Backer?

S
/ \
/ \
/ \
/ \
/ \

M P

| |

| A —
Interrogative Verb Agent Neutral
Tense: present take Backer which course

Voice: passive

Figure 2.14: Example of the Case Frame Representation

Figure 2.14 and Figure 2.15 describe two deep structures represented with case
frames for the sentences “Which courses are taken by Backer?” and “Which courses

does Backer take?”, respectively.

Comparing these two examples, we can find that in these two deep meaning
structures, the proposition parts are the same. The only difference occurs in the
modalities which contain the information about the verb “take.” One is active voice

and the other is passive voice.

Based on such a framework, semantic analysis can be carried out. The main task
of this analysis is to map the surface structure of a sentence onto its deep structure.
This is done by filling up the cases established in the deep meaning representation
according to a set of restriction rules which will be discussed in section 4.4. Once the
semantic analysis is completed, the deep meaning structure produced in this stage is

taken as the output of the semantic analyzer and submitted to the query interpreter.

Sentence: which courses does Backer take?

S
/ \
// \\

// \\

M P

! |

| - o s e e o e
Interrogative Verb Agent Neutral
Tense: present take Backer which course

Voice: active

Figure 2.15: Example of the Case Frame Representation

2.6 AMBIGUITIES

Two common types of ambiguities likely to be encountered in natural language
database queries are syntactic and semantic ambiguities [29] [37] [44]. Syntactic am-
biguity can have a more detailed classification as follows: lexical ambiguity, structural
ambiguity, and referential ambiguity. Several examples are given below to illustrate

these different ambiguities.

Sentence 1:

List the names of the students.

In sentence 1, we could have four different lexical interpretations because of the

lexical ambiguity from words “list” and “names.”

Lexical Interpretations:

42

1)
2)
3)

4)

In sentence 2, we could have two different syntactic interpretation because of

the structural ambiguity caised by the preposition phrase.

Det

Det

Det

Det

Sentence 2:

Sentence 3:

from the library?

Prep
Prep
Prep

Prep

2. Only the student is in the car.

ambiguity caused by the pronoun.

Det

Det

Det

Det

Who is talking to the student in the car?

1. The person expressed with “who” is talking within the car.

Does the teacher give the boy the book which he borrowed

In sentence 3, we also could have two interpretations because of the referential

1. The teacher borrowed the book from the library.

43

2. The boy borrowed the book from the library.

Sentence 4:

Who has gone to the bank?

In sentence 4, because of the semantic ambiguity, we could have two interpre-

tations.

1. The bank is a financial institute.

2. The bank is a river bank.

In the above sample sentences, the lexical ambiguity can be resolved by listing
all the possible lexical interpretations and using the grammar rules to check which
interpretation is syntactically correct as discussed in section 2.3. For structural and
referential ambiguities, very little syntactic and semantic information can be used.
Therefors, the resolution of the structural and the referential ambiguity is to reference
the world knowledge related to the application domain, or consult users in order to
get more instructions. In sentence 2, if we define that “teacher possesses a car” as
a world knowledge about the verb “possess” in the domain specific knowledge base,
then the ambiguity in Sentence 2 can be solved because the agent of the verb “possess”
is “teacher” not “student.” Another approach for dealing with the structural and
referential ambiguities is to adopt the principle of Right Association[1]. For example,
in the second sentence listed above, the second interpretation is picked up because

the “student” is the right-most referent for the preposition phrase. While in the

A4

third sentence, because the “boy” is the right-most referent for the pronoun “he,”
the second interpretation is considered as the result of the syntactic analysis. In this
way, a unique parsing tree structure can be obtained. In addition to the principle
of Right Association mentioned above, there are two more principles we can follow
during the disambiguity processing. They are Minimal Attachment, and Lexical

Preferences(1]. For more details, please refer to the original paper.

In semantic ambiguity, it could be partly resolved by combining the knowledge
stored in the case frame for verbs with the selectional restrictions on what types of
objects can fill those cases. For example, the word “bank” has at least two mean-
ings as a noun. One is the bank of a river. The another is the financial institution.
Therefore, they have two different semantic markers. For the bank of a river, a
“physical-object” semantic marker can be assigned and for the financial institution,
an “organization” semantic marker can be assigned. Thus, if we are talking about
a bank transferring money from Montreal to Ottawa, the semantic marker “organi-
zation” is chosen because the verb “transfer” needs the “human” or “organization”
semantic object as its agent. If a verb has more than one semantic meaning, then
the resolution of the semantic ambiguity has to be dependent on the domain specific
knowledge. Since in a specific application, rﬁost of the verbs have been already re-
stricted to a small domain. In this domain, each verb has its unique meaning. Thus,
once the meaning of a verb is fixed, the corresponding semantic roles around the verb

can be determined accordingly.

For resolving the ambiguities listed above, different knowledge is required. From
the viewpoint of system portability, it is desirable to divide these knowledge into
two separate parts. One part is domain independent and the other part is domain
dependent. As a result of this separation, the syntactic and semantic analyzers which
access the general syntactic knowledge, such as syntactic class, and general semantic
knowledge, such as semantic class, are able to be independent of the application
domain. Therefore, the portability of the system can be enhanced. 'I'he techniques

for representing different knowledge is discussed in the next chapter.

2.7 QUERY INTERPRETATION AND FORMAL QUERY LANGUAGE
GENERATION

After intensive syntactic and semantic analyses, a general semantic representa-
tion can be obtained and therefore, the formal query language generation can start.
For obtaining modularity, it is desirable to divide the query generation process into
two separate parts. One part is the query interpretation and the another part is the
formal query language construction. As a result of this separation, the query interpre-
tation is able to be independent of the syntactic format of any specific query language.
This requires a query meaning representation scheme which is query language ori-
ented so that this representation can be easily used by the formal query language
constructor. This query meaning representation should be as general as possible and
contain all the information needed in the formal query language construction. Com-
pared to the network and hierarchy data models used in database system, the rela-

tional data model does not need any navigation information in its query specification.

16

This makes the relational query language quite simple and straightforward. Based
on the structure of relational query specification, the general information required in
a relational database query can be classified into three sets: the attribute-set which
contains all the attributes requested by the users, the relation-set which contains all
the relations referenced in the query, and the qualification-set which contains all the
selection constraints posed by the users. Due to the generality and the simplicity
of these sets representation, it is reasonable to take these three sets as the query

meaning representation.

The main task of a query interpreter is to map the general meaning represen-
tation obtained from the semantic analysis onto the query meaning representation.

For example, suppose we have a query:

list the names of the students who are taking comp212.

After the syntactic and semantic analyses, the corresponding case frame based

general semantic representation might be:

main sentence:

agent action neutral modifier dative instrument locative

nil list the names the student nil nil nil

relative clause:

47

agent action neutral modifier dative instrument locative

who take comp212 nil nil nil nil

According to the above general meaning representation, we may find that
the attribute-set is contained in the neutral case of the main sentence, and the
qualification-set is contained in the cases of the relative clause or a locative case.
As for the relation-set, it could be obtained by checking database schema after the

attribute-set is established. At this point, several general questions arise:

1. Because the attribute name used in a natural language is not necessar-
ily the same as the one used in a database schema, we need to define a

correspondence mechanism;

2. An attribute name used in a natural language could refer to several at-
tributes used in a database schema, such as name, which could refer to the
teacher’s name and the student’s name. Thus, this type of ambiguity has

to be considered;

3. In the relative clause, we also need to resolve the referential problem and

unknown word.

The first and the second questions, generally, can be resolved by introducing
a domain mapping table which establishes an one to one correspondence between
the words used in a natural language and the ones used in a database schema. The

third question can be resolved by using world knowledge about verbs as discussed in

48

I S i e i e L

section 2.6. Furthermore, the join relation and the corresponding join qualifications

have to be fixed in this stage. Since the solution for these problems is closely related

to the different system design, a more detailed discussion is given in section 4.5.

The task of constructing specific formal query language from the query meaning
representation described above is trivial. It simply involves putting the attribute-set,

the relation-set, and the qualification-set into the format of a specific query language.

2.8 FORMAL QUERY LANGUAGE TRANSLATION

In multilevel interface system, the natural language interface produces a general
formal query language. Since this general formal query language is independent of
any specific database management system, a formal query language translator is
required to translate the general formal query language into target formal query
language. Under the support of this translator, the multilevel interface system can
interface different database management system. Consequently, the protibility of the

multilevel interface system is enhanced.

In the formal query language translation phase, the main work is to translate
the query specification of one type of formal query language, say source language,
into the query specification of another type of query language, say target language.
In most cases, these two query specifications would not be the same. In the most
situations likely some operations existing in a target query specification do not exist

in a source query specification. Basically, there are no general criteria to handle this

A0

1nj
EMPLOYEE,
1nj WORKSIN, DEPTMNT;
where TOTSALARY > 30000 and
DEPTNM = ‘‘ARCHITECTURE’’
attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY;

Figure 2.16: Example of GQML Query Language

kind of problem. It has to be treated case by case. However, if these two query
specifications are working on the same database model, then there would be some

similarities between them in terms of the syntax and semantics.

For illustrating the problem discussed above, we can take the problem of trans-
lating from SQL to GQML query specifications. In this example, both the source
and the target language are formal and relational. However, GQML has a special
natural join operation which SQL does not have. The basic format of natural join

operation used in GQML is given below.

1nj <relationl>, <relation2>
where <predicate>

attrs <attribute 1list>;

In the natural join operation, the thing which users need to do is to give two
relations which need to be joined without join qualifications. Figure 2.16 gives an

example of GQML query specification.

In this query specification, WORKSIN is a join relation. It associates the

an

SELECT EMPID, FIRSTNAME, LASTNAME, TOTSALARY

FROM EMPLOYEE, WORKSIN, DEPTMNT

WHERE TOTSALARY > ‘30000’ AND
DEPTNM = ¢ ‘ARCHITECTURE’’ AND
EMPLOYEE.EMPID = WORKIN.EMPID AND
DEPTMNT.DEPTID = WORKIN.DEPTID

Figure 2.17: Example of SQL Query Language

DEPTMNT relation with the EMPLOYEE relation and no join qualification is re-
quired in the WHERE clause. However, in SQL, the situation is different. Figure

2.17 gives an example of the same query.

In SQL query specification, the join qualifications have to be given explicitly
but no special join operator is required. In SQL, the join operation is performed
automatically by the SQL query processor. By comparing these two examples, we can
find that even though SQL has no specific natural join operator, it contains enough
information to construct corresponding GQML query specification. In the above
example, we need to determine the join relation which links two separate relations.
This can be done by analyzing the qualifications contained in the WHERE clause.
Then, the join relation and the remaining relations can be used to construct natural
join clause of GQML query specification. Since the similarity of these two query
specification, the attribute-set of SQL is left untouched. This set can be taken as the
attribute-set of GQML directly. The qualification-set of GQML can be constructed

from remaining part of SQL qualification-set after removing those join qualifications.

In the formal query language translation phase, we need to deal with the dif-

ferent operations existing within two different formal query languages. Since both
source and target query languages are formal, have quite simple syntax, well de-
fined semantics as well as the syntactic and semantic similarity, the effort required in
building a formal query language translator is relatively less than the one required in
building a formal query language generator. In this way, even though the database
management system is changed, the oniy thing we need to do is to rewrite a formal

query language translator. As a result, the portability of a NLI system is enhanced.

From the discussion about each processing phase required in a natural language
understanding system, we can find that at each processing phase, different knowledge
is required. They are syntactic knowledge used in the syntactic analysis, semantic
knowledge used in both syntactic and semantic analysis, and domain specific knowl-
edge used in the query interpretation. For the knowledge being accessed conveniently
by a NLI system, it needs to be organized in a knowledge base and represented with
appropriate knowledge representation schemes. This issues are discussed in the next

chapter.

Chapter 3

KNOWLEDGE REPRESENTATION

3.1 GENERAL ISSUES IN KNOWLEDGE REPRESENTATION

A natural language interface system, as discussed in the previous chapters,
needs to reference several different kinds of information in its syntactic and semantic
analyses. This information includes syntactic, semantic, and domain specific knowl-
edge. How to organize and represent this knowledge is a central problem that arises
in a natural language processing system. In the most general sense, a knowledge
representation of a natural language is any framework in which information about
the language and its words can be stored and retrieved[1]. This framework could be

built with procedures or declarative statements.

If this framework is procedural, the knowledge is encoded into programs. When-
ever the knowledge is required, a specific program is invoked. In practice, procedural
knowledge can be used very effectively in well-defined domains but it often lacks
generality and is difficult to maintain and upgrade. Furthermore, in procedural sys-
tems, a prescribed order of accessing different pieces of knowledge has to be given.
If a piece of knowledge needs to be changed, then the corresponding program which

contains that knowledge must also be rewritten.

fka §

If the knowledge is declarative, then the knowledge component of a NLI system
is independent of the programs which access it and could also be independent of the
other knowledge used in the NLI system. Compared to the procedural approach,
declarative knowledge can be more easily defined and used more conveniently. Infor-
mation can be removed, added, or modified without affecting the other knowledge
components or the program mechanism. System functions may use some piece of
knowledge to determine what piece of information is best utilized to solve the prob-

lem at hand. In this case, no prescribed processing order needs be defined.

Comparing the two approaches discussed above, the first one seems more flexible
and perhaps more efficient while the second one is more clear, rigorously defined,
and easily modified. Th;: second approach seems more advantageous to the natural
language understanding system because this one can make the NLI system more
portable. However, it is difficult for the declarative approach to represent some
exceptional cases. This leads to a third knowledge representation scheme which is
the combination of the first two approaches. In this third approach, main pieces of
knowledge are represented declaratively and the exceptional cases are handled by

procedures.

In this chapter, several kinds of knowledge required for 2 NLI system and its
representation schemes are discussed. We do not intend to give a survey of the major
research projects in knowledge representation, nor to describe the work of individual
theories in detail. Instead, a brief review and analysis of some main work done by

researchers in each stage of the natural language understanding process is attempted.

DR S i S e e Lt SR

Ak il e

Since some existing knowledge representation schemes are inadequate or unsuitable
for a NLI system, several ideas and approaches for enhancing these existing knowledge

representation schemes are provided as well.

3.2 SYNTACTIC KNOWLEDGE AND ITS REPRESENTATION

3.2.1 Lexicon

The first task given to the syntactic analyzer is to provide an associativity
between each word in an input sentence and its syntactic and semantic definitions.
Thus, we need to construct a framework in which those definitions about each word
used in a natural language can be stored and retrieved. Such a framework can be
called a dictionary or lexicon. It is the major knowledge resource used by a natural

language understanding system.

Generally, a lexicon consists of a set of lexical entries. Each word used in a
natural language for posing query has, at least, one entry. Each entry of the lexicon
contains a syntactic portion and a semantic portion as described in section 2.2. For
building up such a lexicon, an appropriate knowledge representation scheme has to be
selected. There are several lexical features that can help us to judge which approach

is the most appropriate.

1. User Friendliness: The lexicon is a knowledge exchange interface between
a computerized natural language understanding system and humans. At

this interface, humans provide the knowledge about a natural language to

199

{
wvord entry: student;
syntactic portion: class:common_noun, number:singular,
person:third, case:subjective;
semantic portion: semantics:human
¥

Figure 3.1: Example of Declarative Lexicon Entry

the system. Thus, this interface should be user-oriented to give humans a

natural and convenient way to express their knowledge.

2. Lexicon Extensibility: Because of the possibility of changes in application
domains and /or tl:= conceptual reorganization of the database[17], the lex-

icon needs to be extensible.

3. Domain Independence: Since the application domain may change, the do-

main independence is desirable.

Given the above criteria for a lexicon. a declarative approach to lexical knowl-
edge representation seems more suitable than the others. Based on the syntactic
structure and the semantic structure described in section 2.2, a possible declarative

lexicon entry for the word “student” is given in Figure 3.1.

The declarative notation given in Figure 3.1 satisfies the above three charac-
teristic requirements. In terms of both syntax and semantics, it is very clear and

convenient for the users to define and modify their lexicon.

From the viewpoint of the system space efficiency, however, it is difficult for

50

a NLI system to accept this word-string notation as an internal representation of
the lexical knowledge. This is because there is a high demand on memory space. It
would be desirable to keep this form as the external representation used by the users
to define their language knowledge, because of its convenience and clarity. A possible
solution for this problem is to introduce an internal notation used by the computer
system that differs from the external one. This notation should be more efficient
than the external one in terms of the space. A bit-string representation seems to
be a good candidate which can highly compress the information contained in the
word-string into several bytes. To enable this, an interpreter has to be established

to perform the transformation between these two notations.

From the lexicon entry example of Figure 3.1, we see that each word may
have several attributes in its syntactic portion and several in its semantic portion. In

addition, each attribute has several possible values. For example, the word “student”

"o« » u

has the attributes “class, case,” and “semantics.” For the

number,” “person,
attribute “number,” it has the attribute value “first,” “second,” or “third.” To map a
word-string onto a bit-string, we have to cut the bit-string into several small sections,
each of which contains several bits. Each section is assigned to an attribute used in the
word-string notation and a bit-combination in each section represents a corresponding
attribute value. This results in different notations for the knowledge representation.
In this case, the system users can make use of the word-string notation to define their
lexicon. The system can make use of the bit-string notation to improve the efficiency

of the system memory space. Thus, these two notations benefit the users and the

system functions, respectively.

-1

o

Under the above knowledge representation scheme, a remaining issue is the sys-
tematic mapping between a word-string and a bit-string. If we recall the syntactic
and the semantic classes described in section 2.2, we find that the two classes given
in Figure 2.3 and Figure 2.4 show us how the syntactic and semantic definitions are
organized. In fact, these two classes provide the guidelines we need during the trans-
formation between the two notations. Because these guidelines are the knowledge
about how to define the lexicon knowledge, they can be called metaknowledge. It is
also desirable for this metaknowledge to be defined declaratively for the same reasons
as the knowledge itself. In the declarative definition of the metaknowledge, the tree
structure described in Figure 2.3 and Figure 2.4 can be retained. In such a declarative
tree structure each node, representing an attribute of the syntactic or the semantic
class, has a value which corresponds to a bit-string notation. The system performs
its mapping based on the word-string notation used in the lexicon definition. The
interpreter searches the syntactic or the semantic tree structure to find an attribute
match. Once a match is found, the corresponding bit-string notation is obtained.
As a result, the word-string can be compressed into several bytes. This approach is

extremely effeciive for information compression.

After a word-string notation is transformed into a bit-string notation, another
problem arises: it is difficult for the system functions to recognize the bit-string no-
tation directly. In this case, during the syntactic or semantic analyses, the system
functions need to know the exact meaning of all the possible bit-combinations when
they deterniune the syntactic and semantic classifications for recognizing a word. If

a word-string notation could be used directly by the system functions, the system

programming and the system maintenance would be eased. Thus, it is desirable for
the system functions to use the same notation of the knowledge representation as the
one used by human users. This requires the interpreter to reverse the internal nota-
tion back into the external notation. In this way, the internal notation is transparent
to both the users and the system functions. The price of obtaining the advantages
of the space efficiency and the interface friendliness is the processing time for the

compression and the expansion.

3.2.2 Syntactic Class

In the syntactic analysis, the knowledge about the syntactic categories for each
word is required. This knowledge is expressed with syntactic markers, such as noun,
verb, adverb, etc. and contained in the lexicon. As described in Figure 2.3, the
syntactic markers are organized in a syntactic class which presents a tree structure.
Such a syntactic class needs to be represented with an appropriate knowledge repre-

sentation scheme so that the knowledge about the syntactic categories can be used

by a NLI system conveniently.

Based on the discussion in the previous section, we can see that the only op-
eration we need on the syntactic class is to search the syntactic class tree structure.
Thus, the syntactic class can be defined as a common tree structure declaratively.
Figure 3.2 illustrates how a noun syntactic class is organized. The completed syn-

tactic class definition used in the MIDBMS system is given in Appendix A.

In addition, the modality information about verbs is also required in a NLI

-y

Noun_Class ----

- - - - -

Person =--=|----

Common_Noun
Proper_Noun

Pronoun

Class_Noun
Collective_Noun
Material_Noun
Abstract _Noun

Nominative_Case
Objective_Case
Possessive_Case
Reflexive_Case

Masguline
Feminine
Neuter

Plural
Singular
Uncountable

First
Second
Third

Figure 3.2: Example of Syntactic Noun Class

60

---~ Past
_______ Tense ----|---~ Present
{ ---~ Future
] ---=~ Simple
e Aspect ---|-=--~ Perfect

l | --=~ Continuing
I ---- Perfect_Continuing

===~ Active
Modality ==-|-=------ Voice ----|
---~ Passive
---- Positive
------- Negation -|
| -~~~ Negative
---- First
------- Person ---|---- Second
---- Third
I --==- Singular
------- Number ---|

---= Plural

Figure 3.3: Structure of Modality

system. This information is collected during the syntactic analysis and used during
the semantic analysis. Figure 3.3 gives the structure of the modality under a tree

structure which can also be defined declaratively.

3.2.3 Context-Free Grammar

In the syntactic processing stage, grammar is another form of syntactic knowl-
edge required by the syntactic analyzer. A grammar gives the basic syntactic struc-
ture of natural language sentences acceptable to the syntactic analyzer. Grammars
consisting of rules of the form “<symbol> —> <symbol>1 ... <symbol>n,” for

n>=1, are called context-free grammars(1]. The context-free grammars are a very

61

-

important class of grammars for two reasons. The formalism is powerful enough
to be able to describe most of the structures in natural languages, and yet it is
restrictive enough so that efficient parsers can be built to analyze sentences[l]. A
widely accepted notation for representing a grammar is a transition network[44][45).
A transition network is based on the application of the mathematical notions of graph
theory and the finite state machine to the study of grammars. Generally, there are
several types of transition networks. The simplest one is the finite state transition

network.

A finite state transition network is a directed-graph consisting of a set of states
connected by arcs. Each arc represents a transition between two states. The states
are expressed by circles and the arcs by lines. Each arc is ended with an arrowhead
which indicates the direction of the transformation between two states. A transition
network can be considered as a pattern for recognizing or generating sequences of
words or phrases if sub-graphs are used. In both ge. erating and recognizing, the
process should follow the form of the net in a step by step manner. Each transition
along an arc corresponds to a single word or phrase in a sequence. The process
starts from an initial state and ends in a terminal state. A simple grammar and its
corresponding finite state transition network is given in Figure 3.4. In the transition
network given in Figure 3.4, the initial state is SO and the terminal state is Sn. It

can parse sentences, such as “The boy is eating an apple.”

Based on this technique, more complicated transition networks may be devel-

oped. Examples of this are the recursive transition network and the augmented tran-

)

Phrase Structure Grammar:

S =-->NP VP NP
NP ---> [Art] N
VP ===> Aux V

Art --> the | an

N ----> boy | apple
Aux --> is

V -==-=> eating

Finite State Transition Network:

Art N Aux v Art N
(?O) -==> (S1) =-==> (S%) ~==> (83) ===> (?4) -==> (85) ===> (82)
I N I I N |

Figure 3.4: Example of Simple Phrase Structure Grammar

sition network[44]. According to overall system design, different types of transition
networks can be selected as the grammar knowledge representation scheme and the
parsing mechanism. It is also desirable to define the transition network declaratively
to enable the grammar modification. In the example given in Figure 3.4, the finite
state transition network can only prove if a sentence is syntactically valid. It can-
not produce any analytical syntactic structure. The augmented transition network
can solve this problem by augmenting a set of registers which reserve the analytical
syntactic structures for a sentence. However, if a combination parsing strategy of
bottom-up and top-down is used in the syntactic analysis, then the analytical syn-
tactic structures of phrases can be produced in the bottom-up stage. As well, the
finite state transition network can be used to parse these phrases in the top-down

stage. In this case, if the grammatical markers, such as subject, object, etc., are

needed, then the finite state transition network described in Figure 3.4 has to be
augmented. For the reason discussed above, we augment the finite state transition
network by introducing an action component into the transition network. In such
a augmented finite state transition network, each transition state is associated with
an action. During the grammar checking stage, the transition network is traversed.
In this traversal, when a new state is reached, a corresponding action is carried out
so that a grammatical marker can be produced. For example, in the demonstrative
augmented finite state transition network given in Figure 3.5, if the control goes
to the statel from the state0, then the grammatical marker “subject” can be as-
signed to the current noun phrase. If the control goes to the state2 from the statel,
then the grammatical marker “predicate_verb” can be assigned to the current verb
phrase. And if the control goes to the state3 from the state2, then the “object” can
be assigned to the last noun phrase. This simplifies the semantic analysis without
need of much effort of syntactic analysis. The corresponding declarative definition
of the augmented finite state transition network is also given in Figure 3.5. In the
example given in Figure 3.5, the first column is the start state of a transition; the
second column is the condition of the transition; the third column is the end state
of a transition; and the forth column is the action component associated with each
transition state. The S0 is the start state of the grarmnmar and the Sn is the terminal
state of the grammar. Based on this notation, a grammar checker which makes use
of the grammar knowledge can check the sentence with the string matching mecha-
nism. This provides a possibility of building a table driven grammar checker. The

declarative grammar definition used in the MIDBMS is given in Appendix B.

Augmented Finite State Transition Network:

the boy is eating an apple
phrase marker: NP VP NP
(80)=====emmm >(s1)==m=mmmm——- >(82)=-=====m- >(Sn)
grammatical marker: (subject) (predicate_verb) (object)

Declarative Definition:

Start_state: Condition: End_state: Action:

S0, NP, Si, Subject;
S1, VP, S2, Predicate_Verb;
S2, NP, Sn, Object.

Figure 3.5: An Augmented Finite State Transition Network with Grammatical Markers

3.3 SEMANTIC KNOWLEDGE AND ITS REPRESENTATION

3.3.1 Case Grammar

Case Grammar, discussed in section 2.5, is defined with a set of rewrite rules
which are used to convert the surface structure of a natural language sentence into
its deep structure. In this definition, the deep structure of a sentence consists of a
modality M and a preposition P. The modality M contains some information about
verbs. They are tense, aspect, negation, and mood. Preposition P consists of a verb
and several cases associated with the verb. From this definition, we can see that
verb is the major source of Case Grammar. This makes Case Grammar more verb-
oriented. Figure 3.6 gives an example of the Case Grammar graph representation for

the sentence “The boy is eating an apple.”

65

--------- (SENT)========--
| |
MODL ---(PROP)----- -
Tense: Present | I
Aspect : Simple VERB: eat (CARG1) -=-======o=
Form: Progressive ====m=====-- | |

Mood: Declarative Agent: Req | |
Inst.: Non CaseType: Agent (CRG2)
l

Dat. : Non ====-====------
Neutral :Req NounPhrase: i
Loc. : Opt Det: the CaseType: Neutral

Noun: boy ====-==m=em-e—oeo
Noul}Phrase :

et: an
Noun: apple

Figure 3.6: Example of Case Grammar Graph Representation

From this example, we find that each case corresponds to a phrase structure.
These syntactic phrase structure can be produced by a syntactic analyzer. However,
the relationships between the cases and the phrases need to be established by applying
a set of rewrite rules as described in section 2.5. These rules convert the syntactic
roles in the surface structure of a sentence into the corresponding semantic roles
represented in its deep structure. The rules used in the MIDBMS are represented
with a procedure and are given in the next chapter. In addition, the knowledge about
each verb needs to be represented as well. This knowledge includes which cases are
required, optional, or not allowed. As described in section 2.5, it can be represented
with a case frame specification. Figure 3.7 gives a possible example of the case frame

specification for verb “teach.”

Based on such a representation structure, semantic analysis can be carried

out. Once the cases are filled with the corresponding semantic roles according to a

e s AR = e o . -

case frame specification for verb ‘‘teach’’:

agent action instrumental dative neutral locative

L e L L L L L T T TP e P Y P YT PR L L D LD D L D D LD L L L)

optional teach not-required optional required optional

Figure 3.7: Example of Case Frame Specification for Verb “teach”

specific sentence, a deep meaning representation of a sentence is established. This

deep meaning representation is the output of the semantic analysis.

3.3.2 Semantic Class

For performing the syntactic and semantic analyses, the semantic knowledge
about word senses is required. This knowledge can be expressed with semantic mark-
ers, such as physical-object, abstract-object, etc. These semantic markers are used
to define the words used in a natural language as a semantic portion of the lexicon
definition. Thus, the knowledge about word senses can be used by a NLI system
conveniently. As described in Figure 2.4, these semantic markers are organized in a
semantic class which presents a tree structure. With the semantic class knowledge,
a natural language understanding system is able to resolve the ambiguity of word

senses and the conjunction problem as discussed in section 2.6.

Based on the above discussion, we need to find an appropriate knowledge rep-
resentation scheme to represent the semantic class. For this purpose, a semantic
network is introduced in this section. In most of the research of NLI system, the

semantic network is employeed to express the general semantic knowledge[1}[13](25).

/ !) \
/ \
/ \
PHYSOBJ \ / ABSTRACT
/ \ / \
NON_ANIMATE ANIMATE ~ TIME LOCATION
/ \ / \
/ ./ \
NON_LIVING VEGETABLE DOG PERSON

Figure 3.8: A Semantic Network Describing Subtype Relationship (from [1] p208)

This knowledge includes the information about word senses and the relationships
between these senses. In this thesis, a semantic network is employed to represent
the semantic class. The semantic compatibility operation based on the semantic

compatibility criteria discussed in section 2.3 is defined on the semantic network.

Generally, a semantic network is a graph structure with labeled links between
labeled nodes. The word sense is represented by node and the relationship between
the nodes is represented by links. In semantic network, two types of hierarchy can be
represented. One is the IS-A hierarchy which defines the subtype relationship and the
other is the HAS-A hierarchy which defines the subpart relationship{13]. Under such
a hierarchy, all the subpart attributes which a supertype object has can be inherited
by its subtype objects. In this knowledge representation scheme of the semantic
network, the semantic class can be represented naturally. Figure 3.8 describes a

possible structure of the subtype relationships contained in the semantic class.

Figure 3.9 describes a possible structure of the semantic network describing

the subpart relationship for ANIMATE object. In this semantic network, each node

(R

| HA
ANIMATE -~-===ve- (NAME, GENDER, ...)

/ \ IS-A
/ \ HAS-A
y PERSON ~-~--=-~- (ID, ADDRESS,)
/ \

Figure 3.9: A Semantic Network Describing Subpart Relationship

represents a semantic object. Each semantic object could have several attributes. All

the attributes of a semantic object can be inherited by its subpart semantic objects.

The semantic network can be defined declaratively. The corresponding declara-

tive definition of the semantic class used in the MIDBMS system is given in Appendix

C.

3.4 DOMAIN DEPENDENT KNOWLEDGE AND ITS REPRESEN-
TATION

The knowledge representations we discussed so far are, to soire degree, domain
independent. After semantic analysis, a general semantic representation can be ob-
tained. However, this general semantic representation has to be further interpreted
to produce a query meaning representation as discussed in Chapter 2. The purpose
of establishing query meaning representation is to ease the formal query language
generation. This interpretation processing is closely related to the database domain.

Thus, domain dependent knowledge is required. By accessing the domain specific

69

knowledge, the interpreter is able to fill up the gap between the general semantic

representation and the formal query language.

From the viewpoint of a database system, considerable efforts have been made
in capturing the semantic content of the database system with conceptual modeling
tools. The most influential work are Entity Relationship model(8][9] and the Semantic
Data Model[24]. From the viewpoint of Al knowledge representation, there also exist
several formalisms. such as Logic[2], Procedural Representation[43], Frames[34], and
Semantic Network[40]. Comparing these different knowledge representation schemes,
it secems to us that E-R model is the most natural and understandable scheme for
representing database schema information. It is data independent, and represents the
view of the application environment. It also can be mapped to three database models:
the hierarchi~al, the network, and the relational model. The drawback of the E-R
model is its lack of semantic content. In the E-R model, the relationships between
attribute and relation as well as the ones between the relation and the relation are
defined explicitly. However, this definition just shows whether the relationship exist
or not. It fails to show what kind of relationship it is. In other words, the semantic
portion of the E-R model is missing. Based on this observation, we assign an explicit
semantic meaning to each relationship icr enhancing the semantic content of the E-R
model. Figure 3.10 gives an example of extended E-R model. In this example, each
relation is assigned to a semantic object. The join relation “stud-cou” is assigned
to the action “take.” The join relation “teac-cou” is assigned to the action “teach.”
The semantic objects “STUDENT,” “COURSE,” and “TEACHER” are connecte.’

with these two actions. Thus, this extended E-R model can be viewed as three levels,

i

Semantics

Level:
STUDENT ---=-- > TAKE --=-- > CD?RSE {---- TEACH <-==~- TEA?HER
| |
Relation | |
Level:
| student |--| stud-cou |--| course I--|_Eg§§:ggg_|--|_Eg§§§g§_|
| | | |
, | | | |
Attribute |
Level: |
......... attributes e ee e)

Figure 3.10: Extended E-R Model

Relation_Name: Attribute_Name: Feature:
“"STUDENT", "STUDENTID", "key",
"STUDENT", "STUDENTNM", "default",
"COURSE", "COURSEID", "key",
"COURSE", "COURSEID", "default",
"COURSE", "COURSENM", AL
"STUDENT _COURSE", "STUDENTID", "key",
"STUDENT _COURSE'", "COURSEID", "key".

Figure 3.11: Example of Database Schema

which are attribute-level, relation-level, and semantics-level.

The attribute-level and the relation-level can be represented with a table which
is more database schema oriented. Figure 3.11 shows a possible database schema

representation.

For the semantics-level, case frame is an ideal representation scheme. For the

purpose of portability, it is reasonable to separate the knowledge about verbs into

Case Frame Specification for Verb ¢ ‘teach’’:

agent action instrumental dative neutral locative

Domain Independent Portion:

optional teach not-required optional required optional

Domain Dependent Portion:
teacher teach null null course university

Figure 3.12: Example of Separated Case Frame

two parts. One part is relatively domain independent as described in the previous
section and the other part is domain dependent. Figure 3.12 shows an example of

such a case frame based knowledge representation for verb “teach.”

By making use of the domain dependent part of the case frame, some degree of

inference ability can be obtained. For example, let us consider the following sentence:

Who is teaching comp2127

In this sentence, the action is “teach.” Based on the domain dependent portion
of the case frame, we can find that the agent of the verb “teach” is “teacher” and the
meaning of the sentence is “which teacher is teaching course comp212?7” Therefore,
the agent case can be filled up with “teacher” and the neutral case can be filled up

with “course comp212.” Similar techniques are introduced and employed in [1][29].

Since one noun phrase used in a natural language query could imply several

attributes used in a database schema, an ambiguity from the mapping between the

B E el s

Noun: Entity: Attribute:
name -—--=--- > teacher ------ > TEACHERNM
name =-=---=- > student ------ > STUDENTNM
age —-=---- > student ~----- > STUDENTAGE

student ----- > student -—-l--—-> STUDENTNM
=-=-=> STUDENTAGE

Figure 3.13: Example of Word Mapping Table

general semantic representation and the query meaning representation arises. Basi-
cally, this ambiguity can be resolved by providing a mapping table. This mapping
establishes all the possible references between the noun phrases used in natural lan-
guage queries and the names of the attributes and the relations used in a database
schema. A possible representation for such a mapping table is given in Figure 3.13.
Two declarative domain knowledge bases used in the MIDBMS are given in Appendix

D and Appendix E.

3.5 FINAL MEANING REPRESENTATION

Some of the research about natural language interface to database query system
choose logic representation as the final meaning representation, such as relational
calculus, logical form, etc. In these systems, the query language genevator needs
to be built up on the basis of the logic representaticn. From the viewpoint of the
system construction, this logical form is not convenient for a formal query language

generator to interface the semantic analyzer of a NLI system. From the viewpoint

of the system use, this logical form cannot be used directly by the users to express
their query requirements. Therefore, if we can find a final meaning representation
which is able to replace the logical form representation and also can be used by
the users directly, this would benefit both the NLI system and the users. SQL is a
relatively standard query language. It has very clear syntactic structure and very
powerful semantic expressing ability. Thus, it is reasonable to choose SQL as the final
meaning representation of a natural language interface to database query system. As
a result, such an interface system is able to provide users with one more window in
which they can express their query. Because both of SQL and any other relational
query language are formal languages and they have clear syntactic and semantic
definitions, the task of the translation between two formal languages is fairly trivial.

Based on this observation, SQL is selected as the final meaning representation of the

MIDBMS system.

In this chapter, several different kinds of knowledge required in the each stage of
the natural language understanding process are discussed. The corresponding knowl-
edge representation schemes are examined. Since the finite state transition network
is inadequate for the syntactic analysis in a NLI system, we provide a augmented
finite state transition network for syntactic analysis. This augmented finite state
transition network, based on the syntactic analysis, produces the corresponding syn-
tactic structure with phrase markers and grammatical markers for a sentence. Such
a syntactic structure benefits the semantic analysis. In addition, since the E-R model
used to express database domain structure in a database system lacks semantic con-

tent we enhance the E-R model. This enhancement provides the database domain

semantics. Such an enhanced E-R model is used to perform inferences during con-
verting a general semantic representation into a query meaning representation. Both
of these modified approaches are adopted in the MIDBMS prototype system design

and implementation.

Based on the discussion about knowledge representation schemes used in a NLI
system, an overall design of MIDBMS is given in Chapter 4. In this system design,
the bottom-up and top-down parsing mechanism is adopted for syntactic analysis.
The Case Grammar is adopted for semantic analysis. Both mechanisms of the syn-
tactic and semantic analyses are effectively intergrated into one NLI system. As the
result of the syntactic and semantic analyses, a general meaning representation of
a database query is produced. For interpreting the general meaning representation
and producing a query oriented meaning representation, a query interpreter is con-
structed. Finally, a formal query language translator is established for producing
query specifications. For making the system transportable and maintainable, the
principle of modularity is followed throughout the system design. The details design

of the system is given in next chapter.

Chapter 4

MIDBMS SYSTEM DESIGN AND
IMPLEMENTATION

4.1 OVERALL SYSTEM DESIGN

A prototype system called MIDBMS is designed and implemented for testing
the proposal made in this thesis. The MIDBMS system consists of eight procedural
modules, which are the System Initiator, the Sentence Reader, the Lexical Analyzer,
the Syntactic Analyzer, the Semantic Analyzer, the Query Interpreter, the SQL Gen-
erator, and the GQML Translator. Figure 4.1 shows the architecture of the MIDBMS
system. The function of each of these modules with more detailed design are given
in the following sections. Section 4.2 discusses the lexicon definition; section 4.3 dis-
cusses the grammar definition; section 4.4 discusses the syntactic analysis; section
4.5 discusses semantic analysis; section 4.6 discusses the query interpretation; section

4.7 discusses the SQL generation; and section 4.7 discusses the GQML translation.

1. System Initiator initiates the system, reads in the lexicon definition and

compresses it into bit-string representation.

2. Sentence Reader reads in a sentence from either a system terminal or a

specified file.

76

TRy TR

Y
| Sentence Reader |
| Sentence
| Lexical Analyzer |==-==-=-ceccccmmccccmceoo—--

v I
| Syntactic Analyzer |========--cccce--- | Syntactic Knowledge |
....................... | memeem——em—e—em—————
| Syntactic Representation =---=-=-=e---
l
| Semantic Analyzer [--==-re=--s—c-e--- | Semantic Knowledge |
| Semantic Representation
Y
| Query Interpreter |=--==-===---- | Domain Specific Knowledge |

| GQML Translator |

1
]
)
1
1
]
t
t
1
[}
1
1
]
]
1
!
1
]
1
!
[}
]
[}
!
]
¢
1
1
{
1
[o N
oo
==
4]
tr1
-
]
—

I
I HDBBMS System I

Figure 4.1: Architecture of the MIDBMS

3. Lexical Analyzer accepts a sentence, finds all the lexical entries for each

word in the sentence, and constructs all its possible lexical interpretations.

4. Syntactic Analyzer accepts a lexical interpretation, performs the syntactic
analysis, and produces a syntactic tree structure if the analysis succeeds.
If the sentence fails to be parsed, then the syntactic analyzer asks for next
lexical interpretation to process until a suitable lexical interpretation is
successfully parsed or no more lexical interpretation can be obtained. If a
sentence is parsed, then a corresponding parse tree is produced. This parse
tree is the syntactic representation of the sentence. This analyzer accesses
the syntactic class knowledge and semantic class knowledge. The parsing
strategy is the mixture of Bottom-Up and Top-Down. In the Bottom-Up
parsing stage, all the phrases are grouped up. In the Top-Down stage, the

parser checks if these phrases are in good order in terms of grammar.

5. Semantic Analyzer accepts the syntactic representation, performs semantic
analysis, and produces a semantic representation if the semantic analysis
succeeds. If the semantic analysis fails, then the sem.antic analyzer asks
for next syntactic representation to process until a suitable syntactic rep-
resentation is processed successfully or no more syntactic representation
can be obtained. This analyzer accesses the case frame based knowledge
about verbs and some procedural semantic rules. In semantic analysis,
Case Grammar[6}[20] is used to represent the deep structure of a sentence.

This deep meaning representa'ion is more natural language oriented.
P

-Q

6. Query interpreter accepts the semantic representation, performs the query
interpretation, and produces a query meaning representation if the inter-
pretation succeeds. If the semantic representation fails to be interpreted
correctly, the interpreter asks for next semantic representation to pro-
cess until a suitable semantic representation is interpreted correctly or no
more semantic representation can be obtained. The interpreter accesses
the domain dependent knowledge and some procedural rules. The query
meaning representation is defined with Attribute-Set, Relation-Set, and

Qualification-Set. This representation is more query language oriented.

7. SQL Generator accepts the query meaning representation and constructs

the SQL query specification.

8. GQML Translator accepts the SQL query specification and translates it
into the GQML query specification. The GQML query specification is

submitted to the HDDBMS system for obtaining the final database results.

4.2 LEXICON DEFINITION

The lexicon is the most important resource in the natural language understand-
ing system. [t must contain all the vocabulary which the system needs and all its
necessary syntactic and semantic information for each lexical item to be processed.
In the MIDBMS system design, each lexical item is defined with its syntactic portion
and semantic portion as described in section 3.2. The syntactic portion contains

the syntactic categories of a word, such as noun, verb etc., and the corresponding

ld §

features, such as person, number, gender etc. The semantic portion contains the
semantic category of a word, such as animate, abstraci-object, etc. Example 1 shows
the lexicon entry for the word “students.” In this exarple, the “class,” “genus,”
“gender,” “number,” “person,” “root,” and “semantics” are key words defined in
the system syntactic class. The “noun,” “common_noun,” “neuter,” “plural,” and
“third” are the syntactic categories and features defined in the system syntactic
class. The “animate” is the semantic category defined in the system semantic class.

The system syntactic class definition and the semantic class definition are given in

Appendix A and C.

Example 1:

students (class:noun genus:common_noun gender:neuter
number:plural person:third root:student

semantics:human)

Some words have several different syntactic or semantic categories. This can
be expressed by giving several lexicon entries as demonstrated in Example 2. In this

example, the word “lists” can be a noun or a verb.

Example 2:

lists (class:noun genus:common_noun gender:neuter

number:plural person:third root:list

L0

semantics:abs_obj;
class:verb genus:vt form:present person:third

number:singular root:list)

Further, some words have the same syntactic category but have several different
syntactic features. For example, the word “study” is a verb. It can be a transitive

verb or an intransitive verb. In this case, the lexical entry can be defined with logical

AND (&) operator. Example 3 illustrates such a definition.

Example 3:

study (class:noun genus:common_noun gender:neuter
number:singular person:third root:study
semantics:abs_obj;
| class:verb genus:vt&vi form:infinitive
|
} person:first&second number:singular&plural
1 root :study;
class:verb genus:vt&vi form:infinitive

person:third number:plural root:study)

The biggest advantage of this style of lexicon definition is to provide users a
very clear and intuitive interface to define their own lexicon. However, in terms of
system space efficiency, this lexicon definition is really expensive. The solution of

this problem is to compress the word-string definition into a bit-string definition.

R1

The compression approach discussed in section 3.2 is implemented in MIDBMS. This
compression process is done by a system function called the Lexicon Builder during
the system initiation stage. For offering the system functions a convenient handle
to access the syntactic and semantic information, the restoration from the bit-string
to a word-string is desirable. In MIDBMS, whenever a system function wants to
check if a word has an expected syntactic or semantic category, it just needs to
call a predicate by giving a word-string notation of the expected syntactic definition
and the bit-string notation of a specified word. The predicate checks if these two
representations have the same syntactic or semantic definition. If they have the same
syntactic or semantic definition, then a true value is returned. Otherwise, a false
value is returned. Let us suppose the system wants to know if a word contains the
following syntactic and semantic categories and syntactic features: “common noun,”
“singular,” and “animate.” In this case, a system function called the syntax_checker

is invoked and the corresponding parameters are given as follows.

syntax_checker("class:noun genus:common number:singular
semantics:human',

syntactic_bit_string, semantic_bit_string)

where the syntactic.bit_string and the semantic_bit_string come from the lexicon

ent1y of the specified word.

Generally, the mechanism of the restoration provides the system functions with
a convenient haundle to access the syntactic and the semantic knowledge. It also

makes the system more maintainable. The price of obtaining these benefits is to

82

spend more time on the mapping operation.

Besides, the feature of the multiple lexical definition makes the lexicon more
domain independent. Since even though the domain is changed, the orly thing users
need to do is to add some new definitions into the lexicon instead of changing it.
When the lexicon contains enough vocabulary, then it can reach a relatively stable

state.

For supporting semantic analysis, case frame specification for each verb is re-
quired. In MIDBMS, Fillmore's original cases are used and the domain independent
portion of the case frame specification is put into the lexicon because of its feature of
the domain independency as discussed in section 3.4. A domain independent portion

of the case frame specification for verb “study” is listed below.

study (agent:req instrumental:non locative:opt

dative:non neutral:req)

This definition is quite abstract. It contains the most basic requirements for
the semantic roles related to a verb. In most of the different database domains, the
case specifications for each verb are almost the same. This is so since the meaning of
most of the verbs does not change along with the change of the application domains.
Therefore, this case frame specification can be viewed to some degree as a domain

independent knowledge.

83

4.3 GRAMMAR DEFINITION

Imperative sentences and interrogative sentences are acceptable in MIDBMS.

The corresponding Phrase Structure Grammar used in this systemis defined in Figure

4.2.

In the syntactic analysis, the bottom-up strategy is applied first to build simple
phrase structures. This greatly reduces the burden of the top-down analysis and also
simplifies the construction of the transition network employed for representing the
grammar as described in Chapter 3. In this system, a finite state transition network
is employed and augmented with action components as described in section 3.2.3.
In this way, phrase structures produced in the bottom-up processing phase can be
parsed and a grammatical marker can be attached to each of these phrases. This
means that once a certain state of the transition network is reached, the defined
action is executed and a corresponding grammatical marker can be produced for a
phrase. The corresponding transition network definition is given in Appendix B. This
definition is declarative but at the action part, the transition network invokes some
procedures to perform the defined actions. This is an application of the combination

of the different knowledge representation schemes as described in section 3.1.

Q4

R > Imperative | Interrogative

Imperative --==--=--- > VP + NP + Rest

Imperative ======-=- > VP + P_Fronoun_0bj + NP + Rest

Imperative =======-- > VP + P_Pronoun_0bj + Rel_Clause

Interrogative —----- > Rel_Clausel | Rel_Clause2

Rest ---=-==c-cc=e-- > (Conj + NP)* + Modifier + Rest

Rest -=r-===-m=c=e=-- > Nil

Modifier ----====--- > PrepP | Rel_Clause

PrepP --==-c--=c-o-- > Prep + NP + Rest

Rel_Clause ---=--=--- > Rel_Clausel | Rel_Clause2 |
Rel_Clause3 | Rel_Clause4

Rel_Clause] =======-- > Q_R_Pronoun + VP + NP + Rest

Rel_Clause2 ~~-=—~-- > Q_R_Pronoun + NP + VP + Rest

Rel_Clause3 -====--- > Q_R_Pronoun + P_Pronoun_0Obj + VP + Rest

Rel_Clause4 ~----=--- > Q_R_Pronoun + NP + Be + (Neg) +
Rel_Operation + NP

Rel_QOperation «==--- > Rel_Operator + (Or + Rel_Operator)

Rel_Operator ------- > more than | less than | equal to

Q_R_Pronoun -------- > who | whom | whose | which

NP ==---—==me-ommee- > (det) + (adj)* + (noun)* + noun

NP —=-mmmmmeemmm e > (P_Pronoun_Poss) + (noun)* + noun

NP —emsmmeccmmcecee > P_Pronoun_Sub

VP =c--emcommemn e > (Aux) + (Neg) + V

VP ==-e—mmmesmcoea- > Be + (Neg)

V eemme e e e > Vt | Vi | Be

Figure 4.2: Phrase Structure Grammar Definition

85

LAl et i it 5o

TS

44 SYNTACTIC ANALYSIS

4.4.1 Lexical Analysis

The task of the lexical analyzer is to accept a sentence from the Sentence
Reader, find the lexicon entries for all the words in the sentence, and construct a set
of lexical interpretations. In addition, some pre-processing is carried out in this stage
to simplify further syntactic analysis. Some problems which are encountered in this

processing stage are discussed below.

Once the syntactic analyzer receives a sentence, it needs to search the lexicon
and find all the possible lexicon entries for each word in the sentence. In database
queries, attribute values can appear in a query sentence. For example, “List the
names of the students taking comp212.” Here, “comp212” is an attribute value for
course code in a student relation. If we set up an entry for such an unknown word
in a lexicon, we would be forced to put all the attribute values into the lexicon. In
an extreme case, the database would be duplicated[l]. Therefore, in MIDBMS, we
assume that the database attribute values are treated as unknown words. These
unknown words are considered nouns. If an unknown word is encountered, a special
marker is assigned to the unknown word and it is left to be processed in the syntactic

analysis phase and again in the query interpretation phase.

In natural language, one word can have several syntactic or semantic definitions.
As a result, one sentence could have several lexical interpretations. An example of

multiple lexical interpretation is given in Figure 2.2. For simplifying the syntactic

[a Y ad

analysis, all possible lexical interpretations are produced at this stage. Each inter-
pretation is then submitted to syntactic analyzer. These interpretations can later
be rejected at the phrase analysis stage, at the grammatical analysis stage, or at
the semantic analysis stage. If a lexical interpretation fails to be parsed, the next
interpretation is submitted to the syntactic analyzer until a suitable interpretation

is parsed or there are no more lexical interpretations.

It is possible that some of the lexical interpretations are more favorable than
others. If those favorable interpretations can be submitted to the syntactic analyzer
first, much useless work can be avoided and the system efficiency can be improved.
For this reason, a heuristic function is used to give less hopeful lexical interpretations

a lower priority. The heuristic is based on the syntactic knowledge listed below.

1. A determiner or an adjective should be followed by an adjective or a noun;

2. There should be, at least, one verb in a sentence.

More heuristics could be applied here so that the system performance could be

improved.

To simplify syntactic analysis, it is desirable to make some syntactic transfor-
mations in the given sentences. For example, in natural language, people often prefer
saying “I can’t do this” to saying “I can not do this.” We have two methods to deal
with this syntactic phenomenon. One is to change the word “can’t” into two words
“can not.” Another one is to define the special word “can’t” in the lexicon. The

second method enlarges the size of the lexicon as well as complicates the syntactic

Ao L N A

ST T e TR TR TR

analysis. Therefore, the first method is adopted in the system design. Because the
transformation is purely string substitution and does not require any specific knowl-
edge, this work can be easily done before the words in a sentence are localized in the

lexicon.

Another problem related to the syntactic transformation is that people often
use abbreviation to express relative clauses. For example, in the sentence “List
the names of the students taking comp212,” the present participle phrase “taking
comp212” can be expressed as the relative clause “Who are taking comp212.” For
past participle phrase, the same strategy can be used. For example, in the sentence
“List all the courses taken by Richard,” the past participle phrase “taken by Richard”
also can be transformed into a relative clause “which are taken by Richard.” After
this transformation is performed, the syntactic analyzer needs only to process the
relative clauses. As a result, the syntactic phenomena, which the syntactic analyzer

has to deal with, are reduced.

4.4.2 Bottom.Up Phrase Construction

Based on the lexical interpretation, a bottom-up analysis is carried out to pro-
duce simple phrase structures, such as noun phrases, verb phrases, etc. This analysis
is procedural. One type of phrase corresponds to one procedure. During the analysis,
all these procedures look ahead as many words in the sentence as needed and try to
get a match based on the phrase structure defined in the grammar. Once a phrase

is recognized, a phrase marker is assigned. Simultaneously, the head and the tail of

the phrase are recorded in the corresponding phrase structure. If all the words in
the sentence can be grouped up into several phrases properly, then the bottom-up
analysis is completed. As a result, a set of phrase structures are established. This
set of phrase structures are then passed to the grammatical analysis stage. If the
words in the sentence cannot be grouped properly into phrases, then the current
lexical interpretation fails in bottom-up parsing and the next lexical interpretation

is attempted.

To simplify the grammatical analysis, some conjunctions are processed after
the phrase analysis is finished. For example, in the sentence “List the names and the
salaries of the employees,” the noun phrase “the names” and the noun phrase “the
salaries” can be combined to produce a compound noun phrase. This is because “the
name” and “the salary” have the same syntactic category, are associated with the
conjunction, and are semantically compatible. However, in another sentence such
as “List the names of the employees and their departments,” we can not combine
the noun phrases “the employees” and the noun phrase “their departments.” This
is because that the word “employee” and the word “department” are not semanti-
cally compatible. Therefore, the combination of two noun phrases associated with a
conjunction has to consult not only the syntactic information but also the semantic
information as discussed in section 3.3.2. A predicate called semantics_checker based
on the criteria defined in section 3.3.2 is provided to test if two noun phrase are

semanticly compatible.

After the bottom-up syntactic analysis, we can get a sequence of phrase markers

¢

o et cr, L

Akrme R s A

[PV SRp P S Y

1) VP memmmmememeec e e V tell

2) P_Pro_0bj ===-=--ecce-=ae Pro me
-- Det the
== NP ===ve=- |
I --=-- N names
3) NP ----- : -------------- Conj and
I -- Det the
-= NP -=----- |
---- N salaries
--------------- Prep of
4) PrepP --|
| -- Det the
R |
---= N employees
--------------- Prep in
5) PrepP --|
| -- unknown computer
-- NP -- |

-- unknown science

Figure 4.3: Example of Phrase Structures

which describes the phrase structures of a sentence. Figure 4.3 gives an example of
all the phrase structures for the sentence “Tell me the names and the salaries of the

employees in computer science.”

In this bottom-up processing stage, when a verb phrase is constructed, its
corresponding modality is built up as well. For example, based on the definition
of the modality given in section 3.2.2, the verb phrase “has been teaching” has
the “Third Person,” “Singular Number,” “Present Tense,” and “Perfect.Continuing

Aspect.” The information about verbs is used in the semantic analysis.

4.4.3 Top-Down Grammar Parsing

In top-down parsing processing stage, a set of phrase structures produced in the
phrase analysis stage are processed. First, the phrase markers contained in the phrase
structures are scanned to check if the sequence of the phrase markers is in good order
according to the syntactic grammar defined in the system. This is done by traversing
the transition network as discussed in section 3.2.3. If the sentence is syntactically
valid, then the grammatical markers are assigned to the corresponding phrases and
the syntactic tree structure is produced. The Right Association principle[1] is adopted
for resolving the structural and referential ambiguities as discussed in section 2.6. As

a result, a deterministic parse tree is produced.

The case-frame semantic analysis described in [25] processes phrase structures,
such as noun phrases, verb phrases, etc., rather than individual words. During this
analysis, the semantic analyzer needs to find out the subject, object, etc. contained in
a sentence by applying a set of syntactic transformation rules. Then, a set of semantic
transformation rules are used so that the syntactic roles in the sentence can be
converted into the corresponding semantic roles. This approach seems to complicate
the semantic analysis. If the syntactic roles such as subject, object, etc. can be
produced in the syntactic analysis stage, then the semantic analysis can be simplified
without much syntactic effort. Thus, it is required that the transition network used
for parsing the sentences be augmented with an action component. In each action
component, a grammatical marker is defined. During the traverse of the transition

network, when such a grammatical marker is encountered, a corresponding procedure

a1

The teacher teaches course.

Phrase Marker: NP VP NP
(80)-===="mm= >(81)=m==remmmmm >(?2) --------- >(S3)
Grammatical Marker: (subject) (predicate_verb) (object)

Figure 4.4: Example of Augmented Finite State Transition Network with Grammatical
Marker

is invoked to establish this marker in the parse tree structure. This technique is
discussed in section 3.2 and employed in MIDBMS to meet the requirement proposed
above, In this way, all the syntactic roles in the sentence are produced in the top-
down parsing stage and contained in the parse tree structure. Figure 4.4 gives a

demonstrative example to show how such an augmented transition network works.

In the semantic analysis, the semantic analyzer needs only to search the parse
tree to find out the syntactic roles in the sentence. Then, it can perform the semantic
transformation rules to produce the corresponding semantic roles. Appendix B gives

the augmented finite state transition network definition used in the MIDBMS system.

Combining the bottom-up processing and top-down processing, Figure 4.5 shows
a comprehensive example of syntactic representation produced in the syntactic anal-

ysis.

--~- Predicate_Verb -======~=-- VP - v list
---~ Det the
--- Direct_Object =~--==em==-e- NP ---|
-=== N names
-------------- Prep of

§ =-==|-=- Attribute --- PrepP ---|
---- Det the

—= NP ---
--~= N students
=== Subject =====-e-s-ecccocoae Q.R_Pro =-- Pro who
~=-- Aux are
--- Predicate_Verb ----------- VP ---|
--==V taking
I
-== Direct_Obj =~=-===s---oe-o NP ~=w-- unknown comp212

Figure 4.5: Comprehensive Example of Syntactic Representation

4.5 SEMANTIC ANALYSIS

In semantic analysis, Case Grammar is employed to resolve the semantic ambi-
guity and produce a general semantic representation. The cases used in the MIDBMS
system are Fillmore’s original cases mentioned in section 3.3. These cases are “agent,”

“Instrumental,” ¢

neutral,” “dative,” and “locative.” For easing the query interpre-
tation, one more case “modifier” is added. This modifier case contains a preposition
phrase headed with the preposition “of.” In the semantic analysis phase, the modality
containing verb knowledge is required. In aduition, a set of semantic transformation
rules are applied to the syntactic representation so that the corresponding cases can

be filled with the semantic roles. The main rules used in this implementation are

listed below.

93

1. If the voice of the verb in a sentence is active and the subject of the sentence
is animate, then the subject is converted into agent case and the object is

converted into neutral cas. if the object exists.

2. If the voice of the verb in a sentence is active and the subject of the sentence

is not animate, then the subject is converted into instrument case.

3. If the voice of the verb in a sentence is passive, then the subject of the sen-
tence is converted into neutral case. In this circumstance, if there exists an
adverbial, wkich is a preposition phrase modifying verbs, following a verb
phrase and headed with a preposition BY, and the noun phrase contained
in the adverbial is animate or unknown words, then the noun phrase is con-
verted into agent case. If the adverbial is headed with a preposition WITH
or BY and the noun phrase contained in this adverbial is not animate, then

the noun phrase is converted into instrument case.

4. If the voice of the verb in a sentence is active and there exists a indirect

object, then this indirect object is converted into dative case.

5. All the adverbials, except those cases occurred in rule 3, are converted into
locative cases.
6. All the attribute, which is a preposition phrase modifying nouns, follow-

ing a noun phrase and headed with a preposition OF are converted into

modifier case.

These rules establish a mapping between the syntactic representation and the

semantic representation by referencing the syntactic knowledge stored in the modal-

/ 0.4

ity and the semantic knowledge stored in the semantic network. For example, the
sentence “Which courses are taken by Richard?” has the following cases according

to the rule 3.

Agent: "Richard"
Action: '"take"

Neutral: "which courses"

After all the grammatical components find the corresponding cases, we still
need to check if these cases filled up by the semantic analyzer satisfy the requirements
defined in the case frame specification for each verb as described in section 2.5. If
the requirements are satisfied, then the semantic analysis is completed and this case
frame based semantic representation is submitted to the query interpreter. If the
semantic analysis cannot be passed, this lexical interpretziion is rejected and some
error messages are given to help users to find out where the problemis. Then, the next
syntactic representation is processed. Figure 4.6 shows a semantic representation of
the sentence given in Figure 4.5. In this representation, all the syntactic analytical

information is retained.

4.6 QUERY INTERPRETATION

The query interpretation is to transform the general semantic representation
which is more linguistic oriented into a query meaning representation which is more
query specification oriented. In this processing phase, a semantic representation of a
sentence is accepted as input form the syntactic analyzer and transformed into the

q5

=== Action —---=s-scccoamcano. VP =-emuo=~ v list

~==« Det the
--- Neutral -----~--=v=-=-~=--- NP ---|
w==w N names

-------------- Prep of
§ ====|-=- Modifier =-- PrepP =--|
---- Pet the

-- NP --~|
-=== N students
=== Agent ==--ec-ceccccncccoa- Q_R_Pro === Pro who
-=-=- Aux are
-== Action ==-=--=—m-ceemoo-- VP ---|
--—-V taking
|
--- Neutral =---=-====--=c----- NP ----- unknown comp21i2

Figure 4.6: Example of Semantic Representation

query meaning representation, which is an attribute set, a relation set, and a qualifi-
cation set as described in section 3.5. This query meaning representation is produced
by referencing the domain specific knowledge. By establishing a query meaning rep-
resentation as discussed in section 2.7, the gap between the general meaning represen-
tation and the formal query language can be filled. Simultaneously, the portability
of the NLI system is enhanced. The query interpretation procedure implemented in

this MIDBMS system consists of four stages which are discussed below.

1. Constructing attribute set:
In this stage, all the attributes which users are asking for must be deter-
mined. In the semantic representation produced in the semantic analysis
phase, the noun phrases representing the attributes are stored in the neutral
case of the main sentence as discussed in section 2.7. In a main sentence,

there could exist several neutral cases which are associated by conjunction.

/ 06

For example, in the imperative sentence “List all the names of the em-
ployees and their departments,” the neutral cases are filled up with “the
names” and “their departments.” Thus, the interpreter has to search all
the neutral cases belonging to the main sentence and pick up the nouns,
such as “names” and “departments,” contained in the noun phrases. Since
these noun words used in natural language query are not necessarily the
same with the ones used in the database schema as the attribute names, a
mapping between the words used in the natural language sentences and the
ones used in the database schema is required as described in section 2.7,
For example, in the sentence “List the names of the students,” the noun
“names” stands for an attribute of the student relation. However, in the
database schema, this is expressed as STUDENTNM. A mapping table is
established for this mapping processing as discussed in section 3.4. Figure
4.7 gives an example to illustrate this mapping.

To disambiguate the noun phrases used in a natural language query and
find the exact database attribute name which a noun word represents, user
has to indicate which entity each noun belongs to. This can be expressed
with the noun-noun modifier, the noun with possessive case, or the preposi-
tion phrase headed with preposition OF. For example, in the noun phrases

” «

“student names,” “student’s name,” and the “the names of the students,”

” o«

the word “student,” “student’s,” and the preposition phrase “of the stu-
dent” ! idicate that the word “name” belongs to the student entity. Once

these entities are determined, we can find the corresponding database at-

97

Noun: Entity: Attribute:
id e e student -~=-==~--- > STUDENTID
|==~> teacher —=-==-=--- > TEACHERID
l-=-> course --=-==c=--- > COURSEID
name ----7---> student ---------- > STUDENTNM
|---> teacher -----=---- > TEACHERNM
l-==> course ===-=-=-==--- > COURSENM
student ----- > student ------T---> STUDENTID
'—--> STUDENTNM
teacher =----- > teacher ------T---> TEACHERID
|---> TEACHERNM
|---> OFFICE
course —==-~--- > course —-=--==7=--> COURSEID
l=~-> COURSENM
office —~~--- > office ~===v=weee- > OFFICE

Figure 4.7: Example of Word Mapping Table

tribute name for a noun phrase stored in a neutral case by making use of

the mapping table mentioned in Figure 4.7.

As discussed in Chapter 1, natural language is less precise than a formal
query language in some aspects[44]. One particular aspect of this lack of
precision is the fact that in natural language a user may explicitly or im-
plicitly ask for entire relations rather than for individual attributes of these
relations. When interpreting natural language queries as query meaning
representations, the interpreter has to decide which attributes of the re-
lations being demanded are to be presented. The simplest strategy is to
present all of the relation’s attributes. Another strategy is to specify a
default set of the attributes for each relation. In this MIDBMS system,

the entire attribute set of each relation is specified to be represented in

/ aR

Attribute: Relation: Feature:
"STUDENT", “STUDENTID", "key",
“"STUDENT", "STUDENTNM", Ydefault",
"COURSE", “"COURSEID", "key",
"COURSE", "COURSEID", "default",
IICOURSEII , IICOURSENM" , " s
"TEACHER", WTEACHERID", "key",
“TEACHER", YTEACHERNM", “default",
“TEACHER" , “OFFICE" , LX))
"STUDENT _COURSE", "STUDENTID", "key",
"STUDENT _COURSE", "COURSEID", "key",
"TEACHER_CQURSE", "TEACHERID", "key",
"TEACHER_COURSE", “"COURSEID", "key",

Figure 4.8: Example of Database Schema

the query specification if the name of the relation appears in the natural
language query sentence. For example, in the sentence “List all the stu-
dents,” the attribute set of the student relation, which are STUDENTID
and STUDENTNM in the example given in Figure 4.7, are picked up and

placed into the attribute set.

. Constructing relation set:

Once the attribute set is constructed, the corresponding relations of the
attributes can be determined by searching the database schema. A possible

database schema is given in Figure 4.8.

. Constructing qualification set:

Qualification analysis is concentrated on the locative cases and the relative
clauses. In this stage, the most difficult problem is to resolve the pronoun
references. This problein can be resolved in two ways as discussed in section

2.6. One s to use the Right Association principle[1] to find out the previous

99

Agent Action Instrument Dative Neutral Locative

student take nil nil course nil
teacher teach nil nil course nil

Figure 4.9: Example of World Knowledge about Verbs

noun phrase located in front the pronoun. For example, in sentence “List
the names of the students who are taking comp212,” the pronoun “who” .
refers to the noun “students.” Another approach is to make use of the
world knowledge about the verb. For example, if we are talking about the
university and suppose we have the database schema given in Figure 4.8,
then we could have the following world knowledge about the verbs “teach”
and “take” shown in Figure 4.9. This kind of knowledge is represented in
the form of case frames as described in section 3.4.

If the sentence is “List the all the students who are taking comp212,” then
we can say that the relative pronoun “who” represents students because
the agent of the verb “take” is “student.” The unknown word “comp212” is
related to the course because the neutral case of the verb “take” is “course.”
In database schema, a default attribute is defined in each relation. This
default attribute is used when user specifies an attribute value in the query
without giving the corresponding attribute name. In the above example,
by referencing the database schema, we can find the default attribute of
the course relation is COURSECODE. Therefore, the qualification of this

relative clause is COURSECODE = “comp212.”

100
/

Making use of this domain specific world knowledge about the verbs is very
helpful in resolving the referential problem. This also makes the knowledge
representation of the whole system more consistent in terms of the case
framework representation. In MIDBMS, both approaches are employed.
The Right-Association approach is used when the verb is “to be.” And the

verb knowledge is used when the verb expresses a behavior.
. Join relation:

In a query, one or more join relations could be involved even though those
relations are not mentioned explicitly in the sentence. For example, in the
sentence “List the names of the students taking comp212,” two relations
are mentioned explicitly. One is STUDENT relation and the another is
the COURSE relation. These two relations are associated with the join
relation STUDENT_COURSE according to the database schema defined
in Figure 4.8. For exposing all the information contained in the natural
query, it is necessary to make the implied join relations explicit. Thus,
more information can be provided to the formal query language generator.
The implied join relations can be found with following steps.
(a) Check the relation set established in constructing relation set stage.
If there exists one relation which contains all the key attributes of
the remaining relations, then the join relation has been included in
the relation set already. Then, do step 3.
(b) If there does not exist such a join relation, then pick up all the

key attributes of each relation in the relation set. Search database

101

Sk ere LR

JONSEVPT ISP YOE N P

[P

schema and find the join relation which contains all the key at-
tributes of all the relations in the relation set. Put this join relation
into relation set. Then, do step 3.

(c) Construct join qualifications with an equality sign and the key at-
tributes. Then, put the join qualifications into the qualification

set. .

For the sentence mentioned above, the relation set contains two relations
which are STUDENT and COURSE. Because each of these two relations
does not contain the key attribute of the another relation, the database
schema is searched. Since the relation STUDENT_COURSE contains both
key attributes of the STUDENT and the COURSE relations, it is deter-
mined as a join relation and is placed into the relation set. The correspond-

ing join qualifications are listed below and they are placed into qualification

set.

STUDENT.STUDENTID = STUDENT __COURSE.STUDENTID

COURSE.COURSEID = STUDENT __COURSE.COURSEID

47 SQL GENERATION

In the MIDBMS system, the query specification of SQL is implemented. The
corresponding syntax of the query specification used in this implementation is given

in Figure 4.10.

From this syntax, we can find the correspondence between the query meaning

/ 102

<query_specification> ::=
SELECT <attr_reference_lst>
<table_expression>

<attr_reference_lst> ::=
<attr_reference> [{,<attr_reference>}...]

<table_expression> ::=
<from_clause>
[<where_clause>]

<from_clause> ::=
FROM <rel_reference_lst>

<rel_reference_lst> ::=
<rel_reference> [{,<rel_reference>}...]

<where_clause> ::=
WHERE <predicate>

<predicate> ::=
<expression> <comparator> <expression> |
<predicate> <bin_log.op> <predicate>

<attr_reference> ::=
<character string, first character must be a letter>

<rel_reference> ::=
<character string, first character must be a letter>

<expression> ::=
<arith_expr> | <string_expr>

<arith_expr> ::=
<num_lit> | <attr_reference>

<{string_expr> ::=
<string_lit> | <attr_reference>

<num_lit> ::=
<digit_string>[.<digit_string>]

<string_lit> ::
"<char_string>"

<comparator> ::
<I> =] =<] <

<bin_log_op> ::
AND

Figure 4.10: Syntax of SQL Specification Subset

1N

representation and the query specification. The attribute set of query representation
corresponds to the “attr.referenceldst” of the query specification; the relation set
corresponds to the “relreference.lst,” and the qualification set corresponds to the
“predicate.” Thus, in this SQL generation stage, most of the work involved is to
fill the attr_reference.lst with the attribute set, the rel_reference_lst with the relation
set, and the predicate with the qualification set. Then, according to the syntax of
SQL query specification, the SQL generator produces the SELECT clause, FROM
clause, and WHERE cla.use. Based on the database schema given in Figure 4.8,
Figure 4.11 gives an example of query specification of SQL for the sentence “List all
the teachers who are teaching comp212 and working in AD301.” In this example, the
attribute-set includes attributes of TEACHERID and TEACHERNM; the relation-

set includes relations of TEACHER, TEACHER-COURSE, and COURSE; and the

qualification-set includes the following qualifications:

TEACHER . TEACHERID = TEACHER _COURSE .COURSEID
COURSE . COURSEID = TEACHER __COURSE.COURSEID
COURSEID = ‘‘comp212’’

OFFICE = ‘‘AD301 '’

The corresponding query qualification is given in Figure 4.11.

/ 104

SELECT TEACHERID,TEACHERNM

FROM TEACHER, TEACHER _COURSE,COURSE

WHERE TEACHER.TEACHERID = TEACHER_COURSE.TEACHERID AND
COURSE.COURSEID = TEACHER_COURSE.COURSEID AND
COURSEID = “comp212” AND
OFFICE = ”AD301”;

Figure 4.11: Example of Query Specification of SQL

1). u: union

2). int: intersection

3). dif: difference

4). div: division

5). lim: 1limit

6). lnj: 1limited natural join
7. ren: rename attributes

8). onj: outer natural join

9). alt: alteration

10). grp: grouping

11). trc: transpose row to column
12). tcr: transpose column to row

Figure 4.12: GQML Operations

4.8 GQML TRANSLATION

GQML is a formal relational database query language. Since it works on a
heterogeneous distributed database management system, it has not only database
query operations but also some special operations about database schema mapping.

GQML has twelve operators which are listed in Figure 4.12.

For establishing the target formal query language interface, GQML translator is

implemented. This translator translates SQL query specification defined in the pre-
vious section into the corresponding GQML query specification. The corresponding
query operations are “lim” clause, “Inj” clause, “where” clause, and “attrs” clause.

Figure 4.13 gives their syntax.

Under this syntax specification, two query examples are given below.

1) English: List the employees whose salaries are more than 30000.

SQL: SELECT EMPID, FIRSTNAME, LASTNAME, TOTSALARY
FROM EMPLOYEE

WHERE TOTSALARY > 30000;

GQML: 1lim EMPLOYEE
where TOTSALARY > 30000

attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY;

2) English: List the employees whose salaries are 30000 and

whose department is architecture.

SQL: SELECT EMPID, FIRSTNAME, LASTNAME, TOTSALARY

/ 106

<rel_op> ::=
lin <rel_opnd> [where <predicate>]
[attrs <attr_nm_lst>]; |
1nj <rel_opnd>,<rel_opnd> [where <predicate>]
[attrs(attr_nm_lst)? :

<rel_opnd> ::=
<rel_op> | <rel_nm>

<attr_nm_lst> ::=
<attr_nm> {, <attr_nmd>}

<attr_nm> ::= . .
<character string, first character must be a letter>

<rel.nm> ::=))
<character string, first character must be a letter>

<predicate> ::=
<expression> <comparator> <expression> |
<predicate> <bin_log_op> <predicate>

<expression> ::=
<arith_expr> | <string_expr>

<arith_expr> ::=
<num_lit> | <attr_nm>

<str.ng_expr> ::=
<string_lit> | <attr_nmd

<num_lit> ::=
<digit_string>[.<digit_string>]

<string_lit> ::=

"<char_string>'" | ""
<comparator> ::=
< > > =]

<bin_log_op> ::= and

Figure 4.13: Syntax of Subset GQML (from [39))

107

FROM EMPLOYEE, WORKSIN, DEPTMNT

WHERE EMPLOYEE.EMPID = WORKIN.EMPID AND
DEPTMNT .DEPTID = WORKIN.DEPTID AND
TOTSALARY > 30000 AND

DEPTNM = "ARCHITECTURE";

GQML: 1nj
EMPLOYEE,
lnj WORKSIN, DEPTMNT;
where TOTSALARY > 30000 and
DEPTNM = "ARCHITECTURE"

attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY,

By analyzing the above two sets of examples, we may find that the main differ-
ence existing between these two types of query specifications is the join operation. In
SQL, users have to specify not only the join relations in the FROM clause but also
the join qualifications in the WHERE clause explicitly. However, in GQML, users
do not need to give join qualifications explicitly in the WHERE clause but they have
to use the “In)” operator to specify the two join relations. This difference existing
these two query specifications can be resolved. This is because both query specifica-
tions are defined based on the relational data model. Thus, they have quite strong
similarity in terms of syntax and the semantics as discussed in section 2.8. The basic

algorithm for resolving the difference of join operations is given below.

/ 108

1. Check the WHERE clause of the SQL to see if there exist join relations.
This needs to check out the join qualifications first. The characteristics of
the join qualification are that the both sides of the equality sign contain
the different relations but same attributes. After checking out the join
qualifications, try to find out which relation appeared more than one time
in the join qualifications. The one appeared more than one time is the join

relation.

2. If there exists a join relation, then remove the corresponding join qualifica-
tions from the WHERE clause. Construct “limited natural join” clause by
joining those relations appearing in the join qualifications with the “Inj”

operator.

The remaining part of these two query specifications is almost the same except

the different key words are used. Thus, this part of the translation is fairly trivial.

4.9 SUMMARY OF SYSTEM DESIGN

In this chapter, an overall protoiype system design is provided. In this design,
we integrate the top-down and bottom-up parsing mechanism and Case Grammar
into one system organically. The top-down and bottom-up parsing mechanism is
used for the syntactic analysis. Case Grammar is used for the semantic analysis.
Since most knowledge used in the prototype system is declarative and the system
is divided into modules according to their functions, the prototype system is highly

transportable. Based on this design, the prototype system called MIDBMS is imple-

109

mented.

110

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

This thesis has investigated the issues in the design of a transportable, multilevel
interface to database management system. The main concerns are the feasibility
and the portability of such a system. Based on the investigation provided in this
thesis, prototype system is designed. For testing this system design, the Multilevel
Interface to Data Base Management System (MIDBMS) is implemented on UNIX
system with ANSI C programming language. For integrating the pre-existing system
HDDBMS|39] into the MIDBMS to form the target formal query language interface,
the MIDBMS system is transferred to an IBM PC/XT where the HDDBMS system
resides. Since the programming language used in the implementation is ANSI C, no
extra programming effort is needed except for recompiling the whole system code on

an IBM PC/XT machine during the system transformation.

Most existing natural language interface systems, such as 18], [22], [26], [29],
and [33], choose one formal query language as their final output. In such cases, if
the formal query language is changed, the whole formal query language generator
has to be rewritten. The amount of the rewriting work really depends on how the

query language generator interfaces with the rest of the NLI system and how the

111

intermediate processing results are represented. Because of the variety of the formal
query languages, it is desirable to choose a relatively standard formal query langnage
as the final output of the NLI system. Based on this standard formal query language,
any other specific target formal query language translator can be generated, and thus
only the translator associated with the target query language has to be rewritten.
Moreover, since the translator maps from a formal language to a formal language,
little effort is required in its rewriting. As a consequence, users receive an extra
interface in which they can express what they want from a database system more

precisely.

In the MIDBMS system, SQL is chosen as the final output of the NLI system.
GQML working on HDDBMS is chosen as a target query language. Both the NLI
system and the GQML translator are designed and implemented in the MIDBMS
system. Building the GQML translator involved three days’ programming work.
The final results have shown that such a system architecture that establishes mul-
tiple level interfaces on a database management system benefits not only the NLI
system building itself but also the users who can submit their queries in the different

interfaces with the different query languages.

Generally, the transportability of the NLI system depends on the modularity
of the system functions and the knowledge representation schemes. This principle
is pursued throughout the MIDBMS system design. Consequently, the MIDBMS
system is highly modular in its system functions and its knowledge : :presentation.

This can be observed through the system architecture given in Figure 4.1.

As a test bed of the transportability of the MIDBMS system, two different
database domains are prepared. In the transit between these two application do-
mains, only several hours of work were required to define a new domain specific
knowledge base, which consists of a database schema, a word mapping, and a case
frame based world knowledge about verbs. The lexicon is left untouched. The do-
main specific knowledge bases used in this thesis and a set of query examples are
given in Appendix D and E. This set of comprehensive results is very encouraging

and shows that the system design goal has been achieved.

As the part of the thesis, two domain specific knowledge bases are provided
in Appendix D and Appendix E. Based on these two different database domains,
two sets of natural language query sentences and the corresponding SQL and GQML
query specifications are given. This set of comprehensive results is very encouraging

and shows that the system design goal has been achieved.

52 FUTURE WORK

A framework of the multileve] interface system has been built up in the MIDBMS

system. However, more work needs to be done in the following areas: 1. Ellipse pro-

cessing:

This capability is missing from the current MIDBMS implementation. With
this ability, users are able to use pronouns to reference the objects mentioned in the
previous sentences. For example, users may give the sentence “List the names of the
employees in computer science” in the first query and give an abbreviation sentence

112

“their salaries” in the second query. For processing ellipses, an ellipse processor must
remember the processing history it has performed. This can be done by keeping
the general meaning representation described in section 2.5 for a previous processed
sentence. Based on this general meaning representation, the ellipse processor has to
find out the corresponding referent that the pronoun represents. The solution used
in resolving the referential and structural ambiguities as described in section 2.6 can
be applied here for determining a correct referent. Once the corresponding referent
is found out, the old object contained in the corresponding referent case is replaced
with the new object contained in the abbreviation sentence. Then, this modified
general meaning representation is submitted to the query interpreter to be processed
further. Generally, if a NLI system just keeps the history of one previous sentence,
the ellipse processing is relatively easy. However, if a NLI system tries to keep the
history of several previous sentences, then the situation becomes complex. Since in
such a processing history kept by a NLI system, there could exist several possible
referents contained in several processed sentences. Thus, the ellipse processor has
to decide which referent is the right one which the user references. This issue needs

more investigation.

2. Enlargement of syntactic and semantic coverage:

Although the current MIDBMS system is capable of understanding a relatively
diverse set of syntactic and semantic phenomena, some even more complex phe-
nomena need to be examined. For example, since imperative sentences and special

interrogative sentences headed with interrogative pronouns are acceptable in the cur-

/ 114

rent MIDBMS, the sentence “Could you tell me who are taking course comp212?”
would not be recognized. For accepting this type of common interrogative sentences
with relative clauses, the system needs to enlarge the grammar. Correspondingly,

the system abilities of syntactic and semantic analyses need to be enhance as well.

3. Enhancement of the response ability of the system:

In the syntactic analysis of the current MIDBMS implementation, the response
to the ill-formed sentences is not detailed enough. This should be enhanced so that
better guidance can be provided to the users to help them construct acceptable

sentences.

4. Augmentation and optimization of the SQL generator:

The current SQL generator handles only the query specification of SQL. This
query specification is also incomplete in terms of the SQL standard[7]. Group-By
clause and Having clause are missing from the current query specification. In addi-

tion, in the SQL standard, the relation reference is defined as following:

<relation reference> ::= <relation name>{<correlation name>]

We may find that the optional part, that is, [jcorrelation name;] is missing from
the current implementation. Under this circumstance, when the natural language
query sentence “Who are teaching comp212 and comp231?” is posed to the system,
the corresponding SQL query specification produced by the SQL generator is given

as follows.

115

SELECT TEACHERID,TEACHERNM
FROM TEACHER , TEACHER_COURSE , COURSE
WHERE TEACHER.TEACHERID = TEACHER_COURSE.TEACHERID AND

COURSE.COURSEID = TEACHER_COURSE.COURSEID AND

COURSEID = "comp212” AND

COURSEID

" comp231 ¥;

However, the correct query specification should be the following one:

SELECT A.TEACHERID, A.TEACHERNM

FROM TEACHER A, TEACHER_COURSE B, TEACHER_COURSE C,
COURSE D, COURSE E

WHERE A.TEACHERID = B.TEACHERID AND

A.TEACHERID = C.TEACHERID AND

B.COURSEID = D.COURSEID AND
C.COURSEID = E.COURSEID AND
D.COURSEID = ”comp212” AND
E.COURSEID = ”comp2317”;

Without specifying the correlation names, the SQL cannot be generated cor-
rectly in the case described above. This requires to modify the SQL generator. In
addition, the example given above also can be optimized. The COURSE relation is

redundant. The optimized query specification is listed below.

SELECT A.TEACHERID, A.TEACHERNM

/ 116

FROM TEACHER A, TEACHER_COURSE B, TEACHER_COURSE C,

WHERE A.TEACHERID = B.TEACHERID AND

A.TEACHERID = C.TEACHERID AND
B.COURSEID = "comp212” AND
C.COURSEID = "comp2317”;

Except those future projects listed above, another extension which can be done
in the MIDBMS is a natural language generation sub-system [31] [32]. In this subsys-
tem, the input is SQL query specification and the output is a corresponding natural
language sentence. Under the support of this sub-system, when users give a query
sentence from the natural language interface, the MIDBMS is able to return a SQL
query specification or a natural language sentence. This natural language sentence
expresses what the sys:em has understood. Thus, a loop, which is from natural lan-
guage to SQL and then from SQL to natural language, can be constructed. Figure
5.1 shows a possible enhanced MIDBMS architecture in which a natural language

generation sub-system is integrated.

In this loop, users can repeatedly modify their natural language sentences until
they believe that the system has understood their demands. Then, this confirmed
SQL query specification can be submitted to the GQML translator. W. S. Luk and
Steve Kloster in their paper called ELFS: English Language From SQL{31] described
a generation system from SQL to natural language. The original applications of the
ELFS system are the SQL tutorial and the SQL programming aid. If this system

is integrated into the multiple interfaces system, that will be greatly improve the

117

Natural Language

) Interface @ ~m=-=oc—--msososco—mosooocoooo
English sentence ---------=---== >| Natural Language Interpreter |
! 1
General Formal | SQL Query | Natural
Query Language ¥ Specification | Language
Interface @ ==-===o----= eoo—ooo tomommmonee
SQL Query =----====-c--mcoccoe- >| GQML Query | | Natural Language |
| Translator | | Generator
I __________________ |
Target Formal | GOQML Query
Query Language V Specification
Interface @ @ -==--cssesc-msccececccecoceoo-
GQML Query ---=====---=e--=-o-- >| GQML Global Query Processor |
------------- | HDDBMS System |
| e e
| | |
Database Query Results | dBASE III | | KnowledgeMan |

Figure 5.1: Enhanced Architecture of MIDBMS System

friendliness of the interface system and make the system, as a whole, more practical.

This thesis is a step toward establishing a database query environment. In this
environment, different kinds of tools are provided with which database users can ac-
cess database information conveniently. For achieving such a goal, we have offered a
system model and implemented a prototype system. The result is encouraging. How-
ever, more investigation and research are required. This needs the joint efforts from

the researchers working in the fields of database management system and artificial

intelligence.

/ 118

Bibliography

(1] Allen, James. Natural Language Understanding, University of Rochester, The
Benjamin/Cummings Publishing Company, Inc., 1987

[2] Barr, Avron, and Feigenbaum, Edward A. The Handbook of Artificial Intelli-
gence, William Kaufman Inc., California, Vol.1, 1981

[3] Belford, G. G., Liu, J. W. S., and etc. Report Generation Facility: A High-Level
Interface for Coherent Access to Heterogeneous Database Systems, International
Conference on Data Engineering, Los Angeles, CA, USA, 5-7 Feb. 1986

[4] Breitbart, Yuri, Olson, Peter L., and Thompson, Glenn R. Database Integration

in a Distributed Heterogeneous Database System, International Conference on
Data Engineering, Los Angeles, CA, USA, 5-7 Feb. 1986

[5] Brodie, Michael L., and Mylopoulos, John. On Knowledge Base Management

Systems: Integrating Artificial Intelligence and Database Technologies, Springer-
Verlag, New York Inc., 1986

[6) Bruce, Bertram. Case System for Natural Language, Artificial Intelligence, No.
6, 1975

(7] CAN/CSA-7243.47-88 (ISO 9075-1987). Information Processiny System -
Database Language SQL, Canadian Standards Association, 1988

[8] Chen, Peter Pin-Shan. The Entity-Relationship Model Toward a Unified View
of Data, ACM Transaction on Database Systems, Vol.1, No.1, March, 1976

[9] Chen, Peter Pin-Shan. English Sentence Structure and Entity-Relationship Di-
agrams, Information Science, Vol. 29, 1983

[10] Chomsky, Noam. Syntactic Structures, The Hague: Mouton & Co., 1957
[11] Chomsky, Noam. Aspects of the Theory of Syntax, The M.I.T. Press, 1965

[12) Chomsky, Noam. Studies on Semantics in Generative Grammar, The Hague:
Mouton & Co., 1972

[13] Cullingford, Richard E. Natural Language Processing: A Knowledge-
Engineering Approach, Rowman & Littlefield, 1986

119

[14] Damerau, Fred J. Problems and Some Solutions in Customization of Natural

Language Database Front Ends, , ACM Transactions on Office Information Sys-
tem, April 1985, Vol.3, No.2

(15] Date, C. J. An Introduction to Database System, Addison-Wesley, Reading,
Mass., 1981

[16] Date, C. J. A Critique of the SQL Database Language, ACM SIGMOD Rec.
14,3, 1984

[17] Desai, C. Bipin, McManus, J., and Vincent, P.J. A Portable Natural Language
Interface, AFIPS Conference Proceedings, Vol.56, 1987

[18] Desai, C. Binpin, Pollock, Richard J., and Vincent, Philip J. A Natural Language

Interface to Multiple Database Office Information System, SIGOIS Bulletin,
Vol.9-4, December 1988

[19] Epstein, Samuel S. Transportable Natural Language Processing through
Simplicity-The PRE System, ACM Transactions on Office Information Systems,
Vol.3, No.2, April 1985

[20] Fillmore, Charles. A Case for Case, Universals in Linguistic Theory, 1968 by
Holt, Rinehart and Winston, CBS College Publishing

[21] Griffith, Robert L. Three Principles of Representation for Semantic Networks,
ACM Transactions on Database Systems, Vol.7, No.3, September 1982

[22] Grosz, Barbara J., Appelt, Douglas E., and etc. TEAM: An Experiment in the

Dess’i?gn of Transportable Natural-Language Interfaces, Artificial Intelligence 32,
19

[23] Hafner, Carole D., and Kurt Godden. Portability of Syntax and Semantics in

gatalog, ACM Transactions on Office Information System, April 1985, Vol.3,
0.2

(24] Hammer, Michael., and etc. Database Description with SDM: A Semantic
Database Model, ACM Transaction on Database System, Vol.6, No.3, 1981

[25) Harris, Mary Dee. Introduction to Natural Language Processing, Prentice-Hall
Company, 1985

[26] Ishikawa, H., and etc. A Knowledge-based Approach to Design A Portable Natu-
ral Language Interface to Database System, Software Lab., Fujitsu Laboratories
Ltd. Japan, Data Engineering Proceedings, 1986

[27] Jacobs, Paul S. Acknowledge Framework for Natural Language Analysis, IJCAI,
1987

[28] Janas, Jurgen M. The Semantics-Based Natural Language Interface to Relational

Databases, Cooperative Interfaces to Information Systems (Chapter 6), L. Bok
and M. Jarke, Springer-Verlag, Berlin, 1986

/ 190

[29] Kaplan, S. Jerrold. Designing A Portable Natural Language Database Query
System, Stanford University, ACM Transactions on Database System, Vol.9,
No.1, March 1984, Page 1-19

[30] Katz, J.J., and Fodor, J.A. The Structure of a Semantic Theory, The Structure

of Language, Ed. J. Fodor and J. Katz, Englewood Cliffs, New Jersey: Prentice-
Hall, 1964

[31] Luk, W. S., and Kloster, Steve. ELFS: English Language From SQL, ACM
Transactions on Database Systems, Vol.11, No.4, December 1986

[32] Marakakis, Emmanouil J. Entity Relationship Approach te the Generation of
Sentences for Database Queries, Master Thesis of Computer Science of Concordia
University, 1984

[33] McFetridge, P., Hall, G., and etc. Knowledge Acquisition in System X: Natural
Language Interface to Relational Databases, Proceedings of the Seventh Biennial

Conference of the Canadian Society for Computational Studies of Intelligence,
Edmonton, Alta., Canada, June 1988

[34] Minsky, Marvin. A Framework for Representing knowledge, in The Psychology
of Computer Vision, McGraw Hill, New York, 1975

[35) Motro, Amihai. Constructing Queries from Tokens, ACM SIGMOD, Vol. 15,
No.2, June 1986

[36] Myers, Brad A. Tools for Creating User Interfaces: An Introduction and Survey,
Computer Science Department, Carnegie Mellon University, January 1988

[37] Oppacher, F. A Programming Approach for Constructing Natural Language
Processors, Master Thesis of Computer Science of Concordia University, 1981

[38] Pitrat, J. Using Declarative Knowledge for Understanding Natural Language,
Natural Language Parsing Systems, Springer-Verlag, 1987

(39] Pollock, Richard J. The Design and Implementation of a Heterogeneous Dis-
tributed Database Management System Prototype, Master Thesis of Computer
Science of Concordia University, 1988

[40] Simmons, Robert. Answering English Questions by Computer: A Survey, Com-
munications of the ACM, Vol.8, 1965

[41] Tstrahan, M. M., and Chamberlin, D. D. Implementation of a Structured English
Query Language, Comm. ACM Vol.18, No.10, October 1975

[42] Vincent, Philip J. The Design and Implementation of a Potable Natural Lan-
guage Interface System, Master Thesis of Computer Science of Concordia Uni-
versity, 1988

[43] Winograd, Terry. Understanding Natural Language, Academic Press, New York,
1972

121

{44] Winograd, Terry. Language as A Cognitive Process, Volume 1: Syntax, Addison-
Wesley Publishing Company, 1983

(45] Woods, William A. Transition Network Grammars for Natural Language Anal-
ysis, CACM 13-10, 1970

[46) Woods, William A. Progress in Natural Language Understanding: An Applica-
tion to Lunar Geology, AFIPS Conference Proceeding, 1973

122
/

APPENDIX A
STRUCTURE OF SYNTAX

In MIDBMS, the syntactic class is defined with C language structure definition
and given below. This declarative definition reflects the tree structure of the syntactic class.

element category[]={
“4" NULL,

“class” NULL,
“collective” ,NULL,
“material” NULL,
“abstract” NULL,

})

element cas]={
“5”,NULL,
“subjective” NULL,
“objective”,NULL,
“possessive” NULL,
“adjective” NULL,
“reflexive” NULL,
k;

element gender[]={
“3” NULL,
“masculine” NULL,
“feminine” NULL,
“neuter” ,NULL,

b

element number(}={
“3",NULL,

“singular” ,NULL,
“plural”,NULL,
“uncountable” NULL,

};

element person(j={
“3” NULL,
“first”,NULL,
“second”,NULL,

191

“third” NULL,
};

element form[]={

“5" ,NULL,
“infinitive”,NULL,
“present” NULL,

“past” ,NULL,
“present_participle”,NULL,
“past_participle” , NULL,

}

element grade[]={

“3" ,NULL,

“positive” NULL,
“comparative” NULL,
“superlative”,NULL,

h

element position[]={
“2" NULL,

“front” ,NULL,
“behind”,NULL,

5

element adj_property[]={
“10",NULL,

“common” ,NULL,
“equal” ,NULL,

“more” , NULL,

“less” ,NULL,

“long” NULL,

“short” NULL,

“big” ,NULL,

“small” NULL,

“high” NULL.
“low”,NULL,

b

element adv.property{]={
“9",NULL,
“common” ,NULL,

/ 124

“negation” NULL,
“time” ,NULL,
“location” , NULL,
“direction” NULL,
“position”,NULL,
“grade” ,NULL,
“manner”,NULL,
“cause” NULL,

h

element prop-property[}={
“10",NULL,
“in” ,NULL,
“on”,NULL,
“by”,NULL,
“with” NULL,
“of",NULL,
“for” NULL,
“at” NULL,
“to” NULL,
“over” NULL,
“under” ,NULL,
5

element distance{]={
“2",NULL,

“near” ,NULL,

“far” NULL,

K

element ques_p_category(]={
“7” ’NULL’

“who” NULL,
“whom”,NULL,
“whose” , NULL,

“which” ,NULL,

“what” ,NULL,

“when” ,NULL,

“where” NULL,

h

element quan-p-category|]={
“10",NULL,

125

“all”,NULL,

“any” ,NULL,
“anyone” NULL,
“anything” NULL,
“some”,NULL,
“someone” NULL,
“somebody” ,NULL,
“something” ,NULL,
“everyone” NULL,
“everything” NULL,
};

element common_noun(}={

“5” NULL,
“category”,(element *)category,
“case”,(element *)cas,
“gender”,(element *)gender,
“number” (element *)number,
“person” (element *)person,

};

element proper_noun(j={

“5" ,NULL,
“category”,(element *)category,
“case”,(element *)cas,
“gender” ,(element ¥)gender,
“number” (element *)number,
“person” (element *)person,

I

element personal_pronoun(}={
“5” NULL,
“category”,(element *)category,
“case”,(element *)cas,
“gender”,(element *)gender,
“number” (element *)number,
“person” (element *)person,

};

element demons.pronoun(]={
“4” NULL,

“distance” (element *)distance,
“gender” (element *)gender,

/ 126

“number” (element *)number,
“person” (element *)person,

}1

element question.pronoun{]={

“2” NULL,

“category”,(element *)ques_p-category,
“case”,(element *)cas,

J§

element quantified_pronoun{)={

“" NULL,

“category”,(element *)quan.p-category,
“number” (element *)number,

};

element noun-genus[]={
“6",NULL,
“common_noun” ,(element *)common.noun,
“proper_noun” (element *)proper-noun,
“personal_pronoun”,(element *)personal_pronoun,
“demons.pronoun” (element *)demons_pronoun

) H
“question_pronoun”,(element *)question_pronoun,
“quantified-pronoun”(element *)quantified_pronoun,

9

b

element vt[]={

“3”,NULL,

“form”,(element *)form,
“person” (element *)person,
“number” (element *)number,

b

element vi[]={

“3” NULL,

“form”,(element *)form,
“person” (element *)person,
“number”,(element *)number,

}
element vi[]={

127

“3”,NULL,

“form”,(element *)form,
“person” (element *)person,
“number” ,(element *)number,

}

element be[]={

“3" NULL,

“form” ,(element *)form,
“person” (element *)person,
“number” (element *)number,

};

element aux[]={

“3”,NULL,

“form” ,(element *)form,
“person” ,(element *)person,
“number”,(element *)number,

J§

element verb.genus[]={
“5" ,NULL,

“vt” (element *)vt,
“vi” (element *)vi,
“v1”,(element *)vl,
“be”,(element *)be,
“aux”,(element *)aux,

h

element definite[]={
“l”,NULL,
“number” (element *)number,

b

element indefinite[]={
“1",NULL,
“number” (element *)number,

)

element art_genus(]={
“2” NULL,

/ 198

“definite” (element *)definite,
“indefinite” (element *)indefinite,

J&

element adj[]={

“3" NULL,

“position”,(element *)position,
“grade”,(element *)grade,
“property” ,(element *)adj-property,

b

element adj.genus(]={
“1” NULL,
“adj”,(element *)adj,

h

element ordinary[]={

“2" NULL,

“grade” (element *)grade,
“property”,(element *)adv_property,

5

element interrofj={

“2”" NULL,

“grade” (element *)grade,
“property” ,(element *)adv_property,

I

element relative[}={

“2",NULL,

“grade” (element *)grade,
“property”,(element *)adv.property,

b

element conjunctive[]={

“2",NULL,

“grade”,(element *)grade,
“property” ,(element *)adv_property,

Y

19N

element negative[]={

“2" NULL,

“grade” ,(element *)grade,
“property”,(element *)adv_property,

}1

element adv-genus(}={

“5" NULL,

“ordinary”,(element *)ordinary,
“interrogative” (element *)interro,
“relative” (element *)relative,
“conjunctive” ,(element *)conjunctive,
“negative” (element *)negative,

5

element prop(]={
“1",NULL,
“property”,(element *)prop_property,

b

element prop_genus[]={
“1",NULL,
“preposition”,(element *)prop,

h

element num-genus[]={
“¢" NULL,
“cardinal”,NULL,
“ordinal” ,NULL,
“fraction” NULL,
“decimal” NULL,
“date” NULL,

“time” ,NULL,

1§

element conjun_category[]={
“3",NULL,

“and” ,NULL,

“or” ,NULL,

“than” ,NULL,

}a

191N

element mark_category[]={
“3",NULL,

“" NULL,

“» NULL,

“” NULL,

}

element conjunction(]={
“1",NULL,
“category”,(element *)conjun-category,

h

element marks[]={
“1",NULL,
“category” (element *)mark-category,

b

element others_genus([]={

“2" NULL,

“conjunction”,(element *)conjunction,
“marks” (element *)marks,

h

element syntax[}={

“8” NULL,

“noun”,(element *)noun_genus,
“verb”,(element *)verb_genus,
“article”,(element *)art_genus,
“adjective” (element *)adj-genus,
“adverb”,(element *)adv_genus,
“preposition” (element *)prop_genus,
“numeral” (element *)num._genus,
“others” (element *)others.genus,

h

121

DECLARATIVE DIFINITION OF GRAMMAR

In MIDBMS, grammar is represented with the finite state transition network.
This network is defined declaratively with C language structure definition. In this definition,
the first column is the start state of a transition. The second column is the condition of
a transition. The third column is the end state of a transition. The fourth column is a
grammatical marker which is assigned to a corresponding phrase. The declarative grammar

APPENDIX B

definition used in MIDBMS is given below.

machine machine_tab[]={

“SO”, VP,
“s0”, RelPro,
ug1” , NP,
“s1”, ProObj,
“s2”, Dot,
“s2”, Conj,
“g2", PrepP,
“s2”, RelPro,
4ggq? , NP,

g 4”’ NP,
“sh”, Dot,
“s5”, NP,
“s5”, PrepP,
“s5”, Conj,
“sh”, RelPro,
Nk , N P,
g7 , NP,
“s7", RelPro,
ugQn , NP,
“s8", ProSub,
“ggn , VP,
4gQ" , VP,
“s9”, PrepP,

“s10”, Dot,
“s10”, NP,
“s10", PrepP,
“s11”, Dot,
“s11”, Question,
“s11", RelPro,
“s11”, Conj,
“s117, PrepP,
“s11”, NP,
“s11”, VP,

“Sl”,
“SS”,
“82”,
“87”,
“sn” ,
“83”,
“84”’
“58”,
“82”,
“35”,
“sn” ,
“85”,
“84”,
“86”,
“SS”,
“82”,
“82”’
“58”,
“59”,
“Sg”,
“slo”,
“s10",
“816” ,
“sn”,
“s117,
“s13",

“Sn”,

“Sn" ,
“58”,
“S 1277,
“813” ,
“sl 1”,

“Sl 1”’

Predicate_Verb,
Subject.Object,
Object,
Indirect_-Object,

0,

Conjunction,
Attribute_Adverbial,
Subject_Object,
Keep,

Keep,

0,

Keep,
Attribute_Adverbial,
Conjunction,
Subject.Object,
Object,

Object,
Subject_Object,
Subject,

Subject,
Predicate-Verb,
Predicate.Verb,
Attribute_Adverbial,
0,

Object,
Attribute.Adverbial,
0,

0,

Subject.Object,
Conjunction,
Attribute_Adverbial,
Keep,
Predicate_Verb,

1392

“s12",
“s12”,
“813”,
“s14”,
“s14”,
“514”,
“s14",
“s14",
“s15”,
“s15",
“s16”,
“end”,

k

NP,
RelPro,
NP,
Dot,
Question,
NP,
PrepP,
Conj,
NP,
RelPro,
NP,

0,

“sl 171’
“88”,
“814”,
“sn”,
“sn‘”’
“s14”,
“813”,
“515”,
“Sll”,
“58”,
“59”’

un
)

Object,
Subject-Ob ject,
Keep,

0,

0,

Keep,
Attribute_Adverbial,
Conjunction,
Object,
Subject-Object,
Keep,

0,

133

BT % e Mt ot tatnk s abatn b o wtafei & MfSd Rl YE_S _u =

APPENDIX C
STRUCTURE OF SEMANTICS

In MIDBMS, the semantic class is defined with C language structure definition
and given below. This declarative definition reflects the tree structure of the semantic class.

element object.attr{]={
“".NULL,

“name” ,NULL,
“identifier”,NULL,

I3

element phy_obj_attr[]={
“"» NULL,

“size” NULL,

“shape” NULL,

“weight” NULL,

“color” ,NULL,

J5

element animate_attr{}={
“" NULL,

“age” NULL,

“gender” NULL,

I

element human.attr{)={
“]-”,NULL,

“address” ,NULL,

¥

element animal-attr{]={
“0",NULL,

It

element inanimate_attr[]={
« ”,NULL,

Y

element vegetable_ attr[}={
wan ,NULL,

It

element nonliving.attr[]={
“0",NULL,

I8

element abs-obj-attrl}={
“0",NULL,

}!

element time-attr[]:{
“",NULIL,

I8

element location_attr{}={
« ”,NULL,
¥

element organization.attr{]={
g

element concept.attr{)={
13 ”,NULL,

I8

element info.container-attr(]={
“0",NULL,

h

element human[]={
“"2NULL,
“attr”,(element *)human.attr, };

element animal]={
“1",NULL,

135

“attr” NULL,
};

element vegetable[)={
uq» ,NULL,
“attr” NULL,

k

element nondiving[]={
“1” ,NULL,

“attr” NULL,

};

element time[]={
“yn ,NULL,
“attr” NULL,

5

element location[]={
“1” ,NULL,
“attr” NULL,

};

element organization[]={
“1",NULL,

“attr” ,NULL’

5

element concept(]={
“1",NULL,

“attr” ,NULL,

};

element info_container[]={
wp» ,NU LL’
“attr” NULL,

}

element animate[]={

136

“3" ,NULL,

“attr”,(element *)animate-attr,
“human”,(element *)human,
“animal” (element *)animal,

};

element inanimate[]={

“3" NULL,

“attr” NULL,

“vegetable” (element *)vegetable,
“nondiving” (element *)non.living,

k

element phy.objfj={

“3”,NULL,

“attr” (element *)phy-obj-attr,
“animate” (element *)animate,
“inanimate”,(element *)inanimate,

h

element abs_obj[]={

“6" ,NULL,

“attr”,NULL,

“time” (element *)time,
“location”,(element *)location,
“organization”,(element *)organization,
“concept”,(element *)concept,
“info-container” (element *)info_container,

b

element object[] ={

“3” NULL,

“attr”,(element *)object-attr,

“phy_obj”,(element *)phy_obj,
“abs_obj”,(element *)abs.obj,

It

element semantics[]={
“1”,NULL,
“object” (element *)object,

.
9

197

APPENDIX D

DOMAIN KNOWLEDGE BASE I

In MIDBMS, domain specific knowledge base is defined with three separate
components which are database schema, word mapping table, and world knowledge about
verbs. These knowledge is defined declaratively with C language structure and given below.

Rk ok kbR ok kb koo kR ok ko ok ok kb ok ok
DATA BASE SCHEMA ABOUT EMPLOYEES:

EMPLOYEE (KEY:EMPID,FIRSTNAME,LASTNAME,
TOTSALARY, BIRTHDATE)

DEPTMNT (KEY:DEPTID, DEPTNM, STREET, CITY)
WORKSIN (KEY:EMPID, KEY:DEPTID, START)

DECLARATIVE DEFINITION OF DATABASE SCHEMA:

reference schema-tab[]={

“12”’ “”, “”’
“EMPLOYEE", “EMPID”, “hey”
“EMPLOYEE", “FIRSTNAME”, “default”,
“EMPLOYEE®, “LASTNAME”,
“EMPLOYEE”, “TOTSALARY”,
“EMPLOYEE’, “BIRTHDATE”, *,
“DEPTMNT”, “DEPTID”, “key”,
“DEPTMNT”, “DEPTNM", “default”,
“DEPTMNT”, “STREET”,
“DEPTMNT” , “CITY” , (132} ,
“WORKSIN", “EMPID”, “key”,
“WORKSIN”, “DEPTID", “key”,
“WORKSIN”, “START”,

1

DECLARATIVE DEFINITION OF WORD MAPPING TABLE:

element attr1[]={
“1”,NULL,

138

“DEPTID",NULL,
h

element attr2{j={
“1”,NULL,

“EMPID”,NULL,
h

element attr3[]={
“1" ,NULL,
“DEPTNM”,NULL,
}

element attrd[]={

“2" NULL,
“FIRSTNAME” NULL,
“LASTNAME” NULL,

b

element attr5[]={
“1",NULL,
“FIRSTNAME” ,NULL,
I

element attr6]]={
“1",NULL,
“LASTNAME" ,NULL,
I3

element attr7{]={
“1",NULL,
“CITY” NULL,
b

element attr8[]={
“1 NULL,
“STREET”,NULL,
I

139

element attr9[]={
“1",NULL,
“BIRTHDATE” NULL,
};

element attr10{]={
“1» NULL,
“START” ,NULL,

};

element attr1l{}={
“1",NULL,
“TOTSALARY”,NULL,
b

element attr12(j={
“2",NULL,
“STREET”,NULL,
“CITY",NULL,

};

element attr13[]={
“5",NULL,

“EMPID” ,NULL,
“FIRSTNAME” NULL,
“LASTNAME” ,NULL,
“TOTSALARY”,NULL,
“BIRTHDATE” NULL,

b

element attri4[]={
“4" NULL,
“DEPTID” ,NULL,
“DEPTNM”,NULL,
“STREET” ,NULL,
“CITY" NULL,

h

element id[]={
“2" NULL,

“department” (element *)attrl,

140

“employee”,(element *)attr2,

h

element name{]={

“6”,NULL,

“department” ,(element *)attr3,
“employee” (element *)attr4,
“first”,(element *)attr5,
“last”,(element *)attr6,

“city” (element *)attr?,
“street”,(element *)attr8,

Y

element datel]={

“2" NULL,
“birth”,(element *)attr9,
“start”,(element *)attrl0,

h

element address]]={
“1",NULL,
“department” (element *)attrl2,

};

element street{]={
“1" NULL,
“department” (element *)attr8,

b

element city{)={
“1” NULL,
“department” (element *)attr?,

h

element salary[]={
“1",NULL,
“employee”,(element *)attrll,

};

element employee{]={

AR

Ty AT Oy Ty T

“1",NULL,
“employee”,(element *)attrl3,

};

element department[]={
“1",NULL,
“department”,(element *)attrl4,

};

element obj_ref_tab[]={

“9” NULL,

“id",(element *)id,
“name”,(element *)name,
“date”,(element *)date,
“address”,(element *)address,
“street” (element *)street,
“city”(element *)city,
“salary”,(element *)salary,
“employee” ,(element *)employee,
“department”,(element *)department,

b

DECLARATIVE DEFINITION OF WORLD KNOWLEDGE ABOUT VERBS:

action action-tab[}={
[117 1133} “n (1%}
b 7 b b

“employee”, “work” R “”, (134 y

¥

b
“department”,

149

A SET OF SAMPLE SENTENCES AND CORRESPONDING
QUERY SPECIFICATIONS:

<1
English:

List the employees in computer science.

SQL:

SELECT EMPID,FIRSTNAME,LASTNAME,TOTSALARY,BIRTHDATE
FROM EMPLOYEE ,WORKSIN,DEPTMNT
WHERE EMPLOYEE.EMPID = WORKSIN.EMPID AND
DEPTMNT.DEPTID = WORKSIN.DEPTID AND
DEPTNM = "COMPUTER SCIENCE";

GQML:

1nj EMPLOYEE,
1nj DEPTMNT, WORKSIN;
vhere DEPTNM = "COMPUTER SCIENCE"
attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY, BIRTHDATE;

<2>
English:

List the employees whose salaries are 3000 and whose start date
is 11/1/1986.

SQL:

SELECT EMPID,FIRSTNAME,LASTNAME,TOTSALARY,BIRTHDATE

FROM EMPLOYEE,WORKSIN

WHERE EMPLOYEE.EMPID = WORKSIN.EMPID AND
TOTSALARY = "3000" AND

L START = "11/1/1986";

l 113

o Kb

S b -

GQML:

Inj EMPLOYEE, WORKSIN
where TOTSALARY = 3000 and
START = 11/1/1986
attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY, BIRTHDATE;

<3>
English:

List the names, salaries and the birth date of the employees.

SQL:

SELECT FIRSTNAME,LASTNAME,TOTSALARY,BIRTHDATE
FROM EMPLOYEE;

GQML:

lim EMPLOYEE
attrs FIRSTNAME, LASTNAME, TOTSALARY, BIRTHDATE;

<4>

English:
Tell us the names and the salaries of the employees working in
the computer science department.

SQL:

SELECT FIRSTNAME,LASTNAME,TOTSALARY

FROM EMPLOYEE,WORKSIN, DEPTMNT

WHERE EMPLOYEE.EMPID = WORKSIN.EMPID AND
DEPTMNT.DEPTID = WORKSIN.DEPTID AND
DEPTNM = "COMPUTER SCIENCE";

144

GQML:

1nj EMPLOYEE,
1nj DEPTMNT, WORKSIN;
vhere DEPTNM = "COMPUTER SCIENCE"
attrs FIRSTNAME, LASTNAME, TOTSALARY;

<5>
English:

List the employees who are working in the department of computer
science and their start date.

SQL:

SELECT EMPID,FIRSTNAME,LASTNAME,TOTSALARY,BIRTHDATE,START
FROM EMPLOYEE, WORKSIN,DEPTMNT
WHERE EMPLOYEE.EMPID = WORKSIN.EMPID AND
WORKSIN.DEPTID = DEPTMNT.DEPTID AND
DEPTNM = "COMPUTER SCIENCE";

GQML:

1nj EMPLOYEE,
1nj DEPTMNT, WORKSIN;
vhere DEPTNM = “COMPUTER SCIENCE"
attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY, BIRTHDATE, START;

<6>
English:

Tell me the names of the employees whose last name is Backer and
whose department is computer science.

SQL:

SELECT FIRSTNAME,LASTNAME

FROM EMPLOYEE,WORKSIN ,DEPTMNT

WHERE EMPLOYEE.EMPID = WORKSIN.EMPID AND
DEPTMNT.DEPTID = WORKSIN.DEPTID AND
LASTNAME = "BACKER" AND
DEPTNM = "COMPUTER SCIENCE";

GQML:

1nj EMPLOYEE,
1nj DEPTMNT, WORKSIN;
where LASTNAME = "BACKER" and
DEPTNM = "COMPUTER SCIENCE"
attrs FIRSTNAME, LASTNAME;

7>
English:

List the employees whose salaries are not more than 20000.

SQL:

SELECT EMPID,FIRSTNAME,LASTNAME,TOTSALARY,BIRTHDATE
FROM EMPLOYEE
WHERE TOTSALARY <= "20000";

GQML:
lim EMPLOYEE

where TOTSALARY <= 20000
attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY, BIRTHDATE;

<8>
English:

List the employees whose salaries are less than 4000 and more
than 20000.

sSqQL:

SELECT EMPID,FIRSTNAME,LASTNAME,TOTSALARY,BIRTHDATE
FROM EMPLOYEE
WHERE TOTSALARY < "4000" AND

TOTSALARY > "20000";

GQML:

lim EMPLOYEE
vhere TOTSALARY < 4000 and
TOTSALARY > 20000
attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY, BIRTHDATE;

<9>
English:

List the employees whose salaries are not less than or equal to
30000.

SQL:
SELECT EMPID,FIRSTNAME,LASTNAME,TOTSALARY,BIRTHDATE
FROM EMPLOYEE
WHERE TOTSALARY > "30000";
GQML:
lim EMPLOYEE

where TOTSALARY > 30000
attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY, BIRTHDATE;

<10>
English:

List the employees whose salaries are more than or equal to 20000
and less than 50000.

SQL:

SELECT EMPID,FIRSTNAME,LASTNAME,TOTSALARY,BIRTHDATE
FROM EMPLOYEE
WHERE TOTSALARY >= "20000" AND

TOTSALARY < "50000";

GQML :

lim EMPLOYEE
where TOTSALARY >= 20000 and
TOTSALARY < 50000
attrs EMPID, FIRSTNAME, LASTNAME, TOTSALARY, BIRTHDATE;

APPENDIX E

DOMAIN KNOWLEDGE BASE II

In MIDBMS, domain specific knowledge base is defined with three separate
components which are database schema, word mapping table, and world knowledge about
verbs. These knowledge is defined declaratively with C language structure and given below.

Aok R R R R R Rk R ok ok ok ko ok ok ok ook ok Rk ok ok kK

DATE BASE SCHEMA ABOUT UNIVERSITY:

STUDENT (KEY:STUDENTID, STUDENTNM)

TEACHER (KEY:TEACHERID, TEACHERNM, OFFICE)
COURSE (KEY:COURSEID, COURSENM)
STUDENT.COURSE (KEY:STUDENTID, KEY:COURSEID)
TEACHER_-COURSE (KEY:TEACHERID, KEY:COURSEID)

DECLARATIVE DEFINITION OF THE DATABASE SCHEMA:

reference schema-tab{]={

“12'9’ “”, u”’
“STUDENT”, “STUDENTID”, “key”,
“STUDENT”, “STUDENTNM”, “default”,
“COURSE”, “COURSEID”, “key”,
“COURSE”, “COURSEID”, “default”,
“COURSE”, “COURSENM”, “",
“TEACHER?”, “TEACHERID", “key”,
“TEACHER”, “TEACHERNM”, “default”,
“TEACHER?, “OFFICE”,

“STUDENT.COURSE”,“STUDENTID", “key”,
“STUDENT_-COURSE”,“COURSEID”, “key”,
“TEACHER.COURSE” “TEACHERID", “key”,
“TEACHER.COURSE” “COURSEID”, “key”,

b

DECLARATIVE DEFINITION OF WORD MAPPING TABLE:

110

TEORT

L A s ahas

T R e e, A TR TP weGrrade

heioh S

element stuid{]={
“1",NULL,
“STUDENTID",NULL,
¥

element teaid{]={
“1",NULL,
“TEACHERID” NULL,
I

element couid[J={
“1”NULL,
“COURSEID",NULL,
15

element stunm[]={
“1",NULL,
“STUDENTNM”,NULL,
h

element teanm{]={
“1",NULL,
“TEACHERNM” ,NULL,
Y

element counm[}={

“1» NULL,
“COURSENM”,NULL,
k

element stuf]={

“2" ,NULL,
“STUDENTID” ,NULL,
“STUDENTNM”,NULL,

I§

element tea[]={

“2" ,NULL,
“TEACHEKID” ,NULL,
“TEACHERNM”,NULL,

h;

element couf]={
“2"NULL,
“COURSEID”,NULL,
“COURSENM",NULL,

b

element off{]={
“1",NULL,
“OFFICE" ,NULL,
k

element id[]={

“3",NULL,

“student” ,(element *)stuid,
“teacher” ,(element *)teaid,
“course”,(element *)couid,

b

element name(]={
“3"NULL,
“student”,(element *)stunm,
“teacher”,(element *)teanm,
“course” ,(element *)counm,

i

element student[]={
“1",NULL,
“student”,(element *)stu,

h

element teacher[]={
“1",NULL,
“teacher”,(element *)tea,

h

element coursef]={
“1”,NULL,
“course”,(element *)cou,

151

element office[]={
“1”,NULL,
“office”,(element *)off,

’

element obj.ref_tab[j={

“6” ,NULL,

“id” (element *)id,

“name” (element *)name,
“student”,(element *)student,
“teacher”,(element *)teacher,
“course”,(element *)course,
“office”(element *)office,

b

DECLARATIVE DEFINITION OF WORLD KNOWLEDGE ABOUT VERBS:

action action-tab[]={

133 3” wn (1324
]

b

“teacher”, “teach”, “course”,

“course”,
1132

“student”, “take”,
“teacher”, “work”,

h

b

!

“un
“©y
“n

(13

159

({3}
[13}]

“n

’
“office” ,

A SET OF SAMPLE SENTENCES AND CORRESPONDING
QUERY SPECIFICATIONS:

<1>
English:

List the names of the teachers who are teaching course comp212.

SQL:

SELECT TEACHERNM

FROM TEACHER,TEACHER_COURSE,COURSE

WHERE TEACHER.TEACHERID = TEACHER_COURSE.TEACHERID AND
COURSE.COURSEID = TEACHER _COURSE.COURSEID AND
COURSEID = "comp212";

GQML:

1nj TEACHER,
Inj COURSE, TEACHER_COURSE;
whera COURSEID = "comp212"
attrs TEACHERNM;

<2>
English:

List all the teachers who are teaching comp2i2 and working in
AD301.

SQL:

SELECT TEACHERID,TEACHERNM

FROM TEACHER, TEACHER _COURSE, COURSE

WHERE TEACHER.TEACHERID = TEACHER_COURSE.TEACHERID AND
COURSE.COURSEID = TEACHER_COURSE.COURSEID AND
COURSEID = "comp212" AND
OFFICE = "AD301";

GQML:

lnj TEACHER,
1nj COURSE, TEACHER_COURSE;
where COURSEID = "comp212" and
OFFICE = "AD301"
attrs TEACHERID, TEACHERNNM;

<3O
English:

List the courses taken by Russel.

SQL:

SELECT COURSEID,COURSENM

FROM COURSE, STUDENT _COURSE, STUDENT

WHERE COURSE.COURSEID = STUDENT_COURSE.COURSEID AND
STUDENT.STUDENTID = STUDENT_COURSE.STUDENTID AND
STUDENTNM = "Russel";

GQML:
1nj COURSE,
1nj STUDENT, STUDENT_COURSE;

where STUDENTNM = "Russel'
attrs COURSEID, COURSENM;

<4
English:

List the courses which Russel is taking.

154

SQL:

SELECT COURSEID,COURSENM

FROM COURSE, STUDENT _COURSE, STUDENT

WHERE COURSE.COURSEID = STUDENT_COURSE.COURSEID AND
STUDENT.STUDENTID = STUDENT_COURSE.STUDENTID AND
STUDENTNM = "Russel";

GQML:
1nj COURSE,
Inj STUDENT, STUDENT_COURSE;

where STUDENTNM = "Russel"
attrs COURSEID, COURSENM;

<5>
English:

List all the teachers working in AD301.

SQL:

SELECT TEACHERID,TEACHERNM
FROM TEACHER
WHERE OFFICE = "AD301";

GQML :
1im TEACHER

where OFFICE = "AD301"
attrs TEACHERID, TEACHERNM;

<6>
English:

Tell me who are working in office AD301.

SQL:

SELECT TEACHERID,TEACHERNM
FROM TEACHER
WHERE OFFICE = "AD301";

GQML:

lim TEACHER
where OFFICE = "AD301"
attrs TEACHERID, TEACHERNM;

<7
English:

Who are teaching comp212?

SQL:

SELECT TEACHERID,TEACHERNM

FROM TEACHER, TEACHER_COURSE, COURSE

WHERE TEACHER.TEACHERID = TEACHER_COURSE.TEACHERID AND
COURSE.COURSEID = TEACHER_COURSE.COURSEID AND
COURSEID = "comp212";

GQML:
1nj TEACHER,
1nj COURSE, TEACHER_COURSE;

vhere COURSEID = "comp212"
attrs TEACHERID, TEACHERNM;

156G

<8>
English:

Which courses are taken by Russel?

SQL:

SELECT COURSEID,COURSENM

FROM COURSE,STUDENT _COURSE, STUDENT

WHERE COURSE.COURSEID = STUDENT_COURSE.COURSEID AND
STUDENT.STUDENTID = STUDENT_COURSE.STUDENTID AND
STUDENTNM = "Russel";

GQML:

1nj COURSE,
1nj STUDENT, STUDENT_COURSE;
where STUDENTNM = "Russel"
attrs COURSEID, COURSENM;

<P
English:

Which courses does Russel take?

SQL:

SELECT COURSEID,COURSENM

FROM COURSE,STUDENT _COURSE ,STUDENT

WHERE COURSE.COURSEID = STUDENT._COURSE.COURSEID AND
STUDENT.STUDENTID = STUDENT_COURSE.STUDENTID AND
STUDENTNM = "Russel";

GQML:

1nj COURSE,
Inj STUDENT, STUDENT_COURSE;
where STUDENTNM = "Russel"
attrs COURSEID, COURSENM;

<10>
English:

List all the student taking comp212.

SQL:

SELECT STUDENTID,STUDENTNM

FROM STUDENT, STUDENT _COURSE, COURSE

WHERE STUDENT.STUDENTID = STUDENT_COURSE.STUDENTID AND
COURSE.COURSEID = STUDENT_COURSE.COURSEID AND
COURSEID = "comp212";

GQML :

1nj STUDENT,
1nj COURSE, STUDENT_COURSE;
where COURSEID = "comp212"
attrs STUDENTID, STUDENTNM;

158

APPENDIX F

SYSTEM MODULE DESCRIPTIONS

File: main.c
Description: This file includes the major function of the system which controls the execution
of the natural language interface.

File: parl.c
Description: This file includes the following functions:

SENTENCE.READER: reads English sentences from the system terminal or a spec-
ified file.

SYNTACTIC.MARKER_PRODUCER: searches the lexicon and finds a lexicon entry
for each word in the input sentence.

INTEPRETATION.PRODUCER: produces all the possible lexical interpretations.

INTEPRETATION_FINDER: gets a lexical interpretation and passes it to the syn-
tactic analyzer.

PHRASE_.MARKER.PRODUCER: analyzes the lexical interpretation with the bottom-
up parsing strategy and produces phrase structures.

MODALITY.PRODUCER: constructs a modality for each verb phrase.

NOUN.PHRASE_COMBINER: deals with the conjunction problem.

File: par2.c
Description: This file includes the following functions:

MODALITY-FINDER: analyzes a verb phrase and produces the information required
for constructing the modality.

PARTICIPLE_.PHRASE_MODIFIER: modifies the present and past participle phrases
and converts them into relative clauses.

File: par3.c
Description: This file includes the following functions:

LEXICON_BUILDER: reads the lexicon definition from the file lexicon.txt and es-
tablishes the internal representation of the lexicon.

159

GRAMMER_CHECKER: analyzes the phrase structures with the top-down parsing
strategy and produces the syntactic representation of a sentence.

SYNTAX.CHECKER: performs the verification of the word syntactic definition be-
tween its word-string notation and bit-string notation.

SEMANTICS.CHECKER: performs the verification of the word semantic definition
between its word-string notation and bit-string notation.

File: pard.c
Description: This file includes the following function:

CASE_.FRAME_BUILDER: accepts the syntactic analytical result, performs the se-
mantic analysis, and produces the general meaning representation.

File: par5.c
Description: This file includes the following functions:

QUERY INTERPRETER: interprets the general meaning representation and pro-
duces the query meaning representation.

SQL.GENERATOR: accptes the query meaning representation and constructs SQL
query specification.

File: lexicon.txt
Description: This file includes all the lexicon definition used in the NLI system.

File: parser.h
Description: This file includes all the system data structure definition used in MIDBMS.

File: table.h
Description: This file includes system parameters.

File: syntax.h
Description: This file includes all the syntactic class definition used in MIDBMS.

File: semantics.h
Description: This file includes all the semantic class definition used in MIDBMS.

File: machine.h
Description: This file includes the grammar definition which is represented with an aug-
mented finite state transition network.

File: employee.h

160

Description: This file includes the database domain specific knowledge base which is about
employees.

File: university.h
Description: This file includes the database domain specific knowledge base which is about
university.

File: mapping.h
Description: This file is used to contain a database domain specific knowledge base which
is either the employee.h or university.h in the current system.

File: tran.c
Description: This file includes all the functions used in the GQML translator.

161

APPENDIX G

MIDBMS USER'S GUIDE

1) Compiling:

MIDBMS can be compiled either with Apollo C on Apollo system or with TCC on
IBM-PC personal computer system. The following MAKEFILE will help users to finish the
system compiling and linking and finally produce two executable files. On Apollo system,
they are PARSER and TRAN. On PC system, they are PARSER.EXE and TRAN.EXE.

makefile:

% usage:

make emp - to make parser for interpreting employee queries

* make univ - to make parser for interpreting university queries
¥ make - normal make

or make {module}

on unix, CC=c:. on pc CC=\lang\tc\tcc

CC=cc

CFLAGS=

TOUCH=touch
all: parser tran

emp: cpemp parser

univ: cpuniv parser
cpemp:

cp employee.h mapping.h
$(TOUCH) mapping.h
cpuniv:

cp universi.h mapping.h
$ (TOUCH) mapping.h

tran: tran.c

$(CC) -g -o tran tran.c

pari.o: parser.h syntax.h semantics.h machine.h pari.c

$(cC) -g -c parl.c

par2.o: parser.h syntax.h semantics.h machine.h par2.c

$(CC) -g -c par2.c

par3.o: parser.h syntax.h semantics.h machine.h table.h par3.c
$(cC) -g -c par3.c

par4.o: parser.h syntax.h semantics.h machine.h par4.c

$(CC) -g -c pard.c

169

par5.o: parser.h mapping.h par5.c

$(cC) -g -c par5.c

parser: parser.h syntax.h semantics.h machine.h main.c parl.o par2.o
par3.o par4.o par5.o

$(CC) -g -o parser main.c pari.o par2.o par3.o par4.o par5.o

2) Running;

On either Apollo system or PC system, users can give following commands to run
the system:

a) parser {returrd: The parser accepts English sentences and produces SQL query
specifications. The input and output are terminal.

b) tran {return): The tran accepts SQL query specifications and produces GQML
query specifications. The input and output are terminal.

¢) parser input.file output_file &return): The parser reads English sentences from a
specified input file and puts SQL query specification into specified output file.

d) tran input_file outputfile Feturn}: The tran reads SQL query specification from
a specified input file and puts GQML query specification into specified output file.

e) parser | tran returny: The parser accepts English sentences and produces SQL
query specifications. This result is passed to the tran through the “pipe”. The tran accepts
SQL and translates it into GQML. The GQML query specifications are given on terminal.

f) parser -q outputfile¢return): The parser accepts English sentences from the ter-
minal and produces SQL query specifications. This result is written into output._file.sql.
Then, parser will call tran which reads SQL from output_file.sql, translates SQL, and writes
GQML into output_file.gql. Then, HDDBMS is invoked to get the final database result.

g) parser -vq output_file{return): This command has the same effect with the com-
mand f) except that the intermediate results of the processing is printed out on terminal.

141

PYNCUR T

G a A

L324%

