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S ABSTRACT

»

_Network Reliability, Domination Theory
S - and Reliability Polynomial

-

Maroua Na¥m

A probabilistic network consists of a aet qf =

vertices and 1inks that fail with some known joint proba«

-
*

bility distfibution.

.
! *
-

S

Kssuming st;tistical.independence and common

.

probability of .operation, we consider three different types

1

. - - d
of network .operation:

1- The. all cerminelereliébility problem, the network is
operational'if all the vertices can communicate.
2~ The two- terminal reliability problem, the network 1is

operational if two specified nodes communicate.

3- The K-terminal reliability problem. the ne;work is

operational if K-specified nodes are connected.

”

These problems are, in general, NP-hard except for

1

some networks of special structure, where there exist linear

and colyﬁomial tipe dlgorithms,

'



In this thesis, we review general methods for

network reliability and we-investigate the different
properties of the domination that plays a key role ‘in .

network .reliability computational complexity. Also we

A e b eatanan

introduce the reliability polynomial and esiablish the

relation between its different coefficients. Finglly we

investigate some bounds on this polynomial. :

L3
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° CHAPTER I o
- 1." INTRODUCTION & HISTORICAL REVIEW
L) k‘ ‘ £

- 1.1 Introduction ~ . s
Analysis of network reliability,is important in
i . "\_ n
comppter, communication, power and various networks.
. ) -
Components of a particular network may be subject to rgandom

failuqe and the network may or may not continue to function

after some of its components have failed. We wish, as .’

efficiently as possible, to determine the probability that

.the nétyork is functional. i g,”

ey

o

The network considered is é&n undirected graph
G = (V, E). consisting®of a vertex set V = {(V1s V2, «eey ¥p)
and a,set’ of connecting edges E = {ej, €2, ..., ep) .

Vertices do not fail, but at an instant of interest, an edgb

ej has reliability pj = 1 - q4 %ﬂ&{penden; of the states of

théxothér edges. ¢ - e ; \

¢ 7 . ' Let K be a specified subset of V with at 1;ast two
‘vertates. The criterion -for success 1is thatnvertices in K
.must be connected., The probability 6f such an gvent,ﬂRk(G)f .
a is called the K-terminal reliability o; G. Ryg(G) is the '

qpantity to be computed. Speciad cases of this K-terminal |

AT T -
‘t‘}@fv‘: i -
'8
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N\ problem are those with IX] = 2 and |K| = n, cortesponding to

the. well known terminal -pair and all- terminal reliability

problems respectively.

Y

In this thesis, the first parﬁ of chapter 1 will

give a brief review of the central role played by domination !
* ] -

theory in network reliability computational complexity. Ve
will introdnge the reliabflity polynomial under its
different expressione, in order to prepare the reader for a.

‘more detailed analysis.

A list of basic definitions and notations is also

CEE

g ~included.

. In the second part of bﬁia‘chaﬁte{. a concise

’

D
historical background is presented,

i

The statement of the factoring theorem and the

N

complexity of reliability problems are mentioned at the
begining of this part. Then we proceed to introduce;_define,
and: explain the inclusion-exclusidn and the sum o{/disjoiﬁt

producfs. The concept of the domination of a graph is then

P 4 .

, introduced. Based on this concept, the edge factoring,

P

theorem is derived. The works of several researchers are

mentioned to outline the varidus ﬁeans of applications for

-

the edge factoring theorem. ‘ ) e
- . . .
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A sgort introduc;ién of the "migimum domi&ation"
is also given; and'ﬁe'proEeed to define.the'chrg;atig
polynoﬁial and introduce the parity‘which is a-new.ijfariaht
xof éraphﬁ. Finally we surve; the different expressions bf

the reliability polynomial. ' . « i

D ! '
v . “
" ,

’ 3

In chapter 2, section 2.1 considers-several

interesting properties of the domination for graphs. We will

cover graphs formed with one cycle only, graphs with ‘

t  positive domination multigraphs and chordal graphs. Section
2,2 wil] establistiNghe relation between dominatiorr and the
. chromg;ié polynomial and from this we derive some proper- ' N

v , EY

ties. B R ‘ : S

s

. . L '
- Chapter 3, section 3.1 presents the main new

.result oécthis theais which 1is the relatibnship that exists
between the different expfessioﬁs of the reliability
polyhomiﬁl. Section 3.2 provides us with the digferent

,ybounds on the reliability polynomial. ‘ ‘

"
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In this "thesis e are"éon‘c?er\nedt only with'

s

undirected graphé. Standard terminology «can be found in such

-

texts as Harary[1l], Swamy and Thulasiraman[2]. However, a

I

few definitions need to be introduced.

Connected graphy A graph in which there exists at

least one path between every pair
, ) _ of vertices. Otherwise, the ‘graph

‘.4is disconnected.

Iy ) * ° X ° . J‘
Simple g‘ raph: . A graph 'that' has neither self-

1.

“ loops nor parallel links. ’ §

1
4 LN

*
. . . , o

Complete graph: ° A simple' graph in which there

exists a link between every pair

’

o of vertices.

A subgraph containing all vertices

S‘ga‘fm,ing subgraph:

—

of the graph, C e
Tree: B " A connected graphfwithout cycles.
. ' pus ,
Spanning tree: A tree of a graph containing all
° > the vertices of the graph.
-~ A ' , Id o

/- ' -




bomination:

Probability of a graph:

P
. \

Overall reliability:

F e
\

A npnempty.subset of spénning
trees of”Ebgréph wvhose union
;ields the graph. The formation is
tgrmed odd, if the subset consists
of an’ odd number of trees and\even

'

otherwise,

[4
The number of odd formations minus
the number of even formations of a

PLl

graph.

- . ~

The probability that .all:-1links and

vertices in the graph are good.

The probability that there exists
2 ‘ :

at least one path. between every

"Vertex-pair of the éraph such that

al& links and verticgs in these

paths are good.

N
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The given probabilis:ic grhph of the ayatam/vhoao

overail reliabilitygis to be evaluated.

4

Subg\aph of G.

-

v

Set of

Number

+

. Ngmber

‘2 a
Number

[l

The ové?aii;reliability of G.

yy -

”

Domination of G.

.

.

vertices of G.

edges 05:5?'

ofaedges‘of G.

of edges of Gy,

~

0

.Bdge of G.

a co
The K;termiqal reliability.

L

-

4

A

<

o8

’

e

'C6qnectéd subgnabh of G.

.

o
‘

3

of vertices~of G.

o

—

g

.
b1

30
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‘1.2 Historical feviev

-

3

“In &ﬁtﬂofk reliability analysis, an important
Coa {
problem is to determine the probability that a apﬁcifigd

subset of vertices in an un&irectéd graph 1is connected. It
is well-known that, by using Mosgkovitz's factoring theo-

rem[3], the feliab;lity of a graph c&n‘be expreassed in

‘terms of the reliabilities .of a'graph.with one fewer vertex

! /

and another with one. fewer edge. /

1) » I &
o~ l ' ' - . N ‘ l&; ¢
' - Let ey = (u, v) be some edge of a graph G and let
F; denotes the event that ejy is connected and f} denote the
. v L ‘ .
complementary  event. . Sipce R(G) i1s just a probability, the

rules of ‘conditional probability can be applied to obtain

t

(1.1y R(G ) = p,R(G/F,) + a;R(G/E))

G/Fy, actually defines a new graph 1n whiéh u and v are known

H

This new 1nduced gfaph denoted by G/efx is
obtained by deleting ey and merllgg,n and v 1into a single
supervertex W = u U v. Similarly, G/Fj defines a new graph
denoted‘by G-ej. Figure (1.1) illustrates how theif two
grapha»are'induced. We c;n write.equﬁtion (1.1) as

(1.2) R(G) = p,R(G |ei) + (1 = py) R(G - hi).
L N

)
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That this ré}atiohship hplds was first sho;n in Moore and
Shannon[4] and it is'known'aa the factoriﬁg theorem for

network reliabillity.

I .
1
The computationa involved Iin the recursive

application of (1. 2) on each suﬁproblem can be represented
by a binary structure. Under e;haustive application of
(1.2), the*binary structure contains 2b.leaves (b the number

of edges) and. is equivalent to the enumeration of all

possible states of" G, Brown[5].\Mine[6]} M

-

_Wing and Demetriou[7] used (1.2) directly to

compute Ry (G), which is unwieldy even for small networkg:

Among the 2b leaves many correspond to failure states of the
o

given graph. By suitable selection of edges, one can avoid

generating failed states and reduce the number leaves in
the binary structure. These leaves will then, correspond to

trees whose reliability can be readily computed., Misra[8]

,used the factoring theorem and decomposed the given graph.

into series-parallel graphs for computing the source-to-

. terminal reliability. Subsequ@nfly Hansler{9] applied (1.2)

to the source~to-terminal problem. More recently, Bgll[lQ]

and Johnson[1ll] used the same technique to compute Rk(G)Aﬁof

—

|K| = n and showed that the number of leaves in the binary

wstruct;re iJ;»at_mést (n-1)! (n number of vertices of the

~

graphe G). (

rn

- N . « LAY, - “ TS S AR v
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Figure (1.2) is a well-known example of a computer
communication netw&rk. A fwo-terminél reliability problem

would be to compute the probability that” the distinguished

~node labeled UCSB can communicate with the éistinguished

-node labeled CMU via some set of arcs or edggsl Edges may he

subject to failure. Let us assume that the associated

\success events are independent given those probabilities. A

typical network reliability problem is to calculate
efficiently the probability .that a specific set of nodes can

communicate with each other at a given tinme.

v -

7
'

* Most network reliability problems are, in the

- worst case, NP-hard, Fhis is showed in Ball[lZ],ﬂand Provan

and Ball[1l3].

. Since, h;storically; the reliability literature
has not plaéed much emphésis on computational complexity,
and because these problems are, in general, NP-hard, many
different algorithms based- on minimal patﬁ—sets and/or cuts

3

sets have been suggested to solve these problems. (A minimal

_ cut set is a minimal set of elements whose failure implies

that some distinguished nodes cannot communicate). In
general, however, it is neither necessary nor desirable to

find the family of minimal paths 6r cut sets in order to

calculate network reliability.

N
A VN

Ry

. 3
"
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~ The reliabilfty of a graph G with distinguished-
nodea X, is the probability Ry (G) that alf elements of at

4 u‘ “‘:
least one minimal path-set are working, or one minus the

‘ proﬁability that’q11 elements of at least one minimal cut-
set have fei}ed.lNote that R (G) depends on:£he distin-
guibhed‘node set X & Q (V: set of all the nodes of G) a;
wvell as .on G, ﬁifferentAﬁethods exist to evaluate this
probability We have already seénhin the beginning of this

section the pivotal decomposition or the factoring. We can

an b
R

classify briefly the other evaluatiens in 2 methods. For
this purpose let Ay denote the event that all elements 1in
the ith path set aféhfunctional and K}. denote the comple-.

ment of.this event. Let p be the number of minimal path

sets,

1. The Inclusion - Exclusion Me;hod:

t .
a

p-1

\ ) J - P n
Re(6) = P (U, Ad= L § P‘(Ai) - 45 3?1 P[AjA§] +.0o #+ (1) P(AIAZ..AP)/

-

o ¢ //

/

v If there are p pathsets, then this caiculétion

involves 2P~ -1 .terms, ‘'In some cases, two different inter-
sections of Aj's will have the same p;obability. If one
intersection consists of an odd number of Ajy's’ "and another-
intersection consists of an even number of Ai}s; these terms

-will cancel. Satyanaray@na and ?rabhakar[lé] (for k=2) and

Vg PR T AT TRt
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Sa;xanarayana (for any k)[15] give algorithms that generate

?ﬂly the non-cancelling terms: In the reduced inclusion-
~ s
‘ /exclusion expression, there will be a coefficient for the

Al

term corresponding to the event Gp = AjA2 ... Ap. (This

e / event will in general, correspond to several different
. // i intersectipng)° The coefficient dy for this éerm is called
///I the signed domination.
/ i \ -
// - ’ The signed domination of o given graph G is.the
// ’ number of odd formations of G minus th; number of even

-

formationf of G (A formation of G is a non empty sub-set of
. .

k-spanning trees of G whose union yield the graph). The

absolute-value Dy(8) = |di(G)| of this coefficient is called
. the "domination". As wecshall see, this number is a measure
AN ) ) ‘

of the computational complexity of certain factoring

C
a}ggrithms'for undirected networks. The network correspond-
ing to figure (1.3) has 6 formations of which 4 are odd and
) - : :
2 are even so that di(G) = 2 in this case.
N . .
2. Sum of Disjoint Pro \cts:
» - ol
S ' ( ‘
: % A
4
Lo - ' . h ’
b
A . @
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Formations

(1, 3), (e, 4), (1, 2, 4), (e, 2, 3}, (e, 2, &4} (1, 2,/3) =+
'dg(G) = Odd Formations - even formations - o
dg(G) = & - 2= 2 S ' .
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For p path sets there are p terms, but the tinme

needed to generate each term.may be exponential in p. Most

methods based on Boolean techniques belong to this class.

:Such methods have been proposed by Abraham[16], Fratta and

Montanari[17] and Aggarwal et al.[18] among others.

'
After this brief survey of these two methods let

~ug focus on the factoring theorem and see one example.
p : ;

Figure (1.4) shows the binary computational tree resulting
from using the féctoring algorithm for the‘two-terminal pro~-
blem corresponding to the graph at the top of figure (1.4)

with distinguished nodes s and t, so that K = (s, t}. In the

]

1nitia1 step we pivot on edge e forming two subgraphs: G|e

corresponding to e working, and‘G-e, corresponding to e
. P
failed. Parallel and series probability reductions are now

-

possible.

<

A parallel probability reduction replaces two

edges, say 2 and 3 in Gle by'a single edge with associated

“probability P2 + p3‘- P2 p3. Likewise in G/e, this new edge

and edge 5 are in series. The two edges in series are then

replacéd by a single edge with associated reliability (pg +

"P3 — P2 p3f p5. Pivoting now proceeds on edge 4 resulting in

tvo adﬁitional subgraphs, each of which can be reduced to a
single edge by series and parallel probability reduction.
The "leaves" of the binary tree are the four subgraphs at

the bottom of the tree. : ) )

. *

‘\

P
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If each edge i has probability p of working. it is

possible to use the binary computational tree (see fig. 2.4)

to show that the syste;§§eliability in this case is:
- l/' 2
2,, . :
Ri(G) = p"(((((plp)p)lp)p)Up) + )

¥

P (1-p) (((pip)p) (p°1p)) +'B(1=p) ((pCpu))u(r?))p *.

+ 102 (G - o S
6 . 4.7 -8

5. . '
4+ 4p” - p7) e .

- (p° + P4 + p~ - 5p

7 8

+ (2p% - p7 - 4p® 4 ap? - 58

o (3pt - ap® - p6 4 3p7 - o8

4 7 8

+ (pq -2p + 2p5 - 3p6 +.3p° - p )

N\

4 8

= 203 4 4p* - 255 - 13p9 + Lip’ -

LI

where the operator g corresponds to calculating the

reliability of parallel edges 1.e.

r I - + -
s pi Py =Py * P "R P

. In figure (2.4), Pi =1~ py. The four graphs at

the bottom of the tree are/the leaves of the tree and each._
J

- has domination one since each 1is series-parallel reduciblef

(Chang[19]).

18

’
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'The domination of the top graph turns out to be

D(G) = 4 (the number of "leaves" at the bottom of the
ﬁ 3

o r
tree), and the tree has 2D(G) -1 = 7 nodes, so that the-

computational running time: is proportional to the domina-
tion. Satyanarayana and Chang[20] found that, in general,
the number of . leaves in the bipa}y computational tree us;ng
a factoring algorithm with series and parallel probability
reductions is at leagt equal to the domination. Using &
simple edge geléction strategy, they further showed that it
is possible to create a backtrack structure, tht has a

-
number of leaves exactly equal to the domination Dy (G) of G.

Therefore, this edge selection strategy is optimal for.

factoring algorithm{ using series parallel probability.

reductioné.

Although the factoring algorithm can, in prinj
ciple, solve 41l reliability problems, it is,'in the worst
case, an exponential time aléorithm. For veryllarge networks
;e need linear or polynomial tim; algorithms -in order to
calculate system reliability -4n "reasonable" computing time.
By introching additkgnal Probability réddctions. resear-
chers have found such algorithms for both'dimected and
undirected graphs of special-sfructu}e.

An undireqteﬂ graph G=(V,E) is said to be

basically series-parallel if the graph (without distin-
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guished nodes) can be reduced to a sinéle edge by series and

©
’

[N

parallel replacement A remlacement ‘as opposed tq a
probability reduction does not involve the probability

measure that may be associated with the graph.

I = ‘ s
¢ .

For exaﬁple, Figure (1.5) showa.ua“the*atépg

\ -
followed in a series-parallel reduction. The vertices s and

.
v

t are no longer distinguished{'édgéa-g and 1 are replaced by °

o
5~

a dotted line using a series replacement as are edgea 3 .and
N .

4, Finally, the remaining three: edges 1in parallel are,

¢ °

9 . , .
repitaced by a single edge., No probability calculations are

involved. The network in Figure (1.6), on the other hand, is

not basically series-parallel.

ﬂSatfah rayana - and Wood[15] pfb&id linear time

algorithms for y ?culating the k terminal re

l/'
undirected netwoﬁks that are basically serias-parallel. They

ability of

introduce the probability reduction calledgpg&ygon ~to-chain

reduction to accomplish this,

.

One would hope that addiog polygon~to-chain reduc-~

o

tions to the arsenal of reductions would aignificantly re~

duce the’ computational complexity of a faétoring slgorithnm.

Since this reduction can be bought for little more than the '

a

cost of,simple reductions alone, only two facts nmust .be

'establisheo in order to develop a good factoring’algorithm:

ES

- N N
< o . gl

i

'
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1. The, selectio} stratelz devised can be implemented

t

efficiently. ‘ ¢

. : . : a )
2. This stré;egy will produce fewer leaves than other

possible strategies. This work- has b;en done by Wo&d[21].'

using the general result on piniﬁal domination of

Chang[ZO]. R A " . -

_ Chang proved that fhégobtimél algorithm generates
A .
a backtrack structure with the number of leaves Equal to a

‘combinatorial invariant called the "minimum ‘domination™ of

G. , ’ l[

o
. ..V
i

o ‘ N ‘ _
.2 "The minimal domination M(G) of a graph G is

Vo

dgfined by: )

M(G) = minimum (K: K| =2) bk(G) .
Where K is a distinguished set of nodes of G. (Johnson
points out that M(G) is equivalent to a combihatorial
invariant on the graphic matroid of G called the "Csapo beta
invariant"). While the QOmlnation Dx(G) depends on both the -

graph G and the distinguished set of nodes K, M(G) obviously
depends only on G. oo

i & . &
L. *

*

Whereas Dy(G) = 1, if and only 1f, G is reducible

to a k-tree by series and parallel probabili;yfredgctiona.

4 } j
\ W ,
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- (Satyanaryang and Chang), ﬁ(G)b- i, if and only if, G iq
cgpsicqlly aetiee-paral}el (Wood). ‘

3 -

The graph at the top of figuré (1.4) has Di(G) = 4
where K = {g, t}, but M(G) = 1 since G is basically series-
pa;éllel. Using series and parallel ﬁfobability reductions
and the polygon-to-chain reduction in Table I[2], we can
compute Ry(G) iﬁ this case (figure (1.4)) without pivoting,
so éhatd? linear time aléorithm exists for this problem and,
in ‘fact,' for all such problems where G is basically series-
parallel. Figure (1.7) provides an example of a graph where '<\%
the domination is D(G) = 2(|E|‘2)/3, but M{G) = 1.

4

s 'Procesi-Ciampi[22] proved the minimum domination
theorem: ' ’ ' o ’

’ For undirected graph G - (v, E)
' ' M(G) = M(Gle) + M(G-e) ~
? Wood used’this result and other properties of minimum
\Tﬁvmination £6'§va1ua;é the computationalfqomplexity of
uﬁdirecte? nptwdrks relative to pivoting and polygon-to-

1 »

ehain reduction. '

P

Another figure of interest, is the chromatic
polyngmial of 'a given graph and tﬂe existing correspondence

oo with theﬂdopinatioﬁ theory. ' - L

b .
‘i Eq: -
o - e Lt -
R N DR
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’ If G = (V,E) is a graph, a coloring h of a graph
G = (V,E) is a mapping h : V. --> {h]. The integers 1, 2,
cesy are called colors. A colofing is proﬁer if no £wo
adjacent points of G arééassigned the same colo:r.‘lf h is
éufficiently large, G c;n,‘in\géneral. Se pfoperly colored
in many differeng ways. Birkhoff[éB] noticed that the number
of distinct proper coloring of a given gragp G Pay be
expressed elegantly as a polynomial in h, now well-known as
the chromatic polynomial of G and Jénoted by P(G, h).
Clearly, if Cy 1is tﬁb number of proper j-coloring of G'in
whi;h all j colors are uééd, then:
. n h
P(G, h) = X " (3) C~
yml 3

o
PY

The function P(G, h) is a polynomial of degree n °
that has integer cqefficients«thaﬁ alternate in sign, has
leading coefficient 1, and has Eonstant term zero. Also this

polynomial is uniquely determined by the following two

‘éoﬂditions. Let G = (Y.“E) be a graph.

? a
1. P (G,h) = h if G has no edges

2. If G-x and G/x qr;\the graphs obtained from

. graph G by deleting and'contracting. respectively, an edge‘x‘

of G then: u -

'
-
Iy .
. N '
'




« P (6, h) = P (G-x; h) - P (G/x; h)
condition 1 is the discrete graph condition while condi-

tion 2 is the pivot condition.

\_' Another invarianf of graphs has been introduced by
Khalil and Satyanarayana[24] to compute the reliability.

This invariant is called parity of a graph.

Let G be a graph and F; a subset of G containing
all subgrapha of G having exactly i edges of G, then the ith

parity of G: ' »
. . - P (G) = z dy(G4)
. Co DR T R = ]

Khalil ah% Satyanaryana proved the following theorem

Ay

L ' . (

P (G) = P (G - e) + P (GIe) - Pi‘j(G - e)

3

This result is a genaraiization of the factoring
theorem on dominaiioaj‘aad it givaa a recursive formula for
computing P4 (G).

. Khalil aaﬁ Satyanaryana gave us another éxpraaaion
o{ the reliability polynomial for a given graph G in terms
of the parity; if we assume that all edges of G'ha;e eqpal
probability, p, and the edge failures are statistically
independent, t;an\ "

(
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) b °1
R(G) => £ P (G) p
. . i=0 i

(b: number of edges of G)

As it has been mentioned in this chapter,
cﬁmput@ng the rel}ability of a given network is in moast
cases an N.P.,hardyiroblem. Fortunately‘we have some
inforhqtion on the coefficients of the reability polynomial.
So far we -have éeen'parity afid domination, 1et_us introduce

now, the other expressions of the reliability polynomial,

. - Colbourn[25] defined the following: let N; denote

the number of operational subgraphs with i edges¢ By
assuming that edges have the same probability p of opera-
tion, the reliability polynomial is then
Lob 1 b1 : h ;
R(G) = Z N p~ (1 -p)
A} i.o‘ i .
~

- The expression of R(G) in terms of cutsets is
givenuby: . “
b .

R(G) =1 - £ C (1~ pytpPt
e 1m0, 1

where Cj denote the number of 1i-edge. cutsets (leaving

b -4 operational edges} ’ .

i d b
o

ARE aeebod Toea a- L vl ot
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‘Another‘formulatibn of R(G), and mayb@‘the most.

r

common, is the one using complements of path seté. Let Fy

v

denote. the number of sets of i edges for which thé b - 1

‘e

remaining edées form a path set then

b o +
R(G) = £ F (1 - gt pb i
' ( - imp 1 ' \ .

\

We have in hand several expressions of the

reliability polynomial, however, the computation of the

different coefficients’ is in most cases N.P. complete; so

f " N :
instead of computing the‘geliability polynomial\\researchers

vere more interested in fiﬁ#ing bounds on this- polynomial.

' +
{
+
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CHAPTER 2
. ‘ _ \
2. DOMINATION THEORY -
) i 2.1 Some properties of the domination - . _‘ ~

We are concerned only with undiredted graphs,

To ensure simultaneous communication among all
\

vertices 'of a network, at least one path is necessary :
between every vertex-pair along ¥hich all 1inks and ve}ticea

8re good. It is Wfll-known that any spanning tree of the
given ﬁetwork contains exactly one path between every :
vertex-pair. Therefore, the.overall reliability of the give;

.- network G can be written as:

-

R(G) = T E P
RO =3B P,

T
{1}
where Ti is the union of the ith nonempty set of spanning

it , trees of G and Ey is either +1 or -1 depending“on wvhether
n ~the number of Ergés in T4 is either odd or even rgspeétive-
ly. The proof of this relation can be found in[26].

- Clearly, iﬁ'gi. is any connected spanning subgraph
of G, -

R(G) = 3 4(C) P, (G) o

FOREE

”
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vhere q(Ei) is the domination of the 1th connected spann-
_ | ing subgraph of G, .
. a : A )
Theorem:
| For any graph G, the d&hination i
’ -7 ‘ | d(G) - d(cle) - d(G-e) - |
: o The proof of this theorem can be found in[27].
' By means of the previous theorem, the Homin&tiono
of any graph can be expressed in terms of the dominationﬂqf
' a g{gphawith one fewer vert;x and another with one fewer
link., The theorem can be applied again to these graphs, and
80 on. Aq'example of th}s process is shown in figure (2.1).
Proposition 2.11@
For any g;aph contafn%mg'oni} Qne'single cycle, of .,
length q, d(G) = -(q-{). ) .
?
Theorem‘ ‘ : ‘
- - ' L 'For(any graph G:’thé sign of the domination d(G)
. o ra\given—bﬁ'E m (-1)b-n+l  yhere b and n are the number of

links and vertices of .G. (b 22;n > 2)

31
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Proof -
- : The pfoof is by 1nduct16n on b and n. -
\ _ .
n =2, .
A b= 2 .
( . 14
. , . \? . . . )
4(6) = -1 = (1Y% T e
| - ) )
: { &
n = 2\
" A
b= 35 4 - '
: .
| d(G) = +1 = (~1)3-2+1 o
. / Any connecteJ gf;ph on (n+l) vertices and b=n
; liEks\Q?icﬁ correspéndp‘to‘a tree, gsatisfies the theorem.
So let us take b > n such that the theo;em is
* 7 .
. valid for all graphs of'(n+1),ver£icea and b or fewer links.
i . .
> ~
Consider a graph G with (n+l) vertices and (b+{)'. .
, ~ ,
links. . .
d(G) = d(Gle) - d(G-e) R T :
- - ° * . ‘“ )
Since the theorem is true for all Glé and G-e
. ; : : : " :
a6y = (-1)°""*1 prgle) - ¢-1)P"" p(g-e). o 3
: ) v ) .
) : , X . - .
- = (1> pigle)-+ (-1)P"PH p(Gme)
. ) \ : . . 'ﬁ
S0 . i - . §
» LJSNy t ‘ - “ é

N g
2
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AD(Q]e) and D(G-e) are the absolute values .of d(hle) and

2

d(G-e) respectively

o> ‘ . N e
 SAUE d(G) = (-1)*™*Y (p(Gle).+ D(G-e)) o a
' n 5 | | o om ) Ee/
BN O “ace) = (-1 (D=1 g1y 4 BLGle))

F) L

The ihgorem is truévfor‘b: b+17 n; n+l it is true for aii
)

graphs. h"‘ _ e
. Corollary : ‘ .
o G has-a positive domination if b-n + 1 is even, ;
iFor the fgilow£ng§proposition. let us first state
thééquhneé facts: o
) o ‘1. The domination of a disconnected graph is zero. -
y 'i; © ** 2. The 'domination of 2 graph with self-loops is
‘ - zero. o .
) 3, The domination of any tree is equal Eo +1. .
N A N N
F4 . * £ H
o Proposition 2.1.2 ] L
T D(G) > 0 1£ G is a connected multigraph.
. . . . ¢
.The proof of this proposition is easy by dirc&t
use ‘of the definition of a multigraph, sand the previous
< * . .

4
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: . "facts (in a‘multigrapﬂ wé don't ha;émloopé, but more than
! : ° . 9. \' ,
one link can join two points). —
& s . b ke “ ) K ) )
Corolfarz - ‘
f If G is & multigraph and x is a multiple edge of ¢
R - then D(G) = D(G-x)
. '? j o .
"‘ A- a * o ! ’ ) Q’ -
. B . If x 1s a multiedge then D(&Ix);: 0 as D(G) > O

hY
(proposition 2.2)

'D(Gj = D(G-x) (domination- theorem)

@

‘The last two propositions of this chapter %ge{ the

i

- °  following definition:’ - - I ‘ t
\' L/‘J\ W ‘ ' . \ .

0

sDefinition

A graph G is cglied a thordal graph if every cycle

- 4 .. 1in €, 'of length strictly greater than 3, possesses a chord;
:i.e.. an edge joining two rnonconsecutive points of the

K C'YC].IE.

Proposition 2.1:3 IR . o

9

The domination D(G) of any connected planar

“ chordal graph G, with n>l, b edges and k blocks is given by )

+ v - \ ’ S -

N ° . pE) = 23(p-1)=b=2k gb-2(n-1)+k -

o
4

- p , .
' - - . Al °
e .
s . - P
. ' -, . o
1 .
N - . . .
. \ . P . o
. " . , . )
: P . . > 3 P .
b - N \ . 4 \ ) . ~ .
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. Proposition 2.1.4 - . - e
. Coet Let G: be any conpwtted p‘lahd.r-" graph having n
points, b edges and k blocks. If G is not chordal then B
- 1 ‘ 4 »
-1)-b- ~2(n- .o T
‘ D(G) > 23(:1 "1)_b 2k 3b (n ”“f o ,
The proof of these two propositions can be found
in[26]. . - ' .
Q ) - »
v N <
- . «
3 !‘
A Q‘ ~ * .
* »
v‘.(‘ i N i * ° . .
4 ) — ’
- . % \ B y J L . -
. - ’\ '.‘ f
. - - ‘ -4
g . . )
: "
: ) ‘ v
¥ N . R
i v . . 5
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\

2.2 Graph celouring problem and domination

H

[

The combinatorial problem of computing d(G} is
enalogous to the graph colouring problem.

A proper colouring of a graph is an assignment of
‘eolours to. the vertices of the graph in such a way that no
ﬁﬁo adjacent vertices have the same colour., For a fixed
positive integer h, ,the number of ‘proper colourings of a
'graph.G in h or fewer colours is denoted by P(G, h), which is

termed the chromatic polynomial of G¢
, b

Whitney[28] fprovided a topolegical interpreta-

tion for the coefficients of the chromatic .polynomial which
. is: ‘ .
A

P (G, h) = g'(-1)e(9) he(s)

where the summetion is over the set of spanning subgraphs S
of G, e(s) denotes- the—number of edges of S, and c(s)

)

denotes the number of connected components of S.

Whitney then observed that in most cases there are
many pairs of terms of the above summation that cancel each
‘other. For exampfe, if G is the triangle, then the contribu-

tions of G and G-x (x an edge of G) are :1h‘and h, respec-
' - f
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tively. Before stating the theorem that this observation led

’

to, let us state the definition of external and internal

activity.

«

2.2.1 Definition of external activity:

a

ySuppose G = (V, E) }a a graph and (<) is a strlct
linear order on E. An edgg x with end points u, v is said to
be bxtefnally active relative to a set X of edges of'G if
there is a path P in G between u and v, which usés only
edges from X —‘(x) and has tkg property that x <'y for all
edges’y in P. The number of edges which are externally
active relative to X is called the external activity of X in

G.

2.2.2 Definition of internal activity:
Y.

Let G, X, and < be as in the definition above. An

)

edge x € X is internally active in X 4if:
i) . x lies on no cycle of X; and _
ji) if y € E - X and y < x, then X - {x) contains a path

connecting end points of y.

&

The number of edges of'i which are interna{ly

active is called the intérnal fctivity of X.
- 3 .

(

> | o
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A

J

. theorem: ) , .

“

(

Theorem (Whitney) - | : /

A

Let G = (V E) be a graph with n points, let.< be
a-strict linear order on E, and let mJ(G) denote the number
of aﬁanning forests of G having j connected cﬁ?ponents and

external activity zero. Then

P(G, h) = f(- "3 we) nd
jul i *,

. Subsequently, Tutte[29] showed that the chromatic

ﬁblynomial can be expressed in terms of'cgrtain spanning

trees of G.

Theorem ﬂTutte}

Let G = (V E) be a connected graph with n points,
T

let ¢ be & strict 1inear qrder on E, and let tjo(G) denote-

the number of spanning trees of G with internal activity j.

and external activity 0 3Then.

n-1 ~ j
f tJO (G) (1 - h)

P(G, h) = (Sl)"'llwh 5

3

. . ¢ = . y '
,%oesch, Satyanarayana an(iSuffe1{26] proved the following

Al

39
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.nonempty subset K C V, and let < be a strict linear order on

e
val

2 ‘ 40

Let G = (V, E) a connected undirected graph with a

-

E. Then: Dk2d§ = txy (G, K)
(D (G) K-terminal domination ¢f G and Di(G) = ‘Sg‘sei where )
Sp: number. of odd formation
Se: number of even formations) -
t*o (G, K): Number of trees that satisfy the following;
1) they have no externally active edge,
2) if x is an internally active edge in a éiven*tree:T, then»
x is an edge of the unique K-tree contained i;'T. |
| e
An immediate consequence of this theorem is the
following corollary, related to the all terminal reliabili-=
ty. .. o

‘ P o ,
Corollary

For an undirected graph G = (V, E),
D G = t G »
(G) = 0( )

[
-

hence using this corollary and Tutte's theorem we obtain the

relation between the domination of a graph and its chromatjic
polynomial:

| [P(G, h))/ h] | h~ 0 | = D(G)
Satyanaryana and Tindell[30] inéroduced a polynomial P(G, K,

'h) 1n h; determined by graph G = (V, E); K C V. Like the

S}aséical chromatic polynomial P(G, h), this nev polynomial

‘

'y
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- | . o4

6‘)

£ s has inteéer coefficients that alternate in sign. Fuxthermare ' K

P(G.K.‘p) = P(G, h) 1f K 1is the entire point set of G. This

new polynomial has several interesting prop;rties. and in

v particuiar, Xt has been shown that

[P(G, K; h)/ h]-| huo = Dk(G)
. 4 b
Example 2,2.1
' . ¢ Let G be a ¢complete graph on n vertices. Then

a | D(6) = (n-1)1 s

. Proof | .
" b
Since every vertex of G is adjacent to ‘every other
Y 4 , .

/%ne. the numbers of colour-partition are

t
€ ~

> C(G) = C(G) = ... =C (G) = I
1 w2 n

_ hence (6,h) = h(h-1) (h-2) ... (h-n+l) -

r |p(c;h)/h|h-0| = |(h-1) (h-2) ... (h=n+1)]" )
Y, = (h-l)l
Tpus ~
) ] D -‘gn-l)t
. .. i . T~ X
~ . ~ S ) -
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2.2.3 Definition : .

oY
AR

PEE L PN 17N

The general graph G is quasi-separable if there is
a subset K of V(G) (i.e.: V(G): Set of vertices of G) such
that the vertex subgraph (K) is a gomplete graph and the
vertex graph (V(G)-K} is d{sconnected. G {E\separablg if X

is empty (in .which case G itself is disconnected) or if

'
i

|K| = 1. (in which case we say that the single. vertex of K is

a cut-vertex). A

'y X
[
. “ .

It follows from gthis definition ‘thet in quasi-
separable graph we have V(G) = V(Gy;) U V(Ggp) wherd the .
vertex graph (V(Gy) n V(G3)) is complete, and there are no
edges in G joining V] - (VinV3) to Vy - (VI“VZ)"

The smallest graph which is quasi-separable byt
not separébfé is shownfin figure (2.2). The (flevant sets
are V] = (1,2,4}); Vo = (2,3,4}.

Theorem
If the graph G is quasi-separable in graphs Gj and
G2, then l o ‘ , '
Q - }
P(G,h) = PGy, h) * P(Gy, B)
P(GinGy, h)
¥
:
- ;
: A
= ‘ ‘ :
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Proof |
* If GynGy = @ -
we assume P(GlnGz..g) = 1
o
In that case G is digconnecgéd. 80 we can.colour
the vertices of Gy and G2 independehgiy. it follows tliat

P(G, h) = P(Gy, h) * P(Gy, h)

* Supposé G1nG2 19‘ a' complete graph Keyw  t21.
(K vertices\and t colours) since G contains this complete
graph, G has no vertex- colouring with fewer than t colours.
For any hatural numbers hDt and h(t) = h(h-1) ... (h t+l),
P(G,h)/h(t) is the number of ways of extending a given
vertex-colouring of GynGj to the whoi; of G, using at most h

colours.

)

This remark is also valid for both G} and G3.

°

t

‘As there are no edges in G joining V1 (VinV3) to
Vo- (Vlnvz) the extensions of 8 vertex-colouring of G3nGy to

G and Gy are indepefident. Hence

*’P(G'h)/h(t) -. P(Gl'h)/h(t) * P(Gzrh)/h(z)

P(G,h) = P(G1,h) * P(Gp,h)
)
(t)

b}

>

= o0
ko Qe . - et e
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- ~ - P(G,h) = P(Cy,h) * chngl : .
‘ . i PzG nG ,h , - f
-~ : 1772 X
v ) '
Proposition 2,2.1 ' ' <
Let G be quasi-separable \n two subgraphs Gj, Gz, J

o and let s be the number of vertices of the complete graph [
Gi1 n G2 then:

D(G) = D(Gi)*D(Gp)

. s~-1)!

Proof ‘ - s

The proof of this proposition is a straight

i
. - -
&

appligagion of the previous theorem and example 2.1

|P(G,h)/h|he0| = |P(G1,h)/h|h=0] * |P(Gg,h)/h|h=0]
‘ }P G, nG,,h)/h[h=0 .
[} ' .

e Mo e
. - R . !

~ - 4
|

-

Proposition 2.2.1 is useful in hand calculat&on of
- the domination of small graphs. For example, the eomination

of the gréph in (fig. (2.2)). ' r

D(G) = D(G))*D(Gg) = 2 * 2 = &4 '
| (2 - D1 1 '
. ¢ r ) :s

LY

This follows from proposition 2.2.1.

pee. O
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) Proposition 2.2.2 .
Sugyose that G is a gonnectedﬁgraph*having m blocks
“ Gl [ ] Gz’ LI I A ] Gm.’ .Then D(G) - D(Gl) * D’(Gz) * L2 B ] * D(dm).
. The proof of this proposition follows directly
- from proposition 2.2.1. _—
4 S %
, /
i v
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CHAPTER 3

/

3, RELIABILITY POLYNOMIAL = . .

3.1 Relation between the coefficient of R(G)

In the historical review we have seen the

reliability polynomial of a given graph G in its many

disguises. . . (“

\
D

8

Let us egtablish the relationship between the

different coefficients of this polynomial.

E

D : . .
. If Ny is the number of operational subgraph with i edge
then ' . ‘ ’ *
’ - 1 b-1
- . © R(G)'= T N p (1 - p) ) 2
T : ’ . 1i=0 i . N o
; e . Let Fy denote the number of sets with i edges for which L

the b - 1 remaining edges form a pathset (i.e. a tree)

LY

b t

R(G) = ‘£ F, (1 - ppt pbt »

i=0. 1 ' :

(‘ F . L] N ‘{

. i b-i : L

N \
) 4 '

- . i ~ 'Y E,:;

-
.
a

Tt N

o~
/
o
%ﬁ{;};gﬁ:?}n*r‘rf

f
Y
o
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e, 1 | , ) éa
. Let C4 denote the number of i-edge cutsets (leaving b-i
_operational edﬁes) ® ) o :
C N = (b
b-1 - 4 )
. Let Py .be the ith parity of G
: ~ . b ,
(3.1.1) ° . RG) = T P p=
” - im0 1
'I3.i.1 Proposition - - : - o
- kg F
- P = F (1) (3-1) ! -
" Proof ,
b e - .- -
R(G) = £ F (1 -p)t pb? )
@ iwD i ) !

-

Two polynomial in p are equal if and only if their .

i coefficients are equal. Thus by comparing coefficients of

A}
"4 I 1 b4
TP . and IF 1-
FR P PE (1-p) {:
we have
. T b . “ R
i~k e
" b-k i.k ‘S,(. . ) i-k o . 1 S
- - ) « L, \‘
. . ot T



"."41f we uge the fact that .

sinilarly by comparing the coefficients of

‘o

b : .
IN 1>i(l-p)b 1 ~
1i=0 1

with the coefficients of (3.1.1) we obtain
k e , &
i=0__ Co - i

’

L]

TN =(b) -¢
i (i)‘ b-1i ‘ T
we have
* ‘
- ok 'h’k-iﬁ‘{‘f gy - Coy e
(3.1.3) " B =3 (DTG4 (b -cp T
N k i-o . 4 L ,b-—i b
- "The following example is a gobh iiidstnation;of
the previous relations. -~ Y, - S
A R v

ﬂIn—order to compute the overall reliéﬁi Ipin

-polyhomial of fig. 3.1 we need .to find the differént’

pathsets. In order ta establish communication between a

»

vertices, the spanning trees must have at least 3 edges. The

set of pathsets is given: by: ’ e . B

(3..2) P =3 0%t G- N . \ :

.
A
g

- 2
. .
: -
i ‘:'“fu’)' ‘l” . & . .: -
s, CIR1] LE > - o
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-

{sbg; abf, adf, bfd; acf, bcd, acd, bcf, abed, Abcf. acdf,

- y

bcdf, abdf, abcdf} . - . =

| . ‘ | . L .
.(domination of digconnected graph is zero, fact f}

-

P3 - 1 % 1 +141+1+14+ 1‘+"1 = 8

Pa - - (2 4+ 2.4 2 + 2 4 3) = =11 . : Y
*w * ‘:"-‘ ) ,\V ". T i
P =54 , “:1 2 *
5 T - !

> L ) .‘S-i
R(G)Y = 2 N 1-
¢ R(G) 1p1( P)

e,

=

10

-«

R(G) = i‘p5‘ - lf p4 +°8 p3f

RN
R

e

B

1

't

A
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' / 1-0 , 4 : \
Pg = 2 (-1) (120) F; = F4 - Fl + Fy = 5 ] .

2 <
2 (-t A F, = Fl -2 F,m -11
fal | o ;

4

C4-2 ' ‘
,//éa z 12 (44, L) B - F2 8 o

\! | : . . ,&“

. We also obtein the same results using (3.1,2) and
. . v ‘ ",'

(3.1.3). | : ' . ‘
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3.2 Eo;ndg on R(G) .

hY
~

Lethi denote the number of_minimum'cardinality,

pathéet. we have

N = F = 0 for 1 ¢ m.

1 - p-t ,

Let C. denote the number of minimum cardinality

cutset, hence we find C;y = 0'for i < c, or equivalently

’
[}

TN =Pyl forice
Yo - b-i \~

The simple bounds
\

§

Kel 'mans[31] noticed that when p is close to zero

f v

R(G) ~ N . p“"1 ¢l - P)b-n+1
. =

N

i
‘\'

and when p is close to 1

R(G) - 1 - C_ p?7¢ (1 - p©

N "t - M cR(e) <1 - pP™C (1 - p

AN s Tt EECC G T Sl b Tl Rl AR s v
N R P S A0 S W ot S b L ?:r'.‘ i;f(.:f,.:
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We note that every i-edge subgraph is either a pathset or a
cutset, thus

b ' b

C - - N, 80 we have OCN :C
, by = DN < < ()

~

The following bounds were first stated by

Jacobs[32] and improved by van Slyke and Frank[33],

’

, '11. b N '
RGN . p" T a-pP ™ pCaps oz (B pt bt
n-1 ¢ bec imb-c+l

,

. b
S R(G) < N " - P Ly (b et - bt
. . . imn :

v

These bounds are very weak, but they give a good

ot
estimate when p is-close to zero or one.

.’ b

The Bauer, Boesch, Suffel and Tindel bounds (BBST)
Let us first state Sperner's theorem. Let Fy be
the number of complements of pathBets b - 1; then Sper-

ner[BOj showed that: . ’
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. _ ] ,
Bauer, Boesch, Suffel and Tindel interpreted this result.as
follows: The fractipon of operational subgraphs with 1 edges
over all subgraphs with i edges is- nondecreasing as i
< ‘ v
increases. They used Sperner's theorem to improve the simple

_bounds,

Assuming that m, ¢, FH;m aﬁd F. are available, we

obtain the BBST bounds: .o

c-1

R(G>> z (1) " 1-pyt & Fcpb'c(l p)° + 2 c+1Fb—m 4_15 p*11-pyt
tm0"
b—m
c—l b~-m-1
R(G) ¢ izom P> i(1 pis zr @ > Ha-p)? +Fb pP(1-p) ™

——

1mc < (D)

e~

_ These bounds, have been improved by the Kruskal-

Katona bounds[30].

.
PR N SN

.
e «
Be v to o
A S R WL T IR



(1.

[2].

[3].

[4].

[5].

[6].

(71.

[8].

[9l.

[10].
[111.
[12]).

[13]:

36

REFERENCES

At}

F. Harary. "Graph Theory". Addisson Wesley (1972),

M.N.S., Swamy, K. Thulasiraman, "Graphs, Networks and
Algorithms". Wiley-Interscience (1981).

F. Moskowitz, The analysis of redyndancy networks, AIEE
Transaction on communication and Electronic 39 (1958)
627-632.

Moore, E.F. and C.E. Shannon "Reliability circuit using

less reliable relays", J. of the Franklin Inst. 262
(1956), p. 191-208, 281-297, .

’D.B. Brown, 4 compﬁterized algorithms for determining

the reliability of redudant configurations. IEEE Trans-
Reliability R-20 (1971) 121-124, o

H. Mine, Reliability of physical systems IEEE Trans—
Circuit theory® CT-6 (1959) 138-151, :

0. Wing and P. Demetriou Analysis of probabilistic
network. IEEE trans-commun. technology COM-12 (1964)
34-40, .

K.B. Misra. An Alogorithm for -the reliability evalua-
tion of redundant networks. IEEE, Trans-Reliability R~
19 (1970) 146-151. '

E. Hansler. A fast algorithm to calculate the rel®abi-

lity of a.communjication networks IEEE Tranc-Commun,
COM-20 (1972) 637- 40.

M., Ball. Computing network reliability operations
Res.27 (1979) 823-838. .

R. Johnson, Network reliability and pprmutafion
partitioning. Working paper, UC, Berkley 1980,

Ball, M.0. . 1980, Complexity of Network Reliabiiity
computations Networrs 10; 153-165. ’

Provan, J.S. and M., Ball, 1981 The complexity of
counting cuts and of computing the probability that a
graph is connected, working paper MS/S 81-002,
University of Maryland

% cTT e, ,,;ﬁW;@ff;)m’«z;\ww{w::‘;s_'wa.»(f‘&""i(\ “?Pf:ﬂ,‘gﬂ."- :,‘F"?fﬁ”‘!‘"'. ‘fwwg%
. S,



- i ' 8?37

getianareyana .A. and A, Prabhakar. 1978, New Topolo-

114].
gical Formula and Rapid algorithm. for Reliabiljity
Analysis of complex networks. IEEE Trans-Reliabil R-27,
pg¢ 82-100 (1978) ) i .

(15]. Satyanarayana and R.K. Wood. 1982. Polygon-to chain

- Reductions and Network Reliability ORC 82-4, op. Bes.‘
Center. ucC, Berkeley.

‘{16]. Abraham, J.A. 1979. An improved Algorithms for network
reliability, IEEE Trans-Reliability, R-28, 58-61
(1979).

[17]. Fratta L. and U.G. Montdnari. 1973, A Boolean Algebra
Method for computing the Terminal Reliability in a
communication network. IEEE Trans.Circuit theor. CT-20,
203-211. ' ’

[18]. -Aggarwal, K.K., B., Misra and J. Gupta. 1975. A fast
algorithm for reliability evaluation. IEEE Trans-

- Reliability R-24, 83-85, :

[19]. Chang, M.K., 1981, A Graph Theoretic Appraisal of the
Complexity of Network Reliability Algorithms. Ph.D.
Thesis, Operations Research Center, UC Berkeley.

[20]. Satyenaraya;a, A. and M.K. Chang, 1983. Network
Reliability and the Factoring Theorem; Networks 13,
107-120. '

[21]. Wood, R.K. Polygon-to-chain Reductions and Extensions
for Reliability Evaeluation of undirected Network. Ph.D.
Thesis, operations Research Center, UC Berkeley.

[22). A. Satyanarayana, R. Procesi - Ciampi, R., On some~a
cyclic orientations of a grpah, ORC 81-11, operations
Research Center, University of California Berkeley,
1981, ¢

[23]. G.D. Birkhoff.~A determinant formula for the number of
ways of coloring a map. Ann, of Math. 14 (1912) 42-46.

[24]. A. Satyanaryana and Z. KhalilOn an invariant of graphs
and the reliability polynomial. Siam, J. Alg. Disc.
Meth. Vol. 7, no 3, July 1986. - .

[25]. C.J. Colbourn. The reliability polynomial. Computer

Communication Network group Dep. Comp. Sc. University
of Waterloo, Waterloo, Ontario (1986). :

1.3

Nt .
e Pet g B el ®



R d M

[26].

“[27].
[28].

[297.

[30].

o 311,

§32].

[33].

e xR S
AT ;
mt oy ‘

58

Boesch, Satyanarayana, Suffel, Stevens. Least reliable
networks dnd the reliability domination. Ins. of Tech.
Hoboken, NJ 07030, '

A. Satyananayané, Multi-terminal Network reliability
ORC 80-6, Mgrcvh 1980. -

H. Whitney. A logical expansion in Mathematics Bull.-
Amer. Math. Soc. 38 (1932) 572-576. +

L
W.T. Tutte. A contribution to the theory of chromatic
polynomials, Canad J. Math 6 (1954) 80-91,

A. Satyanarayana and R, Tindell, Chromatic polynomial
and network reliability, Technical Report (1986),
Department of Electrical Engineering™and Computer
Science, Stevens Institute of Technology, Hoboken New Je\raey .

A. K. Kel'mans. "Some problems of network reliability
analysis" Automation and remote control 26 (1965) 564~
573.

I.M. Jacobs "Connectivity in problematic graphs”
Technical Report.  356; Electronics Research Laboratory, °
MIT, 1959, )

R.M. Van Slyke and H. Frank. "Network reliability
analysis I". Network 1 (1972) 279-290,

L A KT s A A £+
'3\ - Es
. - SR

"



