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ABSTRACT

Network Synthesis of Complex Impedance and Complex Reactance Functions. -

Adel M. K. Hashem

Concordia University, 1993

Oune of the main problems in system stability analysis address the location of
the roots of polynomials with complex coefficients. In this thesis J-fraction expansion
is used to test the stability of any complex polynomial.

An extension of the generalized Routh array and the generalized Hurwitz de-
terminant for a polynomial with real coefficients to include a polynomial with com-
plex coeflicients is illustrated. Applications of these methods for the stability of
multivariable polynomials with real coefficients are illustrated.

The importauce of synthesis procedures with real components is well known
in network theory. This rescarch addresses an extension to the present methods of
cirenit theory to include a new type of element, namely, a pure imaginary resistor
(y ). A complex impedance Z(s) is synthesized in the s-plane by using four kinds
of elements; real resistors (R), imaginary resistors (j R), real inductors (L), and real
capacitors (("). Also a complex reactance X (s) is synthesized by using three kinds
of elements (R, L, () or by using two kinds of elements (R, L) or (R, C).

We extend the whole idea of network synthesis of X(s) in a continuous sys-
tem (s-domain) to synthesise a discrete complex reactance function X(z) in discrete
system (z-domain). Discrete complex reactance function could be implemented or
syvnthesized directly by the algebraic equation obtained from X (z). Algebraic equa-

tion can be implemented by computer program, digital circuitry, or programmable
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integrated circuits.  Algebraic equation is one of the many possible realizations
of X(z). Other realizations include partial fraction expansion realization (paral
lel realization). cascade realization. J-fraction expansion, or S-fraction expansion
realization.

The implementation of the X(z) function can be done using, delay clements
which are equivalent to inductors, capacitors or imaginary resistors (energy storape
elements), similar to that used with a complex reactance function N(s).

After synthesising Z(s), X(s). and X(z) in continnons and discrete systems
respectively. it is logical to extend the above procedures to synthesise complex
impedance matrices of two-port networks. We derive the complex impedance m--
trix [Z(s)] of a two-port network from a stable polynomial with complex coellicients
and its alternant polynomial. A complex reactance matrix of a two-port network
[X (s)] is constructed from the quasi-real and quasi-imaginary parts of a complex
polynomial P(s). These matrices are synthesized by using the J-fraction, the S
fraction, and the partial fraction expansions. A complex impedance matrix [Z ()] 1s
synthesised by using four types of elements (R, j R, L, ("). Also, a complex reactance
matrix [X ()] is synthesized by using three types of clements (j I, 1, (') or by using

two types of elements (jR, L) or (j R, ().
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Chapter 1

INTRODUCTION

What is network synthesis? A generally accepted definition of network analysis and

synthesis, includes three key words.
e Excitation
e Network

e Response

Excitation Response

Figure 1.1: The objects of our concern

As depicted in Figure 1.1, network analysis is concerned with determining the
response, given the excitation and the network. In network synthesis, the problem
is to design the network. given the excitation and the desired response. Since the

transfer function of any system or network is completely described by input and




output signals of that system, then a mathematical synthesis of this function leads

to a network synthesis.

LY ‘Mat.ivétion

The methods for testing the stability of a polynomial with real cocflicients are well
known. A multivariable polynomial with real coefficients can be reduced to one
variable polynomial with complex coefficients. To test the stability of a multivariable
polynomial we can therefore test the stability of a complex polynomial with one
variable which is the first motivation for studying complex polynomials.

To test stability of complex polynomials we have to extend the Routh array
and the Hurwitz determinant of real polynomials to include complex polynomials as
well. This extension will be more general for testing the stability of any polynomial
with real or complex coefficients. We can prove that these methods of testing the
stability of a real polynomial are a special case of that extension.

The second motivation behind our interest in studying the stability of complex
polynomials is that it will open a window in circuit theory to allow us to construet
complex rational functions. Synthesis of these functions will enable us to include a
new type of element, namely a pure imaginary resistor (j Rt).

The interpretation of this imaginary resistance is understood by studying har-
monic states with complex amplitudes. Superconductor materials (i.¢ zero-loss
material ), which are represented by imaginary resistances, have found many prac-
tical applications in microwave, millimeter-wave devices and circuits {1, 2}. Barely
five years after the discovery of high-temperature superconductors, rescarchers sue-
ceeded in developing a variety of useful circuits and devices using thin film technology
based on new materials. There have been many experimental research atteinpts to

obtain a superconductor material with high 7%, near room temperatures, which can

2



represent (3 1),

The first motivation behind our interest in imaginary resistances is that they
will enable us to study such complex networks as free mathematical creations. In
addition, the theory of complex networks is of practical interest in modulation prob-

lems, and this is a second motivation for studying the imaginary resistances.

1.2 Ouatline of ’I‘he Tliesié

This thesis is concerned with network synthesis of complex rational functions, which
leads to a study of the stability of the complex polynomial denominators of these
funetions.

The thesis is organized as follows: In Chapter 2, we present different methods
of studying the stability conditions of any polynomial P(s) with complex coefficients.
(‘hapter 3 contains a synthesis of certain complex functions e.g complex impedance
Z(s) or complex reactance X(s) functions in the s-plane. Chapter 4 is mainly
concerned with transferring the whole idea of network synthesis from the s-domain
to the z-domain. Chapter 5 addresses an extension of network synthesis of Chapter
3 to include two-port networks. Finally Chapter 6 gives some concluding remarks
concerning the research described in this thesis and suggestions for future work.

In the remainder of this chapter we outline specific contents of each chapter.

1 2 1 Chapi:er 2 Stablhty condmons for a aompiex poly-
nomzal and xts apphaatmns

N
.

NS

N .

One of the main problems in system stability analysis is the location of the roots

of polynomials. This chapter introduces the problem of the stability of complex
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polynomials, which implies the stability of complex rational functions for complex
networks.

Three methods are used to derive the necessary and suflicient conditions for the
stability of a given complex polynomial. In the first one, a powerful mathematical
method referred to as the J-fraction [6] expansion is explored. In the second method
a generalized Routh array of a complex polynomial is derived using the division
process and two cross multiplying processes. In the third method, the generalized
Hurwitz determinant and the modified generalized Hurwitz determinant of a com-
plex polynomial are derived. The second and third methods for testing the stability
of complex polynomials are the first contribution of the thesis. The relationship
among the coefficients in the J-fraction expansion, the terms in the first column in
the generalized Routh array and the successive principal minor determinants in the
modified generalized Hurwitz determinant are found.

One of the most important aspects of studying the stability of a complex

polynomial P(s) is its application to the stability of multidimensional systems.

1.2.2 Chapter 3: Synthesis of complex impédance and com-

plex reactance functions in the s-plane

The importance of synthesis procedures with real components is well known in net-
work theory. Chapter 3 addresses an extension of the present methods of circuit
theory to include a new type of element, namely a pure imaginary resistor (7 12). Ini-
tially, this chapter deals with finding a network realization of a complex impedance
or admittance and a complex reactance or susceptance in the form of a rational

function of the two polynomials with complex coefficients. The method of J-fraction




expansion has opened a new research area in circuit theory for the synthesis of com-
plex functions. These functions are rational and have non-negative real parts in the
closed right-half of the frequency s-plane.

A complex impedance is synthesized by using four kinds of elements; a real
resistor (%), imaginary resistors (jR), real inductors (L) and real capacitors (C).
Complex reactance is synthesized either by using three kinds of elements (JR,L,C)
or by using two kinds of elements (jR, L or jR,C). The relationship between a
complex impedance Z(s) and its associated complex reactance X (s) is also derived

in this chapter. This is the second contribution of the thesis.

1.2.3 Chapter 4: Synthesis of a complex reactance func-

tion X {z) in the z-plane

In this chapter, we extend the ideas of Chapter 3 ( in s-domain ) to the z-domain
synthesis and this is the third contribution of the thesis. A complex reactance func-
tion X(s) is analogue of a discrete complex reactance function X(z). A mathematical
transformation method is used to transfer an analog complex reactance X(s) from
the s-plane to a complex reactance function X(z) in the z-plane. X(z) can be ob-
tained from any complex polynomial which has all roots inside the unit circle in the
z-plane. Discrete complex reactance function can be implemented or synthesized
by the directly obtained algebraic equation from X(z). The algebraic equations
can be implemented by computer program, digital circuitry, or programmable inte-
grated circuits. Direct evaluation of algebraic equations is one of the many possible
realizations of the discrete complex reactance function.

The purpose of this chapter is to provide a realization of a discrete complex




reactance function X(z), e.g algebraic realization, partial fraction expansion real-
ization (parallel realization), cascade realization, J-fraction expansion realization.
continued fraction expansion realization, ... etc. The implementation of a discrete
complex reactance function can be achieved by using delay elements which are cquiv-
alent to inductors, capacitors or imaginary resistors (energy storage clements) in an

analog complex reactance function X(s).

1,24  Chapter 5: Synthesis of complex reactance two-port

networks in the s~plane

Chapter 5 addresses extensions of the complex reactance function of Chapter 3 to the
two-port networks in the s-domain and this is the fourth contribution of the thesis.
The extensions are related to the construction and synthesis of a complex impedance
matrix [Z(s)] or a complex reactance matrix [X(s)] of two-port networks {rom any
stable complex polynomial. Realizability conditions for complex impedanece and
complex reactance two-port parameters are given. A complex impedance two-port
matrix is synthesized by using four kinds of elements (R, jR, L,(’). Complex reac-
tance matrix is synthesized by either three kinds of elements (12, L, (‘) or by using,

two kinds of elements (jR, L or jR, ().

125 Chapter 6: Conclusions and future work A PARY
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Network synthesis presented in this thesis is summarized and discussed in this chap-

ter. Suggestions for future work in this area are also made in this chapter,
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Chapter 2

STABILITY CONDITIONS FOR
A COMPLEX POLYNOMIAL
AND ITS APPLICATIONS

2.1 Ixitraduction

One of the main problems in system analysis is the location of the roots of polyno-
mials in the complex s-plane. A mathematical method referred to as the J-fraction
15 explored in this chapter to find the necessary and sufficient conditions for the
stability of a polynomial with complex coefficients. Some theorems are presented
to illustrate the stability conditions. Also three criteria are found to determine the
number of roots that lie in the left half and the right half of the complex s-plane,
respectively. A generalized Routh array for a complex polynomial is considered.
Two methods are used to construct that array. The first method involves a division
process, and the second method involves two cross multiplying processes. The gen-
eralized Hurwitz determinant and the modified generalized Hurwitz determinant for

the stability of a complex polynomial are derived. Relationships between coefficients



in the J-fraction expansion, the terms in the first column of the generalized Routh
array, and the successive odd principal minor determinants in the modified general-
ized Hurwitz determinant are established. The analysis is supported by numerical

examples.

"2."2, .I~Fl.'action' EXpaﬁsion'

Let P(s) be a polynomial of degree n with complex cocflicients,

P(s) = 8"+ (a1 4+ 7b)s" 7 4 (a2 + j02)s" 4 oo+ (@uy + Jbucy)s + (an + jba) (21)

The main problem considered in this chapter is to determine the necessary and
sufficient condition for the polynomial given by equation (2.1) to be stable, namely
condition when all the roots lie in the open left half of the complex s-plane, In (2.1)
the condition ¢; > 0 is necessary but obviously not sufficient for stability. 'l'o
establish the sufficients condition for /() to be stable, we derive some theorems.
From P(s) we seek another polynomial Q(s) [6] of degree n - 1 such that
properties of P(s) could be determined from the J-fraction expansion of the quotient,
Q(s)/P(s). There is one choice for Q(s) which is particularly convenient, called the

alternant of P(s). The polynomial Q(s) has the following form,
Q(Q) = (l]Sn—l + jbzsn-') + (l38"_3 + jb“sn—d + (ISSn-—.’) + jl);;.‘:"_” 4. (2.2)

The quotient Q(s)/P(s) has in gencral a J-fraction expansion of the form [6, 7, 8],

Qls) _ 1
P(s)  Fs+1+E + —

Fps+Eqx+
2 &) F3'+E3+ Ty )| T
Y T Bt

(2.3)

‘n e “n

called the test-fraction of P(s)



Theorem 2.1 [6] Let P(s) in equation (2.1) be a polynomial of degree n > 0 with
complez cotfficients. Let Qfs) in equation (2.2) be the alternant of P(s}. All the
roots of P(s) have negative real parts if and only if, P(s) has a test-fraction of the
form (2.8) and oll Fy, Fy, Fs, ..., Fy are real and positive and Ey, B3, Bs, ..., E, are

purely imaginary or zero,

As an illustration of Theorem 2.1, consider the following example:
Example 2.1 Given a polynomial P(s) with compler coe fficients

P(s) = s+ (5 — j5)s* + (0~ j19.75)s* 4 (—18.375 — j17.875)s — (13.125 — j0.625)

(2.4)
the alternant polynomial of P(s) can be written as
Q(s) = 5s® ~ j19.75s% ~ 18.375s + j0.625 (2.5)
then the J-fraction expansion of Q(s)/P(s) is obtained as follows:
Ol) _ ! (2.6)

P(s) — 02s + 1 —j0.21 + ! ;

0.63925-30.7387+ :

7a— R S
2527¢=31 6615+ T yEr T EATE

This is the test-fraction of the polynomial P(s), and all the coefficients of s and the
constant terms in (2.6) are positive real and purely imaginary, respectively. This
means that the polynomial P(s) with complex coefficients is stable, and all the
roots lic in the left half of the complex s-plane. However, they need not appear in

conjugate pairs, as shown in Figure 2.1. The roots are given by (2.7).

No==24j050 A =—154j1 dg=—l14j2, A =—05+51.5 (27)

For a stable polynomial with real coefficients p(s), all the roots lie in the left

half of the complex s-plane. and they occur in conjugate pairs.
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Figure 2.1: Roots of stable P(s)

) 2.2.1 _: Determination of the number of roots of P(s) in each
| of the half-planes {Re s > 0 and Re 8 < 0 } using J-

fraction expansion

We have seen from Theorem 2.1 and Example 2.1, that all the roots of P(s) are
in the left half of the s-plane {Re s < 0 } if and only if the coeflicients s in
equation (2.3) are all positive. Also, we see in (2.3) that if all the F's have negative
signs, it implies that all the roots of P(s) have positive real parts. The eriterion for
determination of the number of roots of P(s) that lie in the left half and right. half

of the complex s-plane respectively, is given:

Criterion 2.1 The number of roots with positive real parts of any complez polyno-

mial is equal lo the number of negative signs of F; in the J-fraction (2.3).

To illustrate this criterion consider the following example:

Example 2.2 Consider a polynomial P(s) with compler coc fficients and s ()(s)

10



P(s) = s*—=(5+j5)s>+(0+19.75)s* +(18.375—j17.875)s— (13.125+70.625) (2.8)
Q(s) = —5s> + ;19.75s, + 18.375s — j0.625 (2.9)
Then the J-fraction of Q(s)/P(s) takes the following form

Qf: 1
(%) —0Zs+ 14021 + —0.63925+;0.7387+— 25275431 sonsij—m,—i—nm
F —TTer

All coefficients of s and the constant terms in (2.10) having negative real and

purely imaginary values respectively, means that P(s) is unstable and all the roots
lic in the right half of the complex s-plane. The roots are given by (2.11) and shown

in Figure 2.2

A =2+ 0.5, Ay = L5+ 1, Az =1+ 52, A =05+ 715 (2.11)
3 Im axis
5y PRI b
e :

1 ............ e e s e o
€
O T
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e S O 4
-3 : :
-2 O 2

Figure 2.2: Roots of unstable P(s)

The case corresponding to m roots of P(s) lie in the left half of the s-plane, and

n-m roots in the right half of the s-plane is illustrated in Example 2.3

Example 2.8 consider a polynomials P(s), the corresponding Q(s), and the quo-
tient Q(s)/P(s)

P(s) = s'4 (3 - j5)s® — (8 + j13.75)s? — (22.375 + j0.375)s + (=7.375 + j10.875)
(2.12)

11



Q(s) = 3s® — j13.75s% ~ 22.375s + j10.875 (2.13)

Qs) _ — 1 : (2.14)
P(S) 0-33333 + l - 10-1369 + 2.19285+]1.34]8+ T

=0 1101440 374 ey waAY

In this expansion three coefficients of s are positive real and one coeflicient is negative

real. This means that P(s) has three roots in the Re s < 0 plane and one root in

the Re s > 0 plane. The roots of P(s) are shown in Figure 2.3

M=1472,  A=—05+15,  Az=-24,0.5, Ay =—LA41 (2.15)

: Imm axas
2.- ....... R RN
Do o :
1 - .':. b e E. -
ne€ :
o0 . I
Re axis
-1 P [
s-pland
e X I J
-3
-2 O 2

Figure 2.3: Roots of P(s)

j2§3 “Generalized Routh Array‘

We use two methods, to construct the Routh array for a general complex polynomial.
In the first one, a long division process is used, and in the second, two cross mul-

tiplying processes are used. Detailed analysis is given in the next two subsections.

7,
e 0
1

:2.8.1 - Generalized Routh arrdy using division process, -

In the previous section, the stability condition for a general complex polynomial

was illustrated on the basis of Theorem 2.1 . Now we present another method for

12




determining whether a given complex polynomial is stable or not. We start from
P(s) as in Equation (2.1) and the corresponding Q(s) as in Equation (2.2). P(s)

can always be written as
P(s) = 7(s) Q(s) + Ri(s) (2.16)

where, 71(s) is a polynomial of degree one and R;(s) is the remainder polynomial
of degree n —2. Both ri(s) and Ri(s) could be found by formally dividing P(s) by

(Q(s), since this gives

= rs f(s)
= () + 5 (2.17)

where 12(s) 1s
Ri(s) = ¢18"7% + 28" 4 038" + 48" % 4 .+ a8 + cugs' + Cn-1 (2.18)
We can also write Q(s) in the last term of (2.17) in terms of R;(s) as
Q(s) = o) Ra(s) + Rals) (2.19)

where, r(s) is a first order polynomial and Ry(s) is the remainder polynomial of
degree 1 — 3. Both r,(s) and Ry(s) could be found by formially dividing Q(s) by

Ri(s) , since this gives
R')(S
R](S)

Q) () +

Ri(s)

where the remainder polynomial Ry(s) is

~—

(2.20)

Ro(s) = dis"™% 4+ dps"™* + dysucs + das™® 4+ 4 + dusas' + dop (2:21)

We continue this process of division of two polynomials until the remainder p~lyno-
mial equals zero.

The coeflicients of polynomials P(s), Q(s), Ri(s) , Ry(s) ,..., etc. can be

13



arranged in rows and columns according to the following pattern:

s L a1 +jby a4+ by ... a, +jb, — lst row P(s)
sy by a3 veee @y, OT by, — 2nd row Q(s)
s co c3 0 — 3rd row R,(s)
s dy d; ds 0 — dth row R,(s) (2.22)
s? g1 g2 0 0 0 — (mth row R, _»(s)
s! hy 0 0 0 0 —(n+ Dthrow K,_,(s)
0 0 0 0 0 0 — (n 4+ 2)th row R, (s)

e In this pattern the first row corresponds to the coeflicients of the given poly-

nomial P(s).

e The second row corresponds to the coeflicients of the alternant polynomial

Q(s).

e The constants cy, ¢y, €3, ...., €te, in the third row are coeflicients of the remain-

der polynomial obtained from the quotient of P’(s)/Q(s).

e The coefficients of the remaiuder polynomial obtained from the division of the

two previous rows give the constant coefficients d's, ..., g's, h's.

e Evaluation of the coefficients in this pattern is continned until the (n 4 2)1h
row is completed, in other words, until the remainder polynomial obtained

from the two previous rows equals zero.

This pattern is the generalized Routh array for a complex polynomial £2(s). It is

similar to the Routh array for the real polynomial p(s).
p(s) =s" + a18" T aps" T b a4 g™ T s T o s +oa, (2.23)

In other words, (2.22) is a general array constructed from a complex polynomial,

of which, the commonly used Routh array in control theory and system analysis for

14



real polynomials is a particular case. To this end, to obtain the Routh array for the

real polynomial from the pattern in (2.22), we follow the procedure given below:
o Let all imaginary elements in (2.22) equal zero.
e Delete all the even columns.

e The resulting array is the Routh array for a real polynomial [9, 10] as in (2.24)

5" I a; ay as ag ayp ... «lst row even of P(s)
sV ey a3 a5 ar ag an ... —2nd row odd of P(s)
e N T . N T — =3nd row Ri(s)
s dy dy dy dr dy dyy ... — —4nd row Ra(s)

(2.24)

s g o935 00 0 0 0 —(n—1th row Ruy(s)
s! hy 0 0 0 0 0 0 —(n—=1)th row R,1(s)
0 0 0 0 0 0 0 0 «(n=2)th row R,_1(s)

Note that in developing the array in pattern (2.22), the entire row may be divided
or multiplied by a positive number in order to simplify the numerical calculation
without altering the results of stability. The next theorem states the stability con-

dition.

Theorem 2.2 A necessary and sufficient conditiva for all the reots of any cornplex
polynomial P(s) to have negative real parts is that all the coefficients in the first

column of the array in (£.22) have positive sign.




Proof:
The J-fraction of P(s) with respect to @(s) takes the form

P(s) 1 1
=—s+1+E+- -
Q(s) @ s+ By + T —

B —

From Theorem 2.1, P(s) is stable if and only if all the coeflicients of s in (2.25)

are real and positive. This means that all a1, ¢;, d,, .... should have positive signs.
These a;, ¢, dy, .... are the same as the coefficients in the first column of the

generalized Routh array (2.22), and the stability condition is established. Q. E. D).

" 2:3."2' - Generalized Routh array using two cross mﬁlﬁplying

. processes.

In the previous subsection 2.3.1, the creation of the generalized Routh array de-
pended on a division process which is very tedious, even using a computer. We shall
give a simple way to evaluate the generalized Routh array. The procedure for the

construction of the generalized Routh array is given helow:
e Write the given polynomial P(s) of degree 7 as in (2.1)
e Find the alternant polynomial of P(s) of degree n-1 as in (2.2)

e Arrange the coefficients of the polynomial P(s) and Q(s) in the first two rows

of the following pattern:

16




P 1 ay+jby ay + b, a, + jb, — lst row P(s)
s g Jby as a, or jb, « 2nd row Q(s)
RTINS ¢ c3 0 — 3rd row c,
s d d. d: 0 — 4th row d
1 2 3 t (226)
s2 N 92 0 0 0 — (n = 1)th row g,
sl Iy 0 0 0 0 — (n+ 1)th row h,
0 0 0 0 0 0 — (n + 2)th row zeros
The coeflicients ¢y, ez, ca, ..., €lc., are evaluated using the two cross multiplying pro-
cesses.
'q \
cf = “ (ag+7b2) — aa ity aulay+gby) ~ gbo
1 ay ay Q1
co = Sf{satibs) - ib4 ag aifertih) ~ gba
2 = ap 113 ]y
c — o1 {ag+ibs) ~ ag 223 ay{az+iby) - 7bn (227)
3 = ag ai 3]
o4 = % {as+gbs) ~ jbe  _  ag @fsatibi) — jbs
4 = a ai aQy
L PPV LS AR EE LN ] sreva e LA RN YR J J

The evaluation of the ¢’s is continued until the remaining ones are all zeros. The

same pattern of the two cross multiplying the coefficients of the two previous rows

is followed in evaluating the d's, e's, ¢'s, ....
€8, 0

elc.

r—

i

]

[ AARE Y

€1 .83 = Q103

6

& Jby ~ dieq

£y

1 Q5 — 05Cp

€y

¢y Qg ~ BiCs

L3

tesany

revv e

oz algby} = & oo

Ci Ci
cs algbe) ~ & ¢2
Cs €1
a by ~ @ @
[ Gy
s b} ~ @y ca
(2] ¢

AEEX T X
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€1

I
(~ N
=

|
{x]
e
a3
e
&)
=3
i
(]
SX,

es = dy s —-; ads . %: dies ~3c’ da (2.29)

seesP N srxecse L R Y A kK]

This process is continued until the (1 +2)th row has been completed. The complete

array of the coefficients is triangular as in (2.26).

2.3.3 Determination of the number of roots of P(s) in each
of the half-planes {Re s > 0 and Re s < 0 } using
Routh array

The number of roots in the left half and the right half of the s-plane can he deter-

mined from Criterion 2.2.

Criterion 2.2 The number of roots with positive real parts of any complez poly-
nomial is equal to the number of changes in the sign of the coefficients of the first

column of the generalized Routh array pattern (2.26).

‘\

Note that the values of the termsin the first column are not important. for us instead
only signs of the terms are needed. Consider the following example to illustrate

Theorem 2.2.

Example 2.4 Consider a complex polynomial P(s) and ils Q(s) as in Frample 2.1.

18



The Routh array of the coefficients is constructed, following the analysis of the
generalized Routh array just presented. The first two rows can be obtained directly
from P(s), and Q(s). The remaining terms are obtained from equations (2.27).

(2.28) and (2.29). The generalized Routh array now is

Py 1 5~ 35 0-319.75 —18.375— 317.875 —13.1254 30.625 «~— 1st row P(s)

st 5 -219.75 ~18.375 70.625 0 « 2nd row Q(s)

s TR25  —)21.8588  13.25G2 0 0 — 3rd row ¢, (2.30)
Al 62446 —39.167 0 ] 0 — 4th row d,

2 19749 0 0 0 0 ~ S5th row e,

0 0 0 0 0 o] — Gth row f,

The unmber of changes in the sign of the coefficients of the first column is zero. This
implies that there are no roots with positive real parts, and the given polynomial
P(s) is stable,

To illustrate Criterion 2.2, consider the following example:

Example 2.5 Consider a compler polynomial P(s) and its Q(s) of Example 2.2,

The corresponding generalized Routh array is

Py 1 ~5~—)b  04319.75 18.375-;17.875 —13.125+ 30.625 — 1st row P(s)

st -5 J19.75 18.375 -30.625 0 — 2nd row Q(s)

2 TRL 0~ 218588 —13.2562 0 0 — 3rd Tow ¢, 92.3]
S G246 0167 0 0 0 — 4th row d, (2.31)
A LT 0 0 0 0 — 5th row e,

0 0 0 4] 0 0 — Gth row d,

The number of changes in the sign of the coefficients in the first column is four, which

implies that there are four roots with positive real parts, and P(s) is unstable.

Example 2.6 Consider a polynomial P(s) with complex coefficients of Ezample 2.3.

The generalized Routh array is

o 1 3-35 -8 -713.75 —22375 -~ 30.375 —7.375+ 10.875 «— 1st row P(s)

s? 3 —-21375 ~22.375 +10.875 0 — 2nd row Q(s)

s? 1.3681 -7.1076 —8.8854 0 0 — 3rd row ¢, (232)
sV 12,4278 322.7973 0 1] 0 — 4th row d,

£ ~045) \ 0 0 0 — 5th row e,

0 0 0 0 0 0 — 6th row f,

P(s) is unstable with one root lying on the right half of the s-plane because there

is one change of sign in the first column in (2.32).

19



23.4 J’-fractlon expansion and the generahzed Routh ar«~

i
LSRN . NN

ray relatmnship. L TN TR

We first note that the corstruction of the generalized Routh array using a division
process or two cross multiplying processes gives us the same pattern as in (2.22) and

(2.26). The stability conditions for any complex polynomial can be summmarized as

follows:

e From the J-fraction expansion, as in (2.3) all Iy, Iy, Iy, .... are real positive,

® From the generalized Routh array, all the terms in the first. column of the array

in (2.22) or (2.26) have positive signs.

Now we try to find a relation between the coeflicients, { /), Fy, Iy, ..... }, in the J-
fraction expansion and the coefficients in the first column of the generalized Ronth
array, {1,ay,c1,dy,eq,.....}. The division of any two successive terms in the first
column of (2.26) gives us one valuce of the coefficients /s in the J-fraction expansion

(2.3).

Table 2.1 shows the relation between the constants Fy, Fy, ... in the J-fraction and
the coefficients a;, ¢y, dy, €1, ... .in the gencralized Routh array. Also from Table 2.1

the stability criteria 2.1 and 2.2 should he observed

.2.4 - Generalized Hurwitz Deteriinant

In the previous two sections, two methods were found to test stability of a complex

polynomial on the basis of the J-fraction expansion, and of the generalized Routh

20




” J-Fraction ” Routh ” J-F & Routh |

I
F] a1 Fg 2%
F2 (o] Fz"—'%“"
Fs @ Fy=o
F4 €1 F4=§‘:‘

Table 2.1: J-fraction, Routh array relationship

array. Now a third method which involves the generalized Hurwitz determinant for

a complex polynomial will be presented. Starting from a polynomial P(s), and its

((s) as in (2.1) and (2.2), the procedure is outlined below:

e Write the given polynomial P(s) of degree n

o Arrange the coeflicients of Q(s) and P(s) in the following matrix:

/ Ly
l
0
0
0
0
0
0

Jb2
ay + jb
ay
l
0
0
0
0

gy

Jby

iy +jl)2 az +jb3

Jb
ay + by
a
1
0
0

as

a;+ jb,
7b.

ay + jh
O

1

s
ay + jby
Jba
az + jbs
as
az + jby
Jb
ay + jb

Jbs
as + jbs
s

ay + jb4

az + jb;
as

az + jb;

.

(2.34)

The determinant of the matrix A of rank (2n — 1) is the generalized Hurwitz

determinant, whose successive principal minors are denoted by D,.

The commonly used Hurwitz determinant for a real polynomial p(s) is a par-

ticular case of the Hurwitz determinant of the matrix A in (2.34). To obtain the
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Hurwitz determinant for a real polynomial from the matrix A in (2.31), the steps

shown below are to be {followed.

o Set all the imaginary elements in the matrix A in (2.34) equal zero.

o Delete all the even columns in the matrix A.

e Delete the zero rows of A created by the above two operations.

o If the first two operations create some rows in (2.34) having the same elements,

retain one of them and delete the rest.

e The resulting determinant is the Hurwitz determinant for a real polynomial.

a;p ay ds
1 ay ay
0 ay ay
0 1 a,
D = |A] = 0 0
0 0 1
O 0 0
0 0 0

The stability condition is stated in Theorem

22

ay
sy
a,

(3]

2.3.

{ly

iy

ay

ay

iy

g

o

gy

(lﬂ

as

g

a4

(2.45)




Theorem 2.3 All the roots of a complex polynomial P(s) have negative real parts

if und only if, the modified generalized Hurwilz determinant

2=t
Ao = 1,4, = (=<1)F D, >0, ¢=1,3,57911,..,2n~1) {2.36)

a

Proof:

From Theorem 2.2, P(s) is stable if, and only if, the elements in the first
column of the array in (2.26) have positive signs. We want to indicate the dependence
of the determinant A, upon the elements in the first column in the Routh array
(2.26). After some matrix operations, the matrix A in (2.34) can be transformed

into an upper triangular matrix as in (2.37),

((l] jl)z a3 j1)4 as _]()6 ary ]bg g jb]o ves \
0 ar jby a3z jby as jbe ar jbs ag

0 0 ¢ ¢ ¢ ¢4 ¢ ¢ €7 cCg
0 0 0 ¢ e ¢3 ¢4 ¢ ¢ ¢
5= {—l).,?__l 0 0 0 0 d dy d3 do ds ds (2.37)
0O 0 0 0 0 d a dz dy ds
0 0 0 0 0 0 € e e3 ey
9 0 0 0 0 0 0 e e e3

The successive principal minors of the generalized Hurwitz determinant of the n .trix
Ain (2.34) are equal to the successive principal minors of the determinant of the
matrix 8 given by (2.37).

In Equation (2.37) it should be observed that the coefficients of the polynomial Q(s)

appear in the first two rows. The rows containing the c's,d's, €'s, f's, ... in (2.37)
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are the same as those in the Routh array (2.26). Further, the elements of the first

column in the Routh array are the same as the diagonal elements of the matrix

B (2.37). From Equation (2.37). the successive principal minors of the Hurwitz

determinant will be:

aj jbz as jb4 as
0 a Jjby az jby
0 0 ¢ ¢ ¢
0 0 0 (& (@)
2_ 0 0 0 0 {
Dq = (_1)1”_] o
0 0 0 0 0
0 O 0 0 0
0 0 0 0 0
D, = (——l)yﬂ;l (zf
-1
Aq = (_l) 8 Dq =

Jbs

2
¢

as

Cq

2
d;

ar Jjbg
jl).; ar
Cs  Cg
cy O
(13 (I|
dy dy
€ €

0 e
N

2 2 _ . , ,
(-5 (~1)F @ &

1

ay

Jb
7
e
ds
dy
(K

]

ﬂ’lu
gy
L]
c7
‘lﬁ
dy
L]

3

.........

(2.38)

(2.39)

(2.40)

where, ¢ is equal to the sum of the numbers a;, ¢y, dy, cq, ... ete. Sinee all the coefli-

cients a, ¢1,dp, ey, fi,.... etc. are greater than zero for stability (Theorem 2.2), this

implies that all A, > 0 for stability. Q. E. D.
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The number of roots in the left and right halve of the s-plane can be determined

from the following criterion:

Criterion 2.3 The number of rools with positive real parts of any complez polyno-
mial, is equal to the number of changes in the sign of the odd determinants Ay in
(2.36).

The general form of the determinant A, is

a Jjb, as 704 as 7

' ay+ b az+jby as+jbs as+ jby as+jbs ... ...

0 a Jjby as 7by as

0 | ay + jby ay+ jby az+ jby ag+jby ... ...

A, = (_l)ga;. 0 0 ay J b2 as 704 (2.41)

0 0 1 ay+ jby az + jb, a3+ jbs

0 0 0 a 7b2 as

0 0 0 1 a+ by az +jb, ... ..

Note that the exact values of the determinants A, are not needed. Instead, only

signs of these determinants are sufficient for the stability criterion.

Example 2.7 Given a compler polynomial as in Example 2.4.
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Following the procedures in the generalized Hurwitz determinant just presented, and

constructing the generalized Hurwitz determinant of the coeflicients gives:

5 —519.75 -18.375 70.625 0
1 5—-35 —719.75 —18.375 — j17.875 —~13.125 + j0.625
0 5 —719.75 —18.375 70.625
D 0 1 5—75 —j19.75 —18.375 — J17.875
q =
0 0 5 ~j19.75 —18.375
0 0 1 5—J5 —J19.75
0 0 0 5 —J19.75
0 0 0 1 5—Jh .
(2.12)
The modified generalized Hurwitz determinant is
5 —19.75  -18.375 70.625 0
1 5-J5 —J19.75 —18.375— JIT.HTS  — 13126 4 40 625
o s -319.75 —18.375 10625
Ay = (_l):ﬁi—_l 0 1 535 —119.75 ~18.375 — J17.875 (2.43)
0o 0 5 —119.75 ~ 18375
o] 0 1 5- 35 --119.75
o o 0 5 -19.75
o 0 0 1 5— 5

In this example, the odd successive principal minors of the generalized Hurwitz

determinants D, and the modified generalized Hurwitz determinant A, are

Dy =+45 D3 = ~195.56 Ds = —9553 D7 = 4117800
Ay =45 Az = +195.56 As = 49553 A7 = +117800

(2.44)

Since all the principal minors of the modified Hurwitz determinant A, are positive
real, this means that all the roots have negative real parts, which implies that the

given complex polynomial P(s) is stable.
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Necessary and sufficient conditions for P(s) to be stable are:

e From the generalized Routh array, all the terms in the first column of that

array in (2.26) have positive signs.

¢ Irom the modified generalized Hurwitz determinant (2.41), all Ay, A3,A5, ...

are positive real.

The relation between these odd principal minor determinants A, and

{1,ay,¢;,dy,€1,.....} in the pattern (2.26) are derived as

2 2 :
G o= AL e o= 2 g = -A—5A$l, o = S8 (2.45)
3

A} A3AT
Table 2.2 shows the relation between the odd determinants A;, A3, As... of the
modified Hurwitz determinant and the coefficients ay, ¢y, d1, ey, .....in the generalized
Routh array. It should also be observed that the stability Criteria 2.2 and 2.3 can

be obtained from Table 2.2.



| Routh | Hurwitz | Routh & Hurwitz |

1 1

ay A] a) = A]

Cy Ag Cy = A:;/Af

d] As d] = As/A:)i/Af
€ A',' ¢ = A7/A§/A23/Af

Table 2.2: Routh array, Hurwitz determinant relationship

‘2.5 Relationships Between J-Fraction Expansion,
the Generalized Routh Array, and the Mod-

- ified Generalized Hurwitz Determinant

The relations between Fy, F3, F5, ..... in the J-fraction expansion (2.3), ¢y, ey, dy, eq, ...
in the Routh array (2.26), and A, Az, As, ..... in the modified Hurwitz determinant

(2.36) may be presented as in Table 2.3.

| J-Fraction || Routh || Hurwitz || J-I" & Routh | Routh &Hurwitz [ J-F & Hurwitz, |

1
F] ay A1 F] = Tl; a) = A] l‘, = Zl'l'
F2 Ci Ag F2=%IL (']=%? rg=§
Fs dy As Fy=g |d=2%3 Fiy = s
F4 €1 A7 F4='('2' € =%§%§ l‘;———%?;%%

Table 2.3: J-fraction, Routh array, modified Hurwitz determinant relationships

For the stability of a complex polynomial, the interrelations among the con
stant coefficients in the J-fraction expansion, the terms in the first colmnn of the

generalized Routh array and the odd successive principal minors of the maodified
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generalized Hurwitz determinant can be obtained by directly using Table 2.4. Also

from Table 2.4 the stability Criteria 2.1, 2.2 and 2.3 can be obtained.

Fi = 1/A7] AL/ AL/ AY

e1 = A7/A5[AF/AT

To
J-Fraction Routh Hurwitz
From
F() =]
F] a1=l/F'1 A1=1/F]
F), C1=1/F]F-2 A3=1/F,3F2
J-Fraction I (l] = I/F] Fst As = I/FISFgFg
F4 e = l/F]F2F3F4 A7= 1/F17F25F§F4
1
Fl = l/(l] a A] =y
Fg = (ll/('l Cq A3 = G%Cl
Routh Fy = ¢/d; d; As = aicdd,
F‘g = (1]/6‘1 €1 A7 = afcfdfel
Ap=1
F]—"'—I/A] a1=l/A1 A]
F-),—_— ]/A;/A? C1=A3/A¥ A;}
Hurwitz Fy=1/As/A3/A] d; = A5 /AL A? As
Aq

Table 2.4: The parameter interrelations among J-fraction, Routh array and modified
Hurwitz determinant




2.6 Apphcatlan of the Stab:hty Condxtmns fur a
Camplex ?oiynomal to a Multnvarzabl& Sys-

tem¢ o s T o L

The stability of multidimensional systems and multidimensional polynomials have
been discussed by Bose, Jury and others [12, 13, 14, 15]. From our analysis in
this chapter, we observe that our study of the stability of a complex polynomial
associated with one dimensional digital or analog systems, forms the kernel for the
study of the stability of multidimensional systems. In the previous sections we have

used three methods, namely:

o The J-fraction expansion
e The generalized Routh array

e The modified generalized Hurwitz determinant

to test the stability of a complex polynomial P(s) deseribing a one dimensional
system. We shall use these methods to test the stability of multidimensional poly-
nomials with real coefficients. The stability of P(s) with one variable opens a window
for a practical test of the stability of two-variable polynomials P(sy,s,). Also an-
other practical application is to test the stability for two-variable discrete functions
P(z1, 2z3) e.g 2-D digital filter by using a double bilinear transformation to transfer
P(z1,23) to P(s1,52)

=2t ] , 5 = li—lT (2.46)

S]"“l Sy —
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In general an important part of testing the stability of a polynomial with

multivariables s,, i = 1,2, ..., k, for an analog system described by
P (&1, 8, vy Smyeeny Sk ) (2.47)

or a polynomial with multivariables z,, i = 1,2,..., k, for a discrete system by using

multi-bhilinear transformation

s | sy 4+ 1 sqm+1 s+ 1
= S+ s 2y = :i—-, reey g = q_—_}-_’ cerey 2= S+ (2.48)
s — 1 89 — 1 Sy — | sp— 1

to transfer (21, 22, .y 2y oony 21) 10 P(S1, 82, 00y Sy .-, Si), leads to test the stability

of a complex polynomial with one variable

Pjwi, jwayey Sy ooy Jui), where 0 < w, < codiym = 1,2, k, i # m

(2.49)

Definition 2.1 A multivariable polynomial P(sy, s3, ..., Sm, .oey Sk) Of degree n in
sy 0= 1, 2, .., k with real cocfficients is said to be separable if it can be written

as follows:

Yo , _ n n n nl mm nk
I (-5] . ...,.q"l. ey -"k) = nl=0-* nm=0 *** E nk=0 Anl.....nm...nk Sl ...S,n ...«Sk
— n nl n nm n nk
- nt=0 W1y «ooe nm=0 b"msm et =0 c"ksk

= (aos) + a15] + @25 + a3s? + ... + a,s})....
(boS.,O" + b]S}n + sz?n + bgs?n +...4 bnsz,)....
(cosR + c18f + €28} + €353.... + o s})

= P(s1) ... Po(sm) o Pi(sk)
(2.50)

Otherwise P(sy, $2, .., 8m, ..., Sx) is unseparable
Once we get a complex polynomial with one-variable from separable or unsep-
arable real p-lvnomial with multivariables, then the stability methods of sections

2.2, 2.3, and 2.4 can be applied
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. 2.6.1 Stabzhty test for multwanabla puljrimmlals using

e AN

the J-fraction expanswn IR >

wi ~ ~

Consider a multivariable real polynomial P(s1, s2, ..., $m. ..., 8%) of degree nin
syt = 1, 2, ..., k. This polynomial will be transferred to one-variable polynomial

in s,, with complex coefficients by putting s; = jw,, i = 1,2,3,..., &, and i # m.

P(le*.]wzv 1713 . .,j(.Uk) = 'm + (a]"l +Jblm)'srn ! + (“a’.”l + J(,ZHI)' m 2+
+ sae + (“u—-l.m + jbn—l.m)“m + (”nm + j”rnn)

where the coefficients a,,, and b,,, are functions of {jw,, jw,, ..., Juu }.

From P(jwi,jway ..oy Spe ey Jwi), the alternant polynomial will be
Q(.]“)lﬂ.]“)'h coey S ---s]wk) - ulm m +Jb2m"’m + U Sy, +.’I'I1n“"1,| 1 + ... (25:‘)

The J-fraction expansion of Q(Jwy. jwa, coos Smy ooy JW ) PJwh s Jwa, ooy Sonsveey Jwi)

takes the form

Q(]wls-"snn'-a.]wk) _ I
. . b l
P(.]wla ooy Sma"v]wk) Flm'qm + l + Elm + T e, 1
2m-7m+l-42m+ F N
Bt l"Jru + ﬁ:‘——
L sy
nm *mn “nrn
(253)

where F,,, and E,,, are functions of {jwy, jws,...,jwr}. The stability condition for

multivariable polynomial is stated in the following theorem:

32



Theorem 2.4 [f a mulliveriable polynomial P(sy, .., $p,.., ) is stable, then Jor
each variable sm, the complez polynomial Pjwy, jwa, ses Sray oens jwi) has a J-fraction
of the form (2.53) and all Fyy,, Fyp, .., Fom are real and positive and B, Esmy ey By

are pure imaginary or zero. This is valid for all m=1,2,3,...,k.

™

Proof

When P(sy, $2, ...y 8m, ..., ) is a stable polynomial, then for s, = Jwy, 1 =
L2,k ¢ # m, the polynomial P(jw;,jws, ..., $m, - ..y Jwi), is stable with the .J-
fraction as in Equation (2.53) and all Fy,,, Fam, Fam, .., Fum are real and positive,
otherwise, Theorem 2.1 would be violated. Q. E. D.

Now for cach variable s, in P(sy, S2, ..., Sm, «ory Sk), a criterion for determining
the number of roots of P(jwy, .., 8, .., jwi) in the left half and right half of the

complex s,,-plane is given below.

Criterion 2.4 For each variable s,, of any multivariable real polynomial
P(81, 825 vy 8y ey 51), the number of roots lying on the vight half-plane Re s, > 0
1s equal to the number of negative signs of that Fy, in the J-fraction (2.53),

To illustrate the analysis, consider the example of Bose’s paper {13]. His
analysis deals with a real multivariable polynomial using a resultant matrix to test
stability for a two dimensional filter. But in this analysis we start with a multi-
variable polynomial with real coefficients, and the stability test is based on complex
polynomials.

Example 2.8 It is required to determine whether P(sy, s;) is stable or not
Coe) = §2 2 1 n2
P(‘\l*“'?) - 5—411]—0 21;2:0 nln2 S; S;l

= 26387 + 2535] + 8357 + 2sps] + dssl 4 2189 + 5057 + 263! 4 269
(2.50)
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by putting sy = jwy in the two-variable real polynomial in (2.51) we get a single

variable polynomial with complex coeflicients as
P(jwi,s2) = (=2w} + j2w] +1)83 + (=205 + jdw] 4 2)s) + (—wi + j2w! +2) (2.55)

where 0 < w; < 00. We can write (2.55) in this form

(=20} + jaw] + 2)] | (—wi + 2] + 2)
P(jwy,s3) Ky =82+ Sy + 2.06
U )/ = (=20f + j200 + )] * 7 [(—20f + 20! + 1) (2:56)
where
ko= (=20 4 200 4 1) (2.57)
or in the form of equation (2.51):
; X L {(dwfd2wf42) | . (=) ] | (2w‘—2w”+2) (-.w 2wl
P(jwr.s2)/k1 =53 + vt TJaotn) S T [T T (mlu)l I
(2.5%)
The alternant Q(jwi, s2)/~1 polynomial of (2.58) is
. (dof 422 +2)] | [ (=2 - 2l) .
L$2)/ Ky = shp [jimt — =) 2.59
Q(]w] Sz)/h] [ (4wAlS+ l) 52+ J (lw?+ ]) ( ) )

For the variable s, the J-fraction of Q(jw, s2)/P(Jwi,s2) as in (2.53) becomes

Q(jwlss‘l) — l
P(jwi,sa)  Fusa+ 1+ En + m‘f:r..

(2.60)

where Fiy, Fy1, and Eyy, Ey; are functions of { jw;}. Forany valueofw,, 0 < wy < ~x
we found expressions of Fy; and Fy;. The values of these expressions have pasitive
signs for all values of wy. This means that P(jw;,s2) is a stable polynomial. As a

numerical calculation for w; = 4, equation (2.56) becomes
P(j4,52)/ k1 = 52 4 (0.399 — j0.6712)s; + (0.4859 — 5j0.1327) (2.61)
and the alternant (74, s2)/&) polynomial of (2.61) is

Q(j4,52)/ky = 0.399s) — jO.1327 (2.62)
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For the variable s,, the J-fraction of Q(j4, s2)/P(j4,5,) as in (2.53) becomes

(v)(.lllﬁﬂl) - 1
P(j4,s2) 2506355 + 1 — 70.8487 + .

0.6667s2—30,2217

(2.63)

From equation (2.63) it is clear that all the coefficients of s are real positive which
means that P(j4, s;) is stable, the same is true for any value of w;.
Also by putting sy = jwp in the two-variable real polynomial in (2.54) we get

another single variable polynomial with complex coefficients:
Plsy, jwp) = (=207 + j2wy +1)8) + (= 20F + jdwy +2)s} + (—w} + j2w] +2) (2.64)

where 0 < w, € oo, We can write (2.64) in the form:

(—2w? + j4w! +2) g4 (—wi + 2w} +2) 2
(—2wf + 72w} + 1)) 1 [(—2w] + j2wi + 1) )

65)

Psi.jw)[w2 = s7 + [

where

Ky = (—=2w}+ j2w) +1) (2.66)

or in the form of equation (2.51)

. . Qw202 42 . (—4w3 2w — 202 4, (=203 - 2wl
Plsijuwa)fhe = 57 + [“ (?1:;2;1; : +‘}(‘(Iw;+§) s+ 2 (iw;+21;r2) + ! (4w§+f)2]
(2.67)
The alternant Q(sy, jw;)/r2 polynomial of (2.67) is
, (dwj + 202 +2)] | [.(—2w5 — 2w}
Q(s1, Jw2) /Ky = S _ 2.68
and for the variable sy, the J-fraction of Q(sy, jw;)/P(s1,jw,) as in (2.53) becomes
s1, juw 1
Osry Jwa) (2.69)

P(sy,jw2)  Fiasi+ 1+ Enp + FJ_*_—E;
where Fyy, Fyy and Eyy, Ey, are functions of jw,. For any valueof w;, 0 < w; < o0,
we also found expressions of Fyy and Fy,. The values of these expressions have
positive signs for all values of w,. This means that P(s;, jw;) is a stable polynomial.
Since P(sy, juy) and P(jwy, s,) are stable polynomials this leads to the stability of

P(sy.82). As a numerical calculation for wy = 4, equation (2.65) becomes
P(s1.j4)/xa = 57+ (0.399 — j0.6712)s} + (0.4859 — j0.1327) (2.70)
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and the alternant Q(s;.j4)/x; polynomial of (2.70) is
Q%1 j4)/ K2 = 0.399s] — j0.1327 (2.71)

For the variable sy, the J-fraction expansion of Q(sy, 1)/ P(s1.j4) as in (2.53) he-
comes
Q(s1,J4) _ I (
P(s1,74) 2500638, 4+ 1 — jO.SIST + oot

0666078 —,0.2217

2.72)
From (2.72) it is clear that all the coefficients of s; are real positive, which means
that P(s;,74) is stable.

The previous example was given in Bose’s paper [13] and it is a second-order two-
variables real polynomial. The next example is to test the stability of a fourth-order

two-variables real polynomial

Example 2.9 Consider a fourth order real polynomial with hwo variables, il is re-

quired to study the stability of P(s,, s2)

P(s1,85) = =0 Lme=o Anisz 83 s}
= 2s)st 4 Gsds? 4 98787 4 6ads) 4 2600y
+ Bsist 4+ 208587 4+ BTsisi 4+ 388 s: + 20880+ (2.7
+ st + 28s3s) 4 626387 + 60s3s) 4+ 238380+
+ dsdst + 2287 + 4Bshs? 4 36sls) 4+ 138l
+ 25987 + 6s3s] + 9shs? 4+ Gshs] 4+ 2040

The two variable polynomial in (2.73) will transform to a one variable polynomial

in s; with complex coefficients by setting s; = jw,

P(jwi,s2) = (2w — j6w; — Ywf + j6w; + 2)s3+
+  (hwi — 720w} — 3Tw? + j38w; + 20)s3+
+ (Tw] — 728w} — 62w + j60w, + 23)si+ (2.74)
+  (4wi = 722w} — ABwi + j3bwy + 13)s)+
+  (2w] = j6w} — Jw? + jbw; + 2)s"
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whete 0 7wy < sc. We can write (2.74) in this form

S8 =003 =370 4380, +20 ; Twd—128.L3 —62,2 4760w 4+23)] -
) . _ A (Sw)—32 ) wi+38w ) 3 (u.«l J 28wy wi4760w;+23) 2
Plpwy,s2)/ry = s)+ (2 =6 uT—00 4160, +2) ] sy + (20T=76T=957 16w, +2) Sy+

+ (4w;—Jzzu}-45w§+136u,+13)] N + [(2w4_,5w§-9uf+16u,+2) 0
(2u4 —]Gd;’—9w?+]ﬁw1+2) T2 (2w:-_16.u‘;3—9.uf+]6w1 +2)] "2
(2.75)
“’l.(lr(l
. __(2 4_'6 3_() 2+6 ‘)) 2.76

or in the form of equation (2.51)

) o (1034w +35w8 = 26w2440) | - (=10w] +4wd-4003 —44w!)] 3
Plwryss)/er =5 + (A H 17wl F4) +J (1 F 70T +4) S2

+ (1408 - 1908 + 901 +29.2
(4w} +17w} +4)

(—14..;[—42wj’-86wi’—18w})] o2
52

+46) | -
+J (351707 +4)

[ (B8 4625 +91w! 4942 +206)  (—20w] —24w? - 2003 — 6! )] 1
+ (AT 1701 44) +J (AT F17a754) 2+ 1
(2.77)

The alternant polynomial @(jwy. s,)/r; of (2.77) is

. YNV (l().u:+.uf+35u:—26wf+4())] 3 [ -(—]4w;"—-42uf—86uf—]8w})] 2
QUwrs)/r = +{ (A F17wi+4) S+ |+ (A F 17wl +4) S2

(Bl 4647 +91wt +902426)]
T [ (43‘,‘+17J}+4) ] 8
(2.78)
For the variable s,. the J-fraction of Q(jwy,s;)/P(jwi, s2) as in (2.53) becomes
( 'u-' .S 1
o) , (2.79)
Pljwicse)  Fusp+ 1+ En +

Faysa+Eo+ Faroits ":T“—QJTET,
where Iy, Fy. Fay. Fy.and Eyy, Eap, Eyq, Ey, are functions of jwi. For any value
of wi, 0 < W < oo we found expressions of Fiy, Fuy, F5; and Fy;. The values of
these expressions have positive sign for all values of w;. This means that P(jwn,s32)

is stable polynomial. Also for s, = jw, we have another complex polynomial in s,



Ps1,jws) — jhwy = Twi 4 e + )81+

4
2
* 3 BYCEN “eye N :
By — j20w; — 28w? + j22w, + 6)s7+
4
2

— J3Twd — 62wl + j4Bun + 9 (2.80)

+ + + +

)i+
Oy — J38w; — 602 + 36w, + 6)s]+
2vf — j20w; — 23wi + 13wy + 2)sY
where 0 < w; < o0o. We can write (2.80) in the form:

. .4 {6wh — 320w — 28w+ 22w2+6)] 3 (93 =s37wi=62u3 4 45w +0)) 0
P(S]"]wz)/hl = s+ [ (2w] — 5wy —Twa + 4wy +2) sy + (2w] = Jbw) = Tws + Ay +1) sy

(6w — 73853 —60w2 + 736w, 4+6) ] (2wl — 1200} — 2324 ) 13w, 4+2) | 0
+ 2,8 T_=—73. 5 sy + W Tt - |
(2w} =) 5wy =Twi + 34w +2) (2wy = )fw| = Twi 44wy +2)
(2.81)
where
g 4 T 2 . . o e
Ky = (2w, — Jhw) — Twy + Jdw, +2) (2.82)

or in the form of equation (2.51)

(1208 +2w8 +3wd - 10w2 +12) (=107 20w =520} =20wb)] 4

: g .
P(s2, jun)/ke = 57 + AR Bk 1A= 12240) T J oF 3l 4178127 1) | 51

+ [ (185 —2wS 497w} —7w2 +18) +j(-2‘Jwg+3w;'-9(iwg+54wz) 42
[ (4f-3u8 17w - 1202 +4) (4 =3l F17w] 120 +4) | 71

(1203 +28w5+11 2wl - 18w2+12)
(45 -3WS +17wd —12w2 +4)

(=] 414w = 5Bw  + 4803 ) ] |
J @A s g it -1zt 4) | T

+

+ [ (4wd 44008 +24wd —8w2 +4) + - (= 30w +43w — 29w + 18w ) .
| (dwf —3wS+ 17wl - 12u% +4) J A Sa AR TA — 1222 44) |
(2.83)

The alternant Q(s;, jws)/r2 polynomial of (2.83) is

. (1205 +2w5 +3wh —10w2412)] 3 (= 29w+ Hwl = 96w i +54wd) ] 2
. oy = S 8
Qls1, jw2) /Ky Eaw U e v eyl Kl Vo s rstow s swy) Il

(12w8+28uS F11208 - 182 412) 1 .(—:um}+4’u}-z'w"+1xﬂ.')] 0
d &
+[ Ew e s on sy v yanl R Rl Vv, s o v, sy sw T 1

(2.84)



For the variable sy, the J-fraction of Q(sy, jwa)/P(sy,jw;) as in (2.53) becomes

sy, jw,) _ 1

1 o Y i), 'v 281 4+ 14 E + !
’ (.5],_[(.4)1) 1251 ] 12 Faas1+E20n+ lr_lT
Fyz2)14+E324 321 T Eg2

(2.85)

where Iy, 179, Fay, Fao, and Eyy, Eg;, Ej3y, E4q, are functions of jw,. For any value
of wy, 0 < w; < oo, we found expressions of Fia, Fyy, F3, F4;. The values of
these expressions have positive signs for all values of w,. This means that P(s;, jw;)
is a stable polynomial. Since P(sy,jw,) and P(jw,,s;) are stable polynomials, this
leads to the stability of P(sp,$). As a numerical calculation for w; = 4, equation

(2.74) becomes

P(jd, 59)/K1 = s34(2.5067—50.6097)s5+(3.2836—50.9998) s2+(2.1476~51.3267)s; +1

(2.86)
and the Q(J4, s3)/#1 polynomial of (2.86) is
QUjd. 83)/ w1 = 2506753 — j0.9998s% + 2.1476s, (2.87)
The J-fraction of Q(j4. s,)/ P 4. s;) for the variable s, becomes
Qi) _ 1
Pjd,s2)  0.3989s; + 1 — j0.084] + e —0 1 7
SIS0 o ST o saeas T0271+ =50 0516
(2.88)
Since all the coeflicients of s; in (2.88) are real positive, P(j4, s3) is stable.
Also for w, = 4, equation (2.80) becomes
P(sy,jd)/iy = s+ (3.1578 = jO.5772)s3 + (4.7597 — j1.8434)s? + (2.59)
+ (36592 — j2.9244)s; + (1.7007 — §1.7686) '
and the Q(sy, j4)/~,; polynomial of (2.89) is
Q(s1,j4)/K, = 3.1578s7 — j1.8434s3 + 3.6592s; — j1.7686 (2.90)
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For the variable s;. the J-fraction of Q(s,. 1)/ P(s1.j1) becomes

Q(S],j4) — I
P(s1,j4)  0.3167sy + 1 + j0.0021 + !
) 0.8779s;+,0.0664+ !
1V TRTRL 430 49284 e Lo
T 200

Since all the coefficients of sy in (2.91) are real and positive, P(sy, jun) is stable.

282 Stability test for multivariable polynomials using the
- generalized Routh array '

o Obtain P(jwy, jwz, ceey Spuy eeny Jwi) and ibs Q(Jwy,y jway eeey Spiy vees Jui ) Tor cach

variable s,,, from multivariable real polynomial P’(s;, 5, ... 8, ... 82).

o Arrange the coefficients of the polynomials P(jwy, .., 5., .., jwr) and

Q{Jwrs s Sms ooy Jwi) in rows and columuns according to the following pattern:

sh 1 aym+Jbim @om +jbom oo @um + jbam  — PUw1, S o JWk)
sl oap, jbam Azm veee g OF by = QUiwWi, ey Sy oy JWi)
st om Cam Cam 0 — Ind row ey,
sp dim dym dam 0 — And row d,,,,
S gim g2m 0 0 0 — (m)th row g,,,
s?n him 0 0 0 0 — (n+ )th rowh,,,
0 0 0 0 0 0 — —(n+Dth row

(2.92)
The coefficients c,,,, diy, €4, ... €1C., are evaluated using two cross multiplying pro-
cesses as illustrated in Section 2.3.
The stability conditions for a multivariable polynomial are stated in the following

theorem:

40




Theorem 2.5 If a multivariable real polynomial is stable, then for each variable sy
in P(81,84y .1y 8my .-y 8x), 6ll the cocfficients in the first column of the Routh array
(2.92), construcled from P(jun, jwy, e Smy ooy jwWi) @0d Q{Jwy, J2, voiy Smpy oy JWE)

have positive signs.

Proof

When P(sy, $2, ..., Sm, ...,Sk) is a stable polynomial, then for s; = jw,, ¢ =
1,2,..., k, 7 # m, the polynomial P(jwy,jwa, ..., Smy ..., Jwi), is stable with the Routh
array as in (2.92) and all the elements in the first column ay,,, ¢im, dim, ... are real
and positive, or otherwise Theorem 2.2 would be violated. Q. E. D.

The number of roots in the left half and right half of s,,-plane can be deter-

mined from Criterion 2.5

Criterion 2.5 [n any multivariable polynomial P{sy, 82, ..., m, .-.; Sk), for each vari-
able s, the number of roots lying on the right half-plane, Re s, > 0 is equal to the
number of changes in the sign of the cocfficients in the first column of the generalized

Routh arrvay patlern (2.92).

To illustrate how we could use the generalized Routh array for a complex polynomial

to test stability of a two variable polynomial, consider the following example

Example 2.10 Consider a fourth order real polynomial with two variables, P(s,, s3)

as in Erample 2.9. It is required to use the generalized Routh array to test stability

of P(s1.52).

For the variables s; and s, in P(s;, $2), obtain the two complex polynomials P(jw;, s2)
and P(s,Juwy). Now the pattern of the Routh array for P(s;, jw;) is given by equa-

tion (2.93)
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st an+ b ax + by as 4 jby ag + jby

s oan jby as Jba 0

st oen en c31 0 0 (2.93)
st dn dn 0 0 0

s) en 0 0 0 0

and the pattern of the Routh array for P(jw,, s;) is given by equation (2.91)

s 1 an+ by an+jbn an+ jby an+ jby

s ap Jbaa (B Jbaz 0

st en c32 0 0 (2.91)
sl dy, dys 0 0 0

sy e 0 0 0 0

The first column in the two generalized Routh arrays are:

The first column in the The fivst column in the
generalized Routh array generalized Routh array
for P(sy, jw,) Jor P(jw, s,)
4 4
Sl 1 Sy I R -
(2.95)
3 3
S a Sy y,
2 ) 2 :
S$7 11 89 €12
S} (l]] SL (112
0 0
$ €11 S9 12

<

The coefficients a3, ¢11, dy1, €11, are functions of jw,. For any value of wy, 0 < w, o,
we found expressions of aq1,¢11,dn, €17. The values of these expressions have positive
signs for all values of w;. This means that P(sy, jw,) is a stable polynomial. Also the
coefficients a2, €12, dj2, €12, are functions of jw;. For any valueof wy), ) < wy < o,

we found expressions of a2, ¢12,dy2, €12. The values of these expressions have pos-

itive signs for all values of wy. This means that P(jw),s2) is stable polynomial.
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Stability of P(sy, jw;) and P(jw;, s;) leads to the stability of P(s1,s;). Consider a
numerical caleulation for wy = 4 and w, = 4. The first column in the two generalizeu

Routh array now are

The first colummn in the The first column in the
generalized Routh array generalized Routh array
for P(sy,j4) for P(j4,s2)
5] 1 53 1
BH 3.1578 53 2.5067
o 3.5971 s 2.511
N 2.012 s 1.0834
) 0.7699 s9 1.0538 )
(2.96)

2.6.3 Stability test for muitwamable palymmmls usmg ‘the

generalized Hurwitz determmmt

o Forcach variable s,, in any multivariable real polynomial P(81,82y -ees Sy ovey SE),
arrange the coeflicients of P(jwy, jwa, ..., Sy, ey Jwi) and Q(Jwy, Jw2, ooy Sy vny i)

in the form of the following matrix:

( arm Jbzm @am 2b4m asm \ — Q(w1y .1 8myey gun)
1 apn + obim d2m 4 gbam a3m 4 2bam aam +Ibam e e — P(3wi, .oy smy ey Jun )
0 Ul Jbom Qam Ib4m — Qw1 3my ey Ju)
0 1 Aim + 0bim  a2m + 2b2m  aam 4 2b3m e . ~ P(jwy, ..,sm,..,_]u;‘)'

Am _ 0 0 e 2b2em a3m

0 a 1 Al +3bim  azm +2b2m
0 0 0 aym Jbam
0 U 0 1 aim + 3bim

\ -
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The determinant of the matrix A,, of rank (2n—1), is the generalized Hurwitz deter-
minant for the variable s,,. The stability conditions for a multivariable polyunomial

is stated in the following theorem:

Theorem 2.6 If a multivariable real polynomial is stable, then for each vaviable s,,

in P(S}g 32) sery 3,);, -uqsk)

I
Ao=1 , Bgn = {(~1)FDp >0,  g=135..,0n~1) (299

where Dy are the principal minors of the generalized Hurwilz determinant of the

matriz An.

Proof

I P(s1, 82, eySmy ooy Sk) is @ stable polynomial, then, for s, = jw, 1 =
1,2,...,k, ¢ 3 m, the polynomial P(jwy, jwaz, ...y Sy oy jwi), is stable with the Hur-
witz matrix as in equation (2.97) and all the modified generalized Hurwitz deter-

minant Aqm, Aty Aim, ... are real and positive, otherwise Theorem 2.3 would be

violated. Q. E. D.

The number of roots in each of the half-planes Re s, > 0, and Re s, < 0,

can be determined from the criterion:

Criterion 2.8 For any multivariable polynomial P{s1, 83, ..., 8m, -.., 8%), the number
of roots that lie on the Re s, > 0 plane is equal to the number of changes in lie
sign of the odd determinants Aqgm in (2.98).
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To illustrate how one can use the generalized Hurwitz determinant for a complex
polynomial to test the stability of a two variable polynomial, consider the following

example.

Example 2.11 Consider the fourth order real polynomial with two variables, as in
orample 2.9. It is vequired to usc the generalized Hurwitz determinant to test the

stability of P(sy, sy)

For the variables s; and s, in p(s;, s2), obtain the two complex polynomials P(jw;, s;
bl o )

and P(sy, jw;). Now the Hurwitz matrix for P(s;, jw;) is given by equation (2.99)

(i Jb2 asy Jbay 0 0 0 )
Ioan +jby an +jba an + jbn aqn + jby
0 ayy Jox as; Jba 0 0
Avy=1| 0 1 ayp +jbin an + jba asm + by ag + jba 0
0 0 ay Jb2 asi Jba 0
0 0 1 an+jbn an +3bn as + jba ag + jba
\ 0 0 0 an Jbay azy Jba
(2.99)
and the Hurwitz matrix for P(jw, s;) is given by equation (2.100)
(@ by a2 Jba2 0 0 0 )
Iz +jbiy axz +jbaz azp + jbaz agy + jby
0 ap Jb2 as2 Jbaz 0 0
Ar=1| 0 1 a2 +jbi2 axn + Jba2 az + jbay agy + jbas 0
0 0 a2 Jb22 az2 Jba 0
0 0 1 ayz+ jbiz a2 + b aszy + by agy + jbao
\ 0 0 0 a2 7b22 as; Jbaz ) :
(2.100)

The odd successive principal minors of the generalized Hurwitz determinant Dy,
Dy Dsy. D7y and the odd successive principal minors of the modified generalize
Hurwitz determinant Ajq, Agp. Asy, A7 from Equation 2.98, for the polynomial

P(si.jwy) are given by:



Dy = an A = apg

= —q2 '
D3y = —aj, cn Az = af; ey
v ) (2.101)
— — i y 4 = : 2
Dsy = —aj; cfy dn Asi = ajy ¢y dyy
— a2 2 J . = a2 .
D7y = ajy c; df) en An = ajy ofy diy e

Also the odd successive principal minors of the generalized Hurwitz determinants
Dh2, D3y, Dsy, D7y and the odd successive principal minors of the modified gener-
alized Hurwitz determinants Ay, Azp, Asy, A7y for the polynomial P(jwy,s;) are

given by:

D]2 = a1y Al') = Ay
_- 2 . 2 — 2 .

D3y = —aj, e Ay = af, o T

(2.102)

- 22 = a3, ¢?

Dsy = —aj, ¢}, dy; Asy = afy ¢fy diy
92 2 n ) — g2 el g2 .

Dz = aiy ¢f, df, 12 Ar = aj, oy di, o

All the Hurwitz determinants Dy, D3y, D5y, D7y, and the modified Hurwitz de-
terminants Ay, Aay, Asy, A7y, are functions of jw,. For any value of w,, 0 < w, < o,
we found expressions of Ay, Azy, AsjandAqy. The values of these expressions have
positive signs for all values of w,. This means that P(s), jw,) is stable polyno-
mial. Also all the Hurwitz determinants Dy, Dy, D5y, D7y, and the modified Hur-
witz determinants Ayy, Asy, Asy, A7y, are functions of jw;. For any value of wy,
0 < w; < o0, we found expressions of Ay, Agy, AszandAq,. The values of these
expressions have positive signs for all values of w;. This means that P(jw,,s,) is
a stable polynomial. Stability of P(s;,jw:) and P(jw,, s;) implies the stability of
P(s1,52). Consider a numerical calculation for w; = 4 and w, = 4. The odd sue-

cessive principal minors of the generalized Hurwitz determinants Dy, 1, and the
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maodified generalized Hurwitz determinant A,y Agz for P(j4,s;) and P(s;, j4)are

[)“ = +3.]578 1)31 = —135.8691 D5| = —259.59 D?] = +402.04

A= +3.1578 Ay = 4358691 Ag = +259.59 Ay = +402.04
(2.103)

Dyy = 425067  Dyp = =15.7777  Ds; = —42.9221 D7y = +49.0015
Ay = 425067  Agy = +15.7777  Asy = +42.9221 A+, = +49.0015
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A NS

3 6.4 Relatmnshxps between J»fractmn, the gex;erahzed
’ Routk may, and the modified generahzed Hm‘thz

éetermmant of multxvamable real polynomxals

In any multivariable real polynomial P(si,s2,..., 80, ..., 8), for each variable s,,,
the parameter interrelations among the coeflicients F,,, in J-fraction expansion, the
elements @y,,, b,y €1ans din s -.-. in the generalized Routh array and the odd suecessive

principal minors of the modified generalized Hurwitz determinant A, are given in

Table 2.5.

To
J-Fraction Routh Hurwit
From
Fom =1
Fim am = l/Flm Ay = l/l 1
Fam Cim = I/th Fam Aap = 1/ 1 ‘",Ilm
J-Fraction Fam dym = ]/FIHIFZm Fip, Ay = /,'l;m’ m Fym,
Fam Cym = 1/F‘Im Faun Fam Fam A = |/’ |,,,,1',,, "q,,. Fi
1 Aoy =1
Flm:]/“Im am Ay =daym,
Fom = aim/cim Cim Ay = "1,,,' b
Routh Fam = "lm/dlm dym Dy =u ,,,"’ 'l
Fam = dlm/f’lm “lm Az = (O |,,,"|,,,' 11t
Ao = |
Flm—]/Alm aIm—’/Alm A
F2m = ]/SmAlm cim =4 lru/Alm Aqyy,
Hurwitz Fam = 1/Asm /A3 /A] dim = A ,,./A,,H/Azm Ay
F“m - 1/A7'"/A /A /Alm €im = A7’"/Aun/A.1m/Alm A7"l

Table 2.5: Parameter interrelations among the J-fraction, Routh array and Hurwitz
determinant. for each variable s,, in (81,52, ooy Sauy ooy o4 ). When s, = jw, | 7 =

1,2,k 2 # m
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A summary of the main contributions in chapter 2.

Generalization of the Routh array of a coinplex polynomial P(s) using division

processes,
Gieneralization of the Routh array using two cross multiplying processes.
Derivation of stability conditions using the generalized Routh array.

Stability relationship between J-fraction expansion and the generalized Routh

array.

Generalization of the Hurwitz matrix of a complex polynomial P(s) and the

modified generalized Hurwitz determinant.

Condition for the stability of P(s) using a modified generalized Hurwitz de-

terminant.

Stability relationship between the generalized Routh array and the modified

generalized Hurwitz determinant.

Relationship between J-fraction expansion, the generalized Routh array, and

the modified generalized Hurwitz determinant.

The interrelations among the constant coefficients in the J-fraction expansion,
the terms in the first column of the generalized Routh array and the odd

successive principal minors of the modified generalized Hurwitz determinant.
Stability test for multivariable polynomials using the J-fraction expansion.
Stability test for multivariable polynomials using the generalized Routh array.

Stability test for multivariable polynomials using the generalized Hurwitz de-

terminant.
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Chapter 3

SYNTHESIS OF COMPLEX
IMPEDANCE AND COMPLEX
REACTANCE FUNCTIONS IN

s-plane

e EEEEEEEEEEEE——.,

‘3.1 Introduction

The importance of network synthesis procedures with real components is well known
in circuit theory. This chapter addresses an extension to the present methods in
circuit theory to include a new element, namely a pure imaginary resistor (jR).
Some authors have already visualized an analytic investigation of cirenits containing,
imaginary resistors [16, 17, 18].

In Chapter 2 we illustrated the use of J-fraction expansion to test the stability
of any complex polynomial. In this chapter we shall illustrate how one can use this

expansion to synthesize certain complex functions. These functions are rational and
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have non-negative real parts in the right-half of the frequency s-plane. The stabil-
ity study of a complex polynomial in Chapter 2, allows us to construct a complex
impedence funetion Z(s), and a complex reactance function X(s). Realizable com-
plex impedance and complex reactance networks are obtained by synthesizing Z(s)
and X (s} using a J-fraction expansion.

We use this particular expansion to synthesize Z(s) with four kinds of elements
( real resistors, imaginary resistors, real inductors, and real capacitors ). Also X(s)
is synthesized using three kinds of elements (R, L,C) and two kinds of elements
(jI. L) or (JIf, ("), The relationship between X (s) and its associative Z(s) is found.

['hie analysis is supported by numerical examples.

3.1.1 General Remarks about synthesis procedures

In network theory we are concerned with the following three aspects: an excitation.
a response, and a network., If the network itself is one of the two given aspects,
then the problem becomes a network analysis problem. When the network is the
unknown quantity, the process of its identification is commonly known as network
synthesis.

The problem that we are initially concerned with is to find a network realiza-
tion for a complex impedance Z(s) or admittance Y(s), also for a complex reactance
X (s) ur susceptance B(s) in the form of a rational function which is a ratio of two

polynomials with complex coefficients.

3.1,2 What is imaginary resistance (GiR)

A current in the harmonic state with complex amplitude can be written as [16]

P et = [ 2% ! (3.1)



where the real part of equation (3.1) is
Re i e = Re I ¢ ¢ = | cos(wt + ¢) (3.2)

If in equation (3.2) either I or ¢ are varying funciions of time, this is of practical
interest in the case of amplitude or phase modulation. The complex amplitude
becomes a function of {. Since the equation of resistance is linear and does not
involve the operator d/dt, it remain valid for such varying complex amplitudes 7 and
v. On the other hand, the equations of an inductance and capacitance are lincar
and involve the operator d/di, then the variation of complex amplitudes i and »

leads to the inductance and capacitance equations as

{ di
, pdwt a4 ety [ — w L1 ) ! 3
v e L‘“(zc ) (I(H—i-lez)( (3.:3)
pert = O S (e ) = (O 4 ) e (34)
di dl

Since the term jwli in Equation 3.3 does not involve the operator d/dt, it
represents the voltage drop across a time-independent element jwl. Also the term
JwCv in Equation 3.4 does not involve the operator d/dt, it represents the enrrent
through a time-independent element jw('. By writing B = Lw, in 3.3 and (¢ = ('w,

in (3.4) we get.
dr

v = (L 7 + jRi) (3.5)
{

Pt = (( % FiGo) e (:3.6)
(24

Equation (3.5) can be interpreted as representing an inductance L in series with an
imaginary constant resistance j R which is a new element defined by the instanta-
neous relation

v (1) = j Ha(t) (47)
Also equation (3.6) can be interpreted . having o capacitance (7 in parallel with
imaginary constant conductance j( which is also a new clement defined by the
instantaneous relation

iJ(; (t ) = j G U(f) (3.%)
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The only new elements generated by this approach [16], are (jR) and (jG).
Now the real networks with complex states in the form I e’ e/“! and V eI e?*! are
identical to the complex networks with real state I e?“t and V e/,

In this chapter we shall construct complex rational functions from complex
polynomials. Once we construct these functions, then their synthesis will reveal
complex imaginary resistance or complex imaginary conductance, as we shall see
from the synthesis of Z(s) and X(s).

The first motivation behind our interest in imaginary resistances is that they
will enable us study such complex networks as free mathematical creations. In addi-
tion, the theory of complex networks is of practical interest in modulation problems,

and this was a second motivation for studying the imaginary resistances.

3.2 Construction of Complex Impedance Func-

tions From Complex Polynomials

In the previous chapter we illustrated the stability test of any complex polynomial

P(s). Now consider that stable polynomial of degree n, as in (2.1)
P(“) = & + (”l +j1)1 )S"—] + (a‘l +jb2)3”_2 +..+ (an—l +jb11—1 )3 + (an +]bn) (39)

The problem now is to see how we can find a complex impedance from a given
complex polynomial (3.9). To do so we seek to find another polynomial @(s) such
that properties of Z(s) can be determined from the J-fraction of Z(s). Here Q(s) is

the alternant of P(s), defined by:

Q(s):a,.s‘"'] + jbzﬁn—? + (133"_3 + jb4sn—4 + a53n—5 + jbss"—s + ... (310)




Theorem 8.1 The alternant polynomial Q(s) of any stable compler polynomial

P(s) hes all its roots on the jw-azis.

Proof:
By assumption P(s) is a polynomial whose roots are in the left half of the s-
plane, Re(s) < 0. Denote by P(s) the polynomial obtained from £(s) by replacing

each coefficient by its complex conjugate:

P (s) = 8"+ (ay—jby)s" 4 (ar—jby)s" 2 4 .. 4 (ayoy — ibuoy)s + (ay+jb,) (3.11)

Then the roots of P(s) are symmetrical to the roots of P*(=s) with respeet to the
imaginary axis. If we regard the modulus of the polynomial as the product of the

lengths of the vectors from s to its roots, then

|P(s)] > |P*(—s)| tf Re(s) > 0 (3.12)
|P(s)] < |P*(—s)] if Re(s) < N (3.13)

Consequentiy,
|P(s) £ P*(-=s)] > 0 for Re(s) # 0 (3.11)

The alternant of P(s) is Q(s) which admits one of the following two forms

_ P(s) + P*(=s)

Pls) = (=)
Q(Q) - 2 ’

or Q(s) = 5 (3.15)

Therefore, by (3.14), the roots of Q(s) are all on the jw-axis, Q. E. D.
Now we have two polynomials P(s) and @Q(s). From these polynomials one
can find a complex impedance Z(s) or admittance Y(s). Z(s) can be represented

as:

Y

s (s
Z(s) = 23 or Z(s) = I_J‘;T; (3.16)
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We shall study first the case Z(s

Z(s) =

P(s)/Q(s)
-“'" + (“] + ]bl )Sn—l + (("'2 + jb2)3n-2 + (("3 + jbs)sn—B + + (an + jbn)

ayst=l 4 gbys™? 4 a3sn3 4 jbgs™4 4+ azstS 4+ L.

(3.17)

Z(s) has zeros that lie in the left-half of the complex s-plane, and poles that lie on

the jw-axis as shown in Figure 3.1

" Im axis
o] BRI R T
. 3
* Re axis
0 -
s-plang
2 : p
* .
4 :
-2 QO 2
(&)

"Im axis
3
N # ..........
0 Re axis
b 3
o] TP (P
4 »*
-1 0 1
(b)

N

-2

-4

;Elmax%s
S SUP S
. (@) .
‘o :
© #Reaxis
o :

o
-2 0 2
(c)

Figure 3.1: (a) Roots of P(s), (b) Roots of Q(s), (c¢) Pole-zero diagram of Z(s) =
P(s)/Q(s).

If we divide Q(s ) by

P(s) we then obtain a quotient ays + 1 + 74, and a remainder

term Ry (s)/Q(s
P(s) : Ri(s)
— = s+ 14+ j6 + (3.18
) = SATEy )
where the degree of the remainder polynomial, R)(s), is one lower than the degree
of Q(s):
Hl("‘) = 8" 2 + C'.’.'qn_3 + C3Sn—4 +c "_ + . '*'Cn--S'S + Cn-2 5 + Cn-1 (3‘19)
Therefore, if we invert the remainder term, we have
Q(s) : Ry(s)
= o . 3.20
N0 BRI X7y (3.20)
where the degree of Ry(s) is one lower than the degree of R;(s)
11’2(‘) _‘(I'] 5”“ + (1-28“_4 + (133"_5 + d.;Sn—G + e dn_gsl + dn_2 (321)

[
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Inverting and dividing again, we obtain

R](S) . 11):!(3) .
= agls 33 —_— 3,22
() s(s)+ Jss + o) (3.22)

We continue this division process of two polynomials until the remainder term of this

division equal zero. The quotient P(s)/Q(s) has in general a J-fraction expansion

of the form

Z(8)=Q(.s)-m +14+35+ ons Tt -

aas+ )3
as+ida+ gty + ey +Lt
+ aps+ i

We have seen that the process of obtaining Z(s) simply involves two divisions

(3.23)

and an inversion, and we shall call it a "two divisions one inversion’ process or a
‘division-division-inversion’ process. This terminology is consistent with that used
in the literature, in the context of the s fraction expansion of real reactance or
impedance functions, which involves one division and one inversion, process or a
‘division - inversion’ process to construct ladder networks (R, L), (KB, (") and (L, (")
[19, 20. 21].

It is known from the theory of continued fractions that, if the continued fraction
expansion of the complex polynomial P(s) to its alternant polynomial Q(s) yields
positive quotient terms, then the complex polynomial must have all roots in the left

half of the complex s-plane. See Theorem 2.1.

3.2 1 Sym;hesxs of Z{s) by four kmds nf elements

(&JRL ¢ i

S, ~

In the previous section we discussed how to perform a continued fraction expansion of
Z(s). Now we want to synthesise Z(s) to find a realizable network representing, Z(s)
as given in (3.17). By dividing the denominator polynomial (Q(s) by the numerator

polynomial P(s) we obtain a quotient first-order polynomial. This is equivalent to

"
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the removal of a series branch consisting of the series connection of a real resistor,
an imaginary resistor, and a real inductor from Z(s), i.e. (Lys + 1 +JR;) and a
remainder function which is the ratio of an (n —2) to an (n— 1) degree polynomial,

as indicated helow.,

-4 - -4
15" 4 08" 4 s 4 L enas! + o
(l]S""" + jbz_qn—'l + (l33""3 + jb4311—4 + ...

Z(s) = Lys4 14 Ry + & (3.24)

luverting the remainder and repeating the process is equivalent to removing a shunt
branch consisting of an imaginary resistor in parallel with a real capacitor from Z(s)
i-e 1/(Cys + j(i3). The second remainder function is the ratio of an (n —3) to an
(n — 2) degree polynomial.

1

Z(8) = ; ) 3.2
J("") - Ll"’+l+.] lfl +(' < + ,(" + d]s"“‘-{-dzs"“-‘-d:;s""*"-{-dqs"_6+...+dn_23]+dn_1 (3"‘5)
=120 .] T2 C|s"‘2+c23"’3+¢:3s"—‘+C4s""5+c!,s""6+...

Continuation of this process evidently yields the following expansion development

ol Z(s):

Z(s)=Lis+ 14 jR + (3.26)

Cas + G L
2 +.} 12 + L33+]R3+c o7 1 .
+ ns+)Gn

It should be observed that if n is even in equation (3.26) then the final term in the

J-fraction is ((ys + j(7,) and the last branch in the network realization is a shunt
branch consisting of the parallel combination of a real capacitor with an imaginary
resistor see Figure 3.2.a. Alternatively if n is odd then the final term is (Lns+jR,)
and the last branch in the network realization is a series branch, consisting of a real
inductor in series with an imaginary resistor. The network realization of Z(s) in
(3.17), corresponding to the J-fraction development (3.26) is shown in Figure 3.2.a
and 3.2.b for the cases when n is even and odd respectively.
Next consider the case of Z(s) = Q(s)/P(s) where

i (Ilh‘u—l + J'bzsn—'z + (133"—3 + jb4311—4 + (l5Sn—5 + ..
Z(s) = - - ;
s (a4 jbi)s" =t + (az + jb)s" 2 + . + (ay, + jb,)

(3.27)



Figure 3.2: Realization of a complex impedance Z(s) = P(s)/Q(s) in (3.17) (a) n

is even (b)

1 is odd.
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Figure 3.3: (a) Roots of (J(s), (b) Roots of P(s), (¢) Pole-zero diagram of Z(s) =

Q(s)/ P(s).
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In this case Z(s) has poles lying in the left-half of the complex s-plane, and zeros
lying on the jw-axis as shown in Figure 3.3.
The J-fraction expansion of Z(s) = Q(s)/P(s) is

: : (3.28)

1

Z(s) =

(1'].‘& + 1 +j(1’] -+

Los+3Ra+ I

Lys+iRy+ 1
+ n2+)Rn

It should be observed that if n is even in (3.28), then the final term in the continued

1=+3G3+

fraction expansion is (L,s + jR, ) and the last branch in the network realization
is series branch consisting of a real inductor in series with an imaginary resistor.
When n is odd the final term in the continued fraction expansion is (Cys + jG,)
and the last branch in the network realization is a shunt branch consisting of a real
capacitor in parallel with an imaginary resistor. The network realization of Z(s),
corresponding to the continued fraction development (3.28), is shown in Figure 3.4

when the degree n of the complex polynomial P(s) is even or odd.

Q(s)
Pee)

G=1

Z(s)=

(b)

Figure 3.4: Realization of a complex impedance Z(s) = Q(s)/P(s) in (3.27) (a) n

is odd (b) n is even.

To illustrate the synthesis of Z(s) consider the following example.
Example 3.1 Given a polynomial P(s) with compler coefficients
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P(s) = s*+ (5= j5)s® 4+ (0~ j19.75)s* + (— 18.375 = j17.875)s — (13.125 — j0.625)
(3.29)

A complex impedance which can be created from P(s) and its Q(s) is

s* + (5 —75)s® + (0 — 719.75)s? + (—18.375 — j17.875)s — (13.126 — j0.625)

Z(s) =
(s) 553 — j19.755% — 18.3753
(3.30)
with the roots of P(s) and Q(s) given by:
Roots of P(s)are A =-2+4+305 A =-15+71 Adg=—1+;2
As=-0.5+;1.5 (3.31)
Roots of Q(s) are m, = +j2.5 N2 = +71.4147 73 = +0.0353
The J-fraction of Z(s) = P(s)/Q(s) is
P(s) . 1
Z(s) = =0.2s4+1-70.21 + -
)= 36 J 0.63925 — j0.T387 + et
(3.32)

All the coefficients of s and the constant terms in this expansion are either positive
real or pure imaginary numbers respectively. This means that we can synthesise a
complex impedance Z(s) by using a real resistor, imaginary resistors, real inductors

and real capacitors. The corresponding network is shown in Figure 3.5

R=1n R=jo21n L=02h R 7-j1.6616 £ Ly=12527h

o H 100
l G Fj046418 <s

Z(s)= o G2=-j0.7387 L%
s
I L—_'—l
Z =3.162
Co=0.6392 [ l 4 4
®

Figure 3.5: Realization of Z(s) in equation (3.30)

In the previous example, the degree of the numerator of Z(s) is higher than that of

the denominator by one and the corresponding network started by a series branch
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consisting of the series of a real resistor, an imaginary resistor, and a real inductor.

In addition the last branch is a shunt branch consisting of an imaginary resistor in
parallel with a real capacitor. Now the synthesis of a complex impedance Z(s) =

)(s)/P(s) is given in the next example.

Example 3.2 Consider a complez P(s) as in Ezample 3.1, then construct a complex

impedance Z(s) = Q(s)/ P(s)

583 — 719.755% — 18.375s

A= TS B9 + (0= J19.75)5% + (—18.375 — j17.875)s — (13.125 — j0.625)
(3.33)
The J-fraction expansion of Z(s) (s)/ P(s) is given by the following.
O(s) 1 o
/(s = _ ‘ 3.34
ay P(s)  02s 415021 + : ] l .

0.63925—30.7387+ ooy TT6ZTr =73 TITE
£~14

Z() can be synthesized by using (7, jR, L, and C and the corresponding network is
) ’J 9 bl

shown in Figure 3.6.

R2= -J0.7387 £ L2 =0.6392h R =-.j046418 £» L4 =3.162 h
4

° oo 1+000

G =021

G = j1.6616

Q(x)

Z(s)= Pow C, = 1.2527f
— —
G=lvs (o] PN 02f

@

Figure 3.6: Realization of Z(s) in equation (3.33)

In this example the degree of the numerator of Z(s) is lower than the degree of
the denominator by one, and the corresponding network started by a shunt branch
coasisting of the parallel combination of a real resistor, an imaginary resistor, and

a real capacitor.
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3.3 Construction of Cnmplex Reacté‘gice Func~

~

tions From Complex Polynomials

Before we discuss complex reactance functions, and show how to svnthesise X(s)
using the J-fraction expansion, we first discuss, in brief, the real reactance function
[19, 20, 21].

In general a real reactance function .r(s) is the ratio of even to odd or vdd to
even parts of a real stable polynomial p(s). The poles and zeros of w(s) lic on the juw-
axis and alternate. The words even and odd are sufficient to describe the two parts
of the real polynomial. However when we started to study complex polynomials
and complex reactances we found that we can not extend the commonly understood
definition of real reactance to complex reactance. We therefore need to generalize
the definition of real reactance functions to include complex reactance functions as
well.

It will be general if we describe the two parts of a real polynomial by a real
and an imaginary or {quasi real and quasi imaginary} parts when s = jw. It is true
that the real, {quasi} real part of the real polynomial p(s) at s = jw is the even
part of p(s) and that the imaginary, {quasi} imaginary part of p(s) at s = jw is the

odd part of p(s).

Definition 3.1 [22]: A polynomial P(s) with complez cocfficicnts is said to b quasi-

real (quasi-imaginary) if its value for s = jw is purely veal (purely imaginary).

Now we can say that a real reactance function z(s), in general, is the ratio
of quasi real to quasi imaginary or quasi imaginary to quasi real parts of the real
stable polynomial when s = jw.

The reason for this comes from a study of a complex reactance function X ()

and a complex polynomial P(s). We can state here that:
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o A real polynomial p(s) is a special case of a conplex polynomial P(s).

o A real reactance function «£(s) is a special case of a complex reactance function

X(s).

o For a real polynomial p(s), the quasi-real part of p(s) equals the even part of

p(s).

o For a real polynomial p(s), the quasi-imaginary part of p(s) equals the odd
part of p(s).

becomes
) —

e Il a complex polynomial P(s p(s) a real polynomial, then a complex

b )
reactance X(s) =57 r(s) a real reactance.

Here we can say that a complex reactance function is the ratio of a quasi real
(¢t P(s)) to a quasi imaginary (g/m P(s)) or vice-versa. With this introduction of
real reactance and complex reactance functions we shall now study in detail how
to find a complex reactance function, and how to synthesise this function using the
J-fraction expansion.

We start {rom a stable complex polynomial P(s) of degree n as in (2.1). The
problem now is how we can find X(s) from P(s). To do so we have to divide P(b)

into its quasi-real (¢Re P(s)) and quasi-imaginary (¢/m Pys)) parts, respectively.
P(s) = qRecP(s) + qlmP(s) (3.35)
where for even n the quasi-real and quasi-imaginary parts of P(s) are given by:
qReP(s) = 8" + jbys" ' + aps" % 4 jbys™ 2 4 .+ jbuys + ayn (3.36)

qImP(s) = ays" ™'+ jbas™ 4 ags™ 3 4 jbys" " o+ @ners + jba (3.37)

It should be observed that if n is odd, then the quasi-imaginary and the quasi-real

parts of P(s) are given by:
gImP(s) = s" + jbis" ' 4+ 8" 2 4+ jbys" P o+ dpo s + jb, (3.38)
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qReP(s) = ays" ™' + jbys" ™ + azs™ ™ 4 jhys P 4 jba_is + . (3.39)

If we examine very carefully the g/m P(s) when n is even in equation (3.37) or the
qReP(s) in equation (3.39) when n is odd we can conclude that these equations are

the same as the alternant polynomial Q(s) of P(s) in equation (2.2).
Q(s) = qlmP(s) tf n ocven (3.10)
Q(s) = qReP(s) if n oodd (3.41)

From the qReP(s) and q/mP(s) polynomials we can find complex reactance or

susceptance functions. The complex reactance function X(s) can be represented hy

., _ qRe P(s) ' S qliP(s) -
X(s) = qlm P(s) 7 Als) = m (3-12)

There are some papers [23, 24] which discuss complex reactance functions
and each of them has a different way to deal with the complex reactance funetion
For example we have defined here a complex reactanee function from ¢ Re P(s) and
qImP(s). In Bose’s paper [23] he defines a complex reactance funetion from P(s)

as
P(s) — P*(—s)
P(s) + P(==)

In Reza’s paper [24] he defines the numerator and the denominator of X(s)

X(s) = (:3.13)

from a set of arbitrary points within the right-half of the frequency s-plane.

1 — %b—cn;%s—ug;}s—-(n;... .gs-n.,;
7 _ sty ) (star){sd-o)..... stay 0
A (S) - 1+ (s—a1)(s—c2)(s—a3).. ..(s—=rvy) (" 14)

(s+a))(s+az)(s+aa). .. {s+ay)

'3.3.1 Synthesis of X(s) by three kinds of elements (R, L, ().

Once we construct X(s) from a given P(s), consider the case X (s) = qlte I(s)/qlm 1(s).

when the degree n of P(s) is even:

SnF Jbisuoy + @psi—g + Jhysos + agsua 4+ o+ jbys +oa, " Ar
X(s) = . : . (3.45)
@18uat + Jb2sucz + agsyug + Jhasia + oo oy s + by,
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To synthesise X(s) we have to expand it using J-fraction expansion as

1

X(s) = Lys+ j Ry + : (3.46)

Lis+3R 1
3 J 3+C4-'+JGQ+ . '+1R5+—l—1_
+cn-‘+13n

The network realization for a complex reactance function X (s) in (3.45) which is

Cos 4Gz +

synthesised by the expansion in (3.46) is shown in Figure 3.7.

qRe.P(s)

X(s)= -
(o) qlm.P(s)
@

X(s)=

qlm.P(s)

Figure 3.7: Realization of a complex reactance X(s) = ¢Re P(s)/qImP(s) in (3.45)

(a) nis even (b) n is odd.

Consider the case when X(s) = ¢ImP(s)/qReP(s)

sy + Jb2su_y + azsy 3+ jbasu-a + ...+ an_1s+ 3o,

N(s)= . . - 3.47
(+) Sp + jhysnoy + a2snog + jbasng + .o+ jh15 + ap (347)
The J-fraction expansion in this case becomes
Y(s) : (3.49
X(s)= .
Cys + jGy + !
! Jtn L2’+"R2+c3.-+;c;3+ — —

Lys+iRe+
+ ne+iRn

The network realization for X(s) in 3.47 which is synthesised by the J-fraction in
348 is shown in Figure 3.8.

To illustrate this synthesis consider the following example.



(b)

Figure 3.8: Re=lization of a complex reactance X(s) = qlmP(s)/qRe P(s) in (3.17)
(a) nis even (b) n is odd.

Example 3.3 Consider the stable compler polynomial P(s) as in Erample 3.1,
The alternant polynomial of P(s) is given by
Q(s) = 5s% — J19.75s% — 18.375s + j0.625 (3.149)
the quasi real part of P(s) is given by
qReP(s) = s* = 358" +0s% — j17.87hs — 13.125 (3.50)
and the quasi imaginary pary of P(=) is given as
qImP(s) = 5s° — j19.75s2 — 18.375s + j0.625 (3.51)

As we mentioned before, when the degree of P(s) is even, the alternant poly-
nomial @(s) of the complex polynomial P(s) is the quasi imaginary part of [’(s),

see equations (3.49) and (3.51). From these polynomials one can construet X{s) as

X(s) = qReP(s) _ ,g4—_’j5.g.’5+(J.qz'_.j]7..875)s - 13125 (3.52)
glmP(s) Hs3 — j19.75s% — 18,3756 + 70.625

The pole-zero diagram of X () is shown in Figure 3.9
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s-plne -2 . -2 el

: . . ] . 4 : . g .
2 0 2 2 0 2 2 0 2 -2 0 2
(a) (b) (©) (d)

Figure 3.9: (a) Roots of P(s), (b) Roots of Q(s), (c) Roots of gImP(s) (d) Pole-zero
diagram of X(s) = qReP(s)/qImP(s).

The J-fraction expansion of X(s) is

qRe P (s 1
=’—'—)(fl=0.2s—j0.21+ A :

qlmP(s) 0.6392s — 50.7387 + T2 s Farm——

(3.53)

X(s)

and the corresponding network is shown in Figure 3.10.

R =j021 . L=02h R =:jl1.6615 £ L,=1.2527h

qReP(s) G =-j0.7387 +r | G £-j046418 |
X(1)= Py oy ) 2 :
| I—

C =3.162{]
4

Cy=0.6392 [

Figure 3.10: Realization of Z(s) in equation (3.52)

Now we want to synthesize a compilex reactance X(s) = q/mP(s)/qReP(s)

for the following example
Example 3.4 Consider the stable compler polynomial P(s) as in Erample 3.1.

In this case,

_qlmP(s) 5s% — 719.75s% — 18.375s + j0.625
T qReP(s) T 81— j5s3 4 082 — j17.875)s — 13.125
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The roots of P(s) and Q(s). and the poles and zeros of X(s) are given by (:3.55)

Zeros of X(s) are =z = +j2.5 2=y LMT 2y = 4500353
Poles of X(s) are p; = +4.1433 p2=+j1.8499  py = 4;0.9031
Py = —j1.8962

3.55)
Roots of Q(s) are ny = +j2.5 2 =+iLA1T gy = +50.0353
Roots of P(." are Ay =-24j0.5 JAp=-15+j1 \g=—1+ 2
A,; = —05 +]1.5
The J-fraction expansion of X(s) is
X(s) = ! 3.56
028 — 021 4 ' (13.56)

0.63925~30.7387 !
pES=IT '+|2527.--,|¢,(.1'.+r—-—1——-_

11t~ 4 b4 ]R

The network realization is shown in Figure 3.11.

R2=-j0.7387 £ L2 =0.6392 h R4= -J0.46418 . L4 = 1162 h

¢ [ 000 ——{ 000"

G ,=j021~s Ga=-jl.6615 w |
qlmP(s) l |
X(8)z ———
aReP(s) — (—
C,=027 C .= 125271
o—

Figure 3.11: Realization of Z(s) in equation (3.54)

3.3.2 Synthesis of X{s} by two kinds of elements
{iR,.L or jR,C). 5

In the previous subsection we synthesized X(s) by using a J-fraction expansion
which depends on the division and inversion process and we named it a (division
division-inversion) process or a (two divisions one inversion) process. These division

processes are equivalent to the removal of some elements like imaginary resistors.
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inductors and capacitors from a complex reactance X (s). The quotient from the
division process is a first order polynomial equivalent to a removal of two elements
al & time such as imaginary resistor-inductor or imaginary conductor-capacitor from
a complex reactance or susceptance function.

Now we shall use the S-fraction expausion to synthesise the same complex
reactance funetion X(s) in 3.45 but in this case we shall restrict the division process
to be equivalent to the removal of only one element from X (s). Here we can say
that the S-fraction expansion depends on the (division-inversion) process.

Consider a complex reactance function X (s) as in (3.45). By using the (division-

inversion) process, the S-fraction expansion of X(s) = gReP(s)/qImP(s) takes the

form:
, gRP(s) 1 o e
X(s) = ———= =1L;s 3.5
i) T e e o
p] “+L5$+——1L

+_—E%_.__
Lan—1+5g-

The realization for X (s) in (3.57) is shown in Figure 3.12.

L L L
L, L, Ly 7 9 on.1
OO~ WO~
gReP(s) o - c iG .
gImP(s)
e I | | |

Figure 3.12: Realization of X (s) in equation (3.57)

Consider now a complex reactance function equal to gIne P(s)/qReP(s), as in

(3.17) then the S-fraction expansion in this case becomes

1
F13+ ]1l

L~33+ 1
Ryt
Mt e T— O

+
02"_l+1;27.

and the network realization of X(s) is shown in Figure 3.13.

_qlmP(s

Als) = gReP(s

)=
)
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n-1

Figure 3.13: Realization of X(s) in equation (3.58)

3.3.3 An alternative synthesis of X{5) by two kinds of ele-
wments (R, I or iR, C).

To have an alternative realization of a complex reactance function in (3.45), using,
S-fractions expansion, arrange both the numerator and the denominator of N(s) i
ascending powers of s as in (3.59).

(ln+jb1|,—l + ---+j1)38“_3 + (12311—2 +j1)ls“_l + 4"

X(s) = - .
( ) jbn—l + ady + ... + a38y-3 + f["l""'n—z + ”l'q"_'

(3.59)

then divide the lowest power of the denominator by the lowest. power of the numiera-
tor, invert the reiaainder and divide again. We defined this as a (division-inversion)
process.

_ qReP(s) l

= = i)+ — '
glmP(s) (s + s+ = )

Ji 4
vm—;_—__L:E
PLOTE & e

The realization of X(s) in (3.59) which is synthesised by the S-fraction in (3.60) is

X(s) (3.60)

shown in Figure 3.14.
Also to obtain an alternative realization of a complex reactance X(s) in (3473,

arrange both the numerator and the denominator of X(s) in ascending power of »

.jbn + Ay + ..+ 35— + .j()Z's”—z + “l"‘m_l
o+ Jlrcy F oo Jhas™ 3+ apsm T2l 4 s

X(s)= (3.61)
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iR, JR iR iR R R

3 5 7 9 2n-1
@ —
GReP’) |EEE EEEE NN IS EEE 44040
X(s)= ( ] ] [ ]I I — —
C
ImP C
almPls) ¢, Cy Cs Cg 10 n

Figure 3.14: Realization of X(s) in equation (3.59)

then use the (division-inversion) process to find the S-fraction expansion.

_qlmP(s) 1
T ogReP(s) T G+

X(s) : (3.62)

Lyt 1 T

G
16yt Toct
+ G "
I¥2n—1 2n*

The network realization for X(s) in (3.62) is shown in Figure 3.15.

L,s
2 -0-,0,3+

L
Lg Ly 2n-2

I |

Figure 3.15: Realization of X(s) in equation (3.61 )

To illustrate the synthesis of complex reactance functions using the (division-

inversion) process, consider the following examples.
Example 3.5 Consider a compler reactance X(s) as in Example 3.3.

The S-fraction expansion of X(s) = qRe P(s)/qImP(s) is

) Re P(s 1
Ns) = LRLE) g '
qImP(s) 717619 + 0028 I
‘ —15 6362+ 1
J PeEe J0 73374 8 22152 s+
. ;:o 0[9:3:5

(3.63)



X(s) can be synthesised by using imaginary conductances and real inductors, con-

nected as a ladder network. The corresponding network is shown in Figure 3.16.

L = 02h L3 =0.0282 h L5 = 0.8945 h Ly = 82262 h

— 000 —— 000 —

G_=j4.7619 % G = 6.6362 W G =j0.7337%7| Gg=j0.0933 v

Figure 3.16: Realization of X(s) in equation (3.63 )

Example 3.6 Consider a compler reactance X(s) as i Erample 3.4,

The S-fraction expansion of X (s) = q/mP(s)/qHRcP(s) s

.y qImP(s) 1
X(s) = qReP(s) — 0.2s + L

761¢
J4 ]J+o 0282 <4 1

-5 6362 1
J + 0 89454 1

J0 TN
8 22424 53

In this example, X(s) can be synthesised by using imaginary resistances and real

(3.6:1)

capacitors which connected as a ladder network.  The corresponding network is

shown in Figure 3.17.

R, =j4.76195> R ,=:j5.6362 £2 |z j=0.7937 €> Rga j0.0933 £

— T

qimP(z) R | [ [
X(8)= —————
gReP(s) L] [ ] I 1
c, =02f Cy =0.0282f C g 82252 C,=0.89451
° .

Figure 3.17: Realization of X(s) in equation (3.64)

Now the alternative ladder network of a complex reactance function in Fxamn
ple 3.5 can be obtained by writing the polynomials of X () in (3.52). in ascending

power of s as in the following example:



Example 3.7
v qReP(s) —13.125 — 717.875s + 0s* — j5s% + sy
S = =

= = 5
glinP(s) 70.625 — 18.375s — 719.7552 4 553 (3.65)
The S-fraction expansion of X(s) is given by
qReP(s) . 1
X(s) = - = 720 + ]

qlmP(s) 0.0017s + 1208256+ ———— — )
_113756+22735!+m‘}'_ﬁ;’- .
(3.66)

The corresponding network is shown in Figure 3.18

= J2rE R ,=:j20.8256 £ R 5=J1.3756 £ R, =j7.4248 £

- T e M o A
. Ll —— m— —
— —

qImP(») —— I

C,=00017f C, =2.4089 f Cp=2.2735f Cg=03159f

4

Figure 3.18: Realization of X (s) in equation (3.65 )
Example 3.8 The allernative ladder network of the complex reactance function in
Irample 3.6 can be obtained by writing the polynomials of X(s) (3.54) in ascending

power of s as follows:

qRCP(s)  j0.625 — 18.375s — j19.75s2 + 53

X(s) = = 3.67
(+) glmP(s)  —13.125 — j17.875s + 0s? — 7533 + 54 (3.67)
, qImP(s) 1
X(s) = = - 3.68
() qReP(s)  J21 4 T 1 ( )
20 et et B
—71 37564 1

2213804 ——
—J7 4248+ 5i5Ey

We can synthesize the complex reactance X(s) by using imaginary conduc-
tances and real inductors connected as a ladder network. The corresponding network

i> shown in Figure 3.19.



L3=00017h L j=2.4089h Lg=22736h  1o.03159 A
@
qlmP(s)
X(s)=
qReP(s)
Gy=j2lxs Gg= -j20.8256 < Gsn-jl.3756 T | Gr=-jl4248 7
P .

Figure 3.19: Realization of X(s) in equation (3.67)

3.4 Relationship Between Complex Reactance and

its Associated Complex Impedance Function

A complex polynomial P(s) can be separated into its quasi paits as in (3.36) and
(3.37) for n even or as in (3.38) and (3.39) for n odd. A complex reactance and a
complex impedance functions are defined by equations (3.16) and (3.42). Also the
alternant polynomial Q(s) is defined in (2.2).

From (3.35) and (3.40), we can rewrite Z(s) for n cven as

P(s) qReP(s) + qlinl(s) o
s) = = 3.0¢
209 = 0 g P(%) (13.69)

or

N Q) qImP(s) .-
Z(s) = _[3(_9) T qRP(s) + qlmP(s) (3.70)

Also for n odd we can write Z(s) as

_ P(s)  qReP(s) + qlmDP(s) o
20s) = Qs) qgReP(s) (3.71)

or

L Qs) qRel(s) o
Z(s) = P(s) — qRcP(s) + qlmP(s) (3.72)

Next we discuss the case when the degree v of a complex polynomial 17(s) is even

and Z(s) = P(s)/Q(s). The same analysis follows when nis odd. From (3.71) we
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have

P(s) _ qReP(s) + qImP(s) _ qReP(s)
Qs) gl (s) ~ qImP(s)

Z(s) = +l=X(s)+1 (3.73)

We can write this relation in term of rational function as

qReP(s) _ P(s) | = P(s) — Q(s)
glm.P(s) Q(s) Q(s)

It should be observed that if we know either Z(s) or X (s) then the other can

(3.74)

be obtained, ( see equations (3.17) and (3.45)). Also if we know the J-fraction of
Z(s) or X(s) then the J-fraction of the second can be obtained ( see equations (3.26)

and (3.46)). See also Figures (3.2) and (3.7).
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The relation between complex polynomials P(s), Q(s), qRe P(s). and qlin P(s)

and complex functions Z(s) and X (s) and the corresponding networks is shown in

Figure 3.20.

n is the degree of

Py

Synthesis 2(s) by 4 types
of elements R, jR, L, C

Synthesis X(s) by 3 types
ofelements jR, L, C

Synthesis X(s) by 2 types
of elements jR L or jR C

Alternahive synthesis X(a) by 2
typesof elements jRL or jR.C

qReP(s)
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Figure 3.20:

Relationships between P(s), Q(s) qReP’(s), qlmP’(s), Z(s), and X(s),

corresponding networks
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Chapter 4

SYNTHESIS OF A COMPLEX
REACTANCE FUNCTION X(z)

in the z-plane

4.1 Introduction

In Chapter 3 we illustrated how an analog complex reactance function X (s) can be
synthesised in the s-domain. In this chapter we shall illustrate the synthesis of a
discrete complex reactance function X (z) in the z-domain. X(z) can be obtained
directly from X (s) by using certain transformation. Further, it can be obtained from
any stable complex polynomial which has all the roots inside the unit circle in the
z-plane. Discrete complex reactance function could be implemented or synthesized
by an algebraic equation obtained directly from X (z). The algebraic equation could
be implemented by a computer program, a digital circuitry, or a programmable
integrated cireuit. Direct evaluation of the algebraic equation is one of the many
possible ways of realizing a discrete complex reactance function. The purpose of

this chapter is to illustrate the realization of a discrete complex reactance function

b |
-1




X(z), e.g algebraic realization. partial fraction expansion realization (parallel real-
ization), cascade realization, J-fraction expansion realization, S-fraction expansion
realization, ... etc. A discrete complex reactance function can be implemented by
using delay elements, which are equivalent to inductors, capacitors or imaginary
resistors {jR} (energy storage elements) in the s-domain, as illustrated in Chapter
3. In the present chapter, a mathematical trausformation method known as bilincar
transformation [25] is used to transfer X(s) to a discrete complex reactanee function

X(z) in the z-plane. The bilinear transformation is given by

s+ 1

s—1

- e
- =

(+.1)

Using this transformation, the left hand side of the s-planc in Figure 4.1.a, can be

mapped into the unit circle in the z-plane as shown in Figure 4.1.h.

(@) S ®)

Figure 4.1: (a) Left side of the s-plane. (b) The left side of the s-plane mapped into
unit circle in the z-plane by a bilinear transformation.

A complex reactance function X (s) in the continuous domain, given in equa-
tion (3.43) can be represented by

P(s) — P*(-s)
P(s) + P(-s)

X(s) = (1.2)
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where P(s) is a complex polynomial with all its roots in the left hand side of the s
plane, and P~(—s) is the polvnomial obtained from P(s) by replacing, the coetlicients
by the respective complex conjugates, and s by —¢. The roots of P(s) and P*(=+)
are symmetric with respect to the imaginary axis as shown in Figure L.2.a.

An analog complex reactance function X(s) in (1.2) can be transformed to a
discrete complex reactance function X(z) using the bilinear transformation (-1.1), as

follows
P(z) - =N Pe(z7h
Pz} + N P=(z)

where P(z) is a complex polynomial with all its roots inside the unit cirele in the

(1.33)

z-plane, and P*(=~!) denotes the polynomial obtained from P(z) by replacing cach
of its coefficient by its complex conjugate and = by z7'. The roots of P(z) are

reciprocals of those of =V P*(z~'). See Figure 4.2.1.

3 [* Im axis
2 o » N J
o | = :
l ........ O crees ceee * .: ......
o] b 3
0 :
Re axis
-l ) .: 4
s plane
-2 2 0 D) 270
(a) (h)

Figure 4.2: (a) Roots of P(s) and P*(—s) in the s-plane. (b) Roots of I’(z) and
zNP*(z7")in the z-plane.

The poles and zeros of a complex reactance function X (s) in (4.2) alternate
on the jw-axis in the s-plane, but they need not appear in conjugate pairs as shown
in Figure 4.3.a. The poles and zeros of a discrete complex reactance funetion X(z)
depicted in equation (4.3) alternate on the unit circle in the z-plane, however they
need not appear in conjugate pairs. as shown in Figure 4.3.h.

Different methods of realizing a discrete complex reactance function X (x) are
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Imaxis
4 . . o

7

2 : i N

Re axis

s-plane

'
]

@)
Fignre 4.3 (a) Pole-zero diagram of X () in the s-plane. (b) Pole-zero diagram of
X ( z) m the z-plane.

illustrated in the following sections. Classical methods for realizing a system function

can be found in [26, 27, 28], and those for realizing complex functions, in [29].

4.2 Aigebraic Realization of a I}isérjete 'Compiex

Reactance Function X(z)

A diserete complex reactance function X(z) can be characterized by the following

rational function:

oo Ple) = N Pe(h) _ SN olak + jbi)z~k _V(2) :
X(z) = 5 NP = N Ry (4:4)
P(z) + N P(z7")  Tilolen + jdi)z I(z)
The algebraic equation of X(z) is given as
N N
(co+d)V(z)= =D (ex + jde)="RV () + > (ax + Gbe)z"*I(z) (4.5)
k=1 k=0

A realization of a discrete complex reactance function X(z) using (4.5) as
shown in Figure 1.4, will be called the algebraic realization. The delay blocks repre-
sent a form of storage and delay, ' x’ represents a multiplication, and ' Y’ represents

a summing operation. The number of delay blocks is equal to 2N. The delay blocks
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(sample storage elements) are equivalent to the energy storage elements: inductors,
capacitors or imaginary resistors in lumped circuit complex reactance function \'(s)

as we illustrated in Chapter 3.

16}
C L}
T O
V)
xf#)"}'&'}"‘ Sog
Wé(}
B |
@
Co
3

Figure 4.4: Algebraic realization of a discrete complex reactance function X(z).

43 Intermediate Result Realization of a Discrete

Complex Reactance Function X(z)

Another realization of Equation (4.4) can he obtained by breaking X (=) into a prod
uct of two functions X;(z) and X,(z), where X;(z) contains only the denominator
or the poles of X(z) and X,(z) contains only the numerator or the zeros of X(z) as

shown below:

X(z) = Xi(z). Xa(z) = V(2)/1(z) (1.6)

where
X\(z) = ! %) = e
n ;\-\;—.O(CL-'*'J'(I;L-)Z"' 20<) = P Kt g0z )

The intermediate result W(z), is the ontput of X (z) and the input of X,(z) as

shown in Figure 4.5.
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Figure 4.5: Decomposition of a discrete complex reactance function X(z).

Xi(z) and Xy(z) in Equation (4.7) can be written in the form

Xiz) = ) : (4.9
P IR T S+ )= |
, Viz) & K
Yo(z) = il E(ﬂk + Jby)= (4.9)
W) &
The algebraic equations involving X, (z) and X,(z) are
AY
(co + do)W(z) = — E("k +id)z W () + I(2) (4.10)
k=1
N
Viz) = = 3 (ax + jby)z7F1(5) (4.11)
k=0

A realization of X(z) using equations (4.10) and (4.11), shown in Figure 4.6, will
be called the intermediate result realization.

For simplicity, the analysis of X(z) can be started in (4.4) by making the
coeflicient (eg + jdy) equal to unity. Then, the two branches of delay elements in
Figure L6, can be combined into one branch with the delay elements as shown in
Figure -L7. This will be called the intermediate result simple realization of a discrete
complex reactance function X(z). The number of delay blocks is equal to N, which
is the order of the algebraic equation. It can be shown that N is the minimum

number of delay elements.

o
(8]



I(z)

V(z)
I(2)

X(z)=

Figure 4.6: Intermediate result realization of a discrete complex reactance function

X(z).

Iz)

Figure 4.7: Intermediate result simple realization of a diserete complex reactance
function X(z).
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‘4.4 Cascade Realization of a Discrete Complex

Reactance Functioﬁ X(z) | .

In the cascade realization, a discrete complex reactance function X (z) is broken into

a product of complex reactance funetions X,(z), Xo(z2), ..., Xi(z).as follows
Xi(z) . Xo(2) - X5(2) . oo Xi(2) (4.12)

and is shown in Figure 4.8

Figure «1.8: Cascade representation of a discrete complex reactance function X(z).

Fach Xj is a rational expression in 27!, X(z) could be broken up in many ways.

However, the most common cascade realization requires each of the Xi’s to be of

the form:
(aok + jbor) + (a1 + jbx)z"?
(cox + Jjdox) + (e + jdie)z?

By letting ayx, by equal to zero, Xi(z) will contains only poles. Letting ¢y

Nilz) = (4.13)

and dy; equal to zero, Xy (z) will contains only zeros. Each of the X(z) could then
realized by using either the algebraic realization as in Section 4.2 or the intermediate
result simple realization as in Section 4.3. For simplicity, the coeflicient (cox + jdox)
could be made equal to unity. The general cascade realization using the algebraic
realization is shown in Figure 4.9, and the intermediate simple realization is shown

in Figure -1.10.




e

%02 ity

W 10

—9©
¥ cor tCoz k-1 fc,, 4
1) X(2)=W @l 2) Xfz)=W @)W ()

X‘z): Vi)W (2) V(z)

k-1
X (z)=V (2) (2)

Figure 4.9: A cascade algebraic realization of a discrete complex reactance function

X(z2).

o X ()< (il(e) X 2)=W ()W ()
It2) X@)=V()lifz)

(o]
X {z):V(z W (kz-ll Viz)

Figure 4.10: A cascade intermediate result simple realization of a diserete complex
reactance function X(z).



4.5 Partial Fraction Expansion { Parallel ) Re-
' alization of a Discrete Complex Reactance

Function X(z)

In the parallel realization, a discrete complex reactance function X (z) can be written

as a sum of complex reactance functions Xy (2), Xa(2), Xs(2), ..., Xi(z) as follows:
l b b

X(2)=Xi(2) + Xa(2) + Xa(2) + e + Xi(2) (4.14)

This is shown in Figure 4.11.

Figure [L.11: Parallel representation of a discrete complex reactance function X(z).

Each X is a rational function in =~'. X'(z) could be broken up in many ways;
however, the most common parallel realization requires each of the X)’s to take
the same form as in (4.13). Note that X;(z) includes a special case. For example,
by letting ayx o bix . ¢k, and dix equal zero, Xi(z) contains neither poles nor
zeros. And letting cix + jdix equal to zero, Xi(z) will contain only zeros; and letting
ayk o bix equal to zero, Xi(2) will contain only poles. Each of the X (z) can then be
realized using either the algebraic realization or the intermediate simple realization.

The general parallel realization is shown in Figures 4.12 and 4.13 .




X (z)=V ;2)/1 (z)

X{z):V (2)/1 (2)
]

Figure 4.12: A parallel algebraic realization of a discrete complex reactance funetion

X(z).
G
I(z)
- - C
§ 1 X Th
- jd I d -
" J 11 j— 2 ¥ J 1 F A 7|
Zz
Xiz)= 1= n ‘ a0 12 02 1k on
b ) b ib 1 Jh
J J J J b »
11 01 12 02 b Ok
g @
Viz) * Viz , Viz)
1 i z 2 e k *
Viz) Xﬂz):V{z)/I (z) lez)=V2{z)/I (z) Xh(z)sv,[zlll (z)
O y

Figure 4.13: A parallel intermediate result simple realization of a discrete complex

reactance function X(z).
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4.6 J -Fractmn Expansmn Reahzatmn of a }313-

“crete Complex Reactance }?‘imctzon X(z)

[n the J-fraction expansion illustrated in Chapter 3, the realization of a discrete

complex reactance function X(z), given by

(ag + Jbo)z™ + (ay + jby)zV=1 4 (ag + jby)zV 2 + ... + (an + jbn)2°

X(z)= . : - -
(z) (co+ Jdo)zN + (3 + jdy)2VN=1 4 (co + jda)z¥-2 + .. + (en + Fdn)2°

(4.15)

can be written as:

V(s) = (dy+ jby)+ l

Als) ={dy + Jby ; - : 1

(4 Jm)z+ (4 )+ (qz+1pz)z+(d2+gbz)+(q3+w3)=+(d3'ﬂb3)+q__

(4.16)

X(z) in equation (4.16) can be realized through a series of synthesis cycles involving

the extraction of the first and the zeroth order complex functions as follows
X(z) = (do+jbo) + Xi(z) (4.17)

This yields a parallel continuation of do + jbo with X;(z). The complex function

Xi(z) 1s now given by

)
I Gt @i rabr)e :
.\rl ~) = - . - — q1+iP -]1 10y ~ (4,18)
(i +am)z+ (dy + i) + ‘\'1-(") 1+ (tn+JP|)+(d1+Jbl)"" )‘2(:)
(ll!llt"fv)}(’lflz'; - T (Q|b+)1(21)z';) :
Y 1H(dy by ) gi+ym )~ =~ _ 14 (dy 426y 1435 )z~
‘\l(") I+ (ntam)i=—! Y. (.,) - 1+ (Q1+1P))z"L X. (~) (4'19)
14+ (dy F20 {497 ) 12T 2L 1+(dy +2600)(Q1+2 Py )z—T 2\~

Thus Xj(z) can be realized as a closed loop with a feed-forward term and a feed-
back term X;(z). The feed-forward term itself can be realised as a closed loop with
a feed-forward term ((q + jp1) 2)7! and a feed-back term (d; + jb;). The feed-back
term .\3(2) has an expression given by

1

Xy(z) = - - - 4.20
1) = 7o) + (A 302 + Xa(2) (4.20)
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and
]

(g3 +Jp3)z + (da+ 7ba) + Ny(2)

Continuation of the realization of X, ,7/=1,2,3,... vields the realization shown in

Figure 4.14

Xi(2) =

(1.21)

Figure 4.14: J-fraction expansion realization of a disciete complex reactance funetion

X(z).

‘4.7 $-Fraction Expansion Realization of a Dis-

crete Complex Reactance Function X(z)

In the S-fraction expansion realization, a discrete complex reactance function X(z)

can be written as follows;

1

- 1
G + hy)z f
(J] J l) (t'2+]f2)+(y,+,l.1)z+—l———l——j—
feg43f3)4 —-

X(s)=(=0+Jjfo) + (4.22)

X(z) in (4.22) can be realised through a series of synthesis cycles involving the

extraction of a constant, and the delay elements as follows

X(2) = (co4jfo) + Xi(2) (4.23)
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which yield a parallel continuation of ey + jfy with X;(z). The complex function

Xi(z) 1s now given by

Xi(z) = ! __ (gpHgh)emt (GhtjH):T
S (o +ah)z4 Xo(z)  LH{gr 4+ hy) a7 X(2) 1+ (Gy+ jHy)z71X,(2)
(4.24)

which implies the removal of a closed loop with a feed-forward term z=1(g; 4 jhy)~!
and a feed-back term of X,(z). This means the removal of a multiplier of value

(/14 Hy) in series with a delay 2=, The discrete complex reactance X;(z) is given
1 1)

hy

\,(:) = l - (2+jf2) "2 _ (E; +jF2):!

ST T G L) Na(2) T T (e S f) T = Xa() T4 (B4 SRz Xa(2)
(4.25)

N.(2) is realised as a closed loop having a feed-forward term of (¢y+jf;)~'2~" and
a feed-back term of Xy(z) which is given by

1
Xy(z) = - - 1.96
2) (92 + jhy)z + Xa(z) (4.26)

Continnation of the realization of X, ,7 =1,2,3,... yields the realization shown in

Figure 1.15.

Figure 4. 15: S-fraction expansion realization of a discrete complex reactance function

X(2).
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4.8 An Alternative S-Fraction Expansion Real-

ization of a Discrete Complex Reactance Func-
tion X (z)

By arranging both the numerator and the denominator of a discrete complex reae
tance function X(z) in ascending powers of z, we get:

Y(") _ ((IN +J11\) + ...+ (”2 +Jb2) V-2 + ((I; + il)l)“‘\_l ((1“—{ ,1)“) ;\
o (en +JdN)20 o+ (ca -+ Jd) V2 4 (er + Jdy) 2N 4 (eo 4 gdy)z™
|

The S-fraction expansion realization of X(z) can be written as follows;

|
(kv 4yl 4+ —
(ro4aua)+ —
AL AR TEYTIER I+—_L_—tm+1uu+

X(s) = (ro+ juo) +

X(2) in {(4.28) can be realised through a series of synthesis cyeles involving, the

extraction of the first and the zeroth order complex functions as follows
‘X(Z) = (7'() +jl1(|) -+ ¢\’|(:) (112'))

which yield a parallel centinuation of 7o + Juy with X (z). The complex funetion
Xi1(z) is now given by

\,( ) 1 1 _ ,\,z(»':)
TRy + )=+ T i)+ Xy (2) T4 (ki i)z X (2)
/\z() (

4.30)

The term X,(z) and (k; + j1))z7" can be extracted from X (z) as a leed-Torward

and feed-back in the closed loop of X,(z).

Xo(z) = (re+juz) + Xs(z) (4.31)

Continnation of the realization of X, ,i=1,2,3,... yields the realization shown in

Figure 4.16.
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Figure 4.16: An alternative S-fraction expansion realization of a discrete complex
reactance function X(z).
The following example illustrates the synthesis of X (z).
Example 4.1 Considcr the compler polynomial P(s) of Erample 2.1,
P(s) = s'4+ (5= j5)s* 4+ (0= j19.75)s* + (—18.375 —J17.875)s — (13.125 — j0.625)
(4.32)

The roots of P(s) are given by

/\1 = -—2+_}0«r), A) = —15+]1. /\3 = —1+]2, /\4 = —05+]15 (433)

which lie in the left half of the s-plane. The polynomial P(—s) is given by

Pr(=s) = "= (54 j5)s’ +(0+j19.75)s* + (18.375 — j17.875)s — (13.125 + j0.625)
(4.34)

The roots of P*(—s) are seen to lie in the right half of the s-plane:
M =24 0.5, Az = 1.5+ 51, A3 =1+ 752, Ay =05+ ;1.5 (4.35)

It should be observed that the roots of P(s) and those of P*(—s) are symmetrically
located with respect to the imaginary axis. The bilinear transformation given in

(4.1) maps the complex polynomials P(s) and P*(—s) onto the z-plane as follows

P(z) = [(-25.5—j42)z* + (-103.25 — j23.25)2% + (=72.75 + j43.25):?

+ (=9.75 4 28.25)z + (1.25 + j3.75)](z — 1)~
(4.36)



The roots, which lie inside the unit circle in the z-plane, are given by

¢ = —0.3333 + j0.6667 G = —.0.5 4+ j0.5 -
Cs = —.0.3103 + j0.2759 Co = —0.3514 + j10.81 %)
In the polar form, the roots are:
(1 = 0.7454 72034 G2 = 0.7071 23562 (138)
Gy = 0.4152¢72415 Ca = 0367628

The polynomial =¥ P*(z=!) can be obtained from P*(—=s) using equation (4.1) or

directly from P(z) in (4.36)

NP(71) = [(1.25 = j3.75)2 + (=9.75 — j28.25)5 4 (=T2.75 4 j13.25):
4+ (=103.25 + j23.25)z + (=25.5 + j42)](= — 1)~
(4.39)
whose roots lie outside the unit circle in the z-plane, and are given by
m=-2.6+,0.8 = —-1.84J1.6
[} J 12 J (4.10)
n=-14+ e = —0.6+4+ 1.2 :
In the polar form, the roots are:
m = 27203728431 o = 240837241 )
ns = 14141723562 e = 1341607203 '

From equations (4.32), (4.34) and (4.2), a complex reactance X(s) in the s-plane

can be written as

X(s) =

553 —119.75s% — 18.375s—0.625
s? 755 +0s2—j17.875s—13.125

where the poles and zeros of X(s) alternate on the jw-axis i.c.,

Zeros of X(s) are z = +32.5 29 = +31.4147 zy = 4+70.0353
Poles of X(s) are py = +34.1433 p2 = +71.8499  py = +50.9031 (4.43)
Py = —j1.8962
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Also from equations (4.36), (4.39) and (4.3) a complex reactance X (z) in the z-plane

can be written as

o Py 4+ aNp@Eh
X(z) = P(z) + 2NP(z-T)

(—26.75—]38.25)2"+(—93.5+j5)2°(0+86.5) 22 +(93.5+5)2+(26.75~]38.75)
(—24.25—J45.75)s (= T13=]51.5)2%+(—145.5)22+(— 1 13+§51.5)z +(—24.25+)45.75)
, (4.44)

where poles and zeros of X(z) alternate on the unit circle in the z-plane i.e.,

Zerosof X(z) are zy =0.9975 + j0.0706  z, = —0.3336 + j0.9427
z3 = =0.7241 + j0.6897 z4 = —1

t2

(4.45)
Polcs of X(2)are py = —0.5648 — j0.8252 p, = —0.8899 + j0.4561
ps = —0.5477 + j0.8367 P, = 0.1016 + j0.9948
In the polar form,

Zeros of X(z) are zp = 1699707 o, = ]¢!-9109

23 = 1c23806 o 30416
) ) (4.46)

Poles of X(z) are pp = 1e721710 p, = 26679

p3 = 121504 p — | 1469

X(z) can be broken into a product of complex reactance functions as follows

(=0.2235—716.4632)~(0.9393—j16.4378)z~" (0.7379+)0.6415)—(—0.8509+j0.4816)z~!
(0.4015—j13.4487) — (= 11.32464)7.2645)z~1 (0.6892+)0.6122)~(5.7767+j12.1511)z~1

(0.1433-j0.0341)— (~0 2975+0.3304)2= "\ { (2.1450—6.1580)—(~2.1450+6.1580)z"
(0.8023—j0.6978)—(0.14444j1.0535)z-1 | * (3.3920~j1.9770)—(2.3113+j3.1735)2~1
(4.47)
We can now use algebraic or intermediate simple realization methods to get a cascade
realization as in Figures 4.9 and 4.10.
Also the complex reactance in (4.44) can be synthesized using the J-fraction

as in (\1.16) or the S-fraction as in (4.22). Another alternative synthesis of X(z)
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can be obtained by rearranging both the denominator and the numerator of XN (2)

in ascending powers of = as follows:

X() =

(26.75—j38.25)2°+(93.54j5)2' (04j86.5)22 4+ (—=93.5+45 )2 +(—26.75—j18 75)z"
(—24.25+345.75) 20+ (= 113455 1.5)2' +( = 145.5)22+ (= 1 13— 35 1.5)z 4+ (—24.25 = )45.75) 2"
(1.48)

and the S-fraction of {4.48) will take the form as in (-1.28). Further, if we rewrite

X(z) in (4.44) in decreasing powers of =71, we get

X(z) =

(=26.75=§38.25)2°4+(=93.54j5)2~ 1 (0+i86.5)2~ *+(93.54+75)2~3+(26 7H—j38.25)z~*
(—24.25—j45.75)2%4+ (= 113—j51.5)2~ T4(—145.5)2= 2+ (= L 134)H1.5)2= 3+ (= 24.254)45.75) 2~
(1.19)

We can now use the algebraic realization method as in (1.5) or the intermediate
realization method as in (4.7) to synthesise X(z). In both methods, the number
of delay elements is 2N. For simplicity, if we divide both the denominator and
the numerator of X(z) in (4.49) by the constant term of the denominator, this will
reduce the number of delay elements to N

X(z) =

{0.8946—70.1105):°4(0.7604—1.6407) == (=1.4760—0.7824) 2 =24 (=0.9310+,1 5502) 2 4(0 41074,0.8021) - *

(1204 (1.9008—11.4624)z—1+(1.3160—,2.4828) 2= 24 (0. 1433~ 2 3040)== 4 (~ 0 6613~ ;0 8270) . =1
(1.50)

The synthesis of X(z) in 4.50 is called intermediate result simple realization, shown

in Figure 4.7.



Chapter 5

SYNTHESIS OF COMPLEX
REACTANCE TWO-PORT
NETWORKS in s-plane

| 5.1 Ihti‘oducﬁoh |

In electronics and communication, two-port networks are the most commonly used
circuits. This chapter is an extension to Chapter 3 and addresses the complex
reactance of a two-port networks in the s-plane. An open circuit impedance param-
eters matrix of a two-port network is obtained from any stable complex polynomial
P(s). J-fraction expansion, S-fraction expansion, and partial fraction expansion
(19, 21, 30, 32] are used to synthesise any complex impedance matrix of two-port
network by R, jR, L, and C elements; and any complex reactance matrix [X(s)] by
JR, L, and C elements, and jR, L or jR,C elements. In this chapter, realizability
conditions for complex impedance and complex reactance two-port parameters are

given.

96




5.2 Realmabxlxty Candatmns for Impedance m'

Reactance Tmeart Parameters ‘“‘;-{;\ ‘GQ 5“35;1 ff\ a

~
\\\\\\\\

Figure 5.1: Two-port linear circuit with the notations used in the analysis.

From Figure 5.1, the V-1 relationship is given by

[V(s)] = [2(9)] [I(s)] (5.1)

where [Z(s)] is the open circuit impedance matrix

=11 B P
[Z(s)] = (5.2)
Z12 <2

The necessary conditions for an open circuit impedance matrix [Z(s)] of any complex

impedance two port network are

o All elements 291(s), 212(s) and 292(s) of [Z(s)] must be complex rational fune-

tion of s, with zy, = z91.

e All elements z);(s) and z93(s) of [Z(s)] must have a J-fraction expansion with

its stated properties ( see Theorem 2.1 ).
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o [lach element z1y(s), z12(s) and z3(s) of [Z(s)] must have a partial-fraction
expansion with real residues kyy(s), k1,(s) and kyy(s) respectively and at each

pole it should satisfy the residue conditions, i.e.
k” Z 0 kz') 2 O k]] k22 - k]22 2 O (53)

o The zeros of zi3(s) can be anywhere in the s-plane but the poles must also be
present in zyy(s) or 23,(s) or both. In the reverse situation, a pole for either

or hoth of z;1(s) and z2;(s) but not for zy2(s) is possible.

5.3 Construction and Synthesis of a Complex

Impedance Matrix of Two-Port Negi_:waiks hyr
(R,jR,L,C) |

5.3.1 Using J-fraction expansion

Consider a polynomial P(s) of degree n with complex coefficients whose roots are

all
as i

two

and

u the left-half of the s-plane as in Equation (2.1). The alternant of P(s) is Q(s)
n Equation (2.2). Since zy(s) and 2p5(s) are driving point impedances of the
-port network, then
P(s)
..]1(3) = Q(s) (54)
g = hls) -
~‘22(5) - Q(S) (50)

Now we shall show that the the polynomial P (s) in equation (5.5), depends on

the

Zn(

Zin(s) =

polynomial P(s). Using equation (5.4), a rational function complex impedance

s) can be written as

P(s ST (g + b))+ (ag + 5b)s "+ L+ (an + Fby)
(

Q 3) - ”‘Sn—l + jbzsn—‘z + (13311-—3 + jb_‘sn—d + (153"—5 + ...

(5.6)
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then the J-fraction expansion of z;(s) in (5.6) becomes

[
Cas + jiy + —

Las+yR
asty :‘+C‘|'+J("+

In(s)=Lps+1+jRy + (5.7)

Cnetroy
Now, if the arrangement of the last (n — 1) terms in the J-fraction (h.7) are
reversed and the value of Ly changed to another value La, (arbitrary), applying the

same for Ry, then the right side of equation (5.7) can be written as

. 1 I’](.\‘)
Lys+1+ 7Ry + — — = (H.8)
( n' + J('Tl + Ln—l"*‘JRn-l+ : ! (")(‘\)
+ IJ‘-}]R']'}-:[‘ 2'+]""';

where P1(s)/Q(+) is a rational function obtained from the J-fraction in (5.8) and it
represents the driving point impedance z,,(s) given by

| 1)
(vn-“' + j("n + L....|s+_)h’,._|l+ 1 (J(")

(‘2 «t1(iy

Zyp=Lps+ 1+ R+ (5.9)

At this point, we have defined and found two elements 2n(s) and zp(s) in the
open circuit impedance parameters matrix [Z(s)] of a complex impedance Lwo-port
network. The only element left now in the matrix [Z(s)] is zp5(s) which can be

defined as
Nis)

- Q(s)

and the polynomial N(s) is equal to the multiplication of the inverse of the admit-

212(5) (5.10)

tance terms in the J-fraction expansion (5.7) or (5.9). These terms are the shunt

elements in the ladder two-port network, therefore N(s) is given by

N(s) = (Cos+jG2) (Cas+jGa)  (Cost5Go) ™ oo (Crmyst GGy ) (st j01)
(5.11)

and zy2(s) in (5.10) becomes

Z (q) _ (C-z.‘i + _].Gz)_]((/',‘.ﬁ‘ + j(1’4)—'l ((/'(;S +j(1'(;)_l....((/'“__lh' + j(l’n__l )—l((:’nh Jr j(l’ﬂ:.l
12 = (l,]Sn._1 + jsz“_‘z + ”’55"'“_'5 + jb,’hn—d + ll_r,.ﬁ”'—'r' + ...

(5.12)
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After the derivation of z11(s), z12(s), and  z55(s), the open circuit impedance

parameters of the two-port complex impedance network in (5.2) can be put in this

form
2 21 P(s)  N(s)
()] = = | 7o A (5.13)
‘12 Zn Q) Qs
/J],.9+l+jlf||+(, —1 T o
284302+ Q(s)
ZO wy
N(s) Lops+ 14+ iRy + 1
( 22 T JIt22 CrstiGn ]
Q(s) s+ +.+—?2_._%

(5.14)
The two-port network realization of the impedance matrix [Z(s)] which is synthe-

sized by J-fraction expansion is shown in Figure 5.2.

. . . JR Roo =1
By"! my Ly Ry Lo mg L, Ryy Lna Lgp 7722 722

Figure 5.2: Two port realization of Z(s) using J-Fraction expansion.

5.3.2 Uéing Partial Fraction Expansion

From a given complex P(s) and its alternant Q(s), the open circuit impedance
parameters zyy, 12 and 2y, of the matrix [Z(s)] are constructed as in (5.14). Once
the matrix [Z(s)] is constructed with each element being a rational function as in
equation (5.13), meeting the realizability conditions described in Section 5.2, then we
can always design an impedance two-port network using a partial-fraction expansion.

Since z13(s) and  zy(s) are driving-point impedances measured at the input

and the output ports, respectively, they can be expanded into partial fractions as

= Ak
snls) = L $ _ 15
n(s) Ry 4+ Ry + Lus + L-§=1:3+j3k (5 0)
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=~ o

2(s) = Rp+jRe + Los + —_— (h.16)
k= + )k
and the transfer impedance z1;(s) can be expanded as
n A .
12k
2p(s) = — (5.17)

k=1 ¥ + j-"‘k

where all residues are real positive, satisfying equation (5.3). We start by collecting
those terms which correspond to the poles of z;(s) and are not the poles of zy(s)

into an impedance Z,(s), and similarly for z,(s) as shown in Figure 5.3.

e

e

U

’ !iﬁ

M ALVER S
*x

R

Figure 5.3: The realization of the poles of z;; and zy, that are not in z;,.

Hence, we write

_ =~ A . .
z11(s) = Za(s) + gm = Zuo(%) + Ziinew (5.18)
= A'Z'lk r
:22(3) = Zb(-q) + —_— = Ah('q) + L2220 w (’r)“,)
k=] S+]Sk

Clearly, Z,(s) and Z,(s) are realizable complex impedance functions,

The subtraction of Z,(s) from the driving point complex impedance z),(s),
as shown in Figure 5.3 and in equation (5.18), produces a driving point complex
impedance zjney-  Similarly, subtraction of Z,(s) from the driving point. complex
impedance zz;(s) produces a driving point complex impedance zap,0,.

It is clear that the series complex impedances Z,(s) and Z,(s) contribute only

to 211(8) and z33(s), respectively, which contain poles of the impedances zyy and zy,
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that are not in zy,(s). Now the rest of the new network as shown in Figure 5.3 can
be realized by 2y, as in (5.17), and 2y, (s) and z22,00(8) as in (5.18) and (5.19)

respectively which have common poles in all the four elements of Z,.., as,

llnew “12new Zk 17 Zl,
X _ _ = + s =1 s+ s P
[Znew(s)] = = Ik A’ - (5.20)
n 224
S12new  T22new EA 1 -’+J-’L k=1 a3

n
(Zuew(s)] = 22 [Zk(5)] (5.21)

k=1
Fquation (5.21) is the synthesis of the [Z,ew(s)] as a sum of simple terms. The
| network of Z,,,,.(s) can be realized as in Figure 5.4 where each elementary two-port
network corresponds to an elementary impedance matrix on the right-hand side of
(5.21). A dual synthesis, which results in a different realization for the two-port,

can be carried out from Y(s).

2z I(’)

s

Z 2&}

iz, ]

Zz *(:;

0 RS SR S

Figure 5.4: The realization of z,.,.

From the partial fraction expansions (5.15), (5.16) and (5.17), the open circuit

impedance matrix [Z(s)] in (5.13) can be written as
[Z(S)] = R” + JR” + an + ZA ! 3+JSA ZL 1 S+13A
2 k=t ,+m Ry + jRyp+ Las+ 30, ,+m
(5.22)



The realizable network for the partial fraction expansion of the complex impedanee

matrix elements of the two-port in (5.22) is shown in Figure 5.5.

Lyp B3y Bgyag .
2

' i
—

Figure 5.5: Two-port realization of Z(s) using partial fraction expansion.

When the parallel branches (jR)1; — Cipy) veo(J 000 = Crix) are moved into

the series input branch, the circuit of Figure 5.6 results.

Figure 5.6: Final two-port realization of Z(s) using partial fraction expansion.
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5.4, Z, "Constructlon and Syntlmms of a Campiex

ineactance Matmx of TwowPort Networks by
R, L6y

5.4 . Using J-fraction expansion

Any complex polynomial P(s) can be separated into its quasi-real and quasi-imaginary

parts, respectively as given in Chapter 3 by
P(s) = qRell.P(s) 4+ qlmll.P(s). (5.23)

If the degree of P(s) is even, then

qRATP(S) = 8™ + jbys"1 + apa™? + Fbpa" 3 4+ jbus +ay (5.24)

gImUIP(S) = ays™™ " + jbys™ 2 +ags"° + ...+ @y s + jby, (5.25)

Irom these two polynomials, one may define the driving point reactance zyy(s) and

raap(s) of the two-port as

_ qRellP(s) ..
uls) = gIm11P(s) (5.26)

) = QRe22P(s) .
ras) = qIm11P(s) (5:27)

The value of gRe22P(s) is a function of gRellP(s) as we shall see next. The poles
and zevos of ry(s) alternate on the jw-axis, but they do not need to appear in

conjugate pairs, the same is true for ra(s).

104



The matrix form of the open circuit reactance parameters of the two-port

complex reactance [X(s)] is given as

(X)) = | ™™ (5.28)

NP D

The rational function ry(s) in (5.28) is given by

T (q) _ (l[{( 1 1[)(3) _ Sy + jbl'qn—l + 0S8y —2 + J.b.'i-“'n—.'l + ...+ jbu—lé' 4«
v ‘117711 ]P(S) B 18y~ + jb'z-"?u—-'z + 38,3 + j(’-l""nml + vee + Uy 8 + jbu
(5.29)

applying a J-fraction expansion, on ry;(s) we get

1
Cys + gz + !

s+iH I
Las+3F “+('1-+1(~4+———-L- —

———h
Thnetiin

.E“(S) = Lys+ JRn + (5.30)

Now if the arrangement of the last (n — 1) terms in the J-fraction expansion (5.30) is
reversed and the value of Ly changed to another value Loy, (which may or may not
equal), applying the similarly for R,;, then the right side of (5.30) can he written as

1 _qlte22](s)
gl l(s)

ngS + ijz + (r).” )

. ) i
Cu-”' +‘](ln + L,,_|S+Jn,,_|+'—1—_~l—r—_—:

Catitn
where qRe22P(s)/qIm11(s) is a rational function obtained from the J-fraction in
(5.31) and it represents the driving point reactance ryp(s) which is given as

| o Re22D(s)
gl (s)

Iog = Lyys + Koy +

(V'ns + ("n +

)
Ly_ys+h, 0+ I
okl

r12(s) now is the only element left in the matrix [X(s)], which can he defined as

N(s)

qlm1l(s) (5.33)

rip(s) =

where tlie polynomial N(s) is equal to the inverse multiplication of the admittance
terms in the J-fraction expansions (5.32) or (5.30) which are the shunt elements in

the ladder two-port network. Now the z.(s) in (5.33) becomes

£ S) = : . - . v
12(s) ays™7V 4 gbysmm? 4 agstT? 4 jhysmmt 4 oagstt 4 L

(5.34)
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The open cirenit reactannce parameters of the two-port complex reactance

network in (5.28) can be written in the following form
g

qRel1P(s) N(s)
) I L gIm11P(s) qlmi11P{s) i
[X(s)] = = (5.35)
Iy Ty N(s) qRe22P(s)
gIm11P(s) qIm11P(s)
L]|.‘4+H|| + y - 1 Mﬁl
v _ ¢ 25+('2+—*(:T_|._1E Q(s)
el = M) Lys+ 1+ Ry + :
P 228 27T CostGn ‘
Q(s) s +m

(5.36)
The two-port network realization of a reactance matrix [X (s)] which is synthesized

by a J-fraction expansion is shown in Figure 5.7

Figure 5.7: Two port realization of X(s) using J-Fraction expansion.

5.4.2 Using partial fraction expansion

From the quasi-real and th quasi-imaginary parts of a given complex polynomial,
the open circuit reactance parameters of X (s)] can be constructed from (5.36) to be
in the form of rational functions as in (5.35). Once the matrix [X(s)] is constructed
satisfying, the realizability conditions, then we can design a complex reactance two-
port using partial-fraction expansion.

Since rys) and ryp(s) are driving-point impedances measured at the input

and the output ports, respectively, then we can expand them into partial fraction
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as

n ‘
r(s) = jRn 4+ Lns + Z e (5.37)
i s s
n “‘ )
a(s) = jRa + Las + Z:’-j—t— (5.38)
- Sk

and the transfer reactance r13(s) can be expanded as

=~ A
rgls) = § 2 5.3
12(s) E} - (5.:39)

where all residues are real, positive, satisfying (5.3). We start by collecting those
terms which correspond to the poles of r1(s) and are not the poles of ryy(s) into a

reactance X,(s), and similarly for ry,(s). This is shown in Figure 5.8,
8

' . et h E
"1 x; FrenTIIRTEatran, xb ‘2
. s TR e ) 2
. » YU ..o"‘ or »‘(f A / o 1
. % , P

"M F 4(” newe 1
T e 3

% Y g REREIA “ ,,/ & Py

x{’) S oriew s vmowu«» -

as " 4

Figure 5.8: The realization of the poles of ryy and ry, and are not in .

Hence we can write &1;(s) and «@2(s) as

A :
Iyls) = A’a s) + —_— = 1\,"(-“ + Fiinew (5'4”
1{s) (s) kZle ) 1 )
L A
Ia9(s) = Xy(s) + — =X, + Tounew (H.A41
22(s) b(s) k{:‘s+]sk b(8) 22 )

Clearly, X,(s) and X,(s) are realizable reactance functions.

The subtraction of X,(s) from the driving point reactance ryy(s) as shown in
Figure 5.8 and Equation (5.40) produces a driving point reactance ryyy.,,. Similarly
subtraction of X,(s) from the driving point reactance r,,(s) produces a driving point

reactance Ijew-
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It is clear that the series reactances X, (s) and X,(s) contribute only to zq;(s)
and £y,(s), respectively, which contain poles of these reactances z;,, i = 1, 2, which
are not in £y3(s). Now the rest of the new network as shown in Figure 5.8 ca.n
be realized by (5.39), and &1y new(s) and 23 ynew(s) in (5.40) and 5.41 respectively

which have common poles in all the four elements of X,,.,, as,

, Lnew Li2new Ek =1 Aus ZL =1 A .
[Xucw(s)] = = ik s+ask (5.42)
Liew JT22new Z:L =1 ;lf:; Z:L =1 _,_.f.?:,b;

n

[Xnew(s)] = > [Xi(s)] (5.43)

k=1
Equation (5.43) is the synthesis of the X,.,(s) by expanding it as a sum of

simple terms. The network of X,..../s) can be realized as in Figure 5.9, where each
clementary two-port network corresponds to an elementary reactance matrix on the

right-hand side of (5.42).

1: lx‘
x’ {‘) % é 2
[ 1: ‘x’ ]
X (¥
2
° . % é ©
Yenew r— I “Inew
o % é O
l 1: ‘x- }

Figure 5.9: The realization of ,.e,,.

From the partial fraction expansions (5.37), (5.38) and (5.39), the open circuit

reactance [X(s)] in (5.34) can be written as

JRu + Lus + Xi. 1_,'+m iy B S+79%
Yk= 1s-+m JR2 + Lyps + Y, A2

s+718;

[X ()]



The realizable network for the partial fraction expansion of the complex reactance

matrix elements of the two-port in 5.44 is shown in Figure 5.10.

JRgp

CTTTYTTTTYTTS TYTTI sssans LY TP PYTY YT PeS .

.

“evncesseavecusscrntsrcevsenasacsasencsan’

Figure 5.10: Two-port realization of X (s) using partial fraction expansion.

When the parallel branches (jRy1 — Chiit) 4oy (J R - Chin) are moved into

the series input branch, the circuit of Figure 5.11 results.

c
12k JR
15K

sseesssnsscnanse seossccsssnssencacce ssecaace soeses tavacse ssseses

Figure 5.11: Final two-port realization of X(s) using partial fraction expansion.
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5 5 Constructwn and Syni:hes:a af a Complex

: Reactance Matmx of Tmeort Netwarks by
( iR, Lor 3R, Cw‘)

4
?
?/
2,
5

In Section 5.4, a complex reactance matrix of a two-port network was synthesized by
three kinds of elements (R, L, C) using a J-fraction expansion. In this section we
shall use the S-fraction expansion to synthesize a complex reactance matrix [X(s)] by
two kinds of element (jR, L or jR,C). The S-fraction of the driving point reactance
ri(s) in (5.26) is given by

gRell P(s) 1 .
rin(s) = ————=~ = 5.45
() gImllP(s) L“S+jG2+ L (5.45)

L3s
”m_&;
+J'n

The driving point reactance ry3(s) can be found by the same procedure as used in

Section 5.4 except that in this expansion only one element L; is changed to Lj,.

1 _ qRe22P(s)

j(’v"+L,,_1s+ R ~ qImll(s)

(5.46)

2y = Lyps +

1G4+
L3$+J 2

where gRe22P(s)/qlm11P(s) is a rational function obtained from the S-fraction in
(5.16).

The only element left now in the matrix [X(s)] is 12(s), where the numerator
15 equal to the multiplication of the inverse of the admittance terms in the S-fractio.n
in (5.46) or (5.45) which are the shunt elements in the ladder two-port network see

Figure 5.12.

) = =N (GG GGe) T (Ge) e ((Gumr) T (GG)
L1224 qlmlIP(S) algn-l + ]bzqn -2 + ajzs"- -3 + ]b4s" -4 + (15‘2""5 + .
(5.47)
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The open circuit reactance parameters of the two-port complex reactance net-

work in (5.28) can be written as

[ 1 Nis ]

L]]S+ 1Ga+ 1 qIm11'(s)
L“’*Tﬁ;
Lo+ 55 .
[X(s)] = R (5.18)
N S) L q+ 1
gIm11P(s) 2 10+ p " 1
L + i l'+).;2 i

The two-port network realization of the reactance matrix [N (s)] of 5.48, which

is synthesized by the S-fraction expansion, is shown in Figure 5.12.

Figure 5.12: Twos port realization of X (s) using S-Fraction expansion.

5.6 An Alternative Synthesis of Complex Reac-
tance Matrix of Two-Port Networks by
(4R,L or jR,C).

One can find an alternative realization of a complex reactance matrix [X(s)], by
arranging both the numerator and the denominator of the driving point impedance

z11(s) in ascending powers of s as follows:

qRel1P(s)  jby4 an_ys+ ..+ ags™™ + jh,s™ ™ + 4 aps™]

zu(s) = gImUIP(s) @+ jbucy 4 . 4 jbss™ 3 4 apsm=2 + . 4 jhysn=! 4 gm
(5.49)
The S-fraction of the driving point reactance xyy(s) in (5.49) is given by,
]
L = 3R, + (5.50
n(s) = jRn (’25+,H1+ l: )
(,',.+W_‘E+E_E

(e
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and following the procedure of earlier sections, the driving point reactance ry;(s)

can he written as

. 1 qRe22P(s
rn(s) =jRa + 1 -=1 (=) (5.51)
Cns + Py — T qgImll(s)
1Ry Cos

where (qfte¢22P(s)/qIm11P(s)) is a rational function obtained from the S-fraction
in (5.51).
Using the same procedure as in the previous section, the transfer reactance r12(8)

is given by

_ NG UG)TIGG) T (GG) T (G Ge) ! (§Ge) T (G G)
gIm1P(s)  ays=1 4 jbs"=2 4 a35m=3 4 jhs™1 4 .. 4 a1 + 7b,
(5.52)

The open circuit reactance parameters of the two-port complex reactance network

in (5.35) can be expressed as

. N(s)
Jhn+ Cort o 1 qlmllsP(s)
3 —T;‘—JE
[X(s)] = Tttt (5.53)

Ni(s . 1
T JRn+ 7 *
Pt — T —
IRt eos J

The two-port network realization of a reactance matrix (X (s)] which is syn-

thesized by the S-fraction expansion, is shown in Figure 5.13.
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Chapter 6

CONCLUSIONS AND FUTURE
WORK

An important problem in system analysis and circuit theory is system stability and
synthesis of a realizable network. In this thesis, we have proposed methods for
testing the stability of a system specified by complex rational functions. In Chapter
2, we derived the necessary and sufficient conditions for the existence of stability
of a given polynomial with complex coefficients using J-fraction expansion. The
generalized Routh array of a complex polynomial was developed and the stability
conditions using this array were found. Two methods were used to construet, the
Routh array on the basis of division process and two cross multiplying processes. The
generalized Hurwitz determinant and the modified generalized Hurwitz determinant
were also derived. The modified Hurwitz determinant yields stability condition of
a complex polynomial. Application of these methods of complex polynomials to
test stability of real multivariable polynomials in continuous systems is discussed,
Another application is stability testing of real polynomials with multivariables in
discrete system by transferring the polynomials from the z-domain to the s-domain.
Methods of testing stability using the generalized Routh array and the modified

generalized Hurwitz determinant is the first contribution of this thesis,
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(liven a stable complex polynomial, the second contribution of this thesis
provides answers to two questions: first, how can we construct complex impedance
and complex reactance functions? second, how can we synthesise these complex
functions? Complex impedance function is constructed from the stable complex
polynomial P(s) and its alternant polynomial Q(s). Complex reactance function
is constructed from the quasi real and the quasi imaginary parts of P(s). Both
Z(s) and X(s) are synthesized using J-fraction expansion. The division process in
that expansion is equivalent to the removal of two elements from Z(s) or X(s).
Also X (s) is synthesized using S-fraction expansion with division process equivalent
to the removal of one element from X(s). The relationship between X(s) and its
associative Z(s) is determined. The networks realization of the complex impedance
function is found by using four kinds of elements: R, jR. L, C'. We have synthesized
the complex reactance funetion with three kinds of elements: jR, L, C; and with
two kinds of elements jR, Lor )R, C.

It should be pointed out that this thesis is concerned with network synthesis.
This represents one part of the network analysis and synthesis area. The other im-
portant part of circuit theory is analysis of networks containing imaginary resistance

(it), which we plan to undertake as future work. For example,

o Investigate the analyvsis of regular systems with real polynomials as being

synthesized in terms of complex polynomial considerations.
¢ Study the state space representation of a complex network.

o Evaluate the transient and steady state response of linear lumped-constant

systems containing imaginary resistance (jR).

e Study a high temperature T, superconductor to get a material with high 7,

near room temperature, representing the imaginary resistance (jR).

The third contribution of this thesis is the z-domain synthesis. The main idea

of network synthesis of X(s) is transferred to synthesise discrete complex reactance
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X (=) in the z-domain. A discrete complex reactance function X (2) was constructed
from the equivalent analog complex reactance function X(s) by using a bilincar
transformation, or from any complex polynomial P(2) with its roots inside the unit
circle in the z-plane. X'(z) is synthesized using J-fraction expansion, S-fraction ex-
pansion and partial fraction expansion. The network realizations of discrote complex
reactance functions are found by using delay blocks, called sample storage clements,
which are equivalent to inductors, capacitors or imaginary resistors in the complex
reactance function X(s).

It is evident that once the synthesis of complex function in the s-domain is
accomplished, we can extend it to construct and synthesise the complex matrix
of a two-port network. This is the fourth contribution of the thesis. We have
derived a complex impedance matrix [Z(s)] of two-port network from P(s) and
its alternant. A complex reactance matrix was constructed from the quasi-real
and the quasi-imaginary parts of P(s). Realizability conditions of the complex
impedance matrix [Z(s)] and the complex reactance [X ()] of two-port networks
have been discussed. The matrices are synthesized by J-fraction, S-fraction, and
partial fraction expansions. The network realizations of complex impedance of two
port networks were found by using four kinds of elements (K, j R, L,("). Realizable
complex reactance two-port networks with three kinds of elements (I L") and

with two kinds of elements (jR, L or jR,(’) were also derived.
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