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ABSTRACT
Neural Network Application
to
Vehicle System Dynamics

Choucri-Gabriel Taraboulsi

Neural Network (N.N.) and Heurocomputing have been applied as
a tool with artificial inteliigence in many areas such as
pattern recognition, control, classification, diagnostics,
automation, etc. With the advancement of parallel processing
and computational speed, N.N. has become an efficient tool for
predicting and simulating input-output relationship for
complex systems with large number of variables with poorly
defined relztionships. Vehicle dynamics is such a complex
system when zire mechanics is included under steering input.
N.N. is developed using a commercial software Neural-Works
Professional II Plus to evaluate its potential for simulation
and control of vehicle system under steering input. A three
degree of freedom vehicle model under steering input is
developed to train N.N., on the relationship between the tire
parameter and vehicle yaw velocity. Inverse dynamics is then
used to predict tire property for given vehicle yaw response,
including a minimum feasible yaw response. A six degrees of
freedom complete vehicle model is then used to study the
potential of N.N. for roll dynamics and its control, under

steering input. From this preliminary study, it is concluded

I1X



that N.N. can be used effectively in vehicle dynamics
applications, however, with some inherent limitations. Its
potential is significant in application to control of vehicle
system dynamics. A major limitation being the inability of the
N.N. to learn when different combination of parameters lead to

same response.
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Neurocomputing end neural networks (N.N.) in simple term
are an attempt in simulation of the human brain. It is,
however important to mention that in no way the N.N. is a
match to the human brain. Human brain is formed of neurons,
where each neuron is formed of an input area the dendrites, a
processing area the synapse and an output area the axons which
is connected to other neurons. Similarly, the N.N. is formed
of artificial neurons (A.N.), where each neuron is formed of
an input area, a processing element and an output area. A
systematically linked network of A.N. is carried out in the
construction of N.N. The present research is focused on the
application of the advance neurocomputing technology to a

complex dynamical system such as road vehicle dynamics.

The beginning of neural computing and N.N. is often
considered to be the 1943 paper of Warren McCulloh and Walter
Pitts [1]. In this work, although practical application of
such work was not apparent, they were able to show that a
simple type of N.N. could compute any arithmetic or logical

function. Other researchers like Norbert Wiener and John von



Neuman [2, 3] suggested that research in brain-like computers
might have wide applications. In 1949 D.O. Hebb [4] proposed
that the connectivity of the brain neuron is continually
changing as an organism learns. He proposed that a specific
learning law be introduced for processing area or the synapses
of neurons. The first successful neurocomputer (the Mark I
Perceptron) was developed during 1957 and 1958 by Frank
Rosenblatt, Charles Wightman and others [5]). Following that
period, N.N. research went into a quiet phase from 1967 to
1982. In the early 1980s the Defence Advanced Research
Projects Agency (DARPA) began funding neurocomputing research.
DARPA funding opened the door for neurocomputing to
demonstrate its potential and effectiveness in a wide range of
applications. Today neurocomputing and N.N. have found their
ways into various types of applications like system modelling,
control, «classification, medical diagnostics, robotics,
automation and many other fields. Several articles and books
{6, 7, 8, 9] have appeared on various aspects of N.N.

algorithms, applications and software in the 1990s.

N.N. 1is most effective when the problem to be solved
depend on many parameters and where physical properties could
not be expressed in equations. A good example is the vehicle
tire, where properties and behaviour depend on many variables
sucki as road surface and friction, vehicle speed, slip,

braking or driving force, inflation pressure, steering angle



etc. Similarly the dynamic behaviour of a vehicle under
steering input is highly complex and depends on the suspension
design, spring rate, damping characteristics, tire properties,
torsion bar design, forward velocity steering angle etc. Study
of the tire mechanics and transient wvehicle dynamics under
steering input are therefore, potential candidates for the

application of N.N. for wvehicle systems.

For a wvehicle system the tire and suspension are the
connection between road and vehicle structure, where all major
forces and moments are developed at the tire-road interface.
The tire and suspension parameters, therefore, have the most
influence on the dynamic behaviour of a road vehicle. These
parameters have a well known conflicting requirement between
ride quality and handling (stability) performance of a
vehicle. Furthermore, the characteristics of these components
are significantly influenced by a large numker of variables,
which often make it very difficult to model realistically. One
of the major difficulty is 4in estimating an appropriate
property for the component, and providing a control of the

property to satisfy conflicting requirements.

This study is aimed at addressing some of the issues that
poses difficulty in modeling vehicle system dynamics, by
applying neurocomputational tool. The study examines the

potential of N.N. in simulating a tire and a simple vehicle




model with four suspensions under steering input. The N.N. is
further used to estimate optimal parameter through inverse
dynamics and for parameters control. For the application to
tire model a simple three degrees-of-freedom (DOF) bicycle
model [10, 11, 12] with identical front and rear tire
parameter is considered. The in-plane vehicle motions include
forward, lateral and yaw. Since tire parameters have the most
influence on yaw velocity, the model is used to simulate
vehicle yaw velocity for a wide range of tire parameters.
Based on the simulated result the N.N. is trained to gain
artificial intelligence on the relationship between vehicle
yaw velocity and tire parameters. The trained N.N. is then
utilized to predict tire property for a given vehicle yaw
response in time domain. The network is further used to

establish tire parameters for maximum stability.

The application of N.N. is next extended for a complex
six DOF vehicle model suspended on four suspensions. Under a
steering input vehicle roll is the critical mode which is a
measure of handling performance. Similar to the 3 DOF model,
the 6 DOF vehicle model is used to simulate the roll motion
for a range of suspension parameters, to train the N.N. The
inverse dynamics of N.N. is then used to predict suspension
parameters for a given transient roll performance under a
steering input. Finally a controller based on N.N. is proposed

and used to estimate suspension damping for a given steering



input, and forward velocity, and a roll reduction parameter.
Simulation results for the six DOF model with and without the

open loop controllexr are compared.

1.2 REVIEW OF RELEVANT LITERATURE

The literature used in this research could be divided

into two categories:

1) 1iiterature concerned with vehicle dynamics and
formulation of the mathematical models of the three and six

DOF vehicle models,

2) literature concerned with N.N. a1d neural
computing in application to system modelling, inverse dynamic,

optimization and control.

1.2.1 VEHICLE DYNAMICS:

The vehicle dynamics could be defined as the behaviour
and performance of the vehicle under different road and
operating conditions, for example: performance at different
velocities under road irregularities and side winds;
performance at different velocity under a steering input; as
well as performance under braking and acceleration. The

analytical study of the vehicle dynamics is based on



formulating a mathematical model which effectively represent
the vehicle system, identification of performance indices and
solution of the mathematical model using an appropriate and

suitable tool.

To formulate the mathematical models of the vehicle one
must study the mechanics of tires, suspension and steering
since they are the connections between the vehicle and the
road. Validity of a model largely depend on validity of the
component characteristics used in the model. In this study,
tire, suspension and steering system are *“he critical

components.

The tire is the most complicated part of the vehicle, its
behaviour has been studied for a long time and is still being
studied extensively. The tire is the primary running gear-
ground contact through which forces are transmitted from the
vehicle to the road and vice versa. Ellis [10] presents
different tire mathematical models for the study of the
cornering forces. The first model is the stretched string
model, where the tire is assumed to be a stretched string
retained by lateral springs representing the tire wall. In the
second model, the tread band is represented as an equivalent
beam supported by an elastic foundation. These models with
linear or nonlinear stiffness are not adequate to represent

accurately the tire behaviour in cornering. For the vertical



and ride dynamic studies [13] tire is often considered as a
parallel combination of a linear spring and damper. Nonlinear
spring, however, must be used to simulate wheel 1ift off. The
cornering properties of the tire depend on the lateral force
developed at the road-tire interface, which is a function of
a wide range of parameters [11]). For a free rolling tire, the
tire-road interface forces and moments can be expressed in
terms of: lateral force; rolling resistance; and self aligning
moment. Wong [11] has presented a through treatment of all the
above forces and moments, which must be incorporated in the

tire model for simulation of cornering performance.

The suspension of the vehicle is a mechanism which
dictates the ride quality and handling performance of the
vehicle. The design of the suspension poses conflicting
requirement between stability and ride comfort of the vehicle.
Newton, Steeds and Garett, [14] and Ellis [11] present
different types of suspension, which could be divided into two
distinctive categories. The first is the axle suspension where
the left and the right wheels are connected by a rigid axle,
and the second type is the independent suspension in which the
left and right wheels are not connected. Despite the dif ferent
types of suspension the analysis always results in calculating
the equivalent spring stiffness, equivalent damping
coefficient, equivalent roll stiffness and the roll centre

location. Although the suspension equivalent stiffness and



-

damping characteristics are often considered to be linear,
nonlinear elements are used in reality for a compromise

between ride and handling performance [15].

The steering mechanism in most vehicles is the Ackerman
steering mechanism. Due to physical constraint this steering
mechanism can not provide perfect steering. A perfect
steering is defined as one, where all wheels can have pure
rolling around a curve. Since rear wheels are not steered,
perfect steering can not be achieved. This leads to wheel side
slip which can be minimized through an Ackerman geometry. In
analysing vchicle motion, perfect steering is assumed when the
steering angle is small. Bevan [17] presents the steering
mechanism its limitations and a way to calculate the left and
right steering angle according to a mean steering angle. The
mean steering angle is the steering input or the angle of an
imaginary wheel positioned in the middle of the vehicle. This
imaginary wheel actirg alone would produce the same effect of

the two other wheels, assuming perfect steering.

The mathematical models of a vehicle under steering input
could vary from simple one like the three DOF model formulated
by Ellis [10], Wong {11], Gilespie [12] to complex ones. This
vehicle model is referred to as a bicycle model where the
vehicle mass is situated between the front and the rear tires.

This model is effectively used to evaluate steady state



curving performance of a vehicle. The influence of tire
parameters on the lateral and yaw velocity of the vehicle can
be easily examined using this model. This model, however
cannot simulate the roll performance of the vehicle under a
steering input. A six DOF model formulated by Lugner [17, 18)
is a three dimensional model of the vehicle capable of

exhibiting more realistic behaviour.

1.2.2 NEURAL NETWORKS:

The theoretical concept of N.N. has been around since
1940s, but its development has been slow due to computational
limitations. With the development of algorithms, programming
techniques and fast computers, it gained momentum in the
1980s. Since then, through defence funding and extensive
research N.N. and neurocomputing have been explored for
application in a wide range of areas including pattern
recognition, control, classification, diagnostics, automation,

etc.

Zurada [6], Hechlt-Nielsen [7] and Freeman (8] have
recently published books in the area of N.N. These books
present a complete introduction to N.N. along with different
types and their applications. Some of these N.N. types are:

Adaline and Madaline: has gained application in adaptive

signal processing. It is a N.N. that can be implemented as



filters to perform noise removal from information-bearing
signals.

Back-propagation: has application in problems requiring
recognition of complex patterns and performing non-trivial
mapping. It is a network that adapts itself to "learn" the
relationship between a set of example patterns, and able to
apply the same relationship to a new input pattern. Back-
propagation network, therefore, has potential application in
simulation, control of dynamical systems and reverse dynamics.

General regression network: is a general purpose network.

It gained applications in system modeling and prediction.

Modular neural petwork: is a generalization of back-
propagation neural network. It is applied to system modeling,
prediction, classification and filtering.

Among various N.N. developed to date, back-propagation
network can be easily adapted for application to simulation of
dynamical system, control and optimization. Hunt and Sbarbro
[19] presents the use of N.N. as a controller. The N.N. is
used as a representation framework for modelling nonlinear
dynamical systems, it is then possible to use these nonlinear

models within nonlinear feedback control structure.

In recent years, there have been few applications of N.N.
in vehicle system modeling and control. Moran and Nagai [20]
in the control of a vehicle rear suspension. In this paper the

authors demonstrate the ability of N.N. to formulate a vehicle

10



model. This neuro-vehicle model is used to train both front
and rear suspension neuro-controller under a nonlinear rear
preview control scheme. To do that a N.N. is trained to
identify the inverse dynamics of the front suspension and
determine the rvad disturbances. Knowing the road disturbances

the rear wheel controller can improve the rear suspension

response.

Palkovics and El-Guindy [21] used the back-propagation
N.N. to model the vehicle tire. The data file used in the
learning process is obtained from tests. The side force for a
given slip angle predicted by the N.N. is compared with that
of magic formula of Pacejka. Furthermore, they implemented the
neuro-tire in a vehicle mathematical model to demonstrate the
effectiveness of the N.N. The software used in this study is

a simple N.N. feature in the MATLAB.

In developing a N.N. application one should take in
consideration that success of N.N. to learn is not guaranteed.
Sometimes for no apparent reason N.N. might not learn and will
not give adequate results [7]. Developing a N.N. application
is carried out by trial and error until the best results are
obtained. It is important to note that there should be no
similar inputs to the N.N. with different outputs, if such a

case is presented to the N.N. learning would be impossible.

11



1.3 SCOPE AND OBJECTIVE OF THE PRESENT RESEARCH

As discussed in the literature review, neurocomputing and
N.N. are a fast growing computational tool with a scope for a
wide range of applications. It has already claimed a
tremendous success in pattern recognition. Its application in

vehicle dynamics however, has been limited.

The primary objective of this investigation is to examine
the potential of N.N. namely, back-propagation network in
applications to vehicle dynamics. As an initial stage, the
application is focused on a model to predict or estimate tire
parameters based on vehicle yaw response to steering input.
Furthermore, to determine the tire parameter to minimize yaw
response or improve stability in time domain. For this a three
DOF bicycle model discussed in the literature review is

utilized.

Next, the model is extended to relatively complex six DOF
multi variable vehicle model. The objective is to evaluate the
potential and 1limitation of back-propagation N.N. in
application to multi-variable complex system. In this case
N.N. simulation is carried out for relationship between time-
roll response and suspension parameters. The application of
N.N. is then extended as a controller to control the roll of

the vehicle by controlling the suspension damping coefficient.
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Such a controller if implemented would not require a
compromise between ride quality and handling performance of

the vehicle.

The thesis presents systematic development of tire and
suspension forces, leading to the development of the three and
six DOF vehicle models. The result for each model and roll
control study are discussed as outlined in the following

subsection.

1.3.1 Organization of the thesis

In chapter 2, the forces and moments developed at the
tire-road interface due to rolling resistance, slip, camber
angle and self alignment are discussed and formulated.
Evaluation of roll centre and characteristics of suspension
component are discussed. The expressions for suspension forces
are formulated. This chapter also presents the steering system
along with explanation of perfect steering. Expressions for
left and right wheel angle for a mean steering angle is

formulated.

In chapter 3, N.N. is introduced along with a brief
review of back-propagation N.N. The "learning" rule and N.N.
parameters are discussed. The procedure for building a N.N.

application is outlined.
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Chapter 4 presents the N.N. application of the three DOF
model. The system parameters are listed and the N.N. results
are presented. All results computed from N.N. based on system
response are compared with simulation results for the N.N,
predicted parameter. Various training schemes are evaluated.
Finally, the N.N. is tested for estimating the parameter
corresponding to minimum response corresponding to all

“learning" cycles.

The procedure in chapter 4 is repeated for a six DOF
vehicle model in chapter 5. The expressions developed in
chapter 2 are used to develop the model. N.N. is applied for
multi-variable and single variable design objective. Results
are presented similar to the 3 DOF model. This chapter also
presents development and application of N.N. for control of

suspension damping to improve roll response.

Finally chapter 6 presents general and specific
conclusions related to the present study. A 1list of
recommendations for further is work also included in this

chapter.
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2.1 INTRODUCTION

Major components that significantly influence vehicle
dynamics response include tires, suspension and steering
system. Most of ground vehicles use tires as the running gear-
ground contact. Except aerodynamic and gravitational forces,
almost all other forces and moments to the complicated vehicle
system are induced through the tire-ground contact. A through
understanding and representation of the dynamic tire
characteristic 1is, therefore, essential to study the

performance of a vehicle.

The primary function of a vehicle suspension system is to
isolate the sprung mass (structure and occupant) from shock
and vibrations generated by the road surface. The suspension
also has a major influence on the stability, steering control
and the overall handling of the vehicle under dynamic
conditions. Each wheel of the vehicle is connected to the
sprung mass through a system of linkages, spring and damper

elements, referred to as suspension.

A vehicle under steering input may be subjected to many
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different degrees of free movement. The interaction of these
movements, along with their velocity, acceleration and
frequency makes the vehicle one of the most complex system in
the field of dynamics [10, 11, 12, 14, 22]. Researchers and
designers in the field of vehicle system, therefore, simplify

the model to study different aspects of vehicle dynamics.

In this investigation two different vehicle models,
namely: a 3 DOF in-plane bicycle model; and a six DOF three
dimensional model are considered for application of N.N. This
section presents the characteristics of tires, suspension and
steering systems toward the development of vehicle models

developed in chapters 4 aud 5.

2.2 TIRE CHARACTERISTICS

In general the tire is required to fulfil several
functions, namely, to support the vehicle weight, transmit
tractive and braking forces to the ground, provide steering
control and directional stability and to provide a first
barrier to road irregularities. Although tires are often
modeled as a linear spring, all tire characteristics are
highly nonlinear, and in reality is far more complex than a

simple spring.

Tire performance and characteristics depend on many
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factors such as construction, working pressure and
temperature, surface hardness, static load, tread condition
and geometry, and road surface conditions which may vary
widely. Depending on the above factors and operator inputs
such as steer angle, velocity, acceleration, etc. the tire
develops forces and moments at the tire-ground interface.
Various input-output quantities for a tire are shown in Fig.
(2.1). Tire-ground contact forces Fy, Fy, F; and moments
M,, M,, M, developed depend on the slip angle ¢« , camber
angle y , tire deflection 8 , forward speed V and slip s . The
resulting forces and moments are also influenced by a number
of uncertain parameters as listed in Fig. (2.1). The inherent
non-linearity and wide range of factors influencing tire
characteristics makes it one of the most difficult component

in the modelling of vehicle systems.

2.2.1 TIRE AXIS SYSTEM

Various tire forces and moments, as well as its geometric
parameters are defined in terms of a tire axis system. The
most commonly used axis system is the one recommended by the
Society of Automotive Engineers (SAE) [33] is shown in Fig.
(2.2)

The origin of the axis system O ir the centre of tire-~

ground contact. Positive X axis is defined on the ground
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plane in the direction of wheel heading. Y axis is also in
the ground plane and is perpendicular to the X axis in the
lateral direction. 2 axis is in the vertical direction
perpendicular to the ground plane, with the positive direction
toward the ground. Camber angle ¥ is the angle formed between
the XZ plane and the wheel plane. The slip angle a is the
angle between the direction of wheel heading X and direction

of wheel travel.

2.2.2 TIRE FORCES AND MOMENTS

various forces and moments acting at the tire-road
interface in the plane X-Y can be classified under three
categories. Thy are: Longitudinal force ( F, in Fig. 2.2)
which result from tractive or braking effort and rolling
resistance; Lateral force ( F, in Fig. 2.2) at the interface
which result from the camber angle and cornering; and aligning
torque ( M, in Fig. 2.2) that results due to the lateral
force acting at the contact with a pneumatic trail. These
forces and moments are discussed and formulated in the

following subsections.

2.2.2.1 LONGITUDINAL FORCE

For a tire under tractive or braking effort, the

longitudinal force can be expressed as:
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For driving Fg=F4F, (2.1)

For braking Fy=F,+F, (2.2)

where F,; and F, are the tractive and braking effort

respectively and F, is the rolling resistance.

TRACTIVE (BRAKING) EFFORT

When a driving torque is applied to a pneumatic tire, the
front of tire contact patch is compressed. Therefore, the
distance the tire travels under a driving torque is less than
that of free rolling condition. As a result a phenomenon of
longitudinal slip takes place, which is defined in terms of
the difference between actual velocity and free rolling

velocity [17]. The slip S can be expressed as:

For dreiving Sy=X9-Y (2.3)
rw
For braking Sp= V"f w (2.4)

where V is the linear velocity of the tire centre, w is the
angular velocity, and r is the radius of free rolling tire.
The tractive eiffort Fy; is a function of slip S, trend of
which based on experimental data is shown in Fig. (2.3). As
the figure shows, the tractive effort initially increases with
slip and reaches a maximum value around 20% slip (S4~0.2).

The peak attainable tractive effort is p_ W , where Bp is the
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peek coefficient of road adhesion and W is the normal tire
load. For slip greater that 20%, the tractive effort decrease
drastically to a value of p W at 100% slip, where p, is the
slip coefficient of adhesion. As the Fig. (2.3) shows, a
linear relationship between tractive effort and slip can be

considered in the presence of small slip:
Fd-CiSd (2'5)

where C; is the slope of the linear range as shown in Figq.

(2.3).
ROLLING RESISTANCE

An inflated tire under load deforms in the area of ground
contact. Due to the rotation of the tire the deflected area is
not symmetric and the normal force F, does not act at the
origin of the tire. Fig. (2.4) shows a force diagram during
rolling under 1load, where F, acts at a distance X in the
direction of rolling. The shift produces a moment equal to

F,X , which is known as the rolling resistance moment. For
a free wheel, therefore, a horizontal force at the tire-ground
contact must exist to maintain equilibrium. this resulting
force is referred to as the rolling resistance F, acting

against the direction of travel can be expressed as:

F,-Fz?x (2.6)
[
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where X is the arm of rolling resistance moment and r, is
the effective rolling radius of the tire as shown in Fig.
(2.4). Equation (2.6) is commonly expressed as:
F,-F,f, where f,=-X
=fzEr x"r_ (2.7)
[
f,~x/r, is the coefficient of rolling resistance. The value
of this coefficient depends on the tire diameter the vehicle
velocity, tire inflation pressure, tire tread geometry, tire

type, tire temperature, and the surface condition.

The complex relationship between tire, its operational
parameters and the resulting rolling resistance coefficient
make it extremely difficult to develop analytical method for
predicting the rolling resistance. The rolling resistance is,
therefore, primarily determined through experiments [11].
Based on experimental results, many empirical formulas have
been proposed. One such simple and widely acceooted expression
that represent the influence of pressure and forward speed is

given by [11]:

4
Fpmfot £ (op=) s (2.8)

where V is in km./h

f, and f, depend on the inflation pressure as shown in

Fig. (2.5).
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Since most of passenger vehicles have an inflation
pressure around 207 KPa (30 psi), the expression (equation

2.8) can be simplified to

1%
£,=0.01 (1+—=) (2.9)

This equation is acceptable for speeds up to 128 Km/h (80 mph)
on concrete surfaces.

Preliminary performance on different road surface can be
evaluated ignoring the effect of speed. In this case, the
rolling resistance coefficient can be taken as an average

value for different tire on different surface given in table

(2.1) [11].
2.2.2.2 LATERAL FORCE

The lateral force at the tire-road interface is developed
due to the cornering and the presence of camber angle. Tire
models had been developed to calculate the lateral forces.
The tire lateral force characteristics has been developed
based on tire mechanics and experiments. The tire lateral
force also known as cornering force can be expressed as a
nonlinear function of slip angle (angle between wheel heading
and direction of travel). Another component of the lateral
force is due to the camber angle (angle of inclination from
the vertical plane). The lateral force at tire road interface

do not pass at the centre of rotation but behind the centre at
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Vehicle Type. Concrete. Medium hard Sand.
soil.
Passenger cars. 0.015 0.08 0.30
Trucks. 0.012 0.06 0.25
Tractors 0.02 0.04 0.20

| T — S —
Table (2.1) Coefficient of rolling resistance. (11]
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a small distance t, , referred to as pneumatic trail (10, 11,

12]. This causes a moment about the vertical axis referred to

as aligning torque.
LATERAL FORCE DUE TO CORNERING

buring cornering when a perpendicular force to the wheel
plane is applied, a lateral force ( Fre ) is developed at the
contact patch and the tire is forced to move along a path at
an angle a with the wheel plane referred to as slip angle. The
characteristics of cornering force can be expressed as a
nonlinear function of slip angle for a given tire
construction. The trend can, however, be considered linear for
slip angle in the range of 0 to 4° . For this range the

cornering force can be estimated from:
Fya=Cyt (2.10)

where C, is referred to as tire cornering stiffness

LATERAL FCRCE DUE TO CAMBER ANGLE

Camber angle as defined in section 2.2.1 is the angle of
wheel plane inclination from the X-2 plane. The camber angle
is introduced to achieve axle bearing pressure and to decrease
king pin offset. The camber angle can be positive or negative
as defined in Fig. (2.2). In a rolling tire, the camber ( Y )
introduces a lateral force at the tire-road interface which
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can be expressed as a linear function of the camber angle

given by [11]:

F

vy~ 2Cy Y (2.11)

Where o is referred to as a camber stiffness of the tire
determined experimentally. The total lateral force at the

tire-road interface can, therefore, be expressed as:
F,=Fy,+F,, (2.12)

By substituting equation (2.10) and (2.11) the total lateral

force is:
F,=-C,axCY (2:13)

The camber angle in passenger cars is limited to around 1°,
since it tends to promote tire wear (11], and for

simplification its effect can be neglected.

ALIGNING TORQUE

As explained previously, the lateral force at the tire-
road interface acts at a distance ¢t behind the wheel centre.
This causes a moment M, about the Z-axis, referred to as self

aligning torque:

My-F,t, (2.14)
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where ¢, is the pneumatic trail usually considered as 1/6 of
the tire contact patch. The aligning torque is comparatively

small and can be ignored for most analysis.

2.3 SUSPENSION SYSTEM.

One of the objective in the present study is to examine
the potential of N.N. in predicting suspension parameters, and
possible application of N.N. as a dynamic controller of
suspension parameter. For this, a six DOF complete vehicle
with four wheels and suspension is considered, while subjected

to a steering input.

The vehicle suspension system primarily consists of a
spring and damper placed between each wheel and vehicle body.
In addition to basic suspension, modern vehicles utilizes a
torsional spring that connects the left and right wheels. This
torsional spring also referred to as a stabilizer bar or an
anti roll bar acts as a spring only in the presence of roll
thus increasing the roll stiffness of the vehicle. The force
developed by various suspension elements are presented in this

section.

2.3.1 SUSPENSION COMPONENTS:

Vehicle system suspension can be represented by a
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Fig. (2.6) Simple suspension model.
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combination of several elements as shown in Fig. (2.6), where
My, is the sprung mass representing vehicle body, M,, is the
unsprung mass representing the axle, K is the stiffness of
the spring, K, is the tyre stiffness and CC is the damping
coefficient of the shock absorber. The springs of the
suspension supports the sprung mass, the shock absorber
provides the dissipation of energy and the tire acts as a
secondary suspension between the axle and ground. Although
friction is present in the suspension system, it is often

neglected.

SUSPENSION SPRING:

The primary function of the suspension spring is to
support the vehicle sprung mass. There are two major types of
springs used in cars and light weight trucks, namely coil
spring and leaf spring. The spring is characterized by its
stiffness, which can be linear or nonlinear (progressive). In
general, the suspension force for the spring can be expressed

as: [22]

F,=K,(2)Z (2.15)

where Z is the vertical deflection across the spring.

K,(Z) is the stiffness which is constant for a linear spring.
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SUSPENSION DAMPER:

The primary function of the suspension damper is to
isclate sprung mass from shock and vibration generated at the
wheel or axle. It dissipates energy by pushing oil through a
small orifice as the relative position across the damper is
changed. For constant area orifice, the damper is considered
linear where the force across the damper is proportional to

the relative velocity.

Dampers are often designed with valves to provide
variable effective orifice and nonlinear characteristics to
achieve better performance over a wide frequency range. In
general, the force developed across a damper can be expressed

ass:

Fp=C(2)Z (2.16)

where 2 is the velocity across the damper. C(2) is the

coefficient of damping which is constant for a linear damper.

ANTI-ROLL BAR:

Anti-roll bar is a torsional spring attached to left and
right wheels to resist roll motion of the sprung mass. The bar
is only active when there is a relative motion between the
left and right wheels, thus affecting only the roll motion. A
detailed model for anti-roll bar is presented in [13]. The
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stiffness of the bar can be obtained based on material
property and bar geometry. Knowing the torsion bar stiffness,
Kr in N/rad. suspension force due to anti-roll bar can be

expressed as:
Fg=K.Q (2.17)

where f, is the roll motion of the sprung mass. Here the

characteristic of the bar is considered linear.

ROLL CENTRE:

The roll centre of the vehicle is the point at which the
vertical forces act upon the sprung mass. To model a vehicle
system the roll centre 1location must, therefore, be
determined. As shown in Fig. (2.7) the determination of the
roll centre is based on finding the instantaneous centre of
the suspension mechanism which in this case is denoted by
points A and A'. The roll centre for the suspension is found
from the intersection of lines connecting tire-road contact ¢
and €' to A and A', respectively (Fig. (2.7)). If the vehicle
is on a level road, the point R is located on the centre 1line
of the vehicle. But if the vehicle is subjected to roll it is
clear that the roll centre will migrate. If the roll angle is
small, the change in the suspension geometry can be neglected

in order to assume a fixed roll centre.
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Fig. (2.7) Determining the roll centre.
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2.3.2 SUSPENSION FORCES

The suspension force can be determined based on the
relative motion and the relative velocity across the
suspension elements. With reference to Fig. (2.6), the

suspension force can be expressed as:
¢

Fo=K 5. 2+Coq. 2 (2.18)

where K,, and C,, are the equivalent suspension stiffness

og.
and damping coefficients. These are function of element
characteristics and suspension geometry. The variables Z and
Z are relative position and velocity across the suspension,

which is given by:

2-2,-2,

Z=24-2,
The variables Zg and Z, are function of sprung mass bounce,
rolil, pitch and wheel bounce. In the presence of anti-roll bar
the suspension force can be evaluated from equations (2.15) to

(2.17) to give an expression:
FymK, Z+Cop Z+K, 0 Q , (2.19)

where X, ., isthe equivalent torsion stiffness (roll stiffness

expressed in N/rad.) and f2, is the roll angle.

A simplified linear expression is considered in this
study to systematically evaluate the potential of N.N. in

vehicle dynamics applications.
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2.4 STEERING SYSTEM

The steering system is a mechanism that allow the driver
to introduce a rotation to the front tires around the Z axis
(Fig. (2.2)). The steering mechanism gives the driver the
ability to control the vehicle direction of motion. This also
allows the driver to correct the vehicle motion if external

forces (Like side wind) disturb it.

In the study of vehicle dynamics, the tire-ground forces
developed are a function of slip angle as discussed earlier.
The slip angle is in turn a function of steering angle. It is,
therefore, necessary to know the steer angle of each wheel for
a given steering input. The steering geometry, and
relationship between steering input and wheels angles are

discussed in the following subsection.

tN
Lt

2.4.1 CORRECT STEERING

The relative motion between the wheels of a vehicle and
the road should be of pure rolling in order to avoid wheel
scrub. To satisfy this condition when a vehicle is moving
along a curved path, the path of each wheel should be
concentric circular arcs [11, 16]. This condition as shown in
Fig. (2.8) dindicate that the perpendicular from each wheel

must coincide at G for a vehicle with front steerable wheels.
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The figure also indicates that in order to achieve a steering
angle of @ , there is an angle 6, and 6, for the inner and

outer wheels, respectively, to give correct steering.

2.4.2 STEERING ANGLE VERSUS WHEEL ANGLE:

In deriving the steering angle of inner and outer whe=z:s
in terms of steering input, correct steering input is assumed.
With reference to Fig. (2.8), the steering input is the angle
of the imaginary wheel placed at the centre c¢f track width,

referred to as mean steering angle. From the geometric

relationship:
L
- 2.20
tanb- S =5ix (2.20)
For the right (Inner) wheel:
L
tanf .= = 2.21
anf .- 2 ( )
For the left (Outer) wheel:
L
anf,= 2.22
t L= oix ( )

Combining equations (2.20) and (2.22), and equations (2.20)
and (2.21), the wheel angle for left and right wheels can be

expressed in terms of mean steering input 6. Assuming small
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angle (tanf0-6) , these expressions are:

8. -9
L :gg-kl (2.23)
2L
and
0
0, 1_J§g (2.24)
2L

where S and L represent the track width and wheel base,
respectively. 0 is the mean steering angle or the steering

input seen by the wheels.

2.4.3 STEERING INPUT

Transient response of the vehicle will be considered in
the application of N.N. in this study. For this a simple
steering represented by a ramp function is utilized. Two such
ramp function for mean steering angle used are shown in Figs.
(2.9) and (2.10). The mean steering angle shown in Fig. (2.9)
represents a steering rate of 1.14 deg/sec. for a duration of
0.5 sec. The mean steering angle shown in Fig. (2.10)
represents a steering rate of 10 deg/sec. for a duration of
0.5 sec. Fig. (2.10) also shows the angle for inner and outer
wheels obtained from equations (2.23) and (2.24) to be used

for the left and right wheels of a four wheel vehicle model.
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Fig. (2.9) Steering angle versus time graph (Three degrees
of freedom).
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STEERING INPUT.
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Fig. (2.10) steering angle versus time graph showing the
mean as well as inner and outer wheels angles in time
domain.
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2.5 SUMMARY

This chapter primarily presented the vehicle tire systen,
and tire mechanics. Major forces and moments developed by a
rolling tire are discussed along with its axis system. The
tire-road interaction forces in the contact plane and moments
about vertical axis are formulated. The longitudinal force due
to driving or braking effort and rolling resistance is
expressed. The lateral force resulting from cornering and

camber angle is formulated.

For the suspension and steering system various
assumptions such as linear suspension, fixed roll centre and
perfect steering to be considered in this study are discussed.
For the suspension system, springs, dampers, stabilizer bar
and roll centre are reviewed to show their importance in
vehicle modeling. For the steering system, perfect steering
assumption that will be used in the simulation of six DOF
vehicle model is explained. The relationship between the
steering input and steer angles for the left and right wheels
are developed. The expression developed and presented in this
chapter will be used to develop the vehicle models used in

this investigation.
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CHAPTER 3

COMPUTING NEURA ORK

2.1 INTRODUCTION

As mentioned in chapter 1, Neurocomputing and Neural
Network (N.N.) is an attempt in emulation of the human brain
at a very basic level. Like the human brain, N.N. is formed of
a number of interconnected artificial neurons, where each
neuron has an input, processing and output areas. The
technology for N.N.has been around for some time, but its
application are being explored only over the last few years.
This is made possible with the advancement of computers with
fast and parallel processing capabilities. Neurcocomputing and

N.N. has been defined by experts as follows:

Neurocomputing: "is the technological discipline concerned
with information processing systems that autonomously develop
operational capabilities in adaptive response to an

information environment" [7]

Neural Network: "is a parallel, distributed information
processing structure consisting of processing elements
interconnected via unidirectional signal channels called

connections." [7)
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Neurocomputing by itself is a subject of research
extensively investigated by computer scientist, and is not
within the scope of the present investigation. Several version
of the N.N. technology has been developed as a tool, and
applied to a wide range of applications including pattern
recognition, control classification, diagnostics, automation,

system dynamics, etc.

The application of N.N. in dynamical system has been
carried out by few researchers only in the very recent years
as discussed in the literature review. The objective here is
to apply an appropriate N.N. to the study of some complex
aspects in vehicle dynamics. As discussed in the literature
rHxiew, there are many types of N.N. that are suitable for
specific types of applications. In selecting a N.N. various

aspects that must be considered include:

Types of N.N. and their possible applications.

Types of learning rules for the N.N.

Transfer functions that can be used in the network.

Various N.N. parameters and their selection.

The procedure and steps used in building a N.N.

Each of these aspects are discussed in the following
subsections in relation to the present application of N.N. in

vehicle dynamics simulation and control.
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3.2 TYPES OF N.N, AND THEIR APPLICATION

As discussed in the literature review, different types of
N.N. have been developed over the years. Some books [6, 7, 8]
have been published in the recent years with detail
introduction to various types of N.N. and their possible
applications. Some of the well known N.N. include:

Adaline and Madaline: has gained application in adaptive
signal processing. It is a N.N. that can be implemented as
filters to perform noise removal from information-bearing
signals.

Back-propagation; has application in problems requiring
recognition of complex patterns and performing non-trivial
mapping. It is a network that adapts itself to "learn" the
relationship between a set of examples patterns, and able to
apply the same relationship to a new input pattern. Back-
propagation network, therefore, has potential application in
simulation, control of dynamical systems and reverse dynamics.

General reqression network: is a general purpose network.

It gained applications in system modeling and prediction.

Modular neural petwork: is a generalization of back-

propagation neural network. It is applied to system modeling,

prediction, classification and filtering.

Among various N.N. developed to date, back-propagation

network (BPN) is most applicable to simulation of dynamical
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systems, control and optimization. It can be used in
addressing problems requiring recognition of complex patterns
and performing non-trivial mapping function. This network has
been demonstrated to be most successful in system modeling,
control, and pattern recognition [7]. In basic terms a BPN can
be trained through a set of input-output relationship to
develop artificial intelligence. An adequately trained BPN can
then be used to make prediction of the network output by
providing the network input, and/or provide an optimal

parameter for control.

For the application of N.N. to vehicle system model and
control in this investigation BPN is selected. Rest of this
chapter is devoted to description of BPN; selection of
learning rule, transfer function and parameters for its use;

and a flow chart for the BPN algorithm.

3.3 BACK-PROPAGATION NETWORK (BPN)

Back-propagation network (BPN), formalized by Werbos
[34], and later by Parker [35], Rumelhart and McClelland ([36],
operate as a multi layer feed forward network using supervised
learning. A detailed discussion of BPN and its architecture is

not discussed here and is available in references (6, 7, 8].
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The network architecture is formed of a number of layers
the first one is the input layer, the last one is the output
layer and ones between them are called intermediate layers.
Fig. (3.1) shows a BPN formed of an input layer, two
intermediate layers and an output layer. Each node of the
network has a variable weight, and there are a predefined
transfer function between nodes. In general terms, after an
input pattern with known output has been applied to the first
layer of the network, it is propagated through each upper
layer until the network output is generated. The process of
propagation through each layer is also shown in Fig. (3.1),
where x is the input to the network, x’ and x” are the output
of the first and second layers, and y is the network output.
Here f represents the transfer function, where W is the weight
and 0 represents noise. The network output is compared to the
desired known output and the mean sgquare error is calculated
for each output unit. The error is then transmitted backward
to each node of intermediate layers that contribute directly
to the output. The process is repeated and the internal values
(weights) of the network are updated until a reasonable error

is achieved.

After training, when presented with an arbitrary input
pattern the network should be able to calculate the correct
output. It however must be noted, that trained network can not

work properly if the relation between the arbitrary input and
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the required output is not similar to what it learned. Also

sometimes a N.N. would not learn and minimize the error

without any apparent reason [7].

In the implementation of the BPN, one should choose two
major specification of the network. These specifications are
the learning rule and the transfer function. The following

subsections discuss each one of them briefly.

3.3.1 N.N. LEARNING RULES

The N.N. learning rules are used to adjust the weights
and biases of the N.N. that minimizes the error between the
network output and the desired output during training. There
are several learning rules available [6, 27] that can be
applied. Some of them include:

1) delta rule,

2) normal cumulative,

3) extended delta-bar-delta,
4) delta-bar-delta,

One of the difficulty in using a N.N. is that their
behaviour is not very well understood. In practice, the
learning rule is selected based on trial, where the rule that
leads to lowest error is used. For the present application,
delta rule and normal cumulative were found to be most

efficient.
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3.3.1.1 DELTA LEARNING RULE

The BPN error in the output layer is calculated as the
difference between the desired output and the network output.
This error, transformed by the derivative of the transfex
function is back-propagated to prior layers where it is
accumulated. This back-propagated and transformed error
becomes the error term for that prior layer. The process of
back~-propaHxting the errors continues until the first layer is
reached. The Delta learning rule change the weights of the
network by multiplying the error at each weight by the
learning coefficient. The difference between the current
weight and the previous weight is multiplied ky a momentum to
accelerate the minimization of the error. The following
equation illustrate how the delta rule updates the weights of
the BPN:

W(t+1l) =W(t) +adx/ ;+y (W(t)-W(t-1)) (3.1)

where W(t+1l) is the updated weight, W(t) is the current
weight, W(t-1) is the previous weight, a is the 1learning
coefficient, & is the error, x/; is the input to that

connection and ¥y is the momentum.
3.3.1.2 NORMAL CUMULATIVE LEARNING RULE
The normal cumulative learning rule is similar to the

delta rule, the only difference is that instead of updating
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the weight for every set of data presented, the user specify
a number of presentation (Epoch) after which the weights are
updated. The weight are update in two phases:

1) at each data presentatica:

m(t+1) =m(t) +adx’, (3.2)
where m(t+1) is the updated dummy weight, m(t) is the current
weight a is the 1learning coefficient, 8§ is the error and

x', is the input to that connection.

2) after a certain number of presentation when the epoch

number is reached,

wit+l) =wW(t) (£) (t)
e ey (3.3)

m(t+l) =0

where ¥ is the momentum and af(t) is the dummy load at the

beginning of the cycle.
3.3.2 TYPES OF TRANSFER FUNCTIONS

The transfer function is the function that relates the
neuron output to the net output. Fig. (3.2) shows the location
of a transfer function in a N.N., from the figure the neuron

output X is defined as [27]:
N-1

X'EWixi-e (30‘)

i=0
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where W, is the weight, x; is the input and @ is an offset or
a noise function. The transfer function is applied to the

neuron output and the network output is:

-1
Y=-transf(Xx) - transf(; W, x,~0) (3.5)
=0

BPN is based on continuous change of the biases and weights of
the network in the direction of steepest descent with respect
to the error. It therefore requires a function with continuous
differentiable non-linearity. Different transfer functions can
be used [6, 7], some of which include: 1linear transfer
function, Sigmoid transfer function, tanh transfer function,
etc. Although any continuous differentiable mnon-linear
function can be used, Sigmoid transfer function was found to
give, the best results in the present application. The sigmoid
transfer function is a 'S' shaped continuous differentiable

function shown in Fig. (3.3), which can be expressed as:

1

F(x)=
() l+e™*

(3.6)

3.4 THE BPN PARAMETERS

As expressed in equation (3.1), there are two main
parameters required to operate the N.N., they are the learning

coefficient « , and the momentum ¥y .
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The learning coefficient & , controls the rate at which tha2
error modify the weights. If the value of the learning rate is
too high, the network can become unstable. On the other hand,
if the rate is too low, a extremely long training period is
required. The value of the learning coefficient between 0 and
1 is best selected by trial to achieve fast learning of stable

network [6].

The other parameter, momentum ¥y is a factor that
dictates the speed of error minimization. This allows the
network to respond not only to the local gradient but also to
recent trend in error minimization. The momentum parameter is
also selected by trial to achieve satisfying performance of

the network [6].

3.4 BPN ALGORITHM AND FLOW CHART

The back-propagation N.N. learns by propagating the error
between the N.N.output and the desired output. The propagHxed
error is used to modify the weights, the rate by which the
weights are modified depends on the learning coefficient and

the momentum.

The method by which the back-propagation N.N. works is
shown in the flow chart Fig. (3.4) and the following steps.

(The learning rule and the transfer function in the following
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Calculate error between presented
output and network output.
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Fig. (3.4) BPN Flow chart.
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steps are respectively the delta rule and Sigmoid).

STEP 1;: Specify the number of inputs, outputs, nodes (layers)

and number of neuron per layer, Fig. (3.1)
STEP 2: Initialize the weights and orffsets,

STEP 3: Present inputs x,, x,,...,Xy, and desired outputs
do, dl' ...'dM‘l to the NJN"

STEP __4: Calculate the error between the N.N. output
YorYir «+ .Yy, @and the desired output. The N.N. output is
calculated by summing the weights at each node then the
transfer function is used to transfer the summation to the

next node if there is any, or to get the N.N. output.

STEP 5: Back-propagate the error to all the nodes and neurons.
The weights are updated using the calculated error, the

learning coefficient and the momentum,

W(t+1) =W(t)+ad ,x; (3.7)

where W(t+1) is the updated wveight, W(t) is the initial
weight from hidden node i or from an input tonode j , a is
the learning rate, bj is an error term of node j and xﬁ is
either the output of node i or is an input. If node is an

output node, then
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8=y, (1-y;) (dy-yy) (3.8)

where d; is the desired output of node j and y; is the actual
output. (N.N. output)

If node j is an internal hidden node, then

aj-xj’(1-x,’)§:6kwjk (3.9)

where k is over all nodes in the layer above node j .
Convergence is sometimes faster if a momentum y term is added

and weight changes are smoothened by:
W(t+l) =W(t)+ad x;+y(W(E) -W(t-1)) (3.10)
where
0<y<1

and W(t-1) is the previous weight.

STEP _6: Repeat the steps from 3 to 5 until the error

calculated is acceptable.
3 UILDIN .

The way to build a N.N. could be stated in the following
steps:
1) Determine the problem type the inputs and the outputs that
will be given to the N.N. to learn. It is important that the
inputs and outputs be related.
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2) Construct a data training file and a testing file, the
training file could be used as a testing file. Be sure not to
have similar inputs with different outputs or vice versa.

3) Determine the purpose of building the N.N. For this
research the N.N. was needed for system modelling and for
control this helped to determine that back-propagation N.N. is

the most suitable for this problem.

4) Determine the number of neuron needed, the input and output
neurons are equal to the number of inputs and outputs of the
problem. The number of neuron and the number of layers are
chosen by trial and error.

5) Determine a learning rule that will update the weights of
the N.N., and achieve learning. For the N.N. the choice of the
learning rule is done by trial.

6) Determine the most suitable transfer function.

7) Determine the N.N. parameters by trial.

8) start the learning process and test the N.N. if error is
acceptable the training is over if not change parameters and
restart training until reaching the minimum error.

9) The trained N.N. could now be used for the application

needed.

2.6 SUMMARY

This chapter primarily presented the N.N. and specially

the BPN. The chapter gave a general idea about the N.N. and
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the BPN parameters which are essential in building a BPN. The
learning rules used in the research are explained. The
transfer function are explained and the Sigmoid transfer
function is formulated. The BPN algorithm and flow chart are
explained in detail. The steps to build a N.N. application are
explained in a simple manner. The BPN will be applied to the

three and six DOF vehicle model in the following two chapters.
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CHAPTER 4

4. APPLICATION OF N.N EE IC 0

4.1 INTRODUCTION

As discussed in chapter 1, there has been very limited
application of N.N. to vehicle system dynamics. The objective
of this part of the study is to attempt simulation of the tire
property in cornering. For this, a simplified three degrees of
freedom vehicle model often refereed to as a bicycle model
[10, 11] is considered. Since tire parameters have the most
influence on vehicle yaw velocity, the model is used to
simulate yaw velocity for a steering input until steady state

is reached.

The tire parameters and simulation results are used to
train a back propagation N.N. described in chapter 3. Using
inverse dynamics, the trained network was then used to predict
the tire parameter for a given vehicle response. The
performance of N.N. is evaluated by comparing the response
given to the N.N, with that of simulation with N.N. predicted

parameter.

The results are tested for different training scheme and

wide range of responses. The N.N. is finally tested for
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prediction of tire parameters corresponding to minimum
feasible yaw response of the vehicle model. This chapter
presents: the development of the three degrees of freedon
model; simulation parameters and results; and N.N. results as

compared to those of simulation.

+ 2 EGREE EDOM VEHI @)

A simplified vehicle model in negotiating a curve can be
modeled as a bicycle-model, where the pair of tires on an axle
are represented by a single tire with double the cornering
stiffness. The mass of the vehicle in this case |is
concentrated between the front and the rear axles as shown in
Fig. (4.1). When the vehicle negotiates a curve at moderate or
higher speeds under a steer angle 8, , lateral forces
( Fyp and Fy ) at the tire-road interface are developed. This
also leads to a slip angle «, and a; for the front and rear
wheels as was discussed in chapter 2. The expressions
developed in that chapter for the tire forces are used here to

develop the vehicle model.

Two sets of axis system are used to formulate the
equations of motion of the vehicle. The first set of axis is
fixed to the vehicle so that the inertia properties of the
vehicle are constant. The other set is fixed in the space to

express the absolute acceleration of the vehicle as shown in
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Fig.(4.2).

As shown in Fig. (4.2) when the vehicle is turning along
a curved path, it is subjected to a translation and a rotation
motion. ox and oy are the longitudinal and lateral fixed
axis and point O is the centre of gravity of the vehicle. At
time ¢, V is the velocity of the centre of gravity, which
has component Vy, and V, with respect to body fixod axis
system. At time ¢+At the velocity of the vehicle is V+AV
with component V,+AV, and V,+AV, along the X and VY axis

of the vehicle respectively.

As further shown in Fig. (4.2), the translation of body
fixed axis in time At is accompanied by a rotation A, .
The corresponding transformation matrix about =z axis is,

cosAQ, -sinAQ , 0

sindfQ,; cosAQ, ©
0 0 1

The change in the velocity in time At can therefore be
expressed as:
cosAQ, -sinAQ, 0) (V,+AV,) (Vi

AV-{sinAQ, cosAfQ, 0| V,+AV,|-|Vy|=
0 0 1 0 0
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Fig. (4.1) Three degrees of freedom vehicle model.

AT t+at.

Fig. (4.2) Axis used for analyzing vehicle motion.
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cosAQ ,(Ve+AV,) -sinAQ ,(V,+AV,) -V,
SinAQ ,(Vy+AV,)+cosAQ (V,-AV,) -V, (4.1)
0

since AQ, is very small the following

sinAQ ,-AQ,
cosAQ ,~-1

AV, AQ =0

can be substituted in equation (4.1) to express the change in
velocity as:
Av,-V,AQ,
Av=-|Av,+V,AQ, (4.2)
0
The absolute acceleration can now be found by dividing

equation (4.2) by At and taking the limit when At=0 .

ax Vx' Vro z
dy 'lV,ﬁ V,Q,
a 0 |

(4.3)

where f}, is the arqular velocity dQ1/dt as shown in Figs.
(4.1) and (4.2). With reference to Fig. (4.1) using axes fixed
to the vehicle, the equations of motion in the longitudinal,

lateral and yaw directions can be expressed as:
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m*a,=Fy.coSd g+ Fyp=-Fyp.8ind
meay=Fyo+F.co88 ,+ Fy,sind ¢

where 8, is the steering angle. Substituting equation (4.3)

into the previous equations lead to the equation of motion as:

m* (Vy=V,Q,) = FypCcOS 8 o+ Fyg- Fyposind , (4.4)
m* (Vy+ VyQ ;) = Fyp+ FrCOS 8 p+ Fypsind (4.5)

The lateral forces F,, and Fy, (in equations (4.4) to (4.6))
at the front and rear tire-road interface expressed by

equation (2.12) are: (neglecting the camber efrfect)

Fyp=2Copl p (4.7)

where C,, and C(,, are the cornering stiffness of each tire.

@, and a, are the slip angle of front and rear tires defined
in chapter 2 and also shown in Fig. (4.1). With reference to
Fig. (4.1), the slip angles can be defined in terms of vehicle
motion variables. For small angles, the expressions for slip

angles are:
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_ LV (4.9)

a,~8, v

L0V (4.10)
R VX

The longitudinal force Fy, and Fy (in equations (4.4) to
(4.6)) at the tire-road interface is the rolling resistance of
the tire in the absence of tractive or braking effort

(Equation (2.1) and (2.2)). The tire rolling resistance

expressed in equation (2.7) is:
Fyp=Fop=FzpF, (4.11)
Fyg=Fop=Fpp £, (4.12)

where F, is the normal tire load, which can be expressed in

terms of vehicle weight mg as:

L,
Fop leqmg (4.13)
Ll
Fgp= I3 mg (4.14)

The term f, in equations (4.11) and (4.12) referred to as
coefficient of rolling resistance is expressed by equation

(2.9) as a function of velocity is:

|4
£,=0.01(2+ 160) (4.15)
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Substituting equations (4.7), (4.8), (4.11) and (4.12) into
equations (4.4) to (4.6) completely defines the motion of the

vehicle for a steering input 3 .

4.3 SIMULATION OF THREE DOF VEHICLE MODEL

The three DOF vehicle model expressed by equations (4.4)
to (4.6) is solved in time domain using fourth order Runge-
Kutta. The steering used for simulation is a ramp function as
discussed in section (3.8) and described in Fig. (3.12). The
vehicle parameters used for the simulation are representative
of a passenger car {11] as presented in Table (4.1). For the
given ramp function steering input, the vehicle response is
computed in time domain for various combination of tire

cornering stiffness.

Sample results of yaw, forward and lateral velocity for
two sets of tire cornering stiffness are shown in Figs (4.3)
to (4.5). As the results show, (Fig. (4.3)) the yaw velocity
increases with time, and for the given steering input a steady
state is reached in less than 3 seconds. As shown in Fig.
(4.4), the forward velocity decreases with time because the
vehicle is subjected to a rolling resistance with no drive
force. The lateral velocity responce of the vehicle is shown

in Fig. (4.5).
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e ———— e e ey
Mass m 2000 kg.
Inertia 2880 kg.m?

L 1.035 m.
L 1.265 m.
£, 0.03
C.p 33000 to 45000 N/rad.
Cor 33000 to 45000 N/rad.

Table (4.1) Three DOF Vehicle parameter.
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Yaw velocity of the vehicle in response to a steering
input is a good index for handling and steering response [11].
The simulation results obtained as yaw velocity for 49 sets of

tire parameters were compiled for the training of the N.N.

4.4 N.N. FOR THE THREE DOF VEHICLE MODEL

As discussed in chapter 3, the N.N. selected for this
application 1is the back-propagation network (BPN). The
architecture and parameters for the BPN are also discussed in

chapter 3.

The software used for the N.N. is Neural Works. The
software is used with a 486 PC. The major advantage of the
software is the simplicity of setting the parameters. The user
has to choose the N.N. type from a menu and then enter the
N.N. specifications and parameters. While training the user
can observe the performance of the N.N. through the network

mean square error graph.

As discussed in chapter 3, the transfer functicn,
learning rate and N.N. parameters are selected based on trial.
The parameters used in the present application are presented

in Table (4.2).

The network is trained by providing 19 discrete values of
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Inputs (yaw velocity)

“ Hidden

Output (Tire stiffness)

II Learning coefficient for

input

Learning coefficient for

output
Epoch 10
Learning rule Normal Cumulative

Transfer Function Sigmoid,

Table (4.2) N.N. Parameters for the three DOF vehicle model.

73



yaw response in the time domain for a set of two tire
stiffness. 19 values are used to ensure that the time domain
response curve is described as a continuous smooth curve. Sets
of data required for the successful training of N.N. depend on
the complexity of the problem. For a stable physical systenm
the number of sets required is small. On the other hand, a
large number of training sets are required if the system is
non physical. Following are the results during training stages

in the present application.

4.4.1 TRAINING USING 9 SETS OF SIMULATION RESULTS

First, only 9 sets of data are used for the training of
the N.N. The N.N. is tested using 49 sets of data. Some of the
results are presented in Table (4.3), the first two columns
represent the required front and rear tire stiffness the
second two represent the N.N. calculated front and rear tire

stiffness. It is clear from the table that the error is

acceptable.

4.4.2 TRAINING USING 25 SETS OF SIMULATION RESULTS

25 sets of data are used to train the N.N. Table (4.4)

show some results of the training process as described for

table (4.3).
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Front tire Rear tire Front N.N. Rear N.N. |

stiffness. stiffness. tire. tire.
35000 39000 34€26.95 39197.31 “
37000 43000 36736.76 43500.83 “
41000 41000 41387.36 41400.43 |
43000 45000 43329.35 44994.23

e
Table (4.3) Testing N.N. after 9 sets of training.

—

—

Front tire Rear tire Front N.N. Rear N.N.

stiffness. stiffness. tire. tire.
35000 39000 34924.35 39236.57
37000 43000 36909.79 43470.96
41000 41000 41296.05 41250.25 |
43000 45000 43137.28 44800.26
Table (4.4f=?ESting N.N. after 25 sets of training.
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9 sets of data was found adequate for the training of the
BPN in the present application. Small sets of data is
sufficient since the system data represent a stable physical
system. From the result listed in tables (4.3) and 4.4) it
shows that N.N. achieved better results with more training

sets.

Despite the N.N. ability to learn with small sets of
data, 49 sets are used for completely training the N.N. This
is to ensure that a wide range of input and response is
experienced by the network. This will further aid in
estimating tire property corresponding to minimum response at
each discrete point learned by the N.N., as presented in

section (4.6).

4.5 APPLICATION OF THE N.N.

The trained BPN is used as an inverse dynamic tool. For
this an arbitrary yaw response of the vehicle within the range
of yaw response obtained from simulation is provided to the
N.N. The N.N. in tern provides the two parameters as front and
rear tire cornering stiffness. The N.N. calculated tire
stiffness is then used to simulate yaw response and the two
responses are then compared. Figs. (4.6) to (4.9) present
sample results for this part of the study. As the results

show, in every case the N.N. is capable of predicting the tire
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parameter quite effectively as long as the yaw response is

within the training range.

To test the performance of N.N. in the presence of noise
or errors in response data, some bad values are introduced in
the input. The results are shown in table (4.5). Here the
first set of result correspond to a response curve with three
unrealistic very large values. The second set correspond to
three response values set to zero. The final set correspond to
three response values being negative. As the results show, the
N.N. still tries to predict a tire parameter which are not
very unreasonable (within 23%). The trained N.N. is found to
predict very reasonable values for tire stiffness even when
one or two values of the response curve are contaminated or

has error.

4.6 A IC ON OF N.N. IN OPTIMIZATION

Finally, the trained BPN is used in an attempt to find
the optimal tire parameter that minimizes the yaw response.
For this, the minimum values of yaw response within the range
of simulation results at each of 19 discrete points (on time
scale) is provided to the N.N. The N.N. predicted tire
parameters are shown in Fig. (4.10). As the results show the

N.N. predicted and simulated results are quite close with some
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Front tire Rear tire Front N.N. Rear N.N.

stiffness. stiffness. tire. tire.
43000 41000 48499.96 39980.58
43000 45000 31474.71 48903.45
45000 35000 43950.57 43851.39
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error in the steady state response of approx 4.5%. This error
is very small, which demenstrate the potential of BPN in

predicting the optimal parameter for such a system.

4.7 SUMMARY

In this chapter a three DOF vehicle model is developed to
generate the data needed for the N.N. The vehicle model used
is a simple vehicle model with the only variable being the
tire parameters. The generated data is used to train the N.N.
The training is carried out first using 9 sets of data then 25
sets and finally 49 sets. The training process proved that the
N.N. is able to learn even with a small number of data sets.
It has been also proved that the accuracy of the N.N. is

increased with more data sets.

The trained N.N. is then used for predicting the tire
parameters using the vehicle yaw response. Furthermore the
N.N. is used to calculate the tire parameters that would

optimize the vehicle response.
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PTER S

5. APPLICATION OF N.N. TO A SIX DEGREES8 OF FREEDOM VEHICLE
MODEL.

5.1 INTRODUCTION.

Chapter 4 presents N.N. application of a simple vehicle
model under steering input, where system parameters are
cornering stiffness of tires and response is vehicle yaw
velocity. The application in this chapter is extended to a six
degrees-of-freedom (DOF) vehicle model representing four
tires, four suspensions and a vehicle bedy. In this case the
response of interest is the roll angle of the vehicle under a
steering input. This is significantly more realistic model of
the vehicle for curving analysis. The number of system
parameters in this case can be many if all tire and suspension

parameters are considered.

In this chapter, the six DOF vehicle model is presented
and the equations of motions are developed. The data for the
training of the N.N. is generated through simulation of the
developed model. Systematic attempts are made to evaluate N.N.
performance in single and multi-parameter simulation. Finally,
application of N.N. is presented as a controller for vehicle

roll to demonstrate its potential in controlling the roll
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angle without affecting the ride quality.

6.2 SIX DEGREES OF FREEDOM VEHICLE MODEL

A six DOF model is adequate to determine the performance
of the vehicle under steering input. The body fixed axis used
in the modeling is the one defined by the Socciety of
Automotive Engineers (SAE). The axis system along with various
DOF is shown in Fig. (6.1), where the translational motions
are defined for the vehicle centre of gravity (CG) along
forward (X) , lateral (Y) and vertical (Z) directions. The
rotational motions are defined about each of the above
directions referred to as roll (,) , pitch (Q,) , and yaw

(Q;) motions, respectively.

The formulation of the mathematical model is carried out
following the same steps as that for the three DOF model
presented in chapter 5. In this case the transformation matrix
between the fixed and body reference system is expressed in
terms of change in rotations AQ , AQ, and AQ, in a

time At as [10, 11, 12, 25]:

cAQ;cAQ, cAQ,sAQ 540 ,-8AQ,cAQ, cAQ, sAQ,cAQ,+sAQ 580,
sAQ,cAQ, sAQ,sAQ,sAQ +cAD,cAQ; §40,500,cA0,-cAD,sA0, (5.1)
-84Q, cAQ,sa0Q,; cAQ,cAQ,
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where s and C represent sin and cos ,respectively.
Assuming small change in the angles in time At , and
substituting sinAQ=AQ , cosAQ~-0 , sinAQ=+*sinAQ-0 and
cosAQxcosAQ=1 in equation (5.1) lead to a simplified

transformation matrix:

1 -AQ, AQ,
AQ, 1 -AQ, (5.2)
-AQ, AQ, 1

After a time At , the change in velocity along each
coordinate are V,+AV,, V,+AV, and V,+AV, . The change in
velocity with respect to the fixed coordinate can therefore be
expressed as:

1 -AQ,; AQ, ) [VerAVy] (Vi) (AVe-V,AD +VAQ,

AV-{ AQ, 1 -AQ |y V,+AV, ||V |-|AVervaR -vAQ, (5.3)
-AQ, AQ, 1 v+AV,) \v,) \AV,-v,AQ 4V, AQ

The absolute acceleration can now be found by dividing the

velocity component by At and taking the limit when At=0 :

ay vx-V,,Q z* VzQ ¥
ayl=|V,+v,Q,-v,Q, (5.4)
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5.3 EQUATIONS OF MOTION

The equations of motion for the six DOF vehicle model can
be derived by summing forces and moments at the CG and
applying Newton's second law. The location of all the forces
acting on the vehicle are shown in Fig. (5.2). As shown in the
figure, all the external forces are introduced at the tire-
road interface except for aerodynamic drag F, acting at the
centre of gravity. Here F., represents the longitudinal force
due to drive or braking and rolling resistance. Fyy is the
lateral force primarily due to cornering, and F; is the
vertical force due to static and dynamic load of the vehicle
transmitted through the suspension to the axle.

With reference to Fig. (5.2), the equations of motion can

be expressed as:

May=Fy,COS0 p; + Fy,COS0 pp+ Fyy+ Fyo= (5.5)

Mxa,=Fy,81in0 ; +Fy,8in0 po+ (5.6)
Fy,c080 ; +F,CO80 pot Fys+ Fy, ’

M*Q =M g- (Fp 4+ Fy 4 Fp +F,,) (5.7)

S
Ix,ox'Marhs*E (Fgy4Fpy=Fzp=Fz,) - (5.8)
B, (Fy;+Fy +Fy,c080 5 +Fy,c080 ppt Fy,8in0 , + Fy,81in0 )
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I,Q =L, (Fy;+Fy,) —L, (Fz3+Fz) + . (5.9)
R (Fyy+Fy,4Fy,COS0 p +Fy,c080 p~Fy,8in0 ;- Fy,81n0 )

I, =L, (Fy,cO80 1 +Fy,CO080 go+ Fy;8ind p + Fy,8in0 gp)
—L,(Fy3+Fy,) - (—2‘S —h,) (Fyg+Fy €080 po-Fy8in0 )+ (5, 10)

(—g +h,) (Fyy+Fy,€c080 p;~Fy,8in0 p;)

where, IL is the moment of inertia of the vehicle about the

roll centre and is defined as:

Iy=I,+Mh}
Various forces in equations (5.5) to (5.10) are descriked as

follows:
ngitudina ces

In equations (5.5) to (5.10), F;, represents the
longitudinal force at the tire-road interface, expression for
which is derived in section (2.2.2.1). Combining egquations
(2.1) and (2.7) the longitudinal force for a driving wheel can

be expressed as:

‘rx‘-ru"fr*rll .i"l to 4 (5-11)
where F,, is the tractive force and F; is the normal load at
the ith wheel. In this study the tractive force effort is only

considered for the rear wheel ( Fy =0 for d1-1,2 ). The

coefficient of rolling resistance f, is taken as a constant.
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atera orces

The lateral forces in F;; in equation (5.5) to (5.10)
are due to cornering force as discussed in section (2.2.2.2).

Neglecting camber effect, the lateral forces can be expressed

as.:

where C, is the tire cornering stiffness as explained in
section (2.2.2.2) and is considered to be same for each tire.
&, is the slip angle for the ith wheel. As described for the
three DOF model (equations (4.9) and (4.10)), the slip angle
for each tire can be expressed as a function of wheel steer

angle and response variable:

al-eyL—-—L—l_a—szily (5.13)
az-em-f%‘_’x (5.14)
¢3-a‘--£2_9.‘-,zx-—vx (5.15’

The wheel steering angle ( 6, and 0, ) in the above
equations and in the equations of motion (equations (5.5) to
{5.10)) can be expressed in term of mean input steering angle

6 , as discussed in section (2.4.2) and presented in
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equations (2.23) and (2.24):

8- sg
2(L,+L,)

1 (5.16)

0
S0 (5.17)

T 2(L+Ly)

0 -
1

where S is the track width and ( L;+L, ) is the wheel base as

shown in Fig. (5.2). 6 is the steering angle which can be

described in section (2.4.3).

The vertical forces ( Fg; ) in equations (5.5) to (5.10)
are due to the vehicle mass and suspension forces. The

vertical force for the front and rear wheels can be expressed

as:

a) For the front suspension:

r‘l-M*g +r..‘ i"l CO 2 (5.18)

2
2(L,+L,)

where F,; is the suspension force at the ith suspension.
Using expression derived in section (2.3.2) (equation (2.19))

the suspension force is:

Foi=KA +CpA ;+(-1) 1, Q, 4-1 to2 (5.19)
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where

Aprz-(-1)i20Q,-1,0,  i-1to2 (5.20)

A -2-(-1) 1;290,—1,10,, i-1 to 2 (5.21)

For the front suspension, K, K; and C, are the equivalent
spring stiffness, torsion stiffness and damping coefficient,
respectively. Z represents bounce displacement of the vehicle
CG.

b) For the rear suspension:

Fpi-Mxg i-3 to 4 (5.22)

1
2(L,+L,) *Fas

Using expression derived in section (2.3.2) (equation (2.18)),

the suspension force is

where
A -z-(-1) ig Q,+LQ, i-3to4 (5.24)
A -2-(-1) 1-25-'0,+L20, i=3 to 4 (5.25)

For the rear suspension, K, and C, are the equivalent spring
stiffness and damping coefficient respectively. In deriving
these equations it is assumed that the tire deflection is

small and that the road is smooth.
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The aerodynamic drag force is included in the model

represented by F, in Fig. (5.2) and equation (5.5). The drag

force assumed to act at the CG can be expressed as a function

of velocity V , by [11]:
1=',,--%c:',,AV2 (5.26)

where p is the air density, C, is the coefficient of

aerodynamic resistance and A is the frontal area.

The moment arms h, h,, h; and h, shown in Fig. (5.2) and
used in equations (5.5) to (5.10), are variable distances that

can be expressed in terms of static vehicle parameter and

bounce motion ( Z ):

h,-A-B (5.27)
h,-A*Q, (5.28)
hg=(B-Z) (1-1Q,)) (1-1Q ) (5.29)
h.~(A-2) (1-1Q ) (1-1Q J)) (5.30)

A is the distance between the vehicle CG and the ground.
B is the distance between the vehicle CG and the roll centre.

The location of the roll centre is discussed in section 2.3.1.

5.4 SIMULATION OF SIX DEGREES OF FREEDOM VEHICLE MODEL

The equations of motion derived in section 5.2 are solved
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simultaneously using trapezoidal method. The parameters used
for the simulation are representative of a passenger car [18)
as presented in table (5.1). The parameters presented in the
table are nominal values where the suspension parameter are
retained as variable to attempt application of N.N. for multi
variable training. These parameters are front and rear
suspension stiffness KX, and Ky , torsion bar stiffness

Kr and front and rear suspension damping C, and (i .

The steering input in this case is considered to be the
one presented in section 2.4.3 as Fig. (2.10). It represent a

ramp function steering input of 0 to 5 degrees in 6.5 seconds.

Sample simulation results are presented in Figs. (5.3) to
(5.8) for two simulations. The first one has the front and
rear spring stiffness  Kp=K~20000N/m. , the torsion bar
stiffness K,=2000N/rad. and the damping coefficient

Ce=Cg=20000Ns/m. For the second simulation, the suspension

parameters are same as those presented in table (5.1).

Fig. (5.3) shows the roll angle of the vehicle during the
simulation. It is clear from the Fig. that the roll angle is
significantly affected by the variation of the suspension
parameters. Fig. (5.4) shows the pitch angle of the vehicle.
The pitch angle is also affected by the suspension parameter

but to a lesser degree. Fig. (5.5) shows the yaw angle during
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the simulation. The yaw angle is not affected by the
suspension parameters as expected. Yaw angle response is
primarily a function of tire property which is not changed in
this case. Figs. (5.6) and (5.7) show respectively, the
forward and lateral velocity of the vehicle during the
simulation. Both of these velocities are not affected by the
change of the suspension parameters. Fig. (5.8) shows the
vertical velocity of the vehicle. Although the vertical
velocity is low for the given steering input and parameters,

the effect of suspension on this response quite apparent.

From the result presented, it is clear that during
steering the e¢ritical vehicle motion is the roll angle. A
large value of roll angle would make the vehicle unstable
which may lead to roll over. The vehicle roll angle is
therefore, selected to be a candidate for the N.N. application
and control. In the following sections the absolute values of
the roll angle is used for the training of N.N. for various

sets of above parameters.
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f e L ST ——

Mass = 830 Kgq. S=1.3m.
Iy=150kgm.? C,=30000N/rad.
I,~1200kgm.? Kp=30000N/m.
I,~=1100kgm.? Kz=30000N/m.

L, ~1m. K,~8000N/rad.

L,=1.4m. Cp~30000Ns/m.

V=80 Km/h. Cr=30000Ns/m.
Fy=400N. Distance between CG and

ground A=0.5m.
£,-0.02 Distance between CG and

roll centre B=0.3m.
Frontal area A=2m.? ho=o0.2m.

e e e e e
Table (5.1) Six degrees of freedom vehicle model parameters.

98



‘WIS puodag - "Wis jsiid .-

(-oos) anwiL

S sy v G¢€ € 6¢ ¢ St I S0 O
50°0-

p——" ‘/ﬂ//
v0°0-

PR T Y M S T €£0°0-
4ttt 1 11/.\/.‘/‘/‘//

. J#/JMV c0'0-

\ 10°0-

(pes) 319NV 1104

NOLLVINNIS TOIH3A 404 XIS

(5.3) Six DOF vehicle model roll simulation.

Fig.

99



'WIS pUOJaS ‘WIS 1S4 o

(-08s) "INIL

§ Sy v G¢ € S¢ ¢ S} I SO0 O
+00°0-

e >/ 8000°0-
I e B 9000°0-
.._/I/./,ﬂ/ £000°0-
2000°0-

J/ .

€000°0

L

$000°0

(peJ) 31ONV HOLId

NOLLVINNIS J10IH3A 400 XIS

Fig. (5.4) Six DOF wvehicle model pitch simulation.

100




‘WIS puodes - ‘Wis 18ll4 -

(-08s) "INIL
S Sv ¥ ¢ € §2 2 SL L S0 0O

Saand

el |

\\\?\i g’
x\,\\.« >

[l

(pe1) I IONV MVA

NOILVINWIS 310IH3A 404d XIS

(5.5) Six DOF vehicle model yaw simulation.

Fig.

101



"WIS PUODSS -+ WIS 1Sild —-

(0es) "aNIL
G Sy v S¢ € S¢ ¢ S+ + S0 oo
g
0] 4
St
A $ *I.«’IITITTA*ITTTITON
Se

(s/w) ALIDOTAA QHVMHOAS

NOLLYINNIS F13IH3IA 4040 XIS

(5.6) Six DOF vehicle model forward velocity

Fig.

simulation.

102




WIS PU0ISS + ‘WIS JSild

(-08s) INIL
S €Y ¥ S€ € S 2 SL L S0 O

el

a %

/ -
0

(sfw) ALIDOT3A TvH3LY]

b

NOILVININIS FTOIH3A 4040 XIS

Fig. (5.7) Six DOF vehicle model lateral velocity

simulation.

103



‘WIS pU0dag + Wi 1Sil4 -

(08s) "3INIL
S S¥ ¥ S€ € S2 ¥ S L+ S0 O

$2000°0-
A ¢000°0
\ // S1000°0-
i L0000
[\

\ } S0000°0-

o
e 0000°0
/Q 10000

S1000°0

(s/w) ALIDOTIA IVOILLHIA

NOILLV INNIS 310IH3A 400 XIS

Fig. (5.8) Six DOF vehicle model vertical velocity
simulation.
104




2.5 N.N. FOR SIX DOF MODEL

In the formulation, set up and training of N.N. in this
application, the objective is to establish relationship
between the roll angle and the set of suspension parameters

K’, KR' KT' C’ and CR -

The initial attempts of training the network for the five
variables were found unsuccessful. After investigating several
aspects of the learning process, it was found that the data
file creat:d to train the network contained identical roll
angle response to the steering input for different set of
suspension parameters. For an example Kz=30000, and Kz~35000
leads to identical response as that corresponding to

K =35000, and Kg=30000 while all other parameters remained
constant. The roll angle time response for the above two cases

is presented in table (5.2).

As discussed previously, such situation where different
input may lead to same output causes a confusion in the
learning process leading to failure to learn. The training and
application schemes are, therefore, modified. First, attempt
is made in training for one parameter at a time, namely,
suspension stiffness, or torsion bar stiffness, or suspension
damping, where front and rear suspension are identical and all

other parameters are constant and equal to
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Time in sec.

Roll angle.

Kp= 30000 N/m. 0.0C00E+00 0.0000E+00
Kgz= 35000 N/m. 0.5000E+00 0.6384E-02
0.1000E+01 0.1817E-01
0.1500E+01 0.2336E-01
0.2000E+01 0.2569E~01
0.2500E+01 0.2655E-01
0.3000E+01 0.2666E-01
0.3500E+01 0.2641E-01
0.4000E+01 0.2598E-01
0.4500E+01 0.2548E-01
0.5000E+01 0.2495E-01
Kp= 35000 N/m. 0.0000E+00 0.0000E+00
Kg= 30000 N/m. 0.5000E+00 0.6384E-02
0.1000E+01 0.1817E-01
0.1500E+01 0.2336E-01
0.2000E+01 0.2569E-01
0.2500E+01 0.2655E~01
0.3000E+01 0.2666E-01
0.3500E+01 0.2641E-01
0.4000E+01 0.2598E-01
0.4500E+01 0.2548E-01
0.5000E+01 0.2495E-01

Table (5.2) Time versus roll angle.
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their nominal values. After successful implementation for

each, the network is extended for two parameters, namely
suspension stiffness and damping, where front and rear

suspension are the same.

The type of N.N., learning rules and procedure used are
discussed in details in chapter 3 and are same as those used
for the 3 DOF model in chapter 4. The N.N. parareters used for
this study are presented in table (5.3). The results for the
six DOF model in each of the different case are presented in

the following sub-sections.

5.5.1 N.N. FOR SUSPENSION STIFFNESS

For this part of the study, simulation results are
obtained using the six DOF model for different values of
suspension stiffness while all other parameters are held
constant and equal to their nominal values. Front and rear
suspension stiffness are taken as identical. The suspension
stiffness and vehicle roll response to the prescribed steering
input is used as the data set for training the N.N. 31 set of
data are used for the training, where each set includes a
value of suspension stiffness and 10 points on the roll angle
response curve. 10 Points are found adequate to describe the
response as a smooth continuous curve. The N.N. parameters are

listed in table (5.3) while the vehicle suspension parameters
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are listed in table (5.4).

The trained network is used for prediction of suspension
stiffness for an arbitrary roll response described by 10
points along the time scale. This is achieved by applying
inverse dynamics capability of BPN. The BPN predicted
suspension stiffness is then used to simulate the roll
response. Simulated 1roll response is compared with that of
response described to the N.N. as presented in Figs. (5.9) to
(5.11) . As the results show, the N.N. is capable of predicting
the relationship quite accurately. These results also show the
trend that roll angle decreases with an increase in suspension
stiffness. On the other hand, this will adversely affect the

ride quality.
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Number of inputs (roll i0 “
angle).
Hidden. 10
Output. 1
Learning coefficient for 0.3
input.
Learning coefficient for 0.15
output.
Learning rule. Delta rule. “
Transfer function. Sigmoid.

Table (5.3) N.N. parameters for one parameter vehicle model.

From 10000 to 40000 N/m. ”

30000 Ns/m. "

8000 N/rad. “

Table ?g.ijuﬁéhicle suspension data for N.N. application to

spring stiffness.
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5.5.2 N.N. FOR SUSPENSION TORSION BAR STIFFNESS

Similar to the previous section, simulation is carried
out for the vehicle model for different values of suspension
torsion bar stiffness, while all other parameters remain
constant. The value of torsion bar stiffness is varied between

1000 to 10000 N/rad. to generate roll response data.

The 19 sets of data generated during the simulation are
used to train the N.N. The N.N. parameters are the same as the
previous section and are presented in table (5.3). The trained
N.N. is used for predicting the suspension parameter which in
this case is the torsion bar stiffness. The Figs. (5.12) to

(5.14) show the success of the N.N. in predicating the torsion

bar stiffness.

From the results, it is clear that the roll angle would
decrease with the increase of the torsion bar stiffness. The
torsion bar stiffness only increases the suspension stiffness
when the vehicle is under roll. That means that a higher
torsion bar stiffness would not affect the ride quality of the

vehicle when both left and right wheels move simultaneously.

The problem that prevent the designers from increasing

the torsion bar stiffness is that the diameter of the bar
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would increase and would not be feasible for passenger

vehicles.

5.5.3 N.N. FOR SUSPENSION DAMPING

In this section the simulation is carried out for
different damping coefficients while other parameters are
maintained equal to their nominal values. The value of the
suspension damping coefficient is varied between 10000 and

40000 Ns/m. to generate the roll response data.

The 31 sets of data generated during the simulation are
used to train the N.N. Similar to previous sections, the
trained N.N. is used to predict the damping coefficient given
a certain roll behaviour. The N.N. parameters used for this
part are also same as those shown in table (5.3). The Figs.
(5.15) to (5.17) show the success of the N.N. in predicting

the damping coefficient accurately given a roll behaviour.

It is clear from the results of the simulation that the
roll behaviour 1is improved as the damping coefficient
increases, but again that would adversely affect the ride

quality of the vehicle.

In most modern vehicles the damping coefficient is not

cons 2at and in some vehicles controlled damping is used
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depending on the vehicle speed and relative motion between the
suspension and the vehicle body. These adaptive systems are

referred to as semi active and active suspensions.

5.5.4 N.N. FOR SUSPENSION STIFFNESS AND DAMPING COEFFICIENT

In this section the number of variable parameters for the
suspension is increased to two. Identical parameters are used
for front and rear suspensions where the suspension stiffness
and damping coefficient are varied. The torsion bar stiffness
in the simulation is maintained equal to its nominal value.
Various combination of suspension stiffness in the range of
10000 to 40000 N/m., and suspension damping coefficient in the
range of 10000 to 40000 N.s/m are used to generate the data
set. A data set consists of 10 values of roll response in the

time domain for a set of suspension parameter.

The N.N. parameters used for this part of the study are
the same as those presented in table (5.3), except in this
case the number of output is two. Data sets generated from 169
simulations ar. used for the training of N.N. The trained N.N.
is then used as an inverse dynamical model of the vehicle to
predict the spring stiffness and the damping coefficient given
a certain roll behaviour. Figs. (5.18) and (5.19) show the
N.N. success in predicting the suspension parameters

accurately.
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As in the previous sections the results show that the
roll angle of the vehicle could be decreased by increasing the
spring stiffness and the damping coefficient, but that would

decrease the riding quality of the vehicle.

2.6 APPLICATION OF N.N. AS A CONTROLLER FOR VEHICLE RESPONSE

The inverse dynamic capability of back-propagation N.N.
(BPN) has the potential to be applied as a controller for the
control of the vehicle response. In this application, attempt
is made in controlling the roll response of the six DOF model
subjected to a steering input. For this case, the parameter to

be controlled is selected to be the suspension damping.

A scheme for control and selection of input and output
for the N.N. is based on providing a practical means to
generate control signal at an early stage of the response. The
selected control scheme, training of the N.N. and simulation
results are presented in the following subsections to

demonstrate the present application.

5.6.1 THE CONTROLS SCHEME

As mentioned above, the objective is to control the roll
angle response of the vehicle to a steering input. The control

is to be achieved by an early prediction of suspension damping
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required to reduce roll response. Therefore, the suspension

damping coefficient is the output parameter for the N.N.

In order to provide an early control, the complete time
response of the 1roll angle as obtained in previous
applications cannot be used. In this application only one
value of the roll response at an early stage of response with
rate of steering input and vehicle velocity is used as a

measure of roll response.

Based on this, the control scheme is designed to predict
a suspension damping for a reduction in the roll angle
response. Therefore, various input parameters for the N.N. for
a given steering input are selected as:
- Roll angle response f1, at t=0.25s. measured from the
time steering input is initiated.

- The steering rate used, which is defined as:

6- A0

At

where A0 is change in the steering angle for
At=0.25s. .

- And the forward velocity of the vehicle, V.

Based on the roll angle ( Q, ) response at t=0.25s. , a
desired roll angle must be defined to the N.N. to predict the

damping coefficient required to achieve it. A decrease in roll
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angle ( Q,; ) is therefore defined as:

Qx-Qin

Qx d-l k

k>1 (5.31)

where {1, is the roll angle at ¢=0.25s. , and Q,, is the
initial roll angle which is the roll angle at the beginning of
the steering input. The parameter k defines a factor by which
the roll angle is reduced. k should be selected such that a
feasible response and damping coefficient are predicted. The
proposed control scheme is, therefore, defined as an open loop
control model as shown in Fig. (5.20). Here the input to the
trained N.N.controller are the steering rate, decrease in roll
required, and the velocity. The controller output is the

suspension damping required.
5.6.2 TRAINING OF THE N.N. FOR CONTROL

As discussed above, the input parameters for the N.N.
required in this application are roll response at t=0.25s. ,
forward velocity and steering rate. The output desired from
the N.N. is the suspension damping coefficient for a

prescribed reduction in roll response.

The six DOF model developed is used to generate the data
sets for training the N.N. The data sets are generated for:
forward velocity in the range of 57 to 144 Km/h.; steering

input for the range of 1 to 5 deg. as a ramp function in 0 to
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0.5 sec.:; and damping coefficient in the range of 20000 to
40000 Ns/m. All other parameters for the model are maintained
equal to their nominal values except for suspension stiffness

wvhich is taken as 20000 N/m.

one hundred simulation are carried out for various
combinations if the above parameters. Similar to previous
sections BPN is used with the N.N. parameters same as those
presented in table (5.3) except in this case the number of
input 3, hidden 5 and output 1. The data for the training of
N.N. are scanned from the simulation results as described

below:

Input 1-Q, Net.-fQ ,(t)*10 where t=0.25

v, (£)

I 2= .- -
nput V,Net 190 where t=0
t,) -0(t
Input 3-0 = 0(t,) -0(¢t,)
E,-¢t,

where t,~0 andt,-0.25 sec.

output=Ce= Cp

vhere a factor of 10 and 100 are used in the previous input 1

and 2, respectively, in order to balance the magnitudes.

5.6.3 N.N. SIMULATION RESULTS

The trained N.N. is used as a roll controller for the six
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DOF model used in this investigation. Simulation is first
carried out in time domain without the controller for nominal
parameters and Cp=Cr=25000Ns/m . For a Steering rate 2
deg./s, Figs (5.21) and (5.22) present the roll angle response
for velocity 57.6 Km/h and 100.8 Km/h, respectively. These
figures also present the roll response with N.N. controller
where the N.N. predicted damping coefficient required is also

listed.

The roll reduction parameter KX in equation (5.31) for
this study is selected based on forward velocity and steering
rate, as they both have strong influence on the roll. This
value should however be selected such that a feasible damping
coefficient is predicted to achieve the reduction. The value

of K in this study is based on:

K=1.25 IF V<86.4 km/h & 6 <4°/s.

K=1.66 IF Vs<86.4 km/h & 0 >4°/s.
and K=2.00 IF V>86.4 km/h

To demonstrate the effectiveness of the controller, high
steering rate is also simulated. Fig (5.23) presents the roll
response results for Cp=Cp=25000Ns/m at 57.6 Km/h for a
steering rate 10 deg/s. The result also show the effectiveness
of the N.N. controller in reducing the roll response by
modifying the damping coefficient to 41286 Ns/m in the

presence of a steering input.

In this controller scheme, the required damping is
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calculated and maintained only during the steering input and

until it is back to zero.

Such a controller would not compromise between stability
and ride quality which is not the «case for most of the
controllers used on passenger vehicles. Most of these
controllers would monitor vehicle speed and relative velocity
between the sprung and unsprung mass and calculate the damping
coefficient accordingly. This would result in stiffer

suspension at high speeds.

2.7 SUMMARY

This chapter presents a six DOF model and its simulation
results for different suspension parameters when subjected to
a steering input. Based on the influence of the suspension on
the time response of vehicle roll, back-propagation neural
network is trained to predict vehicle suspension parameters
for a given rcll response. Problem is encountered during,
multi parameter training due to identical response from

different suspension.

The ¥.N, is trained and tested for prediction of one and
two suspension parameters. The results showed excellent

capability orf N.N. in simulating such dynamical systemn.
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In the second part of this chapter the N.N. is used to
build an open loop controller that is able to predict the
damping coefficient that will reduce the roll angle. That type
of controller would not compromise between the ride quality
and the stability of the vehicle as most of the controllers

used in vehicles do.
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CHAPTER_6

ION RECOMMENDATION FOR FUTURE WORK

6.1 GENERAL

Designing a vehicle is a very complicated task. The
choice of tires parameters is usually done by trial and error.
The suspension parameters are usually a compromise between the

vehicle stability and ride quality.

In this study an attempt is made to demonstrate the
effectiveness of neurocomputing and neural network in
applications to vehicle dynamics study and selection of
parameters. The neural network after training is able to
predict the tire parameter that would give the highest
stability for a certain vehicle. A properly trained network
could aiso predict the tire and/or suspension parameter for

any feasible vehicle response.

The capability of N.N. can further be used as a mean for
parameter control as demonstrated in this investigation. In
general, N.N. is found to be a very efficient tool for
simulation of complex dynamical system. However, difficulty is
encountered due to inherent 1limitations. Its potential is

significant in application to control of vehicle system
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dynamics. A major limitation being the inability for the N.N.
to learn when different combination of parameters lead to
identical response. From this preliminary study it can be
concluded that N.N. has significant potential in application
to vehicle dynamics, specially for a tire model. There is also
tremendous potential for application in a wide range of

control in vehicle system.

. R N ON

The study presented in this thesis is a systematic
investigation on the potential of N.N. in application to
vehicle system dynamics and control. Instead of an in-depth
study on one aspect such as tire model, the study explores the
potential on various aspects of vehicle system including
control. The major highlights of the thesis are summarised as
follows:

1) The major component of vehicle system namely: tire;
suspension, and steering are discussed in detail. Their
characteristics are discussed and formulated towards the
development of vehicle models. Several assumptions made
to simplify the model, and the interpretation of the

results are outlined.

2) A detail survey of neurocomputing and Neural Network

(N.N.) ic presented toward the selection of N.N. type and
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3)

4)

5)

paramaters required. Back-propagation network (BPN) for
its capability in the present study is discussed.
Although a commercial N.N. software is used, the
architecture, learning rules and formulation of BPN are

presented and discussed.

Simplified three DOF vehicle model is developed and
simulated for influence of tire parameters on the vehicle
response to a steering input. Based on the simulation
results, N.N. is formulated and trained to predict tire

parameters for a given vehicle yaw response.

The application of N.N. is extended to a N.N. suspension
system model using more realistic six DOF vehicle model
with four suspensions. Due to vehicle symmetricity,
different combination of parameter lead to identical
vehicle response. Difficulty is therefore experienced in
training the N.N. in multi variable application. It is
however found effective in one and two variable training

and simulation.

The trained N.N. in all cases is successfully implemented
as an inverse dynamic tool to predict vehicle parameter
for given response. Further the N.N. is capable of
predicting parameter for any described response as long

as the response is feasible and within the learning range
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6)

of the N.N. The N.N. can be considered as an intelligent
dynamic simulation tool as it can identify and ignore
error or noise in the response. When intentioned noise in
the response curve is introduced in this study, the N.N.
only predicted inaccurate parameter when the noise is

extremely large and frequent.

This study finally presents an application of BPN inverse
dynamics as a controller to predict suspension damping
required for a prescribed reduction in roll response to
a steering input. The proposed control scheme although
simple and open loop is found to be quite effective in

achieving control.

6.3 RECOMMENDATION FOR FURTHER STUDIES

In view of the N.N. potential in vehicle dynamics

application, a list of future work recommended are as follows:

1)

2)

3)

Improve the tire model and introduce non linearities. Due
to complex and poorly defined tire characteristics,
potential of N.N. is significant for tire modeling.
Improve the suspension model and introduce non
linearities to the spring and damper.

Validate the controller described in this study through

fabrication of prototype and implementation.
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4) Extend the use of N.N. to other aspects of vehicle

engineering as:

a)

b)

c)

d)

e)

Vehicle brakes and Anti Skid control.

Control suspension and use of N.N. in active
suspension.

Control of the automatic transmission and
determining the best time to shift.

Control of engine performance.

Control of power steering of the vehicle.
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