INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UM! a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA

®

800-521-0600

UNCONSTRAINED HANDWRITTEN NUMERAL
RECOGNITION: A CONTRIBUTION TOWARDS
MATCHING HUMAN PERFORMANCE

RAYMOND LEGAULT

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 1997
© RAYMOND LEGAULT, 1997

vl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-39794-7

Abstract

Unconstrained Handwritten Numeral Recognition: A Contribution
Towards Matching Human Performance

Raymond Legault, Ph.D.
Concordia University, 1997

Intense activity and significant progress have characterized the last decade in the
field of the recognition of unconstrained handwritten numerals by computer. The di-
versity and ingenuity of the methods proposed are carefully reviewed at the beginning
of this thesis and the results achieved are compared.

Despite important advances, the very high reliability of human recognition has not
been matched by these approaches and our work is intended as a contribution towards
bridging this reliability gap. In recent years, the combination of several recognition
methods has been a very fruitful idea in this regard. Here we explore another avenue:
overcoming the limits of single methods, particularly structural model-based methods,
to deliver much more reliable classification on their own. Lessons are drawn from
past work and all stages of the recognition process which are typical of this approach
(preprocessing, feature extraction, and classification) are revisited.

Achieving higher levels of reliability and robustness in the feature extraction stage
was seen as key to achieving our goal. Hence much of our research was devoted to the
solution of this problem including a comparative study of several curvature feature
extraction schemes, the detailed ‘autopsy’ of a feature extractor previously devised
by this author, and the meticulous construction of a new extractor to circumvent
identified weaknesses. Compared to a preceding effort at creating a numeral recogni-
tion system, our conception of the development of classification rules was also deeply
revised. Much care is taken to distinguish all the (global or local) shape variants to
be identified by the system and to tightly model each of these variants in a more

iii

refined and exhaustive manner. A special syntax and a development interface were
designed to assist in this task.

Results for the CENPARMI database, from a partial classifier built upon these
foundations, demonstrate the feasibility of creating a single-method numeral recog-
nition system with a high recognition rate (around 90%) and a very low substitution
rate. When applied to other databases, including some which incorporate markedly
different writing styles, the very high reliability of the system is maintained.

iv

Acknowledgements

I first enrolled into the doctoral program at Concordia University eight years ago.
During the last four years, I have been working full-time outside of the university
environment. Completing this work was not always straightforward and easy...

I would first like to thank my supervisor, Professor Ching Y. Suen for his guidance
and encouragement throughout, for his financial assistance during the first years of
the research, and for his careful review of the first version of this thesis.

During these years, I have had the opportunity to carry out joint research with a
few CENPARMI colleagues. In particular, I would like to acknowledge the contribu-
tions of Christine Nadal and Louisa Lam, with whom I co-authored articles and had
several interesting exchanges. I am also indebted to Louisa for a very thorough re-
view of an earlier version of Chapter 5 and thoughtful suggestions. Several researchers
kindly assisted in my investigation of curvature feature extractors and corner detec-
tors for parts of Chapter 6. My thanks go to A. Commike and D.-S. Lee for their
prompt and precise replies to my inquiries and more particularly to Louisa Lam for
sharing her code (and experience with) the Beus-Tiu method, and to L. O’Gorman
and A. Held for providing the full code of their method and letting me experiment
with it.

Years of research and software development on computers necessarily carry along
a number of technical problems. I could always count on the assistance of William
Wong and Mike Yu to help with such difficulties. Thank you.

The initial years of my research were financially supported by fellowships from
NSERC, FCAR, and Concordia University. This has allowed me to fully concentrate
on my studies and research during this period.

A research laboratory is not only a place for work but also, to some extent, a
living environment. I was glad to share lunch hours, and other moments of rest and
casual exchange with several students, staff members and visitors, in particular with

Christine, William, Myriam, Jurgen, and Simone.

v

Lastly, but most importantly, I would like to express my gratitude to my family
and my close friends who provided crucial encouragement and support, especially
during the last year, when it was not always clear to me that I had the motivation
and stamina to bring this project to completion. In this respect, and several others,

I owe them a lot and thank them for being there.

vi

Contents

List of Tables xiii
List of Figures xv
1 Presentation 1
11 OCR:ABitofHistory« .. 1
12 Focusof QurWork 2
1.3 Outlineof Thesis 4

2 State of the Art 6
2.1 More Sophisticated and Diversified Methods 7
2.1.1 Structural Methods 7

2.1.2 Artificial Neural Networks 10

2.1.3 Statistical Methods 15

2.2 Combination of Recognition Methods 20
2.2.1 Multistage Classification Methods 20

2.2.2 Multi-Expert Classification Methods 23

2.3 Comparative Results 34
2.3.1 Some Guidelines for Comparison 34

2.3.2 Some Published Results on CENPARMI Database 36

2.3.3 Some Published Results on CEDAR Database 38

2.3.4 The NIST Competitions 40

2.3.5 The IPTP Competitions 43

2.4 Machine vs Human Performance 44

2.4.1 About the Conclusions of NIST Conferences
2.4.2 Human Recognition is More Reliable

3 Overview of our Research

3.1

3.2

Limitationsof the Expert E4.
3.1.1 Lessons Learned on the ITRI Database

General Avenues ¢ v v i i i e e e e e e e e e

4 Preprocessing

4.1
4.2
4.3

4.4

4.5

Edge Extraction,
Contour Extraction
Image Segmentation
4.3.1 Edge Chaining and Object Labeling
4.3.2 Finding Nesting Relationships Between Objects
Useful Global Features at Minimal Cost
4.4.1 Stroke Width Estimate From Edge Extraction
4.4.2 Computing Areas During Edge Chaining
4.4.3 Computing Minimum Bounding Boxes During Edge Chaining

Correction of Several Image Defects
4.5.1 Edge Smoothing
4.5.2 Hole and Cavity Opening
4.5.3 Extra Fillingon Firstand Last Rows
4.5.4 Repairing Faulty Scanlines
4.5.5 Removing Isolated or Near-Isolated Black Runs
4.5.6 Trimming Protruding Black Runs

4.5.7 Removing Edgesof Length 1.
4.5.8 Removing Vertical Two-Pixel Stems
4.5.9 Frequencyof Defects

5 Contour Smoothing

5.1

Contour Smoothing: A Brief Overview

viii

57
59
60
63
65

69
70
73
74
75
77
79
79
80
82

5.1.1 Variety of Approaches and Related Problems 101

512 OurOwnWork 106
5.2 Local Weighted Averaging 107
5.2.1 Geometric Interpretation 108
5.3 Optimum Results from a Simple Digitization Noise Model 109
5.3.1 Best Parameters to Minimized,,, - . . - 112
5.3.2 Best Parameters to Minimizem/,,, 113
5.3.3 Best Parameters to Minimize Deviation Angles 117
5.4 Verifying Results for Varying Curvature 121
5.4.1 Minimizing Error on Distances to Center 122
5.4.2 Minimizing Error on Tangent Directions 126
5.4.3 Minimizing Error on Deviation Angles 129
55 Conclusion e 133
Curvature Feature Extraction 135
6.1 Feature Extraction in E4 System 136
6.1.1 Initial Processingof Holes 136
6.1.2 Structural Features From Outer Contours 137
6.2 ComparativeStudy 143
6.2.1 Problem Definition 143
6.2.2 Corners, Dominant Points and Curvature Features. 144
6.2.3 Curvature Features in Recent OCR Literature 150
6.2.4 Experimentand Results 151
6.3 Detailed Autopsy of E4 Feature Extractor 163
6.3.1 Data Used for the Investigation 164
6.3.2 Problems with Endpoint Extraction 165
6.3.3 Problems with Extraction of Cavities and Bends 169
6.4 The New Feature Extractor 173
6.4.1 The Computation of Deviation Angles 175
6.4.2 The Extraction of Arc Regions 177
6.4.3 Finding the Focal Pointofan Arc 182

ix

6.4.4 From Arcs to More Global Features 182

6.4.5 From Arc to Endpoint (Function CHECK_END). 185
6.4.6 Endpoint Width Criterion 187
6.4.7 Conditional Endpoint Testing 188
6.4.8 Testing for End-Bend Composite Arc 188
6.4.9 Merging Consecutive Features 190
6.4.10 Computing Feature Directions 194
6.4.11 Assessment.of New Feature Extractor 197

7 Development of Classification Rules 208
7.1 Steps Involved in Training for Each Class 209
7.2 Syntax for Classification Rules 211
7.2.1 Operator-Rules 211
722 Other Typeof Rules 211

723 AFewExamples 212
7.2.4 Syntax, Classification, and Rule Generation 213

7.3 Tool for Rule Development 215
7.4 Overview of Classifier Development 218
7.5 TIlustration of Approach for “2’s 220
7.5.1 Assignment of Starting Feature 220
7.5.2 Clustering: Creation of Model Files 222
7.5.3 Rule Generation: Creation of Rule Files 230
7.5.4 Results With CENPARMI Training Samples 238
7.5.5 Relaxing Rules With CEDAR Training Data 239

8 Overall System & Results 244
8.1 Processing Multi-Component Samples. 245
8.1.1 Deleting Tiny Pieces 245
8.1.2 Extracting New Endpoints from Small Pieces 246
8.1.3 Reconnecting the Pieces Together 247
814 Evaluation 251

8.2 FilteringSpurious Holes 255

8.3 First RecognitionPass 256
8.4 Filteringthe Feature List 259
8.4.1 Filtering Wiggle-Pairs of Features 259

8.4.2 Filtering Small Convex/Concave Features in Large Concave/Convex
Environment, 259
8.4.3 Filtering Less Significant Isolated Features 262
8.5 Dropping Smallest Hole 262
8.6 Aiming for Higher Reliability 263
87 Results. 267
9 Conclusion 273
9.1 Original Contributions 274
9.2 FutureWork e 276
References 279
A About Some Numeral Databases 298
Al CEDARDatabase. 298
A.2 CENPARMIDatabase 298
A.3 Concordia-Montreal Database 299
A4 ITRI-Taiwan Databases 299
B Derivation of ¢,,s; For Noisy Horizontal Border 300
C Best Parameters to Minimize 4., 302
D Minimizing m._,, 304
E Obtaining (dz!,dy!) Recursively 306
F Syntax For Classification Rules 308
F.1 BoundingBoxRules 308
F2 ComparisonRules. 309
F.3 FeatureRules @ . & . @ i i i i i i ittt 310

F4 Global Feature Rules 0. uuuuo.. 313

F.5 HoleRules i e s 314
F6 IndexRules i, 314
F.7 MarkingRules. 315
F8 OrRules. i i ettt 316
F9 PieceRules @ . . . e 316
F.10 Storage Modify Rules 317

G Interface for Rule Generation 318
G.1 FileHandling 320
G2 TheOption Menus i e, 320
G.2.1 The VIEW Menu nnunen.. 320

G.2.2 The 1ISTFEATUREMenu. 322

G.2.3 The CLUSTERING Menu 325

G.2.4 The STATISTICSMenu v uuune.. 325

G.3 The Drawing Area o i i i i i ittt et e 327

H Holes in CENPARMI data 328
I General Implementation Information 330
J Number of Pieces in Numerals 333

List of Tables

© 00 3 O v B W N s

b= et
- O

DO DN DN DN e e e et
W N = O W 00 ~ O G P W N

Results of Individual Systems on CENPARMI Data 37
Results of Combinations of Systems on CENPARMI Data 38
Some Published Results on CEDAR Data. 39
Top Ten Results for Digits at First NIST Conference 41
Machine and Human Performance on 360 Most Confusing Samples. . 49
Performance Results for Subsets of Original 360 Database 50
Required Rejection Levels for Very Low Error Rates 52
Edge Chaining and Object Segmentation 75
Edge Information for Above Figures 78
Percentages of Samples Affected by Preprocessing Operations 97

Best Parameters to Minimize (y!,, — y)* and Fraction of Noise Removed115

o 2 . .
Best Parameters to Minimize yﬂiiﬁ) and Fraction of Noise Removed116

Mean Noise Reductionfor I0K R<99 126
Mean Noise Reductionfor4 < R<99 129
Mean Noise Reductionfor4 <R <99 132
Average Measures of Goodness for the Methods Tested 156
Average Measures of Goodness for Endpoint Regions Only 156
Average Measures of Goodness for the New Feature Extractor 201
Comparing Overall Parameters For Best Five Methods 202
Sample Counts Comparing Regions Detected by Methods vs Humans 203
Relative Weaknesses of Best Five Methods 205
Examplesof Syntax Rules 212
FormatofaModel File 216

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46

Performance Matrixof E4 System 219

Models Based on Number and Position of Holes 223
Models for Bottom-Right Portion of ‘2’s with a Bottom Hole 225
Models for Bottom-Right Portion of ‘2’s Without a Bottom Hole . . . 225
Models for Top Portionof 2’s 228
Partial Performance Matrix on CENPARMI Sets A, B, T 239
Recognition of ‘2’s Depending on Smoothing 241
Recognized Samples After Relaxing With cedar2-2.rlc 243
Partial Performance Matrix on Combined CENPARMI Sets A and B 267
Partial Performance Matrix on CENPARMI Test Set T 267
Partial Performance Matrix on CEDAR goodbs Test Set 268
Partial Performance Matrix on CEDAR bs Test Set 269
Partial Performance Matrix on Concordia-Montreal f-Set 270
Partial Performance Matrix on ITRI-Taiwan tw5-tw7 Sets 270
Partial Performance Matrix on ITRI-Taiwan t25-t29 Sets 271
Possible Values of ¢? for Unsmoothed Border. 301
Sample counts depending on numberof holes 328
Program filesinsystem 330
Numbersof rulefilesandrules 332
CEDAR database: Statistics on number of pieces 333
Concordia-Montreal database: Statistics on number of pieces 334
Taiwan twl-tw4 database: Statistics on number of pieces 334
Taiwan t20-t24 database: Statistics on number of pieces. 335

List of Figures

W 00~ D UGB W N

BN N N D) = e ke e e e e e ek e
W N~ O W 00 3 O O v W N ~ O

Difficult Samples from ITRI Database. 61
Substitution Created by Partial Contour Information 64
Design of Recognition System 67
Edge Extraction From Binary Image 70
Sibling Objects With Parent Edge Connection 78
Computation of Total Enclosed Areas 82
Random Extraneous Cavities 84
Single-Pixel Deletion and Filling Masks 85
Edge Smoothing for ‘0’ Displayed Above 86
Hole Split Into Many Holes by 8-Connectivity 88
Opening Narrow Hole or Downward Cavity 89
Spurious Hole Created by 8-Connectivity 89
Extra Fillingon First and Last Rows 91
Rebuilding of Missing or Faulty Scanlines. 92
Removing Isolated or Near-Isolated Black Runs 93
Trimming Protruding BlackRuns 94
Removing Edgesof Length 1 95
Removing Vertical 2-Pixel Stems 96
Contour Smoothing With Triangular Filter. 99
Freeman Chain Code. 101
Deviation Angleat p;. oo 101
Geometric Interpretationforw =3. L. .. 108
Noisy Horizontal Border 110

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54

Best o to Minimize Deviation Anglesforw=3. 118

Fraction of ¢pms Removedfor w=3. 120
Minimizing 32? forw=5. 121
Digital Circleof Radius R=7. 122
Best Smoothing to Minimize (R—d/)% 124
Fraction of RMS Noise Removed: (a) w=3; (b)w=5. 125
Best Smoothing to Minimize (¢! — 81> 127
Fraction of RMS Noise Removed: (a) w=3; (b)w=5. 128
Best Smoothing to Minimize (6! — ¢)%. 130
Fraction of RMS Noise Removed: (a) w=3; (b)w=5. 131
RMS Noise Removed for w = 5: best case (solid); 2,3 (dotted) ... 132
The Preprocessing of Multiple Holes 137
Feature Regions Extracted by E4 system 140
Featuresof a Numeral ‘6’ 141
Global Shape Featuresofa ‘3’ 144
Iustration of DOS Methods 145
Numerals of Varying Stylesand Sizes 154
Other Examples of Feature Regions Selected Manually 155
Weaknesses in Beus-Tiu (BT) Method 157
Weaknesses in D’Amato (DA) Method 158
Weaknesses in Legault-Suen (LS) Method 159
Weaknesses in Rosenfeld-Weszka (RW) Method 160
Idealized End-Regions, 166
Defects in “E4” End-Region Extraction 166
More Defects in “E4” End-region Extraction 167
Large Curvature Regions Left Undetected 169
Missed or Fragmented Feature Regions 170
Merging Consecutive Bends or Cavities 171
Problematic Small Features 172
New Bend and Cavity Captured by GET_ARC FROM_INTER_ARC 179
New Cavity Captured by SCRUTINIZEINTERARC. 182

59
56
87
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

Processing Composite Arcs 190
Cavities Not Merged With Neighbouring Cavities 192
Bends Not Merged With Neighbouring Bends 193
Four Different Direction Measurements 195
Samples Which Had End-Region Defects 198
Large Curvature Regions Previously Undetected 199
Previously Missed or Fragmented Feature Regions 200
Leftover Shortcomings of New Feature Extractor 207
Database Inspection and Rule Development Interface 217
Starting Feature and Discarded Samples for Class 2’ 221
Problems with Starting Feature Definition 222
Example of Numerals for Model Files Based on Holes 224
Some Bottom-Right Feature Sequences for ‘2’s With Bottom Holes . 226

Some Bottom-Right Feature Sequences for ‘2’s Without Bottom Holes 227

Some Less Common Top Feature Sequences for ‘2’s 228
Samples of ‘2’ With Unusual or Peculiar Shapes 229
Samples With Tiny Holes or Spurious Features. 229
Samples Left Out of Rule Generation Process 231
Defining Safe Boundaries for Recognition 232
Classifier Output for a SpecificSample 234
Some of the Distances Involvedin Rules 236
A ‘T’ Misclassifiedas a2’ 242
Handling Small Blobs 246
Delimiting Region tobe Filled 250
Reconnecting Broken Pieces: E-E Connections (Case 1) 251
Reconnecting Broken Pieces: E-E Connections (Cases 2 & 3) 252
Reconnecting Broken Pieces: E-B Connections (Cases 1 & 2) 253
Reconnecting Broken Pieces: Too Distant Pieces 254
Spurious Holes, 255
Typical Samples With 2 Holes, After Spurious Hole Filtering 258
Filtering Out Small Isolated Features 260

86
87
88
89
90
91

Measuring Relative Perturbation Caused by Small Feature 261

Samples Incorrectly Classifiedas ‘0’ 264
Samples Incorrectly Classified as ‘2’ 265
Samples Incorrectly Classifiedas ‘6’ 266
Examples of Width and Depth Feature Rule Measurements 311
Examples of unexpected numberofholes 329

xviii

Chapter 1

Presentation

1.1 OCR: A Bit of History

Practical research in Optical Character Recognition (OCR) began in the 1950s, over
40 years ago. But the awareness of the possibility and potential usefulness of au-
tomatically processing text existed even earlier. Thus before the first commercial
computer, UNIVAC I, was installed in the U.S. Bureau of Statistics in 1951, OCR
patents based on template matching had been filed as early as 1929 in Germany and
1933 in the U.S.A. (see [116]). In the late 1950s, OCR systems had been designed in
the U.S. and Japan and several were commercially available in the 1960s.

Initially, interest was focused on printed and very nicely handprinted alphanumeric
characters but it did not take long before less constrained handwriting also received
attention. In 1968, with the introduction of postal codes in Japan, the world's first
machine able to directly read 3-digit handwritten codes was put into service; the
numerals were entered within red frames and processed through OCR equipment.

Optical Character Recognition is probably the most researched area in Pattern
Recognition, now addressing very diversified and sophisticated problems. Important
research avenues include degraded omnifont printed text recognition, analysis and
recognition of complete documents (including texts, images, charts, tables, etc.), and

cursive handwriting recognition. Interest in this field is motivated by the challenging

CHAPTER 1. PRESENTATION 2

nature of the problems to be solved, the fact that rapidly evolving computer technol-
ogy allows practical solutions to more and more complex problems, and, above all,
by its numerous commercial applications such as automatic processing of handwrit-
ten mail addresses, bank checks, credit card slips, payments of all kinds, income tax
forms, etc.

In the past 10 years, there has been an explosion of research in all aspects of OCR
prompted by faster computers, new approaches!, and increased governmental and in-
dustrial involvement and cooperation. Several international forums and competitions
were created, both reflecting this trend and acting as important driving forces on
their own.

Postal applications in particular have played a major role with events such as
the Advanced Technology Conferences of the U.S. Postal Service (held bi-annually
between 1984 and 1992), the conferences of the Institute for Posts and Telecom-
munications Policy in Japan (1992 and 1993), and the First European Conference
Dedicated to Postal Technologies (1993). Moreover, these sponsoring agencies were
also important sources of funding for related research internationally.

Several industrial and university research teams took part in the International
OCR competitions sponsored by NIST, the National Institute for Standards and
Technology in the U.S. (1992, 1994), and by IPTP (1992, 1993). We also note the
series of International Workshops on Frontiers in Handwriting Recognition (1990,
1991, 1993, 1994, and 1996) and the International Conferences on Document Analysis
and Recognition (1991, 1993, 1995, and 1997). The IWFHR were first launched
in 1990 at CENPARMI, Concordia University, and the third ICDAR was held in
Montreal in 1995.

1.2 Focus of Our Work

The focus of the work described in this thesis is the recognition of totally unconstrained
tsolated handwritten numerals. In most applications, this is only one component of

the solution of a complex problem.

! In particular, multi-layer perceptrons.

CHAPTER 1. PRESENTATION 3

In automatic check processing, for example, the system begins with a full color
image of the check; the background must be removed, the image binarized, the items
of interest located and extracted. Individual numeral recognition will be the key in
recognizing the courtesy amount, and will also play a role in recognizing the date.
However, for the courtesy amount, touching or overlapping digits must first be seg-
mented; furthermore, non-numeric symbols (period, comma, dollar sign, dash, etc.)
must also be dealt with. The processing of the check may involve additional steps for
the recognition of the cursive legal amount and some signature verification steps...

Among all steps just mentioned, our research will be concerned solely with recog-
nizing already isolated handwritten numerals. Yet, even if this is only a part of the
solution in most applications, it has been a very major area of research in its own
right. Despite its apparent simplicity (there are, after all, only 10 different digits!),
the problem is not easy to tackle because of the great variations in writing styles,
instruments, and circumstances. By totally unconstrained handwritten numerals, we
mean that people are not asked to write in pre-printed boxes, are not asked to write
neatly, are not asked to write with a specific type of pen, etc. Hence, the goal is to
recognize numbers written by people in real-life situations (as zip codes on envelopes,
courtesy amounts on checks, ...).

For years, contradictory opinions have been voiced concerning the state of hand-

writing recognition. Here are two representative samples:

“The digit classification problem is as simple as many other classification
tasks.” (see [92], page 447).

“For almost three decades, staff at the Census Bureau have heard claims
that machine recognition of handwriting was just around the technological
corner. However, a careful review of most claims showed that the corner

was still a long way off.” (see [165], page 1).

The first statement deals specifically with digit classification; the second one pur-
ports to handwriting more generally, but it should be kept in mind that the first NIST
competition focused entirely on recognizing already segmented individual digits. Thus

CHAPTER 1. PRESENTATION 4

these affirmations are a reflection of the ‘already solved’ vs ’still not satisfactorily
solved’ opposite views on our research area.
Nevertheless, in their report on the second NIST competition, Geist et al. write:

“An important conclusion of the First Conference was that the OCR of
isolated (properly segmented) characters was essentially a solved prob-
lem”. (see [57], page 5).

The last quote should be understood in light of the following context: for years,
researchers had operated under the assumption that recognition of individual hand-
written characters was the major stumbling block for cursive handwriting recognition
in general. The NIST competitions proved otherwise; namely that segmentation is
probably the most difficult subtask in the overall problem.

We do not question the very significant improvements made in recent years in
handwritten character recognition nor the fact that, on some aspects of this task,
machines can already outperform humans. But we still think that, in some crucial
respect, especially when maximum reliability is required, human performance has not
been matched. Our research efforts have been geared precisely towards making a

contribution to bridging this reliability gap.

1.3 Outline of Thesis

In the next chapter, we will provide an in-depth overview of recent advances in uncon-
strained handwritten numeral recognition. Such a detailed account cannot be found
elsewhere and is one of the contributions of this thesis. We are convinced that new-
comers into this rapidly evolving field will appreciate such a complete ‘tour d’horizon’.
The same chapter ends with an assessment of whether or not machine recognition has
yet matched human performance, a question on which this author and his colleagues
have also made contributions.

In light of the state of the art, an overview of our research will be presented in
chapter 3. This will introduce our overall objective and discuss the orientations and
guidelines which have shaped our work. It will also sketch the general design of the

new recognition system which we have developed.

CHAPTER 1. PRESENTATION 3

All following chapters will focus on particular aspects of our numeral recognition
system. Chapter 4 will examine preprocessing steps, including edge and contour
extraction, measurement of important global features and concurrent correction of
several image defects. Chapter 5 will deal with contour smoothing by local weighted
averaging methods, a specific aspect on which a detailed analytical investigation was
conducted. Chapter 6 will consider the problem of curvature feature extraction, a very
important part of our work including a comparative study of such feature extractors,
a detailed analysis of the weaknesses of a particular method which we had previously
developed, and the presentation of the newly created one to address these weaknesses.
Chapter 7 will present our approach to the development of classification rules, making
use of an interface for clustering samples by shape and gathering statistics about
specific feature attributes, and using a special syntax for representing these attributes
and their allowed ranges of values. Chapter 8 will discuss the overall system including
the processing of multicomponent samples, and the filtering of small holes and of the
curvature feature list leading to additional recognition passes; final results on several
databases are also presented for a partial classifier. Finally, Chapter 9 will offer a
conclusion, summing up the contributions made to this research field and indicating

avenues for future work.

Chapter 2

State of the Art

In the past four decades, a wide variety of approaches have been proposed to try to
capture the distinctive features of handwritten characters [154]. These approaches
generally fell in two categories: global analysis and structural analysis. In the first
category, we find techniques such as template matching, measurements of density
of points, moments, characteristic loci, and mathematical transforms. Features of
this type are generally used in conjunction with statistical classification methods (see
[147]). In the second category, efforts are aimed at capturing the essential shape fea-
tures of characters, generally from their skeletons or contours. Such features include
loops, endpoints, junctions, arcs, concavities and convexities, and strokes. Most often
a syntactical classification approach is used with structural features (see [17], [5], [65],
and [16]).

For much more detailed accounts of historical developments in OCR, see the excel-
lent surveys by Suen et al. [155] and by Mori et al. [116]. Of course, these surveys do
not focus entirely on handwritten numeral recognition. Moreover, significant advances
have been made in recent years which could not be accounted for in these reviews.
These important gains seem primarily related to the availability of very large train-
ing databases, their use being facilitated by self-learning classification techniques in
conjunction with more powerful machines. .

Thus, in the next section, we provide an overview of approaches which were re-

cently developed to tackle our specific problem. We have limited ourselves to methods

CHAPTER 2. STATE OF THE ART 7

which reportedly produce high recognition rates and low error rates!. In our con-
densed descriptions, we will focus on the diversity and sophistication of the schemes;
we will simply quote recognition and substitution rates without discussing database
issues which are nonetheless critical for any serious comparison of results. In a later
section, we will discuss comparative results between methods, where statistics on the

same testing databases are available.

2.1 More Sophisticated and Diversified Methods

2.1.1 Structural Methods

In Brown et al. [22], a number of expert modules are used to improve the quality of
skeletons so that more reliable features can be derived. In Stringa, [152] and [153],
a three-layer network performs image compression by Boolean functions, which are
established automatically during the learning phase. The compression preserves the
essential topological features, and classification is by standard parsing techniques.
A 92.6% recognition rate with 4.6% substitution rate were obtained. Mitchell and
Gillies {114] use the tools of mathematical morphology to extract cavity features as the
starting input to their specialized digit recognizers. Thirty-three numeral models were
“painstakingly crafted” with an iterative refine-and-test methodology over several
thousand digits. Classification is performed by a symbolic model matching process
resulting in 87.95% and 1.04% recognition and substitution rates respectively.

Four structural recognition methods were also developed at CENPARMI during
the same period. They are described in [157] where they are labeled as Experts E1
through E4. Thorough discussions of each method can be found in [117], [82], [105],
and [94] respectively.

Expert El begins with a skeleton which is then decomposed into branches which
are vectorized and compressed. Several attributes are measured on each branch;

others are computed as needed during classification. Eleven rule-based classification

! The recognition rate is the ratio of correctly recognized over total processed samples; the
substitution rate is the ratio of misclassified samples over total processed samples. Samples which
are neither recognized nor substituted are tallied as part of the rejection rate.

CHAPTER 2. STATE OF THE ART 8

modules (one for samples with a single branch, and one per digit class for multi-branch
patterns) were manually constructed. Unknown samples go through all modules which
may result in multi-class assignments.

Expert E2 approximates the skeletons of numerals by line segments, later grouped
into convex polygons, and by loops. For each primitive, features are extracted such
as primitive type, direction, coordinates of starting and ending points, etc. The
preceding and following primitives are also recorded. Simpler samples (about 80%)
are classified by decision trees based on these primitives and the remaining ones are
passed on to a relaxation algorithm trying to match the unknown sample with selected
masks.

Expert E3 scans the result of skeletonization from top to bottom, left to right, and
extracts the sequence of special points (end-, fork-, cross-points) as primary features.
Secondary features based on human perception are then extracted from the skeleton
and the contour of the numeral image. Frequencies of occurrence of these features on
the training data are stored in a database. A recognition decision can be obtained
by comparing unknown and stored feature vectors. An alternate inference method is
realized by intersecting the hypothesis sets associated to each feature present in the
unknown sample. Contrary to the other 3 experts, it should be noted that Expert
E3 is ‘trainable’. We shall return on this point later.

Expert E4 extracts concave and convex regions along a smoothed contour of the
sample. These regions are then labeled as cavities, bends or endpoints. For each
feature, its type, position, initial and final points, and general orientation are recorded.
A tree classifier attempts to recognize the least complex numerals first (mostly Os and
1s) and then proceeds based on the number and location of holes: the feature list
is examined; often new measurements are made, as needed, to confirm or rule out
the hypothesized identity. Classification ends as soon as the sample has met all the
conditions for a particular class. If unsuccessful, a small hole (if present) may be
dropped and recognition attempted a second time. If still unsuccessful, the feature
list is filtered and another attempt may be made.

Recognition and substitution rates for the 4 Experts are respectively: 86.05% and
2.25% (E1); 93.10% and 2.95% (E2); 92.95% and 2.15% (E3); and 93.90% and 1.60%

CHAPTER 2. STATE OF THE ART 9

Abuhaiba & Ahmed [1] apply smoothing and thinning to the sample image and
then find polygonal approximations to the skeletons. These approximations are con-
verted to tree structures from which Character Graph Models (CGM) are derived.
Constraints with fuzzy distributions are added to differentiate between the different
characters recognized by the same CGM. When all learning samples have been recog-
nized, a set of 105 Fuzzy Constrained Character Graph Models (FCCGM) is obtained.
Reasonable results are reported (90.7% recognition and 2.9% substitution rates) but
the database is neither very large nor widely used.

Nishida & Mori ([119] and [120] and Nishida [118] have made interesting contribu-
tions by proposing curve descriptions and methods to automatically construct struc-
tural models from these descriptions. The starting point is a model-based thinned
image of the numerals. Points with at least 3 incident edges are called singular points.
The description encodes the structure of singular points and the quasi-topological
structure of each stroke, specified in terms of curve primitives, loops, and their con-
nectivity. With this description method, structural models can be built automatically
from the training data, by applying an ezact string matching method. In [120], 2 ex-
periments were conducted on this basis. The first experiment uses 13 400 digits neatly
written by 251 writers. Half the data was used for training and the other half for
testing. The training process produced 46 structural models?. For the test set, the
recognition rate was was 98.7% and the substitution rate 0.3% (1% rejection). In the
second experiment, all the neatly written samples were used as training material and
the system was tested on 127 000 unconstrained handwritten numerals written by 319
other persons. The results achieved were recognition and substitution rates of 95.4%
and 1.7% respectively. In Nishida [118], much more flexibility is brought to the curve
description, in particular by allowing commonly occuring discontinuous transforma-
tions in numeral handwriting. Two such transformations are analyzed systematically
and an algorithm is developed to infer super-classes under these transformations. As
a result, few models are required to capture several shape variants of a digit. Using

14 000 samples from a public-domain database (ETL-1, Japan), half for training and

2 Only 2 models were required for ‘6’s but as many as 10 models for ‘8’s.

CHAPTER 2. STATE OF THE ART 10

the other half for testing, the recognition and substitution rates were 98.6% and 0.9%
respectively. Note that only 12 descriptions were required for the 10 digits.

In closing this section, we note that most methods discussed above were devised
in the late 1980s and early 1990s. Very few serious incursions on this terrain have

been reported since then.

2.1.2 Artificial Neural Networks

In the past 6 or 7 years, there has been a tremendous increase of interest into artificial
neural networks (also called multi-layer perceptrons, MLPs) as a possible solution to
the problem of recognizing handwritten numerals. By far, this has been the preferred
avenue of researchers and excellent results were achieved. The primary advantage of
neural networks is their ability to be trained automatically from examples. Other as-
sets include possible parallel implementation, and their good performance with noisy
or incomplete data. Such networks are composed of several layers of interconnected
elements, each of which computes a weighted sum of its input and transforms it into
an output by a nonlinear function. In the backpropagation learning phase, the weights
associated with each connection are modified until the desired outputs are obtained.

Handwritten numeral recognition with MLPs has followed a few major directions:
feeding the input layer with results of more sophisticated feature extraction; or, on
the contrary, simply feeding the input layer with normalized numeral images without
any explicit feature extraction; experimenting with various network architectures in

both approaches; etc...

With Explicit Features as Input

In Krzyzak et al. [75], 15 complex Fourier descriptors are extracted from the outer
contours and simple topological features from the inner contours. They are presented
as input to a fully connected three-layer network. Training is done by a modified
back-propagation technique to avoid the problem of local minima in the gradient
descent technique used to adjust the weights; this results in a convergence rate which

is twice as fast. Recognition and substitution rates of 86.40% and 1.00% or 94.85%

CHAPTER 2. STATE OF THE ART 11

and 5.15% are achieved.

Important research on the use of neural networks for handwriting recognition has
been conducted at AT&T Bell Labs for several years. In LeCun et al. [84], two
different methods are presented, and implemented on chips. The first method is
discussed here and the second in the next section. In the first method, shape and
skew normalization transform the input image into a 32x32 bit map; skeletonization is
carried out with 5x5 windows; features are extracted based on 49 templates (inspired
from experimental neurobiology and fine-tuned by hand) which check for the presence
of oriented lines, end-stops, and arcs. This results in 49 32x32 maps which are reduced
to 18 3x5 maps (270 bits). Classification is by a fully-connected 3-layer MLP with
270 input units, 40 hidden units, and 10 output units (approximately 11 000 weights
in total). This system achieves 94% recognition with 6% error rate. When tuned for
1% error rate, recognition falls to 86% (13% of samples are rejected).

For a French postal code application, Lemarié uses morphological preprocessing®
to extract a vector of length 138 from the bitmap image of the character. The learning
stage is in 2 phases: in phase #1, the width of each center and output weights are
learned; in phase #2, the scalar variance of each center is replaced by a diagonal
co-variance maftrix and the diagonal elements are learned. For the diagonal RBF
system, the no-rejection error rate is 2.03%, significantly better than the 3.71% figure
obtained from the RBF network alone.

In Lee et al. [91], input images are size-normalized to 16x16 and directional fea-
tures in horizontal, vertical, and both diagonal directions are extracted using Kirsch-
like masks. Each 16x16 directional feature map is then compressed to 4x4; the original
image is also compressed to 4x4 as a means to incorporate global features into the
input. The input and the hidden layers both consist of five 4x4 clusters, a cluster
in the hidden layer being fully connected only to its corresponding input cluster; the
output layer is fully connected to all hidden nodes. A genetic algorithm is used to

provide good seeds for backpropagation training and circumvent the local minima

3 The method is inspired from characteristic loci; for each background pixel, points crossing the
sample in 8 directions are recorded.

CHAPTER 2. STATE OF THE ART 12

problem. Three databases are experimented with, enhancing their generality by us-
ing the original as well as perturbed training data. The no-rejection error rates for
each of the 3 databases are 2.20% (CENPARMI, Canada), 0.87% (ETL-1, Japan),
and 0.60% (ETRI, Korea).

Using the same preprocessing and feature extraction as just presented, Lee & Kim
[90] also experiment with a fully-connected 3-layer recurrent neural network (RNN)
where each output node is connected not only to all hidden nodes but also to all
output nodes, including itself. Fewer errors are generated on the CENPARMI test
set by their proposed RNN (2.7%, without rejections), as compared to a feedforward
neural net (7.7%) and two other types of RNNs, Jordan RNN (4.2%) and Elman
RNN (3.4%). Again using the same preprocessing and feature extraction as Lee et
al., Cho [32] obtains a no-rejection 3.95% substitution rate on the CENPARMI test
set also. The classifier is a structure-adaptive self-organizing map (SOM) with an
input layer directly connected to an output layer. Both the number of output nodes
and the connection weights are learned in the training process.

Lee et al. [89] use a cluster neural network as in citeLeeSW:94. A multiresolu-
tion feature vector is obtained by convolving Haar wavelets with 16x16 normalized
images (at 8x8 and 4x4 resolutions). This time, the network consists of eight sub-
networks (instead of five above). The reported no-rejection error rates for each of
3 databases are: 3.20% (CENPARMI, Canada), 0.83% (ETL-1, Japan), and 0.75%
(ETRI, Korea).

As input to their neural net, Matsui et al. [110] use a 182-component feature vector
which combines three types of features: counts of segment (stroke) types which are
based on the number of connected component above and below a given segment
(22 components); background structure features* detected within 16 regions equally
subdividing the original image (32 components); finally a histogram based on 8 chain-
code directions for each of the 16 regions and normalized in the (0,1) range (128
components). The fully connected network had 182 input units, 70 hidden units, and

10 output units. Performance is measured with S = 10E 4 R, where FE is the error

4 These floating point features are based on object pixels encountered in a certain direction and
then in a perpendicular direction.

CHAPTER 2. STATE OF THE ART 13

rate and R is the rejection rate. For one database®, the best results are given as
S a2 7.5; recognition and substitution rates of approximately 96.1% and 0.4% can be
inferred from a curve. For another database®, the no-rejection error rate is given as
1.43%.

In Strathy & Suen [151], remarkably good results are obtained using very sim-
ple pixel distance features (PDF). Numeral images are thinned and 2 features are
measured for each pixel, namely the signed distance to the nearest black pixel in the
horizontal and vertical directions. PDF's are averaged to downscale the image to size
12x14 and normalized in (-1,1) range. A fully-connected backpropagation network
with 336 input nodes, 70 hidden nodes, and 10 output nodes is trained with a stan-
dard database and also with the same data to which random shearing is added. A

no-rejection error rate of 3.69% is reported.

With Normalized Images as Direct Input

The second method presented in LeCun et al. [84] uses shape and skew normalization
producing smaller 16x16 bit maps (instead of 32x32). They are fed directly as input
to an MLP with 3 hidden layers: the first layer consists of 12 8x8 feature maps;
the second of 12 4x4 feature maps and the third is fully connected to the preceding
and the output layers. The network has 1 256 units and 64 660 connections, but
only 9 760 free parameters because of weight sharing among the feature maps. This
system achieves 95% recognition with 5% error rate. When tuned for 1% error rate,
recognition falls to 86.9%.

The local receptive fields approach just described has been pushed further in Le
Cun et al. [83] using a more complex but more highly constrained network architec-
ture. Size-normalized images are used as direct input. The network has four internal
layers, two made of independent groups of feature extractors and two which perform
averaging/subsampling. The last internal layer is fully connected to the ten-element
output layer but all other connections are local and use shared weights. In total there

are 4 635 units, 98 442 connections, but only 2 578 independent parameters. Typical

5 Using 15 000 numerals from the test set of the second IPTP competition (see section 2.3.5).
6 An unspecified NIST database.

CHAPTER 2. STATE OF THE ART 14

recognition and substitution rates are: 92.00% and 2.00% respectively or 90.00% and
1.00%.

Le Cun et al. argued that the excellent generalization properties of their sys-
tem was a direct result of the constrained architecture which incorporates high-level
knowledge about the problem at hand. But Martin & Pittman [109] dispute this
claim. In experiments using from 100 to 35 200 training samples, they feed size-
normalized 15x24 grayscale images, with pixel values ranging from 0.0 to 1.0, directly
into a basic fully-connected network. They report recognition and substitution rates
of 96% and 4% respectively (or 89% recognition for 1% error). By modifying the
number of hidden nodes, limiting connectivity to local areas, and sharing weights,
they show that the effects on generalization are only marginal provided a net with
sufficient capacity and a large enough training set are available. The latter factor,
according to Martin & Pittman “may be the single, most important factor in achiev-
ing high recognition accuracy”. Constrained architectures could still be preferred for
their training efficiency, bias towards position invariance, and more straightforward
interpretation.

Using a very large database’, Bottou et al. [20] report on the results obtained
by several classifiers recently developed at AT&T Bell Laboratories. Input images
are size-normalized to 20x20 and then centered (using center of gravity) into a 28x28
frame, resulting in grayscale pixel values. A perceptron baseline linear classifier con-
sisting of an input and an output layer with 7 850 weights yields a no-rejection
8.4% error rate. A 3-NN (nearest neighbour) classifier achieves 2.4% error rate. The
method described above from Le Cun et al. [83] is called ‘LeNet 1’; it requires 140
000 multiply/add operations and gives 1.7% substitution rate. A large fully-connected
multi-layer neural network with 300 hidden units attains 1.6% error.

Five other classifiers achieve a 1.1% error rate on the same test set. One is called
‘LeNet 4’ and is an expanded version of LeNet 1, including more feature maps and
an extra hidden layer fully-connected to both the last feature-map and the output

7 Training and testing sets each containing 60 000 samples, combining the training and testing
sets of the 1st NIST competition, described in section 2.3.

CHAPTER 2. STATE OF THE ART 15

layers. It has 17 000 free parameters and requires 260 000 multiply/add steps. An-
other variant combines LeNet 4 with k-NN classification by using the output of the
penultimate layer of LeNet 4 as a feature vector for a Euclidian distance search. With
the same feature vector, a third variant trains simple linear classifiers (the training
is local, based only on the k patterns in the training set which are closest to the test
pattern). The fourth classifer achieving 1.1% error rate is a 3-NN classifier using a
‘tangent’ distance instead of a Euclidean distance. For more information, see Simard
et al. [148]. The fifth classifier is an Optimal Margin Classifier, consisting of 10
classifiers oriented to two-group pattern classification with a 4th degree polynomial
decision surface in input space. We note that all five methods have very high memory
requirements (11 to 25 Megabytes) except LeNet 4 (60 Kilobytes).

2.1.3 Statistical Methods

Nearest Neighbour Classifiers

Increased computation power has caused simple but traditionnally less efficient meth-
ods such as nearest neighbour classification to be revisited. Yan (see [171] and [172])
divides the image into a square grid and computes the percentage of black pixels
in each square as a feature. Initially, training samples are clustered and clusters
are averaged. These are used as initial prototypes for nearest neighbour compari-
son. Then the prototypes are optimized via a multi-layer perceptron with one hidden
layer, where each node represents a prototype and its coordinates in feature space
are adjusted. In [172], with the 500 initial prototypes, the no-rejection error rate is
8.3%; after prototype optimization, it is lowered to 3.9%. In [171], 1 000 optimized
prototypes yield typical recognition and substitution rates of 94.68% and 0.66% re-
spectively, or 96.15% and 1.00%. It should be mentioned that the data used is from
the relatively easy SD3 NIST database; see 2.3. Speed up techniques are implemented
which save about 40% of computation time.

Smith et al. [149] downsize all images in their minimum bounding box to 32x32

bitmaps. With a very large database®, for each writer, they use all samples from

8 All 223 125 segmented digits of the SD3 database are used.

CHAPTER 2. STATE OF THE ART 16

all other writers for k-NN classification. The computation is performed on a mas-
sively parallel supercomputer (Connection Machine CM-2) with 3 distance metrics:
a Hamming metric, a pixel distance metric, and a pen stroke (breakpoints defined at
curvature maxima of a thinned image) metric. The no-rejection error rates are 1.9%,
1.1%, and 1.0% respectively. It is observed that for every 10-fold increase in the size
of the learning set, the error rate is cut by half or more. In addition, the distance
metric 1 — D,/ D;, where D, is the distance to the nearest neighbour and D; is the
nearest distance to a sample of another class is shown to be much superior to the
metric 1 — D; /K, where K is a constant which is larger than the maximum distance.

W.P. de Waard [36] also investigated nearest neighbour classification on the large
datasets of NIST’s first competition. A smoothed contour description of each numeral
is obtained to which linear transformations are applied for translation, deskewing, and
resizing. Features extracted are 40 projections, 8 directional histograms, 13 charac-
teristic loci, and: 4 topological features. A method is proposed to find discriminative
prototypes with optimized weights for every feature. With only 10 prototypes, the
no-rejection error rate is 4.5%. But, surprisingly, starting with many prototypes per
class, made no difference at all. The author explains that the optimized distance did
not work quite as expected and that due to the global nature of backpropagation,

small clusters are not detected.

Other Distance Classifiers

Heutte et al. [59] combine 4 families of features: 138 based on concavity measurements
extracted from normalized images; 20 from normalized histograms of black pixels in
horizontal and vertical directions; 21 from polygonization of outer and inner contours;
30 from pixel extrema i.e. black pixels not 8-connected with pixels ‘above’ (in the 4
main directions). Despite the variability of some structural features, they manage to
create an ordered fixed-length feature vector of numerical variables. The initial 209
features, normalized in (-1,1) range, are reduced to 157 by removing variables with
insignificant discriminating power or highly correlated to others. The learning process
defines a set of hyperplanes separating pairs of classes. No-rejection substitution rates

are 1.95% and 1.84% for the full and reduced feature vector respectively.

CHAPTER 2. STATE OF THE ART 17

In Revow et al. ([133] and [132]), a generative model is constructed for each nu-
meral class using a uniform, cubic B-spline, with at most 8 control points, and with
Gaussian ink generators uniformly placed along the spline. The elastic matching
recognition process fits all digit models to the unknown sample, minimizing an en-
ergy function which weighs both the deformation energy of the model® and the log
probability that the model would generate the inked pixels. Once optimal model de-
formations are computed, the results (7 terms per model) are fed into a simple neural
network which determines which model fits best. Using one generic model per digit
class, a no-rejection error rate of 1.53% is reported in [132] on the well-segmented
numerals of the CEDAR goodbs dataset. This is slightly improved to 1.50% when
a mixture of local models are used for each class. However, computation costs con-
stitute a serious drawback of this method: the authors mention a classification rate
of only 5.5 numeral images per minute on a R4000 based workstation, even after
downsizing the image to one quarter of its original size. Parallelization techniques
can however speed up the process.

As a more practical alternative computation-wise, Hinton et al. [60] use principal
component analysis (PCA) and factor analysis (FA) to develop locally linear low-
dimensional approximations to the underlying manifolds of images of handwritten
digits. The images are first scaled on an 8x8 pixel grid and smoothed with a Gaussian
filter with a standard deviation of half a pixel. Mixtures of linear submodels are built
for each class. For the results reported, they allowed up to 10 principal components
or factors per submodel, and 10 submodels in each mixture. No-rejection substitution
rates of 2.35% (PCA) and 2.17% (FA) are obtained on the goodbs test set. Adding
tangent information in the submodels improves the performance to 2.17% for PCA
but degrades it to 2.49% for FA.

Polynomial Classifiers

The AEG Daimler-Benz company has been an important manufacturer of large scale
OCR equipment for years. Interestingly, they have shared some results of their re-

search activity through several papers in journals and conferences. For handwriting

S Moving the control points away from their home locations.

CHAPTER 2. STATE OF THE ART 18

recognition, they have conducted diversified experiments on several databases based
on their functional classifier approach.

The functional classifier is presented in [48]. Starting with a feature vector x, these
features are enhanced in a non-linear way using functions f;(x) and the enhanced

features are combined linearly to yield:

di(x) =3 aji - fi(x), for j =0,1,...,9 or d(x) = ATf(x) (1)

The author presents the advantages of the functional classifier over the multi-layer
perceptron (MLP):

1. Once the functional components f;(x) have been generated, the mathematics of
solving linear problems can be applied. Efficient techniques exist for matrix in-
version and they are faster than the gradient descent method for the adaptation

of the MLP.

2. Some matrix inversion techniques offer additionnally a rank order for each func-

tional term, showing how important it is for the classification task.

3. For learning sets larger than the number of coefficients of the functional ap-
proach, the generalization ability of the functional classifier increases dramati-

cally and surpasses that of a MLP.

4. Moment matrices can be computed in advance and this is the most expensive
part of the inversion process. Furthermore, combining subsets of training sam-
ples is equivalent to a linear combination of moment matrices with weights.
Thus if statistical moments are computed separately for each class, they can be
used very efficiently for different tasks (numeral, alphabetic, or alphanurmeric

classification) and different classifier hierarchies'®.

A polynomial classifier is a special case of the functional classifier where the func-

tions f;(x) are feature vector components or products of feature vector components.

10 provided, of course, the functional structure is the same for all classes, tasks, or structures.

CHAPTER 2. STATE OF THE ART 19

For example, f;(x) = z is a linear feature; fj(x) = zi-z; is a second order feature,
and as a special case, f;(x) = z% is a quadratic feature. In practical situations,
features of order higher than 2 are rarely used.

In Franke [46], slant, stroke width and size normalization is applied to binary
images, producing 16x16 pixel images in 8-bit gray levels. Using the 256 pixels as
x, an incomplete quadratic polynomial classifier of length 255 is constructed (la-
beled PIQ255.B_.SW13) by retaining the 128 highest ranking single pixel features
and the 127 highest ranking second order (but not quadratic) features. For this
classifier, recognition and substitution rates of 93.10% and 3.10% respectively are
reported. For another incomplete quadratic polynomial classifier of length 1 079, la-
beled PIQ1079-NB_SW13, the 175 highest ranking first degree features and the 904
highest ranking second order (including quadratic) features are retained. Recognition

and substitution rates of 94.55% and 1.25% respectively are given.

Studies Focusing on Features

Bailey & Srinath [14] investigate the approximation of 2-D images by expansion in
terms of orthogonal polynomials (Legendre, Zernicke, and pseudo-Zernicke polyno-
mials); these orthogonal moments are used as features for Bayes quadratic, k-nearest
neighbour, Parzen (kernel), and neural network classifiers. Various combinations of
feature type and order, location invariance method based on centroid or minimum
bounding circle, and classifier are evaluated. The training and testing sets includes 13
250 and 3 300 samples respectively. The best results achieved are a no-rejection error
rate of 2.4% for the minimum bounding circle pseudo-Zernicke moments of order 4
with a Parzen (option 3) classifier, and 2.7% for the centroid-based pseudo-Zernicke
moments of order 6 with a two-layer MLP. Overall, averaging performance over all
moment types and orders, these two classifiers were the best and almost at par;
conversely, averaging performance over all classifiers, the centroid-based and mini-
mum bounding circle pseudo-Zernicke moments proved to be the most discriminant
features, again almost at par.

Gader & Khabou [55] propose a method for automatically generating discrimi-

nating features for numeral recognition. All images are moment-normalized to size

CHAPTER 2. STATE OF THE ART 20

24x18. For each class, a pixel sum image is obtained by averaging 1000 images and
mapping the result in the [-1,1] range. A feature dectector for a given class is speci-
fied by 4 parameters: it is an m x n subimage of the pixel sum image for that class,
with upper left corner at (z,, y,). The height m is chosen randomly between 6 and
12; the width n is chosen randomly between 4 and 8. One hundred features (10 for
each class) were generated as follows: a) randomly generate 10 features per class;
b) perform 500 iterations during which the feature with the lowest evaluation can be
replaced by a new feature for the same class if its evaluation is improved. An informa-
tion measure and an orthogonality measure were used to evaluate features. The best
10 features per class are retained at the end of the generation/evaluation procedure.
Their values are used as input to an MLP with 100 input nodes, 25 nodes in a first
hidden layer, 15 nodes in a second hidden layer, and 10 output nodes. Training is
by back-propagation. Orthogonality-based features produced better results. Results
reported on the CENPARMI test set range from a recognition rate of 96.50% with a
substitution rate of 3.50% to a recognition rate of 93.00% with a substitution rate of

1.55%.

2.2 Combination of Recognition Methods

The designing of high performance numeral recognition systems is generally not an
easy task, and improving on already excellent systems is a very difficult proposition.
However, it was realized a while ago that the combination of different systems offers
a promising approach in this respect, especially when the systems to be combined
are significantly different. In this last case, mis-classifications will tend to occur on
different samples; thus the combination scheme may avoid many errors in this way.

Recently, this avenue has received much theoretical and experimental attention.

2.2.1 Multistage Classification Methods

In multistage systems, more efficient methods are first used to reliably classify well-

formed numerals while more complex and costly methods are applied in later stages

CHAPTER 2. STATE OF THE ART 21

for characters of poorer quality.

Duerr et al. [43] reported a remarkable no-rejection recognition rate of 99.50%
achieved with a four-stage classification scheme: a conventional statistical classifier
and a fast structural classifier are first applied to all samples and correctly recog-
nize approximately 95% of them; for the remaining samples, a structural hypothesis
reducer and possibly a final heuristic matching stage are invoked.

The method of Lam & Suen, called Expert E2 in section 2.1.1, is actually a 2-stage
classifier. Kuan & Srihari [76] obtained 93.3% recognition with 2.5% substitution
with a three-level hierarchical classifier, based primarily on the topological structure
of detected strokes and seconda.riI); on contour profile information. Gader et al.
[54] experimented with various multistage combinations involving four classifiers: a
model-based classifier ([114]); a Jaccard/Yule template matcher; a fully connected
four-layer neural network using coarse-coded versions of the image and of six basic
cavity features as input; and, finally, a Fourier coefficient classifier. The pipeline
consisting of the template matcher, followed by the model-based classifier and neural
network, achieved the best results: recognition and error rates of 96.35% and 1.00%
respectively on one database and 98.20% and 0.77% on another.

Franke [46] also investigates several polynomial classifier hierarchies such as binary
trees, 2-stage classifiers, and classifier nets'!. These classifiers were trained on a very
large proprietary database (over 1 000 000 samples) and tested on a totally different
database!2. Some of the 6 classifiers investigated were adapted on the 10 numeral
classes while others were adapted on 22 shape classes (some numeral classes were
divided into 4 shape classes, for example). The best performances were by classifiers
labeled SHAPE_N and SHAPE_N_SW13.

Both are classifier nets consisting of 231 2x2 classifiers for every pair of shape
classes 13; for the second system, stroke width normalization to 13% of the height and

width of the character was applied to the test set data. Recognition and error rates

11 Composed of (12{) pairwise classifiers, where K is the number of classes or subclasses to

distinguish.
12 The CENPARMI database.
13 Even pairs of shape classes belonging to the same numeral class.

CHAPTER 2. STATE OF THE ART 22

are 95.05% and 1.30% for the SHAPE N and 94.45% and 1.10% for SHAPE_N_SW13.
Since these classifiers were not trained on CENPARMI data, they can be viewed as
very sophisticated feature extractors for this data. Thus the 22-component output
vectors obtained for the CENPARMI training samples by the SHAPE_N_SW13 classi-
fier can be used as input to train a complete quadratic polynomial classifier of length
275. This CQ22 classifier adapted to SHAPE N_SW13 yields improved recognition
and error rates of 96.00% and 0.35%. Similarly, the no-rejection error rate was im-
proved from 2.45% to 1.70%.

Franke [47] report on experiments with the BS (SUNY, Buffalo) database. The
16x16 images are size and slant normalized resulting in 8-bit grey levels. Using
principal axis transformation, the input vector is reduced from dimension 256 to 40.
Several classifier hierarchies are tried. They are trained on 10 000 images per class,
totally independent of the BS dataset, to meet a target error rate of about 1%. The
best results are obtained by a method labeled ‘KH30F2ZTG’, which is basically the
same as SHAPE_N. When tested on the BS dataset, recognition and substitution
rates are 97.02% and 0.90% respectively.

In Chi et al. [31], a 2 stage classifier is presented. Original binary images are
rescaled and centered in a 64x64 region, and then sub-sampled into an 8x8 grey-scale
image producing 64 features. The Kohonen self-organizing map (SOM)algorithm
produces prototypes of the training set which are used to determine fuzzy regions
and membership functions. The first stage of classification uses 10 401 learned fuzzy
rules and yields recognition and substitution rates of 84.8% and 1.8% respectively,
rejecting 13.4% of the data. In the second stage, rejected samples are fed to a SOM
classifier resulting in 96.8% and 3.2% figures.

Cao et al. [25] present a 2-stage neural net classification scheme. After slant
correction, binary images are scaled to 80x64 pixels. For the first stage, images
undergo 6 passes of 3x3 neighbourhood averaging and are downsampled to 16x16.
This input vector of length 256 is fed to a one-layer incremental clustering neural
network. The distance between an unknown sample and the means of every cluster
are computed: if the closest and second closest clusters belong to the same class and

the inter-cluster distance is large, the sample is recognized; if the 3 closest clusters are

CHAPTER 2. STATE OF THE ART 23

close, it is rejected; in all other cases the decision is taken by the appropriate subnet
in the following stage. For stage 2, histograms of chain-code orientation (4 directions)
are obtained for each of 16 rectangular zones with fuzzified borders. This serves as
input to 45 pairwise neural net classifiers, each having 3 outputs: one for each class
of the pair and one for rejection. If one output neuron is activated with large enough
value while the other two values are low enough, the sample is recognized; otherwise,
it is rejected. Playing with these thresholds, recognition and error rates ranging from
97.5% and 0.76% to 85.33% and 0.17% are reported. In [24], Cao et al. present
another 2-stage neural net classifier. Preprocessing includes slant correction, scaling
and smoothing as already explained, followed by downsampling to size 8x8. The
first stage extracts ‘principal components’ using Oja’s rule; optimum performance
was obtained for 40 ‘principal components’. The second stage is a Bayes incremental
clustering neural net; in the training process, this stage begins with 3 nodes (clusters)
per class and a new sub-cluster is constructed if the conditional probability of the
feature vector with respect to each existing sub-cluster is below a threshold. Merging
of within class sub-clusters is also performed. The number of clusters stabilizes at
90. Results indicate that this architecture offers some improvement compared to a
backpropagation neural network with a 50-node hidden layer using the preprocessed
8x8 image as direct input. Furthermore, learning time is in the order of minutes for
the new system, in the order of days for the backpropagation network.

With preprocessing and features as described in Section 2.1.2, Cho [32] also pro-
poses a hybrid Hidden Markov Model (HMM)/MLP classifier. Usually, one Markow
model is trained for each class and recognition involves accumulating scores for an
unknown input across the nodes in each class model, and selecting the class model
with the highest score. Instead of this last maximum selection step, the hybrid clas-
sifier uses the likelihood patterns inside the HMM’s as input layer to an MLP. This
system obtains a no-rejection substitution rate of 3.45% on the CENPARMI test set.

2.2.2 Multi-Expert Classification Methods

In this section we discuss another avenue for the combination of classifiers. Here the

images of numerals are fed, independently and possibly in parallel, to two or more

CHAPTER 2. STATE OF THE ART 24

recognition systems which can be considered as ‘experts’. The combination takes
place at the level of the decisions of these experts. This problem has received much

theoretical and practical attention in recent years.

Theoretical Considerations

Given a sample = from pattern space P = JC; Vi € A =1,2,--- M, where the C;
are mutually exclusive classes, the task of a classifier expert (denoted e) is to assign
to = an integer label § € AU M + 1 indicating that = belongs to class C;. The label
M +1 is to indicate that the classifier cannot classify =z and is the rejection label.

However the information that is output by a classifier is not always a single label
J- In general, we can distinguish between three types of output information and the
problem of combining classifier outputs will vary according to these categories. In the
first level, called the abstract level, each classifier ex, £ = 1,---, K outputs a single
label ji, or possibly a subset J. C A. In the second level, called the rank level, each
er ranks all the labels in A or in a subset J; C A in a queue with the label at the
top being the first choice. In the third level, called the measurement levelj, each e
assigns each label in A a measurement value indicating the degree to which z has
that label. In the rest of this section, we will denote by E(z) the combined result of
the outputs ex(z), regardless of the information level.

Xu et al. [170] investigate the combination of abstract level output information.

They first consider several variants of the simple voting principle:

e E(z) = j only if all jx = j; otherwise, E(z) = M + 1; this will achieve very
high reliability at the expense of a high rejection rate.

e A somewhat less stringent combination is obtained with the combination E(z) =
jifall jr e j, M + 1.
e E(z) = j if the count of votes for one class j is larger than K/2, otherwise

E(z)=M +1.

e E(z) = j if the count of votes for one class j is larger or equal to a - K, which

allows flexible control of the rejection level.

CHAPTER 2. STATE OF THE ART 25

e E(z) = j if the count of votes for class j exceeds all others by at least a - K,
otherwise E(z) = M 4 1.

They also examine the combination of multiple classifiers in the Bayesian for-
malism and in the Dempster-Shafer formalism. In the first case, they propose us-
ing the confusion matrices of the classifiers to compute conditional probabilities
P(z € C:/ex(z) = jk; these then serve to compute estimates of the belief function
that z € C; which is given by:

K
bel(i) = n [P(z € Cifex(z) = j). (2)

k=1

In the Dempster-Shafer formalism, a basic probability assignment m is given not
only to each class C; as with the Bayesian formalism but to every subset of classes in
the pattern space P and the belief that a sample belongs to a subset of classes A C P
is given by:

bel(4) = 3 m(B). (3)

BCA
In this formalism, Xu et al. use only the global recognition, substitution and rejection
rates of each classifier as prior knowledge.

Huang & Suen ([67] and [66]) present the Behavior-Knowledge Space (BKS)
method which is claimed to be the best for the combination of multiple classifiers
providing abstract level information. The BKS is a K-dimensional space which is con-
structed during a learning phase; in this space, the bin of coordinates (71, j2,- - -, Jk) is
called the focal unit for every sample for which the classifier decisions are ex(z) = ji;
each bin keeps the counts of incoming samples belonging to each class, from which the
best representative class can be deduced and used to determine E(z) 4. This method
does not assume classifier independence but suffers from high storage requirements.
Often a large number of bins will not be used as focal units and storage problems
can be alleviated with dymamic allocation schemes. Huge training sets are needed to

take full advantage of this method.
Ho et al. [61] consider the problem of combining rank level decisions of classifiers

14 In conjunction with some threshold value for rejection/substitution trade-off.

CHAPTER 2. STATE OF THE ART 26

and propose several methods. Here the application is machine printed word recogni-
tion for a 1365-word lexicon. Two methods are investigated for class set reduction,
where one attemps to reduce the number of classes in the output list without losing
the true class. And three methods (highest rank, Borda count, and logistic regres-
sion) are proposed for class set reordering, where the idea is to improv—e the rank of
the correct class. Dynamic classtfier selection is also examined, where an oracle is
modeled to predict, before recognition, which classifier is best to use for the sample.

Lee & Srihari [88] propose a unified theory of classifier combination based on
the neural network approach. A scheme is presented to transform classifier outputs
of any of the 3 kinds described above into M-dimensional vectors of values in the
[0,1] range, where M is the number of classes. These vectors serve as input to a
Decision Combination Neural Network (DCNN), a multi-layer perceptron without a
hidden layer. The elimination of redundant classifiers and soft weight sharing are
also considered. Finally, a dynamic selection network is integrated to the DCNN
resulting in a Dynamic Selection Combination Network (DSCN). This last idea is
similar to the dynamic classifier selection of Ho et al. The implementation is via a
side network which takes the images as input and outputs weights in the [0,1] range
for each classifier being combined. The output vectors of each classifier are then
multiplied by these weights before they are fed into the DCNN.

Lam & Suen [80] investigate specific questions concerning the addition of experts in
the following simple majority voting scheme: assuming each of the K classifier experts
outputs a single class label, the combined decision will be E(z) = j, provided at
least [(K + 1)/2] of the classifiers agree on that label; otherwise, E(z) = M +1
i.e. the sample is rejected. They show that adding one vote to an even number of
decisions will mostly increase the recognition rate while adding one vote to an odd
number of decisions will mostly increase the number of rejections. Also, adding 2
votes to an even number of votes increases the recognition rate with high probability
(the new error rate being dependent on individual classifier substitution rates); and
adding 2 votes to an odd number of decisions decreases the substitution rate with
high probability. Interesting variations on majority voting are analyzed: a) to increase

reliability (less substitutions) when we have an odd number of classifiers, is it better

CHAPTER 2. STATE OF THE ART 27

to drop one classifier or to double one up? b) similarly, to increase the recognition
rate when we have an even number of classifiers, what is the best course to adopt?
The best solution depends on the relationship between products of the odds ratio r;r;
for pairs of experts, where i = pr/(1 — pr) and p; is the probability that expert k’s

prediction is correct.

Practical Results

Possibly the first instance of combining the results of different classifier experts can
be found in Mandler & Schiirmann [107] for an on-line script recognition application.
The votes of 3 experts are combined together based on the Dempster-Shafer theory
of evidence and the combined decision is seen to be much better than that of any
individual classifier.

In Cohen et al. [33], four algorithms are used in parallel to recognize numerals in
ZIP codes: a polynomial discriminant method applied to 16x16 normalized images;
a method relying on statistical and structural analysis of a piecewise-linear approx-
imation of the contours; a structural classifier using information about the size and
placement of nearly horizontal and nearly vertical strokes in the images; and a con-
tour analysis method based on eight feature types defines in terms of the amount of
curvature present at any point. A decision tree composed of 17 rules is used to com-
bine the results of these 4 algorithms. Recognition and substitution rates of 95.54%
and 1.99% respectively are obtained; for non-touching digits free of artifacts, these
rates climb to 97.10% and 0.96% respectively.

Kimura & Shridhar [73] combine the outcomes of 2 methods: the first is a modified
quadratic discriminant function based on local histograms of 4-valued chain codes
extracted for 16 rectangular zones of the images; the second is a tree classifier based
on structural features extracted from the left and right profiles of the numerals: left
and right peaks, location of minima and maxima etc. Recognition/substitution rate
pairs ranging from 96.23% and 0.25% to 89.55% and 0.07% were obtained.

In Suen et al.[157], the 4 structural methods labeled as ‘Expert E1’, - .-, ‘Expert
E4’ and already presented in section 2.1.1 were combined using several variants of the

simple majority voting scheme. With the same variant as that discussed under Lam

CHAPTER 2. STATE OF THE ART 28

& Suen [80] in the preceding subsection, the average recognition/substitution rates
achieved were 86.68% and 0.07% for all combinations of 2 of the 4 experts; 95.45%
and 0.26% for all combinations of 3 of the 4 experts; and 93.05% and 0.00% for the
combination of all 4 experts.

Using the same 4 experts and the same test set of 2 000 samples, Xu et al.
[170] provide a variety of results for combination methods based on Dempster-Shafer
formalism, Bayesian formalism, and the voting principle as presented in the preceding
subsection. Most of these combination methods are parameter-dependent and only
some of the best results will be discussed here. Using the first half of the test set to
derive recognition, substitution and rejection rates for each method, they obtained
recognition and substitution rates of 95.00% and 0.00% respectively on the other half
of the test set. For the Bayesian formalism, using the confusion matrices of the first
half of the test set, results of 91.5% and 0.30% respectively are obtained; averaging
the results of 200 trials, leaving 10 samples out and using the other 1990 fo derive
the confusion matrices, recognition and substitution rates of 94.15% and 0.60% are
achieved. For the voting principle, recognition and substitution rates of 97.95% and
0.35% and of 95.45% and 0.05% are possible for the last 2 variants presented above.
The authors note that methods based on Bayesian formalism tend to degenerate
unless the confusion matrices are well-learned. Dempster-Shafer and voting based
methods are more robust when dealing with incomplete information.

Huang & Suen [67] also provide results for combining the same experts on the same
database using their Behaviour-Knowledge Space method. Because of insufficient
learning data, the results are not for a pure BKS application but for a mixed BKS-
Bayesian combination method. Best recognition and substitution rates given (for
certain values of a free parameter) are 97.65% and 0.10% respectively or 95.60% and
0.05%.

Using the CENPARMI database once again, Franke [49] provides results of com-
bining the 4 CENPARMI experts with some of his best polynomial classifier meth-
ods labeled ‘E5’ and ‘E6’ by a simple voting method. ‘E6’ is identical to classifier
CQ22 adapted to SHAPE_N.SW13 as presented in section 2.2.1. ‘E5’, also labeled
‘MEAN_N’ elsewhere, is a classifier net of 45 (2x2) classifiers adapted to each pair

CHAPTER 2. STATE OF THE ART 29

of the 10 numeral classifiers. Results of combining 2, 3, 4, 5, and 6 classifiers are
given. If minimal substitution rates are wanted, the best combination of 4 experts
(E2, E3, E4, and E6) gives recognition and substitution rates of 95.65% and 0.00%
respectively; the best combination of 5 experts (E1, E2, E3, E4, and E5) gives 97.40%
and 0.05%; the combination of all 6 experts does not yield better results in this case:

97.00% and 0.05% respectively.
Lee & Srihari [87] present the results of 7 different classifiers and of 5 methods of
combining their outputs for their own CEDAR?!® database. The methods are:

1. Binpoly: a binary polynomial classifier using 1240 first- and second-order fea-

tures;

2. Histogram: a two-layer feed-forward MLP receiving as input a histogram-based

feature vector of dimension 72;

3. Gabor: a neural network of 104 input, 100 hidden, and 10 output units using

as input the 52 complex coefficients obtained from Gabor feature extraction;

4. Gradient: a neural network of 192 input, 101 hidden, and 10 output units using

as input gradient-based features extracted using Sobel operators;

5. Morphology: a neural network of 85 input, 50 hidden, and 10 output units using
morphological features as input; for each of 9 non-uniform sub-regions of the
images, 9 components are obtained based on the area of concave regions, the
length of stroke features, and the number of endpoints and crosspoints; four

global features (moments and number of holes) complete the input;

6. Chaincode: a neural network of 640 input, 100 hidden, and 10 output units
using as input, for each of 16 equal-sized regions of the image, the percentage
of boundary pixels with a particular slope (8 values) and a particular curvature

(5 values);

7. GSC: a 6-NN classifier with a voting scheme using input from 3 separate fea-

ture generators: the 192 inputs of method #4 above; 128 inputs from extracted

15 Center of Excellence for Document Analysis and Recognition.

CHAPTER 2. STATE OF THE ART 30

strokes and corners based on a gradient map; 128 other inputs from the extrac-

tion of coarse concavities in 4 directions, holes and large scale strokes.

The five methods of combination considered are: Bayesian; neural net using out-
puts of all 7 classifiers as input; logistic regression; fuzzy integral; and simple majority
voting. On the same test set'®, the numbering of the methods above corresponds to
their individual ranking, with no-rejection recognition rates ranging from 96.12% for
#1 to 98.09% for #7 (GSC). The no-rejection recognition rates for the combination
of methods range from 98.04% (fuzzy integral) to 98.52% (logistic regression). Once
more, the simple majority voting scheme performed very well, being the second best
with 98.43%.

Sabourin et al. [139] investigate practical ways of speeding up k-NN (Nearest
Neighbour) classifiers on the large (250 000 isolated digits) NIST-3 database. Pruning
substantially reduces the size of the pattern reference set; and search optimization by
the triangle inequality, using so well-chosen anchor points also helps a lot. It turns out
that both methods improved the query time by a factor of 80! Using these techniques,
the authors study combinations of Nearest-Neighbour classifiers based on 2 different
feature sets: 1) tangents uniformly sampled on the character chain-coded contour; 2)
Zernicke moments!?. Requiring unanimity of decisions for both k-NN classifiers with
k = 1 results in a recognition rate of 96.28% with an error rate of 0.20%. For k = 4,
both rates drop to 86.12% and 0.022

More complex combination schemes based on Bayesian and Dempster-Shafer for-
malism were implemented but better results were obtained with a dynamic classifier
selection (DCS) algorithm and a single parameter combination. Based on selected
classifier parameters forming a new “meta” pattern space, the DCS is also a nearest
neighbour classifier which selects the classifier most likely to give the correct answer;
60 000 distinct digits are used to select the right parameters for the DCS. Recognition
and error rates of 98.97% and 1.03% respectively were obtained in this way. Finally, a
joint 5-NN classifier, where the most frequent class amongst the 5 nearest neighbours

from both classifiers is chosen, yielded 99.34% recognition with 0.66% substitution.

16 Results given here are for the so-called BHA test set.
17 Of the 250 000 samples, 118 000 are used for training and 60 000 for testing.

CHAPTER 2. STATE OF THE ART 31

Thien & Bunke [162] discuss a multi-expert and multi-stage method based on
different perturbations to the image data. Classical recognizers labeled ‘C1’ and ‘C2’
are linearly combined to create classifier ‘C3’. Starting from normalized 32x32 binary
images, the first classifier computes 4 black pixel histograms from the image and
another 4 from the skeleton, plus contour profiles from 8 directions; 5 features are
extracted from each of these 16 functions. These 80 features plus the aspect ratio
are fed to a Parzen estimate based classifier. The second method begins with 64x64
normalized binary images; directions at each (outer and inner) contour point are
quantized in 16 values; for each of 9 overlapping regions, the number of pixels in 16
directions is counted, weighted based on the distance to the center of the region. The
input vector of length 144 is fed to a distance-weighted 4-NN classifier. Classifier ‘C3’
linearly combines ‘C1’ and ‘C2’, assigning 25% more weight to ‘C2’ compared to ‘C1’.

Furthermore, eleven perturbation types can be applied to original images: rotation
in 1 direction, slant in 2 directions, perspective and shrink in 4 directions each. For
each perturbation type, 4 discrete values are tried resulting in a total of 45 potential
perturbations (including 1 case for unperturbed data).

Here is how the multi-stage system works: In the first stage, unperturbed data is
fed to ‘C3’ with a very high rejection threshold; rejected data goes through the second
stage where perturbations are limited to the first 2 discrete values and the outputs
from these perturbed images and the unperturbed image are combined. Finally, still
rejected samples undergo second degree perturbations whose outcome are combined
with previous outputs to make the final selection. We note that a penalizing factor is
applied which increases with the amount of perturbation. Results of this sophisticated
method, labeled ‘P2’, on the so-called ‘goodbs’ data set of SUNY (Buffalo) are said
to be the best published: 99.09% recognition with 0.91% substitution. The main
drawback of this method is the processing time: 6.0 seconds per sample on a SPARC
10 computer.

Huang & Suen [66] conducted some experiments to compare Bayesian, Dempster-

Shafer, BKS, and voting combination approaches on an ITRI!® numeral database

18 The Industrial Technology Research Institute is a government-sponsored research institution in
Taiwan.

CHAPTER 2. STATE OF THE ART 32

consisting of 46 451 samples. They trained 3 classifiers on only 5 074 samples, using
the remaining 41 377 for testing. Consequently, the no-rejection error rates of the
classifiers were fairly high: 9.63%, 9.07%, and 7.86% respectively. In these conditions,
the BKS method performed best, followed by the Bayesian approach. Dempster-
Shafer and simple voting performed almost the same, in third position. However,
it should be noted that for substitution rates of 0.77% or less, all 4 approaches got
similar performances. Thus the simple voting scheme would then be a very suitable
choice.

Lam & Suen [81] studied the extension of the voting scheme by performing a

weighted voting. Optimal weights are sought to maximize the function
F = Recognition — B -error for B =10,15,20,25,and 30.

They are derived in two ways: a) using a Bayesian formulation, one weight per clas-
sifier and per class is obtained; b) using a genetic algorithm, one weight per classifier
is obtained. Seven classifiers (from CENPARMI and ITRI) are combined, using the
ITRI database, from which 24 427 samples are used for training the individual classi-
fiers; the remaining 22 024 samples are further subdivided into set A (13 272 samples)
and set B (8 752 samples). Set A is used to compute the optimum weights which are
then applied to set B. Of course, the Bayesian- and genetic-based weighted voting
methods can be trained to reach F-values on set A which are higher than what is
achieved by simple majority voting. However, it turns out that for any reasonable
trade-offs between the recognition and the error rates (8 > 4), simple majority vote
produces the best results on set B. It appears that finding enough data to train in a
representative way is not so easy: even if samples were collected under the same con-
ditions, training parameters on set A can result in “overfitting” which induces more
errors on set B. The authors conclude that in the absence of a truly representative
training set, simple majority voting remains the easiest and most reliable solution
among the ones studied.

In Strathy & Suen [151], 3 very similar standard backpropagation networks, la-
beled A, B, and C are combined. Method A was described above and yielded a
substitution rate of 3.69% (with no rejection). Method B is the same as A but was

CHAPTER 2. STATE OF THE ART 33

not additionnally trained on randomly sheared data (as was the case for A); its no-
rejection error rate is 3.73%. Method C uses 12x12 normalized images (instead of
12x14, for methods A and B) and the network structure is also modified: 288 input,
80 hidden, and 10 output units (vs 336-70-10 for A and B); its no-rejection error rate
is 3.87%. A simple 2/3 majority voting combination (choosing A’s decision when all 3
classifiers disagree) achieves a slight improvement: a no-rejection error rate of 3.47%.

In Bottou et al. [20], ‘LeNet 4’ was one of 5 methods achieving a 1.1% error rate
on the modified NIST database (see section 2.1.2). Following Drucker et al. [41] a
committee of 3 ‘LeNet 4’ machines was devised. The idea is to train a second machine
on a mix of samples, half of which were correctly recognized while the other half was
misclassified; and to train a third machine on samples for which the first two disagree.
Enormous amounts of data are needed for this training which are not available given
the already excellent performance of ‘LeNet 4’. The problem is solved by generating
deformed training data with a set of affine transformations and line-thickness varia-
tions. The combination is by adding the scores of the 3 machines and choosing the
class with the highest total score. This ‘Boosted LeNet 4’ combination achieved a no-
rejection substitution rate of only 0.7%. When the first machine classifies with high
confidence, the other 2 machines need not be evaluated which increases computation
time by a factor of 1.75 (instead of 3).

Gader & Khabou [55] study the combination of up to 4 neural networks by simple
average of their outputs; the best combination is for only two MLPs. The first uses
automatically generated features (previously described) and the second is a shared
weight network based on Le Cun et al. [83]. This combination achieved recognition
and substitution rates of 98.3% and 1.7% respectively, or of 97.4% and 1.0%, on the
CENPARMI test set.

Cho [32] compares 3 different methods for combining the outcomes of 3 two-layered
MLPs. The first MLP uses size-normalized 16x16 images, compressed to 4x4, as input;
the second MLP uses as input four 4x4 clusters of directional features obtained using
Kirsch-like masks; and the third MLP uses as input 15 complex Fourier descriptors
from the outer contours, plus simple topological features from the inner contours.

The three combination methods are simple majority voting, averaging of the separate

CHAPTER 2. STATE OF THE ART 34

networks, and fuzzy integral. The recognition and substitution rates achieved on the
CENPARMI test set for each combination method are: 96.70% and 3.05% (voting);
97.15% and 2.35% (average); 97.35% and 2.30% (fuzzy integral).

2.3 Comparative Results

A discussion of important factors to be weighed when comparing recognition results
and a compilation of some of the best results published in the literature up until the
early 1990’s can be found in Suen et al. [157]. However, as should be apparent from
the preceding discussion, research has intensified a lot since that time and a large
number of excellent systems have been produced. It is thus necessary to return on

the topic once more...

2.3.1 Some Guidelines for Comparison

Raw percentage figures providing recognition, substitution and rejection rates of var-
ious systems on different databases should NOT be compared without much caution.
A system obtaining a higher recognition rate than another is NOT necessarily ‘better’
and the one obtaining the highest is NOT necessarily ‘the best’.

Before making comparisons, one should first have a good understanding of the

requirements of the targeted application.

e What kind of data will the system have to deal with? Totally unconstrained in
terms of writing conditions and instruments or somewhat constrained? Written
by the general public or by a specialized sector of the population? Writers from
a specific region or country or from anywhere on the planet? Etc... As much as
possible, system performances should be compared precisely on the kind of data
that will have to be dealt with. Drawing conclusions otherwise may be risky
since system performance can be data-dependent to a large extent according
to our own experience (see section 2.4 on machine vs human performance).

Unfortunately, there are very few accounts in the literature of the performance

CHAPTER 2. STATE OF THE ART 35

of recognition systems on databases that are very different from the ones used

for training.

e What error level is tolerable for the application? Or, put in another way, what
is the relative cost of an error and that of a rejection? When errors are not
costly at all, one may consider having all data classified by machine, dealing
with errors afterwards. However, in many applications, it may be preferable to
reject an item and have it classified by human operators. Here a very low error

rate is critical while the highest recognition is not so important.

Some measures of performance take this last factor into account such as the func-
tion F = Recognition — B - error in Lam & Suen [81] or an equivalent formulation
in Matsui et al. [111]. Several recognition schemes are ‘adjustable’ in terms of the
error/rejection trade-offs. In such cases, the best way to present performance is offer
the error vs rejection curve. Unfortunately, this is often not provided: authors are
often content with quoting system performance at 0% rejection; while this may offer
some common basis for comparison, it is not always of practical interest for real-life
applications.

Ideally, comparisons are most significant when results are available on common,
large, uniform and representative databases. In the next sections, we will present such
databases and results which have become available in the past few years. However,
a number of databases do exist for which results have already been published; and
more will no doubt come into existence in the near future. When trying to assess
results, the following data-related and processing-dependent factors should always be
weighed carefully:

e How large is the database?

e Is the data really unconstrained? What relative level of difficulty does it offer

in terms of writing styles, conditions, etc?
e Is the data from a large number of different writers?

e Are the training and testing sets really distinct i.e. not containing samples from

the same writers?

CHAPTER 2. STATE OF THE ART 36

e Is the test set balanced i.e. containing the same number of samples from the 10

numeral classes?!®

e What is the resolution of the data images?

e Was the data manually or automatically segmented when overlapping, touching,
or even crossing each other??® Was any data discarded from the test set as a
result?

One last word of caution is warranted. When test set results for parameter-
dependent combinations of methods are given for several values of the parameter(s),
one should not draw quick conclusions about the best value of such parameter(s).
The test set is then being used somewhat as a training set to find the optimum
parameter value(s) and this should normally be confirmed on other independent data -

sets—which is rarely the case.

2.3.2 Some Published Results on CENPARMI Database

One of the first databases to be used for comparative purposes is our own CENPARMI
database, composed of approximately 17 000 isolated numerals. For a summary of
technical information concerning this database, see Appendix A.2.

Results of individual recognition systems on the CENPARMI database are pre-
sented in Table 1. All figures are percentages and relate to test set T. Reliability is
defined as:

Recognition (4)
Recognition + Substitution’

Reliability =

It is important to recall that all methods were trained on sets A and B, except

for Experts ‘E5’ and ‘E6’ which were trained on a huge proprietary database of AEG

19 When databases contain a larger proportion of easier digits (such as 0’s and 1’s), perfor-
mance statistics can be artificially inflated, unless of course such imbalance is typical of the targeted

application.
20 Machine and even human recognition performance will degrade on automatically segmented

data.

CHAPTER 2. STATE OF THE ART 37

Reference Recog. Substit. Reject. Reliab.
Krzyzak et al. [75] 86.40 1.00 12.60 98.85
Krzyzak et al. [75) 94.85 5.15 0.00 94.85

Nadal & Suen [117] (Expert E1) | 86.05 2.25 11.70 97.45
Lam & Suen [82] (Expert E2) | 93.10 295 3.95 96.98
Mai & Suen [105] (Expert E3) | 92.95 215 4.90 97.74
Legault & Suen [94] (Expert E4) | 93.90 1.60 450 98.32
Franke [46] PIQI079.NBSW13 | 94.55 1.25 420 98.70

Franke [49] Expert E5 96.95 3.05 0.00 96.95
Franke [49] Expert E6 98.30 1.70 0.00 98.30
Lee et al. [91] 97.80 2.20 0.00 97.80
Lee & Kim [90] 97.30 270 0.00 97.30
Lee et al. [89] 96.80 3.20 0.00 96.80
Gader & Khabou [55] 96.50 3.50 0.00 96.50
Gader & Khabou [55] 93.00 1.55 545 98.36
Cho [32] 96.55 345 0.00 96.55

Table 1: Results of Individual Systems on CENPARMI Data

Daimler-Benz composed of over 1 000 000 digits.?! Of those trained on the CEN-
PARMI database, the incomplete quadratic polynomial classifier PIQ1079_ NB_SW13
of Franke is probably offering the best high recognition and high reliability perfor-
mance; the methods of Lee et al. achieve higher recognition rates but at the expense
of a substitution rate which is almost twice that of Franke’s method. Of course,
training on a huge database does make a difference: Expert ‘E6’ is as reliable as ‘E4’
with an increase of 4.4% in the recognition rate.

Results of multi-expert combinations on the CENPARMI database are presented
in Table 2.

Again caution should be exercised in the interpretation of these results. For
instance, a substitution rate of 0.05% represents 1 sample out of 2 000 and such
a figure cannot be said to be statistically significant. However a very clear tendancy
is observed; namely that the combination of different methods produces a dramatic

reduction of substitutions while still allowing a very high recognition rate. In fact,

21 Results of ‘E5’ and ‘E6’ are given here to clarify the next table.

CHAPTER 2. STATE OF THE ART

38

Reference Combination Method | Recog. Substit. Reject. Reliab.
Suen et al. [158] (EL1 --- E4) Voting 93.05 0.00 6.95 100.00
Suen et al. [157] (avg. 3 of 4) Voting 95.45 0.26 4.29 99.73
Xu et al. [170] (E1 --- E4) Dempster-Shafer 95.00 0.00 5.00 100.00
Bayesian 94.15 0.60 5.25 99.37

Voting 97.95 0.35 1.70 99.64

Voting 95.45 0.05 4.50 99.95

Huang & Suen [67] (El --- E4) BKS + Bayesian 95.60 0.05 4.35 99.95
BKS + Bayesian 97.65 0.10 2.25 99.90

Franke [49] (E2-E3-E4-E6) Voting 95.65 0.00 4.35 100.00
Franke [49] (E1 --- E5) Voting 97.40 0.05 2.55 99.95
Franke [49] (E1 --- E6) Voting 97.00 0.05 2.95 99.95
Gader & Khabou [55] (2 MLPs) | Output averaging 97.40 1.00 1.60 98.98
Cho [32] (3 MLPs) Fuzzy integral 97.35 2.30 0.35 97.69

Table 2: Results of Combinations of Systems on CENPARMI Data

the final recognition rate can often exceed even the highest figure attained by any of
the individual experts. Of course, the results are for this particular test set, which
is rather small, and there is no guarantee that the ranking of the methods or the

quantitative gains of the combinations would be the same for another database.

2.3.3 Some Published Results on CEDAR Database

CEDAR, the Center of Excellence for Document Analysis and Recognition (Buffalo,
N.Y.), also has made a database of handwritten digits available and several researchers
have published recognition results on it. The database conmsists of 21 179 binary
images of digits extracted from U.S. ZIP codes. For a brief description of this data,
see Appendix A.l.

Table 3 presents some of the published statistics on this database, the horizontal
line separating results of single methods from results of multi-stage and multi-expert
systems. Note that the goodbs test set is a subset of 2 213 well-segmented samples
extracted from the 2711-sample bs test set. The methods of Revow et al. are described
in section 2.1.3; those of Lee & Srihari, of Thien & Bunke, and of Strathy & Suen

CHAPTER 2. STATE OF THE ART

39

Reference ‘bs’ Data Set ‘goodbs’ Data Set
Rec. Sub. Rej.| Rec. Sub. Rej.
Lee & Srihari [87] Binpoly 93.99 6.01 0.00| 96.43 3.57 0.00
Lee & Srihari [87] Histogram 94.95 5.05 0.00| 97.47 2.53 0.00
Lee & Srihari [87] Gabor 95.28 4.72 0.00 | 97.70 2.30 0.00
Lee & Srihari [87] Gradient 96.42 3.58 0.00| 98.46 1.54 0.00
Lee & Srihari [87] Morphology 95.98 4.02 0.00 | 97.92 2.08 0.00
Lee & Srihari [87] Chaincode 96.39 3.61 0.00| 98.33 1.67 0.00
Lee & Srihari [87] GSC 97.05 2.95 0.00 | 98.87 1.13 0.00
Revow et al. [132] 96.57 3.43 0.00 | 98.47 1.53 0.00
96.86 3.14 0.00| 98.50 1.50 0.00
Thien & Bunke [162] C1 97.69 2.31 0.00
Thien & Bunke [162] C2 98.19 1.81 0.00
Strathy & Suen [151] A 96.31 3.69 0.00
Strathy & Suen [151] B 96.27 3.73 0.00
Strathy & Suen [151] C 96.13 3.87 0.00
Hinton et al. [60] 95.32 4.68 0.00} 97.83 2.17 0.00
Franke [46] KH30F2ZTG 97.02 0.90 2.08
98.33 1.67 0.00
Strathy & Suen [151] ABC(voting) | 96.53 3.47 0.00 | 98.642 1.36 0.00
Thien & Bunke [162] C3(voting) 98.51 1.49 0.00
Thien & Bunke [162] P2 99.09 091 0.00

Table 3: Some Published Results on CEDAR Data

under ‘Practical Results’ in section 2.2.2; the KH30F2ZTG method of Franke in
section 2.2.1. Note that the latter was trained on 100 000 digits totally independant
of the CEDAR database. Also note that for results of Lee & Srihari the BS dataset

is really more a validation set than a test set?3. Results on an independent test set

are given under ‘Practical Results’ in section 2.2.2.
It should be noted that the goodbs test data set is not a balanced set. It contains
a total of 2 213 samples, including 355 zero’s, 289 one’s, 245 sixe’s, but only 117

five’s, 180 nine’s, 183 four’s. Hence the global recognition figures presented above are

probably higher than would be achieved on a balanced test set.

23 The BS images were cross-tested several times in developing algorithms and in determining

neural network convergence.

CHAPTER 2. STATE OF THE ART 40

2.3.4 The NIST Competitions

In May 1992, the National Institute for Standards and Technology (U.S.) held the
First Census Optical Character Recognition Systems Conference [165]. The event
was organized to assess the state of the art in OCR, to learn what are the current
limiting factors and to find out if the collection of new databases of handprinted
characters could help further developments. It focused on a single step of document
processing: machine recognition of individual, already segmented, characters (digits,
plus upppercase and lowercase letters) without context. Twenty nine groups?* from
North America and Europe responded to the call for participation and they received
training data in February 1992. Later they received the test data and only 3 groups
did not submit test results and hence did not participate in the conference in May.

The training material?®, labeled NIST Special Database 3 (SD3), came from forms
filled out by 2 100 permanent Census Field workers, as part ot the 1990 Census
program. It included 223 122 digits. The testing material, labeled NIST Test Data 1
(TD1) came from forms filled out by 500 math and science high school students. It
included 58 646 digits.

For digits, NIST partitioned the TD1 set in 10 and results were provided in terms
of the mean and the standard deviation of the no-rejection error rate calculated over
these 10 partitions. About half of the systems recognized more than 95% of the sam-
ples. Most systems in the report combine several methods for preprocessing/filtering
and feature extraction. All four combinations of rule-based and learning-based fea-
ture extraction and classification were represented at the conference and each yielded
at least one low error rate system. But most common was some sort of math-based
feature extractor with a multi-layer perceptron (MLP) used for classification. As for
speed considerations, some methods used PC platforms and processed only 1 charac-
ter per second; at the other end of the spectrum, other systems used parallel machines
or dedicated hardware and processed up to 1 000 characters per second.

The 10 best results are presented in Table 4. All values represent percentages.

24 18 from private industry and 8 from universities and national research institutes.
25 Participants could also choose to use their own training material or a combination of SD3 and

their own.

CHAPTER 2. STATE OF THE ART 41

Participating group System label No-rejection Error Rate
OCR Systems Inc. OCRSYS 1.56 £ 0.19
AT&T Bell Laboratories ATT1 3.16 £ 0.29
ELSAG BAILEY INC. ELSAGB.3 3.35 £0.21
ELSAG BAILEY INC. ELSAGB2 3.38 £ 0.20
AEG Electrocom GmbH AEG 3.43 £0.23
IBM Almaden Research Center IBM 3.49 £ 0.12
AT&T Bell Laboratories ATT2 3.67 + 0.23
Thinking Machines Corp. THINK 2 3.85 £ 0.33
Environmental Res. Inst. of Michigan ERIM.1 3.88 + 0.20
Environmental Res. Inst. of Michigan ERIM_2 3.92 £ 0.24

Table 4: Top Ten Results for Digits at First NIST Conference

We will now briefly summarize the key aspects of the top 5 contenders. OCRSYS
uses convolutions with hand-coded filters as features and a multi-layer perceptron
(MLP) for classification. ATT_1 uses a gray level rescaled image directly as features
and a k-NN classifier with a special distance measure compensating for common dis-
tortions. ELSAG_3 performs noise removal and size normalization to 24x36; features
are shape functions of the character bit maps having the same size as the character;
classification is in 2 stages: first a k-NN classifier using references representing clus-
ters of shape functions in the training samples, followed by the same classifier using
a more sophisticated distance measure and many more references. The description
provided for ELSAG_2 is not apparently different from that of ELSAG_.3. Prepro-
cessing for the AEG entry includes their familiar normalization for size, stroke width
and slant; a 256-component feature vector is obtained from KL-transform and an
adaptive polynomial classifier is used.

Participants pointed out that SD3 did not constitute very appropriate training
material to prepare for the TD1 test set. Indeed, cross validation studies performed
after the competition indicated that TD1 was more diverse and more general. Mostly
this is because the 2 100 Census Field Workers who provided the SD3 data were

motivated and careful subjects, more so than the 500 high school students who wrote

CHAPTER 2. STATE OF THE ART 42

the TD1 data®®. Furthermore, different segmenters were used for SD3 and TD1. The
segmenter utilized on the training data failed on a much larger fraction of samples
than the other; hence more of the difficult data made it into TD1

The low quality of SD3 as training material is confirmed in 2 other ways. OCRSYS,
the top entry in the conference, has a substitution rate which is barely one half that of
its nearest contender; and it was not trained with SD3 at all but with a proprietary
database. Similarly, the AEG entry, when re-trained with their own proprietary
database, saw its substitution rate reduced from 3.43% to 2.9%.

The major conclusion of the First Census Optical Character Recognition Systems

Conference was that

“The state of the art of machine OCR of segmented, hand-printed digits
is approaching human performance with respect to the zero-rejection-rate
error rate. The results for upper case letters and lower case letters are
probably not as good relative to human performance as the performance
for digits, but no human classifications under the conditions of the Con-

ference test have been conducted to address (the) question.” (see [165],
p. 12).

In the introduction to the Second Conference report this statement was inflated to

the following:

“An important conclusion of the First Conference was that the OCR of
isolated (properly segmented) characters was essentially a solved prob-
lem.” (see [57], p. 5).

Perhaps the key is in the words ‘properly segmented’.

The report to the Second Census Optical Character Recognition Systems Con-
ference was published in May 1994. The conference focused on a much broader and
realistic recognition task: reading answers from digital images of forms scanned from
microfilm and from paper. Initially, a large sample of 12 500 digital miniforms (con-
taining 37 500 answer fields), scanned from microfilm copies of a non-sensitive portion

26 The latter are probably more representative of the general public however.

CHAPTER 2. STATE OF THE ART 43

of the Industry and Occupation section of the 1990 Census long form, was to be the
only basis for the competition. But image quality was far inferior to that which could
be obtained by scanning original paper forms. So another training CD-ROM was pre-
pared consisting of 6 000 miniforms (18 000 answer fields) scanned from microfilm and
from paper. The complete OCR task was considered: document handling, scanning,
form identification, field isolation, character segmentation, recognition, and context-
based field correction. Several dictionaries were provided with training materials to
allow for this last task.

The focus of the second conference was indeed much more difficult. Twenty five
groups responded to the call for participation but only ten submitted test results
(some late) and attended the meeting in mid-February 1994. Results indicate that at
field rejection levels between 40% and 60% several systems achieved accuracy levels
that exceeded human performance levels at the 0% rejection level. More precisely, at
the 60% field rejection rate, the top 4 systems®” had field error rates of 3.6%, 3.9%
(ERIM, Michigan), 10.7% (IDIAP, Switzerland), and 13.8% (CGK mbH, Germany)
respectively. At 0% field rejection rate, the corresponding figures were 39.7%, 41.9%,
52.6%, and 50.5%. Systems not performing segmentation were not among the most
accurate. Furthermore, except for NIST’s own system, all systems attempting seg-
mentation used intentional over-segmentation and the best ones had sophisticated

means to recombine character fragments before dictionary-based correction.

2.3.5 The IPTP Competitions

The Institute for Posts and Telecommunications Policy (IPTP) in Japan also held
2 competitions in 1992 and in 1993. Matsui et al. [111] report on the results of the
First IPTP Character Recognition Competition. The data consisted of 200 PPI binary
numerals extracted from 3-digit postal codes written freely (but within frames). The
training set had 7 500 digits and the testing set 29 883 digits (unbalanced, but not
too biased). Thirteen recognition programs were submitted by 5 universities and 8

manufacturing companies.

27 Their performance was markedly superior to the average.

CHAPTER 2. STATE OF THE ART 4

The weighted sum S = (10 - Errorrate) + Rejectionrate was used as criterion
for evaluation. The best individual system scored 96.22% recognition and 0.37% sub-
stitution, for an S-value of 7.09. The top 3 algorithms, labeled A, B, and C, all
use position and scale normalization; pattern descriptions are by contour points (A)
and contour chain code (B and C). For features, A uses crossing counts, topological
features and contour features; B uses peripheral white run-lengths and line-direction
histogram; C uses weighted line direction histogram. For classification, A uses sub-
Jective clustering and exhaustive decision trees; B uses fuzzy clustering and neural
computing; C uses a modified quadratic discriminant function.

The authors then investigate several multi-expert combinations of the top 3 con-
tenders including voting, minimal sum of rankings, and some scheme similar to Huang
& Suen’s BKS method, labeled “candidate appearance likelihood rule’. For the latter,
an S-value as low as 1.53 (recognition and substitution rates of 99.85% and 0.15%
respectively) was achieved by considering a 9-component vector composed of the 2
most probable classes and a rejection flag as determined by each method.

Noumi et al. [121] report on the Second IPTP Character Recognition Competi-
tion. The training set consisted of one half of the first competition’s test set plus 9
500 new 3-digit ZIP codes; the testing set consisted of the other half of the first com-
petition’s test set plus 5 000 new 3-digit ZIP codes. Fourteen recognition programs
from universities and manufacturing companies were submitted (including 2 foreign
participants). This time the best entry scored and S-value of 3.86 (97.94% recog-
nition, 0.20% substitution, and 1.86% rejection). This time, the top 2 recognition

methods were actually multi-expert systems.

2.4 Machine vs Human Performance

We begin this section with 2 quotes expressing opposite views about the comparison

between machine and human performance in recognizing handwritten digits.

“Humans are no longer clearly better than machines at the recognition
of isolated characters, and certainly not in any economically significant
way.” (see Geist et al. [57], p. 16)

CHAPTER 2. STATE OF THE ART 45

“However, handwritten character recognition is still a difficult task in
which human beings perform much better than any computer systems.”
(see Chi et al. [31], p. 59)

In our view, the true picture is probably somewhere in the middle: there are
aspects on which humans still cleary outperform machines and others where the op-
posite is true. In a nutshell, we would say that human recognition is still clearly more
robust and reliable while machine recognition can definitely be faster. And it is true
that for many applications, a combination of both can already offer clear economic
advantages compared to human recognition alone.

However, there are few in-depth analyses of the relative performances of humans
and machines at recognizing digits. Occasionnally, statements are made in some
papers without evidence to substantiate them. For example, LeCun et al. [84] seem
to postulate that humans must reject 5% of samples to achieve a 1% error rate on
the kind of data used for their system; Bottou et al. [20] state a much lower estimate
of 0.2% error rate without any rejection, for their modified NIST database. In this
section, we will present evidence to support our own claims. First, we will examine
the conclusions of the NIST conferences on this aspect, since their goal was to assess

the state of the art in OCR.

2.4.1 About the Conclusions of NIST Conferences

The report on the first NIST conference [165] mentions that 10 000 samples from the
TD1 testing set were presented to one human subject, at the rate of about 1 character
per second, for periods of 10 minutes to over an hour with breaks of several hours
between periods. This experiment yielded a zero-rejection error rate of 1.57% which
is almost identical to the 1.56% figure achieved by the OCRSYS machine recognition
method.

In the report of the second NIST conference [57], it is explained that after the
first conference a technician classified all digits of TD1 in a 2-pass experiment. In the
first pass, all samples which could not instantly be classified with confidence were to

be rejected; this is reflexive classification and Geist labels it as ESHC (economically

CHAPTER 2. STATE OF THE ART 46

significant human classification). This first pass provided a 3.34% rejection rate with
a 0.28% error rate. In the second pass, only the rejected samples from the first pass
were processed; the subject could take his time and decide to classify or to reject the
samples again.

The overall result was a 0.56% rejection rate with a 0.35% error rate. One year
after the first NIST conference, Mitek and CGK, two companies that had not taken
part in the competition, sent results achieved on TD1 by their systems, which outper-
form all previous submissions. Still, for very low error rates, the human error rate?®
was more than 2 times lower that the lowest machine result (Mitek). At rejection lev-
els of 5% and 10% respectively, the Mitek and the CGK systems produced error rates
that were less than that of ESHC (reflexive). On this basis, Geist argues that pro-
cessing a set of isolated handprint digits by machine and having humans reclassify a
low confidence subset should produce a lower error rate at less cost than conventional
ESHC on the same set.

Of course, machine recognition has the advantage of speed. The Mitek system,
for example, processes 15.5 characters per second while the human experiment was
conducted at a much slower pace. LeNetl [83] with its single-board hardware can
attain 1 000 characters per second! But what is said above tends to support our
claim about higher reliability of human recognition. There are important additional

comments to be made:

e The human experiments described above are very limited (2 subjects only); and
already there are differences in the procedure followed between the 2 experi-
ments and the results obtained. Experiments with a larger number of subjects
would be needed for a serious comparison. But there is a more important flaw

in the way the comparison is carried out.

e The comparison is unfair to human recognition because it forces human subjects
to play the game on the machine’s home ground: machines need isolated digits
for their recognition programs but humans do not read multi-digit strings, digit

by digit independently. For this reason, while humans can at times confuse a

28 Estimated from a ‘composite’ of the 2 human subject experiments.

CHAPTER 2. STATE OF THE ART 47

‘4’ for a ‘9’, they are much less likely than a machine to confuse a ‘49’ for a
‘44’, or a ‘94’, or a ‘99’. By cutting the context away, we are not evaluating full
human potential for this task.

e Moreover, not only were the digits segmented but they were machine-segmented.
Thus poor machine segmentation may induce what will be credited as human
errors in the experiments. On this topic, Martin & Pittman [109] provide the

following evidence:

“An independent person categorizing the test set of pre-segmented
size-normalized digits achieved an error rate of 3.4%. This figure is
considerably below the near-perfect performance of operators keying
in numbers directly from bank checks, because the segmentation al-
gorithm 1s flawed.” (p. 406)

In summary, for a fair comparison between machine recognition and ESHC,
machines should deal with their own segmented digits and humans with the

original digit strings.

2.4.2 Human Recognition is More Reliable

In many applications, errors are potentially very costly. In some cases, it may be so
critical for recognition systems to achieve extremely low error rates that rejecting a
sizeable portion of the processed data represents a sound choice. For example, for the
processing of French Postal Service checks, Gilloux [58] argues that

“...a confusion rate not higher than 0.01% would be acceptable and com-
patible with that of human readers while a recognition rate not less than

50%?° would ensure the usefulness of automatic reading.” (p. 29)

Thus machines would only deal with the easy half of the data, leaving the other,
more difficult, half to human operators. This is clearly an admission that human

recognition is more robust and reliable... In this section, we will offer various pieces

29 These percentages are on complete check amounts, rot individual digits.

CHAPTER 2. STATE OF THE ART 48

of evidence supporting that claim. We will first summarize the findings of an experi-
ment we conducted with some colleagues to compare human and machine performance
on very confusing samples. Secondly, we will examine the available information con-
cerning required rejection levels for machines to perform at particularly low error
rates. Thirdly, we will present our qualitative assesment of samples misrecognized by
various OCR methods. And finally, we will give an account of what happens when
methods trained on a particular database are applied to another database without

re-training.

An Extensive Experiment

Here we consider an extensive experiment conducted by Legault et al. (see [98] and
[99]). The authors selected 360 of the most confusing samples from the CENPARMI
database and presented them to human subjects for identification. The subjects (5
OCR researchers and 4 paid volunteers) were asked to distribute a total score of
100 among 11 boxes®®. They also were required to write for each sample the key
factors which motivated their score distribution, trying to rank their arguments in
decreasing order of importance. Human recognition was investigated in detail, but
more important to us here, it was also compared to the performance of the 4 ‘Experts’
(E1, E2, E3, and E4) of Suen et al. [157] previously discussed and to their voting
combination.

For the group of 5 OCR researchers, for each sample, the average score in each
box was computed. Then let S; and S, be respectively the highest and second highest
score, associated with class ¢; and c;, and let S, be the average score in the ‘not a
digit’ box for the same sample. The sample was considered as unambiguously classified

into class ¢y, if the following condition was satisfied:

(Sl > 2.5'52) and (S]_ Z 1.75'5,"'[). (5)

Otherwise, the sample was considered as rejected. For 22 samples, the unambiguous
classifications so determined were different from the original labels of the samples and

were taken as their new truth value.

30 Representing the 10 numeral classes, plus a ‘not a digit’ box.

CHAPTER 2. STATE OF THE ART 49

For the 360 most confusing samples of the CENPARMI database, Table 5 provides
recognition performance for the methods E1, E2, E3, and E4, as well as for their
combination through majority voting; under the horizontal line, the corresponding

statistics for both groups of humans are also given for comparison. All figures are

percentages.

| System/Group | Recognition Substitution Rejection Reliability |
Expert BL 4.2 19.2 36.6 69.7
Expert E2 56.1 31.4 12.5 64.1
Expert E3 55.0 19.4 25.6 73.9
Expert E4 54.2 17.2 28.6 75.9
E1,E2,E3E4 (Voting) | 47.8 6.4 45.8 88.2
Paid Volunteers 46.4 6.1 47.5 88.4
OCR Researchers 59.2 0.0 40.8 100.0

Table 5: Machine and Human Performance on 360 Most Confusing Samples

On this most confusing data, the relative ranking of the machine experts in terms
of reliability, from highest to lowest, is E4, E3, E1, and E2. This is in keeping with
the rankings on testing set T (see section 2.3.2). In terms of the recognition rate, the
present ranking of the methods, from highest to lowest, is E2, E3, E4, and El; on
test set T, it was E4, E2, E3, and E1. But in both situations, we note that E2, E3,
and E4 have quite close recognition rates.

As was the case for testing set T, the voting combination of E1 through E4 im-
proves performance dramatically. The combined recognition rate, which was between
the individual rates of E2 and E3 on test set T, is now only slighly better than that
of E1. But in striking counterpart, the combined error rate is only one third that
of E1! Moreover, the performance of the 4-expert voting scheme is roughly at par
with that of the 4 human volunteers. This further validates the concept of multi-
expert recognition systems for unconstrained handwritten data. However the authors
caution against drawing the hasty conclusion that human performance has now been
matched.

First, the machine results are clearly inferior to those of OCR researchers. But

CHAPTER 2. STATE OF THE ART 50

also a more detailed examination reveals some shortcomings as compared to even the
group of volunteers.

Based on the unambiguous classification criterion presented above, we can say
that the group of OCR researchers has unambiguously recognized 213 of the 360
samples and has rejected the other 147. Consequently, we would expect, for both the
combination of machine experts and for the group of human volunteers, a relatively
better performance on the first subset as compared to the second.

Table 6 gives the percentage of those samples which are recognized, substituted
and rejected by the volunteers and the machine. It is clear from Table 6 (a) that the
expected improvement in performance is present for the volunteers but not for the
4-method combination, despite the relative sophistication of the member algorithms.
We see that the machine can produce substitutions for samples whose identity is
unmbiguous to humans. Also the machine cannot differentiate between the samples

which humans identify unambiguously and the samples which they find confusing.

Rec. Sub. Rej. Rec. Sub. Rej.

Volunteers | 70.0 0.5 29.5 Volunteers | 12.2 14.3 73.5
Machine 493 6.6 44.1 Machine 45.6 6.1 483
(a) 213 easier samples . (b) 147 more difficult samples

Table 6: Performance Results for Subsets of Original 360 Database

The authors then examined more carefully the subset of 147 samples rejected by
the OCR specialists to further distinguish between 2 categories which they labeled
“confused” and “unrecognized”. To this end, they expanded the rule of equation 5

as follows:

If (Spa = 50) then “Unrecognized”

Else if (S; < 2.5-5;) then “Confused”

Else if (S; > 1.75- Spa) then “Recognized”

Else if (S, > 10) and (S1 + S > Spa) then “Confused”

Else “Unrecognized”
(6)

CHAPTER 2. STATE OF THE ART ' 51

When the above rule is applied to the OCR specialists’ group scores, 48 of the
samples are considered unrecognized and 99 are confused. These 99 confused samples
can be regrouped into 20 confusing pairs.

Of the 48 samples unrecognized by OCR specialists, only one third are also rejected
by the machine experts’ combination; another third are seen as confusing (algorithms
disagree about their identity); and the last third are classified uniquely (12 correctly
and 4 incorrectly). On the other hand, the group of volunteers agree much more with
the specialists: they score 42 of the 48 samples as unrecognized as well.

Of the 99 samples confusing to the group of 5 OCR specialists, only one quarter
are also confusing to the machine combination; another quarter are unrecognized; and
more than one half are uniquely classified. For the samples which are confusing to
both the OCR specialists and the machine combination, the confusion is around the
same pair of classes in only 35% of the cases.

The above shortcomings of the multi-expert system are inherited from the in-
dividual experts which compose it. They can be overcome only by bringing more

refinement into each (or at least some) algorithm.

Required Rejection Levels for Low Error Rates

We now examine the ability of individual methods and combination systems to per-
form at very high reliability levels. More precisely, what rejection levels must be
tolerated when an application requires error rates lower than 1%, or lower than 0.5%,
or lower than 0.1%?

Systematic information on this question is not easy to come by. In a few articles,
authors produce error versus rejection curves for their methods (if they can be so
tuned, of course). But often they will only provide performance statistics at a couple
of error levels. In the worst case, we can only obtain the forced recognition error rate
(i-e. at 0% rejection) which is useless to answer our present concern...

Table 7 presents gathered information concerning required rejection levels to
achieve very low error rates for various individual methods (above horizontal line)
and system combinations (below horizontal line). The methods and combinations

have all been summarized earlier in this chapter. All figures are percentages.

CHAPTER 2. STATE OF THE ART 52

Reference Method or Combination Rejection Substitution
LeCun et al. [84] MLP chip (local receptive fields) 12-13 1.0
NIST #1 [165] Best participating method 15.0 0.3
Best participating method 30-35 0.1
Lee & Srihari [87] Best of 7 methods 5.0 0.5
Bottou et al. [20] 5 different methods 1.4-1.9 0.5
de Waard [36] Nearest Neighbour 10.0 1.0
15.0 0.5
Cao et al. [24] Neural Network 13.0 1.0
36.0 0.5
Lee & Srihari [87] Best combo of 7 methods 5.0 0.25
Sabourin et al. [139] [Unanimity of two 1-NN 3.52 0.20
Bottou et al. [20] Boosted LeNet 4 0.5 0.5
Thien & Bunke [162] | Multistage Multi-expert (on goodbs) 5.0 0.25
Strathy & Suen [151] | ABC voting (on goodbs) 12.0 0.22
167 015
26.0 0.0

Table 7: Required Rejection Levels for Very Low Error Rates

There is little data available concerning rejection levels required by human subjects
to achieve very low error rates. Even when dealing with machine-segmented individual
numerals (which unfairly penalizes human subjects), it appears clear to us that very
few errors would be made if we allowed them to reject say 5.0% of examined samples
(i.e. 1 in 20). And the errors, if any, would almost all be due to flawed segmentation.

When examining the results of Table 7, the figures of Bottou et al. are particularly
impressive for machine recognition. This may raise the question of whether human
performance has been matched with respect to very high reliability as well. However
their testing data was a mix of NIST’s SD3 and TD1 databases making it somewhat
easier than unconstrained numerals from the general public. In their paper, they
estimate that humans would attain a 99.8% recognition rate with only 0.2% as sub-
stitution rate (no rejection). If allowed, like boosted LeNet 4, to reject say 0.5% of
the samples, they would certainly make very few errors on the remaining data, if any.
Finally, the combinations of systems whose performance is reported for CENPARMI

CHAPTER 2. STATE OF THE ART 53

data in section 2 are very impressive since many achieve precisely or near 0.00% error
rates with low rejection rates. However, because of the small size of testing set T (2
000 samples), these figures are not statistically significant. In addition, even if they
were, it is likely that humans would need to reject fewer samples to achieve the same
result.

Examining Samples Misclassified by Machines

We begin this section with a quote from Noumi et al. [{121] concerning the results of
the first IPTP competition:

“However, many patterns which can be recognized easily by humans still
remain as those which were substituted or rejected ones by the algo-
rithms.” (p. 338)

We have studied the relevant literature published in recent years and carefully
examined the samples misclassified by various methods when this information was
available. It is our estimate after this investigation that the great majority of these
samples are easily classified by humans. In most of the remaining cases, the identity
of the digit is not clear (often as a result of artifacts created by segmentation); the
proper decision would then have been a rejection, after which a human operator could
examine the entire unsegmented data field to make the final identification. Finally,
in rare instances, humans would also make the same misclassification; but this could

also be the result of wrong segmentation...
We list the various instances on which the preceding conclusions have been drawn:

e In LeCun et al. [84], all 17 misclassified samples are shown. Of these, 11 are

easily identified and 4 may be considered confusing.

e In Abuhaiba & Ahmed [1], 12 misclassified samples are shown. Of these, 8 are
easily identified, 3 are potentially confusing and 1 could also have been mistaken

by a human subject.

e Sabourin et al. [139] show 156 misrecognized samples of which the majority are

easily identified and most others should be rejected because of confusion created

CHAPTER 2. STATE OF THE ART 54

by segmentation artifacts.

e Matsui et al. [111] show 10 samples which were misrecognized by each of the
3 best systems participating in the first IPTP competition; among these, 4 are
easily identified, 3 are potentially confusing and 3 may also have been mistaken

by humans.

o Lee et al. [91] show 20 misrecognized samples of which 2 or 3 are potentially
confusing and 1 may have also been misrecognized by humans; all other samples

are easily recognizable.

e Noumi et al. [121] show 6 samples which were misrecognized by each of the
3 best systems participating in the second IPTP competition; 4 are easy to
recognize and 2 are potentially confusing.

e Matsui et al. [110] show 10 substituted samples of which 6 are easily identified
and 4 are potentially confusing.

e Lam & Suen [81] show all 14 samples which were misclassified by the voting
combination of 7 classifiers (10 of these substitutions were common to all 7
classifiers). In our opinion again, 8 of these 14 samples are easily recognized,
4 are potentially confusing and 2 would likely also be misrecognized by human

subjects.

Transferring Expertise Across Databases

We briefly discuss here another aspect which reveals shortcomings of machine recog-
nition as compared to human recognition, namely the significant drop of performance
which results from applying a recognition system on a different database from the
one it was trained on. We feel it is significant that almost no accounts can be found
on this topic in the literature

At CENPARMI, we have conducted some experiments on other databases with
experts E1, E2, and E4. Without any additional-training, we applied them to a
5000-sample test set of handwritten numerals from a Concordia-Montreal database

CHAPTER 2. STATE OF THE ART 55

with a 200 PPI resolution. For technical information concerning this database, see
Appendix A.3. The recognition rates of the methods dropped sharply to 75.10%,
78.80%, and 76.50% respectively; the substitution rates increased to 5.40%, 5.40%,
and 5.10%. We note that some samples in this database were split in two or more
pieces while the CENPARMI database is composed only of single-component digits;
also, writing styles in Quebec are a mixture of North-American and European styles.

In a separate experiment, the same methods (E1, E2, and E4) were applied to a
3000-sample test set of handwritten numerals from an ITRI-Taiwan database with
a 400 PPI resolution (see Appendix A.4). The recognition rates of the methods
were 66.47%, 69.67%, and 79.83% respectively; the substitution rates were 5.84%,
8.54%, and 5.03% respectively. This data has a much higher resolution than the
CENPARMI data (166 PPI) and is more difficult: as many as 13.3% of the samples
were broken in 2 or more pieces (29.5% of five's, but also 18% of zero’s, 16% of three’s,
etc ...); furthermore, the writing styles are often quite different from the U.S. with
several two’s resembling seven’s etc The voting combination of the 3 methods
improved the performance very significantly, but nowhere near what was achieved
on the CENPARMI database. The combined recognition and substitution rates were
74.41% and 1.60% respectively.

Of course, one would expect a diminished performance with such important changes
of data characteristics, especially for model-based classifiers such as E1 and E4 (and
in good part E2 as well). But the drop in the recognition rate is much more eas-
ily justifiable than the equally important increase in substitution rate... The latter
cannot all be attributed to data resemblance across numeral classes.

But such problems do not only exist for model- or rule-based classifiers. They are
also encountered for neural networks. In other experiments at CENPARMI, Strathy®*
trained a slightly improved version of a previously discussed MLP on one database
and tested it on another. When trained on the 18 468 samples of the br training set
from CEDAR, it yielded a forced recognition rate of 98.46% on the CEDAR goodbs
testing set but only 90.32%%? on a 5000-sample test set from an ITRI database.

31 Private communication.
32 Thus an error rate of 9.68%.

CHAPTER 2. STATE OF THE ART 56

Conversely, when trained with 46 922 samples from the ITRI database, it scored a
forced recognition rate of 98.72% on the 5000-sample ITRI test set and only 90.74% on
the CEDAR goodbs test set. Even the improved 3-net voting combination producing
the 99.23% recognition rate on the goodbs, gave a forced recognition rate of only
92.86% on the 5000-sample ITRI test set. And it achieved 98.30% on the 2000-sample
CENPARMI test set. For this last figure, one must bear in mind that both datasets
are from U.S. postal codes; on the goodbs data, the forced error rate is 0.77% and on
the T data it is 1.70% (more than double). If reliability is our primary concern, such

variations in error rates are indeed problematic.

Chapter 3
Overview of our Research

The practical starting point for our Ph.D. was the research and development effort
around the creation of Expert E4, briefly described in 2.1.1. And our general goal,
as expressed in the thesis title, was to make a contribution towards matching human
performance, more precisely in the area of very high reliability.

As previously exemplified, the combination of several complementary recognition
schemes is one promising approach towards this goal, and a path down which many
have walked in the past few years. But we felt that the apparent limits of single-
approach recognition systems, particularly those of structural model-based methods,
could be overcome and we wanted to see how far we could go in this (much less
popular) direction.

In Legault et al. [99], we summarized the inherent difficulty of this problem as

follows:

“The systems must then incorporate much more knowledge and their de-
velopment can become a painstaking task. A situation of diminishing re-
turns often arises, where efforts to repeatedly refine classification schemes
produce smaller and smaller gains in overall reliability. In this respect,
the combination of complementary algorithms into multi-expert systems

appears to be a much more promising alternative (...).“ (see p. 235).

Our objective was not necessarily to circumvent the “painstaking task” but to

overcome the “diminishing returns” aspect of the problem. More precisely we set

57

CHAPTER 3. OVERVIEW OF OUR RESEARCH 58

out to test the feasability of a structural model-based method which could achieve
a recognition rate of approximately 90% with ‘close to 0%’ substitution rate on .
the CENPARMI database. To our knowledge, the most reliable single approach
recognition methods for which results are known on the CENPARMI database are:
PIQ1079_NB_SW13 of Franke [46] with a reliability of 98.70%, a recognition rate of
94.55% and substitution rate of 1.25%; and the method of Krzyzak et al. [75] with
a reliability of 98.85% with a recognition rate of 86.40% and a substitution rate of
1.00%.

The new system would also be required to make the passage to other databases
without suffering from the severe degradation of performance in the area of reliability
which is observed for other systems: a decreased recognition rate of say 75-80%
would be acceptable as long as the substitution rate remained very low. With such
an outcome, we could conclude that what was learned on one database was robust and
reliable since it did not generate all kinds of errors when applied to a different dataset;
the decrease of recognition rate, for its part, is justifiable since the new database most
likely contains writing styles and variations not encountered in the first one.

Before presenting our approach, we wish to stress that focusing on a single-method
recognition system should not be seen as a ‘return to the past’ while the future lies
in the combination of methods...

Firstly and obviously, combination schemes rely on the existence of individual
methods; and the better are the individual building blocks, the better the combina-
tions are likely to be.

Secondly, it is a relatively easy task to write programs which will combine the
outcomes of classifiers according to voting, Bayesian, Dempster-Shafer or some other
formalism. But it is not obvious at all that the algorithms so combined on paper
are easily combined in a real-life system. If their preprocessing, feature extraction
and classification methods are significantly different, one has to think of a system
architecture where these stages are performed in parallel on several processors; and
the synchronizing problems, associated with methods which may have very different
computing time, must be solved. Otherwise, on a single-processor machine, a very

severe drop in CPU time per sample will result from combinations of several methods.

CHAPTER 3. OVERVIEW OF OUR RESEARCH 59

Thirdly, in order to improve efficiency, it would be very handy to have a reliable
and reasonably fast single method which could process, for example, a good 80% of
the data with an extremely low error rate. The combination approach, which cannot
be faster than the slowest of the combined methods, would then only deal with the
remaining 20% of the data. When recognition is also used repeatedly to validate the
proposed cuts of a numeral string segmenter!, such efficiency considerations are even
more important.

In the next chapters we will discuss in detail the preprocessing, feature extraction,
classifier development and results of our recognition system. For each stage, we will
present both the initial characteristics of the E4 system, specific problems discovered,
and the major revision and expansion carried out. In the rest of the current chapter,
we want to give an overview of the weaknesses we later identified in the general
approach followed for developing E4, and an overview of new avenues we pursued for

the new system.

3.1 Limitations of the Expert E4

On the positive side, Expert E4’s strong points can be summarized as follows:

e it efficiently combines edge smoothing, contour extraction, and simple measure-
ments on holes (area and minimum bounding box) in a single pass over the

binary image;
e it uses a new technique to extract structural features from contours;

e it relies on a large set of specialized modules to handle different aspects of the

recognition task;

e it can at times move back and forth between classification and further feature

extraction when more refined measurements are needed.

In its original version, Expert E4 consisted of a Pascal module for the first item

mentioned above and Fortran modules for the other items. The total size of the

! The best segmenters work in this manner.

CHAPTER 3. OVERVIEW OF OUR RESEARCH 60

source code was approximately 700 KB. The average processing time was 42 ms per
numeral image on a VAX2 computer system.

E4 was created by the author without a vast experience of the area of OCR.
Hence, it was developed from the bottom up and targeted towards solving the specific
difficulties of a particular database (CENPARMI). This database has relatively low
resolution (166 PPI) and is made up of single-component images. The extraction
of structural features from the outer contours, for its part, was derived from a new
method we had developed with another purpose in mind: the piecewise approximation
of contours with parametric cubics and quartics.

The development of the large set of classification rules was done in several stages.
With hindsight, we can say that it suffered all along from an initial misconception of
the author, namely that of wanting to achieve the highest possible recognition rate
with as few rules as possible. While this is not necessarily a wrong goal, it can be
contradictory with our present aim for maximum reliability. We will expand more on

this in the next section.

3.1.1 Lessons Learned on the ITRI Database

As part of a joint ITRI-CENPARMI project, experiments were conducted to adapt
E4 and other methods to the ITRI database of 46 451 samples (24 427 for training
and 22 024 for testing; 400 PPI). The initial recognition and substitution rates of E4
were given at the end of the preceding chapter: 79.83% and 5.03% respectively. The
performance was gradually improved to new rates of 87.32% and 1.81% respectively.
As a result of these improvements, performance on the CENPARMI database could
also reach up to 94.65% recognition and 1.55% substitution. Important lessons were
learned in the process.

This database was quite difficult for our systems. To begin with, 13.3% of all
samples were broken in 2 or more components as already mentioned. These bro-
ken samples accounted for much more than their relative share of substitutions and
rejections. Secondly, the database contained some writing styles which were quite
different from typical North American writing styles and at times even close to North

American writing styles for digits of another class. For examples of these difficulties,

CHAPTER 3. OVERVIEW OF OUR RESEARCH 61

see Figure 1.

b

-
[
2
2

A

SN N IRV e

N SN A S etga
A N AR WY\ D

NN DO~ A QS ViAo
AUEE T WA Y IR NSRS
~WN N & F e\ e
5 SN (N L\ﬁwu.:;w

V"‘?\}O\W

Figure 1: Difficult Samples from ITRI Database

In large part however, E4’s own weaknesses were to blame for the serious dete-
rioration in initial performance. Using the CENPARMI database, the classification
rules were handcrafted by subjectively clustering samples with the same general shape

and then extracting, from subjective scrutiny of these clusters, the sequence of rules

CHAPTER 3. OVERVIEW OF OUR RESEARCH 62

describing them. Aiming for the highest possible recognition with as few rules as
possible can lead to problems of clustering too broadly and modeling too loosely:

e Samples which would be better described as part of 2 or more clusters are all

put in the same cluster...

e Samples which are outliers and really poorly formed or confusing are put in
a cluster with other samples instead of being ruled out of the training data

entirely

e To accomodate such broad clustering, the recognition rules for each cluster must

tolerate a much larger range of values for various feature attributes

This results in serious loopholes in the web of classification rules, loopholes which
may not be very apparent based on the results of a limited test set such as set T
of CENPARMI, but which are clearly revealed for the larger and relatively different
test set of the ITRI database. The gain in performance later obtained on the ITRI
database was achieved by splitting clusters into narrower sub-clusters and describing
them with tighter sets of rules, and by creating new clusters corresponding to new
handwriting styles etc...

The work on the ITRI database also revealed weaknesses at earlier stages of the
recognition process, especially with feature extraction and even with preprocessing.
The algorithms for the extraction of endpoints, concave regions and convex regions
along the contour had been devised and tested on images digitized at 166 PPIl. They
were not robust enough for the huge jump to 400 PPI; at that resolution, signif-
icant features were missed more frequently and, conversely, spurious features were
extracted more frequently also. The problem was identified but no work to improve
the extraction of features was carried out in the ITRI project.

We believe that such shortcomings in feature extraction, and the difficulty in
overcoming them, are key reasons for the limits of structural, rule-based recognition
systems?. Others who have worked in this area and have tried to automate the rule-
learning process, such as Nishida & Mori [119] and Commike & Hull [34], have also

2 And for their near-abandonment for the last few years.

CHAPTER 3. OVERVIEW OF OUR RESEARCH : 63

voiced this opinion. We have devoted much of our attention in the current research to

build the required solid feature extraction foundation to move beyond current limits.

3.2 General Avenues

We now summarize the general avenues we have followed in order to produce a very

reliable and yet efficient recognition system for unconstrained handwritten numerals.

e With the knowledge accumulated in previous research and our new goal of
maximum reliability, we revisited all stages of the recognition process to bring

more knowledge and expertise into each.

o Preprocessing was revised and much expanded to correct for a broader class of

image defects encountered with numeral images scanned at various resolutions.

o Feature extraction was completely redesigned to attain much higher levels of
robustness and reliability. It is one thing to identify that curvature features
along contours —such as endpoint, concave, and convex regions— are “very good
features”; it is another to actually eztract them reliably (ideally missing none
of the significant features) and robustly (ideally extracting no spurious features
at all) and to do so at various resolutions. More human expertise (essentially

that of the author) was also integrated into feature selection and extraction.
o The general approach to the ‘training’ of the classifier was modified importantly.

1. For E4, we were trying to recognize as much of the training data as possible;
recognition and substitution rates of 98.95% and 0.20% respectively were
achieved on CENPARMI’s training set A (97.55% and 0.20% for training
set B). For the new system, several samples, confusing or rather unique in

their style, were discarded from the start.

2. As explained above, the subjective clustering operation on training samples

was aimed at narrower clusters.

CHAPTER 3. OVERVIEW OF OUR RESEARCH 64

3. The classification rules for each cluster were fully developed to account
for all features around the outer contour of the image. In Expert E4, we
‘relied’ on the natural redundancy between left and right profiles in some
(parts of) numerals and rule development was only carried out ‘as far as
required’ to recognize training samples and avoid substitutions on them.
For an example of how one can be misled by relying on incomplete contour

information, see figure 2.

(2) Sample of ‘5’ (b) Potentially misclassified as ‘3’

Figure 2: Substitution Created by Partial Contour Information

The image on the left is easily recognized as a ‘5’; considering 68% of the
contour information highlighted in figure 2 (b), the numeral really looks
like a ‘3’. We note also that the top right stroke could have been shorter
(the highlighted portion would then represent a larger percentage of the

contour) and the same misrecognition would be created.

4. Interrelations between attribute values of different features were investi-
gated systematically and integrated into the subsets of recognition rules.
For example, the opposite pairs of cavities defined at the crossing of the
horizontal and the vertical strokes in many ‘4’s can have a broad range of
orientations; but the difference of these directions falls within a narrower
range. Furthermore, the presence of redundancy between left and right

profiles was verified when typical of certain numeral classes or sub-classes,

CHAPTER 3. OVERVIEW OF OUR RESEARCH 65

both in terms of the orientations of related features and their relative dis-

tance.

5. The points listed above indicate that the rule generation process would
become an even more lengthy and painstaking process. To help towards
this task, we developed a sophisticated rule development environment.

While this did not automate the process in any way, it facilitated

— the visual inspection of databases based on various queries;

— the clustering of samples by the human developer;

— the gathering of statistics to investigate potential rules;

— the verification (parsing) and writing of accepted rules in rule files.

6. Because of the considerable R & D effort involved in all preceding stages

(preprocessing, feature extraction, rule development environment) and be-
cause of the still ‘painstaking’ character of developing classification rules,
we limited the development of the classifier to 4 numeral classes. For these

classes, we have been able to demonstrate unequivocally that our reliability

targets were achievable with a single-method system.

¢ Finally, we took even more liberty than we had in Expert E4 with the classical

sequence of pattern recognition operations:
preprocessing — feature extraction — classification

This will be explained in the next section.

3.3 Design of the Recognition System

In E4, we had already implemented feature extraction and classification as inter-
related and cooperating processes. The rationale for this is explained in Suen et al.
[156]:

“Consider a classification task which potentially requires a broad range of

information, from coarse and easily extracted elements to others which are

CHAPTER 3. OVERVIEW OF OUR RESEARCH 66

much more subtle and costly to obtain. Furthermore, assume that only a
relatively small subset of this information is really necessary to successfully
classify any individual pattern. Rather than wasting computer resources
measuring beforehand everything which could possibly be useful in all
cases, it would seem more reasonable that recognition proceed on the basis
of some smaller set of initial features and to let the early recognition stages
establish what finer details to extract and when. The more diversified and
sophisticated is the information that a system potentially makes use of, the
more appropriate and efficient it would be to swap back and forth between
feature extraction and classification subtasks, as recognition progresses.”
(p- 309).

Since our new system makes use of more diversified and more carefully measured
features, this approach has been carried to a higher level.

The flowchart of Figure 3 represents the general design of our new system. Begin-
ning at the circled 1 at the top left, we have a preprocessing stage, followed by the
general feature extraction required for classification to proceed.

When dealing with single-connected-component numerals, the system then pro-
ceeds to a third stage, where the inter-relation between classification and further fea-
ture extraction subtasks is clearly illustrated inside the shaded box. In this flowchart,
the large ‘S’ and ‘NS’ indicate whether recognition was Successful or Not Successful.
As can be seen, when recognition is not successful, we can have two other attempts
at classification. These will proceed only when certain changes can be made to the
feature list: the second pass is attempted only when small, potentially spurious, cur-
vature features around the outer contours are detected and removed; the third pass
is attempted only when small, potentially spurious, holes are detected and removed;

The 3-pass classification was carried over from Expert E4 to the new system. But
the hole and feature filtering steps were changed in important ways to preserve the
very high reliability achieved in the first pass; in E4, these steps were responsible for
several errors.

The handling of multi-connected-component numerals is totally new, since E4 did

not have to deal with this problem at all. It is done in 3 different ways.

CHAPTER 3. OVERVIEW OF OUR RESEARCH

67

Y

Tiny Hole
Filtering

Preprocessing
General Several
B C ts
omponen
Extraction PO
1 component 1 com,

Small > 2 components
Components .
Processing
2 comppnents
2-component ‘
Classification
I NS Component
| Reconnection
Additional & Deletion
Feature
Extraction
> 1 copiponent
S
Class
Assigned
Hole
Filtering
NS
Rejected

Figure 3: Design of Recognition System

1 component

CHAPTER 3. OVERVIEW OF OUR RESEARCH 68

First, a specialized module examines very small components; in some cases, they
will be removed; in others, the feature extraction on these components will be im-
proved. If the result of this processing is a single-component numeral, it will be
processed as just described above.

Second, if exactly 2 components are present (after the small components module
has performed its work), recognition will be attempted directly for certain styles of
‘5’ (mostly), and ‘4’, and ‘1’. These variants are more typical and easier to recognize
this way than after reconnection.

Third, if the 2-component classification fails or if more than 2 components are
present, a component reconnection and deletion module will take over. After this, if
the result is not a single component, the sample is rejected. Otherwise, if component
reconnection is performed and results in a single-component image, recognition starts
completely anew with preprocessing, general feature extraction, and 1-component

classification.

Chapter 4
Preprocessing

With this chapter, we begin the more detailed description of the methods and tech-
niques used in the various stages of our numeral recognition system. However, we
cannot present in this thesis all the details related to each aspect of a very intricate
system. Often, we will refer to published articles and technical reports. And the final
word really lies within the programs where all the details are encoded.

The input data to our recognition system is a file of run-length encoded binary
images of single numerals. We recall that an image may consist of a single ‘piece’ or
connected component, or it may be broken into several connected components. We
now briefly describe the file format and define run-length encoding.

A black run is defined as a horizontal sequence of object pixels, preceded and
followed by a background pixel or the image boundary. For example, row 19 in
Figure 4 (a) has 3 black runs. Conversely, a white run is a horizontal sequence of
background pixels, preceded and followed by an object pixel or the image boundary.
For each binary image, the input data begins with a sequence of 5 integers followed by
the run-length encoding. The 5 initial integers are a file number, a sample number,
the numeral’s identity (0-9), the number of rows and the number of columns in the
image. The run-length encoding consists of the length of alternating white and black
runs on each row. By convention, each row is assumed to begin with a white run,
which may be of length 0.

The fundamental preprocessing operations described in this chapter are edge and

69

CHAPTER 4. PREPROCESSING 70

contour extraction. These are efficiently combined, within the same single pass over
the binary image, with edge smoothing, correction of several other small image defects,

and computation of useful global features.

4.1 Edge Extraction

Edge extraction is performed, in the new system as it was in Expert E4, with an
efficient sequential tracking algorithm which makes use of the edge-type concept of

Ahmed & Suen [4].

1 2 1 2
1234567890123456789012345 1234567890123456789012345
............. XX o oo ieinenn 1 1
...........).0.0.9.0. 0. G 2 e W IXXXX2 L, L.
..........):9.9.9.0.0.9.0. QU 3 e AXXXXXXD L L. ...
..............).9.0.9.0. QU 4 N D 0.0 ¢ R
................ XXXX oo 5 e el WAXX2. L.
................. XXX..... Y . & 2
................. XXXX.... P & ¢~
.................. XXX.... 8 R D ¢~ NN
.................. XXX. .o 5 IIIIIIIIIiiiiIIIiIRG.
D o S 17 f::.’.’.’:.’:.‘:f::.’.‘:.’:fg:' ;
.................. XXX. ... 12 . iiiee i i e 1X2,
.................. XXXX .. i S :
.................. XXX.... 14 ¢t iieia ... 1X2.

XXXXXX e e ieeiea XXX.... 15 ...3XXXX4......... 1X2.
...... XXX..... 16 3 ceo..1X2.....
%. XXXX.XXXX..XXX...X. %g .3X5. 6XXXXXX4..1X2...Q.
Kool XXXXXXAXKK . XXX 19 3XX5.0 6XXXXXXXX2 . 7XX8
DO G . %g L350 0.0t g X

.......... XXXXXXXXXXX . . N -).9.9.0.0.0.9.0.9.4
XXX ... D:9.9:0.0:0. QU %% 3X5..... 6XX§X8
D:9.9.9.9.9.0.9.0.0.0. GUIEE X NG) '0.0.0.9.0.6:0.0.¢- I
D 9:9.0.0.0.0. 0. QR 24 D:0.0:0.0.0. ¢ 1
(a) Binary Image of a ‘2’ (b) Edges Extracted From Image

Figure 4: Edge Extraction From Binary Image

In summary, the extreme, leftmost and rightmost, pixels of a black run are defined
as edge points and belong to different edges. Black runs are examined, from left to

right, row by row. In this process, edges are created, continued, or terminated based

CHAPTER 4. PREPROCESSING 71

on black run connectivity from row to row!. We now discuss this in more detail.

A new pair of edges is created in two circumstances:

e When a black run in one row is not connected to any black run in the preceding
row, a new edge of type 1 is created and the leftmost pixel of the run is stored
as its first point; and a new edge of type 2 is created and the rightmost pixel
of the run is stored as its first point. Intuitively, this corresponds to the top of
a new blob, or the top of one of its upward protrusions. In Figure 4 (a), this
happens three times: in row 1, where edges #1 and #2 are created; in row 15,
for the first black run, where edges #3 and #4 are created; and in row 18, for
the last (single-pixel) black run, where edges #7 and #8 are created.

e When two consecutive black runs in one row are connected to the same black
run in the preceding row (a split), a new edge of type 3 is created and the
rightmost pixel of the first black run is stored as its first point; and a new edge
of type 4 is created and the leftmost pixel of the second black run is stored as
its first point. Intuitively, this corresponds to the top of a hole or the top of
a downward cavity in the contour. This occurs only once for the chosen image

for the first 2 black runs of row 17, where edges #5 and #6 are created.

At their creation, edges are labeled with a unique integer, giving their rank in the
edge creation process. Edges are then continued from row to row until they eventually
terminate.

A pair of edges is terminated also in two circumstances:

e When a black run in one row has no connected black run in the following row,
the 2 edges to which its extreme points belong are terminated. Intuitively, this
marks the bottom of a blob, or the bottom of one of its downward protrusions.

This happens in the last row, with edges #3 and #S8.

e When two consecutive black runs in one row are connected to the same black

run in the following row (a merge), the edges to which the rightmost pixel of

! In our system we use 8-connectivity; thus 2 black runs in consecutive rows are considered
connected if there is at least one pixel on one black run which is 8-connected with one pixel on the

other black run.

CHAPTER 4. PREPROCESSING 72

the first run and the leftmost pixel of the second run belong are terminated.
Intuitively, this corresponds to the bottom of a hole or the bottom of an upward
cavity. This happens three times in our image: in row 17, where edges #4 and
#1 are terminated; in row 19, where edges #2 and #7 are terminated; and in

row 22, where edges #5 and #6 are terminated.

The extraction of edges from a binary picture is a process which advances row by
row. When processing row k, for example, we have a linked list of black runs for row
k and a linked list of black runs for row (k — 1). The task is to establish the edge
labels of the 2 extreme pixels of every black run on row k, based on their connectivity
with the black runs in row (k — 1), for which the associated edge labels have already
been recorded in the associated linked list of black runs.

In Ahmed & Suen [4], connectivity is established with the help of a C-matrix,
which has as many rows as there are black runs on row (k¥ — 1) and as many columns
as there are black runs on row k. However, this requires additional storage and delays
execution. As shown by Agrawala & Kulkarni [2] and Capson [26], a simple set of
rules can be used to establish connectivity. Since this is more efficient, we have used
such a set of rules, modified to implement 8-connectivity.

While each row is being processed, the run-lengths read from the input file are
also used to create the rectangular array of the image shown in Figure 4. This image
format is conveniently used for edge smoothing and correcting other image defects
(see section 4.5). The result is illustrated in Figure 4 (b). Note that single-pixel black
runs are also associated with 2 edges but only the largest of the two labels is shown.
Thus pixel (18,24) is associated with edges #7 and #8 and pixel (21,2) is associated
with edges #3 and #5.

For each edge, an EDGENODE data structure records the following information:

e its label;
e its type;
e its starting row;

e the labels of the 2 associated edges at creation and termination;

CHAPTER 4. PREPROCESSING 73

e the number of rows covered by the edge;
e an array containing the column numbers of the edge points;

e the label of the parent edge, which is used to unravel the relative nesting of

blobs and holes in the image and which is a novelty of our method;
e the object number to which the edge belongs (see section 4.3).

Finally, we note that any empty rows at the top or bottom of the image, and
any empty columns at the left or the right of the image are removed during the edge

extraction process. The resulting picture is thus in its minimum bounding box.

4.2 Contour Extraction

It is easy to see that by following edge #1 downward, then edge #4 upward, then edge
#3 downward again, then edge #8 upward again, then edge #7 downward again, and
finally edge #2 upward, we have essentially followed the outer contour of the image
in a counter-clockwise fashion. Similarly, going down edge #5 and then up edge #6,
we obtain the inner contour. Thus contours are obtained essentially from chains of
edges, which are easily created since for each edge the labels of the associated edges
at creation (top) and at termination (bottom) have been recorded.

Chains of edges do not provide complete 8-connected contours since only the
extreme pixels of every black run are edge points. Some gap filling is also required.
For example, starting with edge point (1,14) of edge #1, we must insert pixel (2, 13)
before taking the next edge point (2,12). Here the gap filling is done in the row of
the next edge point to be inserted, row 2. Another situation is illustrated in rows
3 and 4: after including edge point (3,11), we must add pixels (3,12), (3,13) and
(3, 14) before we can insert the next edge point (4, 15). Similar situations occur when
following an edge upward. Additional gap filling may also be required when chaining
one edge to the next; it may be performed in the same row as the edge points to be

connected (in row 15, to chain edges #4 and #3), in the preceding row (in row 16,

CHAPTER 4. PREPROCESSING 74

to chain edge #6 to #5 at the top), or in the next row (in row 23, to chain edge #5
to #6 at the bottom).

In our programming implementation, we keep all external contour points of all
extracted blobs in a single array. We will see later how each blob can recover its own

points.

4.3 Image Segmentation

In the most general case, a binary image may contain several blobs or connected
components. These connected components may contain holes, which may themselves
include islands, possibly also containing holes, all this to an arbitrary level of nesting.

The chaining of edges, as just described, can elegantly solve the problems of 1)
segmenting the disconnected components and holes, and 2) finding all the relation-
ships between them. The object number field of an edge is used for this purpose. It is
initialized to 0 to indicate an edge which is not yet part of any object (blob or hole).
Each object is assigned a unique integer label which is positive for blobs and negative
for holes. The nesting is derived by making use of the parent edge. In the simplest
case, the parent edge belongs to the enclosing object; in more complex cases, it will
belong to a sibling object?.

Now we consider the edges extracted in Figure 4 (b) and illustrate these notions
concretely. The first 4 columns of Table 8 give the edge numbers, edge types, parent
edge numbers and object numbers resulting from the edge extraction process. We
now explain these figures.

First, the parent edge numbers. Parent edges are assigned when edge pairs are
created. As seen above, this can occur in 2 ways.

In the first situation (a black run which has no connected black run in the pre-
ceding row), the parent edge is the edge associated with the leftmost pixel of the first
black run in the preceding row which is beyond the current run. For example, the
first black run in row 15 (from column 4 through column 9) has no connected black

run in row 14; hence the creation of edges #3 and #4. The first black run in row

2 Two objects are siblings if their immediate enclosing object is the same.

CHAPTER 4. PREPROCESSING 75

Edge Edge Parent | Object Object Object
Number Type Edge | Number | Number | Number
1 1 -1 0 1 1
2 2 -1 0 1 1
3 1 1 0 1 1
4 2 1 0 1 1
5 3 3 0 0 -1
6 4 3 0 0 -1
7 1 -1 0 1 1
8 2 -1 0 1 1
Init. Chain #1 | Chain #2

Table 8: Edge Chaining and Object Segmentation

14 which is beyond column 9 begins in column 29 and that pixel is associated with
edge #1. Hence, the parent edge of edges #3 and #4 is edge #1. When there is no
next run in the preceding row (when edge pairs #1-#2 and #7-#8 are created), the
value —1 is assigned to the parent edge, indicating that these edges definitely belong
to an outermost blob.

In the second situation where an edge pair is created (bla.ck run ‘split’), the parent
edge is the edge associated with the leftmost pixel of the black run that ‘splits’. For
example, in row 16, the black run from column 3 through column 11 is connected to
2 black runs in the next row which creates edges #5 and #6 in row 17. Their parent
edge will be edge #3, associated with the leftmost pixel of the black run in row 16.

4.3.1 Edge Chaining and Object Labeling

Now we examine how object labels are assigned to edges in the edge chaining process.
The first edge chain begins, of course, with edge #1. Since it is necessarily of type
1, we know that this edge belongs to the outer contour of a blob. And since this is
our first blob in the image, we use 1 for its object label. Following the chain leads
successively through edges #1,#4, #3, #8, #7, and #2. For each of these edges, the
object number assigned will thus be 1 (entered in bold in the column before last).

CHAPTER 4. PREPROCESSING

The next chain will always begin with the edge of lowest rank which is yet un-
chained i.e. which has an object number value of 0. In our example, this is edge #5.
Because its edge type is 3, the new edge chain will necessarily be an inner contour,
i.e. the contour of a hole3. Since it is the first hole in the image, we assign it an

object number of —1. And edges #5 and #6 will be assigned this object number,

completing the edge chaining process.

For each object (blob or hole), an OBJECTNODE data structure will record the

following information:

the parent object;

the minimum bounding box of the object;

the total enclosed area (including the areas of all enclosed objects);
the area of the object per se;

a pointer to the first enclosed object;

a pointer to the last enclosed object;

a pointer to the next sibling object;

the number of contour points;

the index of the first contour point into the all-contour-points array;
the number of curvature features extracted;

the index of the first feature into the all-features array;

the number of endpoints;

the number of cavities;

The last four items are explained in chapter 6.

3 Using the edge type of the yet unchained edge of lowest rank to determine whether the object
is a blob or a hole is a new and much simpler criterion than the one used in Ahmed & Suen [4].

CHAPTER 4. PREPROCESSING 7

4.3.2 Finding Nesting Relationships Between Objects

When a new edge chain (object) is begun, we can deduce its parent object number from
the parent edge information in the following manner. The first edge chain, resulting
in object 1, begins with edge #1 whose parent edge is —1. This means that object
1 is surely an outermost blob and we assign a parent object number of 0 to all such
objects. The second edge chain (resulting in object —1) begins with edge #5 whose
parent edge is #3. And edge #3 belongs to the object labeled 1. Thus object —1 has
parent object 1. -

Before examining the more complex case, we note the following general rules:

1. Blobs can only enclose holes and vice-versa; hence, except for outermost blobs,

objects and their parent objects must have labels of opposite signs.

2. Edge #k necessarily has a parent edge of label less than k, since the parent

edge was created earlier (above) in the process.

3. Because every new edge chain begins with the currently unchained edge of lowest
rank, we can be sure that the parent edge has already been associated with an

object number when a new edge chain is created.

When using the parent edge concept to deduce parent objects, the more complex
case occurs when sibling objects are further related in the following manner: one
object begins with an edge whose parent edge belongs to a sibling object. Two simple
situations of this kind are illustrated in Figure 5 and the associated edge information
is found in Table 9.

In Figure 5 (a), we have 2 sibling blobs enclosed within the same hole. Since edge
#1 has parent edge —1, we conclude that the parent object of object 1 has label 0.
Since edge #3, which begins object —1, has parent edge #1 which belongs to object
1, we conclude that object 1 is the parent object of object —1. Since edge #5, which
begins object 2, has parent edge #4 which belongs to object —1, we conclude that
object —1 is the parent of object 2. Finally, we arrive at the new situation: edge #7,
which begins object 3, has parent edge #5 which belongs to object 2..... Now object

3 cannot have object 2 as its parent because a blob cannot be immediately enclosed

CHAPTER 4. PREPROCESSING

(a) Sibling Blobs
Figure 5: Sibling Objects With Parent Edge Connection

(b) Sibling Holes

78

(a) Sibling Blobs

(b) Sibling Holes

Table 9: Edge Information for Above Figures

Edge Edge Parent Object Edge Edge Parent Object
Number Type Edge Number Number Type Edge Number
1 1 -1 1 1 1 -1 1
2 2 -1 1 2 2 -1 1
3 3 1 -1 3 3 1 -1
4 4 1 -1 4 4 1 -1
5 1 4 2 5 3 4 -2
6 2 4 2 6 4 4 -2
7 1 5 3
8 2 5 3

within another blob. The solution is that both these blobs must then have the same

enclosing hole; thus, object 3 also has object —1 as its parent.

In figure 5 (b), we have 2 sibling holes enclosed within the same blob. We easily
find that object 1 has parent object of label 0 and that object 1 is the parent of object
—1. Now edge #5, which begins object —2, has parent edge #4 which belongs to
object —1. Again, this is not possible since a hole cannot be immediately enclosed

within a hole. The solution is that both these holes must then have the same enclosing

blob; thus, object —2 also has object 1 as its parent.

We have created 3 versions of our contour extraction scheme. The first version

CHAPTER 4. PREPROCESSING 79

extracts all contour points (counter-clockwise) only for the outermost blobs and ex-
tracts bounding boxes only for holes immediately enclosed in these blobs; all blobs
and holes at a deeper level are ignored; this is the version used for our numeral recog-
nition system. The second version extracts all contour points for both the outermost
blobs and their immediately enclosed holes, also ignoring objects at deeper levels of
nesting. Finally, the third version extracts all contour points for all objects at all

levels of nesting.

4.4 VUseful Global Features at Minimal Cost

Areas of body regions and holes, and their minimum bounding bozes can be derived at
very little cost as we chain edges to extract contours. These techniques were carried
over from Expert E4 to our new recognition system. The latter also computes a
reliable estimate of the stroke width, a measurement which plays an important role
in our new feature extraction and classification stages but which was not considered
in E4.

4.4.1 Stroke Width Estimate From Edge Extraction

The stroke width, in pixels, depends on several factors among which we can mention:
the resolution for data acquisition; the writing instrument (pen, ball pen, felt pen,
pencil with sharp or dull point, ...), the porosity and softness of the paper, etc. Even
within a single numeral image, there can be important variations in the stroke width,
from region to region, depending on varying inclination and pressure exerted on the
writing instrument. Thus, what we are trying to obtain is really a mean stroke width.
An estimate of this feature can play an important role in several aspects. Our new
recognition system makes use of it 1) in feature extraction, for endpoint detection;
2) in the reconstruction of broken digits; 3) and very intensively in the classification
stage, to confirm redundancy between left and right profiles, to verify that a stroke
goes around a hole, or to verify that a hole is filled, etc... Our new system derives its

estimate as follows.

CHAPTER 4. PREPROCESSING 80

In the edge extraction process, as run lengths are read from the input files, separate
counts are kept for black runs of lengths 1, 2, 3, etc. At the end, the total count of
black runs for the entire image is computed from these separate counts. The stroke
width estimate is obtained as maz(3, 7), where j is the largest integer such that:

J
> separate_count(i] < 0.25 - total_count. (M)
i=2

Thus the minimum value of the stroke width estimate is 3. What is the rationale
behind the above estimate? Since the images were scanned horizontally, the lengths
of black runs will adequately reflect the stroke width only for the portions where
strokes are vertical or nearly vertical. For all other orientations, black run lengths
are larger than the stroke width and should not be considered.

On the other hand, we cannot simply choose the length of the shortest black
run as our estimate. Indeed, we know that a number of black runs will be shorter
than the mean stroke width we are seeking. This is so because fainter regions, such as
stroke endings and other parts where less pressure was exerted by the writer, will have
been binarized narrower than their grey level width, as a result of the binarization
threshold. Experimentally, a good compromise was realized with the 0.25 parameter

in the above equation.

4.4.2 Computing Areas During Edge Chaining

Different methods have been proposed to measure the area of discrete binary objects
([50], [77], [142], [135], [134]). For a brief discussion of these approaches, see Legault
& Suen [94], pages 9-10.

For our application, it is sufficient to compute areas as the number of pizels making
up the objects. A black run beginning in column ¢; and ending in column ¢; will
contribute (¢; — ¢; + 1) pixels to the area of the blob to which it belongs. The
problem is knowing which blob it belongs to ... One solution, proposed in Agrawala
& Kulkarni [2] is to create temporary blob objects every time a pair of edges of types
1 and 2 are created in our method, and temporary hole objects every time a pair of

edges of types 3 and 4 are created in our method. Partial areas are cumulated in these

CHAPTER 4. PREPROCESSING 81

temporary structures and merged when it is realized that these temporary objects
merge. When external contours have many bays and peninsulas, this can represent
significant overhead.

By first recording all edge information as discussed in section 4.1 and only sub-
sequently chaining the edges to extract the contours, we obtain a simpler and more
efficient method. First, we note that the column coordinates involved in (¢f —c; 4+1)
are those of edge points which are stored in different EDGENODEs. Second, since
we know the number of rows covered by an edge, we can avoid the individual +1
additions, by adding this row count only once.

To obtain the area of blobs, whose edges we follow in the counter-clockwise direc-

tion, we simply follow these rules:
1. Initialize the area to 0.
2. For every edge followed downward,

(a) subtract the column number of every edge point from the area;

(b) add the row count of the ‘downward’ edge to the area.

3. For every edge followed upward, add the column number of every edge point to

the area.

The same set of rules can be used to compute the number of background pixels
making up the area of holes, with one minor change: in rule 2 (b), we would now
subtract the row count of the ‘downward’ edge from the area.

Figure 6 illustrates the computation of blob and hole areas for the ‘2’ of Figure 4.
Column numbers are added to the area when marked with “+” and subtracted when
marked with “-”. In Figure 6 (a), both operations are performed at pixel (18,24),
marked “$”.

We note that the areas calculated with the above rules are the total enclosed area
of the corresponding objects: the counts obtained include the areas of all enclosed
objects. This results in a blob area of 212 pixels and a hole area of 38 pixels. The
black pixel count for the ‘2’ is simply the difference: 174 pixels. In general, when all

total enclosed areas have been computed, the strict black pixel area of a blob (or the

CHAPTER 4. PREPROCESSING 82

1 2 1 2
1234567890123456789012345 1234567890123456789012345
............. s 2 SD S 1 1
........... - 0.9.0.C 2 el XXX L.
.......... 0.9.9.0.0.0.C SN 3 e I e
.............. “XXE+. o 4 e JAXXX2. ..
................ -XX+..... > B o v
................. ~X+.o.o... SIS . ¢ S
................. -XX+. .. 7 e 2
.................. -X+. .. - S b &2
.................. -§+. . 9 lXz ..
.................. -X+... 2 X0 S .-
................... -+ .. 11 f% .
.................. -X+.... 12 s eiieeeneaessee..1X2...
.................. -XX+. . I3 iteteeeeeaeeeae.. 1XX2...
.................. -X+... T4 oeezeeccaeneeea--.1X2....
. np;9:0.0. ¢ -X+... 15 CL3XXXX4A] | X2 ..

...... ~X+..... 16 .3 4......1X2.....
.—Xg . BXXXXXX+ —)-E-!- %g 3}3(— +XXXXXX4..1)2(2
..=5..... —eee + < s
-XX5...... GXXXXXX.X6 X+, —X}_E-f- %g 3XX-...... +XXXXXXXX2 . TXX8
> TP XXXXXXXXXX ndPTPE + X XXX XXXXXX
e e e e HXXX XX XXX + . 21 =i e e + XX XXXXXXXS .
.~X5..... (29,00 C 22 3X-. +XXXXB. .o eeieen.
.. Fooin et 23 3 <
R 19,0990, € 24 KD.0.9.0.9.0.€: I
(a) Total Enclosed Blob Area (b) Total Enclosed Hole Area

Figure 6: Computation of Total Enclosed Areas

strict white pixel area of a hole) can be found simply by subtracting from its total

enclosed area that of all holes (blobs) immediately enclosed within it.

4.4.3 Computing Minimum Bounding Boxes During Edge
Chaining
The minimum bounding boz of an object is simply the topmost and bottommost rows
and the leftmost and rightmost columns reached by this object. It is a simple matter
to extract this information during the edge chaining process.
The topmost row of any object is obtained immediately as the starting row of
its initial edge. To update the bottommost row, we need only consider the last edge

point of edges followed downward. Obtaining the leftmost and rightmost pixels is

more costly but we need only consider half the edge points in each case.

CHAPTER 4. PREPROCESSING 83

The leftmost pixel of a blob must necessarily be on the left of a black run which
means that it must belong to an edge of type 1 or of type 4; conversely, the leftmost
pixel of a hole must necessarily be on the right of a black run which means that it must
belong to an edge of type 2 or of type 3. In all cases, when outer or inner contours are
followed in the counter-clockwise direction, these edge types are followed downwards.
Under the same conditions, we can similarly deduce that the rightmost pixel of any
object must belong to an edge which is followed upwards. Hence, the leftmost column
of an object may have to be updated only for edges followed downwards, and the
rightmost only for edges followed upwards.

4.5 Correction of Several Image Defects

In our approach, the classification of numerals will be based on structural features
extracted from their external contours. As much as possible, we must ensure that the
truly significant features are captured, while meaningless small bumps and cavities
resulting from digitization or writing circumstances are discarded. Many small image
defects which unfavorably alter the outer contours can be detected and corrected
during the edge extraction process, at little additional cost.

In addition, the presence of holes and their location is used as an important
indication, leading the classification stage into preferred directions. Here again we
must distinguish between significant and meaningless holes and some useful filtering
can be performed during the edge extraction process.

The image defects which are dealt with below were identified by scrutiny of
numeral samples from 2 databases: the CENPARMI database and the Quebec-
Concordia database. The preprocessing operations described in sections 4.5.1 and
4.5.2 were carried over from Expert E4. All other preprocessing operations described

below were developed for our new recognition system.

CHAPTER 4. PREPROCESSING 84

4.5.1 Edge Smoothing

Edge smoothing is a preprocessing operation carried out to get rid of small extraneous
cavities facing up, down, left, or right. More precisely, these cavities must meet the
following 2 criteria:

_ in either a horizontal or vertical scan, at least one of the 2 edges defining these
cavities has only 1 edge point;

— the cavities can be removed by filling or deleting a single pixel.

Figure 7: Random Extraneous Cavities

CHAPTER 4. PREPROCESSING 85

While an operation as simple as single-pixel filling or deletion is sufficient to get
rid of these cavities, they represent the overwhelming majority of the insignificant
features which tend to appear randomly along the contours of binary images. Several
such cavities are indicated with arrows in Figure 7.

Furthermore, it is legitimate to assume that, when digitization is performed at an
appropriate resolution, cavities which are not random but rather style-related should

not disappear when single pixels are filled or deleted.

? X 2 X ? ? X ?
X X X X X . X X . X
X 2 . ')X‘D

Figure 8: Single-Pixel Deletion and Filling Masks

Edge smoothing is performed based on the masks of Figure 8. In these figures, the
‘X’ represents a black (object) pixel, the ‘.’ represents a background pixel, and the ‘?’
represents either (i.e. a “don’t care” situation). When a 3 x 3 window matches the
patterns of Figure 8 (a) or 8 (b) or any of the six equivalent patterns obtained with
90°,180°, and 270° degree rotations of these patterns, the central pixel is deleted.
Similarly, when a 3 x 3 window matches the pattern of 8 (c) or any of the three
equivalent patterns obtained with 90°,180°, and 270° degree rotations of this pattern,
the central pixel is filled. Finally, when a 3 x 3 window matches the pattern of Figure
8 (d), the decision about filling the central pixel or not is delayed and its column

position is recorded (explained in next section).

The result of applying the above smoothing masks is shown in Figure 9. In this
figure, the empty little squares represent black pixels which were deleted.

CHAPTER 4. PREPROCESSING 86

(a) Original Image (b) Smoothed Image

Figure 9: Edge Smoothing for ‘0’ Displayed Above

Implementation

One obvious way to perform edge smoothing with the above masks is to perform a
separate pass over the image, testing every black pixel for deletion and every back-
ground pixel for filling. However, the computation overhead in this approach is quite
important. First, the input data is run-length encoded so we must ‘unpack’ it to
obtain the rectangular binary array of the image; then we perform the edge smooth-
ing pass; and finally we must re-extract the possibly modified black runs from the
rectangular binary array in order to extract the edge points.

A much more efficient method consists in combining the edge smoothing oper-
ations with the edge extraction process in a single pass. To this end, information
on three consecutive rows will be required at all times: row k, for which edge labels
must be assigned to edge points; row (k£ — 1), for which this task has already been
performed; and row (k + 1) for which this task will be performed later, but which
must be unpacked already to process row % using the deletion and filling masks.

The chosen masks are such that the only black pixels that need to be examined

for deletion are the edge points, i.e. the leftmost and rightmost pixels on every black

CHAPTER 4. PREPROCESSING 87

run; and their neighbouring background pixels are the only ones that should be tested
for filling,.

Furthermore, the masks to be tested can be narrowed down considerably, depend-
ing on the situation encountered.

Thus, the 2 templates of Figure 8 (a) and (b) can only match a 3 x 3 window
centered on the leftmost pixel of a black run; similarly, the equivalent masks rotated
by 180° need only be tested for a 3 x 3 window centered on the rightmost pixel of a
black run; the equivalent masks rotated by 90° or 270° need only be tested for black
runs of length 14.

As for the filling, the mask of Figure 8 (c), or the equivalent one rotated by 180°,
requires a white run of length 1 as a prerequisite condition; the mask obtained with
a 90° counter-clockwise rotation need only be tested for a 3 x 3 window centered on
the background pixel immediately following the rightmost pixel of a black run; the
one obtained with a 270° counter-clockwise rotation need only be tested for a 3 x 3
window centered on the background pixel immediately preceding the leftmost pixel

of a black run.

Effectiveness and Efficiency

In Legault & Suen [94], four edge smoothing methods, based on differing masks and
different implementations, were compared in terms of their computation overhead and
their ability to eliminate small random cavities while preserving style-related cavities.
The tests were carried out using 200 digits of the CENPARMI database, 20 from each
numeral class. Without any edge smoothing and using 4-connectivity, 148 random
cavities, 116 non-random (style-related) cavities, and 33 open loops were counted on
these samples.

In the study, the edge smoothing method described in this section was called
‘Method #4’. It proved to be the most effective, removing 91 % of the small random
cavities and preserving 71% of the style-related ones. Furthermore, the implementa-
tion proposed above provided a very sizeable gain in efficiency. For more information

on this investigation, see Legault & Suen [94], pages 19-26.

4 Since the images are run-length encoded, this information is immediately available.

CHAPTER 4. PREPROCESSING 88

4.5.2 Hole and Cavity Opening

The investigation of Legault & Suen [94] also indicated that 13 of the 33 observed
open loops could be corrected to ‘regular holes’ simply by using 8-connectivity instead
of 4-connectivity. However this leads to new problems: among the 200 test samples,
3 cases of holes split into 2 or more holes were found; in 4 other instances, a hole is
created by 8-connectivity where none is normally expected. For an example of the
first kind of problem, see Figure 10 (a); here the hole in the ‘6’ is split into 4 holes of

area 2 pixels, 6 pixels, 2 pixels, and 1 pixel respectively.

(2) Original Image (b) Smoothed Image

Figure 10: Hole Split Into Many Holes by 8-Connectivity

For an example of the second kind of problem, see Figure 12 (a): here the top
hole in the ‘9’ is saved by 8-connectivity in rows 14-15; however, in rows 19-20,
8-connectivity creates a spurious hole of area 3 pixels.

A simple technique can be used, again concurrently with edge extraction, which
solves most of the problematic cases. The solution consists in detecting instances of
the situation depicted in Figure 11:

Three conditions must be met:

1. Consecutive black runs on one row, marked A and B, merge into another black
run on the following row, marked D;

2. The leftmost pixel of black run D is one column to the right of the rightmost pixel

CHAPTER 4. PREPROCESSING 89

AAAAAA. .BBBBB
CCCCC. . .DDDDD

Figure 11: Opening Narrow Hole or Downward Cavity

of black run A;
3. Black run A further splits into two black runs, marked C and D.

When these 3 conditions are met, the leftmost pixel of component D is deleted.
This cancels both the merging of black runs A and B and the splitting of black run
A. The list of edges and edge points must be changed accordingly. The results of
this operation on the 2 problematic cases are shown in Figures 10 (b) and 12 (b)

respectively where the removed pixels are shown in gray.

(2) Original Image (b) Smoothed Image

Figure 12: Spurious Hole Created by 8-Connectivity

When applied to the 2000 samples of training set A, this procedure prevented the

CHAPTER 4. PREPROCESSING 90

splitting of holes or creation of spurious holes for 32 samples (1.6%). It appears to
be especially useful for 6’s and 9’s, fixing respectively 11 and 6 of them, out of 200.

We can now explain why edge smoothing by filling is delayed when a 3 x 3 window
matches the template of Figure 8 (d). When processing the central row of this mask,
it is not yet known whether the black run on the left of the middle pixel will split
into 2 black runs in the next row; hence, we record the column number of the central
pixel and wait until the following row is processed to make the final decision. If the
conditions listed above are fulfilled, the pixel immediately below the central pixel is
deleted, otherwise the delayed filling is performed on the central pixel.

4.5.3 Extra Filling on First and Last Rows

Strokes written in pencil or ink are often fainter at their edges than in their center.
Hence, for horizontal strokes at the very top or very bottom of the image, thresholding
for binarization may cause, in the first and last rows, gaps in black runs which are
wider than 1 pixel. This can lead to spurious cavities unrelated to the writer’s style.

The solution used is to allow, on the first and last rows only, the ‘reconnection’
of consecutive black runs, separated by up to 3 background pixels. The maximum
amount of filling permitted, maz fill, actually depends on n_cols, the number of

columns in the image. The exact formula is:
maz fill = min (3, [(n-cols + 5)/10])

Examples of this operation are shown in Figure 13. On the first row of the ‘7,
2 white runs of lengths 2 and 3 respectively are filled. On the last row of the ‘8’, a
white run of length 3 is filled; this combined with regular single-pixel filling on the

row before last, totally repairs the bottom of that image.

4.5.4 Repairing Faulty Scanlines

Occasionnally, the scanner misses a scanline completely or almost completely. Empty
rows or rows containing only single-pixel black runs are considered candidates for

this defect. When such rows are detected, the black runs in the preceding and the

CHAPTER 4. PREPROCESSING 91

(2) Original Image (b) Gaps Filled on First Row

(c) Original Image (d) Gaps Filled on Last Row

Figure 13: Extra Filling on First and Last Rows

following rows are examined to see if they could potentially be connected. If so, the
black runs of the middle faulty row are completely re-built.

Let the faulty scanline be row r;. Now suppose that the left edge point of a black
run in row (r; — 1) and column ¢y, is seen as connected to the left edge point of a
black run in row (r; + 1) and column c;; then the left edge point of the newly-built
corresponding black run in row r; will be in column (¢; + ¢2)/2. And similarly for a
right edge continuation.

It is also possible that black run splitting or merging must be considered. For

example, suppose a black run in row (r, — 1) extends from column ¢; to column

CHAPTER 4. PREPROCESSING ' 92

¢2; and that it is seen as connected to two black runs in row (r; + 1), extending
respectively from column c¢3 to column ¢4 and from column cs to column ¢s. The
rebuilding would then involve the creation a one new black run in row r;, extending
from column (¢; + ¢3)/2 to column (c; + ¢6)/2. Black run merging is handled in a

similar fashion.

(2) Original Image (b) Scanlines 6, 39 and 40 Rebuilt

F o

(c) Original Image (d) Scanline 20 Rebuilt
Figure 14: Rebuilding of Missing or Faulty Scanlines

Examples of this problem are shown in Figure 14. In Figure 14 (a), the obvious
defects in row 6 are corrected; in addition, the two rows before the last row, rows 39

and 40, contain only single-pixel black runs and are also candidates for rebuilding.

CHAPTER 4. PREPROCESSING 93

The result is a thickening of the narrow 1-pixel wide ending of the bottom stroke.
Note also the apparent effect of simple edge smoothing operations, in particular the
removed pixels (including the pixel on the very last row, not displayed as a small

empty square).

4.5.5 Removing Isolated or Near-Isolated Black Runs

Another defect is the presence of an isolated black run, not connected to any other
black run as in Figure 15 (a). This is easily detected as 2 edges which are created
together and then immediately ended together, with a single edge-point each.

L [snuassynsansuny]

(a) Original Image (b) Isolated Black Run Removed

<.

(c) Original Image (d) Near-Isolated Black Run Removed

Figure 15: Removing Isolated or Near-Isolated Black Runs

CHAPTER 4. PREPROCESSING 94

In other cases, a black run may be connected to another, but just barely, as shown
at the bottom right of the ‘2’ in Figure 15 (c). This may also be caused by some
scanner defect and can be corrected easily.

4.5.6 Trimming Protruding Black Runs

(2) Original Image (b) Protruding Black Run Trimmed

(c) Original Image (d) Protruding Black Run Trimmed

Figure 16: Trimming Protruding Black Runs

Another defect, probably due to scanning devices, is the occasionnal protrusion of a
black run beyond its expected limits. This can be detected by comparing the column
position of an edge point with the column positions of the connected edge points
on the preceding and following rows. When this comparison reveals an excess of
at least 2 pixels on the current row, trimming will take place. In the most general
case, the new column position for the trimmed edge point will be the average of the

column positions of the connected edge points on the preceding and following rows.

CHAPTER 4 PREPROCESSING 95

An example is shown in Figures 16 (a) and 16 (b).

Generally, the simple techniques which are used to detect and repair the image
defects we are examining in this section will be beneficial. But on occasion, of course,
they may not improve the image; they may even attenuate or remove some significant
feature as shown in Figures 16 (c) and (d). In this case, the stroke in the region of
interest is only 1 pixel wide, which produces the problem. If the imaging resolution
is appropriately chosen, such a problem would only occur for exceptionnally thin (or

faint) characters.

4.5.7 Removing Edges of Length 1

As already mentioned in subsection 4.5.3, strokes tend to be fainter at their edges
than at their center. In Figure 17 (a), this explains the bumpy lower side of the top

horizontal stroke, which creates 3 insignificant down-facing cavities of depth 1.

(a) Original Image (b) Length-1 Edges Removed

Figure 17: Removing Edges of Length 1

In our preprocessing program, we detect this problem by verifying the number
of points belonging to an edge when it terminates or merges with another edge. In
Figure 17 (a), the second and, after single-pixel filling, the third black run in the fifth
row carry edges which terminate after a single edge point. To get rid of the resulting

CHAPTER 4. PREPROCESSING ' 96

parasitic cavities, we simply remove the guilty black runs as shown in Figure 17 (b).
A similar situation can occur on the upper side of a horizontal stroke, when two
newly-created edges associated with a single black run each merge with other edges
in the very next row; the treatment applied is then the same: removing the black run

responsible for the problem.

4.5.8 Removing Vertical Two-Pixel Stems

One last problem which is dealt with as the edge extraction proceeds from row to
row is illustrated in Figure 18 (a). Here we see the presence of small (two-pixel long)
downward and upward vertical stems. To avoid removing the meaningful endings of
thin vertical strokes, we only remove such stems when they are attached to sufficiently

wide black runs®.

(a) Original Image (b) Two-Pixel Stems Removed

Figure 18: Removing Vertical 2-Pixel Stems

In order to detect such defects, we now need information on 4 consecutive rows

to be kept at all times. The result of the stem removal is shown in Figure 18 (b).

S The exact criterion used is that such stems are only removed if the black runs to which they
are attached are wider than one tenth of the image width.

CHAPTER 4. PREPROCESSING 97

4.5.9 Frequency of Defects

A careful investigation was conducted concerning the image defects described in sub-
sections 4.5.2 to 4.5.8. For this study, we used the 2 000 samples of training set A
from the CENPARMI database and the 5 000 samples of training set E from the
Concordia-Montreal database (see section 2.4.2). The first set of data were digitized
at a resolution of 166 PPI and the second set at 200 PPI.

In Table 10, we indicate the percentage of samples affected by every preprocessing
operation discussed above. Concerning the repair of faulty scanlines, two numbers
are given for each database. The first figure represents the percentage of samples
affected by serious scanline defects. The second ~much higher— figure also includes
all samples which benefit from the broadening of 1-pixel wide strokes which comes as

a side-effect of the repair procedure.

Operation U.S. Data | Quebec data
Hole and Cavity Opening 6.9 0.7
Extra Filling on First/Last Rows 3.2 2.6
Repairing Faulty Scanlines 0.65 (5.1) | 4.1 (10.7)
Removing (Near-)Isolated Black Runs 0.35 0.84
Trimming Protruding Black Runs 8.3 5.0
Removing Edges of Length 1 1.6 1.9
Removing Vertical 2-Pixel Stems 0.8 0.4

Table 10: Percentages of Samples Affected by Preprocessing Operations

The table shows that the relative frequency of some defects is database-dependent.
For instance, the hole and cavity opening operation affects 10 times more samples from
the US database than from the Quebec database. This is perhaps explained by the
different digitization resolutions (166 PPI versus 200 PPI). Also, seriously damaged
scanlines are 6 times more frequent for the Quebec database than for the US database.
The scanner used to perform the data acquisition for the former database may have

been ill-operating at times ...

Chapter 5
Contour Smoothing

In the next chapter, we will describe our method for extracting regions of ‘significant
curvature’ from the contours of binary images. This method begins with the compu-
tation of deviation angles ¢; (see Figure 21) from pixel to pixel along the contours.
Without smoothing, ¢; only takes a few discrete values (0, +:45°, £90°, £135°, +:180°)
with frequent local oscillations between these. This ‘wiggly’ nature of binary contours
makes it difficult to extract curvature regions of significant extent directly from the
#:’s. To help solve this problem, smoothing can be applied.

In our first system E4, smoothing was performed® with a simple averaging method:
for every point of the contour, its coordinates are replaced by averaging them with the
coordinates of the preceding and following points. This was performed twice around
the entire contour. Equivalently, we could have used a single-pass of local weighted
averaging involving each point and its two immediate neighbours on each side, with
weights (g, 2,3, 2 1), This is frequently referred to as a triangular filter.

The result is illustrated in Figure 19 for the external contour of a simple zero
digit. In Figure 19 (a), line segments connect the grid points associated with the
pixels of the original binary contour; the smoothed contour points are superimposed.

In Figure 19 (b), only the smoothed points are presented.

! The implementation in our new system is quite different from what is described here and will
be explained in the next chapter.

98

CHAPTER 5. CONTOUR SMOOTHING 99

(2) Original & Smoothed Contours (b) Smoothed Contour Alone

Figure 19: Contour Smoothing With Triangular Filter.

Satisfactory results were obtained from this simple smoothing procedure. Never-
theless, we were curious about the optimality of our choice of local weights. Initial
review revealed widespread use of smoothing by local weighted averaging in practical
applications, with quite diversified sets of weights. However, little theoretical inves-
tigation of these methods per se has been conducted. Thus, even if this represents
a minor aspect of our overall numeral recognition system, we decided to conduct an
analytical and experimental investigation into this matter.

Contour smoothing normally belongs to the preprocessing stage, discussed in the
preceding chapter. However, in our recognition system, it is not performed explicitly,
as a preprocessing operation; instead, it is done mostly implicitly as part of the
computation of the ¢;'s in the feature extraction stage. In addition, we conducted
quite extensive work on this topic. For these reasons, we have chosen to report on it
in a separate chapter.

In the next section, we present a brief overview of approaches and problems related
to the smoothing problem. Then, in section 5.2, we introduce local weighted averag-

ing methods and offer a simple geometric interpretation. In section 5.3, the simple

CHAPTER 5. CONTOUR SMOOTHING 100

model of a noisy horizontal border is used to derive optimal values of the smoothing
parameters, in view of specific computational goals. Finally, the applicability of our

findings for varying curvature is explored experimentally in section 5.4.

5.1 Contour Smoothing: A Brief Overview

There are numerous applications involving the processing of 2-D images, and 2-D
views of 3-D images, where binary contours are used to represent and classify pat-
terns of interest. Measurements are then made using the contour information (e.g.
perimeter, area, moments, slopes, curvature, deviation angles etc.). To obtain reliable
estimates of these quantities, one must take into account the noisy nature of binary
contours due to discrete sampling, binarization, and possibly the inherent fuzziness
of the boundaries themselves?. In some cases, this can be done explicitly and exhaus-
tively (see Worring & Smeulders [167] on curvature estimation). But more frequently
it is done implicitly by smoothing. Following this operation, the measurements of
interest can be obtained directly from the smoothed contour points, as in our case,
or from a curve fitted to these points. For a recent example of this last approach, see
Tsai & Chen [163].

In the rest of this chapter, the following definitions will be used. Let p; = (z;, %),
for ¢ =1,2,... N, be the sequence of N points (4- or 8-connected) around the closed
contour. Since the contour is cyclic, pyy; = pi and p;—i = Pn+4+1-i- Furthermore,
let vi = p; — pi~1, and 6; be the counter-clockwise elevation angle between v; and
the horizontal z-axis. We have 6; = ¢; - £ where ¢; is the Freeman [52] chain code
(see Figure 20). For 4-connectivity, the values of ¢; are limited to even values. We
also define d;, the differential chain code, as d; = (c;41 — ¢ +11) mod 8 — 3, and the
deviation angle ¢; = 6;41 — 0; (see Figure 21).

Finally, the local weighted averaging method investigated in sections 5.2, 5.3, and
5.4 is defined as: .

p =3 aipli", k=12,... K 8)

j=—n

2 For example, the “borders” of strokes in handwriting.

CHAPTER 5. CONTOUR SMOOTHING 101

2 Pi-1
3 4 1
4 - > 0
/¢ Viq1
/
5 ! 7 y
6 Pis1
Figure 20: Freeman Chain Code Figure 21: Deviation Angle at p;

where p(k) is the contour point ? after k£ smoothing steps (p,(o) = p;) and the ¢;’s are

)

the smoothing coeficients. The window sizeis w = (2n + 1).

5.1.1 Variety of Approaches and Related Problems

We now present various smoothing approaches used in pattern recognition appli-
cations. We will briefly consider their theoretical foundations and implementation
difficulties. For a more detailed account of these aspects, see Legault & Suen ([96]
and [97]).

Local Weighted Averaging

Due to limited computing power, early methods were quite simple and found justifi-
cation in their “good results”. Thus we find schemes removing/filling one-pixel wide
protrusions/intrusions based on templates, or replacing certain pairs in the chain
code sequence by other pairs or by singletons ([141]). However, from early on, local
weighted averaging methods are the most frequently used. They are applied to dif-
ferential chain codes ([44], [51], [56]), possibly with compensation for the anisotropy
of the square grid ([112]); they are applied to cartesian coordinates ([13]), possibly
with weights depending on neighbouring pixel configuration ([70]) or varying with
successive iterations ([38]); they are applied to deviation angles ([45]).

CHAPTER 5. CONTOUR SMOOTHING 102

Even today, in many practical applications, the smoothing operation is still per-
formed by some local weighted averaging schemes because they are simple, fast, and
effective (see for example [9], [19], [157], [159], [169]).

With advances in computing power and insight into the smoothing problem, more
complex methods were developed with more solid theoretical foundations. In this
process, “Gaussian smoothing” has become very popular (see next heading). One
approach consists of applying local weighted averaging with Gaussian weights. For
examples, see [9], [39], and [126].

Gaussian Smoothing and Multiscale Image Representation

Variable amounts of smoothing can be applied to the entire curve, taking the overall
behaviour of the smoothed curve across scale as its complete description. When little
or no smoothing is applied, all fine details of the image (plus noise) are retained;
when more smoothing is applied, only the most salient features are preserved. The
smoothing can be performed with various filters, the most popular being the Gaussian.

Witkin [166] convolves a signal f(z) with Gaussian masks over a continuum of

sizes:
F(z,0) = f(z) * G(z,0) = /_: f(u)- \/;;ae_g%—cr—ngu. (9)

F(z,0) is called the scale-space image of f(z) and it is analyzed in terms of its in-
flection points. For other results concerning scale-space and Gaussian smoothing, see
Asada & Brady [10], Koenderink [74], Mokhtarian & Mackworth [115], and Wuescher
& Boyer [169)].

However, multiscale shape representations are not necessarily associated with
Gaussian smoothing. For scale-space based on so-called adaptive smoothing, see Saint-
Marc et al. [140]. See also the works of Maragos [108], Chen & Yan [29], and Bangham

et al. [15] for multiscale shape representations based on non-linear filters.

Theoretical Foundations

Regularization theory and the study of scale-space kernels are the two main areas

which have provided insight into the special qualities of the Gaussian kernel for

CHAPTER 5. CONTOUR SMOOTHING 103

smoothing purposes. As will be seen, they do not warrant unqualified statements
about the ‘optimality’ of Gaussian smoothing which are often encountered in pattern
recognition literature.

Consider a one-dimensional function g(z), corrupted by noise (z). The observed
signal is then y(z) = g(z)+n(z). Assume that the information available is a sampling
of this signal yi1,%2,...,yn obtained for z = z1,z,,...,z,. Here z; < z;4;. One

approach to estimating g(z) is to find f(z) which minimizes

T —w + A [T, (10)
where A is the regularization parameter. The solution is a smoothing spline of order
2m (see [131], [144]).

For equally spaced data and m = 2, Poggio et al. [128] have shown that the cubic
spline solution is very similar to a Gaussian. Canny’s paper on edge detection[23] is
also cited to support the optimality of Gaussian filtering. But the Gaussian is only
an approzimation to his theoretically obtained optimal filter.

Several authors have investigated smoothing kernels for multiscale representations
of continuous signals. Depending on the imposed set of axioms representing the
properties deemed desirable, the Gaussian filter may be single out as the optimal
filter.

Babaud et al. [12] have considered the class of infinitely differentiable kernels
g(z,y) vanishing at infinity faster than any inverse of polynomial, and one-dimensional
signals f(z) that are continuous linear functionals on the space of these kernels. In this
class, they have shown that only the Gaussian g(z,y) = 71-2;:(/8—1/ 2(=v)* can guarantee

that all first-order maxima (or minima) of the convolution
#(z,y) = f(z) *g(z,9) = [flw)g(a —u,y)du (11)

will increase (or decrease) monotonically as y increases. Yuille & Poggio [173] ex-
tended the previous result by showing that, in any dimension, the Gaussian is the
only linear filter that does not create generic zero crossings of the Laplacian as the
scale increases. For related results, see Anh et al. [7], Mackworth & Mokhtarian [104],

CHAPTER 5. CONTOUR SMOOTHING 104

Pauwels et al. [125]3 and Wu & Xie [168].
For discrete signals, Lindeberg [101] found the unique one-parameter family of
scale-space kernels with a continuous scale parameter; as the scale increases, the

discretized Gaussian approzimates these kernels better and better.

Practical Considerations

For practical applications, regardless of the smoothing method one decides to use,
some concrete questions must eventually be answered. For the regularization ap-
proach, what value should be used for A? For Gaussian smoothing, what value of
o and what finite window size? When scale-space representation is used, if we say
that significant features are those which survive over “a wide range of scale”, we must
eventually put some actual figures on this ‘wide’ range. These decisions can be en-
tirely data-driven or based on prior experience, knowledge of particular applications
etc. Other practical issues may also need to be addressed such as the preservation
of significant discontinuities in the contours and the problem of contour shrinkage
caused by smoothing. In the end, they may play a significant role in both the perfor-
mance of the selected method and its implementation cost. We now briefly consider
some of these aspects.

In [145] [146], Shahraray & Anderson consider the regularization problem of equa-
tion 10, for m = 4, and they argue that finding the best value of A is critical. For
this purpose, they propose a technique based on minimizing the cross-validation mean

square error (CVMSE):

CYMSE(Y) = 7 Y-(okh (e — we)* (12)
k=1

where g,[lk],\ is the smoothing spline constructed using all samples ezcept yi, and is
then used to estimate yx. The method is said to provide a very good estimate of the
best A, for equally-spaced periodic data assuming only a global minimum. Otherwise,

a so-called generalized cross-validation function must be used.

3 Here it is shown that imposing recursivity and scale-invariance on linear, isotropic, convolution
filters is not restrictive enough to single out the Gaussian.

CHAPTER 5. CONTOUR SMOOTHING 105

The presence of discontinuities to be preserved in the contours of interest brings
more complexity into the optimal smoothing problem. One possible solution was
already mentioned: the adaptive smoothing of Saint-Marc et al. [140]. For one-
dimensional regularization which preserves discontinuities, see Lee & Pavlidis [85]. For
two-dimensional regularization which preserves discontinuities, see Chen & Chin [28].
For Gaussian smoothing which preserves discontinuities, see the methods of Ansari
& Huang [9] and of Brady et al. [21].

As already mentioned above, repeated convolution of a closed curve with a kernel
may not yield a closed contour or may cause shrinkage. Different approaches have
been considered to solve or attenuate this problem. See Horn & Weldon [64], Lowe
[103], Mackworth & Mokhtarian [104], Oliensis [124], and Wheeler & Tkeuchi [164].

Li & Chen [100] investigate a possible solution to the high computation and storage
requirements of generating “continuous” scale-space. They show that an optimal £,
approximation of the Gaussian can be obtained with a finite number of basis Gaussian
filters: .)

G(z,0) = Y _ wi(o)G(z,0:) (13)

i=1
from which scale-space can be constructed efficiently.

The above discussion, albeit brief, exemplifies the potential complexity involved
in implementing ‘optimal’ methods. Clearly, in practice, one should not lose track
of the cost of these operations and how much smoothing is really required by the
application of interest. It is not always necessary to attain the ultimate precision
in every measurement. In many situations, simple and fast methods such as local
weighted averaging with fixed weights and a small window size, will provide a very
satisfactory solution in only 2 or 3 iterations (see [38], [44], [45]). Moreover, there is
often little difference in the results obtained via different methods. Thus, Dill et al.
[39] report similar results when a Gaussian filter and a triangular (Gallus-Neurath)
filter of the same width are applied to differential chain codes; in Kasvand & Otsu
[72], rectangular, triangular, and Gaussian kernels, with the same standard deviation,
yield comparable outcomes (especially the latter two) for the smooth reconstruction

of planar curves from piecewise linear approximations.

CHAPTER 5. CONTOUR SMOOTHING 106

5.1.2 Our Own Work

In the rest of this chapter, we assume local weighted averaging with constant weights
as a starting point and we investigate how these smoothing methods handle small
random noise. To this end, we propose a simple model of a noisy horizontal bor-
der. The simplicity of the model allows a very pointed analysis of these smoothing
methods. More precisely, for specific computational goals such as estimating contour
point positions, derivatives (slopes of tangents), or deviation angles from the pixels
of binary contours, we answer the following questions: what are the optimum fixed
weights for a given window size? and what fraction of the noise is actually removed
by these optimum weights?

After deriving these results, we offer experimental evidence that their validity
is not restricted to the limited case of noisy horizontal borders. This is done by
considering digital circles. For each particular computational task, we find very close
agreement between the optimum weights derived from our simple model and the ones
derived numerically for circles over a wide range of radii.

An important side-result concerns the great caution which should be exercised in
speaking of ‘optimal’ smoothing. Even for our simple idealized model, we find that
the smoothing coefficients which best restore the original noise-free pixel positions
are not the same which best restore the original local slope, or the original local
deviation angles; furthermore, the best smoothing coefficients even depend on the
specific difference method used to numerically estimate the slope. Hence, in choosing
smoothing methods, researchers should probably first consider what it is they intend
to measure after smoothing and ¢n what manner.

In relation to this, we point out the work of Worring & Smeulders [167]. They
analyze noise-free digitized circular arcs and exhaustively characterize all centers
and radii which yield a given digitization pattern; by averaging over all these, an
optimum measure of radius or curvature can be obtained. If radius or curvature is
the measurement of interest and if utmost precision is required (with the associated
computing cost to be paid), then their approach is most suitable.

Our work in contrast is not oriented towards measuring a single attribute. We

focus on such measurements as position, slope and deviation angles because they are

CHAPTER 5. CONTOUR SMOOTHING 107

often of interest in pattern recognition. But our model and approach can be used
to investigate other quantities or other numerical estimates of the same quantities.
The methods may be less accurate but they will be much less costly, and optimum
in the category of local weighted averaging methods. The requirements of specific
applications should dictate what is the best trade-off.

5.2 Local Weighted Averaging

We begin the investigation of local weighted averaging, as defined by equation 8, where
n neighbours are considered on each side of p;. The window size of the operation is
then w = 2n + 1. Of course, the smoothed contour points p,(k) , after k£ smoothing

iterations, can be obtained directly from the original points p; as

k n
pi = > Bipiti (14)

j=-n'

where n’ = kn , corresponding to a window size w’ = k(w — 1) 4+ 1, and the B’s
are functions of the a’s and of k. The form of Equation 8 is often computationally
more convenient. However, as long as k and n are finite, the study of local weighted
averaging need only consider the case of a single iteration with finite width filters.
When this is done, we will use the simpler notation p/ instead of p,(l):

We now impose a simple requirement to this large family of methods. Since our
goal is to smooth the small ‘wiggles’ along boundaries of binary images, it seems
reasonable to require that when p; and its neighbouring contour pixels are perfectly
aligned, the smoothing operation should leave p; unchanged. In particular, consider
the z-coordinates of consecutive horizontally-aligned pixels from p;_, to Pitn. For
j € [-n,n], we have z;y; = z; + j. Our requirement that =} = z; then becomes

n

zi= Y aj(zi+j) = = i o + Zn:(aj—a—j)i = zi (15)

j=-n j=-n j=1

For this to hold for any value of z;, we must have

n
S aj=1; and eaj=a; j=1,2,...,n (16)

j=—n

CHAPTER 5. CONTOUR SMOOTHING 108

Thus our requirement is equivalent to a normalization condition and a symmetry

constraint on the a’s.

5.2.1 Geometric Interpretation

Starting from equation 8 and using the above conditions, it is a simple matter to find

a geometric interpretation for local weighted averaging. We can write:

k = k—
Pz() = Z aj p$+j1)
j=-n
k— = k- -
= CYOP:(R Z%’(Pz(-jl) + Pgijl))
=
= *k-1) | — (k-1) (k1)
= (1‘22%')!’; +Z%‘(Pi—j + P)
J=1 =1
n (k-1) (k—1)
k- Pi—; * + Piyj k-
= Pl 4 Y n0y (Pl TR pen) a7)
=1
P;
V
P)
m i

i+l

Figure 22: Geometric Interpretation for w = 3.

For a single iteration (k = 1) of the simplest method (n = 1), the last equation

reduces to

i-1 + Pi
P_L2_p_+_1 —pil- (18)

The points p;-1, Pi, and piy1 are generally not aligned and the situation is il-
lustrated in Figure 22, where m;; = (pPi—1 + Pi+1)/2 is the middle of the base of the

pP; = Pi + 2¢of

CHAPTER 5. CONTOUR SMOOTHING 109

triangle. Equation 18 implies that the smoothed point p! is always on the median of
the triangle from point p;. Furthermore, the effect of the unique coefficient a is clear
since |p;p}|/|pimi| = 2. As « varies continuously from 0 to 0.5, p’ ‘slides’ from p;

to m;;.
(k=

Similarly, in the more general situation, the vectors [p""

the medians from p(k 1 of the triangles Ap,(fJ l)pfk-l)pf’c i n, Equa.tlon 17 indicates

that the smoothed point p() is obtained by adding to p(R P weighted sum of

T

1) + Pg(f.;) (k 1)] are

the medians of these triangles, using 2«; as weights. Thus, in a geometric sense,
local weighted averaging as a contour smoothing method could be renamed median

smoothing.

5.3 Optimum Results from a Simple Digitization
Noise Model

This section addresses the question “If local weighted averaging is considered, what
constant coefficients a; should be used for smoothing binary contours in view of
specific computational goals?”. We develop an answer to this question, based on a
simple model: an infinite horizontal border with random I-pizel noise.

Why use this model? Of course, we do not consider the horizontal line to be a
very general object. Nor do we think that noise on any particular binary contour
is a random phenomenon. We have noticed in our work that binary contours often
bear small noise, commonly “1-pixel wiggles”. Qur goal is to perform an analytical
study of the ability of local weighted averaging smoothing methods to remove such
noise. Since the filters are meant to be used with arbitrary binary contours, it seems
reasonable to consider that over a large set of images noise can be considered random.

Furthermore, we do not make the very frequent implicit assurnption that a smooth-
ing filter can be optimal independently of the specific attributes one intends to mea-
sure or even the specific numerical estimation method used. For specific measurements
and computation methods, we would like to find the best choice of smoothing coeffi-

cients for a given window size and an estimate of how much noise these coefficients

CHAPTER 5. CONTOUR SMOOTHING 110

remove; if the window size is increased?, what are then the best coefficients and how
much more is gained compared to the smaller window size?

These questions are very pointed and we have no workable expression for small
random noise on an arbitrary binary contour which would allow to derive answers
analytically. Thus we choose to look at an ideal object for which we can easily model
random 1-pixel noise so that our study can be carried out. Similar approaches are
often followed. For example, in studying optimal edge detectors, Canny [23] considers
the ideal step edge. There is no implication that this is a common object to detect
in practice; simply it makes the analytical investigation easier and can still allow to
gain insight into the edge detection problem more generally. The practicality of our
own findings concerning optimal local weighted averaging will be verified in section
5.4. We now give a definition for our simple model.

The infinite horizontal border with random 1-pixel noise consists of all points

(zi,y:), t € Z, satisfying

z; = 1, VieZ (19)
Yos with probability (1 — p)

i = . o (20)
Yo+ 1, with probability p

An example of such a simple noisy boundary is shown in Figure 23.

Yo+ 1 - = a o Ll
» —EHE—E—EE—EEE—an

Figure 23: Noisy Horizontal Border

With this model, z;_; = z; — j and ziy; = z; + 5. It then follows from Equation
17 that the smoothing operation will not change the z-coordinates and the local
weighted averaging will only affect the y-coordinates. The best fitting straight line

4 Assuming the feature structure scale allows this.

CHAPTER 5. CONTOUR SMOOTHING 111

through this initial data is easy to obtain since it must be of the form y = . It is

obtained by minimizing the mean square distance

& =(1—pNF—9) + p{§—yo—1)° (21)

with respect to §. The best fitting line is simply y = y, + p. We will consider this
to be the Equation of the ideal border which has been corrupted by the digitization
process, yielding the situation of Equation 20.

We now examine the problem of applying “optimal” local weighted averaging to
the data of our simple model. Qur aim is to eliminate the ‘wiggles’ along the noisy
horizontal border as much as possible. An alternate formulation is that we would
want the border, after smoothing, to be “as straight as possible” and as close as
possible to y =y, + p.

Several criteria can be used to assess the straightness of the border and optimize

the smoothing process:

e Minimize the mean square distance to the best fitting line after the data has

been smoothed.

e Minimize the mean square slope along the smoothed data points (ideally, the
border is straight and its slope should be 0 everywhere).

¢ Minimize the mean square deviation angle ¢; (see Figure 21) along the smoothed

data (ideally, ¢; should also be 0 everywhere).

Each of the above criteria is sound and none can be said to be the best without
considering the particular situation further. The first criterion is the most commonly
used in the curve fitting literature. In this paper however, we want to derive optimal
smoothing methods tailored for specific computational tasks; hence, we will consider
each of the above criteria in turn. If our interest is simply to obtain numerical
estimates of the slopes at contour points, the optimal ¢;’s derived based on the
second criterion should be preferred. And for estimating deviation angles ¢;, the
optimal coefficients derived from the third criterion would be better.

For the first criterion, we will use dns, the root mean square (r.m.s.) distance to

the best fitting line, as our measure of noise before and after the smoothing step; for

CHAPTER 5. CONTOUR SMOOTHING 112

the second criterion, m,ms, the r.m.s. slope along the border; with the third criterion,
&rms, the r.m.s. deviation angle along the border. For the original unsmoothed data,
these noise measures can be computed using the probabilities of the possible config-
urations of 2 or 3 consecutive pixels. The derivation of ¢, is given in Appendix B.

For the original, unsmoothed data the results obtained are:

drms = vp(l—P) (22)

2p(1 —p) i P = Y1 — Vi
Mrms = 1 USTmE T Yout ¥ (23)
pl=p using m; = (Yiz1 — ¥i-1)/2
_ 7 [3p(1 —p)
¢rma - 2 2 (24)

Based on our simple model, we now derive the best smoothing parameters for each
of the three criteria mentioned above. Once obtained, we will compute the correspond-
ing noise measures for the smoothed data which we will denote by [u]d}mss [wW]Prmsr
and ()97, respectively. In this notation the ‘prime’ indicates a single smoothing

step and w is the window size used.

5.3.1 Best Parameters to Minimize d,

The unsmoothed y-coordinate of our border points is a discrete random variable
following a simple Bernouilli distribution for which the expected value is y, + p and
the variance is p(1 — p). Obviously, the best fitting line is simply the expected value
and d,n, in Equation 22 is the standard deviation of y;. After smoothing, the expected
value of y! will remain y, + p for any (finite) window size w. Denoting the expected
value by E, we have from elementary probability theory:

n n

E@W) =E(Y ajpii) = 3 osB(uisi) = 3 E(w) = E(ws). (25)

j=-n j=-n Jj=-n

CHAPTER 5. CONTOUR SMOOTHING 113

Now we find the best choice of smoothing parameters and the corresponding noise

measure [y)d,,,,. Denoting variance by o?(), we have:

n

F=ay) = 3 Hasyees). (26)

i=-n
Each o;y:4; is a discrete random variable (with two possible values) and its variance
is p(1 — p)a?. Thus
d?=p(l—p) 3 of. 27)

j=-n

n
We must now minimize E af, subject to the constraint ap +23"7_; ¢; —1=0.
j=-n

This problem is typically solved using the Lagrange multipliers method (see [160],
page 182). from which we obtain the simple result ax = oy, for each k. All coefficients
are equal, hence of value 1/(2n + 1). See derivation in Appendix C. Substituting
this value into Equation 27, we obtain the corresponding ? Our findings can be

summarized as follows:

e For a single smoothing iteration with arbitrary window size w, for any value of

p, the best choice of parameters to minimize the mean square distance is to set

p(l—p)

all a;’s to 1/w, resulting in [,)d,,, = ”

The fraction of the noise which is removed by the smoothing operation is 1 — i
Hence, for w = 3, the noise is reduced by 42.3%; for w = 5, by 55.3%; for w = 7,
by 62.2%. Finally, contrary to what one might expect, we note that the optimum
5-point smoothing operation is not to apply the optimum 3-point operation twice.
The latter is equivalent to a 5-point window with a; = (3 —[j])/9 which gives d}.,, =
$1/19p(1 — p). This would remove approximately 51.6% of the noise.

5.3.2 Best Parameters to Minimize m/,

In this section, we apply our second criterion for straightness and minimize the root
mean square value of the slope after smoothing. We consider two different ways of

computing the slope from contour points.

CHAPTER 5. CONTOUR SMOOTHING 114

Based on m} =y}, — y;

The simplest numerical estimate of the slope is given by the forward difference formula

m; = yi,; — yi. Some algebraic manipulation (outlined in Appendix D) leads to

an expression for m/? involving only the n independent parameters oy, az, ..., Q!

mi®> = 2p(1 —p) [1 =20 + 4 ~ 1)) ¢

i=1

1=1 =1 1=1

+2 Zn: of +4 (}n: a,-) — 2r§ a,-a_,'.;.l} . (28)

Differentiating this with respect to oy, for 1 < k& < n, we obtain a system of n linear

equations as shown below.

(10 5 6 6 6 6 6 --- 6 6 6 6) [a) (3)
5 6 3 4444 --- 4444 a2 2
6 3 6 3 444 --- 44 44 @3 2
6 4 36 3 44 --- 4444 oy 2
6 443634 --44414 as = |2 (29)
6 4 44363 ---44 44 6 2
4 4 444 -.-436 3 Ctn-1 2
K6444444.--4436)\an/ \ 2 /

Solutions are given in Table 11 for 1 < n < 6. The column before last gives
the fraction of the noise which is removed by the optimum smoothing method. For
comparison purposes, the last column provides the equivalent result when all weights
are set equal to L. Finally we note that for window size w = 5, the triangular filter
using a; = (3 — |7])/9 results in a noise reduction of 80.8%, slightly better than the
equal-weights method.

CHAPTER 5. CONTOUR SMOOTHING 115

D| Qg Q) Qi Q33 Oxq O35 g || 1 — %&" 1-— 'E‘?f,_:‘_
] \ optimum | a; =1
1 5 -1-86 0.684 0.667
2| = % % G¢.831 0.800
3le 2 1 & 0.891 | 0.857
4|2 £ L B o 0922 | 0.889
O£ B ¥ OB L
545 % i 4 i & | 0ou | oo

Table 11: Best Parameters to Minimize (yf,; — y7)° and Fraction of Noise Removed

Based on m; = Z(yl,; —yi,)

A more accurate® estimate of the slope is given by m! = 1(yf,, — yi_,). Expanding

it in terms of the original coordinates and following the same approach as in Appendix
D, we arrive at:

j=-n j=—n+1

p(l —p n n—1
m:-2 = T) [Z a? + Z a,-_laj.,.l] . (30)
When expressed in terms of the n independent «’s, this becomes:

—7 _ p(l—p)[

o= 5 1 -2 —a? +4(ez2—1)> q;

j=1
n n 2 n-2
+2) o + 4(2 a,—) -2y a,-a,-+2] . (31)
J=1 =1 1=1

Minimizing with respect to ax, for 1 < k < n, we obtain another set of n linear

equations with the following form:

5 Provided the data resolution is fine enough.

CHAPTER 5. CONTOUR SMOOTHING 116

(5 6 3 4 4 4 4444 - 4444 4)\(o) [2)
6 10 6 5 6 6 6 6 6 6 - 6 6 6 6 6 1o 3
3 6 6 4 3 4 4 4 4 4 - 4 4 4 4 4 a3 2
4 5 4 6 4 3 4 4 4 4 - 4 4 4 4. 4 oy 2
4 6 3 4 6 4 3 4 4 4 - 4 4 4 4 4 s 2
4 6 4 3 46 4 3 4 4 - 4 4 4 4 4 O 2 32)
4 6 4 43 46 434 --444424 ar - 2(
4 6 4 4 4 3 46 4 3 - 4 4 4 4 4 ag 2
4 4 4 4 4 4 . 3 3 Qn_2 2

6 4 4 4 4 4 4 4 4 3 Qn—1 2
\4 6 4 4 4 4 4 4 4 4 4 3 6) \ o'} / \2)
The solutions are listed in Table 12 for 1 <n < 6.
nD|op Qi1 Qi Qi3 Qxq Qx5 Ox6 || 1 — ﬁ%:" 1—- ':—:"m"‘
' optimum oz,-=—f
1 2 W
1| 5 H 0.553 0.529
2 % 3 % 0.733 0.717
3 —]:g -é- $ 12—5 0.817 0.798
4| =5 = 3 4 L 0.865 0.843
512 B 2 B Y e 0.895 0.871
¥ % ¥ 3§ ¥ ¥ L | 0 '
613 3% 3% 11 = 75 20 0.915 0.891

b \2
Table 12: Best Parameters to Minimize (-’B’Ty'-ﬂ-) and Fraction of Noise Removed

Note that the distribution of coefficients from a_, to @, is no longer unimodal.
Furthermore, ag < a; for odd values of n. Finally we note that for window size
w = 5, the triangular filter using a; = (3 — |j|)/9 results in a noise reduction of
66.7%, notably less than the equal-weights method.

CHAPTER 5. CONTOUR SMOOTHING 117

5.3.3 Best Parameters to Minimize Deviation Angles

In this section, we examine the smoothing problem based on minimizing the deviation
angles ¢!. Here the problem is more complex and we will not obtain general expres-
sions of the optimum smoothing parameters which are independant of the probability
p involved in our model. We restrict our study to the cases w = 3 and w = 5.

Our definitions of section 5.1 imply that ¢! = 6., — 8. From trigonometry, we

have

(33)

tan 8. , —tané;
tan ¢! = = —.
Now tan 6] = y; — y;_; and tan 8}, = yi,; — y/. Thus we can obtain tan ¢} from the

smoothed coordinates and then ¢} from the value of the tangent.

For w=3

For w = 3, ¢! at p} will depend on the original contour points in a 5-point neigh-
bourhood around p;. For our model of Equation 20, there are 2° = 32 possible
configurations for such a neighbourhood, which must be examined for their corre-
sponding ¢:. Of course, these computations need not be performed manually; they
can be carried out using a language for symbolic mathematical calculation.

Adding together the contributions from the 32 possible configurations, weighted by
the respective probabilities of these configurations, results in the following expression

for tan? ¢!:

(1 — 4c)? 2(1 — 3a)?)

tan? . = — _ 2 2
an® ¢; 2p(1 — p)(1 — 3p + 3p%) (a + (1+a—3a2)? " 9a2(2 — 3a)?

2 2 2 2 (1 —3a)?
#27(0=p ((1 3007 + (1 = 207+ o
(2 — Ta)? 20?2 (1 —4a)?

+

TR —12ar T 1=®)F T 32a3(1 = 2a)

) o

For simplicity we have dropped the subscript on the unique parameter ;. Nu-
merical optimization was performed to find the value of o which minimizes Equation
34. No single value of a will minimize tan® ¢ for all values of p. The results are

shown

CHAPTER 5. CONTOUR SMOOTHING 118

02875
0213
0287
028754
g aznf §
5. 1 g
g 02885} s
& 02ssf & 0286
& &
5 a2ssk E 02885~
= a
02845}
ozs)
a2m4t
mo al a2 3 04 05 05 a7 6; 09 1 0.2‘-:0 ol a2 o3 04 as 06 a7 os a9 1
PROBABLLITY OF I-PIXEL NOISE PROBABILITY OF I-PIXEL NOISE
(a) Minimizing mean squared tangent (b) Minimizing mean squared angle
029 029
0285 azsst
o2sr 028t
% 02751 E Q275+
= ey k3 o7
o (=]
& oasst & azssf
g 0.26¢ g 026}
g 0.2s5F 5 02ssf
o 3
025 a2s
02451 0245}
02"0 [%} a2 03 04 0s 0.6 Q7 os (1) 1 0140 [83 o2 o3 04 o5 05 o7 os 09 1
PROBABILITY OF 1-PIXEL NOISE PROBABILITY OF 1-PIXEL NOISE
(c) Minimizing mean absolute tangent (d) Minimizing mean absolute angle

Figure 24: Best o to Minimize Deviation Angles for w = 3.

in Figure 24(a). The best value of « is now a smooth function of p. However we
note that the domain of variation is very little.

We cannot compare the results obtained minimizing the mean squared tangent
of ¢! to the situation without smoothing, since tan? ¢; is infinite. By taking the arc
tangent function of Equation 33, we can obtain the values of the angles ¢! themselves

and we can derive an expression for ¢° in the same manner. Numerical optimization

CHAPTER 5. CONTOUR SMOOTHING 119

of this expression yields the results shown in Figure 24(b). As can be seen, they
are almost the same as those of Figure 24(a). In a similar fashion, we can generate

expressions for | tan ¢%| and [¢}], for which the best smoothing parameters are shown
in Figures 24(c) and 24(d) respectively. Here there seems to be one predominant best
parameter over a wide range of values for p.

All the results shown in Figure 24 were obtained numerically, for values of p
ranging from 0.005 to 0.995, in steps of 0.005. As expected, all these curves are
symmetric about p = 0.5, so we will limit our discussion to p < 0.5. In Figure 24(c),
the best value of « for p € (0.005,0.095) is a = 0.25; then, for p € (0.145,0.495), the
best value is @ = 0.2857. Between these two intervals, p increases almost linearly.
In Figure 24(d), the same values of « are found: a = 0.25 is the best choice for
p € (0.005,0.145) and o = 0.2857 is the best choice for p € (0.150,0.495).

In Figures 24(a) and 24(b), the best value of « is a smoothly varying function of
p. But we notice that o = 0.2857 is an intermediate value of « in the narrow range
of best values. In fact, choosing o = 0.2857 for all values of p, the value of m is
always within 0.2% of the minimum possible.

Despite the differences in the actual curves of Figure 24, the corresponding ranges
of best a’s are always quite narrow and very similar, independently of the exact
criterion chosen. From now on, to maintain uniformity with the treatment of sections
5.3.1 and 5.3.2, we will restrict ourselves to minimizing the mean squared angle.

Equation 24 provided a measure of the noise before smoothing: ¢rms = 5/ g’i(?)-.
The fraction of this noise (1 — @/,,,/@rms) Which is removed by a simple smoothing
operation with w = 3 was computed for different values of o. The results are displayed
in Figure 25. The solid line represents the best case and we see that approximately
73% of the r.m.s. noise is removed. The dashed line, representing the case where
o = 0.2857 is used for all values of p, is not distinguishable from the best case at this
scale. The dash-dotted and the dotted lines represent the fraction of noise removed
for @ = 0.25 and a = % respectively. In this last case, this fraction is a constant equal

to 0.6655.

CHAPTER 5. CONTOUR SMOOTHING 120

BEST (). 0.2857 (—), 1/4(.-), 173(.)
0.75 v T T T — T T - .

e
3
1]

©
3

=3
=

(=]

-~

—
T

FRACTION OF RMS NOISE REMOVED
)
-]

0.69t B
0.631

067}

ot
O o1 02 03 04 05 06 07 08 05 1

PROBABILITY OF I-PIXEL NOISE

Figure 25: Fraction of ¢,n,s Removed for w = 3.

For w=5

For w =5, 27 = 128 possible configurations of a 7-point neighbourhood centered on
p; must be considered to obtain the values of ¢.° after smoothing. In Equation 34,
there were 9 distinct terms involving p and a. Now the computation of tan? ¢} results
in 35 distinct terms in p, o, and a;. We will not reproduce this lengthy expression
here...

Figure 26(a) presents the best choice of parameters to minimize ? We notice
that there is very little variation in their values over the range of values of p. The
optimum parameters are approximately cey; = 0.2381 and a4, = 0.1189. These values
are close to 2 and } , the values for the triangular 5-point filter. Figure 26(b) shows
the fraction of ¢,m; removed by the smoothing operation. The solid line represents
the case where the optimum parameters are used for each value of p. In this situation,
approximately 88.75% of the noise is removed. The dashed line represents the case
ay; = % and a4, = &, for which 86% of the noise is removed approximately. We see

9
that these results are close to the ideal situation.

CHAPTER 5. CONTOUR SMOOTHING 121

B

BEST SMOOTHING PARAMETERS
-

[od
=
Ny

2
I

-r 0.895; Em— -
[+ .1 3
éo.us
ol g o
éo.x‘ls-
M
o.16f g
5”"[: '
3T S —
] .
0.[0 a1 a2 0:3 04 0‘5 a6 o7 o8 a9 1 wo Qat 02 03 T;.; 0:5 08 a7 a 0:9 1
PROBABILITY OF 1-PIXEL NOISE PROBABILITY OF 1-PIXEL NOISE
(a) Optimum parameters (b) Fraction of ¢rms removed
ot (dotted); @i (dashed) Best (solid); as; = 2 & g2 = (dashed)

Figure 26: Minimizing EF for w = 5.

5.4 Verifying Results for Varying Curvature

In the preceding section, we have studied optimum local weighted averaging exten-
sively, based on a model of a horizontal border with random 1-pixel noise. Particular
solutions were derived based on error criteria chosen in light of specific computational
tasks to be performed after the smoothing operation. But can these results be relied
upon to handle digitization noise along arbitrary contours?

Our results were obtained for a straight, horizontal border, i.e. a line of curvature
0. But for arbitrary contours, curvature may vary from point to point. Should
optimum smoothing parameters vary with curvature and, if so, in what manner? For
a given window size, can a fixed set of smoothing parameters be found which will
give optimum (or near optimum) results across a wide range of curvature values? If
so, how does this set of parameters compare with the one we have derived using our

simple model?

CHAPTER 5. CONTOUR SMOOTHING 122

In this section, we try to answer the above questions by performing some exper-
iments with digital circles. It should be clear that our interest is not with digital
circles per se but rather, as explained above, with the variation of optimum smooth-
ing parameters with curvature. The approach will be to examine, for digital circles
of various radii, situations which are equivalent to the ones studied for the horizon-
tal straight border in sections 5.3.1, 5.3.2, and 5.3.3. Using numerical optimization,
we will find the best choice of smoothing parameters for each situation, over a wide
range of curvature values, and compare them with the values obtained previously. An

example of a digital circle is shown in Figure 27 for a radius R = 7.

Figure 27: Digital Circle of Radius B = 7.

5.4.1 Minimizing Error on Distances to Center

In this section, we consider the distances d; from the center to each pixel F; as
approximations to the radius R. See Figure 28(a). After smoothing, pixel F; is
replaced by pixel P! which is at a distance d; from the center of the circle. Qur aim
is to find the values of the smoothing parameters, for w = 3 and w = 5, which will

minimize (R — d!)?. Of course, these parameters might vary depending on the radius

CHAPTER 5. CONTOUR SMOOTHING 123

of the circles.

For reasons of symmetry, it is only necessary to consider one quadrant; with special
attention to the main diagonal, we can restrict our attention to the first octant of each
circle. Let Ny/s be the number of pixels which are strictly within the first octant. The
mean value of (R — d')? is obtained by adding twice the sum of (R — d:)* for these
Ny/s points, plus the value for the pixel at coordinates (R,0), plus the value for the
pixel on the main diagonal (if present). This sum is then divided by 2N;/s + 1 (or
2Ny/s + 2, if there is a pixel on the main diagonal).

We now give a simple example, for R = 4 and w = 3. First we consider the
situation before any smoothing is applied. For the point on the z-axis, the value of
(R — do)? is always 0. For the next point (4,1), (R — d1)* = (V17 — 4)2. For the next
point (3,2), (R — dz)* = (V13 — 4)2. Finally, for the point on the main diagonal (3, 3),
(R—d3)? = (V18 — 4)2. The contributions for points (4,1) and (3,2) are counted
twice and added to the contributions for the diagonal point (3, 3). This sum is then
divided by 6. Taking the square root of the result, we obtain (R — d;),,,, = 0.25832.

After smoothing with the smallest window size, w = 3, we have the following
values for (R — d})*:

(R—dp)* = 0

(R-&)) = (Ja—op+1-4)

(R—d)? = (JB+ay +4—4) (35)
(R=dy)? = (V2AB-a) —4).

and we must minimize the expression %— (2(R —d)*+2(R - dy)® + (R — dg)’) . Thus
the best smoothing parameter for R =4 and w = 3 is found to be o = 0.23610.

In the numerical computations it is possible to take advantage of the fact that,
for small window sizes, the smoothing rarely affects the y-coordinates in the first
octant; exceptions occur occasionally for the last pixel in the first octant (not on the
diagonal) and for the pixel on the diagonal when the preceding pixel has the same
z-coordinate. This last condition is found only for radii values of 1, 4, 11, 134, 373,
4552 etc... (see Kulpa [79]).

CHAPTER 5. CONTOUR SMOOTHING 124

£

&
:i‘?
§

§

BEST SMOOTHING PARAMETER
[+
7 T

§

30 0 50] band
RADIUS OF DMSITAL CIRCLE (PIXELS)

(b) Best ay; for w =3

ass, o3

&

B oxt
%ol £
Al :
>
3]
8 af
o
cost-
% 1w 2™ 0 . 0 e o 8 % im 6 ®m % o % % w0 %
RADIUS OF DIGITAL CIRCLE (PIXELS) RADIUS OF DIGITAL CIRCLE (FIXELS)

(c) Best at; (solid), ax, (dotted) for w =5 (d) RMS error: w = 3 (dashed); w = 5 (dotted)

Figure 28: Best Smoothing to Minimize (R — d})%.

The coordinates of the pixels for the first octant of the digital circles were gen-
erated using the simple procedure presented in Horn [63], with a small correction
pointed out by Kulpa [78] (see also Doros [40]). The best smoothing parameters were
obtained for integer radii values ranging from 2 pixels to 99 pixels, in steps of 1. The
results are presented in Figure 28(b) for w = 3 and 28(c) for w = 5. For comparison,
the values derived in section 5.3.1 from our model of a noisy horizontal edge are shown
with dashed lines.

For w = 3, we see that for radii values larger than 20 pixels the best ay; oscillates

around 1, as derived from our model. Similarly, for w = 5, the best values of a.;

3?

CHAPTER 5. CONTOUR SMOOTHING 125

£ 8 &8 .
8 8 & .

;&
p—b

£
S

g
&

FRACTION OF AMS NOISE REMOVED
&
FRACTION OF RM3 NOISE REMOVED
g

£ B
2 g

o 10 2 ©° % 10 © %0 ™

L “ 50 0 n 30 < 50 &0 g
RADIUS OF DIGITAL CIRCLE (PIXELS) RADIUS OF DIGITAL CIRCLE (PIXELS)

(a) Best a4, (solid); with 3 (dotted) (b) Best a1, (solid); with L (dotted)
Figure 29: Fraction of RMS Noise Removed: (a) w =3; (b) w =35.

and a4, are close to the predicted value of 0.2. For small radii values however, the
optimum a4,-values are much lower than this value and the optimum a.;-values
are correspondingly higher. This is easily understood since a 5-pixel neighbourhood
covers a relatively large portion of the circumference in these cases (as much as one
eighth of the total circumference for a radius of 6 pixels, one fourth for a radius of 3
pixels). In fact, for radii values of 2, 3, 4, 6, and 8 pixels, it is best to use a+; = 0.0
and smoothen using only the nearest neighbour.

Figure 28(d) compares the r.m.s. values of the errors on the radii without smooth-
ing (solid line) to the best values possible after smoothing with window sizes of w = 3
(dashed line) and w = 5 (dotted line) respectively.

For each value of the radius, we have also compared the noise reduction achieved
using the optimum parameters to that achieved with the constant values 3 and L
The results are presented in Figure 29(a) and 29(b), for w = 3 and w = 5 respectively.
For w = 3, the 2 curves are indistinguishable for R > 18 pixels, and they are very
close for R > 10. For w = 5 and radii values 2, 3, 4, 6, and 8 pixels, smoothing with
a4 = ayp = 0.2 is actually worse than no smoothing at all. But, for R > 18, the
best curve and that obtained with these fixed values are very close.

Finally, for R > 10 and window sizes w = 3 and w = 5, Table 13 compares

the mean noise reduction of 3 methods: the optimum method, corresponding to the

CHAPTER 5. CONTOUR SMOOTHING 126

variable parameters of Figure 28(b) and Figure 28(c); the fixed parameter method
derived from our model of section 5.3; and the best fixed parameter method ob-
tained from numerical estimates. We see that the results are very close and that the
method derived from our simple noise model compares very well with the numerically

determined best fixed parameter method.

Window | Method Qs Qo Mean noise reduction
optimum | variable 0.484317
w =3 | model 3 0.482672
best fixed | 0.3329 0.482673
optimum | variable | variable 0.6184
w =25 | model : 1 0.6068
best fixed | 0.2148 | 0.1703 0.6117

Table 13: Mean Noise Reduction for 10 < R < 99

5.4.2 Minimizing Error on Tangent Directions

In this section, we compare the direction of the tangent to a circle at a given point to
the numerical estimate of that direction, obtained for digital circles. The situation is
illustrated in Figure 30(a).

Since the slope of the tangent is infinite at pixel (R, 0) of the digital circle, we will
consider instead the angle which the tangent line makes with the z-axis. The radius
from the center of the circle to pixel P; makes an angle §; with the positive z-axis. Now
consider the point where this radius intersects the continuous circle. Theoretically,
the angle between the tangent to the circle at that point and the z-axis is 7 +6;. On
the other hand, the numerical estimate of this angle is given by 7 +;, where ¢; is the
angle between the horizontal axis and the perpendicular bisector of the segment from
P;_1to Py (see Figure 30(2)). The difference between these angles, (p; — 6;) is the
error on the elevation of the tangent to the circle at the point of interest. Our goal
is to minimize the r.m.s. value of (¢! — 6!), where the primes refer to the quantities

after smoothing.

CHAPTER 5. CONTOUR SMOOTHING 127

The values of ¢; and 8; are readily computed in terms of the original coordinates
of the digital circle as follows:

; = tan™! (EL) ; and ¢; =tan™?! (M) . (36)
i Yit1 — Yi-1

The values of ¢} and §! are obtained similarly, in terms of the coordinates after

smoothing.

"WV"

\A_MV WA,VA‘MA A

BEST SMOOTHING P,
b eeEce it igct

1o 20 0 0 100

k. L so &0 n
RADIUS OF DEGITAL CIRCLE (PIXELS)

(a) Direction of tangent to circle at P; (b) Best a4 for w =3
o4, 02
oAl < oI g
E b] _ ol .
TSI S 5 SO T S e L A -3 = ol 1
é o I 5s T U TR T §u-- Pon s ; N W P
gms- P gm- ::. A e v, (S
= af e I B e
oS- onab
‘ [} : 10 20) 90 100

30 40 so 60 0
RADIUS OF DIGITAL CIRCLE (PIXELS)

(c) Best ay; (solid), ags (dotted) for w =5 (d) RMS error: w = 3 (dashed); w = 5 (dotted)

Figure 30: Best Smoothing to Minimize (¢! — %)%

Once again, the r.m.s. error for the entire circle can be computed by considering

only the first octant; and the best smoothing parameters were obtained for integer

CHAPTER 5. CONTOUR SMOOTHING 128

radii values ranging from 4 pixels to 99 pixels, in steps of 1. The results are presented
respectively in Figures 30(b) for w = 3 and 30(c) for w = 5.

In section 5.3.2, for w = 3, the optimum value derived for a4; was %; for w = 5, the
optimum values derived for ay; and a4, were % and % respectively. These values are
shown with horizontal dashed lines in Figures 30(b) and 30(c). The best smoothing
parameters vary with the values of R. However, when we compute their means for
4 < R £99, the results obtained are very close to the predicted values. Thus, for
w = 3, @z7 = 0.408 (compared to 0.4); for w = 5, @z = 0.1415 (compared to 0.1429)
and @z; = 0.2129 (compared to 0.2143).

Figure 30(d) compares the r.m.s. values of the errors on the elevation of the
tangents to a circle without smoothing (solid line) to the best values possible after
smoothing with window sizes w = 3 (dashed line) and w = 5 (dotted line).

a9 '
asf 09!
2
[&) Su-
8]
g g
gu» ;o.'l
: :
EXT ™l
£ £
aat osh
LO 10 20 0 90 100 G‘O 1] 20 0 90 100

30 40 50 60 70 30 0 50 60 0
RADIUS OF DIGITAL CIRCLE (PIXELS) RADIUS OF DIGITAL CIRCLE (PIXELS)

(a) Using best a4 (solid); using 2 (dotted) (b) Using best as1, ax2 (solid); using 3, & (dotted)

Figure 31: Fraction of RMS Noise Removed: (a) w = 3; (b) w =35.

r_ g
(Sai gt)rms‘ For

(QO{ - 0*) m
each value of the radius, we have compared the noise reduction achieved Jsi;g the

The noise reduction produced by smoothing is equal to 1.0 —

optimum parameters to that achieved with the constant values ay; = -§-, for w = 3,
and a4y = %, Qyo = 1—34-, for w = 5. The results are presented in Figures 31(a) and
31(b) respectively.

As can be seen, the constant values predicted by our simple model yield noise

CHAPTER 5. CONTOUR SMOOTHING 129

reduction results which are very close to optimum.

Finally, for 4 < R < 99 and window sizes w = 3 and w = 5, Table 14 compares the
mean noise reduction of the 3 methods as explained previously. The best smoothing
parameters derived from our simple noise model and the numerically determined best

fixed parameters are almost the same and their performance is nearly optimal.

Window | Method Q41 Qio Mean noise reduction
optimum | variable 0.58084
w =3 | model % 0.57474
best fixed | 0.4026 0.57478
optimum | variable | variable 0.7658
w =25 | model 3 £ 0.7572
best fixed | 0.1445 | 0.2088 0.7576

Table 14: Mean Noise Reduction for 4 < R < 99

5.4.3 Minimizing Error on Deviation Angles

In this section, we compare the deviation angles along the circumference of a circle
to the numerical estimates obtained for digital circles. The situation is illustrated in
Figure 32(a).

Consider 3 consecutive pixels P:_;, P; and P;;; on the circumference of a digital
circle. The deviation angle at P; is denoted by ¢;. Now the line segments from
the center of the circle to these 3 pixels (partly represented by dashed lines in the
figure) have elevation angles of 6;_;,0;, and 6;; respectively. The intersections of
these line segments with the circle are the true circle points Q;_1,@;, and Q41 with
these elevations. Connecting these points by line segments defines a deviation angle
6; at Q;, for which ¢; is a numerical estimate.

The difference between é; and ¢; is the error on the deviation angle at the point
of interest. Qur goal in this section is to find the optimum parameters which will

minimize the r.m.s. value of this error, after smoothing.

CHAPTER 5. CONTOUR SMOOTHING 130

In terms of the pixel coordinates (z;,y;), the deviation angle ¢; is equal to

. = tan-l (yi+1 — ¥3)(&: — %) — (Tirr — z) (i — yi1)
b=t ((z,-ﬂ = z:)(zi — Ti1) + (Y — ¥i) (i — ye-z))) (37)

: Q,

Qi-l

BEST SMOOTHING P,
[N

30 0 0 &0 0
RADIUS OF DIGITAL CIRCLE (PIXELS)

(b) Best ay; for w =3

z)

R

2
7

&

?

KMS VALUES (RADIANS)
g ¢
——F

&

O T

£
T
":|. ‘.-,.
]

*

N -
[) 10 E) 0 % 10 o 0] 0 90 100

30 40 0 60 70 30 40 30 50 ki
RADIUS OF DIGITAL CIRCLE (PIXELS) RADIUS OF DIGITAL CIRCLE (PIXELS)

(c) Best a1; (solid), a2 (dotted) for w =5 (d) RMS error: w = 3 (dashed); w = 5 (dotted)

Figure 32: Best Smoothing to Minimize (8! — ¢})°.

To compute §;, we first obtain the elevation angles as §; = tan™!(y;/z;) and then

the coordinates of the circle points Q; as
(Z:,9:) = (R cosb;, Rsin 6;). (38)

Finally, é; is computed as in Equation 37, using (Z, 7) instead of (z,y).

CHAPTER 5. CONTOUR SMOOTHING 131

The best smoothing parameters were obtained for integer radii ranging from 4
pixels to 99 pixels, in steps of 1. The results are presented in Figures 32(b) for w = 3
and 32(c) for w = 5.

In section 5.3.3, for w = 3, the optimum value derived for a; was 0.2857; for w =
5, the optimum values derived for az; and ay, were 0.2381 and 0.1189 respectively.
These values are shown with dashed lines in Figures 32(b) and 32(c). Again, the best
smoothing parameters vary with the values of R. However, when we compute their
means for 4 < B < 99, the results obtained are very close to the predicted values.
Thus, for w = 3, az; = 0.2886; for w = 5, @37 = 0.2363 and azz; = 0.1232.

Figure 32(d) compares the r.m.s. values of the errors on the deviation angles
without smoothing (solid line) to the best values possible after smoothing with window
sizes w = 3 (dashed line) and w = 5 (dotted line).

(8 = D)ims

The noise reduction produced by smoothing is equal to 1.0 — m For
each value of the radius, we have compared the noise reduction achieved using the
optimum parameters to that achieved with the constant values ay; = 0.2857, for
w = 3, and ay; = 0.2381, ayr = 0.1189, for w = 5. The results are presented in

Figures 33(a) and 33(b) respectively.

;
B g

¢
¢

g
;&

5
Y
g

E
E

FRACTION OF RMS NOISE REMOVED
FRACTION OF RMS NOISE REMOVED
P
L]

E

:
E

&
£

o 10 0 0 0 0) °] %0 100 10 2 30 0 50 60 L 0 90 100
RADIUS OF DIGTTAL COIRCLE (PIXELS) RADIUS OF DIGITAL CIRCLE (PIXELS)

(a) Best aryy (solid); with 0.2857 (dotted) (b) Best aa;, @2 (solid); with 0.2381,0.1189 (dotted)

Figure 33: Fraction of RMS Noise Removed: (a) w =3; (b) w = 5.

As can be seen, the constant values predicted by our simple model yield noise

CHAPTER 5. CONTOUR SMOOTHING 132

reduction results which are very close to optimum.

For 4 < R < 99 and window sizes w = 3 and w = 5, Table 15 compares the
mean noise reduction of 3 methods as explained previously. The best smoothing
parameters derived from our simple noise model and the numerically determined best
fixed parameters are even closer than the 2 previous cases and their performance is

very nearly optimal.

Window | Method gy Q42 Mean noise reduction
optimum | variable) 0.770903
w =3 | model 0.2857 0.765716
best fixed | 0.2865 0.765732
optimum | variable | variable 0.910833
w =5 | model 0.2381 | 0.1189 0.906895
best fixed | 0.2386 | 0.1190 0.906917

Table 15: Mean Noise Reduction for 4 < R < 99

Finally, for w = 5, if one prefers to use ax; = 2 and a4, = } (computation-
nally convenient for deviation angle measurements), the mean error reduction level is
0.8832. This is very good but not quite as effective as the optimum methods previ-
ously discussed. A comparison of the error reduction with the best possible solution,

for every value of R, appears in Figure 34.

[
2

8
:

o
g

FRACTION OF RMS NOISE REMOVED

£

o1

Figure 34: RMS Noise Removed for w = 5: best case (solid); %, % (dotted)

CHAPTER 5. CONTOUR SMOOTHING 133

5.5 Conclusion

This chapter has considered the problem of optimum smoothing of 2-D binary con-
tours by local weighted averaging methods. These simple and effective methods are
still widely used. Furthermore, there are many applications where smoothing is per-
formed to improve the precision of specific measurements to be computed from the
contour points. In such cases, the smoothing parameters should be chosen based
on the nature of the computations intended, instead of relying on a single, general
‘optimality’ criterion. Thus our work was focused on optimum local weighted aver-
aging methods tailored for specific computational goals. We have considered three
such goals: obtaining reliable estimates of point positions, of slopes, and of deviation
angles along the contours.

To study the problem, a simple model was defined to represent 1-pixel random
noise along a straight horizontal border. Based on this simple model, an in-depth
analytical investigation of the problem was carried out, from which precise answers
were derived for the 3 chosen criteria.

Despite its simplicity, this model captures well the kind of perturbations which
digitization noise causes in the numerical estimation of various quantities along 2-D
binary contours even with arbitrary curvature. This was indeed verified, for window
sizes of w = 3 and w = 5, by finding the best smoothing parameters, using equivalent
criteria, for digital circles over a wide range of radii.

In this general case, the best smoothing parameters were found to vary according
to the length of the radius. Thus, in order to take full advantage of these optimum
filters, it would be necessary to compute local estimates of the radius of curvature for
groups of consecutive pixels along the contour, and then apply the best parameters
found for these radii. This would significantly reduce the efficiency of the smoothing
operation. However, it is not really necessary to go to that extent since the per-
formance of these varying-weight optimum filters can be very nearly approached by
methods with a fized set of parameters. The latter were derived by numerical compu-
tation, for a wide range of radii. And it turned out that their values were very close

to those predicted using our simple digitization noise model.

CHAPTER 5. CONTOUR SMOOTHING 134

These numerical computations with varying radius of curvature validate our pro-
posed model and confer added confidence to the results obtained from it. Researchers
requiring simple and effective local weighted averaging filters before making numer-
ical estimates of specific quantities can thus rely on this model to derive optimum

methods tailored to their particular needs.

Chapter 6
Curvature Feature Extraction

Our E4 numeral recognition system, with its 93.90% recognition rate and 1.60%
substitution rate, performed relatively well (see Table 1 for a comparison with other
individual systems on the CENPARMI database). To improve upon these results,
with the same general approach, requires an understanding of its most important
limits.

A careful analysis revealed that significant improvement could not be achieved
simply by fine-tuning existing classification rules or adding new subsets of such rules.
The system suffers from weaknesses in the preceding step, the structural feature
extraction stage, which need to be addressed on their own. Some important curvature
features are simply not extracted, or are diluted in noise, or are combined with other
neighbouring features when they ought to stand on their own. Overcoming these
difficulties was seen as key to the success of the new system.

In this chapter, we present the extensive work which addressed this aspect. The
first section introduces the feature extraction scheme of the original E4 system. To
determine whether this feature extractor was a sound starting point for improvement,
a comparative study of several curvature feature extractors and/or ‘corner’ detectors
was conducted; the second section of the current chapter discusses this study and
its results. Based on this confirmation, the specific weaknesses of our initial feature
extractor were investigated in detail and different avenues for solving its problems

were examined; this work is presented in section 6.3. Finally, section 6.4 offers an

135

CHAPTER 6. CURVATURE FEATURE EXTRACTION 136

overview of the new curvature feature extractor which is the foundation of our new

recognition system.

6.1 Feature Extraction in E4 System

In E4, preprocessing and edge extraction generate the following information:

the number of rows and columns in the digit image;

the area (black pixel count) of the body region;

a list of the (row,column) coordinate pairs for the external contour;

the area and minimum bounding box for each internal contour (hole) enclosed

within the body region.

Hence only minimal information is kept on holes, allowing the system to assess
their size and location without knowing their exact shape. On the other hand, full
information is available for the external contours which hold most of the useful infor-

mation for recognition.

6.1.1 Imitial Processing of Holes

The number and position of holes will be used as a first indication to narrow down the
search for the numeral’s identity in the final classification stage. However, there are
cases where the position of holes is awkward or their number is larger than normally
expected. Three techniques are applied in succession to handle this situation. First,
holes with an area of less than three pixels are discarded. Second, if there are more
than three holes, only the largest three are kept. Finally, if there is more than one
hole in the top or bottom part of the image, these holes are merged if they are nearby.
Details can be found in Legault & Suen [94], pages 29-32.

These hole-merging operations help to identify approximately 1% more samples.
They are particularly helpful for the digits ‘6’, ‘8’, and ‘9’. For these classes, respec-
tively 2.5%, 2.8% and 1.5% of the samples are affected.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 137

Figure 35 shows the result of the edge extraction process for an ‘8’ which initially
had five holes. However, pixel (8,22) was removed by the same preprocessing operation
as described in section 4.5.2, which reduced the number of holes to 4. The smallest
of them, the one delimited by edges 5 and 6, is then abandoned. Finally, the two
bottom holes are merged together. This digit was properly recognized by E4 as an
‘8’ with two (top and bottom) holes.

1 2
123456789012345678901234567

...é-.

WLILWLINININRIRINI NN P R L0 00~
WO WNF OWO~IOUIR WO

%

R

3

8o

Figure 35: The Preprocessing of Multiple Holes

6.1.2 Structural Features From Outer Contours

In E4, as in our new recognition system, the aim of the feature extraction process

is to capture the essential shape features along the external contours, i.e. to extract

CHAPTER 6. CURVATURE FEATURE EXTRACTION 138

those ‘significant’ concave and convex regions which will allow reliable identification.
Before the features are extracted, a simple contour smoothing technique is applied as
was described at the beginning of Chapter 5.

In Legault & Suen [95], 2 new method was presented for piecewise approximation
of contours with parametric cubics and quartics. The first phase of this method is
to partition the contour by selecting a small number of reference points. For the E4
recognition system, the extraction of structural features from the outer contours was
essentially derived from this selection of reference points.

Let [z,;] be the sequence of consecutive contour points starting at point : and
ending at point 7, and @; be the deviation angle, in radians, at point j. We define
an arc as a maximal sequence of contour points [k, k + L], with L > 0, satisfying the

following two conditions:
1. |¢x]| = 0.005
2. ¢J X ¢j+1 > 0.005, for j € [k, k+L— 1]

By "maximal”, we mean that the sequence [k, £+ L] is not a proper subset of another
longer arc. The length of the arc is L.

The first condition causes points where ¢; = 0 to be skipped; hence a new arc
begins only when the next non-zero value is encountered. The second condition
ensures that arcs are sequences of points where the angle change has the same sign.
Arcs with positive angle changes correspond to convex portions of the contour and
arcs with negative angle changes to concave portions. The second condition also
causes an arc to end when the contour becomes nearly straight again.

The algorithm examines the list of contour points and locates the arcs one by one.
For each arc, the algorithm computes the cumulative deviation-angle ®* = Zf;‘,f éis
it also computes ¢* and j* defined as ¢* = |¢;-| = max|¢;|, for j € [k, k + L].

Rule #1, generating almost all the reference points, is defined as follows. A
reference point is created within an arc when |®*| > 0.5. The contour point of index
j* is chosen as the reference point if ¢* > 0.75. Otherwise, the middle point of the arc
and its two neighbours on each side are examined; among these 5 points, the point j

for which |¢;—1 + ¢; + ¢;+1| is maximum is taken as the reference point.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 139

There are, in addition, three minor fine-tuning rules which can create or discard
reference points. Rule #2 will discard reference point =, if its ®*-value is less than 0.8
and if reference points (n — 1) and (n + 1) are less than 13 points apart. Conversely,
rule #3 will create an intermediate reference point between 2 consecutive reference
points generated by rule #1, if they are far enough and cumulative deviation angles
are large enough®. Finally, there are cases where contours are so simple and smooth
that the previous rules generate fewer than 2 reference points; then, rule #4 creates
a first reference point at the contour point j such that |¢;—1 + ¢; + @41 is maximum;
a second point is chosen half way further around the contour.

The overwhelming predominance of rule #1 can be grasped more precisely with
the following facts: on average, rule #3 generates only 1 new reference point per 14
samples; in some experiments conducted with the ITRI database with an improved
version of the E4 system, it was seen that dropping rules #2, #3, and #4 altogether
only caused a small 0.28% decrease in the recognition rate and a small 0.04% increase
in the substition rate.

For each arc region, this information is recorded: the starting and final points of

its associated arc, the value of ®*, and the location of the reference point itself, .

From Reference Points to Features

The next step is to determine features from reference points. Quite naturally, we
consider the region corresponding to each arc as a structural (curvature) feature. The
reference point itself is considered as the focal point of the feature. From now on, we
will use the expression ‘focal point’ to designate this point in the feature region.

Figure 36 illustrates the feature regions which are extracted by the E4 recognition
system?. The first and last points of each feature (arc) region are identified by small
empty squares and the internal points with empty circles, except for the focal point
which is a black-filled circle.

We now explain how feature regions are categorized. Of course, if #* < 0, we have

! These intermediate reference points must undergo more testing before being finally accepted.
For all the technical details, refer to pages 35-39 in Legault & Suen [94].
2 The contours of numerals displayed in this and other figures are those obtained after smoothing.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 140

Q.
° .QOOO? 5 'coo .od°°°3 000%6
SRR LU a e g 8
PR SR Y -
g 5 8: :
%0000° .o . .
< e
. =] (=]
a & gt o
o go® Cl-1-1-0
q.n g %Q god
‘. .°oo Do, o.ou
$00Be+e. . R %
o° ""+800e0° o Sl
Q [
(<] a
Q a
N Uo"'unoOJ
p .
o .
[.
o o
Q . [=]
o oo T [=3 .
O. . o OG
oo0* "’ Dot
(a) Feature Regions for a ‘2’ (b) Feature Regions for a ‘4’

Figure 36: Feature Regions Extracted by E4 system

a concavity feature; if 0 < ®* < 2.25, we have a ‘bend’ feature; finally, if ®* > 2.25
the feature region undergoes more testing to see if it qualifies as an endpoint.

First, two points are selected to obtain a width estimate. To choose these points,
we proceed backward and forward from the focal point until we find a contour point
where the deviation angle becomes negative, but no further than 5 contour points
away from the focal point. Let &g be the cumulative deviation angle between the 2
points found. We must have &g > 2.45. If so, the point obtained which is closest to
the focal point is moved further, at the same distance as the other one. Then the width
is computed as the Euclidian distance between these 2 points. This width divided by
the maximum dimension of the image must be less than the decimal fraction given
by the expression 0.18 + 0.15 x (&g — 2.45). In rare cases, when no endpoints are
detected with these rules, the algorithm verifies if pairs of nearby ‘bend’s could be
combined to form an endpoint. The width is then allowed to be as much as 25% of

the maximum dimension.
The expression 0.18 + 0.15 x (&g — 2.45) represents one way to strike a trade-off

CHAPTER 6. CURVATURE FEATURE EXTRACTION 141

between cumulative deviation angle and relative width, as factors deciding whether
a feature region qualifies as an endpoint or not. Conceptually, an endpoint region
should be relatively narrow and have a large ®5. In the above expression, we allow
the width of the region to be at most 18% of the maximum dimension of the image,

plus a tolerance which increases in direct proportion to how much ®g exceeds 2.45.

Merging, Ordering and Attributes of Features

There is not always a one-to-one relationship between extracted feature regions and
global shape features as humans would describe them. In fact, arc regions are associ-
ated with somewhat more local topological features. For example, the convex region
at the bottom of the ‘6’ in Figure 37 (a) is made up of three of our ‘bend’ curvature

features.

o . o
o o 0000

e 0 O
a L o

oo &

(a) Multiple Consecutive Bends (b) Direction of the Cavity Feature

Figure 37: Features of a Numeral ‘6’

To address this difficulty, consecutive ‘bend’s are merged together to form a single

new bend feature. The same approach is not taken for consecutive cavities, because

CHAPTER 6. CURVATURE FEATURE EXTRACTION 142

this more frequently leads to undesirable situations where distant and unrelated fea-
tures are merged.

The features are re-ordered, if needed, so as to begin with the topmost endpoint.
If there are no endpoints, we make sure that the list begins with a ‘bend’ feature.

For each feature region extracted, we record its type, its position, and the starting
and final points of the arc or arcs associated with it. The general orientation or
direction of the feature region is also computed. This is obtained as the vector sum of
a unit vector pointing from the starting point of the feature region to the preceding
contour point and a unit vector pointing from the final point of the feature region to
the following contour point. The cavity feature region of the ‘6’ above is enlarged in

Figure 37 (b) and the two unit vectors and their vector sum are displayed.

Brief Assessment

The feature regions extracted, with their associated focal points, are quite successful in
capturing endpoints as well as cavities and ‘bend’s. They permitted the E4 system to
obtain relatively good recognition results, for a single system. However, as mentioned
in the introduction to this chapter, they could not allow to do much better. In fact,
in some cases, the classification stage of E4 already had to compensate for some
feature extractor shortcomings; for example, merged consecutive bends occasionally
had to be ‘un-merged’ to test for missing endpoints or to correct for ill-positioned or
mis-oriented bends.

This was somewhat to be expected since more emphasis was put on developing the
classification stage of E4 than its feature extraction stage. The rules for extracting
feature regions were drawn from previous work, developed with another purpose (see
Legault & Suen [95]). Some modifications were made to the initial rules, but based
only on limited experiments with a small set of 52 samples representing various writing
styles for the 10 numerals.

To attain, with a single system, significantly higher reliability than E4 provided,
it was necessary to bring much more care and sophistication into the extraction of
curvature features from contours. The question arose whether or not the E4 feature

extractor was a good starting point for re-design and refinement. The next section

CHAPTER 6. CURVATURE FEATURE EXTRACTION 143

answers this question by reporting on a comparative experiment with a number of

well-known ‘corner detectors’ and other curvature feature extractor.

6.2 Comparative Study

In the literature, little is said about how features are extracted and there is generally
no assessment of how well the selected features are located and extracted by the
proposed method. Most publications tend to move onto the classification problem
rather quickly. Furthermore, when the system is finally tested, the limitations of its
feature selection and extraction are rarely mentioned although they could be largely
responsible for the rejected or misclassified samples.

While the focus of our comparative study is on handwritten numerals, we believe
our remarks and experimental results have broader applicability. In the main, they
were published in Legault & Suen [93].

6.2.1 Problem Definition

Our goal is to detect significant concavities and convexities of contours. To be more
precise, what is important here is the identification of regions of consecutive pizels
along the contours which correspond as closely as possible to the global shape features
identified by humans. For the ‘3’ of Figure 38, these regions can be roughly indicated
by the sequences of circles, delimited by square boxes. For now, we are not concerned
with the labelling of these regions as endpoints, smooth or sharp concavities etc.
Furthermore, we are seeking methods which generate their feature regions auto-
matically, without human interaction; the location and relative size of these regions
should be roughly invariant to rotation and scaling; the bottom of concavities and the
tip of convexities, especially endpoints, should be located with some accuracy (see
filled circles of Figure 38); and, finally, the methods should run very efficiently on a

general purpose computer.
Except where indicated, the notation used will follow the definitions of section

5.1.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 144

Figure 38: Global Shape Features of a ‘3’

6.2.2 Corners, Dominant Points and Curvature Features

The interest in corners (or dominant points) stems from the knowledge that much
information about the shape of 2-D objects is concentrated at points of high curvature
along their boundaries. Their detection is an attempt to capture the most striking
points of a curve, as perceived by humans. While some corner-finding algorithms
can be expected to perform poorly for the detection of long smooth curves along
boundaries, they should be able to detect well endpoints and sharper turns. Moreover,
some of the methods presented in this section are oriented towards curvature feature

detection in general.

Difference of Slopes (DOS) Methods

In O’Gorman [122], methods which estimate the contour curvature at a point based
on the difference between the slopes of 2 line segments which fit the data before and
after that point are called DOS methods. In these methods, the angle 8;, used for
curvature estimation at point p;, is the angle between vectors Vi and VF, where
V7 joins pi_m/2—s t0 Pi—m/2 and v stretches from p;ym/2 tO Pizm/2+s- These vectors
span an arc of length® s, and they are separated by a gap with an arc length of m.

The total length of the construction is { = 2s + m. Figure 39 illustrates the situation

3 Here we take the length of an arc as the number of v-vectors making up this arc.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 145

for s =5 and m = 2. Point p; is indicated with a filled circle.

Figure 39: Ilustration of DOS Methods

In Rosenfeld & Johnston [136], m = 0 and the curvature estimate is the cosine
of the supplement of our §. For a fixed s, the cosine estimates are computed at
every point for vectors of decreasing lengths s, s — 1, ...as long as the obtained
values increase. The maximum reached is taken as the curvature estimate and its
corresponding arc length determines the region of support. Finally, points which are
local maxima within (half) their region of support are kept as dominant points. To
improve this method, Rosenfeld & Weszka [137], performed local averaging of the
cosine values before determining the region of support and performing non-maxima
suppression.

In Freeman & Davis [53], m = 2—s.* The ‘cornerity measure’ of each point is based
on a local average of the f-values and on the lengths of the relatively straight regions
before and after the potential corner. This last factor appears important in human
perception as well. Beus & Tiu [18] propose 2 improvements to the Freeman & Davis
algorithm: first, they average the ‘cornerity’ measure at each point for several values
of s; second, they impose an upper bound on the lengths of the straight regions before
and after the corner. With these changes, they claim that the algorithm performs

4 A negative value of m means that the arcs spanned by the 2 vectors V;~ and V} overlap one
another.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 146

close to human expectations.

In O’Gorman [123], small positive values are used for m. Regions of the #-plot
which extend beyond the ‘zero-range’, defined as the curvature due to noise, corre-
spond to corners and curves along the contour.

In Rutkowski & Rosenfeld [138], m = 0 but V; and V} are defined differently:
Vi = Y wivicjmand VI = T2 wiviy; . A corner is defined as a point where 8
is a local maximum which exceeds a given threshold. In Cederberg [27], the v-vectors
are replaced by their slopes in linear combinations and the measure of curvature at
each point is taken as the difference between these combinations; furthermore, the
wj’s decrease exponentially with j.

It has been pointed out that methods with fixed parameters, such as the s and m
values above, are not appropriate when the features of interest exhibit different levels
of detail. To overcome this problem, Teh & Chin [161] suggest that the key aspect
is the determination of the region of support. To find the region of support for point
pi, they compute l;x, which is the length of the chord from p;_i to piik, and di the
perpendicular distance from p; to that chord. Starting with k£ = 1, k is incremented
as long as [;; increases and the absolute value of the ratio dix/l;x increases as well.
The final value of k& determines the region of support for p;. Using these regions,
Teh and Chin obtain roughly the same set of dominant points with 3 very different
measures of curvature.

Deguchi [37] proposes another solution. He uses a DOS method with m =0 and
several values of s. First, a value of s “large enough not to pick-up digitization or noise
notches” is used. The curvature maxima and minima at this scale are the potential
features of interest and their fine structure is determined by examining what happens

to these peaks in the 8-plot as the value of s is lowered.

Methods Based on Arc-Chord Distances

There are several methods in this category which are often used to find polygonal
approximations of planar curves. We briefly present 3 such methods here.
Ramer [129] adds points to a set of ‘break points’ until all contour points satisfy a

certain colinearity test. More precisely, let us say that we have a set of k break points.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 147

A chord is drawn from each break point to the next. Then, for each chord, distances
are computed from each point of the associated arc to that chord. The point, among
all contour points, for which this distance is largest and exceeds a certain threshold
is added to the set of break points and the process is repeated until no more points
can be found.

Ansari & Delp [8] use one of many versions of a split-and-merge algorithm. Start-
ing with an arbitrary set of break points, the ‘splitting’ part of the algorithm is similar
to Ramer’s method. The ‘merging’ part examines triplets of consecutive break points
B;_,, B; and B;;; and eliminates B; if all distances from points on the associated
arcs to the chord joining B;_; to B;4; are less than the given threshold.

In Phillips & Rosenfeld [127], an arc length s is chosen. For each boundary point
p;, the maximum distance dmaz; from this point to any chord whose arc has length
s and bhas the point p; in its interior is obtained. A point is considered a ‘partition

point’ if dmaz; is a local maximum and it exceeds a given threshold.

Methods Based on Gaussian Smoothing

Asada & Brady [10] use a parametric representation of the contour relating the ori-
entation of the tangent to the curve (i.e. the angle it makes with respect to a fixed
direction) to the arc length along the curve. Then they examine the convolution of
this contour representation with the first and second derivatives of a Gaussian fil-
ter, for different scale values (o). Knowing the filtered responses of basic curvature
changes (called ‘corner’, ‘smooth join’, ‘end’, ‘crank’, ‘bump’ and ‘dent’), it is possible
to locate them by examining the movement of peaks and zero crossings across several
scales.

Rattarangsi & Chin [130] use a parametric representation of the contour relating
the x-y coordinates of contour points to the arc length along the curve. Curvature
is computed using Gaussian-smoothed coordinate functions. Again the movement
of local maxima and local minima of curvature across different scales (o) is used to
locate their ‘I'’, ‘END’ and ‘STAIR’ models of curvature change.

Using a single value of o “based on a priori knowledge about the scale of the

boundary”, Ansari & Delp [8] follow the same approach to find the curvature maxima

CHAPTER 6. CURVATURE FEATURE EXTRACTION 148

and minima using Gaussian-smoothed coordinate functions. When they use these
points as the starting set for their split-and-merge algorithm presented earlier, they
call the resulting method “curvature-guided polynomial approximation”.

Comparison and Discussion

Early methods were often weak at detecting neighbouring corners and some more
recent methods have tried to correct this problem. Other criticisms have been made
of early methods. Some have argued that the need for the user to specify input
parameters is a shortcoming; or that features may exist at different scales on the
same contour and that a single set of parameters will not allow their appropriate
detection.

Since corners (or dominant points) are not rigorously defined, the comparison of
methods is not straightforward and the value of different algorithms is best judged
by direct examination of their results against the specific requirements of particular
applications. For example, the fact that features may exist at different scales on
the same contour does not mean that the users are equally interested in all of them.
Methods which have no input parameters and detect all corners at the finest level of
detail [161] may not be appropriate for many applications because they can pick up
too many noisy details; this is also the case for other recent methods which detect
some corners or clusters of corners and then resolve them to their finest level of detail
([37] [130}).

For DOS methods, O’Gorman [122] has shown analytically, using certain assump-
tions, that the signal-to-noise ratio is better for small positive values of m (DOS?).
For equal values of the signal-to-noise ratio, the same study shows that this DOS*
method yields narrower peaks than the Gaussian smoothing method, thus having
better signal detectability. Some empirical comparisons are also presented to support
these conclusions.

In recent years, other comparative studies have been published. While their con-
clusions are interesting, it should be kept in mind that the number of images used in
these studies is generally very small (from 2 to 8 images) and that image resolution is
much lower than is common with today’s technology. Teh & Chin [161] used 5 images

CHAPTER 6. CURVATURE FEATURE EXTRACTION 149

to compare their algorithm to 5 other algorithms: Rosenfeld-Johnston, Rosenfeld-
Weszka, Freeman-Davis, Anderson-Bezdek [6] and Sankar-Sharma [143]. Based on
the criteria they used, their algorithm did better, but the Rosenfeld-Johnston and
Rosenfeld-Weszka algorithms also performed quite well. On some images, the Sankar-
Sharma and Anderson-Bezdek methods could not locate many endpoints properly.

Rattarangsi & Chin [130] compared the same 6 algorithms to their scale-space
algorithm using a digital ellipse and one of the 5 images of the Teh-Chin study. Their
algorithm gives results which are comparable to Rosenfeld-Johnston. The perfor-
mance of the Teh-Chin algorithm on the digital ellipse was especially poor, yielding
a very large number of dominant points. '

Liu & Srinath [102] used 8 test-images to compare 6 corner-detection schemes:
Rosenfeld-Johnston, Rosenfeld-Weszka, Rutkowski-Rosenfeld, Medioni- Yasumoto [113],
Beus-Tiu and Cheng-Hsu [30]. Their results show that the Medioni-Yasumoto and
Cheng-Hsu methods are very sensitive to the smoothness of boundaries; furthermore,
the Cheng-Hsu algorithm often cannot properly localize corners but instead it detects
unwanted spurious corners. The Beus-Tiu method performed best on these images
and the Rosenfeld-Johnston algorithm also did very well.

Ansari & Delp [8] show that Ramer’s method and their own split-and-merge algo-
rithm are sensitive to the scale and orientation of the image. Their curvature-guided
polynomial approximation method is less sensitive to orientation but still sensitive
to scale. More robustness is achievable if only “cardinal curvature points” are kept;
these are the extreme curvature points when the boundary is smoothed by a Gaussian
filter with a large standard deviation (o).

Based on the above investigations, it appears that Rosenfeld-Johnston, Rosenfeld-
Weszka, Beus-Tiu, and Teh-Chin achieved some of the best results. However, we note
that the investigation reported in this chapter was conducted a few years ago; since
then several new ‘corner finding’ methods have been published and a few new com-
parative studies. See, for example, Kadonaga & Abe [69] and Zhu & Chirlian [174].

CHAPTER 6. CURVATURE FEATURE EXTRACTION 150

6.2.3 Curvature Features in Recent OCR Literature

We now examine the methods of detecting curvature features found in the recent
OCR literature and comment on their suitability for the solution of our problem as
defined in section 6.2.1.

In Ahmed & Suen [3], the detection of certain relationships between edges of four
basic types implies the presence of 2 kinds of “flundamental cavities”. In a horizontal
scan of the binary image, north- and south-facing cavities are obtained and a vertical
scan is needed to extract east- and west-facing cavities. However these cavities are
not appropriate for our purposes: a south-facing cavity, for example, may have any
number of east- or west-facing cavities on its left and right walls.

Mitchell & Gillies [114] and Kanungo & Haralick [71] extract features using the
tools of mathematical morphology. Their definition of cavities as regions surrounded
by strokes in at least 3 of the 4 cardinal directions, also does not suit our purposes
for the following reasons. First, their features are not sequences of points along the
contour, but 2-D regions of the image. This problem could be solved by using the
intersection of these regions with the image contour. However, such cavity features
are not invariant to rotation. In fact, for some orientations, cavities—no matter how
large—will go unnoticed: this is the case for the four cavities created by the inter-
section of a horizontal stroke and a vertical one. For word recognition, Duderstadt
et al. [42] use a number of features, including some “cavities” which are defined as
sets of background pixels having exposure to the north, south, east or west sides of
the bounding box®, but also to both the north and west sides (NW), the south and
west sides (SW) etc... In this last case, the contour sections associated with the sets
of background pixels may have no curvature at all.

In Ho et al. [62], global and local features are used for word recognition. Among
the local features are letter shape features, including curves detected using Deguchi’s
multi-scale curvature analysis.

D’Amato et al. [35], Commike & Hull [34] and Hull et al. [68] use a similar set of
features of 8 types based on the amount of curvature present at any point. Thus an

endpoint may be labelled as SPUR or STUB; a (less sharp) convexity as WEDGE,

5 These are identical to the cavities we just discussed.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 151

CURL or ARC; and a concavity as NULL, INLET or BAY. The first step in the
extraction of these features is the computation of a curvature estimate at each point
which is analogous to the DOS methods; the angle of curvature at point p; is given
by

i—-m/2 i+m/24s
0,‘ = Z: c; — Z Cj.
j=i—s—m[2+1 j=i+m/2+1

Lee et al. [86] presents methods of recognizing handprinted and degraded machine-
printed characters. For handprinted characters, they investigate two algorithms which
detect concavities to supplement their compressed line adjacency graph (c-LAG) rep-
resentation. One algorithm, which they call angle accumulation algorithm, might be
of use to our problem. Using differential chain code values as a measure of local
change in curvature, they define a concavity as “the longest sequence of perimeter
points whose angular change between consecutive elements are all non-negative® and
their accumulated sum is greater than 1”. This basic definition is modified to ac-
commodate a temporary angle change of —1, if its preceding and succeeding non-zero
angles are positive.

Finally, there is our own method as presented above in section 6.1.2.

6.2.4 Experiment and Results
Selected Methods and Implementation

Based on our appreciation of the suitability of the above-mentioned methods to
achieve our stated goals”, we finally compared 7 schemes. We chose 4 corner and
curvature detection algorithms: Rosenfeld-Johnston, Rosenfeld-Weszka, Beus-Tiu,
Teh-Chin; as well as 3 algorithms from the recent OCR literature: D’Amato et al.
Hull et al. Commike & Hull, Lee et al. Legault & Suen. The methods were im-
plemented based on the information given in their papers®. Results provided in the

literature were also reproduced to verify our implementations.

6 This definition incorporates within the concavity the straight portions of contour which may
precede and follow the actual curved portion.

7 And because of time constraints!

€ In some cases, additional information was obtained through private communications.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 152

It is obvious that each method selected could be modified and improved upon for
the purposes of our application. However, our goal in this experiment is to compare
these methods—as published, or with only slight modifications— for curvature feature
detection.

For the Rosenfeld-Johnston and Rosenfeld-Weszka methods, the user-supplied pa-
rameter was set to maz{/N/10,4}, where N is the number of contour points of the
blob under consideration. The lower bound of 4 was necessary for numerals composed
of several (smaller) connected components. We made the additional requirement that
a contour point must have a region of support extending at least 2 pixels on either side
to be considered as a dominant point. These minor changes improved the results®.

The Teh-Chin algorithm was implemented in its 3 versions, using different “mea-
sures of significance”. The results obtained were almost identical. Thus we only
retained the version using the k-cosine measure of significance for comparison pur-
poses.

For the approach of Lee et al, we did not eliminate diagonal-facing concavities,
since these do convey relevant information for handwritten numerals. To detect con-
vexities, all differential chain code values were negated.

For the Beus-Tiu method, the number of corners to be extracted is normally an
input parameter. Since this is not a reasonable request for our application, several
trials were conducted to select the other input parameters so that all corners detected
by the method could be kept provided their cornerity value exceeded a threshold value.
Taking several factors into account, the best results were obtained as follows: the Kj;-
values were computed using In(t;) and In(t;) for t1,t, > 2 and 1.0 otherwise; the
maximum length of straight arms was set to N/20 (/V being the number of contour
points); values of s, and s, were set to 3 and 5 respectively for N < 125, to 8 and 12
respectively for N > 425, and, for 125 < N < 425, we used s; = [(/N 4+ 25)/50] and
sz = s + 3. Finally, we used the cornerity value as such (and not its absolute value)
and retained all local maxima and minima with absolute cornerity value larger than
2.0.

For the method of D’Amato et al. parameters were set as given in U.S. Patent

9 Tests were also performed using N/15 instead of N/10 but the latter gave better results.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 153

4 628 532 (see Stone et al. [150]). We used n = 4 and m = 2. The following
modification was applied: in the original scheme, region-length is reset to 1 upon
P1 = P2 and P2 = P3 level transitions; since this corresponds to entering a more
convex part of a convex region, we decided to keep the original starting point and

continue incrementing the region length rather than resetting it to 1.

The Experiment

All methods were tested on 100 binary images of handwritten digits, selected from
a subset of 5 000 unconstrained handwritten samples, taken from the 20 000-digit
Montreal-Concordia database. This database was already mentioned in section 2.4.2
under the subsection heading ‘Transferring Expertise Across Databases’?. Ten sam-
ples were chosen for each numeral class, offering a variety of styles and sizes. Some
have more than one connected component. They are shown in Figure 40.

For each sample, regions of the external contour corresponding to the global shape
features to be detected were determined manually by two human volunteers (the
author and his supervisor, Prof. C.Y. Suen). For each such region, they recorded its
starting and ending points, as well as its ‘focal point’ (i.e. tip of an endpoint, or
bottom of a concavity or convexity); they also indicated whether the region was an
endpoint or a curved section.

The ‘fuzzy rules’ governing our selection can be summarized as follows: skip rel-
atively straight portions of the contour, including some with wiggles; group together
within a single region points where the direction change has constant sign. This last
rule is applied somewhat loosely; for example, a region may include short sections
with no direction change or even with small opposite direction change, if intuitively
the resulting set of points seem to belong to the same curved region. One example
was already given in Figure 38; others can be seen in Figure 41. In these figures,
the selected regions are the sequences of circles, delimited by square boxes; the focal
point of every region is identified by a filled circle.

The performance of each method is evaluated by comparing the feature regions

10 Note that in Legault & Suen [93], it is said erroneously that the 100 images used in this
experiment were selected from the CENPARMI database.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 154

S

<

v W& M AW Ry
’(b\)’b"&

DN/ 7 TP
e ® N B axowI)—o0

SR L fwy ~0
Nk WA RPN AT
< 206 \Jlx . Bk O
N\GOF O By &N ()
<SS Nr By An g O
DN~ B\ AN~ Q
N a N ow

~0

Figure 40: Numerals of Varying Styles and Sizes

that it detects to the feature regions established by the 2 human subjects. In order
to have a quantitative basis for comparison of the 7 methods, a ‘measure of goodness’
(MG) was computed for each method and each sample. Let n; be the number of
regions detected by humans for sample ¢ and R; be the set of the indices of all contour
points belonging to these regions. Furthermore, let S¥ be the set of the indices of all
contour points belonging to the regions selected for sample ¢ by method k and m¥ be
the number of regions detected. We define Q¥ = R;NSF and f = min{n;/mk, mf/n;}.
The ‘measure of goodness’ of method & in determining the global feature regions of
sample z is then defined as
MGt = (32 wi/ X wi)
jeqQk JER:

where w; is the weight associated with each point whose index belongs to R;. As

0000000000,
LY

()

CHAPTER 6. CURVATURE FEATURE EXTRACTION 155

€
. o
.. %0,
%
o %,
.o° o ..
o° o . D°°? Uc@ Ca g ooﬁ
o () . o . a o o
I o . - g 8 !
Q [-] - . o - -
- o . ioﬂ .o .goo% o .
- ° 3 o e S
2 . éo .
i, a-* SO J
. S0 S .
- - Y] - .
S L9 A
e 8 g
o © R, eeeee
B s & e =000 %ogd ?
- g ogeecccsceest T
%’ou o.w' b
5090000, , | n;% &
o"’:l °°° *ceoooe® & 8
o & B
3 § °o0.
o° S oo .
=) § o .
[e] .
o
() o o
% o° °0 8 tlg
O° 0° o]
©#000000000° %0a08

Figure 41: Other Examples of Feature Regions Selected Manually

defined, MG* will impose a penalty to methods for each feature-region point not
detected and also for finding a number of feature regions which is not the same as
that established by humans. Ideally, for each sample, the weights w; should depend
on the relative importance of the individual feature regions for recognition purposes
and on the importance of each point within its region. For simplicity, we have assigned
a weight of 5 to all points in ‘endpoint regions’ and a weight of 2 to all other points
in R;. In general, these weights could be adjusted according to their significance in
the intended application.

Since different numeral classes have different kinds of curvature features!!, some
methods which do well for some classes might not do as well for others. Thus, for
each method, we have computed the average ‘measure of goodness’ for each numeral
class. The results are presented in Table 16.

Separate measures of goodness were also computed taking into account only the

endpoint regions, as identified by humans. These are shown in Table 17.

11 Numerals ‘1°, ‘4’ and ‘7’ tend to have only straight portions and sharp corners; other numerals
have some long smooth curves.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 156
Method 0 1 2 3 4 5 6 7 8 9 | Overall
Beus-Tiu 046 0.84 068 0.70 0.86 0.73 0.56 082 0.64 0.62| 0.69
D’Amato 041 0.77 0.71 0.77 0.82 0.77 0.63 0.71 0.63 0.68 0.69
Lee et al 0.46 0.57 0.67 0.68 0.73 0.64 0.72 0.71 0.67 0.55 0.64
Legault-Suen 039 084 0.73 0.74 0.82 0.72 0.56 0.80 0.61 0.64) 0.68
Rosenfeld-Johnston | 0.42 0.58 0.63 0.72 0.64 0.62 0.55 0.62 0.55 0.55 0.59
Rosenfeld-Weszka 044 0.75 0.76 0.80 0.73 0.71 0.59 0.70 0.60 0.63 0.67
Teh-Chin 0.14 0.21 0.20 0.22 022 021 0.16 023 0.22 0.17 0.20

Table 16: Average Measures of Goodness for the Methods Tested
Method 0 1 2 3 4 5 6 7 8 9 | Overall
Beus-Tiu 0.89 0.86 0.76 0.77 0.87 0.85 0.78 0.80 0.81 0.80 0.82
D’Amato 0.87 0.86 090 085 0.87 0.85 0.86 0.82 0.77 0.84 0.85
Lee et al 0.82 0.70 0.83 0.71 0.70 0.78 0.90 0.69 0.76 0.78 0.77
Legault-Suen 0.89 0.89 093 090 091 092 0.87 088 091 092} 0.90
Rosenfeld-Johnston | 0.81 0.88 0.92 0.87 0.89 0.81 0.86 0.91 0.87 0.90 0.87
Rosenfeld-Weszka 0.93 0.85 092 098 096 0.87 0.88 0.97 0.99 0.93 0.93
Teh-Chin 041 036 0.36 034 032 035 032 032 035 0.31 0.34

Table 17: Average Measures of Goodness for Endpoint Regions Only

Analysis of Results

Among the methods for which results are presented in Table 16 , the Beus-Tiu (BT),
D’Amato (DA), Legault-Suen (LS) and Rosenfeld-Weszka (RW) algorithms give best
results in terms of their overall M G-values. The Teh-Chin (TC) method performs
very poorly. For the 4 best overall methods, the worst M G-values are obtained for
classes 0, 6, and 8. The best M G-values are obtained for classes 1, 4, and 7 (for LS

and BT), 1, 4, and 5 (for DA) and 1, 2, and 3 (for RW).

For endpoint detection, the RW, LS, and RJ methods achieved the best perfor-
mances. Again, the TC algorithm scored very low compared to all other approaches

tested. We note that the performance of LS is most uniform across numeral classes

CHAPTER 6. CURVATURE FEATURE EXTRACTION 157

ranging from 0.87 to 0.93; by comparison, the range of M G-values for RW is from 0.85
to 0.99. However, it should be noted that the overall statistics do not tell the entire
story. They are based on our definition of MG which has its shortcomings (see next
subsection). Thus it is important to examine the results of each method on individual
samples as well. Such scrutiny can reveal the specific strengths and weaknesses of the
methods studied. A few samples are now presented for the 4 best methods overall
(BT, DA, LS, and RW), which also illustrate well their main weaknesses.

Figure 42: Weaknesses in Beus-Tiu (BT) Method

The typical weaknesses o?the Beus-Tiu (BT) method are illustrated in Figure 42.
For the ‘1°, the focal point (filled circle) of the middle left endpoint is not well located;
also, a useless feature was extracted in the middle of the flat base. For the ‘7’, a
concavity was missed at the bottom right of the digit (under the transversal bar).
For the ‘8’, two cavities were not extracted: the left cavity in the middle portion and

a smaller top right cavity. Finally, for the ‘9’, the focal point of the top right endpoint

CHAPTER 6. CURVATURE FEATURE EXTRACTION 158

is again poorly located.

&
pey]
P | 3
Ny o,
- 0, Posoccoe et
i "o0geomenst""
P |
m Y
" ¥ P

-
*ea,

Figure 43: Weaknesses in D’Amato (DA) Method

The typical weaknesses of the D’Amato et al. (DA) method are illustrated in
Figure 43. For the ‘1’. three insignificant small cavities were extracted on the top
side of the large diagonal stroke, ; another such irrelevant feature was extracted
on the right side of the more vertical stroke. For the ‘3’, a large convex region was
undetected in the bottom right profile; also the top endpoint and the preceding ‘bend’
are combined into a single feature region. For the ‘6’ on the left, the convex region

which makes up all the left profile was completely missed! For the ‘6’ on the right,

CHAPTER 6. CURVATURE FEATURE EXTRACTION 159

the focal point of the middle cavity in the right profile is ill-positioned; in addition,

the same feature region extends too high into a straight portion of the contour.

§ ¢
!1 ooO ..'_.'
",30 oo.ooc oA .:. .
- o
Doecon
.............. oy
gn.a 0o '
3y} 3
S i &

Figure 44: Weaknesses in Legault-Suen (LS) Method

The typical weaknesses of the Legault-Suen (LS) method are illustrated in Figure
44. For the ‘0, the curved stroke at the bottom is not captured as a single feature
but as 2 consecutive cavities on the top side and 3 consecutive ‘bend’s on the bottom
side. For the ‘1’, the convex portion preceding the bottom endpoint is combined with
the endpoint into a single feature. For the ‘3’, again, the curved stroke in the bottom

half is split into 3 cavities on one side and 3 ‘bend’s on the other; also the location

CHAPTER 6. CURVATURE FEATURE EXTRACTION 160

of the focal point for the bottom endpoint could be improved. For the ‘9°, the large

convex region around the hole is again split into 5 smaller consecutive ‘bend’s.

Figure 45: Weaknesses in Rosenfeld-Weszka (RW) Method

The typical weaknesses of the Rosenfeld-Weszka (RW) method are illustrated in
Figure 45. For the‘4’, three cavities out of 4 were missed at the crossing of the
horizontal and vertical strokes. For the ‘7’, one cavity went undetected on the lower
side in the top left portion of the image and 2 more cavities were missed in the

middle again at the crossing of two strokes. For the ‘9’ on the left, the ‘bend’ and

CHAPTER 6. CURVATURE FEATURE EXTRACTION 161

cavity features making up the wiggle in the top right portion of the image were both
missed; furthermore, in the top left portion of the image, an enpoint region and the
immediately following ‘bend’ region were captured as a single feature for which the
focal point is strangely placed. For the ‘9’ on the right, again the location of the focal
point for the top curved endpoint is poorly chosen.

In summary, the LS method was found to be quite robust and reliable in the sense
that it generally detects some points within each and every feature region. Only once
is a feature region missed altogether. On the other hand, its major weakness is in
the extraction of long smooth curves. In general, such curved portions will not be
detected as a single global region; instead, as was seen in the examples, the global
curvature feature may be split into several consecutive subsections of those curves.

On the other hand, the BT, DA, and RW methods are better able to extract these
large curved regions as single features; and, on average, they capture a larger number
of points within any detected feature regions. However this advantage is offset by the
fact that they miss certain features completely. In addition, some features will have
poorly localized focal points (for the BT and RW methods, this will happen mostly
for endpoints whereas for the DA method it will occur mostly for cavities).

All fours methods (BT, DA, LS, and RW) also suffer from other common problems,
to varying extents. These include the detection of small, useless, feature regions and
the poor localization of endpoints when strokes have curved endings.

The Rosenfeld-Johnston (RJ) and Lee et al. (LE) methods suffer from the same
defects as the BT, DA, and RW methods, only to a larger extent. The definition of a
concavity (convexity) in LE includes the straight portions of contour which precede
and follow the actual curved portion. In some cases, these extensions may even cover
the early part of following regions of opposite curvature.

The poor performance of TC is linked to its detection of a large number of tiny
consecutive regions, thus preventing the method from extracting features at a higher,
more global, level. Even endpoints are often split into several regions which account

for the low M G-values of this method for endpoints as well.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 162

Improving Comparative Studies

To conclude section 6.2, we will say a few words on how comparative studies of
curvature feature extraction schemes could be improved. First we will return on our
‘measure of goodness’ and then we will comment on the problem of image sets for
testing.

As stated above, our ‘measure of goodness’ statistics were far from telling the

whole story. There are several weak spots in our definition of MG:

e There is no verification of one-to-one relationship between the regions detected
by a method and the reference regions established by the two human observers;
our definition rewards for extracting any point belonging to R;, the set of all
reference contour points and penalizes globally for detecting too many or too

few regions.

e A uniform weight is given to all reference contour points in a feature region
(5 in endpoint regions, 3 in ‘bend’ and cavity regions); the ‘heart’ of a feature
region (i.e. points located at and around its focal point) should probably be

given more weight than points further away.

e There is no penalty for detecting points lying outside of curved regions.

The first weakness mentioned above is indeed a major one. Because of this, we
could NOT vary the parameters of the individual methods tested and simply retain
the version which gave the highest M G-value. The actual feature regions extracted
for the set of 100 test images had to be carefully examined for the various runs:
sometimes higher M G-scores were obtained for qualitatively worse feature extraction
performance! The results presented in Tables 16 and 17 are the best performances of
the methods tested based on M G-values AND qualitative assesment.

One way of tackling the above weaknesses could be to replace MG-values for
each numeral class by a number of different measurements which would be obtained,
across numeral classes, but separately for endpoint, concave, and ‘bend’ regions. These

measurements might include:

CHAPTER 6. CURVATURE FEATURE EXTRACTION 163

the percentage of points in R; detected;

e the number of points not in R; which were also detected, as a percentage of

points in R;;

e the fraction of the regions of interest (endpoints, concave, or ‘bend’ regions)

which are completely missed by a method;

e the average number of regions of a method which overlap into a reference end-

point, concave, or ‘bend’ region;

e the average number of pixels (relative to digit size) separating the detected and

the reference focal points.

A more general problem regarding the evaluation of curvature feature detectors is
the lack of meaningful common benchmarks. Several studies, as mentioned previously,
focus on a very small set of images which may have ‘historical value’ but which are
generally unrelated to current real-life applications. In our work here, we have used a
larger number of images (100) from one application: handwritten numeral recognition.
It might be a good idea for researchers involved in concrete pattern recognition work in
various areas to create databases of images typical of their field, clearly identifying the
regions whose detection is key to successful classification in their applications. After
experiments and exchanges, some common standard datasets might be recognized as

references for testing new schemes.

6.3 Detailed Autopsy of E4 Feature Extractor

The preceding section has established that the E4 feature extraction scheme compares
favorably with other corner detectors and curvature feature extractors. Yet, it has
flaws which are partly responsible for the 1.6% error rate of the E4 recognition sys-
tem on the CENPARMI database (for which it was developed). Furthermore, these
weaknesses also account for a significant portion of the 5.10% and 5.03% error rates
achieved respectively on the Concordia-Montreal and ITRI (Taiwan) databases (See

section 2.4.2, under the heading Transferring Ezpertise Across Databases).

CHAPTER 6. CURVATURE FEATURE EXTRACTION 164

In view of our goal of developing 2 much improved recognition method for hand-
written digits, these serious shortcomings must be addressed. The feature extraction
process should be more reliable and more robust. By reliability, we mean the ability
to extract all the relevant and needed features for correct classification, regardless
of writing instruments, writing circumstances, image capture method and resolution,
etc. By robustness, we mean the ability to discard, at the same time, all that is not
relevant. In short and ideally, always getting what we need and only what we need.

This section carries out a detailed investigation of the shortcomings of the E4
feature extractor and points out avenues for improvement. To our knowledge, such
analysis has rarely been carried out. In the literature, once recognition systems have
been developed, there is generally no assessment of how well the selected features are
located and extracted by the proposed methods, of the irrelevant features retained by
these methods etc. However, in our experience, inadequate feature selection and ex-
traction is largely responsible for rejections and misclassifications, in methods relying
on explicit feature extraction.

There is yet another reason why such detailed analysis of feature extractor short-
comings should be of interest. The need to use larger training sets to ensure greater
recognition reliability makes it necessary to consider the automation of the training
process at one point or another. Some approaches, such as neural networks or func-
tional classifiers [48] are naturally geared to self-learning; but developing syntactic
or rule-based classifiers with automatic training is not obvious. Efforts towards this
challenging goal have shown that the noise effect is critical and remains an open prob-
lem in structural learning (see Nishida & Mori [119]). We believe that the selection
of reliable features and their robust and accurate extraction is the key to solve this

problem.

6.3.1 Data Used for the Investigation

Three hundred and seventy (370) samples were used in the study of the weaknesses
of the E4 feature extractor and to develop our new feature extractor (see next sec-
tion). To properly test for reliability and robustness, these samples were extracted
from 3 databases, collected in different geographical regions and digitized at different

CHAPTER 6. CURVATURE FEATURE EXTRACTION 165

resolutions.

This training data was composed of 5 training sets. The first 3 sets each con-
tain 100 handwritten numerals, 10 per class, selected blindly from the CENPARMI
database (166 PPI), the Concordia-Montreal database (200 PPI), and an ITRI-
Taiwan database (400 PPI). See Appendix A. The 100-sample set from the CEN-
PARMI database, called train_us, was composed of the samples from sets A and B,
having indices given by (407 + 20) for : = 0,1,2,...49. The 100-sample set from the
Concordia-Montreal database, called train_¢5000, was composed of samples extracted
from the 5000-sample free-style training set, having indices given by (50z + 25) for
i=0,1,2...99. The 100-sample set from the ITRI-Taiwan database, called train_tw,
was composed of samples extracted from sets TW-2 and TW-3, having indices given
by (20: + 10) for : = 0,1,2,...49.

The final 2 sets include a small number of ‘hand-picked’ samples from the CEN-
PARMI (38 samples) and ITRI-Taiwan (32 samples) databases, for which it had been
noticed in previous work that the feature extraction scheme was yielding particularly

poor results. They are called tough_us and tough_tw respectively.

6.3.2 Problems with Endpoint Extraction

In this section, we perform a careful examination of several types of difficulties en-
countered by the E4 feature extractor in dealing with end-regions. Ideally, the strokes
leading to end-regions have constant width, their edges are parallel, and the end-
regions —whether we idealize them as perfectly circular or as composed of two right-
angled corners- are expected to have an ®*-value of 7. See Figure 46. In real-life
data, of course, we encounter much greater variability and things end up being quite

different...

e The first difficulty may arise when a stroke curves in the vicinity of an endpoint.
We would expect to see, in addition to the end-region itself, two nearby feature
regions —one ‘Cavity’ and one ‘Bend’- on opposite sides of the stroke. However,
in some cases, there may not be a straight enough portion of the contour to

separate the end- and the bend-regions and both are detected together as a

CHAPTER 6. CURVATURE FEATURE EXTRACTION 166

co) e

(a)Circular End-Region (b)Right-Angled End-Region

Figure 46: Idealized End-Regions

single arc. This is illustrated in Figure 47(a) where the bottom endpoint and
the following bend-region are combined and in Figure 47(b)*? where the bottom
endpoint and the preceding bend-region are combined. In such cases, the value

of ®* is much larger than .

.................
.....
e
. ®
.®

B e
P d .. g ? .
g g a3 {m
s Bogege & R
(a) (b) (c) (d)

Figure 47: Defects in “E4” End-Region Extraction

For the sample shown in Figure 47(b), the value of ¢* was large enough to
properly locate the focal point despite the poorly located feature region and the
arc passed the width test to qualify as an endpoint. However, for the sample of
Figure 47(a), this problem was compounded: 1) the feature region was poorly
located; 2) because of this, the focal point (black circle) was ill-positioned within
the feature region; 3) because of this, the arc failed the width test and did not

qualify as an endpoint.

12 For these images as well as those of Figures 47(d), 48(a) and 48(c), only the problematic region
is shown to highlight the situation.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 167

The solution to this first category of problems in the extraction of end-regions
could be to detect and further examine arcs with ‘abnormally’ high values of

®*, trying to partition the arc into an end-region and a ‘Bend’.

e A second difficulty is that some regions which should be end-regions do not
quite make the 2.45 threshold on ®g. Simply reducing the threshold is not a
solution since this value already represents a compromise whereby some ‘true’
end-regions are missed and some ‘false’ ones are retained. An example of a
missed endpoint is provided in Figure 47(c), where all the extracted endpoints
are shown; the right extremity of the horizontal stroke has been missed. This
problem arises when endpoints occur in the vicinity of cavities. In these cases,
the smoothing operation performed on the contour tends to partially blend the
2 kinds of features, reducing the ®*-value for potential end-regions. A possible
solution is to conditionally reduce the 2.45 threshold value, in the presence of
nearby cavities.

e

......

L. .
®

.
"""
. .
. .
..........

.
-

oo

U' .

8‘oooood§ -

(a) (b) (c)
Figure 48: More Defects in “E4” End-region Extraction

CHAPTER 6. CURVATURE FEATURE EXTRACTION 168

e Occasionnally, what humans perceive as an end-region may be split into several
sub-regions. This third difficulty can be related to unusually wide strokes as in
Figure 47(d) but not always, as in Figure 48(a). To remedy such situations, we
must consider pairs and even triplets of nearby arcs and verify whether, taken

together, they satisfy the end-region criteria.

e The fourth difficulty consists in endpoint regions not being detected as such
because they miss the width criterion. The bottom region of the sample in
Figure 48(b) is one such case!®. The solution cannot simply be a relaxation of
this criterion (i.e. permitting a larger fraction of the maximum dimension of the
image as acceptable width) since it already allows certain regions to qualify as
endpoint where it should not (see last difficulty).

e Figure 48(b) also exemplifies a fifth problem. We see that the focal point within
the bottom region is incorrectly located. In Figure 47(a), a similar problem was
caused by poor region extraction, but the same explanation cannot be invoked
here. Rather it is the rule for choosing focal points within arcs which needs

reviewing.

e A sixth difficulty is the detection of end-regions which would be better left as
‘Bend’s. One such ‘false’ end-region is highlighted in Figure 48(c). This problem

also calls for the revision of the width measure and the width criterion.

The problems discussed above are the main ones encountered in the extraction
of end-regions. At this point, one might wonder why we should insist on solving
these problems from the contour representation of the numeral samples. Why not
simply rely on skeletons for endpoint extraction? To answer briefly, let us first recall
that for the great majority of samples, none of these problems exist. Also, our work
indicates that it is possible to deal with most difficulties in an efficient and logical
manner. Furthermore, skeletonization is a time-consuming process which has its own
shortcomings, even for endpoint detection, such as the creation of spurious branches

and endpoint erosion, especially for samples with wide strokes.

13 The feature extraction algorithm of “E4” initially found no endpoints at all for this sample.
The second attempt was successful in merging the 2 top ‘Bend’s into an endpoint region.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 169

6.3.3 Problems with Extraction of Cavities and Bends

We now briefly present some of the difficulties encountered by the E4 feature extractor
in dealing with curvature regions other than endpoints. These problems are more

frequent at higher resolutions (400 PPI), but they may also arise at lower resolutions.

e The first problem is exemplified in Figure 49 which displays the outcome of
feature extraction for 3 samples. Here we see that significant and extended
curvature regions can be left undetected: in Figure 49(a), most of the large
convex region at the top of the ‘9’ is missed; in Figure 49(b), the bottom cavity
on the left profile is totally missed; and in the largest piece of Figure 49(c), an
important ‘Bend’ on the left profile and its associated ‘Cavity’ region on the

right profile are both undetected.

..-""/——-\‘““-._

(2) (b) (c)
Figure 49: Large Curvature Regions Left Undetected

One avenue to solve this problem would be to keep track of the cumulative
deviation angle within inter-arc regzons (i.e. between the last point of an arc and
the first point of the following arc) and to develop new rules to create additional

features within inter-arc regions with large cumulative deviation angles.

e Figure 50(2) is an example of a second difficulty. Here the 2 cavities normally

present and typical of the narrower middle section of an ‘8’ are not extracted.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 170

These curvature regions are not as extensive as the ones illustrated previously
and their cumulative deviation angles are not as important. However, when they
go undetected, the size of inter-arc region which incorporates them is quite large,
relative to the maximum dimension of the image. One possible solution could
then be to relax the requirement |®*| > 0.5 (see Section 6.1.2) in the presence

of ‘large’ inter-arc regions.

(b)
Figure 50: Missed or Fragmented Feature Regions

o The top half of the ‘9’ in Figure 50(b) illustrates another difficulty: the break-up
of what humans would perceive as single large-scale feature regions into several
fragments. Thus the top convex region is not detected as a single large ‘Bend’
feature but as 4 consecutive ‘Bend’ fragments; and the associated large top

‘Cavity’ is split into 5 much smaller cavities®.

The reason for this fragmentation is the second condition imposed (on the de-
viation angles) for consecutive contour points to belong to the same arc (see
Section 6.1.2):

¢; X $i+1 = 0.005,forj € [k, k+ L —1].

14 In addition, a significant portion of that large concave region is also missed.

CHAPTER 6. CURVATURE FEATURE EXTRACTION | 171

Thus any very local straightening (#;41 = 0) or wiggle in the opposite direction
(i X ¢j41 < 0.0) causes the ‘accumulation’ of contour points within an arc
region to stop. Due to the noisy nature of binary contours, this is likely to
occur frequently in large convave or convex regions, splitting them into several
arcs. In the worst cases, as in Figure 49, none of these fragments makes the 0.5

threshold, causing the loss of an entire global feature.

[f; £
J
(b)

Figure 51: Merging Consecutive Bends or Cavities

(c)

To solve this fragmentation problem, rules must be established to determine
when the extracted arcs should be merged into a larger curvature feature and
how to accomplish the merge. Blindly merging all consecutive Bends or Cavities
is not the answer. In the E4 feature extraction method, these issues were not
really addressed. As a general rule, sequences of Bends were merged into a single
Bend but the same was not performed for Cavities. For Bends this approach
was suitable in most circumstances, but not all. Figure 51(a)!® provides an
example of where such blind merging can be counter-productive: what normally
constitutes the top left endpoint of a ‘4’ was instead detected as two distinct
nearby Bends which were then merged with the preceding and following Bend
regions, making up a huge and misleading feature region. Because of this blind
merging, the E4 feature extractor had to keep track of the fine structure of

merged Bends to untangle such situations. This is obviously not satisfactory

15 I'n Figure 51, only the features of interest are shown.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 172

and a more sophisticated and sensible approach should be devised.
Figure 51(b) displays pairs of consecutive Bends and Cavities which should not

be merged since their presence in these positions and with these directions is
typical of this type of ‘7’. Figure 51(c) shows three consecutive cavities which
again should not be merged; the first one, very close to the top left endpoint
should probably be dropped while the other two should be kept as distinct
features: the middle cavity is present in almost all ‘7’s while the last one is

caused by the crossing out of the ‘7’, a much less frequent occurrence.

e Figures 52 (a) and (b)'® are examples of another difficulty: the extraction of
small, parasitic, curvature features in the vicinity of an endpoint. In the first
case, the useless small feature is a Cavity; in the second, a Bend. Since these
features will in no way facilitate recognition (quite the contrary), we could
probably make use of the proximity of the extracted endpoint to either drop

the small feature or merge it with the endpoint region under certain conditions.

(2) (b) (c)
Figure 52: Problematic Small Features

e Figure 52(c) shows a sample with a very noisy border from which no less than 35

‘significant’ arc regions are extracted! This problem may have been caused by

16 Again, in these figures, only the features of interest are shown.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 173

thinner ink and/or porous paper. While infrequent, it is not a unique situation.
It might be possible to take advantage of the regularity of the ‘wiggles’ along

the edges of the stroke to remove most of this noise.

6.4 The New Feature Extractor

In this section, we will present the different aspects of the new feature extractor.
The basic approach remains the same as that of the E4 feature extractor, namely
a bottom-up approach, where the processing begins at the pixel level by computing
deviation angles along the contours of numerals. Some specific elements are also kept
in the new scheme: contour smoothing, the same definition of an arc and of its ®*-
attribute; the same thresholds for keeping an arc as a significant feature (0.5) and for
submitting it to end-region testing (2.25).

However, the new feature extractor is much more complex and sophisticated!’
at capturing the significant curvature features along the contours of numerals, at
capturing them in their entirety rather than in fragments, and at getting rid of several
small and meaningless features which the old system was extracting. Because of this
complexity, we cannot give the full details of the system in this section. The final
reference in this respect is the C program itself.

Of course, when we proceed upwards from the pixel level, we cannot claim that
there necessarily exists a set of geometric, topological, or morphological relations
which inherently define what will constitute a significant shape feature at a much
higher level. It has long been known that corners or regions of high curvature are
perceptually striking to human beings (Attneave [11]). But one cannot infer from
this knowledge that any region which is small or not highly curved is necessarily
without significance for any recognition task. In handwriting for example, numerals
traced by some writers differ significantly from their idealized models. Thus a feature
which normally should be striking at a certain position could be attenuated very
much or even absent. To a human reader, the presence of even a small feature in that

position can then be quite significant, given the high-level knowledge that something

17 The file which contains the code for this part of the system is 4446 lines long.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 174

is expected there.

Because of this, even if we want to get rid of as much small meaningless features
as possible, we must proceed with caution: it is preferable to keep some meaningless
features initially rather than risk removing too many small features, including some
significant ones. This is especially important given our goal of a highly reliable system.
With this last goal, it is better to confirm in several ways the identity of a numeral,
even through —at times— small but significant features. And if recognition fails because
the extractor has retained useless features, the system can then try to filter them out
and attempt classification once more.

We now provide insight into the various aspects of the new feature extractor.
In very broad terms, we can say that the process consists, for each of the external

contours making up the numeral, of the following steps:
o Computation of the deviation angles at each contour point;
o Extracting the features from the contour:

— Extracting arc regions
— Finding the focal point of an arc
— Processing arcs to extract more global features:

* Merging nearby convex (Bend) arcs

* Testing for endpoints

* Splitting very large convex arcs into Bend-End or End-Bend feature
pairs

* From arcs to Bend or Cavity features
o Conditionally merging consecutive cavities and bends

e Obtaining the direction of every feature

CHAPTER 6. CURVATURE FEATURE EXTRACTION 175

6.4.1 The Computation of Deviation Angles

In the E4 system, before calculating the deviation angles, the contour point coordi-

nates were smoothed twice based on the formula

p® = Z el k=12 (39)

= —1
Equivalently, as described in the introduction to Chapter 5, we could have used

a single pass of a triangular filter with window size w = 5 and weights equal to
12321

919197979/"

In our new recognition system, smoothing is not performed explicitly but rather
implicitly in the computation of the deviation angles ¢;. Furthermore, varying amounts
of smoothing are applied depending on image size/resolution, and the size of the im-
age fragments under consideration. More precisely, for tiny blobs having fewer than 7
contour points, the ¢;’s are computed without any smoothing. Otherwise, the window
size of the smoothing operation depends on the number of rows n_rows in the image:
w = 5 is used for n_rows < 45; w = T is used for 45 < n_rows < 90; and w = 9
is used for n_rows > 90. When the window size is determined to be 7 or 9, based
on n_rows, it can still be reduced to w = 5 in the case of very small blobs!® to avoid
oversmoothing.

We have decided not to use the optimum filters as determined in the preceding
chapter. Instead, ¢riangular filters are used for each window size (5, 7, and 9). The
first reason is that we do not have the optimum filters for deviation angle measure-
ments for window sizes 7 and 9. The second reason is that triangular filters allow
special computer efficiency for the computation of deviation angles; we will discuss
this below. Finally, we note that triangular filters, even though not optimal, offer
excellent performance for removing noise from binary contours. In Section 5.4.3, it
was shown that for digital circles of various radii the triangular filter using w = 5 with
weights (é, %, g-, %, é) provided a mean noise reduction level of 88.32% compared to
90.69% for the empirically determined best fixed-weights method, using a4, = 0.2386
and a4, = 0.1190.

18 The exact criterion used to determine ‘very small blobs’ is when the number of contour points
is smaller than twice the window size (14 or 18).

CHAPTER 6. CURVATURE FEATURE EXTRACTION 176

We now explain how the deviation angles are obtained. At first, let us assume
that contour smoothing is performed explicitly. Using triangular filters, the smoothed
coordinates are first obtained as follows:

> ntl-ljil (Tigir Yies) (40)

f = (zlyl) =
pz (T y) Pl (n+1)2

The value of n is simply 2, 3, or 4 corresponding to window sizes 5, 7, or 9 respectively.

%

Defining dz} = z! — z!_; and dy! = y! —y!_,, the deviation angle ¢; is then computed

as:

_ (dzldyl,, — dz! ,dy!
;= t 1 t - Jt4-1 14199t . 41
¢ - (dz{-d:z::-_,_l + dyfdyf-n) (41)

Reducing Computation Costs

The value of ¢; is needed for every contour point of every numeral image. Thus any
significant savings in its computation is of special interest. From the last 2 equations,
we first note that each of the 4 products involved will contain a factor 1/(n+1)* which
will then cancel out; thus we could simply drop the 1/(n + 1)? factor in computing
Equation 40. But actually, it is not necessary at all to first derive the smoothed
coordinates. The last equation indicates that only the values of the dz’s and the dy’s
are needed to calculate the ¢;’s. In Appendix E, we show that for our triangular filters
the (dz}, dy!)’s can be obtained recursively, at a very low and fixed cost regardless of

the window size used:

(dzipr, dyiy,) = (dzi,dyl) + (n—_:l—)g- ((Zizn-1,Yi—n-1) = 2(Zi, ¥:) + (Titnt1, Yitns1)) -
(42)

For a window size of 5, this technique for computing the ¢;’s represents approxi-
mately a 50% reduction in computation cost compared to first getting the smoothed
coordinates and then obtaining the (dz},dy!)’s and ¢;’s. For window sizes of 7 and
9, the savings are even more important. The disadvantage is that we no longer have
the smoothed coordinates for every contour point. But contour point coordinates or
distances between contour points are needed only sporadically in feature extraction
and classification. Thus our new system will explicitly compute smoothed coordinates

only for those few contour points where it will be of interest.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 177

6.4.2 The Extraction of Arc Regions

The basic definition of an arc adopted in the E4 system (see Section 6.1.2) is kept for
the new system. The 2 conditions presented at the beginning of Section 6.1.2 remain
valid with the very minor change of replacing the ‘>’ signs with ‘>’. However, to
correct defects identified previously, additional arcs are extracted from certain inter-
arc regions; and consecutive arcs can also be merged into a single arc.

The extraction of arc regions from an external contour begins with the search
for a starting point at which we can safely begin looking for the first arc!®. This is
the first point 7 at which ¢;_1¢; < 0.005. From this safe starting point, the system
searches for the first significant arc according to the old rule #1 (i.e. |®*] > 0.5). The
degenerate situations where no safe starting point or no first arc can be extracted are
handled as per rule #4 of the old system (again see beginning of Section 6.1.2).

Other significant arcs are extracted according to old rule #1. However, under cer-
tain conditions, each pair of newly extracted consecutive arcs meeting the [®*| > 0.5
criterion may undergo further testing; this testing may result in the creation of an
additional significant arc in the inter-arc region of the pair. Let ®},,. be the cumu-
lative deviation angle of the inter-arc region?®, point_gap be the number of contour
points within the inter-arc region, and maz.dim be the maximum dimension of the
image. The conditions for further testing are as follows:

if |®%,,..| = 0.9
GET_-ARC_FROMINTER-ARC
else if (|®%,s.-| = 0.6) and (point_gap < 0.55 maz_dim)
GET_-ARC FROMINTER-ARC
else if point_gap > 0.55 maz dim
{ SCRUTINIZEINTER-ARC
if ("No new arc from SCRUTINIZE”) and (|®},,.,| > 0.75)

GET-ARC_FROM.INTER ARC
}

19 We cannot assume that the first point generated by the contour extraction scheme is such a
safe starting point, since it could happen to be right in the middle of a significant feature region.
20 @y, is the sum of the ¢; from the last point of the first significant arc to the first point of

inter

the following significant arc.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 178

The function GET_ARC_FROM_INTER_ARC is responsible for extracting 22
additional arcs from 19 samples in file frain_us, 52 additional arcs from 37 samples
in file train_¢5000, and 77 additional arcs from 47 samples in file train_tw. The more
sophisticated SCRUTINIZE INTER_ARC is called upon almost as frequently but
is more selective at creating new arcs: with file train_us, it is called for 84 samples
but creates an additional arc in only 14 cases; with file train_g5000, it is called for
59 samples but creates only 9 new arcs; finally, with file train_tw, the numbers are 99

and 11 respectively.

The Function GET_ARC_FROM_INTER_ARC

In general, this function is called when the absolute cumulative deviation angle ®},.,
of an inter-arc region is too large. The goal of the function is to determine where this
curvature is mostly concentrated and to create an additional arc in that portion of

the inter-arc region. More specifically, we have the following major steps:

e Determine the deviation angle tolerance
if |®7,...1 <0.9
tolerance = 0.125 x ®7,.,
else if ®7,,.. > 0
tolerance = min (0.5, 0.2 x ®%,,.,

else

tolerance = max (—0.5, 0.2 x &;,

inter

e From both ends of the inter-arc region move towards the middle, skipping con-
tour points as long as the cumulated deviation angle of skipped points does not
exceed the tolerance. The function also uses a look-ahead approach to determine
if the cumulated deviation angle has only temporarily exceeded the tolerance
and will again fall below the tolerance at some further point. If this is the case,
it keeps skipping contour points. We define inner_point_gap as the number of
contour points within the inner portion of the inter-arc region so determined
and 9},

¥ ner as the cumulated deviation angle for the inner portion only; we also

CHAPTER 6. CURVATURE FEATURE EXTRACTION 179

define CURV = (Point_ﬁi"/‘,:‘lz —my - Finally we determine the focus (see Section
6.4.3) of the inner portion and compute ®%,,,; the sum of the deviation angles

at the focal point, at the preceding and at the following points.

e Exit without creating a new arc
if ((CURV + |®%,...|) < 2.85) and (iZncr=pzint-gap -, 75) QR

inter point_gap
if ((CURV + |®jer|) < 2.50) and (FRIEZY=22 > .65)

e Exit without creating a new arc

if (®%Focat/ Dlaner < 0.125) and (|®%..| < 0.8) OR

nner

if (®%ocat/ Bfaner < 0.25) and (|®%e,| < 1.0) and (CURV < 3.0)

nner

e Otherwise, create a new arc spanning the inner portion of the inter-arc region

determined above.

Figure 53 shows an example of features missed by the old feature extractor but
now captured with the help of the GET_ARC_FROM_INTER_ARC function.

(a) E4 Feature Extraction (b) New Feature Extraction

Figure 53: New Bend and Cavity Captured by GET_ARCFROM_INTER_ARC

CHAPTER 6. CURVATURE FEATURE EXTRACTION 180

The Function SCRUTINIZE_INTER_ARC

In general, this function is called when the absolute value of ®3,,., is less than 0.9
but the point length of the inter-arc region is larger than 55% of maz_dim. Here a
more sophisticated approach is applied to determine if an arc is present and, if so,
its exact location. This method relies on the extraction of subsequences from the
inter-arc region. A subsequence is a sequence of contour points with same-sign and

non-zero deviation angles. More specifically, we have the following major steps:

e Subsequences with absolute cumulative deviation angles |®},,| not less than

0.25 are extracted from the inter-arc region.

e Consecutive subsequences with same-sign ®3,, are merged together if their con-

tour point separation is less than 10% of maz_dim.

¢ Subsequences with maximum cumulative deviation angle ®},;,..,, and minimum

cumulative deviation angle ®3,;,.; are obtained.

o If &7 < -—-0.6

submin

Create new arc in that subsequence
else if ®%,,,... > 0.6

Create new arc in that subsequence
else if &%, ... < —0.325

EXAMINE FURTHER. (might create a new arc or not)
If NoNeuArcCreated and (85,4, = 0.4)

EXAMINE_FURTHER (might create a new arc or not)
o EXAMINE FURTHER:

— If the subsequence is at the very end of the inter-arc region (no more than
0.075 x maz_dim contour points away from the preceding or following arc)
AND if = ,2 is of sign opposite to the ®* of that arc

sub

Discard the subsequence

21 Within EXAMINE_FURTHER, &, stands for ®3,;,.;, or for ®;,; ..., whichever is being
examined.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 181

— If possible, expand the subsequence at both ends, incorporating contour
points with ¢; = 0 and following ones as long as no ¢; of sign opposite
to that of ®Z, is encountered. Let the cumulative deviation angle for the

expanded subsequence be denoted @},

- If IQ:ub-l-l Z 0.6

Create new arc in expanded subsequence

— Otherwise, the method takes into account the point length of the arms on

both sides of the subsequence to evaluate the significance of that sub-arc??.

+ At each end of the subsequence, the arm is that portion of the con-
tour in which EITHER there is no subset of consecutive points with
absolute cumulative deviation angle larger than 0.10 and sign oppo-
site to that of ®%,,; OR such a ‘wrong-sign’ subset may be included
within the arm if it reaches no further than 10% x maz_dim contour
points away from the subsequence and is immediately countered by
an at least equally important subset of contour points with cumula-
tive deviation angle of the same sign as ®%,. Let arm; and arm; be
respectively the point lengths of the arm preceding and the arm fol-
lowing the subsequence; and let ®%,;, .-, be the cumulative deviation

angle of the contour portion spanned by the subsequence and its two

arms.
* If IQ;uHarmsl + % 2 0.75

Create new arc in subsequence.

Figure 54 shows an example of a feature (middle right cavity of an ‘8’) missed by
the old feature extractor but now captured with the help of the SCRUTINIZE_INTER-ARC

function.

22 The importance of this factor was also taken into account in the ‘cornerity measure’ of Freeman
& Davis [53].

CHAPTER 6. CURVATURE FEATURE EXTRACTION 182

(2) EA4 Feature Extraction (b) New Feature Extraction

Figure 54: New Cavity Captured by SCRUTINIZEINTER_ARC

6.4.3 Finding the Focal Point of an Arc

The method followed in the E4 recognition system to select a focal point for each arc
region was presented in Section 6.1.2. In our new system, a different approach is used
to correct problems discussed in Section 6.3.2.

First, a cumulative deviation angle threshold ®};..,, is computed as a fraction of
®*; the fraction is chosen as 0.33 if > 2.25 and 0.4 otherwise. Using s and f to
denote the indices of the starting and final points of the arc, let k, be the minimum
k such that IZ;?:, ()| = Bfpreqn; furthermore, let k¢ be the maximum k such that
| E,f:k #(5)| = ®luresn- The focal point is chosen as the middle of the sequence [k, ky]-
This criterion provides better focal point location for the sample of Figure 48(b) and
many others. In particular, in the case of composite end-regions as in Figure 47(d),
it selects intuitively correct focal points. Illustrations of the various improvements

provided by the new feature extractor are given in Section 6.4.11.

6.4.4 From Arcs to More Global Features

In our new system, consecutive arcs with same-sign ®* may be merged under certain
circumstances; thus an arc is not stored as a new entry in the feature list unless it
appears that the associated feature region has been completely reconstructed and

does not extend any further. Note that a merge count C keeps track of the number of

CHAPTER 6. CURVATURE FEATURE EXTRACTION 183

original arcs making up a merged arc?®®. The processing of significant arcs to obtain
features considers various situations involving triplets of consecutive significant arcs
labeled are;, arc,, and arcs.

In general, the most recently extracted arc is in the arcs role i.e. the last of the
considered triplet. When all tests have been applied to the triplet and depending on
the results, the arcs trickle down one position in the triplet, with a newly extracted
arc becoming the new arcs. In our implementation, when an arc is in the arc; role
it is already established that it is not an endpoint feature and possible merges with
preceding arcs have already been investigated. Of course, we cannot be certain that
the very first arc extracted could not have combined with preceding arcs; verifying
this possibility is delayed until the feature extraction process is completed. In our
implementation also, endpoint testing is applied to an arc when it is in the arc; role.

We now describe the major steps involved in testing every triplet of arcs. To
this end, we introduce the following notation. Let @}, ®3 and @3 be the cumulative
deviation angles of arc;, arcz, and arcs respectively; and let C;, Cz, and C3 be their
respective merge counts. Furthermore, let gap,_2 be the point distance between the
last point of arc; and the first point of arc, and let ®},,,.,_, be the cumulative
deviation angle between these points; and finally, let gaps_s and ®},.,,_3 be the

equivalent quantities defined between arc; and arcs.

o If (&> 2.25) and (C; < 3)
CHECK_END (See Section 6.4.5)
If successful, EXIT

e If arc; and arc; clearly do not belong to the same feature (@] x ®; < 0), store

arc, in the feature list as a feature on its own.

e If arc, and arcs and/or arc; are nearby Bend’s, their possible merging is inves-
tigated. One objective of this step is to reconstruct wide endpoint regions which
might have been extracted as 2 or even 3 nearby Bend’s. The first attempt is

at merging arc; and arcs; this is done if both of them together are very likely

23 The merge count C is set to 1 when an arc is initially extracted.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 184

to constitute an endpoint region and if arcs on its own does not appear to be
an endpoint region. If the 2 arcs are merged, the resulting arc, is tested for an
endpoint. If the endpoint testing fails or if arc, and arcs were not merged ini-
tially, an attempt is made at merging arc; and arce; if this merge is successful,

the resulting arc; will also be tested for an endpoint. More precisely, we have:

— If (5 + ®5 + Brero—z > 2.55) and (gapa—3 < 0.10 x maz.dim) and
(®F tera—3 > —0.5) and (@3 < 2.35)

m

Merge arc; and arc; into arc; and extract a new arcs;
fC; <3

CHECK_END

If successful, EXIT

— If arc; and arcs were not merged OR if they were merged but CHECK_END

failed to produce an endpoint, consider merging arc; and arc;

* Avoid merging them if either arc; is a small Bend immediately pre-
ceded by a small ‘counter-balancing’ cavity or if arc; is a small Bend
immediately followed by a small ‘counter-balancing’ cavity; such a
‘wiggle-pair’ is marked and most likely filtered out together at a later
stage. In this case, EXIT

* If (gap1—2 < 0.10 X maz_dim) and (®},;.,1_o > —0.5)
Merge arc, and arc; into a new arcp and mark arc; as now vacant;
If (®3 > 2.55) and (C2 < 3)
CHECK_END

If successful, EXIT

e If arc, has not been marked vacant, it could not be combined with other arcs,

therefore store it into the feature list as a feature on its own.

When all arcs have been extracted and all arc triplets have been processed in
succession as outlined above, the system examines the last inter-arc region which lies

between the final contour point of the last feature and the initial contour point of the

first feature. If conditions are met, functions GET_ARC_FROM_INTER_ARC and

CHAPTER 6. CURVATURE FEATURE EXTRACTION 185

SCRUTINIZEINTER-ARC might create a final arc to be processed in that inter-arc
region.

Finally, a function called SKIP_.B_.C_NEAR-E is called to detect and skip small
bends or cavities which are very close to endpoints. This affects 6% of samples in
file train_us, 24% of samples in file train_tw, and 13% of samples in file train_g5000.
Omitting the technical details, the criteria used are as follows:

- the feature near the endpoint must be small enough;

- the distance between the small feature and the endpoint must be small enough;

- the ®*-value for the small feature must be low;

- the first feature preceding that feature pair must be far enough;

- the first feature following that feature pair must be far enough;

- the combined ®*-value of the endpoint and small nearby feature must be within
acceptable bounds.

In some cases, the small skipped feature is taken into account in the recomputation

of the endpoint’s direction.

6.4.5 From Arc to Endpoint (Function CHECK_END)

In general, this function is called to test arc; on its own when its cumulative devia-

tion angle ®} is larger than 2.25** and its merge count C; does not exceed 3. We now

outline the major steps involved:

o If ®; < 2.55 and ¢-values are positive at the contour points immediately pre-
ceding and/or immediately following the arc; region

Extend arc; to include one or both of these points

o If 35 < 2.35

EXIT

24 A more restrictive requirernent of 5 > 2.55 is occasionally imposed before calling CHECK_END
when successive Bends have been merged.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 186

o If 7 < 3.9%

— If ((C; =1) and (®; > 7)) OR ((C2 > 1) and (@3 > 3.9))
* If focal point of arc, is asymetrically located within the arc, shorten
arc; at one extremity to prevent possible failure of the VERIFY _WIDTH
test; if endpoint testing fails nevertheless, the original extent of the

arc and ®3-value will be restored.

— If the contour point length of arc; is larger than 0.55 x maz_dim

EXIT
— VERIFY_WIDTH (See Section 6.4.6)

— If width test was successful

If &5 > 2.55
Store arc; in the feature list
Store arc; as an endpoint in the feature list

Otherwise
test for CONDITIONAL_ENDPOINT (see Section 6.4.7)
If successful

Store arc; in the feature list

Store arc; as an endpoint in the feature list
e Otherwise

— If (®5 > 5.25) and (arc; spans more than half the external contour being
processed)
EXIT

— Check if arc; is an End-Bend or Bend-End composite arc (see Section

6.4.8)

In concluding, we note that as with the E4 system, the new feature extractor tests

an arc region for endpoint detection when ®* > 2.25. However, the final requirement

25 Qccasionally, larger values are tolerated when resulting from purposely merged Bends, as the
system is then clearly not dealing with an End-Bend composite region extracted as a simple arc.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 187

®; > 2.55 is more stringent than that of the earlier method; only when a nearby
cavity is present is this requirement relaxed to ®; > 2.35. Also, it appears that
arcs with ®3 values anywhere between 2.35 and 3.90 may qualify as endpoints. The
extreme values of this very broad interval were chosen experimentally but they are
not arbitrary; significantly, their median value is 3.125, which is very close to .

6.4.6 Endpoint Width Criterion

The problem of finding two contour points to estimate the width across the potential
endpoint stroke is treated differently than in the E4 approach. Instead of using a
fized value of 5 for the maximum displacement before and after the focal point of the
arc, a fraction of SW, the estimated stroke width (see Section 4.4.1), is used. More

exactly, let Dg = max (4, 0.8 x SW). The new method proceeds as follows:

e If the first and/or the last point of arc, are less than Dg contour points away
from the focal point of arc,, they are moved further until either that point

distance is reached or a contour point with negative ¢; is encountered

e The contour point extremity of arc, which is closest to the focal point is moved
further away until both extremities of arc, are equally distant from the focal
point

o The relocated contour point extremities of arc, are smoothed using a triangular

filter with window size w = 5 and weights equal to (%,%,3,2,2

e The width estimate is taken as the Euclidian distance between the smoothed
points, plus I to account for pixel width. The endpoint width criterion is con-
sidered passed successfully if either

width <190 x SW or
(width < 0.175 x maz.dim) and (width/SW < 2.9 +0.375 (B — 2.35)

Note that the fraction of maz_dim used in the very last test (0.175) is more
restrictive than what was used in the original E4 method (0.18 +0.15 (@~ —2.45) and

even 0.25 in some cases!).

CHAPTER 6. CURVATURE FEATURE EXTRACTION 188

6.4.7 Conditional Endpoint Testing

The CONDITIONAL_ENDPOINT function is called when arc, has successfully passed
the width criterion and 2.35 < ®; < 2.55. The objective is to verify the presence of
a nearby cavity which could account for the somewhat lower ®3-value. The function
checks if arc; is a cavity and, if so, if gapy—» and ®7,,..,_, satisfy one of these 2
conditions:

Either gap;-2 < 0.1 X maz_dim

or (gap1—2 < 0.2 X maz_dim) and (®},,.,1_, < —0.2)
If not, it verifies if arcs is a cavity with gap,—3 and ®j,,,,,_s satisfying similar condi-
tions.

Notwithstanding the presence of a nearby cavity, the feature extractor will avoid
creating a conditional endpoint if a closer Bend-arc is found on the other side of arc;

which appears to combine well with arc, to create an even better endpoint.

6.4.8 Testing for End-Bend Composite Arc

We now summarize the approach developed to solve problems illustrated in Figures 47
(2) and (b) where a single extracted arc incorporates 2 features, namely an endpoint
and an immediately adjacent Bend. All arcs with ®; > 3.90 are tested for this
possibility, except if such large @3 was the result of the feature extractor itself merging
nearby arcs to recomstruct an endpoint region. In what follows, let s and f be

respectively the starting and final contour points of the tested arc;.

e If &7 > 5.25 and [s, f] encompasses more than half the contour being processed

EXIT

e Let &}, , = ®; — 7 be an estimate of the cumulative deviation angle for the
portion of arc; which should not be included within the endpoint region (if there
is one). As was done in Section 6.4.3 to find the focal point of an arc, the system
proceeds to accumulate this angle from both extremities, s and f, of arc,. More
precisely, let k, be the minimum k such that Yi, 6(4) = B3nq; furthermore,
let k; be the maximum k such that EJf-=k #(j) > ®;..4- The longest of the 2

CHAPTER 6. CURVATURE FEATURE EXTRACTION 189

sequences [s, k,] or [ks, f] will become the Bend and the rest of arc; will be

tested as a potential endpoint.
o If the longest sequence is [ks, f] (see for example Figure 55 (a))

— @3, is re-computed to Zf:k, #(7); and the potential end region is the
sequence (s, ks — 1] with associated ®7,; = 93 — ®;,,.4

— If &, < 2.55, move ks to the next contour point and re-adjust ®Z,; and
®;... accordingly

— If contour point length (ky — 1 — s) > 0.85 X mazr_dim, EXIT

— Find focal point of [s, ks — 1]

— VERIFY WIDTH

— If width test was successful
Store arc; in the feature list
Store [s, k; — 1] in the feature list as an endpoint

Put leftover bend [ks, f]in arc:.
— Otherwise, keep [s, f] as a large Bend (in arc;).
e Otherwise (i.e. the longest sequence is [s, k] as in Figure 55 (b)). The approach
is the same as was just presented for [kf, f], mutatis mutandis, the potential

endpoint region now being the sequence [k, + 1, f]. There is only a minor

difference when the width test is successful. The steps would then be:

— If width test was successful

* If arc; is a cavity
Store arc; and [s, k] as cavity and bend in the feature list

* Otherwise
Verify if the bends in arc; and [s, k.| can be merged

Consequently, store a single or 2 separate Bends in feature list

+ Store [k,, f] in the feature list as an endpoint

— Otherwise, keep [s, f] as a large Bend (in arcy).

CHAPTER 6. CURVATURE FEATURE EXTRACTION 190

Figures 55 (a) and (b) provide enlargements of the bottom region of the samples
in Figures 47 (a) and (b) respectively. They illustrate at what point the splitting of

the composite arc into 2 arcs is attempted for potential endpoint testing.

° o a <
a . -« & °f > 2 f—
<%, e, T8 s R
Ke-1 |°o° Tesa” ooo - PO 0_0'
L-4 >
ki “%oooo® = o | kel
OO a (&)
| Cooo K,
s
(a) End-Bend Composite Arc (b) Bend-End Composite Arc

Figure 55: Processing Composite Arcs

6.4.9 Merging Consecutive Features

After the feature regions have been extracted from a given contour based on the
techniques presented since the beginning of Section 6.4, the system will go over all
sequences of cavity features and all sequences of bend features to determine whether
some or all of them should be merged together. In our new system, this work is per-
formed by the functions CHECK_MERGE_CAVITIES and CHECK_.MERGE_BENDS.
The general approach of these functions is to merge the consecutive features of the
same type unless they are deemed important enough to stand on their own. We now
summarize the major points of this processing, stressing the qualitative aspects and

illustrating typical situations. For technical details, the reader is referred to the

program.

The function CHECK_MERGE_CAVITIES

For each sequence of cavities, mostly the features are merged unless the following

exclusion tests are positive:

CHAPTER 6. CURVATURE FEATURE EXTRACTION 191

e Avoid merging 2-cavity sequences when the Euclidian distance between focal
points is relatively large (> 0.25 X n_rows) and that portion of the contour is
relatively straight; this occurs most frequently for 4’s, 5’s, and 7’s. See Figure
56 (a).

o If the first or last cavity in a sequence has a small bend very close to it and if it
is estimated that they together form a ‘wiggle-pair’, avoid merging this cavity
with others in the sequence. The 2 features in a B-C or C-B wiggle-pair must
have a very short inter-feature region and |®*| < 2.0; the point length of both
features must also be very small; this last requirement can be relaxed provided
some co-linearity requirements are met. The wiggle-pair is marked as such and

generally filtered out at a later stage. See Figures 56 (a) and (b).

e Merge consecutive cavities when the point length of their inter-feature region is

smaller than max (2, 0.05 X maz_dem).

e Avoid merging with others a cavity for which the cumulated deviation angle in
a small neighbourhood around its focal point is less than —1.75; such a cavity

is generally significant on its own. See Figure 56 (c).

e Avoid merging with others a cavity for which the cumulated deviation angle in
a small neighbourhood around its focal point is less than —1.10, ®* < —7/2,
and curvature is relatively high. See Figure 56 (d).

e Avoid merging with others a cavity with ®* < —0.90 which is far enough from
its two neighbouring features (one on each side) when one such neighbour is not

a cavity. See Figure 56 (e).

e Avoid merging with the preceding (or following) cavity, a cavity for which the
cumulated deviation angle in a small neighbourhood around its focal point is
less than —1.0 and the distance to that preceding (or following) cavity is large
enough. See Figure 56 (f).

CHAPTER 6. CURVATURE FEATURE EXTRACTION 192

-
-
o
see
.......

........
.....

(d) () ()

Figure 56: Cavities Not Merged With Neighbouring Cavities

The function CHECK_MERGE_BENDS

The approach to determine if consecutive bends should be merged is generally the
same as that just presented for consecutive cavities; some of the exclusion tests are
exactly equivalent to tests mentioned above while others are specific. For each se-
quence of bends, mostly the features are merged unless the following exclusion tests

are positive:

e If the first or last bend in a sequence has a small cavity very close to it and if

it is estimated that they together form a ‘wiggle-pair’, avoid merging this bend

CHAPTER 6. CURVATURE FEATURE EXTRACTION 193

with others in the sequence. The wiggle-pair is marked as such and generally

filtered out at a later stage.

e Avoid merging with others a bend for which the cumulated deviation angle in
a small neighbourhood around its focal point is more than 1.75; such a bend is

generally significant on its own. See Figure 57 (a).

(d) (e) ()
Figure 57: Bends Not Merged With Neighbouring Bends

e Avoid merging with others a bend for which the cumulated deviation angle in
a small neighbourhood around its focal point is more than 1.10, ®* > 7/2, and
curvature is relatively high. See Figure 57 (b).

CHAPTER 6. CURVATURE FEATURE EXTRACTION 194

e Avoid merging a large and quite curved bend region with preceding bends of
much smaller average curvature. This situation occurs mostly for 6’s. See Figure

57 (c).

e Avoid merging a relatively small bend to a larger bend neighbour if the smaller
bend has a much closer endpoint or cavity neighbour on the other side and the
cumulated deviation angle between the bend regions ®7,,.. < 0.10. See Figure
57 (d).

e Avoid merging together very distant bends with small ®7,,.,-values. See Figure
57 (e).

e Avoid merging with the preceding (or following) bend, a bend for which the
cumulated deviation angle in a small neighbourhood around its focal point is
larger than 1.0, and the distance to that preceding (or following) bend is large
enough, and the inter-feature region between these bends is not too small and

not too curved. See Figure 57 (f).

6.4.10 Computing Feature Directions

In Figure 37 (b), we illustrated how the direction of a feature was computed in the E4
feature extractor. Assuming that a feature region spans the contour point sequence
[s, f], the direction was obtained as the sum of a unit vector pointing from point s
to point s — 1 and a unit vector pointing from point f to point f 4 1. In general, this
approach gives good results but occasionally, for endpoint regions with curved tips
in particular, it is too sensitive to local direction. Experiments were carried out with
4 different approaches to direction measurement in order to find a more high-level
method.

The first method still evaluates the overall direction of a feature based on local
tangent directions at the extremities of the feature region. The unit vectors, instead
of being based on consecutive contour points as in the E4 system, are directed from
s+ 1tos—1and from f—1 to f + 1 respectively. This is illustrated in Figure 58

(a)-

CHAPTER 6. CURVATURE FEATURE EXTRACTION 195

Y
O Vector sum

o\ °
O ' -4
oy T

(a) Method #1

4 q
[Y]
s/

Q
l
\'\ Vector sum

‘péoo

(d) Method #4

(c) Method #3

Figure 58: Four Different Direction Measurements

CHAPTER 6. CURVATURE FEATURE EXTRACTION 196

The second method is similar to that developed in Malowany [106]. It uses 3
special points of the feature region itself, namely s, f, and the focal point, to estimate
the overall orientation of the feature. It proceeds by adding 2 vectors, the first
connecting the focal point to the starting point s of the feature region and the second
connecting the focal point to the final point f.?® This is illustrated in Figure 58
(b). The third method uses the same approach but instead of adding the 2 vectors
themselves, it adds two normalized vectors pointing in the same directions. This is
illustrated in Figure 58 (c).

Finally, the fourth method is based on the location of a feature region with respect
to its two neighbouring features. For feature region ¢, let V; be a unit vector directed
from the final point of that region f; to the starting point of the following feature
sit+1. We define the direction of feature ¢ as being that of (V; — V;-1), where V;_; is a
unit vector directed from f;_; to s;. This is illustrated in Figure 58 (d).

Note that methods #1 and #4 rely on contour point coordinates after smoothing
using a triangular filter with window size w = 5 and weights equal to (},2,3,2,1);
methods #2 and #3 use the original unsmoothed contour point coordinates.

The 4 methods were compared using the 100 samples of file train_us as a reference.
Based on a careful examination of their results, their ranking, from best to worse,
was as follows: #4 (the best), #1, #3, and #2 (the worst). In general, the measure-
ments of methods #1 and #4 were very comparable. Occasionally, they both yielded
awkward computed values; but these occurred for very large (|®*| >) bends or cav-
ities in small and smooth zero’s. In such cases, the identity of the numeral is rather
easily inferred and the direction of the feature is unimportant. When a significant
difference (say more than 10°) was found between the results of methods #1 and #4,
the features were generally curved endpoints; method #1 is sensitive to such curved
endpoints and gives the local direction whereas method #4 is more global and thus
more immune to such local behavior. This is an advantage of method #4. For the
top right endpoint of 4’s, the range of direction values obtained (—105°to —130°) was
narrower than for method #1 (—113°to — 147°). For the top left endpoint of 7’s and

the bottom endpoint of 9’s, a narrower range of direction values was also observed

26 Note however that our focal point is defined quite differently than Malowany’s ‘apex’.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 197

for method #4 compared to method #1.

Method #4 has other advantages. It requires 50% less computation than the other
3 methods since only the coordinates of the V;-vectors are required; this amounts to
deriving one vector per feature, compared to all other methods which require 2 vectors
per feature. In fact, the x- and y-coordinates of a given unit vector V; are stored as
fields in the feature data structure. When large inter-feature regions are encountered
(such as in 1’s or 7’s), they could be very convenient to assess the straightness of
these contour portions (and their orientation, of course) and help in the classification

process.

6.4.11 Assessment of New Feature Extractor

In this section, we will make an evaluation of our new feature extractor. This will be
carried out in 3 parts. Firstly, we will consider all the problems identified in Section
6.3 entitled “Detailed Autopsy of E4 Feature Extractor” and discuss to what extent
the new approach has solved these problems. Secondly, the results produced by the
new feature extractor on the 100 samples of the comparative study in Section 6.2 will
be presented. Thirdly, final comments will be presented and some shortcomings of

the new approach will be reviewed.

Return on Problems Identified in ‘Autopsy’ of E4

Figure 59 shows the full results of the new feature extractor on the 4 samples of
Figure 47 and the 3 samples of Figure 48. In Figures 59 (a) and (b), we see that the
problems of bend-regions being combined with the endpoint itself have been resolved:
the composite arcs were correctly partitioned and the focal points of endpoints are
well located. In Figure 59 (c), the small middle right endpoint which was missed by
E4 is now nicely captured. The endpoint at the bottom of the ‘5’ in Figure 59 (d)
is also detected by the new system. We note that in general the features obtained
correspond well to perceived global curvature regions. Also, endpoint regions with
extremely different stroke widths are extracted with success.

In Figure 48 (a), what we perceive as an endpoint was extracted as 3 very close

CHAPTER 6. CURVATURE FEATURE EXTRACTION 198

.....

o ®

v e
(€) () (8)

Figure 59: Samples Which Had End-Region Defects

bends by the E4 feature extractor. The new results are shown in Figure 59 (e).
The endpoint is still not captured because only 2 of the 3 small bends are merged
together; what prevented the merge of the 3 bends was the presence of a very close
small cavity which was considered to make up a ‘wiggle-pair’ with the first of the 3
bends... However we note that the small parasitic bend at the bottom of the same
‘9’ (See Figure 52) has been discarded by the new system.

In Figure 59 (f), the wide endpoints are correctly obtained and their focal points
well located. In Figure 59 (g), the top right bend region is now extracted as such,
not as an endpoint as was done by the E4 approach. These improvements are due to

the new width measurement and criterion for endpoints and to a better method to

CHAPTER 6. CURVATURE FEATURE EXTRACTION 199

locate focal points.

(2) (b)

Figure 60: Large Curvature Regions Previously Undetected

The E4 feature extractor could leave large curvature regions completely unde-
tected. Examples were given in Figure 49. The results obtained with the new feature
extractor on the same image samples are presented in Figure 60. The improvements
are very striking: not only are those large regions now captured but they are ex-
tracted globally as a single feature. Thus the entire convex region in the bottom
right profile of Figure 60 (b) is now captured as a single Bend whereas before 3 tiny
bends extracted by E4 still did not cover much of that region. Note also that the
‘wiggle-pair’ at the bottom of Figure 60 (c) has indeed been marked as such.

Now compare the results of our new feature extractor in Figures 61 (a) and (b) to
what was obtained before in the E4 system as shown in Figures 50 (a) and (b). For
the ‘8’, we note that the 2 middle cavities previously missed are now well extracted;
in addition, several pairs of very close consecutive bends or cavities in Figure 50 (a)
have now been merged. The top portion of the ‘9’, which was previously captured as
a sequence of 5 tiny cavities and 5 small bends (also counting the last bend ‘buried’
in a composite B-E arc in the middle left part of the image), is now extracted as a
single global cavity and a single global bend.

Concerning the merging of consecutive cavities and bends, the situations illus-

trated in Figure 51 are all handled correctly by the new feature extractor. The 2

CHAPTER 6. CURVATURE FEATURE EXTRACTION 200

(2) (b)
Figure 61: Previously Missed or Fragmented Feature Regions

nearby bends at the top left of the ‘4’ in Figure 51 (a) are now combined to form an
endpoint; the cavities and bends highlighted in Figure 51 (b) are still extracted and
not merged together; finally, in Figure 51 (c), the cavity very close to the top left
endpoint of the ‘7’ has been discarded while the other 2 cavities have been preserved
as distinct features.

Finally, the small parasitic features near endpoints of Figure 52 (a) and (b) have

been removed in the new feature extraction method.

Comparing With Other Feature Extractors

In Section 6.2.4, seven curvature feature extraction methods were compared quanti-
tatively and qualitatively based on their results on 100 digit samples. A ‘measure of
goodness’ MG was computed for each method and each sample and average values
of MG were provided (per class and overall) for feature regions of every type and for
endpoints only. See Tables 16 and 17. Equivalent scores are provided for our new
feature extractor in Table 18.

The overall MG-value for all classes and all feature types is now 0.77, which
represents an 11.6% improvement over the previous best scores (0.69) for the Beus-

Tiu and D’Amato et al. methods. On a class by class basis, our new curvature feature

CHAPTER 6. CURVATURE FEATURE EXTRACTION 201

New Method 0 1 2 3 4 5 6 7 8 9 QOverall

All features 0.56 0.84 0.79 0.87 0.83 0.86 0.66 0.77 0.71 0.79| 0.77

Endpoints only | 0.86 0.87 0.87 0.87 0.88 0.94 0.70 0.83 0.81 0.86| 0.85

Table 18: Average Measures of Goodness for the New Feature Extractor

extractor obtains best M G-values for all classes, except for 1’s, 4’s, and 7’s. In the
first 2 cases, our new method is a close second best; and in the last case, it comes in
third place.

The overall M G-value for all classes but considering only endpoint regions is now
0.85. This represents a drop from the 0.90 score of the old E4 method; consequently,
our new feature extractor only ranks fourth among the 8 methods tested. However, as
previously explained, our definition of the ‘measure of goodness’ has some flaws and
its values do not tell the entire story. Careful visual examination of the 100 samples
of the test set reveals that endpoint regions are clearly missed in only 1 sample?? and
that the focal points for all these endpoint regions are generally very well selected.
The lower score can be explained by three factors. First, there is the fact that our new
method tends to extract narrower endpoint regions; thus the heart of these regions is
almost always captured, while points at the extremities of the regions may be missed.
The definition of MG assigns equal weight to all these points which penalizes our
new method unduly. Of course, for classification purposes, this is irrelevant as long
as these regions are detected and detected as endpoints.

The second and third factors leading to an apparently reduced performance in end-
point detection was revealed by considering the numeral class ‘6’ for which the M G-
drop is most severe (from 0.87 to 0.70). Close scrutiny revealed that samples #61,
#65, #66, and #68 achieved very low M G-values (respectively 0.36, 0.39, 0.46, 0.48).
For 3 of these samples, we are dealing with curved endpoints; and the human subjects
extracted the “entire” curved region, while our new method trimmed such regions or

separated them into a ‘Bend-End’ or ‘End-Bend’ pair of features (see Section 6.4.8).

27 A tiny zero with an unusually smooth contour.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 202

Again the focal points for these regions were very well located (better than done by
the Rosenfeld-Johnston and Rosenfeld-Weszka methods which obtained higher M G-
values for endpoint extraction). For sample #65 and a few others, several feature
regions (not just endpoints) as well as their focal points appear ‘shifted’ from their
desired location which reduces the M G-value considerably. This ‘shift’ is caused by
the fact that our new method performs more sophisticated preprocessing than was
done by E4, which was used to produce the reference contour points for human sub-
jects and all other methods. As a result of this extra preprocessing, additional pixels
are deleted from the original contours, causing the ‘shift’ when the newly extracted
feature regions are mapped back onto the contour extracted by the E4 method. Again

this unduly causes a penalty for our new method.

Method MG-All MG-Ends MG-BC| f

Beus-Tiu 0.69 0.82 0.61 0.80
D’Amato 0.69 0.85 0.60 0.87
Legault-Suen 0.68 0.90 0.60 0.83
Rosenfeld-Weszka 0.67 0.93 0.53 0.80
New Method 0.77 0.85 0.69 0.87

Table 19: Comparing Overall Parameters For Best Five Methods

To investigate further the comparison between the best methods, new results
were obtained. In Table 19, the overall M G-values are presented for all features, for
endpoints only, and for bends and cavities (MG-BC in third column); and the fourth
column shows the average f-value. The latter fraction was used in the computation of
MG, as a penalty for methods detecting too many or too few features; an f-value of
1 would indicate that the method always extracts the same number of feature regions
as the human subjects did. We see that in all areas except MG-Ends, which was
already discussed, our new feature extractor scores best.

For the 100 samples in the test set and each method, we have also obtained the
count of samples for which the method extracted more regions than humans, the

count of samples for which the method extracted fewer regions than humans, and

CHAPTER 6. CURVATURE FEATURE EXTRACTION 203

the count of samples for which the number of regions extracted were the same. The
results are presented in Table 20. The interpretation of these figures is as follows: for
the Beus-Tiu method, for example, for 71 samples the method detected an average
of 2.6 feature regions in excess of the number of regions identified by humans; for 8
samples, the method detected an average of 1.2 feature regions less than the number

of regions identified by humans; for 21 samples, the numbers were the same.

Method Count_More Count_Fewer Count_Same
Beus-Tiu 71 (4+2.6) 8 (-1.2) 21
D’Amato 32 (+1.6) 32 (-1.4) 34
Legault-Suen 69 (+2.2) 5 (-1.0) 26
Rosenfeld-Weszka | 42 (+2.3) 39 (-2.1) 19
New Method 25 (+1.8) 33 (-1.6) 42

Table 20: Sample Counts Comparing Regions Detected by Methods vs Humans

We see that our new feature extractor is the one which most frequently extracts
the same number of feature regions as the human subjects did: this was the case
for 42 samples out of 100. From the figures of this table, we can easily compute
that on average, the Beus-Tiu method extracted 1.75 features too many per sample;
the Damato et al. method extracted only 0.10 feature too many per sample; the E4
(Legault-Suen) method extracted 1.47 features too many per sample; the Rosenfeld-
Weszka method extracted only 0.15 feature too many per sample; and finally, our
new method extracted 0.08 feature too few per sample. Thus, on average, 3 methods
seem to be able to extract the right number of regions: D’Amato et al. Rosenfeld-
Weszka, and our new method. The higher MG-All value of our new method would
then indicate that the contour point set it extracts for these regions matches more
closely the contour point set extracted by humans.

We have further examined the results of our new method and of the method of
D’Amato et al. (DA)? on the 100 samples, based on the 3 categories of Table 20.

28 Based on the information of Tables 19 and 20, the comparison was conducted with the DA
method because it appears to be the best, except for our own.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 204

e The DA method extracts the same number of regions as expert human subjects
did for 34 samples; but individual scrutiny reveals that for 14 of these 34 sam-
ples the regions are not all the same. This means that some regions identified
by humans are missed or merged with neighbouring regions, while extra regions
are extracted or large regions split into smaller ‘partial’ regions. In 5 of these
14 samples, a significant Bend was missed; in 2 cases, nearby ‘End-Bend’ pairs
of features (in curved endpoints) were merged. In contrast, our new method
extracts the same number of features as expert human subjects did for 42 sam-
ples and only for 6 of these samples are the feature regions not all the same.

For these samples, no significant feature for recognition is missed.

e The DA method extracts fewer regions than human subjects did for 32 samples.
In 11 cases, a large portion of a convex region is missed; in 6 cases, nearby ‘End-
Bend’ pairs of features (in curved endpoints) are merged; in 1 case, an important
cavity is missed. Qur new method extracts fewer regions than humans did for
33 samples. In general, this is because of the merging of consecutive convex
or concave regions into larger regions, which will not impact negatively on the
classification stage; however, in 1 case, already mentioned, both endpoints of a

tiny open zero are missed.

e The DA method extracts more regions that human subjects did for 34 samples.
This is because large convex or concave regions are often split into several
‘partial’ sub-regions and because several useless small cavities (small bends to a
much lesser extent) are detected. Our new method extracts more regions than
humans did for 25 samples for similar reasons. However, there are fewer useless
small cavities extracted than for the DA method. Some extra features detected
are also already marked as wiggle-pairs which will facilitate their filtering at
a later stage. Finally, in a few samples, the detection of additional regions is
even an improvement over what human subjects perceived: occasionally, our
new method captures composite arcs not detected by humans and splits them

into an End-Bend pair of features; also, a very weak middle peninsula of a ‘3’

CHAPTER 6. CURVATURE FEATURE EXTRACTION 205

and an equally weak left middle cavity?®® of an ‘8’ are extracted by our method

while human subjects did not see them as significant enough to be detected.

To conclude this comparison, Table 21 presents a visual display of the relative
distribution of specific weaknesses amongst the best 5 methods. The terms ‘Incom-
plete features’ refer to a feature of relatively large size for which a sub-region with
significant curvature was left undetected. The terms ‘Merged C-C or B-B’ refer to
pairs of consecutive features considered distinct by human sbjects but merged as a
single feature by the given method. The information was prepared by comparing the
feature regions extracted by the 2 human subjects to those extracted by each method.
Frequencies of occurrence of the problems were obtained and, for each ‘defect’, the
maximum frequency was associated with 10 asterisks; other assignments were scaled
proportionately. Thus, the relative frequency of one problem compared to another
cannot be inferred from this table. For example, 10 asterisks were attributed to
the Rosenfeld-Weszka method for 86 ‘undetected features’ and the same number of

asterisks was given to the D’Amato et al. method for 15 ‘incomplete features’.

METHODS

PROBLEMS BT DA LS (E4) RW New
Undetected features ¥k *kkkk * ERTERERTFTE | *
Incomplete {features * dokokokkkddkk | deokdkokkkkk koK *
Misplaced focus/region || ****¥kss | wrrereeeet | % sokskk K *
Merged End-Bend * sockskkkkkkok | kK kKKK
Extra features sokckkokkkk | kkokdokkokok Rokkd kK sk | kkkkkRk
Fragmented features skkdokkkokk | ok okdokkokkkiok | sk *
Merged C-C or B-B Hkokk * ——

Table 21: Relative Weaknesses of Best Five Methods

It is also important to realize that the weaknesses identified in comparison to

perception by (2) human subjects are not all equally serious for our purposes. The

top-down ordering of the problems in the table is that of decreasing negative impact

29 In both cases, important features for classification.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 206

on recognition, for methods of the type we have developed. The first problem, ‘Un-
detected features’ is definitely the most critical. The detection of ‘Extra features’ is
a nuisance for tightly-defined shape models; but they may be the price to pay for
guaranteeing that no significant feature is missed (and they can later be filtered out).
To our knowledge, the last two ‘defects’ in the table have no adverse effect on recog-
nition. Concerning the merging of consecutive cavities and bends, we must remember
that our new method avoids such merges in situations such as those shown in Figures
56 and 57. It is in less clear-cut cases that those merges take place. Where the LS
method was the worst, our new method is now the best at capturing large convex or

concave regions globally. It may even have become ‘too good’...

Final Comments and Shortcomings of New Feature Extractor

To our knowledge, the new curvature feature extractor we have developed is definitely
among the best currently available. As shown, it corrects all the major defects of the
Legault-Suen method and compares very favorably to other feature extractors. It
is reliable in that it almost never fails to extract a feature which is pertinent for
classification. And it is robust since it only extracts a small number of relatively
insignificant features (many of them are even marked as part of wiggle-pairs, later to
be discarded). As can be seen in many figures showing the outcome of the feature
extractor, our new method generally produces a very nice coupling between ‘Bend-
Cavity’ or ‘Cavity-Bend’ feature pairs which complement each other on the left and
right profiles of several numerals; and it locates the focal point of a feature region
in a manner which is intuitively very satisfying. It is also worth mentioning that for
our new method, contrary to most other methods to which it was compared, there
was no parameter adjustment to yield the best possible results on the 100 samples of
the common test set. Furthermore, the reliability and robustness of our new feature
extractor hold for a wide range of data resolution (between 166 and 400 PPI); to
the very least, other methods would require parameter adjustment® to maintain
their performance level over a similar range of resolutions. Finally, despite its higher

complexity and sophistication, our new feature extractor remains very efficient.

30 For examples of such adjustments, see the beginning of Section 6.2.4.

CHAPTER 6. CURVATURE FEATURE EXTRACTION 207

o
%
o
oo
o

oounooooioonooooa
000008000
09 %09

[}
R
a .
o
[=)]
.
- o,
8o 9 %
L) o o
-X) s o
X .« o
o a o s ©°
e L o0 o
-] Q o - °
o 9 o o . .0
2 %a00° & i
. .
o, ®0° ¢ 8o

o
o
o
]
]
[}
-
-

(b)
Figure 62: Leftover Shortcomings of New Feature Extractor

~~
)
N

We can identify three remaining weaknesses of our new feature extractor. The
first one was already mentioned: it is the case of the tiny smooth zero for which
both endpoints were missed; this sample is shown in Figure 62 (a). In our later work
with hundreds of images, we encountered one more sample for which an endpoint
was left undetected. The second weakness concerns the features extracted from very
small blobs. See for example the smallest blob in Figure 62 (b); only a Bend feature
is extracted. This difficulty will be addressed later by developing special feature
extraction procedures for small blobs. Finally, the problem of the very noisy contour
of Figure 52 (c) is not resolved at this point. Getting rid of all tiny features at this
early stage could be counter-productive as this might occasionally discard a small but
meaningful feature for the classification process. This problem is thus best addressed
at a later stage in the recognition process (when the first classification attempt fails).
Nevertheless, of the 34 extracted features for this sample, a dozen are already marked

as belonging to wiggle-pairs.

Chapter 7

Development of Classification
Rules

The approach governing the production of our new classifier was outlined in Section
3.2. As discussed, it is not our goal to fully develop the classification stage of the
recognition system; instead, we have chosen to demonstrate that the foundations
we have built indeed allow to meet the high recognition and very high reliability
performance targets that we have set. In this chapter, we explain how this approach
was implemented.

The E4 recognition system had a tree classifier and every single classification rule
was hard-coded in the source program!. Qur new classifier also has a tree-like core,
but its key building blocks are repeated calls to the same function, TRY RULE_SET,
which verifies if specific subsets of rules are satisfied. These rules are not hard-coded
into the classification program; instead, they reside in separate rule files where they
are encoded according to a syntax designed specifically for this purpose.

Section 7.1 summarizes the various steps involved in developing classification rules
for each numeral class. Essentially, our classification system was tailored to recognize
the CENPARMI database. But the CEDAR database was also used in a secondary
way which will be explained. Section 7.2 outlines the syntax which was developed to

codify classification rules in a compact and convenient format. Section 7.3 presents

! The E4 classification program was written in Fortran.

208

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 209

the main functionalities of a Development Tool which was created to assist in the
‘painstaking’ task of handcrafting the needed classification rules. Section 7.4 sum-
marizes the actual effort which went into the development of our partial classifier.
Finally, Section 7.5 offers some concrete examples of classification rules for the nu-

meral class ¢2°.

7.1 Steps Involved in Training for Each Class

As explained in the introduction to Chapter 4, the input data to our recognition
system consist of files of run-length encoded binary images of single numerals. These
files are simply referred to as data files. Considering one or several data files of
training samples for a particular numeral class, here is a list of major steps which are

performed in the training process:

e The samples of CENPARMI training sets A and B belonging to the class of
interest are examined one by one; those which either do not really belong to the
given class or whose presence would impact negatively on the training process

are simply removed from the training material.

e Most classification rules require the value of a certain feature attribute to fall
within acceptable bounds; in order to find discriminating attributes and to
obtain the acceptable bounds, we must compile statistics for equivalent features
on several samples. A first step in this direction is to define and mark on each
sample a so-called starting feature; in general, this starting feature will not have
the same index in the feature array of each sample, but it will be topologically

equivalent.

e The set of training samples for the class of interest must then be partitioned into
several subsets, each subset being collected in a distinct model file?; samples can
be regrouped in a model file because they have a common specific shape for their

entire contour, or because they share a particular shape variant for a certain

2 The specific format of a model file is presented in Section 7.3.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 210

portion of the contour of the considered numeral. Odd-shaped samples, samples
with spurious holes, and samples with wiggly contours are also regrouped into
3 model files for each numeral class; this offers the basis for the investigation

and solution of these problems when enough samples have been gathered.

o Specific sets of classification rules must be developed for model files and each
set of classification rules is stored in a separate rule file. This is definitely the

step which is the most time-consuming.

¢ The overall classification process must be adjusted by adding code to the pro-
gram file "classify.c” which governs the ordering of rule files to be fired. As
much as possible, we try to rank the traversal of rule files (and of individual
rules within a rule file) to favor the efficiency of the classification stage.

e When all rule files have been developed for the class of interest, the partial
recognition system is applied to all 4,000 samples of the CENPARMI training
sets (A and B). Of course, samples which belong to other classes should be
rejected; if misclassifications are found, the appropriate rule files are corrected

and/or refined to avoid any error.

e The partial recognition system is finally applied to 13,954 samples of the CEDAR
database. This is done primarily to test the reliability of the new rule files de-
veloped for the class of interest. Thus, if misclassifications are found, the appro-
priate rule files are corrected and/or refined to avoid these errors. An additional
goal is to relaz the classification rules developed for the CENPARMI database
alone to improve the recognition ability of the system: several CEDAR samples
are initially rejected even if their shape is very similar to those of CENPARMI
recognized samples; accomodating them is often just a matter of broadening
acceptable intervals for a few attribute values. Such adjustment is carried out
as long as it does not cause any misclassification. There is no attempt to de-
velop new rule files corresponding to specific shape models found in the CEDAR
database but not significantly present in the CENPARMI database.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 211

The above steps will be made clearer with concrete examples in Section 7.5, after
presenting the syntax used to encode classification rules and the special tool developed
to help in creating these rules.

7.2 Syntax for Classification Rules

7.2.1 Operator-Rules

As mentioned above, the majority of classification rules require the value of a certain
feature attribute to be inside an acceptable range. The general form of this type of

rule is as follows:
A{op} Wi [V5]

where A is an evaluated attribute represented by a string of 1 to 4 letters; {op} is one
of the 7 possible operators: =, ”, <, >, &, |, and @; V; (and V2, for the 2 operators
< and >) are values of a type compatible with the evaluated attribute. The values
can be integers, real values, or single characters. The operator ~ tests for inequality
(#) and the two operators & and | are defined as follows:

A& V; V; standsfor Vi <A<V,

and

Al i V2 standsfor (A > Vi) OR (A< V)

The operator @ will be defined shortly. Depending on the specific attribute tested,
not all operators may be allowed. Also, when the values must be of type integer or
single character type, this is indicated explicitly in the rule by writing V;.i or Vj.c
respectively. Finally we note that, upon evaluation, all such ‘op’-rules simply result

in a true or false value.

7.2.2 Other Type of Rules

Some rules are not ‘operator’-rules. They may affect the value of certain parameters

of the classifier. For instance,

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 212

e Some rules set or modify elements of the array PF', a small array of pointers to

features which are moved around the feature list of an unknown numeral.

e Some rules modify the elements of another small array called stored_value which

is used as temporary storage to run all kinds of arithmetic and/or comparison

tests. Note that values are originally stored as elements of this array with the

@ operator mentioned previously.

e Some rules may set the value of the integer parameters tested_hole_inder and

tested_piece_indez, compute the bounding box of a feature or feature sequence

of the same type, or mark certain features as visited (or unmark them), etc...

By default, all these rules simply return a true value.

7.2.3 A Few Examples

Based on the general explanations given above, Table 22 presents a few examples of

classification rules encoded with our syntax.

| RULE EXPLANATION
1 |F2t=E Is feature pointed to by PF[2] of type E (endpoint)?
2 | I3=2+1 Set PF[3] to feature following that pointed to by PF[2]

3 | F3d[2.7 -1.3

Is direction of feature pointed to by PF[4]
larger than 2.7 or smaller than -1.37

4 | F3B1 Compute bounding box of same-type feature sequence
of which feature pointed to by PF[3] is apart
5 | Bt< 1.5 Is top row of bounding box smaller than 1.57
6 | Bb@O Assign bottom-most row of bounding box to stored_value[0]
7 | CO/4> 0.99 | Is ratio stored_value[0]/stored_value[4] larger than 0.997
8 | M3 Mark feature pointed to by PF[3] as visited

If rules #4 to #7 are consecutive rules in a particular rule file, their meaning is

as follows. First, the feature pointed to by PF[3] may be preceded and/or followed

Table 22: Examples of Syntax Rules

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 213

by one or many features of the same type. Rule #4 considers that entire sequence
of same-type features and computes its bounding box, the associated coordinates of
the extreme contour points responsible for that bounding box, and the cumulative
deviation angle for that feature sequence; rule #5 verifies that the feature sequence
reaches the first row of the image; and, since stored_value[4] is always the total
number of rows for the current sample image, rule #7 verifies if the feature sequence
also reaches the last row of the image.

For a éomplete presentation and discussion of the syntax, please refer to Appendix
F.

7.2.4 Syntax, Classification, and Rule Generation

For a given numeral class, there are of course several model files. Model files have
associated rule files, ‘describing’ a particular contour shape or small portion of a
contour shape; but there is not necessarily a one-to-one relationship between model
and rule files. For each numeral class, a file named ‘d.rules list’ (where d stands for
a digit from 0 to 9) contains the list of the names of all rule files created for the
recognition of that class. Initially before any sample is processed, the recognition
system will, in turn, read each of the 10 files containing these lists and will also read
every single rule contained in the rule files named therein.

Within a rule file, the rules are encoded, one per line, using the syntax pre-
viously outlined. During classification, by default, conjunction (AND) of rules is
assumed. Thus, when a particular group of rules is being processed by the function
TRY_RULE_SET, every consecutive ordinary rule must be satisfied; as soon as one
such rule fails, processing of that rule file terminates without success and other shape
variants (or portion thereof) encoded in other rule files can begin to be tested. Of
course, there are several situations where we also need to consider the disjunction
(OR) of individual (or small groups of) classification rules. Towards this end, an
OR-rule has been defined in our syntax (see Appendix F).

There are several advantages to using the syntax we have created and storing the

classification rules separate from the ‘classification engine’ program.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 214

e The rules so expressed are much more compact than the corresponding if-

statements would be if written in the source code.

o The separation of the rule files from the source code offers much more flexibility:
rules can be re-organized, modified or added in a rule file without requiring the

classification program to be recompiled every time.

e All rule files being processed by the same function, TRY RULE._SET, it is a
simple matter to track down the traversal of rule files as classification proceeds
and to accumulate relevant statistics. For example, a specific label can be asso-
ciated with each rule file; when the rule file is traversed successfully, this label
is concatenated to the overall classification label, which will in the end provide
the recognition path for a sample within our classifier. Such recognition paths
are very useful in pinpointing which rule file to modify in order to accomodate
rejected samples or to reject misclassified samples. Sample counts can also eas-
ily be updated indicating how many samples of the target class and how many
samples of the other classes have traversed each rule file successfully. Such

statistics could help assessing the efficiency of the classifier design.

e The firing of every single rule is controlled by the same function, APPLY_RULE.
When we want to relax some rules to accomodate certain rejected samples, this

makes it possible to pinpoint precisely which rule failed, causing the rejection.

e A parser was written to verify the syntactic correctness of a rule before adding
it to a rule file. Since rule files can also be edited manually with any text editor,
the parser is also called to verify every rule as it is read in by the system, before

recognition begins.

Finally, we note that the same syntax is very useful for the development tool
described in the next section, With that tool it is possible to formulate queries to
visualize, from a data (or model) file, only those samples which satisfy certain condi-
tions; and the conditions can simply be written with our syntax. More importantly,
in the development and testing of new classification rules, statistics need to be col-

lected on the range of values taken by certain feature attributes. Qur syntax and its

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 215

associated parser can easily be adjusted to meet this objective. When processing a
model file with our development tool, we can for example enter the incomplete rule
‘F3d’ (without an operator and a range of values); and the tool will process the sam-
ples belonging to the model file, obtaining for each the direction (d) of the specific
feature pointed to by PF([3]; upon completion, the range of values for the direction
of this feature will be displayed. If the rule seems valuable, it can then be entered
automatically in the associated rule file with the range of values just found.

7.3 Tool for Rule Development

A very useful interface was constructed to facilitate database inspection and assist in

the development of classification rules. This development tool allows the user to:

e Visualize the result of our feature extractor on any sample of a database which
is run-length encoded and list the values of various attributes for each of the

extracted features;

— the samples of a file can be viewed consecutively;
— the sample of a specific rank within a file can be viewed directly;

— it is also possible to view only those samples which satisfy certain condi-
tions (for example, view only the samples with 1 or more holes; or view

only the samples with exactly 3 endpoints; etc.)

— the tool can also be used to demonstrate the specific results of certain
feature extraction steps such as the re-extraction of features for small blobs

or the reconnection of broken pieces making up one numeral.

e Mark a starting feature on each sample; simple conditions defining the starting
feature are written and the tool automatically performs the task; the user can

view the result for each sample and accept or correct it.

e Separate the samples of a given class into a number of subsets (called model
files) which will provide the material for the development of specific groups of

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 216

classification rules; the user can assign the sample to an already existing subset

(by choosing the subset from a list) or can create a new subset.

® Process model files to produce corresponding rule files; in this mode, the tool
provides statistics about the range of values taken by specific attributes of an
equivalent feature on each sample; pointers to features of interest can be moved
forward or backward on all samples of the model file and new statistics obtained

for another feature.

The format of a run-length coded (RLC) file was already explained. Model files,
on the other hand, are files of pointers to specific samples in RLC files, also giving
the index of the starting feature for each sample. Their precise format is shown in
Table 23.

RLC file name, ny
rank; starting_feature,
rank; starting_feature;
rank,, starting_feature,,
RLC filename, na
rank; starting_feature;
rank; starting_feature,
rank,, starting_feature,,
RLC filenames n3
etc etc

Table 23: Format of a Model File

On the first line, after the name of a first base (RLC) file, n; indicates the number
of samples to be drawn from that file; the following lines in the model file (one per
sample) provide the ranks of the samples within the specified RLC file and the index
of their starting feature. Then, if needed, the name of another base file is given and
the number of samples to be drawn from it etc. A model file can draw samples from

any number of base files.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 217

Figure 63: Database Inspection and Rule Development Interface

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 218

Note that in the visual inspection mode, our interface can process either base
(RLC) or model files and display the result of the feature extractor on individual
samples. The general appearance of our development tool is shown in Figure 63
on the preceding page. Appendix G describes it more fully and explains its various
functionalities.

7.4 Overview of Classifier Development

Our aim is to demonstrate that it is possible to develop a single recognition method
which achieves a high recognition rate and very high reliability, based on the general
avenues outlined in Section 3.2 and in particular based on the robust curvature feature

extractor that was developed for this thesis. As seen before, reliability is defined as:

Recognition (43)

Reliability = .
shamity Recognition + Substitution

Imposing a threshold of « on reliability, we have arrived at a ceiling on the substitution

rate: o
1 — a) x Recognition

a
In particular, if we set a target recognition rate of 90%, we have the following re-

Substitution < ((44)

quirements: for a reliability of 99%, the substitution rate must not exceed 0.90%;
for a reliability of 99.5%, the substitution rate must not exceed 0.452%; and for a
reliability of 99.9%, the substitution rate must not exceed 0.09009.

To achieve a substitution rate of no more than 0.5% on a test set of 2000 samples,
a numeral recognition system must not make more than 10 errors. Thus, on average,
the classifier’s rules for recognizing any particular digit class is not allowed more than
1 mistake. The performance matrix of the E4 system® on the CENPARMI test set
is presented in Table 24. The recognition rate is 94.65% and the substitution rate
is 1.55%. To verify the feasibility of our goal, it was first decided to focus on the
recognition of numerals of class ‘2’; as can be seen from Table 24, this part of the E4
recognizer was responsible for 7 (i.e. 22.6%) of the 31 errors of the system. If this

3 In its most refined version, after additional training with the ITRI database (see Section 3.1.1).

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 219

infout | 0 1 2 3 4 5 6 7 8 9 | Rejected
0 18 0 1 0 0 0 1 0 2 0 8
1 0 196 1 0 0 0 0 0 0 0 3
2 0 0 192 1 0 0 0 0 0 0 7
3 0 0 1 191 O 0 0 1] 1 0 7
4 0 0 0 0 18 2 0 0 0 2 10
5 0 0 0 2 0 190 O 0 0 2 6
6 0 1 0 0 0 1 192 O 0 0 6
7 0 0 4 0 1 0 0 18 0 1 9
8 0 0 0 0 0 1 0 0 190 O 9
9 0 0 0 0 4 1 0 1 0 183 11

Errors | O 1 7 3 5 5 1 1 3 5

Table 24: Performance Matrix of E4 System

number could be brought down to 0 or 1, we would already have a good indication
that our goal is achievable for a single recognition system. We also note from these
results that 5 samples are mistakenly classified as ‘4’s; and the same number are
misrecognized as ‘5’s and as ‘9’s. The most frequent errors are ‘7’s misclassified as
‘2’s (4 samples) and of ‘9’s misclassified as ‘4’s (4 samples also).

Of course, we cannot base ourselves only on the E4 performance matrix to decide
around which classes a partial recognizer should be developed to demonstrate the
validity of our approach. In the literature, it is generally considered that the most
confusing pairs in numeral recognition are the 4 <& 9 and the 0 < 6 pairs. The E4
system seems particularly strong in dealing with the latter confusing pair, since only
one ‘0’ is mistakenly classified as a ‘6’ and there is not one instance of the reverse
error. Could our new system maintain this strength?

Unfortunately, several researchers provide only overall recognition statistics with
no performance matrix. We focus here on relevant information provided by some
authors. In Mai & Suen [105], for a test set of 8485 samples, the most frequent
misclassifications are ‘2’s recognized as ‘3’s (18 cases) and ‘3’s recognized as ‘2’s (13
cases). In Lam & Suen [82], for the standard CENPARMI test set of 2000 samples,

the most frequent error is ‘4’s recognized as ‘9’s (4 cases); there are also 3 instances

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 220

of each of the following misclassifications: 0 — 6, 2 — 3, 9 — 5, 9 — 8; on the
other hand, the class causing the greatest number of confusions is ‘9’, since a total
of 8 samples are mistakenly recognized as ‘9’. In Abuhaiba & Ahmed [1], 6.7% of
‘2’s are misclassified (mostly as ‘8’s) and 6.5% of ‘6’s are misclassified (mostly as
‘0’s). In Heutte et al. [59], the most frequent misclassifications reported are of ‘4’s
recognized as ‘9’s (1.55% of all ‘4’s) and of ‘3’s recognized as ‘2’s (1.01% of all ‘3’s);
the two classes causing the greatest number of confusions are ‘2’ and ‘9’, responsible
for respectively 15.6% and 15.5% of all errors. Finally, in Bailey & Srinath [14], it is
said that the most confusing pair is 4 <> 9 (11 errors out of 660 samples, without a
breakdown of the 4 — 9 and 9 — 4 errors).

Based on the above, it was decided to focus on 4 classes for the development of

our partial recognizer: ‘0’, ‘2’, ‘6’, and ‘9’.

7.5 Illustration of Approach for ‘2’s

In this section, the process of developing classification rules for class ‘2’ will be re-
viewed. This will provide concrete illustration of the steps outlined in Section 7.1 and

of the use of the interface and special syntax we have created.

7.5.1 Assignment of Starting Feature

The starting feature for a numeral class is defined with a few simple rules. As the
feature list of an unknown numeral is examined, those few rules are applied in turn
to every feature until they are fired with success; this in turn triggers the entire
classification attempt for that class. Thus a starting feature must be one which is
present on every sample of the class of interest. Furthermore, it should be defined
rather loosely; otherwise, some aspect of its definition might not be fulfilled for some
members of the class.

The files a-2.rlc and b-2.rlc contain the 400 training samples of the CENPARMI
database for class ‘2’. Initially, they were processed with the following definition of

a starting feature: “The starting feature must be a cavity, preceded by an endpoint

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 221

......

.............

....................

......

(a) Starting Feature (b) Discarded: a-2.rlc (#34) (c) Discarded: b-2.rlc (#128)

Figure 64: Starting Feature and Discarded Samples for Class ‘2’

feature whose focal point is located in the top half of the image”. The feature that
we are targeting in this manner is the one highlighted in Figure 64 (a). Using our
syntax, and assuming that the feature pointers PF[1] and PF[0] point to the feature
of interest and to the preceding features respectively, this translated to:

Flt=C

Fot=E

F0xo@ 0

C0/4< 0.5
After visualizing the result of this definition on several samples, using the 1ST FEA-
TURE Test & Show option of our development tool, this definition appeared promis-
ing. Thus these rules were stored in a special rule file called start_rules.2, and then
read back by the tool and applied systematically using the 1ST FEATURE Mark
& Verify option. The results were somewhat surprising. In the sample by sample
validation process, 2 samples were discarded because they are not really ‘2’s. They
are shown in Figures 64 (b) and (c): sample #34 of file a-2.rlc is actually composed
of two digits, a ‘1’ and a ‘2’| connected together; and sample #128 of file b-2.7lc is
probably an incomplete ‘2’ (bottom portion only). Of the remaining 398 training
samples, 11 had no top endpoint at all and 5 others had a top endpoint in the bottom
half of the image. Figure 65 (a) is an example of the first situation: that ‘2’ has a top
hole and the feature preceding the top cavity is a bend encircling that hole. Figure

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 222

65 (b) is an example of the second situation.

.00000g

. .
. a0 o
.- D°°° %0y %
. o o
o o
o 0
o o
o o
g a
000, s
#0°°°7° %, .
o e} .
o (s} O -
o - O
51 - ca
qbnnq% - w .
[»] - .
Qg - .- .
o
g - o 1
° - .o® ® .-Uﬁg
.0% . .. %000000
M - o . -++00°
. o© =Y P
. g oo =)
& o® o
[n°®% o
o Lt ‘0o o o2
%oo0* Uo00

(a) No top endpoint (b) Top endpoint in bottom half of image

Figure 65: Problems with Starting Feature Definition

The definition of the starting feature for ‘2’s was therefore relaxed to the following
2 rules:

Fit=C

Fot~C
In words: “The starting feature is a cavity, preceded by a non-cavity feature”. With
the above rules, individual validation revealed that the automatic assignment of the

starting feature was successful in 99% of all cases; manual editing of the starting

feature was only necessary in 4 of the 398 samples.

7.5.2 Clustering: Creation of Model Files

The clustering operation is performed with the help of the development interface
using the CLUSTERING Proceed menu option. It consists of visualizing the training

samples one by one and assigning them to a subset* based on shared characteristics

such as

4 A model file is created for each subset.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 223

e The number and position of hole(s);

e A specific shape in a portion of the contour, represented by a similar feature

sequence;

o The presence of certain anomalies: spurious holes, wiggle-pairs of features (i.e.
small and nearby bends and cavities), odd and/or confusing shapes for the class

of interest.

For the numeral class ‘2’, a total of 47 model files were created. Note that a sample
may belong to more than one model file. Finally, subsets which are formed at this
early stage may later be combined together if it is found that common rule files can
accomodate them; and subsets with too few members may be abandoned, the infor-
mation on these particular shapes being too skimpy to develop adequate classification
rules.

Models Based on Presence and Position of Holes

Name of model file | Samples || Name of model file | Samples
2.bthole 2 200 |} 2.top-and_btholes 2 9
2.straight _bottom 2 73 || 2.tophole_topB_2 9
2.open_bthole 2 27 || 2.high _bottomleft 2 2

Table 25: Models Based on Number and Position of Holes

If all digits were handwritten neatly and in accordance with Canadian shape stan-
dards, all samples of numeral classes ‘17, 3, ‘4’, ‘5°, and ‘7’ would be written without
any hole; all samples of ‘0’ would be written with a large hole; all samples of ‘2°, and
‘6’ would be written with a bottom hole; all samples of ‘9’ would be written with a top
hole; and all samples of ‘8’ would be written with both a top hole and a bottom hole.
However, human writing styles are the result of various influences and subjects write
with more or less care depending on circumstances; moreover, writing instruments

as well as data capture and processing constitute additional factors which can cause

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 224

departure from standards. A brief analysis of the number of holes present in the 4000
training samples of the CENPARMI database can be found in Appendix H.

Six model files were created in relation to the presence and location of holes for
the numeral class ‘2’ (mostly, a bottom hole is present), and also in relation to the
shape of the numeral in its bottom and bottom left portion. Their names are listed
in Table 25 along with the number of samples regrouped in them. A typical numeral
representative of the contents of each of these model files is displayed in Figure 66.

A2 eX 22 =

Figure 66: Example of Numerals for Model Files Based on Holes

Models Based on Shape of Bottom Right Portion of 2’

Because of the diversity of writing styles, there are several possible feature sequences
(in terms of feature types, positions, directions, etc.) for the bottom right portion of
the numeral ‘2’. A large number of model files were created to regroup samples with
similar shapes in that part. For samples with a bottom hole, Table 26 presents the
list of the names of these model files and the number of samples recorded in each.
Table 27 presents similar information for samples without a bottom hole.

It is apparent from these tables that there are a few predominant writing styles
corresponding to model files containing a relatively large number of samples. Devel-
oping classification rules for these few writing styles allows to rapidly build a core
classifier with a good starting recognition rate. However there is also a large num-
ber of less frequent writing styles. Developing classification rules for each of these

additional models represents the same amount of work but the associated increase

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 225

Name of model file | Samples || Name of model file Samples
2.bh_ CEC2 108 || 2.bh_CdownE_2 3
2.bh_CBEC2 24 | 2.bh B2 2
2.bh_CdownEC_2 22 || 2.bh_ CB2 2
2.bh EC2 13 || 2.bh_-CECC_2 2
2.bh_CBECC2 10 || 2.bh_CEBC_2 1
2.bh_ CBC2 6 || 2.bh_-CdownEBC_2 1
2.bh_noprolong_2 4 || 2.bh_ChighEC_2 1
2.bh . BC2 3 || 2.bh_notop-right BorE_2 1

Table 26: Models for Bottom-Right Portion of ‘2’s with a Bottom Hole

Name of model file Samples || Name of model file Samples
2.no_hole_EorB_E_2 67 || 2.no_hole_short_stem 2 3
2.no hole_EorB_.C_E_2 30 || 2.no-hole_ EorB_ B_.ECC_2 2
2.no_hole_EhighE_2 12 || 2.no hole_ EorB_.CBECC_2 2
2.no_hole_EorB_.CBEC_2 6 || 2.no_hole E_.B_.B_2 1
2.no hole_EorB_B_E_2 5 || 2.no_hole_EorB_.CBECBC_2 1
2.no_hole_EorB_.CEBC_2 3 || 2.no_hole_EorB_CE_2 1
2.no.hole_EorB_ E_CC_2 3

Table 27: Models for Bottom-Right Portion of ‘2’s Without a Bottom Hole

in recognition rate gets smaller and smaller. This is a concrete illustration of the
‘diminishing returns’ phenomenom mentioned in our introduction to Chapter 3.
Figure 67 shows one example of the typical shape (or feature sequence) of interest
for the first 6 model files of Table 26. In Figure 67 (a) the bottom-right ending of the
numeral ‘2’ is a straight stem; in Figure 67 (b), after creating the bottom hole, the
pen stroke typically first goes downward and then curves upward again.; in Figure 67
(c), the stem points markedly downward; in Figure 67 (d), the bottom portion of the
numeral is quite flat and there is no cavity feature in that region; in Figure 67 (e),
the writing style is similar to that of Figure 67 (b), but the ending stroke of the ‘2’
is much longer and the final upward curve creates an extra cavity too far from the

other (more standard) cavity to be merged with it.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES

sseea
- .
-,

(a) bh.CEC_-2 (b) bh.CBEC_2 (c) bh-CdownEC_2

......

......
. - -
.......

- -
. -
- - . o
3 . - . -
fecan® ‘epes teaser®

(d) bh.EC2 (e) bh_CBECC_2 (f) bh_-CBC2

Figure 67: Some Bottom-Right Feature Sequences for ‘2’s With Bottom Holes

226

Figure 68 shows one example of the typical shape (or feature sequence) of interest
for the first 6 model files of Table 27. While the styles illustrated in Figures 68 (a),

(b), and (d) are similar to others encountered in ‘2’s with bottom holes, the writing

styles displayed in Figures 68 (c), (e), and (f) are specific to samples written purposely

without a bottom hole.

Models Based on Shape of Top Portion of ‘2’

Following the contour of a ‘2’ in counter-clockwise fashion, the next features encoun-

tered after the bottom right (stem) portion are much more stable: after the quite

standard cavity, a convex® region normally makes up the top right part of the right

5 Generally, this is a large and smooth bend feature; but it can be written more sharply and be

extracted as an endpoint.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 227

......

(a) no_hole EorB_E_2 (b) no_hole_ EorB_.C_E_2 (c) no_hole_EhighE_2

o,
-

ey

tCe,
. .

(d) no_hole_ EorB_.CBEC_2 (e) no-hole.EorB.B.E2 (f) no_hole_EorB_.CEBC_2

Figure 68: Some Bottom-Right Feature Sequences for ‘2’s Without Bottom Holes

profile. But after that point, in the ‘top portion’ of the numeral, there are once again
variations in style. Table 28 lists the names of the model files created to regroup
samples based on the different shapes for that part of the contour. The so-called sim-
ple_top model represents the overwhelming majority of cases. In fact, all 12 images
in Figures 67 and 68 are of this type.

Figure 69 presents examples of less common shapes for the top portion of the
handwritten numeral ’2’. Despite their lower frequency, they are not at all accidental
artifacts; clearly, they are manifestations of some individuals’ writing style. Another
aspect of the ‘diminishing returns’ is apparent here: not only is the gain in recognition
rate lower and lower as the frequency of the model decreases, but these less frequent
shapes often correspond to more complex feature sequences. Thus developing rule

files for these rarer variations can even mean more work!

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 228

Name of model file | Samples || Name of model file | Samples
2.simple_top_2 337 || 2.topB.2 2
2.topC_BorE_ E2 25 || 2.topCB2 1
2.curly_start_2 4 || 2.topEBE2 1
2.topC_EorB_CE_2 2

Table 28: Models for Top Portion of ‘2’s

.....................

(a) topC_BorE_E_2 (b) curlystart_2 (c) topC_EorB_CE_2

Figure 69: Some Less Common Top Feature Sequences for ‘2’s

Models Based on Shape Anomalies

During the individual screening of training samples in the CLUSTERING Proceed
mode of the development interface, samples whose shape was considered quite rare or
peculiar were put in the model file 2.0dd_samples. The ‘odd’ shape can be the result
of several factors including writing style, sloppiness, processing such as binarization,
etc. At this stage, no decision is made about whether the classifier should make
accomodations for these shapes or avoid doing so. The 5 samples which were put in
this category are shown in Figure 70.

Another anomaly which was noticed for several classes is the presence of spurious

holes, generally within the breadth of the pen stroke. Of course, such holes are tiny;

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 229

22230

Figure 70: Samples of ‘2’ With Unusual or Peculiar Shapes

but discarding all tiny holes is not necessarily an appropriate solution since expected
and significant holes are sometimes tiny too (especially at low resolutions such as 166
or 200 PPI). To investigate the problem and find a better solution, it was decided to
regroup samples of a given class carrying such spurious holes into a model file. For
‘2’s, this model file is called 2.spurious_holes and contains 5 samples. Examples of a
spurious hole and of an equally tiny but this time significant hole are given in Figures
71 (a) and (b) respectively; in both cases the hole has an area of 2 pixels only. Note
that in the case of the first of these images the preprocessing is able to get rid of the
wide horizontal 1-pixel thick artifact and thus extracts a decent contour for that ‘2’

.
.....

LI
LI
- -
.........

...............

(a) (b) (c) (d)
Figure 71: Samples With Tiny Holes or Spurious Features

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 230

Finally, 20 samples for which the feature list included ‘wiggle-pairs’ or small ar-
tifacts which are not clearly style-related and hence cannot justify the creation of
distinct model files were regrouped in a model file called 2.wiggly_contours. The same
is to be done when samples of other classes are clustered. The intent is to create a
specific database to investigate the problem of filtering out these wiggles and small ar-
tifacts after a first classification attempt fails. If the filtering is successful at removing
only the unwanted features, a second recognition attempt would then succeed. Figure
71 (c) illustrates a ‘wiggle-pair’, already marked as such by the feature extractor; the
small cavity in the top portion of the sample in Figure 71 (d) shows an example of a
spurious feature which should also be filtered out at a later stage.

7.5.3 Rule Generation: Creation of Rule Files

A rule file may be specifically developed for a model file, but not necessarily since
this might produce duplicate rules in several rule files. For example, the 2 cavities
highlighted in Figure 67 (a) are also present in Figures 67 (b), (c), (e), and (f). Hence
it is better to create a specific rule file for the testing of these two cavities (individually
and in their inter-relation). Similarly, there is a bottom-right endpoint in almost all
models shown in Figures 67 and 68, and it would be counter-productive to replicate
in as many rule files the tests to be performed on that endpoint feature. Thus several
model files may be put to contribution to develop a rule file associated with one or
many features which they have in common; and several rule files may be required for

the recognition of some shape variant embodied in one model file.

Playing Safe

In developing the classification rules, we have applied the philosophy outlined in
Section 3.2. For instance, the samples shown in Figure 72 were voluntarily left out
of the process: the samples in Figure 72 (2), (b), and (c) are deemed potentially
confused with a crossed-out ‘7’, a strange ‘3%, and a European-style ‘1’ respectively;

® Preprocessing removes the horizontal 1-pixel thick line in the middle right portion.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 231

the other 2 samples are too unique in their style”.

A2 a

(2) (b) (c) (d) (e)

Figure 72: Samples Left Out of Rule Generation Process

Furthermore, great care was taken to define safe boundaries between classes and
to ensure that samples would be rejected rather than risking an error. Some of the
implications are illustrated with various samples® in Figure 73. The first 2 images
indicate the need to define a safe boundary between ‘2’s with a bottom hole (Figure
73 (a)) and ‘0’s with a hole (Figure 73 (b)); this boundary could be set using the
maximum height reached by the hole, relative to the number of rows. The sample of
Figure 73 (c) is a member of the file a-2.rlc; not only must it not be recognized as a
‘2’, but it should also be excluded from the class of ‘7’s if we were to develop rules
for that class. The last 2 samples exemplify the danger of 2 < 7 misclassifications:
Figure 73 (d) is a ‘2’ which our classifier recognizes as such; Figure 73 (e), on the
other hand, is a ‘7’ which should preferably not be incorporated in either of these
classes.

In general, a rule file carries out exhaustive testing on the specific feature or feature
sequence which it is meant to capture. We can summarize the results of our efforts
as follows: sixty three (63) rule files were created for the classification of ‘2’s; these
files contain anywhere from 1 to 41 rules, for a total of 613 rules. This work is quite
time-consuming and a detailed presentation of these rules is of course not relevant.

But we will discuss the classification approach and highlight some relevant aspects in

7 After preprocessing, the 1-pixel hole in the last image is filled; and there is only one large bend
feature at the top.
8 Some of these samples come from the CEDAR database; see Section 7.5.5.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 232

or>.

(2) (b) (c) (d) (e)

Figure 73: Defining Safe Boundaries for Recognition

the next subsections.

Processing an Unknown Sample for Membership in Class ‘2’

There are samples with a bottom hole, with a top hole, with both bottom and top
holes, and without any hole. The position ratio® is used to determine where a hole
is located. For 2’s, a hole with position_ratio > 1.24 was initially acceptable as a
candidate bottom hole; and a hole with position_ratio < 0.35 was initially accept-
able as a candidate top hole. The number and position of holes initially orient the
classification process.

After this initial categorization, the approach is to follow the external contour
of the numeral, applying various rule files to consecutive portions of the feature list
until the contour ‘tracing’ is completed. As an example, consider the attempts to
recognize a ‘2’ with a bottom hole. After the starting-feature rules (see Section 7.5.1)

have been fired successfully for a cavity in the feature list of an unknown sample, the

sequence of events is as follows:

e the initial cavity (or cavity sequence) undergoes various tests;

e the hole and the bottom portion of the contour encircling the hole undergo

various tests;

S The number of rows above the hole divided by the number of rows below the hole.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 233

e the bottom-right portion of the contour is tested for the presence of any of the

acceptable shape variants already discussed;
e the top-right portion of the contour is tested;

e the top portion of the contour is tested for the presence of any of the acceptable

shape variants already discussed;

When rule files are fired successfully and certain ‘milestones’ are reached around the
contour, features in the feature list are marked as having been traversed successfully'®.
When all rule files required for a certain model have been fired with success, the
classifier makes sure that all features in the feature list have been marked as a result;
if there is any unmarked feature, recognition as a member of the corresponding class
fails.

The approach of allowing several variants for specific parts of a numeral, of mark-
ing these parts when traversed with success, and of requiring that all parts be marked
before recognition succeeds was already used by recognition expert El, as discussed
in Suen et al. [157], for the branches of their skeletonized patterns (see also Nadal
& Suen [117]). Here we have applied these notions to the contours of numerals, and

with more refinement concerning the number and definition of the allowed variants.

Examples of Specific Rule Files

When the new recognition program is applied to a run-length-coded file of individual
digit images, it produces an output file (with extension .ids) indicating the classifica-
tion results, using 1 line per sample. The typical output line begins with 6 integers,
followed by the classification label produced by the classifier. The first 5 integers
are identical to those of the .rlc input file}!: a file number; a sample number; the
numeral’s identity, the number of rows and the number of columns in the image. The

sixth integer is the classifier’s decision, in the range 0-10, with 10 indicating rejection.
24 g

10 If classification as a member of that class fails at some ulterior point, features will be unmarked
before recognition as a member of another class is attempted.
1 GSee the introduction to Chapter 4.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 234

The image of sample #53 in file a-2.rlc is displayed in Figure 74 (a) and the
corresponding 53" line in output file a-2.ids is shown in Figure 74 (b), spread onto

several lines.

gou .°°°°o:°%
e e, 4T 29 2 34 35 2
S - P /START2/C1_orientA 2/C_seqA 2
g - /simple_top_2/top_of bh_2
%, o0 /bhlprof2/bh _botC_2/Ebr.2
°° /CE_2/bh_CtoC2/topB_2/topB2.2

/topBstd 2/topE_2

(a) Sample #53 in a-2.7lc (b) Output line for that sample

Figure 74: Classifier Output for a Specific Sample

Each name between slashes is a partial classification label indicating that the rules
in the rule file of the same name have been fired successfully. The initial ST ART?2
refers to the starting feature rules discussed in Section 7.5.1. Thus, after that point,
we know that PF[1] points to the large west-pointing cavity and PF[0] points to the
preceding endpoint. We now examine the specific contents of some of the rule files

involved:

e Cl_orientA has only 2 rules:
1. F1B1

2. Bov=>b
After ‘computing’ the bounding box of the (possible) cavity sequence including

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 235

PF(1], this requires that its vertical orientation be from top to bottom.

o C_seqA contains the following rules:

. FOxo@ 0

C0/4< 0.61

F1B2

Bt@ 0

C0/4< 0.375

FOB1

Bl@ 0

F1B1

Bl@ 1

. Cok1

. Br@ 1

. Cl-0@1

. C1/4> 0.20

. F1B3

. Bt@ 0

16. S0- 1.0

The first 2 rules require that d; < 0.61 X n_rows (See Figure 75 (a)). Rules 3-5
require that d; < 0.375 X n_rows. Rules 6-13 require that ds > 0.20 x n_rows.
The last 3 rules ‘compute’ the bounding box of the contour portion extending
from the first point of the top endpoint region to the first point of the bottom
left bend region and store the topmost row (minus 1.0) in the array element
stored_value[0]. This bounding box is referred to later in rule file bh_Iprof_2.

© P NS e @

e e o
B W N~ O

o stmple_top_2 contains only the following rule:

1. CO/6< 1.45
This requires that stored_value[0] < 1.45 x SW, where SW is the estimated

stroke-width.

o top_of_bh_2 contains only the following 2 rules:
1. Ht@ 9

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 236

* nan-“’

," -0,

’L
NQ-
o
>
B
T b
§ g
§
s

ae L3
s ‘a * s
v O ¢
? e : -
d,—2: FOWhO——>; r———
3 & g
hd [d [-d [d
i ¥
< a
«* ”.u-un”n .n“ﬂ-s., u""~“u‘wn .hnn‘..

“l\n Q.E'.‘ "uoh ﬁ‘P oD . - bv.no
g o el s a” T lod
o O o : . “Q
b4 " b4
4 o < .

v"vgou 8 ooou?

(2) Rule file C_seqA (b) Rule file topB2.2

Figure 75: Some of the Distances Involved in Rules

2. C9/4> 0.4
which require that the top row of the hole be located in the bottom 60% of the

image.

e bh_prof_2 contains the following rules:
Br@ 0

Co-7@ 0

Hr@ 8

C0-8> -1.1

Bb@ 0

C0/4> 0.4

[0=1+0

I+ C

. F1H2

10. C0/6< 1.5

11. C2/4> 0.7

12. MO1-

Rules 1-4 require that the bottom hole lie almost entirely to the left of the

© ® NN

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 237

rightmost column reached by the above cavity (sequence). Rules 5-6 require that
the lowest point of the bounding box computed at the end of rule file C_seqA
be in the bottom 60% of the image. Rule 7 advances PF[0] to PF[1] and rule 8
advances PF[1] to the next non-cavity feature. Rule 9 is actually a call to a fairly
extensive function which follows the non-cavity feature sequence, starting with
PF[1], around the outside contour of the bottom hole; this function computes
3 estimates of the body region thickness above, to the left, and below the
hole. An average of these 3 thicknesses is saved in stored_value[0]; the leftmost
column encountered around the hole is saved in stored_value[l]; and the lowest
position reached under the hole is saved in stored_value[2]. PF[1] is advanced
to the cavity following the non-cavity features encircling the hole (hence to the
bottom cavity in this case). Rule 10 ensures that stored_value[0] < 1.45 x SW.
Rule 11 ensures that stored_value[2] reaches into the bottom 30% of the image.
Finally, rule 12 marks all features from PF[0] to PF[1], excluding the latter.

o bh_botC 2 contains the following rules:

1. F1t=C
Flxo@ 0
C0/4> 0.49
Flyl@ 0
Co-7@ 0
Co/8> 1.0
2=1+1
020
. F2t=C
10. I2+ 1
Rule 1 verifies that PF[1] is indeed a cavity. Rules 2-3 ensures that the focal
point of that cavity is located in the bottom 51% of the image. Rules 4-6 verify
that last contour point of PF[1] cavity region is to the right of rightmost column
reached by the bottom hole. Rule 7 makes PF[2] point the feature following
PF[1] cavity (hence the bottom right endpoint in the case of Figure 75). Rule
8 states that we must satisfy the next 2 rules (9-10) or none at all... Rules 8-10

© P NS oA W

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 238

simply amount to saying that ”if PF[2] points to a cavity feature, advance PF[2]
one step further”.

e Finally, we jump ahead and consider one last rule file, topB2_2, which contains
the following rules:

024

FOWho@ 2

C2/6< 1.4

F0xo@ 2

C2/4< 0.33

FOWhI@ 2

. C2/6< 1.4

Rule 1 requires that either rules 2-3 or rules 4-7 be satisfied. Rule 2 stores

into stored_value[2] the horizontal width across the body region taken at the

focal point of PF[0]. This is illustrated in Figure 75 (b). Rule 3 requires that

stored_valuel[2] < 1.4 x SW. If this condition is not successful, rules 4-5 ensure

that this focal point is in the top third of the image and rules 6-7 apply the

same criterion to the horizontal width across the body region taken at the last

NS TR W N

point of the feature region PF[0].

7.5.4 Results With CENPARMI Training Samples

After developing the classification rules for ‘2’s as explained above, the partial recog-
nition system was applied to all 6000 samples of the CENPARMI training and testing
sets. The results are shown in Table 29. The recognition rates on sets A, B, and T
are respectively 91%, 94%, and 78.5%. There are no errors at all. Given that mis-
classification as ‘2’s was the most important source of errors in the E4 system, this is
already a notable achievement. In addition, the majority of the 30 samples of ‘2’ from
sets A and B which are rejected have small spurious holes and/or tiny noise features
along their boundaries. Thus, another classification pass, after proper filtering of
these artifacts, would likely provide a non-negligible increase in the recognition rate.

This would be most welcome, since the 78.5% value for the test set is not satisfactory.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 239

Train A Train B Test T
in/out 2 Rejected 2 Rejected 2 Rejected
0 0 200 0 200 0 200
1 0 200 0 200 0 200
2 182 18 {188 12 | 157 43
3 0 200 0 200 0 200
4 0 200 0 200 0 200
5 0 200 0 200 0 200
6 0 200 0 200 0 200
7 0 200 0 200 0 200
8 0 200 0 200 0 200
9 0 200 0 200 0 200
Errors 0 0 0

Table 29: Partial Performance Matrix on CENPARMI Sets A, B, T

However there is another avenue to improve this figure. Indeed the number of
samples in the CENPARMI database is relatively small. As a consequence, the num-
ber of digits in several model files is quite low; and since the recognition rules are
tightly tailored to the available data, it is hypothesized that the ranges of acceptable
values for some feature attributes are probably too narrow. This causes unneces-
sary rejections in the test set. One way of verifying and correcting this is to apply
our partial recognizer to other data and to relax some rules to accomodate rejected
samples which should belong to the same models. Occasionally, relaxing rules might
cause substitutions; this would reveal weaknesses of our classifier which are presently

unknown and which could then be corrected.

7.5.5 Relaxing Rules With CEDAR Training Data

The relaxation of classification rules is carried out using 13,954 samples of the CEDAR
database regrouped in 7 sets of 2,000 samples??, labeled cedarl, cedar?, etc... Each set

includes 10 files, one per numeral class, each containing 200 run-length-coded binary

12 Except for the last set which has 1,954 samples.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 240

images'®. These files are named cedar’-‘d’.rlc, with ‘' € {1 .. 7} and ‘d’ € {0 .. 9}.

Relaxing Rules With Samples of File cedari-2.rlc

We begin with file cedari-2.rlc. Initially, when the partial recognizer is applied to
these 200 “2’s, 104 are properly recognized and 96 are rejected. Thus the recognition

rate is only 52%... The process of relaxing classification rules is carried out as follows:

e The output file produced by the recognizer, cedarI-2.ids, is processed by a small
utility program which creates a model file containing only the rejected samples
and other model files of misclassified samples, if any. In addition to their regular
content, these model files also contain, for each sample, the classification label

produced by the recognizer.

e Using these model files as input, rejected samples can be viewed individually
with our development interface. As usual, their image is displayed in the draw-
ing area; but in addition to their feature list, their classification label is also
written to the scrolled text area. Taking into account the shape of the image,
the sequence in which rule files are known to be fired in the classification pro-
gram and the classification label of the rejected sample, it is easy to pinpoint
which rule file should have accommodated this sample but failed to do so. The
function APPLY_RULF can be edited to report the exact rule which failed when
that particular sample and that rule file was processed; furthermore, the value
of the tested attribute at that point can also be displayed, indicating in what
way the range of acceptable values should be modified.

e A misclassified sample, if any, is processed in a similar fashion. Visual inspection
reveals that the shape is indeed similar to that of the ‘wrong’ class in certain
portions of the contour, justifying the successful firing of 2 number of rule files
for that wrong class. But it also allows the user to see where the shape of the
misclassified sample is notably different from the class it was assigned to; this
pinpoints a specific rule file in which existing loopholes have just been revealed
and must be corrected.

13 The last file cedar?-9.ric contains only 154 ‘9’s.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 241

After processing the 96 rejected samples of file cedari-2.ids in the manner just

described, 149 samples are correctly recognized (74.5%) and 51 are still rejected.

Applying Variable Amounts of Smoothing

The number of rejections remains relatively large and observation reveals that almost
all rejected samples have small noise features along their contour. The problem is
much more important than for the CENPARMI database. Up until that point in the
development process, all contours had been smoothed with a triangular filter of width
w = 5 before the extraction of features. Noting that the CEDAR database resolution
was 300 PPI', it was decided to investigate whether applying more smoothing to
samples of ‘larger size’ (in terms of their number of rows, which increases in direct
proportion to data resolution) could help solve the problem. This extra smoothing
would have 2 advantages: firstly, to eliminate many small noise features, thus favoring
more recognition during the first pass; and secondly, to attenuate other noise features

not eliminated which would facilitate their removal by later feature filtering.

Uniform smoothing w = 5 || Variable smoothing w = 5,7,0r 9
File Recognized Rejected || Recognized Rejected
a-2.rlc 183 17 184 16
b-2.rlc 188 12 188 12
cedarl-2.rlc 149 51 164 36
cedar2-2.rlc 125 75 148 52
cedar3-2.rlc 119 81 134 66
cedar4-2.rlc 121 79 152 48
cedar5-2.rlc 126 T4 143 57
cedar6-2.rlc 126 74 147 53
cedar7-2.rlc 136 64 143 57

Table 30: Recognition of ‘2’s Depending on Smoothing

Several experiments were carried out, with different numbers of categories and dif-

ferent thresholds for these categories. The best results were obtained for the variable

14 Much higher than the 166 PPI of the CENPARMI database.

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 242

amounts of smoothing already presented in Section 6.4.1. Table 30 shows the im-
provement in recognition rate obtained for the 1400 ‘2’s of the cedarl through cedar?
datasets. For comparison, the results are also presented for CENPARMI training sets
A and B. For these, only one more sample is recognized by applying variable amounts
of smoothing. For the CEDAR ‘2’s however, the gain is much more significant: on
average, the recognition rate increases from 64.4% to 73.6%.

Figure 76: A ‘7’ Misclassified as a ‘2’

Finally; we note that during the relaxation process with samples from file cedarI-
2.rlc and the experiments with variable amounts of smoothing, 2 misclassified samples
were found. Both are ‘7’s; the first one was already shown in Figure 73 (e) and the
second one is displayed in Figure 76. Both errors were corrected by developing tighter
rules concerning the lower portion of ‘2’s without a bottom downward-pointing cavity

feature.

Relaxing Rules With Samples of File cedar2-2.rilc

A second file of 2’s from the CEDAR database, cedar2-2.rlc, was processed to relax
classification rules. The results are shown in Table 31; note that all samples of all
other classes were rejected correctly. The number of correctly recognized samples from
the file cedar2-2.rlc increased from 148 to 162, representing a gain in recognition rate
of 7%. The increments in number of samples recognized are much lower for the other
files of ‘2’s. The same was observed when relaxation of rules was first investigated

with file cedar1-2.rlc. This suggests that it was mostly different classification rules

CHAPTER 7. DEVELOPMENT OF CLASSIFICATION RULES 243

which needed relaxation in those 2 cases; thus fairly large training sets are required
to cover all rules which might need amendment. Clearly, further improvement could
be achieved with file cedar8-2.ric; also, for other classes, it was decided to always
attempt relaxation next with the file having the lowest count of recognized samples,

instead of processing them consecutively as was done here.

File Recognized Increment Rejected
a-2.rlc 185 +1 15
b-2.rlc 188 0 12
cedarl-2.rlc 166 +2 34
cedar2-2.rlc 162 +14 38
cedar3-2.rlc 135 +1 65
cedar4-2.rlc 154 +2 46
cedar5-2.rlc 145 +2 55
cedar6-2.rlc 151 +4 49
cedar7-2.rlc 146 +3 54

Table 31: Recognized Samples After Relaxing With cedar2-2.rlc

Finally, it is interesting to note what has been gained so far concerning the recog-
nition of CENPARMI testing set T. At this stage, 168 samples of ‘2’ are correctly
classified and the other 32 are rejected. All 1800 samples of other classes are properly
rejected. Thus the recognition rate for ‘2’s has increased from 78.5% to 84%.

Chapter 8

Overall System & Results

The general design of our recognition system was presented at the end of Chapter 3.
The present chapter will deal with a number of issues related to this design which
have not yet been discussed. Results will also be presented. For technical information
concerning program size and execution time, see Appendix I.

After preprocessing (including contour extraction) and feature extraction, numer-
als composed of several connected components undergo further processing aimed at
reconnecting the pieces together and/or discarding tiny pieces; this is explained in
Section 8.1. Then tiny, spurious holes are filtered out; this is presented in Section
8.2. After this point, classification is attempted only if the sample consists of a single
connected component. The special 2-component classification module at the cen-
ter of Figure 3 was not implemented since it is meant only for certain styles of ‘5’
(mostly), ‘4’, and ‘1’ and our partial classifier does not deal with these classes. The
first recognition pass is discussed in Section 8.3.

If the sample is not recognized, there may be two more attempts at classification.
First, various filtering operations are performed on its feature list; if any modification
results from this, another recognition pass is applied. Second, for samples with at
least one hole, if the filtering operations did not modify the numeral’s feature list or
if it still has not recognized after the second pass, another recognition pass may be
tried after dropping a small hole. Sections 8.4 and 8.5 examine these aspects.

Finally, Section Section 8.7 presents the results achieved by our system.

244

CHAPTER 8. OVERALL SYSTEM & RESULTS 245

8.1 Processing Multi-Component Samples

The CENPARMI database contains only single-component samples. But since we
have also used other databases to relax classification rules and to improve their re-
liability, it was necessary to deal with multi-component numerals (i.e. digits broken
in several pieces). For example, 3.43% of the 13 954 training samples used from the
CEDAR database are broken into 2 or more pieces; and the 5000-sample free-style
training set of the Concordia-Montreal database (the so-called e-set) has 4.82% of its
samples which are broken in 2 or more pieces. For the 4000-sample training set of
the ITRI-Taiwan database (sets twl, tw2, twd, and #w4), this percentage increases to
10.20%; and for the larger 24 427-sample training set of the ITRI-Taiwan database
(sets t20 to t24), it reaches 13.33%. See Appendix J for a detailed breakdown of these
figures depending on the numeral class and the actual number of broken pieces.
Solutions to the problem of broken digits were developed based on a collection
of 255 samples extracted from the CEDAR (300 PPI) and the Concordia-Montreal
(200 PPI) databases. The primary goal is to reconnect the disjoint pieces together to
recover a single-component image. But there are also tiny fragments which are simply
discarded; in addition, the specific weakness of the feature extractor in relation to
small blobs is addressed at this point, because it is important for proper reconnection.
The general approach followed is to modify the binary image and then to submit the

amended digit to the feature extractor once again.

8.1.1 Deleting Tiny Pieces

When the number of pixels making up a small piece is no more than the stroke width,
the tiny piece is deleted: its pixels are re-written as background pixels and the number
of pieces is decreased by 1.

The 2 images of Figure 77 (a) show examples of such tiny blobs which are removed.

The image on the left has 3 pieces; two of them are important for recognition purposes!

! Note that for 2-component images, the design of our recognition system prescribes a classifica-
tion attempt first; only when this fails to recognize certain styles of ‘5’, ‘4’ (as here), or ‘1’, will the
reconnection of broken pieces be attempted.

CHAPTER 8. OVERALL SYSTEM & RESULTS 246

. °::;°°% €l
o.o? g 00 2 =
oon.o ﬂ ﬂ
& g8 & a8
‘ Q;a ----- o . ggu ----- o
....... ?9.0 . -...'.:??.O
R i
[o o - a
I & &
3 L] o
(a) Tiny blobs removed (b) New endpoints extracted

Figure 77: Handling Small Blobs

and the third is a tiny insignificant fragment which is removed. For the second image
of Figure 77 (a), removal of the 2 tiny blobs is not as positive as in the preceding
case, since they appear to be part of the original stroke of the writer; their erasure
causes the zero to be opened more widely than was initially the case. Removal of tiny
blobs affected 22 of the 255 samples in this experiment. Not removing them before
the reconnection attempts of section 8.1.3 was also tried. In many cases, it made
no real difference; in some cases, it improved the final result but in others it created
noise spikes on the outer contour. In the final evaluation, there seemed to be no net

advantage in keeping them.

8.1.2 Extracting New Endpoints from Small Pieces

When it is not due to the writing style, the presence of more than one piece in
a digit image is generally the result of short breaks along the pen stroke, caused
by binarization thresholds (converting fainter regions into background) or writing
accidents. Thus we would expect most pieces to be elongated, with endpoints at both
extremities. In its simplest version, reconnection could then be based on detecting
pairs of nearby endpoints ‘aimed’ at each other.

At the end of Chapter 6, it was said that the extraction of features from small

CHAPTER 8. OVERALL SYSTEM & RESULTS 247

blobs is at times problematic with our new feature extractor. Another example is
given in the first image of Figure 77 (b). This digit is broken into 4 pieces and
for the 2 fragments at the top, no endpoints were extracted, only a very large bend
(encompassing both extremities of the fragment and the convex region between them)
and a small cavity. Not detecting the extremities of the broken pieces could hinder
proper reconnection. In order to solve this problem, the system examines all but the
largest piece to ensure that each of them has at least 2 endpoints. Any blob with

fewer than 2 endpoints is processed as follows:
e The feature list for the blob is dropped;

e A first endpoint region is determined: if the number of contour points is less than
12, the region is limited to a single point where the value of ¢; is maximum;
for blobs with 12 or more contour points, a 3-point region is chosen, where

(¢j=1 + &; + Pj+1) is maximum.
e A second endpoint is chosen, half way further around the contour.

The fact that other possibly significant features on the smaller pieces are dropped
is not a problem since the immediate goal is the reconnection of the disjoint pieces;
if this operation succeeds, contour and feature extraction will be performed again
on the modified binary image. The last image of Figure 77 (b) shows the result of
this endpoint extraction on the 2 top fragments. Among the 255 samples of this

experiment, 26 had new endpoint extraction performed on them.

8.1.3 Reconnecting the Pieces Together

If the number of disjoint blobs in the image is denoted by n_pieces, the number of
connections to make in order to obtain a single-component image is (n_pieces — 1) .
In our system, the reconstruction of broken digits is carried out in two main stages.
In the first stage, the best locations for the connections are found and as each site
is found, it is tested to verify if such a connection appears safe and sound; if so, the
appropriate information is recorded and the next connection is sought and tested;

if not, the reconnection attempts cease. No reconstruction of the image takes place

CHAPTER 8. OVERALL SYSTEM & RESULTS 248

during this first stage. In the second stage, the system verifies that the area of the
pieces which would still be disconnected (if any) is relatively unimportant. If this
is indeed the situation, the connections are actually performed on the binary image
itself; otherwise, the reconnection process is considered to have failed. We now explain
the first phase in more technical details:

e The method starts with the largest piece and considers each of its non-cavity
features in turn®. For each non-cavity feature of the largest piece, focal-point
distances are measured to each non-cavity feature of all the other pieces. The
shortest and second-shortest distances are recorded, with indications concern-
ing what pieces and what features on these pieces would be connected. The

following tests are then applied to the potential connection:

— The straight-line path joining the two focal points must be free from object
pixels; this is to avoid connections across an already existing stroke. If the
path is clear, and one of the two features involved is a large enough Bend
region (with a number of points exceeding 40% of the maximum dimension
of the image), the focal point of the Bend might be relocated so that it
is closer to the other focal point to which it could be connected. If on
the other hand the path is not clear and the distance is less than (3' X
stroke_width) and the pixel area of the yet unconnected piece represents
more than 15% of the total blob area of the numeral, an attempt is made
to find other points in the same feature regions which would be even closer;

when such points are found, another ‘clear path’ verification is made.

— If the inter-focal point distance is less than 2.15 x stroke.width, the con-
nection is immediately considered safe and sound. Otherwise, two more
tests are carried out. The first one verifies that the distance separating the
two focal points is less than 1.26 times the largest dimension of the piece
to be connected and that one of the two features involved points in the
direction of the other (with a 0.8 radian tolerance). If this is satisfied, the

connection is also considered safe and sound. Otherwise, the second test

% Connections are considered possible only between E-E and E-B feature pairs.

CHAPTER 8. OVERALL SYSTEM & RESULTS 249

performs the same verifications but this time with the features involved in

the second-best distance.

If the potential connection satisfies the above tests, the pieces involved are
marked as connected (even though they are not really, at this point) and the
method proceeds to the next step; otherwise, the search for feature pairs to

connect ends.

¢ In the second step, each non-cavity feature of the 2 ‘connected’ pieces is consid-
ered in turn; focal-point distances are computed to each non-cavity feature of
all but these two pieces. Again the shortest and second-shortest distances are
recorded, with indications concerning what pieces and what features on these
pieces would be connected. The tests just described are also applied to this
second potential connection (and perhaps to its ‘second-best’ substitute) and,
if successful, the method marks this third piece as connected and proceeds to

the next step.

e In the third step, the same approach is applied using focal-point distances from
each non-cavity feature of the 3 ‘connected’ pieces to each non-cavity feature of

all but these 3 pieces...

e The first phase ends as soon as a safe and sound connection can no longer be

found or when (n_pieces — 1) such connections have been found.

When the first phase is completed, the sum of the pixel areas of the pieces with
safe and sound connections between them is computed. If this sum exceeds 92% of the

total blob area of the image, reconstruction of the binary image will be undertaken

as follows:

e Small and left out pieces (if any) are erased by converting each of their object

pixel to the background value.

e The gaps between feature pairs to be reconnected must be filled with object
pixels to construct a single-component image. This is done by finding 2 proper
line segments to delimit the region to be filled and then by setting each pixel

CHAPTER 8. OVERALL SYSTEM & RESULTS 250

in this region to the object value. The situation is illustrated in Figure 78 (a)
where it can be seen that simply joining the starting ard final contour points
of the feature regions does not in general provide acceptable segments for our
purpose. A nice technique was developed which takes into account the stroke
width of the numeral:

(a) Incorrect solution (b) Delimiting region to fill on ‘right’ side

Figure 78: Delimiting Region to be Filled

— To find the first point on the ‘right’ side, the segment joining the focal
points o; and o, is first used as a reference; the end of that segment is
moved from o; to the preceding contour points (towards s;) as long as the
perpendicular distance from o, to the new segment increases and no more
than (stroke_width/2) times. This results in the solid line segment in the
left illustration of Figure 78 (b).

— To set the second point on the ‘right’ side, the other end is moved to
contour points following o; (towards f) as long as the perpendicular dis-

tance from o, to the new segment increases and, again, no more than

CHAPTER 8. OVERALL SYSTEM & RESULTS 251

(stroke_width[2) times. This finally results in the solid line segment illus-
trated in the right portion of Figure 78 (b).

— A similar approach is applied on the ‘left’ side to obtain another appropri-
ate delimiting segment.

— All pixels between the 2 segments are changed to object pixels.

When broken digit reconnection succeeds, the reconstructed binary image is pro-

cessed again from the beginning: preprocessing, edge and contour extraction as well
as feature extraction are carried out once more.

8.1.4 Evaluation

The broken digit reconnection scheme produces very good results. In general, most
pieces are reconnected together through End-End connections. We begin by showing

a few examples of the numerals where these predominant reconnections work very
well.

%o P00
e, S0,
P 2% && 2%
£ B3 £ L
2 °o,dg . 3 9 N
Q . Q 8:
Boot” & Bact” 8t

(a) Broken numeral (b) Reconnected numeral

Figure 79: Reconnecting Broken Pieces: E-E Connections (Case 1)

In Figure 79, we have a ‘2’ broken in 4 pieces which is very nicely reconnected. In

Figure 80, we have a ‘7’ broken in 2 pieces which are fairly distant, and a ‘9’ broken in

CHAPTER 8. OVERALL SYSTEM & RESULTS 252

e pooda L
P "

[+ 3] O O
&¥ i
& S
g s 5
ooooooooooé: :. 8 oooooooooo -
. - W-o :
Y %
. %
& -
.o SeP o

(2) Broken numerals (b) Reconnected numerals

Figure 80: Reconnecting Broken Pieces: E-E Connections (Cases 2 & 3)

3 pieces. Again, the reconstruction is successful. Given that the gap separating pieces
in Figure 80 (and also further, in the bottom sample of Figure 81) is quite large, it
might be thought that such reconnection could create problems in other situations.
Here we have operated under the assumption that all fragments belong to a single
numeral; in this context, the only factor to be considered is whether the reconnection
makes sense or not and larger gaps can indeed be bridged safely. Of course, in the
case of numeral strings or cursive script, when fragments can belong to neighbouring
digits or characters, one must be much more cautious. Qur reconnection scheme could
still be very usefull but the distance conditions (and possibly the direction conditions

as well) should be tightened in an important way.
Even though they are less frequent, End-Bend reconnections between broken

CHAPTER 8. OVERALL SYSTEM & RESULTS 253

0, -'.. 65-_.':
i:c"m.oc.& g gin ao.%;?woo
& o
ﬁ‘;g:go ﬁ::::oo
L g
S Fu
W. apst 3 %bod:p'n{: I oooE&%SOE@

(a) Broken numerals (b) Reconnected numerals

Figure 81: Reconnecting Broken Pieces: E-B Connections (Cases 1 & 2)

pieces also play an important role and are very successfull as well. Two cases are
shown in Figure 81. In the top case, the numeral is broken in 3 pieces and both
reconnections involve a pair of End-Bend features. In this case, both bends are rel-
atively small regions and its focal point was not displaced before reconnection. In
the bottom case, we see that the focal point of the bend feature encircling the hole
is located on the left side; because this bend is relatively large, its focal point was
relocated before the reconnection took place: it was moved completely on the other
side much closer to the broken piece’s left endpoint. It is at this location that the
reconnection takes place in quite a nice way. Thus broken digits with holes can also
be reconstructed correctly.

Finally, Figure 82 provides two examples where reconnection is not attempted
because the distance between broken pieces is too large (relative to the maximum

dimension of the piece to be reconnected). However, the distant piece’s area is less

CHAPTER 8. OVERALL SYSTEM & RES ULTS 254

T B
oooou.... .. 'Uoo
g & J ."Uo& d%
O. 2 Oo C,OD 3
%b o %0, Conged” .+
. o -
og., Do 3
o u°°°o noo gPu
3% R S
Sf s %
L4 §]
. [e) o
y ; ;
° g $
°O (o)

Figure 82: Reconnecting Broken Pieces: Too Distant Pieces

than 8% of both pieces’ combined area and it is simply dropped; the dimensions of
the image are re-adjusted to those of the largest piece.

Overall, for the 255 samples composing the material of this experiment, the han-
dling of the broken pieces is completely satisfactory in 235 (or 92%) of the cases:
either the reconnection is complete or small pieces (making up less than 8% of the
total area) are dropped rather than making awkward connections. In all these cases,
correct classification is expected to result from this processing. The fact that the
stroke width is taken into account in reconstructing the missing links of the binary
Image is a nice characteristic of our method which produces nice-looking images and
avoids creating spurious curvature features at the connections.

There are 8 samples where the area of the reconnected pieces (or of the largest
piece alone, if no reconnection is deemed safe and sound) is less than 92% of the total
blob area. This leads to rejection without any classification attempt. In the remaining
12 cases, reconnection is performed but can result in awkward-looking shapes; for 3 of
these samples, the problem stems from the poor binary image the system begins with;

for 3 more, recognition of 2-piece digits would most likely succeed before reconnection

CHAPTER 8. OVERALL SYSTEM & RESULTS 255

attempts; finally, for the last 6 samples, poor or wrong reconnection yields unusual

shapes which most likely would also be rejected and not lead to errors.

8.2 Filtering Spurious Holes

The presence and position of holes is an important global feature which initially guides
our classification method. However, small spurious holes can appear in binary images
and prevent this initial procedure from operating properly. This can be the result of
local breaks within the stroke width; but it can also be due to strokes coming very
close to each other or to other factors. Some spurious holes are shown in Figure 83.
Note that the binary images shown are not the original images but those obtained
after preprocessing, which may already have filled 1-pixel holes and opened up other
small holes.

Figure 83: Spurious Holes

The solution cannot simply be to drop all tiny holes because a number of very
small holes can still be significant, especially at low resolutions such as 166 PPI
(CENPARMI database) and 200 PPI (Concordia-Montreal database). The procedure
dealing with this problem in our system operates as follows. First of all, spurious
hole filtering is performed only for samples with more than 2 holes, and for samples
with 2 holes when the vertical distance between the bottom of the higher hole and

the top of the lower hole is smaller than 20% of n_rows; the last condition tries to

CHAPTER 8. OVERALL SYSTEM & RESULTS 256

avoid getting rid of one of the two typical holes of an ‘8’, when one of them is very
small. For samples satisfying these requirements, holes with a pixel area smaller than
1.25 x stroke_width are dropped®. But we always make sure to keep at least one hole,
even if this last hole might also pass the preceding test.

The guiding notion here is to keep potentially significant holes, even if tiny, because
this increases chances of recognition with high reliability. Of course, there is the
possibility that such small holes may be insignificant and oddly-located and prevent
recognition. Another procedure will assess this possibility, but only after the first
recognition pass. See Section 8.5.

For CENPARMI training sets A and B, 48 tiny holes are initially filtered out on
45 samples (1.2%) before the first recognition pass. This includes one hole for each
of the first 2 images of Figure 83 and two holes for each of the last two images.

8.3 First Recognition Pass

The classifier was developed for single-component digits* and for 4 classes. The
classifier begins by setting pointers to the first feature in the feature list and to the

preceding feature; then the number of holes is considered:

e For samples without holes, the unknown numeral is tested for classes ‘2’, ‘9’, 0°,
and ‘6’ in that order®. If the starting feature rules for class ‘2’ are immediately
satisfied with this setting of the feature pointers, the classification process for
that class will continue, following the contour, portion by portion. As was seen
in Section 7.5, different rule files will be fired, associated with various possible
subshapes for each portion. For efficiency reasons, the subshapes are tried in
order of decreasing frequency. If classification succeeds immediately for ‘2’, the
recognition process ends. Otherwise, the 2 pointers are restored to point again to

the first feature in the feature list and to the preceding one and classification as

3 The binary image is not ‘corrected’; these holes are simply dropped from their linked list.
4 All multi-component digits, even those with 2 components, are first processed for reconnection;

the vast majority become single-component digits.
S Which is the order of their decreasing frequency, as samples without holes, in the CENPARMI

training sets.

CHAPTER 8. OVERALL SYSTEM & RESULTS 257

‘9’ is attempted with this initial configuration. If this succeeds, the recognition
process ends. Otherwise, the same is attempted for class ‘0’, and then, if not
successful, for class ‘6’. If these trials fail, the 2 pointers are moved one step
ahead in the feature list and the second feature is tested for starting feature,
in turn for each of these classes; then the third feature, the fourth, etc. Thus
we see that classification will be more efficient if the starting feature selected
for each numeral class is always among the first ones in the unknown sample’s
feature list. When all features in the feature list have been tried out as starting
feature for these 4 classes without success, another similar round is performed,

this time testing only for rather rare 2’s with an opened bottom loop.

o For samples with one hole, the classifier proceeds as follows. Because of its
high frequency in this category and because of its simple shapes, all attempts
at recognizing class ‘0’ are carried out first. If this fails, the classifier tries
to recognize classes ‘6’, ‘9’, and ‘2’ (in that order) using feature pointers as
explained above, and trying each feature of the feature list as starting feature
for these classes. However, there is one difference: the position of the hole is
taken into account. Thus, the numeral with one hole will not be tested for
class ‘6’ at all, unless the hole satisfies the following conditions: vertically, the
hole must cover less than 66 % of the number of rows; its bottom row must be
located in the lower 40% of the image; and the center of the hole must be in the
lower half of the image. In the same manner, the variants of ‘2’ with a bottom
hole will be tried on the unknown sample only if the position ratio of its hole is
larger than 1.24; and the variants of ‘2’ with a top hole will be tried only if the
position ratio of its hole is smaller than 0.35. If the hole conditions are satisfied,
after a complete unsuccessful round of trying each feature in the feature list as
starting feature for classes ‘6’, ‘9’, and ‘2’, another similar round is performed,
but this time testing only for rare 2’s with a top hole and an opened bottom

loop.

e After the filtering of spurious holes explained in the preceding section, the num-
bers of samples with 2 (or more) holes in CENPARMI training sets A and B

CHAPTER 8. OVERALL SYSTEM & RESULTS 258

ﬁﬁfq

Figure 84: Typical Samples With 2 Holes, After Spurious Hole F iltering

are much lower than those recorded in Table 40 of Appendix H. For class ‘0,
of the 10 samples which originally had two holes, only 2 remain; for class ‘2°, 9
samples remain out of the original 12; for class ‘6°, of the 18 samples with two or
three holes, 3 samples remain with two holes and 1 with three holes; finally, for
class ‘9’, of the original 13 samples, 2 remain with two holes. Typical examples
are shown in Figure 84. From the CENPARMI training material in these 4
classes , it is clear that the presence of two holes is mostly due to handwriting
style for classes ‘2’ and ‘6’. For classes ‘0’ and ‘9, this occurs less frequently
and is rather the result of writing accidents®. Thus no attempt was made to
develop classification rules for zeroes or nines with two holes. Only 2’s and 6’s
were taken into account in this category. If both holes satisfy their respective
position ratio conditions, the classifier first tries to recognize a ‘2’ with both
a top and a bottom hole by combining the possibilities explored separately in
the preceding situation (for digits with 1 hole). If this fails, more severe re-
quirements are imposed on the 2 holes at the bottom of the ‘6’: the top of their
common bounding box must be in the bottom 40% of the image and the middle
must be in the bottom 30%; when this is the case, classification proceeds as in

the case with a single bottom hole.

6 Of course, slashed zeroes, and even slashed nines, are present in significant numbers in other
databases and specific classification rules would then have to be developed.

CHAPTER 8. OVERALL SYSTEM & RESULTS 259

8.4 Filtering the Feature List

The results of the first recognition pass are presented further in Section 8.7. When the
identity of the numeral is still unknown at the end of this first pass, it could be because
the feature list includes small noise features obviously not accounted for in any of the
shape variants for which rule files were developed. Three filtering operations are
performed trying to purge the feature list from these nuisances. If any modification

results from these operations, a second recognition pass will be attempted.

8.4.1 Filtering Wiggle-Pairs of Features

The first filtering consists of removing all the features already marked as wiggle-pairs
by the feature extractor (if any). See Section 6.4.4 for their definition and Figure
56 for some examples. The cumulative deviation angles associated with the removed
features and their preceding inter-arc regions are summed up. If the total exceeds 1.0
and the feature before the wiggle pair is a Bend feature, this last feature incorporates
that contour region and its cumulative deviation angle and focal point location are
amended correspondingly; otherwise, the sum is simply added to the inter-arc value

of the feature following the wiggle-pair.

8.4.2 Filtering Small Convex/Concave Features in Large

Concave/Convex Environment

Figures 85 (a) and (b) show small cavity or bend features, ‘lost’ in a large environment
of feature(s) of opposite sign curvature’. A filtering operation was developed to
remove these features. Special care was taken not to affect the typical middle bends
and middle cavities of ‘3’s which are also immersed in opposite sign curvature regions.
In order to be filtered out, a small Bend or Cavity feature must meet the following

conditions:

7 In this figure, only the features of interest and their neighbouring features are shown to highlight
the situation discussed.

CHAPTER 8. OVERALL SYSTEM & RESULTS . 260

(2) Small cavity (b) Small bend (c) Small cavity (d) Small bend

Figure 85: Filtering Out Small Isolated Features

¢ The feature must be small enough: the absolute value of the cumulative devi-
ation angle for its associated region must be less than 1.6; and the region size

must not exceed 10% of maz_dim?B.

e The feature must have a nearby large sequence of features of opposite sign cur-
vature: The gap separating the feature of interest and that sequence must not
be longer than 7.5% of maz_dim; the sequence must cover a contour length
larger than 50% of maz dim and its absolute cumulative deviation angle (in-
cluding possibly that of the feature on the other side of the feature of interest,

if it is of the same type as the sequence) must exceed 3.0.

e The feature on the other side of the feature of interest must either be of the
same type as the feature sequence or sufficiently far away (a distance exceeding
20% of maz_dim).

e The depth of the perturbation caused by the feature of interest in its envi-
ronment of opposite sign curvature must be relatively small. The situation is
illustrated in Figure 86 (a) which displays a magnified view of the vicinity of the
bend feature of Figure 85 (b). Through the focus of the feature potentially to
be filtered out, a straight line segment is drawn perpendicular to the feature’s

8 For small Bends, an extra pixel is tolerated.

CHAPTER 8. OVERALL SYSTEM & RESULTS 261

direction. From the start of the following feature region, distances are com-
puted from every second point to that line segment, as long as these distances
do not decrease. The same is done on the other side of the feature of interest.
The largest distance is kept and is denoted d; in the figure. For cavity features,
we must have d; < 7.5% X maz_dim; for bend features, the condition is less

stringent: d; < 1 4+ 10% x maz_dim.

If the feature satisfies the above conditions, it is removed from the feature list; the
cumulative deviation angles of its region and preceding inter-arc region are added to

the inter-arc value for the following feature.

e O

v O,

" C!

- O d
° O ! 1
-

o

.

0 I

: P
o < !

. O
° O (@] 0
(a) Second filtering operation (b) Third filtering operation

Figure 86: Measuring Relative Perturbation Caused by Small Feature

CHAPTER 8. OVERALL SYSTEM & RESULTS 262

8.4.3 Filtering Less Significant Isolated Features

The third filtering operation removes small cavity and bend features such as those
shown in Figures 85 (c) and (d). To be filtered out, the feature of interest must satisfy

the following conditions:

e The number of contour points in the feature region must not exceed 1 + 10% x

maz_dim.

o The portion of contour from the end of the preceding feature to the beginning
of the following feature must be more than twice the size of the feature to be

removed.

e The elevation of the focal point of the feature of interest above the straight
line joining the last point of the preceding feature to the first point of the
following feature must be small. The situation is illustrated in Figure 86 (b)
which displays a magnified view of the vicinity of the cavity feature of Figure
85 (c). The elevation, denoted d, in that figure, must satisfy either 1 + [da| <
7.5% x maz_dim or |d2| < 0.12 x L

If the feature satisfies the above conditions, it is removed from the feature list; the
cumulative deviation angles of its region and preceding inter-arc region are added to

the inter-arc value for the following feature.

8.5 Dropping Smallest Hole

Although the filtering of tiny spurious holes discussed in Section 8.2 purges images of
most of the unwanted holes, there are still a few cases where such a problem persists
and prevents correct classification. Thus after the first recognition pass and, possibly,
after a second recognition pass if any feature filtering was successful, a hole filtering
operation is performed if the digit is still not recognized. This operation removes the
smallest hole from the sample, provided its area is less than 10% of the blob’s pixel
area and, if there is more than 1 hole, provided also that the smallest hole’s area is

less than 33% of the largest hole’s area.

CHAPTER 8. OVERALL SYSTEM & RESULTS 263

8.6 Aiming for Higher Reliability

After developing the needed classification rules and the above feature filtering and
hole filtering procedures, our recognizer was applied to the CENPARMI A and B sets,
and to the cedar! through cedar?training sets. Very few erroneous classifications were
found and changes were brought to the relevant rules to avoid these wrong results.
To reinforce the reliability of our classifier even more, it was decided to run it on
other databases: thus we used the 5 000 free-format and 5 000 box-format training
numerals from the Concordia-Montreal database (sets e and g respectively); also the
4 000 samples (sets twl to tw4) and the 24 467 samples (sets t20 to ¢24) of both
ITRI-Taiwan databases.

The recognition system was applied to these 38 467 samples with a single purpose
in mind: find misrecognized samples and bring appropriate changes or additions to
the classification rules in order to avoid as many of these errors as possible. Not a
single rule was developed to recognize rejected samples. All together, 32 erroneous
classifications were found (10 as ‘0’s; 13 as ‘2’s; and 9 as “6’s). On average, this
amounts to slighly over 10 errors per class for which the classifier was developed.
Extrapolating a similar performance for other classes results in 107 errors for 38 467
samples, an error rate of approximately 0.28%. The reliability of our system is indeed
quite good on data of various origins. And it is hoped that by correcting most of the 32
errors found, it will be improved even further. We now discuss the misclassifications
and the remedies found for them.

The samples which are incorrectly classified as ‘0’ are shown in Figure 87. The
sample of Figure 87 (a) was in a file of ‘4’s. Originally, the feature extractor finds 3
bends and 1 cavity on its outer contour; after feature filtering the cavity was discarded,
thus causing the substitution in the second recognition pass. The 4 samples in Figure
87 (b) were in files of ‘6’; the first one revealed a weakness in the classification rules
for ‘6’s without a hole; the other 3 images share a common shape; even though the
hole is quite high, the top stem should be cause enough to reject the sample. The
causes of the 8 — 0 susbstitutions shown in Figure 87 (c) are twofold: the bulkiness
of these three ‘8’s in their middle section and the hole filtering operation of Section

CHAPTER 8. OVERALL SYSTEM & RESULTS 264

a 6660

(a)4—0 (b) 6 — 0 substitutions
(c) 8 — 0 substitutions (d) 9 — 0 substitutions

Figure 87: Samples Incorrectly Classified as ‘0’

8.5. In the first case, both cavities are extracted but one is later filtered out; in the
second case, only one cavity is extracted and it is also filtered out; in the last case,
no cavities at all are initially extracted. Later, when the top hole is also filtered out,
the substitutions occur. It is possible to avoid these substitutions, given the very
low position of the top of the bottom hole. The substitutions of Figure 87 (b) also
revealed clear shortcomings of the classification rules for ‘0’ which were corrected.
The samples which are incorrectly classified as ‘2’ are shown in Figure 88. The
four 1 — 2 substitutions of Figure 88 (a) were corrected based on the presence of
a very low cavity feature on the left profile of these numerals; this can also occur
on some ‘2’s but when it does, their top-down stroke is much more slanted than for
these ‘1’s. Rules were also modified or added to reject the samples of Figure 88 (b);
the second case revealed flaws in the rules that had been developed to recognize ‘2’s
with an open loop at the bottom. The six 7 — 2 errors of Figure 88 (c) could also
be corrected to rejections. This was done by taking into account the characteristics
of the stroke in the middle right portion of the image (5 cases out of 6). For the

third sample, the straightness of its right profile can also be used to force a rejection.

CHAPTER 8. OVERALL SYSTEM & RESULTS 265

11127 >3

(a) 1 — 2 substitutions (b) 3 — 2 substitutions

PP IAALF

(c) 7 — 2 substitutions

F

(d) 8 — 2 substitutions

Figure 88: Samples Incorrectly Classified as 2’

Finally, the 8 — 2 substitution of Figure 88 (d) can be prevented: for ‘2’s with a top
and a bottom hole, the top hole does not reach this low and the vertical gap between
holes is much wider.

Finally, the samples which are incorrectly classified as ‘6’ are shown in Figure 89.
The two cases of Figure 89 (a) revealed loopholes in the classification rules for ‘6’
and were easily corrected. The 8 — 6 substitution of Figure 89 (b) was due to the
filled hole in the top portion of the ‘8’ and the filtering of the small cavity on the
left profile when the first recognition pass failed; the problem can be solved because
of the unusual thickness (relative to the strokewidth and to n_cols) at the level of
the middle right cavity. The last six errors are 4 — 6 substitutions. The first one
can be avoided because of the unusual height of the hole. Four of the five other

CHAPTER 8. OVERALL SYSTEM & RESULTS 266

0 2

(a) 0 — 6 substitutions (b)8—6

b o bdan

(c) 4 — 6 substitutions

Figure 89: Samples Incorrectly Classified as 6’

misclassifications could be avoided by detecting some characteristics related to the
triangular shape of the hole.

Of the 32 substitutions found, 30 were modified to rejections. The only errors
remaining are the sample of Figure 87 (a) and the third sample from the left in
Figure 89 (c). In general, it was possible to modify or add rules to reject these
samples without reducing the recognition rate for true ‘0’s, ‘2’s, and ‘6’s,

We conclude this section with two remarks. First, it is noteworthy that the fact
that we have developed only a partial classifier tends to increase the error rate: several
classes then have no other choice but error or rejection. In particular, some 8 — 0
and 7 — 2 errors are samples whose shapes are quite ‘normal’ and would have been
classified properly in the first recognition pass; it was only after feature filtering
that the misclassification occurred. The second remark pertains to our scheme to
reconnect (or filter out pieces from) broken numerals. It should be noted that none of
the substitutions observed was due to wrong or poor reconnection. Thus our method

seems quite reliable.

CHAPTER 8. OVERALL SYSTEM & RESULTS 267

8.7 Results

Table 32 presents the performance matrix of our recognizer when applied to the 4
000 training samples of the CENPARMI database. Resulis are presented after the
first pass and after the final (second or possibly third) pass. There are of course no
substitutions. On average, there is a gain of 3.4% in the recognition rate between the
first and the final passes.

After first pass After final pass
in/out 0 2 6 0 2 6
0 379 0 0 393 0 0
1 0 0 0 0 0 0
2 0 374 0 0 381 0
3 0 0 0 0 0 0
