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Abstract

Nonparametric Regression Estimation
with Applications in

Radial Basis Function Networks and Learning

Subha Ramanan

Learning algorithms are analysed from the statistical and neural network viewpoints.
In the firsi, part, the regression based approach for minimizing the mean squared error
is considered. The decomposition of the mean squared error into bias and variance
components and their contributions to the error are investigated. Specifically, the
k-nearest neighbor (k-NN) regression estimator and the kernel regression estimator
(KRE) are studied. The optimal choice of the parameters of these estimators is
discussed. In the second part, the neural network approach to the learning problem
is explored. Specifically, the Radial basis function (RBF) network is studied in detail.
The random sampling and clustering methods of choosing the center parameter of the
network are analysed and compared. Comparisons between the RBF nets and the
KRE are studied. For both parts, performance of the estimators are assessed by the

mean squared error and the results of simulation are presented.
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Chapter 1

Introduction

Much of the recent. research on artificial neural networks suggests a close analogy to
nonparametric statistical inference. A branch of statistics concerned with model-free
estimation, nonparametric inference has matured in the recent years. With new the-
oretical and practical developments that have been introduced, there is now a large
literature containing themes that parallel neural modeling. A typical problem in non-
parametric inference is the estimation (or learning) of arbitrary decision boundaries
in a classification problem, based on a collection of pre-classified (or labeled) sam-
ples. No assumption is made on the shape of the boundaries and in particular, no

parametric model is assumed, in contrast with parametric estimation.

In this thesis, we study learning algorithms from the statistical and neural network
viewpoints. We consider the learning problem with a feature or input vector x and a
response vector y. The goal of learning is to predict y from x, where th= pair (x, y)
obeys some unknown joint probability distribution, P. A training set denotes a col-
lection of observed input-response pairs:{(Xy,¥1),...,(xn,¥n)}. These samples are
usually independently drawn from P. The response y may or may not be uniquely
determined by the input x, leading to deterministic or ambiguous classifications re-
spectively. The learning problem then, is to construct a decision rule or function f(x)

based on the training samples {(x1,¥1),...,(X,v,¥n)}, so that f(x) approximately




generates the response vector y.

The function f(x) is chosen to minimize some functional, the form of which varies
with the situation on hand. The optimal f*(x) depends on the unknown distribution
of (X, y). In practice, we estimate f*(x) from the learning sequence and obtain an
empirical decision rule. One of the standard methods of obtaining this empirical rule

is to minimize the sum of squared errors

N
> lyi = f0x))” (1.1)

=1
where f represents a neural network. Since f is really parameterized, this minimiza-

tion is over the class generated by all possible values allowed for the parameters.

The thesis can be broadly divided into two parts. In the first part, we focus our
attention on the regression based approach for minimizing the mean squared crror
(1.1), by reasoning that amongst all functions of x, the regression is the best predictor
of y given x. Formulating the learning problem as a non-linear regression problem,
the error in estimation is decomposed into two factors : bias and variance. While an
incorrect model leads to high bias, truly model-free estimation leads to high variance.
Model free approaches are typically slow to converge - a large number of training
samples being required to achieve a reasonable performance. This is the effect of
high variance caused by the the large number of parameters, in fact, infinite number
in true model free inference that are to be estimated. Hence massive training sets
are required to significantly reduce the variance contribution to the estimation error.
Indeed, the variance can be controlled by using model-based estimation. However,
for complex inference problems, correct models are hard to identify and hence model-
based inference suffers from high bias. This suggests that, when faced with a complex
inference task, there is a trade-off involved between bias and variance. We illustrate

this trade-off involved in the inference problem.

Non-parametric estimators that deal with the regression problem have been exten-
sively studied in the modern statistics literature [23]. Different techniques have been
proposed to construct ‘hese estimators. These include the k-Nearest neighbor(k-NN)

estimators {2, 3], Kernel regression estimators(KRE) [7], Multiple adaptive regression
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splines(MARS) [8], Boltzmann machines [12] and feed-forward neural networks [9] .
We approach the regression problem with the &-NN estimator and the KRE, these

being well known for their good performance.

In experimenting with the above estimators of the regression function, we consider
a suitable classification curve and obtain expressions for the regression. We describe
the generic features of the bias and variance of the mean squared error observed from
the above non-parametric estimators. We then study the behaviour of the mean
squared error as a function of the parameters involved in each method of estimation.
We consider the consistency property of the estimators and study the large sample

convergence of the error. We perform the experiments with two kinds of data:

e Deterministic data: Inputs are chosen in a deterministic manner.

¢ Ambiguous data: Inputs are perturbed by a random mechanism.

Similar studies were made by Geman [9], on the kNN estimators and feedforward
neural networks. We extend the experiments performed with the &-NN estimators to
the KRE and study various choices of kernels suitable for the regression problem. We
identify the optimal kernel suited to the nonparametric regression estimation problem

considered.

The second part of the thesis explores the learning problem from a neural network
perspective. After several years of extensive studies on the multilayer perceptron -
initially the most popular model of feedforward neural networks, researchers have
turned their attention to a number of other models including Multivariate Adaptive
regression splines (MARS) nets [8), Wavelet function nets, sigmoidal nets [16) and
Radial Basis Function (RBE') nets {28, 26].

The sigmoidal nets have been extensively studied and its properties well employed in
the regression estimation [1} and classification [9] problems. Approximation results
for these nets have been obtained by Barren [1]. On the other hand, although gener-
alization and approximation abilities of the RBF net have been explored {19, 20, 15],

3




these estimation properties have not been exploited yet in classification and regres-
sion. We therefore approach the learning problem through RBF nets. Further, we

experimentally compare the performance of the RBF network and the KRE [28].

In exploring the RBF approach, we describe the several parameters that are involved
in the network. We describe the random sampling and clustering methods of selecting
the center parameters of the network, the former method assigning a randomly se-
lected subset of the training set to the center parameters and the latter selecting the
cluster centers of the data for this purpose. Further, we consider the minimization of
the mean squared error 1.1 with respect to the weight vectors of the net and use the

solution of this linear optimization problem as the weight vectors of the network.

The above presents a difficult problem to analyse from the theoretical standpoint: we
therefore study it experimentally by performing simulation modelling with two kinds
of data:

¢ Unclustered data : We use uniformly distributed deviates.

o Clustered data : We use a mixture of different gaussian distributed deviates.

The purpose of such a choice of data was to study the RBF net when the center
vectors are chosen by the random sampling and clustering methods and to study the

effects of clustering. The following questions were explored in this connection:

o How does the RBF net perform when the center vectors are chosen by selecting

a random subset of the training set?

o How does the behaviour of the RBF net alter when the center vectors are chosen

by a clustering algorithm?

o How does the KRE behave and compare with each of the above cases?

Our plan of presenting the above is the following: Chapter 2 gives a description of

the regression problem and the bias-variance trade-off, describing the &-NN and KRE

4




methods of estimating the regression. Chapter 3 describes the experiments performed
with the k-NN and Kernel regression estimators. In Chapter 4, a detailed discussion
is given on the RBF network approach to the learning problem and its connections
with the KRE. Chapter 5 details the experiments performed with the RBF network
and compares the results with those performed with the KRE. We conclude with an

analysis of the results from the above experiments.




Chapter 2

Nonparametric Approaches to the

Regression problem

In this chapter, we examine the regression problem through parametric and non-
parametric approaches. The advantages and disadvantages of either approach arc
discussed. We consider the bias/variance decomposition of the mean-squared error
and illustrate the issues that arise in balancing these components. The trade-off
involved in aiming to reduce contributions of each of these components is illustrated
through an example of the regression problem. We conclude the chapter with a
description of the &NN and KRE estimators and a discussion on the optimal choice

of the parameters involved in each method.

2.1 Regression and Least-Squares Estimation

In Least-Squares Estimation, the goal of learning is to construct a function fhased on
the data {(x1,y1),...,(Xn,yn)} such that f minimizes the sum of observed squared




€rrors .

N
3 lyi — f(x))?

i=1

This method defines one way of estimating the regression.

Definition 2.1 The regression of y on x is Efy | xJ, that is, that deterministic func-

tion of x that gives the mean value of y conditioned on x.

In aiming to “fit the data”,we look for that function of x that gives the best predictor
of y! given x. The regression is an excellent solution, in the mean-squared error sense,

as can be seen from the following reasoning.

Denoting Ely | x] = m(x), consider the following mean squared error, for any function

f(x), and any fixed x:

Elly —f(x)]lx] = El((y —m(x)) + (m(x) - f(x) ))’|x] (2.1)
= El(y — m(x))*[x] + (m(x) - f(x) }* +
2E[(y — m(x))x](m(x) - f(x) )
= El(y — m(x))’|x] + (m(x) - f(x) ) +
2(m(x) — m(x))(m(x) - f(x) )
El(y ~ m(x))*}x] + (m(x) — f(x) )* (22)
E{(y ~ m(x))*|x]

v

(2.3)

Hence among all functions of x, the regression is the best predictor of y given x, in

the mean-squared error sense.

Alternative approaches to the least-squares estimator include likelihood based ap-
proaches. As opposed to decreasing the squared error, these algorithms aim at in-

creasing the likelihood. The maximum likelihood estimator is certainly much studied

1For convenience, we take y to be one dimensional, that is, y = y, though the discussion applies

to the multidimensional case as well.




in statistics, mainly due to its optimality properties. One of the most extensively
studied neural network in recent years is the back-propagation network which uses
the least squares estimator in the error back-propagation algorithm [12]. This leads

us to focus our attention on the least squares estimators.

2.2 Parametric vs Nonparametric Estimation

Given a set of training or design samples representative of the type of features and
underlying class principles, with each labelled by its correct class, we can procced to

estimate the decision boundaries through parametric or non-parametric approaches.
Illustration

Consider the classification example with two classes : class A and its complement.

Let y be 1 when x falls in class A, and 0 otherwise.

The regression is then

Ely|x] = Ply=1]x]
Ply € class A | x]

which is the probability of falling in class A as a function of the input vector x.
Suppose the decision rule is to choose class A if Py € class A | x] > 1/2. This
partitions the range (H) of x into two regions : Hq = x: Ply € class A | x] > 1/2
and its complement H — H4 = Hj;. The separation between 4 and Hj can be a
regular surface or a highly irregular one ~ this decides the efficiency of the approach

chosen.




Parametric Approach

This approach assumes a priori knowledge of H4 up to a finite number of parameters.
This would indeed be the case if H4 and Hj; were separated by a linear or quadratic
surface. If this is the case, then fewer samples are needed for accurate estimation than
if we were to estimate without parametric specifications. Hence, this approach has the
advantage of efficiency. But suppose the true discrimination function substantially
deviates from the assumed decision boundary, then the parametric approach would

converge to an incorrect and hence suboptimal solution.

Nonparametric Approach

This approach makes no a priori commitments on the decision boundaries. Proceeding
without parametric specifications, this approach is destined to converge to the correct
solution, if the number of training samples increases without bound. We define the
important property of consistency which most nonparametric regression estimators
share. There are several versions of consistency depending on the type of convergence

taken into account. Here we give the definition in terms of convergence in the mean

squared error sense,

Definition 2.2 An estimator f,(x) of y is said to be consistent if

E(fax) —y)? 20 asn — oo

Consistency therefore deals with the asymptotic (large sample) convergence of an

estimator to the object of estimation.

This property, indeed, furnishes a great advantage to nonparametric algorithms, but
it comes with a high price : nonparametric estimators may be extremely slow to
converge. An unreasonably large number of training samples may be needed to make

even crude approximations of the target regression function.

Parametric algorithms face the risk of being bias-prone, when the assurned form of the

9




decision boundaries depart considerably from the true separation. On the other hand,
non-parametric algorithms may be too dependent on the particular observations when
small samples are used, and hence tend to have a high variance factor. A potential
problem in using parametric approaches in practice is that we require the underlying

class-conditional distributions. Unfortunately, these problems may arise:

1. We are not able to determine a specific form (eg., Gaussian) of the distributions.

2. The form chosen does not fit one of the ‘estimable’ formulations.

For these reasons, we resort to non-parametric estimation techniques.

In the following section, we discuss the roles played by bias and variance factors by

considering the bias/variance decomposition of the mean-squared error.

2.3 Bias and Variance

Consider a training data D = {(x1,%1),...,(X~n,yn)}. The regression problem is to
construct a function f{x) based on D for the purpose of approximating y at future
observations of x. To denote explicitly the dependence of fon D, we write f{x; D)
instead of f{x). Given D and a particular x independent of D, the mean-squared

error
E((y - fix; D))*|x, D]

is a natural measure of the effectiveness of f as a predictor of y.

Consider equation (2.2) in terms of the new notation:

El(y - fx; D))*|x, D | = El(y — Ely | x])*Ix,D ] + (ix; D) ~E[y | x))’

Note that the quantity
El(y - Ely | x])’x, D]

10




is the variance of y given x and therefore does not depend on the data D or on the
estirnator f. Hence, the effectiveness of f as a predictor of y is really measured by the

squared distance to the regression function,

(fix; D) ~ Ely | x])?

We now measure the effectiveness of f as an estimator of the regression. The mean-

squared error of fas an estimator of the regression Efy | x| is then,
Epl(fix; D) - Ely | x])’] (2.4)

where Ep stands for expectation with respect to the training set D. For a fixed

sample size, this quantity is nothing but the average over the collection of possible

sets D.
Analysis of the mean-squared error

For a particular training set D, the estimator f{x; D) may happen to be an excellent
approximation to E[y | x]. It may be the case that f{x; D) differs widely for other
realizations of D, that is, there can be a substantial variation of f{x; D) with D. On
the other hand, it may happen that the average of f{x; D) (over all possible D) is far
from the regression E[y | x]. In both these situations, there will be large contributions

to the mean-squared error (2.4) making f{x; D) an unreliable predictor of .

2.3.1 Bias/Variance Decomposition

The sources of estimation error mentioned above, can be efficiently assessed through

the bias/variance decomposition. We derive this in a way similar to equation (1.1).

For any x, letting Ep[f(x; D)] = r(x), consider the mean-squared error

11




Ep[(fix; D) ~ Ely | x])’] = Ep[((fix; D) - r(x)) +
(r(x) — Ely | x]))"]
= Bp[flx; D) - r(x)]* +
Ep[r(x) - Ely | x}* +
2Ep[(fix; D) — r(x))(r(x) — Ely | x])]
= (r(x) - Ely | x})* +
Ep|[(fix; D) - r(x))’] (2.5)

The first term on the left hand side of equation (2.5) measures the distance of the
mean value of the estimator to the regression and denotes the bias of the estimator

f{x; D) while the second is the variance of the estimator.

An unbiased estimator can still have a large mean-squared error, if the variance is
large, that is, even when Ep[fix; D)]= E[y | x], the estimator may be highly sensitive
to the data, leading to a large variance and hence a large mean squared error. On the
other hand, if on the average, f(x; D) is different from E[y | x], then f{x; D) is said to
be a biased estimator of E[y | x]. This in general, is dependent on P (See Chapter 1).

Hence, a biased estimator would again lead to a large mean-squared error.

A good balance between the bias and variance factors is therefore needed to efficiently
reduce the mean-squared error. The issue of balancing bias and variance has been
well-studied in estimation theory. We illustrate this trade-off with the following one-

dimensional regression problem.

2.3.2 Illustration

Here we take x = z and y to be related to z by the relation
y=g(z)+7

12




where g is some unknown function and 7 is zero-mean noise following a distribution
independent of z. The regression E[y | x] would then be simply g(z) and this, by the

previous reasoning would be the best predictor of y in the mean-squared error sense.

To illustrate clearly the bias and variance contributions to the mean-squared error,
let us suppose that we keep z deterministic and let y alone be random. Suppose we
collect N observations {z;,...,zx}. The data then consists of the corresponding N
values of y, D = {y1,...,y~}. The goal is to make a guess at g(z) using the noisy
observations y, = g(x;) + 7.

On the one hand, suppose we define f(x; D) to be entirely dependent on the training
data, i.e, f{x; D) is an interpolant of the data. This would make the estimator truly

unbiased at & = z;,1 < < N, since

Ep[fx; D)] = £lg(x:) + mi] = g(:) = Elylzi]

Further, if g is continuovs, there would be very little bias contributed from the neigh-
borhood of the observation points z;,1 < ¢ < N. Hence, the overall contribution
to the mean-squared error from the bias factor would be small. But if the variance
of the noise 7 is large, then this would lead to a large variance component in the

mean-squared error (2.5) , since

Ep[(fx; D) — Ep[fix; D)])*] = Epl(g(z:) +n: — 9(z:))*] = Eln]]

which is the variance of 5;, as the noise has zero mean. This estimator is therefore

highly sensitive to the data.

On the other hand, we can suppose f{x; D) to be independent of D, that is, we may
define f{x; D) = h(z), for some carefully chosen function h(z). Since the estimator
does not depend on D, the issue of variance is solved. But this would indeed be likely

to introduce a substantial bias factor, as this estimator completely ignores the data.

A wise choice therefore, would be an intermediate choice between the two extremes.

For instance, we may aim to combine smoothness while retaining some consideration
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for the observed data. We discuss various approaches to the regression problem which
deal with this trade-off.

2.4 kNN Approach

r

This simple approach has been extensively used because of its efficient performance.
Given a training set D = {(x1,¥1),...,(Xn,¥~)}, the ‘memory’ of the machine com-
prises exactly of D. For any input vector x, a response vector is obtained from the

training set by averaging the responses to those inputs that happen to lic close to x.

A collection of algorithms indexed by an integer k is used to determine the number
of neighbors of z that are considered in the above average. Let Ni(x) denote the
collection of indices of the & nearest neighbors to x among the input vectors in the

training set D. Then the k-nearest neighbor estimator is given by

ZY.‘

IENK(x)

e —

fx; D) =

Optimal choice of &

If k is large, then the response f(x; D) is a relatively smooth function of x, but this
function does not give due consideration to the actual position of the x;’s in the
training set. In fact, when k= N, f{x; D) does not depend on x or on x;,1 <i< N;
the output in this case is just the average observed output 1/N YN y,. When N itself
is large, 1/N T, y; is likely to remain unchanged from one training set to another.
Thus, the contribution of the variance to the mean squared error is small. On the
other hand, the bias contribution would be large since the :esponse to a particular
X is systematically biased toward the population response irrespective of any local

variation in the neighborhood of x.

The other extreme is & = 1, that is, the first nearest neighbor estimator, With

this choice, we can expect the bias to be appreciably small, as the bias of the first
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nearest neighbor goes to zero as N goes to infinity. On the other hand, the variance
contribution to the mean squared error is typically large. This is because the response
at each x is rather sensitive to the peculiarities of the particular training samples in

D.

It follows fiom this reasoning, that the optimal mean squared error is obtained from
a compromise between the two extremes k = 1 and k = N. By choosing an interme-
diate k, thereby making f{x; D) reasonably smooth, we aim to achieve a significant

reduction of the variance without introducing too much bias.

Consistency properties

If we let N — oo, the k- nearest neighbor estimator can be made consistent by letting
k = ky T oo sufficiently slowly. This is because the variance is controlled by letting
kn T oo, while the bias is controlled by ensuring that the kyth nearest neighbor of x

gets closer to xas N — oo.

It has been shown [5] that under various noise conditions, the nearest neighbor esti-
mate is strongly uniformly consistent. In the case when there is a large amount of
data, the computational burdens of processing the data could be large. Devroye and
Wise [6] have proposed a recursive method of estimnation to deal with this, giving
distribution-free consistency res-ilts for the recursive nearest neighbor regression es-
timator. Further, the rates of convergence of the k-NN regression estimate have been
obtained by Gyorfi [10] and Stone [24], while the rates of convergence of bias and

variance have been analysed by Mack [17].

We study the large-sample convergence of the NN estimator in our experiments

conducted with the nearest neighbor estimator(See Chapter 3).
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2.5 KRE Approach

In this method, again, the ‘memory’ of the machine is composed of the entire training
set D, but here, the estimation is done by combining kernels (or Parzen windows)

which are placed around each observed input x;,1 <7 < N.

The kernel is usually chosen to be a non-negative function of x which is maximum at

x = 0 and decreasing away from x = 0. A common choice is the gaussian kernel :
d
1
W(X) = (-\—/—?7_;) exXp {*%'XP} , for x € Rd

where |x| stands for the vector norm of x.

A number of alternatives to the gaussian kernel can be also be considered. In addition

t¢ the gaussian kernel, we have experimented with the exponential kernel given by:
W(x) = exp {—Ix]}

and the rectangular kernel given by:
1/2 f <1

Wi = | /2 for s

0  otherwise

where |x| denotes the distance to the zero vector.

Further, we have also studiec the mean squared error of the KRE with the Fejer-de

la Vallee-Poussin kernel, commonly called the sizc kernel, given by

sin([x|/2) z .
Wi = 4 3 CRiAT) TxI#£0
1/27 if x| =0

The scale of the kernel is adjusted by a bandwidth ¢ which govern: the extent to

which the window is concentrated at x = 0, or is spread out around x = 0.

Having fixed a kernel W and a bandwidth o, the kernel regression estimator at x is

formed from a weighted average of the observed responses y,,1 <t < N :

oy - T BWI(x — x,)/0] o g
fix; D) = SN Wiix = x,)/7] (2.6)
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Since W[(x — x;)/o] has its maximum at x = x; , it follows that observations with

inputs closer to x are weighted more heavily.
Optimal choice of o

When the bandwidth o is small, only points that are close to x contribute to the
response at this point. This procedure is similar to the k-nearest neighbor method
with small k. On the other hand, when o is large, many neighbors contribute signifi-
cantly to the response presenting a situation analogous to the choice of large & in the

k- nearest neighbor method.

Hence the bandwidth o governs the bias and variance in a manner similar to the pa-
rameter kin the nearest neighbor procedure : Small bandwidths produce high variance

and low bias while large bandwidths incur relatively high bias but low variance.

The problem of selecting the optimal bandwidth in nonparametric regression estima-

tion has been studied by Hirdle and Marron [11].

We further discuss the selection of optimal bandwidth for the problem on hand, in

our description of experiments with the KRE (See Chapter 3).

Consistency properties

The KRE has been shown to be consistent, and distribution-free consistency prop-
erties of the KRE in regression estimation have been studied [7]. Further, global
convergence of the recursive kernel regression estimates have been established and

their rates of convergence analysed [14, 24].
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Chapter 3

Experiments with the k-NN and
KRE estimators

In this chapter, we describe the experiments performed with the & NNR and KRE
estimators. We display the features of the two error components: bias and variance,
and the behaviour of the mean squared error as the parameters involved are varied.
We also study the asymptotic(large-sample) convergence of these estimators. The ex-
periments were performed with two kinds of data: deterministic and ambiguous. With
this facility, we study the regression problem under two broad categories consisting

of deterministic and ambiguous classifications.

Similar studies for the &NN estimator were performed by Geman [9)]. In addition to
the nearest neighbor estimator, we perform experiments with the KRE and study the

choice of kernel.
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3.1 The Classification Problem

We consider a binary classification problem — where the output can be categorized
in one of two classes. We represent these classes by the values £0.9. The input
comprises of two components, X = (z1,22), and is drawn from the rectangle R =
[-6, 6] x [-1.5, 1.5].

3.1.1 Deterministic Data

In the deterministic case, the classification is determined by the curve
zg = sin((7/2)z1)

which divides the rectangle R into two pieces: class A = [z2 > sin((7/2)z,),y = 0.9]
and class B = [z, < sin((7/2)z,),y = —0.9]. The regression is then the binary-valued

function:
09 ifye€classA

Ely [ «] = { —0.9 ify€class B

In order that each class is well represented, the training set is comprised of 200
examples and is constructed to have 100 examples from each class. The 100 inputs
corresponding to y = 0.9 are chosen from the uniform distribution above the sinusoid

and the other 100 inputs are chosen from the uniform distribution below the sinusoid.

3.1.2 Ambiguous Data

Within the same basic setup described in the previous subsection , the classification
can be made ambiguous by randomly perturbing the input vector before determining
its class. To describe this random mechanism, let us denote by S;(x), the disk with
unit radius centered at x. Given an input X, the output y is randomly classified as

follows: we first perturb the input vector x by choosing a point z = (2, 2;) from the
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uniform distribution on S;(x). This is equivalent to choosing z; from the uniform
distribution on [z1 — 1,21 + 1] and 2; from the uniform distribution on [x2 — 1,29 + 1)
and restricting (21, z2) to lie inside the unit disk Sy(x) [22]. y is then assigned the
value 0.9 if z; > sin((7/2)z1) and -0.9 otherwise. For a given x, and hence a randomly

chosen z, the resulting regression would then be:

E[y l X] = 0.9P[22 2 Sin((ﬂ'/2)21] - 09P[22 < Sil’l((ﬂ'/2)21]

Denoting A; to be the area above the sine curve bounded by the unit disk and A; to be
the area below the sine curve bounded by the unit disk, P[z; > sin((7/2)z,] = A, /=
and P[z; < sin((7/2)z] = A/, since z = (21, 22) is an uniform deviate on the unit
disk. The above regression therefore becomes

0.9

Ely | x} = —7';‘(141 — Az) (3.1)

The areas A; and A; depend on where the intersecting points of the unit disk and
the sine curve lie - depending on their position with respect to the center of the disk,
the calculation of the regression can be categorized into several cascs. These cases

and the ensuing expressions for the regression are derived in the appendix.

As proved in Chapter 2, in the problem of minimizing the mean squared error, the

best response to a given X is the regression Ely | x].

As with the deterministic case, the training set for the ambiguous classification task
was also built in such a way that it comprised of 100 examples from each class. This
was done by repeatedly selecting pairs (x, y), where x was chosen uniformly from the
rectangle R and y was chosen by the random procedure described above, The first
100 examples for which y = 0.9 and the first 100 examples for which y = ~0.9 formed

the training set.
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3.2 Evaluation of Bias, Variance and MSE

In each of the experiments conducted with the nearest neighbor and the kernel re-

gression estimators, the bias, variance and MSE were evaluated by the following

procedure:

Let f{x; D)denote the regression estimator for any given training set D. Then, from

equation (2.5), the squared bias at x is given by
(Ep[fix; D)] ~ Ely | x])*
and the variance is given by

Ep|(fix; D) — Eplfix; D)})]

These error components are assessed by independently choosing 100 training sets
DY, D?%...,D'%, and by finding the corresponding regression estimators
f(x,DY),..., f(x,D'%). The average response at x is then given by:

100

f(x) =1/100 Y f(x; D¥)
k=1

Squared bias and variance are then estimated by the formulas:

Bias®(x) & (f(x) ~ Ely | x])’

100

Variance(x) = 100 Z[f x; D¥) — J(x))?

The estimated mean squared error, MSE(x) is the sum, Bias*(x) + Variance(x) and

is given by :
100
MSE(x) & — 3 (f(x;D*) — Ely | x])?
100 =
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3.3 Analysis of bias, variance and MSE curves

We study the performance of the different estimators by assessing the behaviour of the
error components and the mean squared error for different values of the parameters

involved.

3.3.1 kNN Estimation

In both the deterministic and ambiguous case, the bias increased and the variance
decreased when the number of neighbors is increased, as expected from the discussion
in Chapter 2. The least mean squared error, in the deterministic case, is achieved
using a small number of neighbors, two or three. In contrast to this, in the ambiguous
case, the least error is obtained by using the more biased 15 or 16 nearest neighbor
estimators. Figures 3.1 and 3.2 display the results of the experiments with the ncarest-

neighbor procedure.
Large sample convergence

When the training size N in the above experiments is gradually increased, the mean
squared error can be studied as a function of the training size. Indeed, as explained
in Chapter 2, the k nearest neighbor estimator can be made consistent by choosing
k = ky — oo sufficiently slowly, with kv /N — 0. This means that, by choosing an
appropriate number of neighbors satisfying the above condition, the mean squared
error of the k nearest neighbor estimator would go to zero as the training size N goes
to infinity. We study this property of consistency by choosing k = VN and analysing
the behavior of the mean squared error as N is increased. The convergence of the

mean squared error for the deterministic case is displayed in figure 3.3.
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Deterministic Classification
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Figure 3.1: Bias(dots), variance(dashes) and mean squared error(solid) as functions
of the number of neighbors in the NN estimation, when the classification is deter-

ministic.
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Ambiguous Classification
0.6 ] i 1 1 N | ) i T

> 4 6 8 10 12 14 16 18 20
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Figure 3.2: Bias(dots), variance(dashes) and mean squared error(solid) as functions of

the number of neighbors in the &-NN estimation when the classification is ambiguous.
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Large sample convergence
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Figure 3.3: Behaviour of the mean squared error as the training size is increased in

the kNN estimation for the deterministic classification problem.




3.3.2 KRE Estimation

The bandwidth ¢ in kernel regression estimation is comparable to the number of
neighbors in the NN estimation as both these parameters govern the bias and vari-
ance factors in an analogous manner (see section 3.3). A study of the bias, variance
and MSE curves with the gaussian kernel displayed this analogous behavior : in both
deterministic and ambiguous cases, the bias increased and the variance decreased as
the bandwidth is increased. In the deterministic case, the optimal mean squared error
is attained at small bandwidths, ¢ = 0.1 or ¢ = 0.2 while in the ambiguous case it is
attained at larger bandwidths of 0.5 or 0.6.

Figures 3.4 and 3.5 illustrate the above results.

In the deterministic case, in addition to the gaussian kernel, we experimented with
the exponential and rectangular kernels (Chapter 2) as well, to observe how the choice
affects the curves and to select the kernel that best fits the problem on hand. All
three kernels resulted in similar trends in the bias-variance curves, as displayed in
figures 3.6 and 3.7. !

We also experimented with the sinc kernel (Chapter 2) which has been proven by
Watson and Leadbetter [25] and Davis [4] to guarantee parametric rate of mean
integrated square error (MISE) convergence of the KRE. Figure 3.8 illustrates the
MSE as a function of bandwidth.

Comparison of the optimal mean squared error (optimised over o) corresponding to
the three kernels revealed that the exponential kernel gave a smaller MSE and is
therefore better suited to the regression problem than the gaussian and rectangular

kernels. The sinc kernel gave the best optimal MSE for the regression problem.
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The above comparative results are summarized in table 3.1.

kernel type | optimaes MSE
Rectangular 0.362599
Gaussian 0.263368
Exponential | 0.254209
Sinc 0.140048

Table 3.1: Comparison of MSE optimized over bandwidth, obtained using different

kernels.
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Deterministic Classification
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Figure 3.4: Bias(dots), variance(dashes) and mean squared error(solid) as functions
of the bandwidth in the KRE with the gaussian kernel, when the classification is

deterministic.
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Ambiguous Classification
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Figure 3.5: Bias(dots), variance(dashes) and mean squared error(solid) as functions

of the bandwidth in the KRE with the gaussian kernel, when the classification is

ambiguous.
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KRE estimation with the exponential kernel
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Figure 3.6: Bias(dots), variance(dashes) and mean squared error(solid) as functions
of the bandwidth in the KRE with the ezponential kernel.
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KRE estimation with the rectangular kernel
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Figure 3.7: Bias(dots), variance(dashes) and mean squared error(solid) as functions
of the bandwidth in the KRE with the rectangular kernel.
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KRE with the sinc kernel
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Figure 3.8: Mean squared error as a function of the bandwidth in the KRE with the

sinc kernel.
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Chapter 4

The RBF approach to the learning

problem

In this chapter, we study the RBF net in detail. We describe the various models of
this network existent in the literature and explain the particular model which we use
for our experiments in Chapter 5. We discuss the various parameters involved in the
network and describe the optimization of the mean squared error with respect to these
parameters. Further, we consider various ways of selecting the center parameters of

the network and conclude with a comparison of the RBF net and the KRE.

4.1 Estimation through RBF nets

Basis functions

In neural network research, after several years of extensive study on the multilayer
perceptron, researchers have focussed their attention on a number of other models
for feedforward neural networks. Amongst these, the biggest group consists of those
models that implement function approximation or probability density estimation by
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basis function ezxpansion. These networks can be broadly represented as :

f,-(x) = zn:lv;j(ﬁj()(),i: 1,...,m. (4.1)

j=1

Represented in the network terminology, the above functions correspond to a network
architecture consisting of one hidden layer and n hidden neurons. Each hidden neuron
is fully connected to all components of the input x and represents a basis function
b; = ¢j(x). The output layer has m neurons - each neuron being a linear summation

neuron ¢; = Y_5_; wi;b; with weight vector w; = [wiry. .., Wim]".

This architecture can be broadly perceived as a variant of the one-hidden layer per-
ceptron by changing the hidden neuron’s functions. However, a key difference that
categorizes these networks into a group of new models is that this new architecture
decides the updating of the function ¢;(x) based on values that are predetermined
externally or specified directly by training samples. For instance, in the RBF net-
work, as discussed in the next section, this updating is done by radially symmetric
basis functions. Figures 4.1 and 4.2 illustrate the sigmoidal nets and the RBF nets

respectively.

a’i3

Figure 4.1: Sigmoidal network with one hidden layer and 3-dimensional input
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o o @ Where =9 (jx-cf)
Figure 4.2: RBF network with one hidden layer and 3-dimensional input

The updating in the basis function networks has the following direct advantage: Given
a training set D = {(X1,¥1),---,(Xn,¥YN)}, the weights wi;,i = 1,...,m,j=1,...,n
of the output layer can be easily determined if the basis functions b; = ¢;(x),j =
1,...,n are known a priori, since the weights W = [wij}mxn can then be obtained by

minimizing the least square error E:

N
E = 3y~ Whil? (42)
k=1
by = [bfY,..., )"
b = 4i(x)
Selection of appropriate basis functions ¢j(x),7 = 1,...,n can be made in several

ways, resulting in different models of basis functions. Based on the different types of
basis functions currently used in the neural network literature, we can roughly divide
these models into two groups [26]. The first group called localized basis functions

consists of functions that can be expressed in the following general form
$;(x) = d(x — ¢;,%;), 5 =1,...,n, (4.3)

where ¢(.) is called a mother function. Each basis function is obtained by locating
the mother function at a point given by the locating parameter vector cj, and may
or may not be subject to some deformation caused by the symmetric matrix £;. The
second group called nonlocalized basis functions comprises of functions that are not

expressible by equation (4.3).
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In our study, we focus our attention on the first group of models - localized basis
functions, which has been generating an ever-increasing interest in the literature.
Studies of these models have been profuse in recent years. We study the RBF model

in detail and explore its connections with the kernel regression estimator.

4.2 The RBF network

Modifications of the parameters in equation (4.1) give rise to several versions of the
RBF net. We describe these models, reviewing the advantages and disadvantages of

each, leading up to a description of the model that we consider for our experiments.

4.2.1 The Original Model

The original model of the RBF net is obtained simply by letting in equation (4.3),
8; = I and ¢(.) be radially symmetric around the locating center ¢j = x;, where x;
is a training sample. This implies that we let ¢;(x) = ¢(||x ~ x;||), where }|.|| stands

for the Euclidean norm in R?. Thus, equation (4.1) can be rewritten as

N
fi(x) = Z;wqu%(llx—lel),i =1,...,m. (4.4)

Note that in forming this model, all the samples in the training set have been used.

The possibilities for the selection of ¢(.) are many. The most common choice is the
Gaussian function ¢(r) = ezp(~r?), but a number of alternatives can be considered
[21]. These different basis functions may give good results on a training set but
may behave differently on a testing set. Hence we need to select the basis function

depending on the problem on hand, in order to achieve a good generalization ability.
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It has been shown [21] that the RBF expansion given by equation (4.4) has universal

approximation ability.

However, this simple RBF net has the disadvantage that it requires all the training
samples, which could indeed be numerous. This has the serious drawback that the

costs of computation and storage would be considerably large.

4.2.2 Modifications

Two modifications that remedy the above problem have been proposed. The first is
to try and select a subset of the whole training set D by discarding those points that
are not so important, so that the number .V of training samples can be reduced to a

smaller number K < N. The second is to modify equation (4.4) into

fi{x) = Eh:w,'j(,bj (”x - c,-||2) st=1,...,m. (4.5)

i=

The idea here is to use a few movable location vectors instead of directly using the
training samples as the loci of each basis function. The key question that arises
here is : how to determine those cj,j = 1,...,np which can be regarded as good

representatives of the training samples.

One answer to the above question lies in using gradient descent updating through
back-propagation [21], but Moody and Darken {18] found such kind of learning to be

very slow.

A faster approach to speed up learning is to use the clustering algorithms that have
been suggested {18] to find the n; cluster centers cj,j = 1,...,ns. However, one
problem of the clustering algorithm is that the number of clusters has to be predefined
externally. If this number is not appropriately chosen, the clustering results could be

poor, resulting in the poor performance of the RBF net. As a guideline to this choice,
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a method called Rival Penalised Competitive Learninghas been recently proposed [27].
This algorithm automatically decides an appropriate number of clusters for training
data.

An other alternative to locate the movable centers ¢j is to randomly select a n-
element subset from the training set D and use every selected sample directly as a

center vector.

In our experiments with the RBF net, we explore the last two approaches discussed
above. We use the clustering algorithm experimenting with different number of clus-
ters as well as the random-sampling method, for the selection of the movable location

vectors. A detailed description of the methods used is given in Chapter 5.

4.2.3 The General Model

The RBF network given by equation (4.5) can be further generalized into

fi(x) = i wi; @ ([x —¢)f 7 x - Cj]) Jdi=1,...,m (4.6)

where each ¥;,5 = 1,...,n,is a p x p semi positive matrix.

The simplest case of this model occurs when

5= 02 lpxp (4.7)

Equation (4.6) in fact reduces to equation (4.5) when ¢? = L,7=1,...,n4.
Consistency and Approximation

Bounds for the the pointwise and L, convergence rates of the least squares estimator
for RBF nets have been obtained {28]. For a nonnegative radial basis function ¢(x) =
H(|[x||), where H is a non-increasing function with H(t) = o(t™%) and H | 0, the
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RBF estimator is pointwise consistent, for x € R? [28]. The approximation ability of
RBF nets for L2 integrable functions have been studied by Park and Sandberg [19, 20].
Further, the generalization ability of RBF nets for a large class of basis functions with
the network parameters learned through empirical risk minimization has been proven

in nonlinear function estimation [15].

4.2.4 Parameters of the Network and their Optimal Choice

Receptive field of the network

The parameters o? in equation (4.7) affect the influential radius ||x — c,||* of ev-
ery basis function located at ¢; and hence are termed as the width of the recep-
tive field of the basis function. The receptive ficld is defined as the support of
the function max [d) ([x —c;) o7 x -cj]) - ac,O] with @, > 0 being a constant.
The receptive field, in other words, is the subset of the domain of x such that
¢ ([x - ;) 57 x - c]]) takes on values larger than a pre-specified number ¢.. Hence,
the receptive field can be interpreted as the range for which an input x can cause a

sufficiently large output.

Different basis functions ¢(r?) call for different receptive fields. Having fixed a specific
basis function, say, a Gaussian ¢(r?) = exp(—r?), the size, shape and orientation of
the receptive field are determined by the matrix &;. For example, when &; = & = 0%/,
the shape is a hyper-spherical ball with its size given by the value of ¢. One more
general case for the matrix I; is that it is a diagonal matrix X, = diag[d?,,...,0%].
i.e, the width of each basis function is scaled differently in every dimension. In this
case, the shape of the receptive field is an elliptic ball with each axis coinciding with

a coordinate axis, and the length of each axis decided by o%,...,0?, respectively.

The most general case for the matrix X, is that it is a non-diagonal matrix X; =
RT DR with D being a diagonal matrix which determines the shape and size of the
receptive field and R being a rotation matrix which determines the orientation of the

receptive field.
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Choice of parameters

We consider the class of radial basis function networks with one hidden layer and
at most ny nodes, and with a constant matrix ¥. This, from equation (4.6) can be

represented as:

fn(z) = Zwm( [x—¢;]' 57! [x - ¢;]) (4.8)

For our study, we consider the normalized version of equation (4.8) which has often

been used [18]:
Yjny w; ([x —c)' 5 [x - CJ])
it ([x -¢;) Bt x - CJ])

fﬂk( ) - (40)

For a given fixed basis function ¢(r?), the above network, now involves three sets of

parameters:
1. the weight vectors w;,j = 1,...,n4, of the output layer the network.
2. the center vectors ¢;,i =1,...,n.

3. the matrix X.

However, as described earlier, a key characteristic of the RBF net is that the last
two sets of parameters are chosen through values that are either externally specified
or specified directly by the training samples. Hence the minimization of the mean
squared error given by equation (4.2) becomes a problem of linear optimization with
respect to the first set of parameters alone, namely the weight vectors [27]. Given a

training set {(x1,¥1),--., (xN,yN)} the set of linear equations given below:

z i = fon (%5, Wi) [ (4.10)

can be solved by the least squares method with the solution given by:

W=YMI(MMT)™! (4.11)
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where W = [wy,...,w,,]), Y =[M,...,YN] and

M = [mijln,xn, My = -L\-:—,_.f:"—(ﬁ:j,% = ¢([X; — ci]'TYX; —ci]) (4.12)

We use the above procedure in our experiments with the RBF network for the de-

termination of optimal weights. The experiments and the results are described in

Chapter 5.

4.3 Connections between KRE and the RBF net-

work

The RBF network given by equation (4.9) shares interesting properties with the
KRE described in equation (2.6) due to the close connections that exist between
the two [28].

Let (X, Y) be a pair of random vectors in R? x R! and f(x) = E[Y|X = x] be
the corresponding regression function. Let {xj,y:}", be a set of n independently
identically distributed samples drawn from (X, Y). The kernel regression estimate of

f(x) from equation (2.6) can be written as:

) = CaWlx = x)/o]
T ) = Wi/l 419

Imposing the following conditions on the kernel W:

aH(l|x]l) £ W(x) < cH(||x]]} ard clyxp<r < W(x), (4.14)

where H is a non-increasing bounded function with t#H(t) — 0 as ¢ — oo and

¢1,6, ¢, 1 are positive constants, Krzyzak (1986) shows that these conditions are
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nearly as strong as assuming spherical symmetry of the kernel W{(r). Hence, as-
suming spherical symmetry of the kernel W, i.e letting W (r?) = ¢(1?), equation (2.6)

can be written as:

1 D) = Shzsillx =)o)

T ol (x —x3)/al] (+.15)

Now, if we let

Y =c%, and w; = y,,¢; = X, i = 1,... 4, (1.16)

in equation (4.9), then we see that equation (4.15) is identical to cquation 4.9 with
n = ni. This indicates that the spherically symmetric kernel W(r?) is in fact just
a type of basis function where the smoothing parameter o represents the size of the

basis function’s receptive field and y; acts as an approximate solution to w,.

Further, Xu, Krzyzak and Yuille [28] pointed out that under the assumption of a
hyper-spherically shaped receptive field in the RBF net, the optimal weight vectors
w;,i = 1,...,n of the normalized RBF net (4.9) obtained from equation (4.11) ap-
proximately equal the response vectors y;,i = 1,...,n. As a result of this, the RBF

nets with £ = ¢2I, and ¢; = x;,7 = 1,...,ns,are approximately identical with the

KRE.

We illustrate these connections in our experimentsin the comparison of RBF nets and

KRE. The description and results of these experiments are detailed in Chapter 5.
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Chapter 5

Experiments with the RBF

network

In this chapter, we explore the RBF network in detail. We implement the random
sampling and clustering methods for selecting the center parameters of the network
discussed in Chapter 3 and study the performance of the net in each methou. Further,
we compare the behavior of the RBF net with that of the KRE estimator in view of

the close connections between the two estimators detailed in Chapter 3.

5.1 Experimental models

5.1.1 The RBF Model

Consider the normalized model of the RBF given by equation (4.9}:

Ty wé ([x - o 27 [x - ¢;])
i b (lx -l Bl x ~ cj])

fan(z) =
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As discussed earlier, the above network involves three sets of parameters namely the
weight vectors w;,j = 1,...,n;, the center vectors ¢jyt = 1,...,np, and the matrix
X. For convenience, we denote O to be the vector consisting of all these parameters.
Each specific value of O yields a specified RBF net. In the learning problem, we aim
to determine a specific value O for O. Given a training set {(X1,%),...,(xnyyn)},
we decide a value of © based on the minimization of the mean squared error (4.2)

which can be written as

1 N An |2
E= FZI?]: _fnh(xhe)l

i=1

However, the center vectors ¢;,i = 1,...,n; and the matrix & are usually specified
externally or chosen directly from the trcining samples (see Chapter 3). Hence the
above minimization is performed with respect to the weight vectors w;, 7 = 1,...,n,.
The mean squared error that we consider to analyse the performances of the RBF

net and the KRE estimator is therefore given by

1 Y )
E= 7\72 lys ~ foun (ki W) (5.1)

i=1

Recalling the solution of this set of linear equations from equation (4.11), the optimal

weights that we use in the experiments with the RBF net are given by

W =YMT(MMT)™ (5.2)

where W =[wy,...,w,,}, Y=[V,...,Yn] and

M = [mijln,xn,mij = -%d)—‘;,% = ¢([X; — cJ'T7[X; - ¢.]) (5.3)

We choose L to be a hyper-spherically shaped receptive field given by & = o?/. The

kernel ¢ is chosen to be the gaussian kernel ¢(r?) = ™",
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With the above specifications, the normalized RBF model (4.9) can be expressed as

Z]"‘I w.1¢ ( x-c )
fan(z) = S
¢ (52)

]"l

(5.4)

where |.|| stands for the Euclidean norm in R

Choosing the kernel to be the gaussian function $(r?) = e~"*, we obtain the following

RBF :
" £t s exp (L550)

fan(z) = o ( = c") (5.5)

a?

In the experiments that follow, we consider this model of the RBF net with the center
vectors chosen by clustering and random sampling methods described in Chapter 3
and the weight vectors given by the optimal solution (4.11). We perform the exper-
iments with two kinds of data: (1) clustered data and (2) unclustered data. The
purpose of such a choice was to weigh the performance of the RBF net when the
center vectors are chosen by random sampling and clustering methods and to study

the dependence of this choice on the form of the data.

5.1.2 The KRE Model

The kernel regression estimate of the regression function with the gaussian kernel can

be written from equation (2.6) as
Sger v, exp (FERHA)
—l exp ( Ix 2x )

which is analogous to the RBF net (5.5).

(5.6)

falz) =

Parallel to the mean squared error of the RBF net given by equation (5.1), the mean

squared error E' of the KRE estimator can be written as

= -—E lvi — fa(x)% (5.7)

:—1
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In the following sections, we describe experiments performed with the RBI' net
(5.5) and the Kernel regression estimator (5.6), the performance of these estima-
tors being assessed by the mean squared errors (5.1) and (5.7). The training set
{(x1,91)s--.,(xn,yn)} is composed in such a way that the x; are chosen from the
distributions described below and the responses y; are designed by the deterministic

classification procedure described in Chapter 4.

5.2 Generation of Clustered Data

In generating data which is clustered, we use an approach which is related to a popular

approach to clustering based on the notion of a mirture density.

Each pattern or sample is assumed to be drawn from one of K underlying populations,
or clusters. Here, we assume knowledge about the form and the number of underlying
population densities, i.e, the samples (x1,...,XN) are drawn from a population with
a known number of clusters. The samples may or may not be labeled by population.
We denote the underlying probability density function for cluster w, by p(xjw;). Then,
if P(w;) is the a priori probability of class w;, or the chance that a sample comes from

w;, the mixture density can be written as

K
p(x) = Z: p(xwi) P(w:i) (5.8)

The class-conditional densities p(x|w;) are usually called the component densities, and

the a priori probabilities P(w;) are termed as the mizing parameters.

Note that X
ZP(w;) =1 (5.9)
—t

Using the above procedure we generate data which is a mixture of several gaussians,
by considering the underlying population densities p(x|w;) to be gaussian and by

choosing the a priori probabilities P(w;) in such a way that (5.9) is satisfied.
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We first generate the data as a mixture of two gaussian densities N and N;. This

generation was done based on the following algorithm:

Step 1 Choose a number a between 0 and 1.
Step 2 Select a random number r from the uniform distribution on (0,1).

Step 3 If » < o then draw the required mixed variate sample z from A;. Else, select

z from N,.

Since Step 3 implies that the a priori probabilities of the two populations of N; and N;
are respectively a and 1 — a, it follows that the required sample 2 € aN; +(1 — a)N;
Note that the mixed parameters add up to one and hence satisfy condition (5.9).

We chose the underlying population densities to be A'(0,1) and M(1,1) and used the

above procedure to generate data with two clusters.

We also experiment with data containing three clusters, by generating data as a
mixture of three gaussians Ny, M, and 3. The above algorithm can be tailored for

this purpose, by the following simple modification:

Step 1 Choose two numbers ay and a; between 0 and 1, with a3 < .
Step 2 Select a random number r from the uniform distribution on (0,1).

Step 3 If » < o, then draw the required mixed variate sample z from A;. If

a; < r < oo, then select z from N;. Else, select z from A,

The required sample £ € oy M, + (@1 — a2)NVz + (1 ~ a3)N3. Again note that condi-
tion 5.9 is satisfied by the mixing parameters.

We chose the population densities A'(0,1), A(2,1), and N (4,1) and generated data

containing three clusters.
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The samples in the clustered data could be labeled or unlabeled by population. We

experiment with both these cases and compare the results.

5.3 The Clustering Method

In the clustering method of choosing center vectors for the RBF net, the center vec-
tors are chosen to be the mean vectors of the clusters in the data. The clustering
techniques that can be used to find the cluster centers are multifold : these include the
hierarchical and partitional clustering algorithms [13]. Hierarchical clustering tech-
niques organize the data into a nested sequence of groups while partitional techniques
generate a single partition of the data in an atlempt to recover natural groups present
in the data. For engineering applications where single partitions are important, par-
titional techniques are appropriate. We therefore follow the partitional clustering in

finding the cluster centers of the data.
Principle

The underlying principle of partitional clustering techniques can be stated as follows:
Given n samples in a d-dimensional space, a partition of the samples into K groups
or clusters is determined in such a way that samples in a cluster are more similar to

each other than to samples in different clusters.

The general algorithm to implement the iterative partitional clustering method is

outlined below:

Step 1 Select an initial partition with K clusters. Repeat steps 2 and 3 until the

cluster membership stabilizes.

Step 2 Generate a new partition by assigning each sample to its closest cluster cen-

ter.

Step 3 Compute new cluster centers as the centroids of the clusters.
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A crucial factor in the algorithm is the selection of the initial partition. As explained
in Section 5.2, we generate the clustered data from one of K underlying populations,
the form and number of which are assumed to be known. When the samples are
unlabeled by population, we use the knowledge about the actual number of clusters
in the data to predefine the number of clusters K in the clustering algorithm. We
study the performance of the net when I is chosen to be the actual number of clusters
in the data, and observe the performance as K is increased beyond the actual number
of clusters. On the other hand, when the samples are labeled by population, then
the center vectors of the net would simply be given by the sample means of the

populations. The results of these experiments are analysed in Section 5.5.

5.4 The Random Sampling Method

In this method, we randomly select K samples from the N samples (x1,...,xN)
and assign these to the center vectors of the net. This means that any one of the
CH = 7‘—,(—,<,—V£—,\—)—, K-sample subsets is chosen at random. However, without loss of
generality, we can assume that this subset simply consists of the first K samples
of D* = (x1,...,xN) since if this is not the case, we can re-order the indices in
D" to let it be true as these indices are originally specified arbitrarily. Hence, in
studying the network with center vectors chosen by random sampling, we simply

choose ¢; = x;,7 = 1,.... K.

The RBF estimator (5.5) is now given by :
b (e)m Tty w, exp (=lE55d) 65.10)
) oy ()

Employing the above estimator for clustered data, we assess the performance of the
RBF net when its center vectors are chosen randomly and compare it with the selec-
tion through clustering. Further, we also test the RBF estimator (5.10) on unclustered
data and study the efficiency of the random sampling method when the data is de-

void of clusters. We generate the unclustered data by selecting the samples from
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the uniform distribution on (0, 1). The results of these experiments are analysed in

Section 5.5 below.

5.5 Analysis of Results

We study the results of the experiments described in the previous sections in two
parts ~ one dealing with the with the random sampling and clustering methods and
the second with the comparisons between the RBF and Kernel regression estimators.
The figures illustrating these results are placed at the end of the section. In each
experiment, we observe the mean squared error as a function of the bandwidth o and
compare the optimal mean squared error (optimized over o) arising from the different

techniques.

5.5.1 Clustering and Random Sampling Methods

In the case when the data is clustered, we first consider the case when the samples
are labeled by population. The center vectors of the RBF net are then given simply
by the sample means of the population. Figures 5.1 and 5.4 display the results of this

experiment when the number of clusters in the data is two and three respectively.

We then consider the case when the samples are unlabeled by population. The center
vectors of the net in this case are chosen by the iterative clustering and random
sampling methods. In the iterative clustering method, K is initially chosen to be the
actual number of clusters in the data and then gradually increased. For each such
choice of K in the clustering method, the random sampling method is studied with

K points chosen randomly.

Figure 5.2 gives the results for two-clustered data when K is chosen to be two and
then increased to three and four, in the partitional algorithm. As seen in the figure,

we see that the mean squared error tends to improve when the number of clusters
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is increased beyond the actual number in the data. The same trend can be seen in
Figure 5.5 also, which deals with three-clustered data. Here K is first chosen to be

three and then increased to two, three and four.

Further, comparison of the cases where the samples are labeled and unlabeled by
population reveals that though the latter starts by having a higher mean squared
error than the former the error in the unlabeled case soon improves and becomes lower
than that in the labeled case as the number K is increased. This can be observed by
comparing figures 5.1 and 5.2 for two-clustered data and figures 5.4 and 5.5 in the

case of three-clustered data.

Finally, for each choice of K in the clustering method, we study the random sampling
method with A randomly selected points. Figure 5.3 displays the results when the
data has two clusters, with the number of randomly selected points initially matching
the number of clusters and then increased to three and four. We see that as we
sclect more points, the mean squared error gradually decreases. This follows from
observing that selection of a larger subset from the sample set would capture more
information and hence reduce the squared error of the estimator. Analogous results

for the three-clustered data are displayed in Figure 5.6 .

Comparison of random sampling with iterative clustering for each A" shows that the
mean squared error of the estimator is lower in the clustering technique. i.e, the
RBF net performs better with its center vectors chosen by clustering rather than ran-
dom sampling. This is because the random sampling method disregards any natural
clusters occurring in the data and randomly selects K samples, while the clustering
method incorporates information about the form of the data and attempts to find A
centered points in the data. By the same token, the error of the estimator decreases
with increase in A, much faster in the clustering method than in the random sam-
pling method. As a result, a very large number of samples would have to be randomly
chosen from the samiple set to appreciably reduce the error in the random sampling
techrnique. Hence, with a reasonably good initial partition, the iterative algorithm is
more appropriate when the data is clustered. The clustering algorithm is particularly

efficient when there is some knowledge about the number of clusters in the data.
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These comparative results are summarized in tables 5.1 and 5.2.

The above reasoning suggests that the performance of the RBF net under the random
sampling method would improve if the data were naturally unclustered. Figures 5.7
and 5.8 display the results when the data is generated from the uniform distribution
on (0, 1). Comparison of these figures with figures 5.3 and 5.6 shows that this is
indeed the case : the RBF net performs appreciably better when random sampling is

done on unclustered data.

5.5.2 Comparison between the RBF net and KRE

In this section, we display the results obtained for the mean squared error of the KR
and compare these with the those obtained in the previous section on the RBF net,

in view of the close relation these estimators share (See Chapter 3).

The mean squared error of the KRE is displayed in figures 5.9 and 5.10 respectively
for the two clustered and three clustered data. We see that the error decreases with
the increase in the number n, analogous to the results of the RBF net. Further,
comparing these figures with those obtained in the previous section for the RBF
net shows that the corresponding mean squared error of the RBF net under any of
the methods studied, is lower than those of the KRE. This is because, under the
conditions explained in Chapter 3, the KRE can be considered as a special case of the
RBF net, the weight vectors in the KRE being chosen as the responses y, themselves

rather than the optimal manner of selection in the RBF net.

Illustrations of all the above experiments with the RBF net and the KRE are listed

in the following pages.
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Estimator |  Method of finding centers | K in method | optimal MSE
0.590234
0.607768
0.400134
0.357901
0.597921
0.405880
0.384457
1.197736
0.973242
0.875832

L]

RBF From sample means

Iterative clustering algorithm

Random sampling

KRE

W WINPT wIN ] WD

Table 5.1: Comparison of MSE optimized over bandwidth, obtained using different

methods on {wo-clustered data.

Estimator | Method of finding centers K in method | optimal MSE
0.242146
0.310982
0.227814
0.212280
0.320681
0.282012
0.253618
1.041611
1.007027
0.910731

w

RBF From sample means

Iterative clustering algorithm

Random sampling

KRE

i W IOv W o ]Or | > W

Table 5.2: Comparison of MSE optimized over bandwidth, obtained using different

methods on three-clustered data.

63




Conclusions

Our study explored the learning problem from two broad perspectives consisting of
the statistical regression estimation and the RBF network formulation. Through the
regression formulation of the learning problem, we illustrated the trade-off involved
between the bias and variance contributions to the estimation error: while the bias
increased, the variance decreased with increase of the parameter concerned in both k-
NN and Kernel regression estimation. We analysed the choice of parameters that give
an optimal value of the mean squared error in both these estimators. We showed that
in a deterministic classification problem, the optimal mean squared error is achieved
using a small number of neighbors or small bandwidth as the case may be while
in an ambiguous classification problem, the trend of the error is reversed. Through
the RBF network formulation of the learning problem, we studicd the choice of the
parameters of the network that minimize the estimation error by treating this as a
linear optimization problem with respect to the weight paramecters of the network
and choosing all other parameters either externally or directly based on the training
samples. We showed that out of the two major methods available for the selection
of the center vectors of the network, the clustering method appreciably iinproves the
performance of the net, particularly when the data is clustered, provided the iterative
method is started with a reasonably good choice for the number of clusters. The
random ..mpling method, on the other hand improved when the data is unclustered
and hence is more appropriate for unclustered data, rather than clustering, because
of the simplicity of the former method. Hence any little information available on the
form of the data has to be employed to decide on this choice. Finally, we compared
the RBF net with the KRE in view of their close relation. Our study revealed that
the RBF net performs better than the KRE, irrespective of the choice of the method
used in the former to determine the center vectors. This is hecause of the weights
chosen in an optimal manner in the former as opposed to approkimating them as the

responses, in the latter.

64




Appendix A

Calculation of Regression in the

Ambiguous Classification problem

Consider the random mechanism used for classification, described in section 4.1.2.

Given an input X = (¢, ¢2), the unit disk S;(x), centered at x, is given by
(71— a)+(z2—-0)? <1

where z; and z; denote the axes of reference.

Having chosen a random point z = (z,2;) from the uniform distribution on the unit
disk, we used the curve

z5 =sin{(x/2)z,)
to classify the input vector. Denoting A; and A; to be the areas above and below the

sine curve respectively, bounded by the unit disk, the regression (3.1) was seen to be

Ely | x| = %(A, ~ Ay) (A1)

Hence computation of the above regression is straightforward if the areas A; and A,

are known.




The computation of these areas depends on where the intersecting points of the sine
curve and the unit circle C : (z; — ¢)? + (22 — ©2)® = 1 lie. For each test vector
(e1,a), the points of intersection were obtained numerically from MATLAB. The

required areas were then found from the following procedure.

First, noting that
A; + Ag =7 (A2)

we observe that it is sufficient to know one of the areas A; and A; so that the other
can be found from the above relation, The choice of the area computed depends on
the case considered. In each case, we derive the simpler area and find the other from
the above expression. Knowing the two areas, the regression for each case is given by
substituting these into equation A.1. Based on the location of the two intersecting
points with respect to the four quadrants, four cases arise: we derive the regression

in each case below. We have denoted the points of intersection by (a, b) and (c, d).

Case 1: When both points of intersection lic above the line joining the points

(c1~1,¢z) and (€1 +1,¢2), i.e, in the first and second quadrants of C (sce figure A.1).

Al/

AN

\ (C, d)

(a, b)

Ao

| e

Figure A.1: Case 1

In this case, A; is easier to compute than A; as the latter requires to bhe split into
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several regions in order to be computed. Hence we compute A;, which in this case is

given by the area between the positive half

=yl — (2 —c1)’ 4+ e

of the circle C, and the sine curve

x2 = sin((7/2)z1)

A= /: [(\/1 —(z1—c)*+ C2> - (sin((7r/2)a:1))] diy

where we have assumed (a, b) lies to the left of (¢, d).

Hence

Integrating the above expression gives

A = -;— farcsin(c — ¢;) — arcsin(a — ¢; )] +
% [(c— a)yl-(c—a)—-(a—ea)yl—(a—a)?|+
c2(c —a) + ;2; [cos((m/2)c) — cos((7/2)a)} (A.3)

Substituting equation A.2 into equation A.l, we get the regression entirely in terms
of A;:

, 0.9

Bly | x] = =(24; 1)

Thus, we can substitute A; calculated from equation A.3 and obtain the regression

for this case as

Ely | x] = 9;—?— [arcsin(c ~ 1) — arcsin(a — ;)] +
9;":2 (C_Cl)\/l —(c—a)—(a—c)yl—(a -—c,)z] +
1.8

-—7r—c2(c —-a)+ —3—136 [cos((/2)c) ~ cos((7/2)a)] — 0.9 (A.4)

Case 2: When both the points of intersection lie below the line joining the points
(c1 —1,¢2) and (¢ + 1, ¢3), i.e in the third and fourth quadrants of C (see figure A.2).
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(c,d)

N |/

~L_ | -
Figure A.2: Case 2

In this case, A, is easier to compute than A; as the latter requires to be split into
several regions in order to be computed. Hence we compute Az, which in this case is

given by the area between the negative half

x2=—y\1-(t1~a)+e

of the circle C, and the sine curve

Ty = sin((7/2)z,)

Hence
" Ay = / : [(sin((w/2)a:1)) - (—m + cz)] dzy

where we have assumed (a, b) lies to the left of (c, d).

Integrating the above expression gives

A = -;— [arcsin(c — ¢;) — arcsin(a — 1)} +
% [(c— alWl=(c—¢c)t~(a—a)yl - (a- c1)2] -
c2(c—a) - % [cos((m/2)c) — cos((7/2)a)] (A.5)
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Substituting equation A.2 into equation A.l, we get the regression entirely in terms
of Aj: 0.9
Ely | x] = —(7 - 24.)

Thus, we can substitute A, calculated from equation A.5 and obtain the regression

for this case as

Ely |x] = 09— 97? [arcsin(e — ¢1) — arcsin(a — ¢;1)] —
2= T=ema - (e -a)1= (@ —a)| +
1‘;r§cz(c ~a)+ -i—f [cos((7/2)c) — cos((/2)a)] (A.6)

Case 3: When the points of intersection lie on opposite sides of the line joining the
points (c; — 1,¢3) and (¢1 + 1,¢): in particular we fix one point say, (a, b) in the
third quadrant, and let the other point be in the first or the second quadrant (see
figure A.3).

A1z

F/ (c, d)

11 /

(a, b)\

Figure A.3: Case 3

In this case, both areas A; and Az require to be split into two regions in order to be

69




computed. We choose to compute A; which we express as
A=A+ Ape (A.7)
where Ay, is given by the area bounded by the line 2; = a and the left half

1= —\l= (22~ ) + ¢

of the circle C, between the points (a, b) and (a,1/1 — (a = ¢1)? +¢2) and A;3 is given
by the area bounded by the regions:

I = a

T2 = (Jl—(z1—a)+c

z; = sin((7r/2)z,)

(A.8)
Hence F
1—(a~-c1)2+c
A= [ '@ = (1= @ - a)? +a)] o
Integrating the above expression gives
Aun = (e—a) [\/1 —(a—c1)*+c; — b] +
% [arcsin ( 1-(a—- c1)2) — arcsin(b — cz)] +
% [(a eI = (=)= (b—el/1— (b= c2)2] (A9)
Further, we have
A= [ [(VI=@i—a) +a) = (sin(n/2)m)] de
Integrating the above expression gives
Ap = E[arcsin(c — ¢1) — arcsin{a — ¢1)] +
-;— [(c —a)yl—(c—a)?—(a—c)yl —(a- cl)z] +
cfc—a)+ % [cos((7/2)c) — cos((7/2)a)) (A.10)
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Substituting equations A.9 and A.10 into equation A.7, we can get A;. Writing the

regression entirely in term of A; from equations A.1 and A.2, we get

Ely | ) = (24, ~ 7)

Substituting A; from the above calculations into the above expression gives the re-

gression for this case.

Case 4: When both the points of intersection lie on opposite sides of the line joining
the points (¢; — 1,¢;) and (¢; + 1, ¢2): in particular we fix one point say, (c, d) in the
fourth quadrant, and let the other point be in the first or the second quadrant (see
figure A.4).

/‘———--‘

AN

Figure A.4: Case 4

In this case again, both areas A; and A; require to be split into two regions in order

to be computed. We choose to compute A; which we express as
Ay = A+ Apg (A.ll)
where A,; is given by the area bounded by the line z; = ¢ and the right half

nn=y1l-(z2-a)+a
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of the circle C, between the points (c, d) and (¢,1/1 = (¢ — ¢;)2 +¢;) and A3 is given
by the area bounded by the regions:

Iy = G

Iy = \/1 - (.’L‘l - Cl)2 +- Ca

z; = sin((7/2)x;)
(A.12)

Hence

1=({c=¢1)%+c2
Au = ./d [(\” —(172—'62)2+Cl)— (C)] d.’l'z
Integrating this expression gives

cl—c)[M—cl)2+c2—d]+

An =

Vo

arcsin ( 1—(c- c1)2) — arcsin(d - cz)] +

|
[(c—-cl) 1= (c—a)? — (d—cz)\/l—(d-—(:g)zl (A.13)

NN N

Further, we have

A= [ : [(sin((w/2)x,)) - (\/1_— (@1 — 1) + c,)] de;

Integrating, we obtain

Ap = -1 [arcsin(a — ¢) — arcsin(c — ¢;)] —
2[a—c1)\/1—-(a—-cl —(c—a)yl-(c—q) ]
ca(a—c) - -?r-[cos ((w/2)a) — cos((m/2)c)] (A.14)

As in the previous case, substituting equations A.13 and A.14 into equation A.11, we
can get A;. Writing the regression entirely in term of A; from equations A.1 and A.2,
we get
& 0.9
Ely | x] = —(24, — )
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Substituting A, from the above calculatioi's, into the above expression gives the

regression for this case.
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