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, L " ABSTRACT

\\ Numerical Bifurcation Analysis of .

. L
Simple Dynamical Systems

r

‘ Tze Ngon Chan .

In this theeis, we study the bifurcation behaviour of
three 3-dimensional d?qinary\differential systems. They are

‘the Lorenz system, a transformed Lorenz system and a -system

arising from biochemistry. The relationship between
bifurcation to invariant tori in ordinary differ;ntia}
systems and bifurcation to

invariant circles in

2-dimensional diffeomorphisms 1is

also discussed. We

introduce a method to compute the fixed point branches and

detect Hopf bifurcation

points for general 2-dimensional

dfffeomorphisqs. If a Hopf bifurcation is detected, two

methods to trace out the invariant

circles are presented.
N
,

Numerical results obtained‘using these computation methods

on the Hénon map and the delay logistic equation are shown.
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P ‘ L INTRODUCTION" -

A large portion of the universe is in a fluld state, but -

the  kind of motion which most f}uid flows exhibit has a
highly irregular nature called tu;bulence. Turbulent motion
in a fluid flow has long been recognized as an important
problem in the theory of fluid dynamics. .But, ;ven though
it has Dbeen 'extensively studied by scientists from ; wide
range of disciplines for more than a century, the process by
which turbulence develops is still not completely

understood.

Difficulties 1lie in both the . experimental and
theoretical sides of +the problem. As pointed out by
H.L. Swinney and J.P. Gollub [37] a major experimental
difficulty 1is the absence of sqnéitive and quantitative
experimental techniques capable of measuring the velocity
field, temperature rield‘and vorticity of a fiuid flow. On
the theoretical side, the basic difficulty is the
intractability of ¢the nonlinear Navier-Stokes equationsf
Also, above all, a convincing definition of turbulence 1is
‘laeking.

For practical purposes, the structure of strongly
turbulent flows is usually characterized using statistical
methods‘ including "random initial states" and ‘"time

averaging” (28]). The problem of trans}tion to turbulence

was mainly left untow:hed before the past two decades. -

o

~ ‘J?




'In recent years, due to the advances in high Speed
computer technoiogy, investigation " of transition to
turbulence: has ‘'been profoundli‘ activé; In "laboratories,
computers are used in the control of experimeﬁts,‘ Qata
collection and analysis. For mathematicians, computers are

used to unfold the abundant dynamical behaviour of nonlinear

differential equations. —_—

Basically there are two theories about the_transition to
turbulence. The first one 1is due to L.D. Lanéau and
E.M. Lifshitz [28] and can also be dated back to
E. Hopf [18]. The theory hypothesizes that turbulencey 1is
the result of ;n infinite cascade of loss of stability and
bifurcations. In 1971, D. Ruelle and F. Takens introduced
the secdnd theory in their well known ar?ﬁcle "On the Nature
of Turbulence"6[33]. Their theory 1s that transition to
turbulence need not be a continuous process. Instead,
turbulence may occur via the existence of a %“strange
attractor”. The best known example 1s the Lorenz
attractor [24] which appears not through a sequenée of
bifurcations but under the efféct of a ﬁomoclinic point in

the state space. Dynamics inside the Lorenz attractor are

highly irregular and sensitive to initial conditions.

Dévelopments in bifurcation theory and the theory of
dynamical systems have also contributed significantly to the
understanding of transition ¢to turbulence. Bifurcation

theory aims at the classification and c¢haracterization of

4}
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types of bifurcations (splitting of éoluti?ns) that can
oceur in noplineaf sygteq;. The theory of dynamical systeﬁs

"aims ‘af ﬁrovidingj,a sound mathematical background‘ for
qxplaininé the dy;;mical behaviour of ﬁonlinear systems.

1 The purpose of this fhesis is to illustrate the
bifurcation behaviou; of some simple nonlinear sysfems.

Further, numerical techniques for computing some of these

bifurcation phenomena are introduced.

. \ ,
, In Chapter 1, basic definitions often used in the

qualitative theory of differential equations are given as

the foundation of discussiogs in the following chapters.’

The ideas can mostly be found in [¥]) and [17]. Emphasis 1is
on the pelétionships between these definitions and their

interpretations in the physical world.

f

7 The bifurcation behaviour of three 3-dimensional systems

of ordinary differential equations is examined in Chapter 2.
Theypare the well known Lorenz system, a modified Lorenz

' system and a system arising 'from biochemistry. The
dynamical behaviour ‘of the first system has been studied by

a large number of both mathematicians, and experimentél

sc;éntists. Using the computer program AUTO, which uses

o

Keller's pseudo arclength as the continuation techni;:j})'
e

several periodic solution ‘branches of the Lorenz systenm v

‘ \

been traced out. These periodic solution branches lead to

the 1location of periodic solutions inside the Lorenz

Q



attractor. The modified Lorenz system has'

a cascading
sV .

sequence of period doubling’bifurcatione. This seqhenee' of

period ‘doubling\ bifurcations seems to "agree with the

i

conjeéture due to Feigenb;um. The biochemical system has

extremely complicated bifurcation behévioir'and contains thé
essential dynamics of both the Lorenz system and 'the
modified Lorenz system. Detailed descriptions of the

dynamical behaviours of these three systems are given along

with appropriate birurcat%pn diagrams. We hope - these
bifurcation diagrams may give some additional ingight 1Qto

the transition to aperiodicity. The bifurcation dihgrams

given in Chapter 2 were prepared with extensive use of the —

computer program AUTO. ' '

. p |
From the Hopf bifurcation theorem fér diffeomorphisms,

we know that if the Jacoﬁian of a diffeomorphism 'bviluated
LI ¥

@ \

at a fixed point has.a pair of. complex conjuga}g eigéﬁvalues
on the unit circle, then‘invariaﬁt circleg will generally
_develoﬁ. If thesé circles are fttracting, the '1local
dyrnamical behaviour of the diffeomorphism is determiﬁed by,,
xfhese cirelea. In Chgpter 3, Wwe describe ﬁhe rélatiodship
between ‘bifqrcation to 'inv;riant tori of a system of
Brdinary differential equations and bifurgation to invariant
eiroies of two ’ dimensional diffeomorphisms. - The
relationship is estgylished through the idea of:a Poingare

map and the center manifold theorem.
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A widely wused metho'd of . computing the:' bifurcating ’ v

.

! . invariant <circles of a two dimer{aional diffeomorphism is by

. -

iterating the map. However, this method fails 1if thex

e b ey

invariant circles are unstable. A numerical method capable

of computing the invariant circles for both the stable and

f
|
;
{

unstable cases is introduced in Chapter 4. The method is
based on~ a Fourier series representation of the invariant
circles and the pseud6 arclength continuation technique.
This method has been implemented in a compui:er program 'DSYS.
Given a 2-dimensional diffeomorphism, DSYS can compute the
fixed point branches of the diffeomorphism, and if a Hopf ‘ \
bifurcation point is detected on the branch, DSYIS can
automatically trace out the inyariant circles. Several
numerical lexamples, including the well known Henon map, are

used as illustrations in Chapter 6. The numerical results

show that for computing)the invariant circles, the Fourier

. series representation has very good performance both in
Al U
accuracy a@ficiency near the Hopf bifurcation point.
‘ /

’ . ] % .
E The "Fourier series representation used in Chapter 4 may
not be the most effficient representation for computing ‘the
“invariant circles when . far away from the Hopf bifurcation

1 .
point. Therefore a representation using cublc B-splines 1is

~r

also discussed in Chapter 4. Also another possible

. ; /
variation in the computation scheme is given in Chapter 5.

In this method,  some. of the conditions required by the
method given in Chapter 4 on the diffeomorphism can be.
. , “\ / i . . 0 -

e e
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‘relaxed. However, this method does not have a contirfuous

formulation. The method discussed in Chapter 5 has  also

r ® . v
been implemented "in DSYS. : _ ’
B A * ‘ ‘ v . . ' . . .. -- " ‘
As mentioned earlier,  bifurcation diagrams will be o
prepared in this ‘thesis 80 that the dynamical behaviour of ‘ ' %
- ' “ ' . N P
the dynamical systems discussed -in -this_ thesis can be . J
clearly described. <The following coriventions are used%’rrin % e :
) B L ! \ !
all the bif'urcatio'n diagrams: Yo LI
. N ! H
& * \h" N ) - ) N ‘ » [l 4%
L stable solution branch ) i
'-——————~—_unstable solution branéh X
g T . :
. . [ = steady state bifurcation . :
- }iopf bifurcation
$ . o :
A period doubling bifurcation
O ,  bifurcation to invariant tori . |
S
‘ .
. . 5
v a ! i,
§

44
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CHAPTER ONE

Basic Ideas in the Theory of

-

Ordinary Differential Equations

and Dynamical Systems

-

\ 1.1 Ordinénx differential equations and dynamical syatems'

Consider an ordinary differential equation

u'(e) = £ut)) (1.1)

Y

r

where f:W + R" is continuously differentiable (C1), and W is

Crt
4

an_open subset of R"y Since the independent variable t does

L}

not appear explicitly in (1.1), the equation is said to be
autonomous . A function §: I + W, with I C R, is called a
solution of (1.1) if', ‘

- &

o (8 =°Flel)).

for.all‘ tel. The {?ﬁiiu known existence and uniqueness

theoren ;6f ordinary differential equations guarantees that

v
-

given a Point uy, in W, there exists- a>0_and a function

‘ /
¢: (-a,a) + W such that ¢ 1s a solution of (1.1) satisfying

3

the initial condition

[ S -Q(O) = uoo (1'2)

We denote ¢ satisfying (1,2) by Q(uo), and at a particular

A

v
[PV R - m—— e o s . C e o - -
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o

i

‘ \
.t, a point on the solution o(uo) is written as °t(u0)'

Therefore ¢°(u0)4= do.

- Now, let 8 C .RxW be

the function ¢

LY

2 ={ (t,u) € RxW | t€I 3,
8 + W with

*(t,u) = o (u)

is called the flow of equation (1.1). Each ¢{u) is called a

trajectory or.

equation

equation

‘(101)

(1.1).

solution curve in the flow. The flow of

is the <collection of all trajectories of

For simplicity we write ¢(t,u) = ot(u).

The flow ¢ has the following properties:

(1).

(2).

(3).
(4).

°s+t(“) = os(ot(u)) in the sense that if one

side 1is defined, so is the other, qnd they are

equal.

*e

Qt-

‘¢

is Cl. . .
.-t and '-t'.t equal to the identity map.

is C’.

A differentiable function with a differentiable inverse is

AN

called a diffeomorphism. Thus ¢ is a diffeomorphism.

To each u, € W, we can associate a vector x(uo) =z f(uo)

in R® with the initial point at Uge Theref%re, f defines a

vector field X. Sincé f is C', we call X a C'-vector field,

. oy
and for any point v on a solution curve ¢(uo), the tangent

-
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"is C

-

To each u, € W, and for every v on the trajeétory ¢(uo)
we can associate a vector X(v) = £(v) in R™'with the initigl
point at v. Therefore, f defines a vector field X. Since f
1, we call X a C1 vector field, and for any point'v on a

.
solution curve Q(UO), the tangent of .the curve is the vector

X(v). 8See Figure 1.1 for an illustration in R3.

FIGURE 1.1

When equation (1.1) is used to model a system in some
physical situation, the space filled with trajectories ¢ (u)

in ¢ 1is called the phase portrait or state space of

equation (1.1). Each point ét(u) represents a state of the
system at a certain "time"™ t. The vector X(u) of a point u
is the rate of change of u along the unique trajectory on

which u lies. We assume X is C1, so that all rates of

‘change of the flow are smooth. By looking at the phase

portrait at different discrete time steps, equation (1.1)

3

{
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-describes the chgnke of states of the real system, and thus
gives gﬁ§e~to a dynamical system.

'

More formally we can define a dynamical system as a C1

map ¢ R;W + W, where W is an open subset of Rn, and if we

define ¢, :W+W by ¢t(u)=o(t,u), o; satisfies

(1) 9ot W + W is the identity map.

(2) Op 0 = 05 4

~/

. We note that thilis definition implies that the map °t= W+ W

1is C1D for each t and has a C1 inverse °—t‘ Hence °t is a

diffeomorphism.

On the other hand, given a dynamical system ¢, 1if we

defiﬂe
S

.

f(u):

Ao

t ¢(t,u)lt=0, (1.3)

for every u éW and write 4(u) = ¢(u), then (1.3) is a
differential equation equivalent to ' = f(¢).. Thus every

dynamical system 1s also associated with a differential

\
equation.

A solution 4(u)= u (for all t) in W with f( u). = 0 is

called a steady state solution {(or an qguilibriud point or

. fixed point) of equation (1.1). ' In the state space, if the

system described by (1.1) is at u, it will-always be (and
always was) at U. A solution o({u) of equation (1.1) 1is

called a periodic solution if there exists . positive in R
)

P

o I Er S P e Rt 0 7 -
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such tRAat ¢, Tu) = ¢, (u) for all t. The smallest such
p

number , is called the period of 4(u). The study of these

"types of sd%utions plays a central role in the theory of

ordinary differential equations as well &as in dynamical

systems.,

1.2 Stability definitions of a dynamical system

While studyingfthe dynamics of a dynamical system, it 1is
esgential to know whether the qualitative behaviour of a

solution remains unchanged under slight perturbations. In

other words, we wish to know whether the trajectories "near"

to one particular trajectory stay nearby and display a
®
similar qualitative behaviour.- This is because measurements

are never one hundred percent accurate, and one c¢an only

pinpoint a state of the system approximately. Therefore the

v

system under consideration when applied in physical

situations is always perturbed.

FIGURE 1.2
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More precisely, a set A 18 said to be invariant under a

mapping T 4if °‘T(A) C A. The trajectories of steady state

solutions and periodic solutions are all lgpvariant sets

under ¢. An 1nvabiaqﬁ set A C W of the flow ¢ is said to be
stable if given any neighbourhood U of A there i3 a
neighbourhood V of A such that every traje;tory $(v) with
¢0(v) in V is defined and in U for all t>0. If in addition,
gloo(V) = A, then A is said to be asymptotically stable or

an attractor in ¢. Further, A 1s said to be unstable if it

N .
is not stable. Thus, A 1is stable when trajectories with

initial state slightly perturbed from A remains near A and A
is asymptotically stable or attracting when trajectories
with initial state slightly perturbed from A tend towards A.
If at least one nearb} trajectories go away from A, A is

unstable.
X

Steady state solutions and periodic solutions correspond
to T"observable" phenomena in a dynamigal system, since they
represent states which are unchanging or which repeat
themselves. ‘However, besides steady state behaviour and
periodic beh;viour, other kinds of dynamical behaviour are
also observed in nature. The most well known one is

turbulence in a fluid flow. Recently, due/to the advances

in electronic computers, many models from every discipline

+

. of science have been carefully examined. These examinations

have revealed an abundance of dynamical behaviours in many

systems. They all lead to the c¢onclusion that even very

ey g
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simple systems can have complicated dynamics.

—

In the following, we further classify the points in the

state

pace of a dynamical system according to their

dynamical behaviour.

5

A point u, in W is called a non~-wandering point in the

flow ¢ if \given any neighbourhood U of uo, there exists ‘4
neighbourhood V of u, such that for suffiqiently large t,
¢(V) N U # ¢. We denote the set of all non-wandering points
of W by a(e). A point u, is called a wandering point if it
is not a non-wanderiné point. In more plain langugge, 1f~u0
is non-wandering then for any point u1, which is arbitrarily
close to uo, the trajectory through u1 returns infinitely
often Fo any neighbourhood of uo. Obviously, recurrent

behaviour of this kind may also be associated with some kind

of observable phenomenon although 1t could have a rather -

~
~

irregular character.

ﬁanderihg points only _cofrespond to some transient
behaviour in a dynamical system. In order to understand
their 1long-term behaviour we need to know what théae
wandering points ;pproaeh asymptotically as t tends to
infinity. For any point Ugy a point AL is <called an

w=1limit point of u, if there -exists a sequence {tn} with

tn - = o(ﬁfuo)*vo as n+=, The set of all w~limit point of

‘uo is called the w-limit set of uo,'hhich is denoted by

Lw(uo). Replacing the condition t <= in the definition of
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w=-1imit point and w-limit set by tn +-~,'we can define

g=-limit points and the a-limit set Lu(uo) of u

0

If u is an asymptotically stable steady state solution,
it 1is the w-limit set of points which are sufficiently
élose. 0f course any steady state solution is the y~limit
set and a-limit set of itself. A periodic solution is the
w-limit set and a-limit set of every point on its
trajectory. 'urtﬂer if the periodic solution is
asymptoticallf stable, then it is the w-limit set of the
points on the trajectories which are sufficiently close to

thg solution curve. See Figure 1.3.

NG OEL IO

o,

\ ’ FIGURE 1.3

?here are examples of limit sets which are ﬂeither
periddio solutions nor steady state solﬁtiona. k typical
example in R2 is the figure 8 curve in Figure 1.4. In
Figure 1.4 , there are three unstable steady state solutions

and the figure 8 curve is the y-~limit set of all points

;

e Mt A A b B
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FIGURE 1.4

outside 1it. The right half of the 8 is the m-limit set of
all points inside it except the steady stége, and similarly
for the 1left ' half. In R3 or higher dimensional spaces,
there are extremely complicated examples of limit sets, for
example the Lorenz attractor which we shall describe in
Chapter 2. See Figure 1.5 for a three dimensional limit set

which appears as a torus.

/—-—-——’ ®

FIGURE 1:5

.

¢

In Chapter' 2 and Chapter 3 we shall analyze‘the change

in some of the behaviours we just desoribed when a parameter

‘
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in the system 4s varied. The parameter usually is a

coefficient in the associated differential equation.

o
%

1.3 Discrete dynamical systems

A differential equation is not the only way to study the

d 1}
dynamios of a systgm. Let W C R again be open. A C1 map

g: W +fﬂn is called a discrete dynamical system if g(u) 1is
the st;te of thé system one unit 6f time after it is in the
state u. After two units of time, the system will be 1in
state gz(u) = g(g(u)) and g"(u) is the state of the system
one unit of time before it is in state u. Thus instead of a
continuous family o{ states {ot(u)l ;ER} Wwe have a discrete
family of states {gn(u)l néZ} , where Z 1is the set of

integers.

The definitions we discussed in the previous sections
about a continuous dynamical system all have their analogues

in the discrete case. The analogues can be obtained simply

by replacing the flow ¢ by the map g and the real number t

by some integer n. We state them again briefly in the

following.

A point U W is called a fixed point if g( u) = u and

uo € W is ocalled periodic if there exists some 1nteggr n

such that gn(uo) = u.. The least such positive n is calléd

0
the period of uo.

L
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] An invariant set A is said to be stable if given any
neighbourhood U of A there is a neighbourhood V of A such
that g"(V) C U, for all n>0. Also, a is said to be

asymptotically stable if in addition to beilng stable,

n>ogn(V)=A; A is said to be unstable if it is not stable.

A point u &€ W 1is called non-wandering if given any

0

neighbourhood U of u there exists Vo € U and n21 such that

0!
sn(vb) E U. The set of all non-wandering points of g is

denoted by a(g).
#

A point v, is called an w-1limit point of uo if there

0
, n,
exists a sequence{ni}with n,6 *+ = and g (uo)+vo as i+o, The
set of all w-limit points of u, is called the w-limit set of

0
ugy which is denoted by Lm(uo). If the sequence{ni}has the

property n, + -o instead, then Vo is called the

a=limit point of u, and the set of all a-limitespoints of ug

is called the aq-limit set of u

o and denoted by La(uo).

Ethples of discrete dynamical systems.arise mostly from

Bobulation dynamics. The one that has atﬁrqgted. much

attention recently is the map f: [0,1] + [0,1] with
£f(x) = xx(1-x).&' Here A is a parameter in the interval
[0,4], x ia the population of some species at one éeneration
and f(x) 1is tﬁe population of the next generation. When A
lies in [3.5,4], f ~has extremely complicated dynamics

{13]),[301].
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1.4 Bifurcations and bifurcation diagrams - .
. . - 3 n

In many cases, free:  parameters are involved in the -
equation of a d&ggnical system. For example, in the :

discrete logistic equation .
' 1Y . b

f(x) = wx(1-x), . ¢1.5)

-
~ =

I

A is a fre¢ parameter, which could for example 'be the. birth
rate of a particular épecies. With different choices of ),
the above system could then Trepresent the population

dynamics of the species assuming different birth rates.
¢

In general, 1if we express the free parameter, say i, 5 !

explicitly, we can rewrite equation (1.1) as o
A 4 c
u (t) = fx(u(t)) ° (1.6)
. N ‘ . o
with A in R. 1In the discrete case we write g as B, We 8 (/—

further. suppose fx and g, are differentiable in i. As )
varies, the phase portrait of (1.6) changes. A value Ao at
which there 1s a basic structural change in this phase

Lt portrait 1s called a bifurcation point. For instance, as A

>

[ " varies, & stable steady state solution may lose its

. stability and new steady state solutions may develop. Such 3
a bifurcation phenomenon is . called a steady N
.+ state bifurcation. o

-

§ “

For each aystem, if we prepare a two dimensional diagram

’
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with the vertical axis representing |lu(t)|l, where || ||
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denotes a norm, ( or some other measure of u(t) ) and the

*

hérizontal axis representing A, thén each u(t) appears as a

point -in the 41agram. . This diagram is called a

bifurcation diagram of the system.- As A varies, we have a

branch or branches of solutions. At each bifurcation point,
since there’ are basic structural changes in the system;

other branches of solutions are expected to "bifurcate" from

[ ' .
the original branch. A bifurcation diagram is a helpful

representation in the analysis of the global dynamlcal

PO Y

behaviour of a system.

,

tull

F

v
>

FIGURE 1.6 2

s
A large number of different bifurcating structures have

been found in applied problems . In this thesis, we are

.mainly interested in three kinds of bifprcation behaviour,

-namely the Hopfl bifurqgtion, period doubling bifurcation and

the bifurcation to invariant tori.

Dane
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1.5 Stability of steady state solutions

) When 'analyzing the dyné@ics of .a system, the local
dynamical behaviour of the system i3 determined .by a
solution if it 1is attracting. A;so, as mentioned in the
previous pection, when a parameter of the system reaches a
critical valué, a ‘stable solution may'lose its stability and

v

some interesting bifurcations may occur. Thus it is very

desirable to know whether a solutlion is asymptotically

stable.

Let T : RD + g8 phe 3 linear transformation and

.

p(z) = Determinant (T -~ zI)

»
where I is the identity map. Now, p(z) is a polynomial and
the roots of p(z) are called the eigenvalues of T. A vector

£ in R® is said to be an eigenvector of T if
. . T(8) = z¢

where z is an eigenva}ue of T. In ihis .and the following
section we ahall show the usefulness of eigenvalues in

débermining the stability. of steady astate and peéipdiq

.

solutions.

‘

’ [

Let u be' a steady state solution of the equation

'

ut(t) = £, Cult)) u € R",

1.e. £;( u)=0. Consider a solution v(t) slightly perturbed

e it o ek e 2
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‘-

from:u, with v(0) = U+t where € in R®, and let b(t)=v(t)- u.

Then we have

br(t)

vi(t)

£,(v(t))

£,(p(t) « ).

By Taylor's theorem, we have

Br(t) = £,( Wab(t)r ( W+ 0CIblt)I3).
Since f,( u)=0, b(t) approximately satisfies

b'(t) = A b(t)

(1.7)
b(0) = €

/

where A = £.( ). Since system (1.7) is linear and A is'a

constant matrix, its solution can be written as

b(t) = eth ¢ ' ~
- K
z (I+l &—Ak) € .
k=1 kl, ’ e
a )
=‘§ 1 (eJet?J €, (1.8)

uhere'zJ, J=1,2,...4yn, are the eigenvalues of A (here wve

assume ‘ all = eigenvalues ‘are simple) and & are the

J

correaponding eigenvectors. The coefficients °3'
J=1,2’ooo’n, are detel‘minéd f!‘OlII ’

’

Y W e ———— - - + m e e e e W m ea e e e A ittt e = e g i 4
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€ = 0151 + 0252 dos et enCn.
We know that u is asymptotically stable if and only if
'

b(t) + 0 as t * =, (1.9)
From (1.8), the sufficient condition for (1.9) is

Re zJ < OfO!‘ J=1,2,-uo,no'

a

Theorem (1.1) Let W C R" be open and let £t W - R? be
continuously differentiable. Suppose fx( u) = 0. If the
eigenvalues of f;( u) all have negative real parts then u is

asymptotically stable.

Obviously when A varies, a steady ‘state solution can

change its stability in one of the following two ways:

(1) A real eigenvalue crosses the imaginary axis.
(2) A pair of complex conjugate eigenvalues cross

the imaginary axis.

If a steady state solution changes its stability via (1),
then one or more new stable steady state solutions may
branch off [21]. However, if the change of stability is via

(2), then stable periodic solutions may develop. This is

»

the well known Hopf bifurcation theorem [18] [20]. In the

physical wzrld, when a system 1s in a steady state, the
aystem is "dead" and remains unchanged for all time. The
Hopf bifurcation theorem thus implies that when a parameter

of the system reaches a c¢ritical value, the system may

1
NEy-sesreoee g S

e G
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become "alive". .

.

Theorem (1.2) Hepf bifurcation theorem
¥

for differential equations

'

Let W C R® be open and £,: W*R® be continuously

ordinary differential equations

P e i it A G R

: u'(t) = £,(ult))

O,

with X 4in R.  Suppose that f£,( U) = 0 and £', ( u) has a
0
single pair of simple complex conjugate eigenvalues z(2) and
. ‘ z(A) such that N

%X(Re Z(AO)) £ 0, Re z(lo) = 0 and Im z(*o) £ 0., (1.10)

Then at A=}, there are periodic solutions bifurcating from

. _— : 27
f the ateady state solution u with period close to TE-ETwsjﬂ

Conditions (1.10) in the above theorem simply mean that

a‘pair of eigenvalues crosses the imaginary axis at an acute

B
e e sy SRR PYRE W v oy

angle.

differentiable. Consider the one parameter family of
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1.5 Stability of periodic solutions

-

Let u(t) be a periodic solution of the equation
u'(t) 5 £, (u(t)) u € R%, .

with u(t) = u(t+p) for all t>0. Consider a slightly

perturbed solution v(t) from u(t) satisfying

vi(t)

£,(v(t))
v(0)

of

‘ u(o) + by

We define a function b(t)

v(t) - u(t); then

b'(t)

vi(t) = u'(t)

£,(vit)) - £,(u(t))
£,(v(t))-f, (u(s))

(v(t)=u(t))

(v{t)-ult))

£1Cult)) b(t).

Therefore b(t) approximately satisfies the following system

\r

b*(t) = A(t)b(t)

(1.20)

b(0) = bO’
J

where A(t) = £ (u(t)). A(t) is p-periodic because u(t) is
p-periodic. Since (1.20) is linear, there is a fundamental

solution matrix M(t) of (1.20) satisfying

f
P T

bt e

et e bl e T

[
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Mr(t) = A(t)M(t)
(1.21)

~y M(O) = I,

where I is. the i&entity matrix. Therefore we have

.9

b(t) = M(§)bo and this implies

b(p) = M(D)bo. (1.22)
Let c(t) = b(p+t), so we hav; ¢
e'(t) = A(p+t)e(t)
= A(t)e(t).
Hence
ce(t) = M(t)e(0)
‘ = M(t)b(P)
= M(t)M(p)bo,
. which implies
c(p) = b(20)

(M(D))zbo.

Repeating this process m times we get

b(me) = (M(s))Pby,
and )

b(mp+t)s= M(t)(u(a))“‘bo, t € [0,r],
whioh 1mplie§

by

[1b(mo+t) || <max|MCt) I} |1 (M(p))"}] Fibglte.

S 8
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We can see that the perturbation function b(t) is bounded 'if
a .

there exjists a constant N > 0 such that

[1(M(P))®1] < N for all m>0. (1.23)

A sufficient condition for (1.23) is
Izjl<1’ j‘=1,2,000’n’
where z,, 3=1,2,...,n are the eigenvalues of matrix M(p).

In fact we have the following more general and stronger

result:
A S

Theorem (1.3) Let £y W R® be a C1 vector field on an open

set W c R%, A in R; the flow of the equation
u'(t) = £ (ult)) (1.24)

is denoted by ‘¢ . Let u(t) be a periodic solution of
equation (1.24) with period o and u, u(t). Suppose that

n-1 eigenvalues of the linear map

"t (ug) ¢R" + g

are less than 1 in absolute value. Then wu(t) 1is
asymptotically stable.
Before we proceed, we make several notes about

Theorem (1;3).

¥

Jam
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(1) - e luy) is; independent of wugeu(t). For if
. e
Vo € u(t) is a different point, let r &€ R be

~ such that or(uo) = Voo Then
et (ug) = Ca_pee ) (ug)
= 0 (™! e vy o'r‘(uo)
this shows that e'(u,) is similar to ¢'(v,).
(2) 1 18 always an eigenvalue of &'(uo) since
¢ Qug) £Cug) = £ (ug).

(3) Theoren (1.3) is not . as convenient to use as
Theorem (1.1) and Theorem (1.2) since it
requires information about the flow of the

-equation, not merely the vector field.

From Theorem (1.3) we can see that a periodic solution

can change its stability in one.of the folldwing three ways:

(1) ‘an eigenvalue crosses the unit circle at z=1.

¢
(2) an eigenvalue crosses the unit circle at z=-1.
(3) a pair of complex conjugate eigenvalues cross

the unit circle.

If a periodic solution changes its stability via (2), a

>

period doubling bifurcation may occur [21] (1.e a periodic

solution on the bifurcating branch close to the bifurcation

»
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point has period approximately double the period of a
periodic solution on the original branch which is close to

[y

the bifurcation point), see Figure 1.7

Lberwd 2p .

FIGURE 1.7

The case when a periodic solution changes its stability via

(3) 18 discussed in more detail in Chapter 3.

From Theorem (1.1) to (1.3) we know that by monitoring
the eigenvalues of ¢the "]:1nearized“ part of the vector field
and the‘flow (i.e. f;(U) and o'(uo) ) we can obtain much
information about the stability of a solution of the*ﬁyatem.
This :1_.dea was implemented in a compuVr program AUTO by
E. Doedel [7] for thée’ so called "automatic bifurcation
analysis", In Chapter 2, we use AUTO to analyze the
bifurcation b a‘viour of three ordglnary differential
equations in y including the well known Lorenz system. In
the following chapters, when an eigenvalue z is discussed
with a steady state solution u , it is understood that z 4is
an eigenvalue of f;( u) . When =z is discussed with a
periodic solution u(t), it is also understood that z is an

eigenvalue of o'(uo) where u, u(t).



CHAPTER TWO

Bifurcation behavior of

three 3j-dimensional
: $

Ordinary Differential Equations R

¢
s 'Y
For a long time, it was believed that the classification

of the dynamical behaviour of differen£1a1 equations
discussed in Chapter .1 was quite sufficiept. But recently,
driven by the fact that highly irregular motions are so
often observed in physical systems, the following question
was naturally ralsed: can &eterministic differential
equafions, which are often used to model physical systems,
have aperiodic dynamics ? If the ansﬁer to this question
were to be negative, then using differential equations ¢to
model physical systems might be completely irrelevant.
Fortunately, the answer is affirmative and to many people's
surprise even simple looking systems can exhlbit very

complicated dynamics. One of the well known examples of

such systems 1s8 the Lorenz system. This 3~dimensional

syatem of ordinary differential equations has an attractor

whiqh-h\<\~aperiodic dynamical behavior even inside the

attractor. “The .mechanism which leads to the existence of

v

such attractors is not yet fully understood.
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Recently, a computer program AUTO for the numerical
]

analysis of autonomous systems of the form

° S our(e) = £ (u(t)); t>0, u_€R",

was developed by E. Doedel [7]. Here A is a free parameter.

Given f, the Jacobian of f, the derivative %%,

state solution for some value of A and a number of control

a steady

parameters, AUTO has the following basic capabilities:

(1) ) Tsace out branches of steady state ;olutions.

(2) Accurately locate steady state bifurcation
" points.

(3) Swiggh automatie“ly onto bifurcating branches

of steady states.

(4) Accurately locate Hopf bifurcation points.

(5) Switch automatically onto branches of periodic
solutions and trace out such branches.

(6) Compute past turning points without added
difficulty, both on branches of steady state
solutions and on branches of periodic solutions.

(7) Compute stable as well as unstable branches.
For periodic solutions this is made poaeible by
rerérnulnting the pr?blen as a boundary

problem on [0,25].

(8) Compute the Floquet multipliers of steady sta

-~ -

— P
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and periodic solutions. 4

(9) Adapt the mesh to the solution. The
discretization used is the method of orthogondli
collocation with 2, é or 4 collocation points
per. mesh interval. .

(10) Adaptive stepsize along branches of periodic
solutions.

(11) Automatic restarting at certain points.

(12) Continuation of curves of limit points of steady
state branchés in two parameters . \@
(13) Continuation of curves of 1limit points of

periodic solution branches in two parameters .
(14) Con£inuation of curves of Hopf bifurcation
points in two parameters .

{15) Storeg élotting information in files. These
files can be 1nveatig§jed by an interactive
graphics program.

Fruitful results in bifurcation analyais‘ﬁave been obtained
using AUTO on several models from different disciplines
ineluding chemiocal react;ons, coupled oscillators and

population dynamics [8],[5].

Since chaotic dynamical behaviour was found in the
Lorenz system in 1963, the dynamical behaviour of simple
3-d1menaionaipordinary differential systems has Stiracteg

the attention of many scientists. Due to the existence and .

w
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uaniqueness theorem.of ordinary differential equations, we

know that‘z-dimepaional‘ordinary.difrérentiax gysﬁbms cannot
. # :

‘have ohaotie'dynam;cé (because the solqéion curves cannot
intersect). Tneréfore 3-d1m;nsional ordinary difTérential
systems are bound to be the simplfat modedls ‘rbr study;ng
stéchggticity in deterministic systems.

o -

In the  following sections, with the aid of AUTO, we
anélyse the bifurcation behaviodr of the Lorenz system and
two{,other 3-dimensional systems of'ordinary differentiar
équationa. We hope that these analyseé ‘ean Acontyibute to
the understanding \‘of transiéion to satochasticity in
deterministic syatems?\\The Feaults show fﬁat .complicated

bifurcation behaviour aiso exiats. in simple-looking

" differential equations. . B

& “ o . (. N
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2.2 Bifurcation behaviour of the Lorenz systen

* In the 1950's, there were basically two approaches for
numerical weather prediction. The firat approach followed
the dynamical method which performed wqather forecasting by

. 'Y
numerically integrating atmospheric equations. The second

approach favoured the statistical method wusing linear

a

regresalion with large numbers of predictors. Also, the idea
was presented that the statistfical method could duplicate
the pérformanee of the ‘dynamical method. In.1963, being
skeptical about this 1déa, E. Lorenz  tried to find
"non~predictable” dynamics in a system of twelve variables.

The search was successful and when he compared the results

generated by both methods Lorenz observed that the

statistical methqghgannot duplicate the performance of the
Wy . .
dynamical me t hod ¥ In/;order to better wunderstand the

-problem, he furtﬁer eliminated nine variables, and a simpler

system - which still possessed aperiodic dynamics was

obtained. The system is as follows:

\,

N,

~g{x~y) (2.2a)

x! =
' y' = ax(z=r)-y (2.2v) .
z' = xy-bz , ’ (2.2¢0)

. where o and r are related to the Prandtl number and thé

Raylelgh number reapectiiely, and b is a positive parameter.

2

This is now generally called the Lorenz system ([25],[35].

n

i
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System (2.2) 18 not quite reaslistic in the sense of
modelling weather predic€ion; however, as many. people have
pointed out, these equations can be used to model . a

laboratory water wheel or irregular laser spiking [25],([32].
Since the divergence of the flow represénted by (2.2),

ax' FRTA FE A

3 + 3§—+3—:—:-—, equals -(0+b+1), system .(2.2) is

dissipative [35]. A volume element, V, is contracted by the

-(0+b+1)t

flow into a volume element Ve in a time t. Lorenz

has also shown that there is & bounded ellipsoid in R3 which
all trajectories eventually enter [24]. These two remarks,

taken together, imply that all ﬁrajeetoriés tend towards

some bounded non-wandering set of volume zero. Also, no
invariant tori can exist. Notice that system (2.2) contains

no noisy or stochastic terms, so one would expect that the
, LV

dynamical behaviour of system (2.2) wauld be quite simple.

a

At ¢=10, b= and r=28, the non-wandering set of

wioo

system (2.2) ~is as shown in Figure 2.1. Inside the
attractor, the trajectories continue to wander back and
forth in a random manner and they never intersect if we
consider the full three dimensional picture. This attractor
is now called the Lorenz attractor.‘vfg;enz also argued that
1f one uses a line which i1s parallel to thg y-axih to cut
through the attractor, the resulting intersection ‘is a
cantor set. It is this comﬁlicated dynamical behaviour that
has generated so0 much interest in the Lorenz system. It

initiated the suggestion that complicated turbulent
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FIGURE 2.1 LORENZ ATTRACTOR

2

behaviour in systems with an infinite number of degrees of

freedom might be modelled by simple deterministic

finite-dimensional systems.

)
The Lorenz attractor 1is sometimes ocalled a strange

attractor due to its - strange dynamics. However, in ' the

literature, the term "strange attractor™ is also frequently

used for other aftraoting sets with different dynamical’

natures [32]. In this thesis, the term "strange attractor"
f/
is used in its most general sense to mean any attractor with

aperiodic dynamics. u ¢

So much has been said about the Lorenz system that it is
* v -

not possible -to =survey -all available results. For an

-

- extensive analysis and survey on the system, see [35]. ' In

[N

e Lt




36 S

the following, we concentrate on some bifurcation behaviour
. of the Lorenz system. The choice of the parameter values
c=10, b= % and r varying between zero and infinity is

conventional.

We write system (2.2) in the form of (2.1), i.e.

¢ u' = f(u; a,r,b),’ uT = (%X,y,2) S?.B)
where ' Tu(x-y) | )
£(u5 o,r,b) = ex(zer)ay .
xy-bz E

Clearly, ‘the right hand side of (2.3) vanishes ‘at

0T=(0,0,0); therefore 0 is a steady state solution of (2.3).

The Jacobian matrix of f is

- -
-g g 0
f'(u; osrsb) = | =24r =1 -x . ¢
y x «~b
SNy -d

I

IR
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Evaluating the Jacobian matrix at O- we have

-g o 0

. .

£1(0; o,r,b) = . r=1 0
0 0 -b

and the characteristic polynomial of £'(0; o,r,b) is

-

23 4 (146+b)22s (bo+beo—ro)rebo (1-r) = 0.

.
‘e

This implies

1
(A+b)[A24(041)2 40(1-r)] = 0

»

or

A = -b,

- -(o+1) 1-_/(04-1)2-%(1-!')
2

If r < 1, all three eigenvalues of f'(0; ¢ ,r,b) are negative

real numbers. If r>1, one of the three eigenvalues, namely

+

-(a+1)+\kq+1)zouc(1-r)
2

A=

becomes positive. Hence we know that for r < 1, uz0 1is an
attracting stegdy state solution of (2.3) .. When r becomes
greater than 1, u=0 }oaes its attraction and there wexists

two new steady state solutions:

vl = (/B(r-1),/B(r-1),r-1),
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and

. ¥ o (/B(r=1),~/B(r-1),r-1).

@ «

To determine the stability of v and V, we consider

‘ |
f'(v; G,I‘,b) s 1 -1 -',b(r"1)

t

' L/b(r-1) Yb(r-1) -d

and its characteristic polynomial

v

A34(04b+1)22 4(rs0)b +29b(r=1) = 0. (2.4)

#

We o¢can see that all three coefficients of bolynomigl

! )
{2.4) are positive. Hence one of the roots of (2.4) must be
a negative real} The other two roots are initially negative

reals, then become a pair of complex conjugates which become

ES

purely imaginary ‘hen

*
<

~

re oga+b+§).
. g=-b=1

This 4s the critical value of r for the instability of the
two new steady state solutions v and ¥. From Theorem (1.2),
we know that periodic solutions appear. Figure 2.2 shows

v

the bifurcation diagram of the Lorenz system.

In Figurefz.z, branch 1 is the zero steady state. When
"ril, branch 1 4is stable. At rQl, one of the eigenvalues

becomes positive and two new ateady state solutions

;
. e e e m e i i N P W U pr——
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FIGURE 2.2 C(BIFUR DIA OF LORENZ SYS) ’

bifurcate from branch 1. These two new <3steady state

solutions are stable when r<24.74. In Figure 2;2, theﬁe two

steady state solutions are botﬁvnamed branch 2.  From here

on, unless otherwise specified, w; only discuss the branch
4 \

on the upper half plane.

.

At r=24.74, ‘a pair of complex eigenvalues crosses the‘
imaginary axis of the complex plane (Hopf bifuroafion).
Branch 2 becomes unstable at this point. The bifurcating
branch of periodic solutions goes backward and the periodic
solutions on this branch ar§ unstable. This type of
pifuroation ia-uaually called suboritical (in contrast to

supercritical bifurcations which generally lead to a forward

" and stable bifurcating branch). : .
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In Figure 2.2, branch 3 1s\§he periodic solution branch
bifurcating from branch 2 in the upper half plane and
branch 4 is the periodic solution branch bifurcating from
branc: 2 1n the Iébbr half plane. Their asymmetry is not

apparent because of the choice of the vertical axis.

For a periodic solution on branch 3, aee# Figure 2.3.
Along branch- 3, the period of “the periodic solutions
increases very rapidly as r decreases. The ocomputation
terpinates at the solution labelled 32 where r=13.93 and the
period is very high (see Figure 2.34). This matches the
observation by C. Sparrow [35]. Sparrow also argued that‘
these periodic solutions with high period are "generated"
from'a homoclinic orbit of the unstable zero steady state (a
homoclinic orbit is an orbit that t;nds, in both forward and

backward time, towards an unstable steady state).

Other periodic solutions have been observed by some
authors whén r is around 100 or greater [34], [35]. See
Figure 2.4 for one given by Sparrow at rz100.5. Using this
periodic solution as a starting point, we traced out a
periodic solution brénch. This branch 1s named bdbranch 9 in
Figure 2.5, which shows the global bifurcation diagram of
the Lorenz system on the upper half plane. Using a second

periodic solution located by ourselves at r=200.87, we

‘traced out another periodic solution branch named branch 5

in Figure 2.5. See Figure 2.6 for the starting periodic

solution of branch 5. . k
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Let us ' examine branch 5 more carefully. Three local
blow-upé qr Figure 2.5 are given in Figure 2.54A, 2.5B and
2.5C starting from low values of r, solutions on branch 5
are high period unstable periedic solutions. As ' r
increases, the period of tée'periodic solutions decreases.
Some periodic solutions on branch 5 are shown in Figuré'2.7.
At r=325, one of the eigenvalues becomes real andyénters the.
unit circle through positive one. This lcorreépondh to a
turning point .on the branch. Now all three eigenvalues of
the linearized flow.are inside the unit circle and therefore
the periodic solutions on the branch are stable; Stable
periodic solutions exist until a period doubling bifurcatién
is detected. Starting from the period doﬁbling bifurcation
point, another periodic solution branch (branch 6) is
traced. The bifurcation direction is towards low values of
r. At first, periodic solutions on this new branch .are
stable and ' stabifity changes when another period doubling
bifuncation point is found on this branch. When tﬁe
bifurcating branch of periodic solutions (branch 7) is again
traced out; another period doubling bifurcation is located
at the point where the per}odic solutions lose stabilityﬁ
See Figure 2.5C for a b;furcation diagram for this cascading
sequence of period doubling bifurcations. Some of the
corresponding periodic soiutions are :shown in\ Figure 2.8.
Branch 5 ocontinues with decreasing values of r and the

computation terminates when the periddic solution branch

approaches thp homoclinic orbif. Since the homoclinic orbit

Ayt o ww ree .. T et lY 4 SR
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has an infinite period, fhe computation gets into difficulty

at this point.

Starting at r=100.5, branch 9 is ¢traced in bdth
directions. The behaviour of branch 9 is almost the same as _
described above for branch 5§ except 4t 4is on a smaller

+ scale. At low values of r, branches 3, 5 and 9 are very
close to each other; see Figure 2.5B. However; we emphasize
fhat this is not a bifurcation and that periodic solutions

on branches 3, '5 and 9 have entirely different shapes, as

shown in Figures 2.3B, 2.9 and 2.10.

Iqlthe. othez direction, when r=100.77, one of the
eigenvaldes enters tﬁe unit circle ‘through positive one at
the turnin% point on the branch. As on branch 5, after the i.
turning point, the periodic solutions become stable until a
period doubling bifurcation point 1is detected at r=100.
From this bifurcation point we =again expect a caacéd!n;
a;quence of period doubling bifurcati9n branches ‘to be
found. The period doubling phenomenoh in this parameter
region is also reported byl Sparrow ([35],p.56). After -
r=100, branch 9 becomes unstable. Asaiﬁ the-ooméutat;on

terminates when the periodic solution branch approaches the
e : (’ ”

homoclinic orbit. < .

A

. The bifurcation diagram giv in Figure 2.5 may not be
’oomplete. Other periodic solution branches are likely to

K]

exist., From our oompupation, several unstable periodic

.

At - .
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solutions have been observed in the parameter range uheré
the Lorenz attractor exists. nSee.EEE;re 2.9 and Figure 2.10
for two of th;se orbits. These unstable periodic solutions
exist and are very close to each other in a certain region
in the state sbace. We suspect that the 1nterestiné
d&nghical behaviodr inside the Lorenz attrgetor is caused by
the faot‘that_many’unstable periodic solutions are packed
very close to each other in this area. ngn a trajectory

enters the Lorenz attractor, due to the unstable character

of the period}c -solutions, the trajectory 1is forced to

4

wander around without settling down. -~
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1 1
2.3 Bifurcation behaviour of the transformed Lorenz system

In 1978, T. Shimizu and N. Morioka [34],[5) proposed a

new direction for studying the Lorenz system. By change of,‘

variables , they transformed the Lorenz system into a

" differential system describing a particle in some potential

-t

depending on a varying parameter:

u'' + gu' + ﬁ!%%Jﬂl =0,

(2.5)

n' = f(n,u), V(u’n) = auu + c(n)u2 ’
where g,a,c(n) and f(n,u) are functions of the parameters
oyb,r g%‘the Lorenz system. - )
£
\ g
The change of variables is a8 .follows: from (2.2a) and

(é.Zb) we have
xt! = =g(x' - y')
z =g[x' «(exz + rx = y)]

£ =g[x' = x(r-z) « yl. (2.6)

Fron‘(z.aa) again we have C ;

x'+gXx
X _FoX
a LY .

y= (2-7)

Substituting (2.7) into (2.6) we have
x'+ox]

x'' = g x'- x(r-z) +

z =gX' + gx(r-z) « x' « gx

[NV URDE Y

P

b 4



or
X' 4 (g+1)x" = gx(r=z=1). © (2.8)

Dividing both sides of (2.8) by /20(r~1) and letting

X
u = m we have
. olr-

u'' « (g+1)u' = gu(r-z-1)
= ~olr-nu( 221

- z =ag(r-1)u( r_f‘l -1 +u2 - u2) ro
or

Ut 4 (g+1)u' = =g(r=1)u(u-1em) - o

(2.9)
= -2 2

ms =1 - u

where . \

[N . -

n!

-b[m-(é-‘l-1)u2i-
~ )

if we write g=g+1 and i!%%iﬂl = g(r-1)u (u2-1+m) then - (2.9)

corresponds to (2.5).
A very wide class of differential asystems may be
expressed in the form of (2.5) with different choice of ¥

. \ ‘
and f. In 1979, P.Coullet, C.Tresser and A.Arneodo [5]

e .
proposed to study a particularly simple choice, namely

]
L]
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/A
/ '

n' = ~ulbea(i-u)).

(2.10)

Their prime motive is that it is easier to wunderstand the

transition to astochasticity in a simple system than in a

cc&pplex system if stochasticity exists. Using the special V- '

.’

and.f given in (2.10), (2.5) can be written as *

urtr s gu'' + u' = -u(bsa(l-u))

or
<
u! = vy
V! = alew
w' = au(1-u)-bw

or : A

X' =z -y-2

y' = x , O (2.411)

z'

ay(1-y)=bz.

System (2.11) ﬁap two parameters which is one less than
the Lorenz system. It is also ‘alightly simpler than the .
Lorenz -ay;tem. In order to analyze the bifurca;ion
b;haviour of (2.11), we again express (2.11) in the form of

[N

(2.1), 1.e.

u' = f(\l;ﬂ,b)’ \IT s (XQVQZ) (2.12) :

\

where

.
G T s



with the Jacobian matrix
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- 7t

f(usa,b) ={ x ,

ay(i-y)=-bz

v

0 -1 -1
f'(usa,b) =| 1 0 0
/
0 a(1-2y) =b

The characteristic polynomial of f'(uja,b) is

. 3 4.2
A7 + 52" + b+ (a-2ay) = 0. (2.13)

Obviously 0T = (0,0,0) is a steady state molution of (2.11).

When evaluated’ at 0, "characteristic polynomial (2.13)

becomes

AB + bxz + )+ b +2a = 0. (2.14)

At b=-a, one of the eligenvalues orosses the imaginary axis

and causes a steady state bifurcation to a new steady state

4
T (o, EER,-Eig). Then the characteristic

solution u

polynomial evaluated at u is

2

A + by ¢+ ) - (bea) = 0 . (2.15)

The discriminant of (2.15) can be written as

3 2
e= (B2 D

: b " b.3 b )
where p = - §—+1 and q = 2( §) - 3" ({bsa). When b is small,

Q is positive and we know that (2.15) has one real root and

™

b T I A e e - e e ... . s, » ik P S adre . ¢




l%
R

)
N
|
)

e v.:bh-

'
.‘—&—“, A A ke 48y e R s e s ettt s n e i ma e e am e n o et s 2 - P e

o TR
S

54

two complex conjugate roots. The two complex conjugate

roots are pure imaginary if
/‘ #

‘v

&
‘m{a+b)

o
n

or A

s - 2 . .
b - 2- .

" See Figure 2.11 for the bifurcation diagram of
system (2.12) with a=0;315 and b as a free parameter.
Again, branch 1 is the zero steady syate which is unstable
for the entire branch. The computation starts at b=-5. At
first, all three eigénvalues have positive real parts. At
b=-0.375, one real eigenvalue crosses the imaginary axis
when a steady state bifurcation occurs. The new steady

state solution is named branch 2 and is also unstable.’

[

\Along branch 2, a Hopf bifurcation point i1s located at
b=-0.1875 (which matches the argument given above). At this
point, a pair of complex ‘eigenvalues cross the imaginary
axis and go 1nt9 the left half plane. A periodic solution

branch results and is named branch 3.

!
4
t

¢
¥

When first bifurcating from the steady state branch 2,
branch 3 ° is unstable. Branch 3 is unstable until a
bifurcation to invariant tori i1s found at b=6.569939x10'8.

At this point, a pair -of complex conjugate eigenvalue enter

the unit circle. The branch remains stable for a while and"

turns ' unstable again at b=0.09529 where a period .doubling

bifurcation is encountered. Then branch 3 turns sgxble at
\ .
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bz0.6458 where another period doubling bifurcation 1is
detected. ‘ A schematic diagram of the sequence of period
doubling bifurcations is shown in Figure 2.12 and two
solutions indicating the period doubling a.re shown in

Figure 2.13A and Figure 2.13B. .

The existence of a cascading sequence of period doubling
bifurcations in the one dimensional discrete logistic

equation
£féx) = Ax(1-x)

is well known (see section 1.3). If {Xn} denotes the
corresponding parameter sequence, then the 1imit
A -

§ = 1lim ~An ne1
n+1 n

is called the Feigenbaum's constant [ 12]. However, although
cascading sequences of pei'iod doubling bifurcations have
been found 1in many models of higher dimensions, bq\ey have
not been oclearly described. From the computation 4in the

transformed lorenz system. If we let

-

P ®abnoy
B ®pe1Pp

‘then

001671 - 010953 - |
84 * 07933 - 0. 1671 ‘2'7“99?5

-

-

2 °0.2010 - 0.17933 =3°

e et : S——— RN
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It 18 not clear yet that Gn*4.6692... (the Feigenbaum's
constant). But further information can be obtained if we

trace out more doubling branghes.

1t
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2.4 Bifurcation behaviour of a biochemlcal system 1

The following model may not be directly related to

turbulence 1in a fluid flow, however it is an example that

shows chaotic behaviour of a
A

a sequence of bifurcations

system can occur via

nd loss of staWility. Also this

model exhibits a bifurcation behaviour which |{is very

complicated and on the other hand very interesting.

Rhythmie¢ behaviour is a property of living systems ;hat
is encountered a? all levels of biological organizations.
Most biological oscillations have .a stable period and
amplitude_but in some cases complicated oscillations are

alpﬁ' observed. Finding the mechanism of periodic behaviour

‘sometimes can be reduceh to finding the mechanism producing

®
instability. A qQuestion therefore arises as to what happens

when two instability-,Penerating mechanisns are operating in
\
the same asystem? .
Among oscillations in biology, enzymatic periodicities
are best understood at the molecular level. These

oscillations, which have a period of several minutes, are of

interest both for their role in metabolic pathways and as

‘general models for biological rhythms. In 1982, O.Decroly

and A.Goldbeter [6] considered a biochemical system with two

allosteric enzymes for the study of biorhythmic behaviour.

4

The two ailosteric enzymes are coupled in series and each of

them can be activated by their respective products. In [6],

N

.
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) ‘ 3
they showed that the variety of possible types of dynamical

behaviour is greatly increased. .

Allosteric enzymes are key metabolic enzymes. They have

dependent substrate binding sites, i.e the binding of one

. substrate molecule induces structural or electronic changes

that result in altered affinities for the vacaﬁt sites.
This ocan affect the way that the next substrate molecule‘is
bound with the enzyme. In other warda, the catalysis ”rate
of the enzyme on the reaction between the‘substrates.can be
ﬁ?dified by the catalysis itself. The peaction rate of an
allosteric enzyme can also be modulated by its allosteric
effedtors ( positive effector or allosteric activator for
increasing the rate; negative effector o; allposteric

inhibitor for decreasing the rate ). 1

The system can be written as . '

& E' ’ Ez
A R
Pl
S --—oet s—c.--." ‘,P“_-:-"‘ PZ;-—-" (k‘

~

where S; P1 and P2 »represent the original substrate,

produo£-1 and product 2 respectively. E1, E2 stand for the

two allosteric enzymes. a'is the injection rate of substrate -
3 M ‘h

-

S and k is the rate’of removal of product 2. The feedback
') ke

loops of the two allosteric enzymes B,y B, " ereate two .
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.

instability generating mechanisms in the system and leaJ to

a wide variety of dynamical behaviours.
N

O.Decroly and A.Goldbeier write the timeﬂ.evoluiion of

the metabolite concentrations as ' r

n.ln.
(2 [ -1
(]
e
[ ]
a

ﬂ-ﬁ-
ctr

(]

F-]
-

Q
-

.

]

Q
N

]

x
-

N

.

-
-]
~ .

O-IO-
L
"
-3

N
Q

n
o
[}
»
4

'A - u(1+u)(1+v)2
. L1+((1+u)(1+v))2

t

v(1+w)2

LI [ . "B= 20
‘ L2+(1+w) . )

In aystem (2.16),

e«
n
mic |
=izl

y V= =, W =

© i<l

with u,” Vv and W denote the concentration of 8§, P, and P,

respectively. K=K

p,xpé, where K ' is the dissociation
4

pl

constant of ‘?1 for 31 and KpaAis the hiaaooiation constant

of P2 for 32 (i.e, the ways that E and E, affect the

1 2
resction S--+P, and P,--+P,). Also in system (2.16), s is

the rate of input of the substrate S, k 4is the rate of

-l -l
p1* 927K Ko
lconstenta of enzymes E

removal of the substrate P_ and q1=K

2

L‘f L2 are the allosteric 17 32

a

-

- Finally -

N

. i v

(S
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L 3

respectively 'and they regulate the allosteric effehi that

31, Ea c¢an have on the substrates. With a small value . of

the allosteric constant L, the reaction between substrates

regulated by the corresponding enzyme is ;@re favoured. For

example, in (2.16) a /small value L implies that the
value of A is large and thus the rate of increase of u |is

small, In other words, éhe reaction S--’P1 is favoured and
more of S is consumed in the reaction. "
. 7

The reaction rates A and B follow the assumption that E1

and E are both dimers, i.e. the exclusive ,binding of

2
ligangs create more active conformational ‘state and thuq
1nc£eases the rate of the reactioq fu;ther. This can be
seen from the quédr;tic terﬁs in the expressions of A and B.
For example, in the expressioh‘of B, the dominate quadratié
term only involves the concentration of 92 vhich }s W The

difference in_ ~the expressioné of A and B implies that the

gctivated by the enzymes E1 and E2 are

different. This feature 1is essential for the complicdted

tuo reactions

7

The férﬁulation of system (2.16) is atraight-foruard the

L 4

-

rate of change in the oonoen$ration of substrate S ( ) is

thefanput rate of 'S aubtractingﬂthe peaction rate that leads’

1]
and\tﬁereforé‘the maximum activity 01
[

The~ rate of o%gnge in the coddentration or‘produet P1 at,
&

is the rate thaé‘P1 is produoed subtracting the rate that P,

from S -to P,. This reaction is activated by the enzyme EH
. [}

of E1 is . involved.

1

( 4

£

2
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1

v . :
« : ‘l

is used to Bgoduce PZY The .reaction from P1 to P_ is

2

. L
activated by é}~dﬁu therefore.théhmaximum activity 9, of E,

2
is involved. The rate of- change in the concentration of

v

Y N
‘produot P2 ( ) is the rate that P is produced subtracting

)
the rate that P2 is removed from the, reaction.

.‘ ¥ <N
In their computations, O.Decroly and A.Goldbeter relied

"heavily on the trad;tionaily used ,initial 'value methods.

However, 1n1tia{WValue methods often encounter difficulties

in 1locating unsbable solutions. Furt ermore, if\s two

- asymptotically stable solutions exist simultaneously and gre

2

quite close to eaeh other in the phase portrait, it would be-

quite difficult to locate .both of them using init;al value

methods. Since AUTO can overcome thése problems quite

t

easily, we use AUTO to re-examiné system (2.16). Before we

proceed we note that system (2.716) can be simplified"

conaiderabfy by applying some 1linear transformations and
scaling ‘out ~some of the barametera.

’ .
From the simulation in [6] we observe that the maximum

activities o 02 of the two enyzmes E1, E2 can be set to be

1’

equal. Also, we can set kp1=1 and thus d1= % + ' Therefore
' - v

system (2.16) can be written as

g

e pertch it o e e e
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du _ s A
G (e
& . ah-B (2.17)
dw 1 k (
' =z 2~ B=-%F w
. . s dt q1 1 .
with ] .
‘ L
. A = ﬁ$1+u2§1+vzz
) | L AT TS P L
and -
Fl o
., i 2
s B = v(is+w)©™ . , 8

. 2
Lz+(1+w)

<

With the gransformationq x=1+u, y=1+v, z=1+w we can write

system (2.17) as

’*
where 8, 3:—, 9=q,

3

System (2.18) has three parameters less than

.

I

. t"~/ B .
dx _ o (oem)ay? T
v k. L{+(xY)? .- P
&o .
- NPT T
dy _ . (x=1)xy (y-1)z 5. 18)
dt - q 2 - u2 ,(2._‘1 ). “
) L.+(xy) L_+2°
1 2*e .
' 8
2 . —
%% =1 il:l%Ef - k_(zpt)
N e °
2*® .
and k= %1. «

r 3 ' b - a
system

(2.16) and is oonsiderably simpler. A global bifurcation

- .
_dlagram using kB
- . , '

Figure 2.14. The

» values

-

A

O

as a free parameter i's given in

o

othoé'fourfpagambtera have the following
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oo , .
. There are three basiec solution branches in ﬁhel
bifurcation diagram s?own i% Figure 2.14, namely one steady .
sstate branqh (branch 1) and two periodic sélution branches
(branch 2, branch 3). At low values of kg, bran?h 1 1s
u?stablg. Branch 1 changes its stability at ks=0.7906 and a
Hopf Dbifurcation 1s detected. As branch 1 becomes stable,
N § brapeh 2 is developed ‘from this Hopf birurqatio; point.’ At
K8-1.585, branch 1 changes 1ts~stapili§y again.and another
by Hopf bifurcation point is detected. 0From this 0second :Hopf
birﬁrcation, branch 3 is developed.’ When first bifurcating
\ from branch 1, bran;h 2 is unsgable._‘Hdwever, at k8=1.8é1,‘

. one elgenvalue enters the unit circle through poe¢tivé one,

'+ Branch 2 changes its stability and turns backward.

In the parameter range 05k550'7906’ since the steady

.state branch 1 ﬁp uﬁstable, the dynamic¢és of the .system are

“w

T dominated by the periodic solutions on branch 2; In range

- o

0.7906$k’51.585, thé steady state branch 1 becomes stabhle.

. As the periodic solution branch 2 keeps its stability, .given
- » ~ . O

a value of k the system San either reside on the atsady

B'
state solution on branch 1 or the periédic‘ solution on

dranch 2 depending on the iniéial conditions. Although

another segment of' branch 2-also exiats in this range, it
' ‘ 4 ¢

3 [
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does not affect the Periodic behaviour ofrthe system due to

»
-

its wunstable character. In the range 1.585$k351.821,
branc; 1 becomes unstaﬁle and the perio?io solution branch 3
agpears. /;n this parameter range, given a value of ks’ the
system can reside on either the perlodic soluﬁ;on on
branch 2 or the periodic solution on branch 3 depending on
the initial conditions. We note that the periodic solutions
on ‘branch 2 and 3 differ significantly in period and
amplitude. For a periodic solution on branch 2, see
Figure 2.15. After,ks=1.821, the dynamics of the systen

follows branch 3.

The Dbifurcation behaviour of branch 3 18 extremely
’/(/Thteresting. A locaf enlargement of branch 3 1is éiven in
' Figure 2.16. Note the many turning points and perioed
doubling bifurcationas. The stablility of the branch changes
each time when a‘ turning point or a period doubling
bifurcation point is encouﬁtered. Restar?ingn vthe
computation at these period doubling bifurcation points, we
obtain other short branches of periodic solutions., See
Figure 2.17. On eaoh of these new periodic solution
branqhes, four period aoubling bifurcations are found again.
In fact, we expect thesg cascading bifurcations will
oontinue. See Figure 2.18 for a schematic diagran. The

orbit of some of the periodic solutions.on branch 3 is given

in Figure-2.19 - 2,23.
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Due to the cascading phenomenon of braqch 3, we note
that 4in certain small intervals 'in the parameter range
1.97u5k352.1 there may exist many stable periodic solutions

“of tpe system. Whether tgé dynamics of the system is
attracted by any of these stable periodic solutions depends
on the initial conditions. Therefore, in these

A

ks-intervals, the system 1is highly sensitive ¢to initial

..conditions and exhibits complicated dynamical behaviour.

Complicated dynamical behaviour often comes with strange
attractors., In [6], the existence of atrange’attracﬁors in
the parameter region 2.0<k;<2.034 is reported. See
Figure 2.24 for a strange attractor found at k8=2.0. Once—~
agaiﬁ?‘ according to our computation, we know that many
unst;ble periodic solutions exist and are very cloée to each
other in this region. When a trajectory enters this

N\, . IS
attracting area, it is "pushed around"™ by the unstable

a4

periodic solutions and ocauses the complicated dynamical

behaviour of a atﬁange aftractor. This "pushed around®™
- ‘

effect can be eaailyhaégn by comparing Figure 2.24A, 2.24B

. meeN GRS A

and Figure 2.19-2.23. Periodic solutions shown in
N
" Figure 2.19-2.23 are found in the parameter range
; 1.95<k8<2.1 (see Figure 2.16 and Figure 2.17). We note that

: the parameter value ai which the strange-attractor exists

also lies in this parameter range. From Figure 2.24 we see

that this strange attractor has a "layered" structure. The

( . N
L shape of each layer is very similar to the shape of the

-

D U
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'.period doubiing bifurcations are found. They, presumably

2.5 Summary

s
All three models discussed in this chapter deserve more’

-

*

detaiPed studies and computations. A ‘more complete

. bifurcation diagram (1.e. with more periodic¢ solution

branches) for the Lorenz system could be revealing. The

fact that in 14.5<r<50, wmany unsitable periodic splutions

exist and- are close to each other might explain the
dynamical nature of the Lorenz attractor. Once a trajectory
enters the Lorenz attractor, it wanders between unstable ’

periodic solutions and can never settle down because of the’

unstable character of the solutions.

The reason we also chose to consider the transformed
Lorenz system is that it is siméler than,the Lorenz system
and also exhibits chaotic dynamics, The cascading sequence
of periodadoubling bifurfation branches in this model can be
seen and described more clearly. A \pascading sequence of
period doubling bifurcations is observed in many'systems
including the Lorenz system.  The particular eequeqée in thﬁ\
transformed model also makes clear that a cascading sequence

of period doubling bifurcations can occur in both directions ”
' .

-

and pdibibiy'lead to a common chaotic regioh. ' .

»

hES

‘\ In the enzyme model, multiple cascading sejuences of

wr

v

lead to the existence of many chaotic reg%pna. The chaotice

dynamical ,behaviour in each gf these regibna is similar to

14
[T

an
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the chaotic behaviour Sgun& in the transformed Lorenz
‘system. It is caused by the existence of stable periodic
) . .
solutions ~» of arbitrarily high period and alaq the

simultaneous existence of many stable periodic solutions in

the same papameter region. Hiéh sensitivity to initial

conditions in this area is the result. Strange attractors

are also found in this model. We believe that the ehéotic’

dynamioal;behaviour inside these attractors is the result of
the boundedness -of the flow aﬂd the existence of many

unstable periodic¢ solutions. .
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"have negative real parts.

CHAPTER THREE -

b,

The Poincare Map and

The Centre Manifold Theorem

Consider a differential equation

u'(t) = £, (ult) (3.1)
/ ’

3

where fA:H;’Rn, WweE RD is open and A is a parameter in R.

1

We suppose £, is C'. As mentioned ‘in Chapter 1, a steady

. _ , _
state solution u is stable if all the eigenvalues of f,( u),

For a periodic solution u(t), it

is stable if all the eigenvalues of have

0|(u )

0 absolute
- 4

.value 1less than oné,, where uoeu(t) and ® 15 the flow of

equation (3.1). When A changes, the Hopf

theorenm conditions for th

gives sufficient loss of

stabllity of a steady state solution and the bifurcation to
. -

pefiodio solutions. Thus a very nafural question to ask

is : what is the next kind of bifurcation behaviour that can

poasibly occur- when a periodic, solution loses 1its
stabllity ? In fact, under certain conditions, invariant
. N h -,

tori can reiult.

; . Loon

3.1 Poincare map

bnc way to sfudy the dynamioa\of (3.1) is to study the

Poincare map induced by the floy ¢ defined by The

rxo

bifurcation.

T

{
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when ‘Y(u1)(uﬁ) crosses.S.

81

phenomenon of bifurcation to 1nvari§nt tori can be clea:ly
explained using the idea of a Poincare map. The following

ideas can be found in [4] and [17].

e

To 1llustrate the concept of a Poincare map, we start by
recalling that a hyperplane of R qs an- (n-1)-dimensional
. |
linear subspace of R®. Consider th% !

field f, and let ¢(u0)c: W be a cloBsed orbit. Suppose S is

flow ® of the C' vector

. ®

an open subset of a hyperplane H of Rn, which is transverse
to the vector field f, at uy ieed £,(u) # H for any u in S.
If # is the -period of O(Ub), then as time 1ncreaaegﬁpadt P,

the solution curve #(u,) crosses S again at u If u, is

0° 1
sufficiently close to Uyy there will be a time Y(u1) near 9

Therefore a map

4

\

gt U+ S
with *
glu) = 'Y(u)(u)
is in obtained, where u is a neighbo&rhood U of u&. o

gy Y L ko

)

FIGURE 3.1
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However g will not be well defined if the time map Y |{is
not wunique. This" can be easily seen from the fact that if
‘there exists another time map Y such that ¢ Tlu 3(u1)
. 1
crosses S, then T

} Y(u1)£AY(u1)

impliles that

¢ T(u,) (“1"”1(u1)‘“1)'

Q

Fortunately, the following Theorem.(3.1) guarantees ‘the
uniqueness of the time map Y.

ke
Theorem (3.1) ’

-

Let 5 be an open subset of the hyperplane H & R"
transverse to a C1 vector field r&w + g7, Suppose u, € S

and ‘t (u.)<=u0. Then, there exists an open set U C W
» ‘ ‘ .

containing u, and a unique ¢! map Y:U * R such that

’

G Y(‘-l') = t'
and ‘ ) ’

.Y(u)(u) €S

for all u in U.

Al 2

A proof of Theorem (3.1) can be found in [17]. Let u,
be a point in the state space and uo be a éoint lying on =
hyperplane S transverse to the vector field f, of a flow ¢.
In simple wogds, Theorem (3.1) tells us that, if the flou
- brings u, t;— uy in t;m; ty then the flow.also brings Eh@

.\

* - R i ettt i i e ep s ey bevieas M A L
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neighbouring points °f5?' to points on S in uniquely derihed

times subject to t,. See Figure 3.g.

*q,

& " FIGURE 3.2

“.How 4if we put 8
/ a ‘1
Theorem .(3.1)) and define a C  map : .

“

0 * SNU (S and U are as defined in

hAY

, p:sO * 3
such that '
.”p(u) ='OY(°)(u),

-

-«

then p is called a Poincaré map of Q(uo). In order to
indicate that p also depends on A, we write p as p,. See
. ' oo ' : ¥ -
Figure 3.3. From Theorem (3.1) we know that given any

e
vector field fl; a point u_ on a periodic orbit ¢ in the

0
. . ]
flow defined by rx, and a hyperplane H transverse rA at “0’
. .
a Poincaré map is uniquely determined. We also note that,
since ¢ is a diffeomorphism, 1% is a diffeomorphism, and gl

is itself a digoretd'dynauioil system with a rixed point u

[N

0.

C )
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FIGURE 3.3

For example if ¢ lies in R3, then the corresponding Poincare

A}

map p, is a diffeomorphism in Rz.

The Poincare map Py >~ provides A powerful tool for

analyzing the qualitative behaﬁiour of the solution curves
of the difrerentiéliequation near okho). For example, 1if P,
has a fixed poin£ vo in addition to LY then the solution
curve O(VO) '13 again periodic. More generally, ir Vo ;a a
periodic point of period n for p,, the solution curve O(VO)
is agiin periodie but ocrosses SO n times before it comes
back to v, again. Therefore, 1if v, 18 aaynptotiozlly
stable, 80 ‘18 ¢(vo). Further, aupp&se there is a circle
qr c S0 which is invariant Junder P,» then t-,30(1‘) is an
invariant torus for the flow ¢, We have the following

analogue of Theorem (1.3) given in section 1.6.

-
e An gt A ot ananes e
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"Theorem (3.2)

Let vou b; a fixed point of a discrete dynami ays’tem
pA:U--*nn, ucr". If the eigenvalues of p;(vo) are leds than
1 in absolute value, vo is asymptotically stable.

3

In order to apply the above idea of a Poincaré map, we
need -~to compute all fhe e’igenvalues of p; t;ecaua& the
stability'ot.v the t-‘ixod point' vo is ‘determined \{\ the
absolute value of the eigenvalues. H:)wever, it is often
very difficult, if not impossible, to find an expliecit
expression of p 'given a flow ¢ Gf some vector field £,
Therefore it 1is very desirable if we can establish sonme
association betweeq the set of all eigenvalues of 0'(v0) and-

the set of all eigenvalues of p;(vo).

We let 0 (T) be whe set of all eigenvalues of a linear
transfornation T:R® + R". o(T) is called the spectrum of T.
The following theorem gives the relationship ' between

°("(v0)) and U(p;\(vo)). ]

Thecorem (3.3)

Let rx:w + Rn

be a c1 vector field defined on an open
subset HCRn, and ¢ be the corresponding flow of the

equ'a.tion
ur(t) = £, (u(t))  u,fER",

Let O(VO) be a periodic solution and p, be the Poincaré map

:

Y l.ny. L RS N e . ————a i e =
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[ M O 3
with\iwiixed point at v, induced by 0(90). Then

(81 (y,)) = uwiwo))un‘?t

3.2 Thé'ﬁopr bifurcation theorem for diffeomorphisms

In 1971 D.Ruélle and F.Takens [33) gave an extension of
the Hopf bifunéat&on theorem for differential ehuations.
Their result givea the conditions under ;hic. biﬁurqatioﬁ to
invariant tori may be expec%ed afger the lops of stability
of a perioaic solution. This resulé is called the Hopf
bifurcation theorem for diffeomorphisms by J.E.Marsden and,
M.McCracken‘[ZQ].'.He state withod£ proof the theorem in the
following. A proof oé the theorem can be‘round in [26] [291

and_[33]-

For simplicity of notation we shall assume the stable
per;pdin solution |h(§) for inducing the Poincare map goes

through the origin, and that the critical value for the loss

of stability of u{(t) is ococuring at *=z0.

o
4

-
u
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Theorem (3.4) Hopf bifurcation theorem for diffeomorphisms

3

Let vA§R2 * R? be afohé‘pgrageter {émily of cX (k>5)
diffeomorphisms satiéfyiné:

(1) - ¥%,(0) = 0 for all A€R, .

(2) For =0, "v'l(o) ‘has two "isolated, simple,

"complex conjugate eigenvalues z(}) and z(}) such

’.\ that ,

. 'Z(X)I = 1,
diz(})1 :
(3) ary et I'A,:o > 0.
(4) ' As one can always reparametrize so that the

eigenvalues of V',(0) have the form L

. " 48
Cler)e 172,

' e
’ one further assumes eim (0)£1 for m=1,2,3,4,5.

(5) . Subject to (4), one can make a smooth
’ J
A.dependent change of coordinates such that '

¥,=N¥, (u)soClul?)

. . where in polar coordinates

— (

( vis(r,D)’((1+1).r-f1(1)r3,°+°; +f3ﬂ*)r2)"

/

Ir t1(0)>0, then for all sufficiently small positive %, ¥,
has a family of attracting invariant ocircles.  If r1(0)<o,

then for all sufficiently small negative l, *A has a family
. >

*

'of repelling invariant oircles.
v ' .




[

14

+ 1hvariant forus.

. ‘ S
| g i
Now suppose the flow ® lies in R3. 1r at *=0 ?'(0) has

v

a pair ofr complex conjugate eigenvalues c¢ross the unit

e

circle, by Theorem (3.2) and Theorem (3.3) we know- %hat at.

=Az0 u(t) changes its stability and bifurcates ‘into an

:

3.3 The centre manifold theoren

“

/3 -

Although the diffeomorphism ¥, considered ' ~ in
Theorem (3.4) is* only two dimensibnhl,'the description of
w ’ *

bifurcation to invariant tori implied in Theorem (3.4) via

0

Poincare map 1s still valid for flows of dimension higher

than three. This is due to the virtue of a technical rééu;;
o

-

called the center manifold theorem [3]

Theorem (3.%) Center manifold theorem

Let* h bDe a mappiné -of a neighboﬁrho@d of zero in. a

£ o . k+1
Banach space B into B. Assume h is C

Further, assume that—the ahectrdm of h*(0) is contained in
) B ’ ‘. P
the unit circle and the spectrum of h'(0) splits into a part

A}

~"on ‘the unit ocircle and the remaining part is at a nonzero

distance from the unit circle. Lpt Y denote the generalized

eigenspace of h'(0) belonging to the part of the spectrim on "

o

the unit circle. Assume that Y has diménsfdﬁ d<=, _Then

‘there exists'4a neighbourhood V of O 1h ‘P"and c@ Ck'

submanifold M 6f V of dimeniﬁon d, passing €hroa3h" 0 cand’

o

tangent to Y at 0, such that. ! o ) "

J
and h(0)=0, ¢

JUPURYC S P
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- (M (Local invariance)A I1# xeM and h(x)eV, then
. . ’ ~
~ » .h(X)éM- b,\
4 - ) ' \ t v - 6
(2) (Local attractivity): \ If, h"(x)€V - for all

;oo . "n=0,1,2,... Then d(h®(x),M} * 0 as n + =.

¢ . \

Y .

Thé‘main funbtion,of the center manifold theorem is :to

enable one to reduce an infinite dimensional problem to a

“finite dimengional one. In the- case of bifurcation to

invariant tori, it wenables us to reduce thq study of the

Poincaré map to the study of a \kuo dimensional

a

diffeomorpyism from which‘the‘ﬂopf bifurcation theorém for
diffeoporphisms can be applied. éefore we prbceed to
;aécuas how th redyction is actually made, we Pirst recall
that: ,

A subset S of a normed 1linear space E 1s called a

L

submanifold of E if S has the following property: L

" For each xéS, there is a neighbourhood U of x in E and a

diffeomorphism ¢:U + U', where U' is an open set in E such

that - - ) : ’ ‘ .

. + e(8NU) = LNU?

where L.  4is some affine subspace of E. ¢ is called a ghart -

of S.

“

Inrornaliy, we can think of S as being glued together

' using pieces of a linear suybspace of E (by changing ¢ we can

' L B
take L ta be the same for all x). The diffeomorphism ¢ also

r

s ey i by

AT
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enaures'that S has no *corners'.

Now we come to the crucial step. We apply the center

'

manifold theorem not to p;, but to the mapping
h: (u,r) + (px(u),x)

Ir p;(uo) has twé simple complex conjugate eigenvalues on
the unit circle, then the generalized eigenspaX¥e Y for h' is
three dimensional with one of the dimension in the "\
direction. Thus the theorem asserts the existence of a
three dimensional manifold M. If we hold A fixed and
surficientl} amali, we obtain a two dimensional section Mx
of M which is 1locally 1nva;%ant and attracting for px.
Since we are looang for reccurrent behavior, we can
restrict P, to Hx‘ "x.i‘ itself a two dimensional manifold
and therefore can be equibped with certain opordinate
charts. Now, the study is reduced to a smooth one parameter

family of naﬁpinga v, defined in a neighbourhood of the

A

§




\.v«

<
»

+ -

[ ]

‘origin h;:r‘ P, "together kit)\‘a chart ‘map of AHx y having the

S .
.property .that #x(o)xo and "A"(O) has two.distinct complex

eigenvaluea‘ on the unit circle. Therefore the ~Hopf

bifurcation theorem for diffeomorphisms can be applied.
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A .
Computation of the Invariant Circles o
’ l

The significance of the Hopf pifu}oation theorem for
diffeomorphismd does not only lie in the fact that it gives
conditions for _bifurcation ¢to Jinvariant tori ‘for a

differential equation. It is also important in the study of

' difﬁbbmorphisms, which are often en‘?untered in the

modelling <of populafion dynamics. One ;ypical

diffeomorphism that haé been employed in modelling

4

population dynamics is the delay logistic equation

N s th(1-N

t+1 )’ " (un")

t-1
wheére Nt stands for the popuiation of the species at the

t-th generation [1]., If we let x, =N and ytth then

t=t-1

- equation (4.1) c¢an be transformed into a two dimensional

sysﬁ%m

u (‘4.2)

te1 = 8 (ug)

o T
ﬁhere uots(xt.yt) and

L
>
”"

y I AY(1-X) .

. Here 8, is a two dimensional diffeomorphism with a fixed

-

1'-—-:’.

L2

©y



X

point at Xzzyzs Afl. The Jacobian matrix of 8, is

»
~

)

AN s;=‘

Ay A(1=-x)

oAy . ‘

’ k|

] v -
Evaluating gA-aI at X,2Y 52 Arl, where I is the identity

matrix, we have the following characteristic equation :

(:2 -a + (2 « 1).=2 0,
which has roots a = 1*'1'3(1'1). Therefore, we know that

the fixed point is stable for 1<{A<2. As ) passes through
the value 2, the.fixed point loses its atgbility and from
the Hopf bifu%cation theorem for ditfeomorph;sms we know
that invariant circles are developed [1]. 1In this case, tge

invariant circles are attracting and the locﬁl dynamics of

g, 1s determined by these invariant circles.

3

Attempts have been made to compute these bdifurcating

invariant circles. 1In [1], the direct iteration of the map

is used. This method is not very desirable because it fails

if the imvariant circles are repelling. AlLo the result is

.heavily influenced by the dyhamics of the diffeomorphism on

the circle. In [20], G. Iooss, A. Arneodo, P. Coullet and

_Ce Tresser tried to obtain an explicit analytic expression

of the invariant circles for general ¢two dimensional

dirfeomogphisma. The expression turned out to be very

I Y,
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" complicated. ' , o 4 ‘

.diffeomorphism vx t R- <. R".

v
. t - . -
d

In the following, we propose .,a numerical pethod to
. ] ~
compute the invariant circles for a gqneral two, dimensional

2 v g In order to efficiently

dompute the invariant circles, we utilize some dyﬁimida;

properties of vx on these invariant circles. Therefore .
- . PN |

y

before we procdeed to describe the numerical method, we first
recall some properties of *A on the invariant cirles. Theqé

results are classical in the theory of diffeomorphiams [31].

’
9

4.1 Dynamics on the invariant circles

In this section, we ' introduce the definition ’of' a
rotation number of a diffeomorphism *A' Many interesting
dynamical properties of vx on an invariant c¢ircle can be

described in terms of its rotation number. t

J 1

Denote “an invariant circle by S'. Due to th? invariance

property, we can restrict the diffeomorphism *x to S1 as
*A H 51--*’510

If we assume ¢A

is orientation preserving, it can be

"lifted® ¢to a map FtR-=+R which covers vx via the covering .

projection expitee2Tit, Any two 1ifts of y, differ only by

a translation [31]. The 1limit
J n
‘(*A) s lim'u}—l

-~ 7 ) . e . N
N+ee n * .

‘2

i

e
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s
n

n agaen U . g
where x¢R, F (x)=F(F(...F(x)...)) and F any lift of v, is
N I'e 5

called the rotation number of v,* ‘(*A) measures the'

average rotdtion of ¢, °n 5. x(y) has the following

¢

properties:

A

(1). T(*k) is unique and independent of x.

(2). r(vx) is irrational if and only 1if ﬁx has no

* periodic points.

(3). - Let 4(x) be the set of all accumulation points
‘\QM of : ’
’{vkp(x)zn is any positive integer}.

»

{
Irrationality of 1(¢A) implies w(x) is
independent of x. Also, either ,(x) is perfect

and nowhere dense or w(x)zS‘.

(4). If conditions of the Hopf bifurcation theorem
for "diffeomorphisms are satisfied, 1(pA) is a

continuous function of ;.[19]

Ir m(x):S‘, *A is said to be transitive. Roughly speaking,
]

the image of a transitive 0‘ has no gaps. We also have the

following two theorems [31]:

-
L

° ]
Theorem (4.1) If v, is a diffeomorphism of S1, with v,

continuous and of bounded variation, and x(vl)-irrational,

then v, is transitive.

ot Mot 0
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Theorem (4.2) If.vx is trahsitive, then v, is topologically

a A ) ‘
conjugate to a rofation through 1(@\).

"The main idea of Theorem (4.2) ia that under certain

S = '

- 4 5

aydumptions, we can always find a parametrisation of u(t)
such  that - y, ia a rotation on .the circle u(ti.q
Theorem (4.29 is a very desirable result for our scheme of
computation beﬁause with the assumption that the conditions
in Theorem (4.2) "are met, wWe only need the following

equation '\ ",

) 0 .«

vx(u(t)) = u(t+r)

to enforce the invariance property of an invariant circle.

1

4.2 The pseudo arclength Continuation Method

s
The main framework of the method: we propose is

H.B., Keller's pseudo arclength continuation technique ~[23].

"This technique has been used by various authors [8]1, [9],

[10] [22]). It can be used, for exampls, to compu%e solution
branches of ordinary and delay dir{erbntial equations with

turning points.

We first recall the basic features of the pseudo

arclength method. Coﬂsider the operator equation

~

G(u,2) = O ‘ (4.3)

where+ 2 4is a parameter and G a nonlinear map from one
’ .
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Hilbert space into another. Let w=(u,;), if there exists

some parametrized séld%ioh branch‘u{iz of (4.3) then under

‘appropriate smoothness assumptions we h;ve

!

. S 6 (w(e)Pwi(s) = 0.
!, N

|

, | .
Thus the derivative G' always has a null spyce along the

{
branch. Assume now that| we have a solution LA of (4.3),

i.6.” G(w,) = 0, and that in addition the null space of
' ]
G'(wo) is spanned by a vector Wor Thus the null space is

e o )
one dimensional.: Let wo be the adjdint element such that

"0 u;=1. Then the inflated problem
G(w) = 0 . . (4.4a)
o ' | 4.4
“0‘( -uo)-a = 0 (4.4b)

whioh we write more compactly as ;

. H(",S) = 0,

has the solution w=wo when s=0., Further the derivative

A

G'(wo)
3_H- {
]

A 0

is gonsingﬁlar since %%(wo,o)vzo if and only if G'(wo)v:o
. X

and w; v=0 3 but v #0, hence v=0. Thus the implicit

mapping theorem as stated below guarantees the exiétenoe of

a branch of sBlution w(s) for small s,

PPN —— o = e — b a——— o b—— 35 WALk SRMBS e Kikh Y
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Theorem (4.3) (Implicit mapping theorem) ¢
¢ 4 ‘.

Let B, and B, be Banach spaces and let H be a

continuously differentiable transformation from an open set

D B,xB, with values in B1Q Let (wo,so) be a point in D for
1]

vy s 3H ‘
which H(wo,ao)-o and for which e (HO,BO) is nonsingular.

Then there”is a neighbourhood N of 8, and a continuous

function w mapping N into B, such that w(so)=w0 and

.

H(w(s),8)=0 for all s in N,
We note that the pseudo arclength method can be applied

in a very general setting.

4,3 Computation of a 'branch of fixed boints
(

In order to compute the invaridnt oircles of yk, we nust
first deternine the fixed points of v, and their  stability
as ) varles. We can find ¢the fixed points of gA by

considering the map hx: 8% . R with

“

hl(u)=u - wl(u).

The'fixed points of "A corresponds to the solutions of the

algebraic equation

v L}

- hx(u)=0.

As ) varies hx(u) has solution branches and thus fixed point

_branches for vx(u). We consider this transformation because

solution branches of hx(u)=0 can also be viewed as the

“ (




(

.
. ’

steady state branches of an ordinary differential equat.ionl
& with veotor t‘:'!eld h ., and computing steady state branches is
'exaotly one of the ocapabilities of AUTO. Theret‘ore,_ we can
—~ use -AUTO to compute the fixed point branches of v, " - In the.‘
following, we briefly recall the method which AUTO uses to
compute solution brancheay of hx(x)zo. The basic scheme is

again Keller's pseudo arclength continuation technique.

To compute a solution branch of hx (u) we let (uk_1,xk_1)

be a point, but not a singular point, on the b~ranch. Let

(u 2 ) be a vector which spans the null space of
k-11"k=-1 .

h'(uk_l,xk_1). © Then the inflated system solving for the’
k-th solution (4.4) can be written as

¢
°

h(u, ';&\k):o | o © th.5a) .

ﬁ(uk, x3é8)= (u -u _, ) Tu

k k=1 /

+(A}Ak_1)xk_1-sa=o. ‘ (4.5b) )

Here ¢s8 4is a fixed number called &  ste size, see

.

Figure 4.1. y

‘

gy D)

FIGURE 4.1
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Sp determine the initial direction vector (uo,xo) at‘
¢ S

the starting point (yo,xc), we gompute thé null vector of
i

hv(uo,xo) by Gauss elimination with\complete pivoting, if

necessary, and back subatitutiopg- The direction vector
ces ;

-(uk,xk) at (u,,1,) for k21 can be approximated by ‘
” s .
u, = (u, - :k'1)/69
and ‘ - “
AE (= A q) /68,

) A
To obtain the k-th point on the branch, we solvg (4.5) by

-

Newton*s method.

4.4 Computation of the Invariant circles

N

& Given a two dimensional diffeomorphism vx’ using the
method described in section 4.3 we ocan frace But Phe fixed
point branches of ?x' Along -a fixed point branch fhe change'
of stability cen be detected by mdnitoring the eigenvalue%
of *; and the eigenvalues of 0; can Pe computed uéing the
IMSL subroutine EIGRF. In thig section and the foglowing
section 4.5, we introduce a numerical methoﬁ to
automatically trace out the invayiant circles after a Hopf
bifuroﬁfion is getecteé. All these functions have been
implemented in a ooﬁputer prdogram DSYS. Therefore ;1ven
certain information' about v, DSYS can tr;ce qut rixed point

branches of v, detect Hopf bifurcations and automatically’
t

trace out the invariant circles if a Hopf bifurcation 1is

‘A
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In the computation, an invariant circle can be

s
-

N \ . .
represented by a truncated Fourier series o

“

ﬂ‘ ' - . ‘ _ ) . e ' 3
é(t) . a; + (a, sinkt + b coskt) (“‘f) ‘

e B

=1

w1th ao, Bk, bk in R2, k-‘-‘.ooc,m- From ‘Theorem (u-Z) we

rl

know that for u(t) to satisfy the invariance property, we
) '/70 ;
can’'require that . .
-
< ‘ {

. f _ < _\
.- . G'yl(U(t)) = u(t+1). ‘ 'r- S 5

Al

In other words, every point on the circle must again lie on
. . the circle after the action of the dirréomorphiam *x*and by

\ reparametrisation of u(t), v, is a rotatdon,/Bn %}t). The

$ 4 ~ Ty
discrete system is then obtained by collecation using 2m¥1 4
. + 2n
2m+ 1’

iz1y.+.,2m+1. The discrete system is .as follows g e

. } : ‘ . A

equally spaced time  steps ti=15t where §t=

, L p (e ) = uleger) = 00 L (.T)

Equdfion (h.?) has 2(2m+1) equations,and 2(2m+1)+1 unknowns.
Due to the indeterninaey in the syatem,‘one‘mpre'equation is

required.

Note thaﬁ an invariant circls can be translatee freely

, in time;hthat is, ir u(g):;(t)‘ia an.ihvariang cire%Q, .then

so 1is u(t)=sv(tsr), fér any r. Therefore u(t) must also be

?anchoééd". Thera‘are many ways ‘fo solve tﬁii inherent
~ b

. e P
» . ’{"i'
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non~uniqueness problem of uft). one is to simply fix one of
the components of u at t=0 to some constant ¢ where
min u(€) < ¢ < max u(t) [10]. This method requires

knowledge of the bounds of u(t) in advance ‘which is usually

difficult to obtain. Another method which 1s suggested by.

[7] is to seek a ciroie v(t) that minimizes the distance

\ 2rvitar) - Gendar | C O (u.8)

A

-

S : :
over r. Here u(t) denotes the previous cirele that has been

computeds ‘This method forces peaks of v and G (with respect

to t) to ’repainl approximately in the. same place. Tk@ |

' L]
minimizing r is obtained by setting the derivative of (4.8)"

with respeot to r equal to zero. Thats.is

) ] |
Zriviear’y - 2T vittarHab = oo
. )
' .
Letting u(t) = v(t+r ), we have

o 2 A T
ro(ult) = u(t))Tur(t)de = 0. (4.9)

>
4

It is shown in [10] that (4.9) is equivalent to

Csarute) - GenTirceler =0 (4.10)

.
£

Expfeaainé (4.10) in tgbna"of the truncated Fourier series

(4.6) . we get
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P

r2%((a, -2 )4l ((a,-a,) b )T
0 a,-a, *k-l 8, -a, sinkt+(bk- k) coakt))
~ A
m A A ) o
(z k(akooskt-bk-s:lnkt))dtso (4.11) T
k=z1 ) '
S ' ‘
Sinqe'
2' ’ gl
Io sin mx sin nxdx = 0 . for mén,
2' L . 1
fb cos mx cos nxdx = 0 for m#n,
. 4 § ‘ A ‘
JO sin mx cos nxdx=0 for all integer m,

. Ig'sinz xdx

"
-
-

and

!g'oosa xdx = «,

it follows. that (4.11) equals

~ TA )

x~mB

=1

The next consideration is the continuation method. To
fully specify a solution in Keller's general psusdo
arclength continuation, we rhquire the psuedo arclength
between two consecutive solutions be equal to a prespecified

) A ~ AN
increment §s. Let w=(u(t),r,A) and ws=(u(t),r,r), if we
approximate w' by
e 5 .

Fa
WeW
wt' =
s ’

pe

then the/psuedo ‘arclength equation in (4.4b) becomes

-

i o S e St
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(w - :)T(u - G) - s :0

R
lw = w 12 = §8°

A A A
lu-ul2 + (1 - 1)2 - (1 = A)a 2 682

‘L.

/

B uor-uten et (-0 s = a8

suppose we have the (1-1)-th invariant cirecle, to

compute the 1l-th invariant circle we need to solve the

following
o1
a1.\,0.l\’am

v, (8,

m
(at+z
k

o
wt (
k=1

n
1+£

0

(2m+1)2+2 equations for the wunknowna al

o!
1 ' 1 1 1
,b1,-oo 'bm,T ,A H

@ a

1 1 '
I, (akainkti-c»bk eoskti)) -

P

=1(aiaink (t1+1)+bicosk(t1+t)5)=0; 1 (4.13a)

1-1,T ,1 1-1,T 1
k((ak ) by - (b ) ak) =0 (4.13b)

k

®» et B

=1

1-1)T ( 1 1-1

1
Zr(ao-ao a -2, ) +

t

) +(oy=bp™ )T (by=bi 7))

1-1,T ,.1 11
)" (ay-a k k

1
(ay -a, K

Gl 1= 1y2 _ga?

(11-11-1)2 -3 =0, (4.130)

+¢
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System {(4.13) can bé solved using the Newton-Chbrd

method, and the initial approximation to the next invariant

1

circle w1=(ul(t),1 ’ xl) is obtained by extrapolation from

the, two preceeding invariant circles. If we wfite

system (4.13) in the compact form as

b

H(W)=O) -

then the algorithm is as follows:

o

Algorithm 4.1 ’ *

s

(step 1). 'Set 3=0;

(3) _
(qtep 2). W, S W g+ S8,
(step 3). If NOT CHORD evaluate %% with wij)
(step 4).. Apply Gauss elimination method to solve
af,  (3) - (3);
aw("k ‘) (sw) = -H(wk )

(step 5). J=i+t

!

(step 6). If |¢wl is less than the preapecified tolerance or
J 1is greater than the maximum number of iterations
allowed then stop

else

(step 7). wéq) x w£;'1)+5w $} go to (step 3).

.....

fe e en - P PRt PN

.
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1
4.5 Asymptotic Estimate at the Hopf bifurcation point

The general procedure described in section 4.4 requires
two known circles to find the initial approximation of the
third one. Since when starting at the Hopf bifurcation
point, only the Hopf point is known, we use an asymptotic

estimate to be the initial approximation to the first

circle. Consider the 1linearization of the éiffeomorphism ‘

v,?

Upoq = A u (4.14)

where A= '(u ). 8Since A has a pair of complex conjugate
*A k .

eigenvalues on the unit circle, we have

A = et
Ag = e”1® 7 .
where eie is the eigenvalue and ¢ is the corresponding

eisenvecfor. The general solution of (4.14) can be written

as *

u, = qge C"‘B

st v et s

where 4,3 are complex numbers. ' Since we are only interested

in real solutions, we consider

for every k, which implies

]

haa 'R ¥4
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k d - - - -
1k, pe=1Kk® 7 | go-1k® ¢,

Ge
.

for every k, or

Ieikeﬁ

(a- B)elk®e, (8- T)e~1K® T,

'ror every i, which fufther implies

E:u.

4o
S

Subatitutins‘(u.16) into (4.15) we have

u, = GeikeE+ se-1K® T

aelk®g, o 31k8¢

ko

2Re(°e1 £)

= 2]
= Z(GR(oosk ;R

(4.16)

=(3Re((ﬁn+101) (cosk®+isink®) (€R+1§I))

-sinkGEI)-aI(ooakeiI +sink9£R))

s Z(GRER- cIEI)ooake- (GHEI* GIER)sinke (4.17)

Here “R and GI are free and we can take,

(u:17) becomes

~ . u%

¢

=“°(€Rooek9- EIainke).

a_=0, a_=a

1° R

Thus

In terms of an, orbit and after scaling the time we have

u(t) = u, + G(Encoat-ilqint)

as an asymptotic estimate.

(4.18)

e g ———— N W o oL o
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Now, for compatibility uiﬁﬁ%:the pseudo arclength

equation (4.13c), we take the estimate

( uzfg' | gpooat-g aint| 24t~  §8°=0
or _
682

T T
Y
JI‘, (ERER +EIEI). .

The last step in getting the asymptotic estimate is to
find the initial v. Consider
¥ (u(t)) = u°+a(5R cos(t+f)-£Isin(t+1)),
with ¥ 1Epréy in Rz. Let J bé the index governing the

dimension of v, and xj(t)=vAJ(u(t))-qu Jj=1,2, and gzt+r we

have
. [}
xJ(t) ='u(ER19?aO- EIJainO)

e 8 S
OP. . M':‘,‘.;
x . (t)(sin® S4cos? 2)=alk (cos? 2-sin® 9)- ¢_.(281n Zoos 9))
3 2 2/5% Ry 000 2 2 1) 2 277 .
or

/

(;J(t)+acnj) s§n2_§+.25;1331n % cos %4.(xj(t)-h;nd) cos 3:0'

or -

(xJ(t)+n€hJ) tanz §+ 2a€IJtan % +(x3(t);a£RJ)=0.

'\
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which implies

2 )
'GEIJ*\[(“EIJ? - (xj(t)+aznj) (xj(t)-uCRJ)

tan %:
xJ(t) + afpy
. and
catgge ylabg )2 (xj(Edvatyy) Cxy(6)=aty )
o =2tan” ] '
xj‘t)*azﬂj
-1

Since tan has range (- %, %), lies in (-:,:); If o 1s
in (~-%,0), it is equivalent to take it as 2%-¢ and therefore

¢ in [0,2%).

We note that for each t, we have four possible

candidates for 9. Since theoretically two of- these foir

\ candidates ‘muat be idéntical, we apply the following

\Algorithm 4.2 to take the average of the closest pair as the

%rue G . The ocase when the close pair has one value near

z}ro and the other value ﬁ:ar 27 is also considered. See
sture.h.z. |

\
\

Y

\

3 14
s
\ 3 -4
:
.
’
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Algorithm 4.2
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Let Uy Opy O3y Oy be the four possible values of g¢.

(step 1).

(step 2).

(step 3).

" (step 4).

(step 5).

(Step 6).

diJ s

Ir d

i}

Find the pair 041 O

value

If
°3

Else

o= (

If ¢

Else

r

IOi" UJ';

>x then d

of dij;

>oi+t then

9379y

f
1 °J<

%3
o + cJ)/2'
> 2% then

ozo=2%

If o«

'

oS

(step 7). output g.

143; 1=1,25 3=1,2

1J=21-d1J;

3

2y

o.,+2x then

J
:03

+2x%3

0 then

o+er}

which yields

the

smallest

-
7~

)

For each time step t,» we have 1, ro=t,, iz1,...,2m+1. As

an initial approximation we take

!

2m+1
=l
i=1

ti)'(2m+1)'1.

1

£ -
-8 Na A
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4.6 Discussions on the computation method

»

In section h.u, an invariant c¢ircle is represented by a
truncated Fourier series. The reason for this cholce is
twofold. Firstly, the 2x-periodicity required by the
invariant c¢ircle 1is ‘built in a Fourier series a priori.
Using a Fourier series representation we do not have to add
other equations to the system to impose periodicity.
Secondly, approximatgon using truncated Fourier series can

attain very high accuracy in general. This is true

especially when the computation 1s‘near the Hopf bifurcation

point. For a comparison between the numerical results’

obtained by DSYS (using a Fourier series representation) and
by iterating the map, see Figure 6.1, 6.4, 6.9 and 6.10.
However, one drawback of using a truncated Fourier series to
represent an invariant circle is that the Jacobian matrix of
the corresponding system is full, and soiving a full matrix
system is an operation of order O(n3), where n is the order
of the matrix. In the actual implementation, the
Newton-Chord j

method is used so that unnecessary evaluation

of the Jacobian matrix can be avoided. \

One possible representation which can prevent the systenm
of having a full Jacobian matrix is the plecevwise polynomi;l
representation. Using a pliecewise polynomiil ;epreaentat1on
for the invariant circles, ' the Jacobian matrix of the
oorreap3nding systenm has;a apaoial band structure (see the

following section 4.7). It .is well known that aolving’ﬂ

o e e . o . . e e e e ¢ A NS
. ’ A
. . - . . P

sl mm S % pmmion =
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true band matéix system of order n is an operation of order
0(n). A large vﬁrieties of existing computer software for
solving tr;e band matr{x systems 1is also #vailable.
However, because of the special band structure, how to
utilize the piecewise polynomial representation to
compute the invariant circles is atill not very clear to us
(see section 4.7 for a more detailed discussion )e
Therefore due to its accuracy and ease to use, a Fourier
series representation is still a very good choice for the

computation scheme.

u%7'Cubic B-Splines representation

in the following, we consider the cubic B-splines [36]"

for the computation of an invariant circle. More precisely,

let

P={tiz i:o,n--,m; °=t°<t1<co-<tm <2'.}

be a partition on [0,2x). Each t, is called a knot. " Adding

i

m+1'tm+2'tm+3

the normalized cubic B-splines as

we oan define

v

six extra knots, t_3,t_2,t_1,t

B(b) = (b, =t )t peney ti*u](s-t)3 for all tem,

i+4

where [ti""'t1+u3("t)3 denotes the heth ' divided
difference of the function (s-t)> with s as the variable and
t fixed. B,(t), 12-3,=2,=1y000,0-3,=2,n-1 has the following

properties: - ‘ -




“

(1

(2)

(3)

€
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Y e
Bi(t) is 02 for each 1:-‘3,-2,-1,--.,m-1.
e’ o
b4 Bi(t)=1 foraall té[to,tm];

is-3

Bi(t) is identically zero outside the interval
. ¢
[ti,ti+“], 1:-3,-2,-1,.--,!!-1.

]

See Figure 4.3 for the graphs of ﬁi(t), iz2=3,=2,=1,i0sym=1,

FIGURE 4.3

Using this sequence of m+3 B~splines, an invariant

cirole can be written as

with U,a

n-1 ‘
u(t) = ¢ a,B, (t) (4.19)
1ze3 171 ' .

in Ra, 13‘3,-’2’-1’000"-11

The advantage of using (4.19) as the representation .is

that it 4is "piecewise local™, i.e. Bi(t) is 1dentioalli

zero outside the interval [ti,t1+u], and the coefficient a8y

is _effective to the representation only inside the interval

- ©

'
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t .
[ti;ti+4]' The Jacobian matrix of the resulting system
: therefore has certaln band atructure and can be solved with
! considerably less effort than required to solve a full -

' .
matrix. c

The 2r-periodicity of u(t) 4s not built 4into _the
representation (4.19). In order to have the 2x-periodicity,

0 we impose the following conditions:

.
R

u(ﬁm) z u(ﬁo)

o e e il

u'(tn) ] u'(to)' (4.20)

0.

. S Wt ) = utt(eg).

The three equations (4.,20) are called boundary conditiong
* They are not separated as (4.6), in other words E?e first
and last few unknowns both appear in these lést few

equations. Thus, with (4.20) the band structure of the .

A

v
>
EY

o, TR IR o o e 4 S AT g o om e o

correaponding Jacobian matrix is slightly distorted.

t

6.
, ‘Suppose we have the (1-1)-st cirole (al3',al3’,...,a;7],

- /
1¥-1,l1-1), to compute the 1l-th 4invariant circle
(ai3,321,...,a;_1, tl.xl) ds&ng these two ideas, inste¢ad/ of.

solving system (4.14), we need to solve the following
L 2(m+3)+2 equations. In this case, one collocation point is

chosen between each knot to""’tm‘ ‘ \

J




;N
‘ ) E15 L)
) -
n-1 m-1 11 ‘
v. (5 (t ))-t a B, (¢ ,+1)=0, JeT)Neq,m (u 21a)
A e 1 4 Ti=-3 jji J T ’ \’ 5
m-1 m-1 1 . ,
L (¢ )- £ ayB,(t )= .
fs ayB, fegth o/;f'
-1 ' m-1 . '\ - ’
l 1. 3 \
L (t )= & B, (,)20, (ha210) .
==13 1 i B .3 i ﬁo \
1 " A
n-1 n-1 .
1.1¢ S A
I a.B (t_)- ¢ ‘a/B, (t.)=0 ) .
feu3 14 m’T gt f [ R
-1 1 _l-1 T m-1 1-1,_
'((z (ayj-a;" B, (t))" (r  a;” 'B,(t)))dt=0(4.21¢)
==13 , i=-3
, Ymel gy T, 1 _1-1
({x (ag-ay” B (£))" (ag-a;" B, (£)))dt +
1=-3 .
(«1-12" N2, 1aat N2l 58220 (h.2149
\ - T
with ai; ai" in R2 1z2=3,=2,«1,.,44ym=1, Eéuation (4.21a)

governs the 1nvgriance property. Equation (4.21b) is the
boundary condition for the cubic ~splines repreaéntation.
Equatién (4.210) is  the anchor eq tion'for the inherent
non-uniquenesa problem of thg representation.

Equation (4. 21d) is the paeudo arclength oquation.

Notice that with the same value. of m, the order of,

~

system (4121) is about the same of the order of system
(4.13). Further, the Jacobian matrix of system (4.21) has a

certaim band structure; smee Figure 4.4 for an .illustration

with m=10. ' When m=10, the Jacoblan of system (4.21) is a

matrix of 28x28" (2x(10+3)+2:28). The first twenty rows
) - 3 t

— o = O S RN . SR e e

ey o RN S

e o
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Stand for the discretized system (4.21a). Row 21 to ;ou 26‘
represent thé imposed boundary oonditidhs (la21b). The last
two rows stand for the anchor equation (ﬂ.?1c)' and the
pseudo arcléngth equation (4.21d) respectively. Then eéch
of the. first twenty six columns conpains the derivatives of

the system with respect to a coordinate of a coefficient of

' &
_the cubic B-splines representation (4.19). The last two
-columns contain the derivatives of the system with respect

| to T and A.

-

The three bands in the matrix are ‘the results &; the
5piecewise local™" 'ﬁbpope;ty of the cubic B-spline
representation. In the, representation (4.19), Bi(t) is
identically =zero outside tﬂe knot interva% [ti’ti+u]' Ifm
is small, the resulting Jacobian matirix is ‘almost; full.
When m gets large,'the one major and two minor bands in:the

matrix become more visfble. In general, th band width of

. each Dband depends on the degree of the splines we employ.

( In Figure k4.4, each band has width 7 ). The distance that
the two minor bands separate from the major band is directly
proportional to the value of t which is one of the unknowns.

Beside the three bands, the structures of the last columns

and row 21 to row 28 of tﬁe matrix are fixed.

.. N )

It is well known that true band matrix systems - can be
solved in order 0(n), with n beinrhe order of the system
[11]. However, the particular strlicture of the Jacobian

matrix of system (4.21) (i.e., the distance between the
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bands depends on the unknown ) makes it Po; quite evident
to us how to utilize this band structure to improve the
-efficiency of the computation. When t"ia small, the three
bands are close together and a band matrix solver is useful.

If 1 is close to » mod n,.then the two minor bands are in a

¢

. significant distance with the major band and a sparse matrix

solver is deairable provided that m is large also.

x x x 'x x x x b 4 X X
b4 X x x x x X x X x
x x x x x x x x X x
x x x x x X x x x x
x x X x x X x x X x
x x X x X x X X X x
x x x X x x X x x
x x X x X x X x X
x x x x x x x X x
x x x x x b X X X
x x x x x x x X X
x x X X p 4 x X X X
X x x 'x  x X x X x
x X x X x x x X X
x x X x x x x x x x
x X x x . ¢ x x x X X
x x x x X X x x X X
x x x x . x x x x X X
x x x x x x x x X X
x x x X x x x X X X
X x b x X x x x
x x x x . x x x x
x x x x ’ X x x x
x x x x X x x x
X x x x x x b 4 x
x x x x x x x x
XX X XXX XXX XXXXXXIXXXXXXXXXXX
X X X XXX XXX XXXXXXXXXXXXXXXXXXX
L]
. ‘Figure 4.4
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4.8 Summary

In this chapter, a numerical method to eompute the
bifurqating dinvariant circles fqr a general two dimensional
diffeomorphism vx'is.described. The method uses Keller's
psuqdo arclength continuation technique and a Fourier serie;
representation of an invariant circle. This method utilizes
the property of WA being a rotation and the corresponding
syatem is very simple. 'Solving the system doesnot onl; find
the invariant circle but also its approximated rotation
number. Thus a general idea about the dynamical behaviour
of *x bﬁ the invariant circle is also obtained. Although in
order to use this method some coﬁpitions on ¥, must be
satisfied (*;‘ be continuous and,kr bounded variation, see
Theorem (4.1)), we believe for most of the two dimensional
diffeomorphisms these conditions can be met at least near

the Hopf bifurcation point.

This method has been implemented and tested. Numerical
results are shown in Chapter 6. As described in. Chapter 3,
bifurcation to invariant tori and bifurcation to invariant
circles are closely related. A good method to, compute the
invariant circles can therefore serve as a foundation for
computing invariant tori, A possibly more efficient
repreaentation scheme using cubic 'B-apline is also

discussed. The latter has not been implemented.

U

Sk

\




CHAPTER FIVE

An Alternate Scheme for Computing

~

the Invariant Circles

The numerical matﬁod 1ntroquced in ’Qhapt;r 4 has hegn
implemented and tested. ‘ In this c@apter, we describe an
alternate coﬁputation achemé for computing thgi invariant
ocircles. The advqptqge of this method is that no conditions
on vx are required. ﬁowever, the discrete character of this

method - makes a continuous formulation of the corresponding

system impossible.

In Chapterlu, the invariance property of“an invariant

circle is realized by the following equation
v, (u(t)) = ulter),’ (5.1)

ir vl satisfies the conditions of Theorem &.2. waever, the
invariance property of an invariance c¢ircle can also be

enforced using the following equation =

»

——
-

v, (u(t)) = ulo(t)). (5.2)

quation (5.2) simply enforce that every point  on the
invariant oircle must again lie on the circle after the
action of ?A' It is more general than (5.1) in a sense that
no odnditions on ¥, are required for (5.2) to be satisfied

»
&8 long as the 4invariant oircles exist. Like 1, o(t) is

BT i
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]

unknown a priori. The discrete system is then obtained by
collocation uainé_ 2n+1 points ¢, in §he interval [0,271),

N

0<i<2m+1,i.e.
v, (ult) = ulo,) = 0 (5.3)

where ai=a(ti), i=1,...,2m+1. Since (5.3) has 2(2m+1)
equations and 3(2m+1) unknowns, there is indeterminacy in
the system. 1In some cases, points on an invariant circle

with equal time distance may in fact be very close to each

~a

other on the circle. In other words, with a
parametrisation, timMe taken to traVel from point 1 and
polnt 2 on the circle may be ver& different from point 2 to
point 3, although the physical distances between these
points are the same. Therefore, if the parametrisation 4is
not takeﬁ ”properly' it may ‘lead to difficulties when

interpolating the invariant circle.

In order to circumvent the above stated problems, in

.

this method, we choose the 2m+1 collocation time steps so

that .

2

lute,) = ult, 212 - a2 =0, (5.4)

i-1

n

iz1,...2n+1. By choosing a special aet of collocation time
steps, we enforce the points on the invariant circle
(1.8. u(ti) ) oorregponding to the time steps must be
equally distanced according to the Euclidean norn. WItﬁ

2
u(ti), iz1,¢44,2m+1, provided by the system and satisfy the
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equations (5.4), interpolating the invariant circle is easy.
In this method, the 2m+1 collocation time steps are fixed by
Algorithm 5.1 and Algorithm 5.2 in the Dbeginning of the

computation and then remailn unchange for all time.

Treating d as one of the unknowns, now (5.3) together

with. (5.4) have 3(2m+1) equations and 3(2m+1)+1 unknowns.

A
Let u(t) denotes the previous circle that has been computed.:
{

The extra unknown c¢an be compensated by the following

"amrc¢hor™ equation,

!

Brue) - wenTirceddt = 0. (5.5)

The next consideration is the contin&ation methodﬂ Again we
can use Keller's psuedo arclength method (see section 4.2)

and add the following psuedo arclength equation to"the

system.
2 v, 2 em+l A2 A 2 A2 2
FE¥(u(t)-u(t))dt+g (0,-0,)+(d=d)” +(a=-2)" = ¢8°.
0 11 14

4
In Chapter 4, two different representation methods of an

invariant circle are discussed. Both of yhem can be adopted
for the‘methéd we described above. Since how to utilize the
cugic B-splines representation is not quite evident ¢to us,
i& our actual implementation of this method, we atili use

the Fourier series representation.

-

Again suppose we have the (l-1)-th invariant circleg, to
compute the 1-th 4invariant circle we need to solve the

fBllowing 3(2m+1)+2 equations for the unknowns aé,

e e e - . L

e .

MR b b
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1 1 1 1

1 -1 1.1
81,...,am,b1,... ’bm,(}"o-o .°2m+1’d 'A‘k:

n
1 1 1
wl(a0+§=1 (ékainkt1+p¥:

+

ooakti)) -

~ &

(al+; (alsink o,s+blconk ))=0 (5.6
0*: : a sink q,+b cos 0y))=03 5.6a)

1 ' 1l T
(£=1(ak(sinkt1- ainkti_1)+bk(coakt1- ooskti_1))).

n L
1 1 . .
(i=1(ak(°1nkt1' sinkt1_1)+bk(coskti- ooskti_1)))-

(dle = 0
D
1:1,2,.032“"1; (506b)
n =17 .1 .1-1,T.1 |
'I;éﬂk((ak ) bk - (bk' ) ak) =0 , (5.6¢)
1 11,7 1l 1l-1
n .
1l 1-1,T l 1-1 l .1-1,T 1l . 1-1
,£=1((ak -a, ) (ak-ak ) +(bk-bk ) (bk'bk )+
en+ 1 :
(o= 01" N2 + (al-a?" N2 4 (\1,3"1)2 L a2 4 o
i1=1

(5.6d)
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System (5.6) has also been iﬁplemented in the computer
prog;am DSY¥S. 1In DSYS system (5.6) is again solved using
Algorithm 4.1 and the Newton-Chord method. The initial
approximafion to the next invariant circle
w1=(ul(t),oi,...,oém+1 ,dl,xl) is obtained by extrapolation
from the two preoeeding'invariant circles. )

To get started at the Hopf p;int, an asymptotic estimate
of an jinvariant circle is again required (see section 4.5).

In this case an asymptotic estimate of the form
u(t) = uy + g(gpeost-g sint) (5.7)
b d

can be obtained using the method given in section 4.5. In
(5.7), £ 15 the corresponding eigenvector of the eigenvalue

which is oﬂ the unit circle. and stand for the real
ER £1

3

part and Jimaginary part of 3 respectively. For the

'oompatib;llty between (5.7) and (5.6d), again we take
’ i
|

- 68

.

] J(r T,
T ERéR Yexf€r/e

Next, we have to deternine' the 2m+1 time steps ti,
i=1,...,2m+¢1, and the corresponding d. so that the 2m+1
equations (5.6b) are saéiaried. This is done using the
following two Algorithms which are based on the bisection
method. Given time ;tep ti and d., Algorithm 5.1 uses the

bisection method to locate time step t Starting with

141’

—— e e ———— e

i
%
!
i
2
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Algorithm 5.1 first locate a point r such that the distance

’ .
betwaen u(ti) and u(r) is greater than d . Since

Iu(ti)-u(ti)lz -a"2¢0

and

lute,)-utr)1? -a"2>0,

using ti and r as the initial guess, bisection method can be

_applied to locate tL:: such that
e 2 82
Cluleg)-ule, )1° -d

.
YT NI oA T (st s s s A 3 o St ox e e ot T

is less than the prespecified tolera%ee €.

Algorithm 5.1

plea,ryd")elu(s)=u(r)12-q"2

~

(step 1). 8=t j res+ét; 1:0; Evalstrue T - ~

ey v

4

. . _ .
N (step 2). 1If Ip(ti,r,d )| <&y t, ,=r, Return

i+

(step 3). 1r p(ti,éyd')<o

rzr+ft

e D SREE L

Until p(t,,r,d")>0°
(atep 4). If (Eval) P, p(ti,a,d.) \
(step 5). Ir |p1l<;; t1*1ka; Return
(atep 6). izi+1} q=s+(r-s)/2

(atep.7). pzzp(tiyq,d')

ks awv w o ek b e v o o . - - e . rviats v
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(steh 8). Ir |p2|<t; t;+1=q; ‘Return
(step 9).  If p,p,>0 then
s=q
Eval=true ‘
Else ’
rsq

Bval= ;alae

(step 10). If I is less than a prespecified value then
go to (step 4)

Else

'method not successful'; astop
1

Given two initial approximation d, <d <d Algorithm 5.2

1
uses Algorithm 5.1 to determine t1,...,t

2’
2m+ 1 and d. In

Alg‘orithm‘ 5.2, given 'c.1 and d the time steps tz,... ’t2m+1
are determined by Algorithm 5.1. From Algorithm 5.1 we know

that equations -
lu(t, Joult, )12 -a%=0, 1=1 2m
b Ji+1 4 recen

are true. However, whether t.',...,th_” and d taken

together truely satisfy the equations of (5.6b) depends on

wvhether

l2 2

. Iu(t1)-u(tél+1) -d“=0 (5.8)

is ttrue. Therefore (5.8) serves as the criterias for the

bisection method wused in the algorithm. The initial guess

B R o ad -

kit e 4, Dol oo

- e

. FrerrumE Bt
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i . 1 oa
are d,s ;74 and do= 522 0

circumference and a is a constant depending on the two radii

s where 1 is the length of the

of the asymptotic estimate. Using d, and d, as the initial

1 2
guess, bisection method is performed on d using (5.8) as the

condition. +

Algorithm 5.2
¥ ! .
p(s,r,d )=lu(s)-utr)i?q"?
(step 1). 1=0; t,=0.0; Evalstrue

(step 2). If (Eval) then

given d1 and t1, use Algorithn 4.2 to locate

LPIEL *2%om41

so0 that

’ p(t 1’ti’d1)<e i=1’||l’2m

i+

(step 4). ir Ip1l <|c| then Return ‘

(step 5).  4iziel] d=d,+(d, =d,)/2

/

(step 6). Given d and t1, use Algorithm 4.2 to locate
tareerston
80 that

p(tm,'ti,d)gc 1s1,0.00,2m .

(atep 7). P2=P(t2n*1vt1)d)
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&

(step 8). ir Ip2|<c then Return

1p2>0 then )

(step 9). If p
_d1=d; Eval=true
a Else

> dzzd; Eval=false

(step 10). If I is less than a prespecified value then
go to (step 2)
Else

'method not successful'; stop

The last step 1n‘get%ing the asymptotic estimate is to

find the initial o,, 1<i<2mel. Consider

#l(U(t)) e uo+a(€R OOBOFCIBino),

L™

with *’ER’EI 1n°R2, using Algorithm 4.2 given in Chapter 4

we can solve for the initial estimate of o's.

-In the beginning of this chapter, we claimed that the
method given in this chapter is more general than the method
given in Chapter 4. However, we note that the method given
in this chapter also has two disadvantages. The first
disadvantage lies . 1in the diascrete character of
equation (5.4) which makes a continuous formulation of
system (5.6) impossible. In other words, obtaining  a
‘mathematical proof of ooﬂvergenoa of system (5.6) is

hopeless. The second disadvantage of the method lies in the
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fact that the order of system (5.6) is almost ome-thinrd
higher than ‘the order of system (4.13). This 1mp11§a
solving system (5.6) requires more ocomputer time than

-

solving systen (4.13).



S . " CHAPTER SIX

Numerical Examples. : .
N and Y
¥
Conclusion ’ .

The computation methods descriﬁed’ in Chapter & and 5
- ' &
based on a Fourier series representation have been

implemented in a computer brogréh DSYS. Given a  two

i . 3 ‘
dimensional diffeomorphism ' V,, the Jacobian of V,, 7; y 8
fixed point of *A and a number of contyol parameters, DSYS

has the following cababilities: : . ‘

N— %
(1). . Trace out branches of fixed points.
(2). Acourately locate fixed point bifurcations.
(3). Switeh automatically onto bifurcating branches
‘b : of fixed points. - : ' '
(u)L Compute pastvturn;ng points on a fixed point
branch without added difficulty. |
(5). D Compute the eigenvalues of *;(uo) where u, is a
rixed pointror ’A: ' |
(6).. Accurately iocate Hopf bifurcation points on a
branch of fixed points. -
(n. Automaticall*// start computing the invariant
' ! ,
1 circles.

(8). Qidaptive stepsize along a branch of invariant

- cir&les. a

i~
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(9). Store plotting information in files. These
files can be investigated by an interactive

graphics progranm.

In this chapter, we use two examples t6 demonstrate the
numerical results obtained using DSYS. They are the deldy .

logistic equation and the Hénon map.

6.1 The delay logistic equation

The following delay logistic equation

H ) EX ' ‘ Q601)

4 . . Yy ‘ Ay(‘l-X) .

- -l

W, *
has been extenaiveJ&%@&?udied by D.G.Aronson, M.A.Chory,

G.R.Hall and R.P.McGehee [1]. (6.1) has two fixed points
; - ) '
x1=y1=0 and xzzyzs ~—y— which are the solutions of the

2

following two algebraic equations:

x-y =0
¢
y - Ay(1-x)\? 0.

The Jacobian matrix of (6.1) is

- : &

8 =




131
|

and the characteristic equation of (6.1) can be written as

a2 ad(1-x) +ly = 0. (6.2)
From the introductioq‘of Chapter 4, we know that the fixed
point X2y 5= lfl is stable when A<2, At Az2, E'A(xz’ya) has
a pair of complex conjugate eigenvalues going out of the
unit circle and as A 1ncr;ases ﬁhss 2, invariant circles are
developed.’ In ‘thia case, the invariant ‘ circles are
attracting and the local dynamics of (6.1) 18 determined by

these invariant circles.

However, the invariant circles only exist for those-.}

which 1lie 1in a neighbourhood of A=z2. For parameter values'’

A

far from Az2, the corresponding invariant set fails to be

- topologically a circle. In [1], based on iterating the map,

the procesas by which the invariant circles dissolve is

o

examined. This process is shown again in Figure 6.1.
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Each invariant circle consists of the 1000~-2500 ;terafes,of
th; point (0.1,0.25. Transformation of the topological type
of the 4invariant set seems ;o start at A=2.16, At 1z2.27,
we note that tﬁe invariant set is already a strange
attractor. Various enlargements of a portion of the (

1n§ariant set 6btained at A=2.27 are also shown in
&

Figure 6.2,

Using DSYS, we compute the invariant circles of (6.1)

(;gain. A 'bifurcation diagram i1is given '1n Figure 6.3.
Starting at :Az=-1 the zero fixed point brangh namgd braqgh 1
is traced.° Alsng this branch, both the eig alues are real
with oné of ’them being identically zero ana the oéher one
equals to A. Beside the value computed byﬂVDSYS, this can

also be seen quite easily by substituting x1=y1=0 into the

characteristic equation (6.2). After substituting x1=y1=0,

(6.2) becomes ‘ L . 4“,/

Ve
» -
a

which implies

\ At Ai=1, an eigenvalue goes out of the un circle through

positive one when a fixed point ifurcation occurs.

Branch 1 1loses its stability at A=1 and the fixed point
kzsyza lil appears. We note that x =y,=0 remaihs a fixed
point of (6.1) when A>1, however it is unstable. The fixed

points on the new fixed point branch, branch 2, remains

i
1
i
4
4
]
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i
&
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stable until at Az2 when a Hopf Dbifurcation point is

detected. At this point the tuovéigenvalues are a pair of

complex numbers and they go out of the unit cirecle.

Invariant circles traced out by DSYS are shown in
Figure 6.4. In the computation, 10 terms (m=10) are used in
the Fourier series representation of an inv?riant
circle,i.e.

10
(aksinkt + b

m
u(t) = 8, + ﬁ kcoskt).

=1

The order of the corresponding systems (4.13) and (5.6) are

2(2x10+1)+2=44 and 3(2x10+1)+2=65 respectively. They took a

;‘VAX 11/780 computer (running VAX/VMS operating system)

approximately 40 aﬁd 60 minutes to complete the process of
co;putingk100 invariant circles. In ﬂthe parameter range
2<1£2.16, ’ circles obtained by DSYS match the circles
obtained by iterating the ‘map. This c¢an serve as an
indication that the implementation in DSYS is sound.
However, after A=2.16, the c¢ircles given by DSYS become
twisted and we know that the actual invariant set starts to

deform from being topologically a circle.

It is pbvious that the accuracy of the trupcated Fourier
series representation is higher when more terms are used in
the aerie;. When away from the Hopf bifurcation point,
numérical results obtained by DSYS are quite sensitive to

the value of m used. For m<10, the circles obtained by DSYS

become twisted before A22.16. For m>10, the behaviour of




the computational result is more atable:
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6.2 The Hénon map

~~

Much less numerical effort 1is required in studying a two

dimensional map than studying a three dimensional

"differential equation. The computation can be more accurate

since there are no integration errors. Also, with a simpler
model there 1is more hope for applying techniques in
mathematical analysis. <For all the above stated reasons,
M.Hénon [15],[16] constructed the following two dimensional

map

y+1-ax2

Tab s (6.2)

’H) E y bx ] )

where a,b are parameters with Ibl<1; (6.2) is now called
the Hénon map. It oontainQ thﬁ essential dynamics of a
Poincaré map of the Lorenz system ro; high Rayleigh numbers.
Therefore studying the Heénon map can add to the
understanding of the dynamics of the Lorenz system.
Inspired by numerical results:on the _Lorenz system, Hénon
cona£ruoted the map (6.2) éa follows [15]. PFirst consider a

region elongated along the i-axis as shown 4in Figure 6.5a.

The region can be folded by the foilowigxwgransformhtion

yl}- - y+1-ax2
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(by nunerically integrating the Lorenz system, Hénon

4

observed that the flow of the Lorenz system is stretched in

one direction but folded over itself). The folding is

completed by a contraction along the x-axis . .
b 4 bx
T2 s
” y y ’

-

see Figure 6.5b and 6.5¢. Since T, 1is . intended to be a
contraction,” b is required to be less than one in absolute

value. Finally, the.region is rotated along the x-axis by

w
"

see Figure. 6.5d. Then map (6.2) is considered as

T = T,-T,-T,.

ab 1 "2 °3 -

o

It is easily seen that (6.2) has two fixed points

A

L =(1=b)+/(1-p) % ka

1 2a
L : ? " (6.3)

y1= ,b!, ' ' )

[ PUREP SRR R
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_ =(1-p)- (1-b)°+4a

X2 2a B

(6.4)
yz'-‘ bx’
and these two points are real when a > -(1-b)2/d. The

ol

ch&baoteristio equa}ion of T'ab is

AZ + 2axA - b = 0; (6.5)

and the corresponding eigenvalues can be written as
A= -ax57a212+b ' (6.6)

Substitute (x,,y,) into (6.6), we know that if a > (1-b)2/u,

one of :the eigenvalues, namely

‘ 2
(1-b)+/( 1-b)%+4a ﬁﬁ-b)#ﬁ-b) +‘4a}
- + +
2 o2

A 2

b

is always greater than 1. Therefore fixed point (x,,y,) 1s

always unstable. Substitute (11,y1) into (6.6) we have
(1=b)=/(1=b)%+4a {(1-b)—/(1-b)z+ua
*

2

2
}-&-b (6.7)

and it is easily shown that (x1,y1) becomes unstable when

In [15), with as1.4, b=0.3, Hénon found that map (6.2)

has a "strange" attractor which appears to be the produobuat

&
g
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a one dimensional manifold by a Cantor set. This matches
the observa?ion we ,have on the Lorenz systenm. See
Figure 6.6 for a diagyam ~which contains the 1000-2500
iterates of the point (0.5,0.2). This attra;tor only exists
in a small parameter range of b. For b>0.3, the attractor
expands slightly and at b=0.,314, part of the iterates of
(0.5,0.2) escape to infinity. When 1>0.315, iterates

’

diverages very quickly. For b<0.3, the attractor contracts

3
.

gradually to four parts when b 18 close to zero. See
Figure 6.7 for the attractor at other paraeeter valdes. The
layered structure of Fhis strange attractor arises naturally
from the folding nature of map Tab' A 8imple explanation on
the mechanism that 1lead to th; existence of a similar’
layered strange attradt;r was given by O.E.Lanford in 1981
[277. A pictorisl form of the éxplanatibn is given in -

Figure 6.5e.

In Figure 6.50, suppose the flow of a differential
equation occurs in-a toroidal region. If a return map takes
a cross section A which transverse to the flow to a folded
region, then a complex layered structure will be resulted

from four iteritiona of such a Poincare map.

o

From (6.6) we know that with b>0, none of the
eigenyalues given by‘(6.7) can be complex. Thefsfore no
H;pf bifurcation can possibly occur when b>0. If we relax
the original restriction on_the parameter d'a little, fixing

az1.4, DSIS 1located one Hopf Qifurcation at b=-1. The
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[4

coréesponding bifurcation diagram is shown in Figure 6:.8.

2 .

Starting with b=0 and the fixed point (x1,y ), a branch
of fixed points named branch -1 1s traccd. In the parameter
fange -0.302¢b<0, branch 1 1is ’unatable with one of the
eigenvalues lies outaide of the unit ecircle. At b=-0.302,
the ou}aide eigenvalue enters the unit ocircle through
negative one and branch 1 becomes stable. Branch 1 repains
stable until a Hopf bifurcation is deteoted at b=-1. At
b=-1, the two eigenéalues become complex conjugates and go

out of the wunit- circle. A family of invariant circles

developes. Using DSYS, the bifurcating invariant circles

Awaw
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are traced and the results are shown in Figure 6.9.

From\ the numerical. results given'by DSYS, we observed
that the branch of invariant circles is actually vertical to
the fixed point branch 1. In other words, a whole family of
invariant ci;cles coe¥13£ at b=-1. fAlso the circles on the
branch become twisted as soon as the continuétion diregtion
of thg branoﬂ chanéea from being vertical to ‘the fixed point
branch 1, In order to confirm the result given by DSIYS, we

. \ - +
iterate the map (6.2) using different starting points ‘and

different values of parameter b. By fixing b=-1 and using

‘different starting points we obtain Figt::ijzlo. Thé
starting points wused re_indicated in the gram. While

testing the Yterations using different starting points, we

. -~ . )
observed that no invariant circles seem to exist outside the

1}

circle labelled (0.45,-0.45) in Figpre 6.10. The iterates

“of hﬂy starting points outside this region go to infinity

. very quickly.

Interesting dynamical behaviour is observed when the map
is slightly perturbed from bz-1. Diagrﬁps in Figure 6.11 to

Figure 6.15 contain the 1000-2500 iterates of thg point

(0.4,-0.4) with different values of b. When b>-1{/£he fixed

point (11,y1) is asymptotically stable (both éigenvaluea are

.1nside the unit circle), and the local dynamics of map (6.2)

is dqminatod by it. As b increases away from -1, the rate

°

of ‘convergence to (x,,y1) “increasee.' The 4iterates in

Figure 6.11 and Figure 6.12 are converging slowly to the

1
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stable fixed point. n—-Figure 6.}3 ~the convergence is

clearly .seen. When "B<-1, the f ied point (x‘,y1)' is
unstable, and the iterates of maéi(ﬁ.a) are repélled from
. it. In this case, the rate of diQergenoe increases as b
decreases from -1. The diverging iterates form a beautiful

pattern in the ‘xy-plane as can be seen in Figure 6.14, 6.15.
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6.3 Conolusiog?

In this thesis, we have reviewed the steady state
bifurcation, Hopf bifurcation, period doubling bifurcation
and bifurcation to invariant tori of & dynamical system.
The three 3-dimensional systems discussed in Chapter 2 are
examples showing how these bifurcation behaviours can occur

and llead to a sastate of chaosa. For the well known Lorenz

. qyatem, six periodic solution branches dincluding three

period \doubling birurcatio? branches are traced. Some of
these periocdic soclution bran;hea lead to the 1location of
several unstable periodic solutions inside- the Lorenz
attractor. Due to the unstable character of the solutions

and many unstable solutions are being close together in the

attracting region, these unstable periodic solutions in. the

Lorenz attractor would be very difficult to find using the
generally adopt;d initial value technique. For the system
arising .fr;m biochemistry, multiple oaaeading.sequences of
period doubling bifurcations are found. This implies many
parameter regions that correspond to chaotic states of the
system can exist in .3-dimenai$nal .systems. A strange
attractor 1is aléo found in this system. From the numerical’
results obtained in the Lorenz system and the system f;om
biochemistry, we observed ' that the existence of strange
attractor often comes ‘uieh ﬁahy closely packed' unstable
periodic solutions in the attracting region: When a
trajectory enters the attracting regioﬁ, it is "push around”

Py N

™
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‘by - the wunstable |solutions and causes complicated dynamical
behaviours. This jpbservation may explain the mechanism that

creates strange atiractors. ‘. ‘
2,

[

g

Bifurcation bedhaviour of =& periodic solution is an

interesting topic {in the theory of dynamical sasystems.
Beside period douliling bifurcation, another bifurcation
which can occur is| the bifurcation ¢to invariant tori.
Through the idea of a Poincaré map, and the center manifold
theorem, the at;dy off bifurcation to 4invariant tori of a
dynamical system can)essentially be reduced to the study of
bifurcation to invaniant ‘circles of a ¢two dimensional
difreomorphiam. The ' relationship between bifurcation to
invariant tori and bqfurcation to invariant circles is
described in Chapter 3\ .However, given a dynamical gystem,
obtaining an explicit expression of a corresponding Poincare
map s generally recongized as an impossible task. A
generally used method for computing the invariant circles is

direct iteration of the map. This method i1s very easy to

use but it fails when the invariant circles are, repelling.

Also direot% iteration o the map c¢annot give a global
bifurcation giagram of the \systen. For example, in the
Hénon map, the bifurcatin direction of the invariant
roles is vertical to the original fixed point branch.
fﬂ Invariant o¢ircles fail to exist for parameter values in any
ﬁ) neighbourhooq of the Hopf bifurcation point. This

{@ Phenomenon 1is not easily obsenrved by directly 1torat1né the

S ampern
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Hénon map.

In this thesis, we dintroduce a numerical method to
compute the invariant circles of a general two dimensional
diffeomorphism. The design objecéive of the computation
scheme 1is two fold. Firastly, the computation schene sﬁbuld
work both for attracting and repelling 4invariant circles.
Secondly, the computation aohgpe should be able to trace out
fixed point branches of a general two dimensional
diffeomorphism, detect Hopf birurqations and automatically
trace out the invariant circles. In other words, minimal

requiiement of user effort in the computation is important.’

Hitﬁ the above astated obJectives, two methods of
computing the invariant circles are proposed in Chapter 4
and Chapter 5 respectively. A method involving the concept
of a rotation number 4is described 4in Chapter 4. An
alternate method 1ia discussed in Chaptey 5e These two
methods have been implemented and tested in a computer

program DSYS. The basic capabilities of DSYS are stated in ‘

* Chapter 6. Numerical results obtained using DSYS indicated

that the methods we propose are very efficient and accurate

near the bifurcation point. However, once the topological

type - of the invariant circles start changing, the
computation is not reliable anymore. In DSYS, an invariant
circle is represented by a ¢truncated Fourier series.
However, using a truncated Fourier series repreaenﬁation,

the corraponding system has a full Jacobian matrix. Solving
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b

a full matrix system is an operation of 0(n3) and is rather
expensive in terms of computer time. In‘ Chapter 4, a
pouibly'h nore ;rricient representation scheme for the
1nvar1ant§‘ circles .is also discussed. It is the cubic
B-splines representation. These -computation schemes ‘ean
serve as a foundation for computing invariant tori of three
dimensional differential equations.

”
4

For 2-dimensional d:lrf'éonorphisms, bifurcation to
\

invariant circles from a fixed\*goint is only one of the many

types of dynamical behaviours that have been observed [14]..

Other kinds of dynamical b‘ehavioura, say period doubling
bifurcations, remain to 'be explored. Due to the fget that
the dynamical behaviour of a dynamical system can be very
complicated, numerical techniques are bounded to - be

necessary, . ‘
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