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ABSTRACT
Numerical Modelling of EC130 Airframe and

Antenna Installation for Prediction of
Radiation Characteristics Over HF Band

Benita Randi Rosenzweig

The input impedance and radiation characteristics
of HF antennas mounted on aircraft can be derived by
theoretical-numerical techniques. The Numerical
Electromagnetic Code utilizes the Moment Method with
wire grid modelling to solve integral equations for
the currents induced on a structure by a known
incident field. The computed electromagnetic response
of the HF antenna/airframe system is used to verify
and complete experimental measurements.

The EC130 HF antenna installation consists of
five external wire antennas extending along the upper
portion of the fuselage and terminating at various
points near the vertical stabilizer. Antenna
radiation patterns have been measured on a scale model
of the EC130 aircraft. In addition, the Naval Air
Test Center had conducted full scale airborne testing
of the HF antenna complement. Discrepancies between
the full scale and scale model measurements led to the
development of a computer model. Several wire grid
model configurations were developed to qualify the
experimental data.
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CHAPTER 1

INTRODUCTION

HF aircraft antennas must radiate electric field
patterns of sufficient gain in directions significant
to communications. In addition, a suitable input
impedance for acceptable power transfer efficiency
between the transmitter and the radiated field is
required (Jasik).

In the 2-30 MegaHertz (MHz) frequency range, the
principal dimensions of an airframe are comparable to
a wavelength. Whenever the major dimensions are of
the order of a wavelength, the airborne antenna
induces RF currents on the conducting airframe surface
which significantly affect the antenna impedance and
pattern behavior. Consequently, the evaluation of
radiation characteristics of aircraft antennas in the
HF band must include the airframe current
contribution.

The radiation patterns in this range may be
explained by considering the fuselage, wings and
horizontal and vertical stabilizers as  current
filaments with appropriate relative amplitudes and
phases (Granger). Then, the total electric field is
readily computed by summing the radiation from

different portions of the airframe and the antenna
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installation. Methods to evaluate aircraft antenna
radiation patterns include full scale airborne
testing, scale model measurement and numerical model

computation.

1.1. Full Scale Measurements

Full scale pattern measurements provide a means
of verifying scale and computer model calculations.
One example of an in-flight test facility for
investigating antenna performance is the Antenna
Testing Laboratory Automated System (ATLAS) in
Chesapeake Bay.

ATLAS is designed to evaluate antenna systems
operating in the 2 MHz to 18 GHz range. The
topography of the site, comprising of the calm waters
of Chesapeake Bay and surrounding low level land
masses, present an unobstructed field-of-view in an
area free of electromagnetic interference sources
(ATLAS Report SY-81).

During the testing procedure, the aircraft
transmits a specified signal through the antenna under
test (AUT). The ground system antennas receive and,
subsequently, process the signal for antenna
performance assessment (figure 1).

Although full scale airborne testing is a

realistic approach in aircraft antenna pattern
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evaluations, the immense amount of time and cost

involved make it an impractical method of measurement.
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Figure 1 Full Scale Measurements : {ATLAS)

1.2. Scale Model Measurements
Scale modelling is one alternative for
investigating aircraft antenna patterns. The

requirements for simulation by the model are

1. all dimensions of the model are 1/n
times those of the full scale
prototype.

2. operating frequency and conductivity

of the model are 'n' time those of the



prototype

3. dielectric constant and permeability

of the model are the same as those of
the full scale prototype
where 'n' is an arbitrary scale factor (Sinclair).

As a result of the reciprocity theoren,
measurement of antenna patterns may be made under
either transmitting or receiving conditions. In the
transmitting mode, a battery-operated oscillator,
inserted in the scale model, excites the antenna under
test. The radiated field is detected by a probe
antenna oriented to measure the desired polarization.

Figure 2 illustrates a typical set-up for
determining the electric field of modcl antennas in
the receiving mode. The pattern of an antenna when
receiving plane waves from the horn type radiator, may
be determined by connecting a receiver to the AUT and
measuring the receiver output as the direction of the
incident wave is varied (Sinclair).

Inaccuracies in field measurements are likely
caused by cables connected to the scale model which
perturb the patterns. In addition, particular
attention must be paid to reflections from the model

supporting structure.
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Figure 2 Scale Model Measurement (Sinclair)

1.3. Numerical Model Computation

Full scale and scale model mnmeasurements are
hampered by cost and time factors and are
advantageously replaced by computer simulation
techniques. Computer modelling yields numerical
solutions to electromagnetic problems with an accuracy
and completeness unobtainable by experimental
measurements (Tanner). The numerical model readily
reveals the current density distribution and this
provides additional insight into input impedance and
radiation characteristics of the airframe-antenna
system.

A computer model is composed of wire segments
which electromagnetically approximate a continuous

surface i.e. the wire grid mesh current simulates the



local variations in surface gurrent density.

The Integral Equation approach is used to
determine the current distribution. In this method,
the Electric Field Integral Equation (EFIE) relates
the unknown current on the wires to the known applied
electric field.

The Integral Equation is then solved for the
currents by the Moment Method. Once the current
distribution has been found, the radiation pattern may

be computed from the radiation integral.

1.4. Model Validation

In order to validate t.he nunerical model, the
computed results are compared to full scale and scale
model measurements. Thus experimental measurements
are still required, however, a validated computer
model serves to £fill the gaps in the measurement data.
Furthermore, a sound computer model can provide
information such as induced RF currents and input
impedance, which are generally difficult tc obtain by
direct measurement.

Full scale and scale model measurements are used
to verify the cred.ibility of a computer model.
Conversely, a numerical model may be employed to

confirm the validity of the experimental measurements.



1.5. Objective

The objective of this thesis is to develop a
valid computer model of the EC-130 Tacamo for
radiation pattern analysis of its HF antenna systen.
The numerical model will further sexrve to qualify
prior full scale and scale model measurements provided
by the United States Naval Air Test Center.

The EC-130 HF antenna installation consists of
five long wire antennas. A top view of the aircraft
with all five high frequency antennas is shown in
figqure 3.

The Tacamo computer model was developed to
clarify the discrepancies between the full scale and
scale model radiation patterns. Reliable measurement
data was unavailable for numerical model wvalidation
purposes. Consequently, only incremental variations
in vire mesh topology were effectuated. This approach
increased confidence in model credibility as well as
offered new insight into the wire grid modelling

methodology.
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Chapter 2

NUMERICAL ELECTROMAGNETICS CODE

The Numerical Electromagnetics Code (NEC) is a
computer code for the analysis of electromagnetic
radiating and scattering structures. A numerical
model of the structure consists of conducting wires.
The excitation can be either a voltage source or an
incident plane wave, and the output includes induced

currents and radiated fields.

2.1 . Numerical Electromagnetics Code Input Format

The NEC input (NECIN) data describes the antenna
and its environment, and requests computation of
antenna characteristics (Burke and Poggio). The NECIN
file is divided into three sections: comment lines,
structure dgeometry input, and progranm control
directives. A two-letter alphabetic mnemonic serves
to identify each program line function (figure 4).

The input file begins with one or more comment
lines (CM) which may contain a brief description and
structure parameters identifying the run. A CE card
indicates the end of the comment field.

The geometry of the wire-grid model is detailed
in the structure gcometry section of the NECIN file.

GW 1lines specify the following wire parameters in
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order: tag number, number of segments, end one
coordinates (x,y,z), end two coordinates (x,y,z) and
radius, all in meters.

The GM geometry opcode enables the translation of
a structure with respect to the coordinate systen.
For example, the GM feature may be used to shift a
structure a specified distance above a ground plane.
A GE line signals the end of the geometry field.

Program control lines set electrical parameters
for the model, select options for the solution
procedure, and request data computation (Burke and
Poggio).

The electrical properties of the wire-grid model
are specified in the EK, FR, LD and GN lines. The EK
option involves the extended thin wire Kkernel
approximation in the solution procedure of NEC. This
results in greater accuracy in evaluating the near
fields of thick wires.

The frequency of operation is found in the FR
line of the input file. The units are in megahertz.

The type of impedance loading on a segment is
identified by the LD line of the NECIN file. Series
and parallel RLC networks can be generated. In
addition, impedance (resistance and reactance) and
wire conductivity (mhos/meter) can be specified.

A GN mnemonic indicates the presence of a ground
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plane. The ground may be perfect i.e. infinite in
extent and perfectly conducting, or lossy for which
the relative dielectric constant and conductivity are
required.

The mnemonic EX specifies the excitation of the
structure. The types of excitation include a voltage
source on an antenna, or an arbitrarily polarized
plane-wave incident on the structure.

Program control line WG and geometry structure
mnemonic GF signal the Numerical Green Function (NGF)
option in NEC. With the NGF function, a fixed
structure and its environment may be modelled and the
associated NEC computations are saved on a file. Part
of the model may then be modified in subsequent
computer runs and the complete solution obtained
without repeating calculations for the data on the
file (Burke and Poggio). The WG line causes the NGT
information to be written to a file and the GF line
prompts the program to read the file. The Numerical
Green Function significantly reduces the amount of CPU
time of a NEC execution by avoiding unnecessary
repetition of calculations.

The RP line causes the wire currents to be
calculated, and requests radiation pattern
computation. Theta and phi angles are provided to

define the far field point.




12
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Lt S k2] i 8. S. ..
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Figure 4 Sample NEC Input File

The EN line indicates the end of all program

ex: cution.
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2.2. Pocklingtont's 1Integral Equation

The Numerical Electromagnetic Code (NEC) analyzes
the electromagnetic response of arbitrary
configurations consisting of wires in free space or
over a ground plane (Burke and Poggio). The program
invokes the Method of Moments to solve the Electric
Field Integral Equation (EFIE) for currents induced on
the structure by sources or incident fields. Once the
current density is found, the scatiered fields are
readily determined by traditional radiation integrals.

An integral representation for the electric field
of a current distribution with boundary conditions
form the basis of Pocklington's Integral Equation. By
satisfying the boundary conditions on the surface of
a perfectly conducting wire, Pocklington expresses the
unknown current on the wire in terms of the known
incident field illuminating the wire antenna or
scatterer.

Consider a wire segment of length, L, and radius,
a, located on the axis of a 'local' coordinate system
(figure 5).

The incident field that impinges on the surface
of the wire induces on it an electric current density
J(F'), which in turn radiates the scattered field
ES(T).

The wire segment is a perfect conductor and,

PRTPR TN

- e awwn =
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T
|

Figure 5 Wire in local coordinate system

thus, can be represented by a tube of surface current

density such that

J(D) =T,(¢, 2') ; p'=a.

The scattered field due to the surface current is

=g — - 1 3 A
E (P:‘b,z)- J(I)P'A(P:(b:z)"'jwe [V(VA(P:‘]’:Z))]

where the magnetic vector potentiail,

x 1 7 (& 1 eXP(-FBR) ;s
A(p,¢.z)-4n£st(<b,z) =JBR) g,

The magnitude, R, is the distance between the source
point on the current cylinder to an arbitrary field

point, P.
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2.2.1. Thin Wire Analysis

When the wire is sufficiently thin ( a << 1),

the following thin wire approximations are applied:

i. transverse currents can be neglected
relative to axial currents on the wire
ii. the circumferential variation in the axial

current can be neglected.

COnse'quentli, the surface current can be replaced by

a simple axial current

I(z!)8'=2nad,(z’)

where I(z') is assumed to be an equivalent filament
line source current induced on the wire axis (figure
6) .

The vector potential is expressed as

2x  L/2
PO = - 1 I(2') exp-jFKkR _ 14/ 4,1
A =A,(p.$,2) 2 4n2f — IR add/dz’.
¢/=0z'=-L/2

The distance, R, between the source point on the wire

axis at

rl=2z'%

and the field point, P, at
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z
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Figure 6 Thin Wire Analysis

F= (pcosd) R+ (psind) Y+ (z) £

is given by

R=|P-7!|={/p?cos?p+p?sin?+ (z-z") 2 =/p%+ (z-2") 2,

Thus the vector potential for a current filament of

strength I(z') located on the wire axis reduces to

L/2 . .
a2t [ 1(z) SRk (2-2)7) 4y

g/=-1/2 Vp*+ (2-2')?2

The scattered electric field due to the current line
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source can be found from the following equation

V(V-4),

-t " - 1
Ef=-jopA+—
Jap Foe

The component of the electric field in the direction

of the unit vector 2 at the observation point

[V(V-A) -£)

Ef=E%f=-jophs+ 'jt:e

Ef=-jopa,(£"8) + .1 w2 =) 8,

The second dot product on the right side of the field
equation is the directional derivative in the

direction Z (Trueman). Thus,

L/2
Ef=-jop(28) [ [ I(z))elp,z, 2)dz")
zl=-1/2
L/2 5 /
__.J__Q_[L f (2 98(0.2,:2) 4.1
we dz 12 0z

It is readily shown by differentiating the thin wire

kernel that

G oG

9z 37’
Thus,
L/2

-jop(2-2) [-——— f I(zYaGe(p,z,2z)dz']
zl=-L/2

ES

/2
- [ f I(z') 3G (p,z, 2) dz’1,

we dz 4T
z/u-L/2

az’



13
The =z-component of the scattered field at the

observation point

L/2
s_ -~ j / 2 oy _ az / /
Ef=—d1 IfL/zr(z)[k (22))-==-1G(p, 2, 2") dz
Z'm~-

where the wave number

k=w/pe

and the intrinsic impedance
=,|J£,
n €

2.2.2. Extended Thin Wire Kernel

The Numerical Electromagnetics Code implements
the extended thin wire approximation for wire radii
that are too thick for the thin wire approximation.
The EK option assumes that the current is uniformly
distributed around the circumference of the wire.

The derivation of the extended thin wire kernel
begins with the current on the surface of the source
segment with surface density

/
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A current filament of strength

Id¢/

27

is integrated over ¢' with

R=|F-F'|=| [pcosdR+psindy+z2] - [acosd/R+asind/y+2/2] |

R=\/p?+a?-2apcos (¢-¢') +(z-z/)2
(figure 7). Because of the symmetry of the scatterer,
the electric field does not vary with ¢ . For

simplicity, let ¢= 0, then

R={/p2+a?-2apcosd’+ (z-2')2 .

The magnetic vector potential

. Lf2
.i’(f):Az(p,z)z':f/_fE [ 1tz Gyaz!
z/=~L/2

where the full Kkernel

2
_ 1 "_gcp--jks/p%a2-2apcosg>’+(z-Z’)‘a de’

&'=0 p2+a?-2apcosd’+ (z-z')?

The full kernel integral over cannot be evaluated in
closed form. However a numerical method of
approximation may be used to evaluate the full
kernel, G. NEC expands

exp(-jkR)
R
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as a series in powers of a. Let the function ,f , be

£= exp (-jkJ/p+ (z-z') 2+a%-2apcosd’) .
Vp2+(z-2") 2+a%-2apcos¢’

Then f can be expanded in a MacLaurin series about a=0
with terms of order a‘ neglected (Harrington). The
kernel is evaluated by integrating, over ¢' , the

series representation of f resulting in

— e?” a® sy 172, p2a2 2 ; 1/2
GE""'BTE [1+55 (1+35kD) +—&23- (-k2D+3 (1+3jkD) /2]

where,

D=/p?+ (z-2)2.

The first term in the series representation of the
full kernel is recognized as the reduced thin wire
Kernel, G.

The series approximation of the full kernel
results in the reduction of the surface integral

vector potential to a line integral representation
L/2

Az(p,z)2’=4—1n2’ [ I(z)Gylp. 2,2 dz!
zl=-L/2

The tangential z-component of the scattered field at



the observation point is

L/2

s:.:iﬂ. / 2 —oly - d ! /
E; 4nkz'-£/21(z)[k (z-2') - =2—1Gpclp, 7, 2') dz

( l*.
8 P L { t%

b3

Figure 7 Extended Thin Wire Kernel

2.2.3. Boundary Conditions

The boundary conditions state that the tangential
component of the total electric field at the surface
of a perfect conductor is zero. The total field is

the vectorial sum of the incident and scattered fields

where,

E' = incident field evaluated at the observation point
and

E* = scattered field evaluated at the observation

- R e
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point.
Enforcing the boundary conditions at any point on the

surface of a wire in the axial direction

ETT.2-0

where,

% = unit vector tangent to the wire axis.
Pocklington's Integral Equation is obtained for

a perfectly conducting wire by combining the integral

representation for the electric field of wire current

with boundary conditions to form:

., L/2
=1 f I(z') [kz(z—z’)——g——]G(p,z,z’)dz’=-§i~2

4wk /
e der)2 020z

where z' is a point on the source wire and z is a

point on the wire surface.
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2.3. Method of Moments
Pocklington's Integral Equation is numerically
evaluated in NEC by the Method of Moments. The Moment

technique reduces the integral equation

. L2

- N (2 (580 __ S I g1,
_14"sz.'.[”21(2)“< (22 azaz/]Gdz Elz

to a matrix equation in terms of the unknown current,
I(z').
The matrix method represents the integral

equation in a linear operator format such that

LII(z 1)=-E}

where ¢ denotes the integral operator, -Ezi is the
known axial component of the incident field at the
surface of a wire and I(z') is the unknown current
flowing in the wire (Harrington).

To obtain the numerical solution of the above
equation, I(z') is approximated by the sum of N
linearly independent current basis functions defined
over the wire. Symbolically,

N
I(z'y=Y H,F,(2)

n=1

where H are the unknown complex current coefficients

to be determined.
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Substituting the equation for the current

summation into the 1linear operator electric field

equation and using the linear property of the operator
results in

N
Y HL(F,(z))]1=-E]

n=1

The N current coefficients are solved for by
enforcing the integral equation at N distinct
observation points on tre wire boundary. This
procedure is known as the collocation method or point
matching and is equivalent to weighting the integral
equation with a Dirac (impulse) delta function,
located at each match point.

Sampling of the function being integrated at N
discrete points will generate a system of N linear
equations in N unknowns. The current coefficients can

then be found by simple matrix factorization.

2.4. Current Expansion on Wires

For an arbitrary wire configuration, it is
difficult to find basis functions that are well
defined over the entire domain of interest.
Consequently, the unknown current, I(z'), is
approximated by basis functions which exist only over
segments of the wire. Then each current coefficient,

H , in the current basis function expansion effects
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the approximation of I(z') only over a subsection of
the region of interest (Harrington). This method is
aptly entitled the principle of subsectional bases
(Ney).

In the Numerical Electromagnetic Code, the
current on a segment is represented by a three-term
sinuscidal subdomain basis which is thought to closely
resemble the actual current distribution.

Specifically, the current on segment i has the form

I, (2'Y=HF,(2)=A;+B;sink(z/~z,) +C;cosk(z'-z,)

A
|z-z/|< =2
2

where,

z' = distance parameter along the wire

z; = value of z' at the center of segment i
and,

A; = length of wire segment i.

Two of the three function coefficients are found
by imposing current and charge continuity conditions
at the segment ends. The remaining constant is
proportional to the unknown current amplitude to be
determined by the matrix equation.

The physical constraints at the wire ends are
applied to the current , I, and to the linear charge

density, q, which are related by the continuity
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equation

There are two possible segment end configurations

to be considered - free end and junction.

2.4.1. Free End

At a free end, the current can flow onto the end
cap as illustrated in figure 8. Poggio derived an
equation relating the current at the free wire end to

its derivative

2'A_ J,(ka) ar(z'
I(z) Iz’-free end k < J: (ka) a(zz/ ) |z’-free end

where J and J, are Bessel functions of order 0 and 1,
respectively. The unit vector n_ is normal to the end
cap and z' is the unit vector along the wire oriented

from the entrance to the exit node.

2.4.2 Junction
In the treatment of wire junction, T.T. Wu and

R.W.P. King have derived the following condition

or(z')

3z |z’-_1unction

-2
¥

The constant, Q, is related to the total change in the

area of the junction and ¥ is a radius dependant
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Figure 8 Free End

scale factor given by

‘P=ln(—1225-—y)

where ,

a = segment radius

and

vy = Euler's constant (0.5722).

The continuity of current at the segment boundary
is assured by Kirchoff's current law which states that
the sum of the currents entering a junction equals the
sum of the currents leaving the junction.
Furthermore, the Wu-King constraint insures that the
current derivative, or equivalently the charge

density, is continuous across the junction and has the
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form
g On(z) G8L(2) g d5L,(z)
dz’ oz’ az’
or
Y.q,=F,q=......=¥ q,.
Consider the segment i illustrated in figure 9,
below

L /o
OO -

L= : m= ] 2

Figure 9 NEC Current Expansion

The i*" current basis function flows through the
segment i and extends onto every segment connected to
i, going to zero with zero derivative at the outer end

of the connected segments (Burke and Poggio).
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The portion of the it current basis function on

segment i is given by

I, (2')=A; +B, sink(z/-2;) +C; cosk(z'-z)),

The end conditions at the entrance (-) and exit (+)

nodes, respectively, are given by

A Jd, (k
I; (z'=z;3—2) =2 1 Jy(ka,)

I
2 kJ(k )Ih( '

" free end
2'8Z 4% s 2

= Wu-King junction

The portion of the i basis function which extends

onto the segments connected at the entrance node

I;=A,;+B;sink(z/-z,)+C; cosk(z'-z)) 1=1,2,...L.
The end conditions are

A
log 1y =
I; (2'=s, 3 ) =0

A
dIix(ZI=Zl"'_2—1')

dz’

A
/- 1
dIil(z _zl+------2 ) ) o

dz’ -‘Pl

.
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Since the charge is continuous across the junction,
Q+ = Q;- and this may be substituted into the end

condition

A
/_ 1
dI_iz(z —Zl+-.—2—) =_Q_;.

dz’ ¥,

Similarly, the portion of the i"® basis function which

extends onto the segments at the exit node

I,,=A; +B; sink(z/-z,) +C; cosk(z'-z,) m=1,2,...M,
The end conditions

A
Ii_(z’=zm+—§£) =0

A
dIi.(z’=zm+—2"i)

=0
dz’
A
Iey _Bm .
aly,(z'=2,— )= Qi
dz’ ¥,

The complete current basis function on segment
i,defined by equations I,, I,, and I., involves
3(1+m+n) unknowns. The value of (2+3L+3M) current
coefficients are found in terms of Q' and Q,” by

enforcing end conditions. The charge densities are
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then solved for by applying Kirchoff‘s current law at
the segment ends such that

L
A A
/= 1y= lmg ~—d
12-1: I,,(z -z_,+-—§-)-Iio(z =Zy~— )

M
Y Ii.(z’=zm——A-2—”1) =Ii°<z’=zi+—éz-i)
m=1

The complete i'® current basis functien,
I,=H,F.(2'), has now been defined leaving one amplitude
constant, related to the current expansion
coefficient, H,, to be solved by the method of
moments.

2.5. Calculation of Structure Matrix

The method of subsectional collocation involves
dividing a wire structure into N segments with the
current amplitude being an unknown over each segment.
At the center of the m'® segment, the electric field
boundary conditions are enforced. Hence, the sum of
the tangential components of the scattered fields due
to the N current basis functions along the N segments

is set equal to the negative of the axial incident

field at the observation point 2 :

N
Y HIL(F, (z)]=-E(z,)

n=1

Thus far only one equation in N unknown has been

derived. The remaining (N-1) equations are generated
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by evaluating the above expression at (N-1) discrete

points along the wire:

N
Y HLIF (2)]=-Ei(z,).......m=1,2,...,N.

n=1
This equation can be written in matrix notation as

[G] [H] =[E]}

where,

Gmfg [Fn(zl) ] Iz-z.

E=-Ei(z,)

and

H,=current amplitude on segment n.

Each element, G, in the generalized impedance
matrix [G] represents the tangential electric field at
observation point 2z, produced by the normalized

current basis function on segment n. In particular,

the diagonal elements, G

w are the self field terms.

The matrix [E] is related to the electromagnetic
excitation. For the transmitting case, the excitation

is a voltage source of strength , V, on segment m.
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This results in the applied electric field entry

v
B3

m

where A is the length of segment m.

The generalized current matrix [H] contains the
unknown current weighting functions, H, to be
determined by matrix algebra.

The matrix equation [G] [H] = [E] is solved by the
Gauss-Doolittle technique. This method involves the
factorization of [G] into the product of a lower
triangle [L] and an upper triangle {[U], yielding
[L}[(U)=[E]. The generalized current matrix is
determined by a two step solution procedure: the
expression ([L]{F] =[(E] is first solved for [F] by
forward substitution and then the equation [U]([H] =

[F] is solved for [H] by backward substitution.

2.6. Far Field cCalculations’

Once the current distribution over the wire
structure is obtained, the radiated field can be
computed. In the far field, the parallel ray
approximation serves to simplify the radiation
integral. The radiated field due to the n'" segment is

evaluated as follows (figure 10):
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the wvector potential

=7 n exp (-jkR) !
a, {I"(Z)——-4nR dz

where,
R=r-r'cosaq,
is recognized as the projection of

The term r'cos «
F' on ¥ and, by definition of the dot product, can be

represented as

R=r-kK-r"
where,

=L

STET.
At large distances, the field has a magnitude

dependance of 1/r so that the integral denominator

Rer .,

The wector potential becomes

v (7 (0 expl-Tk(r-KE)) 5 s
i jjL'I,,(z) s dz

~_exp(-jkr) (= ;.7 e /
A=S2Pl7JRI) A
n anr .I(I,,(Z Yexp(Fk')dz’
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The electric far field produced by the current on

segment n is derived below:

E_ =-jopd,-(-jopi,K) K
‘E-:n:jk“ ( (A'n.m Ié\"}rn:|

§n=_i4i<%l ;e_>_<gi;_i_1£)_ [ U, (2" B B-I,(z") 1exp (5kE") d2’
L

The integral can be evaluated for each wire segment.

The radiation field at observation point P is found by

the superposition of the fields due to each segment n

E-_E Jlm exp (- ka) f[ (f,(z') B k-I,(z") ) exp(jk-£') dz,

n=1
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Figure 10 Parallel Ray Approximation for Far Field

2.7. The Effect of a Ground Plane

The far field patterns of antennas above ground
are calculated by means of the specular ray
approximation and Fresnel reflection coefficients.
Reflection coefficient analysis is performed by simply
adding a direct wave with a ground reflected wave of
appropriate magnitude and phase.

For perfectly conducting half-space below the
boundary, the incident wave is completely reflected
with zero fields below the interface. The reflected
field is assumed to originate from a mirror image of
the source in the ground plane. The radiated field is
then the sum of the direct field of the primary source
and the image source field (figure 11).

The image principle can be easily extended to



Figure 11 A Source and its Image

account for the effect of finitely conducting half
space on the fields of radiating structures. As in
the case of perfect ground, the total far field is the
vector sum of the direct and ground reflected fields.
The reflected electric field is simply the product of
the perfect ground image field and the Fresnel
reflection coefficient. The reflection coefficient is
a function of the ground conductivity and dielectric
constant, the angle of incidence and the polarization
of the incident wave.

Using reflection coefficient rather than the
method of moments reduces the time required for the

analysis of antenna-ground interaction problens.



38
2.8. NEC Solution File

The compressed NEC solution file consists of the
NEC input data file, the frequency in MHz, the complex
input impedance, the currents at segment match points
in absolute segment order, and the electric fields in
the selected cuts.

It should be noted that in NEC, the total current
at the center of a segment is composed of the basis
function associated with said segment as well as the
contributions of all the basis functions extending
onto the segment. The current in the soluticn file is
written in terms of magnitude and phase.

The electric field includes both E-theta and E-
phi polarizations (magnitude and phase). NEC computes
the radiated field by omitting the factor e #*"/r from
the far field expression.

The last line of the solution file indicates the

total computer time consumed in CPU seconds.



CHAPTER 3

WIRE GRID MODEL DEVELOPMENT

Computer models are used to study properties of
antennas. An accurate numerical representation of the
physical reality requires a suitable model. A
credible model will support a similar current
distribution to that which exists on the actual
structure surface. In this chapter, several
guidelines for effective modelling of a structure are

outlined.

3.1. Guidelines

Continuous, metallic surfaces are numerically
modelled as a network of intersecting wires.
Cconducting wire-grids electromagnetically approximate
solid surfaces, provided that the mesh size is small
compared to a wavelength.

In NEC, wires are composed of linear segments.
The number of segments in a general N-segment
structure should be the minimum required for accuracy
since the CPU time consumed varies as N° for the
calculation of the impedance matrix, and as N® for the
subsequent computation of the admittance matrix.

Both geometrical and electrical factors must be

considered when developing a wire-grid model.

el B

B I N T N NCT” ¥ PP e T S



40
Geometrically, the segments should follow the paths of
conductors as closely as possible, using a piecewise
linear fit on curves (Burke and Poggio). Adjacent
segments must have coincident end points because the
current expansion is determined by satisfying current
and charge density conditions at segment junctions.

The density of segmentation should be sufficient
to represent the local wvariations™ in both surface
geometry and current density. In addition, Miller and
Burke have found that maximum solution accuracy is
obtained when using segments of nearly equal length.

The main electrical consideration is segment
length, A, relative to wavelength, A. When applying
the collocation method with sinusoidal current
interpolation, ten current samples per wavelength
should be used to obtain reliable far field results
(Miller). Thus the segment length is less than about
0.1A at the desired frequency. Somewhat longer
segments are acceptable on wires with no abrupt
changes.

The wire radius is selected for impedance
equivalence of the closed surface and the
corresponding wire grid model. Lee, Maxin and Castillo
have derived the following expression for the
difference in inductance, AL, between the solid

surface and its wire mesh approximation:



~pdin 9
AL 21t1n(21:a)

where a is the wire radius and d is the axial
separation of parallel wire. The inductance error
(AL) should be minimal if the current generated on the
wire grid is to be a good approximation to that on the
actual surface. From the inductance equation, a
negligible inductance difference requires wires of
circumference approximately equal to the spacing
between them (Moore and Pizer). Hence, for a square
wire grid, the total surface area of the wires is
twice the area of the solid surface. This is known as
the 'same surface area' principle.

Wire radius is 1limited by the thin wire
approximations used in the electric field integral
equation. The first approximation assumes that the
total current flowing in a wire can be accounted for
by the axial current alone. The accuracy of the
numerical solution for the dominant, axial current is
dependent on A/a. Miller and Deadrick have shown that
segments whose lengths are shorter than several wire
diameters exhibit non-physical current oscillations
near wire ends and source regions. In order to
compute reliable electric field values, the ratio of

segment length to radius must be greater than 8. Use
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of the extended thin wire kernel extends the lower
limit for A/a to 2. Small A/a produce greater error
in the field solution than in the current solution.
Reasonable currents have been obtained for A/a down to
about 2 and with the EK option for A/a as low as 0.5.

The wire diameter is further limited by the thin
wire condition of ‘'circumferentially independent’,
axial currents. When the wire radius is very small
relative to the wavelength, the azimuthal variation of
the current can be neglected. The validity of this
thin wire approximation is insured by enforcing the

following constraint

21ta < A.

The diameter of connected segments should be
sufficiently uniform to accurately model the local
behavior of physical currents. Large radius changes
between adjacent segments decrease solution
reliability. This problem may be alleviated by
gradually varying the radius in steps over several
segments.

Physical currents flowing through wire bends tend
to ‘hug the curve'. Conversely, the piecewise current
approximation in NEC maintains a uniform distribution
in and around the intersection (figure 12). 1In order

to obtain reliable numerical results, the acute angle
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of adjacent segments must be large enough to 'blur'
the difference between the ﬁhysical currents and its
numerical representation. As a minimum, the angle of
intersection is selected so that the center of one

segment does not fall within the radius of another

(figure 13).

Figure 12 Physical Current and NEC Current

Currents are physically continuous at an
intersection of two or more segments with unequal
radii and at wire bends. For thin wire Kkernel
analysis, this local behavior is adequately modelled
by a current filament on the wire axis. However, the

current tube assumed for the extended thin-wire kernel
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RV

™~

Figure 13 Junction Compatibility Requirements

cannot be continuous around its complete circumference
at a bend or change in radius (Burke and Poggio).
Consequently, the extended thin wire kernel is used
only when two parallel, uniform segments join and at
free ends. Alternatively, NEC always uses the thin
wire kernel at wire bends and changes in segment

diameters.

3.2. Software Modules for Model Development
3.2.1. DIDEC

The DIDEC program (Gaudine) enables computer
entry ' of structure geometry for wire-grid model

creation. DIDEC is an acronym for digitize, display,
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edit and convert.

A numerical model is composed of wire elements
identified by their end point vertices. The vertex
coordinates are derived by drafting a layout of the
wire grid on a 2-dimensional projection of the
structure. The x,y, and z endpoints are subsequently
entered into the computer memory via digitization or
keyboard entry. -

Segment editing involves joining specified
vertices to form the 3-dimensional wire grid model.
DIDEC commands as JOIN, CHAIN, POLYGON and CUT are
used for wire manipulation purposes.

Front, side, top and 3-D views of the computer
model can be displayed in DIDEC. In addition, a
section of the display may be 'blown' to magnify model
details.

Finally, the DIDEC geometry data file is

converted into a format suitable for NEC execution.

3.2.2. Program Radius

Wire radii are determined by invoking the ‘'same
surface' rule of thumb where the surface area of the
wires parallel to one 1linear polarization is made
equal to the surface area of the solid surface being
modelled (Ludwig). For a square grid, suitable for

any polarization, the total surface area of the wire
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should be twice the external surface area of the
corresponding square patch.

Program Radius (Nguyen) uses the 'twice surface
area' principle to compute radii for a wire grid
model. The program then enters the new wire radii

into the geometry section of the NEC input file.

3.2.3. Program CHECK -

When developing a wire grid model, the wire radii
is limited by the thin wire approximations of the
computer code. In addition, the segmentation of the
wire grid must be compatible with the basis and
weighting functions used in the numerical
implementation of the Method of Moments.

To obtain a sound numerical representation of a
physical structure, the geometrical parameters are
constrained by the computer program to be used for the
modelling computations. A set of grid guidelines for
NEC is outlined in table I.

Program Check (Trueman) is implemented to
systematically 'check'! wire grid models against the
above criteria and report any incompatibilities. If
wire parameters exceed the set limits, the degree of
discrepancy is identified by a (N)ote, (W)arning or
(E)rror message, error being the greatest deviation.

In the individual incompatibility section of the
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check output file, wires are tested for finite length
i.e. wire length > 0.01 meters. Additionally, the
A/A, A/a, and A/a ratios are evaluated for every
segment on the model ¢to verify that the NEC
constraints are satisfied.

Junction incompatibilities include overlapping or
coincident wires. This érror will occur if a given
wire is inadvertently repeated in -the NEC geometry
file. The seg/seg ratio signals abrupt changes in
length of adjacent segments on the structure.
Similarly, sharp differences in the redii of two
connected wires are reported in the rad/rad column of
the check output. In order to accurately represent
the flow of physical currents around wire bends, the
acute angle between segments must be sufficiently
large. An error in the angle is indicated if the
center of one segment falls within the radius of the
other (seg/rad). The Check constraints are outlined
in table II.

3.2.4. Program CLEAN

Clean (Tarintino) is a Fortran program which
corrects the individual and junction incompatibilities
.detected by program Check. The desired level of error
removal (note, warning, or error) is specified by the
user. The output is a 'clean' NEC input geometry file

ready for execution.
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ZERO LENGTH

SEG/WAV

SEG/RAD

WAV/RAD

COINCIDENCE

SEG/SEG

RAD/RAD

SEG/RAD
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Individual Incompatibilities

ERROR:

NOTE:
WARNING:
ERROR:

WARNING:

ERROR:

ERROR:

LENGTH OF WIRE < .01 M

.05 < SEG/WAVE < .1
.10 < SEG/WAVE < .2
SEG/WAVE » .2 OR <.001

2.0 < SEG/RAD < 8 WITHOUT EK OPTION
0.5 < SEG/RAD < 2 WITH EK OPTION
SEG/RAD < 2.0 WITHOUT EK OPTION
SEG/RAD < 0.5 WITH EK OPTION

WAVE/RAD < 30

INCOMPATIBILITIES AT JUNCTIONS

ERROR:

ERROR:

WARNING:
ERROR:

ERROR:

TABLE II:

BOTH WIRES COINCIDENT

LONGER SEGMENT/SHORTER SEGMENT > 5

LONGER RADIUS/SHORTER RADIUS > 5
LONGER RADIUS/SHORTER RADIUS > 10

CENTER OF ONE SEGEMENT WITHIN OTHER
RADIUS

CHECK CONSTRAINTS



CHAPTER 4

MODEL VALIDATION

Validation is an essential part of model
development. Both internal and external validation
procedures are used to verify whether a computer model
accurately reproduces the electromagnetic response of
the actual structure. |

Internal validation is a check that can be made
concerning solution validity within the model itseif
(Miller). This includes ‘eyeballing' the data to
determine whether the computed current and field
results exhibit physically reasonable behavior.
Graphic display prograns, available in the
Electromagnetic Compatibility Laboratory, offer a
clear insight into the electromagnetic phenomena of

numerical models.

4.1. current Distribution Display

SPCTRM (Larose) is a computer code used to
display the currents induced on wire grid models.
SPCTRM utilizes colour to represent RF current
magnitude or phase on a segment. current reference
direction is indicated by an arrow. The colour hues
range from blue (0 current) to red (maximum current)

and offer a gqualitative appreciation of current




52

distribution on a wire grid model.

4.2. Radiation Pattern Displays

A radiation pattern is a. graphical representation
of the far field properties of an antenna or
scatterer. The coordinate system used at the EMC

Laboratory to plot the electric field patterns of

vehicle-mounted antennas is shown in figure 14. The

field at any point in space is resolved into two
components in a spherical coordinate system with the
origin at the antenna.

In navigational terms, the x-axis is directed
forward, y-axis is port and z-axis is the top.
Negative axis directions are designated as aft,
starboard and botton, respecfively.

Two dimensional, polar, diagrams of the electric
field intensity, E(theta,phi), may be plotted by
keeping one angular coordinate fixed while varying the
other. Conical or azimuth cuts of the radiation
pattern are obtained when theta is fixed and phi
varies from 0 to 360 degrees. In elevation patterns,
phi is fixed and theta varies from 0 to 360 degrees.
Figure 25 illustrates a far field polar plot as drawn
by the graphics display program, PATCMP (pattern
comparison).

The far field characteristics of an antenna can
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00

o800
".on

Figure 14 EMC Laboratory Reference Coordinate
System

be described by a set of azimuth patterns spanning the
theta sector in which communication must be
established (Larose). In the EMC laboratory, a series
of azimuth patterns from theta = 0 to 180 degrees can
be displayed in the form of altitude or colour plots.
Examples of altitude graphs are shown in figure 25.
Graphic displays of the. current distribution and
far field patterns are used for internal as well as
external validation of the wire grid model. External
checks utilize independent data from other sources
(Miller). For example, full scale and scale model
pattern measurements are instrumental in assessing
solution validity. Comparisons between the measured
and computed fields reveal the degree of correlation

of the actual structure with its nunerical
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representation.

To obtain a meaningful graphical comparison
requires relative scaling of the measured and computed
patterns. The fields are scaled so that they radiate
equal amounts of powver. The radiated power is
computed by program ISOLEV (ISOotropic LEVel) (Bahsoun

and Kubina).

4.3. Radiated Power and Isotropic Level

ISOLEV computes the radiated power from the
azimuth p&tterns in the NEC solution file. The power
is obtained by taking the closed surface integral of
the power density, S(0,¢) over the surface of a sphere

of radius 1 meter. The power. density is

EZ(0,4) +E; (0,0)

S(el(b): 21‘

and the total radiated power is given by

x 2x 2 2
Pfff E5 (0,4)+E; (0, ¢) absindds.

0=04=0 21

The radiated power of the antenna under test
(AUT) is used to determine a reference or isotropic
field 1level. The isotropic level is an

omnidirectional electric field which radiates, in one
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polarization, the same amount of power as the AUT.
The power density of the isotropic radiator over
a spherical surface of radius 1 meter is

s o Flso__ B
1507720 4am(1)2

Hence the isotropic field
1P

The isotropic level is used to scale radiation
fields for pattern comparison purposes. Program
PATCMP scales two patterns so that their isotropic
levels coincide, or equivalently, so that their
radiated powers are the same.

In addition to the radiated power and isotropic
level, ISOLEV calculates the HF aircraft performance
parameters. The computation of radiation pattern
parameters allow for single-valued assessment of
antenna performance at a particular frequency.
Consequently, the external validation effort is
simplified by plotting and, subsequently, comparing
performance criteria versus frequency curves of the
actual structure and its corresponding wire grid
model.

The HF frequency band is widely used for medium
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and long range communications between an aircraft and
the ground (Granger). Long distance radio propagation
was generally accomplished by ionospheric reflection
and is known as the skywave mode of propagation. In
general, skywave signals are randomly polarized and,
hence, the radiated power must include both the E-
theta and E-phi contributions. Furthermore, for
adequate communication coverage, HF aircraft antennas
should radiate as much power as possible in the 60-120
degree zenith angle range (Bahsoun). The enerqgy
distribution requirements of HF antennas is quantified
by the radiation pattern efficiency, N, This
parameter is defined as the ratio of power radiated in
both E-theta and E-phi in the solid angle between

theta = 60 degrees and theta = 120 degrees (Kubina).

Thus,

Fid

2% 3

[ [ (IBs|*+|E,[*) sinbdBdd

$=0y_ 1

Mp = 52 2:‘ X 100%,

f(|E9|2+|E'¢|2)sin6d6d¢

$=06=0

For medium distances, communication was

established via the ground wave (figure 15). The
ground wave comprises of the direct, reflected and

surface wave.
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Transmitting
antenna <,

Figure 15 Nomenclature of Wave Propagation (Blake)

In surface wave propagation, the earth tends to
guide a wave polarized perpendicularly to it, so that
the wavefront remains approximately perpendicular and
thus maintains a direction parallel to the surface
(Blake) . Hence, vertically polarized waves may
propagate some distance beyond the line of sight. It
is, therefore, desirable to radiate the greatest
amount of power in the E-theta component. The 3E,
parameter is the ratio of the power radiated in the
vertical polarization alone to the total radiated

power ax 2x

[ 151* desinbc®

= 9=04=0
$Ey = —— X 100%.

[ [ (UBal?+|5|?) désinede

0+04=0
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The last HF assessment pérameter combines the two
aforementioned requirements of power contained in the
vertical component and radiated in the theta=60 to 120
degree angular sector. The ‘useful' %E-theta

parameter is given by

2

— “'Ia

2%

f EZ dpsinbdo
0= K40
2% 2%

f (E}+E}) dbsinbde
0=06=0

wlx

SUB-%E, = x 100%,



CHAPTER 5

EC~130 HF ANTENNA INSTALLATION

The EC-130 Tacamo is the United States Air Force
high-wing, all metal monoplane. Its Canadian
counterpart is the C130 Hercules aircraft. The Tacamo
is equipped with five HF external wire antennas for
long range communication. The HF complement consists
of two flat top antennas that run from either side of
the fuselage to the vertical stabilizer, two
symmetrical dogleg antennas and one near-central
receive antenna (figure 16).

The basic installation of each antenna is the

. HF-3 RIGHT DOGLEG ANTENNA
+ HF=4 LEFT DOGLEG ANTENNA
H F~3 ANTENNA

. HF=1 ANTENNA

. HF<2 ANTENNA

B s N -
by

Figure 16 EC-130 Tacamo
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same. Each external wire extends from the mast a
forward attaching point of the antenna to the
fuselage. The wire runs between the mast and the
strain insulator which serves as an electrical
termination point for the antenna. The aft end of the
wire is mechanically anchored to the
(vertical/horizontal) stabilizer by a tension take-up
unit. .

As illustrated in figure 17, HF1l is connected
between +he vertical stabilizer and the upper port
side of the fuselage at station 267. The wire antenna
is displaced 1.168 meters left of center. HF2
similarly extends from fuselage ~tation 267 to the
vertical stabilizer, however, it is displaced 0.940
meters to the right. The forward attaching point of
external wire HF3 is at fuselage station 473 and 0.254
meters to the right of center. The HF4 external wire
is connected to the port ﬁast at station 681 and runs
to the horizontal, then to the vertical stabilizer.

HF5 is the starboard image of antenna HF4.
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5.1. Measurements
5.1.1. Scale Model

Radiation patterns were measured on a scale model
of the EC-130 airframe/HF antenna system. The tests
were conducted at the Naval Air Development Center in
Warninster, Pennsylvania and the results are outlined
in NATC report no. SY-11R-84.

The scale model is constructed of fiberglass and
coated with copper. Its dimensions are 1/100 times
those of the Tacamo prototype. Thus, the HF band of
2 to 30 MHz was increased accordingly to a working
frequency of 200 to 3000 MHz. The measurements were
conducted in a pyramidal anechoic chamber designed to
operate in the 125 MHz to 40 GHz range.

Two EC-130 scale models were used for measuring
the antenna radiation patterns. At frequencies below
500 MHz, a model containing miniature oscillators and
batteries was tested under transmitting conditions.
Alternatively, the second model was examined under
receiving conditions for frequencies 500 through and
including 3000 MHz. This scale model was drilled to
pernmit the use of cables running between the antenna
feed locations and the receiver.

lhe radiation patterns of antennas HF1, HF3 and
HF4 were measured. Antennas HF2 and HF5 were not

tested because of their respective symmetry with HF1
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and HF4. Although HF1 and HF2 are not exact images,
their roll off from top center of the 1/100 scale
model differs by a mere 0.09 inches.

E-theta and E-phi polarization patterns were
measured 360 degrees in azimuth for each elevation
angle from O to 155 degrees in increments of §
degrees. The test frequencies covered the complete HF
frequency range at scale frequencies corresponding to
2.13, 4.04, 8.00, 11.00, 14.00, 17.00, 20.00, 23.00,
26.00 and 30.00 MHz.

At the EMC Laboratory in Concordia University,
the scale model radiation patterns were interpolated
and extrapolated to generate conical cuts in
accordance with military standard MIL-A-9080. The
military specifications require the three principal
plane patterns and a set of azimuth patterns at theta
= 0, 25,37, 45, 53, 60, 66, 72, 78, 84, 96, 102, 108,
114, 120, 127, 135, 143, 155 and 180 degrees for both
vertical and horizontal E-field polarizations. HF
system performance parameters were derived for the EC-

130 scale model.

5.1.2. Full Scale
In addition to the scale model measurements, full
scale airborne testing of the EC-130 airframe-antenna

installation was undertaken. Far field patterns of
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the Tacamo HF antenna system were measured by
utilizing the Antenna Testing Laboratory Automated
System in Chesapeake Bay, Maryland. The NATC provided
the H-plane patterns for both E-theta and E-phi
polarizations of antennas HF1 and HF4 at the following
frequencies: 4.00, 8.00, 14.00, 20.00, and 26.00 MHz.

The electric fields, displayed in Appendix A,
reveal discrepancies between the full scale and scale
model radiation pattern measurements. Pattern shape,
alignment, 1lobe number, magnitude of wvertical and
horizontal polarizations and relative E—theta and E-
phi 1levels are considered when comparing electric
field plots.

Notable inconsistences which occur when exciting
antenna HF1 are mentioned below. At 4 MHz, the scale
model E-theta polarization is cardioid-shaped whereas
the full scale pattern is omnidirectional. The
forward bell-shaped lobe of the scale model at 8 MHz
is not evident in its full scale E-theta counterpart.
Lobe inequalities exist between the scale model and
full scale patterns in both polarizations at an
operating frequency of 14 MHz. At higher frequencies,
close attention must be paid to differences in
magnitude and pattern alignment.

Discrepancies in the HF4 principal plane patterns

consist of magnitude level and field shape variations.
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In particular, distinct nulls are apparent in scale
model E-phi plots at 8.00, 14.00, 20.00, and 26.00
MHz. However, the nulls are not nearly as well
defined in the full scale patterns. In addition,
there is a severe deviation in the relative E-theta
and E-phi levels at 4.00 MHz.

The inconsistencies in radiation pattern
measuremnents led to the development of a computer
model. The computed electric fields serve to qualify
the full scale and scale model HF antenna patterns.

In general, the validity of a numerical model is
assessed by comparing the computed radiation patterns
with the measured patterns. However, in this project,
the reliability of the available measurement data is
questionable. Therefore, only incremental

perturbations in model development were effectuated.

5.2, Wire Grid Model Generation - Base Model F

The thrust of the computer simulation technique
is to develop a model which is electromagnetically
equivalent to the actual structure. An
electromagnetically equivalent wire grid
representation supports a current distribution which
approaches that of the corresponding continuous
surface. Thus, the wire mesh configuration is

dictated by local variations in the surface geometry
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and surface current density.

As stated in chapter 2, the wire grid should
consist of segments near-equal in length. The
segmentation is such that the wire lengths are 0.21 at
30 MHz. In addition,the number of segments is the
minimum possible to reduce computing time whilst
upholding the aforementioned.requirements.

Effectively, the EC-130 mesh-is divided into
near-uniform quadrilateral sections spanning a maximum
of {O.Z(c/f))2 = 4m?. Triangular and pentagonal grids
of wires are also used to model complex surface
geometry.

A layout of the wire grid was prepared on the
aircraft's plans for digitization. The main portion
of the fuselage consists of octagonal cross sections
positioned so as to coincide with the feed location of
each HF antenna. The octagons give way to diamond-
shaped sections as the aft of the fuselage gradually
slopes upwards. Longitudinal wires divide the
fuselage into rectangular grids. The wings and
stabilizers are plane surfaces and the model wheel
wells approximate those of the actual aircraft.

Soon after completing the model digitization,
more detailed drawings of the airframe became
available. Water line, butt line and fuselage station

coordinates were entered manually via DIDEC resulting
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in a cleaner, crisper wire-grid representation. 1In
addition, all five HF long wire antennas were
connected in accordance with the NATC specifications.

The same surface area rule of thumb was used to
calculate the radii of the airframe wires. The model
antenna wires are 0.002 meters in diameter.

Wire radii and segmentation were changed in some
instances in order to remove  all junction
incompatibilities. Only individual seg/wav errors
remained at high frequencies. Since the wires
exceeded the upper limit of 2 meters by a minimal
amount, and subdividing the wires would substantially
increase the number of segments, seg/wav errors were
tolerated. The resulting EC-130 wire grid model
contains a total of 405 segments and is entitled base
model F (figures 19 and 20).

The excitation at the antenna terminals is a
voltage source of 1 volt magnitude and 0 degrees
phase. NEC requires a feed element segment at the
voltage source location so that the required potential
drop can be specified as a boundary condition (Burke
and Poggio).

As in the case of the scale model measurements,
antennas HF1, HF3 and HF4 are tested in turn. Thus,
at each frequency, three NEC input files differing

only in the location of the feed element segment are
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Figure 19 EC-130 Aircraft
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Figure 20 EC-130 Base Model F

required

Because the model geometry is fixed, the

impedance matrix [G) remains constant for all three

With the Numerical Green Function (NGF)

excitations.

option in NEC, the impedance matrix is extracted from
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the output of the first NEC run and stored for the
remaining two executions. The elements of the voltage
matrix [E] are rearranged according to the location of
the excitation source and the currents are solved in
each case. The NGF feature reduces the CPU time used
by a factor of N’ where N is the number of segments

(Stutzman and Thiele).

5.2.1. Current Distribution

A transmitting system will operate at maximum
efficiency when the aircraft antenna system provides
an input impedance that will match the transmitter
impedance. The antenna impedance curve is influenced
by the electromagnetically coupled currents that exist
on the wires of the model. In particular, strong
currents that flow along resonant paths will
significantly affect the input impedance. Granger
defines six current modes on the airframe (figure 21).
The resonances of these modes occur when the lengths
of the current paths are equal to an integral multiple
of A/2.

The current on HF1l at 4.04 MHz is predominant
along the wire antenna and couples into antenna HF3
(figure 22). In addition, the spurious current at the
tip of the vertical stabilizer exemplifies a NEC

limitation in which large circulating currents are
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Figure 21 Resonant Current Modes on Airframe
(Granger)

found to occur on the interior loops of wire grids
(Mittra).

The HF3 wire antenna extends along the near-
central longitudinal axis of the aircraft.
Consequently, the excitation of HF3 results in an even
distribution of current about the central axis of the
fuselage (figure 23). The computed radiation patterns
are ,predictably, symmetrical.

Figure 24 shows a colour plot of the amplitude of
the current distribution when the HF4 dogleg is the
antenna under test. The current magnitude is highest
along its horizontal wire. Currents are weakly

coupled into the port side of the fuselage, the
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Figure 22 Currents on Model F at 4.04 MHz - HF1

istribution on Model F at 4.04

Current D

Figure 23
MHz - HF3

forward edge of the horizontal stabilizer, and the aft

edge of the left wing.

In this case, the fixed wire is poorly coupled to

the current modes of the airframe.

the input

Thus,
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Figure 24 Currents on Model F at 4.04 MHz — HF4

not substantially

of the antennas are

edance

imp

affected by the current modes.




R e

L i L e L

74
$.2.2 Radiaticn Patterns
5.2.2.1. Computed/Scale Model

To begin, the radiation patterns of antennas HF1,
HF3 and HF4 were computed at a frequency of 4.04 MHz.
As illustrated in figure 25, the computed patterns of
antenna HF1 closely track the corresponding scale
model measurements. The only notable difference is
the occurrence of a shift in the cardioid of the
measured E-theta azimuth pattern. In contrast, the
computed cardioid pattern is symmetrical about the
antenna.

The HF3 radiated fields of the EC-130 numerical
model shows reésonably good agreement with the
experimental measurements (figure 26).

The gradual variation in the shapes of the
computed E-theta patterns parallel those of the scale
model patterns through ov: most of the complement of
conical cuts. However, there exist some differences
in magnitude levels. Both the computed and measured
E-phi polarizations are figure eight patterns with
minima forward and aft of the aircraft.

The computed radiation patterns of antenna HF4
resulted in some agreement with the measurement data
(figure 27). The computed E-phi polarization
reproduces the tilted, two-lobed scale model pattern.

However, the computed E-theta pattern continuously
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exhibits deeper nulls and degrades considerably in the
theta = 66 degrees to 96 degrees range.

The initial modelling effort resulted in a
credible model at 4.04 MHz for antennas HFl1, HF3 and
HF4. Radiation patterns were obtained at sample
frequencies of 8.00, 14.00 and 23.00 MHz to test the
performance of base model F over the HF band.

There is some agreement between the computed and
scale model fields of antenna HF1 at 8.00 MHz.
However, there exist differences in the shape of the
E-theta polarization pattern. This is evident in the
azimuth pattern where the forward lobe of the measured
E-theta component is bell-shaped and its computed
counterpart is approximately circular (figure 28).
The azimuth plane pattexrn also clearly shows the
presence of a deeper null in the computed E-phi
polarization at the forward location. The pattern
agreement for antennas HF3 and HF4 has also degraded
since increasing the operating frequency from 4.04 to
8.00 MHz (figure 29).

The agreement is very good at 14.00 MHz for
antennas HF1l, HF3 and HF4 (figure 30). The only
apparent anomaly is the presence of two extra small
lobes in the computed E-phi polarization of antenna
HF3. At 23.00 MHz, the computed patterns closely

reproduce the measured data HF1, HF3 and HF4. The
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entire set of radiation patterns is displayed at 23.00
MHz in the altitude plots of figure 31.

The degradation in pattern agreement at 8.00 MHz
was initially attributed to an increase in seg/wav
incompatibilities. However, the computed fields
closely approximate the experimental measurements at
the operating frequencies of 14.00 and 23.00 MHz.
This implies that the main electrical consideration of
segment length relative to the wavelength has been
sufficiently satisfied.
5.2.2.2. Computed/Full Scale

Full scale azimuth patterns for antennas HF1l and
HF4 of the EC-130 aircraft were provided by NATC. At
4.0 MHz', the HF1 E-theta polarization is a frayed
circular pattern whereas, at 4.04 MHz, the computed E-
theta field is a forward-directed cardioid (figure
32). The measured E-phi polarization consist of two
lobes with minima in the forward-starboard and port-
aft directions. The computed E-phi also comprises of
two lobes, however, the minima are forward and aft of
the aircraft. For antenna HF4, the measured E-theta
pattern is near-omnidirectional and the measured E-rhi
polarization is rounded with a null in the forward
location (figure 33). The computed E-theta and E-phi

patterns of antenna HF4 are illustrated in figure 27

Computed pattern at 4.04 MHz compared to Full Scale at 4.0
MHz (due to limited availability of full scale - 4, 8, 14,
20 & 26 MHz)
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and show poor pattern agreement with the full scale
measurements.

To approximate the in-flight test environment, a
perfect ground plane was included in the computer
model simulation. As expected, the computed currents
on the wire grid aircraft 5000 feet above the ground
are identical to the current in the free-space model
since reflection coefficient analysis rather than
method of moments is incorporated.

The radiaced field is the superposition of the
source model and image fields. The resultant computed
E-theta polarization of antenna HF1 remains a cardioid
(figure 34). The E-theta pattern of antenna HF4 for
the above ground case is illustrated in figure 35. At
the azimuth, E-phi is simply the tangential component
of the electric field at the interface of free space
and perfect ground. Therefore, boundary conditions

dictate that

Eean=Epni=0.

The EC-130 base model patterns more closely
follow the scale model than full scale measurements.
Model F remains stable throughout the HF band as
illustrated by the pattern agreement at frequencies as
low as 4.04 MHz and as high as 23.00 MHz. However,

discrepancies persist, particularly at 8.00 MHz.
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$.3. Geometrical Perturbations

At this point, incremental perturbations in wire-
grid topology were effectuated to assess model
stability. Segmentation, radii selection and
impedance 1loading are fundamental to the model
development process.

5.3.1. Segmentation

To achieve electromagnetic equivalence, the wire
grid should support a current distribution which
approximates that on the corresponding surface.
Therefore, optimal segmentation of a model would
incorporate finer mesh where larger currents might be
expected to flow. More wires were added in the feed
element regions of the airframe to account for current
flow outward and around the antenna source segment.
Models G, H and I were derived from base model F by
providing a denser grid around the feed points.

Wires were added around the feed elements of
antennas HF1 through HF5 augmenting the total number
of segments to 476 for model G. Soon after, the HF3
feed region grid was reflected onto the port side to
maintain airframe symmetry. The resulting model H
contains 486 segments. Revision I called for the
addition of four cross wires connected to the source
segment of antenna HF2. Figures 36-38 illustrate the

levels of model refinement. The current distribution
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and radiation patterns of antennas HFl, HF3 and HF4

were computed at an operating frequency of 4.04 MHz.
Models G, H and I conform to NEC guidelines on segment

length, radius and interconnections at 4.04 MHz.

Figure 36 Wire Grid Model G
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Figure 37 Wire Grid Model H

Figure 38 Wire Grid Model I
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$.3.1.1. EC-130 Wire Grid Model G

Overall, the radiated fields of EC-130 model G
correspond quite closely to those of base model F,
particularly, the HF3 and HF4 patterns (figures 25,
26, 27 and 39). However, the agreement between the
computed and scale model patterns of antenna HFl
degrade at the higher conical cuts. The desired,
heart-shaped E-theta patterns that were intricately
reproduced by the base model, are replaced by oval
patterns of model G.

The similarity between the HF3 antenna patterns
of model F and revision G stems from the similarity in
current distribution on the two models. In both
cases, the excitation of the near-central antenna
results in current coupling evenly into antennas HF1
and HF2 as well as along the wheel wells and wing
edges (figures 23 and 40).

Similarly, the excitation antenna HF4 results in
the highest current along the horizontal wire of the
dogleg antenna for both models F and G (figures 24 and
40). Consequently, the radiation patterns of the two
models are predictably alike.

The current distribution on model G when exciting
antenna HF1 offers insight into reasons for the
degradation between the computed and scale model
radiation patterns. Most notably, the largest current

flows in the feed region of antenna HF3.
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This phenomena does not occur for the base model
and is, therefore, attr buted to the addition of wires
on the starboard side of the airframe in the HF3 feed
point region.

The spatial placement of segments is an important
consideration in the modelling process. Intuitively,
the wires should closely follow the geometrical
topology of the conducting paths of the aircraft.
Thus, reflecting the HF3 feed region wires onto the
port side would maintain the symmetry of the Zfull-
scale aircraft structure. The resulting model H is

illustrated in figure 37.

5.3.1.2. EC=-130 Wire nrid Models H and I

The current distribution for EC-130 model H is
significantly high in the feed region of antenna HF3
for each successive AUT (figure 41). This coupling
behaviour has also occurred when testing model G and
is illustrated in figure 40. Consequently, the
radiated fields of EC-130 revisions G and H exhibit
similar pattern characteristics (figure 42).

Model I was created by adding four crosswires in
the HF2 feed region to maintain the incegrity of the
airframe symmetry. Since there is negligible current
coupling into the starboard side of the aircraft when

exciting port antenna HF1 and HF4, and only limited
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coupling when exciting antenna HF3, the incremental
perturbation in model topology did not adversely
affect the electromagnetic response of EC-130 model I.
The wire currents and radiation patterns approximate
those of the preceding models (figures 43 and 44).

The results of the wire grid revisions G, H and
I indicate that the numerical model of the EC-130
aircraft is especially sensitive to the wire
distribution in the HF3 feed region.
$.3.1.3. EC-130 Triangulated Wire Grid Model P

In the book Moment Method in Electromagnetic
Techniques and Applications, Moore and Pizer suggested
that triangular segmentation be wused for the mesh
modelling of a continuous surface. In this way,
currents will flow as they would in reality rather
than 'forcing' the current paths.

The base model was triangulated by inserting
diagonal wires in the rectangular grids. Model P
consists of 591 segments and is illustrated in figure
45. At 4.04 MHz, model P complies absolutely to the
NEC radii and segmentation requirements.

Once again, high current coupling occurs in the
antenna HF3 feed region for each successive AUT
(figure 46). The pattern agreement between the
computed and scale model far fields has diverged

(figures 25, 26, 27 and 47).
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Figure 44 Model I - Radiation Patterns at 4.04 MHz
for Excitation HF1, HF3 & HF4 (Computed)
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Intuitively, the most effective approach to
segmentation inveolves aligning the wires so as to
maintain the integrity of the structure surface
geometry. In order to model efficiently, a finer mesh
should be incorporated in areas where larger currents

might be expected for flow.

Figure 45 Triangulated Wire Grid Model P



Model P -~ Current Distribution at 4.04

MHz for Excitation HF1l, HF3 & HF4

Figure 46
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5.3.2. Radius

As stated in chapter 3, the wire diameter is
selected to ‘correct' for the inductive differences
between the wire grid model and the corresponding
solid surface. The radii is such that the wire mesh
has twice the external surface area of the surface
being modelled. In addition, the wire radii must
comply with the requirements of the Numerical
Electromagnetics Code.

The segment diameter of model F through I
inclusive were calculated manually using the same
surface area rule of thunmb. Soon after, programs
RADIUS and CLEAN became available and automated the
radii computation process. The program algorithm
implements the 'twice the surface area' approach and,
thus, the computed results closely approximate the
manually derived diameter values. However, there is
finer tapering in the computed radii of adjacent
segments due to the iterative potential of high speed
computers. Gradual changes in radius between
connected segments are desirable since abrupt

differences in diameter may decrease accuracy.
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$.3.2.1. EC-130 Wire Grid Model J

EC-130 model J is identical to model I in terms
of wire grid topology. The sole difference is that
the radii of revision J is computed by programs RADIUS
and CLEAN. The optimization in radii selection is
illustrated in figure 48.

Antennas HF1l, HF3 and HF4 of EC-130 model J were
tested at an operating frequency of 4.04 MHz. The
electromagnetic response of wire grid J differs from
its topological equivalent - model I - and is more
closely identified with base model F.

Figure 49 illustrates the current distribution on
EC-130 J when exciting HF1. The largest current flows
along the source antenna and there is coupling into
the near-central and starboard antennas. When HF3 is
the AUT, the highest current is along the receive
antenna and a significant amount of energy is
transferred into the port and starboard antennas. A
plot of current distribution for source antenna HF4
shows the greatest current along its horizontal wire.
In all cases,the current coupling into the airframe is
most prominent at the extremities of the aircraft
structure such as the nose, wheel wells, wing edges
and tips of the vertical stabilizer and horizontal
stabilator.

The radiation patterns, shown in figure 50, are
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very similar to those of the base model F thus,
confirming frequency stability of the model (figures
25, 26 and 27).

Intuitively, the finer tapering in wire radii is
more desirable since, in reality, current varies
gradually rather than abruptly.
5.3.2.2. EC-130 Wire Grid Model K

The wire grid topology of EC-130 model K is
identical to that of model J. For the two-sided
surfaces (wings, stabilizers), the surface area was
equated to the total area of both sides for wires
runr;ing in perpendicular directions in the mesh. 1In
effect, the wire diameters on the wings, vertical and
horizontal stabilizers were doubled (figure S51).

A frequency sweep of 2.13 to 30.00 MHz inclusive
was executed on EC-130 model K. The number of seg/wav
and wav/rad incompatibilities became increasingly
significant as the operating frequency exceeded 8.00
MHz.

A chart tabulating the level of pattern agreement
in terms of the number of lobes , shifting, E-theta
and E-phi magnitude levels, and relative magnitude
comparisons is shown in table IIXI. The rating varies
from O (poor) to 5 (very good) points. The
corroboration between the computed fields and scale

model measurements is exceptionally good at 4.04,

- WY
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Figure 48 Wire Grid Model J
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Model J ~ Current Distribution at 4.04

Figure 49

HF3 & HF4

MHz for Excitation HF1,
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Figure 50 Model J - Radiation Pattern at 4.04 MHz
for Excitation HF1, HF3 & HF4
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Figure 51 Wire Grid Model K
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20.00 and 23.00 MHz for antennas HFl, HF3 and HF4.

The pattern agreement at lower and higher
segments of the HF spectrum confirm the frequency
stability of the model. In addition, the
dimension/wavelength incompatibilities that appear at
higher frequencies do not seem to adversely affect the
accuracy of the results. A similar conclusion was
drawn with base model F. The entire set of scale
model and computed radiation patterns are displayed in
Appendix B and C, respectively.

The performance parameters, Ny %E, and sub 3E,
are plotted versus frequency for antennas HF1, HF3 and
HF4. The graphs indicate that the computed values
closely track the scale model parameters (figures 52

to 54).
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Input Impedance and Resonance
The input impedance of an antenna is the
impedance presented by the antenna at its terminals.
Complex input impedance 1is composed of input
resistance (real) and input reactance (imaginary) such

that

Zin=Rin+inn

The input resistance accounts for the radiated and
dissipated power losses whereas the input reactance
represents the power stored in the near field of the
antenna (Stutzman and Thiele).

Plots of the input impedance versus frequency are
shown in figure 55 for antennas HF1, HF3 and HF4. The
input impedance can be understood by equating the wire
antenna mounted atop the wire grid airframe to a
transmission 1line terminated in an open circuit
(figure 56).

Accordingly, resonances will occur when the
antenna length is of the order L= (2n-1)A/4. The
losses that are incurred by input resistance is due to
radiation and alludes to a low loss transmission line
model. The inclusion of losses results in a slight
shifting of the resonant condition (X; = 0).

For a lossless open circuited transmission line,

resonance occurs at intervals of 1= (2n-1)A/4. The
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IIROT TR s e T T

121

L 2

Figure 56 Open Circuit Transmission Line Model

length of port antenna HF1l is 20.384 meters and is
expected to exhibit resonance at 3.7 MHz, 11.0 MHz,
18.4 MHz and 25.8 MHz. The graph of impedance versus
frequency for antenna HF1 indicate that resonance
nccurs at frequencies corresponding to the
intersections with the horizontal line passing though
the point where X; = 0. The frequencies of 3.1, 9.8,
18.3 and 24.8 MHz are lower than those predicted for
the lossless transmission model and is due to the
inclusion of losses in the circuit.

Similarly, antenna HF3 is 14.937 meters in length
and is expected to exhibit resonance at 5.0, 15.1, and
25.1 MHz for the lossless transmission line analogy.
The graph indicates resonances at 5.2, 15.0 and 24.9
MHz. The transmission line model closely approxim_ates

the actual resonant condition. The slight difference
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is a result of the finite input resistance of the
antenna.

The HF4 dogleg antenna is 20.718 meters in total
length and resonances are predicted to occur at 3.0
MHz, 10.9 MHz, 18.1 MHz and 25.34 MHz. According to
the computed plots of input impedance, the reactance
vanishes at 3.6 MHz, 10.0 MHz, 18.0 MHz and 24.9 MHz.
Once again, the predicted and computed resonant
conditions occur at approximately the same frequency
and the slight shifting is attributed to the input

resistance of antenna HF4.

Thin Wire Kernel Analysis

In all the previous models, the extended thin
wire kernel (EK) option of the Numerical
Electromagnetic Code was invoked. The EK feature
represents the current as a current tube rather than
a line source along the segment axis. Soon after, it
was discovered that the current tube simulation is
applied only to those segments that are parallel to
and of the same radius of the connecting segments. In
all other instances, NEC reverts to the line source
model.

The segments forming the HF antennas are the sole
wires that satisfy the criteria for implementing the

EK option. Model K 'minus EK' was executed. The
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resulting current distributions for source antenna
HF1, HF3 and HF4 were identical to the original model
K. This may be due to the limited application of the

current tube representation.

Computed/Full Scale

EC-130 model K was executed at 14 MHz above a
perfect ground plane. In addition, the full scale
test site was simulated by defining the electrical
properties of seawater in the NEC input file. Despite
efforts to model the aircraft and the test
environment, the computed patterns do not converge to

full scale measurements.



CHAPTER 6

CONCLUSION

In-flight radiation patterns of the EC-130 Tacamo
HF antennas were measured at the Antenna Test
Laboratory (ATLAS) in Chesapeake Bay. In addition,
two copper-plated, fiberglass 1/100 scale models of
the airframe-antenna system were constructed and
tested under the following conditions:

1. transmitting mode, f < 500 MHz

2. receiving mode, 500 MHz < f < 3000 MHz.
Pattern comparisons revealed significant discrepancies
between the full scale and scale model measurements.
Consequently, a computer model of the EC-130 HF
antenna installation was developed in order to qualify
the in-flight and scale model results.

Generally, validating numerical models of complex
geometry requires experimental measurements. However,
reliable data is unavailable. Therefore, only
incremental perturbations in model topology were
effectuated.

The Numerical Electromagnetics Code uses the
Electric Field Integral Equation with the Method of
Moments to solve for the currents on the wire grid
model. Once the current distribution is found, the

far field is readily determined by traditional
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radiation integrals.

An effective wire grid model will support a
current distribution that approximates that on the
corresponding structure surface. A wire mesh, in the
shape of the solid surface, will electromagnetically
approximate said surface, provided that the grid size
is small compared to a wavelength. To this effect, it
is the structure geometry and the electrical factor of
dimension/A that determines the wire grid topology.

EC-130 base model F was developed in accordance
with the aforementioned modelling principles.
Antennas HF1l, HF3 and HF4 were tested at frequencies
4.04, 8.00, 14.00 and 23.00 MHz. The agreement
between the computed and scale model patterns is quite
good for both polarizations throughout the HF band.
The base model maintained good agreement at the higher
frequencies confirming model stability.

High currents were evident in the feed element
regions of the source antennas. Intuitively, a finer
segmentation should be used where large currents are
expected to flow. Wires were added progressively to
the feed element areas of HF antennas 1 through 5
inclusive, resulting in models G, H and I. Overall,
the radiation patterns at 4.04 MHz were similar to
those of base model F. However, there were large

currents in the near-central feed region of the
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airframe when exciting antenna HF1, HF3 or HF4.

The smoother radius tapering of models J and K
seemed to correct the unusually high current in the
HF3 feed region. Antennas HF1, HF3 and HF4 on wire
grid model K were tested at frequencies 2.13, 4.04,
8.00, 11.00, 14.00, 17.00, 20.00, 23.00, 26.00 and
30.00 MHz. The agreement with the scale model
measurements were exceptionally good through most of
the HF range. Furthermore, the computed performance
parameters closely track the scale model values for
antennas HF1l, HF3 and HF4. In addition, the predicted
resonant frequencies based on the open circuit
transmission 1line analogy matched the resonant
frequencies of the input impedance curves of wire grid
model K.

Impedance loading , although not covered in the
thesis, is an alternative or complementary approach to
model refinement. This may include shunting the
excitation source with a capacitance to modify the
input impedance of the antenna or inserting a
resistance in parallel with a capacitance at the aft
end of an antenna to simulate the electrical
termination.

The in-flight testing site was simulated with the
addition a perfectly conducting ground plane as well

as seawater. However, the computed patterns failed to
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converge to full scale measurements. The numerical
models continuously demonstrated superior agreement
with the scale model measurements.

Development of the EC-130 wire grid model served
to qualify prior full scale and scale model
measurements. Further work in model refinement will
optimize the agreement between the computed and scale
model patterns. In particular, modifications in
segmentation and radii selection for the sensitive HF3
feed region of the airframe should be explored.

The EMC Laboratory at Concordia University has

recently acquired greater computing capability

sl et b e

enabling the Numerical Electromagnetic Code to be
executed in a more time efficient manner. As a
result, wire grid models are tested more readily at
-finer increments of frequency. This would offer new
insight into resonant behaviour and input impedance
characteristics of the model.

The impedance curves of the EC-130 wire grid

representation corroborates with the predictions based
on the open circuit transmission line analogy. It is
g recommended that scale model impedance values be made
available to further validate the numerical model.
A surface patch modelling approach can also be
used to validate the wire grid results. Program

Junction (Hwu) solves for surface currents on
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triangular patch models and is presently available at

Concordia University.
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APPENDIX A

Appendix A contains the in-flight and scale model
radiation patterns of antennas HF1 and HF4. The

experimental data was provided by the Naval Air Test

Center.
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APPENDIX B

Appendix B contains the scale model measurements of

antennas HF1, HF3 and HF4 over the HF band.
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APPENDIX C

Appendix C consists of the radiation patterns of
antennas HF1, HF3 and HF4 for wire grid model K. The

frequency of operation ranges from 2.13 to 30.0 MHz.
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