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ABSTRACT

Numerical Simulation of Imploding Shock Waves

Alidad Amirfazli

A numerical study was made of imploding shock waves. The objective of the
present paper is to clarify the propagation and instability of the converging cylindrical
and elliptical shock waves. In order to make the simulation, a second order explicit
MacCormack type finite difference method was employed to solve the unsteady
compressible Euler equations. At first, a one-dimensional simulation was preformed
for converging cylindrical shock waves. The results were found to be in good
agreement with the Chester, Chisnell and whitham relation. Also, the numerical
results were in good agreement with other published 1-D numerical simulations (e.g.

method of characteristic).

A two-dimensional simulation was also developed for initially perturbed
implosions. The governing fluid dynamics equations have been solved in polar
coordinates. The 2-D scheme is an extension to the 1-D case, using the operator
splitting, where the multi-dimensional solution is evolved from a factored sequence
of one dimensional operators. From the two-dimensional study of converging

cylindrical shocks, it has been concluded that although the shock has been perturbed



initially in the azimuthal direction, it has a tendency to keep its continuous shock front
curvature until it gets close to the centre. Eventually, at the centre a break down in
the shock front is inevitable. Finally, for the elliptical shock the perturbation
parameter (£) was found to vary with shock travel in a complex manner that can not
be represented by a simple power law. This finding is in good agreement with recent

experimental results.
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CHAPTER 1

Introduction

For solving today's engineering problems, the most used approaches are
theoretical, experimental and numerical simulation. Many of the governing equations
of the fluid dynamics do not permit an exact solution. Therefore, an appropriate
solution in which based on rational arguments some terms are left out is employed.
Another way to find approximate solutions is the use of dimensional analysis coupled
with the experimental techniques to come up with some empirical relations. The
availability of fast computers with large memories and at reasonable costs, enables
one to seek numerical solutions to the governing equations. Such computer simulations
are an efficient way to reduce the development time and concurrently study the
problem from different angles with a marginal increase in cost. Other important
advantage of numerical simulation is obvious in cases that, experiments are hard to
carry out or dangerous, like: explosions. In such situations, an insight to the flow

behaviour is achievable through numerica! models.

In order to study the imploding shock wave, the facts above, promoted the idea
of numerically modelling it. Details about the computational method and the results

obtained from the study will be presented in the next chapters. The remainder of this



chapter will present the application of the imploding shock waves and a brief review

of the previous works.

1.1 Some applications of imploding shock wave

Possibility of achieving high temperature and high pressure by means of an
imploding shock wave have found a variety of scientific and engineering applications.
Synthetic diamond is produced from graphite by placing the graphite in a steel
container and exposing it to a focused implosicn [1]. Also, focused shock waves are
used in condensation of carbide or oxides gas cloud to form fine crystals [2].
Application of the imploding shock waves in the field of nuclear physics have led to
the production of neutrons from deuterium-deuterium reactions [3]. This has been
done through an explosion-driven implosion to produce fusion at the focus. Another
interesting use of imploding shock waves is in the hypervelocity launchers. The
speeds, as high as, 5.4 Km/S was actually obtained for an 8 mm diameter projectile
[4,5]. In astronomy, the study of converging shock, has been used to describe the
triggering mechanism for star formation through fragmentation of the shock

compressed regions [321.

For such applications, investigation of the basic aspects of implosion
phenomena is required. To meet this requirement, in the past few decades several

analysis have been done through theoretical, experimental, and numerical studies.
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1.2 Different approaches in studying converging shock waves

1.2a Theoretical studies

Converging spherical and cylindrical shock waves were investigated
theoretically some fifty years ago by Guderley [6]. In his study, Guderley has shown
that a weak symmetrically converging shock wave can increase in strength in the
vicinity of the focus at which infinity high temperature and pressure are found. This
however would not happen in reality, since the perfect symmetry does not exist in
actual cases and the effect of viscosity or heat conaaction will cause the pressure and
temperature to remain finite. Based on Guderley's work, other analytical solutions
were found for the problem of imploding shocks by Butler {7], Lighthill {8],
Stanyukouvich [9], and Whitham [10]. Butler and Whitham in their work indicated
that any small perturbation of the shock front will translate in an unstable
convergence. This means that a small perturbation amplifies during the course of
convergence. In the continuation of the theoretical investigation, Chester [11-13]
introduced a linear analysis of the motion of a shock wave propagating in a tube
having a small variation in its cross section. Through his analysis, Chester obtained
a relation in differential form between the average shock wave strength and the cross
sectional area. Using the basic concept of Chester's work, Chisnell [14] found a
similar relation with a better approximation. Later, Whitham [15] using the

characteristic form of conservation equations, reached a similar result as Chester and

3



Chisnell. The merger of the three works is known as Chester, Chisnell, and Whitham
relation or CCW theory. The CCW theory is of particular interest, since in the case
of a converging shock wave, the area is constantly decreasing and this reduction in

area has a direct effect on the shock stength.

1.2b Experimental studies

To verify the theoretical smudies and at the same time acquire a better
understanding of dominant factors in the stability of the converging shock waves,
several experiments have been preformed by various researchers. Perry and
Kantrowitz [16] were among the first to produce and study the converging cylindrical
shocks experimentally. With their Tear-drop configuration Perry et al. were able to
generate a weak converging cylindrical shock. Experimentally, Takayama et al. [17]
and Wanatabe et al. [18] both verified the theoretical prediction of Butler [7] and
Whitham [10] about the amplification of the initial perturbation of the shock front.
Traditionally, the stability of the shock is measured by examining the symmetry of the
imploding shock wave. It is important to know the stability state of the imploding
shock wave, because the final state of the gas at the focus depends directly on that.
To achieve a highly symmetric shock wave, and consequently a stable one, Neemeh
[19] and Wu et al. [20] used a three increment contraction configuration. Neemeh
then observed a pair of vortices at the centre of collapse after the shock converged

and he attributed this to a small asymmetry of the annular section of the shock tube.

4



So, a perfectly symmetric converging shock is yet to be produced. This impiies that
more studies in the basic mechanism of the imploding shock dynamics are needed for
the production of a stable symmetric converging shock., Another approach that can

give more insight to this problem is the numerical simulation of imploding shock

waves.

1.2¢ Numerical studies

By the introduction of computers, scientists found another alternative to
theoretical and experimental studies through numerical modelling of the problem.
Study of the converging shock wave was no exception, and the first attempt to tackle
the problem numerically was done by Payne [21]. He modeled the problem using a -
cylindrical diaphragm separating two regions of uniform gas at rest, but at higher
pressure in the outside region. Then Payne obtained a one-dimensional solution based
on Lax's method for the governing equations of an inviscid compressible gas without
heat conduction. Later, Lapidus [22] and Abarbanel et al. [23] solved the converging
cylindrical shock problem using the same model as Payne but with different versions
of Lax-Wendroff scheme. Their simulation was a one-dimensional second order
accurate modelling, and both of their simulation produced similar resuits. By using
Glimm's random choice method, Sod [24-26] introduced a novel approach to solve
the one-dimensional equations of gasdynamics for a converging spherical or
cylindrical shock wave. With his first order accurate method, Sod obtained a very

5



sharp shock front compared to Payne's first order accurate simulation. Among the
other 1-D simulations for converging cylindrical shock, Yabe and Aoki [27] treated
the problem by using a cubic-polynomial interpolation scheme of the finite difference
family. Recently, a third order finite difference scheme was used by Shankar et al.
(28] to model the converging shock in radiating gas. This simulation was one-
dimensional and concluded that the effect of radiation heat transfer is to decrease the
growth rate of shock strength as it propagates toward the axis. Matsuo et al. examined
the various methods for numerical simulation of cylindrical converging shock [29].
They pointed out that favourable results were obtained by a second order scheme,
particularly the MacCormack method with an artificial diffusion term. One of the
latest one-dimensional simulation for a converging cylindrical imploding shock wave
has been done by Srivastava et al. [30], in which they uscd an invariant difference
scheme of Rusanov. The study included not only the moderate initial pressure ratios,

but also pressure ratios up to a thousand.

Through experiments, it has been observed that a real imploding shock wave
is not perfectly symmetric, so a one-dimensional simulation can not give a complete
description of its properties. In the view of the spatial non-uniformity in the azimuthal
direction a two-dimensional analysis is necessary. The first effort among only a few
attempts reported on two-dimensional modelling of the converging cylindrical shock
has been made by Itoh and Abe [31]. They used the same cylindrical diaphragm

model as Payne [21], but with small sinusoidal perturbation imposed on the density

6



or the pressure of the external fluid. For the computation, Itoh et al. extended the 1-D
scheme of Abarbanel et al. [23] to spatially two-dimension. Later, Munz [33] used a
more realistic model of deformed diaphragm for the perturbation in the azimuthal
direction. He used a MUSCL-type scheme as the computation method in both
Cartesian and Cylindrical coordinates. Munz's simulation in Cartesian coordinates was
not as accurate as the Cylindrical coordinates simulation. By using an explicit, second
order finite difference method known as flux corrected transport (FCT), Kimura et
al. [32] applied their simulation results to describe the mechanism for the formation
of stars. A numerical simulation of converging cylindrical shock was made using TVD
finite difference scheme in polar coordinates by Wanatabe and Takayama [18]. Their
numerical results were in good agreement with their holographic interferometry
pictures from experiment. Recently, Demmig et al. [34,35] introduced another way
to model the problem of converging cylindrical shock wave. They used a "snapshot”
of measured physical quantities of the wave at a specific time. In the model of
Demmig et al. there is no diaphragm and the computation's initial conditions come
from the digitized photo of the experiment's shock contour and the measured
properties of the at the time of photography. Then the shock motion is followed to the
centre with numerical simulation. The method of computation here is TVD finite
difference. For more details of the modelling method one can refer to the reference

[35].



1.3 Scope of this thesis

The focus of the present thesis is threefold. First, a one-dimensional simulation
is made of an axisymmetric imploding shock wave. The results then, compared with
other 1-D simulations and also CCW theory, were found to be satisfactory. The
method used in this part is a second order MacCormack finite difference. The scheme
has been applied to the spatially one-dimensional unsteady compressible Euler

equations.

Second, after gaining confidence in the scheme through 1-D analysis, it has
been extended to spatially two-dimension ixi polar coordinates to simulate a converging
shock. In this part a deformed diaphragm model has been used. The results of this
section are used to verify the amplification of initial disturbances during the course

of convergence for the shock wave. A perturbation of mode four is used for this

purpose.

Finally, a converging elliptical shock has been simulated numerically. It has
been found that the amplification of the shock during its convergence can not be
described by the simple power law R™ [7,10]. Instead, a harmonic type of variation

has been suggested for the amplification of the shock.



CHAPTER 2

Governing Equations and the Computational

Method

In this chapter the time dependent governing equations for the flow of an
invicid, non-heat conducting compressible fluid, namely Euler equations will first be
reviewed. In the second part of the present chapter, the numerical method used to
simulate the converging shock wave in spatially one and two dimensional models are
going to be discussed. Later in the third part, boundary and initial conditions for both
one and two dimensional analysis will be presented. Finally, in the last section of this

chapter we will have a brief look at the truncation error and stability of the scheme.

2.1 Governing equations

The problem of imploding shock wave is sufficiently well described by the
Euler equations. The Euler equations are extracted from the Navier-Stokes equations
by neglecting the viscous terms. The set of Euler equations is a system of non-linear
hyperbolic equations. Although no fluid can really be considered invicid, the Euler
equations provide a reasonable ( especially when the Reynolds number becomes very

large ), but by no means complete estimate of the behaviour of a fluid. If in the

)



problem under investigation one sets aside the effects of heat conduction, body forces

and also viscosity, then the time-dependent governing equations for a compressible

fluid would take the following form:

conservation of mass

conservation of momentim

ov 1 -
3% + (V.Y V + —EVP—O

conservation of energy

%"+v.[(z+p)v1 - 0

(2.1a)

(2.1Db)

(2.1c)

Here, P and p stand for pressure and density respectively; t is the time; V is

the velocity vector and E represents the complete energy of a unit volume of the gas.

E can be described in terms of internal energy of a unit mass (¢) and the kinetic

energy as follows:

= Ly
E=ple+ 2V)

(2.2)

in this study, the assumption is that the gas is calorically perfect, so the equation (2.3)

holds for the gas, where ¥ is the specific heat ratio.

10



1

e = —
Y-1

(2.3)

ol

In the next step, the set of equations in ( 2.la-c ) is cast in the two-
dimensional polar coordinates by means of the vector notation that is more suited for

analysis.

v, or
at or

186G 1. _
+?-6—6+YC 0 (2.4)

Here, U is the vector function of conservative variables; F and G are the vector
functions of U representing the flux of conservation variables in the radial (r) and the
azimuthal (6) directions respectively; C is the vector corresponding to an

inhomogeneous term in the axisymmetric flow. They are given by

P pu
_ pu F o= pu? + P
pv puv
E u{E + P)
pv pu
vu 2 _ y2
G P2 c = plu vi)
pve + P 2puv
v{(E + P) u(E + p)

In the above vectors, u and v are the velocity components in the radial and

11



azimuthal directions respectively. The variables to be solved for are O, u, v, and E.
Then the pressure could be found using equations (2-2) and (2-3) together with the
primary solved variables (i.e. p, u, v, and E). Equation (2-4) is a hyperbolic system
of conservation laws, since each of the Jacobian coefficient matrices, A=0F/0U and
B=0G/9U, has four real eigenvalues. For Jacobian A one has

g, =u , B =u+c , Hy=u , 3y =1UC
where c is the speed of sound. Similarly for the Jacobian B

b=v , b=vic , b=v , b =veC

In the numerical computation one of the techniques to decrease the round-off

errors of the computer calculation, is the use of non-dimensional variables. It also has
the benefit of giving a broader interpretation to the results obtained and a more stable
computation. In order to transform the equation (2.4) in to a dimensionless form, the
following dimensionless (primed) quantities are defined. By the substitution of these

non-dimensional quantities the equation (2.4) remains unchanged.

vi=X u’ = %

uo uO

E=Z el = £

P, t,
P e L 1 - P r - P
r — p’ = P = —
T, Po Po
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where

’ P
uo = -2 = & to = ﬁ
pa ﬁ uO

For the converging shock wave modeled by using a diaphragm separating the
high and low pressure regions (which is the case here in this study), r, is the mean
radius of the diaphragm; p, and P, are the initial density and pressure at the lower
pressure region respectively, and finally c, is the speed of sound at the lower pressure
region. Hereafter, these non-dimensional variables will be used and the primes will

be omitted for the sake of convenience.

Now, the Euler equations have the desired form that is suited for the
computation. In the next section, with the Euler equations properties ( non-linearity
and hyperbolicity ) in mind, a reasonably accurate scheme for the solution of the set

of equations will be discussed.

2.2 Numerical computation

Generally the numerical computation of a problem is composed of three parts.
First, the preprocessing stage which includes the discritization of the domain of
computation and mesh generation. Second, the processing stage in which the

discritized equations will be solved. Finally at the last step, namely post-processing,
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necessary gradients and other required quantities were calculated from primary
variables. Also if needed, graphical representation of the results will be accomplished

in this stage.

In the present thesis, the discritization of the governing equations has been
done through finite difference formulation and the flow domain has been modeled as
follows: when t=0, initially at r=r , a diaphragm separates the two regions of high
and low pressure gas. Both inside low pressure and outside high pressure gases are
isothermal and at rest. At time equal to 0 * the diaphragm ruptures and the emergent
chock wave moves toward the centre. The computation domain and the mesh for the
spatially one-dimensional simulation of a symmetric converging shock is shown in
figure (2.1). The mesh size for one dimensional model is chosen to be 1/200. For the
two-dimensional simulation of imploding shock wave with the geometry of the flow
in mind, the grid shown in fig. (2.2) has been suggested. The grid has 301 points in
radial and 101 points in azimuthal directions respectively. This grid configuration
approximately allows evenly spaced nodes at the average radius of the grid where the
diaphragm has been positioned. As it can be seen from fig. (2.2) the nodes are more
clustered as they get closer to the centre and improved results are expected in the
vicinity of the axis. This is a natural advantage for the mesh, which is especially

important since the gradients are getting larger as the shock gets closer to the centre.

In the processing stage, a Fortran program has been developed to solve for the
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discritized domain and the resultant set of equations. The set of equations have been
solved using a two-step MacCarmack second order accurate scheme. The details of
the scheme and how it has been applied to the one and two dimensional cases will be
examined in the proceeding section. The hardware used to carry out the computation

is the Vax-4000 model 500 system at Concordia University.

At the post-processing step, in order to represent the results graphically,
mainly two softwares were used: Surfer' and Matlab?. The three dimensional and
contour plots were obtained using the Surfer and 2-D plots were obtained by

programming in Matlab.

2.2a Numerical scheme

There is a vast variety of numerical schemes available for one to chose from.
Depending on the problem in hand and the accuracy required and also the computing
facilities available, a suitable scheme can be chosen or developed. In the case of this
work, since the flow is unsteady the scheme should be able to advance in time, so
a time marching method is the right choice. Furthermore, the presence of the shock

wave in the flow under investigation requires a shock capturing method. In the so

! Surfer Access System, Version 4.00, © Golden Software inc. 1989.
2 Matlab version 3.5h, © The Networks Inc., 1984-1992
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called "shock capturing” metnods [36], the use of artificial (or sometimes called
numerical) viscosity in association with the gas dynamics equations leads to the
smearing of discontinuities raised from the shock presence. In this way the shock
wave and the contact surface appear as a very narrow region with large gradients
which resolves in two or three mesh size widths. As far as accuracy is concerned, the
finite difference approximation of the differential equations can be first, second, third,
or even higher order. Each of these leveis of accuracy has its own advantages and
disadvantages. For example, a first order accurate scheme is monotonous near the
strong discontinuities but it gives a relatively wide shock representing zone in the
solution (dissipation errors). The schemes of even order and particularly second order
have problems with the dispersion errors (the small oscillations in the vicinity of
discontinuities). Nevertheless, the second order schemes result in a narrow transition
zone representing the shock wave. Figure (2.3) illustrates the effects of dissipation and
dispersion errors on the computation of a discontinuity. A third order scheme
possesses the best properties of the two preceding schemes but implementation of the
boundary conditions in the scheme is troublesome. The complication in the boundary
conditions arises from the fact that a larger number of points at time t is required to
calculate a point at time t+at. Experience with the numerical methods [29,36,37]
indicates that in many cases including the present simulation, the optimum scheme is
a second order accurate one. Selecting a method for simulation also depends on the
available computing facilities. For instance, if the computer in use has parallel

computing capabilities, one should use a method that takes the full advantage of this
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feature. However, in the case of this study the available computer was equipped only

with a single processing unit and the selection of the methed is in accordance with

that factor.

Considering all the discussions above and trying to avoid complications in the
simulation task, the decision has been made to use an explicit two-step scheme of
MacCarmack [38-41]. This scheme is second order accurate and implementation of
the artificial viscosity to capture the shock is fairly simple. First, in order to state the

scheme clearly a one-dimensional version is presented here.

The unsteady one-dimensional axisymmetric Euler equations in the vector form

is written as below:

=0 (2.5)

The two-step MacCarmack method consists of a forward difference predictor step and
the proceeding backward difference corrector step. The application of the method to

the equation (2.5) would result in the following form:

T, = U - %A*F}’ - _‘%c;’ (2.6)

where
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Forward difference operator: A*F,=F,, -F
Backward difference operator: X F, = F, - F,,
In the above equations, the subscript i indicates the spatial mesh point with the
A r spacing distance, and the superscript n refers to time, t=nAt, where At is the
time increment that the solution is advanced in each cycle of calculations. The vectors
with bars are the first approximation that later in the corrector step will be modified
to the final value for the current time interval. Figure (2.4) denotes the schematic for

the space-time index.

In theory, the finer Ar ( Ar —0) is, the better the result would be. However,
from a practical point of view there should be a sensible limit for Ar. In this study,
At is chosen to be 1/200. A considerable improvement in results has been observed

for Ar

1/200 over the larger values (e.g. 1/100), but for increments less than
1/200 (e.g. 1/300 and 1/400) there is not a noticeable enhancement in results.
Moreover, for the Ar = 1/200 the computing time is significantly shorter than for
the smaller values of A r. In order to choose the right A t, one should consider the
limit that has been dictated by the stability criteria for the scheme. More elaboration

on this matter would appear later in this chapter.

The severe pressure changes associated with the strong shock wave produces
large oscillations in results in the vicinity of the shock wave. Unfortunately, the use
of the scheme described earlier in its present form often leads to unstable
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computation. To suppress oscillations in the numerical results an artificial viscosity
term is added to the above scheme. The form and size of this artificial viscosity is
often determined by numerical experiments. The inclusion of the artificial viscosity

in the current work has been explicit and takes the following form:

AU_iD = AUJ'. - u(Ui'l - 2U.i + U.Y:"'l)

where

AU, = U7 - Uf

and the final value is

(UPM)? = Uf + AUY

In above, the superscript D represents the damped value for AU; and U™'; p is a
constant that has been found by numerical experimentation. The result of the
computation was sensitive to the viscosity coefficient (). If the  is too small, then
the scheme would become unstable. On the other hand, if viscosity was too large, it
leads to smearing out the shock and contact surface. Additionally, the determined
viscosity coefficient (1) was dependent on the initial pressure ratio. For the initial
pressure ratio of 4, to start the computation the value for p has been chosen to be
0.09. After the shock wave has traveled about 15 percent of its path toward the
centre, the value for p is reduced to 0.05 to get a sharper shock front. The results of
the described scheme applied to a converging cylindrical shock will be discussed in

chapter three.
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Now, in order to illustrate the method in two dimensions (r and 0), the scheme
has been applied to equation (2.4). The implementation of the numerical scheme to
equation (2.4) has been done using the operator splitting technique'. In this
technique, the multi-dimensional solution is evolved from a factored sequence of one-
dimensional operators. In other words, the equation (2.4) is broken down to three
parts and each part is solved separately using an operator. The two one-dimensional

equations and the inhomogeneous term are as follows:

ﬂf-l-iﬁ‘:o

ot or

au 1 dG

g = X2 = )
%' ® 0 (2.7)
ouU i =

S r3c=0

and the three corresponding operators are

L(A1):

At ,.
Ufy = Ul ~ gp MFiy

— —_ (2.8a)
U_;j = %(Uf: + UfJ - % A _{3)

! The concept of splitting is credited to Peaceman and Rachford.
"The Numerical Solution of Parabolic and Elliptic Differential Equations”,SIAM
1., Vol. 3,1955,PP.28-41.
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Lg(At) :

- . 1At 4.,

7 sy - Y A Gi; {(2.8b)
Ui = E(up v U - AL 26 |
ij 2 4 17 r A6 Y

LAY :
U = uij - 1ac el (2.8c)

L]

Ut = 3 (U5 + U5 - AL CE)

To maintain a second order accuracy the operators L,, Lg, and L should be applied

to U;" in a symmetric sequence. Therefore:

UM% =L, Ly Lo Lo Ly L. (At) UY (2.9)

The reason for applying the operators in a symmetric sequence to achieve the second

order accuracy is analyzed in detail by MacCarmack [39].

As it has been mentioned earlier a grid in cylindrical coordinates with 301 X
101 nodes in the -0 plane has been used for numerical calculations (fig. 2.2). To
have a more efficient simulation for elliptic imploding shock, a quarter of the grid has
been used and a mirror image boundary condition is applied to both sides of this
sector. In the case of a perturbed cylindrical shock, the perturbation is generated with
a cosine curve corrugation [ Cos(m0) ] to the diaphragm, where m is the azimuthal
mode number. Since the perturbation is periodic in the azimuthal direction with a

period of 27Um, the computation is performed in a sector with the central angle of
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27¢m to achieve the maximum efficiency. The periodic boundary conditions at both

sides of this sector are adopted.

Again, the time step for the numerical computation in two dimensions is
dependent on the stability criteria for the two-dimensional method. Moreover, since
a splitting technique has been used, consideration should be given to advance the time
in the both directions (r,0) equally. This does not mean the time steps for r and 6
could not be different. However, it indicates that the total advancement of time for

each direction should be equal in any cycle of calculations.

The artificial viscosity in the present work is applied only to the L, operator.
The reasoning for this matter is based on the fact that the flow experiences the
discontinuity only in the radial direction. So, the unnecessary use of artificial viscosity
has been avoided for the other direction (0). The implementation of the viscosity term
for the L, operator is similar to the one-dimensional case. In this way, the damped
value of variables ( i.e. Vector U;° ) should be used as the input for L g operator

instead of U, in equation (2.8a).

2.2b Initial and boundary conditions

In this section the initial and boundary conditions employed are deccribed.

Initially, when t=0, the conditions for the one-dimensional model of a cylindrical
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converging shock is given by

=0 for all radii
P'=1, p°=1 r(r,
P'=K,p’=K T)r,
PO = R+1)2, p° = (K +1)/2 r=7,

where 1, is a constant representing the radius of the diaphragm; ¥ and K’ are pressure
ratio and density ratio respectively. In this work K and K’ are chosen to be equal to
4. Additionally, for the initial conditions of a two-dimensional imploding shock, one

has

v, =0 for all radii

Also it should be noticed that for a perturbed converging cylindrical shock, r, -
is not a constant any more, since the radius of the diaphragm (r ;) varies in accordance

with the following cosine perturbation:

r,=1r,(0 = —g)[l + & cos(m 0)] (2.10)

where O is the amplitude and in is the mode number in azimuthal direction. The above
form of perturbing a converging cylindrical shock is almost similar to what Munz [33]
has suggested. The three different values for d in this study are 0.02, 0.03, and 0.04
with the mode number m=4. Moreover, in the case of an elliptic imploding shock
wave the variation of r, is given as a function of perturbation parameter ( € ) and the
azimuthal angle in the following form:
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r = | _Fot8=0) (2.11)
o J F sini(0)?

where the perturbation parameter (&) is

_ *max ~ “min
E B Dmax + Dmin (2.12)

In above, D, and D, are denoting the major and minor diameters of ellipse. The
two values for & are chosen to be 0.0415 and 0.064. Finally, it is assumed that the

rupture of the diaphragm is instantaneous and uniform.

In order to impose the boundary conditions to a problem, first the domain of
computation should be defined. Actually, the problem in hand has a semi-infinite
domain ( i.e. 0 <r {©0), however, for the computational purposes one must specify
a finite domain. Traditionaily, the domain of numerical computation for an imploding
shock wave is chosen to be a circle with a radius twice as the radius of diaphragm
separating the higher and lower pressure regions initially. Here as well the same
domain is respected, so with the diaphragm radius equal to 0.5, the domain of
computation would btz 0 <r <1.0.

Ha- ing defined the domain of calculation, now the conditions at the boundaries
(i.e.t = 1.0 and r = 0) should be discussed. The boundary conditions at r = 1.0

are fairly simple and the values of the variables for t = (n+1) At have been found
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from their values at t = nAt using a second order extrapolation. For instance, if the
pressure is considered, then its value at r = 1+A r could be acquired using the

Lagrange method [23] as follows:

Priyear = Prtiaar — 3Pra-ar + 3Pmm
Now that the P* _, , o, has been obtained, the value of P,_,"*" could be found using the
previously described MacCarmack scheme. The boundary conditions at r = 0 need
more attention since r = 0 is a singular point in the domain of computation. It is clear
that both components of velocity are zero at the axis (r = 0). In addition, density and
pressure are indeterminate of the type 0/0 at the centre that makes r = 0 a singular
point. An extrapolation technique can no: be used to exclude the singular point from
computation, because of very large gradients near the axis. So to calculate the
density, energy, and consequently pressure at the cenire, the conservation laws should

be used. To find the density at the axis the conservation of mass in its integral form

has been used as follows:

LI oo+ T, ven =

Considering the control volume (V) shown in figure (2.5) with a radius of Ar one has

dv = rdodr . da = Ardé

so the preceding integral equation takes the form of
%ff:a prdrdd + f:a pudrdd = 0
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In the above formulation the azimuthal component of velocity (v) is ignored, because
in comparison with the radial component (u) it is very small. After the integration and
considering only the first order accuracy that results in Iess oscillations near the axis,

one has

+1 _ At
Prec = Pr-o -~ 2= Pr-ar Urear

With the same argument and this time considering the conservation of energy, the

value of E can be obtained at the axis using

EEY = Bl - 225 ulas (Bflar *+ Plas)

Now the pressure at the axis can be found by using equations (2.2) and (2.3). To find
the gas properties at the centre in the case of a two-dimensional simulation, the

following form is suggested to obtained p and E:

+ i At
PId = Piwo = = Ifa 237 [Prear Urmady
E;’:Dl = E;O - %- zj;l 2% [urn=Ar (Ern=A: + P;;A:)]j

where J is the number of mesh points in the azimuthal direction.

As it has been discussed previously, in order to save the computation time, a
sector of a circle is used as the computation domain (see fig. 2.6). At the two sides,

OA and OB, the symmetry conditions must be fulfilled. They are
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To satisfy the above conditions one additiénal ray is introduced at each side of the
domain (i.e. OA and OB) outside of the calculation region. The value of variables at
each of these auxilary mesh points are obtained from interior points by considering
the symmetry of the flow. In the process of transferring the data from the interior
region to the outside mesh points, one should remember that the velocity component
normal to the boundaries (v) changes its sign. This way of implementing the boundary

conditions for a symmetrical flow is often called "mirror imaging" [36].
2.2c Error analysis and stability of the scheme

The error in a simulation task like the one under consideration in this thesis
can have several sources. The list for the sources of error in the computation includes:
input errors, programming errors, r<:und-off errors, and truncation errors. Here in this
section, a brief review about the round-off and truncation errors are presented and the
discussion about the other sources of errors are overlooked. Later in this part, a note
on the stability of the scheme used for the numerical simulation and the criteria to

have a stable computation will be given.

Round- If error (or sometimes called machine error) has roots in the fact that
4aring a computation, a number in the computer could only be represented with a
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fixed number of significant digits. Leaving out the rest of the digits due to this
limitation results in an error that during the course of calculation could accumulate
and sometimes lead to a wrong or unstable solution. In this work to minimize this
type of error the double precision mode for the variables in the program has been
used. Also the employed non-dimensional variables can help to reduce the effect of
round-off error. Truncation error is the error corresponding to the fact that only a
finite number of terms in a series or steps necessary to produce an exact result could
be used and the rest of the terms or steps are truncated prematurely. For simplicity
of presentation, here a one-dimensional Euler equation is considered and it has been
shown that the application of MacCarmack scheme results in a second order accurate

method. The Euler equation in Cartesian coordinates has the following form:

U _ _oF
5t - o (2.13)

By applying the MacCarmack method to the above equation one has

T, = UP - %}-‘; AFR (2.14)
upt = 2R+ T - s AT (2.15)

Substitution of U, from equation (2.14) into eq. (2.15) gives

m1_ g Bt 4.on_ AL n _ At ,.pn
Uit = U 2Ax A'F; 2Ax LF (U Ax A*Fin)

(2.16)
- n_ At ,.pn
F(U; AXAF,_)]

Expanding the F ( U;,," - At/Ax A*F,,,") by means of a Taylor series would result
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A + + !
FUf, - 2L WFR) = PR, - (R APR PR, + HOT

Similarly treating the F( U” - A vAx A* F" ) and substituting the outcome into

equation (2.16) gives:

2
AL (pn-rRy - BE(FEL AFL, - FYOAFD) + 0(A%)

Uttt = g? -
* T 2Ax 2Ax?

The equation above confirms the second order accuracy of the scheme, since the
difference between this formulation and a direct expansion of equation (2.13) via

Taylor series to the form below is of Third order.

+ In 2
opt = of + (Sh1ac e (Zhiat

Hence

28 -39 - I - 2w

It is worth noticing that a truncation error of O(A?) means; for instance, by halving
the space increment (Ax), it approximately quarters the error caused by treating the
problem in a series of finite terms. However, this enhancement in grid points results
in the larger round-off errors. Therefore, a balance between truncation and round-off
errors should be reached. Moreover, these errors influence greatly the stability of
every numerical algorithm. So, in order to bound the error, appropriate restrictions
which ensure the stability must be implemented.
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The stability of the solution for a non-linear equation like the one under
consideration ( i.e. Euler equations ) can not be analyzed completely. The most
successful approximate analysis can be achieved by first linearizing the equation.
Then, the linear equation's stability can be studied using von Neumann's analysis
[42,43]. The principle of the von Neumann analysis is based upon studying the
propagation of an error in the initial values. In the analysis, first a small error is
introduced in the equation (e.g. second order wave equation 0%z / 0t = ¢? 0*z/K’)
and in the second step, this new equation is subtracted from the original error free
equation. The result is the error equation which, due to the linearity of the considered
partial differential equation, is the same as the original equation (i.e. wave equation).

This error equation is shown in its discritized form

n+1 n n-1 n ¥ 3
€i’" - 2€] + €] _ €in - 2€; + €54 (2.17)

At? Ax?

Next, the error €(x,t) is expanded using Fourier series as
e(x, t) = ett gibfx (2.18)

where [ is any real value and Qis a function of B and may be complex. The term e®

is often called amplification factor . By substituting (2.18) into (2.17) one obtains

etit = 1 - 2(p2 sin ng + \/(1 - 2@2 sin.E%i{}z -2 (2.19)

oAt € ol

where @ = ¢ At/A x is called the Courant rwn:ver. Since € = ¢ > for any

B in the solution for error, and sin(2BAx/2) is #: most equal to one, it is cbvious that
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the general Fourier component of error will not grow from one time step to another,
if |e>%| <1. Therefore, considering the equation (2.19), it becomes clear that the
stability requirement for the explicit scheme is At = Ax/c. In the stability analysis
of a system of differential equations, instead of an amplification factor, one would
get an amplification matrix. Thus, with a similar analysis for the system of difference
equations that of this simulation, the following stability condition for the explicit two-

dimensional Euler solver would become

Ax Ay
ul[+c ' Jvl+c

)

Atsmin(!

in which ¢ = \/ YP/p is the local speed of sound.

In practice, due to insufficient assumption of linearity, the value of At obtained
from the above condition should be multiplied by a factor less than one. By
experimenting with different coefficients and keeping in mind that the largest
coefficient would result in a more efficient computation, a factor of 0.87 is chosen.
It has been observed that in the case of a two-dimensional simulation, as a shock
wave gets closer to the centre the stability of the scheme is deteriorated and a smalier
factor (0.3) has been used to assure the stability of computation in the vicinity of the
axis. This deterioration in stability could correspond to the larger gradients near axis
showing perhaps the need for more clustered mesh points. Another element that is
important for the selection of the multiplication factor is the initial pressure ratio.

During the course of this work different initial pressure ratios have been chosen and
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it has been noticed that the higher the initial pressure ratio is the smaller the

multiplication factor should be.
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CHAPTER 3

Application of the Numerical Algorithm

to Implosions

This chapter discusses the results obtained from application of the previously
described numerical scheme to simulate the imploding shock waves. At first a one-
dimensional simulation has been carried out for perfectly symmetric converging
cylindrical shock waves and the results have been compared with CCW, characteristic
method, and some other finite difference methods. Also the numerical results for the
variation of the shock Mack number versus the radius of the shock were compared
with the experimental data. In the second part of the present chapter, the results from
a two-dimensional simulation of an imploding shock wave are examined. The study
has been conducted for two cases of perturbed cylindrical shock waves. The
amplification of the shock wave distortion is examined through the perturbation
parameter and findings were compared with recently obtained experimental results.

A detailed description of the study is presented in the following sections.

3.1 One-dimensional study

As it has been mentioned before in order to study *.ie imploding shock wave,
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it has been modeled using a circular diaphragm separating the regions with different
pressures. It is assumed that the outside region's pressure is higher than the inside
zone. Further, it is presumed that the density ratio of the two regions is the same as
the pressure ratio that ultimately would result in the uniform temperature across the
two zones. Since in this section the focus is on the one-dimensional study of the
implosion phenomenon, everything including the gas properties and the geometry of
the flow and the domain of the computation is uniform in the azimuthal direction.
Finally, the last two assumptions are: (a) the gases in both regions are initially at rest,
and (b) the specific heat ratio y is constant at all the times in the calculations and it

is equal to 1.4. Figure (3.1) illustrates the schematic of the discussed model.

At time t=0", the diaphragm is ruptured and a series of compression waves
rapidly emerge into a converging cylindrical shock wave. The wave propagates at
supersonic speed in the lower pressure region as it can be seen from fig. (3.2a,b). The
motion of the shock wave sets the gas behind it in motion in the same direction as the
shock velocity. At the same time a rarefication wave originates at the diaphragm
section and propagates in the opposite direction into the higher pressure region. The
shock wave and the rarefication wave interact in such a manner to establish a
continuous pressure and velocity profile for the gas downstream of these waves (see
fig. 3.2a,b). However, the gas in the region between the shock wave and the
rarefication wave does not have a continuous temperature throughout the whole

region, since there is a sudden drop in the temperature (see fig. 3.2d). The drop in
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the temperature can be described with the following argument. The laws of the normal
shock dictate a sudden increase in the temperature for the gas when a shock passes
through it, and once the heated gas comes into the contact with the colder gas down
stream of the rarefication wave a discontinuity in the temperature is inevitable. The
surface at which these two hot and cold gases meet each other is called a contact
surface (or contact discontinuity) and it is highly visible in figure (3.2¢). The contact

surface moves toward the axis with the local velocity of the gas.

The numerical results are presented graphically in figures (3.2a-1). In these
graphs, convergence, reflection, and divergence of the cylindrical shock wave are
shown ° the time intervals of 0.05. Here, the shock appears as a rapid variation in
pressure which is approximately resolved in two or three mesh size widths. The
contact surface appears as the second jump in the density in fig. (3.2c) and the
rarefication wave is represented by the portion of the graph with large gradients at the

radii larger than 100 in all the figures.

With a closer look at the pressure versus radius graphs (i.e. figs. 3.2a,e,1) one
could notice that as time increases the shock propagates toward the axis and its
strength increases with time. This is in general agreement with the Guderley's
theoretical prediction [6] and also experimental observation of Pcrry et al. {16]. When
the shock wave arrives at the axis it is reflected, its strength rises to a large but finite

value and a diverging shock appears. In theory, at the axis the infinite pressure should
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be reached. In the current simulation a significantly better approximation to the theory
has been achieved compared to the other simulation efforts. For the same initial
pressure ratio of 4, Sod [24] with his random choice method has reached a maximum
pressure of just over 8 at the axis and Abarbanel et al. [23] with their Lax-Wendorff
type scheme obtained a value of approximately 14 for the pressure at the very small
radii. In the more recent work, Shankar et al. [28] by using a third order accurate
Rusanov scheme also reached to a maximum of close to 14 for the pressure at the
vicinity of the axis. For the same pressure ratio, 4 that is, in this work the maximum
of over 21 has been reached for the pressure value close to the centre (see fig. 3.2e).
The result of this numerical simulation obviously shows a closer agreement with the
theory as far as the amplification of the pressure is concerned at the axis.
Comparisons of the pressure at the axis for the different initial pressure ratios are
difficult, since the great majority of the reputable results are presented for the case
with the initial pressure ratio of 4. To validate the simulation results at a different
initial pressure ratio the comparison has been made with some experimental data.
Also, the variation of the shock Mack number versus the radius of the shock has been
compared with CCW theory for higher pressure ratios. More elaboration on this
matter will appear later in this section. Returning to our discussion concerning the
figures (3.2a,¢,i), it is also observed that the pressure at a given point behind the
reflected shock wave decreases with time. The reason for this is the expansion of the

shock wave and the gas behind it with time as the shock diverges.
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The density and the temperature profiles are displayed in figures (3.2¢,g,k) and
(3.2d,h,1) respectively. There is a sudden increase in the density while the shock is
passing through the gas but owing to the simultaneous temperature rise this increase
in the density is not as high as the increase in pressure. Also, the contact discontinuity
is clearly visible in the density profiles as the second sudden increase in the plot. The
reason for the this second jump in the density could be found in the temperature
versus radius plots (e.g. fig. 3.2d). An abrupt decrease in the temperature due to the
colder gas dragged by the shock wave from the higher pressure region is the reason
behind the second jump in the density profile. It can be seen from the figs. (3.3g,h)
that the density and the temperature before the shock wave touches the axis are both
increasing at a fixed point with time. This result from the simulation is quite expected
since as it has been known theoretically and ob.:erved exnerimentally the strength of

the shock wave increases as it converges toward the axis.

In figures (3.2b,£,j) the velocity distribution has been shown. The shock wave's
speed accelerates as it travels toward the centre (see fig. 3.2b). This acceleration of
the shock wave is due to the fact that the area decreases as the shock converges
toward the axis. When the shock wave is reflected from the axis, the diverging shock
wave has a relatively smaller absolute velocity. The positive sign here shows an
outward direction. The reason for a smaller absolute velocity is that a diverging shock
has been slow down by the rush of the gas coming onward to it as a result of the

previously passed converging shock. Similar to the case of the pressure profile, at a
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fixed point behind the converging shock wave the velocity increases with time and

behind a diverging shock the velocity decreases with time.

In figures (3.3a-1) the variation of pressure, velocity, density, and temperature
at constant radii with time have been shown (for initial pressure ratio of 4). The three
fixed roints 2re located at r=0.25, 0.50, 0.75. In aii of the pressure versus time at
constant radius graphs there are two jumps: the first one corresponds to the arrival
of the converging shock wavs to the point and the second one indicates the passage
of the diverging shock wave. Moreover, it is clear that as the radius decreases the
peak values of the curves are higher since the shock wave is stronger at smaller radii.
The v2locity versus time curves have two discontinuities as well. These
discontinuities, like in the pressure versus time plots, correspond to the converging
and diverging shock waves. However, the second discontinuity includes a change in
the sign that shows the gas particles suddenly alter the direction of their motion due
to the diverging shock. The general trend in the temperature and density variation
with time at constant radius graphs, except for the r=0.75 curves, are similar to the
pressure graphs. The exception in the graphs at r=0.75 is due to the fact that for the
time range shown, the radius is large enough so the slower contact surface can pass
through the point and affect the gas properties at that radius. In the density curves
for the r=0.75 the second jump denotes the passage of the contact surface through the
point as it can be confirmed from the corresponding temperature plot by observing the
sudden drop in the gas temperature. Here the third jump is the indication of the
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diverging shock wave.

In general, as it can be seen from the adopted graphs at the same initial
conditions (see figs. 3.4a-h) which belongs to the references [21], [231, [24], [28], the
overall trend of the results agree with those of this work. However, the superior
results have been obtainied as far as the contact discontinuity is concerned compared
to the Payne's work [21] in which the contact discontinuity is barely noticeable.
Furthermore, unlike the Shankar et al. [28] results, in the current simulation the shock
wave is monotonous. Also as it has been discussed earlier, a distinguishably better
approximation to the theory has been achieved in this work for the pressure at the
vicinity of the axis compared to the other results shown in figs. (3.4a-h). Although
the results of this simulation commonly agreed well with all the other results in the
references, the speed of the shock appears to be slower as it is displayed in figure
(3.5). In fig. (3.5) the shock radius versus time for the methods used in references
[24] and [31] are compared with those of obtained here. The difference with random
choice method [24] is justifiable since this method has the accuracy of order At,
while the accuracy of MacCarmack's method is of order A t’. However, the slower
speed compared to the results in the Itch et al. work [31] seems to be a characteristic
of the scheme adopted in this thesis. This slower speed for the shock wave when
using the MacCarmack mewod is also observed by Matsu et al. {29] in their
comparison with the method of integral relations. All in all, sightly slower shock
velocity is not a major problem since overall the results are acceptable and as it has
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been mentioned in the Matsu et al. study of different methods for simulating the
converging shcck wave, particularly favourable results can be obtained by using the

MacCarmack scheme.

In addition to verifying the outcome of the current simulation with the other
simulations efforts as it has been discussed in the preceding paragraphs, the results
have been compared with the experimental data as well. The experimental data have
been extracted from the oscilloscope traces in Zitouni's work [44]. In order to
minimize the boundary layer effects on data, the oscilloscope traces corresponding to
the widest chamber have been used. Moreover, the selected data belongs to the set
with the initial Mack number of 1.70. To find the initial pressure ratio for the

simulation of the experiment, the following relationship has been used.
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In the above equation P, and P, are indicating the pressure at higher and lower
pressure regions respectively and M, is the initial Mack number. Using the preceding
equation the initial pressure ratio is found to be 13.45. Figures (3.6a,b) show the
results from the numerical simulation together with the available experimental data for
the pressure versus time at two different radii. The overall trend of the simulation
results are promising and the slight difference between the experimental data and the

numerical resuits can be attributed to the fact that viscosity effects have been
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overlooked in the simulation. The agreement between the numerical results and the
experimental data is better at the smaller radius. This suggests that the errors in the
numerical simulation are getting larger as more steps are involved in the calculations.
At the higher pressure ratios a small oscillation appears behind the shock (e.g. fig.
3.6a). This oscillation as it has been said before, is a characteristic of the second
order schemes and it can be omitted with the use of a larger artificial viscosity
coefficient. However, here the large coefficient for the artificial viscosity is exchanged
with a balanced one in order to keep the representing shock wave zone sharper and

also to have a better accuracy in results.

The variations of the shock Mack number with the radius of the shock wave
for two different initial pressure ratios have been displayed in figures (3.7) and
(3.82,b). To find the shock Mack number from the numerical results the following

relation has been used.

M

s

2Y Py

In the above equation P, and P, are the pressure in front and behind the shock wave
respectively and M, is the shock wave's Mack number. For the initial pressure ratio
of four, the simulation results have been compared with those theoretically obtained
by the CCW theory [10-15]. Remarkably good agreement was noticed between the
theory and the numerical values at larger radii (see fig. 3.7). Deviation of the
numerical data from the simplified CCW solution at smaller radii has mainly two
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reasons. First, in our earlier discussion it has been mentioned that the shock waves
speed calculated with the MacCarmack scheme tends to be slower at the vicinity of
the axis. Secondly, the CCW solutio. itself is approximate since the effect of the

secondary wave refection has been omitted in the derivation of the theory.

Now, in order to have a stronger representation of the results obtained for the
variation of the shock Mack number versus the shock radius, the comparison has been
made between the simulation results and those of CCW theory, characteristic method,
and experimental data. Figures (3.8a,b) show the outcome for the initial pressure ratio
of 13.45. Again the experimental data as well as the method of characteristic results
have been adopted from Zitouni's work [44]. A reasonably good agreement between
the method of characteristic (MOC) and the numerical results from this work with
those of the experimental data can be seen from fig. (3.8a). The deviation of the
experimental data from the two other methods in the larger radii as it has been pointed
out by Zitouni is the result of the multiple reflection of the characteristic wave as it
passes through the area contraction in his experiment apparatus. So it can be
considered as an error factor in the exrerim~al data. Although in fig.(3.8a) at the
smaller radii as it has been expected, the method used in this thesis results in slower
shock Mack number compared to characteristic method, interestingly the experimental
results agree very well with the outcome of the current work. In figure (3.8b) like the
case with the initial pressure ratio of 4, at the larger radii the simulation results agree

well with the CCW theory. However, the difference still remains in the smaller radii
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for the reasons that have been mentioned before.

3.2 Two-dimensional study

In this section the results from a two-dimensional simulation for an imploding
shock wave are analyzed. The discussion is threefold: first a 2D simulation with a
one-dimensional initial condition is preformed, secondly, a mode four perturbation for
a converging cylindrical shock is examined and in the third part an elliptical shock
wave has been simulated. The outcomes from each of these simulations are discussed

individually in the three proceeding sections.

3.2a One-dimensional initial conditions

All the assumptions for the one-dimensional simulation are held here and the
only difference is that the spatially two-dimensional Euler equations have been used.
In other words, the equation (2.4) has been used for the simulation and there is no
perturbation in any of the fluid properties inside or outside of the diaphragm before
its rupture. Moreover, the diaphragm itself does not have any deformity and it is a
perfect circle (see figure 3.1). The purpose of this study is first to analyze the effects
of the initial conditions on the results from a 2D simulation, in comparison with the
solely one-dimensional model. Secondly, to see whether or not the affiliated errors in
the calculations have any effect on the final results as far as the azimuthal direction
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is concerned.

The results from this model in the form of the contour plots for the density are
presented in figures (3.9a-d). The initial pressure and density ratios are chosen to be
4. In these figures the clustered iso-density contours with the smaller radius represent
the shock wave and the second set of the clustered iso-density contours indicates the
contact discontinuity. Furthermore, to appreciate the pressure intensification near the
axis in figure (3.10) a 3D representation of the pressure at the convergence stage has
been shown. It is worth noticing that the initial pressure ratio of three has been
intensified more that 600 percent at the vicinity of the axis. The results of the
numerical simulation as it can be seen from figures (3.9a-d, 3.10) show that the
fluid's properties such as density etc. do not depend on the azimuthal angle 8. Also
the shape of the shock wave remains circular at all times (i.e. before and after the
convergence). From all of this one can conclude that if simulation starts with the one-
dimensional initial conditions, there would not be any instability in the shock waves
convergence. Moreover, since the outcome is independent of the azimuthal angle as
it has been expected, it shows that the computational errors do not have a major effect
on the final answer. The later finding is an advantage over MUSCL-type scheme of
Munz [33], since in his simulation the computational errors caused a mode four
perturbation at the convergence stage of the shock wave. Further, it appeared that the
errors in Munz's simulation caused the contact surface to vanish when the shock wave
was diverging. Now that confidence has been built that the computational errors are
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not going to affect the study of the perturbed shock waves, we may proceed to the

next section.

3.2b Mode four perturbation

There are several ways to produce a perturbation for the purpose of the
numerical simulation of a converging cylindrical shock wave. The most realistic one
is the method used by Demmig et al. [35], since they use the experimental data for
the input of their program. However, it has the disadvantage of being useful only for
the simulation of one specific experiment and it takes a lot of preparations. The other
method, perturbing the density or pressure at the high pressure side of the diaphragm
separating the high and low pressure gasses (i.e. creating the perturbation by high
pressure regions used by Wanatabe et al. [18] or periodic perturbation of density used
by Itoh et al. [31] ) is very hard to achieve physically. It seems that corrugating the
diaphragm in order to produce the perturbation is physically more sensible and in the
same time is flexible enough to study the different cases. Such a scheme to generate
the perturbation is first used by Munz [33], and an almost similar method has been
used here to produce a mode four perturbation. The perturbation is applied by slightly
corrugating the diaphragm using equation (2.10). No other perturbations of physical
properties are added. Moreover, all the assumptions made in section 3.2a are valid

here as well, except the diaphragm being circular. Figure (3.11) illustrates the
schematic of the discussed model.
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In order to achieve the maximum efficiency during the computation due to the
symmetry of the flow, a sector with the central angle of 27Um has been used. Here
m is the mode number which in our case is 4. This means that the domain of the
computation would be a quarter circle with the boundary conditions described in
chapter two. The initial pressure and density ratios are chosen to be four in
consistence with the previous cases in this study. The simulation results in the form
of the iso-density contour plots for the cases with & = 0.02, 0.03, and 0.04 are
shown in figures (3.13a-f), (3.14a-¢), and (3.15a-€) respectively. The reason for using
the iso-density contour plots to illustrate the outcome of the simulation is because all
the experimental pictures display the change in the density at different regions. In this
way a comparison between the patterns from experimental pictures and the numerical

iso-density contour plots is possible.

At the beginning, as it can be seen from figs. (3.13a), (3.144), and (3.152)
although different perturbation parameters (®) were used, the shape of the shocks
resembled one another. Also the iso-density contour patterns are almost the same.
However, the initially small disturbances caused by slightly corrugating the diaphragm
were amplified as the shock wave converged (e.g. see figs. 3.13a-¢). Figure (3.13f)
shows the reflected shock wave which becomes cylindrical with propagation outward
and is known to be stable. By examining a series of the isopycnic plots, one can
observe the time evolution of the gas flow. Although at the beginning the shock wave
looked cylindrical, behind it a slight non-uniformity existed since the iso-density
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contours were not cylindrical. The iso-density contours were quadrangularly disturbed
which indicated the onset of mode four instability. For instance, as it can be seen
from figure (3.14d) the shock wave is no longer cylindrical and the disturbance of the
flow behind it becomes even more pronounced. In fig. (3.14¢) the iso-density contours
look like a " four-leaf clover". By comparing the results with the experimental
pictures (see fig 3.16) taken from Watanabe's work [45] a remarkable agreement was
found. It should be noted that there are some differences in the initial conditions
between the experiment and the simulation (e.g. presence of the bend in the
experiment apparatus). However, it is clear that the initial perturbation is amplified
with shock convergence. Another example for the agreement between the experimental
pictures and the outcome of this simulation can be seen in the figure (3.16a). The
shadowgraph pictures belong to reference [48]. Figure (3.17) summarizes the
amplification of the shock wave distortion. The solid curve represents the numerical
results and the symbols are the selected experimental data from reference [45]. The
Y axis is AR/R,, where the deviation of the shock wave A R is normalized with
respect to average radius of the converging shock wave R, . The X axis is the average
radius normalized with respect to the radius of the diaphragm R, . Some adjustments
have been done to the experimental data since the characteristic length (diaphragm
radius) in ref, [45] was different from the R, in this work. As it can be seen, good
agreement between the experimental data and the outcome of the numerical simulation
was obtained. A small initial amplification rapidly grows when R, /R, is less than
approximately 1.7. This can be attributed to the fact that an initially small perturbation

47



transforms to the triple points ( two oblique shock and a cylindrical shock) as it can
be seen in the form of "four-leaf clover” pattern (e.g. figure 3.15€). Further, it is
found that the different perturbation parameters (®) used have little effect on the
dimensionless A R/R, versus R, /R, graph. Tharefore, all of the three cases with

different & have been merged into one curve in fig. (3.17).

3.2c Elliptical shock wave

In the last step of the present study for the first time a converging elliptical
shock wave has been simulated numerically. All the conditions and the assumptions
are the same as the mode four perturbation simulation except the shape of the
diaphragm. In this case the diaphragm is an ellipse given by the equation (2.11). The .
values for initial elliptical perturbation parameter (&) in eq. (2.11) are chosen to be

0.0415 and 0.064. Figure (3.12) displays the schematic for the current model.

The iso-density contour plots for the two cases of & = 0.0415 and 0.064 are
illustrated in figures (3.18a-¢) and (3.19a-€) respectively. In figure (3.19a), in addition
to the shock wave and the contact discontinuity, a part of the rarefication wave can
be seen as well. Paying attention to how gas flow patterns are evolving in a series of
plots (e.g. 3.18a-e), one can observe that gas density rises at the most lagging part of
the shock front. This can be clearly seen in the blown-up plot of (3.18d). The more
clustiered contours at the 90° and 270° positions, compared to wider spaced iso-density
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contours at 0° and 180° locations, confirms the idea. This phenomenon can be
explained as follows: when the gas flows into an oblique shock, the noimal velocity
component of the gas shrinks, while the tangential component is unchanged. Now, the
stream line refracts when it approaches the shock front. Consequently . the compressed
gas pours toward the lagging part of the shock wave. This compressed gas
accurnulates at the bortom of the concave front and forms a gas condensation there.
A set of experimental pictures with the initial perturbation parameter equal to 0.065
has been displayed in the fig. (3.20). These pictures are taken from Tashtoush's work
[46]. The resemblance of the numerical and the experimental pictures are very
noticeable despite some differences in the initial conditions (e.g. the slight difference

in the initial Mach number).

Very recently Neemeh et al. [47] through experiments found that the
perrarbation parameter £ can not be represented by the simple power law relationship
r". Instead they have suggested a harmonic type of variation especially for the cases

with large perturbations. In the reference [46] the following form has been proposed:

_ X\ -n Ir
E_E"(E) [1+ecos(m1t-R—o)] (3.1)

where &, is the initial perturbation parameter at R, , € is the amplitude of the
harmonic component, and m is the harmonic number. Here we consider the
characteristic radius R, to be haif of the diaphragm's major diameter (i.e. R, = 0.5).
It has been pointed out by Wanatabe et al. [18] that the normalized amplification
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parameter for the shock wave is independent of the incident Mach number. So to
verify the above equation numerically, &/, versus 1/R, representation is used. To plot
the numerical curve, the informatict: from both simulation cases are applied (i.e. &,
= 0.0415 and 0.064). As it can be seen from figure (3.21) numerically the existence
of the harr znic component for the amplification of the shock wave distortion has been
confirmed. The simulation outcome is in very good agreement with the experimental

results with the following parameters for the empirical equation (3.1):

m=38
£e=0.1
n = 0.8125

From the above result, a better understanding for the shock front perturbation
has been obtained, and to some degree the reason behind the deviation of the
experimental data from the theoretical prediction of 1™ is explained, as it has been

mentioned by Neemeh et al [47].

50



CHAPTER 4

Conclusion and Recommendations

In this chapter the concluding remarks about the results obtained during the
course of the present study have been pointed out. Furthermore, some
recommendations for the continuation of this work in the future have also been

suggested.

4.1 Conclusion

A numerical study was made of imploding shock waves. This simulation has
been done through a second order explicit MacCarmack finite difference method by
solving the unsteady compressible Euler equations. The study has been split into two
parts. First, a one-dimensional model for the converging cylindrical shock wave has
been simulated. Secondly, a two-dimensional simulation has been carried out for the
mode four perturbation of the converging cylindrical shock wave and also for a

converging elliptical shock wave. Based on the various results obtained, the following

conclusions can be drawn.

It was shown that the MacCarmack difference method used in the present study
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would be providing a useful tool other than experiment for furthering our
understanding on such a complicated flow considered here. Moreover, employment
of the splitting technique is a straightforward method to extend a one-dimensional
scheme to multi-dimensional schemes. Further, the intelligible method of the initial
set up used in the present computation (i.e. the deformed diaphragm) is capable of
analysis of different perturbations and/or shapes for shock waves. Code used in this

work has included these features.

In the one-dimensional simulation a reasonably sharp representation for the
shock wave and the contact discontinuity has been obtained. Furthermore as it has
been expected, numerically it was shown that the strength of the shock wave was
increased while it was converging. Also a better approximation to the theory was
achieved in this work compared to other simulation efforts at the vicinity of the axis
as far as the pressure amplification is concerned. However, near the centre the shock
velocity appeared to be a little slower compared to the results from other simulations.
It was mentioned that this slower speed tends to be a characteristic of the method used
in this study. Overall the computed shock Mack number versus radius results agreed
well with the exact solution through the method of characteristic, approximate analysis
of CCW, and some experimental results. At last, during the 1D study a satisfactory
compariscn between the experimental data and the numerical resuits has been made

for the variation of pressure with time at constant radii.
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From a 2D simulation but with a one-dimensional initial conditions, it has been
concluded that if simulation starts with a 1D initial conditions there would not be any
instability in the shock convergence. Moreover, since the results are independent of
the azimuthal angle as it has been expected, it shows that the computational errors do

not have a major effect.

Successfully a mode four perturbation for a converging cylindrical shock wave
has been simulated. A remarkable agreement has been found between the numerical
simulation's outcome in the form of the iso-density contour plots and the experimental
pictures. Further, the amplification of the perturbation has been studied and the

simulation results agreed well with those of experimental studies {43].

tinally, for the first time a converging ellipiical shock wave has been simulated
numerically. The numerical isopycnic plots well agreed with the experimental spark
shadowgraph. Moreover, the amplification of the perturbation parameter for an
elliptical shock has been studied. It has been concluded numerically that the variation
of the perturbation parameter with the radius in fact has a harmcnic componzat and
cai: not be represented by the simple power law. This is in agreement with zie very

recent experimental and theoretical findings of Neemch e al. [47].
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4.2 Recommendation for the future work

The present investigation has successfully achieved the objectives within the
scope of this work. However, there is always some room for further development of
the subject. The following are some suggestions for the future development on the

problem considered i this thesis:

1. Further enhancement of the resolution of the flow field can be achieved by

using solution-adaptive schemes.

2. A three-dimensional simulation can give more insight to the flow field through

consideration of third dimension effects on the shock movement.

3. Incorporating the viscosity and boundary layer effects in the simuiation of the
shock wave.
4. Studying the diverging shock wave numerically and investigating the vortex

formation at that stage.

5. At the very high initial pressure ratios the ionization of the gas due to severe
heat generated at the focusing stage is an important factor that can be the
subject of a additional study.
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Figure (2.1)- Mesh for the 1D problem

Figure (2.2)- Mesh for the 2D problem

61



N

(a) (b) (c)

a— Exact
b— Dissipation
c— Dispersion

Figure (2.3)- Effect of the different types of errors on representing a discontinuity

p—ar—
Figure (2.4)- Schematic of the space-time index
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Figure (2.5)- Control volume near the axis

Figure (2.6)- Schematic fcr the computation domain

63



Diaphragm

Figure (3.1)- Schematic of the model for 1D and 2D simulations
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Figure (3.2b)- Variation of velocity vs. radius (K=4)
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Figure (3.2d) Variation of temperature vs. radius K=4
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Figure (3.2g)- Variation of density vs. radius (K=4)
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Figure (3.2h)- Variation of temperature vs. radius (K=4)
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Figure (3.21)- Variation of temperature vs. radius (X=4)
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Figure (3.3b)- Variation of velocity vs. time ar. constant radius (K=4)

71



Varjation of Density vs, time - R=0.25 °

3.5

Denslty
i
L

\5F

0.9

Figure (3.3c)- Variation of density vs. time at constant radius (K=4)

1.9

Variation of Temperature vs. ime - R=0,25

T T

1.8 -

1.7F. J

1.6 4

1.5p .

1.4 o

Temperature

1.3p i

1.2pF -

l A 3 i J i " i L 1
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time
Figure (3.3d)- Variation of temperature vs. time at constant radius (K=4)
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Figure (3.3f)- Variation of velocity vs. time at constant radius (K=4)
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Figure (3.3h)- Variation of temperature vs. time at constant radius (K=4)
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Figure (3.3j)- Variation of velocity vs. time at constant radius (K=4)
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Figure (3.3k)- Variation of density vs. time at constant radius (K=4)

Variation of Temperature vs. time - R=0.75
1.3 ' r r

L25F ]

1.2

1.15¢ -

1.1

1.05

Temperature

0.95

0.9

L]
1

0.85 - : - ' :
0 0.2 0.4 0.6 0.8 1 1.2

Time

Figure (3.31)- Variation of temperature vs. time at constant radius (K=4)
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Figure (3.4a)- Pressure variation vs. radius (Payne [21D
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Figure (3.4c)- Velocity variation vs. radius (Payne [21])
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Figure (3.12)- Schematic for the 2D model with elliptical perturbation
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Figure (3.14c)- Iso-density contours for a converging cylindrical shock wave
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Figure (3.152)- Iso-density contours for a converging cylindrical shock wave
(Mode = 4,t = 0.141, 8 = 0.04, K = 4)
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Figure (3.15b)- Iso-density contours for a converging cylindrical shock wave
(Mode = 4, t = 0.214, 8 = 0.04, K = 4)

102



-0.50 -0.42 -0.33 —0.25 ~0.17 -0.08 -0.01 0.07 015 0.23 031 040 0.48
LI FTTLr T

0.48 | TTTITTHI ILIE TT T 0.48
0.40 é 0.40
0.3% % 0.31
0.23 - 0.23
0.15 § C.15
0.07 é 0.07
-0.01 é -0.01
-0.08 g =0.09
—0.17 g -0.17
-0.25 - . ~0.25
-0.33 C . \ 7 ; -0.33
-0.42 ::_- >\ e .: g -0.42
—0.50 :IIFIll ltllII|1!l|1l;l|ll;II!lllllII[lli1|l|ll:_0‘50

20.50 —0.42 -0.33 —0.25 -0.17 -0.09 ~0.01 007 015 023 031 040 0.48
SCALE 1 inch = 0.1419 data units
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Figure (3.15¢)- Iso-density contours for a converging cylindrical shock wave
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Figure (3.16)- Interferograms for mode 4 perturbation of a converging cylindrical
shock wave (Wanatabe [45])
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Figure (3.16a)- Shadowgraph for mode 4 square perturbation of a converging

cylindrical shock wave (Neemeh [48])
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Figure (3.17)- Amplification of the distortion for a mode 4 converging cylindrical
shock wave
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Figure (3.18a)- Iso-density contours for a converging elliptical shock wave

(t =0.158, £, = 0.0415, K = 4)
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Figure (3.18¢)- Iso-density contours for a converging elliptical shock wave

t = 0.322, &, = 0.0415, K = 4)

111



0.09

0.08

0.06

0.05

0.03

- 0.01

-0.00

-0.02

=0.03 .

~0.05

-0.07

-0.08

-0.10

-0.10 —-0.08 —-0.07 -0.05 -0.03 —-0.02 ~0.00 001 0.03 005 006 008 009
TT I T IN T T N T I T T I I d T T T Ittt ygrriartyiibiia
: = :
o = -]
(I 0 A L V- R R O O T O O O W 4 [ I N W

20.10 ~-0.08 -0.07 —0.05 -0.03 -0.02 -0.00 0.01 0.03 0.05 006 008 0.09

SCALE 1 _inch = 0.02763 data unils
=" = —

0.09

0.08

0.06

0.05

0.03

0.0

-0.00

-0.02

-0.03

-0.05

-0.07

-0.08

-0.10

Figure (3.18d)- Iso-density contours for a converging elliptical shock wave

(t = 0.330, £, = 0.0415, K = 4, Blown up)

112



-0.50 -0.42 -0.33 -0.25 —-0.17 -0.09 ~0.01 €07 015 023 031 040 Q.48

0.48_lllrllllilllllii[llilllllrllllill]lili’llllll lll_.o.‘_8
0.40 é 50.40
0.31 § < 50.31
0.23 g go.zs
0.15 :7 Cg 0.15
0.07 s 3 0.07
-0.01 ? : -0.01
-=0.09 » 7 -0.08
-0.17 53 é -0.17
-0.25 é A { _ g —0.25
-0.33 é R el = °© g -0.33
-0.50 :! L1 Lt gy vy s vy e ettt ettt L1 |: -0.50

-0.50 -0.42 -0.33 -0.25 ~0,17 —0.08 -0.01 0.07 015 0.23 031 D.40 0.48
SCALE 1 inch = 0.1419 data units
— f— g ]

Figure (3.18¢)- Iso-density contours for a converging elliptical shock wave
(t =0.345, &, = 0.0415, K = 4)

113



-0.50

-0

42 -0.33 =025 ~0.17 -0.08 -0.01 Q.07 0.15 023 031 040 0.48

0.48

0.31
023 -
015 F
0.07
-0.01
-0.09
-0.17 F
-025 |
-0.33

=0.42

0.40 x

Lty
‘Q

—o.50 s LLmlllllll --mu

TRITRITTITTUTINT O] NNERRAFARRRERZ AN A
°

Pl

-0.50 -0.42 -0.33 -0.25 -0.17 -0.09 ~0.01 0.07 0.5 023 031 040 048

SCALE 1_inch = 0.1419 datg_units
(= m—————— e——————

Q.43
Q.40
Q.31
0.23
0.15
0.07
-0.01
-0.09
-0.17
=0.25
-0.33
~0.42

=-0.50

Figure (3.19a)- Iso-density contours for a converging elliptical shock wave

(t = 0.062, &, = 0.064, K = 4)

114



—0.50 -0.42 -0.33 -0.25 —0.17 —0.09 —0.01 0.07 0.15 0.23 031 040 0.48

0.48 - TThH Vi P TP o i1t irneld T Tarrrnri lllilllllllllillli_

- 2 _ __S .

0.40 |- - ' - /:

s

0.31 - "l-"" .

023 k= ~]

A <,

0.3 - s (o e, s
0.07

b re-

-0.01 | -

-0.08 | :

- ¢ T -

017 | o ¢

RO < S

-0.25 -

: .g'\ o -

-0.33 /"' N .

-0.42 - e ’ .

_0.50 -l | I T T T T I O S | T I O E ) 1 J eyt v qr et l_

~0.50 —-0.42 -0.33 —-0.25 —0.17 —-0.08 -0.01 0.07 0.5 023 0.3% 040 0.43

SCALE 1 _inch = 0.1419 datg units
e ———— e——

0.48

Q.40

0.3

0.23

Q.15

0.07

-0.01

-0.09

=0.17

-0.28

-0.33

-0.42

-0.50

Figure (3.19b)- Iso-density contours for a converging elliptical shock wave

(t =0.157, &, =0.064, K = 4)
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Figure (3.19e)- Iso-density contours for a converging elliptical shock wave
(t = 0.320, &, = 0.064, K = 4)
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O

Figure (3.20)- Photos for a converging elliptical shock wave & = 0.065
(Tashtoush [46])
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Variation of Zeta vs. Radius (Normalized)
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Figure (3.21)- Amplification of the perturbation parameter & for converging

elliptical shock waves (Normalized)
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