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ABSTRACT

On Stability and Contractivity Pfoperties
of Semi-Implicit Runge-Kutta Methods

Raymond Legault C

1 - ™.

Error constants and -intervals of stability are cbmputed for

Restricted Denominator approximations to e of order pw=s and

p=(s-1), for 1ethods with -5 stages. Results for p=(s-1) are new.

Stability functions corresponding to inllproved approximations obtained
via, Richardson extrapolation and modified Richardson extrapolation are
also studied numerically and similar stability intervz;ls presented.
Furthermore, an efficicnt approach is used to find ‘i/n all these cases
the maximum angle o« for which we have A(a)-stability. To our
knowledge, this collected information is also new and )should prove
very useful in the choice of 7, the stability parameter, - for new

methods. s

Finally, we investigate the contractivity properties of semi-implicit
Runge-Kutfa methods.” It is found that ‘many methods can be
contractiveAfor any stepsize, provided that |I'l-"‘-| is sufficiently small. A
program was developed which numerically estimates the maximum
ratio allowed for this and also computes the maximum stepsize for

contractivity, if |§| is larger.
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. *-  CHAPTER 1 S
INTRODUCTION 3

o -

¥ The mathematical modelling of numerous -physical, chemical and
biological processes in engineering and the -patural " sciences often
requires the solution of systems of first order® ordinary differential

\ equations (o.d.e.) of the form . _ |

() Y = fay()  ylx) = ¥,

over some specified interval .[xo,xr].

\ The number of equations in the system simbly ct;rresponds to the
dimensionality of the real vector y(x) and the real-valued vector
. 'fﬁ;@ction f. Because the conditions fixing the solution are all given at
a gingle point (y(xo) -L\"yo), we speak of an' initial value problem, as
opposed to boundary Yalue problems, where conditions ére given for

many different points.‘

-
| ¢

* Note that a single ordinary differential equation of ord;er m, written in the form
I y(m) - f{x, N(o), 57(1). y(m.l)), can easily be converted inwr;rst order system
i in the form (1.1) above.

{' ° o ] . “» - RN

wet
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The present thesis is concerned with stability an{l; gontraqtivity
- properties of certain numerical methods for solving stiff problems of

the type just outlined.

7

In this chapter, we introduce some key concepts (including sf.ability
and stiffness) for the study of numerical solutions to- (1.1). The
second chapter then presents the particular methods of interest in this
study, along ‘with their stability functions and error estimation
techniques « suitable for them. Chapters 3 and 4 deal with the
accuracy and [linear stability. properties of Rosenbrock and ' .

semi-implicit Runge-Kutta methods, as a function of the so-called'

’

stability parameter.

Chapter 5 introduces many recentiy developed concepts to handle

nonlinear stiff problems.. - Finally, chapter 6 examines the/contractivit
. of semi-implicit methods when applied to these problems. N /_\

- — ’
o, :

1.1 Discrete variable. methods

It is probably safe to ‘Bij\\t‘hat most differential equations cannot be
solved  analytically, in %losed form. Thus  scientists and
mathematicians have worked,“’) on obtaining approximate solutions for
1:he above problem and a’ /great variety of numerical methods were

developed (and still are!). ' For recent surveys, see Bui, Oppenheim,

Pratt [8] and Gupta, Sacks-Davis, Tischer [27).

Generally, the methodsTor approximating the solutions of ordinary
differential cquations are based on the principle of discretization. In

this case, an approximate solution to y(x) is sought only for a set of
- i

-
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discrete pojnts x;, X,, Xg ... | The spacipg, b = x , - x, is called
the stepsize and may vary as the numerical integration proceeds. We
denote by y,, ’;1’ Yy - the . approximations computed for y(x),
y(xl), y(xz), .. * If a method only requires y , to generate y , it is -

called a one-step . method; if it requires older approximations (yn_z,
an

Yo.g ) it is 8 multistep method:
For a good introductory reference to numerical solutions of ordinary

differential equations, see Lambert [36).

1.2 Existence of solutions; convergence of numerical methods

For the scalar case, i.e. & single equation y’ = f(x,y), ¥(xg) = ¥y

we have the following theorem:

Theorem 1.2.1 - Consider the initial yalue problem y == f(x,y),
y(x,) = y, Let f(x.y) bé\ defined and cont’.inuoﬁs for all (x,y) in a
region D such that Xp<X<X, and -co<y<oo; and let there exist a
constant L such that for every (x,y) and (x,§) in the above domain
we have V ) \

(1.2.1) fxy) - fx3) < Ly - F1. S

Then, for any given number y,, there ezists a unique solution y(x)

~which is continuous and differentiable for all (x,y) in ‘the specified

domain.

" This existence and uniqueness theorem is proven in Henrici [30], pa‘ges

16-25. , We “will just outline here the method followed.



First of all, we define a nnlform spaclng ,.hp\— (x - o)/2 for
successive values of p = 0, 1, ... and for each p) we: consider only |
the points X =.X5 + nhp, for n = O,’\% . 2P u\ye c_ompute, points -
(x,,¥,) using %‘%er’s ‘(explicit) method:

(12.2) Tpap =T, + by, L

- We join the points with line segments, thus creating a pxecewnse linear -
approximate solutlon y ( ). for whxch we can obtain an analytical form

»

as follows:: % '

D

o - Tplko) = 3o
and yp(x) x (x[p]) + (x - _[p]) f(x[p],yp(x[pl?),

where x € (x,x;] and Xy is defined as x, + ihp for the integer value

0
i such that x, + ih < x < xy+ (1+l)h

The proof is then divided in 3 parts:
'(a) provmg that as p—oo, y (x) converges umformly on [a b] to
a @gntmuoua function y(x); e
(b) proving that thls limit y(x) is a solution of the dlfferentlal
| equation;

(c) proving that it is the only solution.

Condition (1.2.1) is called a Lipschitz condition and L is called a .-

Iipschitz constant. .-

.-

—

The above theorem can be generalized to systems as follows. We

simply substitute the domain D, defined by xe[xo,xr] and -co<y,<oo, |

for i = 1, 2, ... m (assuming we have m equatioﬁs). anc‘lition'“
(1.2. 1) is replaced by -
(12.3) ‘, Ilf(x,y) - ¥l < Llly - 7.

The proof may be found in Henrici [30].
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4 In the case where each component of the vector fungtion f(x,y)

posscssc;-y/ a ' continuous derivative with respect to each of the

components of the vecjor y, then we may choose

(1.24) L = sup ||'é—||: over all (x,y) € D,

of,
s i
where % m\the Jacobian matrix J with components J ﬁ, and

thé‘n.mtrix norm is subordinate to the vector norm used in (1.2.3).

* 1. )
Definition 1.2,2 A numerical integration method based on
discretizatign. is' convergent if for all initial " value problems (1.1)

satisflying condition (1.2.3), its approximate solutions Y, for any given

point x in [x;,x] sat_isfy' . ,

(1.2.5) " lim ly, - y()l —-0--

h—
nh—&X"xo ' ' s .

Clear!y, the approach indicated -above to prove theorem 1.2.1 ‘proves
by the same token that Euﬁrs explicit method is conyergent.- Ilenncx
[30] also proves some gencral convergence results applicable to one-step

k4

methods. o

e o

4 <

"Euler's (explicit) rule is ver"y"-‘\'ai’mple., It is a one-step method which is

linear in both Y, an;i f . The Taylor series expansion of the ex
ien

solution Qv(x“l) about x, and . Euler’s rule for the numerical solution
will agree only up to the first pow:zr&,c}f the stepsize h. Thus' this
method is said to beqo‘f order 1. Highei order can be achieved by
sncrifici;z‘ cither its onc-step or its linear character. In the first case,
we have for exnmple. the well-known lincar multistep methods,

whereas in the second case we have general oné-step methods, of

“

/
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‘which the most well-known are Runge-Kutta methods, presented in

chapter 2. : _ -

1

. . . ’
1.3 Errors in numerical integration “fnéthyds

'

While cbnvergence results have- their theoretical and practical
importance, we do not use infinitely small stepsizes in practise- and

this introduces errors in the numerically computed solutions.

In fact, ,}e "can digtinguish three types of errors which will

‘ con‘@aminate results to varying degrees. First there is the “starting

error if the vgriotfs"paraxpeters for the method used and the initial
values of the solution yo‘are not exactly representable in the
computer. ' Secondly, througho{xt thé computation of the solution, the

limited accuracy of the machine will cause some rounding errors.

" Finally, the limited order of the method used introduces a truncation

o

error, which.is g(’ag;éyally the most important error factor.

We now p‘?&ceed to define the 4iruncation error for the case of
one-step methods like the ones we' will later investigate. The general
onc-step method can be wri‘l.tep in the following form:

h).

n+ n+l1’

= ¥, + hROy Y

Definition 1.8.1° The local truncation error at X1 of the one-step

method is defined as

(1.3.2) T .= y(xn_u) - ¥,,1» Where -
(1.3.3) Yo = ¥(x) + h®(x ¥y(x )y, . hb)
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Note that (1.3.3) compt;tes the approximate solution v,e-ctor at x .+
using y(ﬂ instead of y . It is in this sense that, Tn+l is local. It
is the erfor made at step n+l1, assuming no errors were made before.
Dropping this ;ssumption, E ., = y(xn“) - Yo where Yo, 18
obtained with (1.3.1), is called the global truncation error. Here the
differf;nce will depend ',not only on error dﬁe to the current step, but

’ e .
also on the accumulation of truncation errors at all previous steps.

Definition 1.83.2 The one-step method (1.3.1) is of order p, if p is

the largest integer for which we have
(1.3.4) T ., = O

D+

P+l

). <

o F

Obviously, the: higher 'tl;é order, the more accu}at‘e the method will

- /
Clearly, the accuracy of a method for numerica/ integration depends
on the build-up of truncation errors and 14 a lesser extent of

rounding errors. In order to maintain a certain accuracy, we would

‘like to be able to monitor this build-upband take appropriate actions

when necessary. Most of the time however, one only monitors the
local truncation error. If the method is of order p, we have
‘g PHL p+2)
)

(1.3.5) ' T;H-l = ¥(x_,y(x )b+ O(h
where the first term is called principal local truncation error and ®,

W(x,y) is called the principal error function.

Typically,u methods will Jobtain estimates for the ﬁrihcipal local
truncation error and th¢ stepsize will be dynamically adjusted as
integ;tgﬂ proceeds, to ‘maintain some ' user-specificd tolerance (absolute
or relative) on the local error. Thus, when the function W has larger

values, -the stepsize needs to be reduced; but if the estimated error

K



. becomes significantly smaller than the prescribed level, -the stepsize
should be increased, to cut down the computation time and speed up
the integration. We will later consider soine strategies for estimating

the principal local truncation error (see chapter 2).

]

1.4 Linear ﬁrst-order systems and linear stal;mty

Definition 1.4.1 The first-order system (1.1), where y and f are
m-dimensional vectors is said to bgbtinear if f(x,y) = AX)y + g(x),
where Aj(x) -is an m by m matrix and g(x) is an m-dimensional
vector. In addition, if A(x) = A, a éonstan,t.‘ matrix, then the system

is called linear with constant coefficients.

1

For the time being, we will restrict our attention to linear systems

with constant coefficients: ~

(1.4.1) y' = Ay + g(x), ¥(x) = vy,

If the matrix A has m distinct eigenvalues )‘i , i = 1,2, ... m, with
corrgspondi%g eigenvectors Ci and if q(x) is-a particular solution of
y’ = Ay + g(x), then we can write the geheral solution of the linear

problem with constant coefficients as
m .

(1.4.2) y(x) = ), mexp(\(x - x)))C; + qlx),

jou1

where the &, are obtained by expanding the -vector Yo - q(xo) along

M

the fundamental system formed by the eigenvectors Ci i.e.

(1.4.3) | Yo - alx)) = 2 KCp

i1

The* proof is easi and can be found in Lambert [30], pages 5-6.
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Next we examine the problem of stability of num?rical methods when
applied to problems like (1.4.1). To illustrate this concept, we will
examine the application of 2 elementary methods, Euler’s explicit and
implicit rules, on the very simple acalar test equation '

(1.4.4) y' =y, ¥(xg) = ¥, (M real and nggative).

Euler’s explicit rule was already given as (1.2.2) and its implicit
counterpart (also called backward Euler) is just

(1‘4'5) ' yn+l = yn + hr(*nq-l’yn-;-l)'

‘ o

The exact solution '>s given by y(x) = yjexp(A(x - xj)) and it clearly

tends to zero as x /tends to infinity. It is- only natural to require

that this also be the case for the numerical solutions. For the

s

explicit scheme, we obtain

n
(146) ) yn = (} + h)\) yO’
whereas for the implicit case -we have
. n
. . l
(1.47) S A U

The stability requirement for Euler’s explicit rule then becomes
(1.4.8) hX € (-2,0),

. Whereas for backward Euler there is no similar restriction on the

ét'._epsize. In fact, any hie(-00,0) will do fine. This is actually a very

‘significant  difference between explicit and impiicit Runge-Kutta

methods, of which the above methods are the simplest examples.

With the sim;ﬁé test equation which we just considered, we can
observe that \ = ot and that we have obtained intervals of stability

oy
on the negative real axis. If we now consider the system (1.4.1), g—;
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is now the matrix A, whose ‘eigenvalues may be complex and we must
now consider regions of stability in the complex plane, not simply

intervals on the real axis.

Definition 1.4.2 Consider the application of & numerical integration
method (for example linear multistep or: general one-step) with fixed
positive stepsize ‘h to the scalar test equatilbn

(1.4.9) y =3y, ¥x) =3, (r€C)

We define the absolute stabilsty region to be that region of the
complex h\-plane for which all resulting solutions will tend to 0 as n

tends to infinity. o

Note that the equivalent requirement |yn+ll < |yn| could have been

used in the above definition. -

Now it can be shown (see section 2.6 for illustration of {.his) that for
problems of type (1.4.1), if the eigenvalues X of the constant matrix
A are such that all h)‘i lie in the stability region of a certain
method, then this method is stable.for this problem. Thus the
usefulness of stabilify regions found with the simple scalar test
equation (1.4.9) carries over to linear systems. And we see that
methods with relatively smpll—regions of stability will impose

corresponding restrictions on the stepsize. i

The linear stability requirement that we make, namely that numerical )
solutions of simple test equations should tend to O when the exact
solutions do, can be understood in an slternative way. In fact, this
is eguivalent to requiring that the global truncation error be damped
out as the numerical integration proceeds. (i.e. for large n, we require

that error — 0). Thus it is a requirement that there be no
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out-of-control accumulation of local truncation errors.

The importance of m}eeting the s't.abilit'y requirements, if we are to
have any 'trpst in the computed solutions, is clear from the explicit
Euier rule example: if we use 8 stepsize which is too large (i.e. such
that hX<-2), the solution (1.4.8) will diverge for large n instead of
converging to 0 as the exact solution does. A method which cannot
even solve a.simple problem like (1.4.4) adequately should surely not

be trusted for more complex problems!

We conclude this section by defining ,var"io;m stability criteria which

we will need in the rest of our s.tudy.

Definition 1.4.3 (Dahlquist [22]) A numerical method is A-stable if
its absolute stability region contains the whole of the left-hand

half-plane Re(h)\) < 0.

Definitlon 1.4.4 (Widlund [568]) A numerical method is A(a)-atabk,
a € (0,%), if its absolute stability region contains the infinite v@edge
W, = {b\ such-that [arg(-h)\)| < a}. A method is A(0)-stable if it

is A(a)-stable for some infinitesimal & > 0.
Clearly, A(g)-st.ability is the same as A-stability.

Definition 1.4.5 (Ehle [26]) A one-step numerical method is L-stable
if it is A-stable and in addition, when applied to the scalar test
equation (1.4.9), it yields Yo, = R(bX\)y, where [R(h))] — 0 as
Re(h)) — -oo.
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1.6 Stiffness in the linegr case

A simple scalar example will first be used to illustrate the

Jphenomenom of stiffness. It is a special case of the equation ‘
(1.5.1) 7' = A5 - F) + F'(),  3(0) = 3,

which is used by  Shampine and Gear [48] to discuss stiffness and for
which the exact solution is given by ‘

(152) . y() = (7, - FO)e + F(x).

For our present purposes; we will consider the_particular case yo—lﬂ,
=-10 and F(x)==x, which yields ‘

(153 ¥ = fixy) = 1 + 10(x - y). v f

-10 . -
The exact solution is simply y(x) = x + 10e * and is tabulated to
8iX gecimal place accuracy‘for some values of x in the range [0.0,5.5]

(see table 1.5).

*

Clearly, for x>1.0, the .solution of our differential equation is hardly
distinguishable from the straight line y==x. ™ But if we . start
-integrating with Euler’s (explicit) rule, from x==1.0 on}vard and using
a stepsize of h==0.5, . we quickly run into very serious_ instability. This
occurs even if we have used the exact solution to’ si?c decimal places

as our starting value. Why is this?

The accuracy of Euler’s rule cannot be called into question here. For
x>1.0, the solution is basically -the straight line y=x, for winich

Euler’s rule is exact, for any, stepsize!
ﬁ" -
o i1}
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Euler  Backward Euler

x o yx (h = 0.5) . (h = 0.5)
0.0 10.000000
0.1 3.778795 -
0.2  1.563353 -
0.3 0.797871 ¢
0.4 0.583156
0.5 0.567379 -
1.0 1.000454 1.000454 1.000454
1.5 1.500003 1.498184 1.500076
2.0 2.000000 2.007264 2.000013
2.5 2.500000 2.470944 2.500002
“ N X 3.000000 3.116224 3.000000
-1 35 3.500000 3.035104 3.500000
4.0 4.000000 5.859584 - 4.000000
4.5 4.500000 -2.938336 4.500000
5.0 5.000000 34753344 5.000000
5.500000 £113.513380 5.500000

5.5

Table 1.5: Instability of Euler’s explicit rule
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As we have seen in the previous section, stability considerations (i.e.
ensuring that local errors are not magnified in subsequent steps but
rather dampened) can also impose restrictions on the stepsize. For
our problem, g)f;=-10. Thus the stability condition (1.4.8) would
require h<0.2.~ What is surprisir\xg here is that it seems that the
value of X\ imposes restrictions on the stepsize, even beyond x=1.0

when it no longer plays any significant role in the solution we are

trying to appro;tim ale.

For this simple case, we can readily identify how such error
magnification occurs. The global truncation error, E = y(xn) - Y

obeys the following simple recurrence relation:

(154) E__ = (1 +E - [y(x) + hy'(x) - y(x,, )
Clearly, ‘if‘ |1 + hA\]>1, any local truncation error will be magnified in

subsequent steps and the error build-up will be quite rapid.

This elementary example has nonetheless pointed to the essential
character of stiffness: h_for most problems, it 18 the accuracy of the
method which dictates the slepstze; but for stiff probéems it is
atabtlity considerations whjch take over. Our example is only very
mildly stiff. We normally speak of stiffness when \ is very large
negatively and the corresponding: reduction of the stepsize can then be

very dramatic.

It is important to point out that the problem is not called stiff in
the relatively short initial interval before the transient solution
component (y, -“F(O))e)‘x has died out. Here we do expect the need
for a small stepsize, for accuracy reasons, beczuse the solution varies

rapidly. The problem is only called stiff ajfter the transient has
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practically disappeared from the solution, but still dictates the stepsize

for stability reasous. l

5

Following Dekker and Verwer [24), We now define stiffness more

" precisely for'the linear problem (1.4.1):

Definition 1.5.1 Problem (1.4.1), where A is 8:1 m by m- matrix
with eigenvalues 21, Ap - A, is called atiff if the following
ied:

1. ) exist with Re(}) << 0;

2. ")‘ exist of moderate size, i.e. “small” when compared to the

conditions are satis

\(«\ modulus of the omnes in the first condition;
3. no )\ exist with “large” positive real part ‘
4. no )\i exist with a “large” lmaglnary part, unless we also

have Re()\) << O.

As explalned before, the problem is called stiff only after the fastest
decaying terms of the’ solutlon have died out. Also it is assumed

that g(x) in (1.4.1) is as smooth as the slowly varying exponentials in

o

the solution. ° )
2
{ of

Now we recall that under certain conditions we can. take L == |[5;l|

(see 1.2.4). Since the norm of a matrix is never smaller than its
speciral radius (i.e. the largest modulus of any of its eigenvalues) and
sincé stiff problems would have some eigenv;xlues with very large

modulus, we can conclude that stiff problems are characterized as well

.by very large Lipschitz constants.

[
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While the typical scientific problem is non-stiff, we cannot downplay
the importance of stiff problems and the need to deal with them
adequatélm}:.v Indeech stlff--problems arise when we model ‘chemical
- reactions with larg&;»rate constants nuclear reactions with species -
decaying at rates varying widely; electric circ\uitry invol'ﬁng fast

elements etc... “For a detailed ‘presentation of the many areas in

which stiff problems are of interest, see Aiken (3], chapter 2.

As seen above, classical schemes (explicit ones in particular) are not
adequate to deal with stiff problems: extreme restrictions on the
stepsize would then result in-a tremendous c&mputing' cost. And even
if we could ;'afford this cost, we would then have to worry about the
accumulation of round.ng erl.'ors also since we would be using such a

large number of steps.

Methods to deal appropriately with stiffness would h‘ave- to be ones
with very large siabiiity regions. Obviously, A-stable and L-stable
methods would be prime candidates. But in a situation where all
large eigenvalues are real, we might be satisfied with using simply
some A(0)-stable metliods; in the same "Jmanner, if all eigenvalues of
interest are contained in a wedge W, a8 previously defined, then

A(a)-stability would be suitable.

~

Dahlquist [22] has proven the following results which show the
shortcomings of linear multistep methods for dealing with stiffness:

1. An explicit hnear k-step method cannot be A-stable

2.~ The order p of an A-stable (thus m‘bl)cnt) linear multistep

method cannot exceed 2.
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In general, implicit methods have much better stability properties than.

their explicit counterparts; this is exemplified by the results of Euler’s
backward rule shown in table 1.5.1, which handled well this simple

problém with the same stepsise h=0.5. Here we observe the desired

damping of the global trungation error as numerical integration

proceeds.’ -

In the next chapter, we will tufn to Runge-Kutta methods, of which

the Euler rules ‘are the simplest cases. We will show that implicit

methods of this type have very good stability “properties and hence -

could be good candidates for solﬁng stiff problems, However,
lmphcltness is also a coat.ly affair and ‘we will see how Rosenbrock

and semi-implicit methods csn become a good compromise m these

circumstances. ° /\ .
T e

}Lp -

~y
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CHAPTER 2

— ~

," RUNGE-KUTTA AND SEMI-IMPLICIT METHODS

-

I

2.1 General form of Runge-Kutt; m?thods

. A : | ' ’
An z-stage Runge-Kutta method is given by the following formula:

]
(2.1.1) : e Vg =Yg t i):,lbik'i, where

o8’ ¢
k, = bf(x +ck, y_ + j):laukj), i = 1,2, .. 8"
If 8°= (i—l j (and k, = f(xn,yn)), the method is ezplicit; if g'-J i, the

method is diagondlly tmplicit* and if s’= s the method is fully

A
i

implicit.

The value of the real parameters bi’ ¢ and 3, define the method and -

. are’ often presented as a so-called Butcher ‘tableAau, as shown in figure

* Originslly, the terms ‘scmi-implicit’ and ‘semi-explicit’ were used but ‘diagonally
implicit’ is more descriptive and is now preferred. Furthermore, ‘semi-implicit’ Is
now used for somewhat different methods, as we shall see Jater. ‘

U
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2 1. A convention generally adopted is to use ¢, = Eau for 1<i<s.

- J
| ®n P12 oo B )
] € | B2y B2 - By
. Gk,
% 31 32 ss N
L4 / :
3 @ bll bz . b. <
. Figure 2.1: Butcher tableau

’ ~ ' gy

Each k. can be ihterpreted as an approximation to the, derivative

4 ~

[ T ] \\\__‘ P
¥'(x) anqd -the summatnon Eb‘k a8 a weighted mean of . these
' i-l

i , .
?/ approxnmatlons . : -

ey

Teain

.22 fExpllclt Runge-Kutta methods

o

Explicit Ruge—Kutta methods havé been used since the beginning of
thxs century Shown ' below are results proven by Butcher [15 17} on

) the minimum numbef¥of stages required to attain a given order:

Xa
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(22.1)  Order of method 1 2 3 4 5 8.7 8
\ .
’ Min no of stages 1 2 3 4 ¢ 7 9 11

In Butcher [17), it is also proven that order p>8 is not pbssiblg with

(p+2) stages or less. o j
: b ‘

4

\‘«;" =3y

e

{

-

Figure 2.2: Stability regions for explicit methods

~ Coe s

\  Finally, the regions of absdlute stability for explicit Rﬁnge-Kutt.a
methods of order 1, 2, 3 and 4 and the minimal number of stages
_are shown in- f;gure 2.2. They were takegb from Lambert (361,_page
227. It ig obvious that su_ch small regions make thcse methods —

v bal
and this is true of ‘all explicit Runge-Kutta mecthods — unsuitable for

stiff problems. m o : /_\
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(2.3.1)
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2.3 Fully Implicit RungeKtutta methods

The systematic study of implicit Runge-Kutta processes was' initiatqd
by Butcher in the .early 1960°s. (13]. In this paper, he lists

coefficients related to conditions that the B b and ¢, of an lmphclt

method must satisfy to reach a certain order, the so-called order
conditions. Values are giwen up to order 8, for which there are 108

conditions to -satisfy!

Butcher [14] has showed ‘tha*t. for any s8>2, there exists an s-stage
implicit method of order _ 2s. .In fact, there is a one-to-one
corres;;ondenée between these. methods “'and s-point Gauss-Legendre

quadrature formulas. Fur errﬁore, these methods have been shown to

be A-stable. The first proof of this is due to Ehle [25] but several

other simpler proofs were provxded later (see Ngrsett [37], Crouzeix,

Ruamps [21], Wanner Halrer and Ngrsett [57]). .

Even if we can derive A-stable implicit methods of érbitrarily high

sorder, our troubles with stiffness are not over just yet.. We must.

now deal with the implicitness of the problem and this is not an sy
task. For instance;’\ Butcher [14] has proven that the simple iterative

scheme

»

k[t+i1 [t+1]

= bf(x tch, ¥, + h)ja X, h): k“’),
Ju=1 j-l

v

for t .= o1 .., Will converge provided that h<

L( m where u

and v are constants, relatcd to the absolute value of the (a ) matrix

elements and L is a.Lipschitz constant (see 1.2.3) for the problem.

Y

-~
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“Thus, if we were to use this simple iterative scheme to resolve the

implicitness of the problem, it would impose upon us a very severe.

limitation on the-stebsize (remember that.L is larée for stiff problems)
and’ we would loose the advantage we were seekiﬁng of an A-stable

method to begin with!

IO

However ther'e are ways out of this. For example, we can use a
Newton-Raphson type of iteration scheme instead of the simple one
presented above. We can then obtain much less severe restrictions on
the stepsize, but the computational complexity of the method would

still be very important.

To help on this last point, some linear tramsformations’ have been
proposed by Butcher [16] and Biclgart' [5] that significantly reduce the

complexity of fully implicit schemes. .. For instance, the

LU-ciecomppsitidns needed for the Gauss-Legendre  fully implicit,

3

- methods’ requlre O(-——) operatlons for the transformed system as

3 3
opposcd to O(—-— ) for dhhe original one.

2.4 Diagonally and singly: implicit Runge-Kutta methods

The situation is somewhat simpler for diagonally implicit Runge-Kutta

(DIRK) methods, in which case we obtain -8 splitting of the ms

- simultancous non-lincar equations into s distinct sets of m equations

(see for example Ngrsett [41], Alexander [4]). In fact, the methods

studied in the previous 2 references-have the additional feature that

the elements’ a. of the Butcher tableau are all “set equal. Such
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r~
methods are then called singly diagonally implicit Runge-Kut_t:a
(SDIRK) methods. '

"SDIRK methods are actually a sul:set of so-called singly-implicit
Runge-Kutta methods (see Burrage [10], N¢r§ett [40])‘1'for which the
(aij) matrix i8 in general not lower triangular — as it is for DIRK
methods -— but nonetheless has only one eigenvalue. If we use
Butcher’s transformation, these singly-implicit schemes also reduce to s

linear systems of dimension m. ’ a

We may expect that for a given number of stages the ab'ove methods
will have a lower attainable order than fully implicit methods. This
is indeed the case: s-stage singly-implicit methods (including the
SDIRK variety) - have a maximum attainable order of (8+1). Proofs
can be found in DBurrage ([10], Ngrsett and Wolfbrandt [:13],
Wolfbrandt [59]. - '

A
o

~

2.5 Rosenbrock and semi-implicit Runge-Kutta methods
S

/ o

When /dealing with stiff problems, a Newton-Raphson type of scheme
is generally used to solve the systems of equations resulting from any
of the above implicit methods. This requires computation of the

ar '

Jacobian matrix J = —.
Oy

.Rosenbrock [48] developed new methods which incorporate the
Jacobian matrix directly tnto their defining formulas and then onl\y
require linear systems of equations to be solved. To save on Jaéobian>'
cvaluations, it is also possible to use approximate results for J or

even an arbitrary matrix A; this is the idea behind semi-implicit,



Runge-Kutta methods.

Semi-tmplicit Riunge-Kutta methods for the solution of problem (1.1)

are-given by the following formula:
Vs , s

. A +/1 -y, + .Elbiki, ‘where
' E ' - i-1
(2".‘§:ﬁ | (I - 7hA)k, = hf(x +ch, uw) + M.Elqﬁkj" and
i1 g ,
u =y + j};la_zijkj, i=1,2 ..s. )

- This defines an s-stage method. It is also usual to adopt the
i-1

-

additional restriction ¢, = Eaij, i =1, 2 ... s Note that the k's
j=1 .

can be computed éonsecutively and that the right-hand side of the
gsecond equation above is then readily available for each value of i;.
thus all we need to do is to solve s linear systems of din;ex}sion m
with different ‘right—hané sides’, using -the sawme LU-decomposition of

(I - ~hA) all along.

In general, A can be an arbitrary m by m matrix. If A = 0, we
are back to standard explicit Runge-Kutta methods. On the other
hand, if we choose A’ =] = g;:-, the exact Jacobian, and '7ij=0’ we
obtain simple Rosenbrock methods; for qij_non-null, the methods have
been \designated by various names including ‘modified .Rosenbtrock’,
‘ROW’ (for . Rosenbrock-Wanner), ‘generalized Runge-Kutta’, and
‘Kaps-Rentrop’ methods. ~However, the common practise "is now to
geall \‘Rosenbrock methods’, all schemes sharing the distinctive feature

of having the exact Jacobian directly in their defining formulas.
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Rosenbrock methods have been studied extensively because of their

(—\\ . - .
relatively low computation costs (as compared to fully implicit
methods) and yet good overall linear stability  properties

[6,7,34,35,44,47,60)].

If A is not the exact Jacobian, it is usually taken to be some
approximation to the-Jacobian. As mentioned above, such methods
were introduced to reduce the number of Jacobian evaluations
substantially (for example we can use the same evaluation for many
steps), thus makmg the methods more efficient. Originally coined
W-methods by Stelhaug and Wolfbrandt [50], they are now knmown as
semi-implicit Runge-Kutta methods. Dekker and Verwer [24] -call
"them Runge-Kutta-Rosenbrogk methods in chapter 9 of their book.

There exists a very close connection between Rosenbrock and SDIRK
methods, which was demonstrated by Steihaug and Wolfbrandt [50].

We will now show this.

For an s-stage SDIRK method with a.ﬁ=fy_, i=1 2, .. m, we must

solve s uncoupled ‘non-linear systems' of the form:
P i-1

(252) - F(k) =k, - hf()g +ch y, + Ea qk; + k) = 0.

-~

Now if we start with initial gﬁe)sg k!] for the unknown k.’s, and

iterate only one siep usmg a N;!wt.on-llke procedure, we obtain

i-1
(2.5.3) (I - 1hI)(k. ” ki) bf(x,+eh, ¥, + Vay k”

jm=1

+'1k)

3
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&
0
Choosing k” = —Efy as initial guesses zﬁ expanding the
above formula, we arrive ,_aL
(2.5.4) (1 - I — Mf(x+ch y + E(%a - kb
-9 L = 2 TGD Yy L% Ut
i1
, 1
g | FWT, 51
. Juml

If we drop the iteration number and set «, = aJ - fy we clearly

i
obt.a.ln our Rosenbrock method. Replacing J by A, we have (2. 5 1).

2.6 Stability functions

‘We now consider the application of scmi-iml;licit metﬁa@J(&S.l) to
the scalar test equation (1.4.9). H»ere the matrix A, which is usually
taken as an ap‘proximétion— to the ‘Jacobian, reduces to the scalar ),
‘which is also % Thus the results we are about to obtain will also
be valid for Rosenbrock methods. Furthermore, given that method
(2.5.1) can be considered as a linearization of an SDIRK method as
we have just shown, these results will also be valid for SDIRK

schemes.

Using z = b\, (2.5.1) applied to (1.4.9) yields

i1
(2.6.1) (1 -1k = sy + ) 7 gy i=1L2% s
j=1 :
Substltutmg for u, and defining ﬂi = o, + Y, we then obtain
i-1
(2.6.2) . ko = wiy, + Eﬁ k), i=1 2 ..8

i=1

where we have used w = a
( 1 - 72
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- T
At this point, we défine the s-vectors b = (bl’ b{ b.) , a8 well
T

, “ -
88 k = (k, k;, .. k) and 1 = (1, 1, ... 1) ; we also define the

- square matrix B = (8.). | Using this notation, ‘we can rearrange
u ©

(2.6.2) as ,
(2.6.3) (I - wB)k -=_wyn1 or
(2.6.4) o k = (I - wB) wyL.

Given B has only tero elements on and above its main diagonal, we
s-1_s-1

. -1 - 2.3
hach'=Oa.nd(I—wB) =l+wB+wB +..w B . We

then have }
8
-1
(2.6.5) | k = yn.zlw'?Br 1,
J-
which results in
. , s
T 1 ]
(2.6.6) : Vool = 1+ .Elb B 1w )yn.
J—

We now define the stability funétion R as:

_ - T g1 e
(2.6.7) Rz) =1+ Y'b B 1w.

j=1

P

. . T
Similarly, using the s-vector a = (ai,l’ ¥ g0 o O 0, ... 0), we

can write u, as

& . i-1

T j1
(2.68) w=(1+ Ya B 1wy,
j=1
from which we define the internal stability functions
i-1 ‘
T 1§
(2.8.9) Rz) = 1 + Eai Bj- 1w .
jm1
N

&
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From (/2.6.6) and definition (1.4.2), it immediately follows that the
absolute sta‘bility region of the method (2.5.1) is then simply that
region of the complex z-plate for which we have |R(z)] < 1. Also,
from (2.6.7) and the defi;ﬁtion of w, R(z) must be a rational function -~

such that

[ %

. P .
(2.6.10) RE( - 1) =" Llr, withp <
- . i=0

Now assume that the method is of exact order p. Since the ‘analytic

solution of fpe test equation is y(x) = yexp(A(x - x;)), we must have

-

that R(z) is an approximation to e of at least order p.

At this po.int we make use of a result from Tricomi [51] page 217, as

quoted in Kaps [31]:
3 8 & 8 1 i
(2.6.11) e (1 -19z) = ELj (;-f)(-'yz), lvz| < 1,
j=0
where L‘:(x) is the generalized Laqgerre polynomial (see [1]) defined
38*
’ . in+a xj
o n -
(2.6.12) Lo = LU 5 .
j=0 ' ' |
Direct comparison of (2.6.10) and (2.6.11) indicates that for the

method to be of order p we must have

isil .
(2.6.13) l.i = (-9) LJ: (;), j=20,1, ... p.

Given (2.6.10), this result is also a direct consequence of proposition 8

<

LS

* A simple relationship exists between generalized . Laguerre polynomials and

derivatives of the Laguerre polynomials: L;.j(-}? v '(-l)s.JL?.")('l")).
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in Ngrsett, Wanner [42]. &

The striking fact about the above result is that the stability function,
and hence the absolute stability region of the method, depend on'onlu
one of ‘the method’s paramei;ers, namely ~; for this reason, 4 is
known as the atab{h‘ty parameter. In chapter 4, we shall investigate

the linear stability properties of these methods as a function of ~. -

To make (2.6.13) more concrete, we now give explicit expressions for

the first few polynomials Ij('y):

lo -1
I, = -8v + 1
. 8, 2 1
(2.6.14) - l, = (2)7 - 87 +
- NK 8,2 B 1
ly =-(xr + (v - 357+ 5

g, 4 s, 8 8, 2 8 1
14 - (4)7 ¢ (3)7 + (2)’1 < 5'7 + 24°

. " . . . (
Finally we return to a statement made in section 1.4 about the

stability of numierical methods when applied to linear problems with - ‘

constant coefficients.
: @
E we apply method (2.5.1) to the problem y’ == Ay, where A is a

constant matrix, we will obtain a result equivalent to (2.8.8) namely .
(2.6.15) You ™ R(hA)yp.

R(bA) is now a matrix which is still equal to the right-hand side of
(2.6.7) if we understand w as now being the matrix hA(l - ’th).l.
Essentially, we ‘just replace z == h\ by 2 - hA throughout.
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Now suppose that xi, i = 1, 2, ... m, are the eigenvalues of A and
Fa

that they all have negative real parts. From (1.4.2), it follows that

the exact solution asymptotically tends to 0 and we would agaiil want

the computed solution to exhibit the same behaviour.

1yl
lly, Il

. normal* matrix, then so is R(hA); and-for normal matrices, the

3

Taking norms, (2.6.15) implies < ||R(hA)|}2. If A is a

2-norm is equal to the spectral radius**. Since the eigenvalues of
R(hA) are simply R(hX), this means
" (2.6:16) ' |R(bA)|| = max [R(BX)|-

1

o

\ \\‘h‘ PERL Vo

So we see that if |R(bN\)| < 1, for all i (i.e. if hX is in the absolute
stability region of the method), the approximate solution will alse

tend to Q for large x.

" ’2.7 Error estimation: Richardson and modiﬁed Richardson
_ éxtrapolation '

\\

- As the ’numerical integration pl;oceeds, one ﬁeeds a suitable IQL

truncation error estimate, for stepsize control. For Runge-Kutta\

methods, the two most commonly used techniques to compute such an

estimate are Richardson extrapolation and the embedding technique.

o A is normal if A}!A - AAH, where AH is the conjugate transpose of A..

** The spectral radius of A is the maximum modulus of its eigenvalues.

. O
¥

)
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In the embedding teqhmque, the idea is to perform the step from x

to x
n+1

another method of order (p+1). The difference between the 2

twice, with the mtegratlo‘l method of order p and then with

computed values yields an aymptotically correct error estimate. To
reduce the computatnonal cost of obtaining tlus estimate, the P h order
method is actually a by-product of the (p+1) order omethod, sharing
all its early stages. Thus the error estimate is obtained quite
cheaply. On the other hand, such embedded pairs of methods are
more djfﬁcult. to derive, having an increased number of algebraic
equations to solve. As examples of such pairs of the .Rosenbrock
typet see Kaps, Rentrop [34] and Kaps, Ostermann [32]; for the
semi-implicit type, see method W23M1 in Kaps [31].

The other approach, Richardson eztrapolation, proceeds as follows: we

first integrate two steps, from X to x and- then from X0 to

n+1

X, 42 with gtepsiwobtaining “an approximate value Yp.o for the

exact solutign" y(xn QL Then we integrate one double step of size 2h,

directly from x, to Py thus obtaining another estimate yniz for
y (xn+2)' . ,
The error estimate for a method of order p is then obtained as
+
Yo42 = Tns2 )
(2.7.1) , ‘est’ e *E+—p——2+— ,
2 -1

and it has the same degree of accuracy as the embedding technique.
Let’s show this. For simplicity (and illustration purpose‘s below!) we

consider a one-dimensional problem.



First consider integrafing 2 steps of size h, for which the process is
shown in figure 2.7 below. Assuming that no errors have been made
so far, we start integration at (x,¥(x,)) ‘and obtain the :pproximate
solution point (xwl,y”l). From (1.3.5) we~ have for this nte‘p the

following truncation error:

,' ) p+1 p+2
272 T, = yl,) - Tp = YxdO T+ OE™)

o

4
u\ P .
¢ , /
L] . ' o

a
R
R
)
]

.
4

Figure 2.7:. Truncation errors for 2 stepagofl size h
3 T ' v 7

) . ' N )

Obviously the point (x ..y,

~ §{x) and the best we could do in the next step, if we made no error

J 18 now on another solution “braiich

at all, would be to obtain y(xMz). However, there is of course agaln

some truncation error and we instead obtain yM2 with the followmg

32 - \

Y



Taylor series as

‘order p approximation to y(x

truncation® error: *
12.7.3) Ty = ¥(x,,9) - Yoo = W(xn+l’yn+1)h

" What we want however is an estimate for T = y(x

p+l p+2

+ O(bh" )

n+2) -3 n+2’ the

truncation error for the two steps together. We can easily show that

T + T

n4l . n+2
@74), T+ T, o =30, )+ T3 - T - Vo

is appropriate for this. "we have

S.nce4yn+l = §(x ), we can expand the bracketed ‘term above in

n+l

b0

) _ o Pl by g V) p+2 )
( n+2) n+l - i);:l it + O(h" )
i i)
p+1 by (x ,.¥(x; )
(2.7.5) - : ;n-o-il' nfl (hP+2)
jam] )

' where the last step.is written using the fact that You is already an

n+l)'

Now (2.7.4) and (2.7.5) yield
p+2

(27.9) n+2) Yu+3 Tn+l + Tn+3 + Ofh . )
Using their .respective expressions for T and Tn+2, we finally
obtain , , '
: ' p+l p+2
21.) Tkyg) = Tupg = 2¥0IGI o O
On the other hand, the double step of size 2h carries with it a
truncation error of ’ - -
p+1 p+3 '
(2.7.8) Y ) - 3,y = Vo) o™,
Substracting (2.7.7) from (2.7.8) we finally have our estimate -~
", +
' + y11-4»2 . yn+2 p+l P+2
(2.7.9) ool wm ————— = 2W(x y{x )b+ O ).
2 -1

} ! /

. /
s \ /

/

)
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We can correct A using est’ to obtain an’ improved approximation
Y ex given by

(2.7.10) - v,
‘,Clearly then, the estimate (2.7.1), like the one obtained with the

-+ p+2
x ™ Jne2 t est = Y(xn+2) + O™ ).

,',Embe'dding lechnique, corresponds to the difference of two
‘approximations of y(xn+2), one of order (p+1) and the other of order

P

Richardson extrapolation 5allo'ws stepsize changes only every second
step and will requirc more work per step than the embedding
technique; however, the additional constraints’ imposed by the latter
approach will nsuall;r mean that the resulting method will be’ less
efficient. Thus smaller stepsizes will 'in ‘general result from tixe
embedding tecﬁ;ique and Richardson extrapolation could then 'still be °
competitive. A detailed study, c()mpariné the 2 error estimation
schemes for Rosenbrock methods, has becn carried éut (see -hPoon' [45)
and Kaps,~Poon, Bui [33]) and showed that this was indeed’ the case.
It was found that for low ‘tolerances (~10-2) embedding was superior ’
while for high _tolerances (<10-5) extrapolation was .superior; fdr .

4 . . S
moderate tolerances (~10 ), both approaches were comparable. %,

(YIRS

- >

It is pospigle to reduce the extra work required for Richardson
extrapolation by -modifying its approach. Instead of using the same:
method for the double step (size 2h), one uses another method with
stability parameter g Thus no new LU-decomposition is required; for -
this double step.  Furthermore, other coefficients of the second
method can often be chosen so that some or all of the k’s are. the

same as for the basic integration method, which pﬁen results in'a

¢
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“very “EE;ap error estimate. This mods fied Richardagn_eztrapblation

scheme was first proposed by Cash [18] and further investigated by
Bui, Poon [f]. Code W3X1 of Kaps [31] uses modified Richardson
extrapolation as error estnmate for a. semi-implicit method of order 3.

See .also Kaps, Ostermann [32]

'y L}

If y denotes the computed solution value for the double step (with
n+2 :

the method which ' uses % instead of ), we can use the following error

estimate for modified Richardson extrapolation:
. ..

B T . Y 2 - y 9
(2.7.11) o8t = ————

x ’
2’C /C - 1
* .
where C /C is the ratio of the so-called error constants -of tg,e, 2

!

methods, using 4 and g respectively.

Here too we can obtain an unproved approximation by correcting

Ypi2? namely Tmx = Ypeo * est In this case however it is only for

‘Imcar problems with constant coefficients that Y ox will be an order

(p+1) approximation to y(xn+2). Nonetheless, (2.7.11).can be used as
error estimate for non-limear problems also, with good results. ‘

4
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CHAPTER 3

ERROR CONSTANTS AS.A FUNCTION OF

.y
\
)

. . -
. i . \.‘_/*-
—
. ' .
-

As seen previously, when applied to the scalar test equation (1.4.9).

* .the s-stage semi-implicit Rungé-Kutta method (2.5.1) and many other

methods yield the following result:
- (31) y

If the method. is of order p, then the stability function will be at

»

o+l R(z;'f)ynr z = ha.
. least an order p approximation to e ie.

(3.2) R(z7) = g((z::)) =\(‘1sz;:zl)'°= e +c ot ).

P(z;7) is a polynomial in z whose coefficients are given by (2.6.11).

p+2

These coefficients can be obtained more easily however, if we 'just

multiply (1 - qz)s by the /Series expalision of e. Finally, C is called

the error constant and als@s/oﬂh{m

Such  rational approximalions to the\ exponential, called
Restricted-Denominator approximations by ’N¢rseit, were studied

/
extensively by Ngrsett (38,39,41], Siemieniuch [49] and Wolfbrandt [60].
" - J‘f’*—-’\\/'r

8.1 The optimal order case

The authors mentioned above focussed their attention on the optimal
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order case, which is (p+1) as we have seen previously. In this

situation, we have C=0 and the error constant is given by C2 where

2 3 -
+ O(hp+ ). These™ optimal order

Rizy) = e + _C2zp+
approximations to the exponential are called Restricted-Pddé

approximations.

Furthermore, the cases of interest are p=s and p=(s-1), the latter ome

' potentially allowing L-stability. In both situations, for a given value

" of 8, there are only s distinct values of ~ which yield optimal order

these special values by f‘yi and 7, respecti?‘r,ely, i =1 2, ... 5. More

¢ th
precisely (this will become clear later), :11-' is the i smallest zero of
i 3 fise]

1 ‘ th
L, (x), while ;71_— is the i  smallest zero of L (x)*.
i

Table. 3.1.1 shows the only methods for the case p=(s-1) which are

L-stable, giving their order (s), choice of ~ and absolute error

constants. Table 3.1.2 shows the only A-stable methods for. the case

p=8, which are of order (s+1). The information was drawn from

Wolfbrandt [60] and Ngrsett [39] respectively.

-

First we note the absence of an L-stable method of order 7 (with 7
stages) and of an A-stable method of order 5 (with 4 stages). Of
course, there are methods which are nearly A-stable (i.e. A(a)-stable,

for a close to ’z—r), Wolfbrandt [60] lists the maximum stability angles

* P'(x) - Lg(x), is the classical Laguerre polynomiai.

methods. For the methods with p=s and p=(s-1), we will denote -

™



8 - 7 Icgl '

1 7, ~ 1.00000 5.0E-1

2§ ~ 170711 . 14E-0 )
;’ 2 . 7, ~ 020280 4.0E-2

3 7, = 0.43587 2 8E-2 1

| 4 7, = 0.57282 2.7E-2

5 7, =~ 0.27805 5.3E-4

6 7, =~ 0.33414 3.4E-4

8 Ty~ 0.23437 2.76-6 ‘

Table 3.1.1: L-stable, .optimal order methods (p = s-1)"

]

; )
? B
-

and error comstants fo¥all oi)timal order methods of order up to’ IBf
for the case p=(s-1). |

. puother /gﬁé‘%ation is that by ptimising the order of the method,
we sometimes end up with relatively large error constants. And even
when the error . constant is acceptable, there are further .difficulties |
because we also need some means of estimating the local truncation
error. If we use a second .method for this purpose, as would be the
case i‘or the embedding technique or modified llligardson
extrapolciion, we would like it to have equally gdod ‘accuracy (and

stability). features as the basic integration method and this is clearly
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8 - q° IC,l -
1 §, = 0.50000 8.3E-2
2 4, ~ 078808 . 9.0E-2
3 5 n 106858  1.6E-1
i
5 §y = 047327 1.3E-3

. ' %
Table 3.1.2: A-stable, optimal order methods (p = 8)

not pbgsible, if we require maximal order and L- or A-stability.

For example, in trying to optimize all these factors for numerical
testing of optimal' order 3 schemes, Wolfbrandt ended up discarding
the ==’ Tor 'L-stable method and chose instead =T, for which

Y | -2
|Cy|=3.9x10 ~ (better than 2.6x10 ) and A(76.57 ° )-stability is attained.
This also enabled a more reliable error estimate. For maximal order

4, thin!_;s were nicer and he wused =g with corresponding
-3 -2
-|Cgl=1.1x10  (better than 2.7x10 ) and A(89.55 ° )-stability attainable.

In this and the following chapter, we will investigate order p methods.
We thus sacrifice maximal order to see whether we can achieve better
qverall optimization of the accuracy and stability features of the

integration and error estimation schemes. o
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-~

3.2 Continuation with the higher order approximation

3

As seen in section 2.7, error estimation often involves (or can lead to)
2 approximations, ome of order p and the other of order (p+1).
While it is customary to’ use “the lower order method as the basic™
integration scheme, it hés also been tried to contim;e the integration
with the higher order approximation (for example, for Richardson:

extrapolation, we would use Yex OF Y0 instead of y as our

n+2'
~ computed solution to continue the integration process further).

1 8

Examples of this for the embedding technique and Richardson
extrapolation can hbe founglﬁn “Kaps, Rentrop [34] and Kaps [31], for

Rosenbrock and semi-implicit methods respectively.

If we plan to use y _ or y__ for continuation of the integration, we - -
must clearly make sure that they also have the accuracy and stability
features required for the problem. We now establish their stability "

functions:

Again using the scalar test equation (1.4.9), we define the stability

* function for the corrected approximation Y ex with the following

-~ + . .
relation y,_ =y + est =2 Rex(2z;'7)yn; similarly, we can use the

n+2
&

relation y = y o + et = Rum(2z.;'~/)yn to define the stability

function for y . Using (2.7.1) and (2.7.11), end also the fact that

. 2,‘ . .
Vpeo = R (z;'y)yn, we easily obtain

e
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2pR2(z;'7) - R(22;7) Pe;(h;’i)
(3.2.1 R_(2z;7) = =
(3.2.1) | ox(227) = P .1 Q,E7)
pC* 2
2 FR (z;7) - R(2z;1) _ me(2z;'7)
21)%1 1 Q227 |

where the (*) indicates the use of :21 instead of 1. .

/‘\

(5.2.2)’

A\ Vs

While R, R and R__ are all rational functions in z, the degrees of

their numerator and denominator polynomials differ. The& are p and
s respectively for P and Q, (2s+p) and 3s for P, and Qex, and (s+p)
and 2s for me and me. The degrees for modified Richardson

extrapolation are smaller because Q(ZZ,:I) = Q(z;7) and this allows a:

2
simpler common denominator in this case.
| . -2
The solution of the scalar test equation yields y(xn+2) = g’y(xn), and
gince y__ and y in the linear case) are order (p+1) approximations
ex s Ymx

to y(xn+2), it follows tohat R, .and R __ must be at least order (p+l)
21

. approximations to e .

So we end this section by defining the error constants C, Cex and
Cox respeétively for the basic method, Richardson extrapolation and

modified Richardson extrapolation:

' 3
(3.2.3) R(z;y) = e + o + szp+2 + O(hp+) ‘
, - AN 2 2 3
(3.2.4). R GFW- ¢ +c (20" + op™")
< 2 2 3
(3.2.5) R, (217) = e "+ C_(29)° + op"™)
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19
3.3 Error constants for order p@xgthods

X

We need to derive expressions for (C, Cex and me. First we will
show that C_ and Cm;( can both be expressed in terms of C and C,

of the basic method; then 'We will obtain formulas for C and CQ.

From (3.2.3) we have '

2 2 1 2 3
(33.1) Rz = e + 20 +2(C+Ch’ + 0@"").
Now from (3.2.1), using the result just obtained and (3.2.3) with 2z

instead of z, we arrive at
~ C-¢C,

2 2 3
(332 R () =e +—— (%) + o(™™).
22 - 1)
- By comparison with (3.2.4) we see that
C-C, v

(3:3.3) c, = —
<% 2(2° - 1)

We do likewise for the modified Richardson extrapolation case. First;,\

if we use g‘instead of 4 and 2 instead of z in (3.2.3) and indicate

this by a (*) for the error constants, we obtain:
2 1 2 3
(334) R(2)) = e Yrove)T 4y + o0,
From (3.2.2), using (3.3:1) and (3.3.4), a similar result is achieved,

%

namely J
' C*C + C,) - 2CC; '
2 2 2 2 ]
(335) R_(257) = ¢  + - @)™ + o"").
. 2(2°C* - Q) '
And by comparison with (3.2.5), we finally get -
. C*C + C,)) - 2CC;
\ (3.3.6) C =
mx

2(2°c* - Q) -
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So the problem is now simply to find expressions for C- and 02 of
s/
the basic method. Looking back at the end of section 2.6, we can
obtain the following useful relation:
E l('r)z

=p+41
(3.3.7) e - R(zi7) = ’-——"—"——- .

(1- )
where lj('y) is defined as in (2.6.11), but this time with no restnctlon

on j.°

Using the binomial expansion for (l - '71,)" gives us
(33.8) \ - Rz = 1 " ¥ * () e
- : + O(h

from which we obtain-the needed information:

C =1, . L - «E

(33.9) Gy =l () + L (7)

~C* = 1,,,,,(1)

2 S
- 'C; = p+l( ) p+2(2) N

¢

p+2

p+3

)

-

3.4 Computation and results

From (2.8.12) and (2.6.13) or dlrectly from e (1 - qz) - Elj(q)z we

j=0
btain '
A | . min(.i.-)s o %
(3.4.1) Ii(7) = Eo (i)"m—(j T ‘

Since we are interested only in j=(p+1) and j=(p+2) for the error
constants evaluation, and we are dealing with the cases p=s and

vy
p—(s-l), we will always have the upper limit of the summation equal

-
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L

i
i LA

to s, . Ty
At this point, we remark that using (3.4.1) one can show that (V)

. :
is proportional to L;('l:,) for the case pm=s, 'and proportional to L.(%) ‘
for the case p=(s-1). This justifies the special sets of values “‘i and

7, yielding optiinal order (p+1), as mentioned in section 3.1.
In order to obtain the values of the error constants, we can proceed

as follows.

| 3
LG =2, -
P S0 9 (prai)
Then, from (3.3.3), (3.3.8) and (3.3.9) we arrive at g
C = 'lp+1('7)x
' L o(?) - Clas - 1)
p+2
(3.4.3) C,, = > )
- 22" - 1)
' 2 X Coe
C (C - !p+2('7)) ]p+l(2) - 2Clp+2(2) ‘
x .

2(C + 2‘~’|p+l(g))

We see that C and G, are polynomials in <, of degrees s and (s+1)
respectively; on the other hand, me is a rational function in 4, with .

t A , ,
a numerator polynomial of degree 2s and a denominitor polynomia] of
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: o/
degree s.

) i
The above formulas were used to compute the logarithm (base 10) of
the absolute error comstants |C, ]C:xl, and |C_|. In order to clearly
locate discontinuities on these graphs, the zeroes of all 4 polynomials

in o were obtained.

,i
This presented no problems for C and Cex, but required some caution

for the 2 polynomials of me. For the denominator, the coefficient of
' LY

i

4 oancels out for i=p. Consequently, for p=s, the denominator.

polynomial is onlyMof order (s-1), while for p=(s-1) it is of order s
) &

1
but has no term in .-,"

‘ w 2
Similarly, for the numerator of me, the coefficient of 7 ® is given by
- -2
2" ((p+1-8)))
the numerator will be of degree (2s-1) instead of 2s.

(;;_1'2‘_; - 1) which cancels for p=(s-1). Thus, for p-‘=(s-1),'

~

‘Finally, there is one more peculiarity of me for s=2: in this case,

both polynomials have a common zero’ More precisely, we have for

B==p==2
3 2

(3.44) © = (=050 - 21y + 147 -2)

N .o 96(y - 0.5) - =

~ and for 8='..(p‘{'.l)a'l 2} we have ’ v
‘ 2

' / (7 - D(-99 + 10y - 2)

GA8)" O 12(vy - 1)(y + 1)

In the first case, for 7=0.5, we simply obtained the limiting value
lim logloICm| s -2.283; in the second case, for =1, we chose
108

lim logo|C | =~ -!::?80.

1—1.0,
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<

The cbmpnted results are plotted in Appendix 1 as a function df 7,

" for '76[0.0,2.0]. Plots are given for the two cases Gp-s‘ and pm==(s-1),

for 8 = 1, 2,... 8. For each graph, the continuous line represents
log,y[Cl, the dashed line reprepents log |C_| and the dotted line

represents log |C_ |.

For p>4, .it is difficult to distinguish’ clearly the 'behaviour of .the

individual curves for small values of #; therefore, a second graph is

provided, showing an -“enlargement” of the - “small '1"-re‘gion of the

main graph.

The values computed apbear to match the results pubiished by

Wanner (56}, ‘which however deal only with the basic method, bnly
with the case p=s and only with ~€[0,0,1.0]. ‘

[~}



47 ,
CHAPTER 4

LINEAR STABILITY AS A FUNCTION OF ~+

¢

ln this chapter, we 'mll mvestlgnte the linear stability propemes of
methods characterized by the atablhty function (3.2). We consider
oubnhty a¢ infinity, A(0), A-, and A(a)-stability, for the cases pws
and p=(s-1). Note that the first 2 propehies are preconditions of the
next obe .and that A-st.nblhty is strengi,hened to L-stabllnty for the
case pm(s-1).

4.1 ~-reglons for stabllity at infinity

~

Definition 4.1.1 A numerical inte?ration method is stable at

infinily if its stability function ‘satisfies -
(1. Jim [R(z)| <

We will investigate whether R(z;7), R (22;7) and R_ (25;7) satisfy this

eriterio. First, it is obvious that“for the cﬁ;e p=(s-1) it does, because

then the" above: limit -is 0 for all 3 stability functions. 'What about

the case p-:r
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For the basic method, using (2.6.8) and (2.8.11), (4.1.1) then becomes
1 .
(4.1.2) o IOl g |
The ~-regions for stability at infinity are then simply found by
‘locating the intercepts of the Laguerre polynomial L (x) with y(x)71.
veals

For Richardson eztrapolation, using (3.2.1) and a little algebra r
N < y

that the condition |[R_(co)] < 1 is equivalent to .

(1.1.3) 1 +2° < L.(}’) <1 _
.Comparing (4.1.2) and (4.1.3), we expect intervals of stability at
inﬁnity for Richardson extrapolation to each have one boundary in
common with an interval for the basic method and to be a bit
narrower; but as p incr;ases, they should overlap more and more

exactly.

For modified Richardson cztrapqlation, using (3.2.2), the stability at

infinity condition is

C‘[L 7) CL(7)

(4.1.4) -
2?* - C

’

' L
W;th (3.4.1) we can show that C = -(-l)—L (7) and then: (41”4)
yields

s as 'L, O, (1)1 L (,)L (7)}
SR

where (-1)' was added to the numecrator and denominator so that they

both are positive as 4 — 0+, which sé‘mpliﬁcs the interpretation of

results below..
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We must then have that the following 3 conditions hold
simultaneously or else ‘that the 3 reverse inequalities hold

simultancously: -

(-1)'{:,‘(3) - L‘(%)} > 0,

(4.1:8) (-1) {L (7)[(L (,,)) h (,,)[L &) - 1} <
died’ + 0-nded <) 2o

The left-hand side of each condition above is a polynomial in }1 for

which® we can easily find the positive real roots and then find the

/regions where each condition holds (or where the reverse holds).

. Then the problem is simply to find the _intérgection of these 3 sets of

rregions wheére the conditions above hold together and the
intersection of the 3 sets of ~-regions where together they do not

hold. £

For the numecrical computation of the roots of the .3 polynomials of
(4.1.8), a few more details must be looked at. In the_first case, while
formally it is of degree s, it turns out that its constant term is. zero;

thus we should “factor out” ’ly and look for the roots of a polynomial

of degree (s-1). The same holds true of the third polynomial,

formally of degree 3s but‘ in reality of degree (3s-1). Finally, the

polynomial of the second condition, also formally of degree 3s, has
2

(-};) as its lowest power; so in reality we will lgok for the positive

real roots of a polynomial of degree (3s-2).

As an example, conditions (4.1.8) for p=8=2 are as follows:

2
3y + 155 > 0,

- 2 3 4 5 6
(4.1.7) . 21y - 36y + 21.75y - §.5y + 0.5y < O,

t

[

RN
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2 3 4 5
-6y + 24y - 36y +21.75%y - 5.6y + O.Sy6 > 0,
vzhere we have substituted y = }—7 . And in fact we would actually
look for .the zeroes of the following polyqomials of course A
13 + 1.5y,
2 3 4
(4.1.8) 21 - 38y + 21.75y - 5.5y + 0.5y,
. 2 3 4 b
. ' -6 + 24y - 38y +21.75y - 5.5y + 0.5y.

With these details taken care of, the computation‘ of the zcroes of all
these pol\}nomials yielded consistent results for the intervals . of
stabilitj at infinit);, with' one exception which occurred for p=s=3 in
the modified f{ichardson extr‘apolation ;pproach. In this caz;e, a very
small inter'val which was not supposed to be stable at infinity turned
out to be A(26.52°)-stable in later investigation! The issue was
resolved by realizing that the 2 (numerically computled) very close
roots which had “created” this supposedly non-stable interval were in

fact a single double root.

"
I

All the ~-intervals for stability at infinity are shown in Appendix g
For each interval, the bounds are given up to the tenth digit after
the decimal point. The left bound was systematically rounded up and

the right bound fruncated, so that the bounds of each given interval

'
ol

., are indecd part.of the stable (at infinity) region.

Consistent with conditions (4.1.2) and (4.1.3) we see that the intervals
of stability for Richardson extrapolation are more and more

indistinguishable fron; those for the basic method, as p increases.

One odd %esult ‘is obtained for modified Richardson extrapolation in
the case p=8=2: we have an isolated point 4=0.5 for which we have

1
stability at infinity (i.e. an interval of width 0).

“a
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4.2 General treatment for A(a)-stability

" Instead of requiring that' the modulus of the stability functions be less
thau -1, we can define the absolute stability regions of the 3 methods

by the equivalent conditions

(4.2.) " slQEl” - Pl >0,
(4.2.2) Q2 - IP2m)” > 0,
(4.2.3) Ibm(25;7)|2 - |Pum(2y.;')r)|.2 > 0.

Méking ase of (3.2.1) and (3.2.2), we can -express the last 2 criteria

,' only in terms of P and Q for the basic method. We obtain
(124 " - ViR EQE) - 1'P@aE) - PenQ’E) > 0,
wgd) @5 - 0IR%WN - 2PEP ) - P’ (0,

where we have dropped the dependancy on o to shorten \the notation

and indicated the use of :21 instead of 4 by a (*).

. Given the deﬁnitioq& of P(z;y) and Q(z;9), the Jleft-hand [sides of

. \
(4.2.1), (4.2.4) and (4.2.5) are polynomials in 1 of degrees 2s, 6s and

4s respeét,ively, whose coefficients are themselves polynomials in 4.
. o 3

‘Thus what is needed for computational purposes are routines for

mfxltiplying\_and subtracting polynomials as well as a routine to

compute the square of the modulus of a polynomial (in a complex

" variable, with reel coefficients). We now define a formula for this

purpose.
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2
" where the term for k=0 is simply 8, .
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‘n
‘ _ ,
Let A(z): = E\akzc , 3,€R, 2€C, be 3 polynomial of degree n. Let
O

i
¥ . We then obtain

(4.2.6) | A = E (E a0, i(zz»k)w) -

k w=0 J—o
with the understanding that a0, for i>n.

Z = Te

k-1
Now for t = 0, l 2, .. [—2-_|, the terms for j=t and j=k-t in the
internal summatlon can be combined together resultingl in

2aa, cos(2t-k)p. And if k is even; there is an additional unpaired

term which is a, | Thus we obtain

K/2 °
k i(2 l""J
(4.2.7) Zajak_je @rkle _ / 6*(k) + 2 {: a8, COB(2J k)p
j=0 . j=0

where 6*(k) is equal to 1 if k is ever and 8 null otherwise, and

where we still have aiEO for 1>n.

This last provision can be built into the summation itself by changing

its lower limit to’ max(0,k-n).

Finally, when investigating A(a)-stability, we are interested in values
of ¢ in (ma,r+a) for a € [0,%]l Replacing ¢ by x+a in (4.2.8) and
(4.2.7) leads to the needed result:

. (428) ;
l!:l
|A(z)| = E ( k/2 k) + 2(-1) _m§o . BB, cos(k-2j)a) X ’

- -
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Now back to our\ concern with A(a)—stabili‘ty.é Once « is set for a
particular method, how do we make sure that for a given «, the
stability conditions (4.2.1), (4.2.4) and (4.2.5) hold for all r>0 and for

any complex z such that |arg(-z)|<a?

To help with this task, we can make use of the maximum modulus
theorem for analytic functions (see page 134. of Ahlfors [2]) which
states that if f(z) is analytic and non-constant in an (open) region,
then |f(z)] has no maximum in this region. Conversely, if f(z) is
analytic on a closed region, then |f(z)| attains its maximuIP on the

boundary of the region. T ' ,

Since, R, R_ and R__ are analytic for Re(z)<0, we_conclude that we
need only check if the stability condition is satisfied on the bpunda'rg;- ‘

of W to make sure that it is everywhere in W Furthermore,

" since A(a)-stablllty in fact does not reqmre the stablhty conditions to

be met for |arg(-2)] = a but we are verifying it for this case anyway,

it follows that we can relax the conditions (4.2.1), (4.2.4) and (4.2.5);

* we caid replace the strictly positive (>) requirement by a non-negative

(=) requirement.
o

Now a close scritiny of these  stability conditions, making use of

(4.2 ), reveals that these polynomials in r do not have a comstant

0
(ie the coefficient for the term in r is null) Also, their term

.m r _has coefﬁclent 2cos(a) for (4.2.1), 4(2 - 1) cos(a) for (4 2.4) and

o

ﬁnally 4(2 . 1) cos(e) for (4 2.5).

Thus the condltloqs are satisfied for r=0, and for r>0 we can divide
the inequalities by r. BWE shall call these reduced polynomials the

stabilsity polynomials for f.heir corresponding method and denote them
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with 8’'s. Taking into account what has been explained above, we

* will have A(a)-stability if we satisfy the conditions:

(4.2.9) S(r,a;y) > 0
(4.2.1n0) | Sex(r,a;'y) >0 i
(4.2.11) § [(rav) =0,

where S, S, and S_  are polynomials in r of degrees (2s-1), (6s-1)
and (4s-1) respectively. They are the result of dividing our stability
conditions by r and using (4.2.8) for the squares of moduli in these

formulas.

As a concrete example, for p==s=2, the A(ax)-stability requirement for
the basic method (4.2.9) becomes:
(4.2.12) (4'13 - .5'12 + 29 -0.25)1'3 + (10")v2 - 67 + l)cos(a)r2

+ (49 - 1)(1 + cos(2a))r + 2cos(a) > 0 .

For a given 7 and a, the conditions to satisfy are just that certain

polynomiils in r be non-negative. How do we verify this?

Assuming simple roots, a necessary and sufficient condition is that the

polynomials should be noil-negative for r=0, and " that there be no

positive real roots. The first part is guaranteed for any 05a<§-,
given the already ‘discussed values of the constant terms of S, S;x an'g'
S . ¢

mx

-We can verify the second part by finding the number of positive real

roots based on Sturm’s theorem (see pages 261-263 of Cohn [19]).
For this purpose, our programs made calls to subroutine :‘PA02B” of

the Harwell library. ? é
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4.3 y-reglons for A(0)-stability

Intervals of A(0)-stability are computed by setting a==0. For the case
p=s, we investigate only inside the already computed intervals of
wsta.bility at infinity, since this is a Icondition for A(0)-stability. For n
p;(s-l), we must examine all of (0.0,2.0] because we have stabilitf ;at

infinity for any 4€(0.0,00).

The numerical testing of (4.2.9), (4.2.10) and (4.2.11) inside the
intervals of interest was carried out at equally spaced knots; while the
distance between consecutive knots was often smaller, it “Was never
more than 0.001. Thus no intervals of A(O)-stability_of at least this

-~

width could be missed.

Bisection was used to find the boundaries-of our A(0)-stable 7-regions

~with an” accuracy of 10 digits after the decimal point. Computations

were generally carried out in single precision, but many checks were
done in double precision (mainly for the Richardson extrapolation
method, where we have polynomials of higher degrees), with consistent

results.

The computed intervals for all 3 methods can ‘be found in Appendix
3. Note that when the upper bound for a ~-interval is 2.0, it does
not imply lack of A(0)-stability for 7y>2.0; simply, we only studied the

_ interval [0.0,2.0]i Once .again, we see that for p>3, the ~-intervals

for Richardson extrapolation agree more and more closely with the

ones for the basic method.
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4.4 ~-regions for A-stability

. q ’
For the special case ang (90°), we can see that the constant terms

of (4.29), (4.2.10) and (4.2.11), which we have described previously,
are null. In fact, many other coefficients cancel out and this must

be taken into account in the numerical computation.

From (4.2.8), we have that for a=g-, the square of the modulus of a
polynomial A(z) will contain only even powers of r. Thus the
l'eft.-hand’sides of (4.2.1), (4.2.4) and (4.2.5) are polynomisls in r with

only even powers. But there is more.

Frofn (3.2) it follows that
. z -
(4.4.1) P(z7) = e Q(z7) + Oz ) .
2 2 2 -
Using the result |B + C| = |B| + |C| + 2Re(BC), and =iy for

T .
the case a=7, We arrive at

p+1

(14.2) QGr)l’ - Pyl = o™ .

Thus we see that all' powers of y which are less than (p+1)" have null

coefficients.
»

~ Given the above, the left-hand side polynomial of (4.4.2), somebimes

called an E(y)-polynomial (see Ngrsett [37]), can be written as:

? k

. . 9 T
(4.4.3) - E(y) =~kzocgky , with e, = 0 for 2k ‘_<_ p..

For Richardson extrapolation and modified Richardson extrapolation,

‘the equivalent polynomials would be

(4.4.4) E_y) = ), gy

3
’ 2k

k=0
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2s ok
(4‘45) me(Y) - kgoeéky )

| K %ok = 0, for 2k<(p+1). | :

Evidently, these E-polynomials must be reduced as much as possible,
and their null coéfﬁciens.s should be set to 0 if we want the
numerical computation to proceed efficiently and stably. Then it is a
matter of verifying .the condition for y=0, and of making sure that

there ar¢ no, positive real roots.

Intervals of A-stability were computed, with.the already established
A(O)-staBle intervals as the starting domain of investigation. The
boundary values for the new intervals were obtained with the accurary

already mentioned, again using a bisection scheme.
) .
From the results, which are presented in Appendix 4, we see that

" Richardson extrapolation has no intervals of A-stability in [0.0,2.0], for

p = 2, 4, 8 and 8 (where applicable) in both cases p=s8 and p==(s-1).
The sasme holds for p=s==7, in Richardson extrapolation and the basic
method; and for pms=8, in the modified Richardson extrapolation -

method.

This- is not as ‘ter'r'ible a8 it seems however, because there are
appreciable intervals where we nearly have A-stability. For ei(a;mp&,

for Richardson extrapolation in the case p==s=4, we have at least

'A(89.99 ° )-stability for ~€[0.40,1.15] (the boundaries of the interval are

approximate). More examples are given in the next section.

Another interesting fact, if we require A- or L-stability, is- that in
some cases the modified Richardson extrapolation scheme satisfies this

requirement when the basic scheme does not. As examples, we have

.
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the intervals +e(1.068,2.000) for p=s=3, 7€(0.474,1.123) for pm=s=5,

and ~€(0.305,0.591) for p=s=7. Note that in this last case the basic e
method was nowhere A-stable in [0.0,2.0]. For p=(s-1), we can find ° *

other examples for alf val\lﬁis‘ of p except p=(s-1)=2! This means that

for linear problems, we could gain both in accuracy  and in stability

for certain values of ~ if we use the mo?iﬁed Richardson ~

extrapolation method for continuation instead of the Wasic method. ’

b, . - -
In general, the ~-intervals obtained for A(0)- and A-stability agree
with those published by Wanner [56], for the basic method, the case
p=s and 7 in the interval [0.0.1.0]. But there are slight differences.

For p=so=4, the left bound of the A-stable interval is given by
~ Wanner as 0.394339, wh‘ereas we would have 0.394338 to six decimals.
Similarly, for p=s=5, Wanner‘gives the following A-stable regions.:
. [0.246506, 0.361801] and [0.420785, 0.47328]. To the same -accuracy,
our own intervals are: [0.246506, 0.361803] and [0.420785, 0.47327).

Other differences exist for p=s=6 and p=s=8. In the first caﬁe, our
values are [0.284065, 0.54091] and. Wamner’s [0.284065, 0.54090).
Finally, for p=s=8, the interval is given as [0.217005, 0.264716],
whereas our own would be [0.217050, 0.264714]. In this last case,
note tha}t Wanner’s A-staoble interval agrees exactly with our. second
A(0)-stable interval; but we have found that while this interval is

almost completely A-stable, it is not so in very small regions at the

beginning and end of the interval.

In any case, these differences appear to be quite minor. -
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4.5 Numerical results for A(a)-stability

The approach concerning the computation of A(a)-stability was already

presentéd in section 4.2.

The computation proceeds as follows: for each ~-region where we have

successflilly established A(0)-stability but not A-stability, we use a

" bisection algorithm (starting with the bracket [0°,890°]) to find the

mazimum a for whlch we have A(a)- stabnhty The bisection is

—

stopped when the bracket has been narrowed to a width of less than
001°. The Isrgesg value of a for which A(a)-stability holds, say L
is then truncated to:2 digits after thq,décimal point, resulting in a

final value &, .

Based on the method jﬁ\st described, we can be confident (neélecting
rounding errors) that ‘fhef/m which we have
A(a)-stability is such that IV \

{(4.5.1) a € [@, @ + &) . DR
In other words, we are certain to underestimate the maximum a, by

N

an amount at most equal to €(a).

To reach the accuracy mentioned above requires 14 bisection steps.
Furthermore, it is“éasy to see that ‘ &

(4.5.2) . , max‘e('&o) s 0.0155 ,

and this maximum was indeed seen to occur for @,=71.11". More
numerical computation also shows that the average value J@ €(@,) is:

(4.5.3) Avg [(,)] ~ 0.0105 . A

-~
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In this sense, the angles obtained are accurate’ within 0.01°.

The results of eﬂensive comput.ati;m for A(a)-stability are provided in
Appendices 5 and 6, for the cases p=~s and p={s-1) ;espectively. For
each value of p, a series of graphs ‘are provided, plotling maximum a
(in degrees) as a function of 7. In these plots, the solid line
represents results for' the basic method, the dashed li.ne for
Richardson extrapolation and the.dottcd liy!? for modified Richardson %

extrapolation.

Each series of graphs starts with an -overall picturt; of the results for
7€[0.0,2.0] and ends with an enlargement of the top part of this first
graph, where a is close to 90°. The other graphs are enlargements
of particular (at least) A(0)-stablg subregions, so that more fine detail

can be captured visually.

. From these plots, we see once again how the results for the °basi‘ci
" method and for Richardson extrapolation are closer to ohe’ another, as
p increases, until they are hardly distinguishable. Also the last graph
of each series provides a good illustration of what we had already
noted around A-stability: if we are aiming at maximum possibl-e a, for
- a given value of 7, the‘ modified Richardson extrapolation metl;od can
sometimes surpass the basic method. But we sce that the gain is not

hed

very important.

We are now in a position to see t.hat there are sometimes fairly largeﬁ
intervals which are almost A-stable, but not quite... In some cases,
we even have A(59.99 ° )-stability and this does not seem to be due to
accuracy problems in the computation. For inctance, we obtain the

same results in doublc precision as we do in single precision for many
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cLecks done on those intervals. The cause of the lack of A-stability

is often the presence of a negative constant term in the deflated
E(y)-polynomial; and this constant is not small ‘e)nough (in, absolute

f
1

- \vglue) lo blame it on limited accuracy of the numerical computation.
‘Furthermore, ‘we oblgin the same negative constant term when we-
check in double pre:‘:isiox;. * |

. . p  Method " Iiterval e
i 4 Richardson (0.40, 1.15) 8999
4. . Modified - . (098 2.00) = 80.98
6 Richardson (0.285, 0.550)) 89.99
- 6 Modified .(0.545, 1.35) 89.99
7 Basic (0.32, 0.80) 89.99
. 7 Richardson (0.32, 0.80) 89.99
-7 Modified (0.625, 1.572) 89.98

-" " . 3 Richardson (021715, 0.264)  89.99
4 8 Modified - (041 0875) 8990 .

- Table 4.5.lgg‘80me ncarly A-stable intervals (p=ss)
v Fipx;lly, to complete the information foynd in the various graphs,

'l‘faBléa\@;S.l and 4.5.2 list certain intervals where we are very close to
A-stability. The method and corresponding values of p are also

Y \\_ @

N . ] . -~
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gﬁép. " However the boundaries of these intervals temain approximite

as no effort was made to make them very sharp.

-p Methgd - Interval L -
2 Modified (0.315, 0.333)  89.99°
4 Richardson (0.26, 0.65) ' 89.98
5 Modified ‘ (0.57, 1.39) 89.97
8  Richardson (0.21, 0.40) 89.98
6  Modified  ° (0.370, 0.504)  89.97
6  Modified (0.6, 0.86) 89.95
7 ‘\ Basic (0.23‘5, 0.45) 89.98
.7 Richardson (0.190, 0.2f1)  89.89
7  Richardson  (0.225, 0.40)  89.99
© .7 Modified (0.277, 0.355)  89.99
-7 "Modified (0.43, 0.89) 89.99

[4

able 4;.5.2: Some nearly A-stable intervals (p==s-1)

~

«f

“
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CHAPTER & :

THE NONLINEAR PROBLEM

.
. o ]

The criteria introduced in the first chapter, on the basis of the very
simple scalar test equation (1.4.9), are appropriate to ~predict the
stability behaviour of numerical integration methods when applied to

stiff linear problems with constant coefficients.

" Even if‘tﬁey have been used to predict the stability- behaviour when

dealing with general nonlinear systems, this is not.without problems.

"Over the past decades, these difficulties have® sparked intensive

research into new model problems and stability criteria more suitable

for the nonlinear case. ]

Our aim -in the next chapter will be to investi‘gate/ the stability of
semi-implicit methods in particular, "i‘his chapter shall present a
brief ,over'\'riew. 61' new concepts — and related stability criteria —
‘which represent some of the recent theoretical develdp‘fnent.s and will

-

. , “
serve as background material for chapter 6.°

6.1 Stlffnéss in thé nq’pl}near case -

In chapter 1, stiffness was defined for linear systems with constant -
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coe;fﬁcients (see definition 1.5.1), in terms of the eigenvalues of the

constant matrix A, which determine the-exact solution.

By analogy, for nonlineaf systems and for linear systems with varying
coefficients, stiffness is loo}sely described in terms of the eigenvalues of

the Jacobian matrix

(5.1.1) £'(xy) = g—;-(m .

If the eigenvalues of f'(%y) satisfy the conditions of definition 1.5.1,
we would then say that the problem is stiff at the point x=X; and 1[
these eigenvalues multiplied by the stepsize lie inside the linear
stability region of the method, as already defined, we would expect

stable computation.

However there are- serious problems with this definition extension.
More precisely, it turns out that the eigenvalues of the “frozen”
Jacobian give no valid information about the actual behaviour of the
exact solution, not even for x arbitrarily close to %, _An often quoted
example (due to Vinograd; see Dekker and Verwer [24]) will illustrate
this. )

We consider the linear problem with varymg coefﬁclents* Y(x) =
A(x)y, where A(x) is gwen by 4

2
-1-9cos (6x)+ﬂsin(l2x) 12cos (6x)+§sin(l2x)
(5.1.2) A(x) = 9 9 o .ot
' -12sin (6x)+§sin(l2x) -1-9sin (6x)-6sin(12x)

The 2 eigenvalues of this matrix are independant of x and have the "

* From the presentation so far, it should be cledr that linear problems with

-

varying coefficients present difficultics similar to nonlinear prt\)blemsl

"
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values -1 and -10. On the other hand, the exact solution is

~ " g [cos(6x)+2sin(2x)} .13x | #in(6x)-2cos(8x)
(5.1.3) y(x) = Cpe + Cge : )
2cos(6x)-sin(6x) 28in(6x)+cos(6x)
with C, and C, being arbitrary constants. ’ Ve
| “eX -10x . .
- Clearly ~ the exponentials e and e , which are inferred from the

“frozen” Jacobian for any value of x, are not present in the solution
at all jand do not cﬁpt.ure its local behaviour anywheré! Therefore,
outside of the class of linear prbblems ﬁith constant coefficients, the
spectrum _of the Jacobian matrix does not provide reliabyz iﬁforma@ion

about stability and error propagation. \

We have seen that an analogous extension of definition 15.1 is m/)t
satisfactory to define stiffness for nonlinear systems or even for linear
systems with varyiné coefficients. | However, this difficulty in finding a
suitable mathematical definition does not mean that stiff problems are
difficult to recognize' in practise. For instance, problem (5.1.2) is
mildly stiff as can be seen from its solution (5.1.3). Of course, an
analytical expression for the solution 'is not usually available! But the
stiff character of a problem will manifest itself by Q dramatic

inefficiency when we apply classical explicit ﬁlethods to its solution.

5.2 One-sided Lipschits -constants and the logarithmie norm
v - v
Assume we perform numerical integration starting from the initial

value y(xol - Yo ! After one step, the computed solution will be Yy

which is only an approximation to the exact solution y(xo-i-h), because
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of the truncation error associated with the method used.

‘. However, ‘there is a solutioﬁ branch of (1.1) which goes :t.hrough the
point Y, and corresponds instead to a different starting value, say
y(xo) = ¥, From this it follows that one way of looking at the
effect of the limited accuracy of a numerical integration method is to
consider that the approximate solution is taking us from one exact
solution branch to another “neighbouring” one, frpni step to step.
Thus we are led to investigate what is the behaviour of these
‘ineighbouring” solution branches: we want to learn hoﬁ far away they

could actually take us from the exact solution.

-

"An important tool in this ' perturbation analysis of stiff nonlinear
initial value ‘problems is the one-sided Lipschitz constant which we

will now introduce as in Dekker and Verwer [24], section 1.2.

. We consider problems (1.1) whose right-hand side function satisfies the

condition

4 ) 2
(5.2.1) <f(xy HY,), ¥ ¥,> S vy vl

‘where Yp Yo € R" (assuming a system of m,\equations) and where
|| . || is the norm corresponding to the inner product <., .> defined
“on R". Note that it is not necessary for (5.2.1) to hold for all
possible ¥ p Yo in lR.nf, as long as it is satisfied in a neighbourhood of

the exact solution where t.h_e numerical solution will lie.

!

Now we look at the function

- - 2
(5.22) #x) = 196 - vl . xelegxyk |
Here y(x) and §(x) are exact solutions of (1.1) corresponding to initial

values ¥, and §, respectively.
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Differentiating ¢(x) and using (5.2.1), we: obtain
(5.23)  ¢'(x) = 2<¥’(x)¥’(x), FH¥(X)> < 20 {x)¢(x).
Multiplying both sides by exp(-2 f:u(z)dz) leads to the inequality e

d
(5.2.4) a(¢(x)exp(-2f;l/(z)dz)) < 0.
The function in brackets being monotonically decreasing, we finally

0SX Xy

(5.25)  IF(xy) - i)l < [IF(x,) - yx)I expu;ju(z)dz).

can write, for x <X

f

Here w'e see the importance of the function »{x) in condition (5.2.1)
in that it determines the evolution of the “distance” between 2
golution branches of (1.1). Thiﬁ function is called the one-sided
bipachitrl constant i;or f(x,y) and (5.2.1) is a one-sided Lipschitz
condition. Note that 1{x) depends on the particular inner product

chosen.

It iz easy to show that if f(x,y) satisfies a classical Lipschitz condition
(1.2.3) then the classical Lipschitz constant L is also a one-sided
Lipschitz constant. Using it, (5.2.5) would become

(5.28)  I9(x) - YOI < I9(x) - y(x)ll exp(lix, - x,)).
Remembering that, for stiff problems, L is very large, this is definitely
not a very informative (or reassuring!) bound on the evolution of the

difference between 2 solutions.

.However, for many problems, one-sided Lipschitz constants can be

found which are much smaller than L. Many stiff problems even
have 1{x)<0. In this cne,/(’5.2.5) results in

(5.2.7) I¥(x;) = ¥l < lI¥(x,) - y(x)I .-
Such problems and their associated vector function f(x,y) are then
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called dissipative.

I;o()sely speaking, (5.2.7) means that the “distance” between 2 solution

branc_hes with different starting values remains bounded by their

initial “distance”. Thus the solution branches do not get fuyther and

further apart as x increases. This is important for the accuracy of
, the numerical approximation due to truncation errors. If 1(x)<0, the

4

,» varioys solution branches* get closer and closer as x increases.

Clearly we are interested in the smallest possible Lipschitz constant

for (5.2.5) to provide a tighter bound on the difference of 2 solutions.

For linear problems where f(x,y) = Ay, with A a constant matrix, it

can be showﬁg that the smallest possible Lipschitz constant u[A] is

given by
: I + 6A] - 1
(5.2.8) . pAl = lim ra—
‘ : 60
The right-hand side limit is called the logarithmic matriz norm of A.
—~

So far we have only considered inner product norms. However

Dablquist has proven that (5.2.5) holds for amy norm provided that

p(%g(ﬁﬂ) 5 v(x)..

We end this section with some concrete expressions for the logarithmic
norm p[A] of a matrix A = (a.u) in the usual morms | . ||, |l . Il
and ||-. ||°°: . )
plA] = max (a; + Y la),.
J i)

. [
* As mentioncd previously, this is possibly restricted to a certaln region of the

m-dimensional solution space, around the exact solution sought.
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- . Y ¥
(5.29) O nylA] - xw[é-’%-A—],
‘ B = max (o + T lay).-

: , jr

‘5.8 Contractivity and A-stability

We have seen in the previous section that some systems of stiff
ordinary differential equaticns. are dissipative, a ocondition which
should be favorable to numerical integratioil, given the” inevitable

truncation error.

“An’ important quéstion in the study of numerical methods for ordinary

differential equations is to find out whether and in what conditions
theé methods yield results (computed sclutions) whlch exhlblt a
similar contractive behaviour. The reason is simple: m pract'lse, from
step to step, the c‘omputed solution carries some ro.undmg error in
addition\ to the truncation error; thus we are not integrating along a
s/ingle numerical solution branch either and we have to worry about

the perturbation sensitivity of the numerical formulas as well.
We now proceed to give some definitions in this regard.

Definition 5.3.1 The one-step method (1.3.1) is called contractwe on
a class ¥ of stiff initial value problems if for alll problems in k4 and

any stepsize he(ﬂ,ho], we have

‘where £ and by are independant of the stiffness' of problems in 7. If

k<1, we have sirict contractivity.



”

70

Definition b5.3.2 The  one-step method (1.3.1) is called
unconditionnally contractive on 7 if (5.3.1) holds for all problems in
F and any positive stepsize, with x independant of the stiffness of

problems in 7.

A few commen‘ts are in order. First, we note the key importance of
x and h; being independant of “stiffness. We want methods which
will offer favorable conditions for stable integration of stiff problems,
without imposing severe restrictions on the siepsizes to be ustd. If,
for example, we have contractivity for he(O,ho],~ where h is inversely
proportional to the classical Lipschitz constant of the problem, this is

of no practical use for integrating stiff problems!

As presented by Dekker and Verwer [24], a class 7 is specified in 3
ways: first, by the type of vector Junction f(x,y) considered (linear
with constant coefficients, with varying coefficients etc...); secondly, by
a particular ui;per bound function for- the logarithmic n~orm' of this -
vector function (i.e. m{f’(x,y)] < 1(x)); and lastly by the particular,
norm used to compute the logarithmit; norm. In all cases, v(x) is
assumed to be of reasonable size, whereas the classical Lipschitz

3
- constants of problems in 7 may be arbitrarily large.

At this point, we consider the relationship between A-stability and
unconditional contractivity. First, we note that the scalar test

equation (1.4.9) is dissipative for any complex A with non-positive real

part since it ob@
(6:32)  lIF(x)) - Ol = F(x)) - ¥y(x ) exp(Re(M)(x,x,)).

r&w

T~
R
.

A\
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" Furthermore, as we gaw in gection 1.4, A-stability is characterized by

L < Is,| for all X in the lefi half

of the complex plane. Thus we could define A-stability as a
&

requirement of unconditional contractivity when methods are applied

the numerical method yielding |y

to dissipative scalar test equations (1.4.9). In fact, one can generalize

this characterization as in the following theorem.

Theorem 5.8.8 A Runge-Kutta method is A-stable iff the method is
unconditionally contractive in the Euclidian norm on the class of
dissipative, constant coefficient problems y° = Ay, with normal

matrix A.

That unconditional contractivity on the specified class of problems is
a necessary condition was in essence already demonstrated at the end
of section 2.6. That it is a sufficient condition can be seen by .
fofniing, for any AeC with Re()\)<0, the following matrix
. Re()) -Im())

(533) - - A= . '

( Im()) = Re()\)
This matrix is normal, with eigenvalues A\ and ;:, and its associated
problem y’ = Ay is dissipative. Since .
(534) "yn-o-l - yn+1"2 < "R(M)||2"5'n - _yn"2 '
unconditional contractivity requires that [|[R(kA)||l, < 1. But R(hA) is

also normal with eigenvalues R(h\) and R(h\) = R(h)). Thus
||R(l}§)||2 = |R(z)] and we have A-stability.

Eqiation (5.3.4) is actually valid in any norm for a Runge-Kutta

method applied to y° = Ay. In the investigation of numerical

contractivity, we are thus interested in finding- some good uppei'

-
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bound for ||R(hA)|| in an arbitrary norm. To this end, the following

theorem (see Hairer, Bader, Lubich [29]) is very useful*.

Theorem 5.3.4 Let | . | be any inner ‘product nmorm and A a

given matrix. Let R(z) be a given rational function. Then for all

IR(LA)I < pg(bulA]),
where p[A] is the logarithmic norm of A and Pg 18 defined as

positive 'h we have

o) = sup [R(2)]
Re(s) < x

L
From this theorem it immediately follows that for an A-stable method
and a problem with u[A]<0, we have ||R(hA)]|<1 for any inner
product norm. This result is broader than that of _theorem 5.3.3 as
it is not limited to normal matrices nor to the Euclidian norm. The

following property of the function P also proven by Hairer, Bader

and Lubich, will be needed later.

Theorem 5.3.5 Let R(z) be an A-stable rational approximation to
e of order at least 1 and let |R(iy)|<l for y»%0 and |R(eo0)|<]1.

Then we have pp(x) = 1 + x + ofx), for x—0.

6.4 Some nonlinear stability criteria for Runge-Kutta methods

/

In this section, we focus our attentiom on Runge-Kutta methods when
applied to dissipative initial value problems (1.1), i.e. problems which

satisfy

* In most cases, norms considered in practise will be inner -product norms. .
a ~ *
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(5.4.1) <f(xy (xy,), ¥-¥,> < 0, xelxyx],

for some real inner -p{gduct.

Definition 5.4.1 (Butcher [12]) A Runge-Kutta method (2.1.1) is
called B-stable if for all autonomous* problems satisfying (5.4.1) and
for any positive stepsize h we have |
(5.4.2) 19001 - Yol < I1¥, - ¥,

Definition 5.4.2 ¢ (Burrage, Butcher [11]; Crouzeix [20]) A
Runge-Kutta method (2.1.1) is called BN-stable, if for all problems
satisfying (5.4.1) and any positive stepsize h, (5.4.2) holds..

Notice that these definitions mean unconditional contractivity for
dissipative problems in some inner. product norm. Since the class of
problems covered by definition (5.4.2) encompasses the class for the

preceding definition, it follows that BN-stability = B-stability.

Furthermore, both these properties imply A-stability as the \atter '

requires unconditional contractivity on a narrower class of problems

than the one needed for B-stability. h o

Burrage and Butcher [11] aad Crouseix [2€] independantly discovered a
suitable characterization of BN-stable methods which involves the
matrix M — BA + A'B - bb', where A = (a) snd b = (b, b,
. b)) are taken from the Butcher tableau and B = diag(b,, b, ...

b). Their results are summarized as follows:

/

~,

* The problem (1.1) is automomous if f{x;y) = f{y), i.c. £ does not explicitly

depend on the independant variable.

-
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Definition §5.4.3 If a Runge:Kutta method is such that B and M

are posilive semi-definite, the method is said to be algebrascally stable,

Theorem §.4.4° If a méthod . is ‘algebraieally stable, then it is
BN-stable. ‘

Note that for B to be positive semi-definite, we must have b>0 for
each i = 1, 2, .. s.- And for irréducible methods, we must have

strictly b>0. We now mention some algebraic stability results

’ regarding methods already introduced in chapter 2.

Butcher’s [14] s-stage methods of ' order 2s -(corresponding to
Gauss-Legendre quadrature formulas) as well as some methods of order

(2s-1) and (2s-2) are algebraically stable.

The 2-stage SDIRK methods wit;h Butcher tableau given as.

r

_ , v
(5.4.3) 1

T |
12 3

PR L

are algebraically stable for any '12':' (Note that for '7<l we have seen *

4
that we do not even have stability at infinity). This includes the

’ optimum order 3 method (correspondiﬁg to '1=-"1‘-0.78868 as given in

table 3.1.2).

4

~
Also, the 3-stage SDIRK method of oplimal order 4 is algcbraicalii
stable for q—ﬁl~1.08858. In fact, Hairer [28] has proven the more

‘gcﬂcral result’ that the highest possible order for an algebraically

stable DIRK method is 4.

-

~

f
/
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b - Vefwer |[65] deme shown that the simple’ Rosenbrock scheme -

25500

corresponding ‘to (2.5.1) with qu—O and A = J(x +C h,y) is not
algebraically stable. In this paper, Verwer also mukes the important
pomt that methods having the BN-stabu-ty property may in fact lose
it as soon as they are implemented in practise. He demonstrates thns

< with SDIRK methods. The reason for this paradox lies, in the
" -7 schemes used to resolve the iinplicitness of these Q:thods.

When BN-stability properties are g:tablished, they are based on the
assumption that the numericalmsolqt‘ion i8 the ezact solution of the
implicit sets of equhtions to be solved at each step. In practise
* o _‘ h bowev:zr, we¢ must use some iterative procedure to solve t;hese

cquations approzimately. lIs° the practical solution thus obtained
o o . .

ST cond‘tiona!ly cont.r'active when applied to ‘any dissipative problem!?
. é‘ else’ are limitations on Lhc stépsive required to cnsure converggnce

of the iterative, schcmc for at lc_!st some problems of the - class

s . g:onsndercd? :

&

varfvzr focuses his attention on the thodified Newton procedure (2.5.3)
K witl/xa preciscly'-l Jacobian eva}zatnon per step at the point (x +e b,y )

and proyidess. counter-examples to show that the property of

BN-stability ‘is then lost in practise. = # , .

5}

o Even il ‘She mshes to consider 1 Jacoblan evaluatlon per stage }or
even  per Newton ileration — a‘ situation which would make the
" :

. ‘ethod highly  inefficient —  Verwer conjectwres that other

. /
‘countcr-cxamples could be founnd.

¢

)
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Despite this result which élearly invites caution, one should not be too
Mimistic because these .counter-examples are not necessarily typical
of . results obtained in practise.  Experience reveals that usually
Newton-type iterative schemes, used with implicit methods for solving

stiff nonlinear problems, show a satisfactory' convergence behaviour,

‘with a rezsonable stepsize and within a few iterations.

i k|

>

-~

e

5.6 D-stability

The concept of D-stability is not a stability property like A-} B- or
BN-stability. 1t is not concerned with t}xe ~propagation of error and
stepwise stability but rather with the bclzundcdmaa of the numerical
solution over a single step when applied to a certéin class of
problems which can be of arbitrary stiffness (infinitely stiff, in the
limit). ' '

-D-stability is concerned with linear variable coefficient problems of the

L

form '
(5.5.1) ~'% y () - A(x)y(x), xe[xo,‘xr], y(x,) --,yo"

Wheo applied to this problem, one-step integration methods yield
(5.5.2) - M(x_h)y "

r

U Yoss
Definition 5.5.1 (van Veldhuisen [52]) * An Lntcgraition' method'
resulting ‘in {5.5.2) when applied to a particular class 7 of problems
of typc: (~5.5.1‘) is called D(¥)-stable if for_ all problems in ¥ and all

x€lxgrel, we have [[M(x, Jh)|<M<co for any stepsize he(0hy].
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Note that h, and M must exist independant of stiffness of the

problems in ¥ and that M is aiso independant of ste'psiie. As we are

only concerned with boundedness, the choice of the norm does not

"matter and is free.

\Next we present the particular problem class S considered by Van-

Veldhuizen when he introduced his D-stability concept.
| -
Definition 5.5.2 The problem class S includes all 2-dimensional

linear systems (5.5.1) with real solutions, and such that matrix A(x) =
. -l N
E(x)D(x)E (x) with D(x) = diag'(dl(x) , dz(x)) where €€(0,¢)) is a

c 3
small paramet.er and Re(d, (x))<a <0 for xe€[x,x/]. Furthermore, d,,

, E and L must depend smoothly on the mdependant varlable and
possxbly on ¢ too.

[4

"Any problem in § can be written as \

(5.5.3) y'(x; - {1(:" :::]y(x),

21

where 8 = au(x;c) depends smoothly on x and e.

"

Now let ‘v(x) be defined by the transformation- ..
\ . -1
(5.5.4) , v(x) f.E (x)y(x).

Diﬁerel}tiating y(x) = E'(x)v(x) and multiplying by E.l(x) from the
left, we obtain:’ | |

3 ’ .l ’ -1 ) v:
(6.5.5) " v'(x) = E (x)y’(x) - E (x)E’(x)v(x).
Now replacing y ‘(x) } its deﬁnmg expression for clasa S and using
(a\ls .4) cgdin we end up with

(558) . v'(x) = (D) - vl )
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whefe C(x) = E-l(x)E'(x). ‘
If C(x) is also a diagonal matrix, thg system has been uncoupled by
the chosen transformation, the first component of wv(x) bei’ng the
transient (or stiff) component while the other ome is the smiooth

component. Otherwise, a coupling exists between the 2 components. '

From the above, we can see that § has some desirable properties to
serve as a model class to investigate the application of numerical
methods to stiff systems. It -allows the coexistence of stiff and
smooth components, while the; éaran;eter ¢ can be_used to make thg‘o"
problem arbitrarily stiff; furthermore, problems in § have a variables

eigensystem.

[

It can be shown that for any problem in S, the ezact solution y(x) .

satisfies
(5.5.7) lyGoll , < slxie),  xelxguxg, ‘
ol Thus D(S)-stability

can be interpreted as a requirement that stepsizes he(ﬁ,ho] exist such

" where g in continuous' and bounded for ¢€(0,¢

that the numerical solution’satisfy 4 similar boundedness property.

Now, consider the matrix C == (cu) of equation (5.5.8), where ¢y =

cij(x;e). The of.f-diagonal elements LI and c,, represent respectively
the coupling from the smooth component to the transient (stiff)
component and the coupling from the transient component to the
smooth component. If these coefficients behave as O(¢) as e—0, we

say that the coupling is weak; otherwise, we have strong coupling.
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Definition 5.5.8 We define W, and W, as 2 subclasses of §
consisting respectively of all problems of § with a weak coupling from

the smooth to the transient component, and all problems of § with a

weak coupling from the transient to the smooth com;ionent,

We note that the kind of coupling between components is invariant
under transformations which are ¢ and x—indepen:iant; but for x-(a&d
possibly ¢-) dependant transformations, the nature of the -coupling
betwen components can chaq‘ We now p}esent some results about
D-;tability of methods (2.5.1) where 'A m Ix_y,) e
Rosenbrock-type methods.

-

8 The first order, oné-stage method of -this kind is D($)-stable.
. However, for two-stage, second order. methods pf the same type with
positive v, one can only prove that it is D(W"')~stable; that it is
D(W, )-stable iff R,(c0)=0, where R, is an internal stability function
(see section 2.6); that it cannot be D(S)-stable. The combined proof
of these results is fairly long and can be found in Dgkker and Verwer
[24], pages- 239-244. |

Verwer [54] investigated a property similar to D-stability which he
called ¢-boundedness, defined on” the basis on a different model‘class,
but where ¢ is' also a parameter allowing transition to arbitrary

stiffness. In this paper, hq\ gives some D-stability results as well.

Trying to gain insié;% into the pe}formance of Rosenbroék-tjpe
xpet.hods when applied to nonlinear stiff problems, he concludes that
to cope with time-varying eigensystems, we should have R(c0)=0 and
l\(m)-o. Despite this, if both c-ouplings are strong, h«; proves that
one \ca’n only guarantee D(S)-stability if the Rosenbrock methofh ‘

o ' v



* The methods originally proposed by.dir H. Rosenbrock did this. .
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re-evaluate the Jacobian at every stage*. The property is lost if we
evaluate J once per step only, as is the case for (2.5.1) with A =

J(xn,yn) and in most implementations, for obvious efficiency reasons.
4

To conclude this section, we note that it is difficult to relate )

D-stability to stepwise s'tability properties.  While D-stability is

concerned with stable behaviour over a single step in the transition to

“infinite stiffness, stepwise stability properties are concerned with

accumulation of errors over many steps. Furthermore, the classes of
problems which D-stability and BN-stability, for example, deal with
are very different and no easy relationship can be shown among these

mode| classes.

In a specific context — that of perturbed collocation methods — Van

Veldhuizen [53] has -shown Yhat A-stability combined with. D-stability

is a slightly weaker property. than BN-stability. ‘

b

»

bl . g
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‘ CHAPTER 6

§

CONTRACTIVITY OF SEMI-IMPLICIT METHODS
The material of the first 2 sections of thjs chapter is drawn from

Hairer, Bader, Lubich [29].

€
o

\

6.1 Applying semi-implicit methods to nonlinear problems .

\
For the stability analysis of semi-implicit methods, we will rewrite the
nonlinear initial value problem as

(6-1-{) ¥ = fxy) - 'Ay.. + g(xy) -

where A is the arbitrary matrix- of method (2.5.1), which will be ™

chosen as an approximation to the Jacobian of f at the point from.

~ ‘which we want to advance ihtegration. : $

In this chépte}, we make the assumption that the nonlinear function
g satisfies a Lipschitz condition .
©12) ' lale) - sxB 2 Ll - 9l
) : : .
where the Lipschitz constant L is small, in the sense that it does not

de/bcnd on the stiffness of the problem. This assumptiqn is reasonable -

‘{gi‘Ten tl‘lé choice of A mentioned above.

\

-
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A scories expansi‘ont of f(x,y) about the point (xn,yn) yields

-~

Of(x )y ) Bf(xn,yn)
(6.1.3) flx,y) = f(x vy ) + -;——— (x)) + g5 (y,) + -
’ s
ot(x v ) og(x ,y,)
Choosing A = b;—__ , we have that 5;——-— = 0. Since we

[

can chovse L = sup "_B." over the domain on wlnch we want (6.1.2)

to nold, it is then reasonable to assume that L will be small if we

r 8f(xn,yn)
remain sufficiently close to (xn,yn). If A =~ bry-—— , 8gain we

require that L not be tvo large; if it is not small enough, the
computed approximation will be bad which should be indicated by a

large' truncation error estimate and a new A would be computed.

Theorem 6.1.1 If w; .apply the semi-implicit method (2.5.1) to the
diffcrential equation (6.1.1) we obtain
(6.1.4) You ™ R(hA)yn + hG(hA,xn,yn,h)
. u, = R(bA)y + hG(bAx .,y hb),
where R(z) and Ri(z) are the stability function and internal stability

functions defined in section 2.8.  Also G and Gi are given by

(6.1.5) " G(hAx,y ,b) = S}, (Ebvu(hA))

|—l

i-1 ,i-1

G(bAx ¥ _b) = SE(Ea IJ(hA))a, :

J=1 l—.i
where we have used S = (I - th) and g = g(x +ch ) and the
functions vy; 3re defined recurslvely (using ﬂu - oy + 'yu) as

(6.1.6) ' v® =1,  1sjss,

t

.vu(z - Eﬁh(l — .j(z), 1<j<l<s.

Ca

\/'j{‘



..\4/

- We now prove this theorem.

(611) = R(bA)y, + bGhAx ¥ b)

Applying (2. 5 1) to problem (6.1.1) and defining W =~ hSA, we obtain:
i1

. (8.1.7) k- W(y + LAk j) + hSg,

1.

J=1
Note the similarity of formula (2.8.2) to the first term making up ki

Clearly, the solution of y° = Ay would yield only this term and it
accounts for the presence of R(hA) and R.(bA) in y , and u

respectively.

If we use (6.1.7) to find the first few k. 's, we obtain

k = Wy_ + thl
(6.1.8) | k, = W(I + B W)y, + h8(6,,Wg, + 8,)

ks_"’ W+ (By +Bg)W + ﬂszﬂmw v, +
bS((By,+8y3Py, WIWE, + ﬂ32W32 + By)-

We next define recursively the functions v, (z) as in (6.1:8) and the

functions ru(z) as follows:

(6.1.9) Jj(") 1 '75 ’ 1<)<s8

\ k1
| lj(z) Eﬁh(l -2 r.}(z); 15j<158-

Uaiﬁg these deﬁmtlons, one can easily show by induction that
1

(8.1.10) | (Eru(hA))y + hSE (mm;j
J

jum1

Incorporatlng (6.1.10) mto the definition of u, in (2 5.1), we" obtain

" our first' result:

i-1 1 '. i-1 i1

. “i - (1+E ):an u(hA))y + hS): A li(hA)gj

o | jmtlej

'
y

T -
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Likeﬁse, we obtain for Yo

You1 = (l+ ):b Erh(hA))y + hSE Eblvl (hA)gj

leu] juml jm=1lemj
(6..12) = R(bA) + hG(hAx_y_h).

" 8.2 Conditions for contractlvity /

We consider problems (6.1.1) where A and g satisfy the following

conditions

\ ' 2
(6.2.1) - - <Ayy> < plydl and

lg(x,¥) - gx¥) < LIF - ¥l,

for all xe[xo,xf] and all y, yeIR

Then if y(x) and y(x) are. 2 ezact solutions corresponding to different
starting values, we can prove the following:

(8.22) I7(eeh) - YR < [960) - y(x)le
The proof is along the same lines as the one elready given in section .

?

(;;+L)h

5.2 to obtain a similar bound result.

Clearly, the problem is dissipative for u+L < 0. Now we are
interested in dlscovenng under what. conditions the numerical solution
will share this contractive behaviour. To this eend assume that there
exists a constant C>0 such that for every problem (6.1.1) satlsf{lng
(6.2.1) with p+wL < 0 — for a certain real value w — we can use
any stepsize 0<h<9- and obtain a contractive numerical solution by

the semi-implicit method in the sense that

(8.23) W vl S, v o
\ -

' [N
3 A d
. . &
Lot
B “ o
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IR(o0)|<1 to obtain Sw# 9.
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Thus we are aiming for some conditional contractivity criteria and we

see the importance of our initial assumption that i -should be of

reasonable size and not depend on the stiffness of the problem.

-,

Definition 6.2.1 We defige Sw as the set of all real w for which '
Y | ‘ )

conditional contractivity as just described can be established.’ Also,

we define w* = inf Sw.

If, ® € Sw’ then the same holds for all w>& (the same constant C
would clearly do the jqb). Thus Su is either empyy or contains an
infinite real interval. Obviously, we would like w* to be as small as
possible, since then for a given g we can tolerate a larger L and thus

can possibly use a larger stepsize. . -
ﬁ‘

¥

Hairer, Bader and Lubich [29] proved that any semi-implicit method
salisfying S,w7" @ is necessarily. A-stable and has w*>1. Thus
A-stability is a minimum requirement for ‘obtaining conditional

contractivity as previously defined. The same paper also states that

i-1
for methods where the ¢ = Eau are all distinct, we must have .
’ . j-l . 4 '

Using G = G(hA,xn,y n,h) and‘ é = G(hA,xn,in,h), we now make use

of theorem (6.1.1) to obtain -
 Wayr = Yol < IRGAIF, - v Il + BIG - G,

(6.2.4) + AR A s

where ‘Wwe have defined « = ||R(bA)|| + hL;, L, being a classical

/

Lipschitz constant for G with respect to y.
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- Furthermore, for convenient presentation of future resuits, we adopt’

thelfollowing additional definitions and phort{notatidns:'

©
BJ(Z) - E i:-,-’; vu(z)r

(625) ‘ Aij(" E l -t u(z):
Gl - Gi(hA,xn,)-'n,h),
G, = Gi(hA,xn,yn,h).

Following Hairer, Bader and Lubich, we now proceed to obtain a

computationnally available estimate for w’.

Theorem 0.2.2 For all problems (6.1.1) satisfying (6.2.1), we have

(6.26) IG - G|l < LufbphL)|F, - y,| sd
(6.27) IG, - Gl < LububL)IF, - ¥l S
where . N '
wl(hl‘thl‘) = 0) ’ : 3
, 1 ’ T
w(hy,bL) = (bu)W (hy,bL), o
' E,AU )

t(hps,hL) = )::Ej(hp)wj(lip,hL),
. jet

and :
W (bp,bL) = p(bp) + bLw(bymbL), |

A(x)=oup AG, B
N Re(:)<Axu ' '

B(x) = mp B, - | N
Re(s)<A | : N

N Pj(x)s sup 'R (‘)l

R’e(l)<x o .
- ' ! 4
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' .
In order to prove this, we use (6.2.5) to write

k1
028 16 - Gl = TIAGANIgx,reps) - g, rehl

o

Now using the Lipschitz condition on g and (6.1.4) for u, we have:
le(@),(u)ll < LIR(bA)F, - ¥,) + K(G, - G,
(6.29) < Lip b, - v,0 + BIG, - GJl),

where we have used theorem 5.3.4 fo Cbt.am the last mequahty

Using (6.2.9) and ||Au(hA)|i < Ku(hﬁj — again a consequence of
theorem 534 — (028) becomes ‘

6210) |G, - G| < LzAu(hu)(w,(hu)uy vl + BIGG/l).

Now (6.2.7) obvnously holds for im=1; then using recursion (6.2.10), we
can easily prove by induction that (6.2.7) is valid for any i>1l also.

And we can prove (6.2.8) in exactly the same manner.

Thecorem G.2.3 Let R(z) be the stability function of method (2.5.1)
and assume that @p(x) = 1 + x + ofx), for x—0 (for sufficient

conditions, se¢ theorem 5.3.5), then Sw# @ and
]
(6.2.11) w* < wy = w(0,0) = EBj(O):pj(O). g

We can prove this by first using tbeorems 63.4 and 8.2.2 to rewrite
equnhon (6.2.4) as

©212) 5, - v, ll < (paltu) + bLo(buhL)lF, - ¥,
Now we assume that p+(w, +e)L < 0 and prove that w +e € S for

all’ positive e. By the maximum modulus theorem, we know that. ¥R

is monotomc increasing, as well as §J(hp) and pj(hﬁ); thus the
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wj(hp,hL) and finally w(hy,hL) are mosiotonic functions of their ﬁnt

argument. Then it follows that

‘(6.2.13) prlbp) < ng(-(wo+c)hL) - 1- (wo-;c)hl, + ;(hL),

(6214)  wbphl) < wi-wy+e)bLAL) = wy + of1).
Consequently, we have
(6.2.15) ¢R(hp) + hLw(bp,bL) < 1 - ¢hL + ofhL).

Thls guarantces the existence of C>0 (which may depend on c) such
thal (6.2.3) bolds for all he(O,-) "

Finally, Hairer, Badcr and Lubich establish’ the following result

concerning the conditicns ”required for a method (2.5.1) to have the
opt'imal value w'=1. VGc givé\‘it\ this wiuthout:: proof.
Theorem 6.2.4 Let the 'sc.imi-impl'icitx'lmethod (2.5.1) satis?ty the
conditiéns of theorem 5.3.5. Then wy=1 if, for- § '."“ 1, 2, .., 8, we
have

a) b >0 and |Bj(z)|<b for Re(3)<0,

b) if B(z),df then R (s)|<1 for Re(z)<0.

i1
Furthermore, if the mecthod” has distinct coecfficients c, = Eau and
j=1

satisfies the conditions of theorem 5.35, then u! -ul implies bj_>_0 -for

all .

6.3 A simple casc: the one-stage method \

The onc-stage method is presented as an exnxfxplc in l!afrcr, Bader

and Lubich but their ticalment is not qui(c“ cowaplete. This method

L
is given by

"
-
[l



. 89 AN
% ' .\\ § J
(6»3.1) (I « ",hA)k o= hf( ,y )’ N L o7
i ‘ Y y. + k..

. n+1' = Yn 1 - «

We know that it is A-stable for > ; ; however, for mnonlinear
contractwnty, it is necessary to have IR( ) = L'_"ll < 1. For this, -

[

we must have g > % .

5 b,
- Since Bi(z) = T

, we easily arrife at the following result, using -
.bl-.-l, gal(hp);-l“and the' fact that u<O0: | "

(6.3.2) - | wihp,bL) = B, (hy) = " o
)‘” we must find pR(hu) By deﬁmtlon, Pp(x) = sup |R(2)].. Since
Re(s)<x -
hpgo and R( g{mlytlc in the left-half of the complex piane, we
can once again invake the maximum modulus theorem to write «pR(x)’
=. sup [R(z)]. ‘ o . P -
Re(3)=x : . © -
‘The stablht,y functlon for this Blmple method is v ' ..
(633) L ()" ‘+ ,ylz. .
‘ Wnth t = X + iy, we have ’ '
: A (e (1) 4 (1-'1)3' '
. (6.3.4). Rz = L By
| () 47 y
2 .
,This i8 gf the form 9—*’—% , with a,b,c,d > 0: o
.  c+dy ,
,Dxfferentlatmg this form with respect to y, we obt.aln _.(EQ__II . We
e (c+dy)

.now examine all possible cases. ' -
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Casel; be-ad <0. Sk
Here |R(z)| is momnotone. decreasing and thus maximum for y=0. We
obtain : - '
1+ (1-y)hp|
(6.3s.5)' pplbp) = Tonby .
And the- condition bc-ad<0 boils down to
(8.3.6) ’ hu(r-1) < 3—"5;1—1 .
. o

This i8 always satisfied for 4>1 and ai;y positive stepsize h;

otherwise, we must have

2y -1
6.3.7 b s L S

It is easily verified that when (6.3.8) holds, the absolute value in
’ o

.(8.3.5) is redundant. For this case, (6.3.2) and (6.3.5)'ﬁnally yield:

‘ . 1 + (1-y)bu + KL\, .. :
(0'3'8) Ilyn+l - yn_'_l" S ( 1_4711” ‘)ILyn B yn".

This holds for the case ';21, and also for %<7<1, with additional

"condition (6.3.7). And contractivity then follows sixilply if p-'l-l:, < 0.

Cace 2: be-ad>0. ‘ RN
2, : : ,
Now |R(z){ is monotome increasing. And obviously, this* can only

1 27 -1 .
happen for 2<'1<1 and hy < Iy 1) In ‘thns case,

039 pple) = lim Rbwein)] = 2
‘ y—too .
so- that we arrive at .
~ 1" hL ~
(6.3.10) 19,1 = Yol < (‘;ﬁl + m) 15, - vl

Thus we will have contractivity for 1_1;1};" < 2:5-1-, which can be
rewritten as

(6.3.11) | b(s + (;i;)L) 5_%. ‘ A&_: |
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Here we note that if u is negative enough, ie. u + ('2-,:—_'1')L < 0,

(6.3.11) will again hold for any positive stepsize h!\ Otherwise, this

inequality will impose an upper bound on the stepsize. *

We can summarize the analysis of contractivity for this siniple method
in the following 3 points:
1. For 721; wc; have contractivity for any positive stepsize, if
p+l < 0; . |

2. For -21-<'7<1', we have contraclivity for any paositive stepsize,

’ifu+(Wl.1)LSO;-‘ , : ,

3. For %<'7<l, and p + (2—,33)L > 0, we have contractivity for
h < L it uel <0,
Ao + GoLT

We see that p+L < 0 is a necessfary condition in all cases. -

°

These results are somewhat tighter that those presented by Hairer,
* Bader and Lubich. While they mention the first 'point above, they
do not mention the second point at all. Furthermore, their conclusion

for the case ';'<'1_<_1 is that we have contractivity whenever u+L < 0

* and ‘«hL 2—2%-_—1-)- . This is certainly true; and for the special case
p+L = 0, it identical with our thxrd point. However for u+L < 0
~and p + (E—I—I)L > 0, it unnecessanly lmposes a more stringent
restriction on .the stepsize than the one we have above. In other

words, it is a sufficient condmon for our thlrd point to hold-but not

a8 necessary one.
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—It—is important to realize that the first 2 summary points abo,ve/ do’
‘mot amount to BN-st.ablhty, desplte the “for any positive .
stepsize” —statement. The reason is snmple: for many problems,. thev
conditions p+L < 0 or u + ( )L < 0 will not be satisfied if the
stepsize is too large. This pomt was explained at the beginning of '

section 8.1.

0.4 Esi;imatiﬁg w* for hizher order semi-implicit methods
p . .

A program has been developed that computes w , an estimate for w*,
based ‘on ‘theorem 6.2.3. It is "assumed that methods whose defining
coefficients are provided as input do. satisfly the conditions 'of ‘this

theorem: no. verification of this is performed.

" The program (sce Appendix 7) applies to methods with up to 4
stages. For this purpose, the following expressiop:.were 'obtained, in
which s is the number of stages and ﬂij = 0 + %

. )

B,(2) = ;,—;

oorf B ) - e et
. - 4 (1 ) . o
(6.4.3) B.-z(z)' = (l-yz) (A + (B-27A)z + (A'12-B'1+C)z2), where
A= b .

Bsbﬂls-2+blﬂu-2’ '
Cebﬁ&

(8.;1.1) ) ;

s-lﬂsol 2 ;

. (644) B;_s(z) = (1-;7z) (A + (B-3A7): + (C—2B'y-|-3A')'2).z2

2 33 ~
+ (D-Cy+By-A7 )t ), where
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B=b ﬂ2s~3 ﬂn-la-3+bﬂss’ .
C = b ’B ls«2ﬂ 8-2, 3-3 (ﬂ l,l-l -1,8-3 ﬂ a,l—?ﬂ 0-2,0-3) !
" D= '

aﬁu',s-lﬂs-l,l-2ﬂl-2,n—3 .
These expressionis were derived from (6.2.5) and the recursive
“definition (6.1.6) for the vlj’s. In fact, some closed form forjmulas’can
be found which are useful in obtaining the previous results. More
* particularly, we have: ‘ ,
1-j i J
(045)  v(z) = Z ('1‘},;; L By P k ﬂk FE
o 1>k, >k, > >!" >]

a—

*  for 1<j<l<s .,

b, B ,B ... 8 )
E kl klk2 kska klj !
k >k>..>k>]
T for j =1, 2,

i

(6.48)  B,(z) = i'_l;;(bj + E(l -2

Note that in the internal summations of (6.4.5) and (6.4.8), each term

—

contains exactly “i” f—factors.

u

In order to compute w, we also require expressions for the internal

0’
stability functions. These are obtained from (2.6.9):
(6.4.7) R (z) =1,
N 1 + (021"1)5
(0.4.8) R,(z) = T . /
- 2 2
1+ (cp-27)z + (agB,-cov+7 )2
(6.4.9) Ry(z) = 2 ,
- (1-7z)
. 2 3
A _ 1 + (¢37)2 + Az + Bz
(6.4.10) R,(2) = : , " where

(l-'nrz)s
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.. ' 2
A= (a42ﬁ2+a43ﬂ3)~ = 2‘:47 + 3”)

) 2 8
‘B = a b8, - (a6, +°‘43ﬂ3)" te -7

: : i1 . 8
Here, we. have used fi ;= jzla and also f, = jf:l'ﬂh

‘ ' s
From theorem 6.2.3, we have Wy = EBj(O)gaj(O) By the maximum
Ju=1
modulus theorem, we can write

(6.4.11) j(O) = sup |[B(z)] = sup IB (iy)| and
Re(l)<J y>0

(6.4.12) ©,(0) = sup R (s)] = sup [R (2] .

\ R.e(l)<0j y>0

: , 2
From (6.4.1) through (6.4.4), expressions . were obtained for |Bj(iy)|

and likewise for |R, (iy)l from (6.4.7) through (6.4.10). The suprema
can then be found by dlfferentlatmg these expressions with respect to

y, setting the derivatives to zero and ﬁnd{ng the roots*.

The program was used. to estimate w* for 4 semi-implicii. methods.
Flrst a second order, two-stage method from Stelhaug and Wolfbrandt
[50]. In their paper, they use it as their basnc mtegratlon method in
a so-called (2,4)-W embedded pair of formulas. We shall denote this
method W2. The other three méthod’s are third order, four-stage
met.hpds “from Kaps [31], also used as basic integration methods.
They are called W32M1V1, W32M1V3 and W3X1. All four methods

are L-stable" and meet the requirements for theorem 6.2.3 to apply.

“ In the program, roots of the resulting polynomial; are found by calls to ‘the
subroutine “ZPOLR”® from the IMSL library. ”

ey

N N
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W2 Ww3X1 W32M1V W32M1V1
g .
e 1e 0.55185060 0 1
) 1
bl. 0025 ‘ 0-25 - 12
[ ] ) " l
by 0.75 : Z:@ 0.00 :
. . 2
b,: - .’.oo 0.50 3
, . l )
b = ot 075 i
2 * 0.65185006 0.56 1
@21 3 ) ' 2
gy’ - 09374016826 00500454133 0 -
gy’ - 0.0625984174 0.0499545807 -:-
&y - 0.4536780949 0.4579242536 %
* 7
oy - -0.0200030587 -0.0306359208 -
, . 1.
a5 - 0.2335995304 0.2303783429 :
I 47 N M
Yoy - 3.3980123070 4.3724800000 -1
' - . 5
Yoyt — -1/0875081763 -0.8500454133. :
-0.1875084174 .1409545867 -‘4-
-0.3610006565 -0.3773207008 - %%
-0.0163700876 -0.0000826521 . -21%
-0.3504151350 -0.3784196186 . -;7-
P
able 6.4.1: CoefTicients for the 4 methods
’ /

13
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-~ In table 6.4.1, we give all the defining coefficients for these methods.

. In Table 6.4.2, we give the program estimates far w* for all 4

methods, as well as the values of gaj(o) and ﬁj(O) in each case. We

-

w2 - . W3X1

&)

waleva\ W3ZMIVE .

¥
£

w,(0):
,(0):
¥4(0):
v,(0):

§1(0):
B,(0):
By(0):

B,(0):

: “1.2301086827.  1.1487694492

1.0 1.0
 1.2761423749 1.0
1.0 1.0
1.0 . 1.0
0.2730019015 0.2767134487 |
0.75 0.0365555574
— 0.0855004451

— 075

1.1451488320

1.0
1.0
1.0
1.0

' 0.2767715315
0.0252693034
0.0931079971

0.76

&4583621068

1.0
.10

1.0062305899
1.0

0.3111753049

0.2263664086

0.25

Table G.4.2: Computed values for Wey f,oj(O) and -B—j(O)

f

notice that while none of the 4 methods enjoys the optimal value

wy=1, the estimates obtained are fairly small, especially for W32M1V3
and W3X1 which are both t'nzgrnally L-stable.

LN -
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Inspection of both tables against ' the su(ficient‘ conditions for wo—l, as
presented in theorem 6.2.4, reveals where each method departs from -
the optimal . case. In particular, we see that the presence of a‘
negative b, = - ;3 for W32M1V1 is costly: this method obtains’ the -
largest-;}o as a direct consequence of this, despite the fact that 3 of
its 4 internal stability fl!nctilc\i{m are L-stable (and R,(z) does hot miss

by “inuch either!).

6.5 Maximum stepsire for contractivity

In the previous section, we found estimates for w*, the smallest w
such that the methods investigated are contractive when applied to
t

problems (6.1.1) satisfying conditions (8.2.1) with p+wL < 0.

While this tells us that stepsizes do exist for which these methods are
contractive, it does not tell us what these stepsizes _are nor if they
are reasonably large. In this section, we try to answer these

questions for the-4 particular methods already presented.

We must find for what range of stepsizes we have
©65.1) Py * Yapall < #lF, - w00
where O<x<l. From (6.2.12), we have a readily available estimate

for k namel&

(6.5.2) k = pp(hp) + hLw(bpbL).
The program developed computes values for x and finds — for given
poand L — the maximum stepsize h for which x<l. Formulas

(6.4.1) through (6.4.4) and (6.4.7) through (6.4.10) are of coursé“:a

important ingredients in the making of this program. Also, we must
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have f for jthe stability functions and for the functions Au(z).

The stabNjty functions of order 1, '2, 3 and 4 respectively are
obtained usinj (2.6.10) and (2.8.14): ' '

(
(85.3) R, () = et .
- 1+ (k27)e + (5 Dy,
(6.5.4) R, (1) = ————————————
(1-7z)
(655) . Ry(n) = (1-ms) (1 + (130)s + - (} -3r37 )
) ’ 2 3.3
+ G- 3,
(6.5.8) - R, () = (1-'15)-4(1 + (1-47)z + (3 -47+6y )1v,2

2 8 3 2 3 4 4
+ (5 2048y A7)z + (55 - 3143747 +7 )

\1

Also formulas for Au(z) which are sufficient for our purposes are a8

- follows:
! \’ ii-1
687 AL =
: o + (o, . .8 )z
ii-2 1,i-1 i-l,i 2 i,l-2
(6.5.8) Ai,i.z(”) - ,
S (-m)’
) , 2 2
. & 3+ (C-2am.3'7)z +(D-Cry+a, 587 )z
(0.5.9) A‘J.S(Z) - 3 ’
(1-72) o
where
C =

is-2Piois + ai.i-lﬂi-l,i-s

"D = o BiiaPrags

The follownng closed form formula was useful in deﬁ?ng the previous

| expressions:

- Y
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‘(6.5.10) A.]J(Z) - 11;12 au + E(l-qzl

o B By B ]

Z ik1 klk. k’k' klj ’
i>k >..>k>j

where each term of the internal summation has exi;ct.ly one a—factor

and “]” g—factors.

A}

We note that all stability functio;ls,and internal stability functions, as‘
well as all A- and B-functions are rational functions with their
.denominator being some power of (l-yz). Now the program must be’
able to compute the supremum of the modulus of these complex
functions along"a'line Re(z)=x (here we implicitly make use of the
awaximum modulus theorein, since all these functions are analytic in
the domain of interest), thus an important tool needed is a formula
to compute the norm of a polynomial in a comple)'( variab!e‘f‘\avith real

coefficients. We now derive such a formula.

n

k
Let p(z) = ) az, a€R, 1eC, be a polynomial of degree n. Using
k=0 !

k . k
t = (x+iy) , we have:

mau)' p(z) = E%E(VW)

k0 jub J

Now let k-j=I| and note that (].() - (kk.) - (k). We then obtain
(6.5.12) " p(s) = ZakE( x(iy) -
. . kO =0
The next step is to split the complex p(z) into a real part and an

g R 2
imaginary part. Then it will be easy to compute |p(z)] . After some

manipulations, we end up with the following expression:
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i k, k-2§\ 2
6519 . a0 = 5[0 E o)
j=0 k=2j |
<
lng.lj j o kL kap éj
- B 2 i G N0 Sy [0
| j=0 k—%—e—lak 2j+1
Since all functions of interest are of the form f(z) - —2-(1'): , we will
| (1-72)
have ’ . ~.
. ' 2 o)’
T (8.5:14) ' If(z)|” = Pl .

2 2 2.q
‘s () +y)

: 2 2
If p(z) is of degree n, then |p(z)) will be a polynomial in y. of
degree n also. Thus, for any given x, we can easily find the values

of y at which If(z)'l reaches its extrema. ™

From (6.5.2) and theorem 8.2.2, we see that for a certain value of the
- ratio (-L/u), « depends only on the product hu. Consequently,
)'instl'ea‘d of computing the‘ maxirnum stepsize as such, the program will
compute the maximum value of the product (-hp) Q‘lelowed for
c;mtractivity. This is investigated for values, of (-hp) in the range
[10-8,108]. A first bisection cetermines the appropriate power of 10
and a second .bisection determines 3 siénifican,t digité for the

maximum (-hp) allowed.

The numerical investigation was carried out for equally spaced values

of the ratio (-L/u), using an increment of 0.02, up to the maximum

of. :’1—- . Beyond this value, we know that “contractivity is not
0 . ’

possﬂgle.

- .
:... i' -
Yy e
=
e, . .
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For each of the 4 methods described previously, it turned out that
for “small” values of the ratlo (-L/u), we obtamed contractivity (x<1)
even for the largest hy—lO .  We therefore conclude that, as was the
case for the simple one-stage method in section ;6.3‘,, there exists a
_pmallest ¥alue w

\ ) o

contractivity for any stepsrze*. Of course, W = Wy

4 0 : : . o !
For the one-stage method, we can summarize our results from section

6.3--as follows : .
‘ i

: 1 1 ~
(6.5.15) w, = max (1, L :y>2‘. . -
w2 W3X1  W3IMIV3  W32MIV1I
.+ swg 128011 1877 114515 °  1.45836
"u c - . 582843 . 190350  1.68271  2.75453

Table 6.5.1: Computed wy and w, .

B

* Remember however that BHw; an < 0 may oficn impose limitations on the
stepsizse. What is meant is that there is no additional restriction on’ the nlep;ita. ‘

TS
x

- such that, if p+w, an 0‘ is satisfied, we obt.ain'

ke
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" To take—the above results into account, the final version of the

ﬁrograui (sce Appendix 8) first estimates w;°and w, . and then

computcs maximum values of (-bu) for contractivity, for equally

spaced values of the raho (L/p) in the interval (—— :’L).

mf

The results arc presented in Tables 6.5.1 and 6.5.2.

From Table 65.1, we see that W3X1 and W32MIV3 obtain the best

pp With values smaller than 2. While W32M1V1 was the

worst method in terms of 'wo, it does much better than W2 for its
value, obtaining 2.76453 against 5.82843.

e

results for w
~

winf

~ Table 6.5.2 presents the maximum value - of (hp) allowed for

contractivity for selected values of‘th‘e ratio (-L/n).  For example, if

p= -1, the leftmost column then gives the values of L and other

- cotries in the table provideaAthe corresponding maximum stepsize for-

contractivity.

The respective effect” of w qnd w, . are quite visible in this table.

We also sce that methoc‘;i‘ W32hid;V3 and W3X1 genersally allow
maximum stepsizes much larger than W32M1Vl and W2. In the
range (- p)e[0.54,0.7(l);1, W32M1V3 is even significantly better than
than W3X1, "but for larger values of the.ratio, the difference between

both methods is less significant. Finﬁlly;’ W32M1V1 surpasses W2 in

‘the whole range (-L/pe€(0,0.88), but beyond this point only W2 is

contractive.
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r 4
¢ g ‘
(
¢ ‘. P
(-L/p) | w2 WSX1. W32M1V3s W32M1V1
0.12 , '
0.14 . . . ) ,
0.16 - 4 >.100E+90 >.100E+9 .>.100E+9 " >.J00E+9
0.18 - 249E+2 s .
0:20 - J111E42 .
0.22 < 094E 41 .
0.24 - 486E+1 = -
. 10,20 .365E+1 e
0.28 - 287E+1 .-
0.30 .282E+1 . .
0.32 .193E+1
0.34° .162E+1 . .
0.36 J138E+1 >.100E+9
0.38 J10E+1 . O58E+1
040 .103E+1 . 695E+1
. 042 .9?‘:-1-0 : A28E+1
0.44 793E+0 i . 326E+1
0.46 o~ 1 095E+0 \ . 266E+1
0.48 612E+0 209E+1 -
_0.50 .538E+D Lo \ 170E+1
0.52 AT3E+0 . >.100E+9 ’ 160E+1
0.54 415E+0 " 663E42 JA20E41 °
0.50 .364E+0 243E+2 . J12E+1
N 0.68 317E+0 J60E+2 >.100E+9 O71E4+0
0.60 275E+0 J114E42 "~ .148E+3 838E+0
0.62 237640 848E+1 347E+2 JOOE+0
" 0.04 ".203E+0 :648E+1 207TE+2 582E+0.
0.60 .172E+40 516E+1 .145E+2 .440E+0
0.68 - T 143E+0 423E41° 105E+2 220E+0
0.70 .110£+0 JT4E+1

350E+1

o —

<.100E-7

-

Table 6.5.2: Maximum (-hu) for given (-L/p)

) -

Y
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- Fif USSR
l-’f Cp .we _W3X1 W2MIVS  WS2MIVI
) e
072 | e2E- 300E+1 E48E+1 <.100E-7
0.74 099E-1 206E+1 A42E+1 .
076 ABOE-1 236E+1 34TE+l
0.78 203E-1 210E+1 277E+1
0.80 . J111E-1 . .188E+1 . 226E+1
0.82 | <J00E7 ' .166E+1 .  _187E+l
0.84 \ . J41E+1 . 185E+1
0.86 . 120E+1 A25E+1 . 7
0.88 - <00E-7 °  <.00E:7 PR
0.90 . . .o .
0.02 . D" - .
<. : e :.,..:;‘

Table 6.5.2 (cont.): Maximim (-hp)-for given (-L/p)

»
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Logarithm of Absolute Error Constants

L)

. This aﬁnendix ‘presents plots of the logarithm (base 10). of’ the

absolute error” constants for the basic method .(solid"line), Richardson
extrapolation - (Hashed line), " and modified Richardson extrapolation
(dotted line). ' '

Plots are given for 7 €.[0.0,2.0], for the cases p=s and p=(s-1), with
8 =1, 2, ..8 For p>4, two graphs are provided for each value of
p, the second being an enlargement of the “small 7”-region. of the

first -graph.
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\ .
' APPENDIX 2

~-Intervals for Stability at Infinity

X \a
For the case p==s, the intervals of stabilii;y at infinity are “provided .
within [0.0,2.0}, with an accuracy of 10 digits after the decimal point,

for the basic method, Richardson ' extrapolation, and " modified

Richardson extrapolation.
i

For the case p=(s-1), all thre¢ methods are stable at infinity for any

v € (0.0, o). .
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< N ~ APPENDIX 3

+-Intervals for A(0)-Stability

For both cases p;-s --and , p==(s-1), ,all the A(b)‘-stéb!e intervals in
+ - [0.0,2.0] are provided with an accuracy of 10 digits after the decimal
N\ point, for the basic. method, Richardson extrapqlition, and mt;dig'ied
Richardsgp extrapolati‘on.o ’
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APPENDIX 4 N

p | #-Intervals for A-Stability -

L

- For both cases p=s and p=(s-1), all the A-stable intervals in [0.0,2.0]
are provided¢ with an accuracy of 10 digits after the decimal point,

for  the basic method, Richardson ) extrapolation, and modified

Richardson extrapolation. ’
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e

—-~ APPENDIX 5

. Maximum A(a)-Stability (p=s)

N

For the case p==s, this appendix presents plots of the maximum anglé

a (in degrees) fér which we have A(a)-stability, as "a function of 7 for%.

7+ € [0.0,2.0]. The solid line provides the basic method results; the |
~ dashed 'line and the dotted line are for Richardson extrapolation and

, modified Richardson extrapolation results.
For each value of p, a series of graphs is provided. . Generally, the

first one presents the overall information. It is followed by many
more plots, showing enlargements of certain subregions, so that more
accurate information can be , visually obtained if “these subregions are
of p'articﬁ‘lvar interest.” The last plot of each series is an enlargement

of the hear——ﬂOf region;

.....
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APPENDIX 6

¢
1

. Maximum A(a)-Stability (pe=s-1)

1

For the case p=(s-1), thi;; ‘appendix presents plots of the maximum

~ angle a (in degrees) for which we have A(a)-stability, as a function of:

4 ~ qfor v e [0.0;2.0]. The solid line provides the basic method results;
the dashed line and the dotted line are “*foxz Richardson extrapolation

and modified Richardson extrapolatiop results.

. hFor each value of p, a series of graplis is provided. Generally, the ‘
first one presents the overall information. It is followed by many
more plots, showing enlargements of certain subregions, so that more
accurate iﬁformation'/.can be visually obtained if these -subregions ar1e
of particular interest. The last. plot of each series is an enlargement

of the near—90- . region.
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APPENDIX 7

2

Program to Compute W,

C

v

For problems (6.1.1) satxs(‘ylng (6.2.1), this program computes Wy 3N /

cstimale of the amallcat w such that if u+wL 0, thg semi-implicit

method wxll be contracuve
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APPENDlx 8 .

.Program to Compute Maximum h for Contractivity

~

We consider problems (6.1.1), satisfying (06.2.1). The ‘following

program cowmputes w_  as well a8 w the smallest value of w such

0 inf?
that for pu+wlL < 0, the semi-implicit method is unconditionnally

contractive.

For cqually spaced values of (-L/u) in the . range. (;)—l-, ‘-3-'), the
C . inf 0

program computes the maximum value of (-hu) such that the methqd

is contractive.

»
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7000 FORMAT(6X .F3.2.9X . €8.3)

MIDOLE = (GOOD-NOGOOD)/2

X om
s ¥ =
-STOP

END

. 220
230




‘(

’ ~ * »
. |
¢ i annrinod  od
’ . (X" vYNWY9° QD30 WNN'ND3Q) ansS = (L-1"1)Jv¥

- ) ’ (1-1"1)HdY = (0)WNN .

e e o $°2=1 0t 04

. - \

- - ~ pEmm s mmm e m——— e ettt D e et b i —merme———— m—mee- D

. ~a— - 001 01 09 (1°03°S) J1
|||||||||||||||||||||||||||||| g, S« |

- . : (X° vmnvYD 'a930 ' WNN°"ND3Q) dNS = (S)de

— ’ (s)a = (0)WNN

y ’ - - . . 1 = a93a

P ; -0 = N930

. ' : - . VOIN0 /EWOD/ NOWNOD

: v136°1368°6'YHdIV 'HdIV /IMOI/ NOWNOD,

™~ - o - . * I8NOD /1NOD/ NOWNOD
- - > I . /
. (SXYW:0 SXYN?Q) I6N0D " (SXYN'SXVYW) 138 : |
‘ L\/. , *(SXVN'SXVA)HAIY  (SXYN: 1 SXYN:Z}dv vy
" © (SXWWIZ)IM' (SXVIN:Z)IHd' (SXYW:E)OIN0' (SXYN:0)IWNN '
. C(SXVW) I8  (SXYW)VLIE (SXYN)E' (SXVN)VHIIY vy
. '

SIVINONATOE NI INIIIJI44300 ONIQYIT 0N 804 ¥23WD OL 3JIONvH3I0L v ST .10L. D

. - 1 (01-30°t = 101) y3IL3Nvivd

. - A'XTI0L'SL'PL EL"ZL 117 4dNS  dNS  YOIND ' vANYD v

) (P = SxVw) ¥313nvivd

J oo S'd'SXYN' 1 'ND930°3930 H393UNI

&

T © *M0738 Q301¥ISIA_‘.dNS.-INILNOWBAS FHL OL IAVW 3HY o}
. SIIYD ANVW "9 ‘NOILONNd HOLI3A W3180Hd 3HL YO INVISNOD b
. ZLIMDSAIT 3HL OGNV 3Z1Sd31S 3HL 40 1IN0Q0¥d IHL ST .A. OGNV v XIdive b
: W31808d 3HL 40 WHON DIAHLINVO01 3IHL ONV 321Sd3LS 3HL 40 LINAONd o)
) IHL S1 .X. ¥3ILINVEYA 3IHL “(SIOVLIS S HLIM QOHLI3IW ¥V JIN3IH) .S. )
334930 40 IVINONATIOd HOLYNIWONIOQ v GNY .d. 334930 ‘40 IVINONATOJ +2
, . HOLVHINON V SVH LIONNS ALTDIEYLS 3SOHM QOHLIIN LIDITdINI-1IM3S 2
N3AID v H0d HOLOVINNOILVIIAITdNY 3HL SILVYNIVAI NOILINNS SIHL 2
B : J
0000000000000000000000300Q00000000000000000000000000000000000000000 3
. . - o]

’ (A'X° VYWNYD'S’d) 4vdd¥yM NOILONNd 1v3YH
. . ‘ ]
. ooooooaooooooooooooooooooooooodo 0000000000000000000000000000000000 2

- ) L ) . e
. ) \ . ) :

w’



187

o
) 4
. ' 7 )
¢ LT
. TX' VWAV 0930 WNN°'ND3a) oS = (z-S)d8 -
© (Z-S'1~§)138e(1-S°S)130e(5)8 + (L1 - Z1eWWAVYD)sVIHWYD = (Z)NON )
: ZLeVMYO40°Z - 1L = (L)NNN .
Z1 57 (0)WNN R
\ £ =.0930
. . Zz = N93a ) .
. . ’ " {z-5)8 = Z1
p (z-s* mvhmmoﬁmvm + (2-S°1-S)138s(1-S)8 = 11

Anvum:o.> + (€)IHd =

(E)m

(X° YWNYD QD30 WNN°ND3A) dNS = (E)IHd

Z = N930 (101°19° ((Z)WNN)SBY) J1

<

({E)VHATIV - YWHVD)sVWAYD + (Z)VLIBe(Z 'E)HATIVY = (Z)IWNN

VANYO40°'Z - (E)VHATY = (1)NON
- 01 = (D)WNN-
(Z)Me(Z°€)dY + (1°E)4Y = (£)93IN0

a

. ‘€ *

INNELINOD 0z
(X‘vinve* ocwo WAN'ND3Q) dNS = (Z-1°'1)dv .
(z-r1° huraJ<.<zz<o = (Z-1°1-1)130e(1-1'1)HdIV = (LIWNN
. (Z-1'1)HdIVY = (O)IWNNN .
. S't=1 0Z oa -
T T T T T T - ———————— I.'l.l"'l.'-ld‘ll.l ||||| e e e e e e —- - - —-—— - u
. ' . o0t o» ,09 (Z2°03°S) 41 .
e R TR B LT p—— S A ——————e ————————an m———— e ————— 0 NGO .
. (X" .vmNY9° O30 WNN'ND3Q) "dNS = (1-5)48
(1-S)BevMMVYD - (1+S°S)1384(S)E = (LINNN
’ : ; (1-S)8 = (0)WNN
. * . Z = a93q R
- ) 1 = ND3q
. - L (1°Z)dVeA + (2)IHd = (2)M

. . (° vWWYD ‘093G °NNN°ND3Q) dNS

) ) . YARYD - A (Z)vHdIVY
. 0"t

(T)1Hd

1 = N93Q (70L°49° ((tINOIN)SEBY) I

(1 )mnN
(0)wnN




L.

. ((ZL - LLeVNNYD)eVANYD + PL)eVYRNYD - Gy
. . . (21ed°2 - LlevNY9eD® E)eVANYD + by
- . . <. . \ VANVDe 1 1e0°E - Z1
- - s N ’ s WL~

o aoun

, . — €1e(1-S°5)138e(S)E =
- ~ ((E-S°Z-5)138¢(2-S°S)130

R N . : . oﬁmlm._lmuhumoa—nm.muhwmv (s)a +« €1e(1-S)0

~ * (E-S°Z2-S)138e(2Z-S"1~-S) 130

~— . An 1 thﬂﬂlnﬂvmfﬁﬁ S'1-S)138e(t-5)8+({€-S'2-S)1384(2-S)8

N ~ ~ (e-5)8

1 .

. . . (X°YNWY9° Q930 WNN°ND3GQ) dNS = (E-S)48

. (e)mnN
(Z)YwNN
C1)mnN
(0)NNN
= 0934
= N930

St

) - (P)D3IN0sA + (P)IHd = ()M

(X' VHNVD QD30 NNN°ND3Q) dNS = (1) IHd

L . € = ND30 (704 19  ((€IWAN)SEY) 41

- . ’ (Ll + ((PIVHAIV -~ YANVYO) e VANYD) « YWAVD -

. (2)V136+(Z°€)138s(E " ¥)HIIY
. . ({PIVHDIVeD"Z - YANVDe0 E)aVWNVD + (1

. © YWAVD40'E - (v)¥HaYv

0t
(EIV13Be(E ' PIHAIY + (Z)IVLIIGe (T 'P)HdIV =

(E)IWNN
(Z)wnN
(1L)YNNN
(0)WNN

(8

. - ' (E)Me(E°0)AV + (Z)Me(2'0)dV « (1'P)dV = (V)OTINO

. S . INNTINOY

N (X°YAWYD "GOIC WNNNDIQ) dNS = (E-1°1)4dv
(Zee VANV ) eEL + LLeVANVD - Z1 (Z)nNN

v . : ELeVANNVOe0'Z - 11 = (L)ANN
¢ . - €1 JANN

” ) * (E~I°I)HQIV = g1

. ¢ . (€-1'2-1)138e(Z-1"1-1)238e(1-1;1)HdIV = 21

Lt © (e-1° _-u»mm.~.-~ IJHAIY « (€-1°Z-1)1138e(Z2-1"I)HdIY = 11

nn

n

) . . - ) S'v=1 Of 0Q

™

ae

«




. T ) .- “ ’
.1. -
. - - \
. : - X o
B -
;l. ) - . } . . - . . )
¢ - - . . :
t . LN N N » anN3 -
. ) . ¢ NUNL3Y ©- <o
oS ) ) . VOINOsA + HANS = AVddWN ) . . .
o0 ' » R .
— 1 . e e e e et ———— D)
, HOLIVS NOILVIIAITANY 3HL JLVATIVAI 3IM “ATVIYNIY D -
e e e e e et mccr e mmmemm—er——mm e ——a———————— ()
. . ] ., Ey . : .
’ . ’ . ' - (X YWNVD 0930 °WNN'ND3IA) dNS = ¥dANS ,
- ) - ((((E°S)IBMOD-VINVYD« (U S) 18N0D) s YNNVYD+(Z°S) 18W0D ¢S 0) L J \
. ; SYMRYD + 0°9/S-)eYNNVYD + 0°PZ/0°L = (P)NON (v°39°d) 41 o L -
(((Z°S)I1EN0D - (E£°S)IENOD g t ) _ .
A SYNNYO) s YWRYD+D"Z/S)aVANYD - 0°9/0°L = (E)NNN (£°39°d) JF )
. ~ (S = YWNYOe(Z S)IONOD)sYWNYD + S°0 = (Z)WAN (Z°39°'d) 41 . -
. . . i YHRYOeS - 0L = (1)NNN  (1°397d) 41 .
) 3 . o 0't = (O)WNN ] ,
. S o~ ) p : d = N930 > . :
B . : ' s = @a93a ; -
; : . S (I)Me{1)38 + ¥YD3NO =" vHamo © oot T
‘ $'Z=1 01l 00 . :
()49 = vo3IM0 0Ot -
« -
. e e e e ) -
’ S wX. YSSIDEY QII14133dS FIHL ¥04 ‘(Z)Y *NOILINNI ALINIGVIS IHL 40 2 ‘
«¥dNS. NAWIYANS FHL ONY .¥I3NO0. 40 3NTYA JHL ILNANOD DL AQY3IH MON -3HVY 3IM D 2 o
: I T NI . B
) . < - . - . ’ o .
wy - B ’ B - . v N . . - . - -




'

190

—

-

I8W0D /7iw0d/ NOWWOD
(SXVYN)Z X37dW0D

(SXYN:0°'SXYW:0)1aN0D . 1v3Y
(SXYW)100UYd " (1dSXYH)ED " (SXYN:Q)Zd"  (SXVYN:Q)id Tv3Y

_ aﬁ. (SXYW:0)ZANNN' (SXYNZO0IWNN“(1:0INIQ TvIY

X dWNIL IVAId "MONXVYN  YNRYD ‘2D v3y

T (S=1dSXYN r=SXVN) ¥ILINVHYD
YUAN" LASXVN SXYN'¥II°I°ND3Q°Q930°2930° 1930 H¥3IDILINI

¢ "STIVINONATOd 40 S100¥ 3HL ILNENOD OL ‘(SEBITSWI)
ISWI WO¥4 035N S1 .¥70dZ. 0S¥ '.IVA3d. ANV ..1NAd. °.ZWHON.
01 AI3WYN "M0138 03818IS3AQ S3INILNOYENS H¥3IHLIO Ol 30VN 3I¥VY STV

"SLINISINIL S1 HIMSNV 3HL 3SIMHIHLIO ‘A930 => ND3G 3IAVH 1SN 3M .wmmbbu 40

. (ND3QeeZe¢(NOIAINNN + " + ZesZs (ZINNN

* Zoe(LINON + (Q)WNN ST IVINONATOd 3HL "3° 1) Z 40 H3MOd ONIONOd
«~SIYH0D HI3HL 40 HIOQHO ONISVIHINI NI ..NNN. AvHHY NI Q3HOLS 3V SINIID
-144300 SLI ANV .N9D93Q. 334930 Q314I1D3dS SYH TIVINONATOD HOLVHINNN 3HL

*.@930. °*33¥D30 SiI OGNV

- wYARYD. JO INIVA IHL HLIM LI A4I23dS AINO O33N IM 0S (Z+VHWVYD - ()
40 ¥IMOd ¥3IDIINI NV SAVMIY ST HOLVYNINONIQ 3HL ‘IJHOWNMIHLIYNS °"SINIID
-143302 v3Y 3IAVH STVINONATOd 3S3IHL LVHL JLON ° IIEBVIHVA X3TdWOD 3HL NI
(BOLYNINON3IQ OGNV HOLVHINNN) SIVINONATOd Z SV OG314133dS SI NOILINNA 3IHL

- (.X. VSSIDEY NIAID A€ Q3T14133dS) INVId
X3 TIW0] 3IHL NI INIT IVDILH3IA QGII31D3dS VvV NO "FISVYIYVA X31dW0D ¥V NI
NOILINNA TYNOILVY V 40 SNINGOW WANIXYW 3HL SNHNLIY NOILONNA SIHL

0000000000000000000000000000000000000000000000000000000000000000000

: (X' YWWVYD° Q930 °WNN°ND33) dNS NOILINNA “Tv3Y

000000000000000000000000000000000000CA0CCC000C000000000000000000000

'

LU DOLLVLULLLULOLLUDVUVLULLLUUOLW

-

e .



B * \ - N - .
i Lot .o ON3
- L . N¥NnL3Y
= . : E . MONXVN = dns
< ~ - 0L . . - = 4I0N3
‘ . INNTLNOD
. R o dW3L = MONXYW (MONXYN'19° dW3i) J1
: . ) (@930ss ((1)100¥8deZ9 + (0)N3Q)
7((1)100uud°ZANNN NO3Q)IVAIC) LHDS = dm3L
) - . Y4dN‘1=1 Ov 0Q
. : (1L00¥Y¥d ‘¥NdAN®2°2930) Tv3NL3H TIV)
: - . (431°2°'2930°€d) ¥104Z 1IV)
: - . . i - 1930 = 2z930
T & \\ oL (1-1930)1d = (1)ed
» . o] 1930°1=1 O£ oa
s N3HL (1°19°193Q) 41
a— N
) ’ . ‘4 10ON3
) /- N . . i - { + N930 = 1930
. C . . ‘ . 3813
= N93Q = 1930
—. 0 . ‘ ; . dWIL = MONXVYN (MONXVYN°19°dW3L) dII
ol * (0930« e vWNVYD) 2{ (NDIQINNN)SBY = aw3L
- s - w-— ) - . - N3HL (0930°03°N93Q) JI
- ® % . ¥ 09300« (XsYWNYD-0°1)/((0)ZAWNN) LUDS = MONXVN
. . : T - (1)ZAWNNedNIL + (1)id = (I)1d
a ; . — N930°'0=1 DZ OQ
=T - : . - 90930 - = dW3t
s . ’ ’ (1d4°ND30°2d* 293G°N3G* 1930) 170Nd 1IV)
- . ' ) . . 1 - N93a = z93g
. - : I = 1930
Co. ~ . T (I)ZAWNNNeT = (1-1)2d
’ _ . : . ; - N930'L=1 01 0g
<]
; * . 29 = (1)N3a
rY Zes (X2 VNNYD-0"1) = (O)N3Q
ZesVYORYD = 29
. . (ZARNN'X "NNN°NDIA) ZWHON TV
. 4IQN3
N : . Lo . - 0S5 01 09
n ) . 0930e s (XaYMNYD-0°1)/((0IMNN)ISEY = dNS
. . T - N3HL (0°D3°N9D3Q) 41
i . . i
- X ’ \
. L °

rd

0s

oz -




p .
. X T - .
-, - : INNILINDD
. : . . 3I1QN3
- ) : T ) - {f)d1 - = (£)dl '
. - - (r)dy - = (r)dy
- P . N3HL (1°03° (Z°'r)aom) 41 )
- : (x*Ixd"X930) 1vA3d =" (r)dI
' : _ 1 - X930 = X930
[X°¥Xd"X93Q0)IvA3dd = (r)ld¥d
. ZF - 930 = x930
INNTLNOD
.w . (1+4Z0°N)IBN0D« (M)A = (1-2Z0-X)IXd :
’ T {ZCCAH)IEN0de ()N = (Zr-N)YXd

: . n3Q°t+2r=X 0Z 00

' (Zr)a = (0)Y¥xd

reZ = 2~
T/(1-930@)'0=C Ot 00

N a
°

f

18W0D /iN0D/ NOWWOD

(SXYN:0'SXYN:0) ISNOD V3Y
t0)zaAad t
2d1°(SXvW:0)dl vy
X*1vA3d vad

- (SXVNZO)A' (SXYN:D)ZdY ' (SXYN:0)dY* (S
C(SXYW:0)IXd' (SXYW:0)YXd* (SXV

(v

. ﬂ .w2<4&twaazou 3HL NI °uXe
3INTVA vSS138V Q314103d4S 3IHL 803 GILNAWOD 3I¥VY . ZAd. NI SINIIJ143300 3IHL
N R ‘ZeeA 40 U3IMOd ONIQ
.- ~NOdSIYHO0D HIIHL 20 Y¥IAUO ONISVIHINI 3INVS IFHL NI ‘.ZAd. AvHdY NI gaNynlL
* ~-3Y 3dV° SINIIDII430D 3SOHM ‘ZesA 3INBVIHVA 3HL NI .930. 334930 40 WVIN

\ ~ONA0d ¥V SY Q35S53¥dX3 I8 NYI INVId-(A‘X) XIVTINOD 3IHL NT INIT AVIILH3A
- ANY NO IYIWONAIOd SIHL 30 (SNINCOW 3HL JO 3¥vNDS 3HL "3°1) .WHON. 3HL

. ‘930 01 0 WONJ YIMOd ONIANOGSIYYO0D HI3HL 40 ¥3IAHO
~VIUINI NI .A. AvHEV NI 033015 3YY SINIIIIJ4300 3ISOHM '.93Q. 334930 40
) 3NGVIHVA X3T1dNOD V NI TIVINONATOd Vv LNANI SLI SvY S3NVL INILNOYHENS SIHL

$

V0 UOQLULLLVLVLLLVOLLLY

- ooooooooooOoooooooooocooooooooOOOOOOOOOO@@OOOOOOOOOOOOGOOOOOOOOOOOOOOOOO

(ZAd X'A*D3Q) ZWHON 3INILAOHENS
7

,OOOOOOOOOOOOOOOOOoOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOQOOODOOOOOOOO&OOODO

oL -

oz



L. aN3
. Nini3y

: : o - : s
y < . -, . \ . (1-1)2d1 + (1)Zdd'= (I)ZAd o€
. . 1-930°t=1 OE 0a P

. p s - 3 410N3
L o . ., (1-930)2d1 = (930)2ZAd
’ ' ‘ : . ‘ ELLED
v . . (930)zdY¥ = (930)ZAd
; : . . N3HL (0°D3°(Z°930)a0W) 41
- . . . (0)2ZdY = (0)ZAd .

B

. - . awn:.nomo.a—.gwo.au.xowov 1INNd 11vD. .

. - X930eZ = d930a

- Z/(1-930) = x93c

. . . (Zd¥°dD30 ' dd* X930 dy " XD3A) 17NNd 1IV)

. : - ! X930«Z = d930

. . . 410N
“, : : ; - (X930)d¥ - = (X930)dy (1703 (z°x93aQ)aon) 1
) (930)A = (x930)d¥

L NIHL (0°03° (Z2°93Q)00N) d1

: Z2/930 = X93a

et




194

B R \ -
R Y
- . - - ' .
3 : .
N o - - )\. .
rd . O
— s .
? -Ku/ f .
- = ..
t
1Y > .\"
a -
. aN3
° Nyn13y -
o dwalL = I¥A3d
- i ) - { (1)70d + XedW31 = dN3L
; ) \ 1-°0°930=1 0t 0Q
0°0 = dw3lL

X'dN31°(930:0)70d v3y
- 1°930 ¥3IDILINI

-

"3INY S.Y3INMOH ST G3SN GOHL3IW 3HL "D30C 0L D, WOY¥Z HIMOJ DNIONOJIS3IN¥HO)D
LHI3HL JO 83080 ONISVIHONI NI '.70d. AvidvY NI G3IHOLS 3HY TVINONAIOM
_3HL JO SLIN3IIDIJEI0D TVIY IHL °.X. INTVYA IJTIBVIHVA 03 14323dS
IHL LV .93C. 3IUDIC 40 IVINONAIGD V SILYNIVAI NOILINNZ SIHL

0000000000000000000000000000000000000000000000000000000000000000000000
(X*70d°93Q) J(>WQ.ZO~#UZQ& [v3u

. _oooooooooooooooooooooOooooooooooooooooooooomuoooooooooooobocobooooooooo

VA

R




. ) S R L ‘ aN3 - @
. - > / : NY¥N13Y
v [ 3 * m’ﬂ
., - ) . - . . ANNILINOD ot ) . -
: . T T €I-M)Zde(1)1d + (X)QO¥d = (¥)00Nd oz .
ﬂ - - ) . iSvI°lSHld=1 0Z 0Q .
. . 0°0 = (%)Q0yd : 3 )
) . . i . 41083 ¢ -
. y ) - 1930 = 1SV)
. ' ) 3573 . a
o . . . ¥ = L1S¥1 . . o
m ) . - . - ; N3IHL (193a°171°%) 41 t . ) .
s . ’ 410N3 ’ -
|V, 0 = 1S¥1d - L .
. . - . 3sv3 . ¥ .-
. oL : o 2930 - % = IS¥YI4 . .
- . 3 NIHL (2930719 %) 41 w
. : d930°0= 01 00 . -
' . (d930:0)00¥d" (2930:0)2d" (193G70) 1d IvIy o .
N »mﬁ.x.m.._.mzz.awmo.uowo..ouf ¥3931NI - - ,
"33¥930 3ATLII4SIY WIIHL OL O WONJ ‘SYIMOd ONIONOdSIUH0I ¥IIHL 340 o)
Y3QH0 ONISVIHINI NI N3AID 34V SINIIII44309 3IHL "SIVINONATIOC: aHL TV k] .
- HOJ ~"WVYDIOUd ONITIVD IHL NI (2930+1930) 01 135 38 AINOHS .dH3a. 2 - 1
v "-Q0¥d.. NI 12NQ0OH¥d 3IHL mzxa._.% ANV, ATIATLIIESIY .293GQ. ONY »1930. J
) 33¥D30 40 .Zdw. ANV .ld.- STVINONATOD Z SITVATLINN NOTLINNI SIHL 2 )
oooooooooooooooooooooooooooooooocooooooooooooooooooooooooooooooooooooo 2 L TTTT——
N - B o) - . ) o
S o . (00¥e d930°24°2930° 14" 1930) L1INNd INILNOBENS - ’
i N . o , ; i ’ - ‘ J
. : oot oooooooooooooooooooooooocooooooooo,mooooooooocooooooooooooooooooococoo 2 .




aN3
. Nyn13y
! . : INNILNOD
) . . d10N3
I ((1)Z)v3¥ = (YY¥AN) 100YYd
’ N . 1 + YHJIN = HMJIN
NIHL (€0°0° 197 ((I}Z)IVIY)"ANV " (10L L1 (((1)Z)OYNIVISaV) )T
. T N'L=I 01 0
. N = 0 = MHdN

Iz}

- N (9-30°1=1101) ¥313INVYvd
' T (N)Z X37dmn02
0L *(N)100¥Y¥d Tv3H

1°YNAN'N ¥3DIINT

TMOTIE INIWILVYLS HILINVHVY

FHL NI 13S *.70L. NVHL (3NvA 31N10S8BY NI) SS371 S1 1¥Vd AY¥VYN

‘ -IDVWI S1I JI v3H Q3U3AISNOD SI 100H V “wHUIN. H3EWNN ¥I3HL ONY S100¥
Y34 3AILISOd 3IHL o>JZO 40 oz~.—m~..mzou ~100¥Y¥d. HOLI3A V SNMNLIY ONV

51008 X37dW0J «N. 40 .Z. MOLIIA Vv LAJNI SIiI SY S3nvl 3NILNOYEBNS SIHL

ooooooooooooooooooomdoooooooooooooooooooooooooooooooooooooooooooooooo
(100YYd "Y¥IN*Z °N) Iv3INL39 INILAONENS
ooooooooooomoooooooooooooooonooooooooooooooooooooooooooooopoooooooooc
(Y

ot

“”

-




