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ABSTRACT

On the Domination Number of Grid Graphs

Thi Nhu Mai Vo

A dominating set D of a graph G = (V, F) is a subset of V such that every vertex
of G is either in D or is adjacent to a vertex in D. The domination number v(G) is
the minimum size of a dominating set. Recent work by Cockayne et al. introduce
an upper bound for 4(G) using star-center patterns. This work presents a new
construction for dominating sets on k x n grid graphs, which relaxes in certain ways
the condition that no neighbourhoods overlap in the interior of the graph. For widths
up to 12, these sets are smaller in the limit than those obtained using star-center
patterns. The constructions cannot give improved bounds if (k — 13)(n — 13) > 45.
We give a conjecture on the structure of dominating sets which would prove optimal
the bounds obtained. We also present two algorithms to generate optimal dominating

sets for k xn grid graphs under our conjecture. Some computational results are given.
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Chapter 1

INTRODUCTION

The kxn complete grid graph G(k,n) has vertex set Vi xV, where Vi = {1,2,..., k}
and V, = {1,2,..,n}. Two vertices (¢, ) and (¢, ;') are adjacent when they are

consecutive on a row or column (see Fig. 1.1) i.e. when

(i=i'andj=j'+1)or(j=jandi=i%1)

Fig. 1.1: A G(5,5) grid graph

A dominating set D of a graph G = (V,E) is a subset of V(G) such that every
vertex of G is either in D or is adjacent to a vertex in D. D is a minimal dominating
set if no proper subgraph of D is a dominating set. The domination number 7(G) is

the minimum size of a dominating set.

The computation of the domination number for graphs is an NP-complete problem
[13]. Cockayneet al. [4] have established upper and lower bounds for the domination
number of complete grid graphs. Hare et al. [11] present an algorithm to compute

the domination number of & x n complete grid graphs for fixed k. However, the



domination number of G(k,n) remains unknown for grid graphs of widths > 15.

The neighbourhood N(v;) of a vertex v; in G is the set consisting all vertices
adjacent to v;. The closed neighbourhood N|v,) is N[v;] = N(v;) U {v;}. A vertex in

common between ncighbourhoods is an overlap.

We define the closed neighbourhood N[S] of S as follows:
N[5] = {v; € V(G) : v; € N[v;] for some v; € S}

We say that S dominates N[S]. Informally, we say that a dominator v is any

member of a dominating set, and that it dominates all vertices in N{v).

In a grid graph, each vertex dominates at most a subgraph of the form indicated

in Fig. 1.2.
U

L2
) V4

V3

Fig. 1.2: v; dominates the subgraph formed by {vy, vz, v3, v4 ,v;}

A star center set S of a grid graph G(k,n) is a dominating set of G with no

overlaps in the interior (Fig. 1.3).

HHHHH

SBElaEbE

Fig. 1.3: A star-center set of G(6,9)




In this paper, we present a new construction for dominating sets on complete
k x n grid graphs which relaxes in certain ways the condition that no neighbourhoods
overlap in the interior of the graph. For widths k < 12, these sets are smaller in the -
limit than those obtained using the star center pattern. The constructions cannot
give improved bounds if

(k —13)(n — 13) > 45.

We conjecture that the smalllest dominating set of G(k,n) realized under the
above relaxed overlap condition is optimal. We call this the relazed overlap conjec-

ture.

We describe an algorithm to construct the optimal dominating sets for k x n grid
graphs by exhaustive search under the relaxed overlap conjecture. Our results agree
with the optimal results in all cases in which these have been obtained, thus our

conjecture has yet to be disproved.




Chapter 2

BACKGROUND

2.1 History of grid graph problems

The study of grid graphs started in the 1890’s with the Five Queen Problem on
the chessboard [17]. We want to place five queens on the board in such position
that they dominate the whole board. A solution is indicated in Fig. 2.1: no smaller

number of queens will suffice, so that v(G) = 5.

Fig. 2.1: A solution to the Five Queen problem

In more recent times, grid graphs have been used to model a variety of routing
problems in street networks. Berge [3] mentions the problem of keeping all points
in a network under surveillance by a set of radar stations. In a similar vein, Liu
[16] discusses the application of dominance to communications in a nctwork, where

a dominating set represents a set of cities which, acting as transmitting stations, can




transmit messages to every city in the network.

Consequently, the importance of studying the graph-theoretic properties of grids
has attracted more interest. Farley and Hedetneimi [9], Peck [18], Van Scoy |20], Li-
estman [15], and Ko [14] have studied the problem of fast transmission of information
in grid graphs.

Cockayne et al. [4] have established upper and lower bounds for the domination
number of complete grid graphs, determined exact values of the domination number
for G(2,n), G(3,n), and some G(4,n), and computed (G(k,n)) for several values

of n when k < 7.

Bange et al, [2] introduce the concept of efficient domination in grid graphs. A
dominating set D € V(G) is efficient if the distance between every pair of vertices
of D is at least 3, i.e., there are no overlaps between neighbourhoods. For an un-
bounded planar grid graph, it is proved that up to symmetry, there is only one way

to choose an efficient dominating set, namely the tiling pattern (Fig. 2.2).

@000 0@O0 o o|bjolo 0 O
OO0 O0Oe@e 00O Ool|O|O0 O 0O|0O]|O
O® OO0 00O e O 0O 0]J]0|0O}J0 O
OO 00O @ OO0 O|0|O0|]O0 O 00O
OO @O 00 O Oo|0 O O|0]0]O
® O 00 0O O O oj0Oj0Ol0 O O
(a) The Tiling pattern (b) Tiling the plane

Fig. 2.2



We observe that the tiling pattern is in fact Cockayne’s star-center pattern.

D is an efficient near-domination of G if D is an efficient dominating set such
that the number of uncovered vertices in V(G) — D is minimum. Bange et al. [2]
have proved that the tiling pattern produces an optimal efficient near-domination of

all k x n grid graphs where k, n > 7.

Hare et al. [11] have developed a linear algorithm to compute the domination
number of k X n complete grid graphs for fixed k. This algorithm is based on the
recursive definition of the family of k x n grid graphs and the theory of linear com-
putation. According to this theory, we can solve certain NP-complete problems in
linear time when these problems are restricted to some particular family of recur-
sively defined graphs [21]. Any kxn grid graph G(k,n) can be recursively defined as
a composition of G(k,n — 1) and the basis graph G(k,1). This algorithm produces
dominating sets for complete grid graphs of heights ¥ < 12 which are known to be

of minimum size.



2.2 Dominating sets and related concepts in graph theory

2.2.1 Dominating sets and independent sets

An independent set of G is a subset of V in which no vertices in the set are ad-

jacent.

Fig. 2.3

In Fig. 2.3, {a,c,d} is an independent set. A marimal independent set is an
independent set to which no other vertex can be added without destroying its inde-
pendence property. The set {a,c,d, f} in Fig. 2.3 is a maximal independent set, so
are sets {b,g} and {b, f}. In general, a graph has many maximal independent sets
of different sizes. The independence number By(G) is the size of the largest maximal

independent set of G. In Fig. 2.3, Ay(G) = 4.

There is a close relationship between the dominating sets and the independent

sets of a graph G. We observe that:

1. A minimum dominating set may or may not be independent. In Fig. 2.3, the
dominating set {b, e} is minimal but not independent (b and e are adjacent).
2. Every maximal independent set is a dominating set.

7
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Proof (by contradiction):
Let S be a maximal independent set of G = (V, E). Assume S does
not dominate the graph. Then
Jv; € V(G) : vi € S and v; is not adjacent to any v, € S
Therefore, we can add v; to S without destroying S’s independence.

But then S could not have been maximal = contradiction. o

o

Theorem 2.1 An independent set is maxzimal if and only if it is a dominating set.
Proof:

e Since any vertex not in a maximal independent set is adjacent to one or more
vertices in the set, a rrlaximal independent set is also a dominating set.
¢ An independent set that is also a dominating set must be maximal since any

vertex not in a dominating set is adjacent to one or more vertices in the set.

a

Corollary 2.1 For any graph G,

7(G) < Bo(G).

2.2.2 Dominating sets and edge coverings

In a graph G, a set g of edges is said to cover G if every vertex in G is incident
on at least one edge in g. A set of edges that covers the graph G is called an edge
covering of G. In a minimal covering, no edge can be removed without destroying

8



its ability to cover the graph. The covering number of G is the size of a minimum

edge covering.

An edge covering is somewhat similar to a dominating set of edges in the sense
that every edge in the graph is either in a covering or is adjacent to some edge in

the covering.

2.2.3 Independent dominating number and chromatic number

An independent dominating set 1(G) of a graph G = (V, E) is a dominating set
which is also an independent set of vertices. The independent doménating number

i(G) is the size of a minimum independent dominating set of G.
A clique I(G) of a graph G is a maximal complete subgraph of G.

In the coloring problem, a proper coloring of a graph G = (V, E) is an assignment
of colors to the vertices of G such that no two adjacent vertices have the same color.
A graph G that requires x different colors for its proper coloring, and no less, is call

a k-chromatic graph. We call « the chromatic numberof G.

Cockayne et al. [5] show that for any graph G:

x(G) = i(I(G)).

2.2.4 Dominating sets and matching

A matching in a graph G = (V, E) is a subset of edges in which no two edges are
adjacent. A mazimal matching is a matching to which no edge in the graph can be

9



added. The number of edges in a largest matching is called the matching number

B:1(G) of G.

The problem of finding a maximum matching, the so-called matching problem,
is closely related to that of finding a minimum dominating set except that in the
matching problem, we want to dominate vertices in the graph with edges instead of

vertices.

2.2.5 The domination number and the domatic number °

A D-partition of a graph G = (V) E) is a partition of V(G) into dominating sets.
The domatic number d(G) of G is the maximum order of a D-partition of G.

Cockayne et al. [6] have observed that if a graph G has domatic number d(G)
then every vertex must be adjacent to at least d(G)—1 vertices, 1 in each dominating
subset of a D-partition of order d(G). Allan and Laskar [1] have established a theorem
on the relationship between the domatic number of the complement of a graph G,

denoted as G, d(G) and the domination number 7(G) as follows:

Theorem 2.2 For any graph G:

7(G) £ d(G).

10



2.3 Existing methods to determine the domination number
2.3.1 Boolean method (1973)

Deo [8] describes a method for obtaining all miniinal dominating sets in a graph

using Boolean arithmetic on the vertices.

Let n be the number of vertices in the graph G = (V, E).
Let each vertex v; € V(G) be treated as a Boolean variable.
a + b denotes the operation of including vertex a or b or both.

ab denotes the operation of including both vertices a and b.

To dominate a vertex v; € V(G), we must either include v; or any of the vertices
adjacent to v;, i.e., we have
Swi)=vi+vatvot - +vi=1
where v;;, v;2, - -+, vix are the neighbors of v; for every v; in G.

To dominate all vertices v; € V(G), we must include all S(v;) in the dominating

set.

Therefore, we form a Boolean product of sums:

6 =[] S(vy) (1)

i=1

When 0 is expressed as a sum of products, each term in it will represent a minimal
dominating set. A term with the smallest number of variables represents a minimum

dominating set.

11



Consider the graph in Fig. 2.4.

Fig. 2.4

We derive the following expression 6 from (1):
0 = (a+b+d)(b+a+c+e)c+b+ )
(d+a+e)e+b+d+f)(f +c+e)

Using the absorption law, we arrive finally at

0 = af+be+cd+abc+ace+ abf + bee + bfd + dfe

Each of the above terms represents a minimal dominating set. Clearly, 4(G) = 2

for this example.

To apply the Boolean method to find all the minimal dominating sets for a k x n
grid graph, we must work out a & X n-term Boolean product in k x n variables.
Therefore, this method, requiring enumeration of all minimal dominating sets to
determine the domination number of a graph, is inefficient and needs prohibitively

large amounts of computer memory.

12




2.3.2 Linear programming method

Linear programming deals with problems in which a linear objective function of
several variables is to be maximized or minimized subject to linear equality and

inequality constraints on the variables.

We can express such a problem in the following form:
minimize 2z =¢T; + T2+ -+, Objective function
anzi+ -+ a1nZTq 2 b

) anzy+ - +apzy 2 b .. i
subject to » Explicit constraints

Am1T1 + 2 + Gmp Ty 2 bm

s

T1, Ty ..., Ty 20 (implicit) non-negativity
constraints
Depending on the domain D(z;) of z;, we have a linear program if D(z;) = R or
an integer program if D(z;) = N.
Consider the graph G = (V, E) where |V| = n.
Let D be a dominating set of G.

Define integer variables:

1 fv; €D
r; =

0 otherwise

1 ifv; € N[vj]
a;; =

0 otherwise

13



To cover a vertex v; € V(G), either v; or any of its neighbours must be included

in D i.e.

PILTIPR (2)

ot
To determine the domination number of graph G, we want to minimize the sum

z = Y I, subject to constraints (2) for all v; € V(G).

Therefore, the problem of finding the domination number of a graph G is equiv-
alent to the following linear programming problem:
minimize 2= 2, 4+2Zy++ T,

subject to anzy + -+ gz, 2> 1

anzy + -+ agpr, 2 1

Gm1Z1+  + CGunZa 2 1
T1y,T2y...,2q 2 0
withall a;; =0or 1
Solving the above problem with z; real for all v; € V(G), we obtain the lower
bound on domination number for any given graph G. The optimum value of the

objective function in the 0-1 problem (integer variables) of the above defined linear

program is the dominating number of G.

14




Ezample: Fig. 2.6 shows the values of ai; for the graph G in Fig. 2.5.

1 2 3
1]
0—0—0

4 5 6

Fig. 2.5
a,-,' ]

1 2 3 45 6
1{1 1 0 1 0 0
211711 010

J(31011 0 0 0
411 0 0 11 0
501 0 111
6/]0 01 01 1

Fig 2.6: Values of a;; for G(2,6)

Interpreted in linear programming terms, our objective is to:

minimize 2= & + I+ T3+ + T+ Te

subject to T + 2, + x4 >1
Ty + 22+ T3 21

z2+ T3 +z6 21

T +24+ x5 21

T2 +z4+zTs+z6 21
T3 +z5+26 21

Ty, T2,T3, Ty, T5,%¢ = 0

15



We obtain the optimal solution

1111 1
(21,22, T3, 24, T5, Tg) = (5, 2’ 2 5»0, '2‘,0)
with an objective value of z = 2. This is a lower bound of the domination number

of the graph shown in Fig. 2.5.

The optimum value of the objective function in the 0-1 problem is z; = 2 where

(:Cla X2,T3,T4, $5vx6) = (laofoa 0, 0) l)

We have v(G) = 2.

In general, for a graph G'(k,n) of kn vertices, we must solve kn equations. For
problems with large number of variables and/or constraints, integer programming
becomes less attractive. Cockayne et al. [7] have developed a branch and bound
algorithm to compute the dominating partitions of a graph G using the integer

programming approach. The algorithm appears to be exponential in worst case.

2.3.3 Dynamic programming method

The basic idea underlying dynamic programming is decomposition. To solve a
problem with many variables, the dynamic programming approach determines the
variables one at a time (sequentially), decomposes the problem into a series of stages,
each corresponding to a subproblem in only one variable, and solves these single-

variable subproblems separately.

The families of graphs to which this approach applies must have standard recur-
sive definitions, in terms of a finite set of basis graphs and a finite <rt of rules of

16




composition. Each rule of composition, however, must be defined in terms of a finite
set of k vertices, for some fixed integer k. These vertices are called terminals. In
this context, we think of graphs as consisting of triples:

G = (V,E,T) where V :set of vertices
E : set of edges
T : set of terminals, T CV,|T| =k
Hare et al. [11] have applied the dynamic programming methodology, developed

from the theory of linear computation [21], to generate an algorithm to compute the

domination number of k x n complete grid graphs for fixed k.

This table-driven, dynamic programming algorithm is based on the following

recursive definition of the family of k¥ x n grid graphs:

1. Basis graph: the path P, on k vertices is a grid graph with terminals vy, vy, - -,
vi. In fact, G(k,1) = P;. Fig. 2.7 represents the basis graph for the family of

2 x n grid graphs.

Fig. 2.7: Basis graph for the family of 2 x n grid graphs

2. Rules of composition: if G(k,n — 1) is a grid graph with terminals u,, ug, ---,
u,, then the graph G(k,n) = G(k,n —1) o P, can be defined as follows:
G(k,n) =(V,E,T)

17



where V(G(k,n)) = V(G(k,n-1))UV(P)
E(G(k,n)) = E(G(k,n-1))UE(P)U {uv;} withi=1...k

T(G(kv n)) = {vl’v2a e ’vk}

The terminals of G(k, n) are the vertices vy, vy, +-+, vx of the composed G(k,n).

Fig. 2.8 illustrates the composition of G(k,n — 1) and P, to yield G(k, n).

G(2,4) o P =  G@25)

Uy (Y Uy "
T 1
o—l— 0—0  © l——o-—-—o-—-o—-

U2 V2 ' Uz Uy

Fig. 2.8: The composition of G(2,4) and P, to form G(2,5)

The problem of determining the minimum dominating set of G(k,n) can be de-

composed into the following 2 problems:

1. determining the minimum subsets S C V(G(k,n—1)) such that N[S] D V-Tg.
2. determining the minimum dominating set of the T o P, where Tg denotes the

terminals of G(k,n —1).

Since N[S] 2 V - T, for any vertex v € Tg either

i) ves visin S
ii) veN[S]-S v is not in S but is dominated by §
i) v ¢ N[S] v is not dominated by S

18




To form the dominating set S, of G(k,n), we combine dominating sets Sy, of

G(k,n — 1) with vertices of F;. If a vertex in V(G(k,n — 1)) — Tg is not dominated
by any vertex in S,.,, then it will not be dominated by any vertex in Pi. Thus we
need not consider sets S of G(k,n — 1) for which N[S] does not contain V — Tg.
Consider the grid graph G(2,2) in Fig. 2.9 and all its subsets <. We have:

V = {1,2,3,4}
{2,4)

V-1 = {173}

o
!

The subsets § = {2} and S = {4} can be eliminated in this case.

a b
c d

Fig. 2.9: The G(2,2) grid graph

For fixed k, we can construct a state table which represents all possible placements
of dominators in Tg o P;.
Ezample: State table for k = 2.

In this table, the absence of an 2ntry in a slot represents an undefined composition,

one in which V — T is not contained in N[S].

19
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—e o— e—O *—o

I

T

Py

!

undefined

undefined

undefined

*—® *—e *—o *—eo ! ¢

undefic 4

undefined

undefined

]

undefined

I

|

!

o—o |o—9o | 0o—o

® visin$
@ vis notin S but is dominated by S
O v is not dominated by S

..& 2.10: Composition of Tg witk P for k =2

20




To find the minimum dominating set of G(2, 3), we must solve 2 subproblems:

1. determining the minimum subset S C V(G(2,2)) such that N[S] 2 V ~ Tg.

We obtain 3 subsets (Fig. 2.11):

S1 I 1 Szlj Sa D
—J —
T

 I—
Te 1 G TGs

Fig. 2.11: 3 subsets Sy, Sz, and S of V(G(2,2))

2. determining the minimum dominating set for Tg o FP;.

The state table in Fig. 2.10 gives the placements of dominators in Py which

produces the minimum dominating set (Fig. 2.12):

Py

S
SE
S

Fig. 2.12: Optimal placements of dominators in P;

21



Combining solutions to the above 2 subproblems, we have 3 minimum dominating

sets for G(2, 3) (see Fig. 2.13):

01 0

Fig. 2.13: 3 minimum dominating sets for G(2, 3)

Therefore v(G(2,3)) = 2.

This linear algorithm is far superior than any of the existing methods to determine
the domination number of complete k x n grid graphs of fixed k. It has produced

domination numbers of G(k,n) for & < 12 which appear to be minimum.

However, the exhaustive state table construction is very time and space consum-
ing. The size of the table grows ¢xponentially with k. For k = 7, the table size is

577 x 128.
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Chapter 3

THEORY OF DOMINATION IN GRID GRAPHS

3.1 Star-center pattern

In a grid graph, each vertex dominates a subgraph of one of the following forms:

- - -

(a) Interior vertex (b) Edge vertex (c) Corner vertex
INv]] =5 IN[v]| = 4 |Nfe]| =3
Fig. 3.1

Let D = D; U Dg U D¢ where

D; = {v; € Dv; in interior }

Dg {vi € Dv; on edge }

D¢ = {v; € Dv; in corner }

The total number of vertices covered by D is
T(Dg) = 5|Dy| +4|Dg| + 3|Dc| = V| + Or + Og + Oc
where Oy, Og, Oc are the number of overlaps generated by Dy, Dg, D¢ respectively.

For D to be minimum, we want to minimize the number of overlaps. We are

tempted to assume the following:



Assumption 1 The dominating set D of G(k,n) has no overlaps in the interior:

Vv, w € D : v,w interior vertices => N[vJN N[w] =0

The above assumption forces the star-center pattern in the interior. By extending
G(k,n) by a l-wide strip on all 4 edges, all vertices of G(k,n) are in the interior
of G(k + 2,n + 2). They can be completely covered by the star center set for
G(k +2,n + 2) (Fig. 3.2). To determine the dominating set of G(k, n), we apply
a pulling algorithm to pull all edge dominators of G(k + 2,n + 2) in onto the edge

vertices of G(k,n) which they dominate (Fig. 3.3).

i ]

Fig. 3.2: G(8,10) embedded in G(10, 12)

- @jed
-+ -

[ T%

[ o4

Fig. 3.3: Covering G(8,10) with the star center
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We derive an upper bound for 4(G(k,n)):

Lemma 1 The minimum number m(G(k,n)) of star points of the star-center pat-

tern contained in G(k,n) is [%EJ

Note: The points concerned do not generally constitute a dominating set. We are

simply constructing an orientation of the star-center pattern which minimizes the

star points within G(k,n).

Proof:

In the star center pattern, of every 5 horizontally or vertically adjacent
vertices, one iy a dominator.
Therefore, in 5 consecutive columns of G(k,n), for n > 5, there will be
k star centers, one in each row. So

m(G(k,n)) = m(G(k,n—5)) + k
for n 2> 5.
Similarly,

m(G(k,n)) = m(G(k - 5,n))+n
for & > 5.
Since [—j = |——" K(n - )J 4+ k for n > 5 and similarly exchanging the
roles of k and n, the conclusion follows inductively if we can prove it for
k,n <5.
The result for k,n < 5 follows by inspection of the graphs below (Fig.
3.4), which give for each n € {1,2,3,4} a placement of the star-center
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pattern such that the top k rows give a grid graph G(k,n) with [-’%52]

dominators.
k=
0 : hd |
2 ® $ +
3 J —¢1— 4 —1
4 i n 4 n
—— o L 1 ¢ ¢
n=1 2 3 4
Fig. 3.4

Theorem 3.1 For G(k,n) with k,n > 8 :

|.(Ic +2)(n +2)
5

1(G(k,n)) < ] -4 (3)

Proof:

1. A(G(k,m)) < [EH2AR42))
As discussed earlier, we can cover all vertices in G(k, n) with star-center pattern

be extending the graph with a 1-wide strip on all 4 edges giving a rectangle of

(k+2)(n+ 2)J
5

size (k+2) x (n+2). Therefore, by Lemma 1, we need at most |

dominators to cover G(k,n).

k+2)(n+2
2. 2(G(k,m) < | EF D)),
In the star-center pattern, every 5th vertex on a given row or column is a
dominator. Choosing any point and an orientation forces the whole pattern.

Therefore, there are 5 possible placements of dominators at each corner of the

star-center pattern as shown in Fig. 3.4. Each of these can be re-dominated
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to save 1 dominator (Fig. 3.5). Hence, to cover G(k,n), we can eliminate 1

dominator each at the 4 corners of the extended graph G(k + 2,n + 2), i.e.

< k2 +2)

222~

7(G(k,n))

The upper bound of 4(G(k,n)) in (3) is consistent with Cockayne et al. upper

bound for square grid graphs [4] where
-;-(k2+4k—16) k=5a—2

:rl)-(k2+4k—17) k=5a—1
¥(G(k,n)) < %(k’ +4k—20) k=5a

-;;(k2+4k-20) k=>5a+1

%(k’+4k—17) k=5a+2
for k > 8.

Justification:

For G(k,n) where k = n, we have:

l(lc+2)(n+2)J__4= l(k-;gyJ 4

5
o For k = 5a — 2:
(k+2)? 5a — 2 + 2)?
B = S
= 5a°—4
= 5(-10—;:-?-)2—4

= %(k’ + 4k - 16)
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dy

-

L -~ h

Case 1: d; does not cover any vertices of G(k,n) = d; eliminated.

1 :l""?”' — 'J -
O 1@ L—Jr—q

?

- T —

Case 2: We need only 1 dominator to cover the vertices marked “x’ = one dominator can
be eliminated.

Case 3: We need 2 dominators to cover the vertices marked‘x* => one dominator can be
eliminated.

I t—4——
XX O

1 N T

Case 4: We need 1 dominator to cover the vertices marked‘x’=> one dominator can be
eliminated.

Case 5: We need 2 dominators to cover the vertices marked *x* = one dominator can be
eliminated.

Fig. 3.5: Re-arrangements of corner dominators of the star-center pattern
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e Fork = 5a - 1:

(k +2)? _
I. 5 J—4 -
o For k = 5a:
(k+2)
e Fork=5a+1:
(k +2)?
B2 =

]

29

|.(5(1 1+2)2J 4

—] -4

5a% + 2a — 4

L(5a + 1)2

a(5a+2) — 4
k+1

——(k+1+2)—4

g(k2 + 4k —17)

=L.(f'_“_i2_)f

= 5a’+4a—-4

| -4

= a(Sa+4)—4

k
= c(k+4)—4

%(k’ + 4k — 20)

I.(5a +1+42)?
5
(5a + 3)?

| -4

] -4

5a2 +2a+1—4

a(5a + 6) — 3

k—1

- (k- -
5 (k-1+6)

%(1:2 + 4k — 20)

3




e For k= 5a+2:

(k+2)? _
S -4 =

(5a + 2 +2)°
—
(5a +4)*
S

|—4

502 + 8a +3 -4
a(5a +8) -1
Zc-—;—2(Ic—2+8)--1

%w2+4k-1n

We denote by 7,(G(k,n)) the size of the smallest dominating set realized under

assumption 1.
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3.2 Knight’s move pattern

It is tempting to conjecture that v,(G(k,n)) = ¥(G(k,n)). This conjecture is

false however, as the following example (Fig. 3.6) shows:

(a) A1(G(8,15)) = 30 (star-center pattern)

(b) A(G(8,15)) = 29

Fig. 3.6: Star-center pattern does not generate minimum dominating set for
G(8,15).

It follows that a smaller dominating set may be obtained in spite of overlaps in the

interior of G. We are led to relax the overlap condition of assumption 1 as follows:

Assumption 2 (relazed overlap condition): There can be at most 1 overlap between
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any 2 interior dominators of a dominating set D.

Vv,w € D : v, w interior vertices = |N[v]N N[w}| <1

Note: This assumption cannot be extended beyond the interior. For example,

as indicated in Fig. 3.7, the unique minimal dominating set for G(3, 6), apart from

symmetry transformations, is:

Fig. 3.7: The unique minimal dominating set for G(3, 6)

We now introduce a convention to represent grid graphs in the Cartesian coordi
nate system. Any vertex v; € G(k,n) can be represented by its coordinates (z,y)
if we place G(k,n) in a x-y plane with respect to some origin O. In Fig. 1.8, the

Cartesian coordinates (5, 3) represent the marked vertex h.

i

L,

-, © L
] l..,l
UV~
i

T

Fig. 3.8: G(k,n) in the Cartesian x-y plane
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The entire graph is determined by the coordinates of all its vertices. For conve-
nience, we select a x-y plane such that
y-axis || columns of G(k,n)
~nd x-axis || rows of G(k,n)

We define the Cartesian distance d¢ = (d.,d,) between 2 vertices v; = (i, ¥;)
and v; = (z;,y;) of G(k,n) zs:
(dz,dy) = (zi — 25,9 — ;).
The Cartesian distance of marked vertices e and g in Fig. 3.8 is (—2,0).

Let 45(G) be the size of the smallest dominating set of G realized under assump-
tion 2. As the star-center does not always produce the optimal dominating set for

G(k,n) in general, we are led to the following conjecture:

Conjecture 3.1
72(G) = v(G).

We have so far found no counterexample to this conjecture. Unfortunately, it
seems difficult to prove. One approach we have tried is to consider all possible
patterns of dominators which violate the conjecture and show how to transform
them to patterns which satisfy the conjecture and cover the same area with either

o the same number of dominators, or

e a smaller dominating set.

The principle of transformation is to move regions with overlaps not satisfying
the conjecture out towards the edge until a Knight’s move pattern is obtained. Fig.
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3.9 shows that a fairly extensive system of transformation would be necessary to

account for all possibilities, and it is not clear how such a system would be built.

aN

Nl

a2 R
PRI \

Before transformation After transformation

(a) G(7,12)

A7
Y

5 i i*%f
pasin e
O K

Before transformation After transformation

=

(b) G(11,13)

Fig. 3.9: Transformations of minimal dominating sets of G(7,12) and G(11,13)
to satisfy the conjecture.
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3.2.1 Implications of assumption 2 (relaxed neighbourhood condition)

The following two theorems establish conditions on interior dominators in a dom-

inating set D realized under assumption 2.

Theorem 3.2 Interior dominators under assumption 2 cannot be at Cartesian dis-

tance (£2,+2),(0,%3), or (+3,0).
Proof:

Let D be a dominating set of G(k, n).
Let dy,d; € D be 2 interior dominators.

1. Suppose d; and d; are at Cartesian distance (+2,+2) as shown in
Fig. 3.10. Then vertex A is not covered by any dominators in D.
Under assumption 2, neither A nor any of its neighbours can be a
dominator. Thus D does not dominate all vertices of the interior

=> contradiction.

;_iizo

Fig. 3.10: Dominators d; and d, at distance dg = (+2,+2)

2. Suppose d; and d, are at distance (£3,0) as shown in Fig. 3.11.
Neither A nor B can be a dominator under assumption 2, hence A
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can be dominated only by S, and B only by T. For S and T both

to be dominators contradicts assumption 2 as well.

dl d2
A« «B
S* T

Fig. 3.11: Dominators dy and d, at distance d¢ = (+3,0)

The same argument applies for d; and d; at distance (0,£3). O

Theorem 3.8 Given any dominators d € G, under Assumption 2, there musi be
a dominator d’ at distance (i,2j) or (2i,5) from d, for each choice of (i, ), where

t=41,5 = £1.
Proof:

oD

dl w ol

Fig. 3.12: Vertex A in the NE quadrant

We prove the case i = j =1 (NE quadrant in Fig. 3.12).

Vertex A must be covered. Hence, either S (at distance (1,2) from d) or
T (at distance (2,1) from d) must be a dominator.

The same argument applies for vertex A in the NW, SE, and SW quad-
rants. O
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We say that dominator d' at distance (+1,+2) from a vertex d is a Knight’s move

dominator of d.

We observe that from any given point, there exist 8 possible Knight's moves, 2

in each of the 4 directions NE, NW, SW, SE as shown in Fig. 3.13.

NW NE
AN\
P\

AR
SW SE

Fig. 3.13: Knight’s moves in 4 directions NE, NW, SW, and SE.

Iterating theorem 3, we find that from any given interior vertex in a given direction

(NE, NW, SW, SE), there must be a sequence of dominators, each at Knight’s move

distance from the next (Fig. 3.14).

Any Knight's move dominator can be represented by the Cartesian distance

v = (d,,d,) from its immediate predecessor. Therefore, a Knight’s move domina-

tor sequence M = (P, V) is a sequence of Cartesian distances V = (vy,vs,:--) from
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origin P = (zo, yo).

A

1
¥

Fig. 3.14: A Knight’s move dominator sequence in NE direction.

We define a direction as S = (s,s') = (£1,£1). S = (s;,8]) designates a
quadrant adjacent to S; = (sg,$,) if and only if

1 83 8 95 = —1.

Then, the Knight’s move sequence M can be abbreviated by:

M =(P,A,S) where P = (zo,Y0),
S = (s,8') = (£1,%1), a direction
A = (al, ‘121‘13,"',“'), a; € [1’2]

vi = ((3-a),jai)
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For example, the Knight's move sequence M in Fig. 3.15 can be represented as

follows:
M = (P,A,S) where P = (zo,%0),
S = (s,8)=(1,1)
A = (2,2,1,2,1)
Fig. 3.15: Knight’s move sequence M = (P, A, S)
We call A the Knight’s descriptor sequence of M and ay, ay, -+, a, descriptor

elements of A. We observe that for any pair of consecutive dominators (Q;_;,Q;) on

M, a; = |y — yi—1|. So, a; represents the y-distance between Q;_; and Q;.

Two Knight’s move dominators in adjacent quadrants will force the third domi-

nator as stated in the following theorem:

Theorem 8.4 Under Assumption 2, a dominator P together with 2 Knight’s move
dominators Q, R in adjacent quadrants determines a dominator S = @Q+R-P
(vector arithmetic).
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Proof:

Consider the NE and SE quadrants of P without loss of generality. There

are J possible configurations of P,Q, and S, as indicated in Fig. 3.16.

Q

- I
¥ OS 3 P%‘g/}.(/

Spil o ] o R

R n
Fig. 3.16: Three configurations of dominators (P, Q, R)

Case (a): Q =P +(1,2),R=P+(2,-1)
To cover A, S = Q+(R—P)= P+(3,1) must be a dominator.
S results from the Knight’s move (2, —1) from Q or (1,2) from
R.
We observe that P,@, R, S forms an obliqgue square. Another
oblique square results from @ = P+(2,1), R = P+(1,-2),S =
P+ (3,-1).

Case (b): @ = P+ (2,1),R=P+(2,-1)
To cover A, S = Q@+ R— P = P +(4,0) must be a dominator.
We observe that P,Q, R, S forms a horizontal diamond.

Case (c): @ = P+ (1,2),R=P+(1,-2)
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If A is not a dominator, then T, U, and V must be dominators
to assure the dominance property of D. This fact violates
assumption 2. Therefore, A= Q+ R~ P = P + (2,0) must
be a dominator. Here P,Q, R, S forms a vertical diamond.

In each case, the implied dominator is at Knight’s distance from @ and

R. ]

We now have sufficient conditions to state a theorem which results in a new

construction of dominating sets for complete k& x n grid graphs.

Let M = (P,A,Sy) and N = (P,B, Sn) be 2 sequences of adjacent Knight’s
move dominators where

P = (-To, yo)

A = {ar,az2,:,an}

S = {s1,82}
B = {b,bg---,ba}
Sn = {s1,83}

and sy 82 s} s = -1

Let Q1,Q3, -+ ,Qm be consecutive dominators on M.
Let Ry, R;,:--, R, be consecutive dominators on N.

We have:
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Theorem 3.5 A dominator P together with 2 sequences of adjacent Knight's move
dominators M = (P, A, Sp) and N = (P, B, SNn) completely determine all domina-
tors within the area bounded by M, N, M',N' where M' = (Rny A, Srr) and N' =
(@m, B, SN).

Proof:

Fig. 3.17

Consider the three dominators P, Q,, and R, in Fig. 3.17. By theorem

3.4, we have:
Ly = 1+ R -P
Ly = Q:+In-Q,
Iy = Q:+1:,-Q:
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Lm = Qm+Ijpn-1) = Qm-1

which determines M; = (R, A, Su).

By repeating the same operation on every remaining dominator R;,i =
2,3,-.-,n of N, all Knight’s move sequences M;,i = 2,3,-:-,n are de-
termined.

It is easy to see that the dominators Q;, Iy, Iy, - -+, In; determine the
Knight's move sequence N; = (@, B,Sy). Therefore, by repeating ap-
plication of theorem 3.4 on Knight’s move dominators on M and N, we
force all dominators in the area bounded by M, N, M', N’ to cover the

entire area. a

3.2.2 Covering characteristics of Knight’s move pattern

The area forced by 2 sequences of adjacent Knight’s move dominators forms a
distorted rectangle where dominators are laid out in a distorted rectilinear pattern.
By theorem 3.5, this area is completely covered by the Knight’s move pattern forced
by these Knight's move sequences. To cover the infinite plane grid G(k,n) where
k = oo and n = oo (see Fig. 3.18), we can apply uniform translation of this area,

considered as a primitive cell.

We define the covering factor « of a dominating set D over a graph G the average
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number of vertices of G each dominator in D can dominate. We have:

V(G)|

number of dominators in D

Fig. 3.18: The infinite plane grid

The area of the primitive cell is constant, and so is the number of dominators.
Therefore, we can determine the covering factor of this pattern on the infinite plane

by determining the covering factor of the pattern on the primitive cell.

In this section, we will compute the covering factor of Knight’s move pattern on
the primitive cell.

Consider the primitive cell formed by 2 adjacent Knight’s move sequences M =
(P,A,Sy) and N = (P, B,Sy) as in Fig. 3.17. We have:

1. The total number of dominators in the primitive cell:

M has m dominators:
le QZa"' ’Qm
which is also the number of dominators on M; = (R;, A,5m),t =1,2,-:-,n.
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Let Ty be the total number of dominators in the primitive cell. We have:

n
T; = ) number of dominators on (R;, A, Sy)
'il
Yom

=1

]

= nm
2. The area of the primitive cell:
Fig. 3.19represents the oblique squares and the diamonds formed by 2 adjacent
Knight's moves originating from some origin P. Each pair (a;,b;) determines
¢ an oblique square if (a;,b;) =(1,2) or (2,1)
¢ a diamond if (ai, b;) = (1, 1) or (2, 2)
Each square has 4 interior points covered while each diamond has only 3 inte-

rior points covered resulting in 1 overlap.

Fig. 3.19: Knight’s move dominators in adjacent quadrants

Let ry =numberof q;=1,t1=1,2,---,min M
sy = number of q;=2,2 =1,2,--- ,min M
ry = numberof b;=1,2 =1,2,:--,nin N

sy =numberof §;,=2,¢ =1,2,---,nin V.
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We have: m =rps + sy and n =ry + sy.
Any a; = 1 determines ry diamonds and sy oblique squares in the pattern.
Any a; = 2 determines sy diamonds and ry oblique squares in the pattern.
Therefore, there are (ryra + sysy) diamonds and (rysy + rysas) oblique
squares which cover an area of:
A = 4(rusn +rusm) +3(rmrn + smsn) + Ty

= 4(rMsn +rnspm) +4(rmrn + smsn) = (P + sarsy) + mn

= 4(rm + sm)(rnv + sv) = (rmrn + smow) + (ru + sp) (T + sn)

= 5(ry + sm)(rn + sn) — (rmTN + Smsn)

3. The covering factor on the primitive cell:

Area
number of dominators

Covering factorc =

= ATy

5(rm + sm)(rnv + sn) — (rMrn + smsn)
(rm + sm)(rn + sN)
___(rmrn + smsw)
(rm +sm)(rn + 8N)

= 9

(4)

3.2.3 Knight’s move pattern vs Star-center pattern

As described in section 3.1, the pulling algorithm must be applied to cover the 4
edges of a grid graph G(k,n) with the star-center pattern. This algorithm results in

additional dominators on the edges to completely cover G.

In the covering of G with Knight’s move patterns, we need not apply this edge
covering algorithm. In fact, we have the flexibility to arrange Knight’s move domi-
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nators to efficiently cover G, without the necessily of adding extra edge dominators,

resulting in a perfect edge covering. However, while the star-center pattern gives
optimum covering of the interior of G(k,n) with no overlaps, the Knight’s move
pattern may have overlaps in the interior due to the constraints necessary to obtain
a perfect edge covering. Therefore, such a construction does not necessarily lead to
an optimal dominating set. In the following sections, we wiil study conditions under
which Knight’s move patterns may give smaller dominating sets than star-center

patterns.
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3.3 Covering infinite grids with Knight’s move pattern

In an infinite grid G, we have |N[v;]| = 5 for all v; € V(G). In the equation (4) of
section 3.2, (rpry + Sprsy) represents the number of overlaps in the primitive cell.

Covering is perfect if there is no overlap i.e.
rMry +38msy = 0
=0 = 5

which means that there must be no diamond in the pattern.

We have the following theorem [2]:

Theorem 3.6 On an infinite grid, there is a perfect covering if and only if it is

covered with star-center patterns.
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3.4 Covering strip graphs with Knight’s move pattern

A strip graph G(k,00) is a strip of height k and infinite width (Fig. 3.20).

k<

Fig. 3.20: The infinite strip graph G(7, o0)

As mentioned in section 3.2, Knight’s move patterns may provide a better cov-
ering of G(k,n) than star-center patterns for certain widths k. A better covering of
G(k,n) implies an upper bound for 4(G) better than the upper bound introduced by
Cockayne et al. [4] using the star-center pattern. In this section, we will prove that
Knight’s move covering is asymptotically superior to star-center covering for certain
widths. Therefore, the study of best covering in strip graphs helps in establishing

improved upper bounds for 7(G).

3.4.1 Definitions

A column of G(k,00) is the set of vertices v; € G(k,00) having the same y-
coordinate. We assume the columns of G(k,00) are numbered from some starting
column.
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A rectangle G(k, 00)[i, j] is the finite strip obtained by cutting G(k,o0) from col-

umn ¢ to j, ¢ < j (Fig. 3.21).

k< G(k,00)[j +1,m]

b e b ] e o ] — e o]
Q
—~~
>
8
S’
=
=

-4 = =4 — 41

] o e - ——L-—- poe o] e wndp o

) o F
column ¢ column j column m

Fig. 3.21: Columns and rectangles in G(k, 00)

3.4.2 Periodicity of patterns in strip graphs

We have the following theorem on optimal covering of strip graphs.

Theorem 3.7 In strip graphs G(k,o0) of fized k, optimum covering can be achieved

using a periodic pattern.
Proof:

There are 2F possible configurations of dominators on every column of
G(k,o0), since any vertex may or may not be a dominator. Suppose there
exists an optimumn. covering of G(k,o0) with a non-periodic pattern.
However, by the pigeonhole principle, given any column Cj, there exists
a smallest p > 0 so that Ciy, = C;, and Ciyp4 = Ci4y (there are only
22k possibilities for C; and Ciy,).
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We must have:

5(G(k,00)) = o(G(k, 0)isi + p])
because otherwise we can remove the rectangle G(k, o0)[Z,% + p] and get
a better covering factor. Therefore, repeating the rectangle over G(k, oo)

must give the optimum covering factor. a

We call p the period of G(k,00). Fig. 3.22 illustrates a periodic pattern on

G(7,00) where p = 6.

e e e
Kb( AR A ps SN
PSS

Fig. 3.22: A periodic pattern on G(7, o0)

3.4.3 Covering factor in strip graphs

To efficiently covering all edge vertices without adding extra dominators to the

pattern, we assume the following:

Assumption 3 No eztra dominators need be inserted to cover the edges.

This assumption is plausible though we shall see that it is not optimal for widths
k> 8.
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Implications:

1. The pattern must meet all edges on half diamond boundaries. Consider Fig.

3.23.

° . QS . . . . . .
. . ;’,a\\: . . . . .
NG

. . ? . .

@ dominators on first Knight's move sequence
O forced by assumption 3
© forced by theorem 3.4

Fig. 3.23: Edge covering under a.slsumption 3

e Case (a): @ = P+ (2,-1) or a =1 in the SE quadrant.
To cover R, assumption 3 forces a Knight’s move from Q. 'We have
R =Q+(2,1) or b= 1in the NE quadrant. By theorem4, S = P+ R—-Q
must be a dominator. We observe that P,Q, R forms a horizontal half-
diamond.

e Case (b): Q@ = P+ (1,-2) or a = 2 in the SE quadrant.
To cover R, assumption 3 forces a Knight’s move from Q. We have
R = Q+(1,2) or b = 2 in the NE quadrant. By theorem 4,5 = P+ R—-(Q
must be a dominator. We observe that P,Q, R forms a vertical half-

diamond.
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The same principle must be applied along the edge to form a half-diamond

boundary without adding extra dominators to the edge.

2. Consider 2 adjacent Knight’s move sequences M = (P,A,Sy) and N =
(P,B,Sn) as defined in section 3.2.2. P = (zo,yo) is a vertex on the up-

per edge of G(k,00). In one period of the descriptor sequence, we must have

T™ = TN,SM = SN.

Proof:

Let Sp = (1,-1) and Sy = (1,1) without loss of generality.

Let A= (ay,a3, -,am).

Let B = (by,by,---,b,).

Consider the primitive cell determined by M and N (Fig. 3.24). We

will prove that M completely determines N under assumption 3.

(a) Assumption 3 forces the edge dominator I;;. By theorem 3.4,
Ry, = P+ I); — @, is determined to form a diamond where
b = a;.

(b) By theorem 3.4, I; = I,; + Q; — @, is determined. Assumption
3 forces Iy; = b; = a,.

By repeating the same operation on all @Q; on M,i = 1,2,---,m,

all dominators Ry, R;,:-+, R,, on N are determined, forced by as-

sumption 3 and theorem 3.4. We have (a;, b;) € {(1,1),(2,2)} for

all ¢ = 1,2,---,m. Therefore, the 2 descriptor sequences A of M

and B of N are identical, i.e., r;y = rn,Sp = sy. The number of
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dominators in the primitive cell is m(m + 1). o

@ dominators on first Knight's move sequence
O forced by assumption 3
@ forced by theorem 3.4

Fig. 3.24

As discussed in section 3.2, we can cover the entire infinite grid using the prim-
itive cell determined by M and N. This covering, restricted to the strip G(k,o0),

determines a periodic pattern on the strip as stated in the following theorem:

Theorem 3.8 A sequence of Knight’s move dominators M = (P, A,Sy) along the
strip graph G(k,00), starting from some vertex P on the upper edge and ending on
the lower edge of G(k,o0) with A = (a1, az,***,am), determines a periodic Knight’s

move pattern, having a period of p=2(3m -k + 1).

Proof:
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We have:
A = (aha21""am)

wherea; =1or 2,1 =1,2,---,m, and

m
Ea; =k -1
i=1
e For a; = 1, the next edge dominator is at distance 4 (horizontal
diamond).
e For a; = 2, the next edge dominator is at distance 2 (vertical dia-
mond).
Let r and s be the number of 1’s and 2’s in A, respectively. We have:

m

Yo = r+2s=m+s=k+1
i=1
=8 = k-1-m
r = m—s=m-—(k—-1-m)=2m —k+1
On the boundary, there are r horizontal half diamonds with length 4 and
s vertical half diamonds with length 2 (see Fig. 3.25), i.e.,
period p=4s+2s =4(2m—-k+1)+2(k—1-m) =23m —k+1) (5)

Since the period of the pattern along the length of the strip is p, we

can consider as primitive cell any cell having this period, say the k x p

rectangle whose upper left corner is at P. o

Now, we can compute the covering factor in a primitive cell of G(k,0):
pk
O
2k(3m —k+1)
m(m + 1)
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@ dominators on first Knight's move sequence
O forced by assumption 3
© forced by theorem 3.4

Fig. 3.25: A periodic pattern on G(k, o).

This is also the covering factor on the strip graph G(k, o).

We observe that o(G(k,00)) is a function of variable m:

o(G(k,0)) = fm) = ZEER=EE

To maximize the covering factor on the strip graph, we want to find the value
of m for which o(G(k,o0)) is maximum. Let f'(m) be the derivative of f(m) =
o(G(k,00)). For f(m) to be maximum, we must have:

fiim) = 0

o (Bmkal) <o

2k[(m(m + 1)} [-3m? + 2m(k - 1)+ (k-1)] = 0

=>m

1
k= 1£(k=1)(k +2))
So, we obtain the best Knight’s move covering of strip graphs G(k,o00) under

assumption 3 with Knight’s move sequences M = (P, A, Sp) where the descriptor
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sequence M has |m| or [m] descriptor clements, ard

m = %(k—l+\/(k—1)(k+2)) (7)

Fig. 3.26 represents the actual best covering factors compare with star-center

patterns for strip graphs G(k,00) of widths k ranging from 7 to 12.

Covering factor o
k | Best values found | Star-center values
7 4.200 4.083
8 4.267 4.000
9 4.304 4.050
10 4.333 4.167
11 4.342 4.172
12 4.340 4.114

Fig 3.26: Table of best values of o compare with star-center values for G((k, )
k=17 tol2.

Though assumption 3 is plausible, it is not optimal for widths & > 8, as the
following example shows (Fig. 3.27 and Fig. 3.28). The point of introducing it is
to show that Knight’s move pattern can give asymptotically better dominating sets

NN GRS
ESm s
S

>1< N \r/’}T

Fig. 3.27: G(9, 00) with o = 4.286 (under assumption 3)

1
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Fig. 3.28: G(9, 00) with o = 4.304 (assumption 3 not applied)

B

3.4.4 Limit on possible superiority of Knight’s move pattern

As discussed in the above sections, Knight’s move patterns may cover certain grid
graphs better than star-center patterns. However, on the infinite plane grid, star-
center patterns provide best covering with a covering factor of 5 (section 3.3). We
are interested in defining a limit size of G(k, n) up to which Knight’s move patterns

may be superior to star-center patterns.

Let vk be the minimum size of a dominating set of G(k,n) realized under as-

sumptions 2 and 3.

Let vs = minimum size of a dominating set of G(k,n) realized under assumption

Theorem 3.9 For k,n > 8, we have
(k—13)(n—13) > 45 = vk 2 7s.
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Proof:

Under assumption 3, we have
rM=TN=rsSy=8v=3_$ (8)

by implication 2 (of assumption 3) in section 3.4.3. Recall that
(rmMTN + smsw)
c=95— 9
(rm + sm)(rn + sn) ®)
Substituting (8) in (9), we obtain:

r? + 52
P AL
O &S 5 (r n 8)2
‘This is maximized when r = s, so
1 9
el
OK &S 5 2 2

Consider the basic cell G(4,4) where covering is optimum with r = s =1

(Fig. 3.29).

N

]|

Fig. 3.29: Basic cell G(4,4).

A perfect rectangle is a graph G(k, n) of which the dominating set satisfies
assumption 3. The dominating set is not necessarily optimal. From the
basic cell in Fig. 3.29, we can produce a perfect rectangle for any G(k, n)
with k =3a+1 and n = 3b+ 1 as illustrated in Fig. 3.30.

We observe that there are (2ab + a + b) dominators in each dominating

set formed from the basic cell for G(k,n) with k = 3a+1 and n = 3b+1.
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{ (b) 2 basic cells in G(4, 7) ; :
(a) 2 basic cells in G(7, 4) (c) 4 basic cells in G(7,7)
Fig. 3.30

For general G(k,n), extra dominators may need be inserted to completely

cover the graph. We have:

vk > 2b+a+b= %(4ab+2a +2b) = %[(2a+ 12b+1)—1) (10)
Substitutinga:k—;land b=";1 in (10):
1 k-1 n—1 ]
> = — -
% 2 2[(2 T+ DR+ 1) -1

Under assumption 1,
k+2)(n +2
s S ( X ) -

12
)y (12)
For vk > 4s, we must have:

1] (2k+1)@2n+1) s (k+2)(n+2)

2 9 - - 5

5[(2k +1)(2n+1) = 9] > 18[(k +2)(n +2) — 20]
5(2k +1)(2n +1) - 18(k +2)(n +2) > 45— 360 = —315

2kn — 26k —26n > —315+69 = —248
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kn—-13k--13n > -124
kn —13k—13n 4169 > —-124 4169 =45

= (k—13)(n —13) > 45

Now we can prove that Knight’s move patterns are asymptotically superior to

star-center patterns for G(k,n) for certain widths k.

Corollary 3.1 For any strip graph G(k,n), k > 13:

ng Vn < no : vk (G(k,n)) < vs(G(k,n)).

Proof:

From theorem 3.9, we conclude that for any G(k,n) where
(k—13)(n—13) < 45 (13)

there exists a Knight’s move dominating set for which v < s.

For k < 13, (13) is always satisfied with any value of n.

For k > 13, let a = k — 13 > 0. We have

(12) = (n—13) < i?
45 45
n < —a-+13—k_13+13-no

So, for k > 13, there always exist some no for which Knight’s move

patterns with n < ny may cover G(k, ) better than star-center patterns.

0
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Fig. 3.31 represents the table of values of ng for G(k,n), k > 13.

k noy
<13 any
14 58
15 36
16 28
17 25
18 22
19 20

Fig. 3.31: Table of values of ng for G(k,n) , k > 13.
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3.5 Covering finite k x n grid graphs with Knight’s move pattern

As discussed in section 3.2, 2 adjacent Knight's move sequences M = (P, A, Sy)
and N = (P, B,Sn) completely determine all Knight’s move dominators within a
distorted rectangle, two sides of which are M and N. To cover the rectangle G(k,n),
we consider concatenating 4 partial distorted rectangles, each of which is generated

by 2 adjacent Kuight’s move sequences (see Fig. 3.32).

B l ] 3’7’/ r]\r .
’1'/ lé/cr// A
A y
BTN I 7805
Pt 7 / v / / vi /\)L
Il/,// ] 1 N 1/ )

"/ / //t 2 N y / Z7"7;,
‘4\[//\ E // ]’J’
Y d R/ A
WY/ ///// // TN
4/ 1

VAT VA
ALY
J‘é'/ 7

Fig. 3.32: G(k,n) is formed from 4 partial distorted rectangles in 4 quadrants.

To determine the dominating set of G(k,n) using the Knight's move pattern, we
must generate 4 adjacent Knight's move sequences M;, Mz, M3, and My, 1 in each

quadrant NE, SE, NW, and SW.

To generate all Knight's move patterns over G(k,n), from some interior vertex
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Py of G(k,n), we consider all possible Knight's move sequences in the 4 quadrants:

o NW quadrant: M, = (P, 4,,51),51 = (—1,1).
¢ NE quadrant: M2 = (Po, Az,Sg),Sg = (l, 1).
e SE quadrant: M3 = (P, 43, 53), S5 = (1, -1).

e NW quadrant: M = (P, Aq, Sq), 54 = (—1,-1).

Any interior vertex of G(k,n) is a potential candidate for F,. However, we need

consider only the set of 5 centers:
Py € So = (20, Y0), (o £ 1, ¥0), (Zo,yo £ 1)
where (2o, yo) is the center vertex of G(k,n). Clearly, any dominating set must con-

tain a point in Sp if (%o, yo) is to be covered (see Fig. 3.33).

O

. N
7}—%—9

N

Fig. 3.33: Set S, of 5 centers of G(k,n).

Therefore, we need consider only patterns originating from each of the 5 centers

in So.

First, we will determine how such a pattern must be extended in order to cover
the whole rectangle, by determining how far each Knight’s move sequence in a given
quadrant must extend to cover the corner of G(k,n) which lies in that quadraut.
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3.5.1 Definitions

Consider the finite grid graph G(k,n) in Fig 3.34.

(-1,1) corner

(1,1) corner

(r\ {
Fol 1
o »
(~1,-1) corner
Fig. 3.34

(1,~1) corner

Let v. = (zc,y.) be a corner of G(k,n) such that the points of G(k,n) adjacent

to FPo are (zc — sz,¥.) and (z.,y. — s,), where s;,s, = £1. Recall that S = (82, 8y)

is the direction vector of a Knight’s move sequence M = (P, A,S). We call v, the

(8r,8y) corner. For example, the upper right corner is the (1,1) corner.
v g

Given the corner vertex v., we define the Knight’s boundary rays C and D as

follows:

Let ray C originate from v, and pass through the point v.(C) = (z.— s, yc+2s,).

Let ray D from P, pass through v (D) = (z. + 25;,y. — 8y).

Note that each of v(C) and v (D) is a Knight’s move distant from v,.

There are 8 Knight's boundary rays for G(k,n), 2 rays in each corner as indicated

in Fig. 3.35.
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Cz/ \C 1 Knight's boundary rays
et |

D2 D 1
Po

Dy D,

04 Ca

Fig. 3.35: 8 Knight’s boundary rays of G/(k,n), 2 in each corner.

3.5.2 Theorem on Knight’s move sequences

We can now establish conditions under which a Knight’s move sequence M =

(Ps,A,S) must terminate to ensure covering of the corner vertex.

Theorem 3.10 To cover the (s;,3,) corner in some quadrant of G(k,n), the Kni-
ght’s move sequence in that quadrant must terminate on or beyond the corresponding

Knight’s boundary rays ortginating from that corner.
g

Proof:

Let (s;,s,) be the direction vector for the Knight’s move sequence M.
Let v, be the (sz, s,) corner of G(k,n).
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Let C, D be the boundary rays as defined above.
Let N = (Fp, B, Sn) be the Knight’s move sequence adjacent to M such

that v, lies between M and N (Fig. 3.36).

Po

\\
*
\
\ NV
\
\

)
(a) M terminates on the Knight’s boundary ray

(b) M terminates beyond the Knight’s boundary ray

Fig. 3.36
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1. M terminates on a Knight’s boundary ray, say on C, without loss of
generality: there is a Knight's move dominator I; at the intersection
of M and C. Since any dominator on M is a Knight's move distant
from the previous dominator and C originates from v, v, is a certain
number of Knight’s move distant from I;. Therefore, it must be at
worst on the boundary of the area covered by M and N (see Fig.
3.36a).

2. M terminates beyond a Knight’s boundary ray, say on C, without
loss of generality: there is a Knight’s move dominator I; beyond the
intersection of M and C. The area determined by M and N includes
ve.. Therefore, v, is covered by some Knight’s move dominator in

this area (see Fig. 3.36b). O

Theorem 3.10 gives immediately:

Corollary 3.2 The Knight’s move dominators within G(k,n) are completely deter-
mined by any set of § Knight’s move sequencis, 1 in each direction, originating from
some center P, interior to G, each of which terminates on or beyond the correspond-

ing Knight’s boundary rays of G(k,n).

Proof:

The four Knight’s move sequences M,, M;, M;, and M, divide G(k,n)

into 4 areas, numbered from 1 to 4 as in Fig. 3.37.
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Fig. 3.37

Consider M; and M,. The distorted rectangle formed by M; and M,
includes all vertices of G(k,n) in area 1. By theorem 3.5, these vertices
must be covered by Knight’s move dominators generated from M; and
M,.

Applying the same argument for the remaining 3 areas, we have a com-

plete covering of G(k,n) by M;, My, M;, and M. o
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3.5.3 Covering G(k,n) by covering its 2 subgraphs

Consider 2 adjacent Knight’s move sequences M and N in Fig. 3.38. The line
(M, Py, N) which divides G(k,n) into 2 subgraphs G, and G, is called the Knight's

dividing line D of G(k,n).

{K

\w

Fig. 3.38: The Knight's dividing line D(M, Py, N) of G(k,n)

As the dividing line cuts the rectangle into 2 halves, we may save considerable
computing time by solving the domination problem on each half independently and
combining the solution. However, as the dividing line may or may not terminate
on the edges, we must examine conditions under which there are dominators which

dominate vertices on both sides of the dividing line.

1. The dividing line terminates on the edge: we can generate the dominating set
for each subgraph of G(k,n) separately (see Fig. 3.39). The total number of
dominators of G(k,n) will be the sum of the number of dominators on D, G|,
and G,.
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2. The dividing line terminates beyond the edge: Fig. 3.40 represents three pos-
sible configurations of dominators on the dividing line and dominators on 2
subgraphs G, and G; of G(k,n). S denotes the edge vertex that can be cov-

ered by dominators on both subgraphs.

5
A

subgraph G, \

JJX Q

Fig. 3.39: D terminates on the edge: G and G, are independent

. ’R
. .’ﬁ . . . . . oIIO . ° .
Tl ... oL
N\ L.--"\§ EVANIARS
U20\X o—O— - —%— \X oW —Fro \ K ol
-7 . . . L] . . '\ L] . " O\' . \b .
() R=T+(2,1) (b) L =T +(~-2,—1) (c) R=T+(1,2),

L=T+(-1,-2)

Fig. 3.40: D terminates beyond the edge

After generating the dominating sets for G, and G, we may need to insert an
extra dominator to cover S. We call this number the connection constant of D and

denote it e. In Fig. 3.39, e = 0. In Fig. 3.40, we have:

o Case a: R =T +(2,1) : S cannot be covered by any dominator in G;. To
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cover S, either S or Uz in G2 must be a dominator.

o Case b: L =T +(-2,-1) : S cannot be covered by any dominator in G,. To
cover S, either S or U; in G; must be a dominator.

e Case c: L =T+ (-1,-2) and R=T +(1,2) : We call U, and U, the open
points on the edge. In this case, the placement of edge dominators on the

two subgraphs is important. If n is the number of consecutive open points on

n

2

the edge, including S, at distance 2 from each other, then we need [=] edge

dominators (see Fig. 3.41).

. (o] e O X!S- O o Q__ « O . O\IS- O (o] .
\

Fig. 3.41
To overcome the difficulty of separating G, and G, in case (c), we generate the
dominating sets for each subgraph under the assumption that S is covered.

Let n; and n,; be the number of consecutive open points on the edge of Gy and

G2, respectively.

Fig. 3.42: Final placement of edge dominators.
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If the final placement of edge dominators is as shown in Fig. 3.42, and:

1. If every best dominating set for G, has n; odd and every best dominating
set for G has n; even, then 1 extra dominator must be adjoined to the best
dominating sets for G; and G; in order to cover S. We have e = 1.

2. In other cases, e = 0.

This reasoning must be applied on both ends of the dividing line (upper and lower

edges), giving connection constants ey and e;. We are led to the following theorem:

Theorem 3.11 Let o be the number of dominators on a given Knight’s dividing
line of G(k,n). Let v, and ~y, be the size of the smallest dominating sets of the
Knight’s subgraphs Gy and G2 of G(k, n), respectively. Then
Y=ntntrtevte (14)
is the size of the smallest dominating set of G(k,n) for the given Knight’s dividing

line.
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Chapter 4

ALGORITHMS TO CONSTRUCT A MINIMUM
DOMINATING SET IN A K x N GRID GRAPH

In the previous chapter, we have introduced a new construction of the dominating
set of £ X n grid graphs using Knight's move patterns. We have also discussed the
periodicity of the Knight’s move pattern on strip graphs G(k, oo). In this chapter, we
present two algorithms to generate dominating sets for strip graphs using Knight's
move patterns. Algorithm 1 is a linear algorithm generating the optimal periodic
Knight’s move pattern which will produce the maximum covering factor on strip
graphs G(k, 00) of given width k under assumptions 2 and 3. Algorithm 2 generates
all Knight’s move patterns which might lead to an optimal dominating set of G(k,n)

under assumption 2.

4.1 Algorithm 1

This algorithm is based on assumptions 2 and 3 on periodic Knight’s move pat-
terns on G(k,00) strip graphs. For a given height k, we construct the set of all SE
Knight’s move sequences M starting from some crigin P, on the upper border of the
strip and terminating at the lower border:

M = (P, A, S) where F,= (0,0)

A= (a,az,+--,am),a; €[1,2] fori=1,2,.--,m




S = (L"l)

By theorem 3.8, for each sequence M, we have:

Ea; = k- 1
i=1
period p = 2(3m —k+1) recall from (5)
There are K = m(m + 1) Knight’s move dominators in a period determined by

M.

We select coordinates with origin O = P = (0,0) as shown in Fig. 4.1.

BN 1

Fig. 4.1: A period of G(6, 00) determined by A = (2,1,2).

To generate all sequences M for a given k, we must generate all descriptor se-
quences A = (a;,qz, -+, a,,) for which 37, @; = k — 1. Therefore, we first find all
ordered partitions of (k — 1) employing only a; € {1,2}. We denote by P,_; the

sumber of descriptor sequences A for G(k, oo).

For every Knight’s move sequence, we construct the periodic pattern P for G(k, co)
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as follows:

1. From Py = (0,0), we can recursively determine all Knight's move dominators

on the Knight's move sequence:

2. By assumption 3, we generate the next Knight’s move dominators from current

edge dominators to form half-diamond boundaries.

P; = Py + (3 — aj,a;), Vj€ [l.m)].

P, (o]

Q2 (4) Qs (5)

Fig. 4.2: 5 steps to form the periodic Knight’s move pattern for G(6,00) with

A=(21,2):

(1) the first Knight's move sequence

(2) 2 balf diamonds (by assumption 3) = Q,,Q;

(3)  new Knight’s move dominators generated from Q,,Q; (theorem 34)
(4) 2 half diamonds (by assumption 3) = Q,, @,

(5) new Knight’s move dominators generated from Q3, Q4 (theorem 3.4)

76



3. From the new edge dominators, we apply theorem 3.4 to obtain new Knight’s
move dominators, forming new Knight’s move sequences translated from the
original sequences. Again, by assun ption 3, half diamonds will terminate these
sequences on the edges.

Fig. 4.2 illustrates the process of generating the Knight’s move pattern in a

period of G(6,00) with A = (2,1,2).

By theorem 3.8, a period of the pattern in Fig. 4.2 has length
p=23m—-—k+1)=2(33~-6+1)=8.
Once the Knight’s move pattern for a period has been constructed, we can cover
any G(k,o00) by repeating the same pattern on every block of p columns of G (see
fig 4.3). We denote SG,4 the strip graph covered by the periodic pattern determined

by the descriptor sequence A.

012 3 45 67 012 3% 4 5 67 012 3% 4

N ) 7\7( /\/\74

| = =
- X\vx// \/7@( SIENVAR

Fig. 4.3: Covering C(6, 00)using the periodic Knight’s move pattern generated
by A=(2,1,2). Wehave p =8.

We now introduce a cutting algorithm to obtain the smallest dominating set for
G(k,n), given a periodic pattern P on G(k, 00).

17



Let the graph G(k,n) = G{I,J}, where n = J — I + 1, be the graph composed
of columns I to J inclusive of the strip graph SG4 determined by the descriptor

sequence A, with period p.

Let : = I'mod p,j =J mod p,b = [%J Graph G(k,n) is the concatenation of

G[i,p — 1)}, b blocks of pattern P, and G[0, j] (see Fig. 4.4).

cols: 5 6 7 8 9 01 2 3 4 5 67 89 01 2 3% 45

=

— Q]
[=2] [=2

S, P P S
8 8]

__:6‘. —] - '..E;

= =
l i |

Fig. 4.4: G(6,21) = G(6, 00)[5,25] = G(6,00)[5,7] || 2 x P || G(6,00)[0, 1}.

We say that the pattern P is lefi-cut on the i** column and right-cut on the j**
column to form G(k,n). Some vertices on column ¢ are covered only by dominators
on the previous column of P; therefore, we must pull dominators on column (i — 1)
mod p in onto it to have the left edge of G(k,n) covered. Similarly, we must pull
dominators of P on column (j + 1) mod p in onto the right edge of G(k,n). To
obtain the smallest dominating set for G(k,n) of a given pattern P, we want to
minimize the number of dominators in G[i,p — 1] and G[0, ], i.e., to minimize the

total number of interior dominators and the number of extra dominators added to
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the vertical edges, i.e., to minimize the number of dominators in the rectangle
G(k’t) = G[’a]] = G[i,p - 1] ” G[O,]]

witht =147 - 1.

Let d. be the number of dominators on column ¢ of P.

Let [, be the number of dominators pulled in onto column ¢ from column (z —
1) mod p of P (left-cut).

Let r. be the number of dominators pulled in onto column j from column (5 +

1) mod p of P (right-cut).
We have:

V(G(k,1)) = Zp:dc + ijdc + i+ (15)

For a given length n, I determines J. Since: = I mod p, j = J mod p, I = i.p+j].
Therefore, we conclude that ¢ determines I, J, and j. We may select each column ¢
€ [0..(p~1)] of P in turn as the starting column of the rectangle Gz, j] and compute
v(G(k,t)) for this cutting using (15). Any choice of column i € [0..(p — 1)] which
produces the smallest v(G(k,t)) is considered as the best cutting for given G(k,t)

and P.

Then

1(G(kyn)) = ¥(G(k,1))+bK

where ¢t = nmodp
n
b = |-
2]
K = number of dominators in a period
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= m(m+1), m = length of the descriptor sequence A

The algorithm to compute d;, I;, r;, 1 = 0,1,- - -, p—1 and the cutting algorithm to
obtain the best cutting for G(k,t),t=1,2,---,p—1 are given in Appendix A. Both
algorithms are of order O(nP;_,). Therefore, once all the partitions are determined,
the computation proceeds very quickly. Refer to Appendix C for best domination
numbers of G(k,n), k from 7 to 16, obtained from this algorithm. We observe that
these results are equal to the optimal v(G(k,n)) for width & < 10. This leads us
to conclude that a minimum dominating set does not necessarily have half-diamond

boundaries as stated in assumption 3 (see Fig. 4.5).

Theorem 4.1 Assumption 8 does not necessarily lead to the best dominating num-

ber.

)\ * >L(7N77T

b Tasie It

SamiEas
L

AN

Fig. 4.5: Minimum dominating set for G(11,20) (assumption 3 not applied).
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4.2 Algorithm 2

In this section, we present a general algorithm to compute ¥(G(k,n)) for finite
strip graphs G(k,n). This algorithm recursively generates all Knight’s move patterns
which might lead to minimum covering of G(k,n) by generating all possible Knight'’s
move sequences, one in each of the 4 quadrants NE, SE, NW, and SW of the rectangle
G(k,n). We use the domination number obtained from star-center patterns as the

initial upper bound of 4(G(k,n)). The recursive solution procedure is as follows:

1. Select an interior vertex F, as starting point: To assure that we consider all
possible Knight’s move patterns for G(k,n), every vertex interior to G(k,n) is
a potential candidate for Py. However, as discussed in section 3.5, we need to
consider only the set of 5 starting points:

Po € So = {(z0,¥0), (o £ 1,%0), (€0, ¥0 1)}
where = = }_g—j and yo = [g—]

2. For each starting point P, € Sy, recursively generate all possible Knight’s di-
viding lines of G(k,n) in NW and SE quadrants. Each dividing line divides
G(k,n) into 2 Knight's subgraphs G, and G,.

3. Let v, be the best domination number obtained for G(k,n) so far (initially,
“Yu = 7,). For each Knight's dividing line, we proceed as follows:

o Step 1: Count the number of dominators 4, on the dividing line.
o Step 2: To cover subgraph G, recursively generate all possible Knight’s

move sequences M, originating from Fp in the NE direction. From a
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Knight’s move dominator on AM,;, we can extend M,; by generating the
next Knight's move in this direction (see Fig. 4.6). Each new Knight's
move on M, results in new dominators for G(k,n).

Let v, be the number of dominators generated so far to cover G).

A branch-and-bound technique is used to backtrack from Knight's moves
on M, which lead to v(G) > v,. Therefore, we stop trying to extend M,
if 0 + 71 > Yu. Otherwise, M, will terminate on or beyond the Knight's
boundary rays in the NE quadrant.

We select the sequence M, for which 4; is minimum and 7% + 11 < 4.

NE Knight’s boiindary rays

— I M;-;r’——

subgraph

Gy
_ subgraph G,
|

Fig. 4.6: Covering subgraph G, of G(k,n).

e Step 3: To cover subgraph G, apply step 2 to obtain all possible Knight's
move sequences M, originating from Py in the SW direction (see Fig. 4.7).
Let 42 be the number of dominators generated so far to cover G3.

Branch-and-bound technique is used to backtrack from Knight's moves
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on M, which lead to v(G) > «,. At this stage, v is known. Therefore,
we can use 7; to enforce the upper bound i.e to stop trying to extend
M, if 90 + 72 > 44 — 1. Otherwise, M, will terminate on or beyond the
Knight’s boundary rays in the SW quadrant.

We select the sequence M, for which 7, is minimum and 7o +73 < 7, — 7.

<< ! |
\L\ subI raph J;l -
bgraph -
Gy \Q’ b

,(" N

E

SW Knight’s
boundary rays

Fig. 4.7: Covering subgraph G, of G(k, n).

4. 7(G(k,n)) is the minimum yx (G(k, n)) for all Knight's dividing lines of G{k, n).

The algorithm to generate the smallest dominating set for G(k,n) given a starting
point I is described in Appendix B. Appendix C gives results obtained from this
general program for finite grid graphs of widths up to 20. These results agree with
7(G(k,n)) as produced by Hare’s dynamic programming method [11]. This fact
strongly justifies the conjecture on optimum covering factor with Knight’s move

patterns (assumption 2) introduced in chapter 3.
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The construction of all possible Knight’s move patterns for a given G(k,n) by
backtracking is exhaustive. The time required to compute v(Gk,n)) grows expo-
nentially as we increase k and n. By applying the branch-and-bound technique to
stop the recursive procedure to extend the Knight’s move sequences as the next
move from the current move does not lead to any solution better than the optimal
solution found so far, we eliminate a considerable number of Knight's move sequence
in a given quadrant. In addition, computing time is significantly reduced by theorem
3.11 which allows the decomposition of this problem into 2 independent subproblems

to cover 2 independent Knight’s subgraphs of G(k,n).
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Chapter 5

CONCLUDING REMARKS

The problem of determining the domination number of k x n grid graphs is a
complex problem. In this paper, we have presented a new algorithm to construct a

minimum dominating set for G(k, n) using Knight’s move patterns.

So far, there are 3 known algorithms aiming to build the smallest dominating set

for G(k,n). They are:

1. Algorithm to cover G(k,n) with star-center patterns introduced by Cockayne
et al. [4] based on the assumption that ther is no overlap in the interior of
G(k,n).

2. Algorithm to cover G(k,n) with Knight’s move patterns introduced in this
paper based on the relaxed overlap condition.

3. A general algorithm to cover G(k,n) introduced by Hare et al. [11] using the

dynamic programming method.

Results obtained show that the star-center patterns do not produce the optimal
¥(G(k,n)) for G(k,n) with finite k and n, while the Knight’s move patterns cover
very well G(k,n) satisfying the condition (k — 13)(n — 13) < 45. We are able to
generate dominating sets for such G(k,n) with a number of dominators equal to the

domination number for G(k,n) considered to be optimal so far produced by Hare’s



general algorithm.

However, we have yet to prove our results are optimal. We may only hope that the
conjecture is valid or attempt to prove it. Therefore, as the problem of determining
7(G) for general grid graphs G is NP-complete, it remains an open problem, as well
as the complexity of the domination problem for complete & x n grid graphs. A
large number of problems is open for study in this area, among which we find the

followings to be particularly worthwhile:

1. Optimal domination in 3-dimensional grids.
2. Optimal domination in cylinder graphs: a cylinder graph is a complete grid
graph G(k,n) where vertices on 2 vertical edges are neighbours to each other

(product of a cycle and a path).

Fig. 5.1: A cylinder graph

3. Optimal domination in torus graphs: a torus graph is a complete grid graph
G(k,n) where vertices on parallel edges are neighbours to each other (product

of 2 cycles) (see Fig. 5.2).
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Fig. 5.2: A torus graph

The last 2 graphs are important in VLSI,
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APPENDIX A
Algorithm 1

GENERATING PERIODIC KNIGHT’S MOVE PATTERNS OVER G(k, o0)

algorithm generate (A);

{ Algorithm to compute d;, l;, r;, ¢ = 0,1,--+,p—1 for the periodic pattern P with
a period of p of G(k,00) generated from the descriptor sequence A.

Variables:

. A = {ay,a3,-+,an} : descriptor sequence.

. d = array [0..(p—1)] of integer: d[i] indicates the number of dominators on column
t of P.

. 1 = array [0..(p — 1)] of integer: I[i] indicates the number of dominators pulled in
onto column i from column (i — 1) mod p of P (left-cut).

. r = array {0..(p — 1)] of integer: r[i] indicates the number of dominators pulled in
onto column ¢ from column (i + 1)modp of P (right-cut).

. dom = array (0..(k — 1),0..(p — 1)] of Boolean: domli, j] is true if vertex (i,5) is a

dominator, false otherwise. }

begin
{ Initialize arrays d, 1, r }

for col ~ 0to p-—-1do

90




d[col] + 0;

l[col) « 0;

r[col} « 0;

for row «— 0to k—~1do

dom[row, col] « false

endfor
{ Compute period p=2(m-k+1) }
p—2(m—k+1)
"Generate the periodic pattern P over the period p”
{ Compute d[i},i =0,1,---,p—1}
for col+—~ 0 top—1do

for row — 0 to k-1 do

if domfrow,col] then d[col] « d[col] + 1

endfor
endfor
{ Compute |, r }
for col —0top—-1do

pre-col «— col — 1;

if pre.col < 0 then pre_col «~ p—1;

nzt_col «— col + 1;

if nzt_col > p then nzt_col «— 0;
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for row « 0 to k —1do
if domfrow,pre_col]
then if "vertez[row,col] uncovered” then l[col] « I[col] + 1;
if dom[row,nzt_col]
then if "vertez[row,col] uncovered” then r(col] « rlcol] +1
endfor
endfor

end
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GENERATING THE BEST CUTTING OVER A PERIODIC PATTERN OF G(k, o0)

algorithm cutting (A);

{ Algorithm to obtain the best cutting for G(k,t),t = 1,2,..-,p — 1 given the
periodic pattern P of G(k, 00) generated from the descriptor sequence A.

Variables:

. A=ay,ay,+,a, : descriptor sequence.

. d = array [0..(p—1)] of integer: d[i] indicates the number of dominators on column
i of P.

. | = array [0..(p — 1)] of integer: I[i) indicates the number of dominators pulled in
onto column i from column (i — 1) mod p of P (left-cut).

. r = array [0..(p — 1)] of integer: r|i] indicates the number of dominators pulled in
onto column i from column (i + 1) mod p of P (right-cut).

. Best_dom = array [1..(p—1)] of integer: Best.doml|i] indicates the smallest number
of dominators for the rectangle G(k,1).

. Start = array [0..(p — 1)] of integer: Start[i] indicates the column of P at which a
left-cut will generate the smallest number of dominators for G(k,1), i.e., Best_domli].

. no.dom = accumulated number of dominators for the current G(k,t). }
begin

{ Initialize arrays Best.dom and Start }

fort—1to(p—1)do

Best_dom[t] « k x t;
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Start[t] « 0;
{ Find Best_dom|t] and Start[t] for G(k,t),t =1,2,---,p—1}
for start.col —~ 0 to p-1do
end_col «+ start_col + 1 — 1;
right_col — end_col mod p;
{ G(k,t) is left-cut on column start.col of P
and right-cut on column right_col of P }
no.dom « l[start_col] + r[end_col};
for col « start_col to p—1 do
no.dom e-nodom + d[col];
for col — 0 to endcol do
no.dom «no.dom + d[col];
if no.dom < Best.dom|t]
then begin
Best_dom|t} + no.dom;
Start[t] « start_col
endif
endfor
endfor

end

94



APPENDIX B
Algorithm 2

COVERING A KNIGHT'S SUBGRAPH OF G(k,n)

algorithm cover ( snum: subgraph of G (1: Gy, 2: G,);

P: starting point;

A: descriptor sequence for the Knight's move sequence
in NW quadrant;

B: descriptor sequence for the Knight’s move sequence
in SE quadrant;

var q[snum]: total number of dominators

in subgraph G,num);

{ Algerithm to generate the smallest dominating set for the Knight'’s subgraph G .num

of the strip graph G(k,n), given the starting point P and a dividing line defined by
M, = (P, A,S1), Py, and M3 = (P, B, S3) where Py = (Zo,¥), $) = (-1,1), and
Sz =(1,-1).

The minimum Knight’s move domination number for this subgraph is returned in

v[snum)].

Variables:

. A=ay,ay,-,ay : descriptor sequence.
. B=1b,b,---,b, : descriptor sequence.
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. 7o: total number of dominators on the dividing line defined by M,, Py, M.
. Move = array (1..2,1..2] of vector:

- Subgraph 1: Move[l,1] = (1,2); Move[l1,2] = (2,1)

- Subgraph 2: Move[2,1] = (-1, -2); Move[2,2] = (—-2,-1)
. Besty[snum)]: the minimum domination number found so far for subgraph G pmym.
. Opt~: the optimal domination number for G(k,n) found so far. Initially, Opty =
Ye-
. DomP = total Knight’s move dominators generated from a dominator P on the

Knight’s move sequence generated in the subgraph. }

begin
if "P is on or beyond the Knight'’s boundary rays of subgraph G, um”
then begin
GenDomP(P, A, B, DomP);
v[snum] «— q[snum] + DomP;
" Apply edge covering algorithm to reduce y[snum]™;
if y[snum] < Besty[snum]
then { we have a better solution than Bestv|snum]}
Besty[snum] « q[snum]
return
endif ;

else { generate the next Knight’s move from P }
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for i «— 1to 2do
P « P + Move[snum,i];
GenDomP(P, A, B, Dom P); {generate DomP }
{ Branch-and-Bound on Opt~ }
if (y[snum] + DomP + 49) < Opty
then Cover(snum, P, A, B,y[snum] + DomP) {continue}
endfor
endif

end
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GENERATING THE NUMBER OF DOMINATORS IN A KNIGHT’S SUBGRAPH

algorithm GenDomP ( P : starting point;

A : descriptor sequence for the Knight’s move sequence
in NW quadrant;

B : descriptor sequence for the Knight's move sequence
in SE quadrant;

var Dom P: number of dominators generated from P);

{ Algorithm to return DomP, the number of Knight’s move dominators generated

from a dominator P on the Knight’s move sequence generated in the subgraph.

Variables:
. A=ay,ay---,a, : descriptor sequence.
. B =by,b;,---,b, : descriptor sequence. }
begin
DomP « 0;

if P is in the subgraph” then DomP « DomP +1;

P, « "the number of Knight’s move dominators on the Knight’s move
sequence M = (P, A, S;) interior to the subgraph”

P; — "the number of Knight’s move dominators on the Knight’s move
sequence M = (P, B, S3) interior to the subgraph”

DomP «— DomP + P, + P3

end
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MAIN ROUTINE TO GENERATE THE SMALLEST KNIGHT'S MOVE DOMINATING

SET FOR G(k,n)

algorithm GenDom (P,: starting point);
{ Algorithm to generate the smallest dominating set for G(k,n) given the starting
point Fy.
All the 8 Knight’s boundary rays are defined.
Variables:
. C1 = set of all Knight’s move sequence M, in the NW quadrant terminating on or
beyond the upper edge of G(k,n); M1 = (Po, A, $1).
. C3 = set of all Knight’s move sequence My in the SE quadrant terminating on or
beyond the lower edge of G(k,n); M3 = (Po, B, S3).
. 7o: total number of dominators on the dividing line defined by My, Py, M;.
. Besty[snum)]: the minimum domination number found so far for subgrapi Gmum.
. Opt~y: the optimal domination number for G(k,n) found so far. Initially, Opty =
%}
begin
for each M; in C; do
for each M3 in C; do
{ form the Knight’s dividing line D = (M), Po, M3) }
4 + "number of Knight’s move dominators

on D interior to G(k,n)”
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{ initialize the optimal domination number in subgraphs G, and G, }
Besty[1] « 999;
Besty[2] + 999;
{ find the smallest dominating sets in 2 subgraphs }
Cover(1,P, A, B,0);
Yo — Yo + Bestq[l];
Cover(2,P, A, B,0);
{ compute the total number of dominators }
Tot_dom « ~y + Bestq[l] + Bestv[2};
" Apply the edge covering algorithm to reduce T'ot.dom”;
if Tot_dom < Opty
then Opty « Tot.dom
endfor
endfor

end
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APPENDIX C
SUMMARY OF RESULTS

Values of 4(G(k,n)) obtained for widths k£ from 7 to 20

LEGEND
Area =kxn

71(G) = domination number obtained from star-center pattern
761(G) = domination number obtained from Algorithm 1

Ys2(G) = domination number obtained from Algorithm 2

v#(G) = optimal domination number obtained from Hare’s general

algorithm [11]
Empty slot = data not available or not calculated
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Results Best overall | Run time (secs)
n | Area { 11(G) 7a1(G) 72(G) u(G) [ ¥(G)] o(G) | for algorithm 2
~ Width k=17
7 49 12 12 12 12 | 4.0833 2
8] 56 14 14 14 14 | 4.0000 3
9 63 15 16 16 15 | 4.2000 4
10 70 17 17 17 17 | 4.1176 6
11 7 19 19 19 19 | 4.0526 7
12 84 21 21 21 21 | 4.0000 10
13 91 23 22 22 22 | 4.1364 12
14 98 24 24 24 24 | 4.0833 17
15| 105 26 26 26 26 | 4.0385 22
16 [ 112 28 27 27 27 | 4.1481 31
171 119 30 29 29 29 [ 4.1034 40
18| 126 32 3 31 31 | 4.0645 58
19 133 33 32 32 32 | 4.1563 77
20 | 140 35 35 34 34 | 4.1176 111
21 147 37 36 36 36 | 4.0833 145
22| 154 39 37 37 37 [ 4.1622 218
23| 161 4] 39 39 39 | 4.1282 293
24| 168 42 41 41 | 4.0976
25| 175 44 42 42 | 4.1667
26| 182 46 45 45 | 4.0444
271 189 48 46 46 | 4.1087
281 196 50 47 47 | 4.1702
29} 203 51 49 49 | 4.1429
301 210 53 51 51 | 4.1176
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Results Best overall | Run time (secr |
n| Area | 11(G) 7a(G) 73(G) vu(G) | v(G)| o(G) | for algorithm ¢
Width k =8

8 64 16 16 16 16 | 4.0000 51

9 72 18 18 18 18 | 4.0000 7
10 80 20 20 20 20 | 4.0000 9
11 88 22 22 22 22 1 4.0000 12
12 96 24 24 24 24 {4.0000 16
131 104 26 26 26 26 | 4.0000 20
141 112 28 28 28 28 | 4.0000 25
15| 120 30 29 29 29 [ 4.1379 34
16 | 128 32 31 31 31 | 4.1290 45
171 136 34 33 33 33 |4.1212 61
18| 144 36 35 35 35 | 4.1143 17
19| 152 38 37 37 37 | 4.1081 106
20| 160 40 39 39 39 | 4.1026 139
21| 168 42 41 41 41 | 4.0976 203
22| 176 44 43 43 43 1 4.0930 279
23| 184 46 44 44 44 | 4.1818 401
24 192 48 46 46 46 1 4.1739 328
25 200 50 48 48 48 | 4.1667 412
26| 208 52 50 50 50 | 41600 1060
27| 216 54 52 52 52 1 4.1538 1513
28§ 224 56 54 54 54 14.1481 2019
29 232 58 56 56 56 | 4.1429 2840
30| 240 60 58 58 58 | 4.1379 2330
31| 248 59 89 59 | 4.2034 2891
32| 256 61 61 61 |4.1967 4266
33| 264 63 63 63 | 4.1905 5408

103



Results Best overall | Run time (secs)
n | Area [3(0) 7(C) 7az(C) 7m(G) [7(G)] o(G)] for algorithm 2
Width k=9

9 81 20 20 20 20 20 | 4.0500 4
10 90 22 22 22 22 22 | 4.0909 &
11 99 24 24 24 24 24 | 4.1250 11
12| 108 26 26 26 26 26 | 4.1538 15
13| 117 29 29 29 29 29 | 4.0345 19
141 126 31 31 31 31 31 [ 4.0645 27
15| 135 33 33 33 33 33 | 4.0909 32
16 | 144 35 35 35 35 35 | 4.1143 45
17| 153 37 37 37 37 37| 4.1351 53
18| 1€2 40 39 39 39 39 [ 4.1538 7
19 171 42 41 41 41 41 | 4.1707 91
20} 180 44 43 43 43 43 | 4.1860 144
21| 189 46 45 45 45 45 | 4.2000 165
22| 198 48 47 47 47 47 | 4.2128 248
23 | 207 51 49 49 49 49 | 4.2245 292
24 | 216 53 52 52 52 52 | 4.1538 500
26 225 55 54 54 54 54 [ 4.1667 571
261 234 57 56 56 56 56 | 4.1786 974
27 243 59 58 58 58 58 | 4.1897 1146
28| 252 62 60 60 60 60 | 4.2000 1848
29| 261 64 62 62 62 62 | 4.2097 2199
30| 270 66 64 64 64 64 | 4.2188 3724
311 279 68 66 66 66 66 | 4.2273 4356
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Results

Best overall

Run time (secs)

n| Area | n(G) 1a(G) 1(G) 1u(G) [AG)| ¢(G) | for algorithm 2
Width k = 10

10| 100 24 24 24 24 24 | 4.1667 3
11} 110 27 27 27 27 27 | 4.0741 17
12| 120 29 29 29 29 29 | 4.1379 24
13| 130 32 31 31 31 31 | 4.1935 31
14| 140 34 34 34 34 34 | 4.1176 41
15] 150 36 36 36 36 36 | 4.1667 49
16 | 160 39 38 38 38 38 | 4.2105 65
17| 170 41 41 41 41 41 | 4.1463 81
18| 180 44 43 43 43 43 | 4.1860 109
19| 190 46 45 45 45 45 | 4.2222 136
20| 200 48 48 48 48 48 | 4.1667 188
21| 210 51 50 50 50 50 | 4.2000 234
221 220 53 52 52 52 52 | 4.2308 318
23| 230 56 54 54 54 54 | 4.2593 387
24| 240 58 57 57 57 57 | 4.2105 582
257 250 60 59 59 59 59 | 4.2373 724
26 | 260 63 62 62 62 62 | 4.1935 1086
27 270 65 64 64 64 64 | 4.218% 1412
28 | 280 68 66 66 66 66 | 4.2421 2143
291 290 70 69 69 69 69 | 4.2029 2666
30 300 72 71 71 71 71 | 4.2254 4277
31| 310 75 73 73 73 73 | 4.2466 5524
32| 320 77 75 75 75 75 | 4.2667 8292
331 330 8 78 78 78 14.2308 10342
34| 340 80 80 80 80 | 4.2500 16500
35| 350 82 82 82 82 1 4.2683 20912
36| 360 84 84 84 84 | 4.2857 30668
37| 370 87 87 87 87 | 4.2529 38766
38| 380 89 89 89 89 | 4.2697 57878
391 390 92 92 92 92 | 4.2391 72282
40 | 400 94 94 94 | 4.2553
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Results Best overall | Run time (secs)
n | Area [7(G) 7a(G) 1a(C) (G | 7(G) | o(G) | for algorithm 2
Width k£ =11
11| 121 29 29 29 29 29 | 4.1724 17
12| 132 32 32 32 32 32 | 4.1250 36
13| 143 35 35 35 35 35 | 4.0857 48
14| 154 37 37 37 37 37 | 4.1622 64
15| 165 40 40 40 40 40 | 4.1250 82
16 | 176 42 42 42 42 42 | 4.1905 111
17 | 187 45 45 45 45 45 | 4.1556 137
18| 198 48 47 47 47 47 | 4.2128 193
19| 209 50 50 50 50 50 | 4.1800 222
20| 220 53 53 52 52 52 | 4.2308 310
21| 231 55 55 55 55 55 | 4.2000 379
22| 242 58 58 57 57 57 | 4.2456 550
23| 253 61 60 60 60 60 | 4.2167 645
24| 264 63 63 63 63 63 | 4.1905 986
25| 275 66 65 65 65 65 | 4.2308 1147
26 | 286 68 68 68 68 68 | 4.2059 1756
27| 297 71 70 70 70 70 | 4.2429 2003
28 | 308 74 73 73 73 73 | 4.2192 3465
29 | 319 76 75 75 75 75 | 4.2533 3949
30| 330 79 78 78 78 78 | 4.2308 6483
31| 341 81 80 80 80 80 | 4.2625 7635
32 352 84 83 83 83 83 | 4.2410 13165
33| 363 87 86 85 85 85 | 4.2706 15234
34| 374 88 88 88 88 | 4.2500 24806
35| 385 91 91 91 91 | 4.2308 29069
36 | 396 93 93 93 | 4.2581
37| 407 96 96 96 | 4.2396
38 | 418 98 98 98 | 4.2653
39 | 429 101 101 | 101 | 4.2475
40 | 440 103 103 | 103 | 4.2718
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Results

Best overall

Run time (secs)

n | Area | 1(G) 7a(G) 72(G) 74(G) | 7(G) | o(G)] for algorithm 2
Width k=12

12 ] 144 35 35 35 35 35 | 4.1143 56
13| 156 38 38 38 38 38 | 4.1053 12
14 | 168 40 40 40 40 40 | 4.2000 96
151 180 43 43 43 43 43 | 4.1860 127
16 | 192 46 46 46 46 46 | 4.1739 171
171 204 49 49 49 49 49 | 4.1633 219
18 | 216 52 52 51 51 o1 | 4.2353 289
19 | 228 54 54 54 54 54 | 4.2222 355
20 | 240 57 57 57 57 57 | 4.2105 472
21 | 252 60 60 60 60 60 | 4.2000 573
22 | 264 63 63 62 62 62 | 4.2581 784
23| 276 66 65 65 65 65 | 4.2462 960
24 | 288 68 68 68 68 68 | 4.2353 1294
25| 300 71 71 [} 71 | 4.2254 1591
26 | 312 4 74 74 74 | 4.2162 2242
271 324 7 76 76 76 | 4.2632 2716
28 | 336 80 79 79 79 | 4.2532 4064
29 | 348 82 82 82 82 | 4.2439 5038
30 | 360 85 85 85 85 | 4.2353 1322
31| 372 88 87 87 87 | 4.2759 9201
32| 384 91 90 90 90 | 4.2667 14526
33 | 346 94 93 93 93 | 4.2581 18270
34 | 408 96 96 96 96 | 4.2500 28975
35| 420 99 98 98 | 4.2857 37030
36 | 432 102 101 101 | 4.2772 57241

107




Results Best overall | Run time (secs)
n | Area [ 11(G) 71(G) 71a(G) u(G) | 7(G) | o(G) | for algorithm 2
Width k=13

13| 169 41 40 40 40 | 4.2250 79
14| 182 44 44 44 44 | 4.1364 152
15| 195 47 47 47 47 | 4.1489 202
16 | 208 50 49 49 49 | 4.2449 273
171 221 53 53 53 53 | 4.1698 343
18 234 56 56 55 55 | 4.2545 464
19| 247 59 58 58 58 | 4.2586 589
20 | 260 62 62 62 62 | 4.1935 792
21 213 65 65 64 64 | 4.2656 981
22| 286 68 67 67 67 | 4.2687 1366
231 299 71 71 70 70 [ 4.2714 1605
24| 312 74 74 73 73 | 4.2740 2256
25 | 325 7 76 76 76 | 4.2763 2645
26 | 338 80 80 79 79 | 4.2785 3870
27 351 83 83 82 82 | 4.2805 4558
28 1 364 86 85 85 85 | 4.2824 6513
29| 377 89 88 88 88 | 4.2841 7283
30 | 390 92 92 91 91 | 4.2857 12133
31| 403 95 94 94 94 | 4.2872 13984
32 | 416 98 98 97 97 | 4.2887 23543
33 | 429 101 101 100 100 | 4.2900 25964
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Results Best overall | Run time (secs)
n| Area | 7(G) 1a(G) 72(G) (G) | 7(G) | 0(G) | for algorithm 2
Width k£ =14
14| 196 47 47 47 47 | 4.1702 246
15| 210 50 50 50 50 | 4.2000 327
16 | 224 53 53 53 53 | 4.2264 422
17| 238 56 56 56 56 | 4.2500 525
18| 252 60 60 60 60 | 4.2000 696
19| 266 63 63 63 63 | 4.2222 899
20 280 66 66 66 66 | 4.2424 1204
21| 294 69 69 69 69 | 4.2609 1508
22 308 72 73 72 72 | 4.2778 2010
23| 322 76 76 76 76 | 4.2368 2471
24| 336 79 79 79 79 | 4.2532 3266
251 350 82 82 82 82 | 4.2683 3955
26| 364 85 85 85 85 | 4.2824 5468
21| 378 88 88 88 86 | 4.2955 6680
28| 392 92 92 92 | 4.2609
29 [ 406 95 95 95 95 | 4.2737 10977
30| 420 98 98 98 98 | 4.2857 15228
31| 434 101 101 101 101 | 4.2970 18477
32| 448 | 104 105 104 104 | 4.3077 27266
33| 462 108 108 108 | 4.2778
34| 476 111 111 111 | 4.2883
35 490 114 114 114 | 4.2982
36| 504 | 117 118 117 | 4.3077
37| 518{ 120 121 120 | 4.3167
/| 532 124 124 124 | 4.2903
39| 546 127 127 127 | 4.2992
40| 560 | 130 130 130 | 4.3077
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Results Best overall | Run time (secs)
n | Area | (G) Yaa(G) 722(G) w{G) | 7(G) | o(G) ] for algorithm 2
Width k=15
15 | 225 53 53 53 53 | 4.2453 347
16 | 240 57 57 57 57 | 4.2105 658
17 | 255 60 60 60 60 | 4.2500 856
18 | 270 64 63 64 63 | 4.2857 1135
19 | 285 67 67 67 67 | 4.2537 1470
20 | 300 70 7 70 70 | 4.2857 1963
21 | 315 74 74 74 74 | 4.2568 2418
22 | 330 7 78 1§ 77 | 4.2857 3324
23 | 345 81 81 81 81 | 4.2593 3930
24 | 360 84 84 84 84 | 4.2857 5672
25 | 375 87 88 87 | 4.3103
26 | 390 91 91 91 | 4.2857
27 | 405 94 94 94 | 4.3085
28 | 420 98 98 98 | 4.2857
29 | 435 101 101 101 | 4.3069
30 | 450 104 105 104 | 4.3269
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Results Best overall | Run time (secs)
n| Area | 11(G) 7a(G) 72(G) Tu(G) | v(G) | o(G) ] for algorithm 2
Width k =16
16 | 256 60 60 60 60 | 4.2667 971 |.
17| 272 64 64 64 64 | 4.2500 1312
18 | 288 68 68 68 68 | 4.2353 1796
19| 304 71 71 71 71 | 4.2817 2318
20| 320 75 75 75 75 | 4.2667 3015
21| 336 78 79 78 78 | 4.3077 3768
22| 352 82 82 82 82 | 4.2927 4998
23| 368 86 86 86 86 | 4.2791 6216
24| 384 89 90 89 | 4.3146
25| 400 93 93 93 93 | 4.3011 10615
26 | 416 96 97 96 | 4.3333
27| 432 100 101 100 | 4.3200
28 | 448 104 104 104 | 4.3077
29 | 464 | 107 108 107 | 4.3364
30 | 480 111 112 111 | 4.3243
Width £ =17
19! 323 75 75 75 | 4.3067 3523
20| 340 79 79 79 | 4.3038 4754
21| 357 83 83 83 | 4.3012 6136
221 374 87 87 87 | 4.2989 8173
Width &k =20
20 400 92 92 [ 921]4.3478 | 18023
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