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ABSTRACT

On The Wave Activity Within Vortex Cores

Jtan  Wang, Ph.D.
Concordia University, 1995

The present thesis is concerned with the instability of liquid vortices
generated n a cylindrical container, using a flat disk rotating at the bottom.
For relatively low viscosity fluid, several stationary states of the core were
tound to reside within a certain range of disk speeds. This range becomes
narrow as the wave number grows. Between the stationary states, mixed,
time dependent states were found to exist. Their intervals of perseverance
decrease with the wave number. The disk speed at which the static state first
appears and ends increases linearly with the original liquid height. The phase

velocity ot the stationary waves rises with the angular velocity of the disk.

The linearized stability analysis is emploved to investigate the wave behavior
N a water vortex. Two flow cases are considered herein. The first case deals
with waves developed on the free surface of a hollow vortex, while the
second deals with waves generated in the flooded core of a Rankine vortex. It
1s evident from the analysis that the experimental dispersion velocity
approaches the calculated one when the wave amplitude becomes smaller.
The latter is consistent with the small perturbation assumption that is
inherent in the theory. For the case where the core is flooded, the presence of
a cylindrical wall is shown to enhance the wave speed. A hypothesis as to
how the core develops in the mixed state regions, is proposed. The graphical
simulations appear to predict reasonably well the main features of the

observations.
For a liquid of intermediate viscosity, abrupt transitions from one
equilibrium state to the other are taking place. Steady vortex core patterns

with wave numbers from one to eleven are observed. States where the basic
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pattern 1s subharmonically modulated and states where a wave packet
periodically encircles the core are also encountered  Hyvsteresis s also cleatly
evident during transitions ot states. Artiticial disturbance has triggered
mutations of stable equilibria at identical determing boundary conditions,
also demonstrated the existence of S-bifurcation. Co-grade and retrograde
waves are observed, which is not possible in water  Biturcations between
steadv flow, single frequency periodic flow and two trequency quasi-periodic
flow are witnessed. As an initial value problem, the flow development
history impacts the final flow state, expenimentally the driving disk's
acceleration is found to be a determing tactor of the tlow

The core of a highly viscous hiquid is stable Turbulint and macroscopic

equilibrium waves appear at very large liquid heights and disk speeds
Water wave sloshing is present under certain prevailing tlow conditions,

wave activity changes dramatically during and atter a sloshing. Numenal

simulation furnishes one possible solution.
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CHAPTER 1
INTRODUCTION

1.1 General

The term vortex is used to characterize the general rotary motion of an

ensemble of material particles moving around an imaginary axis.
Consequently, vortices may be generated in fluids, plasma or in a collection of
solid bodies (particles). Vortices with a wide range of sizes can be found in
nature (see Table 1-1 for example). Disk-like vortices are those whose
"height” to diameter ratio js small, while the columnar type are those whose
ratio is large. If most of the vorticity is confined to a small region within the
core, the type is often referred to as a concentrated vortex.

In the natural world, vortices can be found in planetary atmospheres, oceans,
the flow of rivers, movement of the earth's mantle, in the motion and
biological process of living organisms, human physiology, and the motion of
galaxies. Besides their common occurrence in the natural world, vortices can
also be found in the majority of industrial applications. Among a large
number of examples that one can cite are: the vortex separator, the cyclone
combustion, the vortex valve, the swirl atomizer, intakes and draft tubes of
turbines, turbine and compressor blades, wing tips, and many others.



Table 1-1. Ranges of Vortex Size®

Diameter
Quantized vortices in hiquid Helium 108cm
Smallest turbulent eddies 0.1cm

Vortices generated by insects
Vortices behind leafs 0.1-10 cm
Vortex rings of squids

Dust whirs on the street
Whirlpools in tidal currents 1.0-10 cm
Dust devils

Vortex rings in volcanic eruptions
Whirlwinds and waterspouts 100-1000 m
Con section clouds

Vortices shed from the Gulf Stream
Hurricanes 100-2000 km
High- and low-pressure stems

Qcean circulations
General circulation of the atmosphere 2000-5000 km
Convection cells inside the earth

Great Red Spot of Jupiter

Rings of the planet Saturn 5000-10% km
Sun Spots
Galaxies order of light years

New York 1983.

To explain and predict motions of a fluid under the influence of various
forces is the mission of fluid mechanics as a science. For small Reynolds
numbers, the viscous effects overweight the inertia and the incompressible
Navier-Stokes equations, together with mass and energy conservation
equations, yield unique solutions to the fluid motion given the boundary
conditions and extraneous forcing functions. These unique and symmetric
solutions are independent of initial conditions. For larger Reynolds
numbers, the uniqueness of the flow is lost, giving rise to multiple solutions.



Flows with more complex structures in space and time might appear. This
flow behavior is consistent with the second law of thermodynamics, as the
latter suggests in an axiomatic manner that everything in nature advances
from an orderly state towards disorder. Therefore, as far as fluid tlow is
concerned, one can distinguish two asymptotic conditions; the laminar
physical state where the fluid motion possesses the highest order, and the
turbulent state where total disorder exists. In between, as one proceeds from
the first towards the second condition (by increasing the Reynolds number),
flow fields with a decreasing degree of order exist. The overwhelming
interest in turbulent flows arises from the fact that most of the artificially
generated industrial or naturally occurring flows are of this type.
Consequently, the origin and the process, from which turbulence evolves, has
attracted the curiosity of scientists for generations since Orsborne Reynolds.

There are two experimentally known ways for a flow to change from the
laminar to "turbulent” conditions. The first is realized through a
spontaneous (catastrophic) transition to turbulence. Examples are the Hagen-
Poiseuille flows in a pipe and the Coutte flows within two concentric
cylinders. spheres with the outer one rotating while the inner one is
stationary. At low Reynolds numbers, the flow is laminar, therefore having a
maximum symmetry. As a critical Reynolds number is passed, the flow
changes to the turbulent condition through an interval where the flow field
is segregated to laminar and turbulent packets (Wygnanski & Champagne,
1973). The second is characterized by repeated finite bifurcations. As the
Reynolds number is increased, the maximum flow symmetry splits, giving
rise to another laminar type of flow having a different pattern of symmctry.
Finally, as the Reynolds number is increased further, a continuous
magnification of dynamical noise (turbulence) consumes the flow. Classical
examples of flow transformation through spectral development are the
Coutte flows within two concentric cylinders, spheres with the inner rotating
while the outer is stationary and the Bénard-Maragony convection between
two plates. Flow instability manifested due to the temperature stratification in
a cylindrical annular space was also investigated by Hide(1966). These systems,
where the onset of turbulence is characterized by gradual flow structure
transformations from flow patterns of high degree of order towards “chaos”,
are of special interest to both experimentalists and theoreticians. The latter



affinity emanates from the view that such systems furnish researchers with
details of flow transition. Many believe that if a good understanding of the
underlying mechanism is acquired, then a better turbulent model might be
developed. In addition to the classical examples mentioned above, details
about the flow behavior during "slow" transition can also been realized using
a spinning disk immersed in liquids (Vatistas, 1990). Although the latter case
might be, from the mathematical modeling point of view (complex boundary
conditions), more involved than the classical problems, it is simple in
construction. Furthermore, as will be shown, it can provide the researchers
with a wide window into the study of flow transition.

1.2 Problem definition

The flow generated by a spinning disk immersed in a fluid was successfully
explained by Stuart (1955). Lord Kelvin (1880), more than a century ago,
postulated that the core of columnar vortices is able to accommodate
perturbations with different wave numbers. Vatistas (1990) was the first to
report the existence of these equilibria under laboratory conditions. The
experimental set-up used was comprised of a cylindrical container filled with
water with a flat disk rotating at the bottom. Several interesting phenomena
with respect to slow transition were discovered. The present work is the
continuation of Vatistas' original discovery.

The study concentrates on the structures of vortex flow and their instabilities,
the evolution of liquid vortex flow with respect to the change of driving
force - the disk rotation, generated in a cylindrical container with a flat disk
rotating at the bottom. Experimental and analytical investigations are
performed, with emphasis on experiments due to the enormous difficulty
encountered with the mathematical approach.

The experimental study is conducted with water and two types of oil (Shell
10W, 40W). Observations show that the flow undergoes a sequence of
structural transformations as the driving disk spins up quasi-statically. In
each stage of the sequence, the flow is a laminar with an equilibrium wave



present in the flow until eventually reaching turbulence. When quasi-
statically reducing the driving disk's rotation from certain rpm (at which the
flow is not yet turbulent), the sequence of flow states is not the same as the
spin-up’s one, which implies the existence of hysteresis and bifurcation.

High viscous vortex possesses considerably more complexities than water's.
In the case of water, the order in which the equilibria come up one after
another with changing disk rotation is the same during ascending and
descending sequences. The difference between the two lies in the hysteresis
during transition from one flow structure into another. In the case of high
viscous oil vortices, not only the order of flow patterns in spin-up and spin-
down sequences can be different; also, three or more flow states could exist at
the same boundary conditions and same disk rotation speed. Two general
characteristics of bifurcations have been observed in the present study. The
acceleration process is found to have effects on the flow state at the terminal
disk rpm.

Wave phase speeds in the core of hollow and flooded bell-shaped vortices of
water have been calculated by a model of inviscid, small amplitude,
harmonic perturbation analysis. The comparison of the theory with
experimental measurements show a reasonable agreement, provided the
conditions remain within the realm of the assumptions.

The characteristics of the flow vary with geometric arrangements, such as the
size of the disk, the initial level of liquid, etc..

Sloshing was found for certain combinations of parameters (the disk
rotation, liquid level and disk size), which shows the simultaneous presence
of two waves with comparable amplitudes, close or approximate multiple
frequencies. Qualitative simulations are performed to demonstrate the main
characteristics of several phenomena involved.

In 1880, Lord Kelvin mathematically investigated the perturbed columnar
vortices formations. One of the three cases considered is that of the
perturbations in a potential vortex base flow with a hollow core in a
stationary cylindrical tank. The perturbations are three dimensional and



harmonic. Kelvin's study shows that a core disturbed in the form of
symmetric polygons can exist in an inviscid flow field. Recently, Vatistas
(1990) did, for the first time, observe these equilibria core in a water vortex
experiment produced in a cvlindrical container using a rotating flat disk at the
bottom (included in Photo plate 1).

For the cases where a relatively low viscous fluid (such as water) is used,
several stationary polygon cores are found to exist within certain limits of
disk speeds. These speeds intervals decrease as the circumferential wave
number increases. Between the stationary states, mixed, time-varying core
shapes are present. Their range of disk speeds shrinks with the increasing
order of neighboring equilibria.

For cases where high viscous liquid oil is employed, abrupt transition from
one steady equilibrium to another takes place. Steady vortex patterns with
polygon orders from one to eleven are observed. States in which a lower
wave number core is harmonically modulated by another with higher wave
number and states where a wave packet periodically encircles the base wave
core are also visualized. Hysteresis and bifurcation among the equilibria

transitions are clearly evident.

The study aims to reveal the flow evolution with gradually increasing and
reducing the characteristic number, Reynolds number or Taylor number
through disk rotation. Initially, the simplest laminar flow is present, then at a
higher Reynolds number a less simple laminar flow with perturbation n=2
wave is superimposed on the base flow, and at still a higher disk rotation an
n=3 perturbation happens. When the speed is between n=2 and n=3, the flow
presents a combined perturbation of these two; its wave form is time
dependent. With continuously quasi-stationary increases of disk rotation, the
vortex flow goes through mixed n=3 and n=4, a single stable n=4, mixed n=4
and n=5, single n=5, mixed time dependent n=5 and n=6, single n=6, finally,
turbulence develops due to the relatively large Reynolds number.

The above sequence is for water. When high viscous liquid, such as Shell
10W oil, is used, the sequence of flow states is completely different.
Generally, during the ascending rotation process, it starts from n=11 or 10,



then goes to 7 or 5 depending on the initial level of oil added. Further on, the
wave number augments until at relatively high rotation the turbulence
comes up eventually. A distinct new phenomenon with oil is that the
rotation descending sequence shows strong hysteresis and multi-mutations.
Three stable flow structures could be present at the exact same Taylor number
and boundary conditions. At high initial levels of liquid, the base flow is no
longer free vortex; instead, a perturbed forced-free one, is observed.

Based on the above mentioned phenomena, the definition of the work in the
present study can be summarized as:

1) Transition of low viscous vortex flow from laminar to turbulence, its
structural transformations during the process,

2) Analytical approximation of the inviscid vortex flow.

3) Transition of high viscous vortex flow from laminar to turbulence during
quasi-static rotation ascending process,

4) The hysteresis and bifurcation between the ascending and descending
sequence for high viscous oil,

5) The hysteresis and bifurcation between the quasi-static variation of Taylor
number and its accelerating variations,

6) Exploration of sloshing and its simulation.

These phenomena will be explored in the following chapters of the present
thesis.



1.3. LITERATURE SURVEY

The flow instability problem has been a hot topic since Taylor's pioneering
work in 1923. A hook edited by Swinney and Gallub gives much information
on the subject. In the rotatory flow regimes, Rayleigh (1916) gave the first
analytical stability criterion for inviscid rotation flow. Then, the elegant
analysis by Taylor and the corresponding convincing experiments have
encouraged and led to many fruitful results in stability theories.
Chandrasekhar (1961) made many valuable analyses on hydrodynamic and
hydro-magnetic flow transformations. Geogory, Stuart and Walker (1955)
explained analytically the experimental results of 3 D n=6 disturbance vortices
in the flow above a rotating disk, motivated by the transition on a swept
wing. Weske (1963) studied secondary vortex flow, and obtained n=7 polygon
pattern. Hide (1966) showed the effects of radial body force on rotation flows,
he observed disturbances with wave number n=3, 4, 5, 6. Kou (1973) gave the
flow patterns in shallow ocean and atmosphere resulting from quasi-
geotropic instability due to the earth’'s rotation. Cambell and Ziff (1978)
suggested equilibrium configurations for n<31, n=37, 50. Aref (1983) indicated
that at least one stable equilibrium must exist for every n polygon
arrangements. Rabaud, Couder (1983), Chomaz, Rabaud and Couder (1988)
found circular shear layer instability in the form of n= 3, 4, 5, 6 elliptic cat eye
patterns. Dritschel (1985, 1986, 1989) did a lot of 2D inviscid uniform voracity
evolutions, found n=2, 3,4, 5, 6, 7, 9 lobes vortices. Abrahamson et al (1989)
showed flow between two co-rotating shrouded disks, obtained n=5 case.
Griffiths and Linden (1981) studied viscoelastic liquid stick to a rotating rod,

the radial shapes are n=2, 3.

The general flow characteristics of atmosphere in the earth's polar regions are
similar to the present experimental arrangement. Having in mind that other
effects such as temperature variations are also present in the natural settings,
the similarity in the trajectories traced by a balloon around the south pole
released in New Zealand, see Mason (1971), with the flow patterns observed
(Vatistas 1990) is worth noting. Similar vortex core modal shapes have also
been found during vibrations of cylindrical thin shells and evaporating liquid
drops, respectively. Alike equilibrium and mixed state mode shapes of
vibrating conical shells have been reported by Schneider et al. Luminosity



waves of interstellar gas are also evident in the core of calaxies. Recently,
Lauer and his associates (1993), with the help of the Hubble Space Telescope,
have shown that Andromeda (M31) galaxy has two cores. One ot the
explanations as to why M31 has two cores is based on the idea that the present
double core is the result of the collision of two venerable galaxies. Yet
another, equally possible cause might be due to the unstable nature ot the
vortex center (Vatistas, New Scientist, 1993), similar to the vortex sloshing
phenomenon to be reported in this thesis.

Bifurcation and hysteresis are common properties in nonlinear systems. They
have been found in fluid flows around spheres, airfoils, in the gap between
concentric rotating cylinders, etc.. The last case was the first experimental
evidence of bifurcation in fluids (Pai, 1943). Recently, Benjaming and Mullin
(1982) reported many bifurcation cases in the circular Couette flow. Zierep
(1970) and Wimmer (1980) disclosed the bifurcation and hysteresis in the
spherical shell flow. The present study reveals the existence of biturcations in
high viscous hollow vortex fiow; two common characteristics ot biturcations
were observed.



CHAPTER 2

Experiments of water vortex

This chapter reports the experimental findings with respect to wave activity
in the core of disk-shaped vortices generated in a cylindrical container with a
flat disk rotating at the bottom.

The process which leads an orderly laminar flow to a complex, random
turbulent state is very intuitive and interesting. The study of suck: a process
can be beneficial in two respects, one in that it may shed light on what
provokes chaos in a system of simple order, another in that it may be helpful
in establishing certain models of the turbulence.

Water, a low viscosity fluid, probably the easiest liquid to manage in a lab is
chosen in the flow phenomena exploration. It has delivered quite revealing
information despite its simplicity. Experiments have shown the existence of
laminar stationary states of the vortex core within a certain range of disk
speeds, before the driving rotation is high enough to bring the flow to
turbulence. This range becomes narrower as the equilibrium circumferential
wave number grows. Between the stationary states, mixed time dependent
states were found to occur. Their intervals of endurance decrease with the

10



wave number. The disk speeds at which the stationary state first appears and
ends increase linearly with the original height of the water before rotation.

The phase velocity of the stationary waves rises with the angular velocity ot
the disk.

Meticulous care in the tests has revealed the presence of a weak hysteresis.
This demonstrates the non linearity of the flow structure in a wider Reynolds
number spectrum. The last part of this chapter examines the impact ot the
driving disk's diameter on the equilibria in terms of the flow parameters.

A Laser Doppler Anemometer is used to quantify the flow field behavior. It
helps to depict the periodical feature when equilibrium is developed. The
measurements also give quantitative descriptions of the order ot
perturbations incurred by the presence of equilibria and the flow mean
parameters

2.1 Experimental facility for liquid vortex flows

The experiments have been conducted in Concordia’s liquid vortex agitator,
which is schematically illustrated in Figure 2-1. The agitator consists of a
stationary plexiglass cylindrical container, with a flat aluminum disk rotating
in the counter-clockwise direction, mounted on a shaft at the bottom of the
container. The shaft is driven, through a belt pulley assembly, by a Direct
Current (DC) speed variable motor. There is a relatively large metal flywheel
attached to the shaft to assure the constancy of the rotation. The DC motor
has a power of three-quarters hp, and a speed range from 0 to 1500 rpm,
adjustable by a rotatory variac.

Liquid can be introduced into the container from the top opening and drained
from a 90 degree small hole in the bottom plate, or by a siphon through the
top.

11
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Figure 2-1  The experimental set-up

Different disk diameters are used in the experiments. The liquid initial level

above the disk's upper surface before rotation is measured by a ruler placed

on the side of the container.
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2.2 Instrumentation

The tangential velocity in the liquid is measured by an air cooled Lasa
Doppler Anemometer (LDA) from Dantec. The lon-Argon laser beam is ot
300 mW, a beam separator of 60 mm, a bragg cell of 40 Mhz frequency shitt
(in order to get a shifted beam; so a reverse, negative velocity is detectable by
the equipment), a beam diameter of 0.82 mm and also a transverse
mechanism controlled by a micro computer th.cugh IEEE-488 bus.  The
frequency signal indicating the tiny particles’ speed from the photo detector is
fed to a flow velocity analyzer box, then to a special cireuit card in the
personal computer. There the sampling data is processed, and time sernies of
velocity, spectrum analysis, histograms, various correlations, etc. can be
performed. The whole LDA system, including the data conversion, s
managed by a powerful software package from Dantec called FLOW ARE.

The diskh angular velocty is determined by a photo retlective digital meter
from Ametek. The equilibria wave phase speeds are obtained by visual
counting and a digital timer.

Video and photo cameras are mounted right at the top of the container,

centered to get the flow equilibria patterns and their transition dynamics.

The liquid free surface elevation profile is mapped by a transverse
mechanism with a sharp pointer. The three dimensional transverse arms are

all scaled.

The Cannon-Fenske routine viscometer, tested according to ASTM D445-61
for transparent liquids, is used to get the viscosity values of the working
media.

To quantitatively obtain the equilibria geometry, one of the disks is gridded
with concentric circles, hence, from a photo, its geometry can be evaluated
and compared with mathematical approximations.
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A water soluble dye is employed to mix with otherwise transparent water in
order to bring into contrast the various equilibria patterns from the
intersection between the free surface and the exposed aluminum disk's

upper surface.

2.3 Evolutions of waves

It takes many steps of evolution for a water vortex to start from a static state
(relative to the ground), pass through a few of structurally different laminar
states, and finally reach the turbulent state at a high Reynolds number.
Hence, let us first have a look at the process of development of the equilibria.

Before setting the disk into rotation, the tank is filled with shallow water,
initial height ho (10 - 60% of the tank diameter) above the disk’s upper
surface. Then the rotatory motion imparted to the liquid by the disk generates
a centrifugal force field, which compels the water towards the circumferential
tank wall. The receding water can expose the central part of the disk surface to
air, then the contact line between water and the solid metal disk surface will
outline Kelvin’s stable rotating shapes of the core. A blue dye helps to bring
into relief the various patterns for photography. The disk is set to rotate at a
slow, constant speed, and is subsequently sped up in small increments.

14
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Figure 2-2 A typical spectrum of Kelvin's equilibrium transformations
corresponding to the last photo assembly.

In the very beginning, a smooth forced-free (Rankine) vortex free surface
appears, then the central portion of the liquid free surface touches the disk
and a circular contact line shows up. When the speed is slowly increased, a
wave of n=2 moving around in the same direction as the flow is formed, see
Figure 2-2(a). Its phase speed is much lower than the disk's. As the rotation
is increased incrementally, the symmetry disappears. In its place, a shape as in
Figure 2-2(b) appears. While the small increments of rpm continues, a
squeezed triangular shaped equilibrium core rotating at a slower speed than
that of the disk appears, see Figure 2-2(d); the n=3 wave becomes gradually
fuller at higher speeds, see Figure 2-2(e). Increasing the disk rotation further,
the full triangular shaped core becomes unstable and flow shows
unsteadiness. During this time, one of the three vertices is bigger than the
other two, which is termed a "mixed mode" between triangle and square
waves. At even higher @4, a squeezed square pattern appears, see Figure 2-

16



2(h), then it transforms into a fuller-rounded-corner square shape, see Figure
2-2(i). Subsequently an unstable mixed mode of square and pentagon shaped
core develops. By continuously augmenting the disk speed, stable pentagon,
Figure 2-2(k), unstable state, then stable hexagon, Figure 2-2(1) , unsteadiness
in the flow, was observed in turn. At slower phase speeds, the rotation of
each stable equilibrium is co-grade, and have been recorded by stop watch and
verified by Laser Doppler Anemometer. Eventually the flow is turbulent, a
circular but rough contact line resulting.

The equilibrium wave number n versus disk speed is measured for hg = 24
and 27 mm, see Figure 2-3.

The above experimentally observed symmetric air core shape is astonishingly
similar to the contours conjectured by Keivin. Detailed geometry mapping
from photo and Fourier analysis have substantiated such a conclusion. Each
vortex equilibrium (n=3, 4, 5, 6) persists within a certain range of disk
rotation {Mnj, Wrf } as indicated in Figures 2-3. Inside each range, the shape 1s
squeezed toward Wpi+, fuller towards Wpf.. The pattern wave phase speed
is a linear function of the disks' in that speed segment. The higher the ®,
the faster the Wp. For example, at its initial height ho = 92 mm, ®q = 420 rpm,
the n=3 wave rotates at ®3=103 rpm, while at W4 = 540 rpm, ®3 = 130 rpm.
The wave phase speed for n=3 versus the disk speed is plotted in Figure 2-4
for three different initial heights. The n=4 wave speeds for two different
initial heights are presented in Figure 2-5. The graphic characteristics of the
equilibria vs W4 for different hg are almost parallel to each other. It is clear
from the figure that the higher the hg, the higher the phase speed. When hg
is low, more equilibrium states are visible (n=3 up to 6); for relatively high
ho, only n=3, 4 or 2, 3 even only 3 could be observed. Since at high liquid
level, the free surface does not touch the disk at low rotation, usually only 2, 3
are possible, while at high rotation the flow easily goes to turbulence.
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The two speed limits, the initial speed ®; and the final speed s of the disk
for a specific equilibrium to exist are also linear functions of the initial liquid
level hg. The higher the hg, the higher the two values for the corresponding
wave form. For example at hg =45 mm, W3; = 126 rpm, W3¢= 180 rpm, while
at hg = 55 mm, the two limits are 175 rpm and 232 rpm respectively. Tte
lines of ®; and ®¢ vs hg are also almost parallel, see Figure 2-5 (a) and (b)

for triangle and square waves.

450
€ .
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3 A e
g 260 | i - S
I &
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o A g -4 - Final
= 165 [ & . —
Q . - —= Initial

70

10 20 30 40 50 60 70 80 90
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Figure 2-6  The initial and final disk rotation limits versus ho
for n=3.

At some higher hg, before the central portion of the free surface touches the
disk, a disturbance with n = 2 can be easily seen before the triangular core
shape appears. A careful examination of the flow by viewing the videotapes
in slow motion reveals the presence of many small amplitude waves on the
surface. For disk speed lying between two speed segments of consecutive
states, like {W3f, ®W4;}, the contact line is a transitionally distorted,
nonsymmetrical mode, that is unstable.
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Figure 2-7  The initial and final disk rotation limits versus ho
for an n= 4 equilibrium.

At relatively high hp (approximately two times that of the disk diameter
compared with about 50% in previous cases) and at high ®q, turbulent shapes
as n=2, 3, 4, which are quasi-stable, are clearly visible. There must be a defined
corresponding set of parameters, including disk rotation, initial height and
disk diameter (04, ho, Dq) to have the disturbances behave in a macro stable
symmetric fashion. The disk surface roughness and very small waddling do
not appear to have significant effects on the phenomena.

2.4 Flow measurements with LDA

The flow field mapping by appropriate methods can give us a most in-depth
view of how flow parameters change during transitions. For a problem of
instability where the flow states are not far from the thresholds to transitions,
even a very small disturbance may contaminate the integrity of measure-
ments. Hence the Laser Doppler Anemometer is the best non-intrusive, if not
the only tool to study the phenomena.
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The tangential velocity of the flow field for an n=3 equilibrium has been
measured, see Figure 2-8, the sampling point is at r = 11.4 cm. The near-
harmonic variations of the velocity component for equilibria n= 3 is evident.
These data provide the means to perform quantitative analysis. Similar
measurements for n=4, 5 have also been obtained.

The measurements of the tangential component velocity of the vortex flow
field have made it possible to,

1. Demonstrate the periodic oscillation of the flow parameters when a
symmetric equilibrium is present, see Figure 2-8.

2. Establish a correlation for the free vortex circulation (strength)
versus the driving disk’s rotation, see Figure 2-9.

3. Confirm the small perturbation assumption, see Figure 2-10.

22



SOOI RUp—

J [

va1 £q Lioojaa jenyuadue] g-z aindig

ez &MLl =l oay

1 4

==l 1l WML,

oso=0 ..mM.ﬂ!i_...lm.._...“_: 3
ERUAY] [ S | |

Mmoo, T

THOOE

can N

[ 3 A T I (S S B

D S0 OoU > BN®

1o




0.0008

0.0007 }- -

/(sec rpm)

-

0.0006 }- , -

0.0005 | - .

0.0004 r - =

Circulation x (m

0.0003 - : _

I 1

0.0002 ‘ ’
0 50 100 150 200 250

Disk rotation © ( rpm)

Figure 2-9 Circulation (2r r Vi) in the hollow core vortex by LDA,
h0=46 mm.

—_ -
o n
-

=]
]

n and Perturbation{“s)
[}
n
'y

120 140 160 180 200 220 240
Disk speed w, (rpm)
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number.
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2.5 Hysteresis

Since the flow exhibits a non-linear behavior as it undergoes structural
transformations during the stepwise, quasi-static spin-up and spin-down ot
the disk rotation, it is suspected that hysteresis may be present between the
two sequences. In fact, this logical deduction does hold. In order to witness
the differences, the flow structural evolution with respect to ascending and
descending processes of the disk rotations has been conducted for the same
heights of liquid. Table 2-1 lists the two lower limiting disk rotation speeds
for n=3 equilibrium. The first column is the initial liquid level. The second
column indicates the disk rpm at which a n=3 wave starts to emerge on the
ascending sequence from a mixed n=2+3 state. The third column lists the
rpm at which a symmetric n=3 wave gives way to a mixed n=2+3 state on the
descending sequence. The numerical values in the two columns should be
identical if there was no hysteresis. This test is repeated for 12 different
initial levels to show the persistence of hysteresis.

Table 2-1. Hysteresis (water), n=3 and d = 252 mm, Initial rpms versus hg,.

ho (mm) rpm (asnd) rpm (desnd)
23.0 105.6 105.0
27.0 122.0 114.6
32.0 139.5 129.4
37.0 162.9 159.1
39.0 173.7 163.5
45.0 198.5 190.2
49.0 211.7 204.2
56.5 239.8 230.5
65.0 268.8 258.4
73.0 298.1 280.6
80.0 3325 305.0
91.0 360.0 335.5
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Table (2-2) shows the two upper limiting disk rotation speeds for triangular

equilibrium. The second column indicates the disk angular velocity at which

a n=3 wave terminates during the ascending sequence.

The third column

lists the RPMs at which a symmetric triangle wave begins to show up from a

mixed n=3+4 state during the descending sequence.

The numerical values in

the two columns should be identical if there was no hysteresis. This test is

repeated for 13 different initial levels to show its consistency, which are

listed in the first column of the table.

Table 2-2. Hysteresis (water), n=3 and disk diameter d = 252 mm, final
rpms versus hog.

hp (mm) rpm (asnd) rpm (desnd)
20.0 130.5 126.8
23.0 153.9 148.0
27.0 172.4 163.4
32 195.8 186.2
37 227.0 2239
39 238.0 236.2
45 269.2 267.0
49 288.1 285.9
56 320.8 320.4
65 360.2 358.1
73 394.7 387.8
80 427.0 428.5
91 459.4 456.77
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Similarly, Tables (2-3) and (2-4) show the results tor n=4 equilibria.  As
previously, the numerical values in columns 2 and 3 should be identical it
there was no hysteresis. This test is repeated for 13 different initial levels to
show its consistency.

Table 2-3. Hysteresis (water) Initial disk rpm, n=4 and disk diameter

d =252 mm.
hgo (mm) rpm (asnd) rpm (desnd)
20 141.4 140.8
23 157.6 150.1
27 177.0 166.0
32 196.8 188.9
37 238.2 235.0
39 2495 247.2
45 280.1 278.7
49 297.6 296.6
56.5 332.1 331.0
65 370.3 369.8
73 4154 409.6
80 457.3 457.3
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Table 2-4.  Hysteresis (water), final disk rpm for n=4 versus hg, disk
diameter d = 252 mm-

ho (mm) rpm (asnd) rpm (desnd)
20 174.4 170.5
23 189.9 186.5
27 210.6 204.8
32 224.2 226.0
37 254.6 254.6
39 267.5 267.0
45 299.0 299.4
49 3194 317.8
56.5 358.1 359.0
65 405.3 405.3
73 4333 41838
80 491.0 491.0

2.6 The effect of the disk’s diameter

The objective of this section is to examine how the disk’s size affects the
equilibrium wave at the same initial height of water.

Since the size of the disk in rotation obviously determines the strength of the
voriex generated, the base flow for the equilibrium waves, due to the amount
of shear force at the rotatory boundary. Hence, it is logical to presume that
the wave's occurrence, such as its amplitude and the disk’s initial rotatior at
which equilibrium waves start to emerge, would be influenced by the disk’s
size.
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Three disks of same thickness, same material, and different diameters are
made for this purpose. Four inijtial liquid heights are chosen to perform the
comparison tests.

In the following graphs, the horizontal axis is the disk rotational speed, the
vertical one is the disk diameter, and the solid horizontal line segment
joining two points represents the duration of speed that must be for a wave
(triangular or square) to exist.
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Figure 2-11 Disk speed limits of an n=3 equilibrium for
different disk diameters and hg = 27 mm.

What we can see from this graph is that the disk speed range in which a wave
of n=3 persists is shifted toward lower values for disks 234, 252, 268 mm
diameter, except for 284 mm, which is almost the size of the tank’s inner
wall. Another point worth noticing is that the speed segment range generally
increases with the diameter of the disks. Regarding the largest disk, which
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does not behave as do the other three, the explanation is not obvious. One
possible explanation could be that, due to the fact that there is virtually no
space between the disk's outer edge and the tank's inner wall, the base flow is
no longer a free vortex, but instead a forced vortex.
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Figure 2-12 The disk speed limits of an n=4 equilibrium for

different disk size and initial level of hg = 27 mm.

This graph shows similar characteristics for an n=4 wave as was for the case

an n=3 wave in the last plot.
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Figure 2-13 Disk speed limits of n=3 equilibria for different
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At the initial height of 39.2 mm, a disk of diameter 234 does not produce a
square core. The spectrum shift is also obvious in this case.
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Figure 2-15 Disk speed limits of triangle equilibrium for
different disk diameters at hg = 49 mm.

The general conclusion is that for the four different sizes of disks, except the
largest one, the disk range in which a wave pattern is present is shifted to the

left (lower) for larger disks.
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CHAPTER 3

LINEARIZED ANALYSIS FOR LOW
VISCOSITY LIQUIDS

The linearized stability analysis is applied to investigate the wave behavior in
a non-viscous liquid vortex. Two flow cases are considered herein. The first
case deals with waves developed on the free surface of a hollow liquid vortex,
while the second one deals with waves generated in the core of a Rankine
vortex. The result of the analysis makes it evident that the equilibrium
experimental dispersion velocity approaches the calculated one when the
wave amplitude is small. The latter is consistent with the small perturbation
assumption that is inherent in the theory. For the case where the core is
flooded (Rankine wvortex), the presence of a cylindrical wall is shown to
enhance the wave phase speed. A hypothesis is advanced as to how the core
equilibria develop in the mixed state regions. The graphical simulations
appear to predict reasonably well the main features of the observations.

In light of Kelvin's derivations, a simplified 2-dimensional version analysis
is employed here. Although this approach might be a simplistic address to a
complex problem, nonetheless, it does provide a good qualitative picture of
several phenomena associated with the present flow situations.



3.1 The base flow is free vortex

For a flow situation depicted as in Figure 3-1, the liquid is compelled to the
outer region of the disk, which is taken as the outer part of a Rankine vortex.

Figure 3-1 Top view of an equilibrium in free vortex.

The continuity equation in the polar coordinate system is,
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Where @ is the velocity potential,

Assuming that the equilibrium flow is the sum of base flow and a small
harmonic perturbation,

D (r61)=KkO+f(r)ie (100D @

the radial and tangential velocities are,

uzég;_f'iei(ne-m) (3a)
r
1 0@ K n i(n@-or)

Ve — =— = —-—J¢ 3k
r 06 1 rf (k)

where n is the circumferential wave number, 6 is the angular frequency and x
is the strength of the base vortex, and the prime denotes differentiation with
respect to the radius.

From continuity requirement,

f owrlf - r2n?f=0 4)

together with the non-penetration boundary condition at the solid wall,

u(r=a)= 0
we have
f(ry=C —rT+r—1-) (4a)
re"

where C is a constant.
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Referring to Figure 3-1, the radial hollow core shape can be approximated by
r(Z,G,I)zr(,(z).i.?(Z)e 1 (nb-01) (5)

Here, the third dimension z is introduced into the equations due to the fact
that the hollow air core is not constant, it expands from the bou.m upwards.
By involving z in this fashion, one more condition is implied : that all the
thin horizontal flow layers are independent of each other.

The boundary condition at the hollow free surface is that the radial velocity
matches the shape rotation, or in other words, a liquid particle on the free
surface stays there,

u = .a_l + 0 é_’_ ©
ot 7 d#6
Neglecting the second order terms, this leads to
.f‘ (r '\ ; .
re 6t) = r,. () - L el pitne-on) .

Kn

5

-

¥

e

The time dependent Bernoulli’'s momentum equation for the inviscid flow

is

%?+‘2L‘12+%=fn (t) ?)

where g is the total velocity at a fixed point in the flow field, function fn (t)
on the right hand side is a time dependent integration constant across the
flow field.

Applying this condition to the free surface yields
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Bernoulli’s equation applies to both unperturbed free vortex flow and small
harmonically perturbed flow. Subtracting the equation for the unperturbed

flow from the above, an expression for the disturbance wave phase speed or
dispersion relation is obtained as,

= =1,/ ~ (8)

(9)

where k = b/a, the plus and minus signs repiesent fast and slow waves.

In order for the wave speed to be finally calculated, two parameters remain
to be given : the hollow core radius b and the free vortex strength k. The frec
vortex strength has to be obtained experimentally from measurements by
LDA (see previous chapter). For the present analysis, the following empirical
correlation is used,

« [m*/s1~0.0005 @, [RPM ] (10)
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The hollow core radius b can be obtained from conservation of mass, with the
base flow as quasi-3D potential. Equating the volumes during steady rotation
and before rotation is initiated, we have,

1Y

ralh,=| 2nrdrz(r)

0

z(r)= _-Q_E[_L___Ljr (11)

The above condition gives

LY franf) o

2a2gh0
}’='——~'—,)—"+]

-

K

The solution of the above equations by any numerical method will provide
the value for b.

Up to now, we have all that is required to evaluate the wave phase speed c.
In Figures 3-2 to 3-10, comparisons between the calculations and
experimentally measured values are plotted, where a slow speed from the
Eqn.(8) (negative sign) is chosen. The slow speeds are the ones closer to what
is obtained from visual observations. Concerning why the faster wave is not
observed, one proposition is that since its amplitude is much less significant
than that of its slower partner, its presence is not visible.
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Based on the comparison, what is evident here is that the simplified linear
small perturbation theory does give encouraging results for the speed of the
wave, although it could not give the exact shape or the amplitude of the
disturbances, because there is still one integration constant to be determined.
The way to complete this constant is to find one additional condition, either
from the measured equilibrium shape or from the tangential velocity by LDA
for a specified radial location. Matching either of these two variables will
provide the supplemental condition in short.
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Figure 3-2 Equilibrium wave speed in a free vortex, n=3, hy = 22 mm.
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Figure 3-3 Equilibrium wave speed in a free vortex n=3, hy = 27 mm
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Figure 3-4 Equilibrium wave speed in a free vortex n=3, hp = 38 mm

140
E -®  Theory
5 120 I | —o Experiment ‘ ' i
o
&
o 100 | : - : .
= ° ] - e — e
- 80 | » e e O O .
s~ o— O —
60 | .
40

220 240 260 280 300 320 340

o, disk rotation (rpm)

Figure 3-5 Equilibrium wave speed in a free vortex, n=3, ho = 54 mm
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Figure 3-10 Equilibrium wave speed in a free vortex, n = 4, hgp=54 mm
To provide a more complete picture of the equilibria geometry on the free
surface, some numerical mapping will follow.

The expression for f '(b) from Equ.(4a) is substituted into Equ. (6a), and
together with the equation for the wave speed Equ.(8), one obtains

. A -
rn(zezorezt):l- n_;l \/n(l_l 4")8'(”00')

b

where

7, (2,=0,6,t)
b

r (z,=0,6,t)=

An is an integration constant and
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Given cp, k, a and taking
o =0
since what really counts is the relative speed of the wave with respect to the

reference frame rotating at a constant angular speed ¢, then the core radius at
the bottom is

Fu(z,=0,0)=1-B,ei(nB) (13)

where

B = An \/n(l-ﬂ.‘l")

n n-1

b

For a core in a given equilibrium state, increasing disk rotation speed results
in an increase of vortex strength x while y decreases. The latter implies that
both A and b become larger. Such an action will produce waves of the same
number with smaller amplitudes. Simulation mappings of these
characteristics of the core are shown in Figure 3-12 for the case n = 4. The
latter is consistent with the observations in chapter 2.

The equilibrium may therefore develop different modal forms as shown in
Figure 3-11. As mentioned in previous experimental observations,
symmetric equilibrium states emerge within specific disk speed intervals,
while in between two such neighboring intervals, mixed states are present.

If two waves are superimposed, the normalized radius of the free surface on
the disk can be expressed by



Funs1(2,=0,6 )=1'{ Dye '"(0-cyt )+ Dyne'’ (4138 -cy )
where
D,=B,/ 2 and D, y1=B, 41/ 2 respectively,

and

: r(z,=0,6t)+r, 1(z,=0,61t)
rn,n+1(zc=0,9,t)= nte 21b+

Simulations based on the above formulae are presented in Figure 3-13 and
Figure 3-14. The contribution of neighboring states has been incorporated
through the coefficients By and Bn41. As an equilibrium going through the
evolution of the mixed state region, one of the lobes becomes fatter (smaller
amplitude) as the disk rpm increments, splitting into two lobes to approach
the higher equilibrium state, see for example Figure 3-13. For a particular
mixed state at a constant disk rotation, its geometry deforms continuously as
it turns around. This property is graphically demonstrated in Figure 3-15.
The main features fit qualitatively well with the experimental revelations.
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(e)

Figure 3-11 Symmetric equilibria of n=2 to 6
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Figure 3-12 Core shape transformations for a symmetric square.
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Figure 3-13 Transformations from a lower order of equilibrium to one
of higher order through mixed states (n=3 to n=4).
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Figure 3-14 Typical mixed states.
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Figure 3-15 Time spectrum of a mixed equilibrium triangle and
square, its shape and core radius.
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3.2 Base flow is a Rankine vortex

Under certain prevailing conditions (mainly when the initial water level is
higher than that of previous free vortices cases and the disk rotation is not
reaching high), the core may be flooded with liquid. For this case, due to the
fact that the flow is no longer potential, the stream function's formulation is
adopted, and the following general flow structure is assumed

v (r0t)=%¥ (r)+y(r6,1) (15)

Where the harmonic disturbance,

f[/(;~,9,r)=§ (rye i (né -0ot)

is superimposed onto the main flow:

v (r):-—;— mr 2 for r <r,. (16a)

and

Y(r)=-xin(r)y forrzr, (16b)

Since the vorticity for 0 <r < T is not zero, the fluid motion in this region is
assumed to be inviscid and rotational. According to the vorticity
conservation equation for a two dimensional flow, the disturbance satisfies
the equation,

V(r) 9
20

d (V

275
(V V)+ —— dr

25y.Ld (L AV W _ g
(V2L (L ¥ (17)

The derivation of the above equation is at the end of this chapter. The
function E(r) of the disturbance must fit the above in the core flow region,
hence
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- A
5-—A1)‘”+ 7;? (18)

Since this yields a singular condition at r=0, therefore A2 has to be zero.
The velocity components are:
Uu=nAr rnlijei(né -or)

v =mr - nArn-1 ei(né -ot)

In the outer free vortex region, the disturbance must obey the irrotationality
and the corresponding boundary condition

u(r=a)=0 (19)

We have then

E =B (f"’-ﬂ)

r n

Now the velocity components in this outer flow region become:

. 2n
u =1—§—!E=;18{1~" }rn-liel(ne-ot)

"o ’-211
a '2n
74 K o, n-1 ., i(nb-01)
1Y —-3'—.—-’7-113 l+:—2—n- le

The velocity components u and v in the two flow regimes must be
continuous at the core boundary r =r.. Foru component, we have

A=B(1-“2")

5
re2n
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assuming the core boundary interface is given by
r (0.,):"(,—*-1 ()I.(HB-OT) (21)

Equating the v components in two regimes at this interface and using
Newton’s binomial expansion,

1 - L(l + A (,i(nB-O'r) )-l
'4('+Aei("9‘07) r(‘ r"
—-__1__ (1 } AL’ 1 (n@-01) + )
I r

By arranging and collecting terms, we have

K
A (m+—)

r.
( (
nB= -
n-1 2
2rF. ]

To obtain the perturbation wave phase speed, the following kinetic condition
should be matched at the perturbed core boundary (equilvalently to say that
the particles on the quasi-vertical core interface Equ. (21) stay there)

u=2 v 2 (22)

This results in

Cn n-(1-x2)
@ n

~ 2 )
where ¢h=0/n ,0=x/r, and X=1/4.
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Hence, a bounded equilibrium speed depends on only the core size and its
wave number.

Lamb presented a case for an unbounded vortex, which is only a subset of the
present situation. By taking a to be infinity in the above result, x. goes to 0
and Equ(23) yields exactly the same dispersion velocity as Lamb's. The
graphical representation of Equ(23) demonstrates that the presence of the
cylindrical wall enhances the speed of the equilibrium waves.

1.0

8
2 6
w

4 ---- Lamb (1932)

— present theory
2 i : .
0 2 4 .6 8 1.0

Figure 3-16 Wave speeds, in comparison with Lamb's results
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Derivation for Equation (17)
Euler's equations

u- momentum

ou ou  pou 2 | op
—_— 4 — + _— - = 4 10(
o Yt T T o (302)
v- momentum
ov oV v oV Luv—_ 1 9P (30b)
or 8; rog v Proe
Continuity equation
du 1 OV |y
= 4+ L2 4 U = 31
or o6 r o
Let
u(r.0.0)=u (r,0.r)
v(r,0,0)=V)+ver.0.) (32)

pr.0t)lp =Iu)+x(r.0.0)

Inserting the above into Eqn.(30a), (30b) and (31), neglecting the second order
terms we get,

E)u V(z )au _2Vr) ) 5= . Qir

ax r 96 r or

o, V) oy 1deVe)),_ 1on 33)
ar rod6 r dr

" J6
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or

<)
+
~ =
i
o

o1
L

QJIQJ
(o)

Tc eliminate pressure perturbation, differentiate the two momentum
equations with respect to 8 and r, then do the subtraction.

Defining
ou d(vi)
= = . 34
: a6 or 34
and introducing intermediate variables
N 25 , ~
A=V(.1)E)L_v(r)8\=V('r)[a_§_+i] (35)
r 392 0o T 06 36
and
go. 0 1duVeY) dVe)d dHVe)r) .
a6 r dr dr  or dr?
from continuity, this turns out to be
B = - dr V() (_LAL y - a’z(V(r)r) "
dr ¥ dr?
= - ;L(L d_.__(___v_ r )_ )’l\l
dr 7 dr
Then we get
08 L Y g (LdVr) g _ g (36)
ot r o8 dr ¥ dr

Using a stream function for the perturbed velocity components
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A A -
r96 )
So .0V
dr
§ = VY (38)

The final equation is what we set out to derive,

d w2y, V() 0 waoy 1 4,1 d(Vr) oy
—(V-wy+ —(Voy)-L 4 (L X =90
E)t( v r 06 v "dr(" dr )86
(39)
Calculations of core size and base vorlex intensity
Base flow
Vo =@ 1 r<or
(40)
Ve: —”%‘- r 2 r,

To calculating the free surface profile, neglecting the impact of small wave
perturbations on the pressure at the bottom, then the pressure is uniform in
the 360 degrees circumferential at a fixed radius. From the r momentum

equation,

_ldp_ _V§ (1)
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Figure 3-17 Cross-sectional schematic for a Rankine vortex.

Integration of it in the two flow regimes by substituting the tangential
velocity with the two respective representations Equ.(40), and dividing the
pressure by density gives the vertical elevations of free surface

I

c=h + (42a)
2g

and

2
K 1 |

2=+ -2-—('—2 -—) (42b)
8 r. r

where Z¢ is the free surface vertical elevation at core.

One more condition is the conservation of the liquid volume before and
during the steady rotation,
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r, r 5
.[0 “z 27trdr+j ‘z2mrdr =hymr (43)
,

.
Setting r equal to the core radius in Equ(42a), then putting the Zc into
Equ(42b), setting the r in the resulting expression to tank radius, ends up
with,

2

Ve 2
h,-h+§—§(2-ac)

Integrating the volume conservation equation Equ.(43), substituting the
velocity v¢ from above , arranging terms gives,

5(2-x2)-(2-35.\7(2-+2.\'31n.\‘(-)=0 (44)

where

h 0- h

“h,-h

Up to this point all the parameters as to calculating the core size and vorticity
have been completed. In turn the wave phase speeds can be evaluated
without difficulty.
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Figure 3-18 Wave speed in a Rankine vortex, hg = 87.5 mm, n = 2.
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Figure 3-19 Wave speed in a Rankine vortex, ho=100 mm, n= 2.
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Figure 3-20 Wave speed in a Rankine vortex, hg = 87.5 mm, n = 3.
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CHAPTER 4

Oil Vortex Equilibria

4.1 General description

To continue the previous exploration of vortex equilibria, we turn to a fluid
of higher viscosity. Although liquids with intermediate viscosity (Shell oil
10W v=567x100 m/s) bear many similarities to water, their evolution
shows quite different behavior.

The common behavior that, during the quasi-static (very slow) spin-up and
spin-down of the driving disk, the hollow vortex core transform into a
sequence of symmetric equilibria with varying wave numbers. The waves
rotate in the base flow. At the same time, there are a few notable differences
which distinguish the oil equilibria properties from water's.

First, there are no fixed rotation speeds at which transformation from one
wave pattern into another takes place, as the transitional speed depends on
the special circumstance. The transformation is often abrupt without any
mixed state region in between two symmetric patterns, as was the case with
water.
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Second, there are more equilibria attainable in higher viscosity vortices than
in water. Core patterns in terms of circumferential wave numbers ranging
from n=1 to n=11, shown in the photo plate 2, are observed during the
investigations. In contrast to water, low wave nuinber cores appeared
mainly at higher disk velocities than those for high wave number equilibria.

The third main difference is that, given the initial liquid level, the final flow
pattern for a given disk rotation depends on the time history of the spin up or
spin-down process. Detailed descriptions will follow to expose the scenarios
and variables which come into play.

Another point is the sensitivity to initial conditions of the present problem.
There were times when we started the disk rotation for the same amount of
oil from the rest, different equilibria could emerge ! It seems that some very
subtle variations of temperature and bubble content may have caused this.
Similar circumstances have been reported in the concentric rotating spheres
problem, the Taylor vortices and Bernard convection, see Wimmer (1976),
Benjamin and Moulin (1982), and Busse (1978), respectively.

An extensive summary of hydrodynamic bifurcation theories is given by
D. Joseph (1985). He presented some simplified theoretical base for Hopf
bifurcations, isolated solutions, and the Landau conjecture, along with the
common features from past experiments involving transitions, bifurcations
and hysteresis. Of special interest to the present problem are bifurcations
from a steady flow into a time periodic flow (one single frequency, Flopf), and
from time periodic to a quasi-periodic flow of two frequencies. A quasi-
periodic flow solution of 2 frequencies behaves like this,

f(oyt,wt) = f(w t+2mm, w, t+2nm)

The two angular speeds are rationally independent, since these are the two
types of bifurcations observed in our experiments.
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4.2 Oil equilibria development for different initial heights

Since the behavior of the oil equilibria may change dramatically for different
initial liquid height, even though the difference may be sometimes only a
few millimeters, detailed descriptions will be presented for each of the initial
oil heights (presented as test cases) conducted. In most cases, two sequences,
ascending (spin-up) and descending (spin-down), are included to investigate
the issue of hysteresis. The increment and decrement of the disk's angular
velocity in the two sequences is kept small (in the order of 2 to 4 rpm per
adjustment) for most of the time to approach the static condition.

4. 2.1 Test case initial level hg = 5 mm

.

|

_6 Sl L e — 1 1 . 1 1 - 1 ! i I
170 190 210 230 250 270

(0, Diskrotation (rpm)

Figure4-1  Equilibrium sequences during spin-up and spin-down of
the disk for oil at hg = 5 mm
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Ascending sequence

The ascending sequence is represented by the arrowed line segments pointing
to the right (disk rotation speeds up) shown in the Figure 4-1. Prior to the
experiment, the oil level is horizontal, then the disk is set into rotation by a
gradual adjustment of the variac. The central part of the oil level lowers,
then it touches the disk, and a circular contact line forms. As the disk speed is
increased, the flow starts to lose stability at 04=184 rpm, where a wave of n=
11 replaces the circle (n=0), and we denote this core mode as n=11+. The
number refers to the equilibrium wave number, and the plus sign indicates
that the wave is co-grade (or it rotates in the same direction as the fluid).
The equilibrium speed is lower than the angular velocity of the disk, and
increases with the disk rotation 04 (at 0W4=184 ,189, 199 rpm, ®,,;= 85.7, 90.0,
91.0 rpm, respectively). The 11+ mode persists until 004=204 rpm. At this
speed, the wave number reduces suddenly to n=10+. At approximately
®W4=210 rpm, the core is harmonically modulated by a retrograde n=5 wave,
superimposed onto the flow. The modulation produces some unequal
distribution of wavelength among the 11 wave segments (some are larger
than the others). The amplitude of the modulation increases as 004 goes up.
Finally, at 04="24 rpm, a pure retrograde n=5- emerges, and this mode lasts
up to Wq=233 rpm. At 04=233 rpm, the n=5- flow smoothly changes into n=6,
a standing wave pattern (the hexagon crest does not rotate at all). When ®q
increases slightly, the hexagonal core begins to move slowly in the direction
of disk. At ®W4=238 rpm, n=6+ transforms into an n=7+. This equilibrium
state persisting up to 04=252 rpm; where, an n=8+ wave evolves. This core
pattern endures until ®4=270 rpm where in turn a wave of n=9+ emerges.
From this point onwards, many small vapor bubbles are produced. The n=9+
flow persists until ®94=304 rpm, where the multitude of bubbles give rise to a
milky appearance of the oil. The ascending sequence is terminated there.
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Descending sequence

The descending sequence is depicted in Figure 4-1 by the arrowed line
segments pointing to the left, they represent the flow behavior during the
spin-down of the driviig disk.

In order to eliminate the small vapor bubbles, we stopped the rotation for
about 3 hours. Then quickly accelerating the disk to ®gq = 258 rpm, where a
pattern of n=8+ appeared that was consistent with what happened in the
ascending sequence. Reducing quasi-statically Wq down to 223.5 rpm, the
symmetric octagon remains while the wave phase speed decreases. However,
the present speed interval covers those for n=5-, 6+ and 7+ in the ascending
sequence. Both hysteresis and bifurcation are evident. At w4=223.5 rpm, an
n=6+ replaces the n=8+ mode. As W4 is lowered to 210 rpm, the n=6+ wave
starts to be modulated by waves of a smaller wavelength, the macro
hexagonal pattern remains until W4=206 rpm, where n=11+ presents itself,
which has some trace of modulation by a macro 6+ wave at about ®y3=200
rpm. The n=11+ flow disappears when disk speed is quasi-statically reduced
to 172 rpm, a circle contact line resumes.

Hysteresis is a general phenomenon in non linear problems. In the case of
this equilibrium transition, its cause is the molecular interaction of the water.

Comparing the two flow sequences of increasing and reducing disk speed,
several points could be made on the hysteresis and bifurcation in this
laminar flow spectrum:

1) Bifurcation between a steady motion and a time periodic one

The lowest hysteresis zone (04=172 to 184 rpm) for n=11+ and the steady
circle (n=0) is clearly a Hopf bifurcation. In this speed segment, the ascending
flow is a steady one, that is flow properties are constant in time. The flow
parameters in the descending flow are time periodic, with a period of one
eleventh of the equilibrium phase speed.

2) Bifurcation between two different time periodic flow patterns
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Any speed intervals on the diagram where the two sequences trace out
different lines indicates such a bifurcation. Hence, there are in total six
combinations of bifurcations in one frequency periodic flows. Some of them
last for a very narrow disk speed interval (204 to 206 rpm, 223.5 to 224.0 rpm,
and 233 to 238 rpm).

3) Potentially non-unique bifurcations

The mode n=8+ in the descending sequence overlaps the three modes n=5-,
6+ and 7+ in the ascending sequence. This reveals the possibility of
transformations among four distinctive modes.

Another distinction between the transition of oil and water is that for water,
there always exists a speed gap between two consecutive symmetric patterns,
while for oil, the transitions generally happen at some specific speed in a
catastrophic manner. The origin of this behavior lies in the high viscosity of
the fluid.

The observations just described are the result of several trials with this initial
height of level. It would be interesting to see how a continuously ascending
and descending circle develops, without having to wait a few hours for the
small eddies to decay at the end of the ascending sequence. Another test was
performed for a lower final disk speed where bubbles are not allowed to be
formed, see Figure 4-2.
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Figure 4-2  Equilibrium sequences of oil at hp=5 mm in a continuous

spin-up and spin-down cycle

Ascending process

The flow loses the circular interface shape to a wave n=11+ at W4=181 rpm,
this mode continues up to 202 rpm. There, the flow is modulated by a
retrograde n = 5- equilibrium, which dominates the flow field as the disk
approaches a speed of 207 rpm. This n= 5- equilibrium persists to wg=206,
where the n=5 wave concedes to a co-grade n = 6+.

Descending sequence
Spinning down the disk from 216 rpm, the hexagon wave changes into n=11+

at W4=200 rpm, and this pattern remains upto W4=174 rpm, where a circle
resumes.
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In this second run of the same liquid level, the hysteresis and bifurcation are
repeated as in the first cycle, showing that the pause between the two
sequences in the first case was not adding side effects on these two
characteristics. Two types of bifurcations are also reproduced.

Carefully examining the two flow state diagrams, it is easy to see some
discrepancies between them. For example, at disk rpm 216, the flow modes
in case one are at 10+ and 6+, while in case two both sequences are at 6+.
The causes for the discrepancies are obscure, and attention has been made to
resemble all the experimental conditions and procedures. The very small
deviations of the disk speed from absolute quasi-static increments may be the

source.

4. 2. 2 Test case with initial level hg=7 mm

A modest increase (2 ¢m) of the original liquid height, yields dramatic
changes in the flow behavior, as comparec with previous cases, see Figure
4-3. In this case, the quasi-static ascending sequence was followed by a quasi-

static descending one without having to stop the disk.
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Figure 4-3 Equilibria spectrum in two flow sequences for oil at hg = 7 mm

Ascending sequence

After a quasi-static increase of the disk speed from rest to ®¥4=183 rpm, the
circular interface is first replaced by a retrograde pentagon. The flow is
superposed by a weak precession. This flow fashion persists until Wg=217
rpm, where a pattern of n=7+ emerges through an abrupt transition. This
flow state remains up to 236 rpm, giving away to a pattern of n=8+. Al
04=240 rpm, a core pattern of n=10+ replaces the octagon. This state could
have persisted further, but the ascending sequence is stopped at 242 rpm.

Descending sequence

Slowly reducing the disk speed from 242 rpm at the end of the ascending
process, the n=10+ pattern stays all the way to a speed of 0g=200 rpm, thus
overlapping the speed spectrum for n=8+, 7+, 5- of the ascending process. At
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W4=200 rpm, the flow abruptly evolves into n=5- pattern. This retrograde
pentagonal core changes into an n=10+ at 0W4=186 rpm. A further gradual
speed reduction shows that the latter pattern lasts to ®W4=150 rpm, and
disappears at lower rotations, then a circle resumes.

Special features of quasi-static sequences at this height of oil:

1) A profoundly different core behavior, even with a modest variation of
the initial oil level, was apparent,

2) The n=10+ was not available at the beginning of the ascending sequence,
but it happened at the end of the descending process,

3) Two typical bifurcations are persistent in this case too : between steady
and time periodic flows, and between two single frequency time
periodic ones.

The initial conditions have been shown to leave a great impact on the
particular flow arrangements. Until now, the time history has been limited
as quasi-static multi-steps of infinitesimal changes. In order to appreciate
the effect of acceleration on the development of the individual equilibria, we
forced the disk from rest to reach a specific speed which has been attained in
the above quasi-static flow sequences. One fast acceleration from the resting
state of the disk to 202 rpm, a co-grade hexagon n=6+ appears, instead of n=5-
or n=10+ as was the case tor the quasi-static sequences. Clearly, this time
dependent, non-linear problem is absolutely dependent on the time varying

external force.
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4. 2. 3 Test case with initial level hg =10 cm

At this liquid level three new phenomena with striking features appeared,
these are summarized below.

First, the circular core shape persisted until certain specific rpm was reached,
where suddenly a wave of n=4- appeared, see Figure 4-4. The dispersion
velocity shown in Figure 4-5 was found to reduce linearly with the disk speed;
later on, a core of n=5+ appears (for a detailed description of the evolution
process, see case 1 below). Ata later g (221 rpm), one additional solitary
wave was seen to encircle the core, a state of n=5+1 (the one after the plus
sign indicates the presence of the solitary wave). The solitary wave’s speed is
greater than the dispersion velocity of the basic wave pattern. The influence
of the extra solitary wave on the base wave pattern is visually illustrated in
photo plate 3. The process leading to the occurrence of the solitary wave is
also presented in case 1.

Second, a lowest order of flow state (circle) exists in between two higher
orders of equilibria (case 2). This gives evidence that a flow may look very
stable, but it could go unstable if some critical parameter assumes values that
are slightly higher or even lower.

Third, and mosi astonishing for this height, the bifurcation can be visualized
interactively by introducing an external disturbance. The key evidence is
apparent during a test run at 216 rpm, in which three stable symmetric
equilibrium states were obtained by disturbing the flow with a rod (e.g.
intruding into the flow and withdrawing it). This means that there exist
three stable solutions for the exact same boundary conditions. Here, multiple
bifurcations are evident. Case 3 gives further details on this.
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Case 1 Quasi-periodic flow, linear phase speed

Ascending Sequence

Quasi-static increase of Wy to 187 rpm, the circular contact line changes into a
square, a wave of retrograde n=4- is present, and the wave speed is linearly
reducing with ®4, see Figure 4-5. From ®4=219 rpm, the square wave
evolves into a n=5+ pattern, rotating in the direction of the disk, ®5=4.7 rpm.
The n=5 wave persists for a very short (g range (around 2 rpm). At 04=221
rpm an extra solitary wave is superimposed on the base n=5+ pattern. This
solitary wave rotates in the same direction, but faster than the base wave (s
= 12 rpm, s = 51.4 rpm; while at Wy = 226 rpm, 05 = 15 rpm, Wg = 52.5 rpm,
slightly increasing), see Photo plate 3 for its impact. The 5+1 flow changes
into 6+1 at W4=229 rpm, which is a faster rotating solitary wave
superimposed on a basic hexagonal pattern, (the hexagon being co-grade).
When ®04=234 rpm, the flow changes into n=7+1, which is a septangular
pattern combined with a faster tidal solitary wave as before. The solitary
wave slows down at a higher disk speed, and finally at 04 = 246 rpm, a
stationary octagon n=8 results with the solitary wave becoming one of the 8
vertices. This flow persists up to W4=280 rpm; later on, the flow becomes

turbulent.
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Figure 4-4 Equilibrium states in an ascending sequence of oil at hg = 10 mm

An important flow state is present in this case, that is the two frequency quasi-
periodic flow. Starting from disk speed 221 rpm, the existence of the solitary
wave represents the addition of a second frequency to the equilibrium vortex
flow. This quasi-periodic state is one step further towards turbulence in the
course of transition from steady laminar flow.

Also worthy of attention is that the quasi-periodic flow itself goes into a more

sophisticated structure as the driving disk rotates faster, n=5+1, 6+1 and 7+1,
in turn, getting more fragile to disturbances.
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Figure 4-5 The phase speed of an oil n=4 equilibrium wave for hy=10 mm

Case 2 Test case with an isolated state

A circular state, the simplest structure, is found to exist between two complex
ones, n=5- and 10+ during descending sequence. Also another characteristic,
multi-edged (more than 6) symmetrical waves are observed in the beginning
of a low speed region. This is not always attainable, as sometimes the @) is
intentionally increased very slowly, the multi-edged waves were not present;
instead, flow starts from a square or pentagon equilibrium. [t seems that the
second characteristic is due to some minor variations of either the property of
the oil or the initial height.
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Figure 4-6  Equilibrium states in ascending and descending sequences
for oil at an initial height of 10 mm, case 2. (with an isolated
state).

Ascending sequence

Starting from ©4=132 rpm, the circular interfacial contact line becomes
rough, a pattern of n=11+ appears and persists up to ®4=156 rpm during the
quasi-static speed rising process. At this speed, the flow pattern shrinks to
n=10+. Increasing the disk speed close to 180 rpm, a harmonic modulation
that intensifies can be observed. Finally at 0W4=181 rpm, a pure retrograde
n=5- emerges. In order to explore the hysteresis and multi-solution nature,
the spin-up process is stopped and the spin-down starts at this relatively low
disk speed in order to avoid the creation of vapor bubbles.
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Descending sequence

Reducing slowly wq from 181 rpm, a counter rotating pentagon endures until
04=170 rpm. The transition results in a circle, as if nothing has happened.
The circle continues until the speed is deduced to 145 rpm, an n=10+ re-
surges, and it persists to 04=131 rpm. Between W4=131 and 127.5 rpm, the
flow is n=11+. At lower than 127.5 rpm, an undisturbed circular shape of core
exists.

Special feature of case 2

Besides the familiar phenomena previously discovered, namely the
bifurcations between steady and time periodic states, between the time
periodic flows, the most stable structure (a circular one) emerges in between
neighbors of periodic solutions. This should be what is known as an isolated
solution.

Case 3 Triggering bifurcations by artificial disturbances

This time, the speed of the disk is increased slowly from zero by many
increments. Retrograde flow mode n=5- first appears from a circle at wy=180.5
rpm instead of n=4-. By intruding a rod for about 4 seconds, then taking it out
of the oil, a hexagon n=6+ wave develops. This has been shown that
bifurcation can be made by introducing external disturbances in the hysteresis
range of speed. The co-grade hexagon can be also changed back by another
intrusion of the rod to give into a retrograde pentagon. Hence, the two flow
states are both stable solutions. The same process is repeated at a speed of 184
rpm.
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Event sequence

Figure 4-7 Oil equilibrium mutations at hp=10 mm and disk speed at 180.5
and 184 rpm.

* Special feature :

Modes n= 5- and 6+ are present in the speed range that previously mode n= 4-

existed. Hence bifurcations must be present.
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Bifurcations between a time periodic flow and a quasi-periodic one
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Event Sequence

Figure 4-8  Bifurcations between time periodic and quasi-periodic
flows. Oil at hp=10 mm and disk rpm 216.

This is the first time that the bifurcation between a time periodic flow, which
is of a single frequency, and a two frequency quasi-periodic flow is visualized
interactively ! The latter demonstrates another common characteristic in the
development of hydrodynamic instabilities. The manual triggering has
vividly brought to life the multiple solutions.

Quasi-statically increasing the disk speed ®q from zero, at ®q=184 rpm, the
circular contact line gives way to an n=4- wave pattern. By artificial
disturbance with the intrusion of a rod in the gap between the outer disk edge
and the tank wall, the retrograde square re-surges from a circle after the stick
is removed. This indicates that the mode of flow is very stable. The n = 4-

81



stays up to W4 = 216 rpm, where the intrusion and taking away of the rod
show bifurcations:

(1) First intrusion and pulling away changes the 4- pattern into a 5+
p 8 y 8 P
pattern, a pentagon rotating in the direction of the disk,

(2)  Second intrusion and pulling away of the stick changes the positive 5
pattern into a transient n=8+, a co-grade octagon equilibrium,
which lasts for only about 12 seconds. In turn, a pattern of n=5+1
evolves without artificial interference. The n=5+1 pattern is a state
which consists of 5 vertices going in the direction of the disk, but there
is a solitary wave present at the same time in the flow that rotates
faster than the base hexagon pattern. As a consequence, the base
pattern is displaced azimuthally at the crest of the solitary wave,
and is not a perfectly symmetric hexagon. The flow is a synthesis cf
two components each with a different frequency,

(3)  Another rod intrusion and pulling out brings the pattern n=5+1 into
a pure n=5+ patterr.,, a symmetric pentagon rotating in the disk's
direction; the solitary wave disappears. This is a transition from
two frequencies into one frequency flow,

(4)  An additional disturbance using the rod changes this pattern back to
the 5+1. This type of flow endures up to W4=226 rpm.

During the descending sequence from 226 rpm, the n=5+1 pattern persists
when g is reduced to 200 rpm. With the rotation of the solitary crest going
slower and slower, eventually, at 196 rpm, a pattern of symmetric n=6+ is
present. At this time, by one rod operation, an almost standing wave of 5
results. Further reduction of the speed, a retrograde pentagon emerges. At
®3=183 rpm, another rod disturbance brings the flow from n=5- to n=4-. We
were not able to bring the flow back to n=5- by any further rod disturbance,
hence the counter rotating square stays until 180 rpm. Following that, a circle
resumes at lower speeds.
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** Effect of time history via acceleration:

A fast acceleration of the disk from rest to @3=201 rpm gives rise to a stable
n=5-. But different wave patterns (n=4- in ascending sequence and n=6+ in
descending sequence) were seen to manifest when the exact same speed were
reached quasi-statically. The latter suggests that the transition from 6+ to 5 in
the descending sequence could happen earlier. Therefore, the evolution ot
the flow depends strongly on the time history of the disk acceleration.
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4. 2. 4 Test case with initial levels hg=15, 22, 31.5 mm
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Figure 4-9. Equilibrium states with a spced gap for oil at hg= 15 mm

Ascending sequence for hg = 15 mm

By quasi-static increase of the disk speed from zero up to Wyg=140 rpm, the
circle outline first breaks into a pattern of n=10+ Some precession s
superimposed on it, which attenuates as g is increased. The same flow
pattern remains until 175 rpm, and the wave phase speed augments with the
disk's rotation. At ®4=176 rpm, an abrupt transition yields a retrograde
square n=4- core shape. Its phase speed becoming slower as 0)g increases. At
207 rpm, an absolute-stationary square core shape is present. When the disk
rotaticn is further gradually increased to 210 rpm, the square starts going in
the opposite direction of the disk, and with some tumbling Later on, a fauter
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revolving solitary wave 15 observed in the flow, the square 15 distorted, and
there 15 more shaking Both the phase speeds of the square and the sobtary
waves are larger with g At 230 rpm, the core pattern is not very clearly
defined, however it 1s close to a pentagon  In the speed range of =234 to
255 rpm, the flow state 15 not stable, the outhne being sometimes n=5, 4 or
sometimes 6, 7 This is the first time in our observations that a speed gap on
the state diagram occurs with non-unique states. From about W4=255 rpm, a
pattern of n=5+ appears, and persists up to W4=270 rpm Beyvond that speed,
strong turbulence mn the flow makes the outline fuzzy

Descending sequence

At the end of the ascending sequence, since there are many small o1l vapor
bubbles in the oil, the rotation 1s halted, leaving the o1l to remain at rest for

about 3 hours.

A quick disk acceleration to Wg=230 rpm gives rise to a pattern of n=4+1 15
present, which is a faster rotating solitary wave superposed on a positive
rotating square, resuming the state in the ascending sequence. The descending
sequence starts from there by quasi-statically reducing g all the way to zero.
The n=1+1 state remains up to 202 rpm, where the decelerating solitary wave
joins the base pattern, and a pure stable n=5+ pattern emerges. The co-grade
pentagon lasts until 180 rpm, where a smooth transition leads to a retrograde
square n=4- state  The negative square wave pattern changes into n=11+ at
®Wg=174 rpm, in turn this pattern gives away to n=10+ at W4=164 rpm. That
flow state is preserved until 132 rpm, after which speed the circular core

resumes.

The state diagram also shows that there is bifurcation between n=4- and n=5+
at approximately a speed of 200 rpm. This is convincingly confirmed by
quickly accelerating to that speed, intruding a rod in the space between the
disk edge and the tank wall for a few seconds and pulling out. A transition
from 4- to 5+, or vice versa is observed.
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* Special features of the flow:

A speed gap exists in ascending sequence, which has never been possible tor
any of the previous liquid heights. An n = 11+ emerges betore n=10+ 1 the
descending sequence  This shows that the two sequences ditter not only in
time (hysteresis) , but also in flow states

Test case with h,=22 mm
10
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Figure 4-10. Equilibrium states with a speed gap, oil at h4=22 mm

For a relatively large liquid height (22 mm), some particular features are
present. Above 167 until 171 rpm of the disk rotation, the n=8+ core 1s
subharmonically modulated by an n=3- wave, which is another form of the
two frequency quasi-periodic flow state. Also, unsteady states appear in
speed intervals 212 rpm < 4 < 232 rpm and W4 > 254 rpm.
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Ascending sequence

At this height, by a quasi-static increase of the disk rotation in the range of
Wy4=95 to 130 rpm, strong precession 1s present 1n the flow, and the vortex
contact line 1s more or less a aircle. The precession weakens as the (g tends
towards 150 rpm. At 152 rpm, first appears the pattern of n=7+, exhibiting a
very small degree of wobbling.  When the speed increases to 160 rpm, a
positive rotating octagon n=8+ replaces the 7+ pattern. Above 04=167 rpm,
harmonic modulation of a retrograde triangular wave is present The 8 edges
are not equally sized Finally at 171 rpm, transition results in a pattern of a
pure n=3-. This flow state is very stable up to 197 rpm. From ®g=198.5 rpm,
due to a solitary wave, a arcumferential shaking was observed, that amplifies
with increasing Wy up to 212 rpm. Bevond that speed, unstable flow exists,
giving ecither n=3, or 4 or 5. From 232 rpm, a stable n=5+ shows up, that
persists until W4=254 rpm, then unstable flow states occur once more. For 254
to 260 rpms, the flow 15 turbulent and n=3 dominant. For 260 to 270 rpms, the

flow is a turbulent n=4

Descending sequence

Letting the oil rest for about 3 hours at the end of the ascending sequence,
quickly accelerating the disk to 241 rpm, the descending process starts. At this
speed, a pattern of n=5+ exists, consistent with the ascending sequence. The
5+ pattern persists down to 238 rpm. Between this speed and 224 rpm inter-
changing modes of n=4, 5 and 6 are observed, the flow being unstable. In the
narrow range of 2 to 3 rpm around 223 rpm, the flow is a 4+ state. In the
range of 221 to 214 rpms, another unstable speed interval, no unique pattern
was possible, with the flow field alternates between n=3 and n=4. When the
rotation is between 214 and 172 rpm, the flow is stable, a pure retrograde
triangle n=3- is present. Near the lower limit of 172 rpm, modulation starts to
appear. From that speed until 150 rpm, the flow state is that of n=9+ . From
150 rpm and lower, the flow is 7+, which disappears at 144 rpm and a circular

outline resumes.
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Another fast acceleration to 193 rpm trom rest brings the tlow to a very stable
pure square wave 4+, that was the speed tor 3-an the two quasi-stati
approaches.  The dependence of tlow state on the acceleration course s

obvious.

Special features
- A speed gap exists where no stable state 1s possible,
- Bifurcations and hvsteresis at this height are evident, and there s

- Dependence of flow state on acceleration

Test case with hp=31.5 mm

With this imitial o1l height, no stable symmetrical wave patterns are ever

possible

In this case, during the ascending sequence, the tlow starts to wobble
(precession) from ©g=100 rpm. The precession itensifies as Wy ncreases
and the wobbling core outhne 15 almost circular. This tlow state persists until
the quasi-statically incremented speed reaches 240 rpm, trom where the
unstable equilibria n=4 or n=5 emerge occasionally and precession s not
significant. The flow develops into a turbulent square-dominant core from

W4=270 rpm onwards.
Since no laminar distinct stable waves are available in the ascending process,

there is no need to explore the relevant properties by pertorming the

descending sequence.
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4. 3 Discussions and conclusions on the oil equilibria

During these mainly exploratory studies, the course of tlow evolution trom a
steady state of maximum svmmetry enroute to the turbulence was tound to

be quite complex A tew characteristics can be summanized.
1 Non uniqueness

The flow state is not uniquely determined by macroscopic, measurable
parameters hke Revnolds or Tavior numbers.  For the given geometry  of
tank and disk, it depends on how the final values of these parameters are
reached  As an nitial value problem, its solution relies on the time
dependent, external foraing tunction. The boundary conditions are only part
of the restrictions imposed on the solution.  The physical torms of the
emploved transient, external torcing functions emploved are : quasi-static
ascending, quasi-static devcending sequences of disk speed, and accelerated

approach of a final disk rotation.

2 Common teatures of hvdrodvnamic bifurcations

After reviewmg the transition processes n Poiseuille flow, Couette flow
between concentric rotating cylinders and the flow between rotating spheres,

Joseph gave three common features of hydrodynamic biturcations.

-- a steady spatial symmetric solution is replaced by another steady
flow,

-- a single frequency time-periodic flow replaces the steady flow when
the Re goes higher , and

-- at higher Re, the single frequency time periodic flow gives up 1ts
stability to a multi frequency periodic ( quasi-periodic) flow.
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Among them, the last two have been observed i the present experiments

Biturcation betaeen a steady flowe and a summctiic otating tHow that s

ot a smgle frequency

In the present study, this type of biturcation happens mainly - between the
flow at the beginning ot the ascending sequence and the tow at the end of the
descending sequence.  The ascending sequence always starts trom a steads
circular core, which 15 of maximum spatial symmetry - On the other hand, the
descending sequence near the end alwavs has a symmetiic rotating

equtlibrium betore 1t resumes the circular core at even a lower speed

In one particular case of ho=10 mm with an 1olated state, see Figure -6,
when Oy (rpm) is in [145, 170],  flow bifurcates between the steady,

supercritical circle and two periodic states n=11+ and 10+,
Biturcation to 2 trequency quase-periodic flow

There are two phvsical representations, one involving a faster arculating,
solitary wave m the presence ot a base slow symmetric equilibrium, such as
the equilibria n=5+1, 6+1, 7+1 at hy=10 mm and n=4+1 at ho=15 mm
Another mmvolves the harmonic modulation ot one equilibrium by another
ot difterent wave number, such as in Figure 4-1, 04 = 210 rpm , ho=5 mm and
in Figure 4-6 03 = 180 rpm ha=10 mm. In both cases, the two wave numbers
are both 10 and 5. Bifurcations between one symmetric rotating flow and
another are numerous among the two quasi-static sequences This type of
bifurcation is not among the common characteristics The first common type
of bifurcation between spatial steady flows is not observed in the vortex
agitator with oil.  Probably, the conditions for two flows of circular core

mode at the same Reynolds number are not among those reached

3. Hysteresis
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There often exists strong hysterests in transihon from one wave pattern to
another i ascending and descending sequences  In these hvsteresis speed
regimes, two or more persistent solutions are present, which have been
convinangly confirmed by introducing external artiticial disturbances nto
the flow for several occasions to trigger the toggling.  Three persistent
solutions at the exact same determining boundary conditions (except the tree
surface) and Re or Ta are also experimentally obtained at hp=10 mm

4 Ifficulty 1in reproduction

The flow pattern sequences in the descending process could not repeat those
in the ascending process tor most of the cases. The ditference hes in both the
order of occurrence and in the patterns themselves. Even for the same
sequence (e g ascending), the next run is not always the same as the first one

though great effort is exerted to reproduce every condition.

This does not look strange in the domain of flow instability  Belyvaev (1978)
tried to check the results of Munson and Menguturk (1975) on flow between
rotating spheres; he tound something new instead of reproducing the same

sequence of flows.

5 Spct‘d gaps

For low hg ot 0il (5, 7, 10 mm), transitions between consecutive patterns are
abrupt and mstant at a particular speed. Well-defined, persistent flow states
follow one after another along the disk speed axis.  For a slightly higher
level, like 15 mm and above, there are some speed gaps in which flow state is
not persistent, no unique mode exists. This phenomenon is similar to the

cases with water, except that there is no persistent mixed modes for oil.

6. Sensitivity of the flow
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Small vanations ot the hquid height can cause a drastic alternation to the
tlow behaviorn, hike between ho=5 and hp=7 mm The dittrcultios
reproducing a sequence indicate that slight emperature ditterences and small
variations ot the mitial residual vorticity levels in the tlud are suspedted to

mfluence the evolutions ot the equihibrium

The tlow may be also sensitive to small variations of the hquid properiy
(vViscosity, surface tension) and to some other as vet unknown ettedts Hon
example, i the case of hp=7 mm, during the ascending sequence, evea when
very smail speed increments were tried, no n=10 pattern showed up, stili
exists at the end of the descending sequence Another example, at hy 10
mm, only one out of tour cases presented starts trom a large number vertices

wave n=11.

Further studies must address m detail their intluences by prease patameter

measurement and control

7. Two possible phases of flow imstabilities

The wave numbers in a water equilibrium sequence are 2,3, 4 upwards
Those tor oil in an ascending sequence start trom 11 10,7, then drop to
considerably smaller numbers 5,4 ..., upwards hereatter [t seems to sugpest
that there are two phases of tlow patterns for oil: Phase 1, 1 low speed
regime with relatively large azimuthal wave numbers, and Phase 2,10 the

higher speed regime, with smaller wave numbers

Phase 2 is closer to the results of water.  During investigations with water,
no n = 10, 11 or 7 were observed at Jow speeds  Phase 1 does not exist for

water.

The two phases of instability waves in ol suggest that there would be two
different courses. One proposition is that phase 1 s due to surface tension,
while phase 2 is due to inertial instability. More work needs to be done to

either reject or confirm it
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8  Wave number versus hquid height

As a general tendency, i quast-static sequences, the mmitial azrmuthal wave
numbers in phases 1 and 2 diminish with increasing  oil level hg. Since the
higher the imitial hquid level, the shorter the vortex core circumferential
length, the surface tension will reduce the number ot vertices There are

exceptions due to the complexity ot the intervening parameters.



CHAPTER 5

SLOSHING

The previous chapters have presented, tor the most part, well behaved quiet
laminar equilbbrium wave evolutions, either 1 very viscous ol o1
relatively small viscosity water for lower ditk rotation  During the carly
stages ot lamimar transitions, the equilibrium waves are present on a
permanent basis - one can alwavs see 1t there as lonyg as the background
motion lasts.  Also mentioned was the highly turbulent vortex at the end of
the laminar transition sequence at higher disk rotation, where the driving
torce reaches a level that the flow field 15 dominated by mertia force  The
randomly high frequency variations of flow parameters make the tow

macroscopically steady, and no orderly waves are possible

In this chapter, a special form of wave activity that gives rise to violent hguid
sloshing is described. The wave has a developing phase, which repeats itselt
periodically A typical case follows.  The amplitude of the wave starts from
zero for a certain period of time, then it develops gradually and rapidly trom
just visible until it reaches its crescendo.  From that point the amplitude 15

seen to reduce rapidly until it is practically unnoticeable  Then the steady
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quiet Rankine vortex resumes as nothing has ever happened  This state lasts

for quite some time betore the process 1s repeated agam

One of the characteristics found in sloshing 1s that the periodically surging
wave is possible only within certain mited disk speed limits  These limats
depend on the diameter of the disk for a given tank and the initial hquid
height. The sloshing wave's amplitude depends on the disk rotation A
general relationship between the itial disk speed at which sloshing starts to
emerge and the hquid height 15 elusive, as sometimes thev are locally

increasing one with the other.

The mechanism that a sloshing wave 15 present under some prevaihing
conditions 1 a given vortex generator configuration is not pursued here,
however, an approximate numerical simulation is performed to suggest that
two coexistent harmonic waves of the same number, but of different phase

velocities (slow-tast) are the origin

5.1 Experimental evidence for disk sloshing

Tests have been conducted for disks with diameters, 101, 153, 202 and 268 mm
For each of the disks, the tank is filled at different heights of water to explore
its impacts At ecach height the disk rotation is the principal variable. The

sloshing wave is present only for a certain range of the driving disk rpm.
5.1.1 Typical sloshing wave developing process

Figure 5-1 is a schematic of the time history for a wave sloshing evolution.
The vertical axis is the amplitude of the sloshing wave in "snap shots", and

the horizontal axis is the time variable.

During the time period 0 to Tq (q stands for quiet), there is visually no
oscillation at all on the uppermost free boundary (the intersection between
free surface and tank inner wall). The flow field is an elliptical Rankine
vortey, and the wave perturbation vanishes at this outer most point. Hence,
the sloshing amplitude is unnoticeable. Starting from Tq to Tmax (Tq + Ts/2),
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a time span ot 1o 20~ stands tor sloshing) the ampitude contimuoushy
mcreases over time The vertical coordimate ot the water trace on the
transparent wall deviates graduallyv trom the tlat honizontal posithon with
each wave pasang by There is a moment when the amplitude develops toats
maxvimum  From that moment onwards, the volent sloshing reaches ats

decaving phase Its amphitude diminishes until it almostinvisible at time

L

Amphitude

Ty I\+Iq
[1ime

Figure 3-1 The sloshing wave amphitude versus time

Tq + To A cvcle trom 0 to Tg + T repeats itselt, and atter time [ ot non
perturbed Rankine tlow, another amphtude-increasing and decreasing

process begins The whole process repeats atselt periodically

It we untold the evhndrnical wall into a two dimensional Cartestan coordimate
system, the intersection contact line 1s a flat one without sloshing, spanning
trom 0 to 360 degrees During the sloching period, there are two symmetiic
concave and convex peaks (see Figure 5-2 tor graphical representation), which
shows a dommant elliptical wave present in the flow  The amplitude in this
figure is onlv tor one time frame of the flow, corresponding to one mstant

during the non-zero region n Figure 5-1
An important aspect of the sloshing process 1s the variation of the air core

shape in the two distinctive time periods, namely the quiet and the sloshing

phases. These characteristics are best depicted by the top view visualizations
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Figure 5-2 A snap shot of the side view of a sloshing wave.

During the quiet non-sloshing period, the core outline is continuously
changing. During the initial stages of sloshing the core transformation can be
approximated by an ellipse, rotating and changing its aspect ratio. The ratio
of the long axis to short axis is nearly one at the start, then the ratio increases
until it reaches a maximum, where it is easily viewed from the top that the
core is a quite squeezed ellipse. In fact it is so squeezed that it resembles a
rectangular ribbon. Following the most squeezed moment, the middle points
of the shape begin to rapidly approach one another to join as one point.
Further on, separation occurs, and two sides of the joint centre on the long
axis turn out to be two vortices. The two newly detached vortices are in a
state of self-rotation about their respective centers, at the same time mutually
rotating. When the two transient vortices are at full strength, that is the
moment when the side-view amplitude is at the peak point. Afterwards, the
two separated vortices start to merge, forming a narrow ellipse, and further to
a full circle of an aspect ratio one. This state stays throughout the quiet time
span before the next wave of sloshing appears again.
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For a fixed set of initial conditions of liquid level, disk rotation, disk size, and
tank internal diameter, there are at least three parameters essential to the
characterization of the sloshing waves, Tq (the quiet duration). Ty (the
sloshing duration) and Amax (representing the maximum amplitude during

a complete cycle).
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5.1.2 Visual observations of sloshing for different disk diameters
Case I Disk diameter 101 mm

Tests are conducted at four different levels, ho=18, 40, 56 and Y0 mm.

At a water height of 18 mm, irrespective of the spin-up history, no sloshing
was detected. Only transient, unsteady circles and ellipses, were present.
Neither stationary equilibria nor sloshing were observed.

At a level of 40 mm, for low speeds, precession and mutual transient patterns
were seen between elliptical and triangular waves. When the disk rpm is set
at 444, weak sloshing is evident on an otherwise quiet free surface. The base
flow is a free vortex at this speed. Beyond that rpm, no wave was observed,
this does not mean that there is only one speed suitable for sloshing
development; in fact, later cases will show that there exist a relatively small
range of disk rpm which permits its presence.

At a water level of 56 mm, through the various steps of increasing the
driving disk’'s rotation, strong sloshing was reached at 760 rpm, where the
free surface oscillates vertically. The base flow is a free vortex with the central

part of the disk exposed to air during sloshing.

At a level of 90 mm, sloshing is observed at two separate disk rotations
When the rpm is 1084, strong sloshing is present with the vertical oscillation
amplitude of the free surface at approximately 35 mm (peak to peak, 2A). At a
higher rotation (1200 rpm), such oscillation reaches a more significant statc
with 2A = 60 mm. As the disk speeds up beyond this point, the free surface
resumes the relative calm condition, similar to that before the first sloshing
was present. For example at disk rpm 1340, there is no sloshing at all.
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Figure 5-4  Initial disk speed for sloshing versus hg (mm) for
disk 101 mm

Features of the case

From the tests for this size of disk, two behavioral sloshing characteristics are
evident:
(1) Speed bounds for sloshing

Given the geometry and the initial water level, sloshing is possible only
within certain disk rotation limits if it is ever present for the disk size and
water height in question.

(2) Sloshing depends on the liquid level

For the same disk size, the higher the liquid level, the higher the disk rpm
for the starting sloshing state.
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Case Il Disk 153 mm, tank diameter 284 mm

With this disk diameter, for water levels of 41 and 56 mm, during all the
rotation speeds, incremented at small steps and waiiing for quite some time
to see whether sloshing materializes, no traces of the distinct characteristics
ever showed up. Instead, only deformed circles, ellipses, transient squares
and their mutations were noticed.

At the level of 65 mm, water sloshing is abundantly present tor quite a tew
stable disk speeds. Sloshing waves are evident for 5 different rpm: 182, 196,
216, 235 and 284 . For all five speeds, the core is flooded, suggesting a
Rankine base flow.

A sloshing wave goes through a cycle of quiet and manifestation phases. The
two time periods are measured and plotted in the figure.

60

>0 N ® Ts

30

Time constants (sec)

20 " -n ——l

10

150 190 230 270 310 350

Disk speed (rpm)
Figure 5-5 Ts and Tq versus disk rotation for ha=65 mm

The two curves reveal that the sloshing duration is more or less constant,
whereas the time duration for the quiet phase reduces with the disk speed.
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At this water level, beyond the upper speed limit (slightly higher than 284
rpm), no sloshing is present (e.g. 341, 526 rpm etc.).

Another height examined is 111 mm, and sloshing is present when the disk
rpm is at 293 and 392. The sloshing period Tg for these two speeds are 12.0
and 12.5 seconds, and the quiet durations are 11.0 and 8.0 seconds respectively.
At higher disk rotations, sloshing is not materialized. For example, when
rpm is 543, only a stable twisted, elliptical spiral exists in the Rankine base
flow, rotating at a constant angular speed of about 40 rpm.

In order to see the effects of the initial liquid level, more water is added to
the tank. Two particular heights are examined, hg = 149 mm and 177 mm. In
both cases, many small increments of disk rotation are proceeded from rest.
No periodically repeating sloshing waves are ever present, except for some
unsteady flow patterns, such as mutations between hollow and flooded
vortices.

Similar characteristics such as, a higher liquid level needs a higher disk
rotation to produce a sloshir. 2. similar to those with a disk of 101 mm are also
the case here.

Case Ill Disk diameter 202 mm

Extensive tests were conducted for this disk size. Many instances of periodic
sloshing are found for different water levels. In total, 11 various water
heights are examined. The results are reported briefly for several initial
liquid heights.

The first three initial heights of 17, 27 and 37.5 mm are shallow compared to

this large disk. Free vortex is the prevailing condition in the base flow. No
sloshing is present, and observed are non-symmetric, transient equilibria.
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They are deformed parallelogram, pentagons, triangles, squares or ellipses.
Mutations are frequent among these core shapes.

At ho = 53 mm, as the disk rotation comes to 206 rpm by small increments,
weak sloshing emerges. The free surface oscillates in the vertical direction
with an amplitude of about 3 mm only. When the disk is set to higher speeds
of 300, 325 ... 900 rpm, no sloshing wave was observed.

The following seven initial water heights of 108.5, 140.0, 174.0, 183.0, 243.0,
267 and 285 mm share some common characteristics when the disk rotation is
raised quasi-statically (the case of hg=267 mm will be given more details
later). Generally, there is a lowest starting disk speed at which a weak
sloshing is first visualized. The sloshing waves persist at the subsequent
speed steps. The oscillation amplitudes and the two time constants (T, Tq)
depend on the disk's speed and initial height. At a specific speed, the
sloshing disappears, and the calm condition remains for any higher rotation.
The minimum and maximum disk rpms where sloshing emerges are
presented in Figure 5-6.

For hg = 267 mm, more detzailed tests were conducted. With no particular

reason, a descending speed sequence is followed instead of an ascending one.

The descending process starts at 677 rpm, where an axially twisted elliptic
equilibrium stably rotates. The central part of the disk surface outlined by the
elliptic hollow core is exposed to air. It is axially twisted due to the water
level being relatively high.

The disk rotation is reduced gradually from 677 rpm in small decrements
through 601.75, 588.0, 573.0, 558.0, 537.5, 496.0, 46525, 424.0, 402.0, 376.5,
350.8 rpm, then finally reaching 325.75 rpm. Starting from 601.75 rpm, due
to reduced centrifugal force, the central part of the disk is flooded with water.
The liquid free surface is a superposition of a smooth free forced vortex and
an elliptical perturbation throughout the flow.
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Figure 5-6 The disk rpms where sloshing is taking place at various ho’s

When the driving disk's rpm drops further to 299.75, the free surface
periodically manifests weak variations. Such supplemental changes are better
visualized from the side view of the contact line formed by the intersection of
the water free surface and the tank's interior cylindrical wall.

A reduction of the disk speed intensifies the oscillations. At a disk rpm equal
to 275, the maximum amplitude is evidently larger than that for 299.75 rpm;

at 247.5 rpm the magnitude is the largest, where sloshing is really strong,.

The two time periods at 247.5 rpm are clocked, see Figure 5-7.
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Figure 5-7 Time periods of sloshing for disk 202 mm at 247.5 rpm

In the figure, the vertical axis is time, and the horizontal one is the repetition
of measurements. The upper line represents the quiet duration, whereas the
lower one is the agitation duration Ts. We can see that Tg is relatively
consistent, ranging from -18% to +5.3% about its average, but Tq has a
variation from -28% to +37%. Such deviations may come trom two sources,
one due to the way the data is collected (visual timing), the other probably
being the true nature of the phenomenon, which is not yet known.
Nevertheless, one point is certain that is the periodicity of its presence.

Once the disk rom continues to drop to 223.25 and to 201, no more sloshing is
present. The field is quiet, elliptically perturbed, showing that 247.5 rpm is

the lower bound for sloshing at the height of 267.0 mm.

For a disk diameter of 268 mm, only two initial water levels were performed :
36 and 49 mm. Since the disk is relatively large compared to the tank
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(internal diameter is 284 mm), no sign of sloshing was ever present. It seems
that the physical geometry of the base flow field makes it difficult for the
periodic wave to develop.

52 A simulation of the sloshing process

The experimental evidence just presented has demonstrated the unique
characteristics of a periodic sloshing wave in this special flow geometry.
Visualization and preliminary measurements of periods and amplitudes of
the oscillatory interface movements lead to a few general features. But the
precise mechanism behind such an interesting and vibrant wave
phenomenon is not yet clear. In an aitempt to shed some light on this special
kind of sloshing phenomenon, a simulation for a sequence of time frames is
performed.

The simulation mapping is motivated by the double periodicity of the flow
phenomenon, periodical in time (the sloshing emerges within a limited time
interval), also periodical in space (symmetric). Superposition of two

harmonic functions will yield such features.

From the previous analysis, it has been established that there exist two
possible angular phase speeds for a given equilibrium state. This result was
based on a few assumptions, including small linear perturbation, the
dominance of horizontal flow over vertical motion in the main flow regime
and also that the liquid particle trajectory is harmonic in a horizontal flow
plane. The harmonic trajectory was the base for both the free hollow vortex
and the flooded Rankine vortex in the analysis of Chapter 3.

In this simulation, the time development of the interface pattern of two
waves with n=2 but having two different phase speeds, viewed from the top
are shown in Fig. 5-8. The equation used for the simulation is,

r=1-05cos {ze -2.2(1-%):} + cos {29 -2.2(1+%__):

]
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Figure 5-8. Simulation of a sloshing cycle
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The results suggest that, under prevailing conditions, the existence of the two
waves with the same number but ditferent phase speeds can indeed break a
single vortex into two co-rotating vortices. In reality the smaller vortices will
not necessarily be equal, nor that the midpoint of their centers will be located
at the geometric center of the cylindrical container. Under such conditions,
the two vortices will destruct each other thus considerably slowing-down the
main vortex and thus can no longer sustain sloshing. Following, the main
vortex will again build-up and go through the same cycle. Although the
present scenario 1s based on a simplistic theory it might be a good starting
point for one wishing to further explore the origin in the evolution of the

phenomenon.
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CHAPTER 6
CONCLUSIONS

Recent observations ot the hquid motion generated by a rotating disk o a
cvlindrical container have been reported.  For low viscosity hiquid (water),
gradual core structure transitions trom equilibnum patterns of a high degree
of order towards chaos have been observed.  Between vortex equilibria, gaps
of mixed, time dependent states were tound to prevail. Within a mixed state
gap, the core 1s continuously changing due to the co-existence of two waves
having circumterential wave numbers equal to the two nerghboring
equilibria. In the equilibrium states, the wave phase veloaity and the disk
rotational speed exhibit a hnear relationship  The disk speed intervals tor
both vortex equilibria and mixed states were found to decrease as the speed of
the disk increased. Increasing the liquid level results in the spectrum
shifting towards higher disk speed regime.

The linearized stability analysis has been applied to predict tairly the speed of
waves developed in both hollow potential and Rankine’s vortices.  For the
latter case, the presence of a confined cylindrical wall was shown to augment
the wave speed compared to a Rankine vortex in an inhinite ficld  Based on
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this theory, the hypothesis that a core pattern constructed from the
superposition of waves in the two neighboring equilibrium states has been
demonstrated to forecast quite well the main features of the observations for
mixed states. Numerical mapping has also presented the transformation
processes for various equilibria, which emulates well the experimental
evidence.

The diameter of the driving disk is shown to have impact on the occurrence
of the equilibrium waves. Among the four disks examined, with the
exception of the largest one, which is almost the size of the tank's inner wall,
the larger the disk, the lower the disk rpm for an equilibrium wave to be
present. The discrepancy for the largest disk may be attributed to the change
of the base flow structure, since the flow is more like a solid rotation.

Hysteresis is found in the transition between the water equilibria, and it is
quantitatively small as compared with liquid of higher viscosity.

Quite different behavior of the hollow core was observed for cases where an
intermediate viscosity liquid (oil) was used. Transformations from one core
wave pattern to another was abrupt with no apparent intermediate structures.
Stationary states with wave numbers ranging from one to eleven were
observed. Also peculiar is that there exist retrograde equilibria, that never
occurred in water. The speed of equilibria in 0il is also found to be linear to
the driving disk's rotation in one case.

Bifurcations are abundant in the process of transition from laminar state to
turbulence in oil vortices. Two common characteristic bifurcations are
repeatedly visualized :
- between a steady flow and a single frequency periodic flow,
- between a single frequency periodic flow and a two-frequency quasi-
periodic flow.

The mutual transformations between bifurcating flow states can be brought
about by introducing external artificial disturbances when all the other
conditions are left unchanged, often the transformations are reversible. If a
correlation between the energy of flow field and its corresponding
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equilibrium can be established, one will be able to evaluate the relative degree
of stability of these waves.

The two frequency quasi-periodic flow is present in two structures, one being
that a basic wave pattern is sub-harmonically modulated by another wave ot
different number, and another form is a flow where a solitary wave encircles
a background equilibrium.

Acceleration affects the viscous equilibrium development. This shows that
the flow is an initial value problem, depending on an external, time-varying
driving function, in addition to the boundary conditions. Different
development history (spin-up and spin-down) may well result in different
flow states. The detailed mapping between the accelerating course and the oil
equilibria variations will give more precision.

Hysteresis is very evident between the two quasi-static sequences of the
driving disk, spin-down and spin-up.

Periodic sloshing in the water vortex was observed under certain prevailing
parameter combinations (size of the disk, initial water height and disk
rotation). Considerable fluctuations of flow parameters are evident between
the quiet phase and the sloshing phase. The simulation to emulate the
violent process was based on the superposition of two concurrent waves.

112



References

Abrahamson, S. D., Eaton, ]. K. and Koga, D. J. : The flow between shrouded
corotating disks. Physics of Fluids, part A, vol. 1, No. 2, 1989.

Aref, A. : Integral, chaotic and turbulent vortex motions in 2D flows. Ann.
Rev. of fluid mechanics. vol. 15, 1983.

Benjamin, T.B. and Mullin T. : Notes on the multiplicity. JFM. 1982, vol 121,
pp.219-230.

Busse, F.H. : Non linear properties of thermal convection. Report prog. phys.
vol.41 (1978), 1929-1969.

Cambell, LJ. and Ziff, RM. : A catalogue of two dimensional vortex patterns.
Los Alamos Sc. Lab. Rep. No. LA-7384-MS. 40pp. 1978.

Chandrasekhar, S. : Hydrodynamic and Hydromagnetic Stability. Clarendon
Press, Oxford, 1961.

Chomaz, ].M., Rabaud M. & Couder Y. : Experimental and numerical
investigations of a forced circular shear layer. JFM vol.187, 1988.

Drazin, P. G. and Reid, W. H. : Hydrodynamic Stability. Cambridge
University Press, N.Y., 1981.

Dritschel, D.G. : The stability and energetics of corotating uniform vortices.
JFM, vol. 157,1985.

Dritschel, D.G. : The nonlinear evolution of rotating configurations of
uniform vortices. 1985, JFM, vol.172.

Dritschel, D.G. : On the stabilization of a 2 D vortex strip by adverse shear.
1989, JFM, vol 206.

113



Escudier, M. : Confined vortices in flow machinery. Ann. Rev. Fluid Mech.
vol.19, 77, 1987.

Greenspan, H. P. : The theory of rotating fluids. Cambridge University Press,
London, 1969.

Geogory, N., Stuart, ].T. and Walker, W.S. : On the stability of three-
dimensional boundary layers with application to the flow due to a rotating

disk. Phil. Trans. Roy. soc London A vol.248, 155, 1955.

Griffiths, R.W. and Linden, P.F. : The stability of vortices in a rotating,
stratified fluid. ]. Fluid Mech. vol.105, 283, 1981.

Hide, R. : Detached shear layers in a rotating fluid. JFM. vol.29, 1966.

Holter, N.J. and Glasscock, W.R. : Vibrations of evaporating drops. The
journal of acoustical society of America. vol. 24, (6) , 683-685, 1952.

Joseph, D. : Hydrodynamic stability and bifurcation, in Hydrodynamic
instabilites and the Transition to Turbulence, Swinney and Gollub (editors),

Springer Verlag, Berlin, N. Y., 1985.

Knauss, ]. (editor) : Swirling flow problems at intakes. A. A. Balkema,
Roterdam, 165 pp.

Kou, H. : Dynamics of quasi-geostropic flows and instability. Advances in
applied mechanics, vol.13, 1973.

Lauer, Tod R., etc. : Planetary camera observations of the double nucleus of
M31, The Astronomical journal, vol. 106, No. 4, Oct. 1993.

Lin, C. C. : The theory of hydrodynamic stability. Cambridge University
Press, Cambridge 1955.

114



Lord Kelvin : Vibrations of a columnar vortex, Proc. of the Royval society,
Edinburgh, 1880.

Lugt, H., ]. : Vortex flow in nature and technology. John Wiley & Sons, New
York 1993.

Markus, S. : The mechanics of vibrations of cylindrical shells. Studies in
applied mechanics, vol.17, Elsevier, New York, 159pp, 1988.

Mason, B. ]. : Global atmospheric research programme. Nature vol. 233, 382-
388 (1971).

Munson, B. R. and Menguturk, M. : Viscous incompressible flow between
concentric rotating spheres. Part 3. JFM. vol. 69, p705, 1975.

Pai, S. I. : Turbulent flows between rotating cylinders. NACA, technical note
892, 1943.

Rabaud, M. and Couder, Y. : A shear flow instability in a circular geometry.
JEM. vol.136.

Rayleigh, Lord : On the dynamics of revolving fluids. Proc. R. Soc. London A
vol. 93, pp148-154, 1916.

Stockert, R. : Beitrag zur optimalen auslegung von tiefbohrwerkzeugen.
Doctor-Ingenieur genehmigte Dissertation, Universitat Dortmund, 199p, 1978.

Swinney, H. L. and Gollub J. P. : Hydrodynamic instabilities and the
Transition to Turbulence. 2nd edition, Springer Verlag, Berlin, N.Y., 1985.

Taylor, G. I. : Stability of a viscous liquid contained between two rotating
cylinders. Philoso. Trans. R. Soc. London A vol. 223, 289-343, 1923.

Vatistas, G. H. : A note on liquid vortex sloshing and Kelvin's equilibria.
1990 JFM. vol. 217.

115



Vatistas, G. H. : Letter to the editor, New Scientist, No. 1904, page 50, Dec.
1993.

Vatistas, G. H., Wang J. and Lin S. : Experiments on waves induced in the
hollow core of vortices. Experiments in Fluids vol.13, page 377-385 (1992).

Vatistas, G. H.,, Wang J. and Lin S. : On the Waves Produced in Vortex
Cores. Tenth Canadian Symposium on Fluid Dynamics, St-Jean, NB. 1992,

Vatistas, G. H., Wang J. and Lin S. : Kelvin's Equilibria. ASME Intl. Joint
Power Generation Conference, Atlanta, Oct. 1992,

Vatistas, G. H., Wang ]. and Lin S.: Recent Findings on Kelvin’s Equilibria.
Acta Mecanica, 103, 89-102 (1994).

Weske, J. R. and Rankine T. M. : Physics of fluids, vol. 3, Generation of
secondary motions in a field of vortex. 1963.

Wimmer, M. : Experiments on a viscous fluid flow between concentric
rotating spheres. JEM. 1976, vol. 78, pp317-335.

Wimmer, M. : Laminar to turbulent transition in a spherical annulus.
(editors, Eppler & Fraser) Laminar to turbulence transitions. 1980,

Wygnanski, I. J., Champagne, F.H.: On transition in a pipe. The origin of
puffs and slugs and the flow in a turbulent slug. JEM. vol. 21, pp385, 1973.

Zierep, ]. and Sawatzki, O. : Three dimensional instabilities and vortices
between two rotating spheres. 8th Symp. Naval Hydrodyn. 1970.

116



