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ABSTRACT

OPTIMAL DESIGN SYNTHESIS OF MULTI SPEED GEAR TRAINS

MURUGIAH NARAYANA MOORTHY
Concordia University, 1995

Gear (rain systems that possess uncertain characteristics due to manufacturing,
assembling, and operating conditions are analyzed based on a systematic optimum design
synthesis.  The efficiency and reliability of the system are described by probabilistic
variables based on minimum mass and maximum transmitted power. The torsional
vibratory response is analyzed through possible individual realizations of mounting of

component gears on shafts. Kinematic parameters are generated for minimum overall size

and error in the gear ratios. To overcome the practical difficulty of repeated analyses of
different design layouts of a gear drive application, a new computer aided design

methodology is proposed for generating all possible speed diagrams.
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CHAPTER 1

INTRODUCTION

1.1 Design needs

Mecchanical systems such as machine tools in manufacturing, precision tools,
turbogenerators, high speed rotodynamic systems, etc. require the capability of producing
a wide range of operating speeds. This demands the proper selection of a particular speed
from within the spectrum of operating speeds. Such an objective is achieved in industrial
machines by the use of multi-speed gear trains, that are located between the drive unit
(power source) and spindle. A complete design of multi-speed gear trains is carried out
based on the following qualitative and quantitative information:

I. Speed of the drive unit (input speed)

2. Speeds on the spindle (output speed)

3. Space limitations

4, Power transmitling capacity

5. Weight limitations

0. Reliability of the components

7. Vibrational safety

8. Operating conditions (i.e. temperature, lubrication, etc.)

A decision about the structure itself is to be made before deciding on these variables,
considering the intended use.

The selection of speeds on drive unit and spindle is normally identified so that the
designer can decide on the range of various different speeds, among which a particular
speed for a given operation is to be picked up. Then the multi-speed gear train is designed
to provide this range of output speeds from a single input speed of drive unit and this stage

of design is known as kinematic design. A decision about the speeds on shafts, spacing



between mating gears and the number of teeth of difterent gears is generally the output of
the kinematic design. The auxiliary information about the driving and the driven gears as
well as the speeds transferred through ecach gear set, is also provided as an additional
output of the kinematic design.

The power transmission capability and reliability of a gear train are controlled by
one or more of several possible failure phenomena, such as tooth breakage, tooth wear,
scoring, pitting {retting, ctc. These failures are caused, when the induced stresses increase
above the strength of the gear train component corresponding to a particular faifure mode
during power transmission. Hence, the components arce to be designed for their
geometrical properties, whercas the selection of a suitable matertal is to be curied out
keeping in view the intended use. This brings in the second stage of the design process,
the strength design. The kinematic design serves as the starting point ot the strength
design. The decision about the face widths of all the gear sets to satisfy wear strength,
bending strength and other safety requirements, is the output of the strength design.

Furthermore, as can be deduced form the above descriptions, the kinematic design
can reliably be based on a deterministic framework. But, on the other hand, the stiength
design, by its inherent character, need to be carried out on a probabilistic framework. This
is because both the actual loads and the load capability of the gear train are fundamentally
probabilistic in nature. The use of safety factor in the design of gear systems, has for long
been accepted in practice and indirectly accounts for these kinds of uncertaintics. It has
been well recognized that this uncertainty severely affects the performance of the entire gear
systems and better analysis is neceded in design of gears. But the statistical nature of these
design safety factors themselves has been recognized only in recent times. Any deviations,
which might be caused by motion of the gears relative to one another, tooth profile or
spacing errors, fluctuations in applied loads, variations in strength parameters like tooth
stiffness, etc. are seen to produce combinations of frequency and amplitude modulation of

the mesh frequency. The hunting is the tooth failure phenomenon that is encountered in



most cases due to the strength parameter fluctuations. This is highly dangerous with
respect to operational safety and it produces an audible amplitude modulation of the gear
mesh frequency. So, & complete probabilistic treatment can only be a natural recourse to
design gear trains for a prescribed reliability and service life.

The reflection of these kinds of uncertainties can be clearly seen on the gear
vibration signature. Considering two gears of different size, the transmission error gives
rise to, (i) the interaction force on both the gears (ii) a difference in their linear
displacements.  This error is a time dependent function over the operating cycle of the
machine and is basically stochastic in nature. A wide array of problems can always be
altributed to the unavoidable, ever-present, inherent randomness in the gear systemns.
Stochasticity is always present at all stages of design of gear systems, particularly in
specifications, configurations, tooth geometries, material selection, etc.  All these
contribute to large fluctuations and hence a drastic reduction in the service life and thereby
in the premature failure of the gear trains.

A complex broad vibration spectrum, beginning with frequencies well below the
shaft rotational speeds and extending to several multiples, is known as the gear mesh
frequency. This gear mesh frequency, is defined, as being equal to the number of gear
teeth times the shaft rpm. The obvious important role played by the natural frequency and
the number of teeth for a given gear rotating speed is now evident. When the load varies
during one complete revolution, gear systems develop torsional vibrations. Torsional
vibrations are also caused depending on the torsional stiffness of the shaft and the rotary
incrtia.  The critical effect of the number of tecth can also be observed from the noise
spectrum of an operating gear.  Gear systems are also subjected to common vibration
problems arising due to rotating mass imbalance caused by misalignment or shaft

deflection.



In addition to these, there are quite a few problems that are unigque (o gears such as
pitch line runout, pitting, fretting. ete. Fair among them have their origin of occurrence at

the tooth contact where cyclic dynamic stresses are caused by gearing action,

1.2 Some definitions of gear train configuration

General definitions and details of gears and gear trains are available in numerous
gear literature. However as a pre-requisite, some basic definitions are reviewed in this
section. Throughout the present investigation, spur gears are selected as the component for
consideration because of their precision and design simplicity. Spur gears are gears, in
which the tooth form is an involute, the pressure angle is constant, the teeth dimensions are
identical in all plancs of rotation and the teeth lie parallel to the axis of rotation. Fuither
more, the ability to transmit high speeds and loads with high precision allows spur gears to
be used commonly in the design of machine tools [ 23 |. In o power transmitting gewr set,
the driving gear known as the pinion is located on the input shaft, transmitting the rotational
speed and torque to the output shaft through the driven gear known as the wheel. Because
the axis of rotation of both shafts are parallel, this type of arrangement is called as parallel
shaft gear arrangement and the shortest line between the axes is termed as the center
distance. The ratio of the rotational speeds of wheel to the pinion is known as speed ratio.
In the course of a design for multiple speeds of output shatt, it may be desirable (o use
several gears and shafts. This type of arrangements arc termed as multi-speed multi-shaft
gear trains. In such a case, the speeds on the output shaft, which is connected 1o the
spindle, are called spindle speeds. Typical mathematical rules exist for the number of
spindle speeds and the ratio between the successive speeds on the multi-speed gear trains of

industrial machine tools in use.
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Figure 1.1 Location of the multi-speed gear train in an industrial machine tool

Physical location of the gear train of an industrial machine tool is shown in Figure
[.1. In general, a multi-speed gear train provides the required spindle speeds through
various scctors which are termed as transmission stages. Incach transmission stage, input
speed is transformed through a cluster mechanism or a single gear set. By shifting the
cluster to different mesh positions, the engagement pattern of the mating gears is changed,
resulting in a new spindle speed. Normally, the cluster mechanism contains two or three
gear sets with different pitch diameters. The number of gear sets in a given transmission
stage is obtained according to the transmission formula of the gear train. The transmission
formula is defined as the numerical expression in the form of a product equation and relates
the number of gear sets in the gear arrangement with the number of spindle speeds. The
left hand side (L..H.S.) of transmission formula shows the number of spindle speeds
produced, and the right hand side (R.H.S.) of transmission formula indicates the number
of gear sets in cach transmission stage and the order of occurrence. For a 18 speed gear
train with 3 transmission stages, the transmission formula is given as: 18 =3 * 3 * 2, This
corresponds to 18 speed gear train with 4 shafts, kinematic arrangement which is shown in

Figure 1.2.
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Figure 1.2 Kinematic arrangement of a 18 =3 * 3 ¥ 2 pean train

The order of transmission stages from drive unit to spindle is not unique for a
specified number of spindle speeds.  This order can be changed to yield a improved
dynamic behavior of the entire gear system. Similarly, interchanging the non-identical
transmission stages will alter the speed distribution pattern of the gear train as well as the
layout of the kinematic arrangement. When a gear train is in its operational regime, cach ol
the spindle speed produced is obtained by engaging a ncw combination of mating gears.
The mesh position of all pinions and wheels of the gear train is termed as the engagement
pattern for the corresponding spindle speed.  Each engagement pattern is normmally

identified with an integer which is refered to as the transmission path index.

]




1.3 Thesis organization

The prime concern of the present investigation is to introduce a
comprehensive design synthesis of parallel shaft multi-speed gear trains of industrial
machine tools by which improved design tasks such as accurate speeds on the spindle,
reduced space limitations, increased power transmitting capacity, reduced weight
limitations, reliable components and vibrational safety are secured. Although many
rescarchers have previously attempted to investigaie " iese design tasks separately, most of
them overlooked other viable designs that may be possible for a given set of initial
specifications.  The present investigation describes an efficient and improved way of
integrating a systematic design methodology for the above mentioned design tasks with
nonlincar programming technique of optimization.

To fucilitote an automated design synthesis of gear trains, a computer aided solution
for producing all possible speed diagrams is developed in Chapter 2. The overall design
synthesis of gear trains presented here consists of three stages: kinematic design, strength
design and the torsional vibration safety analysis. In the kinematic design, all layouts that
can produce the desired spindle speeds from a specificd input speed, are checked for a
possible design with a minimum overall size of the gear train. This is presented in Chapter
3, where the procedure for the option of optimum number of teeth with the minimum gear
ratio crror of all gears is developed. This kinematic design is carried out essentially in a
deterministic approach. However, the stochastical type of errors introduced due to both the
manufacturing defects as well as the material property variability are considered in the next
stage of design, i.c. the strength design. Here, a probabilistic approach is formulated
wherein the variability is included in terms of the ranges of the above mentioned errors.
Strength design thus becomes a problem of optimum design subject to random parameters.
The variability of gear train parameters determined by the kinematic design also affects the
component reliability and service life.  So, a prescribed level of reliability has to be

spectficd and achicved at the design stage. This leads to an additional constraint in the



optimization problem. Therefore, based on the reliability concept, an optunum strength
design of a optimum Kinematic design is developed in Chapter 4. The torsional vibiation
safety is achicved through a detailed investigation of all possible dynamue system
configurations. Different spindle speeds are obtained by changing the engagement pattern
of the mating gears, that ultimately alters the dynamic system contiguration and results i a
mobile distribution of inherent inertia.  Not all the Kinematically distinet dynamic
configurations of sume engagement pattern have the same order of sensitivity. A solution
algorithm for obtaining optimum shaft stiffnesses of a gear train is required, considermg all
possible dynamic configurations of cach engagement pattern, to avord the torsional
resonance of the system. Such a method is presented in Chapter S, where all possibie

dynamic configurations of all engagement patterns are identitied for the solution.

1.4. Relevant Historical Development

Mechanical devices similar to gears were stated to have been first used by world's
ancient civilizations such as Greeks, Egyptians, Chinese and Tamils. The canliest written
description of gears is said 10 be made by Aristotle in 4th century B.C, but the real
beginning of gearing was in 250 B.C.. with Archimedes | 48 |. He used gears to simulate
astronomical ratios and also in the mechanisms for use in war. Many maodels that use geans
are found in the manuscripts of Leonardo da Vinci, written between 1493 and 1497, The
artistic talent and engineering genius of Leonardo da Vinci in this arca arc evident in his
studies of the design of tooth profile and various gearing artangements, that were centuries
ahead of their time. Chinese south pointing chanot, carly Roman clocks and cyclometer e
just a few exampics where gears were used in the beginning of the first century AD 17 ).

In carly times, gears were adopted for a long time without any techmcal
improvements. Poor tooth contact and large backlash were common in these carly gears
and this required a greater understanding on the kinematic behavior of such devices. To

this end, much of the developments were focused on cffect of the physical shape of the



gear teeth while transmitting power. The gear tooth form was soon modified to transfer the
totattonal motion smoothly. During the period of 1450 to 1750, the mathematical analysis
of gear tooth profiles and theories on geared mechanisms were formulated. By 1700, the
cycloidal tooth form and involute form were proposed to maintain the constant relative
angular velocity in gearing. Involute tooth then became commonly acceptable because of
its two advantages over cycloidal, namely: (1) errors in the center distance produces no
effect on the kinematics of involute gear tooth, and (2) surface curvature of involute tooth
form allows transmission of a constant load as compared to cycloidal. Since the industrial
revolution in the mid- 19t century, the art of gear design blossomad and gear design
became more based on scientific principles. In carly part of the twenticth century, many
more improvements were made o the involute gear tooth form. As a result, spur and
helical gears became the major power transmitting components. By this time, parallel shaft
gear trains were slowly introduced in transportation systems. By 1916 after the arrival of
specialized machine tools, the need for multi-speed gear trains that have the capability of
transmitting high torques and high rotational speeds became a necessity. As the demand
for better manufacturing quality of gear trains arose, the requirement for higher
performance reliability, and lower cost became the prime concern of many gear designers.
Unfortunately, there are still many unsolved problems that exist in the domain of multi-
shalt, multi-speed gear trains, solutions for which will be the subject of investigation for
many more years to come | 17, 48, 56, 59 |.

Most noteworthy analytical solutions for the design of various gears, gearing
systems and their behaviors are discussed in a wide range of references [ 1, 23, 24, 28, 45,
54 1. 1t is understood that the conventional analytical methods lead to overdesign since they
are based on the concept of safety factors as these theories fail to predict critical stress and
vibration levels accurately. Although, the basic principles have not changed in recent
years, the design of gears and gear trains has undergone significant changes and

mmprovements. To this end. the computer-aided simulations and exact solutions that allow



designer to synthesize and analyze gears and gear trains have been developed. These
solutions arc now widely used to improve the existing geometry of geats in rehable and
efficient design of the gear trains. One such a computer-aided solution for gear geometry is
given by Staph [ 46 ], which studies the etfect of the parameter which influences mostly the
involute gear gecometry, namely the contact ratio. This study concludes that high contact
ratios for involute spur gears favour lower bending stiess in teeth and produce large
friction, induced heat and {lash temperatures.

Gears in mesh never operate under smooth, continuous load.  Factors such as
manufacturing erross in tooth profile and circular pitch, tooth detlections under load, and
mass unbalance all interact to create a fluctuating dynamic load. Attempts have been made
to study the dynamic load through various techniques such as modal analysis | 26 | and
statistical analysis by | 53 |. Maodifications to tooth profile can affect the dynimic behavion
of the mating gear system [ 14, 50,51 |. An improved dynamic model was proposed by
Yang et al [ 61 ], in which the backlash in mating gears was taken into account.  "The same
model was later improved by considering also the deformations arising duc to bending,
axial compressions and coluomb friction [ 60 |.

Considerable effort has been devoted during the recent past, to develop efficient
computational methods for the kinematic and strength designs of gear trains based on the
concept of deterministic approach, but similar efforts are lacking for reliable stochastic
design of gear trains. Highly versatile finite element methods have for long been m use for
strength analysis of gears [ 32, 55 . However, little attention has been paid in developing
appropriate automated design schemes for multi-speed gear trains. One such computer-
aided design synthesis of spur gears and multi-speed gear trains is reported in [ 15 | and
[ 27 ] respectively. In this method, the computer aided solutions are made more effective
by the implementation of numerical optimization methods. The numerical optimization
procedure provides a thorough scarch of all possible designs in the feasible space to select

the best parameters for an efficient design. It starts by identifying the design variables to be
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chosen, the constraints on the anticipated design and the objective function by which the
hest design will be selected. A detailed optimum design of standard spur gear set is
presented in | 42, 43 | by considering those aspects of stress related failures such as
scoring, pitting, bending and the feasible gear geometry condition of involute interference.
‘The model presented in [ 43 ] is modified considering AGMA codal previsions for
geometry and dynamic factors by Carroll et al [ 10 . The authors then replaced the
constraint of involute interference with the condition of under-cut prevention and solved the
problem in a dimensionless design space [ 11 ].

Keeping in view the design synthesis of gear trains, White [ 57 ] is the first author
to present an analytical module for the Kinematic characteristics. However, this module can
only be applicable for a selected type of gear train. An improved model is presented in
reference | 58 | adopted for different gear arrangements, but it obviously has many
drawbacks. Osman et al | 34 | improved the model developed by White in reference [ 57 |
by adopting an optimization procedure to design nine speed gear train with ten gears,
resulting in optimal values for pitch diameters and the ratio of minimum spindle speed to
input speed.  In order to automate the optimization procedure using the model in reference
[ 34 | for different types of gear trains, Bush [ 8 | and Bush et al [ 9 ] formulated an
alternative method.  This investigation combines the volume minimization with the
maximization of the shaft stiffness based on kinematic design parameters such as gear ratio
and pitch diameters. The recent work by Osman et al [ 33 | provides a gencralized design
procedure based on the optimal speed ratio. The procedure examines kinematic design of a
12 speeds composite gear train with 3 shafts and 12 gears. The obvious drawback in the
work is that the variable representing the number of teeth is treated as non integer.

While minimizing the cost through reduction of weight of component gear sets of
the gear train, the effects on parameters such as overall gear ratio, pressure angle, contact
ratio, induced stresses, face widths, and number of pinion teeth are examined in reference

[ 12]. A computer aided design approach to determine all possible number of teeth for a
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multi-shaft gear train that can produce a specific spindle speed from a specitied speed of the
drive unit is reported in [ 5 Jand [ 6 |. This waik was modified to accommodate an
additional condition on the center distance specitication in | 7 . These works | 5,0, 7 |
uscd no optimization techniques. An optimization mcethod that yields minimum values for
the cemer distance, speed deviations on all shafts and masses along with maximum
transmitted power is presented in reference | 39 | satisfying wear and bending stiess
constraints.

While transmitting the power from one rotating shaft to another, the gear teeth in
contact contribute to energy dissipation. A perfect form of the teeth without any delects,
would cause very little or negligible vibration and as a result of this, a negligible cyclic
dynamic loading [ 4, 49 }. In reality, a complex nature of vibration response could be
observed which would severely affect the safety of the gear systems [ 9 . Rattle problems
are also commonly encountered in gear systems due to vibro-impacts experienced | 30 |
From the all vibration related gear failures reported in the past, onc important characteristic
can be observerd, namely, the inherent uncertainty associated with the failure modes.
Uncertainty is implied in the definition of gear system dynamic parameters, material
properties, operational speeds and environmental conditions, ctc | 37 |. In this context it is
clear that a staustically based design synthesis of gear trains, would allow one to conduct
the design of component gears on the basis of computational schemes that reflect, to a great
extent, real life conditions. A probabilistic approach will not only make use of these
modern advancements, in a most efficient manner, but also will make the design conducted
for a desired confidence level. Such a method based on reliability constraints in the design
of a multi-speed gear train is reported in reference [ 40 .

A steady, vibration free operation of the gear train in a machine system largely
depends on its torsional natural frequency | 8 |. The component gears are to be placed on
the shafts at sclected locations defined by the shaft stiffness where torsional vibrations are

expected to be a minimum. For this purpose, the component gears are sought to posses
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minimum inertia | 44 . A study of a single gear set mounted on torsionally deformable
shalt is presented in reference| 29 |. An cfficient method for avoiding the torsional
vibrations in multi-speed gear trains through the proper sclection of optimum shaft stiffness
is proposed by Narayana Moorthy, Ganesan and Sankar | 31 ].

All of the above surveyed literature deals with only spur gears. It has been
generally accepted that the helical gears offer better performance characteristics than spur
gears. A report on computer aided helical gear design is given in reference [ 22 ]. The
literature survey, however, indicates that there is no inuch work available on the selection
of bearings or in the arca of alignments, unbalance and runouts of component gear sets in
gear trains.  Design of housing for the gear trains is another area which may lead to

reduction in noise and vibrations but is yel to draw attention of researchers.
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CHAPTER 2

An automated generalized procedure

for generating all possible speed diagrams

2.1 Introduction

Establishment of speed diagram is essentially a combination of iterative and
graphical design procedure where the designer decides on basic parameters such as speed
ratios in which the component gears are to operate, input speed of diive, spindle speeds
and other parameters related to the of the kinematic design of gear train system. Such i
procedure is time consuming and pronc to errors. The computer aided method for
determining speed diagrams described in this chapter climinates many of the difficultics
experienced in this procedure. A wide runge of tasks involving the design of gear trains
can be handled by the proposed procedurc. It also reduces the computing time to a lew
minutes with complete interactive progress to final design and specilication of the gear triun
outline. Examples illustrating the various options available to the designer are revealing

efficiency and the simplicity of the procedure.

2.2 Fundamentals on cutting speeds

Cutting speeds and feeds in machine tool applications are dictated by various
instantaneous machining conditions. The use of multipurpose and universal machine tools
that are most common in the modern manufacturing industry are operated under complex
machining conditions. Thus, a range of useful speeds are to be provided by the design of
such type of machines, wherein the multi-speed gear trains are widely used to satisty the
requirements. Since the tool life and the operational cost of the manufacturing process

largely depend on the accuracy with which the required output speed is obtained,
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improvements over the speed determination of a gear train are continuing challenge. To
this end, the intended use of gear train is one of the first concerns.

Considering the cutting process, which is accomplished by the turning or boring
diameter d (mm) of workpicce revolving at a rotating speed n (rpm), the cutting speed V

(m/min) is given by,

- n*d*n _ d*n 2.1
v 1000 320 (2.1
or n = 32—0(;._! (2.2)

For a machine tool a range of workpicce diameters to be produced is usually
preselected at dpyig and dyx. Depending on what cutting tools and workpiece materials are
going to be machined, a range of cutting speeds is preselected at Viiy and Vipax. The

minimum and maximum spindle speeds in revolutions per minute may, then, be defined as

|23 ]
Hnin = -"—“—“320d Vnin (2.3)
max
20 *
Hmax = 3~0d _¥Lnﬂ 2.4)
min

The speed range ratio B which is defined as the ratio betwcen the maximum and

minimum spindle speeds required is given by,

B = 'Lmax (2.5)

N min
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cutting velocity
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j+2 dj+| dinax
cutting diameter

min

Figure 2.1 Cutting speeds for geometric speed progressions {23 |

If the cutting speeds are plotted as the function of cutting diameter d, a lincar
relationship appears for different rotational speeds ny. 12, ..nN. as shown in the Figure
2.1. These rotational speeds are governed by npax and nyyin. As required, the proposed
gear train is to be designed to cover the above mentioned speed range ratio B.

nig = 320 * Vynx = _320 * me
! dj1 djs2

j=1,2,.N. (2.6)

-

Since, it is not possible to obtain an optimum rotational speed continuously to
achieve optimal cutting speed, it is common practice to provide a number of spindle speeds
(steps) which will provide rotational speeds that give near the optimal cutting speed within
the specified operational efficiency limit C(,p [ 34 ]. This allows machining of a workpiccee
of a certain diameter range, using cutting speeds between the established limits.

\Y
Cop = mun (2.7)
or Vmux

where Viin and Vinax are defined as actual cutting speed and optimal cutting speed

respectively.
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The step between two consecutive spindle speeds in a speed range nj4q, nj is given

as:
i+l _ Vinax =¢= |

ny T - g(; (2.8)
The constant ¢ is called the step ratio. Equation (2.8) shows that the spindle speeds
are in geometric progression with the reduction ratio which is always a constant and equal
1o (- 1y/¢. Inthis way, if one spindle speed is changed to the next, the reduction ratio is
always maintained the same. A series of spindle speeds are standardized for a given
machine tool | 23 . Most commonly used spindle speeds are named as R20 series of the
preferable numbers and shown in Table 2.1. Based on the R20 series, sub-series R20/2,
R20/3, R20/4 arc obtained by selecting the second, third, and forth speed series

respectively.  The sub-series have a step ratio as a power of ¢ - ¢2, ¢ and ¢*.
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] Limiting rev min !
Nomunal rev min of the R20 serigs
Sub series Due to
Dueto |mechanical
Basic Mechanical and
series | R 20/2 R20/3 R20/4 R 20/6 vanables | gloctrical
R20 vanables
¢ =1.12 ¢ =125 ¢ =1.4 q) =1.6 ¢ =2 2% | +3%1}-2% | +6%
1 2 3 4 5 6 7 8 9 10
100 98 | 103 | 98 106
112 112 11.2 112 111.2 1101 116 1 110 | 119
125 125 1231 130 | 123 | 133
140 140 1400 | 140 1400] 138 | 145 | 138 | 150
160 16 165] 163 | 155 | 168
180 180 180 180 180 1741 183 | 174 | 188
200 2000 196|206 [ 196 | 212
224 224 22.4 224 22.4 2191 231 | 219 | 237
250 250 246 | 259 {246 | 266
280 280 2800 280 2800] 276 1 290 | 276 | 299
315 31.5 3101 326 {310 ) 335
355 355 355 355 355 348 1365 | 348 | 376
400 4000 390 | 410 | 390 | 422
450 450 45 450 | 45 4381 460 | 438 | 473
500 500 491 ] 516 | 491 | 531
560 560 5600 | 560 5600} 551 | 579 | 551 | 596
630 63 618 1 650 | 618 | 669
710 710 710 710 710 694 | 729 | 694 | 750
800 8000 7781818 | 778 | 842
900 900 90 900 a0 8731918 | 873 | 945
1000 1000 980 11030 | 980 | 1060

Table 2.1 Rotational spced ranges for machine tools (DIN 804)

The following relationship can be derived using cquations (2.3) to (2.8)

N-1 | (2.9)
N =0 * N pig
where N is number of spindle speeds.
i.e. ¢N" =MTmx _ (2.10))

R mn
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Table 2.2 shows the speed range ratio B and the number of spindle speeds N, for

different types of machine tools [ 24 1.

Type of Mchine tool B N
Planing machines 6-10 6-9
Lathes 50-200 12-18
Milling and boring machines Up to 400 Up to 36
Presses 1 1

Table 2.2 Vaiues of B and N for selected machine tools ( Lynwander, [ 24 1)

2.3 Layout diagram and speed diagram

Layout diagram is a graphical representation showing all proposed speed ratios of
the gear train. In the layout diagram, the speced ratios of mating gears are represented by
mesh lines which are drawn to join speed positions between the lines representing the
shafts.  With the layout diagram, one can directly see how the speeds are changing from
input shaft towards spindle and which gear sets are used to produce the required output
speeds.  Adopting the layout diagram representation, mesh lines with negative slope
indicate decreasing speeds and that with positive slope indicate increasing speeds. It is
observed that the largest output speeds in all transmission stages are produced through the
largest speed ratios, using gear scts that provide the corresponding speed ratios. In a
similar way, the lowest output speeds in all stages are obtained using the lowest speed
ratios using the gear sets with lowest gear ratios. All other speeds are obtained by the
combination of appropriate speed ratios that are shown in the layout diagram.

Since equation (2.8) shows that the spindle speeds are in geometric progression,

the speeds in the layout diagram are plotted on a logarithmic scale on speed axis. On the

19



other axis, the shafts are represented as equally spaced parallel lines. The ratio of
successive output speeds in the line represented by the spindle is equal to the step ratio ¢.
For intermediate shafts, the ratio of successive speeds may not be equal to ¢, but may be
an integral power of ¢. For an intermediate shaft, if all speed positions are not at equal

distance, the shaft is said to have a discontinuity.
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Figure 2.2 Layout diagrams of a 6 speed gear train
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For a specific transmission formula of gear train with given N, B and ¢, a known
number of different layout diagrams can be achieved. For example, Figure 2.2 (A) and (B)
show two different types of layout diagrams that are possible for a kinematic arrangement
of gear train with transmission formula 6 = 3 * 2, where U represents the ratio of the
smallest spindle speed to drive unit speed. These layout diagrams are conventionally
classificd as open type or cross type. When the mesh lines do not cross each other, the
distribution pattern is called open type. If the they cross cach other, the pattern is called
cross type. In some arrangements, a combination of these two types can also be observed.
Similarly, Figurc 2.2 (C) and (D) illustrate an open and cross layout diagram of the other
possible kinematic arrangement of a 6 speed gear train with transmission formula 6 =2 * 3,

The design parameters, such as the number of teeth, pitch diameters and gear ratios,
are determined from the speed requirements that are given in the layout diagram.
Literature survey reveals that attempts have been made to incorporate the layout diagrams
into the kinematic design analysis of gear trains. White [ 57 ] presents a mathematical
model which relates the pitch diameters of a 9 speed gear train with step ratio ¢. The
method was then further expanded by Sanger [ 58 ], Osman et al [ 34 ], Bushetal [9]
and Osman et al [ 33 |. So far most of the design analyses are carried out for pre-selected
layout diagrams. However, a complete study on the design of gear trains always requires a
design procedure combined with different layout diagrams. Dande and Gupta [ 15 ]
reported an automated design synthesis which covers various aspects of different layout
diagrams. Unfortunately the procedure is not fully automated and the drawback is that all
information about the layout diagram is to be inputted in a data form.

After performing kinematic design analysis for a specific layout diagram, a
complete information about the kinematic characteristics is posted to form another graphical
representation, known as the speed diagram. The speed diagram clearly indicates actual
speeds of all shafts along with the actual gear ratios of all gears. It is to be noted that, for a

given layout diagram and a specified set of required spindle speeds from a drive unit, a
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number of speed diagrams can be achieved. Thus, the resulting range of possibilities
should be considered for optimal design synthesis of a gear train, because the optimal
design can be achicved from any one of the speed diagrams.

To effectively study ditferent kinematic arrangements for multi-speed gear tranns,
therefore it is desirable to be able to generate an automated design procedure Jor all possible
speed diagrams based on specified speed requirements. Such a computer aided procedue
is presented in this chapter. The input data required tor the procedure are (1) number of the
spindle speeds, (2) number of shafts required, (3) drive unit speed, (b all spindle speeds
and (5) largest speed ratio value in cach transmission stage. The procedure computes all
intermediate shaft speeds for the given input data, and as a result, all possible speed

diagrams are identified.

2.4 Maximum number of possible kinematic arrangements
Conventionally, the transmission formula of a gear train with N spindle speeds is

written as,

I.
N=H Z(1) (2.11)
1= 1

where i indicates the transmission stage order, Z.(i) is the number of gear sets in the
ih transmission stage and L is the number of transmission stages.

For a specified number of spindle speeds N, the value of L s obtained from the
factorization of N. This factorized value should satisfy the requirement about the minimum
number of transmission stages for the given N. From this, the number ol shafts NS is
given as,

NS=L+1 (2.12)

Practical considerations reveal that the number of shafts specified by the designer
may exceed this value. Specifying the number of shalts required (by the designer) by

NSR, it can be observed that if NSR is greater than NS, then transmission stages with




single gear sets are added (Z(L+1) = 1) till NS = NSR. If NS is greater than NSR, the
specified design s not possible to achieve.

For a prescribed set of N and NS, relocation of transmission stages leads to
different kinematic arrangements.  Having chosen a kinematic arrangement with L
transmission stages, L! number of forms of equation (2.11) can be obtained, where L!is
the factorial of I.. Among these set of arrangements wherein more than one transmission
stages that have same number of gear sets can be observed, thus resulting in identical
transmission formulas. Thus, the maximum number of possible kinematic arrangements is
equal to the number of non identical combinations of transmission formulas. This then
gives,

L!

Number of maximum possible kinematic arrangements = -
GI! » G2! * G3!

(2.13)

where (63 and G2 are respectively the total number of 3 and 2 gear sets and G1 is the total
number of single gear sets.

To illustrate the above described procedure, the following steps are given. For
brevity and clarity, a 6 speed 4 shaft gear train is considered for the illustration.

Step 1. Specify the required number of spindle speeds and the number of shafts
requited: N=6; NSR=4

Step 2. Establish a transmission formula: N=Z(1) *Z(2); 6 =3 +2

Step 3. Find the number of transmission stages L: L =2

Step 4. Find the number of shafts NS: NS=L+1=3

Step 5. Check if the number of shafts NS established in siep 4 is equal to number

of shafts required NSR. If yes go to step 7; else continue,
Step 6. Add additional transmission stages with single gear set (Z(i) = 1),
1=NS+I1toNSR: Z(3)=1; L=3

Step 7. Rewrite transmission formula: N=Z(1) * Z(2) *Z(3); 6=3*2 *;



Step 8 Find all possible combinations of the transmission formula obtained in

the step 7:
6=3%2%] 6=2%3%]
6=3*%1*%2 6=2+1%3
6=1%+3%2 6=1%243

Step 9. Eliminate the identical combinations of the transmission formula.: nil
Step 10. Store all non-repeating transmission formulas as all possible kinematic

arrangements,

2.5 Maximum number of possible layout diagrams
The number of input speeds for ith transmission stage Ni(i) is calculated by dividing
the number of output speeds, No(i), by the number of gears of ith transmission stage Z(i).
The number of input speeds for the it transmission stage is thus equal to the number of

output speeds of the (i- 1)th transmission stage.

: iy = Noti) 2.14
le. Ni(i) = 70 (2.14)
No(i-1) =Nj) (2.15)

Denoting by V (i,j) and V(i k), respectively, the input and output speeds of ith
transmission stage where j runs from | to Ny(i) and k runs from | to No(i); the speed ratios

between any Vo(i,k) and V|(i,j) are denoted as S(i,1), with a range from 1 to 7(i):
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Figure 2.3 Speed distribution through 2 and 3 speed change gear set

Considering the layout diagrams of 6 =3 * 2 and 6 = 2 * 3 gear trains, Figure 2.3
shows how a set of Vo(ik) and V(i,j) are linked in the layout diagram by mesh lines.
Figure 2.3 (A) and (B) show the speed distribution in the 2nd transmission stage of a
6 =23 *2 geartrain., The 2Md transmission stage contains 2 gear sets that yield 6 different
output speeds (Vo(2,k), k =1,2,..,6) from 3 different input speeds (Vi(2,)), j =1,2,3)
using the speed ratios S(2,1) and S(2,2). Here the S(2,1) and S(2,2) are in decreasing
order of magnitude. Largest output speed Vo(2,1) is created by the largest input speed,
Vi(2.1), using speed ratio S(2,1). The same input speed, V|(2,1), creates one more output
speed out of five output speeds Vo(2,k), k = 2,3,..,6) using the speed ratio S(2,2).
Figures 2.3 (C) and (D) show the speed distribution in the 2nd transmission stage of a
6 = 2% 3 gear train. The 2™ transmission stage has 3 gear sets, the speed ratios of which
are denoted by S(2,1), S(2,2) and S(2,3) in decreasing order of magnitude. All the 6
different output speeds (Vo(2.k) k=1,2,..,6) are created from 2 different input speeds
(Vi(2,), ) =1.2). Thus, the largest output speed Vo(2,1) is created from the largest input

speed, Vi(2,1), using the speed ratio S(2,1). The same input speed is expected to create
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two more output speeds which are selected from the set of output speeds,
Vo(2,k), k= 2,3,..,6 using the speed ratios S(2,2) and S(2.3).

It can now be seen that all output speed positions relative to their input speeds are
distributed symmetrically portraying a well defined graphical pattern with equal positional
distance. Obviously, a certain rule is followed in the speed distribution of output speeds.
If all input/output speeds are indexed, an algebraic constant E(i) can be introduced to relate
the output speed positions with an input speed. Assuming that the k™ output speed is
identified, the next output speed position k for the same input speed is given by k = k+1(i).

The constant E(i) is of equal value for all output speeds of ith transmission stage.

EQ) = | E(2)=3

*5(2/{’ *EQ)}l/ /l(F.(ZA/ *—-’l—izm—m)* /|

Vd’ ) (" ) v.m» (’4) .42 ) vm.) WED R MR Nl s e
\i(’l) v,(zn V.(N) MO vidh v
(A) (B)
E(2)=2
E(2)=1

B(2)— A —142)
,{45(2),‘413(2)* /“W)*LO),‘/ ’]I/ j:?/[/ 1((2)7{/ /l/
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Figure 2.4 Speed distribution through 2 and 3 specd change gear sct with E(i)
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In Figure 2.4 (A) output speed positions (1,2); (3,4) and (5,6) are joined with input
speed positions 1, 2 and 3 respectively, resulting in the value of constant E(2) to be equal
to 1. In Figure 2.4 (B) output speed positions (1,4) (2,5) and (3,6) are joined with input
speed positions | and 2 respectively, resulting the value for the constant E(2) =3. In
Figurc 2.4 (C) output speed positions (1, 2, 3) and (4, 5, 6) are joined with input speed
positions | and 2 respectively resulting in the value | for the constant E(2). In Figure 2.3
(D) output speed positions (1, 3, 5) and (2, 4, 6) are joined with input speed positions 1,2
and 3 respectively resulting in the value 2 for the constant E(2).

This reveals that the E(i), which is responsible for different layout diagrams, may
be viewed as constant indicator for ith transmission stage of a given kinematic arrangement.
A systematic approach of calculating the values for E(i) using transmission formula is
explained below. Consider a 6 speed, 3 shaft gear train, possible layout diagrams of which
is shown in Figure 2.2. The possible two transmission formulas are given as,

6=3%2
6=2%*3

Case (A) Select 6 = 3 * 2 arrangement:

For 2nd (ransmission stage:

number of output speceds No(2) =6

No(2) _ ¢

number of input speeds Ny(2) = 720 = 2 = 3 = No(l)
possible E(i) values:
No(2) No (2)
Z(2) Z(2) *Z(1)
6 6
2 2%3
3 |
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For 15t transmission stage:

number of output speeds No(1) =3

number of input speeds N(1) = I\JZ‘_:%)_ = : =
possible E(i) value:
No (1)
Z(1)
3
3
1

Case (B) Select 6 = 2 * 3 arrangement:

For 27 (ransmission stage:

number of output speeds Np(2) =6

: , , No(2) _ ¢
number of input speeds Ny(2) = 2L =0 — 9
putsp 1(2) 7(2) 3
possible E(i) values:
No(2) No(2)
Z(2) Z(2)*Z(1)
6 6
3 3*2
2 |
For 15t transmission stage:
number of output speeds Npo(1) =2
. . : No(l) _ 2
number of input speeds N = 00 2 o
put sp (D) 200 "2
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possible E(i) value is given as,

No(1)
Z(1)
2
2
I
Tn;" SMUSSION |y ransmission stage 2" ransmission stage
‘ormula
3
6=3%*2 I
1
6=2%3 I 2
!

Table 2.3 Possible E(i) values for a 6 speed gear train

The possible values of E(i) for both kinematic arrangements are given in Table 2.3.
Using the combination of the E(i), all possible layout diagrams can now be constructed.
Similarly, using the above mentioned method, E(i) values for a 18 speed 4 shaft gear train
are calculated and tabulated in Appendix A, followed by a Table for a 18 speed 5 shaft gear

train.

2.6 All possible speed diagrams

For cach layout diagram, a corresponding speed diagram can be achieved,
incorporating specified set of drive unit speed, spindle speeds and given speed ratios. A
method for finding the speed diagrams of a 6 = 3 * 2 cross type is presented here having
known the layout diagram, drive unit speed Vi(1,1), all spindle speeds Vo(2,1) to Vq(2,6)

and largest speed ratios S(1,1), S(2,1).
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Figure 2.5 Speed diagram of a 6 speed 3 F 2 cross type

It can be seen from Figure 2.5 thiat Va(2,1) is the largest output speed and it is
created from drive unit speed Vi(1,1) using both speed ratios S(1, Dand S(2.1)
Vo(2,1) = V(LD * S(LD) * S2.1) (2.16)

The largest input speed on shaft # 2 is calculated using the following formula:

V2,1 = VS‘—Z(;I—‘)’ (2.17)

The other output speeds, created from the same input speed Vi(2,1) are selected
using E(i) value. Since E(i) value for second stage is given as 3, the input speed Vi(2,1)
produces the 4" speed Vp(2,4) on output shaft #3. The speed ratio S(2,2) to obtain the
speed Vp(2,4) from V(2,1) is then given by,

Vo(24)

= e (2.18
S(2,2) Vi) )
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Once the output speeds Vo(2,1) and Vo(2,4) are identified with an input speed
Vi(2,1), the next nnidentified highest speed V(2,2) is expected to be produced from the
next highest input speed of shaft 2, which is Vi(2,2). Knowing the layout diagram, it is
deduced that the gear set with speed ratio S(2,1) produces Vg(2,2) from the input shaft
speed Vi(2,2) and itis given by,

Vi(2.2) = VS‘E(TZ%! (2.19)

The next output speed on shaft 3 for the above input speed V(2,2) is Vo(2,5).
The speed ratio V(2,5) 7 V(2,2) will be equal to S(2,2). In the same way V((2,3) can be

calculated as:
Vo(2,3)
Vi(2,3) = ——27 2.20
1(2,3) SCZ.D) ( )

Further V(2,6)7V(2,3) will be equal to S(2,2). All these calculated input speeds
for 2nd ransmission stage Vi(2,k), k=1,2,3 are equal to the output speeds for the [t
transmission stage Vo(L,j), j=1.2,3 respectively and further are produced from the drive
unit speed Vi(1,1), using the speed ratios S(1,1), S(1,2) and S(1,3).
Vi(1,1) is calculated or verified using following equation,
Vi1 = 2 @.21)

The S(1,2), S(1,3) are calculated as,

Vo(l,2)

2) = 2 4] 2
S(1,2) Vi(L.D) (2.22)
3) = ————~0(l’3) 2
S(1,3) Vil (2.23)



This approach is easy to apply for different kinematic arrangements of” multi-speed gear
drives. Based on this approach, an automated computer aided procedure along is

developed to establish all possible speed diagrams and is presented next.

2.7 Recommended generalized procedure for finding all possible

speed diagrams

Select a kinematic
arrangement

generate all possible E(i),
and select aset of
combinations

Generate speed diagram

e LS ——

Calculate
intermediate shaft speeds and
speed ratios

select another set of
combinations of I3
1o continue

Figure 2.6 Procedure for speed diagrams for a selected (i)

The generalized procedure finding all possible speed diagrams involves a method of

calculating all intermediate shaft speeds and speed ratios for different layout diagrams.

Figure 2.6 shows a flowchart for gencrating speed diagrams through cach
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transmission stage. The step by step instructions for calculating speeds and speed ratios of
ith transmission stage is described helow:
For ith transmission stage,

Number of gear pairs = Z(i)

Number of output speeds = No(i)

Output speeds of (i+1)th shaft = V(i,)), j = 1, 2,..., No(i)

( Output speeds are set in descending order )

No(i)
Z(i)

Number of input shaft speeds Ny(i) =

Input speeds on ith shaft = Vi(i,k), k= 1, 2,..., Nj(i)

The maximum speed ratio is specified with S(i, 1)

Step 1. Select the maximum output speed Vo(i,j) on (i+1)t shaft .

Step 2. Divide the maximum output speed by maximum speed ratio of ith stage S(i,1)
and find maximum input speed Vi(i,k) of it shaft.

Step 3. Identify the (Z(i) - 1) output shaft speeds produced from maximum input speed
Vi(i,k) using E(i) value.

Step 4. caleulate speed ratios for ith stage.

2nd [yreer speed ratio =
BEESP ViCik)

3 larger speed ratio = Vol \i}j(-i-.2:l)i(i) ) ( This applies only if Z(i) = 3)
1

Step S, select maximum output speed Vo(i,j) skipping all output speeds considered

in step | and step 3.
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Step 9.

Divide output speed obtained in step S by S(i, D) and find the next maximum
input speed

Vi(i,k) of ith shaft.

Identify the (Z(i) -1) output shaft speeds produced from the next maximum
input speed Vi(i,k) using E(i).

Verify speed ratios S(i,2) and S(i,3)

S - : Vol i, j+E(1))
20d [arger speed ratio S(j,2) = QT
SELEP (.2) Vitik)

Vol i, j+2*E(i))

3rd larger speed ratio S(i,2) =
ger sp (1,2) Vi(ik)

( This applics only it Z(i) = 3)

Select maximum output speed Vo(i,j), skipping all output speeds considered

in step 1, step 3 and step 5.

Step 10. Repeat steps 6,7 and 8 until all output speeds from (V(i,)) are selected.

2.8 SPDIAG (speed diagram) program description

Using the above procedure, an automated computer aided interactive graphical

program (SPDIAG) is developed to determine and plot all possible speed diagrams. Input

parameters for this procedure are:

1.
2.
3.
4.

Number of output shaft speeds: N.
Number of shafts required: NSR.
Values of output shaft speeds: Vo( NSR-1,n),n=1,2,...,N.

Largest speed ratios for all transmission stages: S(i,1),1 =1, 2,..., NSR -1,

From the input data N and NSR, the program first cstablishes a transmission

formula . Using that transmission formula, the maximum possible kinematic arrangements

are identified. Then for cach kinematic arrangement, all possible E(i) values are computed.

Using these E(i) values, all possible speed diagrams arc generated known the values of
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spindle speeds VO(NSR-1,n), where n = | to N and largest speed ratios S(i,1) for all

transmission stages. The flowchart of SPDIAG is shown in Figure 2.7.

Read Ny NSR, Subroutine ARRANGE Subroutine KINPOS

Vi, (NSR-1, 5 axi

whorona o || CompueNSand || Compuie s
’ transmission formula possible kinematic

Soil) arrangements
where i =1 to NSR-1

Select a kinematic
arrangement

Unselected

Subroutine SPDCAL . X
kinematic
Establish Y arrangemeng’
SPEED DIAGRAM
N
j=j+! Subroutine ECOMBN Subroutine EOVALUE
Compute IC number of Compute emax number
maximum possible of E values for each
Seleet Eiyy) _ combination E value from transimission stage "
where i = | to NS-| ~ =1 E (i.k) and store as E(i,j) and store as E i,k)
forj=1,1C; for i =1to NS-1;
where i = | to NS-t where k = |,emax(i)

Figure 2.7 Flowchart of the program SPDIAG

The main program SPDIAG calls 5 subroutines to complete the task. Brief
description of the main program and the subroutines are given below:
Main program SPDIAG
1. Read number of spindle speeds N;
(ii) Number of shafts required NSR;
(iii) Spindle shaft speeds Vo(NSR-1,n), n =1,N and

(iv) Largest speed ratios So(i, 1) for all transmission stages (fori = 1, NSR-1).

t9

Call subroutine ARRANGE
3. Call subroutinc KINPOS
4. For cach kinematic arrangements

4.1 call subroutine EOVALUE
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4.2 call subroutine ECOMBN

4.3 tor each combinations of E(t.)) (that is, j runs from ! to 10,

431 setE(i,j) fori= 1, NS-1

4.32  call subroutine SPDCAL

5. End

Subroutine ARRANGE

Print:

‘Modify N'

CReturn) ( Stop )

Transmission formula
N=2Z(1)*Z(2) * ... x Z(NS-1

Y

<7 no N>

1=1+ 1
Z(y=2
NI =N1/2

<qiro >t

Y

Y

1=1+ |
/34)=13
NI=N1/3

L=0L+I

Al =1

NS =L+1

Figure 2.8 Computational scheme of subroutine ARRANGE
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The subroutine ARRANGE performs the following steps:
I. Lstablishes a transmission formula for the given valuc of N
2. Calculates the number of shafts NS
If calculated number of shafts value is equal to number of shafts required, then
assigns NS = NSR, elsc adds additional transmission stages with single gear sets till
the condition NS = NSR, is satisfied.
3. Rewrites transmission formula for NS
4. Returns
Flowchart of the subroutine ARRANGE is given in Figure 2.8. The algorithm
signals an error message "Modify N" followed by the termination of the program, if an
unicalistic N s inputed.

Subroutine KINPOS

The subroutine KINPOS performs the following steps:

I. Establishes all possible transmission formulas

| £5]

. ldentifies and eliminates repeated transmission formulas

‘o

Rewrites non repeating transmission formulas as possible kinematic
arrangements
4. Returns

Subroutine EOVALUE

The subroutine EOVALUE periorms the following steps:

I. Creates. a two dimensional array

2. computes Eg(ik) for cach transmission stage which is converted into E(i,))
values later.
3. Eliminates repeated Eg(ik) of ith stage and determines emax(i) that is the

number of non repeated Ep(i,k) of ith stage.
4. Returns

Flowchart of the subroutine EOVALUE is given in Figure 2.9.
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i=NS-1
N({l)=N

Np )y =N/ 20

N, (1) = Nj (1+1)

EaRN=NMO/7ZW0

i-1
v Fliminate N
@ 1epeated i
N b

K=N (i)/7Z (1}
m=1ID

ID=ID-1 *I

Retuin

k=k+1
EGk)=K/Z(m)
K =Eu(i,k)

m=m-| I
n=m-2

n=n-|

N |

Y Y EG,hN=K/7ZD

. m=| ne<l hht
N 71D =7/(n)

|

Figure 2.9 Computational scheme of subroutine EOVALULE

Subroutine ECOMBN

The subroutine ECOMBN performs the following steps:

1. Computes all possible combinations of Ep(i,k) for i = 1to NS-1;5 where k = |
to emax(i)

2. Computes the total number of different combinations IC

3. Stores the resulting values as E(i,j) for j=1 to IC; wherei= 110 NS - |

4, Returns
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Subroutine SPDCAL

The subroutine SPDCAL performs the following steps:

I. Using the given output shaft speeds Vo(NS-1,n) where n =!,N and largest
speed ratios RTO1(i) for all transmission stages;
1.1 Computes all speeds of cach shafts
1.2 Computes all speed ratios other than given.

1.3 Compares the input speed computed on the shaft 1 with the given input

source speed

2. Returns

2.9 Demonstration results

To demonstrate the full potential of the developed method, all possible speed
diagrams for a 18 speed 4 shaft gear train arc generated. The input parameters for the task
is tabulated in Table 2.4. The results are plotted using the above mentioned computer aided

program SPDIAG and shown in Figure 2.10(A), 2.10(B) and 2.10(C).
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Number
of
spindle
shaft
speeds

Values of
spindle
shaft
speeds

Number
of shafts
required

Largest speed ratios

Transmission
stage

Numerical value

1391.170
1220.588
1070.691
939.2025
823.8018
722.6857
633.9349
556.0833
487.7923
427.8880
375.3403
329.2459
288.8122
253.3440
222.2316
194.9400
171.0000
150.0000

0.729780

t2

1.312500

1.037037

Table 2.4 Input dita for SPDIAG
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2.10 Conclusion

A computer aided method for determining all possible speed diagrams is developed
and presented in this chapter. The method presented herein has several advantages. It
casily deals with any number of output speeds and any number of shatts required and it
accommodates all types of layout diagrams. If discontinuities are observed in any of the
layout diagram, the method automatically adjusts to such conditions without requiring any
additional input parameters. Changing the input values for the largest speed ratios allows
the designer to examine different speed diagrams with same speed specifications.  This
advantage can be useful for incorporating all possible speed diagrams in a hinematic
analysis. In some cases, when speed ratios of transmission stages are iterchanged, this

method becomes a useful tool to examine speed diagrams.
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CHAPTER 3

Kinematic design of multi-speed gear trains

3.1 Introduction

Design of a gear train requires appropriate strategies to achieve increased durability,
compactness, precision, low noise and low vibration levels of component gear units.  The
durability and longevity of gears arc determined by the hardness of gear teeth material and
the capability to resist stress reversals induced in them. It is possible to manufacture
durable gears by using gear fabricating material such as high hardened steel or medium
hardened steel. The other factor that governs the durability of gears is the heat treatment.
Heat treatment can increase the service life of a gear set up to ten times without increasing
its size or weight. Compactness of gears is obtained through selecting hardened gear
malcerials or reducing the dimensions of gears or a combination of both. The dimensions of
medium-hardened gears can be considerably reduced sometimes as much as two times, by
changing to high hardened gear material. The important design factors that play a major
role in reducing gear dimensions are the gear ratios, the number of teeth of pinion, module,
pressure angle and the ratio between facewidth and pitch diameter. Gear trains with
precision gears are widely used in instrumentation, automatic controls, machine tools, high
speed units ete. Precision gears satisfy high design standards and they require refined
analysis, design, fabrication and assembling criteria. Fuither, the noise generated by the
gear train is basically related to the transmission error of the component gear units. This
transmission error is caused by the deflections of gear teeth due to operational loads, tooth
profile, spacing between teeth, and runout errors resulting from the manufacturing process.
The vibrations that are manifested during operation are caused by inertia, compliance and

damping of the individual components of the vibratory system.
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In multi-speed gear trains, cach spindle speed is produced by a number of selected
gears. The series of selected mating gears is termed as the transmission path of the
particular spindle speed. Component gears in cach transmission path are designed to
satisfy the operational requirements, wherein these requirements are given in terms of
transmitted power, input / output speeds and desired speed ratios from the layout diagram.
Smaller gears satisfying the prescribed operational requirements are most desirable in use,
because they operate smoothly due to smaller inertial loads and pitch line velocities as well
as due to their compactness, lesser cost and the casiness in manufacturing. The cost not
necessarily follows linear dependence with gear dimensions, especially if the smaller gear
size is made durable by heat treatment.  However, the trade-off generally favors the
minimized gear dimensions. Obviously, smaller gears will use less material for the gear
elements and for the surrounding housing. [If the same life and reliability is achieved ina
smaller package, a more cconomical design is achieved.

In general, the problem of design synthesis of gear trains involves minimized
volume and manufacturing cost but not at the expense of a safer level ot strength. "Fhis
requirement automatically translates the problem of design into a problem ol optimization.
One advantage of using an optimization procedure is that, it enables the designer to
consider a spectrum of possible designs. The procedure starts by listing the design
parameters available, the cquality constraints to be satisficd, the inequality constraints that
define the limit of acceptable designs and the objective function that is used to compare the
design task of each possible design on a specified merit basis. The relevant constraints are
listed as: (1) Force constraints (bending and wear capacities, vibrational safety constraints,
etc.) (2) Tooth geometry constraints (limit on ratio of facewidth to pitch diameter, contact
ratio to be more than the minimum defined for the selected gear, no involute interference
i.e. - gear tooth cannot be undercut, etc. ) (3) Dimensional constraints (outside diameter of
the gear cannot be less than the shaft diameter, gear ratios must be within the allowable

values, gear ratio product of all gear sets must be equal to the overall speed ratio of the
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corresponding transmission path, etc.). Thus, the volume, center distances, gear sizes,
gear ratio deviations, ete. are designed to have their respective optimal values. In a parallel
shaft gear arrangement this means essentially that volume optimization is to be achieved by
the minimization of both the length and width of the gear train individually. The length of
the gear train in a parallel shaft gear arrangement is usually defined by shaft lengths needed
to mect torsional strength requirements and the width is a sum of center distances between
the shafts; it is also affected by the largest gears on the first and last shafts. In order to
minimize the width of a gear train, the overall center distance between the shafts and the
radius of the largest gears on input and output shafts are to be minimized jointly [ 34 ].
However, extrema of center distances between shafts are limited at least at their minimum
value, by the codal provisions| 54 1. That is so because, the center distance between shafts
is o sum of the number of teeth on the pinion and wheel whereas these two in turn are
subjected to the feasibility of manufacture. The problem of optimization is thus to take into
account all these complicating factors. Most of the optimization methods that are currently
available for the design of gear trains, are capable of dealing only with a selected kinematic
arrangement with specified layout diagram. When the same methods are adapted for other
types of kinematic arrangements or layout diagrams, most of them become inevitably

inctficient and complicated.

3.2 Formulation of the kinematic design problem

Failures arising due to manufacturing process uncertainty are more crucial in
practical high speed gear arrangements and the analysis of which would provide
opportunitics of reducing the reliability of the entire dynamic system. For instance,
misalignment of gear teeth is encountered due to errors or variations in center distance of
the mating gears and this causes many stress related failures. These variations can always
constitute an ensemble of a stochastic process when identical mass products are considered.

In addition, randomness can be observed in speeds, transmitted power, gear ratio,
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facewidth, tooth geometry, matertal properties, cte. It is very practical to address a wide
range of factors which causes the uncertainties in the gear system in the design stage itself.
Carroll and Johnson [ 11 ] present a solution procedure for the optimal design of spur gear
set, minimizing the pitch diameter of the pinion in a dimensionless design space, subject to
stress and undercut constraints. The optimal design of gear geometry is found depending
only on gear ratio and strength properties of gear materials.  Although the gear ratio is
specified as an input data, the procedure assumes a tolerance to the gear ratio in order to
keep the number of teeth as an integer. Duc to this assumption, an adjustiment is again to
be made to the facewidth to achieve a feasible safe design.

The problem of determining gear ratios for the component gear sets of a
transmission path is attempted in Reference [ 5 . The desired overall speed ratio of the
transmission path is assumed as a rational fraction of integer numbers within a tolerance.
The denominator and the numerator are then factorized into several integer numbers so as (o
produce the desired number of transmission stages. Combination of these integers in the
denominator and the numerator is treated as gear ratios in the transmission path. The value
equal to the sum of the squared variation of gear ratio of cach transmission stage, is defined
to select the best combination. The method is expanded by the authors in Relerence | 7 )
to adopt the center distance requirement where a numerical scanning method finds all gear
sets with a specified gear ratio and / or center distance within some tolerances. Both of
these reports [ 5, 7 ] are straight forward design approaches and do not use any
optimization procedures.

Deterministic design investigation of a 18 speed 5 shaft gear train with a pre-
selected layout diagram is studied by Rao et al | 39 ]. The design synthesis is performed in
two steps and both are staged in the form of multi-objective minimization approach. In the
first step, the formulation involves two objective functions as the design task. They are the
minimization of the sum of speed deviations from specified values in all speeds including

the intermediate shaft speeds and the minimization of overall center distance of the gear
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train. The number of teeth of gears are treated as design variables and the lower bound on
numbecr of teeth for both pinion and wheel is selected as the constraints for the first step.
The second step involves the minimization of mass and the maximization of transmitted
power simultancously, satisfying bounding parameters to the facewidths and the allowable
limitations on induced bending and wear stresses.  Both the facewidth and transmitted
power are sclected as the design variables for the second step. Furthermore, the above
study uses the methodology presented in Reference [ 15 ] to compute the integer values for
the number of teeth, The results of the above investigation have a number of drawbacks
that are listed below: (1) For a practical design of a gear train, the spindle speeds and their
variations arc more important than the intermediate speeds. Thus, the minimization of
speed deviations in intermediate speeds leads to uneconomical designs. (2) Selection of
module for the component gear sets is the designers choice, based on application and
manufacturing conditions of the intended gear train. This makes one of the given results,
that is module versus sum of speed deviations, to be not useful. (3) It is clear from basic
equations | 54 | that the center distance is directly proportional to the module. By carefully
examining the solution procedure for designing multi-speed gear trains, it becomes explicit,
that onc gear set is determined first as a reference, based on which the center distance and
the other gears in the current transmission stage are designed. Such reference gear sets in
cach transmission stage form a reference transmission path that is responsible for the
overall center distance of the gear train. If a same module is assigned for all component
gear scts, overall center distance obviously has a linear relationship with the selected
module. The other result from the optimization of the first step provides such a linear
curve, which affects the definition of optimum parameters. (4) Probabilistic nature of the
gear train parameters is not addressed in solving the force constraints. (5) As indicated
carlier, a pre-sclected kinematic arrangement and layout diagram are investigated, which
hinders the options of checking all other possible layout diagrams of all possible kinematic

arrangements.
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Moreover, the above mentioned references clearly show inefticiency in the problem
formulation and computational methods of multi-speed gear trains, resulting in a need for a
new solution method to avoid the undesirable variations in gear parameters such as gear
ratio, center distance and facewidths. It is known that, the gear ratio always remains as a
constant, when the number of teeth of pinion and wheel are treated as deterministic prime
numbers in the design procedure. Since the center distance has a lincar dependence with
the module and the sum of the number of teeth of both pinion and wheel, varations in the
center distance can cause variations in module. Treating the module and facewidth as
random parameters and number of tecth as deterministic variable can thus increase the
efficiency of the solution procedure. The selection of number of teeth can only affect the
kinematic characteristics of the gear train, and the random parameters can be solved
separately in order to satisfy the force constraints.

The primary requirement for the optimization strategy in this chapter, is the
selection of the number of teeth for cach gear, so that a gear train will provide a gear ratio
equal to the corresponding speed ratio. Minimum volume or minimum center distances is
obtained from the optimization. The constraints are imposed on mesh conditions for cach
transmission stage and maintaining limitations on number of gear teeth, acceptable module
values, etc. Solving this type of constrained problem is difficult when larger number of
output speeds are considered. The problem involves large number of design variables and
generally does not permit minimization in simple single objective modules. "Thus a multi-
objective formulation becomes necessary to solve the problem.

The entire minimization scheme is performed sequentially in two steps. The first
step is performed to minimize the overall center distance of a reference transmission path.
The number of teeth values of this reference transmission path are selected as integer design
variables and are constrained by the desired input to output speeds, codal provisions for
gear ratios and the number of teeth. There are 2 * (NS - 1) number of design variables that

are selected to form the reference transmission path.
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Once the nuinber of teeth value of the reference transmission path is obtained, all
other speed ratios can be computed using the method described in Chapter 2. The second
minimization procedure determines number of teeth of all gears other than that in reference
transmission path. The deviation between ideal and actual gear ratios is selected as the
objective function for minimization. The center distance of each gear set is incorporated as
an cquality constraint by making it to be equal to the center distance of the reference gear set
that is obtained in the corresponding transmission stage. For an economical solution, a
standard tooth system made by standard tooling is sought. Codal provisions provides a
limited number of module, standard pressure angle and standard addenda and dedenda.

The codal provisions for the present study is governed by AGMA standards.

3.3 Formulation of the optimal design

The optimization procedure is compesed of two steps, namely the minimization of
overall center distance and the minimization of gear ratio deviatisns. The number of teeth is
Kept as an intcger design variable and the design space is limited by the equality and
incquality constraints. The relevant objective functions and constraints are now presented

in the following sections.



3.3.1 Step 1: Minimization of overall center distance

.t -
| transmissin stage

nd -
2 transraissin stage

ll

Total center distance = Z Di D= — s G o= 'l‘p(i,l) +T,G,1)

N
i=1

Figure 3.1 Parallcl multi-shaft gear train

With reference to the parallel multi-shaft gear train, a design approach fe. the
optimum value of overall center distance is implemented. Figure 3.1 shows schematically

the arrangement of a multi-shaft gear train with (L+1) number of gears mounted on (L. +i)



number of shafts. For this gear train, the overall center distance is the sum of the center

distances found in all L. number of transmission stages. Thus,

L
Overall center distance = Z D; (3.1)

i=1

where Dj is the center distance of ith transmission stage.

The objective function

All gear scts in the reference transmission path are assumed to have same module
m. Although the module is probabilistic in nature, in the present deterministic formulation
the mean of the module is taken as a constant m. The objective function @ now takes the
following form:

1.
Minimize b = 2 L;l_ *[Tp(1, 1) + T, 1) (3.2)
i=

or alternately, after substituting the design variables it takes the form,

L
Minimize @ = Y 1‘21*[)((2i—1)+ x(2i)]

i=1
where x(2i-1) and x(2i) respectively represent the design variables assigned for the

number of pinion and wheel teeth of ith transmission stage.

The constraints

Two types of constraints arise due to taking into account the speed ratio requirement
and gear ratio limitations. The reference transmission path produces the largest spindle
speed Vo(L, 1) from the drive unit speed Vi(1,1) using L number of speed ratios. If the
product of all gear ratios (Tp / Ty) in the reference transmission path is made equal to the
quoticnt Vo(L. 1) / Vi(1,1), the corresponding output speed Vo(L,1) will have zero speed

deviation. Thus, this condition can be set as an equality constraint. That is,
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L

Tp(i.) [Vl

F| = L uha ! 01 =0 (3.3
! |I:II Tw(i,1) Vl(l»l)

Upon substituting the design variables, this reduces to,

Fi(x) = ﬁ X(Zi',” - l-vﬂ(h‘ll = 0 (3.4
i=1 X(2i) Vi(l,1)

However, gear ratios Tp(i, 1) / Tw(i, 1) are to be governed by their limiting values
Rmax(i) and Ryyin(i) that are laid by design standards. The standard values for Ry« (i) and
Rmin(i) are given by Townsend in the reference [ 54 |, as any value from 0.5 to 2.0.
Knowing that all torsional natural frequencies that arise during the operation of the gear
train are to be checked with the rotating spceds in the reference transmission path, the
specification of the value for Ryy,x(i) is important in the Kinematic design stage. The
specification of smaller values for R;;,x(1) will yicld smaller rotating speeds in the reference
transmission path that will improve the operational safety of the gear train. Thus,
additional 2*L. number of incquality constraints can be formulated to keep the gear ratios

within the beneficial limitations.

H T (iyl -
Fy = Rpin(1) - ,I:-?l**]—; <0 (3.5)
YA}
. Tp(i,1) .
Fye1 = '_l‘:,(i,l) - Rpu() € 0 (3.6)

Substituting the design variables these turn into

. 2i-1 .
Fk(X) = len(l) - x‘)(z(‘;“l)) < 0 (;7)
Fk+|(x) = x__(zl:]_) - Rmnx(i) S () (3.8,
x(21)

wherei= 1,2,...L and k = 2i -1
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By minimizing the overall center distance, optimal values of Tp(i,1) and Tyw(i, 1) of
the reference transmission path is determined. During the minimization, several individual
reference transmission paths may be obtained that have gear ratios falling within the
limiting values of Ryyax(i) and Rynin(i). Hence, all these possibilitics must be treated as
acceptable designs. Each of these acceptable reference transmission path results in a group
of fixed speed ratio S(i,1) and center distance D; as input parameters for the next step to
subscquently design the other gear scts.

In addition, the iteration procedure requires knowledge of upper and lower bounds
for the number of teeth on gears. The region of acceptable designs can be established as
that the region bounded by (TPyin, TPimax) and (TYiin, TWmax). where the TPpux, TWinax
arc the upper bounds and the TPni,, TWhin are the lower bounds for pinion and wheel

respectively.



3.3.2 Step 2: Minimization of gear ratio deviations

f T,
. e . m . . T
Minimize - E T (1) +T, (0.1 TAD+T (1D N "
1=1 1 L\) g
Subject to Crl,(ll) +T (2.1 = () s ko
Tp(1.1) T, T (L.1) v, (L. : g §
* * ok = o
T (L) T, (201 T (L1 V(LD o
a0 Q,,(LJHTW(L.!) <
.

S(1,2) SCHLZ(1 =
select a D) (1 Z(1) =
VJLD---VJL,@ layout 8(2:’2) b(?:.,[.(Z)) %
diagram S(L2) ~ S(LZ(L)) ;&,

Figure 3.2 Obtaining the center distance and speed ratio

The step 2 is intended to determine the number of teeth in all gears other than in
reference transmission path. Figure 3.2 shows, how the center distance and speed ratio are
obtained for step 2, as a result of overall center distance minimization achicved in step 1.
Referring to the method explained in Chapter 2, the speed ratios S@i,1), (where 1 =2 to Z(i))
are obtained from the known values of S(i,1). For clarity, a layout diagram and its
corresponding cluster/wheel mechanism for Z(i) = 3 is illustrated in Figure 3.3, where the
input speed V|(i,k), output speeds V(i k) and speed ratios S(i,j), center distance D, are

also identified.
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i+1Mshaft

S(,2)
S(1,3)

Figure 3.3 Layout diagram and its corresponding cluster/wheel mechanism for Z(i) = 3

The center distance Dj of the reference gear set, based on the assumption that the

reference pinion and wheel have the same module value m, is given as:

D; = "2’— *[Tp(i,1) + Ty(i,1)] (3.9}

As indicated in Figure 3.3, the same center distance Dj is maintained for 1th gear set in ith

transmission stage fori=1,2,..., Land 1 =2,..., Z(i).

D, = O+ [Tp(,1) + Tw(i,1)] (3.10)

Now by defining the mesh condition for the 1th gear set in the ith transmission

stage, the equation relating the number of teeth can be obtained. That is,

o | Tp(i,1) + Tyw(i1)] - T Tpi.1) + Tw(ih] = O (3.11)
ic. Tw(i,1) = [Tp(i, 1) + Ty(i,1)] - Tp(i,1) (3.12)
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Theoretically, the 1t gear set is to have the gear ratio Tp(, 1) / Ty(i. 1) equal to
S(i,1). Butin actual design, conversion of the number of teeth into integer value produces
adeviation on gear ratio.

The deviation on the gear ratio is expressed as a percentage of its ideal value:

actual gear ratio - ideal gearratio
ideal gear ratio

LG Y
or e = Nwbl) (113)
S(1,1)
i.c. e = oGl (3.14)
T\V(i»l) * S('vl)
Substituting for Ty(i.1), the gear ratio deviation is given by
_ Tp(i,1) . (3.15)

T TG + Twi,D) - Tei1)] * S(i,1)
To facilitate computational advantage a tolerance value 9 is infroduced 1o be
associated with this deviation and is defined by,

-8< e <b (3.16)
or le|< 8 (3.17)

The_objective function

The objective function is written for the net gear ratio deviation of all gear sets other
than the reference transmission path.

Minimize @ (= Total of ail gear ratio deviations )
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1. 74i)

where b = 3 ¥ . 10D 1| @
S e + Tw(i) - Tp(i,1)]) * SG,1)

The number of tecth of the pinion is taken as the design variable. Substituting the design

variable x, this objective function takes the form

d(x) = i 3(‘_") (k) 1 (3.18)
S [Thi) + oD - x(0)]* SG,1)
L

where k=IN and NV =Y Z(1) - L

‘The constraints

Optimization is performed keeping in view the limitations on the number of teeth
values as laid by the codal provisions. Values for number of teeth Tp(i,1) (where i=L;
1 =210 Z(i)) arc found within the range from (Tmin, Tmax). Hence, 2*NV number of
incquility constraints can be formulated considering each set of lower and upper bounds.

Fx(x) = Tmin - x(k) =0 k=1, NV (3.19)
Fi(x) = x(k) - Tyax <0 . k=NV+], 2*NV (3.20)

When the diameter of the output gear in a transmission stage is made equal to that
of the input gear in the next transmission stage, the design is said to be composite.
Focusing on the composite arrangemc nts, more equality constraints are adopted here at this
stage. Constraints are derived by equating corresponding gear diameters according to the
composite nature.  The number of design variables may also be reduced when more

cquality constraints arc considered in the optimization.
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3.4 Optimal design procedure

The design synthesis of this chapter is based on a optimal design procedure that is
followed in the two minimization steps of the previous sections.  Required input to the
procedure are the values of number of spindle speeds N, number of shafts required NSR,
speed of the drive unit Vi(1,1), spindle speceds Vo(NSR-1,n) where n = 1 to N, and
module m(i,j) where i =1 to NSR-1 and j = 1 to Z(i). Inthe present procedure, a same
module value is assigned for all gears i.c. value for the array m(i,j) is replaced by a single

constant m.

Read N, NSR,
Vi D,
Vo(NSR-1.n)

n=1,N
and m

Compute NS and

transmission formula

Print
number of teeth

Acceptable
spindle shat't
speeds?

Minimization
Of Overall
Center Distance

possible reference
tansmission paths

Y

Select a reference
transiassion pith

Unselected
Miinimization reference transmission
Of Gear Ratio path?
Deviations A Compule
i=jt SG,1) and D
I fori= 110NS-1
Select E(1,))
fori=1to NS-I
‘ Compute IC number of Compute emax number
maximum pussible of £ values for cach
=1 combination E value fron transmission stage

Eo(ik) and store as E(i,j)
for j =1,1C;
where i = | to NS-1

and store as Efik)
for i=110NS-1,
where k = | emax(1)

Figure 3.4 Flowchart for the kinematic design synthesis
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The flowchart in Figure 3.4 illustrates an automated design procedure for obtaining
all possible gear trains with minimum overall center distance. In the flowchart, both the
minimization schemes that are presented as Step 1 and Step 2, are combined together with a
procedure that finds all possible layout diagrams for a sclected reference transmission path,
Both the minimization schemes require that a global minimuim be obtained for each of their
multiple variable objective [unctions and constraints. Since, the present design procedure
is capable of bandling any number of N and NSR, the order of non linearity in the design
procedure is not known. When the objective function and constraints are formulated with
integer design variables for gear teeth, a powerful integer programming method is needed
to solve this nonlincar problem. Most of available soluticn procedures are relatively
incfticient dealing with heavily constrained problems with larger number of design
variables. Knowing this, a Non Lincar Integer Goal Programming approach NLIGP,
details of which are presented in Appendix B, is selected as the solution algorithm for both
minimizations in the present chapter. The algorithm of the selected NLIGP approach, is
based on existing methods innon linear programming, integer programming and heuristics.
The method deals with a model which uses goal programming with a pattern search
algorithm, where all the constraints are converted as objectives and adopted in the set of
objectives functions.

In the present optimization procedure, the initial values for design variables are
randomly picked {rom the domain of integer numbers defined by the codal provisions that
are particular to number of teeth for both the pinion and wheel. The optimum search is
initiated to start with a random number generator to allow a complete examination within
the feasible designregion. The final results are printed out based on some criteria such as
acceptable requirements on spindle or intermediate shaft speeds, gear ratios and composite
arrangements.  In the present design analysis, the spindle speeds are investigated to select
the optimum design. The following FORTRAN statements are used to read the basic input

data tor the procedure:
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Print*, 'Please
Read (6,*)
Print*, 'Please
Read (6,*)
Print*, 'Please
Read (6, *)
Print*, 'Please
DOn =1,
Read (6, *)
end do
Pprint*, 'Please
Read {6, *)

type the number of spindle speeds

N

type the number of shafts required:'

NSR

type the speed of drive unit'

VI(l,1)

type the values for spindle speeds'

N
VO (NSR~-1,n)

type the module'

modl

Gear train specification Gear train information
o st spinds a0 OF | s | Nber |t ]G |y
_ﬁ sl():;:; required stage | gear sets Piion | Wheel tatio (cm)
11232901,518780 48 | 28 |1.7142860
5(3’3028% I 3 | 34 | 42 |0.809524
?%%22;5‘, 20 | s6 {0.307692
?22:33?2 35 | 33 |1.060606
A e e P B B e R
3333323 3 37 10.837838
%23313% 3 | 1 33 | 34 |0.97058%
?53:5358 27 | 49 [0.551020
i§5;8888 * 2 ! 20 | 56 [0.357143

Table 3.1 Gear train details from Reference Rao et al | 39 |
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Shaft# 3

]ﬁ

18
18

Optimum overall center distance

18
28 37

27

' Shafi# 5 ——H

23
Shafi# 4 | 32

Figure 3.5 Optimum kinematic arrangement

3.5 Optimal design example

Based on the flowchart shown in Figure 3.4, numerical computations are carried
out for a 18 speed gear train with module for all gears equal to 0.305 cm. In order to
demonstrate the need for analyzing all possible layout diagrams, the gear train
specifications are selected from an alrcady optimized design that has been piesented in
Reference | 39 1. The drive unit speed of the selected gear train is 1400 rpm. All other
details of the selected gear train are shown in the Table 3.1. The ideal speeds are calculated

as 150 rpm to 1391.4697 rpm, using the equation (2.9) of Chapter 2 with the step ratio ¢
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equal to .14, From the gear ratios listed in Table 3.1, it can be noted that, the gear ratios
fall between 0.307692 and 1.7 14286. The gear ratios 0.307692 and 0.357 143 violate the
standards defined in the Reference | 5S4 |, However, tor the suke of demonstration an
assumption is made to accept Ry cqual to 0.30000 for the present optimization,

The reference transmission path is designed to produce the spindle speed of
1391.4697 rpm from the drive unit speed 1400, The total number ofteeth is found to be
equal to 287 on the above mentioned transmission path presented in Reference {139 . This
value is inputed as the initial goal for the objective function. As the result, an alternate
optimal reference transmission path is obtained with the total number of teeth equal to 229,
This yields a 20.21% reduction of the center distance over the value presented as optimal
design in Reference [ 39 |. The gear ratios in the reference transmission path are also
considerably optimized, yiclding reduced largest speeds in the intermediate shalts, that are

p =sented and compared with Reference | 39 | in Table 3.2.

Gearratios in reference Larger speeds n
i transmission path intermediate shafts
Rao et al [39] Present Ruao et ai [39] Present
1 1.714286 0.7297297 2400.000 1021.622
2 1.060606 1.312500 2545.454 1340.878
3 0.9705882 1.000000 2470.588 1340.878
4 | 0.5510204 1.037037 1361.344 1390.540

Table 3.2 Results from the minimization of cenler distance

In completing the design synthesis, the new optimal design is obtained  with
transmission formula as 18 = R 42+ 1 * 3, The optimum design is selected from a set of
acceptable designs with different layout diagrams. This is done by a comparison of spindie

speeds that are more closer to the ideal speeds required. The oplimum number of teeth and
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optimum gear ratios are provided in Table 3.3 and the layout of the optimum kinemat:

arrangement is shown in Figure 3.5.

specification Gear train information Actual
Number of Number| Trans- | Number : Sgilr:l(}:e
\lnln-dlc of shafts mi:.si()n of E Number oftecth | Gear Module| speeds
\;::“: required | stage | gear sets Pimon | Wheel ratio (cm) (rpm)
27 | 37 |0.729780 EAA
1068.970
2
| 3 ] 25 39 10.641026 963.7563
23 | 41 0.560976 B3
652.3192
5 5 ] 42 32 11.312500 5730250
lé 5 21 | 53 0.396226 | 505 2%-‘7‘3%
3 1 1 18 | 18 |1.000000 gkl
28 | 27 [1.037037 apart
4 3 3 | 23 | 32 [0.718750 az3.002¢
18 | 37 [0.486487 gt
Table 3.3 Details of optimum kinematic design
- - N |
\\ >~
1400 0 RN 13
| 0 - S
E . \\\\ Bt E R
S s - S
- NN \
- L
- WE
Shatt #§ Nhaty #2 Nhatt #1 Shafe #4 Sttt O‘:ﬁz Shait #1 Shalt #2 Shatt #3 Shat #4 Shati #5
Unput? (Output) (laput) (Output)
(A) Raoetal [ 39 (B) oresent de.ign

Figure 3.6 Speed diagrams of (A) Reference Raoetal [39] and (B) optimal desion
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Actual speeds

Deviation %

Transmission Ideal B
path speeds Raoetal [39]] Present | Rao et al |3¢ drese
index X S aoctal [39]]  Present
\ 1391.170 1361.345 1390.540 2.143902 0.045233
2 1220.588 1210.208 1221.510 0.850421 -0.075577
3 1070.691 1075.410 1068.970 -0.440720 0.160687
4 939.2025 882.353 963.7563 6.052966 -2.014321
5 823.8618 784.394 846.6047 4790611 -2.760519
6 722.6857 697.025 140.8823 3.550784 -2.517904
7 633.9349 642.857 652.3192 -1.407438 -2.900036
8 556.0833 571.487 573.0250 -2.769999 -3.046614
9 487.7923 507.832 501.4667 -4.108295 -2.803326
10 427.8880 416.667 419.7858 2.622496 1.89354 1
11 375.3403 370.408 368.7577 1.314050 i.753763
12 329.2459 329.151 322.7080 0.028965 1.985730
13 288.8122 283.614 290.9453 1.800049 -0.738572
14 253.3440 252.127 255.5788 0.480547 -0.882109
15 2222316 224.044 223.6626 -0.815391 -0.643902
16 194.9400 183.824 196.9265 5.702509 -1.019053
17 171.0000 163.415 172.9887 +4.435453 -1.162970
18 150.0000 145.214 151.3862 3.191010 -0.924113
Table 3.4 Comparison of spindle speeds and deviations
Transmission Rotational speeds (rpm)

path index shaft # 1 shaft #2 shaft # 3 shaft # 4 shaft #5

] 1400.000 1021.622 1340.878 1340.878 1390.540

2 1400.000 897.4359 1177.885 1177.885 1221.510

3 1400.000 785.3658 1030.793 1030.793 1068.970

4 1400.000 1021.622 1340.878 1340.878 963.7563

5 1400.000 897.4359 1177.885 1177.885 846.6047

6 1400.000 785.3658 1030.793 1030.793 740.6823

7 1400.000 1021.622 1340.878 1340.878 652.3192

8 1400.000 897.4359 1177.885 1177.885 573.0250)

9 1400.000 785.3658 1030.793 1030.793 501.4667

10 1400.000 1021.622 404.7934 404.7934 419.7858

11 1400.000 $97.4359 355.5878 355.5878 368.7577

12 1400.000 785.3658 311.1827 3111827 322.7080

13 1400.000 1021.622 404.7934 404.7934 290.9453

14 1400.000 897.4359 355.5878 355.5878 255.5788

15 1400.000 785.3658 311.1827 311.1827 223.66206

16 1400.000 1021.622 404.7934 404.7934 196.9205

17 1400.000 897.4359 355.5878 355.5878 172.9887

18 1400.000 785.3658 311.1827 3111827 151.3862

Table 3.5 Rotational speeds of the optimal design
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Figure 3.10 Optimal design with 4 shafts

The percentage of speed deviation for both drives, which is equal to (ideal speed -
actual speed) / actual speed are shown in the Table 3.4. The results in Table 3.4, Figure
3.7 and Figure 3.8 show good improvement on the spindle speeds using the present
optimum design compared to the optimum design given in Reference [ 39 ]. 1t can be noted
that the overall center distance of the new design is 79.79% smaller and the spindle speeds
are more closer to the ideal speeds required, where the percentage of new speed deviations
arc obtained between 0.045233 and 3.046614 as compared to 0.02895 and 6.052966.

Also the largest speeds in the intermediate shafts of the optimal design are considerably
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reduced and this can be noted by comparing the speed diagrams of both gear trains shown
in Figure 3.6. The rotational speeds of the present optimal design is listed in the Table 3.5.

More improved features can also be noted in the selected optimum design presented
here. A composite design can be created from this selected optimum design by completely
eliminating the wheel in the 3™ transmission stage and allowing a particular pinion in the
4th ransmission stage to be the composite. This reduces the number of gears in the gear
train by one, that will further lower the weight and the manufacturing cost. The layout of
the composite kinematic arrangement is shown in Figure 3.9.

Furthermore, 3™ transmission stage of the optimum design shown in Figure 3.5
contains a single gear set and the gear ratio of which is equal to 1.000. It is obvious that
the absence of this transmission stage does not affect the required spindle speeds. Thus, an
alternate gear train with reduced overall center distance can be designed by removing the
above mentioned transmission stage. The new alternate design will have the transmission
formula as 18 = 3 * 2 * 3, layout of which is shown in Figure 3.10. This yields the
number of gears in the gear train to be 16 and the overall center distance of the new design

to be 67.25% smaller than the value presented as optimal design in Reference | 39 ).

3.6 Conclusion

An optimal design procedure is developed in this chapter and the kinematic
parameters of gear train systems for (1) minimum of overall center distance with specified
module for all gears and (ii) improved gear ratios with miaimum deviations from the ideal
spindle speeds that arc required for the application are evaluated based on this design
optimization approach. In the optimization process, the values for number of teeth are
treated as integer variables and the module can assume only values from a given set. The
numerical study shows the sensitivity of different kinematic layouts for a given set of drive
unit speed, spindle speeds and the number of shafts required. The need for analyzing all

possible kinematic layouts is systematically borough out through incorporating the
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methodology developed in chapter 2. The results show the inadequacies of previously
obtained optimal design by Rao ct al in Reference { 39 ]. The improved kinematic design
parameters provides an alternate layout diagram. The improvement is noted by reducing
the overall center distance and gear ratios with minimum deviations. The foregoing results
illustrate the ways of effectively integrating the concept of optimization for designing real
lifc mechanical systems that require designs with reduced number of shafts or composite
designs.  In this Chapter, it is shown that checking all possible layout diagrams are

essential in finding an optimal kinematic design of gear trains.
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CHAPTER 4

Probabilistic design of multi-speed gear trains

4.1 Introduction

In the field of optimal design of machine clements, two different approaches are
usually followed namely deterministic and probabilistic depending on the magnitude of
uncertainty of basic design variables. A dctailed design synthesis of finding the optimal
mass and the transmitted power for a multi-speed gear trains using both the deterministic
and the probabilistic concepts is presented in this chapter. The resulting power transmitting
capacity (rating) is used to select the drive unit that runs the gear train. Knowing the
transmitted power and the minimum rotational speeds on the shafts, the module is estimated
so that it will provide the value for the overall center distance and satisly the strength
conditions.

Considering the transmitted power of a gear train, the system environment depends
on four major variables namely the kinematic Jdesign parameters, operating conditions,
material properties and tooth geometry. The kinematic design parameters and operating
conditions are determined by the appropriate sclection of the speed diagram of the gear
train. The material properties depend on the characteristics of the gear materials. For a safe
design, as the size of gear is minimized, the quality of material is expected to increase,
thereby increasing the cost. The tooth geometry of each gear need to be properly defined in
order to produce a high power transmitting capacity without power losses. Usually tooth
geometry is directly obtained from the standard gear cutter that has been used to generate
the gear tooth. Changes in the cutter geometry obviously affect the power transmitting
capacity and gear characteristics such as contact ratio and under cutting.

For the optimization of gear train based on the deterministic concept, system

environment is assumed to be constant during the entire search process. But in reality the
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system environment of gear trains contains many random parameters, which require that
the optimization scheme is to be based on a probabilistic concept. The probability of no
failure or reliability is cmployed for the synthesis of the design of gear trains.

Reliability of . mechanical system is defined as the probability of non-occurrence of
unacceptable mulfunctions or complete failure wherein the failure occurs due to the random
characteristics of the system environment. The reliability is iterative in nature, since the
safety can be expressed as @ function of component strength. On the other hand, a set of
strength constraints is to be satisfied for optimal design. Thus, the minimization of the
mass, based on dcterminislic‘suf.cty concepts, may reduce the level of reliability of the
system. This reduction is expected to be stemming from the improper material distribution
in the design components. Taking this into account, the best design might be achieved
when the optimum design scheme is adopted along with a consideration of reliability.

The reliability based optimization has been proposed at the beginning of the sixties
and is a developing area in machine tool design. Using a probabilistic analysis, the optimal
design is achicved by satisfying all pre-selected constraints in addition to one given by the
refiability criteria. As it is well known, two types of reliability are used in optimization,
namely element reliability and system reliability. In the former type, the objective for
minimization is formed considering the reliability of the individual members of the system.
In the latter type, the optimum'design is to satisfy the condition for the overall no-failure of
the system, using the concepts of system reliability. The reliability-based optimization is
more tedious than the deterministic optimization mainly due to two reasons | 35 ). First,
the complexity involved in the reliability approach is amplified in propcrtion to the number
of iterations required. Second, the reliability design requires many more variabies than that
of the deterministic design because of the additional parameters that describe the variations
in loads and strengths.

The selected literature reveals how reliability based optimization is applied in

various structural design problems. In general, different obiectives such as minimum

73



mass, minimum cost and minimum probability of failure are proposed to achieve an optinul
design  An analytical study of structures with respect to the optimal criteria of cost
minimization has been presented in the works by Parimi and Cohn | 35 |, wherein the
estimation of reliability is discussed through the cost of failure. Jendo | 21 | obtained
optimal solution of plastic frames based on the system reliability. Another scheme of cost
minimization is reported in the work of Moses | 30 |, incorporating failure cost in the
objective function itself and both clement and system reliabilitics are discussed as case
studies. Hsu [ 20 ] demonstrated the minimum mass criteria for a structure by considering
the reliability constraints of both the elements and the overall system and a numerical study
has also been included. In real life systems, many of the design parameters need to be
considered as random quantities, so that the response also become random. The optimal
mass of a structure is obtained in the work of Davidson et al | 16 | assuming that the
random parameters are present in the system environment. For cach element, the mean
response, such as stress in all clements is made as a constraint. A framed structure is
analyzed by Mahadevan [ 25 ], based on both element and system ieliabilies. Here the
element reliabilies are modeled through reliability indices and the sum of them is defined as
the objective function for minimization. The reliability index of cach element is constrained
by a minimum value required. Moreover, some clements are constrained with respect (o
their performance limitations such as strength and geometrical shapes. The prescribed
system reliability is achicved through an additional constraint that states the overall failure
probability of system. The drawback of the work, however, is that the performance
limitations are not trcated as probabilistic parameters.

Numerous articles are available in the published literature that concern with the
reliability analysis in machine tool design. As such cxample, the work by Sankar [ 41 | can
be cited, wherein the reliability based design is attempted for machine tool spindles that are
subject to randomly varying cutting forces Not many articles are available in the literature

on the probability based optimum design in the area of machine tool design, particularly on
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the design of gears or gear trains. It is further observed that many of the past investigations
cmploy only the concept of factor of safety for obtaining reliable gear performance, which
is a crude way of handling the inherent uncertainty. Safer designs can be achieved by an
approach where the probability of faiture of cach gear pair in the gear train is considered
separately, for different failure modes. Further, optimal design of gear trains should be
performed through the simultancous incorporation of kinematic requirements as well as
component strength requirements based on an appropriate probabilistic setting.

The work by Rao | 37 |, that deals with a design of a nine speed gear train can be
sighted as the first of the few papers published on the probability based d_sign of gear
trains. The dimensions of gear pairs in the gear train are obtained such that the probabilities
of failure duc bending and wear stresses are made equal to some allowable values. The
cntire gear train is idealized as a weakest link kinematic chain, such that the tailure of any
mesh constitutes the failure of the whole system. Equations are derived for the mean and
standard deviations of induced stresses. The face widths are treated as design variables.
The approach 1s more 1ealistic but it does not include any of the optimization procedures.

Rao ct al presented another work [ 40 ] for a 9 speed gear train which is an
extension of Reference [ 39 ]. In this work, they have included an optimization procedure
along with a reliability constraint. The lincar combination of the mean and standard
deviation of gear mass is minimized satisfying the wear and bending strength constraints.
The results are compared with that of tiie deterministic procedure. Thc mass that is
obtained using the probabilistic approach is found to be higher than that of the deterministic
approach. The results also indicate that introducing the standard deviation of gear mass into
the objective function does not yield any improvement in the optimum design. However,
these observations are based only on the minimization of gear mass. The drawback of this
work is that it does not consider the transmitted power rating which is an tmportant design
tactor of the gear train. Such a study has not yet been available in the present literature and

is the subject of this chapter.
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4.2 Stresses in gears

A gear train is intended to transmit power continuously at a steady speed and is also
subjected to variable load conditions such as high initial torque or shock loads. The power
is mainly transmitted through engaged gear teeth, where the repetitive engagement causes
different modes of failure. Each imode is viewed as an unique failure with its own
descriptive identification. Also the interactions of different forms of failure are let play a
passive role consistent with analysis procedures. Operational safety of power transmission
against any mode of failure requires that the stresses in all gears should not lead to stress
related failures. Most commonly high amplitude tensile and compressive stresses are
ovserved from measurements in power transmitting gears resulting in plastic and clastic
deformations. Concentration ot the induced stresses over an infinitely small arca leads to a
change in the microstructure of gears, which produces the metal rupture. Well known gear
failures are classified into three major groups [ 54 |. They are (i) tailure due to fatigue, (i)
failure due to impact and (iii) excessive wear. The fatigue failure is characterized by the
onset of cracking which occurs under stress reversals with amplitudes much lower than the
ultimate tensile strength. Some modes of fatigue failure arc bending fatigue, pitting and
spalling. The impact failure usually occurs in the case of sudden over - load of mating
gears. The impact makes the actual stresses to exceed the threshold value of the rupture
stress, thus resulting in tooth failure. Some modes of impact failure are bending impaci,
tooth shear and tooth chipping. The wear failure is the surface deterioration of the actual
profile of gear teeth. Two types of wear failures are most commonly encountered, namely
abrasive wear and adhesive wear. The abrasive wear is prone to occur when the active
profile of gear teeth is cut by small particles of abrasiv-: material. The lubricant is mostly
the source which carrics the contaminated abrasive particles. Adhesive wear is the other
type of wear which is initiated by the metal-to-metal contact of tooth surfaces. The
transmitted load breaks down the overheated lubricant and permits the ends of teeth to

undergo the plastic deformation and adhesion.
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Certain modes of gear failures, such as tooth bending fatigue, tooth bending impact
and abrasive wear are observed more often than others. A study reported in ihe Reference
[ 2 | shows that 32% of failures occur due to tooth bending fatigue, 12.5% occur due to
tooth bending impact and 10% due to abrasive tooth wear. The description of different
failures has been documented in detail by gear researchers and manufactures. Many
international and industrial codal provisions, such as American Gear Manufactures
Association (AGMA) International Standard Organization (ISO), DIN, Con:econ standards
and American Petroleum Standard (APS) also describe these gear failuzcs. The AGMA,
ISO, DIN and Comecon are compared o each other in Reference [ 48 . The AGMA 218
that classifies the gear failures as bending and wear failures in accordance with the induced
stresses is used in this chapter.

During the power transmission using gearing, the high concentration of
compressive stress is found over the contact areca and at or near the pitch line of mating
gears. This arca is critical for the modes of failures due to wear. At the same time the
tensile stress is concentrated at the root radius of the loaded side, and compressive stress at
the root radius of the unloaded side. The bending fatigue can be expected on the loaded
side of the 100t radius. In order to ensure that the amount of power being transmitted does
not cause any stress related failures, two forms of failures, namely bending and wear
failures, are considered in design. The maximum induced stresses are checked relative to
the allowable values defined by standards. The maximum stresses are calculated using the

theory of elasticity.

4.2.1 Bending stress

Bending stress duc to tooth loads are estimated using Lewis equation which is
bascd on the cantilever beam theory . In the case of two mating gears in action, as the load
is applicd at the top of a tooth, maximum bending stress is induced, where the repetitive

application of these loads results in fatigue cracks.
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Ir order to calculate the bending stress, a gear set with gear ratio Tp / Ty, module

m, face width FW and transmitting torque My is considered. The maximum torque is

obtained when the wheel of the corresponding gear set reaches to the lowest possible speed

V.. The induced bending stress sg, is given by the following formula | 39 |, that uses

Lewis factor y

where

Hence,

or

where

g = 2" K" Kp_
Tw *y *cos o

- 2*Kc*Kp
Tp*y*cosa

y = 0.52(1 +20
T\V

Ke=1.5; Kp= 1.1

B' * 97500 + P

B e mw v
m? * FW * V)
sg = Kg * _Wz__E_____
m *Vy *FW
Ky = 122000* K¢ * Kp

Ty *y*coso
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Ky = 95000 KRN T,
Toty*cosa Ty

It can be scen that the bending stress is directly proportional to the transnutted
power and is inversely proportional to the square of module, wheel speed and the face

width of the mating gear set. A safe design implies that,

sp= Kg¥—— P S Su (4.

2 -
m-*V, +*Fw

Where Sg is the bending strength®,

4.2.2 Wear stress

Wear stress sw, induced in a gear set is calculated as follows | 39 |:

o — Y 4 Ml 4.5
WoE FW (-
v = L8 & [ [Tw [« EF K *Kp Ty
v Tw [T sin 2o R I
s [T TR R T,
T, Tw sin 20 ’ T
hence, Sw = KW f\/ﬂ" . (4.0)
FW * V|
where, ;
Kw =_l__8 \/97500* W+1 # EZKe " Ko Ty _ |
sin 20 ’ Tw <

« E* Kt Kp
sin 20,

Fp

F'w

= 1.18 « ,-\/ 500 /(—_ITB 4 1 |

* The word 'strength’ has been used instead of allowable stress' from here onwards as per the
recommendation ot Dr. V.N. Latinovic.
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It may be noted that, the wear stress is directly proportional to the square root of the
transmitted power and is inversely proportional both to the module and to the square root of

wheel speed and also to the face width. For a safe design,

. - Kwy /P
sw = S *\/FW*VL < Sw 4.7

where Sy is the wear strength.

4.3 Basic equations

The magnitude of stresses induced in gears can vary over a considerable range due
to the random nature of system environment. It is desirable to evaluate the variations using
statistical methods, since the variations are assumed to obey distribution laws. Moreover
the parameters that cause the variations are continuous, independent of one another and
follows normal distributions. This results in a normally distributed stresses in gears,
which determines the need for a probabilistic approach in design synthesis. The variability
of the component stresses and strength can be seen through their distributions in many of
the design text books. It can be stated that both the induced stress and strength are
normally distributed. Thus, the mezn values of stress and strength are denoted by § and S

respectively. The density functions g(s) and g(S) are given as,

g(s) = —L— exP[- i(s—sﬂ 4.8)
o*V2n 210, .
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(4.9)

The design is said to be reliable when all values of induced stresses fall below the

strength.

S>5 (. 1)
i.e. S =s+§ where § > 0 (4.1
The excess value & is also a normally distributed variable for the difference of two
independent normally distributed variables s and S, i.c.
E=S-s (4.12)

and as such is a linear transformation.

= A 52 2
Further, Gg = VOg+ 0%

since Cov(s,S) =0 (4.13)
y & & >
g
5
2
Q
9 (&)
g
'
Probability
of failure
/|

g

Figure 4.1 Density function of excess stress &
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The density function of € is given by

(&= ] L
B0 = TR °x“[ 2

Referring to the equation (4.11) the failure is said to occur when & is negative. As

(4.14)

Ot

is shown in Figure 4.1, the reliable design can be seen to fall in the positive region. The

probability of the event > 0 is the reliability R, which is expressed as,

R

P(§>O) = f() g(i) dg (4.15)

R=—1L_ expl -
Gg* 2n

The transformation which relates € and a standard normalized variable z is given as

_&%

Ot

et
%-(—-) } dE (4.16)

z (4.17)

The new limits now can be set for the standard normalized variable z as foilows:
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Substituting z and d in the equation (4.16), one gets

R = _.._l___*f exp !_2_ dz (4]8)

€
s oot
ot Z) 4.19)
R=_-L | expZaz (4.20)
2n 7 2

The value of standardized variable z for a given reliability is obtained from the

standard tables [ 19 ].

|s - 4
Vo% + 0 @.21)
S

The equation (4.21) probabilistically relates the induced stress and the strength.

2 =

This relationship may now be applied to establish constraints for the optimization procedure

based on reliability approach.

4.3.1 Derivation of the additional constraint

A gear train is assembled using various individual clements, such as gear shafts,
bearings, clutches, etc. Thus, the reliability of the assembly or system is seen as a function
of individual reliabilities of its corresponding elements. According to the nature of
assembly, the system reliability can be viewed as three major groups. They are parailel,

serial and the combination of both,
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Figure 4.2 Paralle] and serial combination

Figurc 4.2 (A) shows the parallel combination, where only one element has to
function to maintain system performance. Failure of any single element redistributes the
load to the remaining clements so that it does not cause total system failure. The safety level
of parallel combination is increased by the independent strength of its individual elements.
The system reliability Rgys for the parallel combination is thus given as,

k
Rys = 1-J] (1-R) (4.22)

i=1
where R; is the reliability of ith element.
The serial or weakest link reliability that is shown in Figure 4.2 (B), is the one
where cach individual element must contribute to system reliability. The failure of any
single clement will result in the total failure of the system. The serial system reliability

R,ys is thus given as,

k
Rey = J| R (4.23)

i=1

Most of the gear trains are modeled as serial combination of reliability and parallel
systems arc limited to some special cases such as multiple planet gears in epicyclic trains.

The gear trains in machine tools are idealized as kinematic chains with serial combination
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for each of the spindle specd. Thus, for cach output speed, (NS - 1) number of gear pairs
will be engaged consisting of 2*¥(NS - 1) elements in series. The system reliability R is
given as,
NS-1
Ryys = R, (4.24)
=1

With reference to the equations (4.20) and (4.24), the following expiession can be

formulated for the reliability of a gear train:

a7 2
R = Ly dz
N j} exp ( 2) z (4.25)

The standardized variable z ¢ is obtained from standard tables | 19 ].
Comparing the above equation with equation (4.21), the following incquality
relationship is formulated.

(4.20)
z1 £ 2)0

4.4 Formulation of the optimal design

The optimal values of facewidths of mating gears and transmitted power are
obtained by solving for the minimum mass and the maximum transmitted power that satisty
constraints of bending and wear stress equations. The objective for the minimization of
mass, eventually searches for the magnitude of smaller face width. This trend is to be
restricted by the requirement for the maximization of power, because the larger power
transmitting capacity requires larger facewidths. This conflicting nature of both objectives

renders the optimization to be a multi-objective problem.

85



4.4.1 Optimization based on deterministic concept

To accomplish the task of minimizing mass and maximizing transmitted power,
corresponding two individual objective functions are combined together as one single
function.

The objective function

m(ij) * Tp (i,})

m(ij) * Ty (i)

Figure 4.3. Pinion and wheel as cylindrical bodies

The first individual objective function is written for the total mass of the material
used in the fabrication of gears. The Figure 4.3 shows jth pinion and wheel of ith
transmission stage as two cylindrical bodies.

Minimize f| = The total mass of all gears

The total mass is the sum of the individual masses of all gears in the gear train. In
order to calculate the total mass, each gear is modeled as a cylindrical body with the
diameter equal to the pitch diameter of the corresponding gear. This leaves the first

objective function as

NS-1 Z(i)
Minimize f, = 2 z [ jlhpinion mass of imtransmission stage]
i=l J=I
th th .
+[ j wheel mass of i transmission stage]
That is to Minimize
o & lp . (m(i.j) ;Tp(i.j))z* FW(i.j)] +[p . (m(i.j) ;Tw(i,n)z* Fw(i,j)] (4.27)
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NS-1 40
OI' f, =
1=l =1

p* ¥ m(i,j)? ¥ lTP(iJl:_ T_I“(iij).:l
3

* FW(iy) (+.28)

The second objective is written to maximize transmitted power.
Maximize fp = Transmitted power
As stated earlier, these two obiective functions {1 and {5 are of contlicting nature.
In order to combine both objectives, the second objective function is transformed into an
alternate form. The inverse power is minimized so that the power will be maximized.
Minimize fr =1/P
where P designates transmitted power

The multi-objective formulation resuits in

Minimize f=f +1f;
Minimize
NS-1 Z0) | 4 % 2| To(10)2 + .02
f= Z SRARLLL [4 o) Tulip ] * FW(iy)) + [Iv (4.29)
i=1 j=1

Upon substituting the design variables into the objective function, NG number of
design variables are selected for facewidths. For a conventional gear train arrangement,
NG is given as

NS-1
NG = Y, Z(i)
i=1

The transmitted power is treated as an independent design variable. Thus, an
additional variable x is introduced for the transmitted power. This will increase the number

of design variables to (NG + 1).

The objective function with (NG+1) design variables can be expressed using the

following equation:
NS-1 Z() 4 % C D g . .. 2]
p*m* m(,) [Tp(l.J) + Tulij)] , |
= k (4.30
f(x) .=21 Zl' y x(k) + X(NG+1) )
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where k is assigned values from 1 to NG in accordance with i and j.
I all gears arc assumed with same module m, then the objective function based on

deterministic framework is given by the following form of f(x)

[Tn(ld)2 + Tw(l,J)z] * x(k) + ko * “NGTD (4.31)

12

p*nka NS-1 Z(1)

((X) = ————*ky* Y
4 il
i= j=1

where k and kj are weighting factors.

The_constraints

A set of inequality (bending and wear stress) constraints is derived for each gear set
in the gear train. The conditions are written such that the maximum induced stresses in all
gears shall not exceed their respective allowable values. This is expressed in the generalized
formof F as

F=5-S<0 (4.32)

The inequality constraints imply the safety thresholds for bending and wear stresses
sp and sw, and thus involve their respective strength. This results in NG number of
constraints for each stress conditions.

The bending stress constraints are stated as,
Fy =sp-Sp <0 k=1,NG (4.33)

Substituting equation (4.19) in the above inequality condition yields,

B , P
Fi=Kp* —w———"t——-- 5 <0 (4.34)
m(i,j) *VL(,j) * FW(i,j)
which mity be converted into the form of normalized constraints as
S8 m(ij) * Vi(ij) * FW(i,) ”

88



Assigning design variables to FW(i,j) and P, it can be shown that

Kpy_  X(NG+1l)

B
F, = - :
SB mi) * Vi(ig) * x(k)

-1s0 (4.306)

With regard to wear stress conditions, a set of another NG number of constraints is
formulated as

Fy (x) = sw - Sw <0 (4.37)

Substituting equation (4.23), this becomes

Y —
Fy = —==* — —- - Sw <0 3
T ma) VYV EWGEH) Ve o (4.38)

which is rewritten in the form of normalized constraints as

v — I(W * P 1 <0
= — — .- b s 4.39
k m(i,j) * Sw FW(i,j) * V.(i,)) ( )

This equation becomes, after incorporating design variables, as

W Ky . [ 0NGH)
Fr(x)= —W___« D1 <o
<= S sw Y akF VD) (440

The minimum and maximum limits FW i, and FW ., arc imposed on the face
widths to account for manufacturing difficultics. As the result, x(k) is governed by the
cordition given by

FWhin = X(k) € FW 5k
For a lower bound solution, a set of inequality constraints are formulated as

Fi = FWnin - x(k) £ 0 (4 41)
and similarly a set of the upper bound constraints is given as

Fk = X(k) - lenux S 0 (4.42’
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The computational scheme requires these lower and upper bounds for iteration.
Assigning FWmin and FWmx to the corresponding bounds, the constraints expressed by
the equations (4.41) and (4.42) can implicitly be enforced. Thus only 2*NG number of
constraints resulting from bending and wear thresholds need to be satisfied in the

deterministic optimization procedure.

4.4.2 Reliability based optimization

The optimization procedure involving reliability is formulated assuming that the
facewidths, transmitted power, module, material density and wheel speeds are normally
distributed random parameters. The mean value of FW(i,j) and P are selected as the design
variables for the optimization procedure.

In order to formulate the reliability based optimization problem, all constraints with
random parameters are converted to equivalent deterministic nonlinear constraints using the
partial derivative rule. Thus, a constraint function F(x) with random parameters can be
obtained using the mcan values of x, as a Taylor series expansion

NV
F(x) = FX) + ),

Q—F—) _ *{x)- X)) + higher order derivative terms  (4.43)
X=

OXi/x=%

It the standard deviations of x| are small, the higher order derivatives can be
neglected.  Carrying out transformations as shown in Reference [ 38 ] the function F(x)

can be approximated in the following form

(P'I(R) * ‘/G_zF - F(x) <0 (4.44)

-1
where @ (R) g the normal variate corresponding to the reliability.

2, Vok - Fx) <0 (4.45)

where Z; is the variate corresponding to the reliability.
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Further,

F(x) = F(x)

|

dl 2
4.-k¢
{2 (aX|)x =X :l ( K

The objective function
Similar transformations can now be applied to the deterministic objective function
and the new objective function is given as

Minimize D(x) = kI + kG (4.47)

vhere

f=fE)

o-[3 <

ky 2 0 and ky = 0 indicate the relative importance of mean | and the standard
deviation Or for the minimization.

The design variables FW and P are assumed to be probabilistic. Material density p
and module m are also of random nature. But all values of number of teeth are
deterministic.

The mean value of objective function f is given by,

l\)

NS-1 Z0) i
n: m(i,j *[Tp(i,j)2+'rw(i,j)2 *TFW(1,)) + ll) (4.4%)

1=1 j=1

—e

As already noted, using partial derivative rule, the standard deviation oy is calculated as

91




L
| NS A 5 s -
NIE DYDY 5-‘# [T,m) +T“(|J)]*FW(‘J) + ‘)* W
| _ — 2
o =] Y| = . *"“J (4.49)
v =1 [ ()\l } \=:

where NV is the total number of variables. The above expression can be rewritten as:

+

(4.50)

o = ) *Orwap (g}t—;)—* Gzp}

———. et
[

=1 am(u)

2 Ml’*”{
) QJ + (

1=1 J=|

JIFW(i.))

The following equations are formulated for each partial derivative term.

-

am(i. |)

2

NS-| 40 2 W, L
Z Z‘K*m(lj) P [Tp(ivj)- +T“(i.j)]*FW(i-j)' 1'0;11111\

(_.2 N N.\ll‘“) ...<..’ ’ )
(ﬁ)t-)*q‘,} :( T rm.) [Tp(l_]) +T»\(l|)]*F\N(I_])) * G

NS | /0 .
ot )* 2

=¥ Giway
{(aFW(i.i) o

[Tp(i.j):+T“(i.jﬂ, *Grway

W MJ‘

n m(|_|) p
4

=1 =1

ofy , 2 [P 2
— 1 *0p = |-+ *0-
2o - 3 o

The probabilistic optimization of the present problem also contains a multi-objective

nature where in two separate conflicting objective functions are involved. The minimum
value of the lincar combination that consists of the mean value and standard deviation is

1ow sought:

minimize O(x) = k1 *f+ k2*0f  where k| and ko are weighting
factors.
or equivalently

minimize O(x) = ki *P1(x) + ky * Oy(x) 4.51)

The first objective tunction @y(x) is written for the minimization of the mean value of the

objective function f.
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ie. di(x) = f(x)
Substituting design vectors, ®(x) becomes

AW P2
Py(x) = i—‘,2——2“{%(1._]) + T () x(K) +

1

(4.5
X(NG+1)
The second objective function @3(x) is written for the standard deviation of the
deterministic objective function f

The function ®a(x) is obtained as the sum of four
functions as shown below:

m(1.j) P F\\’(lj)
(D"(X) = (1)1

P

+ P+ D; + Ds (+.54)
where the superscrnpts denote respective indc pendent variables.

) T * m1,)) *
Thus, m(xJ 2 Z ( TTmy)) T p [Tp(l_]) + Tyli)? ]* x(k) ) m“n

i=1 j=1
& NS:1 20 o+ (i, )’[‘..2, E L
®; = Z Z I Tig) + Tw(ij) | * x(k) | *op

n m(l_])"

l “(l |) E Z§

P [ (d)"'*‘r\\(l l)})

\m

-
H

1

X(NG+1)

The probabilistic objective function now takes the following form

m(1.j) p ‘WY P
O(X) = ki *Py(x) + kz*(q)z (x) + OAx) + P> (x) + <l)2(x)) (4.55)
The constraints

For each spindle speed NG number of gear sets are engaged and so NG number of
reliability constraints take the following form

From equation (4.15), it can be shown that

=(Z1)k-210 0

(4.50)
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where Fy is the kth inequality constraint. This general form is used to formulate the
bending and wear stress constraints. Thus, NG number of bending stress constraints are

formulated as shown below:

B § - Sp
Fy = ‘_/l_,z__B_______?lJ__ -Z10£0 k=1..NG (4.57)
Og, + O,
where SBk is the mean value for the bending stress of kth constraint. From equation (4.19)

the mean value of bending stress SBk is obtained as

x(NG+1) (4.58)

sgk = Kp *
m (i,j) * V(@,)) * x(k)

The standard deviation for the bending stress spi is calculated using partial derivative rule

as,
1
S R T 2
where
2
e R
m (i,j) * VL(i,j) * x(k)
@i [ g )2, 2 2 x(NG+1Y’ 2
(., A
- = (5;1*(%'(—) * Omgj) = [4 * Ks *_6 — * Om(i.j)
J m (i,j) * VLG, * x(k)
Vifij) ds 2 2 2 x(NG+l)2 2
1. h
w = -av—B.kt- *Ovyij) = | Ks * — * OV j)
L(1) ) * Vi) * x(k)
FW(i.j) ds 2 2 2 x(NG+l)2 2
“W(i, S
Oy = EFV\—%—)) * orwiig) = | Ks *_4 — 2| Oxto
] m (i) * V() * x(k)

Similarly, from equation (4.21), another set of NG number of inequality constrains
for wear stress are obtained such as,

F\'{V = _l_S\_V_L_SW_kl_ -Z0< 0 (4.60)

1/ 2 2
Owy + Oy,
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w h o . . - .
where Fy is the k' inequality constraint. The mean value for the wear stress of kth
constraint is denoted by SBk.

s = Kw o [ X(NG+D) (4.61)

m(i,j) x(K) * Vi (i)

The standard deviation for the wear stress ¢, is calculated using p‘u'tial derivative rule, as

Oow = (0'[:5: Ny Gixh P + o'ka + 0.\1(! J) (4.62)
where
2 2

mij) _ [ Oswk )\ . 2 _ K:v . XNG+D |}, 2
swk = —a . Owm.j) = 2 = Om(ij

m(i.j) mG,j) XK * Vi)
FW(l D abw|( \2 2 K%v . X(NG+D) 2

FWGi) | OV = A T A

4*m(i,j)  x(k) * V(i)
2 2
P Js 2 \ 2
Owy = ( W *op = Kw 3 * l T * OUNGH)
oP 4* ) XNG+D * x(k) * V(i)

VL(IJ) ISwk 2* 2 K%V " x(NG+1) ¢ 2
G sy m Ovi(ij) = Oviny

AF GG %K) * Vi)

4.5 Optimal design procedure

The optimal design space developed in this chapter uses a minimization procedure
for both deterministic and probabilistic design that is shown in the previous sections. The
kinematic parameters such as number of shafts NS, number of gears on cach shalls,
number of teeth on each gear and module are inputed. The bending and wear strength,
allowable reliabiiity and the factors involved in various equations are assumed to be known
data. The lower limit of integration in cquation (4.19) is obtained from standard normal
Table { 19 ]. In the present computational scheme a separate subroutine is writien for
finding the Z|. The generalized flowchart for both optimization procedures is shown in
Figure 4.4. By assigning the objective function value at the local point as the goal for the

next iteration, the global optimum is achieved. The numerical solution for this nonlinear
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problem is implemented using the Penalty function along with Hook and Jeeves pattern
scarch method. The interior penalty function method and search algorithm using Hooke
and Jeeves method are described in Appendix C and section B.3 of Appendix B

respectively. The computer code is capable of handling the variables in double precision.

Read kinematic
design parameters
|

Select module
I

Select goal values

for optimization

-

Start optimization

Generate new set of
decision variables

A

All constraints
satisfied?

Assign
function value
equal to goal value
for objective

Obijective function
satisfied?

Convergence
criterion satisfied?

Optimization

For objective
goal value equal to function
value?

Print results
and stop

Figure 4.4 Flowchart for optimization procedure
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4.6 Optimal design example

The kinematic design parameters from the optimal design of previous chapter is
selected to demonstrate the effectiveness of the proposed method. In particular, the
deterministic and probabilistic optimal designs are generated by using the optimal design
procedure. The probabilistic study is conducted to find the effect of uncertainty of the
selected module, that eventually can represent the variability on the random characteristics
in the overall center distance. The mean module is taken as 0.305 cm as it is taken in
previous chapter, yielding the mean of the overall center distance of the gear train equal to
349225 cm. Further more, the mean value of the rotational speed for cach gear is
calculated using the relevant gear ratios which are constant values. These values can be
verified with Table 3.5 of the previous chapter. The mean of the input speed of the power
source is 1400 rpm. The gear material with mean strength 25000 N/cm? for bending and
175000 N/cm? for wear is selected the density of which equal to 0.00775 kg/em?3 | 40 |.
Although the probabilistic characteristics of the random variables affecting the gear train
performance need not to follow any particular rule, the cocfficient of variation for
transmitted power, facewidths, bending stress, wear stress, material density and rotational

speeds are taken as 0.10, 0.01, 0.20, 0.20, 0.10 and 0.070 respectively.
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Total mass (kg Transmitted power (kw
C,, Reliability
0.999 0.990 0.900 0.999 0.990 0.900
0.01 29.5855970 | 27.5019134 | 262813241 | 32.587109 36.297656 37.150391
0.02 29.5314187 | 27.2104898 | 26.0353371 | 32.748438 36.343750 37.334766
0.03 294032164 | 26.9604932 | 26.0558980 | 32.978906 36.735547 38.279688
0.04 29.5845000 | 26.6863878 | 25.3921200 | 33.716406 37.403906 38.602344
0.05 28.8969263 | 26.0756950 | 25.3261126 | 33.601172 37910938 4().284766
0.06 289052415 | 25.6202884 | 24.6037499 | 34.453906 38.994141 41.4140063
0.07 27.7196762 | 24.1250992 | 22.7635493 | 34.960938 40.054297 42497266
0.08 27.6700750 | 24.1287483 | 22.6610269 | 35.099219 41.437109 44.433203
0.09 27.7593967 1 23.2910761 | 21.4785507 | 36.574219 43.096484 45.908203
0.10 259890698 | 21.3828154 | 197211958 | 36.942969 44.317969 47.751953
Table 4.1 Optimum total mass and transmitted power
00 ) . ® Total mass (kg)
0.999 0'_)90 0.900 B Transmitted power (kw)
30[ pe Py 49
il o
T ~444.5
206 5
‘ S
7 " 8-
g -
Enf 40 £
g [ g
= g
22 - &=
i =435.5
1]y
I8 : 31

_—
~

0.02

Figure 4.5 Optimum reliable region
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Coefficient of variation for module = 0.10

Reliability = 0.900

Number . Center Mass
of teeth Face width | i unce (kg)
pinion | wheel (cm) (cm) pinion wheel
25 39 0.7078 9.7600 0.25058 0.60980
27 37 0.6437 9.7600 0.26583 0.49921
23 41 0.7820 9.7600 0.23432 7.4459
42 32 0.7695 11.2850 0.76887 0.44633
21 53 1.6495 11.2850 0.41205 2.62463
18 18 6.7579 5.4900 1.24028 1.24028
23 32 3.5571 8.3875 1.06591 2.06332
28 27 2.8450 8.3875 1.26346 1.17483
18 37 5.0228 8.3875 0.92184 3.89507
Total 34.9225 19.72120
Transmitted power (kw) = 47.7520
Table 4.2 The optimal values for the reliable design
Number aee (ko
of teeth Face width Mass (kg)
pinion | wheel (cm) pinion wheel
25 30 0.8024 0.28409 0.69137
27 37 0.7295 0.30124 0.56570
23 41 0.8869 0.26577 (.84455
42 32 0.8727 0.87205 0.50622
21 53 1.8701 0.46716 2.97565
18 18 7.6453 1.40316 1.40316
23 32 4.0244 1.20594 2.33437
28 27 3.2185 1.42935 1.32907
18 37 5.6824 1.04290 4.40658
Total minimum mass 22.32834
Transmitted power (kw) 15.0023

Table 4.3 The optimal values for the deterministic design
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The Table 4.1 lists the minimum total mass of gears and the maximum transmitted
power obtained with reliabilities 0.900, 0.990 and 0.999 for different values of the
coefficient of variation Cy,, with the selected module m equal to 0.305 mm. The results are
plotted in Figure 4.5 clearly indicates the reliable region for the selection of the nominal
transmitted power of the drive unit and the corresponding safer total mass of gears due to
bending and wear. It also can be observed, that with increased reliability, the value for the
minimized total mass of gears increases and the capability of maximum transmitted power
decreases. It also confirms that as Cy,, decreases, the total mass of gears increases and the
maximum transmitted power decreases. The results with 0.900 reliability and ¢, equal to
0.10 arc given as the optimal values for the selected gear train in Table 4.2. The optimal
values that are obtained for the deterministic design for the same gear train are tabulated in

Table 4..3.

4.7 Conclasion

A method has been developed and presented here for the synthesis of multi-speed
gear trains using the probabilistic concept of reliability theory. The approach leads to the
minimum mass and maximum transmitted power of the gear train and involves
simultancous incorporation of both kinematic requirements and component strength
requircments. An output set of optimal values of gear train parameters like that of face
width of all gears and transmitted power, has been obtained using an efficient problem
reduction strategy. The kinematic design of a 18 speed gear train has been used to illustrate

the full potentials of the present approach.
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CHAPTER 5§

Torsional vibration safety of gear trains

5.1 Introduction

The wider range of spindle speeds, that are to be provided as the output of a multi-
speed gear train does necessitate the corresponding cngagement patterns.  As is known, the
mesh position of the pinion and wheel dictates such engagement patterns.  So, for
particular spindle speed, a unique engagement pattern is to be realized through the mesh
position of component gears. Figure 5.1 shows 18 different engagement patterns for a 18
speed 5 shaft gear train. It must be ensured in the design of any gear train that the required
cngagement patterns lead to safer operating conditions. Through the dependence of the
natural frequency of the gear train, the distinct engagement patterns sceverely aftect the
dynamic behavior of the system. During start-up and shut-off operations of the motor, (he
gear train is subjected to accelerated and decelerated operating frequencics. Further, it is
quite common and more advantageous to operate machine tool structures at frequencies
well above the critical speeds. As the accelerated or decelerated frequencics determine the
system natural frequencies, which in the present case is a spectrum of wide band, high
amplitude vibrations. High stress levels develop due to buildup of oscillations. A
potentially dangerous operating condition is made to occur. To avoid component failure in
such circumstances, the design must provide not closely located sets of natural frequencies
and operating speeds. However, it can casily be recognized that not all the kinematically
distinct dynamic configurations that arise due to different engagement patterns, provide the
same order of the natural frequency of ‘the system. Identical dynamic configurations,

identical with respect to the resulting natural frequency can always be seen as distinct pairs.
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Figure 5.1 Engagement patterns of 18 =3 * 2 * 1 * 3 gear train
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Figure 5.2 Dynamic configurations of 18 =3*2 * 1 *3 gear train
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Available works on dynamic analysis and optimum design of gear trains deal with
clementary case of multi-speed gear systems, wherein the consideration of one engagement
patiern was involved [ 8, 9,44 |. The lateral vibration that stems from and within the
system, is due to the excitation, of which is the dynamic load on gears. Such dynamic load
is created by external factors like eccentric mounting of gears, the variation of tooth
stiffness during  engagement, changes in tooth profile due tn elastic distortion under
sustained loadings, crrors in manufacture etc. [45]. Active control of 1ateral vibration can
independently be achieved without a reanalysis. The torsional vibration is the most critical
source Of failure for a geared system. The characteristic of the :nherent dvnamic properties
is scen from the entire torsional system of gear trains represented Dy the inertia, stiffness,
and damping characteristics of the rotating components [ 18, 29, 36,47 ]. Massive nulti-
speed gear trains have not been analyzed in detail tor their dynamic resporse in
available literature. Moreover, the computational schemes that are currently in practice can
be allered to take advantage of presence of identical dynamic configurations. So, when
matrix methods arc adopted to anaiyze the dynamic behavior of the system, this point can
be exploited to provide computationally economical and faster methods of solutions. Such
a computational scheme is developed in this chapter from first principles, and the optimum
design  based on torsional vibration aspects of multi-speed gear trains is carried out that
cessentially makes use of this computational scheme. The optimum design is to satisfy the
condition of wider spacing between the operating speeds and the natural frequency of the
overal! gear train system. The design parameters of the 18 speed 5 shaft gear train obtained
in the previous chapter, arc considered herein for the optimal dynamic configuration.
Keeping the mass of the gear train constant, this is achieved in principle, by minimizing the
shaft stiffness. Each engagement pattern is represented by the transmission path index that
takes on integer  values between 1 and 18 in the computational scheme for the given gear

train. Figure 5.2 shows all possible 18 distinct dynamic configurations corresponding to
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Figure 5.1, along with their corresponding transmission path indices. All of these dynamic

configurations are identified to formulate the design constraints.

5.2 Basic equations
5.2.1 Calculating the natural frequency

Gear train is seen as a complicated rotating system with many lumped parameters
and torsional branches. With torques acting at different stations, the principle of super
position can be applied to determinc the angular displacements. In this respect matrix
methods are ideally suited to express the system behavior. In most general form, matrix

equations for a torsional vibratory system is expressed as:

[J1%18) +[C 1% 48} - L K1*{0} = [T) (5.1)
Where [ )] - inertia matrix
I K] - stiffness matrix
(C] - damping matrix
0 - angular displacement
o - angular velocity
o - angular aceeleration

T - torque
Considering free undamped harmonic motions of frequency o3 that are represented
by the eigen problem obtained as follows:
(J1*10) - [K1*(8)=0 (5.2)
[JT1*IK IO} -[11%10) =0  [1]-unitmatrix  (5.3)
[(J1* ] {8)-0 1178} =0  [ul= (K|  (54)
(A0} -[1]%(8)=0 AI=131% o] (55)
Assuming harmonic motion, the characteristic equation becomes

[A -A*1]1*{6}; = {0} (5.6)
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where the eigen value A is given by
A, = _12_ (5.7
w;

Thus, natural frequencies of the system is the square root of inverse of eigen value.

©w = (5.8)

1

1 A-.
This term of standard eigen problem is computationally easier and more
cconomical than the form of generalized eigen problem. It may be noted that, most of the

numerical routines that operate on generalized eigen problems first convert them into the

standard form to avoid numerical instability.

5.2.2 Branch geared system

The method of equivalent inertia and stiffness of branched torsional vibratory
systems is followed to obtain time invariant magnitudes of dynamic parameters of linear
lumped parameter system. The equations (5.1) to (5.6) are valid for single shaft system,
where no speed changes are notified [ 52 ]. But in a multi-speed gear train the input speed
is changed in various transmission stages. Hence, in writing equations of motion, the
rotational speed changes are to be adopted in the equations. In order to do this, the concept
of cquivalent inertia and equivalent stiffness is introduced. The equivalent inertia and
stiffness may replace the actual values in the equations (5.1) to (5.6) resulting a single shaft

systen.
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Figure 5.3 Branch and equivalent single shaft geared system

The Figure 5.3 illustrates a gear set, gear ratio of which is denoted by R, Consider
that the gear | is rotated along with shaft #1 through an angle 0. This rotation 0 is
changed by the gear ratio R which will make gear 2 and shaft # 2 to rotate through an angle
62. Thus, the angular speed 62 is given as:

;=R *0, (5.9

Assume that inertia of the gear 1 and gear 2 are given as 7y, )2 and stiffness of
shaft #1 and shaft # 2 are given as K, K respectively.

Kinetic energy KE of the system is given as:

2 -2
KE=1r3,70 + Lr3;,+0; (5.10)
Using equation (5.9)
-2 "2
KE:%*31*9,+£—*32*R2*‘J, (5.11)
Thus,
2 -2
KE=%*3|*9| +;—*J2*9| (5.12)

The equivalent inertia J, for the gear 2 referred to shaft # 1 can be given as R2+ .
Knowing this, the rule for the equivalent inertia J can be sct as multiplying all actual inertias
J of gear system by the square value of corresponding gear ratio R.

] =R2+3 (5.13)

In order to determine the equivalent stiffness of the geared system the potential

energy PE can be considered.
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PE = Lok, *0] + Lriy* 63 (5.14)

Using the equation (5.9),
PE:JZ-*K,*B?HE*KZ*R“O? (5.15)

Thus
=1 | 2
PE—E*K|*91+—2—*K2*91 (5.16)
The value R2 * K, can be viewed as equivalent stiffness Ky for the shaft # 2
referred to shaft # 1. The rule for the equivalent stiffness K can also be set by multiplying

all actual stiffness K of the system by the square value of corresponding gear ratio R.

K = R2*K 5.17

5.2.3 Dunkerley equation
Assume a gear train system is given by its equivalent inertia matrix [ J ] and
cquivalent stiffness matrix [ K ]. From the equation (5.6), the eigen solutions ( Aj, {0}; ).

i=1,2,.. rare orthonormal so that,
T .
(oi = [0 *{es}) = [1] (5.18)

T
(o] (K] *{o;} = [n] (5.19)
where [ A;] is the diagonal matrix with its leading diagonal elements (h,h) being a
non-zero element and equal to Ay,

Further, because of the orthonormal nature of eigenvectors, it can be shown that,

(A=Y a+{oh* o)
y (5.20)

r

(A]' = Y, L «{o}, * {0},
h=1Ap (5.21)
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Knowing equation (5.7),

[A]-l = i mﬁ * {e}h * {e}hT

h=1 (5.22)
The characteristic polynomial of degree r can now be generated {from these equations as,
pA) = det ([K}j -A*{J1]) (5.23)
Now, the Dunkerley equation yields the lower bound to the fundamental frequency

of the gear train system described by its characteristic equation as,

(an *J1-A) ap*; TN PR T P
a1l (apn*l-A) a2 1% , ap *Jy
g4, | atly | - g ¥l | et
=0
B2 ™1 l 222712 " 2™ |zt (.29
a1 10 iar-nz*iz = (3. r-l_*Jr-l‘)\')it g M
ap*Jy 1 ar2tla Bre®et | ()

Expanding this determinant equation it can be factored into the following form,
A=) *A=2)* ... *b=A) =0 (5.25)
As is known in Algebraic theory, the coefficient of second highest power is equal to
the sum of the ruots of the characteristic equation. It is also equal to the trace of the matrix.

l|+7\.2+---+)\,r-|+7\.r =ap*lytap *lo+ s apg ¥l 4a ¥ (5.26)

The above equation can be rewritten as:

Lyl Ly =an*Jy+a ¥+ cane ¥l +a, ¥ (5.27)

A
o @3 w2, f

If w; is the fundamental frequency then,
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L < an*h+ap*h+ o Pl tag ¥ (5.28)
]
1
W > . 5.29
! /\/311*314‘322*]2*‘"'ar-lr-l*Jr-l'*'arr*Jr (.29)
(5.30)

t.c. w; 2DV

The value DV can be said as lower bound value for the fundamental frequency. The

actual value of fundamental frequency is higher than the value DV.

5.3 Modeling
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Figure 5.4 Possible ways for locating the gears and clusters

output shaft

-
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It is obvious that for any transmission path index. the dynamic configuration due to
that particular engagement pattern decides the inertial distribution and the physical location
of gears on the shafts for the same engagement pattern determines the compliance
distribution. The way with which such influences take place is now described. The
numerical encoding using alpha-numeric characters for a cluster mechanism contains three

gear sets and the physical location of the gears are also thereby illustrated.

Tr
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3¥244i+3
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TP>W>W>POm>
Ipr-rrorr-

Figure 5.5 Alpha-numeric characters for locating gears and clusters

For a particular engagement pattern, different ways of locating the gears on the
shafts are possible, which will not alter the spindle speed but are deemed to affect the
inertial distribution of the overall gear train system. Four possible ways of locating the
gears and clusters in a transmission stage are shown in Figure 5.4, viz. Type A, Type B,
Arrangement R and Arrangement L. The arrangement arising, when the gear set with
largest gear ratio is located on the left side of the gear set with lowest gear ratio is identified
as 'Arrangement L' and that arising when the gear set with largest gear ratio is located on

the right side of the gear set with lowest gear ratio is 'Arrangement R'. When the cluster is
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located on the input shaft, "Type A' results ind 'Type B’ results when it is on the output
shaft. Figure 5.5 also gives all such combinations and corresponding representation within
the computational scheme is also shown that is obtaining proper selection after permuting
the alpha-numeric characters. Clubbing together all there with 18 such configurations that
arc shown as in Figure 5.2, 1152 possible dynamic configurations of the system are

generated for a 18 = 3*2*1*3 gear train.

5.4 Calculation of system matrices

K, r:;‘
Ker g

Kst [982) Kz |daa

® © @ |miAn DN

%4 Ksa JGS

-

Jesl Ko

@ ©®

Figure 5.6 Lumped parameter model of a 18 = 3*2*[#3; type A A | A gear train

The mathematical model that eventually captures all the dynamic characteristics of
this physical mechanical system is obtained following the scheme of lumped parameter
modeling. The gear train is now represented as a torsional vibratory system with many

nodal concentrations of lumped parameters. Inertial concentrations are treated to act in pre-

112



selected number of nodes and the compliance of the entire system is represented through
the stiffness of the springs that couples the inertial concentrations.

The Figure 5.6 shows inertia / stiffness diagram for a 18 = 3*2*[*3 gear train
where gear engagement pattern is to produce the largest spindle speed. For simplicity, all
transmission stages are assumed to be 'Type A', where each cluster, as in the Figure 5.0,
is a single unit with two or three component gears mounted in the input shaft of the
corresponding transmission stage. The component gears in a cluster are fasten together as
mechanically coupled rigid body. Since the stiffness between coupled gears are neglected
and the gears have the same rotational axis, inertia of the cluster is equal to the sum of
individual component gear inertias [ 45 ].

Consideration of single shaft dynamic equivalent systcm yiclds (i) equivalent
torsional inertia of clusters and wheels and (ii) equivalent stiffness of shafts. The nodes
for the proposed gear train are indexed from | to 9. The equivalent inertia for clusters in
transmission stage 1, 2, 4 are denoted by J¢1, Jcg and Jgq respectively. The equivalent
pinion inertia in the 3" transmission stage is denoted as Jg3. The equivalent coupling
stiffness Kg1, Koz and K3 are assumed between transmission stages. The equivalent
stiffness of the input shaft in the 15! transmission stage and equivalent stiffness of the
output shaft in thc 4th transmission stage are given as Kjand Ko respectively. The
equivalent stiffness between wheels mounted on output shafts Ks1, Ks2, K3, Ksg and Kgs
are found accordingly. Considering the particular arrangement of location of gears, the
equivalent inertia of any cluster and the equivalent stiffness of the clastic spring that couples
this cluster with its neighbor cluster can be written in terms of R(i,j), which is the quotient
obtained from Tp(i,j) and Tw(i,j). Here, Tp(i,j) and Ty(i,j) are number of pinion and wheel
teeth corresponding to the ith transmission stage of the jth gear set and thus R(i,j) is the gear

ratio.

113



Further, referring the equation (5.13) and equation (5.17):

(A) Equivalent inertia

IS transmission stage:

Jar = Jai * (R(1,1))?

Jez2 = Jg2* (R(1,1))?

Jas = Jg3* (R(1,1))?

Jer = Jei
21d transmission stage:

Jas = Jga* (R(L,1))?* (R(2,1))?
Jes* (R(1,1))2* (R(2,1))?

Jo2 * (R(1,1))2

Jgs

Jez
3d transmission stage:
Jas=Jge * (R(1,1))2 * (R(2.1))2* (R(3,1))?
Jea= JC3* (R(1,1))? * (R(2,1))?
4t yransmission stage:
Ja7=Ja7* (R(L1))2* (R(2,1))2 * (R(3,1))2 * (R(4,1))?
Jas =Jgs * (R(1,1)2 * (R(2,1))2 * (R(3,1))2 * (R(4,1))?
Jag =JGo * (R(L,1))2* (R(2,1)? * (R(3,1))2 * (R(4,1))?
Joa =Jea * (R(1,2))2 * (R(2,1))2 * (R(3,1))2

(B) Equivalent stiffness

K = Ki

Kst = Ksi * (R(1,1))?

Ks2 = Ks2 * (R(1,1))?

Ker = Ker * (R(1,1))2

Kss = Ksa* (R(1,1)2 * (R(2,1))?
Kca = Kca * (R(L,1)2 * (R(2,1))2
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Kes = Kes * (R(1,1)2 * (R(2.1))2 * (R(3,1))?

Ksg = Ksq * (R(1.1))2 * (R(2,1))2 * (R(3,1))2 * (R(4.1))2
Kss = Kss * (R(1,1)? * (R(2,1))2 * (R(3,1))2 * (R(4,1))2
Ko = Ko * (R(I,1))2 * (R(2,1)2 ¥ (R(3,1))2 * (R4, 1))?

Stiffness between two mating gear teeth is in nonlincar form and depends on
various factors. To ease the modeling, it is treated as infinitcly stiffness. When this
assumnption is made, inertia of two rotating elements - i.e. cluster and mating wheel - will
act as one inertia element [ 28 ]. The equivalent dynamic system for the engagement pattern

of the kinematic arrangement shown in Figure 5.6, is shown in Figure 5.7.

0, 96
“‘ Jc1 I:N
Ja3 Joo | K K
o2 21 Jcal T\C3
JarMiv )] JG? o2 3} N B v Ko
5 St a4 \ G5 G6 Joa _W‘_ Jao ..N.
1 S3 == + K
J S5
0, 05 JG?'WT . 9y
Ksa g

Figure 5.7 Equivalent dynamic system

Now, consideration of the dynamic equilibrium based on the energy balance of any

rotational degree of freedom leads to the equation of motion of that corresponding node.

I Jg1*012 + Kst*(8) -82) =0 (5.31)
2. (Joi+Jga)*022+ Kix0y+Ksi#(82 -0 )+Ksa# (67 -63) = 0 (5.32)
3. Jaa*032 + Kgax(83 -0y) + Kg1#(63 -05) = 0 (5.33)
4. JgaxB4? + Kgax(B4 -05) = 0 (5.34)
5. (Joo+las)*0s2 + Ksa(85 -04) + Kg1 (85 -03) + Kear(85 -60¢) = 0 (5.35)
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9.

column vector {0}.

JCS*éﬁz + Kc2x(0¢ -85) + Kcax(0g -6g) =

JG7*672 + Ks4*(87 -03) =

(Jea+Jdge)+052 + Kgg* (03 -07) + Kca*(0g -06)+ Kss#(0g -89) =

JG*002 + Kss+(8y -0) + Ko*Bg =0

(5.36)
(5.37)
(5.38)
(5.39)

A vector of all nodal torsional degree of freedom in sequence can be formed as the

Now, the equation of motion of the overall system for the selected

transmission path is given by matrix equation shown as in equations (5.40) and (5.41).

I K=

JG!\Iz 4 Q’"&.’
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The [ J ]n and [ K], are the inertia and stiftness matrices of the dynamic
configuration of the nth engagement pattern, where the subscript 'n' denotes the
transmission path index. There are N number of different dynamic configurations that are
possible for a gear train with N spindle speeds. The inertia and stiffness matrices shown in
equations (5.40) and (5.41) are derived only for the Nt transmission path, engagement
pattern of which is shown in Figure 5.6. In order to obtain the matrices for other spindle
speeds, as another set of engagement patterns, associated cquations of motions are also to
be evaluated.

The matrices[ J ], and { K], can be partitioned into L number of submatricess,
where each submatrix may be associated with a transmission stage of the gear train. In
other words, L number of submatricess may be formulated and assembled to create
matrices[ J 1, and [ K ],. Each submatrix that essentially consists of (i) one cluster and (ii)
two or three gears as the case may be, is viewed as an individual dynamic sub-system of
overall system. The increased order of the diagonal terms are preferred to be assigned for
increasing number of transmission stages. The last column and row of cach submatrix,
except for the Lth submatix, contain the coupling terms. For cach spindle speed, resulted
vibration system is established from coupled sub-systems. Changing to diflerent spindle
speeds is directly viewed as change in the sub-system according to the engagement position

of the pinion and wheel.
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K, Jctlgi| O 0 K+ Ks; -Ksi 0
0 Jg2 | O -Ks1 |Ksi +Ks2| -Ks2
0 0 |Ja3 0 -Kgo Ks2 + Ko
a1 Je2
pli) =1
Jai | O 0 || Ksi -Ksi 0
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0 0 RfeX) 0 -Ks Ks2 + Ko
JGl 0 0 KSI -Ks] 0
0 [Jx 0 |[-Ksi|Kg +Ksa| -Ks2
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JGi .
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Figure 5.8 The pinion/gear engagement positions and their submatrices for Z(i) = 3
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0 | 1K1+ Kg; + Ko -Kgi 0
0 -Ks Ky + Kgo| -Ks2
s 0 -Kg2 Ks2
0 Kl + KS] -K5| Q0

0 -Kg1  |Kg) + Kga + Ko -Kg;

Jaa 0 -Ks2 Ks>
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Jetigs 0 -Ksa Ks2 + Ko

0 Ki+ Ksi + Ko|-Kyg;

Ja2 -Ks Ksi

K+ Ky -Kg

lc+lg2 -Ks) Ksi + Ko

Figure 5.9 The pinion/gear engagement positions and their submatrices for Z(i) = 2
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Following the scheme detailed in the previous paragraphs, the submatrices of inertia
and stiffness that correspond to the vector of torsional d.o.f. pertinent to each sub-system
are identical as shown in Figures 5.8 and 5.9. Each is thus a open loop configuration. The
corresponding matrices of particular gear set are identified by the parameter set (Z(i), p(i) )
where Z(i) is the number of gears of the ith transmission stage, and 'p' is the index
assigned to identify the location of mating gear sets (1 < p < 3). The overall inertia and
stiffness matrices are first formed as square matrices of order equal to the unrestrained
torsional d.o.f. of the entire gear train. They are initialized using zero elements. Then,
cach sub-system is considered 1n sequence and the tollowing rule is used to post the
corresponding submatrices into their overall system counterparts. For ith transmission
stuge with Z(i) gear set,

(i) Submatrices are square matrices of order Z(i) * Z(i)

(i1) Sub matrices are arranged to be posted diagonally along the leading diagonal.

(ii1) Off-diagonal terms that arise due to coupling stiffnesses are posted as follows;
depending on the arrangement patterns:
i+ 1) (ransmission state of Type A:

(b+2Z(3i) - | +p(i+1) th row, (a + Z(i)-1) h column

( b+ Z(i)-1) th row, (a + Z(@i) - 1 + p(i+1) th column
(i+ )N transmission state of Type B:

( b+ Z(i)) th row, (a + Z(i) - 1) th column

(b+Z3{) - 1) hrow, (a + Z(i)) th column

whereb=Z(D + Z(2) + ... + Z(i-1)

5.5 Formulation of the optimal design
A torsional dynamic system with smaller inertia or larger stiffness will have larger
natural frequency. For a specified inertial distribution of a gear train system, the shaft

stiffness may be increased theoretically upto infinity for dynamically safer design. Since
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the upper bound values for shaft stiffness are set to infinity, the lower bound values may be
obtained by optimizing the stiffness distribution. The NV number of design variables,
which are denoted by x(k) where k is I to NV, are assigned to each stiffness between two
lumped inertias.
The problem for the optimal design of a gear train is thus stated as follows:

(1) Given inertia of the lumped parameters

(2) find lower bound for shaft stiffness in the design region

(3) satisfy the condition that the fundamental natural frequency of the torsional

system is driven away from any of its operating speeds.

The objective function

The objective function is now formulated taking into account the net value of the
individual shaft stiffnesses. The objective function is expected to take the following

mathematical form:

NV

Dw =Y x® - Ky, (5.42)

k=1
Where the Kjy is a maximum permissible value for the net value of the shaft
stiffness specified by the designer. The net value of the optimized shaft stiffness will be

smaller than Kjp;.

The_ constraints

Two types of constraints, one to take into account the resonance and another to take
into account the realizability of the shafts that yield the optimized stiffness are possible.
The first type is applied for all N number of Dunkerley values. The Dunkerley values are
to be kept larger than maximum rotational speed frequency encountered anywhere in the
corresponding transmission path.
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Fp(x) = SF(n) - DV(n) < 0 n=12..,N (5.43)

The DV(k) is the Dunkerley value which corresponds to the nth spindle speed. The
SF(n) is the larges. speed frequency obtained anywhere along the nth transmission path that
produces the nth spindle speed. The largest speed frequency is not necessarily be obtained
from the spindle speeds. Depending on the layout diagram, it may be possible to select the
largest speed frequency value from the intermediate shaft speeds.

Other type of the constraints is derived to include the upper and lower limits of the
shaft stiffnesses. If NV number of design variables are selected, then 2¥*NV number of
incquality constraints arc to be implemented to find the design variables within the
realizable range.

Constraints for the minimum and maximum stiffness values are given as

Fk(x) = Kpnin(k) - x(k) £ 0 k=1toNV (5.44)
Fr(x) = x(k) - Kmax(k) €0 k=1toNV (5.45)
where the Kyyin(k) and Kjpax(k) are the minimum and maximum bounding stiffness

values for kth design variable respectively.

5.6 Optimal design procedure

Depending upon the case of transmission formula, the number of design variables
and size of each submatrices are decided. Since NG number of pinion/wheel engagements
arc noted in the gear train, total NG number of equivalent inertia submatrices and NG
number of equivalent stiffness submatrices are being created. The optimization procedure
requires N number of constrains for Dunkerley values. To perform this task, each time a
sct of L number of relevant submatrices are selected from the NG number of submatrices,
based on the engagement pattern of the required nth transmission path. Then, the
computational scheme automatically places the selected L number of submatrices diagonally

and couples with K¢ in order to form the equivalent stiffness [ K ], matrix. Similarly
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equivalent inertia [ J ] is also created. Using these system matrices, all Dunkerley values,

which are the constraints for the entire optimization procedure are established,

CRead input data )
|

Compute number of
design variables

Assign design variables for
inerias and stiffnesses

Compute equivalent inerias
and stiffnesses

1

:] Start optimization

é Generate new set of

decision variables
P Compute n'
il constraint
Objective function |,
LR » . R
T Select ntt set of Compute nth
Objectlye“iuncuon - | submatrices for inertia Dunkerley vilue
satisfied? .75, I |
Compute nth Compute nth
inertia matrix | J |, ||flexibility matrix | a |,
Convergence criterion > Select nth set of Compute nh
satisfied? “yef Pubmatrices for stiffness stittness matrix | K |,
' 1 ]

consiraints for Dunkerley value
Print results
and stop

Figure 5.10 Flowchart for satisfying Dunkerley values

The computational scheme makes use of the submatrices that are generated for cach

transmission stage individually. This leads to avoiding the repeated storage and numerical
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instability that arise during computation. So when a particular transmission stage is
considered, its sub-system matrices are generated and immediately posted as nonzero
clements of alrcady initialized overall system matrices. Then the same memory locations
uscd for these overall system matrices are used for the next set of sub-systems by

overwriting.

5.6.1 Number of design variables

leXi gl Xit! 1 Xis2 Type A

ot Ke

Xj+3 Xj+a Xj+5

Z(i)y=2

Figure 5.11 Assigning the design variables

If K is sum of | number of individual stiffness x, x3 Xj-1> Xjo Xj-1 and X

connected in series, then the K is calculated as
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]
i - 1
K ~ j§ Xj (5.40)

The rule for assigning the design variables is shown Figure 5.11. The number of
design variables depend on the transmission formula and the type of consccutive
transmission stages. Total number of design variables NV is the sum of the individual

number of design variables for K|, Kg, K¢, and Ko.

(i) Number of design variables for the input shaft stiffness K)
Although, each submatrix contains its input shaft stiffness, the computational
scheme assigns Kjto the 15t transmission stage. For all other transmission stages, the K|

is changed to coupling stiffness Kc. The number of design variables for Kj is given as:

Type A and Z(i)=2 ... Number of design variables for Kj =2
Type B and Z(i)=2 ... Number of design variables for Kj = |
Type A and Z(1)=3 ... Number of design variables for Kj=3
TypeB and Z(i)=3 ... Number of design variables for K= |

Although each submatix is derived to have output shaft stiffness, Ko is assigned
only to the Lt transmission stage. In all other transmission stages Ko is changed to

coupling stiffness Kg. The number of design variables for Ko is given as:

Type A and Z(i)=2 ... Number of design variables for Kg = 1
Type B and Z(i)=2 ... Number of design variables for Ko = 2
Type A and Z(i)=3 ... Number of design variables for Kg = |
TypeB and Z(i)=3 ... Number of design variables for Ko =3
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The values for shaft stiffness Kg are fixed quantities seen in relevant transmission

stages. They do not change with the engagement pattern.
L
Number of design variables for Kg = Z (Z({@)-1)

(iv)  Number of design variables for the coupling stiffness K¢

In order to assemble the [ K ] matrix, all of the submatrices arc coupled by the
coupling stiffness Kg. The K| and Ko in submatrices are converted into Kg, where it is
necessary. The number of design variables for coupling stiffness is determined by two
consecutive transmission stages. The Table 5.1 shows the number of design variables for

Kc of ith transmission stage.

i Transmission stage

Type A Type B

Z(iy=2 Zi)y=3 Z(i)=2 | Z()=3
9]
Ela | zir=2| 2 3 ! 1
|8
21| zi)=3 2 3 I 1
&
8§l | 2)=2 4 6 2 2
F1s
T|E| zay=3 6 9 3 3

Table 5.1 Number of design variables for the coupling stiffness Kg
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5.6.2 Description of subroutines

MAIN
NVCAL T
XSTIFF ‘
] " U inked ith
UREAL CONST aptimie sekig e

) Jl\/::'l'__j AMAT
| FIIEH
! Y i R '

KMAT31 KMAT32 KMAT33 KMAT21 KMAT22 KMAT11

Figure 5.12 Organization of subroutines

Totally there are 12 subroutines written to perform the optimization. The Figure
5.12 shows the sequential order of the subroutines that are called by the main program,
The main program calls 4 major subroutines NVCAL, XSTIFF, UREAL and CONST.
The input data for the design is first stud.ed in subroutine NVCAL, where the number of
variables are then calculated. The sequential call for subroutine XSTIFF assigns the design
variables to all stiffnesses of involved shaft portions. The subroutine UREAL and CONST
are written as the part for the optimum seeking routine. Subroutine UREAL computes the
objective function. The subroutine CONST is written to define all constraints for the
procedure. In order to calculate the censtraints for Dunkerley values, the subroutine
CONST calls N times the subroutines IMAT and AMAT. The subroutine JMAT computes

the equivalent inertias for the corresponding nth transmission path. In accordance with the
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Z(i) and p(i), the subroutine AMAT calls subroutines KMAT31, KMAT32, KMAT33,
KMAT2I, KMAT22 and KMATI1] to construct the stiffness matrix [ K ],. Using the
relevant gear ratios, the equivalent stiffness are also simultaneously computed in these
subroutines. Finally, the subroutine AMAT calculates the flexibility matrix [ a ], which is
the inverse of stiffness matrix [ K ],,. After calling the IMAT and AMAT, the subroutine
CONST computes Dunkerley value to define the corresponding inequality constraint. The
main program is linked with the optimum seeking routine that uses the subroutines UREAL
and CONST. The problem defined in this chapter is seen as a highly non linear problem.
Thus, an interior penalty function approach with Hooke and Jeeve pattern search method is
impiemented here to solve the problem. The interior penalty function method and search
algorithm using Hooke and Jeeve method are described in Appendix C and section B.3 of

Appendix B respectively.
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5.7 Demonstration results

% Number of teeth

Shaft #1 25 27 23
Shaft #2 39 37 41 422
Shafe #3 32 53 18
Shaft #4 18 23 2818
Shaft#5 32 27 37
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Figure 5.13 Dunkerley value vs transmission path fortype AA T A
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Number of teeth
Shaft #1 25 27 23

Shaft #2 39 37 41 42 21

Shaft #3 32 53 18
Shaft #4 18 23 18 28

Shaft #5 32 37 27
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Figure 5.14 Dunkerley value vs transmission path for type A A 1 B
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Number of teeth

#1= Shaft #1 23 27 25
Shafr#2 41 37 39 21 42
Shatr #3 53 32 18
o Shafr#4 18 23 2818
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Figure 5.15 Dunkerley value vs transmission path for typc AB | A
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#1

Number of teeth
-——m . Shaft #1 23 27 25

Shaft #2 41 37 39 21 42
Shaft #3 53 32 18
Shaft #4 18 28 18 23

Shaft #5 27 37 32

B
1

111

#31
#4B 5
I8 =3%2%]*3
Type: AB1B _
Arrangement: RR 1L
—— - —o— 53 f A -—o— —m—

LLiL LL1R LR1L LARIR AL1IL RL1R RR1L  RRtR

1200

1000

800

600

Dunkeriey vaiue

400

200

Transmission path index (1 to 18)

Figure 5.16 Dunkerley value vs transmission path for type AB | B
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Number of teeth

Shott #1 27 23 2§
Shaft #2 37 41 39 4221

/ % Shapt #3 32 53 12
Shaft #4 18 23 2818
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Figure 5.17 Dunkerley value vs transmission path fortype BA 1 A

133



Number of teeth

Shaft #1 27 23 25
Shaft #2 37 41 39 42 21
Shaft #3 32 53 18
Shaft #4 18 23 18 28
Shaft #5 32 37 27
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Figure 5.18 Dunkerley value vs transmission path for type BA 1 B
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Dunkerley value
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Figure 5.19 Dunkerley value vs transmission path fortype BB | A



Number of teeth
#l1—— Shaft#1 25 23 27
Shaft#2 39 41 37 21 42
Shaft #3 53 32 18
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Figure 5.20 Dunkerley value vs transmission path for type BB 1 B
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Figure 5.21 Dunkerley value vs optimum type

Spindle shaft | Largerst speed
speed frequency  [Dunkerley value Dunkerley value
(rpm) (Hz) Largerst speed frequency
1390.540 23.333 772.152 33.092
1221.510 23.333 660.437 28.304
1068.970 23.333 606.147 25978
963.756 23.333 672.375 28.816
846.605 23.333 577.303 24.742
740.882 23.333 525.184 22.508
652.319 23.333 661.706 28.359
573.025 23.333 568.058 24.345
501.467 23.333 516.640 22.142
419.786 23.333 354.608 15.197
368.758 23.333 303.236 12.996
322.708 23.333 274.263 11.754
290.945 23.333 263.425 11.290
255.579 23.333 227.325 9.742
223.663 23.333 203.167 8.707
196.927 23.333 256.255 10.982
172.989 23.333 221.181 9479
151.386 23.333 197.601 8.469

Table 5.2 Dunkerley value obtained from optimum design
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5.8 Optimal design example

The following listing is the final form of the results using the present design
synthesis. The sequential implementation of the optimization procedures presented in
Chapter 3, Chapter 4 and Chapter 5 will yield the optimal kinematic design and the shaft
stiffnesses. The design requirements for the entire procedure are given only through 5

lines of FORTRAN read statements as it is shown in page 60.

Transmission formula: 3 2 * 1 * 3
Type of gear train: B B 1 B
Arrangement of gears: R R 1 R

Module: 0.305

Transmission stage = 1; CLUSTER 1S ON OUTPUT SHAFT
Number of pinion teeth (Input shaft) 25 23 27
Number of wheel teeth (Output shaft) 39 41 37
Face widths: 0.7078000; 0.7820000 and 0.6437000

Transmission stage = 2; CLUSTER IS ON OUTPUT SHAFT
Number of pinion teeth (Input shaft) 21 42
Number of wheel teeth (Output shaft) 53 32

Face widths: 1.649500 and 0.7695000

Transmission stage = 3; NO CLUSTER (Z(i) = 1)
Number of pinion teeth (Input shaft) 18
Number of wheel teeth (Output shaft) 18

Face width: 6.757900

Transmission stage = 4; CLUSTER IS ON OUTPUT SHAFT
Number of pinion teeth (Input shaft) 23 18 28
Number of wheel teeth (Output shaft) 32 37 27
Face widths: 3.557100, 5.022800 and 2.845000
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OPTIMAL STIFFNESSES:
* EQUIVALENT STIFFNESS

Transmission stage = 1
Input shaft stiffness = 107638.0
Shaft stiffness = 107638.0 and 107638.0
Coupling stiffness = 107638.0; 107638.0 and 107638.0

Transmission stage = 2
Shaft stiffness = 107638.0
Coupling stiffness = 107638.0 and 107638.0

Transmission stage = 3
Shaft stiffness NO (Z(i) = 1)
Coupling stiffness = 107638.0

Transmission stage = 4
Shaft stiffness = 107638.0 and 107638.0
Output shaft stiffness = 107638.0; 107638.0 and 107638.0

* ACTUAL STIFFNESS

Transmission stage = 1
Input shaft stiffness = 107638.0
Shaft stiffness = 107638.0 and 107638.0
Coupling stiffness = 35879.34; 53819.00 and 107638.0

Transmission stage = 2
Shaft stiffness = 107638.0
Coupling stiffness = 53819.00 and 107638.0

Transmission stage = 3
Shaft stiffness NO (Z(i) = 1)
Coupling stiffness = 107638.0

Transmission stage = 4
Shaft stiffness = 107638.0 and 107638.0

Output shaft stiffness = 35879.34; 53819.00 and 107638.0
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5.9 Conclusion

An cfficient way of integrating the concepts of optimization, discrete system
modeling of machine tool gear trains and matrix analysis is studied to obtain practically
useful solution algorithms. A reduced set of number of distinguished torsional vibration
constraints are evaluated via the resulting Dunkerley values. Also, various physical
configurations are represented in a more straightforward manner, into the equations of
motion via reformulating the coefficients of characteristic matrices. The problem of a single
optimization with added number of constraints due to different dynamic configurations is
solved. Dynamically stable layouts are generated by the pure imaginary torsional vibration
frequencies. Ready for inclusion of dissipative forces straightforwardly. Optimal system
offering a wider spacing of cxcitory and inherent frequencies of oscillations for any

dynamically admissible kinematic configuration of any engagement pattern is evaluated.
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CHAPTER 6

Concluding remarks and future work

The design procedure presented in this thesis provides an improved methodology
for optimal design of industrial multi-speed gear trains, specifically, with spur gear, paraliel
shaft arrangements. The methodology is able to handle any number of spindle speeds as
well as any number of shafts. The optimal design is carricd out for minimum volume,
minimum mass, maximum power transmitted, minimum error in gear ratios and maximum
torsional vibrational safety. The final results arc obtained through different stages
considering all possible gear train configurations. Furthermore, the reliability of the
component gears along with the system is increased by introducing probabilistic variables.
The vibrational safety is ensured by analyzing various locations of the component gears on
shafts. The methodology presented in this thesis has more advantages over many works of
the past, which are listed in the literature survey. Comparison of results with other
published works for identical initial design requirements reveals the superiority of the
present methodology.

In gear industry, variety of tooth properties are possible (0 manufacture. Because
of this fact, it has been found desirable to standardize some gear parameters. The standards
on gear parameters provide a means of achieving increased manufacturability and
interchangeability. These standards specify various relationships among the number of
teeth, tooth thickness, addendum and pressure angle of gears. However, these standards
are not intended to be absolutely rigid, designers are at liberty to modify the gear
parameters within limitations. For example, values for number of tecth are restricted by
many existing standards to provide specific gear ratios and interchangeability. These
restrictions are useful to some extent, but they do not facilitate the development in the ever

increasing demand for machine tool applications. The procedure nrovided in Chapter 3
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offers the means of satisfying the designers' expectations and the standards. The
procedure is formulated in such a way, that the industrial standards can also be specified as
constraints. The procedure examines all possible kinematic arrangements and all possible
speed diagrams. Given the design requirements as it is given by Rao et al [39], the
procedure examines 12 different possibilitics of kinematic arrangements and 72 possible
speed diagrams for a gear train with 18 spindle speeds and 5 shafts. The results
successfully show that the spindle speeds are achieved much closer to the proposed ideal
speeds and the overall center distance of the new design is reduced to 79.79% as compared
to the optimum design given in Reference by Rao et al [ 39 1. The results in Table 3.4,
Figure 3.7 and Figure 3.8 show the improvements on the spindle speeds using the
proposcd design procedure.  Also the higher speeds in the intermediate shafts of the
optimal design are considerably reduced and this can be seen by comparing the speed
diagrams of both gear trains shown in Figure 3.6.

Eventhough industrial standards are maintained in the design synthesis, appropriate
considerations arc to be taken in performing the optimal design synthesis of multi-speed
gear trains.  For instance, pinion of a mating gear set in machine tool applications is
allowed to have minimum number of teeth, that is 18, according to AGMA. This number
can not be applied as an absolute rule to gear trains consisting of all component gears with
the same module . In such type of design synthesis, the pinion which belongs to the set of
smallest gear ratio in cach transmission stage can only be allowed to have the minimum
number of teeth given by standards. Otherwise the design procedure may face a serious
feasibility problem. This observation is notified in Chapter 3 and it is useful to know
before starting any design synthesis of multi-speed gear trains.

In gear industry, the single and double composite gear trains offer attractive design
featurcs. However, design of such composite gear trains is known to be a tedious process
according to gear researchers | 33 ], The optimization procedure presented in Chapter 3

offers an alternate design method and the advantage of having composite designs by simply
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initiating several sets of component gears to have equal size in the form of constraints, A
composite design is created from the optimum design by completely eliminating one wheel
from a selected transmission stage and allowing a particular pinion in next transmission
stage to be the composite. This reduces the number of gears in the gear train by one, that
will further lower the weight and the manutacturing cost. The layout of the composite
kinematic arrangement is shown in Figure 3.9.

One of the important problems arising in machine tool industry is the alteration of
existing design of gear trains. In many cases, some parameters may be required to take
values that have been previously sct. Obviously, it is very difficult to predict the effect of
change in any of the preset values. With the integration of the optimization methods into
design synthesis, most of these type of problems can be successfully solved. For example,
eliminating one shaft from an existing design without affecting the spindle speeds is
demonstrated in Chapter 3. Since the existing design is observed to contain i transmission
stage with a single gear set, that particular set is forced to have the gear ratio equal to 1.000
using appropriate constraints. It is obvious that the absence of this transmission stage does
not affect the required spindle speeds. Thus, an alternate gear train is designed by
removing the above mentioned transmission stage. The new alternate design will continue
to serve the same spindle speeds but with number of shafts reduced by one and number of
gears reduced by two. This yields the overall center distance of the new design to be
67.25% of the original value.

The dynamic characteristics of the gear train system arc sensitive to the inertial
distribution due to the location of component gears on shafts, where the different locations
are achieved by initiating different engagement patterns. The mounting of component gears
on shafts can play an important role in the inertial distribution of the dynamic system. In
contrast to the progress made in analysis of gear trains with different engagement patterns,
a systematic analysis for identifying proper position of mounting of component g’curs on

shafts is not available. Knowing this, a technique by rearranging the locations of the
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component gears to avoid the resonance is used in Chapter 5 of this thesis. The minimum
compliance is added at efficient gear locations to shift the natural frequency in all
crigagement patterns. Although, estimation of the exact natural frequency of the torsional
system could be effective in the classical dynamic analysis, it is not used in this thesis. The
objective in Chapter 5 is to shift the natural frequency away from the larger operational
frequency observed in the transmission path of the current engagement pattern. From this
view point, the Dunkerley method, which estimates the lower bound for the natural
frequency, is proposed. The optimization problem is solved to ensure the torsional
vibrational safety for cach set of engagement patterns for all possible gear mountings.

The actual center distance in which the gear will perform in service, will have larger
influcnce on the service life of gear trains. In any critical evaluation of a gear train,
particularly in determining its reliable performance, the actual center distance should be
used in the equations governing facewidths, backlash, contact ratio, tooth tip clearance etc.
The actual center distance is determined by the factors such as the nominal center distance,
manufacturing tolerances, differential expansion between gears on their mountings and the
deflection in mountings due to service loads. The design aspects that should be considered
when the nominal center distance is obtained are discussed in detail in Chapter 3. All other
factors listed above are random in nature. It is known that nominal center distance has a
lincar relationship with gear module. In this case, variations in the actual center distance
that results from the buildup of all randomness that influences the gear module are
considered in Chapter 4. A new probabilistic design method for increased power
transmitting capacity, minimum weight and the reliability of the components as well as the
system is described in this chapter. The parameters that affect the gear train performance
such as transmitted power, facewidth, bending stress, wear stress, material density and
rotational speeds are also treated for uncertainty. The method improves optimization

accuracy over the deterministic optimization with only a slight increase in computer time.



A new graphical procedure for identifying all possible speed diagrams has been
developed and presented in Chapter 2. The method is based on the creation of graphical
representation for combined results of layout diagrams with the values of rotational speeds.
The procedure enables the designer to know the effect of speed ratio changes for the same
initial requirements that are the number of spindle speeds, number of shafts required,
speeds of the spindle and speed of the drive unit. This procedure was successtully adopted
in the analysis of Chapter 3 to identify the optimal design parameters of the kinematic
design.

Based on the new approaches presented in this thesis, an efficient procedure for the
design synthesis of multi-speed gear trains for industrial applications is developed. The
design procedure presented in the thesis can be benefitally applied to non metallic gear
trains. However, the design synthesis employed herein is limited. During the entire study,
spur gears with same module are only considered. It is also possible to design gear trains
with different modules with proper profile modifications. The methodology used for spur
gears can be extended to other types of gears where applicable. The tooth geometry is not
considered in this thesis. Since the vibrational energy is transmitted to the housing through
the shafts and bearings, more study is desired in the design of bearings, shafts and
housing. Study on other vibrational problems, such as noise that is influcnced by
manufacturing precision of tooth profile and the error in them, is also to be focused for
better design. Furthermore, the operating conditions such as temperature and lubrication of
gears are not well studied in the area of gear trains. It is possible that some new techniques
based on tribological aspects can be implemented as to further improve the service life of
gear trains. Therefore, a further study may focus on these issues for developing the design

synthesis of the real world machine tool multi-speed gear train systems.
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APPENDIX A

OBTAINING E(i) VALUES FOR 18 SPEED GEAR TRAIN

A.1 Finding E(i) values for 18 speed 4 shaft gear train

Number of output shaft speeds N =18

Number of shafts required NSR = 4

A.l-1 Kinematic arrangements

(i) Transmission formula :
N=18=3*3*2=7Z(1) *Z(2) *Z(3)
Z(1) =3 - IS transmission stage has 3 gear sets
Z(2) =2 - 2™ transmission stage has 2 gear sets
Z(3) = 3 - 3" transmission stage has 3 gear sets
L=3

(ii) Possible kinematic arrangements:

18=3*3%*2
18=3*2%*3
18=2*3*3

A.1-2 Number of shafts:

NS=L+1=3+1 =NSR

Numbcr of shafts =4
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Figure A.1 Kinematic arrangements of 18 speed gear train
A.1-3 E(i) values
(1) Select I8 =3 *3*2
For transmission stage 3
number of output speeds No(3) = 18
number of input speeds Ni(3) =Np(3)/Z(3)=18/2=9 =N(2)
possible E(i) values:
No(3) No(3) No(3) No(3)
Z(1) * Z(2) * Z(3) Z(1) * Z(3) Z(2) * Z(3) 7(3)
18 18 18 18
3*3%2 3*2 32 2
1 3 3 9

For transmission stage 2
number of output speeds Np(2) =9
number of input speeds Ni(2) =Nq(2)/Z(2)=9/3 =3 =Ny(l)

possible E(i) values
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Nof2) No(2)
Z(1) * Z(2) Z(2)
9 -9
3*3 3
1 3

For transmission stage 1
number of output speeds No(1) =3
number of input speeds Ny(1)=No(l)/Z(l)=3/3 =1

possible E(i) value
No(1)
(1)

—~
—

—_— ulu

(2) Select I8 =3*%2*3
For transmission stage 3
number of output speeds No(3) = 18
number of input speeds Ni(3) =No(3)/Z3)=18/3=6=Ng(2)

possible E(i) values:

No(3) No(3) No(3) No(3)
Z(1) * Z(2) * Z(3) Z(1) * Z(3) Z(2) *Z(3) Z(3)
(8 18 18 18
REREEK 3*%3 2%*3 3
| 2 3 6

For transmission stage 2
number of output speeds Ng(2) =6
number of input speeds Ni(2) = No(2)/Z(2)=6/2 =3= Ng(1)

possible E(i) values
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No(2) No(2)

Z(1)* Z(2) Z(2)
6 6
372 >

| 3

For transmission stage |
number of output speeds No(1) =3
number of input speeds Ny(I) = No(1) 7/ Z()=3/73=1

possible E(i) value
NOS(1)
Z(D
3

3
1
(3)Forl8=2*%3%3
For transmission stage 3
number of output speeds Np(3) = 18
number of input speeds Ni(3) =No(3)/7Z3)=18/3=6 = Ny(2)

possible E(i) values:

No(3) No(3) No(3) No(3)
Z(1) * Z(2) * Z(3) Z(1) *Z(3) Z(2) *Z(3) Z(3)
18 18 18 _I8

2%¥3%*% 3 2*3 343 3

] 3 2 0

For transmission stage 2
number of output speeds Ngo(2) =6
number of input speeds Ni(2) = Np(2) /Z(2)=6 /3 =2 = Ny(l)

possible E(i) values
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Nd?2) Nd2)

Z(1) * Z(2) 2(2)
6 6

S EXE —5—
] 2

For transmission stage 1
number of output speeds No(1) =2
number of input speeds Ny(1) = No(1)/Z(1)=2/2=1

possible E(i) valuc

No(1)
Z(1)
2
2
|
Kinematic 1 * Transmission 2nd Transmission 3™ Transmission
arrangements stage stage stage
| 1
I8=3*3*2 [ 3
3 9
1
! 2
18=3*%2%3 ] 3
3 6
1
I 2
18=2%3*3 1 3
2 6

Table A.1 E(i) values for 18 speed 4 shaft gear train

Using the combination of values in Table A.1, all possible layout diagrams can be
constructed for each Kinematic arrangement of 18 speed 4 shaft gear train. In finding the
speed diagrams, two of the possible 8 layout diagrams from 18 =3 * 2 # 3 and

18 =2 * 3 * 3 wre rejected, because of non-symmetric speed ratios obtained.
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A.2: Finding E(i) values for 18 speed 5§ shaft gear train

For a 18 shaft train, if the number of shaft value is increased to S, then an additional
shaft with one gear set has to be added to satisfy the requirement. This may produce 12
different kinematic arrangement. For cach Kinematic arrangement possible E(t) values can
be obtained which are shown in Table A.2. Using the combination of tabled values, 88
possible layout diagrams can be constructed for 18 speed S shaft drives. In finding the
speed diagrams, 16 layout diagrams are rejected because ol non-symmetric speed ratios are

obtained.
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Table A.2 Possible E(i) values for 18 speed 5 shaft train
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APPENDIX B

SOLUTION ALGORITHM FOR DESIGN SYNTHESIS

B.1 Introduction

For a particular design problem, every design can be represented by a point in a n-
dimensional space, which is termed as the design space. The design synthesis is the
selection of a point in the design space. The change in the design is obtained as a move
from one point to another in this space. Any point in the space is a "design” cven though it
may represent some impossible configuration. The designs represented by impossible
configurations violates the design requirements, but in some region of the design space the
requirements do satisfy. The surface that separates both ihe acceptuble and impossible
designs is termed as constraint surface. The region where the acceptable designs are
found, is termed as the feasible design space. The parameters that are varied to obtain a
design is termed as design variables.

In order to select a best design involving the vector of n independent design
variables X = (x},X2, X3 .... Xp), the function whose value is a measure of merit ol the
design is defined as the objective function and denoted by ®(x). Conventionally, by
obtaining the lower value for the objective function, better design is achieved. A general
mathematical model for a objective function that involves s number of different design
objectives can be written as:

Minimize ®(x) = [D;(x)+DPy(x) ... P (x)]

The requirements for the constraint surface is derived through r number of
equations F|(x), Fa(x), F3(x), .... Fr-1(x), Fr(x) in the form of cquality and incqualitics.
More generally, a design with n independent design variables and r number of constraints
is a feasible design if and only if

Filx) <0 fori=123,.,r
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The vector of n independent design variables X = (x].X2, X3 .... Xp) is governed by

upper and lower bound vectors UL respectively.
U < x £ L

There is no single method available for solving all optimization problems
cfficiently. Hence a number of optimization methods have been developed for solving
different types of optimization problems. The efficiency of rhe optimization method is
based on obtaining the best optimum value in least number of searches. Unfortunately
none of the classical metheds can guarantee the global optimum in finite number of

searches.

B.2 Development of non linear integer goal programming technisque
In this section, a non-linear integer goal programming algorithm is presented which
is capable of snlving kinematic design of gear trains and many other similarly formulated
design problems with integer design variables. The algorithm has been formulated as a
constrained minimization problem, that is converted to a sequence of unconstrained
mimmization. The described solution assumes that a feasible starting point has been found
in the design space. In developing the solution method, s number of objectives and r
number of constrains are treated as form of m goals where m = s + r. A mathematical
expression that 1s called as an achievemnent function a, is found by comoining these m goals
and minirmized through the NLIGP method. Before see the details of the method the general
tormulation for the problem 15 given as:
Find x = Xj.X2, X3 .... Xp
S0 s to minimize
a = [(g1(n.p), g2(n,p), ... .gk(n.p))]
fex)+n-pr=by ;t=1,2,....m
where L<X <U

n,p>0
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Once the set of n design variables of X and a set of m objectives of f(x) are
specified. the method specifies preemptive priorities for ea .1 objectives in the achievement
function. The priority levels are established to group the objectives in various levels. The
concept of grouping them is to cnsure which set has to achieve their goals first in searching
the optimum value. A set of K priority levels are possible, which are denoted as Py,
P,,P. .. Px. were the subscript of P is identified as the priority level. The lower subseript 1s
obviously be in higher priority level.

P, >>> P, >>> P, .. >>> P,

Goals are found with one - one correspondence with objectives. The goals made
fron1 constraints are immeasurably preferred to the achicvement of the objective function
goals. In this way. the constraints are always satisfied in preference to the attainment of a
1iinima or maxima for the objective function. In goal programming, the constraint set
appears as the set of rigid constraints, which must be assigned to the priority level one.
This leads all other set of goals to be in the feasible region.

There are 'm’ aspiration levels are specified for all of the 'm’ number of goals. The
aspiration levels are like an aitainment level for the objective functions. Knowing the natuie
of objective functions, reasonable values for aspiration levels is to introduced, so that the
availability for goal of optimization domain is ensured. Additionally the goal carries a pair
of deviation variables denoted by 'p’a~.d 'n. These parameters measure the deviation of
the objective from aspiration level.

The components of the method can be listed as it follows:

-~ A set of design variables

-- A set of priority levels
P,, P,, P;... P,. where P, >>> P, >>> P,... >>> P,.
- A set of goals (G, G2, Ga, ...., Gj) which correspond with

fi(x), £5x),fx)...... f.(x) respectively



-- A set of aspiration levels (by, by, b3, .... by,) for each goal
-~ Asctof goals (n,p1), (n2,p2), (n3,p3) .... (Nm,pm) to find the
deviation away from the aspiration level from goals.

Mathematicaily, this can be represented:

G;: f®)+n,;-p = b,
R | ,

G,: fX+n_-p,=0b,

Ga+:l f:|+l(x) + Doy pu+| = bﬂ"‘l
PZZ _ '

G: fX+n -p.= b,

Gesi f;;+|(x) 0 pc+l= b"*l
B:

G f11(x)+n|n' Pm= bm

Here all goals are only assigned to the priority level and no other prescribed
ordering is imposed. That is within a priority level Py the subscripts on G does not has any
order , where k = 1, 2, ... K.

An achicvement function is a mathematical expression of preemptive priorities. A
vector representation denoted as a , is able to express the degree of attainment at each
priority level. The a is a row vector of K components. Mathematically, a is expressed as

a =|[ (g1(mp)), (g (n,p)), (g3(n,p)), .... (gk(n,p)) ]

Where gj(n,p) j =1... Kis a linear function of deviation variables assigned to the
jth priority level.

The appeuarance of deviation variables n,p in the achievement function is based

upon the nature of goal. Achievement is measured as follows:
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(i) If the tth goal is less than or equal type, fi(x) < by, py appears in the
achievement function.

(ii) If the tth goal is grater than or cqual type, fi(x) > by, n, appears in the
achievement function.

(iii)  If the tth goal involves an cquality expression, fi(x) = by, then ny + py
appears in the achicvement function.

It should be noted that f,(x), i = 1,2, .... m is not restricted to be convex, lincar,
nonlinear, continuously differentiable, etc. Also X is unrestricted in sign. 1t may be

continuous, discrete, or a mix of continuous or discrete variables. | 3 |

B.3 Pattern search algorithm for non linear goal programming

In performing the optimization, the design variables often pose conflicting behavior
among themselves or with the objective function. The vector of design variables is to be
checked by a small increment for improvement of the objective function in ¢ach direction
and then only the overall design vector is evaluated. Pattern search techniques are able to
handle this type of optimum search with high efficiency. The Hooke and Jeeve method for
pattern search is present in this section. The method is one of the carliest and most
successfull methods of optimum seeking techniques. Each in this scarch method consists
of two kinds of moves, one is called as the exploratory move and the other is pattern move.
The exploratory move is to explore the local behaviour of the objective function and the
pattern move is to take advantage of the pattern direction. In order to present the concept
of the pattern search strategy of the Hooke and Jeeve method, an algorithm is listed below.
For clarity, the optimization surface for two design variables x; and xj is shown in Figurc
B.l. The contour lines are represented by constant values of @ where the search starts
from an initial point towards an optimum. The unsuccessfui search path is shown in

dashed lines.
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Figure B.1 Search strategy of the Hooke and Jeeve method

Algorithm:

Step 1- An arbitrary starting point (initial base point) is selected and the objective
functoin @ is evaluated.

Step 2- An exploratory search from the base point is begun by giving one design
variable a small predetermined step length. If this improves the value of @, it is retained;
clse a corresponding negative step value is taken. The final result of the exploratory search
yiclds a temporary base point.

Step 3- Patern move is made by changing each design variable from the temporary
head an amound equal to the difference between the temporary base point and the base

point. From the new point make an exploratory search.
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Step 4- If the exploratory search fails to improve , it is cancelled and repeated by a
new search from the previous base point. If it succeeds, the final result is taken as the new
base point followed by a patern move.

Step 5- The iteration continues until the exploratory search fails to locate a better
point. The step length is then reduced, 2nd the scarch is repeated. After cach failure the
step length is reduced an additional fracu.on until it reaches some predetermined minimum,
The base point where that minimum occure is called then the optimum.

Flowchart of the above mentioned algorithm is illustrated in Figure B.2.
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Figure B.2 Flowchart of Hooke and Jeeve method
The pattern search is performed successfully in an unconstrained nonlinear design

space. The method is not suitable for a design space with nonlinear constraints.
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B.4 Hooke and Jeeve method for non linear goal programming
A Hooke and Jeeve method for pattern search in the context of non lincar goal
programming algorithm is presented here.
Finding the design variable vector X as to minimize
a = [ (g1(n,p)), (g2(n,p)), (g3(m.p)), ..... (gx(n,p) |
such that  fj(x) + n; - p; = b;;
ni, pi 20 for 1=123, ..., m
Where gk(n,p) is a function of deviation variables associated with the objectives at
the kth priority level and fj(x) is the left hand side of the ith goal.
Step 1: Initialization
(i) Set the index on the pattern scarch number r=0
(i) Set the index on the x vector q =0
(iii)  Select the first base point x(1)
(iv)  Set the initial variable pertrurbation step size 8
v) Set the minimum & for termination dy;,,
(vi)  Set g, the convergence factor two successive evaluations of a
(vil)  Set the acceleration factor o
(viii)  Set the step reduction factor 3
(ix)  Set the number of search iterations Ryy.
Step 2: evaluation of initial achievement function and test base point.
(a) Seth=q+ 1
(b)  Compute the initial achievement function value a(x() for x(1),
()  Letthp=x(D as the initial test base point.
Step 3: Increment the indices set in step |
(a) q=q+l
()  r=r+l
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Step 4 : Exploratory Search
Perform explorations about (i.e., about ty ).
(a) Initialize the index for variable subscripting; set j = 1
(b) If a(ty o + &j) < a(ty ) then tyj =ty o + 8 proceed to step 4(d)
otherwise, ty j = th o: proceed to step 4(c)
(c) If a(th - &) < a(thp) then tpj=th o - d; proceed to step 4(d)
otherwise, th j = th : proceed to step 4(d)
(d)  Set tho=thj;ifj=n, go to step 5. Otherwise set j =j + 1 and
return to step 4(b).
Step 5: Achievement function determination test
Compare the achievement function value at t o with the a(x().
(a) If a(th o) +E< a(x(h)), the test base point t,, o becomes the
permanent base point. Set x(4*!) = tj, g and then proceed to step 6
(b)  Otherwise, x(@+!) = x(h) and then proceed to step 7.
Step 6: Pattern Search
(a) If r > Rimax, the number of pattern searches limit has been
exceeded, proceed to step 9
(b)  otherwise set h = g+1 and set tp g = 2x( - x(h-1), proceed to step 3.
Step 7: Step size reduction
(1)  Sectd=P.8 and proceed to step 8.
Step 8: Minimum step size test
(a) If & < & 1nin proceed to step 3
(b) otherwise set, h =g+1 and t, o= x(d+1) proceed to step 3
Step 9: Search termination step

Best solution attained is at x(4),
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B.5 Integer conversion heuristic

There are many methods available to obtain an integer solution during a pattern
search. In the presented NLIGP approach the integer conversion is obtained using
rounding heuristic. The algorithm, which can be adopted with the exploratory scarch of

NLIGP, is presented below:

th 0 is the test base point
if a([th, + 6; + 0.5]) < a([thp]) then

thj= [ tho+0;+0.5]

th,0 = th,j
else
if a([th,o + 6i1) < a({thol) then
thj= [ tho + §;l
th,0 = th,
else
th,j = th,0
endif
endif

The '[ ]' brackets in the expressions mean the largest integer contained in. For

example [9.3] translates into 9; while [- 4.5] translates to -5.
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B.6 The algorithm for a NLIGP
An algorithm for non-lincar integer goal programming mcthod is presented here.
The algorithm is the combination of the NLIGP method with the rounding heuristic.
Step 1: Initialization
(1) Set the index on the pattern search counter, r =0
(i1) Set the index on the x-vector, q =0
(iii) Select the first base point x4,
(iv) Set the initial variable pertrurbation step size &
(v) Establish the minimum 8 for termination &yin
(vi) Set the convergence factor € for two successive evaluations of a
(vii)  Select the acceleration factor o and the step reduction factor B
(viii)  Set the number of search iterations not exceed Rpax.
(ix)  Set KFLAG =0, a value used to distinguish an exploration about an
accelerate test point.
Step 2: Compute the initial achievement function value for x(D, a(x). Let t;q=x" be
the initial test base point; set h = q+1
Step 3: Increment the indices set instep 1; q=q+1; r=r+l
Step 4: Exploratory search perform explorations about x(") (i.e., about ty ) so as to
determine ty,  ( the best a(x™) attributable to this method of search) as follows:
(a) Initialize the index for variable subscript; set j =0
(b) Incrementj; j=j+1
if all variables have been processed (j > n), goto step 5
clse continue
(©)  Compute tpj as follows:
thj={tho + dj + 0.5]

(d)  Check it the upper limit on xj has been reached. If t,j > d;j goto step 4(f)
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(¢) If the value of achievement function at t,; represent an improvement in
solution (a(thj) < a(th,)) goto step 4(i); else continue
(f) Compute thjas: thj = [tho - §)]
(8) Check if 1he lower limit on xj has been reached. 1f ty ) < ¢j goto step (b,
else continue
(h) If the value of achicvement function at ty,j represent an improvement in
solution (a(th ;) < a(th)) goto step 4(i) ; clse goto 4(b)
(i)  Setnewthpas tho= thj; gotostep 4(b)
Step 5: Compare the achievement function value at tj, o with the a(x(™).
If a(thp + & < a(x(), the test base point ty o become the permanent base
point: set x(4*+D) = t;, , KFLAG =0, and golo stcp 6;
else x(@+D) = x(W) then if KFLAG =0, set KFLAG =1, h = g+ | and set g, = xta+h
goto step 3;
If KFLAG =1, resetc KFLAG =0 and goto step 7
Step 6: (pattern search) If the limit on tech number of pattern scarches has been exceeded
(r>Rpax), go tostep 9; elseseth =q+ 1 and set t;,9 =2 xM - x-D and go 10 step 3
Step 7: (Step size reduction) set d = . 8 and go to step 8
Step 8: (minimum step size test) If 8 < dyin goto step 9; c¢lse h=q+ | and
th0 = x(@*D) and goto step 3

Step 9: (Search termination step) Best solution attainable is at x(W)
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Figure B.3 Flow chart for NLIGP
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When exercising the solution procedure, the optimization process often converges
to the local minima. In finding the local minima, the optimized values must be examined
for the design limits at which the procedure stops. In the selected NLIGP approach, the
required design limits are specified as the goals fo the solution procedure.  In ecach
minimization, a specified less critical quantities are treated as goals for the objective
function and constraints. Usually, the goal to the objective function terminates the scarch
process, even the procedure does not converges to the other goals exactly. When the
search terminates in a local minima, the resulted value for the objective function may be
inputed as a new goal and the enti.e process is repeated till no change between the objective
function value and corresponding goal is notified. The limiting features associated with the
constrains can also terminate tae procedure in local minima. In such case, parametric
variations in NLIGP algorithm arc performed to allow the objective function to have higher
priority. One of the other reasons for the convergence towards local minima seems to be
the selection of the initial values for the design variables. Feasible starting points are often

dictated knowing the approximate location of the optimum is known.

B.7 The NLIGP organization

MAIN

' '

YVALUE HIALG

i
' ' i

VALUE |ewg—s»| DECIDE |«g—ps! INTSOI.

a

Figure B.5 Structure of NLIGP
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Based on the algorithm described earlier, the computer code for NLIGP has been
obtained. The main program calls 5 subroutines in order to perform the optimization.
Figurc B.5 shows the structure of the main program and NLIGP subroutines. The main
program controls the overall execution by calling the two routines YVALUE and HJALG.
The subroutine HIALG perform the pattern search, by sequentialy cailing one of three
subroutines VALUE, DECIDE and INTSOL. The achievement function is computed by the
VALUE routine. DECIDE is to compare the achievement function values in different
stages. [t takes the value of the test point, evaluates achievement function and decides if the
test point leads to an improvement. The INTSOL controls the integer modifications. The
objectives are inputed in the subroutine Y VALUE which is called by VALUE. For every
new problem, the main program alters the objective functions according to the kinematic

arrangement.
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APPENDIX C
SOLUTION ALGORITHM FOR PENALTY FUNCTION METHOD

C.1 Introduction

Optimization techniques available for the solution of constrained nonlincar problems
is classified into two broad categories, namely, the direct methods and indirect methods
[ 38 1. The Penalty function is one of the powerful indircct methods for handling heavily
constrained problems with equality, inequality and mixed constraints. The penalty function
method transforms the basic optimization problem into alternative formulations such that
numerical solutions are sought by solving a sequence of unconstrained minimization
problems. Two types of Penalty function method are available as, (i) Interior penalty
function and (2) Exterior penalty function. In interior penalty function method, the
sequence of unconstrained minima is found in the fcasible region and in the exterior method
it is in the infeasible region.

Let the basic optimization problem be of the form:

Minimize ®(x), where x = xi, X2, X3, ..., Xn
subject to Fi(x) €0 fori=1,2,3,., m
and also Fi(x) =0 fori= (m+l), (m+2), (m+3),..., 1.

The proposed penalty function method seeks the unconstrained minimum using an
alternate form of objective function, known as the achievement function. The achievement
function, denoted as a( x, s ), is defined by the following form:

Find x = x1,X2, X3 .... X,

SO as to minimize

alx,s) = Px) + s*{z G Fi(x) ]}
i=1
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where, @(x) is the original objective function; 's' is a positive constant known as penalty

parameter and Gil Fi(x) |is the penalty term that is some function of constraints Fj(x).

Popularly used forms of penalty terms are

for interior:

Gl Fx)] = - Fi(lx)

G{ Fi(x)] = log[- Fi(x)]
for exterior:

G[ Fi(x)] = max[0, Fi(x)]

G{ F(x)] = max[0, Fi(x)]?

C.2 The algorithm for penalty function method
An algorithm based on penalty function method is given as in the following steps:
(i) Start with a vector of initial feasible points x| satisfying all constraints with
strict inequality sign, i.e. Fj (x;) <0 fori=1 to r and an initial value of s} >0; set k = 1
(il)  Minimize a( x, s1 ) by using any of the unconstrained methods and get X{.
(iii)  Test whether Xk is the optimum solution for the original problem. If Xk is
found to be the optimum, teri.iinate the process. Otherwise go to the next step.
(iv)  Find the next penalty parameter s(..1) where sg+1) = C* sgand 0 < C< 1

(v  Set the new value for k as k = k + 1; take the new starting point as X, goto

step (ii).

C.3 Development of interior penalty function solution procedure
The general formulation for the optimization problem is given as:
Find x = X[,X2, X3 .... Xp

0 as to minimize ®(x)
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subject to the inequality constraints
Fix)<0;i=1,2...,r

where L < x < U (L,U are upper and lower bound vectors of design variables
respectively.)

The inequality constrains arc incorporated into unconstrained artificial achicvement
function a which can be optimized through interior penalty function method. The penalty
term assumes that the vector of design variables x is a feasibic point (i.e., F;(x)< 0 ;i =
1, 2,...,r). The artificial achievement function is given as:

g ) Fi(l?z)-}

i=1

a(x, s;) = Px) + s *{

where s| is a positive constant. As stated in step (iv) of the algorithm, the s value
is reduced by a constant factor C after each minimization performed. The values specificd
for Caffect the rate of convergence but otherwise fairly problem independent. A reasonable
starting value for s; may be taken as 1.

In order to allow an infeasible starting point , an alternate additional penalty term
Gi Fi(x) ] is used for any Fi(x)>0;i1=1,2,..,r.

G{Fi(x)] =102 * (] - Fi(x)|)
This modification of the achievement function is implemented to achicve the

feasible solution rapidly. Hence, the new achievement function becomes:

alx, s;) = Px) + s *{ r -———1—} + 102“*[ r (|- Fitx)])
! ! Z:l Fi(x) \.;

At this point, a new penalty parameter s is sclected so that 0 < sy <sp. Using

this penalty parameter, another achievement function is formulated.

a(x,sy) = Px) + s, * Y . \+102(’*{i(|-Fi(x)|)}
i i i=zl Fix) [ i=1
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Now, the solution from a(x, sy) is taken as feasible starting base point for
minimizing a(x, s2) and the process is repeated as it is indicated in step (iv) of the
algorithm. If any solution is not obtained during the first minimization, then it is assumed
that there is no feasible solution. As in using the procedure, the method should be used
with caution, particularly in selecting the convergence criterion. In the assumed value for

convergence is not sufficiently small, a premature convergence could be resulted.

Knowing this, the entire secarch can be terminated under one of the following convergence

criteria:

(1) C*s < 120

|a(x, Si+)) - alX, Si)| < 108
2 | a(x, sj) |
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