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Abstract

Towards a Generalized Theory of
Deductive Databases with Uncertainty

Nematollaah Shiri-Varnaamkhaasti, Ph.D.

Concordia University, 1997

Uncertainty management is identified as a challenging issue in databases [SSU91].
Logic database programming, with its declarative advantage and its powerful top-
down and bottom-up query processing techniques has attracted the attention of re-
searchers, and numerous logic frameworks with uncertainty have been proposed over
the last decade. On the basis in which uncertainty is associated with the facts and
rules in a program, we classify the approaches taken to uncertainty in these frame-
works into the annotation based (AB) and implication based (IB). In the AB approach,
certainties are associated with the atoms in the rules and facts, while in the IB ap-

proach. they are associated with the implications in the programs.

In this thesis, we attempt to address the aforementioned challenging issue. To this
end, we take an axiomatic approach and study the relevant issues: (1) the language
aspects, (2) query optimization, (3) the termination behaviors and data complexity
of the bottom-up evaluations of logic programs with uncertainty, (4) the expressive
power. and (3) the ease and efficiency of implementing such languages. Each of these
issues is discussed in a chapter of this thesis, in that order. Although our focus in
this study is on the IB approach, the insights provided and the lessons learned are

useful in a more general context of deduction with uncertainty.

In order to study these issues in a framework independent manner, we first identify
a number of “reasonable” properties which are normally satisfied by combination
functions in programs with uncertainty. We will then propose a language, called the
parametric framework, where the parameters are the combination functions defined
on the underlying certainty lattice. The proposed framework uses multisets as the

basis of the structure of the semantics, as opposed to using sets, which are often used.
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This is the key point to the expressive power of our framework, which unifies and
generalizes the IB approach to uncertainty. With this framework as a basis, we study
the other relevant issues mentioned and establish various results. A main advantage
of our axiomatic approach in studying the various issues in the thesis is that it makes
the results applicable to a wide range of (IB) frameworks. Our top-down and bottom-
up implementations of the parametric framework show that the ideas in the thesis
are practical which lend themselves to an-easy-to-use and efficient “environment” for

deduction with uncertainty at large.
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Chapter 1
Introduction

Life is the art of drawing sufficient conclusions from insufficient premises.

— Samuel Butler

Most real-life applications require an ability to represent, manage, and reason with
uncertain knowledge. Examples includes weather forecasting, diagnostics, image pro-
cessing applications, legal and military applications, data mining, risk analysis for
banks, satellite data analysis, stock market predictions, and the like. For instance, in
the FIST image database system [CRSS95]. queries about the identity of persons in
a photograph are answered by comparing it with a mugshot database. in the form of
assertions like “the person in the frame corresponding to bottom left corner (5.6) and
top right corner (6.8) is john with probability 0.5 to 0.6. and peter with probability
0.4 to 0.55". In the QBIC system [NBEY93], a query such as “find all red objects
in a certain image” would return a set of objects together with a weight indicating
their degree of “redness”. Typical data mining algorithms generate rules which have
associated metrics called confidence and support, essentially uncertainty measures
[AIS93, HCC93]. Answering complez queries against such applications requires that
certainties associated with answers to simple queries be combined using well-grounded
principles and in a meaningful way. For instance, the Garlic multi-media information
system developed at IBM Almaden [CHS*95] processes complex queries by d.ispatch-
ing subqueries to component subsystems and then by combining the answers coming

from them.



In a recent study [SSU91], Silberchatz, Stonebraker, and Ullman identify uncer-
tainty management as one of the important future challenges in database research:
“Further research [in uncertainty] is essential, as we must learn not only to cope
with data of limited reliability, but do so efficiently, with massive amounts of data”.
Practical considerations dictate that a framework used for manipulating uncertain

knowledge be easy to program in, and admit efficient implementation and efficient

computations.

Intuitively, a piece of data is uncertain if its truth is not established definitely.
Logic database programming, with its advantages of being declarative and mod-
ular, and with its powerful top-down and bottom-up query processing techniques
has attracted the attention of researchers, and numerous frameworks for deductive
databases with uncertainty have been proposed [DLP91, Fit88, Fit91, KL88, KS92,
Lak94, LS94a, LS94b, NS91, NS92, NS93, Sha83, Sub87, van86]. Typically, these
proposals offer a framework in which deduction can be combined with some form of
uncertainty (including, e.g., certainty values, fuzzy, probabilities, possibilities, etc.).
As in the classical logic programming, these frameworks offer a declarative semantics
of programs. On the operational side, this is supported by a sound and complete (or

weakly complete) proof procedure and a corresponding fixpoint semantics.

The underlying uncertainty formalisms in the proposed frameworks include prob-
ability theory [Lak94. LS94a. NS92. NS93]. fuzzy set theory [Sha83. van86]. multi-
valued logics [Fit88. Fit91. KL38. KS92]. possibilistic logic [DLP91]. evidence theory
[Bal87. NS91], and hybrid (that is. a combination of numerical and non-numerical)
formalisms [Lak94. LS94b. Sad91).

Let us consider the following example, illustrating an application program defining

uncertain facts and rules.

Example 1.0.1 Let P be a logic program containing information related to a health
organization. The underlying certainty lattice in P is the set 7 = C[0,1] of closed
intervals in [0, 1], partially ordered by =<, where [, 8] X[7,6] iff @« <y and B =6.
The “combination” functions or modes in this example are positive correlation (pc),
ignorance (ign), and independence (ind), defined as follows. Suppose E; and E» are
any ground atoms, which we view as events. Then, the positive correlation mode

intuitively indicates that the occurrences of E; and E; overlap as much as possible.



The most general situation is the ignorance mode, which indicates that nothing is
known or assumed about the interaction between E; and E,, while it is the opposite
in the independence mode, indicating that it is known or assumed that the (non-
)occurrence of one event does not affect that of the other one. A formal definitions
of these modes of conjunction and disjunction used in this example are as follows,
adapted from [LS94a]. Let o = [a1,a;] and B = [b1, b] be any certainty elements in
T . Then,

Vign(a,8) = [maz(ai.b1), min(l,az + bo)]
Vpe(a, B) = [maz(ai,b1), maz(az, bs)]
Ape(a,B) = [min(ay,b), min(az, b2)]
Nind(@,B) = [aibi, azba]-

When in this program a rule body includes just a single atom, we may use the identity

function i as the conjunction function, where i(a) =, foralla € T.

The organization has information about the connectivity of the areas in a region

along with the “degrees” of proximity, expressed as follows.

[0.9.1]

ry: close(a.b) ——; (Vigns Npes =) -
[0.8,1]

ro : close{a,c) &—; (Vigns Ape, =) -
(0.7.1]

ry: close(b,c) &—; (Vigns Npes =) -

o [1.1] o )
ry: close(Y.X) ——close(X.Y): (Vign-Npe- 7).

The triple (f?. fP. f°) associated with a rule denotes. respectively. the disjunction.
propagation. and conjunction functions. The first rule savs that area a is “close” to
area b with confidence 0.9. at least. Rule ry says closeness is definitely a symmetric
property. The next rule asserts that there is an outbreak of a particular disease d in

the area a.

(1.1]
rs : outbreak(d,a) «—; (Vpes Aper =)

An area X is connected to Y, provided X is close to Y, or there is some area A

close to X which is connected to Y. This can be expressed as follows.

(0809
rs: connected(X,Y) ———— close(X,Z), connected(Z,Y);  (Vpes Npes Npe)-

Finally, we use affected(D, A) to denote that area A is affected by disease D. The



rules defining this predicate are as follows.

0.7,0.8]

rg : affected(D, A) <[— outbreak(D, A); (Vpes Apes Ape)-
[0.8,0.9]

re : affected(D,A) «——— connected(A, A;), affected(D, A1);  (Vpe, Apes Ape)-

The reason why closencss, defined by r; to ry4, is an uncertain concept is that,
in general, there could be several factors considered by an expert defining it. For
instance, if a and b are two areas separated by some natural obstacles, such as a
mountain, then the certainty assigned to the predicate close(a,b) would be higher
than when no such obstacles exist. This certainty might vary depending on the kind
of obstacles there are, e.g. river, forest, and also depending on the weather condition,
since a disease may spread easier to farther areas in a hot climate. Such details are
abstracted away by the expert by assigning an “appropriate” certainty element to the
rules and facts defining the closeness. Note that the distance between two areas could
also be a factor considered in assigning certainties to rules and facts. For instance, the
certainty of connected(X,Y), defined by rs, is less than the certainty assigned to this
predicate by r7, intuitively because “closer” areas are “more connected” than areas
separated by other areas and/or by natural obstacles. In other words, the farther two

areas, the lower the degree of their connectivity. |

1.1 Approaches to Uncertainty

In this section. we study the approaches to uncertainty in logic programming and
deductive databases. There are three ways. we note. in which the proposed frame-
works of uncertainty differ: (i) in their underlying notion of uncertainty, (ii) the way
in which uncertainties are manipulated, and (i) the way in which uncertainty is as-
sociated with the facts and rules of a program. On the basis of (iii), we classify the

approaches to uncertainty in these frameworks into what we call the annotation based
(AB, for short) and the implication based (IB).

In the AB approach, a rule r is an assertion of the form:

r: A:f(BI’.."Bn)bBl:IBI"-"Bn:)Bn



which says “the certainty of A is at least (or is in) f(B1,...,Bn), whenever the cer-
tainty of B; is at least (orisin) Bi, 1 <t < n.” Here f is a computable n-ary function,
and f5; is an annotation constant or an annotation variable ranging over an appropri-
ate certainty domain. Examples of the AB frameworks include the annotated logic
programming of Subrahmanian [Sub87], Kifer and Li [KL88], the probabilistic logic
programming of Ng and Subrahmanian [NS91, NS92, NS93], and the generalized
theory of annotated logic programming (GAP) proposed by Kifer and Subrahma-
nian [KS92]. In [Sub94], Subrahmanian shows that annotated logics may be used
for amalgamating multiple knowledge bases when these knowledge bases (possibly)
contain inconsistencies, uncertainties, and non-monotonic mode of negation, and de-

velops a unified theoretical framework based on this idea.

In the IB approach, a rule r is an assertion of the form:
r: A« B;,...,B,

which says “the certainty of the implication By,...,B,— A is ”, or “the certainty
that the conjunction Bi.,.... B, implies A is «”. The certainty a associated with the
implication in the rule in a sense controls or filters the “propagation™ of truth from
the rule body to the head. Such a rule is evaluated as follows, given an assignment
of certainties to B;'s. First, the certainty of the rule body is computed using the
“conjunction function” associated with the rule. The value obtained is then combined
with the rule certaintyv a. using the propagation function associated with the rule.
This vields a certainty for the atom in the rule head. Alternate derivations of the
same atom. obtained possibly from different rules. are then “combined” into a single
certainty for that atom, using the disjunction function associated with the predicate
symbol of the atom. This is done for every atom and at every step in a bottom-
up evaluation of a rule set. The process goes on to some iteration at which no
“new” atom is derived. Examples of the IB frameworks include van Emden [van86],
Fitting [Fit88, Fit91], Dubois et al. [DLP91], Escalada-Imaz and Manya [EM93],
Lakshmanan and Sadri [LS94a, LS94b], and Lakshmanan [Lak94]. Examples 1.2.2 to

1.2.7 illustrate some of these frameworks informally.

Let us briefly compare the AB and IB approaches to uncertainty. While the way
implication is treated in the AB approach is closer to the classical framework of logic

programming, the way rules are fired in the IB approach is similar to the classical

5



case and hence has a definite intuitive appeal [KS92]. In terms of expressive power,
the AB approach is strictly more expressive than the IB, in general. For instance,
it is shown in [KS92] that the GAP framework, through annotation variables, can
simulate the IB framework of van Emden. In fact, we note that any IB framework can
be simulated within an “appropriately” defined AB framework which uses multisets
as the basis of its semantics. In Chapter 5, we introduce such an AB framework and
compare its expressive power with our IB approach. Hahnle [H h96] also discusses the
expressive power of IB vs. AB in the context of many-valued logics. Comparing the
two approaches from the point of view of query processing, the AB approach is more
involved, since unification requires taking into account the annotations constants and
variables in a program, and also resolution requires constraint solving, in general.

Leach and Lu [LL96] discuss query processing in the AB approach.

Another difference between the two approaches is the fixpoint operator Tp, which
is continuous in the IB frameworks but not so in some AB frameworks. An impor-
tant consequence of this is that the bottom-up fixpoint evaluation of programs in IB
frameworks would always terminate in at most w steps. With respect to fixpoint eval-
uation, our experience with a number of IB frameworks suggests that evaluating large
classes of programs in these frameworks could be accomplished in time polynomial in
the size of the input database (e.g. see [Lak94, LS94a, LS94b, Shi93]. In Chapter 4.
we provide an analysis of termination and complexity of the fixpoint evaluations for
programs with the IB approach. Our analysis is useful also for programs with the AB

approach.

We do not enter into a debate of which form of uncertainty is the best. Rather.
our contention is that different forms may be appropriate for different applications.
Furthermore, different ways of manipulating uncertainty may be required in one appli-
cation (See Example 1.0.1, for an illustration). Considering the differences mentioned
above between the AB and IB approaches, we believe that the IB approach is easier
to program in and is more amenable to efficient implementation, since it can benefit
more readily from the existing query processing and query optimization techniques,
such as unification and resolution procedures, developed for standard logic program-

ming and deductive databases.



While there have been numerous proposals for deductive databases with uncer-
tainty, unfortunately there has been very little progress on (1) the relationship be-
tween these frameworks mainly from the point of view of semantics, (2) query opti-
mization techniques/tools, (3) the termination and data complexity analysis of fix-
point evaluations of programs with uncertainty, (4) the expressive power of these
frameworks, and (5) their ease and efficient implementations. These challenging is-
sues are particularly relevant, given the importance of them in typical data intensive
applications of deductive databases technology. The question is: “how can we study
these problems so that the results obtained and the tools developed will be applicable

and useful over a spectrum of frameworks for deductive databases with uncertainty?”

Rather than study these issues for individual frameworks, we believe an “ax-
iomatic” approach to address them would prove useful and provide insights. Given
the usefulness of manipulating uncertainty in more than one manner for a given ap-
plication (e.g. see Example 1.0.1), a “framework independent” and unified study such

as ours is likely to be far more beneficial.

In this thesis, we attempt to address the aforementioned challenging issue of un-
certainty management in deductive databases. To this end, we proposed an extension
of the standard deductive database framework, datalog, and developed a language for
deduction with uncertainty. which we called the parametric framework [LS96b]. The
proposed framework unifies and generalizes the IB approach to uncertainty. With this
as a basis. we studied the problem of containment of parametric conjunctive queries
in this framework [LS96c. LS97]. Following our approach. we study the other related

issues enumerated (3) to (3) in the above. each discussed in a chapter in this thesis.

The rest of this chapter is organized as follows. We illustrate the ideas behind
the parametric framework and motivate our approach in Section 1.2. We explain
the parameters in Section 1.3. Section 1.4, collects together the relevant preliminary
notions. The contributions of the thesis are enumerated in Section 1.3, and the outline

is provided in Section 1.6.

We assume the reader is familiar with the elements of logic programming as dis-
cussed in Lloyd [L1o87] or Apt [Apt86]. Enderton [End72]is an excellent introduction
to mathematical logic. For the principles of database and knowledge-base systems

see Ullman [U1189]. Ceri et al. [CGT89] contains what one may want to know about



datalog, the standard framework of deductive databases.

1.2 Motivating the Parametric Framework

In this section, we illustrate the ideas behind the parametric framework, and motivate
the axiomatic approach in our study which resulted in a unification and generalization
of the IB frameworks to deductive databases with uncertainty. The task in the unifica-
tion is (i) to permit various forms of uncertainty to be manipulated in different ways,
and (ii) to allow for the fact that certain manipulations amount to treating different
derivations of an atom as a set (e.g. [DLP91, Fit88, Fit91, LS94b, Lak94, van86))
while others amount to treating it as a multiset (e.g. [BS75, LS94al).

Example 1.2.1 Let P be a “template” IB program with the following rules/facts:

[+ 3
ry: A B.
o
ra: A<= (C.
Q@
rs: B &

ry: C &

where A. B.C' are ground atoms'. and «; is the certainty associated with rule r;. for
1 <i/<41. Let T denote the underlying certainty lattice of P. Eramples 1.2.2 - 1.2.7

illustrate instances of this program each of which in an IB framework. [ |

Example 1.2.2 (Datalog) Let 7 = {0.1} be the set of truth values. and a; = 1.
for 1 < i < 4. Suppose both the propagation and conjunction functions associated
with r; are min, and the disjunction function associated with every predicate symbol
is maz. Then P is a program in the standard framework of logic programming and

deductive databases. =

Example 1.2.3 (Dubois et al. [DLP91]) Let the certainty domain be the unit
interval, that is, 7 = [0,1]. Suppose a; = 0.8, az = a3 = 0.7, and ay = 0.8 are
possibility /necessity degrees associated with the rules. Also suppose the conjunction,

propagation, and disjunction functions are as in the previous example. Then, P is

IThat is, P is in propositional logic, which is simple but good enough to illustrate the idea.

8



a program in the framework proposed by Dubois et al. [DLP91], founded on the
possibility theory, proposed by Zadeh [Zad78]. In the fixpoint semantics of P, the
possibility degrees obtained for A, B, and C are 0.7,0.7, and 0.8, respectively. [ ]

Example 1.2.4 (van Emden [van86]) Let 7 = [0, 1], and suppose the rule cer-
tainly o; is as defined in the previous example, for 1 < ¢ < 4. Also suppose the
conjunction and disjunction functions are as before, but the propagation function is
%, the product. Then P is a program in van Emden’s framework? [van86], which is
mathematically founded on the fuzzy set theory, proposed by Zadeh [Zad65]. In the
least fixpoint of P, the certainties associated with atoms A, B, and C are respectively
0.56, 0.7, and 0.8. [

Example 1.2.5 (MYCIN [BS75]) Let 7 = [0, 1], and suppose «;’s are probability
values defined as in the previous example. Suppose the propagation and conjunction
functions associated with every rule in P is *, and the disjunction function associated
with every predicate symbol in P is f, where f(a.8) = a + 8 — af8. Viewing each
ground atom as an event, f returns the probability of the occurrence of any event,
where different occurrences of the same event are assumed to be independent, in the

probabilistic sense. The MYCIN system [BS75] uses f as the disjunction function.

Let us now consider a fixpoint evaluation of P. In the first iteration. we de-
rive B and € with probabilities 0.7 and 0.8, respectively. In the second iteration.
there are two derivations of A. one by r; with probability 0.36 and the other by r;
also with probability 0.56. Therefore. the overall probability of A at iteration 2 is
£(0.56.0.36) = 0.8064. Note that in this example, collecting derivations as a multiset
is crucial; if the derivations were collected as a set, then the probability of A obtained

would be 0.56 — an incorrect result. =

Example 1.2.6 (Lakshmanan and Sadri [LS94b]) This is a deductive database
obtained by extending the Information Source Tracking method (IST, for short) pro-
posed by Sadri [Sad91]. In an IST database, there is a fixed number, say k£ > 1, of
sources/agents contributing to the information in the database. The certainty domain

T is thus defined as a set of source vectors of the form (a; ... ag), where a; € L =

2Function symbols are allowed in [van86], but in the context of databases, we only consider the
function-free fragment of that framework, whenever we refer to it.
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{L,-1,1,T}. The partial ordering < on L is defined as follows: L < {—-1,1} < T.
When a; = 1 in a source vector associated with a tuple in a relation, it indicates that
source 7 has confirmed the tuple. Similarly, when a; is —1, L, or T, it indicates that
source i’s contribution to that tuple is negative, none, or contradictory, respectively.
For a concrete example, suppose there are three sources, i.e., k = 3. Also suppose the
certainties associated with the rulesin P are as follows: oy = (L 1 L), a2 =(1 L 1),
az = (L 1 1),and ay = (11 L). The conjunction function used in this framework is
7\, and is defined as follows. Given the source vectors u = (a; a3 a3) and v = (b; b2 b3),
the conjunction of u and v is uAv = (&(a1, b)) S(az, b2) ®(as,bs)), and for any sets
S: and S, of source vectors, 51/3\52 = {u/s\v | u € S, and v € S;}, where & is the join
operator on the certainty lattice 7. We define the propagation function associated
with every rule in P to be the same as the conjunction function, A. The disjunction
function defined in this framework is V, which is essentially the set union. A fixpoint
evaluation of P yields A, B, and C with certainties {(L 1 1), (11 1)}, {(L L 1)},
and {(1 1 L1)}. respectively. ]

Example 1.2.7 (Lakshmanan and Sadri [LS94a]) Let T = C[0,1]xC|[0. 1]. Each
element in 7, called a confidence (level), is a pair of closed interval in [0,1]. If
a = ([a1,ag], [b1.b2]) is the confidence associated with an atom, say A, it means that
it is “believed” the probability that “A4 is true” lies in the interval [a;.a2]. and the

probability that ~A is false™ lies in [b;. by].

Suppose we have a; = ay = ([0.7.0.8], [0.1.0.2]), az = ([0.8,0.95]. [0.05,0.15]). and
as = ([0.9.0.95]. [0.0.15]). Also suppose the conjunction function associated with r
and ry is A,., and the disjunction function associated with A is V;nq. where pc stands for
the “positive correlation” mode, and ind for the “independence”, in the probabilistic
sense. These modes are defined as follows. (See [LS94a] for a full explanation of these
modes.) Let a = ([a1,22], [a3.a4]) and B = ([b;,b2], [b3, by]) be any intervals in 7.
Then,

Npe(a, B) = ([min(a1,b1), min(az, bs)], [maz(as,bs), maz(ay,bs)])

and

Vina(@, 8) = ([a1 + b1 — a;by, a3 + by — agbs], {asbs, asbs)).

10



Let us consider a fixpoint evaluation of P. Initially, each atom is assigned the least
confidence, ([0,0], [1.1]) in 7, which corresponds to the truth value false in the clas-
sical logic. Then, in step 1, we derive B and C with confidences ([0.9,0.95], [0,0.15])
and ([0.7,0.8], [0.1,0.2]), respectively. In step 2, we obtain two derivations of A with
the same confidence, ([0.7,0.8], [0.1,0.2]), which when combined, using Vin4, we obtain
([0.91,0.96], [0.01,0.04]) as A’s confidence in this step. In step 3, no new/better fact is
derived, and hence P’s evaluation terminates. As in Example 1.2.5, the role of multi-
sets here is crucial; if the derivations were collected as sets, we would have obtained

only one copy of A at iteration 2, resulting in an incorrect confidence level for A.

Note that this is not to suggest that a user in such a framework is forced to
conceive of certainty as multisets. However, because of the way the fixpoint evaluation
proceeds, using different derivations, we may deduce a fact with the same certainty
more than once, which suggests that, in general, we need to collect the derived facts

as multisets, as opposed to sets, conventionally done. ]

Example 1.0.1 shown earlier in this chapter illustrates the expressive power of the
parametric framework developed in this thesis. This program could not be expressed
in any of the existing IB frameworks. A point in this example is that different ways
of manipulating uncertainty are combined within one program. That is, fuzzy and
probabilistic concepts for instance. could be manipulated in one framework uniformly:

the semantics is built into the combination functions used in the program.

1.3 Parameters

The idea of the parametric framework inspired from our observation that a user in a
program in an IB framework specifies, implicitly or explicitly, the following notions

or parameters, as we call them.

1. The certainty domain, which we denote by 7. As usual, we assume that
<T,<,8,®> is a complete lattice, where =< is the partial order on 7, ®
is the meet operator in the lattice and & is the join. (For concepts in lattice
theory Birkhof [Bir67] is an excellent source.) The elements of 7 could be cer-

tainty factors (e.g. [van86]), probability points, vectors of elements or sets of
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such vectors (e.g. [Lak94, LS94b]), (pairs of) probability ranges (e.g. [LS94a]),
etc. The certainty domain 7 could also be a bilattice, as in [Fit88, Fit91].
Independent of the structure and the semantics of the certainty elements in
T, we refer to them as certainty values or truth values, interchangeably. Once
the parameters in our framework are defined and fixed, the structure and the

semantics of the certainty values would be defined and fixed as well.

2. The family F. = {ff}ier. of “conjunction” functions allowed, where Z. 1s an
index set. Associated with each rule in the program is a function, ff, in F.
which “combines” the certainties of the atoms in the rule body and returns the
certainty of the rule body as a whole. Since rule bodies contain a number of

atoms, we model conjunction functions as mappings from finite multisets over
T toT.

3. The family 7, = {f?}iez, of “propagation” functions allowed, where 7, is an
index set. Associated with each rule in the program is a function, ff, in F,
which combines the certainty of the rule body with the certainty of the rule itself
to compute the certainty of the rule head. Thus, ff controls the propagation

of truth from the rule body to the head.® Propagation functions are binary

functions on 7.

4. The family F4 = {fid},efd of “disjunction” functions allowed. where Z; 1s an
index set. Associated with each predicate symbol p in the program is a function.
f¢. in F4; which combines a number of certainties associated with (alternate
derivations of) a ground p-atom® and returns a single certainty for that p-atom.

That is. disjunction functions are mappings from finite multisets over 7 to 7.

1.4 Preliminaries

In this section, we quickly review some basic terms and concept from datalog, the
standard language for deductive databases. We will then introduce some terms and

concepts we need in this work and fix our notations.

3Ip an AB framework, the role of conjunction and propagation functions is played by the so called
certainty functions.
4An atom whose predicate symbol is p.



Datalog is the the standard framework for deductive databases, which has been
designed and intensively studied over a decade. Ceri et al. [CGT89] is an excellent
survey of research on datalog. Another source is Ullman [UlI89]. Syntactically, dat-
alog is a subset of Prolog, and thus each program in datalog can be evaluated by a
Prolog interpreter. A datalog program is a collection of function-free Horn clauses,

each of which is an statement of the form:
r: A« By,...,B,

where A and B’s are atomic formulas and n > 0. We call such statements as rules.
In rule r above, A is called the rule head and B;, ..., B, the body. A fact is a special
case of a rule where n = 0. We assume that rules are range restricted. That is, each

variable in the head of a rule must appear in the rule body.

Suppose P is a datalog program. An IDB predicate is a predicate appearing
in some rule head in P. If a predicate appears in some rule body but in no rule
head, then it is an EDB predicate. The eztensional database (EDB, for short) is a
set of relations for the EDB predicates. The intensional database (IDB) is a set of
relations for the IDB predicates. Each relation, whether IDB or EDB, is a set of
ground atoms. The IDB relations are defined by applying the rules in P to the EDB
relations. Therefore. every datalog program P has two components, an EDB and an
IDB. The EDB is the input of P and the IDB is the output. The collection of the
EDB and IDB relations is called a database. In our context of deductive databases
with uncertainty, a database is a set of annotated tuples, each of which is of the form
t : a. where t is the data or tuple. and a is the certainty associated with {. We use 7
to denote the set of certainty elements, to which we may also refer as the certainty

domain.

1.4.1 Notations and Conventions

Sometimes the number of times an element occurs in an unordered collection matters.
A multiset, also called a bag, is an unordered collection of elements where an element
can occur as a member more than once. Formally, let B be any set. Then a multiset
X over B is a mapping from B to VN = {0,1,2,3,...}. We call B as the base set

of X. One can think of a multiset X over B as a set of annotated elements of the
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form a : m, where m € V' denotes the number of times the element @ of B occurs in
X. We use € to denote the membership relation for multisets; for any a € B and
any m € N, if the multiset X contains m occurrences of a, we write (a : m) €X or
a€X. If r = (a:m) € X, we call a as the basic part of z, and m as the multiplicity
of @ in X. By default, the multiplicity of every element in B not present in X is
0. A set is a special multiset in which every element is annotated with 1 (or 0),
as its multiplicity. To distinguish between multisets and sets, we will use {...} for
multisets. The empty multiset, denoted @, is the multiset in which the multiplicity
of every element in B is 0. Let X,Y be any finite multisets over a base set B. We
say X is “multiset-contained” in Y, denoted X CY, provided Va €B , the number of

copies of @ in X is no more than that in Y.

In the context of logic programs and deductive databases with uncertainty, we
are interested in multisets over B = Bp x 7, where Bp is the Herbrand base of
the given logic program P and T is the set of certainty values used. In this case, if
X is a multiset over B, then every element in X is of the form (A, «) : m, where
A € Bp is a ground atom, a € 7 is a certainty associated with A, and m € A is
the multiplicity of the basic part (4,a) in X. The multiset union, denoted U, is an
operator which retains the duplicates. That is, given multisets X, Y, their multiset

union is a multiset defined as

XUY = {a:k|(a:m)€EX. (e¢:n)€Y, k=m+n}.

A disjunction function associated with a predicate p “translates™ a multiset of
uncertainties associated with a ground p-atom into a single certainty. This translation.
which may elsewhere be called normalization (e.g. in [KKTG93]), is defined as follows.
Given a multiset X over BpxT , the normalization of X amounts to defining a multiset
X# whose content is “equivalent” to X and in which the multiplicity of every element
is 1 (that is, X# is essentially a set). Formally stated, suppose pi....,px are all the
predicate symbols mentioned in a logic program with uncertainty. Also suppose f;
is the disjunction function associated with p;, 1 <z < k. Note that p;’s are distinct
while f;’s need not be so. For an atom A, we denote by m(A) the predicate symbol
of A. Then,

X# = {(A:8):1](A:qy):m; €X, 1 <j<ly, n(A)=pi B=fi(Y)}

14



where Y is a multiset of certainties associated with A containing m; copies of a;, for
1<j <,

Our conventions for using the various symbols are as follows. The lower case
letters represent predicate symbols and constants terms. We use the upper case
letters A, B, ... from the beginning of the alphabet to represent ground atoms, and
X,Y,... to represent multiset (of certainties) as well as the variables in the predicate
arguments. The particular usage will be clear from the context. We use the lower
case Greek letters a, 3, ... to represent elements in the certainty domain 7. For an
atom A, we denote by 7(A) the predicate symbol of A. We will use < to denote the
partial order on the certainty lattice 7. We will also use the orderings <, >, and
> whose meanings are obvious. Since we will study the containment of conjunctive
queries in our framework (in Chapter 3), we will use bold upper case letters Q’s and
R's to denote conjunctive queries in the parametric framework. If @, and @, are
conventional conjunctive queries, we write @; C Q2, as usual, to mean that Q; is
contained in Q,. For Q;,Q- in our framework, we write Q;< Q; to mean that the

conjunctive query Q; is contained in Q.

1.5 Contributions of the Thesis

In what follows. we list the main contributions of this thesis. For each item in the

list. we provide pointer to the chapter or section in which the item is discussed.

1. We develop a generic framework for deduction with uncertainty, called the para-
metric framework (Chapter 2). We show that by “tuning” the parameters of
our framework appropriately, any of the known IB frameworks can be simulated

and new ones can be realized (Section 1.2).

o

We identify a collection of reasonable properties of combination functions as-

sumed in uncertainty frameworks (Section 2.1).

3. We develop a declarative, fixpoint, and proof-theoretic semantics of (positive)
programs in the parametric framework (Section 2.3) and establish their equiv-

alence (Section 2.4).
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As the heart of query optimization techniques, we study the problem of contain-
ment of conjunctive queries in the parametric framework and establish necessary
and sufficient conditions for the containment for classes of queries (Chapter 3).
The study is organized according to how the combination functions involved in
the queries compare with the meet and join operators in the underlying cer-
tainty lattice. Qur results yield tools for query optimization for large classes of

conjunctive queries in the known IB frameworks.

. Regarding the complexity of the bottom-up naive evaluation of programs in the

parametric framework, we show that whenever the underlying lattice is finite,
the evaluation can be done in PTIME, in the size of the input database (EDB)
and the lattice (Section 4.4). When the certainty lattice is fixed, this evaluation
can be done in PTIME in the EDB size only.

. To study the termination and data complexity of programs in the parametric

framework whose underlying certainty lattice is infinite, we classify the col-
lection of disjunction functions allowed into three types — 1 to 3. A type 1
disjunction function coincides with the join operator in the lattice. A disjunc-
tion functions of type 2 and 3 return a “better” certainty on inputs different
from the bottom and the top values. with the difference that a type 3 function
will eventually “saturate™ and return the top certainty value. while a type 2
function will never reach the top (unless the top is supplied as an argument
value). Accordingly. we say a predicate symbol is of type ¢. if its associated
disjunction function is of type 7. for 1 <7 < 3. We show that in a program in
our language, whenever every recursive predicate is of type 1. the evaluation of

the program can be done in PTIME in the size of the EDB (Section 4.4).

. In our study of the termination behavior of programs in the parametric frame-

work in general, we argue that it is a hard problem to study. We illustrate that
when the disjunction function associated with a recursive predicate in a pro-
gram is of type 2 or 3, evaluating such a program on some EDBs may terminate
in arbitrarily large number of iterations, independent of the EDB size, or it may
not terminate at all. The behavior is dictated by the combination functions and
the specificity of the certainties used in the program (Section 4.5). We develop

a methodology for studying the termination property which intuitively amounts
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to ignoring the specific rule certainties mentioned in the program, and instead
study with symbolic certainty values. We perform detailed analysis for special
such cases, the results of which are generalized as conjectures characterizing the

termination property for arbitrary programs in our framework.

We study the expressive power of the AB and IB approaches to uncertainty
(Chapter 5). We identify two useful operations which are not captured by our
framework, namely that selection by certainty and join by certainty. We show
that these operations can be neatly incorporated within our framework with
the use of certainty constraints (CCs, for short). We also show that the in-
corporation of CCs in AB frameworks increases the expressive power of those
frameworks. Since there are various AB frameworks, we consider their com-
monalities and introduce a “generic” AB framework, in which the annotation
functions satisfy similar postulates imposed on the combination functions in the
parametric framework. We show that the parametric framework extended with
CCs has the same expressive power as the generic AB framework extended with
CCs. This is an important result connecting the two approaches to uncertainty

in terms of expressiveness.

We develop a semi-naive method for evaluating programs in the parametric
framework which also takes into account the certainties as well as the combina-
tion functions specified in user programs (Section 6.1). The proposed method

extends the corresponding method in the standard framework.

To show that the ideas in this thesis lend themselves to an easy-to-use and
efficient environment for deduction with uncertain knowledge, we have imple-
mented the semi-naive method we proposed and developed two implementa-
tions of the parametric framework — a top-down and a bottom-up (Section
6.2). Our top-down implementation is on top of the XSB system [SSW94}, and
the bottom-up implementation is on top of the CORAL database programming
language [RSS92].
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1.6 Thesis Outline

The rest of the chapters of this thesis are organized as follows. Chapter 2 presents
the parametric framework developed in this thesis. This includes a collection of
reasonable properties that should be satisfied by the combination functions allowed
in the framework, followed by the presentation of the syntax and the semantics of the
language. We will establish the equivalence of the declarative, fixpoint, and proof-

theoretic semantics developed.

In Chapter 3, we study the problem of conjunctive query containment in the pres-
ence of uncertainty, which is a central issue in query optimization with uncertainty.
Qur various results in this chapter provide necessary and sufficient conditions for

containment of parametric conjunctive queries.

The complexity of the bottom-up naive evaluations of query programs in the
parametric framework and termination behaviors of these programs are discussed in
Chapter 4. We show that the study is hard, in general, by showing the difficulties
faced when we attempt the issue. Instead of providing an “exact” characterization
of termination, we motivate our approach which essentially amounts to studying a
stronger termination condition. We identify a large collection of programs in the
parametric framework which enjoy the PTIME data complexity, in the size of the
EDB. Also. we identify classes of programs whose evaluations terminate in arbitrarily
large but finite number of iterations. We conclude the chapter with a brief discussion
on the so-called finite precision assumption and its affect on our special-case results

obtained in this chapter.

In Chapter 3, we study the expressive power of the parametric framework. More
specifically, we study the relationships between the AB and IB approaches to uncer-
tainty. It was a desire to know if there is a theory which unifies the two. Fortunately,
we find one such theory for which the notion of certainty constraints (CCs) is a key.
We define a generic AB framework, which includes all the essential features of the
AB frameworks. This framework is strictly more expressive than any existing AB
framework. We show that the parametric framework extended with CCs is as expres-
sive as this generic AB framework also extended with CCs. The proof technique to
show this is based on transformation of programs in one formalism into the other and

simulating its computation.
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Chapter 6 is devoted to implementation details of the parametric framework. In
Section 6.1, we study efficient evaluation of query programs in our framework and
propose a semi-naive method by extending the idea of the corresponding method in
the standard framework. The proposed method is used in our top-down implemen-
tation of the parametric framework as well as the bottom-up implementation. The
various modules which constitute the former implementation are introduced in Sec-
tion 6.2, and the inference engine of the letter is presented in 6.2.5. Our top-down
system runs on top of the XSB system and the bottom-up runs on top of the CORAL
database programming language. We will demonstrate through some example how

programs would be evaluated using these implementations.

In addition to concluding remarks provided in various chapters, the last chapter

includes some general remarks and future research directions.
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Chapter 2
The Parametric Framework

In this chapter, we present the parametric framework [LS97, LS96c, LS96b]. We
first characterize the families of propagation, conjunction, and disjunction functions
allowed in this framework, and then introduce the syntax of this framework. We
develop the declarative, fixpoint, and proof-theoretic semantics of programs in this
framework and establish their equivalence. The semantics of programs in the para-
metric framework uses multiset as the basis of the structure of the semantics, as
opposed to using sets which is often done. Finally, in Section 2.5, we will compare
our work with previous work on similar unifving frameworks developed in different

contexts. and close the chapter with a summary and concluding remarks.

Let £ be an arbitrary. but fixed. first order language that contains infinitely many
variable symbols. finitely many constants and predicate symbols. but no function
svmbols. While £ does not contain function symbols. it contains symbols for the
families of propagation (F, ), conjunction (F.), and disjunction (Fg) functions. We
let F = F. UF, UF4, and refer to each element in F as a combination function.
We let 7 denote the underlying certainty domain in a framework considered. As is
customary, we assume that 7 is a complete lattice with the partial order =, and
with L and T as the bottom and top elements, respectively. The properties of these

functions are defined next.



2.1 Combination Functions

Let T be a certainty lattice and B(7') be the set of finite multisets over 7. Then, a
propagation function is a mapping from 77 to 7, and a conjunction or disjunction
function is a mapping from B(7) to 7. For practical reasons, we assume that every
combination function in F can be computed “efficiently”. Theoretically, we also

assume that every such function can be computed with arbitrary precision.

In order that derivations in our parametric framework are meaningful, we impose
some natural properties on the combination functions, as enumerated below. For
simplicity, we formulate these properties, treating every combination function f as
a binary function on 7. The properties have their obvious formulation when fis
a function from B(T) to 7. Since, as we will specify shortly, our conjunction and
disjunction functions are required to be associative and commutative, the binary
formulation is quite meaningful in all cases. Properties 7 to 9 are peculiar to unary
functions of the form f : B(T) — 7. After the following list of properties, we will
identify, for each family of functions Iy, I, and I, a subset of these properties that

should be satisfied by every member in the family considered.

1. Monotonicity: f(oy,cs) =< f(51,P2). whenever o; X 3;, forz = 1,2.

2. Continuily: [ is continuous w.r.t. each one of its arguments (w.r.t. Scott’s

topology).

3. Bounded-Above: f(ay.az) <a;. for i = 1.2. That is. the result of f cannot be

“more” than any one of its arguments.

4. Bounded-Below: f(ai,aq) = o, for i = 1,2. That is, the result of f cannot be

“less” than any one of its arguments.
5. Commutativity: f(o,B8) = f(B,a),Va,B€T.

6. Associativity: f(a, f(8,7)) = f(fle,8),7), Vo, B,7v€ T.

~1

. f{el)=a,Vae T.

8. f(@) = L, where L is the least element in 7.



9. f(§) = T, where T is the greatest element in 7.
10. fl(e, T)=a,VaeT.

11. f(a,B) » L, Vo, > L.

Postulate 2.1.1 We require that the combination functions in the parametric frame-
work should satisfy certain properties, postulated as follows.

o Every conjunction function in F. should satisfy properties 1, 2, 3, 5, 6, 7, 9, 10,
and 11;

e Every propagation function in F, should satisfy properties 1, 2, 3, 10, and 11;

e Fvery disjunction function in Fy should satisfy properties 1, 2, 4, 5, 6, 7, and 8.

We naturally require that every combination function in F be computed efficiently.
Similar assumptions were made by Kifer and Li [KL88] in a different context. A

detailed comparison with their work appears in Section 2.5.

Remarks. The continuity of combination functions is needed for proving conti-
nuity of the immediate consequence operator (Lemma 2.3.6). This requirement is not
crucial for our results on containment of parametric conjunctive queries in Chapter
3. The commutativity and associativity of the conjunction functions are required
for allowing query optimization. e.g. for performing subgoal reordering. if desired.
The commutativity and associativity of disjunction functions are needed so that in
evaluating a program, the certainty obtained for each ground atom is unique and is
independent of the order in which the certainties of the subgoals in a rule are com-
bined. and independent of the order in which the various certainties obtained for an
atom are combined. Boundedness requirements are imposed in order that derivations
make intuitive sense. Postulate 9 for a conjunction function together with Postulate
10 for a propagation function allow derivation of a ground atom A with certainty a
from a fact of the form A «— (the rule syntax is presented below). Postulate 8 has
a similar rationale for disjunction functions. Postulate 11, which is called strictness
in [Fag96], is introduced to disallow useless rules which derive atoms with the least
certainty L. Although without this postulate, such rules could be safely removed
from a program without changing the semantics, it is crucial for some of our results

in Chapter 4 where we discuss the termination property of programs with uncertainty.

[§¥]
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2.2 Syntax

In this section, we introduce the syntax of programs in the parametric framework.

Definition 2.2.1 A parametric program (p-program) P is a 5-tuple (T ,R,C,P, D),

whose components are defined as follows.

o T isa set of truth values partially ordered by <. We assume <7, X,Q8,8> isa
complete lattice, where @ is the meet operator and & is the join. We denote the
least element of the lattice by L and the greatest element by T, which correspond,

respectively, to the truth values false and true in standard logic.

e R is a finite set of parametric rules (p-rules), each of which is a statement of
the form:

r: A & B,...,B,

where A, By, ..., B, are atoms, and a. € T — {L} is the certainty of r.

e C is a mapping which associates with each p-rule in P a conjunction function

in F..

e P is a mapping which associates with each p-rule in P a propagation function

i F,.

e D is a« mapping which associates with each predicate symbol in P a disjunction
function in Fy .

We will use the terms p-program and program interchangeably. The same remark

holds for p-rule and rule. Also for convenience, we represent a p-rule r as
r: A <2 By, ...,Bn (f% 79

where f? € F, is the disjunction function associated with m(A), and f? € F, and
f¢ € F, are the propagation and conjunction functions associated with r. Atom
A in the p-rule r above is called the rule head, and the conjunction By,....B, is
called the rule body. If this conjunction is empty, then r is called a fact. That is.
a fact is a special case of a p-rule in which n = 0. Since a fact does not need a

conjunction function, the triple associated with facts would be of the form (f¢, f7,.).
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For consistency reason, we require that all the p-rules in a p-program defining the

same head predicate should have the same associated disjunction function.

2.3 Semantical Foundation

In this section we study and develop the semantics of programs in the parametric
framework. Without loss of generality, we restrict our attention to Herbrand struc-
tures. We first develop the declarative semantics based on the notion of valuations,
and show that every p-program has a least valuation, w.r.t. the ordering <X on valu-
ations obtained by extending the ordering < on 7. We will then develop a fixpoint
theory for p-programs. Finally, we present the proof procedure for programs in the
parametric framework and show that it is sound and complete. In Section 2.4, we

will establish the equivalence of these semantics.

Let P be a p-program, and Bp the Herbrand base of P. A wvaluation v of P is
a mapping from Bp to 7, i.e., v associates with each ground atom in Bp, a truth
value in 7. A ground instance of a p-rule r in P is a ground p-rule obtained from
r by replacing all occurrences of each variable in r with an element of the Herbrand
domain. Since p-programs are function free, this domain is finite as it contains just
the constant symbols mentioned in P. The Herbrand instantiation of P. denoted P~.
is the set of all ground instances of every p-rule in P. For an atom A, we denote by

#(4) the predicate symbol of A. also called the functor of .

2.3.1 Declarative Semantics

To develop the declarative semantics, we first define the notion of satisfaction of

p-programs by valuations, which follows.

Definition 2.3.1 (Satisfaction) Let P be any p-program, r be any p-rule in P, and
v be any valuation of P. Letp = (A <= Bi,..., Bn; (f%, f7, f6)) € P~ be any ground

instance of r. Then, we say that

(b) k=, r iff v satisfies every ground instance of T.

24



(c) v satisfies P, =, P, iff (1) v satisfies every p-rule in P, and (2) VA € Bp,
v(A) = f4X), where f? is the disjunction function associated with the predicate
symbol of A, and

X = {f*(cr, F({u(B1)s-- -, v(B)D)) | (A <= By, Bui (%, f7, f9)) € P7}-

Note that f¢ is the disjunction function associated with the predicate symbol of
atom A, and X is the multiset of truth values, each of which is obtained by applying
a ground rule in P~ with head A. Also note that it follows from Postulates 9 and 10
that whenever n = 0, f?(ar, f6(8)) = a,. As noted in [KL88] and [LS94a], although
v may satisfy every p-rule in P, in general, it may fail to satisfy P. For v to also
satisfy P, condition c(2) ensures that for each atom A € Bp, the certainty assigned
to A by v is not less than f¢(X), w.r.t. the lattice ordering <.

The ordering < on T can be extended to valuations in the well-known manner:;
for any valuations u and v of a p-program P, v <u iff v(A) Xu(A), VA € Bp. For
all valuations u,v of P and for every ground atom A € Bp, (u®v)(A) = u(A)Sv(A)
and (u@v)(A) = u(A)Sv(A). We then have the following.

Lemma 2.3.2 Let P be any p-program, and Yp be the set of valuations of P. Then

(Tp.@,8) is a complete lattice.

Proof. The result follows upon noting that (Y p.Z. <) is obtained by a pointiwise ex-
tension of the corresponding order/operation on the complete lattice <7, X, &, =>.

The least element of (Yp, 3, E) is a valuation, vy, which maps every ground atom

A € Bp to L, and the greatest element is a valuation, v, which maps A to T.

The following lemma is the counterpart of the model intersection property in

standard logic programming and deductive databases.

Lemma 2.3.3 Let P be a p-program and u,v be any valuations of P each of which

satisfies P. Then u®u is also a valuation which satisfies P.

Proof. Let A be any ground atom in Bp, and p = (A <= By,..., Bx; (f4, fP, f°)) be

any ground p-rule in P~ defining A. Let w = u@uv. Since u satisfies P, by Definition
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2.3.1, we have that u(A) > fP(a-, f<({u(B1),-..,u(Bn)})). Since, by our postulates,

f¢ and fP are monotone functions, we further have that

u(A4) = fPar, FF{u(Br). - .- u(Ba)}) = fPlor, fS{w(B), - -, w(Br)}))-

In a similar way we can show that v(A) > fP(er, fS({w(Bi),.-.,w(Bn)})), which to-
gether with the previous one imply that u(A)@u(A) = fP(ar, fS({w(Bi),. .., w(B.)}))-
This in turn implies that w satisfies the instance p of r, as w = u®u. Moreover,
it follows from Definition 2.3.1 that u(A) > f(X) and v(A) = f4(X). where X =
17 (o FoUBas s Bel) | (A <25 By, Buz (f4 7, £)) € P~} and f¢ = D(x(A)).
We thus have u(A)®@v(A) = f4(X), from which we may conclude that w(A) = fHX),
since w = u®uv. It then follows from Definition 2.3.1 that w satisfies every p-rule in

P which defines A. Since A was an arbitrary atom, we may conclude that =, P. ®

The notion of least valuations, introduced next, corresponds to the notion of least

models in standard logic programming and deductive databases.

Theorem 2.3.4 Let P be a p-program, and Tp the set of valuations of P. Then,
@{v|v € YTp and =, P} is the least valuation that satisfies P.

Proof. Note that vt : Bp — { T} is a valuation in T p which satisfies P, and hence the
above set is not empty. The result then follows from Lemma 2.3.3 and the definition

of the least valuation. [ |

2.3.2 Fixpoint Theory

We now present the fixpoint semantics of p-programs. As in standard deductive
databases, we associate with a p-program P, an immediate consequence operator,
Tp. We then show that the least fixpoint of Tp exists and define it as the fixpoint
semantics of P. Later on in Section 2.4, we will establish the connection between the

fixpoint and declarative semantics.

Definition 2.3.5 Let P be any p-program, and P~ be the Herbrand instantiation of
P. Also let Tp be the set of valuations of P. The immediate consequence operator Tp

is @ mapping from Yp to Y p, such that for every valuation v € Yp and every ground
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atom A € Bp, Tp(v)(A) = f4(X), where f¢ is the disjunction function associated
with w(A), the predicate symbol of A, and

X = {]fp(arv fc({]v(Bl)v s ’U(Bﬂ)[})) { (A ('i Blv ] Bﬂ; (fdv fp’ fc>) € P‘[}
We define the bottom-up iteration of Tp, in the usual manner, as follows.

vy if k =0
TF =< Tp(TE ™) if & is a successor ordinal
&{TE| ¢ <k} if k is a limit ordinal

Note that if n = 0, then it follows from Postulates 9 and 10 that f?(a., f5(6)) = a-,
where @ is the empty multiset. Also note that, for any ground atom A € Bp, if there
exists no p-rule in P whose head can be unified with A, then it follows from the

definition of T that Tp(v)(A) = L, for every valuation v of P.
Lemma 2.3.6 The operator Tp is monotone and continuous.

Proof. First, we show that Tp is monotone. Let u and v be any valuations of
P such that u <Xv. We will show that Tp(u) XTp(v). Let A be any ground atom
in Bp. and suppose f¢ = D(wx(A)), i.e., f¢ is the disjunction function associated
with the predicate symbol of 4. Then. by Definition 2.3.5. Tp(u)(4) = fYX.).
where X, = {fP(a.. f({u(B1)..-.. w(B)E) | (A<= By..... B.: (fe. fP.f)) €
P~}}. Since u=<v, we have that u(4) <v(A). V4 € Bp. In particular, u(By) < v(By)-
1 < k < n. Since. by our postulates. the conjunction and propagation functions f*
and fP are monotone, we may conclude that f¢(X,) = f4(X,). where X, is defined

as X, with u replaced by v. Thus, Tp(u)(A) XTp(v)(A).

Next, we show that T is continuous. Let vg <v; < ... be any chain of valuations

of P, and A be any ground atom in Bp. To show that Tp is continuous, we show that
Te(®{vi(A) | j 2 0}) = &{Tr(v;)(A) | 2 0} (1)

First let us determine the left hand side of equation 1. By Lemma 2.3.2, since the set
Yp of valuations of P, ordered by =<, is a complete lattice, the chain vg<Xv; <X ...
has a least upper bound, say v. That is, v = &{v; | j > 0}. Now, consider all

ground rules in P* whose head is A. Since our language is function free, P~ is
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finite, and hence there is a finite number of such rules, say pi,...,px, where p; =
(A &2 B{,...,B,‘;‘_; (f2, f2, f£)). Note that ff=...= f. Let fé=f¢ 1<i<k.
Then, by Definition 2.3.5, we have

Tp(v)(A) = fA{fP(ai, f({o(BL)s -, v(BL)D) [ pi € P7,1 < i S kD).

Next, we will determine the right hand side of equation 1 and show that it is identical
to the last expression above. By Definition 2.3.5,

&{Tr(v;)(4) |7 20} =

S{f{f (e, fE{ui(BY), - -+ vi(B)W)) | pi € P71 <0 < kf) |7 2 0

Since, by our postulates, f¢, fP, and f¢ are continuous, we may push the operator
& inside the expression and maintain equality.! Doing so, we obtain the following
sequence of equations.

&{Tr(v;)(A) |j 20} =

S{fUSF (e, F({ui(BY): -5 0B | pi € P11 <0 < k) | 20} =

FAS{ (o fEHui(BY), - - vi(Br)B)) | 7 20} | pi € P71 S i< k| =
fd({]ff(azae{fzc(‘ﬂvJ(B{)UJ(B:z,)I}) IJ 2 0}) l pi € P‘vl <1< l‘[}) =

FASE (e fee{o;(BY) [J 2 0}, ©{vi(BL) 15 2 0}1) | pi € P71 <@ < k).
Since v is the least upper bound of the chain, the last expression above is equal to
FEAfP (e, fEQu(BL), ... v(BL )W) | pi € P71 < i < k), which was to be shown. m

A valuation satisfies a p-program P if and only if it is a prefixpoint of . This is
stated as the following lemma. the proof of which follows from Definitions 2.3.5 and
2.3.1.

Lemma 2.3.7 Let P be any p-program. and v be any valuation of P. Then. =, P
ff Te(v) 2v.

The least fizpoint of Tp, denoted [fp(Tp), is a valuation v of P such that v is a

fixpoint of Tp and, for every fixpoint u of Tp, v X u.

In Section 2.4, we will establish the connection between the declarative and fix-

point semantics of p-programs.

1That is, for every cpmbination function f € Fq4 qu U F.,
&{f{al,....aih) 1720} = f({e{ol | j 2 0},....&{q} [ ] 2 O}}).

[\~
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2.3.3 Proof Theory

Unlike in standard logic programming and deductive databases, a proof procedure
in the context of programming with uncertainty cannot in general ignore alternate
derivations of the same atom. This is because the certainties associated with different
derivations of each atom should be “combined”, reinforcing its overall certainty. We
develop a sound and complete proof theory for the parametric framework based on
the notion of disjunctive derivation trees (DDTs), adapted from [LS94a]. Intuitively,
a DDT for a ground atom A w.r.t. a p-program P (including the EDB) is a finite
collection of derivation trees each of which is a finite and/or tree encoding a proof of
A from P. A formal definition of DDTs follows.

Definition 2.3.8 Let P be any p-program and A € Bp be any goal. A disjunctive
derivation tree T4 (DDT, for short) for A w.r.t. P is a collection of finite derivation

trees defined as follows.

1. Each node in T, is either a rule node or a goal node. Each rule node is labeled
by a ground instance of a p-rule in P. Each goal node is labeled by a ground

atom in Bp. The root of T is a goal node labeled A.

RV

If G is a goal node in T4. then every child (if any) of G is a rule node labeled
with some ground instance. say p. of a p-rule r in P. where the head of p is G. In
this case. we associate with node p the propagation and conjunction functions
associated with r. and associate with G the disjunction function associated with

7(G), the predicate symbol of G.

3. If B € Bp is an atom in the body of a rule node labeled u, then u has as a child
a goal node labeled B. [

Note that every label in a DDT, whether that of a goal node or a rule node, is
ground. A leafin a DDT is a node without children. A DDT T is called proper if
whenever T has a goal leaf labeled A, there is no ground p-rule in P* whose head
is A. This essentially means that all the proof opportunities are exploited in T. A
rule leaf is a success node while a goal leaf is a failure node. In the sequel, we only

consider proper DDTs.



Definition 2.3.9 Let P be any p-program and T be any DDT w.r.t. P. Then, the

following procedure defines the certainties assigned to the nodes in T'.

1. Each failure node in T is assigned L, the least certainty in 7.

2. Each success node labeled with a ground instance p of a p-rule r € P is assigned

a,, the certainty associated with the implication in r.

3. If u is an internal node in 7, i.e., a non-leaf node, then the certainty assigned

to u is determined by one of the following two cases.

(a)

If u is a rule node labeled with p = (r : A <&~ By,..., Bn; (f4.f7.f9)),
where p is a ground instance of r € P, then fP(a,, f({51;---.05-F)) is the

certainty assigned to u, where §; € T is the certainty assigned to node B;,
forl <:<n.

If u is a2 goal node labeled with a ground atom A, then u has at least
one subtree, since u is an internal node, by our assumption. Suppose
Ty,.... T, are all the subtrees at node u. Also suppose o; € T is the
certainty assigned to the root of T;, for 1 < j < m. Then, the certainty
assigned to u is f¢({o1,...,0m}}), where f? is the disjunction function

associated with 7(4). the predicate symbol of 4. n

Note that in a DDT. the rule nodes are at odd levels and the goal nodes at even

levels. with the root being at level 0. It then follows from the definition of proper

DDT that every such tree has even number of levels and the leaves are at the odd
levels. We define the height of a DDT T as the number of even levels in T'.

2.4 Semantics Equivalence

In this section, we will show the equivalence of the declarative, fixpoint, and proof-

theoretic semantics developed for p-programs. This is done at two steps. First, we

show that the declarative and fixpoint semantics coincide, and then show that the

proof-theoretic semantics corresponds to the fixpoint semantics.

30



The following theorem, analogous to the van Emden-Kowalski theorem in standard
logic programming [vK76], establishes the connection between the fixpoint and the

declarative semantics of p-programs.
Theorem 2.4.1 Let P be any p-program. Then lfp(Tp) = ®@{v | k. P}.

Proof. Follows from Lemma 2.3.6 in the standard way [vK76]. ]

We next show that the proof-theoretic semantics developed for the parametric
framework is sound and complete, and establish its equivalence to the fixpoint se-

mantics.

Theorem 2.4.2 (Soundness) Let P be any p-program, and A € Bp be any goal. If
T4 is a DDT for A w.r.t. P such that o € T is the truth value associated with the
root of T4, then a X fp(Tp)(A).

Proof. Suppose k is the height of T,y. We prove the soundness of the proof procedure

by induction on k.

Basis case: k£ = 1. Since T4 is of height 1. all children of the goal root A must

be (rule) leaves. Let these leaves be labeled as 4 «=- ,..., A <= . The certainty

of the root is thus a = f¥{a;...-. an}). Clearly. (fp(Tp)(A) = f4X). where
{er-.... a,}€X. From this we may conclude that a </ fp(Tp)(A). upon noting that

f? and Tp are monotone.

Inductive hypothesis: Suppose for every DDT T, of height k. the truth value a
associated with the root of T4 is such that a X[ fp(Tp)(A).

Inductive step: Suppose T4 is a DDT of height & + 1, for some atom A. Let
G1,...,Gm be all the goal nodes in T4 at level 2, and Tg, be the subtree of T4 at
node G;, for 1 < i < m. Note that each of these Tg,’s is a DDT whose height is at
most k. Suppose o; is the truth value associated with the root of Tg,. Then, by the
inductive hypothesis, o; < [fp(Tp)(G:), for 1 <7 < m. Suppose f¢ is the disjunction
function associated with 7(A). It then follows from the definition of DDTs that the

certainty assigned to the root of T4 is a = fi({o1,--.,0ml). In this case, since
[fp(Tp) satisfies P, we have that f{ors---+Oms ... 0el) 2 Lfp(Tp)(A), from which
the result follows. [
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Theorem 2.4.3 (Completeness) Let P be any p-program, and A € Bp be any goal
such that I fp(Tp)(A) = TE(A), for some positive integer k. Then there exists a DDT,
T4, for A w.r.t. P such that o € T is the certainty associated with the root of Ty
and lfp(Tp)(A) X a.

Proof. The proof proceeds by induction on the iteration step k. Without loss of
generality, assume [fp(Tp)(A) # L; otherwise, the result trivially follows.

Basis case: For k =1, Ifp(Tp)(A) = Tp(A). In this case, P~ contains (at least) one
ground p-rule of the form A <=, for some «; € 7, and every p-rule in P~ whose head
is A must be a unit clause. Suppose p1,..., p; are all such p-rules in P*, where 7 > L.
Then, the desired DDT T4 can be constructed as follows. The root of T4 is the goal
node labeled A which has j children, where the i-th child is the rule node labeled
pi, 1 <1< j. Then, by Definition 2.3.9, the certainty value assigned to the root of
T, is a = f¢({ay,...,a;}), where f? is the disjunction function associated with the
predicate symbol of A, the root of T4. Note that in this case, [fp(Tr)(A) = a, by
Definition 2.3.5 of Tp.

Inductive hypothesis: Suppose for some k£ > 1, whenever [fp(Tp)(A) = TE(A),
there exists a DDT T4 for atom A such that the truth value a associated with the
root of T4 is such that [fp(Tp)(A)<Xa.

Inductive case: Suppose [fp(Tp)(A) = Tp*'(4A). Then. P~ contains at least one
rule instance with head A. Let py..... pm be all instances in P* with head 4. Let
B be a ground atom appearing in the body of any one of these rule instances. say
p;. Since Ifp(Tp)(A) = TE'(A), we know that [fp(Tp)(B) = T§. By inductive
hypothesis, for each such atom B, there exists a DDT Tpg such that the certainty
associated with the root of Tg is ag, where {fp(Tp)(B)=<ag. The desired DDT
T4 can then be constructed as follows. The root of T4 is the goal node labeled A
which has m children, the j-th of which is the rule node labeled p;, 1 < 7 < m.
If p; = (r: A= Dy,...,Di; (f% fPr, f)), then the rule node p; has the DDTs
Tp,,-.--,Tp, as its children. This completes T4’s construction. Now we know that
LFp(Te)(A) < PP (. F (faps- v Ba)s ooy S (@ms S (Hacys - -, e DL

since, by our postulates, the combination functions f¢, f?, and f¢ are monotone. The
result then follows upon noting that the right hand side of the above inequality is the

certainty associated with the root of T'4. [ |
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Given any p-program P and any goal A, a DDT for A can be completely con-
structed if P contains no recursive predicates or the EDB contains no cycles. If
P is recursive, this construction is possible, provided for every disjunction func-
tion f? associated with some predicate in P and for every truth values a,8 € 7,
fi{a, B} = ®({a, B}). Intuitively, this happens whenever applying f¢ to a mul-
tiset X returns the same value as f¢ returns when applied to the multiset obtained
by adding any element ¢ € T to X, where 0 X&@(X). For instance, the pc mode
of disjunction defined in [LS94a], maz in [van86], and the disjunction functions in
[Fit88, Fit91, LS94b] satisfy this property.

2.5 Related Work

Uncertainty manifests itself in various different aspects, which can be classified in
terms of its natures (semantics) and forms (syntax), or in terms of being qualitative,
quantitative, or a hybrid of the two. The attempt has been to extend the standard
relational database model for incorporating uncertainty. Quantitative modeling of un-
certainty deals with incomplete information without associating any numerical value,
which is known as null values introduced by Codd [Cod79]. A null value is a spe-
cial svmbol used as an attribute value in a tuple when the actual value is unknown
or inapplicable. Barbara et al. [BGP92] proposed another approach to qualitative
modeling of uncertainty at the attribute level. in which attribute values are replaced
by sets of values. In their model. the actual attribute is uncertain, however. it is
known that it must be one of the elements in the set. Grahne [Gra91] also studies
the problem of incomplete information in relational databases. The basic idea in his
work is that an incomplete relation represents a set of relations. In the quantita-
tive approach to modeling uncertainty in databases, a numerical value is associated
with each tuple in a relation, indicating the truth value of the tuple or the degree to
which the tuple belongs to the relation. Probabilistic databases [BGP92, Joh94] and
fuzzy databases {Zvi87, LL90] are examples of this approach. The hybrid approach

combines the qualitative and quantitative approaches (See e.g. [Sad91]).

In all the above works, data is annotated with a certainty value of some kind.
There is another aspect of uncertainty mainly considered in expert systems, in which

in addition to data, the rules are associated with certainty values, for instance the
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certainty factors in the MYCIN system [BS75] and Dempster-Shafer theory of ev-
idence [GS90]. More recently, logic database programming, with its advantages of
declarative and modularity, and its powerful top-down and bottom-up query process-
ing techniques attracted the attention of researchers, and and numerous frameworks
for deductive databases with uncertainty have been proposed. As should be clear
from the discussion so far, the objective of this thesis is to develop a foundation for
integrating uncertain databases with deduction in such a way that it unifies and/or

generalizes the existing proposals for this integration.

In this section, we compare our work with previous work on similar unifying
frameworks developed in different contexts, and (i) bring out the novelty and unique
features of our work, and (ii) show why a new unifying framework was necessary
for establishing the various results in this thesis. Notably, we consider Kifer and
Li [KL88], Kifer and Subrahmanian [KS92], and Debray and Ramakrishnan [DR94],
because, like this work, they generalize and/or unify some specific frameworks. We
will also consider the probabilistic framework of Lakshmanan and Sadri [LS94al,

because the parametric framework was inspired by it.

In the context of rule based systems with uncertainty, Kifer and Li [KL88] identi-
fied the main drawback of the earlier works on quantitative logics to be their lack of
enough support for various conjunction and disjunction functions required in such sys-
tems: only marand min were supported as the disjunction and conjunction functions.
Thev argue that. in practice. more general such functions are required. and propose a
set of “reasonable™ properties which should be satisfied by such functions. They also
proposed an AB framework with generic combination functions. defined in terms of
their properties. They essentially considered a “parametric” approach similar in spirit
to ours. They developed a model and fixpoint semantics based on multisets. While
their semantics does not rely on the various types of independence among the rules
in a program, they assume supporting evidences for an atom should be absolutely
independent of each other. The main problem with the proposed framework is that
the Tp operator defined is not continuous. Also, it is unclear under what condition
one can expect finite termination, although they give some sufficient conditions. The
recurrence based evaluation they proposed, although elegant, is a departure from the
conventional (semi)-naive evaluation method, and the possibility of efficient imple-

mentation of their method is not clear. In the theory of Generalized Annotated logic
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Programming (GAP), discussed next, Kifer and Subrahmanian [KS92] solved several

of these problems.

Kifer and Subrahmanian [KS92] proposed the GAP framework as a unifying frame-
work which generalizes various results and treatments of temporal and multi-valued
logic programming, e.g. [BS89, Fit91, KL89, Sha83, van86]. A main difference be-
tween GAP and any IB framework, including ours, is clearly in the approach. The
two approaches have their own advantages and disadvantages, as discussed earlier in
this chapter. In terms of expressive power, GAP can simulate the computation of
some IB frameworks.? As the semantics developed for GAP is based on sets, it cannot
simulate those IB frameworks which need multisets as the basis of their semantics.
For instance, the probabilistic IB framework proposed in [LS94a], an instance which
can be simulated within our parametric framework, cannot be simulated in GAP
without changing its underlying semantics to be based on multisets. Although the
GAP framework [KS92] allows an infinite family of disjunction functions Uj, j 2 0,
however, all these functions are induced by the lattice join U. This is quite restricted
compared to the infinite family F, of disjunction functions (which need not be lattice

based) allowed in the parametric framework.

Debray and Ramakrishnan [DR94] proposed an axiomatic basis for Horn clause
logic programming. Their framework nicely simulates a variety of “Horn-clause-like™
computations. arising. for instance. in deductive databases. quantitative deduction.
and inheritance systems. in terms of two operators. instance (?) and join (). In
the context of uncertainty reasoning. they show how their framework captures the
computation in van Emden’s language [van36]. In this context. it seems from their
axioms that the proposed framework can also capture the fixpoint computation of IB
frameworks which have sets as the basis for their semantical structures, e.g. [LS94b].
However, as explained below, the proposed setting is incompatible with probabilistic
frameworks, such as [Lak94, LS94a, NS93, NS592].

First, in the formulation of the logic in [DR94], one of their axioms states that for
any values t and t', the value t®t' conveys no more information than does t3 Ina

probabilistic logic, this could be interpreted as saying in a weighted set of evidences,

2This is done through the annotation varlables allowed in GAP
3Axiom 4. Lin [DRY4]. For any values t, t €D, (1) {i}h{t®t } =~ {t}; and ( {t}@{t@t } = {t}.
Note that t&¢ is an instance of ¢, denoted t®t <t.
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adding an evidence, t®t , which is subsumed by another element in the set, ¢, does
not increase the information “content” of the set. This may be inappropriate in a
probabilistic setting. For, suppose, ¢ is an event with probability 0.5. Then, according
to this axiom, if we add a lower probability value, 0.4, to a set of such values, {0.5},
the content of the result set, {0.4,0.5}, does not increase, which may not always be

true, e.g. when the combination mode is “independence”.

The second limitation of the framework presented in [DR94] is the distributivity
requirement of their lattice. This is not suitable, in general, for probabilistic infer-
encing. In fact, the appropriate probabilistic conjunction and disjunction used in
an application are driven by the underlying assumptions about the nature of event
interaction, and they need not distribute over one another, in general. For instance,
if a1, @2 and agz are confidences in the probabilistic framework of Lakshmanan and
Sadri [LS94a]. with the disjunction mode V. (i.e. ignorance) and the conjunction

mode A,. (i.e. positive correlation), then (a;Vigna2)Apcs # (1A pe3)Vign(@2A\pea3).

We now consider the probabilistic deductive databases of Lakshmanan and Sadri
[LS94a], which inspired the development of the parametric framework. In their frame-
work, they considered “parameterized” conjunctions and disjunctions in the context
of probabilistic deduction and developed a probabilistic calculus. Our framework dif-
fers from theirs in several ways. First, the uncertainty domain in our framework itself
is parameterized. Also. we allow a family of propagation functions as yet another
parameter. which allows to use in the same rule. a propagation function which is
different from the conjunction function used. We illustrated in Example 1.2.7 that
their framework is a special case of ours by an appropriate choice of the parame-
ters. Finally, unlike all the above works, we address query optimization and establish
necessary and sufficient conditions for containment of conjunctive queries, and also
address the termination and complexity of the fixpoint evaluations of p-programs. We
remark that Ioannidis and Ramakrishnan [IR95] considered the problem of query con-
tainment in a broad setting where relations may be interpreted as sets or as multisets.

A comparison with their work appears in Chapter 3.

36



2.6 Summary and Concluding Remarks

In this chapter, we introduced the parametric framework, a powerful language for
deductive databases with uncertainty, which generalizes and unifies the IB approach
to uncertainty, in the sense the any existing IB framework becomes an instance of
this framework, and new ones can be realized. We identified a collection of reasonable
properties which should be satisfied by every family of disjunction, propagation, and
conjunction functions employed in deduction with uncertainty. We introduced the
syntax and developed the semantics of the framework. The proposed semantics uses
multisets as the underlying semantical structures, as opposed to sets, conventionally
used. We developed the declarative, fixpoint, and proof-theoretic semantics of pro-
grams in the parametric framework and established their equivalence by showing that
(1) the declarative semantics of every program in the parametric framework coincides
with the bottom-up fixpoint semantics of the program and (2) the fixpoint semantics
coincides with the proof-theoretic semantics. We showed that the fixpoint opera-
tor Tp is monotone and continuous, and that the proof theory developed is sound
and complete. In Chapter 5. we will study the expressive power of our framework

compared to the AB approach.



Chapter 3

Containment of Parametric

Conjunctive Queries

This chapter is devoted to the study of containment of conjunctive queries in the

parametric framework.

3.1 Preliminaries

Containment and equivalence are the central notions used in query optimization in
relational and deductive datahases [UlIS9]. Let us quickly review some basic notions
from classical database theory. which will be used in the rest of this chapter. A

conjunctive query is a rule of the form

Q : P(‘Xl-,----,)(n) — Q1(Y1~----,Y;n)a---»Qk(ZI’--wZZ)

where the ¢;'s are predicates referring to relations in the database while p can be
thought of as the query predicate. It is assumed that the rule is range restricted, that
is, every variable X; in the rule head also appears in the body. Given a database D
which has relations corresponding to the predicates in the body of @, we define an
instantiation of Q w.r.t. D as a ground substitution on the variables of . An instan-
tiation 8 of Q w.r.t. D is said to be valid provided the body of @ is true w.r.t. D, under
the instantiation 8. In future, we mean only valid instantiation whenever we refer to

instantiations. The set of all (valid) instantiations of @ w.r.t. D is denoted inst(Q, D).
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The evaluation of Q on D is defined as Q(D) = {p(Xi,...,X.)0 | 0 € inst(Q, D)}
whenever Q is viewed as a set, and as {p(Xi,...,X.)0 | 0 € inst(Q, D)}, whenever
Q(D) is viewed as a multiset. In both cases, notice that the input database D is
always a classical (i.e. set-based) database. The context will make it clear how Q(D)
is viewed. Given two conjunctive queries @i, Q. defining the same query predicate
p(Xi,...,Xn), we say that Q, is contained in @2, denoted @Q; C @2, provided for ev-
ery input database D, Q;(D) C @Q2(D). @1 and Q; are equivalent, denoted Q1 = @2,
provided @; € @, and @, C @;.

A simple and powerful tool for the study of conjunctive query containment in
the classical case is the containment mapping [CM77]. Let @, and Q2 be any two

conjunctive queries as shown below in schematic form.

A symbol mapping from Q5 to Q1 is a mapping h from the variables occurring in @,
to those occurring in Q;. Such a mapping k induces a mapping from the predicates
in Q, to those in @, as follows: A(r(Ui,...,Uk)) =gy T(A{(U1).--..h(Uk)), where
r(Uy,....UL) is a predicate appearing in the head or body of @,. A symbol mapping
h is a containment mapping (c.m.), provided hR(H') = H, and for every 1 < ¢ < m,
h(C;) = B,. for some | < j < k. In the classical case. conjunctive query containment

is completely characterized by the existence of containment mappings.

Theorem 3.1.1 [CM77] Let Q1 and Qy be conjunctive queries. Then Q1 € Q iff

there exists a c.m. from Q2 to Q.

In the case of classical relational and deductive databases, the above result has
played a central role in the development of many query optimization algorithms. It
is important to note that even though conjunctive query containment was originally
developed for non-recursive queries, the idea and even containment mappings have
been extensively applied for recursive query optimization in deductive databases (see
Ullman [Ul189] for a comprehensive account). An interesting question to ask is how
the techniques developed for classical containment can be extended to the framework of
deductive databases with any of the various uncertainty formalisms considered in this

paper? In this section, we classify conjunctive queries in the parametric framework
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based on the underlying conjunction and disjunction functions independently of the
uncertainty formalisms. For each class of queries, we develop a complete characteri-

zation of containment, using the basic tools of (classical) containment mappings.

Chaudhuri and Vardi [CV93] studied the optimization problem for standard con-
junctive queries under multiset semantics. They show that optimization techniques
from the set-theoretic setting do not carry over to the multiset-theoretic setting.
Furthermore, they found that under the multiset semantics, two conjunctive queries
are equivalent precisely when they are isomorphic, and hence unlike under the set-
theoretic semantics, it is not possible to minimize conjunctive queries by removal
of conjuncts. As a consequence, subgoal reordering is the only possible optimiza-
tion method under the multiset semantics. Our work differs from theirs in that the

conjuncts in our case are set-theoretic.

In a recent paper, loannidis and Ramakrishnan [IR95] considered the problem
of query containment in a broad setting where relations may be interpreted as sets
or as multisets (akin to the treatment of relations in commercial relational database
management systems). This is particularly relevant to our work, given the importance
of multisets in the context of deduction with uncertainty. They show that as long
as a framework (for database querying) can be reduced to viewing relations as sets,
containment is completely characterized by containment mappings. The following
example shows that unfortunately simply classifying the combination functions as

~set-based” and “multiset-based™ is not meaningful w.r.t. the parametric framework.

Example 3.1.2 Consider a p-rule of the form 4 «= B.(: (f2. fP. f¢). where A. B.C
are any ground atoms. o € 7 is the certainty of the rule. f° and f? are the conjunction
and propagation functions associated with the rule, and f¢ is the disjunction function
associated with the predicate of A. Let 7 = [0, 1] be the certainty lattice, and v be
a valuation such that v(B) = v(C) = 0.5. Then a “set-based” conjunction function
would ignore the duplicate copies of 0.5. However this is not logically correct, as
the certainties are associated with different ground atoms. The problem is that such

a conjunction function cannot distinguish between the above p-rule and the p-rule

A < B, B;(f% f7, f). =

We argue that the classification of the functions used in a parametric framework

that is appropriate for our purposes should be based on how the functions are related
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to the appropriate lattice operations. Specifically, we should look at how the conjunc-
tion functions compare with the meet ® of the certainty lattice, and the disjunction

functions with the lattice join &.

In classical case, containment is based on set theory. When dealing with pro-
grams in deductive databases with uncertainty, we have to also take into account the
certainty associated with atoms. We refer to conjunctive queries in the parametric
framework as parametric conjunctive queries. A parametric conjunctive query Q is a

non-recursive p-rule of the form
H — Bl"'-er; (fd:fpvfc>'

We use bold Q’s to denote parametric conjunctive queries, and @Q’s to denote classical
conjunctive queries. When Q is a parametric conjunctive query, we will also denote
by @ the underlying classical conjunctive query obtained from Q by stripping all the

parameters.

We develop some notations. An annotated tuple is an expression of the form ¢ : a,
where t is an ordinary fact, and a € 7 is a certainty value in the underlying lattice.
An annotated relation is a finite set of annotated tuples. An annotated database is a
finite set of annotated relations. Let D be an annotated database and A be a ground
atom. Then we let D(A) denote the certainty associated by D with A. Computation
in the parametric framework can be conveniently captured in terms of annotated
relations and databases. Notice that a Herbrand structure is essentially an annotated
database. We define the evaluation of Q on a database D as the annotated relation
for the predicate defined by Q. where Q is of the form H <« B;..... Bi: (f4. fP. f9).

Formally, for any ground atom A,

Q(D)(A) = fY({f"(e. f(D(B18),....D(B0)) | 30 : A= HO}).

As in the classical case, we refer to a substitution such as 8 above as an instantiation,
and denote the set of such instantiations by inst(Q, D). Throughout this chapter,
we assume that the input databases to parametric queries are annotated databases,
while input databases to classical queries are conventional relational databases. It is
important to note that in both cases, the input databases do not contain duplicates.
The following lemma links computation of queries in terms of the operator Tp to

computation in terms of annotated databases.
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Lemma 3.1.3 Let Q : H <% B,,...,Bx; (f%, fP, f¢) be a parametric conjunctive
query, and D any annotated database. Then for any ground atom A corresponding

to the predicate defined by Q, Q(D)(A) = lfp(Tpup)(A), where P is the p-program
containing just Q.

Proof. Trivial. ]

The sole usefulness of this lemma is that it is more convenient to treat conjunctive
query evaluation in terms of the notion of input/output (a la the definition Q(D))
than in terms of the classical logic programming operator Tp. This lemma shows

that the two treatments are equivalent as far as the predicate defined by the query is

concerned.

In our study of containment of parametric conjunctive queries, we will find it
useful to define containment between a pair of parametric queries based on several

criteria. The following definitions make this precise.

Definition 3.1.4 Let Q: H «= By, ..., By; {(f%, f?, f°) be a parametric conjunctive
query, D an input annolated database, and 8 an instantiation of Q w.r.t. D. Then
Q%(D) = HO : 8, where 3 = fP(a, fS({D(B19), ..., D(Bi0)})). Intuitively, QD)

denotes the derivation by Q of an instance of H (corresponding to ) from the input
database D.

The partial order < on the certainty lattice 7 can be extended to annotated
tuples in the obvious way: for any pair of annotated tuples 4 : a and B : 3. we have
A:a < B: 3iff Aand B are identical ground atoms and a < 3 according to the

lattice ordering.

Definition 3.1.5 Let Q, and Q, be any parametric conjunctive queries. We say that
Q: C Q,, provided for every EDB D and for every instantiation 6; € inst(Q:,D),
there exists an instantiation 6, € inst(Qa, D), such that Qf‘(D) < Q% (D), where <

denotes the partial order on annotated tuples, defined above.

The set-theoretic containment defined in Definition 3.1.5 captures the intuition
that on any input database D, every derivation by Q; is matched or bettered by

some derivation by Q..



Definition 3.1.6 Let Q; and Q; be as above. We say that Q.:<Q,, provided for
every input database D, there exists a I-1 function m : inst(Q,, D)— inst(Q2, D),
such that for each instantiation 8 € inst(Qy, D), Q¢ (D) < QF®(D).

The notion of multiset-based containment defined above captures the intuition

that on any input database D, every derivation by Q; is matched or bettered by a

unique derivation by Q.

We will also find use for the following notions of containment on classical conjunc-

tive queries.

Definition 3.1.7 Let Q; and Q, be classical conjunctive queries. Then Q1 € @2,
provided for every input database D, every tuple in Qi(D) is also in Q2(D), t.e.
Q1(D) € Q2(D). This is the conventional notion of containment.

Definition 3.1.8 Let Q; and Q, be classical conjunctive queries. Then Q:CQ.,
provided for every input database D, every tuple in Qi(D) is also in Q2(D), and with
no less multiplicity. That is. Q1(D)CQ2(D). (See Section 1.4 for a definition of €).

Definition 3.1.9 [Containment and Equivalence] Let Q; and Q2 be any two para-
metric conjunctive queries. and D any annotated database. We write Qi(D) X Qa(D).
provided for every ground atom A € Bp corresponding to the query predicate. we have
Q:1(D)(A) = Qa(D)(A), according to the lattice ordering <. We say Q; is contained
in Q,. denoted Q< Q.. provided for every annotated database D. Q.(D) X Qa(D).
We say Q, is equivalent to Q,. denoted Q1 = Q,. ff Qi< Q2 and Q25 Q.

We write fF < f}, provided f7(e, 8) = f5(e, B), for all @, 3 € 7. For conjunction
(or disjunction) functions f; and fo, we write f; < fa, provided f,(X) =X fo(X), for

every multiset X of certainty values.

Remarks. Note there are three kinds of “containment” considered in the above
definitions, Q,Q, and <. Of these, < denotes containment under the semantics
of our parametric framework. Our results will show that this reduces to classical
containment C (e.g. Theorems 3.3.9), and to containment under multiset semantics

C (e.g., Theorems 3.3.17 and 3.3.18).
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In order to characterize when Q< Q3, we assume that the corresponding param-

eters in these queries are in certain relationship, formalized as follows.

Definition 3.1.10 Let Q, and Q- be the following parametric conjunctive queries.

QI: H (i Bl,---ka; (ff?ffaff)'
. Q2: H, ‘:‘—2' C1,...,Cm; (f2d~f2pvf§>’

We say that (Q1,Q2) is an admissible pair! provided (i) L < oy X, (it) =13,
(iii) f¢ < f5, and (iv) f* < f¢. Sometimes we say that Q; and Q are an admissible

pair to mean that (Q, Q) ts an admissible pair.

Note that when (Q,,Q3) is an admissible pair, (Q,, Q;) need not be so. It follows
from the definition above that any pair of parametric conjunctive queries with o >
1 and with identical parameters is admissible. In the absence of such reasonable
assumptions on Q; and Q,, there may be no hope for a syntactic characterization of
containment of conjunctive queries with uncertainty. In most containment problems
arising in practice (e.g., eliminating subgoals) the pair of queries considered is always

admissible.

By a c.m. from Q; to Q,, we mean a c.m. from @ to @Q;. The necessity of

containment mappings for containment is established next.

3.2 Necessary Condition for Containment

Lemma 3.2.1 Let Q; and Q, be any pair of parametric conjunctive queries. shown

below.
Ql: H (—Q_l Bla"'er; (ff’ff'ff)'
QQ: H, (ﬁ Cle---acm; (fg-f;’-ff)

Suppose Q1< Q,. Then, there exists a c.m. from Q; to Q;.

Proof. The proof is by an extension of Chandra and Merlin’s proof for the classical

case [CM77]. Suppose Q;< Q.. Now, consider a database formed as follows. For each

loannidis and Ramakrishnan {IR95] made similar assumptions about Q; and Q2 in their treat-
ment of containment.
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variable X occurring in Q,, let cx be a distinct constant. Let g be a mapping from
the variables of Q; to the constants constructed above such that g(X) = cx, for each
variable X in Q. Clearly, g is a bijection. Let D be a database obtained by setting
D(r(g(Uh),...,g(Uh)) = T, for every atom r(U1, ..., U;) appearing in the body of Q;.
Let 0 = Q,(D)(g(H)). Since conjunction and propagation functions satisfy Property
10, and since o; > L, it follows that ¢ > L. Since Q;<Q,, there must exist an
instantiation @ such that for each atom C; appearing in Q,’s body, D(6(C;)) > L.?
and such that Q,(D)(8(H)) = Q2(D)(g(H)) = o. Now, the mapping g~' 08 can be

easily verified to be a c.m. from Q, to Q;, just as in the classical case. [ |

3.3 Sufficient Conditions for Containment

In general, the mere existence of a containment mapping from Q: to Q; is not suffi-

cient for Q; < Q.. This is because of the following observations.

1. Intuitively, for Q; < Q,, we need to ensure that on any input database D, for each
derivation of a ground atom A by Q;, there is a derivation of A by Q., with no less
certainty. Sometimes, this is not enough (see 3 below).

2. When f§ < @, an arbitrary c.m. does not ensure that each derivation by Q; will
be matched or bettered by some derivation by Q-.

3. \When the disjunction function f¢ > <. simply ensuring that each derivation by
Q, will be matched or hettered by some derivation by Q, is not enough. Several
derivations of the same atom by Q; may “team up” and heat the derivations of the

atomn by Q..

Let us illustrate observation 2 using the following example.

Example 3.3.1 Consider the following pair of parametric conjunctive queries.

Qi: p(X) «— q(X); (f4,+, f9).
Qz: p(X) = q(X),q(X);  (f%% )
where 7 = [0,1], f¢ < @, and f? is any disjunction function in F;. While there is a

trivial c.m. from Qj to Q;, it can be easily seen that taking D = {q(a) : o} as the

2Actually, D(6(C;)) will be T for our particular database D.



input database, where ¢ is any element in the open interval (0,1), the certainty of
p(a) derived by Q; is strictly less than that derived by Q:, and thus Q; ¥ Q2. =

The following example illustrates observation 3 above.

Example 3.3.2 Let Q; and Q; be the following pair of parametric conjunctive

queries.
0.8,0.
Q:: p(X,Y) & 4x,v), q(X,2); (Vinds Apes Ape)-
0,8,0.9
Q. p(X, Y)Y y(x,v); (Vinds Apes Ape)-

Here. 7 = C[0,1], the set of closed intervals in [0,1], and Vina([o1, 81, (a2, B2]) =
[a1+as—aiaz, B1+B2—P152]. Clearly, there exists a trivial c.m. from Q; to Q;. Since
f§ = Ape = @, this implies that each derivation of Q; is matched or bettered by some
derivation of Q, (see below). But since f& = V;n4, (and hence ¢ » &), the multi-
plicity of derivations matters. For instance, consider D = {q(a,b) : [0.5,0.5], ¢q(a,c):
[0.6,0.6]}. There are two derivations of p(a,b) by Qi on D, corresponding to the
instantiations: X — a, Y — b, Z — b,and X — @, Y — b, Z — c. The associ-
ated certainties are: [0.5,0.5] and [0.5,0.5], which when combined using Vna4, lead to
[0.75,0.73]. Whereas there is only one derivation of p(a, b) by Q2 on D with certainty
[0.5.0.53]. Thus. Q; £ Q.. ]

The approach we thus take for sufficiency is to classify the classes of parametric
conjunctive queries based on the “behavior™ of their underlying parameters w.r.t. the

above observations. Specifically. we need to consider the following two cases.

Case of lattice-theoretic conjunction: The conjunction function f§ associated

with Q, coincides with the meet operator @ in the certainty lattice.
Case of arbitrary conjunction: The conjunction function f§ is < Q.

Under each of the above two cases, we further distinguish the cases where the
disjunction function f? associated with Q; coincides with the lattice join &, and

where f@ > &, which are studied in Sections 3.3.1.1 and 3.3.1.2, respectively.
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3.3.1 Case of Lattice-Theoretic Conjunction

In this section, we assume that the conjunction function f§ associated with Q2 ccin-
cides with the meet @ operator in the certainty lattice 7. We will first consider the

case in which f¢ = @. The case where f¢ > @& will then follow.

3.3.1.1 Case of Lattice-Theoretic Disjunction

The following result shows that the existence of a containment mapping is neces-
sary and sufficient for containment in the case of lattice-theoretic conjunction and

disjunction.

Theorem 3.3.3 Let Q, and Q2 be any admissible pair of parametric conjunctive

queries, as shown below.

le H (_Ql_ Blau'eBk; (f{i’ffaff>
Q?Z HI (2 Clr"'vcm; (fgvféJ’ch)

Suppose f§ = < and f¢ = . Then, Qi< Q, iff there erists a c.m. from Q3 to Q.

Proof. (=) Follows from Lemma 3.2.1.

(<) Suppose the hypothesis of the theorem is satisfied and that there is a c.m..
sav h. from @, to Q;. Let D be any annotated input database. For each ground
substitution ¢ from the variables of Q, to the constants occurring in D, consider the
function g o h. Clearly g o h is a ground substitution from the variables in Q to
the constants in D. Moreover. by the definition of c.m.. for each i € {1,---.m}. we
have h(C;) = B;, for some j € {1l.---,k}. Next, consider the tuple g(H) derived
by Q; using g. Let A = g(H), for convenience. The certainty associated with A) is
o1 = fP(ay, fS({D(g(B1)),--., D(g9(Bx))})). Recall that D(B) denotes the certainty
associated with atom B in D. Clearly, Q, will then derive the tuple (g o h)(H') =
A, with an associated certainty given by o2 = f(a2, f5({D(g o R(C1)),...,D(g o
h(Cm))})). Notice that @({D(g o &(C1)); ..., D(g o R(Cm))}) = ®({D(9(B1))>- - -
D(g(Bi))}). From this and the facts that ff < f5, ff < fF,and 1L < a; X oy, it follows
that o7 < o¢,. Since the above argument holds for each ground substitution g used

for any tuple A derived by Q; from D, we have
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&{o1 | o1 = fl(ea, f[{({D(g(B1))s-- -, D(g(Be))})) Vg : g(H) = A} X

&2 | o2 = fE(az, f5({D(g 0 R(C1)), - ... D(g 0 R(Cm))})) Vg : g(H) = A}

Since & = ff=< ¢, Qi(D)(A) 2 Q2(D)(A). Since D was an arbitrary database and
A was any atom derived by Q;, we may thus conclude that Q;< Q. =

The above result applies, for instance, to frameworks of van Emden [van86], Fit-
ting [Fit88, Fit91], the deductive IST of Lakshmanan and Sadri [LS94b], and Dubois
et al. [DLP91]. This result is also applicable to a class of conjunctive queries in the
probabilistic deductive databases of Lakshmanan and Sadri [LS94a], when the con-
junction and disjunction modes used are positive correlation, i.e., Ay and Vy.. It
should be pointed out that in a recent work, Lakshmanan and Sadri (LS96a] studied
containment and uniform containment of conjunctive queries in deductive IST and
established several results. By contrast, our results here apply to a wide variety of

IB frameworks.

3.3.1.2 Case of Arbitrary Disjunction

We now study containment of parametric conjunctive queries when f§ = ® and
firs

Recall that in our context the input relations are sets. However. as was shown
earlier. we need to consider the collection of “derivations™ of the atoms as multisets.
in general. If the disjunction functions associated with the head predicates coincide
with the lattice join . then we can safely consider the collection as sets. Otherwise,
simply ensuring that there is a “matching” or a “better” derivation by Q, for each
derivation by Q; is not enough. since several “small” derivations by Q; can team up
and “beat” a few “large” derivations by Q.. It is thus important for us. even before we
bring in the parameters into play in our study of containment, to answer the following
question in the context of classical conjunctive queries. Given any pair of conjunctive
queries Q; and @,. when can we say that @;(D) as a multiset is “included” in Q2(D),
for every classical (i.e. set-based) input database D? That is, when can we ensure
that for every database D and every atom A, the number of derivations of A by @»
on D is no less than the number of derivations of A by @; on D? When this holds,
we write Q,(D)CQ,(D), as per Definition 3.1.8.

Therefore, given that f¢ >~ &. our approach in this case is (1) to make sure that
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for every derivation of a ground atom A by Q; on any input database D, there exists
a distinct derivation of A by Qz on D with at least the same certainty, and (2) to
determine when the multiset of tuples obtained by applying @; (i.e. Q; without
the parameters) to any input database is contained in @2(D). In other words, when
Q1CQ,? Our next result provides a sufficient condition for (2). Before that, we need

the following definition.

Definition 3.3.4 Let Q. and Q, be any conjunctive queries, and Var(Q;) be the set
of variables used in Q;, fori=1,2. Then, a c.m. 8 from @, to @, is a variable onto

c.m. provided, for every variable Vi € Var(Q,) there ezists a variable V, € Var(Q2)
such that 8(V2) = V1.

Theorem 3.3.5 Let Q, and Q, be any classical conjunctive queries as shown below

in schematic form.

Then, for every input database D, Q.(D)CQ.(D), if there exists a variable onto c.m.
from @, to Q.

Proof. Let h be anyv variable onto c.m. from Q, to Q. and A be any ground atom
in Q,(D). Note that Q,(D) is a multiset of tuples. for i = 1.2. Let also /nst(Q1. D)
be the set of instantiations of Q; w.r.t. D. and inst4(Q,.D) =4 {8 € inst(Q1.D) |
HO = A}. Similarly, we define inst4(Q2, D). Note that for every 8 € inst(Q:. D).
B0 is true in D, for all 1 < i < k. To show that QI(D)QQQ(D), we will show that
linst4(Qq. D)| < linst(Q2, D)|, where |S| denotes the cardinality of set S. Now,
define the mapping f : inst4(Q1. D)— inst 4(Q2, D) such that f(8) = 6 o h. (Note
that foh € inst4(Q2, D), V8 € inst1(Q1, D).) We will show that f is 1-1, from which
follows the result. Suppose there are substitutions 8; and 6, in insts(@Q:, D), such
that 6, # 8,. In this case, there is a variable V' € Var(Q,) such that 6;(V') # 62(V).
Since h is a variable onto c.m., there is a variable U € Var(Q,) such that A(U) = V.
Then, 8, 0 A(U) = 81(V) # 82(V) = 6,0 h(U), which implies f(61) # f(62) and hence
f is 1-1. From this, we may conclude that |inst4(Q1,D)| < |insta(Q2, D)|, which

was to be shown. [ |
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The following example illustrates the existence of a variable onto c.m. is not

necessary for the containment Q;CQ5.

Example 3.3.6 Consider the following conjunctive queries @, and Q2.

Or: p(X1,Xs) — e(Xu,Xa), e(Xa2,U), e(U,V),e(U,W), e(W,T).
Qs: p(X1.Xa) — e(X1,Xa), (X2, U),e(U, V'), e(U',W").

It can be shown that Q;CQs, although there is no variable onto c.m. from Q- to Q;.
u

Ioannidis and Ramakrishnan [[R95] study the problems of query containment
and equivalence in a very general setting, where relations may be viewed as sets or
multisets. Their work is applicable to containment of uncertain queries as well. They
abstract various settings in terms of label systems, and classify them broadly into
types A, B, A', and B’, where A and A’ are essentially set based, while B and B' are
multiset based. Intuitively, the idea is to extend the relational model by attaching to
each tuple a label, drawn from some special domain. The usage of label conform to
to specific rules that enables one interpret them using appropriate semantics. Their
results on containment for type B and type A’ label systems are particularly relevant
for our goal in this chapter. Type B label system captures multiset-based semantics.
They show that a tvpe B conjunctive query Qi is contained in another query Q iff
there is a subgoal onto c.m. from Q> to Q. (A c.m. is subgoal onto provided the
mapping induced by it from subgoals of @2 to those of @; is onto.) The key thing to
note about containment for type B label systems is that both the input and output
could be multiset-based. Specifically. the input is allowed to be a database whose
relations are multisets. The following example illustrates this subtlety and shows
that when the input is restricted to be classical (set-based) databases, subgoal onto

containment mappings are not necessary for multiset-based containment.

Example 3.3.7 Consider the following pair of conjunctive queries.

Q:: p(X.Y) — a(X,Y), b(X,Y).
Q2: p(‘va) - a(X,Y), a(X,Z)

The mapping X — X,Y — Y. Z — Y from @, to @, is a variable onto (but not

subgoal onto) c.m. from @ to @, and it is necessary and sufficient for Q:CQ,.

50



as proved in Theorem 3.3.8. Note that in our context, a subgoal onto c.m. is not

necessary for C. [ |

For type A’ label systems, Ioannidis and Ramakrishnan [IR95] show that a suffi-
cient condition for containment is the existence of a variable onto containment map-
ping. While specific multiset-based systems such as MYCIN can be modeled under
their type A’ label system, type A’ is not inherently multiset-based and does not force
the output of queries to be multisets. Besides, their results do not yield a necessary
and sufficient condition for multiset-based containment when the input is restricted
to classical databases. Thus, their results on containment of conjunctive queries in

various label systems do not directly yield a characterization of Q:CQ,.

We show in the following theorem that if @, and @ are classical conjunctive
queries such that all the subgoals of @, are distinct, then the existence of a variable
onto c.m. is both necessary and sufficient for @ CQ,, i.e., for any derivation of an
atom A by Q; on any input database D, there is a distinct derivation of A by @, on
D. This result will play a key role in obtaining a characterization of containment of
parametric conjunctive queries later in this chapter. Before that, we need the following
definitions. We say that a conjunctive query @ has distinct subgoals, provided no
predicate symbol appears more than once in the body. In a conjunctive query, every
variable appearing in the head is called distinguished variable. and those appearing

only in the body are indistinguished variables.

Theorem 3.3.8 Let Q, be any conjunctive query which has distinct subgoals. and
Q2 be any conjunctive query. Then Q1CQ: iff there exists a variable onto c.m. from
Q2 to Q1.

Proof. (<) Follows from Theorem 3.3.5.

(=) The necessity of the existence of a c.m. follows from Theorem 3.1.1 and the fact
that Q[QQQ implies Q; C @,. So suppose there is a2 c.m. but no variable onto c.m.
from Q, to @,. Let h : Q;— @, be any c.m. and let V be a variable in Q1’s body
which is not covered by h. Let ¢(...,V,...) be any subgoal in @Q; which contains an
occurrence of V. Clearly, Q2 cannot contain any subgoal involving g, for if it did, such
a subgoal would only be mapped to ¢(...,V,...) in Q1. contradicting our assumption

that V is not covered by k. As a result, we see that V' will not be covered by any
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c.m. from Q, to Q;. Another observation is that V must be a non-distinguished
variable, since all distinguished variables must be covered by containment mappings,

by definition. Consider the input database D, obtained as follows.

Let §; be an instantiation that maps every variable Z other than V occurring
in Q,’s body to a distinct constant ¢z, and maps V' to the constant cl. Let 6, be
an instantiation identical to 6; except that it maps V to c%, where ¢}, # ¢l and
both are distinct from all other constants. Now, D = {Bf, | B appears in Q’s
body} U { B, | B appears in Q;’s body}. By construction, we can see the following:
(1) for every subgoal B; not containing V, D has exactly one tuple; (2) For every
subgoal B; containing V, D has exactly two tuples. Since no c.m. from @, to @1 can
cover V. it is clear that no instantiation of @, w.r.t. D will map any variable of @, to
either of ¢}, or ¢&. Let ¢; and ¢ be any two instantiations of @, w.r.t. D, and let Y be
any variable in Q,’s body. Let s be any subgoal in @;’s body containing Y. It follows
that both ¢; and ¢, must map s(...,Y,...) in @,’s body to tuples cocrresponding to
relation s in D. However, by construction the relation for s has a unique tuple in D,
since s cannot possibly contain V. This implies ¢;(Y) = 2(Y’), since Y is an arbitrary
variable in Q», and we see that ¢; = t2. Since ¢; and ¢, are arbitrary, this shows there
is at most one instantiation of Q; w.r.t. D. However, there are two instantiations
of @, w.r.t. D, viz., §; and 6, above. We thus have Q1(D)ZQ2(D). This shows the

necessity of a variable onto c.m. [ |

Theorem 3.3.8 vields the following result for parametric conjunctive queries.

Theorem 3.3.9 Let Q, and Q, be any pair of admissible parametric conjunctive

queries. shown below.

Q : H < B,....B (f. f7 fD)-
Q2: HI ('2’ Clv"'scm; (féivfngC)

where Q. has distinct subgoals. Suppose f§ = @ and f{ = &. Then, Q1< Q iff there

ezists a variable onto c.m. from Q3 to Q.

Proof. When f¢ > &, Q,< Q. iff Q1<€Q.,. Since f§ = @ and Q;,Q; are an admissible
pair, we have Q< Q; iff @, CQ,. The result then follows from Theorem 3.3.8. ]

The above result is applicable to conjunctive queries in the probabilistic deductive

databases of Lakshmanan and Sadri [LS94a], when the conjunction function f5 used
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in Qi is Ap. and the disjunction function f{i used in Q; is, e.g., Vind, the independent

mode.

3.3.2 Case of Arbitrary Conjunctions

Suppose the conjunction function associated with Q, is not the meet @ of the certainty

lattice. We need the following definition.

Definition 3.3.10 Let h : Q2— Q1 be a c.m. Then h is subgoal 1-1, provided the
mapping induced by h on the subgoals of Q2 is 1-1.

Theorem 3.3.11 Let Q,,Q; be any admissible pair of parametric conjunctive queries,

shown below.

Ql: H (_O'_I_ Blv"'ka; <f{i‘ff*ff)‘
Q.: H <2 Ci.....Cm: (f3, 13, f5)-

Suppose f§ < @. Then Q, C Q. if there exists a subgoal 1-1 c.m. from Q2 to Q.

Proof. Let h : Q;— Q; be any subgoal 1-1 c.m. from Q; to Q;. Let D be an
annotated input database. Let D(A) denote the certainty of atom A in D. Consider
any derivation of a ground atom 4 by Q; on D. Let § be the associated instantiation
and o, be the certainty derived. Then. oy = ff(a;. f{f({D(B:6)..... D(B:#))}). On
the other hand. oy = f5(a». fS({D(R(C1)8)..... D(h(C,)0))}) = o1. where o5 is the
certainty associated with the corresponding derivation of A by Q. on D. and the
associated instantiation is §o k. This is because {D(h(C;)0) | 1 < i < m}C{D(B;9) |
1<) <k u

Corollary 3.3.12 Let Q,Q; be any pair of admissible parametric conjunctive quertes,
as defined above. Suppose f§ < @ and f = &. Then Q< Q; if there exists a subgoal
1-1 c.m. from Q, to Q.

Corollary 3.3.13 Let Q;,Q: be any pair of admissible parametric conjunctive queries,
as defined above. Suppose f§ < @ and f¢ = @&. Then Q< Qq if there exists a c.m.
from Qa to Q, which is subgoal I-1 and variable onto.
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The following example illustrates that the existence of a subgoal 1-1 c.m. is not

necessary for the containment Q;< Q5.

Example 3.3.14 Consider the following parametric conjunctive queries,

le p(.X) — q(X); (fd=*7*>°
Q:: p(X) — g¢(X),q(X); (f,*, f5).

where f§ < ®, and € is a certainty value in (0, 1] determined as follows. Suppose D
contains only g(a) with the associated certainty §. The certainty of p(a) derived from
Q. is f5({6,6}), and the one derived from Q; is € ¥ §. Since f; < ®, we know that
({6, 81) < ®({46,80) = 6. Let f5({6,6}) = 6 —e* 6. Now, for the containment
Q.<Q, to hold, we should have § —e* 4 > e=* 6 which holds for every € such that
e =< 0.5. a

Theorem 3.3.15 Let Q,,Q2 be any admissible pair of parametric conjunctive quertes.
Suppose Q2 has distinct subgoals. Then Q, C Qi iff there exists a c.m. from
Q2 to Q.

Proof. Follows immediately from Theorem 3.3.11 upon noting that all c.m.’s from

Q. to Q; are necessarily subgoal 1-1. ]

Theorem 3.3.16 Let Q,.Q: be any pair of admissible parametric conjunctive queries
with identical parameters. Suppose that Q has distinct subgoals. and that f¢ < ©.
Then Q, C Qs iff there is a subgoal [-1 c.m. from Q2 to Q.

Proof. (<) Follows from Theorem 3.3.11.

(=) Suppose there is no subgoal 1-1 c.m. from Q; to Q;. Let A : Q2— Q, be any
c.m. Let S be the set of all subgoals in Q; which are not mapped to by h. S is
possibly empty. Our first observation is that if a subgoal of Q, is not mapped to
by h, it cannot be mapped to by any c.m. from Q» to Q;. To see why, suppose
q(Y1,...,Y,) is such a subgoal. Clearly, Q, cannot have a subgoal involving predicate
q, as the subgoals of Q; are distinct. This in turn implies no c.m. from Q. to Q
can map to q(Y;,...,Y;). Let 8 be an instantiation which maps each variable V' in

Q; to a distinct constant cy. Now, consider the input database D, constructed as
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follows. For each subgoal 7(Zi, ..., Z,) of Q; not in S, D contains a unique annotated
tuple r(cz,,...,cz,) : 0, where ¢ € T is any certainty such that L < o < T.
For each subgoal in S of the form s(Wi,...,W;), D contains a unique annotated
tuple r(cw,,...,cw,) : 7. Now, we claim that Q;(D) € Q2(D), from which the
theorem follows. To see why this claim is true, consider the derivation of the head
atom corresponding to the instantiation 6. First, notice that the subgoals in S play
no role as the tuples corresponding to them in D are annotated with T, which by
Property 10, is an identity w.r.t. f¢. All subgoals of Q; not in S correspond to
tuples in D with annotation < T. Let Q; : H «<— By,..., By; (f¢, f7, f°), and Q2 :

is an arbitrary instantiation, such that H8 = H'w. Clearly, 6~ o 7 is a c.m. from
Q. to Q,, since @ is a bijection. By our assumption, §~! o 7 cannot be subgoal 1-1
from Q, to Q;, and hence m maps distinct subgoals of Q2, say C; and Cj, to the
same ground atom, say B¢, in D. Let X, be the multiset obtained from {D(B:9) |
1 < i < k} by deleting all copies of T and let X, be similarly obtained from {D(C;~)
| 1 < j < m}. From the above arguments, it is clear that ¥y € X, the number of
copies of v in X is no more than the number of copies of v in X3, and there exists a
certainty element 3 in X, such that the number of copies of 3 in X] is strictly less than
the number of copies of 3 in X;. Since f¢ < @. this implies f¢({D(B;8) | 1 < i < kf})
= f(X)) = f9(Xa2) = f{D(C;x) | 1 <j < mf). This in turn implies Q{(D) =
HY : frla. f<({D(B.6 | 1 < i < kb)) > H'= : frla. fFIDC7) | 1 < j < mb))
= Q$(D). Our claim follows from this and the fact that = is an arbitrary instantiation
in inst(Qa. D). [ |

Our results in this chapter vield necessary and sufficient conditions for containment
of various classes of parametric conjunctive queries. In particular, these results are
applicable to conjunctive queries in the framework of Lakshmanan and Sadri [LS594a]
which in addition to the lattice theoretic conjunction and disjunction functions, allows
some other such functions. The results can be also applied to conjunctive queries in
MYCIN [BS75] (see Example 1.2.5). The following theorems can be proved by direct

application of the previous results.

Theorem 3.3.17 Let Q, and Q. be an admissible pair of paramefric conjunctive
queries. Suppose Q2 has distinct subgoals and f; < ®.
(1) Suppose f¢ = &. Then Q1< Qy ff there exists a c.m. from Q, to Q;.
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(2) Suppose f! = @&. Then Q< Q: iff there erists a variable onto c.m. from
Q. to Q,, provided Q, has distinct subgoals.

Proof. Part (1) follows from Lemma 3.2.1 and proof of Theorem 3.3.15, upon noting
that f¢ ignores duplicates. For (2), the proof follows from Theorem 3.3.8 and the fact
that ff > &. =

Theorem 3.3.18 Let Q; and Q3 be any admissible pair of parametric conjunctive
queries with identical parameters. Suppose Q1 has distinct subgoals and f¢ < @.

(1) Suppose f¢ = &. Then Q< Q; iff there exists a subgoal 1-1 c.m. from Q; to Q.
(2) Suppose f¢ = &. Then Q< Q. iff there exists a c.m. from Q to Qi which is
both subgoal 1-1 and variable onto.

Proof. The proof of part (1) follows from Theorem 3.3.16. For (2), the proof follows
from Theorems 3.3.8 and 3.3.16. [

The above result can be used by an optimizer to determine, for instance, whether
some subgoals in a rule body of a program can be removed, without altering the

semantics of the program.

Table 1 contains a summary of the main results in this chapter on containment of

parametric conjunctive queries.

3.4 Summary and Concluding Remarks

Several frameworks for deduction with uncertainty have already been proposed, so
the first question is, why yet another framework. Our work was motivated by the
observation that progress on query optimization for deductive databases with uncer-
tainty has been quite limited. We wanted to approach this problem from a “generic”
point of view, without necessarily focusing on any one framework. To this end, it was
necessary to abstract away the two main factors characterizing known IB frameworks
for deduction with uncertainty: (i) the underlying notion of uncertainty (fuzzy sets,
probabilities, etc.), (ii) the way in which uncertainty is manipulated (e.g. whether
based on some lattice operations, some specific combination functions, etc.). Our

choice of the IB approach over the AB is because of the continuity of the fixpoint
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I Class [ Proviso | Type of c.m. | Comments | Result ||

=0, ff=o none any necessary & | Theorem
sufficient 3.3.3

=0, ffl -8 Q; has variable onto | necessary & | Theorem
distinct subgoals sufficient 3.3.9

<R, fi= none subgoal 1-1 | sufficient Corollary
3.3.12

Q; has any necessary & | Theorem

distinct subgoals sufficient 3.3.17(1)

f5<Q®, fi-a none subgoal 1-1 & | sufficient Corollary
variable onto 3.3.13

Q1,Q- have variable onto | necessary & | Theorem

distinct subgoals sufficient 3.3.17(2)

Identical param’s. Q; has subgoal 1-1 | necessary & | Theorem

fe=<®, f¢=@& | distinct subgoals sufficient 3.3.18(1)

Identical param’s. Q, has subgoal 1-1 & | necessary & | Theorem

fe<®, f¢> & |distinct subgoals | variable onto | sufficient 3.3.18(2)

Table 1: Summary of our main results on containment

operator in the former, which in general makes it more amenable to efficient compu-
tation. Also, based on our experience with several IB frameworks, query processing
and unification procedure would be closer to the standard framework, thus allowing
one to use the existing techniques and tools. with little or no modification. in the
IB approach. Abstraction of the factors (i) and (ii) above has led to the parametric
framework proposed in this thesis. With this as a basis. we were able to establish
necessary and sufficient conditions for containment for various classes of parametric

conjunctive queries.

Two benefits of our generic approach to this study are: (i) we can trace which of
the properties (introduced in Section 2.1) on the families of combination functions are
essential for our results on query optimization; (e.g. continuity is not a requirement);
(i) the parametric framework allows several different ways of uncertainty manipula-
tion (e.g. some ”set-based” and some “multiset-based”) to be combined within one
framework. As an illustration of the significance of our results, we showed in this
chapter that large classes of programs in known IB frameworks can be optimized

using classical tools.

An interesting direction for extending this work is on characterizing exactly when
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the “no teaming up” property exhibited by unions of classical conjunctive queries
carries over to the parametric framework. Future work should address the central
questions of containment and equivalence of programs. For instance, how can we lift
the chase technique (e.g. see Sagiv [Sag88]) to IB frameworks? Can we characterize

exactly when program equivalence in IB frameworks reduces to classical equivalence?

Other important issues are termination and data complexity of the fixpoint evai-
uations of p-programs, which are studied in the following chapter. The study is
organized based on a classification of p-programs according to the types of disjunc-
tion functions allowed in the parametric framework. We identify large classes of
p-programs whose fixpoint evaluations on every input database (EDB) terminate in
PTIME. in the size of the EDB. We also identify p-programs whose bottom-up fix-
point evaluations on some EDBs will not terminate. Finally, we identify p-programs
whose fixpoint evaluations on some EDBs terminate in arbitrarily large, but finite,

number of iterations, independent of the EDB size.
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Chapter 4

Termination and Complexity of

Bottom-up Fixpoint Evaluation

Given a logic program P and an EDB D, what is the number of iterations required for
computing the fixpoint semantics of PU D using the naive evaluation method? When
P is in the standard framework of datalog, the answer is well known — PTIME in the
number of constant symbolsin P and D. What if P is in an extended framework with
uncertainty? We will illustrate that unlike in the standard framework, three kinds of
behaviors are possible when uncertainty is present, (i) termination in PTIME. (i) non-
termination'. (i) termination in an arbitrary large number of iterations. independent

of the number of constants in the database.

4.1 Motivating Example

In the following example, we illustrate that analyzing/characterizing the termination

behavior of programs with uncertainty is hard.

ITechnically, this means termination at w, as our fixpoint operator Tp is continuous.
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Example 4.1.1 Let P, be the following p-program.

ro: q¢(X,Y) < e(X,Y); (maz, f§, ).
r p(X,Y) <2 e(X,Y); (ind, f7, ).
ra: p(X,Y) < q(X,Z), p(Z,Y); (ind, min, min).

where a € (0,1), and 3,7 are in (0,1]. f§ and f? are any propagation functions
allowed in the parametric framework, and ind(a, 8) = o + 8 — af8 is the disjunction
function associated with the predicate symbols p and ¢q. Note that the recursive p-rule
r uses the IDB subgoal ¢(X, Z). Suppose D = {e(1,1) : #, e(1,2) : n} is the EDB,
where pu,n € (0,1]. Then, the bottom-up naive evaluation of P; on D proceeds as
follows, as far as atom p(1,2) is concerned. Let A denote p(1,2), for convenience.
Let also o; denote A’s certainty obtained at iteration z of this evaluation, where
0o = 0. Assume the certainty associated with every EDB atom is known at iteration
0. Then, at iteration 1, we derive A with certainty o; = f{(8,n), and derive ¢(1,1)
with certainty v = f§(a,u). Note that ¢(1,1) is the instance of ¢(X, Z) in r; used
in later iterations to derive A. At iteration 2, we apply ry and r; and derive A with
certainties fF(3,n) (as before) and min(v, min(v,0;)), respectively. There are two

cases to consider.

Case 1: 0; > min(v,v). In this case, A’s certainty derived by r; is min(y, v) which
will continue to be derived by r, in the subsequent iterations. As this does not increase

the overall certainty of A obtained. this evaluation would terminate in the next step.

Case 2: 0; < min(v,v). Inthis case. the overall certainty of A obtained at iteration 2
is 02 = ind(o1.01) = | =(1—0y)2. [t is straightforward to verify that o; = 1 —(l -0y ).

for all 7 > 1. whenever o,y < min(~,v).

The question now is: given the certainties a, y, ¥, what is the least integer n such
that o, > min(y,v), where v = ff(a,r)? The existence of this integer, if shown,
would imply that this evaluation terminates at iteration n + 1. In this example, as
P; is recursive and the EDB D, viewed as a graph, is cyclic’, we may conclude that
whenever a < 1, the fixpoint evaluation of P, on every EDB terminates in finite

number of iterations, no matter what particular rule certainties are used in P; and

2An EDB D is cyclic w.r.t. a program P if there exists a ground atom A defined by P and D
such that A has.a disjunctive derivation tree which includes a goal node labeled A other than the
root.
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D. The particularity of these certainties determines the iteration step at which this

evaluation terminates, which could be arbitrarily large, independent of the EDB size.

The iteration step n at which this evaluation terminates can be determined from

the inequality 1 — (1 — 01)™ > min(vy,v). This yields:

0 "Iog(l - min('y,u))"
log(1 — 1)

assuming that this evaluation actually reaches to step n. We next show that n is
a non-negative integer, and hence well defined. First note that log(z) < 0, for all
z € (0,1). Now, there are two cases to consider corresponding to the above two
cases. (1) As shown in case 1 above, when o7 = 1 or oy > min(v,r), the fixpoint
evaluation of P, on D would terminate in one iteration, in which the formula above
yields n = 1, as expected. (2) When o; < min(v,v), which corresponds to case 2
above, we have 1 — min(~,v) > 1 — oy, which in turn implies that n > 1, since in this
case, the numerator of the formula above for n would be larger than its denominator,

and hence log(1 — min(y,v)) > log(l — o1).

To show that n is well defined, we also need to show that the argument of the
function log in the numerator of our formula above for n is not 0, or equivalently we
have min(v,v) # 1. This is true since otherwise, we would have v =1 and v = 1.
which in turn would vield the contradiction I < 1l.as 1 = v = f§{a.p) < a < . since
a < 1. by our assumption. and f{(a.u) < a. by Postulate 3 (the bounded-above
property of propagation functions). We may thus conclude from our analysis above
that “for any instances of the rule certainties in Py and D, whenever a < 1. we can
always determine an integer n. using the above exrpression, such that the bottom-up

naive evaluation of Py on D terminates at iteration n + 1.7

Let us continue with more specific instances of this program to show how sensitive
the termination behaviors of programs are w.r.t. the certainties used in the program.
Consider again the p-program P, and suppose 8 < 1 and v = 1. As before, assume
that o < 1. In then follows from our analysis that since a < 1, the fixpoint evaluation

of P, on every EDB terminates in a finite number of iterations.

Now consider an instance P, of P; in which @ = 1. As before, "assume v = 1
and B8 < 1. It is then easy to show that in this case, the fixpoint evaluation of P,

will not terminate, for instance on D' = {e(1,1) : 1, e(1,2) : 1}. This is because we
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would always have o, < 1, for all n > 1, upon noting that ind(a;, ) < 1, for all
ay,B1 € (0,1). That is, the certainty associated with p(1,2) keeps increasing at every

iteration and will never reach 1 (the top) unless in the limit.

On the other hand, if Pl' did not include the p-rule ro, and hence q was, e.g., an
EDB relation, we could easily determine an EDB D" on which the fixpoint evaluation
of P, — {ro} would not terminate. For instance, we could take D" = D"U{g(1,1) : 1}.
[ |

Discussion. Let us summarize our observations so far. On one hand, we showed
that whenever a < 1, the bottom-up naive evaluation of P; on every EDB always
terminates in a finite number of iterations. On the other hand, P; is using a disjunc-
tion function, ind, which is strictly monotone. That is, ind always returns a value
which is larger than its argument values. This means we “expect” that the fixpoint
evaluation of P, on some EDB will not terminate, unlike what we showed. How to
deal with this dichotomy, which stems from the sensitivity of the fixpoint evaluation
to rule certainties? The key point to note in the above example(s) is the role of the
p-rule rg or more precisely, the role of the certainty a associated with this p-rule. If
P, did not include rg or if a .= 1, then we could determine a desired EDB on which
the fixpoint evaluation of the program would not terminate. However, when P, does
inciude ro and a < 1. the certainties of the EDB atoms passed to any instance of the
q(X.Z) in the body of rp would always be less than . which in turn would cause the

fixpoint evaluation of P, on D to terminate in a finite number of iterations.

Our analysis above and the preceding examples show that how sensitive the ter-
mination behavior becomes w.r.t. rule certainties or the presence/absence of certain
“innocuous” looking rule, e.g., rg in this example. This state of affairs complicates a
general analysis of termination for a substantial class of programs. One way to distill
the termination behavior of a p-program from the rule certainties is to look at a strong
termination property, namely at the question of whether the program terminates on

all EDBs. regardless of the certainties associated with rules.

Our idea for characterizing the termination property of p-programs is to ignore
the specific rule certainties mentioned in a given p-program, and instead consider
a p-program, obtained from the first one except possibly for rule certainties. This

approach in a sense amounts to providing an approximate analysis of the termination
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as opposed to an exact one. Our analysis results provides useful insights as to how
combination functions affect the termination and data complexity of programs in the

parametric framework.

Based on this idea, we will consider two “generic” p-programs, introduced in Ex-
amples 4.5.3 and 4.5.6, as model programs or templates, which are simple but general
enough to study the problem. By a generic p-program we mean a program in which
parameters are symbolic, rather than specific. We organize the study according to
how the combination functions in instances of these templates compare with the meet
and join operators in the underlying certainty lattice. For each instance, we consider
the bottom-up naive evaluation of the program and provide a detailed analysis of its
termination behavior. The results obtained in our analysis are then generalized to

any p-program.

We remark that unlike in [KL88] in the context of the AB framework proposed
by Kifer and Li, we are not using and/or suggesting the recurrence-based evaluations
as a replacement for query evaluation. In this study, we use recurrence equations as

an analysis aid to derive the certainty derived in a fixpoint computation.

In this chapter, we attempt to characterize the termination behaviors for a col-
lection of IB frameworks. Rather than attempt this for individual frameworks, we
do this in a *framework independent”™ manner. as we did in Chapter 2 to study the
semantics of the parametric framework. and in Chapter 3 to study the containment
of parametric conjunctive queries. We remark that our study in this chapter is in the
context of the parametric framework. however. the analysis technique developed and

the various results established are useful also in the context of AB frameworks.

The outline of this chapter is as follows. Next, we define some terms and con-
cepts used in this chapter. In Section 4.4, we establish PTIME data complexity for
large classes of p-programs, in which the disjunction function associated with every
recursive predicate coincides with the lattice join. In the rest of the chapter, we con-
sider other disjunction functions allowed in the parametric framework. Section 4.5.1
includes some more examples illustrating informally our approach and the kind of
analysis we provide in this study. In Section 4.5, we consider p-programs in which
some recursive predicates are associated with disjunction functions different than the

join operator in the underlying certainty lattice. This is where we find p-programs
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whose fixpoint evaluations may not terminate or may terminate in arbitrarily large,
but finite, number of iterations, independent of the size of the EDBs. Concluding

remarks appear in Section 4.6.

4.2 Preliminaries

We define the complerity of evaluating a program in the parametric framework as the
number of iterations required for computing the least fixpoint of Tp, using the bottom-
up naive evaluation method, as a function of the size of database [KL8S, LS94a]. It
is well known that the fixpoint evaluation of datalog programs always terminates
in polynomial time (PTIME) in the number of constants specified in the database.
The question is: “what can we say about termination and complexity of the bottom-
up fixpoint evaluations of programs in datalog extended with uncertainty?” Kifer
and Li [KL88] show that evaluating some programs in their AB framework does not
terminate. Note that function symbols are not allowed in their framework, nor are
they allowed in any program which we consider in this thesis. Lakshmanan and
Sadri [LS94a] show that under certain conditions. programs in their IB framework
enjoy PTIME data complexity. Recall that an EDB in our context is a set of annotated
ground atoms. where annotations are elements of the underlying certainty domain 7.
The size of an annotated EDB D is the number of distinct constant symbols occurring
in D. That is. the size of an annotated EDB D is simply the size of D. with the
certainties removed. Note that we do nof consider the certainty values occurring in

D as part of the input size.

We note that in datalog programs with uncertainty, the PTIME data complexity
is preserved whenever (1) the program is not recursive, (2) the EDB is acyclic3, or
(3) the certainty domain is finite. When none of these conditions holds, we may
still preserve the PTIME data complexity under certain restrictions, which will be
characterized shortly. On the other hand, there are logic programs with uncertainty
whose fixpoint evaluation on some EDB will not terminate, as shown in [KL88]. We
identify a third class of programs with uncertainty whose fixpoint evaluations on some

EDBs terminate in arbitrarily large but finite number of iterations, independent of

3We say an EDB D is cyclic if there is a recursive program P such that for some A € Bp, there
is a DDT of arbitrary height for A w.r.t. P and D. If no such program exists, we say D is acyclic.
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the size of the EDB. To our knowledge, this latter class of programs has not been

identified or discussed elsewhere.

When we talk about evaluating a p-program on a given EDB, we consider the
bottom-up naive iterations of the fixpoint operator Tp introduced in Definition 2.3.5.
This, however, does not rule out the possibility of using/developing other evaluation

methods which perhaps could be more efficient.

Recall that the parametric framework includes a (potentially large) collection of
IB frameworks as special cases. With this in mind and the various parameters allowed
in each IB framework with wide range of complexities of the fixpoint evaluations of
p-programs ranging from constant time to PTIME to arbitrary time and to non-
terminating, the questions are: How to attack the problem while dealing with these
varieties? What techniques can be used or need to be developed so that the con-
clusions drawn are useful and the results obtained are applicable to large classes of

p-programs? In this chapter we attempt to address these questions.

4.3 Types of Disjunctions and Predicates

In this section. we define the notions of “types” of disjunction functions and “types”
Yp ) YP

of predicates.

Depending on how a disjunction function in the parametric framework compares

with the join operator in the underlying certainty lattice (T. <X, 3.%), we classify

the family of disjunction functions in Fy into three types, defined as follows.

Definition 4.3.1 (Types of Disjunction Functions) Let f € F; be a disjunc-

tion function in the parametric framework. Let T =T — {L,T}. Then, we say

(a) f is of type 1 provided, f = @, i.e., f coincides with the lattice join.
(b) f is of type 2 provided, Va,8 € T, ®(c, B) < f(a,8) < T.

(c) f is of type 3 provided, Ja, 3 € T, &(a,B) < fla,B) < T, and 3,8 e T,
fle',8)=T.



Note the distinction between types 2 and 3. For every certainty value different
from the least and the greatest elements, the value returned by a type 2 disjunction
function always keeps increasing when supplied with “better” argument values, while
a type 3 function may return T for some such values. Also note that in the definition
above, both a and # are required to be different from the bottom. This is because
otherwise we would not be able to assert the relationship & < f, noting that by our
Postulate 3, f(L, 1) = L, Vf € F4. Recall that for any pair of combination functions
f.g € F, we defined g < f, provided g(a, 8) =X f(e,8), Vo, 3 € T. The ordering <
on F is defined in the obvious way. A similar remark holds for requiring @ # T and
B # T, noting that by our Postulate 4, f(a, T) = T,forall f € F; and foralla € 7.

Definition 4.3.2 (Types of Predicates) Let P be a p-program, and p be a pred:-
cate defined in P. We say that p is of type 1, for i = 1,2,3, provided the disjunction

function associated with p is of type 1.

For ease of presentation and clarity, we define the following terms. By evaluation
of a p-program P on an EDB D, we mean computing the fixpoint semantics of PU D
using the bottom-up naive evaluation method. When the semi-naive method is meant,
we will make this explicit. We say an evaluation terminates if it terminates in a finite
number of iterations. Abusing the terminology. we may sometimes say a program ter-
minates to mean its evaluation terminates. We say an evaluation does not terminate
if it does not terminate in finite time or. equivalently, it terminates only at w. It fol-
lows from the continuity of the fixpoint operator. Tp. established in Lemma 2.3.6 that
every program terminates at most at w. We say an evaluation terminates in arbitrary
number of iterations if it terminates in a number of iterations which is independent of
the size of the EDB. In this case, the exact iteration number at which the evaluation
terminates is determined by the particular rule certainties involved and the combina-
tion functions used. We will use “termination in finite time” and “termination in an
arbitrarily large number of iterations” interchangeably. Clearly, termination in finite
time includes termination in PTIME, however, we will make it explicit whenever we
mean termination in PTIME. That is, unless explicitly mentioned, termination in

finite time does not necessarily imply termination in PTIME.
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4.4 PTIME Data Complexity

In this section, we establish PTIME data complexity for large classes of p-programs.

Our first result deals with p-programs whose underlying certainty domains are finite.

Proposition 4.4.1 Let P be any p-program whose underlying certainty domain T 1s
finite. Then the bottom-up naive evaluation of P on every EDB D always terminates
in PTIME, in the size of D and T .

Proof. Let n be the number of distinct constants occurring in D. The size of the
Herbrand base is equal to the number of possible ground atoms and this is < [T |n*,
where |7 | denotes the size of 7, and k is the maximum of the arities of the predicates
in P. Then the number of iterations required to obtain the least fixpoint of Tp on
the input P U D is at most |7 |n*. This is because each iteration of the bottom-up
evaluation of P on D produces at least one fact with a “better” certainty than before,
or terminates. Note that initially every atom is associated with the least certainty
1 € T. Therefore, the total number of possible iterations before termination is
O(|T|n*). which was to be shown. [

Note that according to this result, combination functions do not play any role in
the termination of p-programs which use a finite domain as the underlying certainty
lattice. Also in our proof. we were not concerned with the amount of work done at
every iteration. We just remark that in addition to the join and union operations
performed at every iteration in the classical case which can be done in PTIME in
the size of the database. we also perform some certainty computations using the
combination functions, which we do not consider in our complexity analysis and

results.

We also remark that when the size n of D is much larger than the size of 7, we

may ignore |7 | and say the complexity of the fixpoint evaluation of P on D is O(n*).

This proposition is épplicable to datalog, which uses 7 = {0,1} as the underlying
certainty domain, and establishes once again the well-known PTIME data complex-
ity for evaluating programs in datalog. It is also applicable to the deductive IST
framework of Lakshmanan and Sadri [LS94b], which uses 7 = L’ as the underlying

certainty domain, where L = {1,-1,1,T} and € is the number of sources which
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contribute to the information in the database. As remarked in the above, the PTIME
data complexity in this case is preserved when ¢ is fixed. When ¢ is much less than
the size of D, which is normally the case, ¢ can be regarded as a constant. When
these assumptions are not valid, the size of the Herbrand base is exponential in £.
Therefore, the bottom-up fixpoint evaluation of programs in this framework can be
done in PTIME in the size of the database D but exponential in ¢. More precisely,
we have shown that this can be achieved in O(4‘n*), where k is the maximum of the
arities of the predicates in P and n is the number of elements in D [Shi93]. Note
that this in itself does not exclude the possibility of a more efficient algorithm for
computing the least fixpoint of programs in [LS94b]. This remark is valid in general
for our results in this chapter. Lakshmanan [Lak94] proposed a framework which uses
T = 2T x 27" as the certainty domain, where T = {1,—1, L}, and M and N are
positive integers. The Herbrand base of programs in this framework is exponential
in the size of maz(M, N), which can be thought as the number £ of sources in the
framework proposed in [LS94b]. By our proposition above, the fixpoint evaluation of
programs in [Lak94] can be done in PTIME in the size of the database but exponential
in maz(M, N).

In the rest of this chapter, we assume the underlying certainty domain is infinite.
Since in some cases, we study data complexity of evaluating a program as a function
of the EDB size. we assume. without loss of generality. that the EDB is not part of the
user program. and that constant symbols are not used in the program. Furthermore.
we assume that every combination function can be computed with arbitrary preci-
sion. The strictness property of the propagation and conjunction functions defined
as Postulate 11 in Subsection 2.1.1 is important for our conclusions. This postulate
is similar, in spirit, to the “strictness” considered by Fagin [Fag96] in establishing
bounds on the complexity of conjunctive query evaluation in fuzzy information sys-
tems. Intuitively, it says that conjunction of a bunch of certainties is “non-zero” iff
each one of them is non-zero. The dual of this postulate, called dual strictness in
the same paper, says that disjunction of a bunch of certainties is less than *1” iff
each one of them is less than “17. This latter property is built into our definition of
type 2 disjunction functions. There is a compelling intuition associated with these

postulates.
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Our next result establishes PTIME data complexity for a large class of p-programs
whose underlying certainty domains are infinite. It ensures that when the disjunction
function associated with every recursive predicate defined in a p-program coincides
with the lattice join, then the fixpoint evaluation of the p-program on every EDB
always terminates in PTIME, in the size of the EDB. Note that in this case, it is not
important what propagation and conjunction functions are used in the p-program, or

what disjunction functions are associated with the non-recursive predicates defined.

Theorem 4.4.2 Let P be any p-program in which every recursive predicate defined,
if any, is of type 1. Then the bottom-up naive evaluation of P on every EDB D
always terminates in PTIME, in the size of D.

Proof. The proof uses disjunctive derivation trees (DDTs) introduced in Defini-
tion 2.3.8, and is based on a generalization of the proof of PTIME data complexity
for programs in [LS94a]. We will show that non-simple DDTs need not be considered
in deriving the certainty of any atom. The result then follows upon noting that the
height of simple DDTs is bounded by n*, where n is the number of constants in D

and k is the maximum of the arities of the predicates in P.

Let A € Bp be any atom, and T be any DDT of height A for 4 w.r.t. P and
D. We know that if there is a DDT of height h for 4 which computes a certainty a
for its root. then 4 : a’ will be derived by the bottom-up evaluation at iteration /
where a <a’. Now, the reason why non-simple DDTs need not be considered is as
follows. When the disjunction function is of tvpe 1. we can show that for every DDT
T that computes a certainty a for A, there is a simple DDT, say T’ for A, of height
no more than that of T, such that it computes the same certainty for A. Suppose
h > n*. Since there are only n* distinct ground atoms in the Herbrand base of PU D,
then there should be a path in T from the root to a leaf node of height more than
n* such that there is a goal node G occurring at least twice on the path, and its first
occurrence is at a height less that n*. This would then imply the predicate (G of
G is recursive, which by our assumption is of type 1. Let G be the first occurrence
of G from the root and G, be the second. That is, G; occurs at a height less than n*,
and G, occurs as a (immediate or otherwise) subtree T" of G;. It follows from the
procedure for assigning certainties to the nodes in a DDT (given in Definition 2.3.9)

that a; < a,, where o; is the certainty associated with G;, 1 <1 < 2. This is because
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in this case, ap contributes to the value derived for the root of T' and this root
is a subgoal in the body of the rule node defining G;. Since the conjunction and
propagation functions are bounded above (Postulate 3), and the disjunction function
associated with 7(G) coincides with the lattice join, the certainty o, cannot be more
than a3, w.r.t. <. This implies that the subtree T’ of T at G4 can be replaced with
the subtree at G, without changing the certainty derived for the root A of T This
replacement procedure can be applied recursively to every DDT of height more than
n*, eventually turning it into a DDT of height < n¥, while preserving the certainty
derived at the root. The result then follows noting that G was an arbitrary goal node

and T an arbitrary DDT. [ |

Simple DDTs were first introduced by Lakshmanan and Sadri [L.S94a] as a gener-
alization of simple paths in graphs, and used to establish PTIME data complexity of
a certain class of programs in their framework, namely those in which the disjunction
function associated with the recursive predicates is the positive correlation, pc, which
is also used as the join operator in their certainty lattice. Our result generalizes
their’s, since in addition to [LS94a], it is also applicable to van Emden’s language

[van86] and the possibilistic framework of Dubois et al. [DLP91}, for instance.

4.5 Arbitrary Disjunctions

In this section. we consider the case of arbitrary disjunction functions in our study
of the termination property of p-programs. Before we get into formal discussion. we
consider a number of examples illustrating the role of combination functions in this
study. These examples includes p-programs defining recursive predicates of type 2
and/or type 3. In most, but not all cases, we draw conclusions of the following form.
Given a p-program P, there are p-programs @, and @Q», identical to P, except possibly
for rule certainties, and there are EDBs D; and D, such that the bottom-up naive
evaluation of Q; on D; terminates in finite number of iterations, and that of @, on D>
does not terminate. Since there are programs whose bottom-up fixpoint evaluations
do not terminate or terminate in arbitrarily large number of iterations, we may not
expect to be able to provide a complexity analysis of the fixpoint algorithm. In fact.

it may not even be meaningful to discuss about the data complexity in such cases.



Also note that when we make a conclusion of the form “there are @ and D such that
- we assume that not all rule certainties in @ and D are T, since otherwise we
would be dealing with standard datalog programs, which can be evaluated in PTIME

in the size of the database.

4.5.1 More Examples

Let us consider again the p-program P, of Example 4.1.1, for which we showed that
when a < 1, the fixpoint evaluation of the program on every EDB would always
terminate in finite time. In this example, if we change the conjunction and/or propa-
gation functions, the resulting p-program may have a different termination behavior,
depending on the specific rule certainties involved. For instance, it can be shown that
when the conjunction function associated with r; is changed to multiplication *, we
can determine instances of rule certainties in P, and the EDB D, such that P;’s eval-
uation on D does not terminate. (Note that * < min, on certainties different from 0
and 1.) For example, let 7 = 0.3, and «, 8,7, and 7 be 1. It is then straightforward

to verify that the bottom-up evaluation of P, U D does not terminate.

Next, we illustrate that when in a p-program P, a type 2 disjunction function is
associated with some recursive predicate, then there are p-programs @, and @2, which
are identical to P except possibly for the rule certainties. and there are EDBs D; and
Ds. such that Q’s evaluation on D; terminates in a finite number of iterations. and
Q.’s evaluation on D, does not terminate. Note that ; and (2 could be identical.
Since termination in arbitrary time includes PTIME as a particular case. we will not

consider it as a separate case.

Example 4.5.1 Let P, be the p-program below.

ri: p(X,Y) & e(X,Y); (ind,min, ).
ra: p(X,Y) <= (X, 2), p(Z,Y); (ind, min, *).

Suppose @ = 1, and B is any certainty in (0,0.3]. Then it can be verified that
the fixpoint evaluation of P, on D; = {e(1,1) : 0.5, e(1,2) : 0.6} terminates in 3
iterations. On the other hand, when a = 8 = 1, it can be verified that the fixpoint
evaluation of P, on D; will not terminate. As the third case, we can determine «

and 3 such that the fixpoint evaluation of P, on D; terminates in a finite number of
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iterations. To see this, let @ = 1. We then have the recurrence equations below in

which o; denotes the certainty associated with p(1,2) at iteration z.

0.6
Ony1 = 0.5%x0, +0.6—-0.3*o0,, n>1,

251

For atom p(1,1), we have the following recurrence equations.

7 = 0.5
Yn+1 = 0.5 %7, +0.5 —0.25 % v,, n>1,

Choosing 3 = 0.5 * min(o;,v;) would ensure that when both of o; and 7; “cross”
this value, subsequent iterations won’t change the certainties of p(1,1) and p(1,2).
Note that 0.6 < 0; < 0.75 and 0.5 < v; < 2/3. Therefore, 0.5 0.5 < 3 < 0.5 x2/3,
where 0.5 in the lower limit of B is the minimum of the lower limits of o; and 7,
and 2/3 in the upper limit of 8 is the minimum of the upper limits of o; and 7.
Equivalently, 0.25 < 8 < 1/3. The certainly associated with p(1,1) and p(1,2) in the
fixpoint would be 2/3 and 22/30, respectively, and this happens when 8 = 1/3, in

which case these certainties are attained at w. [

Now let P; be the same as the p-program P, with « = 8 = 1, and with the prop-
agation and conjunction functions in r, switched. Then. as in the previous example,
we can determine EDBs D;. D, and Ds such that Ps’s evaluation on D, terminates
in a few number of iterations. P3’s evaluation on D, terminates in arbitrarily large
number of iterations, and finally Ps;’s evaluation on D3 will not terminate. For in-
stance. take D; = {e(1.1) : 0.5. €(1.2) : 0.6}. D, = {e(1.1) : v. €(1.2) : 0.6}. where
0 < v =o0; <1, and o; is the i-th term defined by the corresponding recurrence
equation for the atom p(1,2). As D3 we can take {e(1,1) : 1, e(1,2) : 0.6}. This
example shows that, again, switching the propagating and conjunction functions in
P, does not change its termination property, in the sense that for both P, and P, we
could determine Qs and Ds such that @,'s evaluation on D, terminates in finite time
and Q3’s evaluation on D3 will not terminate. This is a pattern we found suitable for

formulating the termination property presented in Subsection 4.5.

As another interesting example, let Py be the same as P, of Example 4.5.1, with
a = 0.5, B = 1, and (ind,min,min) as the triple of the combination functions

associated with r,. It can be easily shown that the fixpoint evaluation of P; on
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{e(1,1) : 1} will not terminate. We will return to P shortly.

The following example illustrates that evaluating a p-program defining a recur-
sive predicate of type 3 may exhibit different behavior than those defining recursive
predicates of type 2. An example of a type 3 disjunction function is nc(a, 8) =

min(l,a + B), denoting the negative correlation, in the probabilistic sense.?

Example 4.5.2 Let P; be the following p-program.

ri: p(X,Y) 22 e(X.Y); (ne,min, ).
ry: p(X,Y) P e(X,Z), p(Z2,Y); (nc, min, min).

Note that this is the same as Py except that here, the disjunction function associated
with the predicate p is nc. Let D; = {e(1,1) : 1, e(1,2) : 0.2} be an EDB. Then, the
bottom-up evaluation of Ps proceeds as follows, as far as atom p(1,2) is concerned.
In step 2, we derive p(1,1) : 0.5 and p(1,2) : 0.2, and in step 3 we get p(1,1) : 0.5
and p(1,2) : 0.2. Using nc, the corresponding atoms from these two iterations are
then combined which yields p(1,1) : 1 and p(1,2) : 0.4. This evaluation goes on
to step 6. at which we obtain p(1,2) : 1, and terminates at step 7, at which we
obtain no “new” fact. Given D, = {e(1,1) : 1, e(1,2) : 0.02} as the EDB, it can be
verified that evaluation of Ps on D, terminates in 51 steps. Note that P; and P;s differ
only on the disjunction function associated with the predicate p. Also note that the
fixpoint evaluation of Py on the EDB {e(1.1) : 1} will not terminate. while it can be
shown that evaluating P;’s on every EDB terminates. no matter what certainties are

associated with the p-rules. [ |

Consider the p-program Ps again. If every occurrence of m:n in P is replaced by
*, then unlike in the previous case, the fixpoint evaluation of the resulting program
will not terminate on some EDB, e.g., {e(1,1) : 0.2}. It can be verified that the
certainties of p(1l, 1) obtained at the sequence of iterations 1,2,... are 0.2, 0.22,.. |
respectively, where the i-th value, 0.22...2, has ¢ occurrences of 2. Note that the
role of = is crucial in this example. Also note that we would get a non-terminating

p-program, on some EDB, if (nc, min, ) is the triple associated with r,. Our analysis

4nc is the exact opposite of the positive correlation. It means the occurrences of the events
overlap minimally. If the probabilities of the events in this mode sum to less than 1, they do not
(have to) overlap at all. Otherwise, they overlap to the extent by which the sum exceeds 1 [LS94a]
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in the following section provides insights of the termination property and explains the

computational behavior observed in these examples.

We are now ready to provide a formal analysis of the termination property of
p-programs defining recursive predicates of type 2 and/or type 3. Depending on the
types of disjunction functions associated with the recursive predicates in a given p-
program, we consider four classes of generic p-programs, as follows. The first class,
studied in Subsection 4.4, includes those p-programs in which every recursive pred-
icate is of type 1. Subsection 4.5.2 considers p-programs which define at least one
recursive predicate of type 2 and no recursive predicate of type 3. The third class,
studied in Subsection 4.5.3, includes the p-programs which define at least one recur-
sive predicate of type 3 and no recursive predicate of type 2. In Subsection 4.5.4, we
consider the class of p-programs defining at least two recursive predicates, one of type
2 and the other of type 3. In addition to the particular types of predicates defined in
each of the cases mentioned here, a p-program considered may also define (recursive)

predicates of type 1 and non-recursive predicates of any types.

To study the role of combination functions in the termination property, we in-
troduce two “generic” p-programs, PM; and PM;, as program templates, which
essentially compute the transitive closures of some EDB relations. Although the un-
derlying certainty lattice employed in these templates is ([0.1]. <.min.maz) and the
combination functions considered are defined over [0.1]. our results are not peculiar
to these particular choices of parameters. This is mainly due to the fact that the
results are based on the properties of the parameters, as opposed to specific ones.
This makes the results applicable to large classes of p-programs. The template P.\,.
defined below, is used for the first three classes of p-programs mentioned above. and

P, defined in Example 4.5.6, is used for the fourth class.

Example 4.5.3 (Program Template 1) Let PM; be the following p-program:

ri: p(X,Y) = e(X,Y); (f% fL.)-
r I 4 c
g : p(A~Y) — e(‘YeZ)s p(Zvy)v (fd7f2p’f2>'
where a, 8 € (0,1] are rule certainties f¢ is a disjunction function in Fy associated

with the predicate p, ff € F, is the propagation function associated with r;, for

i = 1,2, and f§ € F. is the conjunction function associated with r,. The EDB
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considered in the following section is D = {e(1,1) : g, e(1,2) : n}, where u,7 € (0,1}.
|

4.5.2 Disjunction Functions of Type 2

In the following four subsections, we consider instances of PM; with f?¢ = ind, where
ind(a, 8) = a + B — af is a disjunction function of type 2. Depending on the pair
of propagation and conjunction functions associated with the recursive rule r, the
four cases considered are: (min,min), (*,min), (min,*), and (*,*). Note that
min is the meet operator in the certainty lattice and * < min, i.e., for all certainties
a, 3 different from 0 and 1, we have a * 3 < min(a, 3). One may ask: why we only
consider these pairs of functions? We remark that any function f such that f <&
(on all certainties different that 1 and T) could be chosen for our purposes; * chosen
is just one such function. We take 7 = [0, 1] as the underlying certainty lattice for

our examples in this chapter.

4.5.2.1 Lattice-Theoretic Propagation and Conjunction

Let Ps; be an instance of PM; with f¢ = ind and f§ = f§ = min. This case was
essentially discussed in Example 4.1.1. A summary of the results adapted to this case
are as follows. In the naive evaluation of Ps on the EDB D above. the certainty o,
of p(1.2) obtained at iteration n > lis o, =1 — (1 —0y)". whenever o, < min(.3.yu).
where o, = fF(a.n) is the certainty of p(1.2) derived by r; at iteration 1. Clearly.

this evaluation terminates at iteration n+ 1. whenever o, > mun(3, ¢). for any n > 1.

4.5.2.2 Lattice-Theoretic Conjunction but Arbitrary Propagation

Consider the instance P; of PM, in which f¢ = ind, f§ = * and f§ = min. Then, the
bottom-up naive evaluation of P; on D proceeds as follows, as far as atom p(1,2) is
concerned. Let us call p(1,2) as A, for convenience, and let o, denote A’s certainty at
iteration n. Then, o, = f7(a,n), obtained by applying ri. At iteration 2, we have two
derivations of A, one by r; with certainty o, and the other by r, with certainty ;3.
Therefore, 0, = ind(o,,018) = 01 + 018(1 — o1). At iteration 3, we can apply again

r and 1o to derive A, and thus o3 = ind(0y, 028) = o1 + 1 8(1 — 1) + 01831 — 01 )2
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It can be verified that A’s certainty at iteration n > 1 is:

_ n—-li i_al[l—-ﬁ"(l—a'l)"]
an—algﬂ(l—(J-l) = 1_[3(1-01) .

This evaluation terminates at iteration n + 1 if 6, > g, for any integer n > 1. This

is because in this case, A’s certainty derived by r, would be By, which will continue
to be derived at every following iteration. If at every iteration n, o, < g, then the
fixpoint evaluation of Py on D terminates only at w, at which the certainty obtained

for A is:

. o1
c=limo, =

nw 1-B8(1~a1)

It is clear from the above formula for o that when g > o,/(1 — 8 + 018), this

evaluation terminates only at w. Note that the certainty ¢ of A in the limit could
also be determined by solving the the recurrence equation o,41 = ind(oy,0,.3) =

o1 + 0.8 — 010,53, upon noting that in the limit, o,y = 0n = 0.

We remark that in this case, for any choice of the rule certainties in P:, one
can always find an EDB D on which the fixpoint evaluation of Pr terminates in a
finite number of iterations. This follows from the termination condition o, > u, which
depends on the certainty x coming from the EDB. or to be more precise, the certainty
i is associated with an instance of the EDB atom used in the body of r,. Therefore,
given any specific instances of the rule certainties a. 3 in P;. we can always determine
a desired EDB D on which the evaluation of P: terminates in finite steps. However.
in an arbitrary p-programs with type 2 disjunction functions. u need not directly
come from the EDB. In general. we can view p as an abstraction of the certainty of
the conjunction of all, but the recursive, subgoals in the rule body. In this case, the
certainty of this conjunction of subgoals is determined (directly) by the combination

functions employed in P: and the specific rule certainties used.

4.5.2.3 Lattice-Theoretic Propagation but Arbitrary Conjunction

Let Ps be an instance of PM; with f¢ = ind, ff = min, and f§ = *. Then, the
bottom-up naive evaluation of Ps on D proceeds as follows, as far as atom A =
p(1,2) is concerned. At iteration 1, rule ry defines A with certainty o1 = fT(a,n).
At iteration 2, there are two derivations of A by r; and r; with certainties o, and

o1, respectively, which when combined. using ind, yields o, = ind(oy,01p¢) = o1 +
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o1u(1l — 0y1). At iteration 3, we apply r; and r, again and derive A with certainties
oy and o,p, and thus the overall certainty of A at iteration 3 is o3 = ind(o1,024) =
o1+ op(l — o1) + o1p?(1 — 01)2. It can be verified that A’s certainty at iteration
n>1is:

n—1 n
i i ol —p"(1 —o1)"]
On=0 p(l—o) =
' ; 2 1 —p(l—01)

This evaluation terminates at iteration n + 1 if o, > B, for any integer n > 1. This
is because at iteration n, A’s certainty derived by r; is o,u, which will continue to be
derived in the future. When 8 > o1u/(1—pu+0p), this evaluation terminates only at
w, at which we obtain o7/(1 —p+o14) as A’s certainty, derived by computing the limit
of o, as n reaches w. Note that o could be also determined from the corresponding
recurrence equation on,4; = tnd(0y, Oplt) = 0| + it — 010, i, DOting that in the limit,
On+1 = 0 = 0. Also note that when § = 1, the certainty associated with A in the
fixpoint is 1, whenever this evaluation does not terminate, and this happens exactly

when g =1 and oy < 1.

4.5.2.4 Arbitrary Propagation and Conjunction

Consider the instance Py of PM; in which f¢ = ind and f§ = fS = =. That is,
the propagation and conjunction functions associated with r, are both less than the
lattice meet. w.r.t. the ordering <. Then. the bottom-up naive evaluation of Po U D
proceeds as follows. as far as p(1.2) is concerned. Let 4 = p(1.2). Applyving r,
at iteration 1, we derive A with certainty o; = f{(a.n). At iteration 2, r; and r»
define A with certainties o, and o,.3u, respectively. and hence ¢y = ind(oy.0,.3) =
o1 + o1 3u(l — o1). At iteration 3, we apply r; and r, again and derive A with
certainties oy and o,3u. The overall certainty of A at this iteration is thus o3 =
ind(o1,0:8p) = oy + 018u(l — 1) + 013%u2(1 — 01)2. It can be verified that A’s

certainty at iteration n > 1 would be:

- & i _ i _ ol =B (1 —01)"]
0’,1—0'1;/3#(1 01)_ 1..[3#(]_—01)

Let o be the certainty of A obtained at w. Thus,

li 71
oc=limeo, = .
n—w 1—,[3/1(1—‘0'1)
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iteration n + 1 if | imp—o on
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Table 2: Termination property of PM; when f¢ = ind

We could also determine o by solving the recurrence equation on41 = ind(o1, 0.8u),

noting that in the limit, opy1 = 0np = 0.
g +

Note that this evaluation terminates at iteration n + 1 whenever o, = 1, for some
integer n. In this case, o = 1, which happens only if oy =1 or By = 1. When both
o, and By are less than 1, it can be shown that ¢ < 1. To see this, first note that
both ¢; and By are non-zero. Then, since 87 < 1, we can multiply both sides of this
inequality by 1 — oy, which yields Bu(l — 0y) < 1 — o1. This in turn implies that
o1 < 1= 3u(l — o). i.e., the numerator of the fraction above for ¢ is less than its

denominator. and hence o < 1.

Table 2 summarizes our termination results for various instances of P\, with
f¢ = ind. The table shows that when 3 = 1. the choice of the propagation function
f? is not crucial in characterizing termination, since in this case, the first two rows
under the column o, would be identical. The same remark holds for the values under
the column o. These observations of course should not be surprising as they follow
from Postulate 10, which asserts f(a, T) = «, for every propagation and conjunction
function f and for every certainty a € 7. For the same reason, it can be seen from
the table that when u# = 1, i.e. when the certainty of the instance e(1,1) of e(X, Z)
in the body of r2 is T, then the choice of the conjunction function f§ is not crucial
for termination. We may thus conclude from the above that for the instance P, of
the template P M, if the certainty associated with the recursive rule r, defining a
type 2 predicate is 1 and also when the certainties of every subgoal in r, other than

the instance A of the p-atom defined by r, is 1, then no matter what propagation
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and conjunction functions are associated with r,, the certainty of A at iteration n 1s

1—-(1—o01)" and at wis 1.

In all the cases studied in this section using the instances of PM;, we observed
that one should expect evaluation which may require arbitrarily (large) number of
iterations to terminate or expect non-termination. Our observations in the preceding
subsections on the termination property of p-programs defining recursive predicates

of type 2 can be generalized as follows.

Conjecture 4.5.4 Let P be a p-program with (T, <,Q,®) as the underlying cer-
tainty lattice. Suppose all the recursive predicates in P are of types 1 or 2, and at
least one of them is of type 2. Let ry,...,r; be the recursive p-rules in P defining

type 2 predicates.

(a) If for every r;, 1 <1 < k, the propagation and conjunction functions associated
with r; are @, and the certainty associated with r; is < T, then the bottom-up
naive evaluation of P on every EDB always terminates in finite time.

(b) Suppose for some r;, 1 <i < k, either (1) @ is the associated propagation and
conjunction functions and T is the certainty of ri, or (2) at least one of the
propagation and conjunction functions associated with ry is < @. Then there
are p-programs Q, and Q» identical to P. except possibly for rule certainties.
and there are EDBs Dy and D, such that (i} Qs evaluation on Dy terminales

in finite time. and (ii} Q3 s evaluation on D, will not terminate.

The idea of a proof of this conjecture is to generalize our observations in the detailed
analysis performed above. The key point to note is that in an arbitrary p-program,
we may have in the body of recursive p-rules, any subgoal B other than the recursive
one, while we had an EDB fact, (X, Z), in the body of r, in PM;. The difference is
that in the former, B’s certainty may also increase at every iteration, while in P M,

it stays put, i.e., the certainty of e(1,1) is fixed and is p.

4.5.3 Disjunction Functions of Type 3

In this section, we consider again the program template P\, defined in Exam-

ple 4.5.3. In all the instances of PAf; studied in this section, we use f* = nc as the
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disjunction function, which is of type 3 and is defined as nc(a, 8) = min(l,a + 8).
As in the previous section, we will consider four cases, depending on how the pair of
propagation and conjunction functions associated with the recursive rule r; compares
with the meet operator in the certainty lattice. Also, as before, the EDB considered
in this section is D = {e(1,1): g, e(1,2) : n}.

4.5.3.1 Lattice-Theoretic Propagation and Conjunction

Let Pjo be an instance of PM; in which f¢ = nc and f} = f§ = min. Then,
the bottom-up naive evaluation of P, on D proceeds as follows, as far as p(1,2) is
concerned. Let A = p(1,2). At iteration 1, r; defines A with certainty oy = f{(a, 7).
At iteration 2, there are two derivations of A, one by r; with certainty o, and the
other by r, with certainty min(8, min(g,0,)). These certainties should be combined,
using nc, which gives g, = 20, assuming that o7 < min(8, ). Clearly, for any
n > 1, whenever o, > min(8, 1), this evaluation terminates at iteration n + 1. This
assumption thus allows the evaluation proceed to the next iterations. if possible. At
iteration 3, the certainty of A is o3 = nc(o1,02) = 30;. It is straightforward to verify
that A’s certainty at iteration n is o, = no;. From this, we may conclude that in this
case of Pjg. the least integer n such that o, > min(8, i) is at most f%'l . This in turn
implies that the fixpoint evaluation of Pjg on every EDB terminates in a finite number
of iterations, the exact number of which depends on the particular rule certainties
involved in Py and the EDB. Note that the certainty o of A at iteration n = [i] is

1. whenever o; < min(3.p). forall 1 <7 < [i] Otherwise. o < 1.

4.5.3.2 Lattice-Theoretic Conjunction but Arbitrary Propagation

Let P;; be the instance of PM; in which f¢ = nc, f§ = *, and f§ = min. Then,
the bottom-up naive evaluation of P;; on the EDB D proceeds as follows, as far as
A = p(1,2) is concerned. At iteration 1, we derive A with certainty oy = ff(a,n).
At iteration 2, A is derived with certainties o7 and 08, combining which yields
oy = ne(oy,018) = o1(1 + B). assuming that oy + 018 < 1. If this assumption does
not hold at some iteration n. then the evaluation terminates at iteration n + 1. At
iteration 3, there are two derivations of A with certainties o, and 0,8, and hence

o3 = nc(oy,0:8) = o1(1 + B8 + B?%). It can be shown that A’s certainty at iteration
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n>1is:
on=a(l+ B+ +p"7),
or equivalently, .
On = 01(11:5 )7

where 8 < 1. Note that since f} = *, the case where 8 = 1 reduces to the previous
case, where we showed the number of iterations required for computing the fixpoint
of P;; on any EDB is at most n = [;—1] Also note that this evaluation terminates at
iteration n + 1 whenever o, > u. It then follows from the above formula for o, that

A’s certainty in the limit is ¢ = limp—, o, = 01/(1 — 8).

Our remarks in Subsection 4.5.2.2 for the corresponding case with type 2 disjunc-

tion function also hold in this case.

4.5.3.3 Lattice-Theoretic Propagation but Arbitrary Conjunction

Let P,; be an instance of our program template PM, with f¢ = nec, f§ = min,
and f§ = *. Also let A = p(1,2). Then the bottom-up evaluation of P2 on D
proceeds as follows, as far as atom A is concerned. At iteration 1, we prove A with
certainty oy = fP'(a,n). At iteration 2, there are two derivations of A with certainties
o1 and o,pu. and hence 0, = oy + oyu. assuming that the sum is at most 1. by
definition of nc. At iteration 3. we derive A with certainties o, and o,u, and thus
o3 = 0y + oy = oy (1 + p + p?). It can be verified that at iteration n > 1, we have
on = o(1 + 4+ -+ "1 or. equivalently. o, = oy(1 — p™)/(1 —p). it p # 1. If
it = 1, then clearly this evaluation terminates at iteration j + 1, where j = fc—:ﬂ [t
also terminates at iteration k41, whenever oyu > 8. When this evaluation terminates
only at w, then o = 01/(1 — p) is the certainty of A obtained by computing the limit

of o, as n reaches w.

4.5.3.4 Arbitrary Propagation and Conjunction

Consider an instance Pyz of PM; in which f¢ = nc and f§ = f§ = *. Then the
bottom-up naive evaluation of P;3 on D proceeds as follows, considering the ground
atom A = p(1,2). Clearly, o1 = f7(a,n). At iteration 2, we apply r, and 72 and derive

A with certainties o7 and o8y, and hence o2 = nc(o1,018p) = o + 018u(l — 01).
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Table 3: Termination property of PM; when f¢ = nc

At iteration 3, we obtain o3 = nc(oy, 020u) = o1 + o1 fu(l — o1) + 1 f%p?(1 — o1)2

[t is straightforward to verify that A’s certainty at iteration n > 1 is:

n—1
i on(l- B u")
On =0 Byt = ———————=.
' zzzo 1—Bu
The certainty of A in the limit would be:
o= limo, = —2
- Ne—w n - 1 _ 6#9

if this evaluation terminates only at w. This happens whenever 3y < 1. 1.e.. whenever

3<lorpuc<l.

Note that when 3 = u = 1. the certainty of A at iteration n is no;. no matter
what propagation and conjunction functions are associated with the recursive p-rule
ro. In this case, the fixpoint evaluation of P;3 on every EDB always terminates at

iteration n + 1, where n = [-].

Table 3 summarizes the results of our analysis above on the termination property
for the generic p-program P, with nc as the disjunction function. As expected, the
table shows that when 8 = 1, or in general when 8 = T, the choice of the propagation
function f} is not crucial for termination. That is, when # = 1, the values of o, in
the first two rows in the table would be the same. The same remark holds for the
values of o in these two rows. The table also indicates that when g = 1, i.e. when
the certainty of the instance e¢(1,1) of the subgoal e(X, Z) in r; is the top, then the

particular choice of the conjunction function f§ is not crucial for termination. It then
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follows from these remarks that when 8 = g = 1, all four rows in the table would

collapse into one, and hence the distinction between them goes away.

It can be seen from Tables 2 and 3, that the main difference on the termination
behavior between the instances of PM; in which f¢ = ind and f% = nc is when the
propagation and conjunction functions associated with the recursive rule r; are both
lattice-theoretic. In this case, when f% = nc is the disjunction function associated
with the recursive predicate p in an instance of PM; considered, the bottom-up
evaluation of the program on any EDB would always terminate in finite time, while

this may not be the case when f? = ind, as was shown in Subsection 4.5.2.1.

The following conjecture generalizes our analysis results in this section to any
p-program defining recursive predicates of type 3 (and possibly of type 1 as well). A
proof of this relies on our observations in the special case analysis performed in this

section.

Conjecture 4.5.5 Let P be a p-program, on the lattice (T, X ,®, &), such that every
recursive predicate in P is of type 1 or 3, and at least one of them is of type 3. Let

r1.....r. be all the recursive p-rules in P defining type 3 predicates.

(a) If for every r;, 1 < i <k, the propagation and conjunction functions associated
with r; are 2. then the bottom-up naive evaluation of P on every EDB always
terminates in finite time.

(b) Suppose for some r;. 1 < i < k. at least one of the propagation and conjunction
functions associated with ry is < @. Then there are p-programs Qi and Q-
identical to P. except possibly for rule certainties. and there are EDBs Dy and
D, such that (i) Q. ’s evaluation on D, terminates in finite time, and (17) Q2 s

evaluation on D, will not terminate.

4.5.4 Disjunction Functions of Types 2 and 3

So far in our analysis of the termination property of p-programs, we have considered
p-programs defining recursive predicates of type 2 or type 3, but not both. In this
section, we study programs defining both types of predicates. The program template
we use for this study is as follows, which defines two mutual recursive predicates p

and ¢, where p is of type 2 and ¢ is of type 3.
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Example 4.5.6 (Program Template 2) Let PM,; be the following p-program:

ri: p(X,Y) & e(X,Y); (ind, f7, ).
ro: p(X,Y) <= ¢(X,Z), p(Z,Y); (ind, f3, f5)-
ra: ¢(X,Y) & r(X,Y); (ne, f3,-)-
ra: ¢(X,Y) < p(X,Z), ¢(Z,Y); (ne, £, f5)-

where o; € (0,1] is the certainty associated with r;, for 1 < i < 4, and f? and
f£ are the propagation and conjunction functions associated with r;. The underlying
certainty lattice used in this program is ([0, 1], <, min, maz). For ease of presentation,
and without loss of generality, let us assume the EDB relations r and e are identical.
As the EDB D, we will sometimes consider {e(1,1) : g, e(1,2) : n} and some other

times consider {e(1,1) : u}, where u,n € (0, 1]. n

We remark that one could consider as the program template in this case, a generic
p-program P’ in which the recursively defined predicates p and q were “less related”
or “unrelated”, as opposed to being mutually recursive. In this case, however, pro-
gram’s termination could be characterized by combining, in an appropriate manner,
the “relevant” individual results obtained in Subsections 4.5.2 and 4.5.3. For instance,
suppose min is both the propagation and conjunction functions associated with ev-
ery recursive p-rule in an instance of such a program template. Then, the fixpoint
evaluation of this program on every EDB reaches the fixpoint in a finite number of
iterations. as far as g-atoms are concerned. as shown in part (a) of Theorem 4.5.5. In
this case. termination of this evaluation depends on how it proceeds w.r.t. p-atoms.
which is characterized by Theorem 4.5.4. Also note that, in general. the number of
iterations required for evaluating an instance P of PM; on any EDB D, whenever
this evaluation terminates in finite time, is no more than that required for evaluating
P’ on D. Intuitively, this is because the certainty associated with every IDB subgoal
in r, (and in r4) increases at every iteration, in general, which in turn would cause
the evaluation of PU D to terminate in an earlier iteration than evaluation of P’ U D

would.

Our observation in the cases studied in this subsection is that, in general, they
can be dealt with using the results obtained in the preceding two subsections. In
other words, the issues involved here are fundamentally the same as those discussed

in Subsections 4.5.2 and 4.5.3, although the recurrence equations we have to deal
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with here are simultaneous non-linear, unlike those we dealt with previously which
were linear. This introduces some complications in solving such equations. What we
will do in this case is, by making some assumptions on the actual certainties used
in a given p-program, we attempt to reduce the system of non-linear simultaneous
recurrence equations to a linear one. What we hope to achievein this way is the ability
to “predict” the termination behavior of p-programs defining recursive predicates of
mixed types, including types 2 and 3. The kind of result we thus establish in this
subsection is as follows. Given an instance P of PM,, there are p-programs @, and
Q-, obtained from P perhaps with different rule certainties, and there are EDBs D,
and D,, such that the fixpoint naive evaluation of @; on D; terminates in finite time,

and that of @, on D, will not terminate.

As in the preceding subsections, in what follows we consider four cases depending
on how the propagation and conjunction functions associated with the recursive p-

rules in PM, compare with the meet operator in the underlying certainty lattice.

4.5.4.1 Lattice-Theoretic Propagation and Conjunction

Consider an instance Pi; of PM, in which f§ = f§ = fI = f{ = min, i.e., the
propagation and conjunction functions associated with every recursive p-rule in the
program coincides with the lattice meet. Consider the bottom-up naive evaluation
of Py on D = {e(l.1) : pu. €(1.2) : n}, for which we will be concerned only with
atoms p(1.2) and g¢(1.2), for ease of presentation. Clearly. we can always ensure that
ignoring p(1.1) and ¢(1.1) will not invalidate our conclusions. One way to do this
is to choose the rule certainties in P;y and D such that the certainties associated
with p(1,1) and ¢(1,1) reach their peak values before the certainties of p(1,2) and
q(1,2) reach theirs. Therefore, when we say that the fixpoint evaluation of PM; on
D terminates at certain iteration, we assume the best possible certainties of p(1,1)

and ¢(1,1) are already obtained in some earlier iterations.

We have the following system of recurrence equations, which captures this evalu-

ation of P4 on D, where o, and 6, denote, respectively, the certainty of p(1,2) and



q(1,2) obtained at iteration n.

o1 = fiaw,n)
Ony1 = tnd(oy,min(a, min(o,,6,))), n>1
61 = f3(as,n)
bne1 = nc(by,min(aq, min(0,,6.))), n=>1

Since the propagation and conjunction functions associated with ry are min, it
follows from our analysis in Subsection 4.5.3.1 that the fixpoint w.r.t. g-atoms is
obtained in a finite number of iterations. Let § be the certainty of ¢(1,2) in the
fixpoint, obtained at iteration j, where 1 < j < fgll-'] Note that § need not be 1 and
is determined by ¢;, a4, as, and . Also as explained earlier, the existence of the IDB
p(X, Z) as a subgoal in 74 may help the certainty §; reach its peak, 6, faster than it
would if we had an EDB subgoal instead, as in the case studied in Subsection 4.5.3.1.
This is because here, the certainty of the instance p(1,1) in 74 involved in deriving
q(1,2) may also increase, which in turn may cause faster termination w.r.t. g-atoms.
The fact that in this case such an integer j exists allows us in the above equation to

replace §, with §. This yields the following system of equations.

gy = f{)(alvn)
Ony1 = ind(oy,min(aq, min(on, 6))) n=>j

assuming that this evaluation requires at least j iterations before the fixpoint is
reached. Clearly. when at some iteration n. o, > min(é.a3). this evaluation termi-

nates at iteration n + 1.

Now. with the simplified system of equations, termination of this evaluation de-
pends on how it proceeds w.r.t. p-atoms. But then, as we know from our analysis
in Subsection 4.5.2.1, this evaluation may terminate in arbitrarily large number of
iterations or it may not terminate at all, depending on the rule certainties o, a; in
P, and g, 7 in D. For instance, let D; = D, with g =7 = 1. Let Q, be the same as P,
in which a, is any value in (0, ¢), where o is the certainty of p(1.2) in the limit. Note
that ¢ can be obtained by using the formula derived in Subsection 4.5.2.1. For the
certainties of other p-rules in Q,, we can take any value in (0, 1}, the particular choice
of which may only affect the iteration at which @;’s evaluation on D; terminates. To
define Q5 from Pj, let a; = 1, for 1 <7 < 4. This will ensure that when evaluating
Q, on D,, the certainty associated with the instance p(1,2) of p(Z,Y’) in the body of
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ro will never be more than the minimum of a,, the certainty associated with 3, and
the certainty in the limit of the instance ¢(1,1) of ¢(X, Z). This in turn implies that

the fixpoint evaluation of ()3 on D does not terminate.

We may thus conclude from the above analysis that for the case at hand, the
termination characterization reduces to the corresponding basic case discussed in
Subsection 4.5.2.1, in which the propagation and conjunction functions associated

with the recursive p-rule were both min.

4.5.4.2 Lattice-Theoretic Conjunction but Arbitrary propagation

Let P;s5 be an instance of PM,, in which f§ = f{ = min and f} = f} = *. Now,
consider the bottom-up naive evaluation of Pjs on D = {e(1,1) : n}, where € (0, 1].
The system of recurrence equations we get in this case is as follows, in which o, and

6, denote, respectively, the certainties of p(1,1) and ¢(1,1) at iteration n.

01 = ff(alv T])
One1 = tnd(oy, az *xmin(o,,6,)), n2>1
61 = fg(a3~, Tl)
bny1 = nc(by, agxmin(oy.bn)), n2>1

As in the previous case. we first try to simplifv the above svstem by making some
assumptions on the possible certainties which may be used in an instance of Py
and the EDB. It then follows from our analysis in Subsections 4.5.2.2 and 4.5.3.2. in
which we used the same propagation and conjunction functions. that we can determine
instances of the rule certainties in P;s and D such that the fixpoint evaluation of the
resulting database terminates in finite time. We can also determine instances of these
certainties such that the fixpoint evaluation of the resulting p-program on some EDB
will not terminate. There are various ways in which this can be accomplished. For
instance, we can first determine instances of the rule certainties involved in defining
g-atoms, ¢{1,1) in this case, such that our evaluation saturates w.r.t. g¢-atoms in
a finite number of iterations. Once this is done, we can either determine the rule
certainties involved in defining p(1,1) such that this evaluation terminates in finite
time, or determine them such that program’s evaluation will not terminate. For
instance, let a; < 1, a3 = 1, and a4 € (0,1]. It can be shown that when a; < 1,

the fixpoint evaluation of P;s on D = {e(1,1) : 1} terminates in finite time. More
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precisely, if we want this evaluation to terminate at iteration step n + 1, we can use

the formula:
_ 0'1[]. —_ 03(1 - 0’1)"’]

o 1 —ay(l — o)

which yields the certainty of p(1,1) at iteration n. This formula is derived in Sub-

section 4.5.2.2 in which we replaced 8 by a;. Now, for this evaluation to terminate
at iteration n + 1, we can first calculate the certainty o, from the above formula and
then choose the certainty of ¢(1,1) not less than o,,. In fact, this is already satisfied
by our choice of 1 as the certainties of both 7 and s, since the certainty of ¢(1,1) in
the fixpoint is 1.

To get an instance of Ps which does not terminate on some EDB, let o = 1
and the other rule certainties be as before. It can then be easily verified that the
fixpoint evaluation of the resulting p-program does not terminate on some EDB, e.g.
D = {e(1,1) : 1}. Note that as in the previous case, the certainty of ¢(1,1) in the
fixpoint is 1, obtained in the first step.

4.5.4.3 Lattice-Theoretic Propagation but Arbitrary Conjunction

We next consider p-programs defining recursive predicates of types 2 and 3 in which
the propagation and conjunction functions associated with every recursive p-rule

defining such predicates are min and =. respectively.

Let Py be an instance of P\,. defined in Example 4.5.6. in which f§ = ff = min
and f$ = f¢ = . Suppose the EDB contains only e(1.1) : 7. where n € (0.1].
Consider the bottom-up naive evaluation of Pjg on D, captured by the following

system of recurrence equations.

g1 = f{(e1,n)
Ony1 = ind(oy,min(az, o, %6,)), n>1
51 = fg(a:iv 77)
bne1 = nc(br,min(ay,0n*x6,)), n2=1

The solution to this system of equations yields the certainties o, of p(1,1) and
6. of g(1,1) at iteration n. Suppose a, < as. The case where this does not hold is
treated in a similar way. Clearly, if at some iteration j, ay < 07;6;, then this evaluation

terminates at iteration j + 1. To let this evaluation proceed, we can assume either
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0j6; < az or az < 0;6;. Assume the former is the case. Then, we have the following

equations for o,.; and 6,41 obtained from the above.

Ony1 = 01+ Un(sn - 0'10'11,611

6n+1 = 61 + o'n.én

assuming 6; + 0,6, < 1, by definition of nc. Although these equations are simpler
then the previous ones, they still form a system of non-linear simultaneous recurrence
relations, an exact solution to which does not appeal to us. As discussed earlier in this
section, we may not even need to find the exact solution, as our objective in this study
has been to develop an approximate formulation of the termination, characterizing

what can be “expected” when we evaluate a given p-program.

It can be easily seen that when at least one of the rule certainties a; and oy 1s
1, then this evaluation terminates only at w, at which the certainty associated with
each of p(1,1) and ¢(1,1) is 1. Similarly, we can see that when a; < 1 and a4 < 2,
the fixpoint evaluation of P;g on D always terminates in a finite number of iterations.
and the certainty computed for each atom in this case is less than 1. The exact step

in which this evaluation terminates is determined by the particular rule certainties
used in P;g and the EDB.

We may conclude from the arguments above together with our results in Theo-
rems 4.5.4 and 4.5.5 that. given an instance Pjg of P./s. there are p-program @, and
Q,. obtained from Pjg. with possibly different rule certainties. and there are EDBs
D, and D, such that the bottom-up naive evaluation of Q; on D, terminates in finite
time. and that of @, on D» will not terminate. For example. to define Q. we can
take a; < 1, for 1 < i < 4. For Q2. we can take. for instance, ¢; < 1. a2 = 1. az < 1.
and ay = 1. In both cases, we let n be any certainty in (0, 1], the particular choice of

which does not affect termination.

4.5.4.4 Arbitrary Propagation and Conjunction

Let P;; be an instance of P M, in which * is the propagation and conjunction function
associated with the recursive p-rules r, and r4. Note that * is chosen since * < & on
certainties different from the top and bottom elements. Then, the following recurrence

equations capture the fixpoint evaluation of Pi; on the EDB D = {e(1,1) : n}, where
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n is any fixed certainty in (0, 1].

Ontl = 01+ 0a0n6y — 0102006, n 2>1

6n+1 = 51 + a4an6n’ n>1

where o; = fP(ay,7) and 8 = f§(as,n). Although the above system of equations
is, in general, harder to solve than the one we got in the previous case, the termination
property is not expected to be fundamentally different, as there is a close relationship
between the two. This follows from the fact that when a; = a4 = 1, this case reduces
to the previous one, and also from the kinds of combination functions involved in

these two cases together with our analysis results in Subsections 4.5.2.4 and 4.5.3.4.

On the basis of our analysis in this section, we conjecture the following which

generalizes our observations in the special case analysis using the program template
Pl‘/f'z.

Conjecture 4.5.7 Let P be a p-program defining at least two recursive predicates,
one of type 2 and one of type 3. Then, there are p-programs @y and Q2, which are
the same as P, ezcept possibly for rule certainties, and there are EDBs Dy and Do,
such that the bottom-up naive evaluation of Q, on D, terminates in finite number of

iterations, and that of Q2 on Dy will not terminate.

4.6 Summary and Concluding Remarks

The termination property of p-programs formulated in this chapter were in the context
of programs with uncertainty in the parametric framework. Our results, however.
are applicable in the more general context of fixpoint computation with aggregation.
Kifer and Li [KL88] also studied the termination property of datalog with uncertainty
in the context of their AB framework. It is not settled under what conditions one
can expect finite termination when evaluating programs in their framework, unless
for a class of programs which use maz as disjunction function which clearly enjoy
PTIME data complexity. The idea of using the recurrence-based evaluation in our
work is borrowed from [KL88]. However, unlike us, they used the method as an
alternative to the conventional naive method. The recurrence-based evaluation they

used, although elegant, is a departure from the conventional query processing method,
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and the possibility of efficient implementation of their method is unclear. In our work,
we used this method to compute the certainties associated with the derived atoms at
different iterations, including the limit, as a by product of studying the termination
property of p-programs. The difficulty faced was that in some cases exact iteration
at which an evaluation terminates could not be determined. In such cases, we opt
for an approximate characterization of termination, which to some extent provided
useful insights as to how the choice of combination functions affects termination and

complexity of the fixpoint evaluation of p-programs.

The systematic analysis performed in this chapter shows that the distinction be-
tween type 2 and type 3 disjunction functions can be best explained when the prop-
agation and conjunction functions associated with every recursive rule coincide with
the meet operator in the underlying certainty lattice. We also remark that our results
in this chapter on the termination and the complexity of the fixpoint evaluations of p-
programs are useful also for the AB frameworks with uncertainty. In particular, these
results are applicable to AB programs which do not use annotation constants, since
as we will show in the following chapter, the computation of such programs can be
simulated by the parametric framework. Next chapter is dedicatd to the relationship

between the AB and IB approaches to uncertainty.

In our study in this chapter, we considered p-programs over a complete lattice. i.e..
[0.1]. assuming that the (arithmetic) computations (over reals) could be carried out
with arbitrary precision. In practice. this assumption may not always be valid. That
is to say under this assumption, there could be a mismatch between the theoretical
results and the actual computations with uncertainty. Before demonstrating this, let
us mention some observations with the so-called finite precision assumption, made
by Graumbach and Su in the context of constraint databases {GJ96]. They pont out
that some results, which are normally taken for granted, may break down under this
assumption. For instance, for all real numbers X, Y, the formula JYVX(X < Y)
would always be true, which says there always exists the greatest real number. Also,
the distributive law which holds on reals may not hold anymore under the assumption
above, i.e., a x (b+c) might be different from (a x b) + (@ x ¢). Furthermore, unlike with
real numbers, arithmetic computations with finite precision are sensitive to the order
in which the subexpressions are evaluated in query processing. In our context, we

note that arithmetic computations under the finite precision assumption may cause
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termination of a fixpoint evaluation of a p-program while theoretically it was expected

to run forever. The following example demonstrates this.

Example 4.6.1 Consider the p-program below.

ry: p(X) 22 e(X); (ind, *, ).
ra: p(X) < e(X), p(X); (ind, %, ).

If we evaluate this program on the EDB {e(a) : 1}, using our top-down implementa-
tion of the parametric framework introduced in Section 6.2, the sequence of certainties
obtained for p(a) is 0.8, 0.96, 0.9984, and 1, in the order specified. Theoretically, this
should have been an infinite sequence. However, due to finite precision, this sequence
converged in a finite number of iterations. The exact iteration number at which this
convergence happens is dictated by the run-time environment — both the hardware

and software systems. =
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Chapter 5
Expressive Power

In Chapter 1, we introduced a classification of approaches to logic programming and
deductive databases with uncertainty into what we called as annotation based (AB)
and implication based (IB) approaches. We have also seen the relative pros and cons
of these approaches in that chapter. An important metric in a comparison of these
two approaches is their relative expressive power: Are there queries one can express

in one of the AB (or IB) frameworks which cannot be expressed in the other?

Before we can address this question, we should point out that it refers to two
families of frameworks. rather than two specific frameworks. Since we have general-
ized all known IB frameworks and unified them into our parametric framework. we
can take the latter as a representative of all IB frameworks. If there was a similar
generic AB framework available. we could compare the expressive power of the two
generic frameworks — one for IB and one for AB - and address the above question.

Unfortunately, no such generic AB framework is known.

A related point to note is that Kifer and Subrahmanian [KS92] have shown that
their GAP framework (which is AB) can simulate the IB framework of van Emden

[van86}. No result in the converse direction is known.

In this chapter, we point out the limitations in the expressive power of known
IB and AB frameworks and motivate a paradigm of uncertainty programming with
(certainty) constraints. Motivated by this need, we propose an extension to the
parametric framework, called the eztended parametric (EP) framework. To facilitate

the comparison of expressive power, we develop a generic AB framework, to which
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we refer as the basic GAB framework. To give an idea, the basic GAB framework
developed includes the probabilistic logic programming framework of Ng and Subrah-
manian [NS92] as a special case. For the comparison to make sense, we assume that
the annotation functions in the basic GAB framework are subject to the same set
of postulates as in the parametric framework. Finally, we show that the parametric
framework can simulate all programs in the basic GAB framework which do not have
annotation constants or repeated annotation variables in rule bodies. We will also
extend the basic GAB framework with certainty constraints, to which we refer as
the eztended GAB framework. We will show that the EP framework is equivalent to
the extended GAB framework from the point of view of the expressive power. We
conclude this chapter with an observation that while the incorporation of certainty
constraints strictly increases the expressive power of both parametric and AB frame-
works, 1t comes at a price. While the basic parametric framework has a continuous

immediate consequence operator, this continuity is lost when constraints are added.

5.1 Certainty Constraints

A useful operation in deductive databases with uncertainty is to select from a relation
all the tuples associated with a certainty not “less” than a specified threshold, e.g..
as in the query “find all red objects whose degree of redness is at least 0.757. We call
this operation as selection by certainty. Another useful operation is join by certainty.
which amounts to prescribing that a pair of tuples in two relations can be joined
provided their associated certainties stand in a certain relationship. We can view the
selection/join by certainty as a filtering mechanism, by which we restrict the tuples
which can participate in the selection/join operations in the body of a rule to (possibly
empty) subsets of the relations in body. Our parametric framework, however, does
not support these two operations. To accommodate them, we propose an extension
to our framework, and refer to the resulting framework as the eztended parametric

(EP) framework. This is achieved by allowing certainty constraints in the rule bodies.
A certainty constraint is of one of the following forms:

o wt(A) b o
o wt(A) § wt(B)

94



where A and B are both atoms, o is an element of the certainty lattice 7, and 8 is
one of =, <, <, >, >, and #. Intuitively, wt(A) can be viewed as a function which

returns the certainty (or the weight) associated with atom A.

The EP framework proposed above allows each rule to contain in the body a
conjunction of certainty constraints. More precisely, a rule in the EP framework

(ep-rule, for short) is an expression of the form:

r: p(Y) s QI(VI)v---’Qn(_Y-n)a C’onstraint,.; (fd»fpvfc)

where Constratint, is a conjunction of certainty constraints such that in every term
wt(A) specified in the constraint, A is an atom of the form qi(Y;), for 1 < i < n.
We refer to programs in the EP framework as ertended p-programs or ep-programs,
for short. To illustrate how certainty constraints could be useful, let us consider the

following example.!

Example 5.1.1 Consider a medical application where uncertain knowledge about

particular diseases and symptoms is represented as the following ep-rules.

ry: disease(X, D) 22 has(X.S), symptom(D,S), wt(has(X,S)) = 0.8,

wt(symptom(D, S)) > wt((has(X, S)); (maz.*, min).
ry: disease(X.D) AR family_history(X. D). hereditary(D).

wi(family_ history(X, D)) > 0.8.

wt(hereditary(D)) 2 0.7: (mar.*.min).

The use of constraints can be viewed as a filtering mechanism. For instance. the
likelihood of X having disease D is computed (by r;) only when X has a symptom &
with certainty > 0.8, and S is associated with D with certainty > 0.9. In particular,

conclusions with “insignificant” certainties are automatically pruned. ]
Y

The notion of satisfaction of ep-programs by valuations is very similar to the corre-
sponding notion for p-programs, given in Definition 2.3.1, except that here constraints
should be also satisfied. Satisfaction of constraints by valuations is defined as follows.
Let P be an ep-program, and v be any valuation of P. Suppose Ci,...,Ck is the

conjunction of certainty constraints specified in the body of an ep-rule in P, where C,,

1This example without constraints appeared in [Lak94] and was given in a different context.
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1 < € < k, is either an expression of the form (1) wt(B;) 8o or (2) wit(B;) 0 wt(B;),
where 0 € T, and 0 € {=, #, <, >, =X, >=}. We say that v satisfies C}, denoted |=, Ci,
provided v(B;)f o is true in case 1, and v(B;) 8 v(B;) is true in case 2. We say that
v satisfies C;,...,Cy, provided =, Cp, forall 4,1 <2< k.

5.2 A Generic Annotated Logic Framework

Before comparing the expressive power of EP with the AB approach, we point out

the following.

1. The AB framework to which we compare our EP framework does not exactly
correspond to any existing AB framework, rather it is a generic language which
includes the essential features of the AB approach. We refer to this language as
the basic generic AB (GAB) framework. We will also consider an extension of
the basic GAB in which certainty constraints are allowed in the rule bodies. Let
us call the resulting language as the extended GAB. A rule r in the extended

GAB framework is an assertion of the form:
r: p(X): f(Vi,..., Vo) = qi(Y1) : Vi....,qa(Yr) : Vi, Constraint,

where V; is a certainty constant or certainty variable. for 1 < ¢ < n. and
Constraint, is a conjunction of constraints in r each of which is a relation
of the form V;f8c or 1;6V,. where 0 € 7. and 8 is any of the =. #. <. . X.

and >. w.r.t. the certainty lattice 7.

Note that certainty constraints are allowed in the extended GAB framework. but
not in the basic GAB. Also note that the extended GAB framework so defined is
strictly more expressive than any AB framework. To see this, suppose we want
to perform a join operation on tuples ¢, and ¢, in relations q and r, respectively.,
such that the certainty associated with ¢, is not “less” (w.r.t. the ordering
< on T) than the certainty of ¢,. While this cannot be expressed in any AB
framework, including the basic GAB, it can be expressed as the following ep-rule
in the extended GAB framework.

p(X): f(Vi,V2) — q(Y1): V4, n(Y2) : Vo, U = V4

where f is a desired annotation function.
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2. For the comparison between the EP and the extended GAB frameworks to
make more sense, we require that the annotation functions allowed in GAB
satisfy the corresponding postulates imposed on the combination functions in
the parametric framework (Definition 2.1.1). Recall that annotation functions
in the AB approach, including the basic and the extended GAB frameworks,
play the roles of both conjunction and propagation functions in the parametric

framework (and hence the EP).

3. Our motivation for extending the parametric framework with constraints to
define the EP framework was to accommodate the operations of selection and
join by certainty. However, in terms of expressive power, we can show that the
parametric framework (without constraints) can simulate the computation of
any program in the basic GAB in which the rules do not contain annotation
constants or repeating annotation variables. This is established by the following

proposition.

Proposition 5.2.1 For every program P in the basic GAB framework such that no
annotation constants or repeating annotation variables appear in the rules of P, there
ezists a program P’ in the parametric framework such that on every EDB D, P and

P compute the same atom-certainty pairs.

Proof. We will show how a desired p-program P’ could be constructed by showing
how an arbitrary rule in P would be transformed into a p-rule in P'. Let T be the

underlving certainty lattice in P. Then. any rule r in P is an assertion of the form:
ro p(X):g(Vi,. .. Vo) &= qu(¥1) : W, .. o qn(Yn): Vi

where Vi’s are annotation variables and by our assumption, V; # V;, whenever ¢ # j,
for all 1 <i,j < n. Suppose fs is the disjunction function associated with the head
predicate, p. Then corresponding to this rule in P, the p-program P’ would contain

the p-rule:

1

T p(Y) — QI(?I)W'-’qn(?n); (fdag=g>

where T is the top element in 7. This completes the transformation process, whenever
n > 0. (If n =0, then r is of the form p(X) : «, in which case, P' would contain

p(X) «— .) Next, we show that the fixpoint evaluations of P and P’ on any EDB
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produce the same results. To this end, we use the induction proof technique, where
the induction is on the number ¢ of iterations required to compute the fixpoints. Let
D be any EDB, and consider the bottom-up naive evaluations of P and P’ on D. For
every atom-certainty A : « derived at iteration ¢ by r in P, we will show that there

is a corresponding derivation of A : & at iteration 7 obtained by r' in P'.

Basis case: ¢ = 0. The result trivially follows upon noting that P and P’ are evalu-
ated on the same EDB.

Inductive step: Suppose P and P’ define the same atom-certainty pairs at some
iteration z > 0. By our assumption, since there is no annotation constants or re-
peating annotation variables in the body of r, this rule can be fired exactly when
every subgoal in its body is satisfied. That is, every subgoal has a certainty which
is greater than L. It then follows from our construction that in this case, the body
of r' is also satisfied and hence r’ can be fired. Since the head atoms in r and r
are identical, these rules, when fired, define the same “set” of ground atoms. To
show that at iteration ¢ + 1, these rules define the same results, considered as mul-
tisets, let p be any ground instance of r, and v; be the valuation of P defined at
iteration ¢, which maps every subgoal in the body of p to 7. Suppose # is the sub-
stitution used to define p. Then, the certainty associated with p(X)8 defined by r’

defined by r upon noting that 1; = vi(qa(Y;)0). for 1 < j < n.and g(T.a) =a. by
Postulate 10 on the propagation functions (Definition 2.1.1). Finally. the certainty
~ associated with 4 at iteration : + 1 defined by P is obtained by collecting ~all”
the derivations of 4 as a multiset over which we apply the disjunction function f;.
Clearly. v is also what we obtain at iteration i + 1 in the evaluation of P'. The result

then follows as A was arbitrary. [ |

The key idea in the proof above is that under the given conditions, the annotation
variables in the body of every rule r are just place holders for the actual certainties as-
sociated with the subgoals of r used when evaluating r. In particular, no relationship

between the annotations in r is asserted under the conditions specified.

Our next result establishes that the EP framework and the extended GAB frame-

work have the same expressive power.
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Theorem 5.2.2 For any program in the eztended GAB, there ezists an ep-program
such that on every EDB, they compute the same atom-certainty pairs. Conversely,
given any ep-program, there exists a GAB program with certainty constraints such

that on every EDB, they compute the same atom-certainty pairs.

Proof. The proof idea is based on program transformation. We will show that any
rule in either of these frameworks can be “equivalently” expressed as a rule in the
other, in the sense that on every database, including the EDB as well as the IDB, the
rule and the transformed rule define the same multiset of atom-certainty pairs. The
transformation method is straightforward and is described as follows. Suppose r is

any rule in the extended GAB framework. Then, r is of the form:

rep(X):gVi,..., Vo) «— q(Y1) : Vi,...,qu(Yn) : Vo, Constraint,.

In this case, r can be expressed as the following ep-rule:

' —_— —_ —

r o p(X) —— q(Y1),-...4.(Ys), Constraint.; (fa. -, g)

where Constraint. is obtained from Constraint, with annotation variable V; replaced
by wt(g;(Y;)). for 1 < j < n. Here, fy is the disjunction function associated with
the head predicate p, and g is the conjunction function specified in the annotation
function in the rule head. Since the certainty associated with r is T, it follows from
Postulate 10 that it does not matter what propagation function is used in r. This

completes the transformation process which defines the ep-program.

We now show how a given program in the EP framework can be transformed to a

program in the extended GAB. Consider an arbitrary ep-rule s. which is of the form:

st p(X) & (Y1), ..., qn(Y ), Constraints: {fa, fp, fe)-

This rule can be expressed in the extended GAB framework as:

!

s p(X): folas fel(Vis-» Va)) = q(Y1) : Vi,. ., qu(Y0) : Vi, Constraint,

where Constraint, is obtained from Constraint, with the weight term wt(qe(Yr))
replaced by Vi, for 1 <k < n.

It can be easily verified that given any rule in one framework, the transformation
method produces an “equivalent” rule in the other framework. It is then straightfor-

ward to see that this equivalence at the rule level implies equivalence at the program
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level, since, by the transformation method, the disjunction function associated with
the head predicates in the corresponding rules in the given program and the trans-

formed program are identical. =

The following example illustrates the transformation process.

Example 5.2.3 Let P be the following GAB program with certainty constraints.

ri: disease(X,D): 0.8 * min(Vi,Vo) « has(X,S): Vi, symptom(D, S) : V2,
Vi 208, Vb > V.

ro: disease(X,D): 0.9« min(V1,V,) «— famuly_ history(X, D) : Vi,
hereditary(D) : V3,
Vi 208, V, >0.7.

Following the transformation method proposed above, P would be transformed into
the following ep-program, assuming that in P, fy is the disjunction function associated

with the predicate disease.

ri: disease(X,D) <2 has(X,S), symptom(D,S), wt(has(X,S)) = 0.8,
wt(symptom (D, S)) > wt(has(X,S)); {(fs,*, min).

ry : disease(X, D) 22 family_history(X, D), hereditary(D), u
wt( family_history(X, D)) > 0.8,
wt(hereditary(D)) > 0.7: {fa.*.mun).

Note that although query processing in the AB framework of Kifer and Subrahma-
nian [KS92] may in general call for constraint solvers, explicit assertions of relationship
among certainty constraints are not allowed in user programs: a restricted form of
constraints is implicitly allowed in the basic AB framework, done through associat-
ing the same annotation constant/variable with more than one atom in a rule body.
Incorporating certainty constraints in the parametric framework or any AB frame-
work strictly increases the expressive power of the framework. Another advantage of
allowing certainty constraints in AB frameworks is to providing a common ground so
that the comparison between the EP framework and the extended GAB framework
would be possible. This sheds more light on the relationships of the AB and IB ap-
proaches to uncertainty in logic programming and deductive databases. The above
result establishes that when constraints are added, the EP and the extended GAB

frameworks are equivalent in terms of expressive power.
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5.3 Continuity and Expressiveness Trade Off

The increased expressive power gained by allowing certainty constraints comes at the
expense of continuity in the sense that the fixpoint operator T would no longer be

continuous. The following example illustrates this point.

Example 5.3.1 Consider the ep-program P below, in which the underlying certainty
domain is 7 = [0, 1}.

r: p(X,Y) = e(X,Y); (ind, *, min).
ra: p(X,Y) — e(X.Z), p(Z,Y); (ind, *,min).
r3: r(X,Y) 1 p(X, Y), ¢(X,Y),wt(p(X,Y)) > wt(q(X.Y)); (ind,*,min).

Suppose D = {e(1,1) : 0.5, e(1,2) : 0.5, ¢(1,2) : 1} is the EDB. Since Tp(r(1,2)) =0
but Tyt (r(1,2)) = 1, the fizpoint of Tp will not be obtained at w, tmplying that Tp

15 not continuous. [ ]

Another impact of p-programs with constraints is on the termination behavior
and complexity of evaluating such programs. We note that there are ep-programs
with constraints whose evaluations terminate, while the corresponding p-programs
with the constraints dropped may not terminate. For instance. consider a p-program
with the p-rules r; and r; defined in the above example. The fixpoint evaluation
of this program on the EDB D does not terminate. Now consider the ep-program

Q = {ri.r,}. where r; is the following ep-rule.
r; : p(X.Y) — e(X.Z). p(Z.Y). wt(e(X.Y)) > 1. wt(p(X.Y)) = 11 (ind.*.min).

[t is easy to see that the fixpoint evaluation of @ on D is obtained in two iterations.
This is because the first certainty constraint in r, is such that it ensures this rule

never fires.

5.4 Summary and Concluding Remarks

In Chapter 1, we classified the approaches to uncertainty in logic programming and

deductive databases into two — Annotation Based (AB) and Implication Based (IB).
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Although for some reasons mentioned in that chapter, we chose the IB approach
and developed a powerful framework which unifies and generalizes the IB approach,
the relationship between the two approaches was a question which we desired to
investigate. The main reason for our quest was because there was a generalized theory
of annotated logic programming proposed by Kifer and Subrahmanian [KS92], to
which we wanted to compare our parametric framework in terms of expressive power.
Our study in this chapter shed some light on this issue and provided insights. We
found out that the notion of certainty constraints is a key concept bridging these two
approaches. We explained that the annotation constants and variables as introduced
in the AB approach provided a restricted form of certainty constraints. Generalizing
this, we then showed that allowing certainty constraints in both approaches strictly
increases the expressive power of both. Furthermore, we established that the resulting

frameworks (the EP and the extended GAB) have the same expressive power.

As illustrated by Example 5.3.1, the increased expressive power obtained by incor-
porating certainty constraints comes at a price; the immediate consequence operator,
Tp, is not continuous any more. On the other hand, we showed that this incorpora-
tion is useful in programming with uncertainty, since it lets realizing the operations of
selection and join by certainty, as described earlier in this chapter. A question at this
point is that: should one go for constraints to benefit from the increased expressive

power? If ves. how to deal with the discontinuity?

We remark that not every use of certainty constraints would be a problem w.r.t.
discontinuity of Tp. For instance, if a program in the EP or extended GAB framework
uses certainty constraints of the form wi(A) 6 wt(B) only. then the fixpoint semantics
would be computed in at most w steps. The same is true when every certainty
constraint in a program is of the form wt(A) = o, where o € 7 is a certainty value.
The discontinuity may be an issue when the program contains both kinds of certainty
constraints. A similar remark by Kifer and Subrahmanian in the context of the
GAP framework [KS92] is that evaluating a GAP program may exhibit undesirable

behavior when annotation constants and variables are intermixed in the programs.

It is interesting to note that certainty constraints in which the relationship # could
be =, #, <, or = is related to negation. The following example illustrates that in

this case, monotonicity may be lost.
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Example 5.4.1 Consider the following example of an ep-program.

0.5
rr: Ae—.

ra: A2 A wi(A) =0.5.

Suppose (ind, min, min) is the triple of combination functions associated with r; and
5. A fixpoint evaluation of this program is as follows. At iteration 1, we derive A with
certainty 0.5. In the second iteration, there are two derivations of A each of which is of
certainty 0.5. The overall certainty of A at this iteration is thus :nd(0.5,0.5) = 0.75.
In the third step, only r; can be fired and hence we derive A with certainty 0.5, which
is less than A’s certainty in the previous step. The euality relation “=" in rule r; of
this example seems to play the role of negation in the standard framework. Similar
remarks hold for the other relations mentioned above as 8. This issue worths further

investigation.
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Chapter 6
Implementations

In Chapter 3, we studied the containment of parametric conjunctive queries which
is at the heart of query optimization. The results obtained would help decide, for
instance, when a subgoal can be removed from the body of a p-rule in a given p-
program without changing the semantics of the program. This could result in a

significant increase in the efficiency of an evaluation of the program.

Efficient query processing in standard logic programming and deductive databases
has been studied extensively for over a decade, and numerous techniques have been
proposed and implemented in many existing svstems. See [(GT89] for an overview of
these techniques. It is well-known that alternate derivations of the same atom are not
important in the standard framework. One source of inefficiency in the bottom-up
naive evaluation of datalog programs is that some atoms might be derived multiple
times during the iteration process. More precisely, atoms derived at some iteration
will continue to be derived at all the subsequent iterations. The conventional semi-
naive evaluation methods proposed improve the situation by partially eliminating

such inefficiencies, and hence such methods are preferred over the naive method.

However, as shown before, alternate derivations may not be ignored in general
when uncertainty is present. What we need to do for evaluating queries in this
case is to collect “all” the answer tuples as a multiset to which we then apply a
desired disjunction function. We propose a semi-naive method suitable in our context
obtained by extending the idea from the corresponding method in the classical case.

It also takes into account the certainties mentioned in a p-program as well as the
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combination functions used.

The rest of this chapter is organized as follows. In the following section we de-
velop a semi-naive method for evaluating programs with uncertainty. This method
is used in both of our top-down (TD) and bottom-up (BU) implementations of the
parametric framework which are introduced in Section 6.2. Finally, in Section 6.3,
we give examples demonstrating how query programs in the parametric framework
would be evaluated using our TD and BU implementations. Our experience in various
implementations together with experimenting with the TD and BU systems increase
our belief that the ideas in this thesis lend themselves to an efficient and easy-to-use

environment for deduction with uncertain knowledge.

6.1 A Semi-Naive Evaluation Method

In this section, we study efficient bottom-up evaluations of p-programs. Let us quickly
describe the bottom-up naive evaluations of p-programs. Initially, every atom is
assigned the least certainty value, L € 7. Then, at iteration i, we apply every rule
in which every subgoal in the rule body has a certainty greater than 1, and plug for
each subgoal, its “best” certainty derived in the previous iteration. Then, alternate
derivations of the same atom are combined into a single certainty. using the desired
disjunction function. This process terminates at some iteration. possibly . at which

no atom is derived with a “better certainty.

The naive method just described is a straightforward extension of the conven-
tional naive method. which uses the disjunction functions defined in the program for
aggregating at each iteration the certainties obtained. Following the same idea, we
develop a semi-naive method for evaluating programs with uncertainty, described as
follows. At each iteration, we maintain a multiset of certainties derived so far for
each atom. as well as the best combined certainty obtained for it in that iteration.
At iteration 0, the multiset is empty for all atoms, and the best certainty is L. (In
the classical case, every ground atom is initially associated with false). At iteration
i+ 1, we apply every rule for which there is at least some subgoal whose best certainty
changed at iteration . (In the classical case, we fire every rule for which we found a

proof for a subgoal in the rule body at the previous iteration.) The certainty used for
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each subgoal in a rule applied is the best certainty of that subgoal from iteration ¢z,
obtained from its associated multiset. For each atom A derived at iteration : + 1, the
multiset of certainties obtained from all possible derivations up to this iteration are
collected and combined using the disjunction function associated with the predicate
of A. If no atom had its best certainty changed from iteration 7 to ¢ + 1, then the
evaluation terminates. (In the classical case, this means if no new atom is derived

from iteration i to 7 + 1, then the evaluation stops.)

The above steps are formalized in the algorithm shown in Figure 1. Recall that )
is the empty multiset, and U is the multiset union which retains the duplicates. For
every atom A at iteration i, we associate a pair, M;(A) and o;(A), where M;(A) is a
multiset which contains “all” certainties obtained for A up to and including iteration :
from all possible derivations of A, and ¢;(A) = fs(M;(A)), where fy is the disjunction
function associated with the predicate of A. In this algorithm, we use New; to denote
the set of all atoms derived at iteration z (: > 0) with a better certainty than before;
Newp = 0. In the classical case, New; would contain every atom derived for the first
time at iteration . We also use v; to denote the valuation of the program obtained at
iteration 7, where vy = v, is the least valuation. Recall that P~ is the set of ground
instances of all the p-rules in P. The following example illustrates the steps of this

algorithm.

Example 6.1.1 Consider P be the following p-program.

ri: p(X.Y) — e X.Y): (ind._. ).
ra: p(X.¥Y) —— e(X.2Z). p(Z.Y): (ind, _. *).

Any propagation and conjunction function can be used in r; and r; where there is a
don’t care. Let D be the EDB which includes the tuples e(0, 1), €(0,2), e(1,2), e(1,3),
and e(3,2), each of which is associated with certainty 0.5. Let us now consider the
bottom-up semi-naive evaluation of P on D, for which we show the multiset-certainty
pair (M, o) associated with each atom, whenever the pair is updated in an iteration.
At iteration 0, every ground atom in the Herbrand base of PUD is associated with the
pair (@, L). At iteration 1, the pair associated with every atom in D is ({0.5},0.5),
and New; = D. We can apply r; at iteration 2 and derive p(0,1), p(0,2), p(1,2),
p(1,3), and p(3,2), and the pair associated with each of these atoms is ({0.5},0.5). In
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procedure SemiNaive (P, D; Ifp(Trup))

VA € Bp begin My(A) := §; do(A) := L; end;
V(A:a) € D begin M;(A) := {a}; 01(A) := ¢; end;
i:=1; vy ;= D; New; := {A|A:a€ D};

repeat

VA € Bp do
begin

A’.’[,'.i.l(A) = M,(A),
if 3(A 2= By,..., B (f2, f7, f5) € P

such that B; € New;, for some j € {1,...,n},
then begin

V(A <= Bi,... Ba; (f%f7,f)) € P"
such that B; € New;, for some j € {1,....n}, do
begin
M1 (A) = M, (A)U]o}.
where o = fP(ar. f*({ui(B1)s - - -, vl Ba)D)):
end;
oirv1(A) = fa(Mip1(A4)):
vir1(A) = g (A):
end:
else v;1(4) = v (A):
end forall:
Newiyy :={A | A € Bp,git1(A) = 0:(A) };
1= 1+ 1;
until New; = 0;
Lfp(Tpup) = vi;

end

Figure 1: A semi-naive evaluation algorithm for p-programs



this case, News, includes only these p-atoms. In the third iteration, we can only apply
r, by which we derive p(0,2). p(0,3), and p(1,2), each of which is associated with the
pair ({0.5,0.25]},0.625). We thus have News = {p(0,2), p(0,3), p(1,2)}. At iteration
4, we can apply rule r, and derive only p(0,2) using p(1,2) and e(0,1). In this case,
({0.5,0.25,0.3125},0.65625) is the pair associated with p(0,2), and New,= {p(0,2)}.
The evaluation process proceeds to the next iteration, in which no rule can be applied,
and hence terminates. The atom-certainty pairs we get in vs are those in D as
well as p(0,1):0.5, p(1,3) : 0.5, and p(3,2) : 05, p(0,3) : 0.625, p(1,2) : 0.625, and
p(0,2) : 0.65625. [

The following result shows that the semi-naive algorithm described above produces

the same atom-certainty pairs as the naive method.

Theorem 6.1.2 For every p-program P and every EDB D, the bottom-up naive and

semi-natve evaluations are equivalent.

Proof. The proof follows from the definitions of the two methods upon noting that
at every iteration ¢, under both methods, we combine exactly the multiset of all
certainties for a given atom A coming from all derivations considered so far. The only
difference between the two methods is that under the semi-naive evaluation proposed
above. at iteration ¢ + 1. we do not recreate derivations previously considered. since

their results are “cached”™ in the multiset 1/;(4) associated with A. [ |

Before closing this section. let us point out a similarity we observe between the
role of disjunction functions in programs and the role of function symbols in logic
programming framework, although function symbols in the conventional sense are
not allowed in the parametric framework. Since in a p-program P, there are only
finitely many certainty values, we may conclude that the non-termination behavior
or termination in an arbitrarily large number of iterations discussed in Chapter 4 is
due to generation of new certainties derived by disjunction functions in P, such as ind
in the above example. In a logic program @ with function symbols, such a function
generates infinitely many ground atoms in the Herbrand base of ). The bottom-up
evaluations of both P and Q may terminate only at «v. The similarity mentioned above
between the two frameworks is in the reason for having non-terminating evaluations,

which is “generation of new things” at every iteration, where the new things in the
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case of program P are atoms derived with better certainties, and in the case of Q,
they are atoms derived with new functional terms. Note also a difference between the
two cases from the viewpoint of the output size, which is finite in the case of P, and
infinite in the case of Q.

6.2 Implementation Modules

In this section, we introduce our top-down and bottom-up implementations of the
parametric framework. We will use TD to refer to the top-down implementation,
and BU to the latter one. For convenience, we will use system to refer to either
one. The TD system consists of four modules, described below. Since there are
parallels between the two systems, we will describe all the four kinds of modules in
the TD system and the inference engine module of the BU system. Since our top-
down implementation TD is on top of the XSB system [SSW94], we will use the XSB
notations and formalism to describe TD. A quick remark about XSB itself is that it
is a powerful logic programming system based on PSB-PROLOG [Xu 89} which itself
is based on version 2.0 of SB-PROLOG [Deb88]. In addition to providing all the
functionality of full PROLOG, XSB has several interesting features discussed below
which we used in TD.

At a very high level. TD is a parametric “programming environment™ in which
a user can set the parameters to define a desired IB framework for evaluating p-
programs according to the semantics of that framework defined by the parameters.
For instance. if P is a p-program in van Emden’s language [van86}]. and D is an EDB
on which we want to evaluate P, then we can easily set the parameters in TD to set
the environment so that the atom-certainty pairs computed conforms to the semantics

proposed in [van86]. The system has the following four modules, which we call system

modules.

Inference Engine (IE)

e Parameters’ Definitions (PD)

User Interface (UT)

User Program (UP)
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A general description of the system modules is as follows. Each module is a
logic programs written in the underlying database language, that is, XSB for the
TD system, and CORAL for the BU. The IE module is the heart of the system,
responsible for interpreting user programs in a UP module. We have taken a meta-
level programming approach to develop IE and UI modules. A PD module contains
definitions of the parameters (that is, the certainty lattice, top and bottom elements,
and the combination functions) of an IB framework. Thus, PD is in fact a collection
of modules, one for each IB framework. By consulting a PD module at the TD
prompt, a user effectively instructs the system to evaluate a p-program in a UP
module according to the parameters defined in the PD module. In fact, this is how
TD allows a user to set the parameters for defining a desired environment so that
the computation conforms to the semantics captured in the consulted PD. The Ul
module is a collection of rules providing the users with some high-level operations

that make the programming environment user friendly and efficient.

A detailed description of the system modules is as follows, presented in the reverse

order from UP to IE, for ease of presentation.

6.2.1 User Program

The user program module (UP. for short) is collection of non-ground facts representing
the rules and facts in a user program. to be evaluated by the system. This module
contains two kinds of atoms. rule(R,H,B,C) and fact(F,H,C), where R, H, B, C.
and F denote. respectively. the Rule number. the rule Head. the rule Body. the rule
Certainty. and the Fact number. The meanings of these atoms should be clear. The
rule body Bis a list of atomsin [...]. Each rule and fact in a user program has an id.
R and F, used for two purposes. The first is to facilitate asserting what combination

function is associated with what rule. For instance,
:- assert(conj_mode(r2,product)).

in a UP module says the conjunction function associated with rule r2 is *. The second

use of a rule-id is to facilitate tracing, explained later in the Ul module.

As can be seen in Figure 2, a UP module may also contain the following (non-

ground) atoms.
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:- assert(rule(ri,pX,Y),[e(X, D], 1)).
:- assert(rule(r2,pX,Y),[e(X,2),p(Z,Y)], 1)).
:- assert(fact(1,e(0,2),0.5)).

:- assert(fact(2,e(0,1),0.5)).

:- assert(fact(3,e(1,2),0.5)).

:- assert(fact(4,e(1,3),0.5)).

:- assert(fact(5,e(3,2),0.5)).

:- assert(conj_mode(ri,_)).

:- assert(conj_mode(r2,product)).

:- assert(prop_mode(_Rule,_)).

:- assert(disj_mode(e,max)).

:~ assert(disj_mode(p,ind)).

Figure 2: An instance of a user program module in TD

disj_mode(p, dmode).
conj_mode(r, cmode).

prop_mode(r, pmode).

The first assertion means that the disjunction function associated with the predicate
p is dmode. The second (third) assertion means that the conjunction (propagation)
function used in rule r is cmode (pmode). In some frameworks, e.g., [van86], [DLP91].
and [LS94b]. there is only one combination function allowed of each kind. In this
case. a user need not include the above atoms in the UP module; the system will
find the default combination functions defined in the PD module. (See Figure 4. for
instance). As an instance of UP module. consider the p-program of Example 6.1.1
and the given EDB D. assuming max is the disjunction function associated with the

EDB predicate e. This could be represented as the UP module shown in Figure 2.

6.2.2 User Interface

The user interface module (U, for short) is a collection of definitions of high-level
programming predicates available to users to interact with the system in a more
convenient and efficient way. A list of these predicates is shown in Figure 3. In fact,

the list itself is the result of applying such a predicate, that is, help.

Each command in Ul is defined by a collection of rules. Let us explain some of
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Command Description

help get this menu;

[Pl consult module P;

eval compute all atom-certainty pairs;
eval(A,C) compute the certainty C of atom A;
filter(A,C,D) compute atoms with certainty at least D;
purge remove the user program;

rmf remove the facts in user program;

del (N) delete rule/fact no. N in user program;
reset clear the current work space;

list list the rules/facts in the user program;
combos list the combination functions defined;
all list the rules/facts/combos defined;
explain show the deduction sequence;

clear clear the screen;

halt/quit exit the system;

click exit exit, if running in window.

Figure 3: High-level commands available to users in TD

these commands. A user can use the command Del(N) at the system prompt to delete
a fact or a rule whose id is N. Using rmf, a user can remove the EDB facts. This is
useful. for instance. when the user wants to evaluate the same program on different
EDBs. This is done. of course. with no side effects from the previous computations.
Using the command purge. a user can remove all the rules, facts. and assertions of
the various combination functions in the UP module consulted. This allows a user to
evaluate various programs in the same framework defined. without leaving the run-
time system. In particular, this command does not affect the IE and PD modules
consulted. What a user can do after a purge command is to consult another UP

module, say P, through the command [P], and evaluate it.

The UI module developed also allows a user to evaluate the same program ac-
cording to more than one semantics, whenever meaningful, without having to leave
the run-time environment. This means, removing the PD and UP modules from the
run-time system, while the [E and UI modules continue to exist. This is done using
the reset command, which “resets” the environment. The user can then create a

new environment by consulting the PD module defining a desired framework.
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:- assert(bottom(0)).

:- assert(top(1)).

:- assert(disj_mode(_Predicate,max)).

:- assert(prop_mode(_RuleNo,product)).

:- assert(conj_mode(_RuleNo,min)).

:- hilog max. max(X,Y,Z) :- X<Y -> Z=Y; Z=X.
conjOp(min,CertA,CertB,MinAB) :- min(CertA,CertB,MinAB).
propOp(product ,CertA,CertB,CertAB) :- CertAB is CertA * CertB.

Figure 4: An instance PD module defining the framework in {vang86]

The command explain lists the sequence of rules and facts applied to answer
the query processed. We will illustrate this through an example in Section 6.3. The
command filter(V) instructs the system to discard on the fly those atoms derived
with certainties less than a threshold value V supplied as the argument. This lets the
system prune useless search graphs, whenever desired, determined by the user. This
in general results in a more efficient computation and should be used only when the
disjunction function associated with the recursive predicates in the program coincides

with the lattice join.

6.2.3 Parameters Definitions

The parameters” definitions module (PD. for short) is a collection of assertions. rules
and facts. defining a particular IB framework. In fact. PD is not one module. but
a collection of modules, each of which contains definitions of the parameters rele-
vant to an IB framework. This includes the certainty lattice, the top and bottom
elements. and the definitions of disjunction, propagation, and conjunction functions
allowed in the framework. Note that a UP module uses combination functions, while
the PD module defines them. To give an idea, Figure 4 shows the content of this
module for the van Emden framework [van86], whose underlying certainty lattice is
([0,1], min, maz), and which uses maz as the disjunction, * as the propagation, and

min as the conjunction function.

In XSB, HiLog [CKW93] and tables can be used to support aggregation. The
HiLog rule:
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:- hilog max. max(X,Y,Z) :- X<Y -> Z=Y; Z=X.
used in a PD module defines max as a disjunction function, in our terminology. More
precisely, max is the name of a multiset to which the system applies the aggregation

operation max.

As a more elaborate example, consider a subset of rules in a PD module defin-
ing the parameters of the probabilistic framework of Lakshmanan and Sadri [LS94a]
shown in Figure 5. This module contains 32 rules in about 200 lines of XSB code.
The first pair of assertions in this figure define the top and bottom elements of the
certainty lattice used in this framework. A list [V1,V2,V3,V4] of values in [0, 1] rep-
resents the pair of intervals as in the confidence level <[V1,V2], [V3,V4]>. Since this
framework does not consider propagation functions, we define in the first rule in the
figure that the propagation function in a rule to be the same as the conjunction func-
tion associated with that rule. The figure also includes definitions of two conjunction
functions, in the positive correlation (pc) and independence (ind) modes. The last

two rules are HiLog rules defining the disjunction functions in the pc and ind modes.

6.2.4 Inference Engine of the TD System

The inference engine module (IE. for short) is the heart of the system. It is respon-
sible for evaluating user programs. defined in a UP module. according to a desired
semantics. defined in the PD module. As in the UI module in TD. we have used a
meta-level programming technique to implement the IE module in XSB, which es-
sentially takes into account the various parameters defined in the PD modules for

evaluating a program in a UP module.

XSB includes several general predicates which allow a programmer to collect “all”
solutions to a query as a multiset (or a list, to be more precise) and then computes
a desired (disjunction) function over the multiset. This is useful in our context to
perform aggregations using disjunction functions. This is done by using the general
predicate bagReduce/4, as follows.

bagReduce (interpMgoal (Atom) ,CertaintyAtom,DisjOp,Bottom).
This predicate takes a multiset name, Atom, an operator, DisOp, the identity of the
operator, Bottom, and uses DisjOp to combine the elements in the multiset. The

result is returned as the second argument, CertaintyAton. Intuitively, this works as
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:- assert(top([1,1,0,01)).
:- assert(bottom([0,0,1,1])).
propOp (Mode,X,Y,Z) :- conjOp(Mode,X,Y,Z).
ConjOP(pc,[VO,Vl,VQ,V3],[V4,V5,V6,V7],[V8,V9,V10,V11]) t-
1
min(V0,V4,V8),
min(Vi,V5,V9),
max(V2,V6,V10),
max(V3,V7,V11).
Conjop(ind,[VO,Vi,VZ,V3],[V4,V5,V6,V7],[V8,V9,V10,V11]) -

I
’

V8 is VO * V4,
V9 is V1 = V5,
V10 is V2 + V6 - V2 * V6,
Vil is V3 + V7 - V3 * V7.
:= hilog pc.
pc(Lvo,v1,v2,v3], [v4,v5,v6,V7], [V8,V9,V10,V1i1]) :-
max(V0,V4,vV8),
max(V1,V5,V9),
min(V2,V6,V10),
min(V3,V7,V11).
:- hilog ind.
ind([voO,Vvi,v2,v3], [V4,Vv5,V6,v7],[V8,V9,V10,Vi1]) :-
V8 is VO + V4 - VO * V4,
V9 is V1 + V5 - V1 * V5,
V10 is V2 * V6,
Vil is V3 = V7.

Figure 5: Part of the PD module defining the framework in [LS94a]

follows. It finds the first element of the multiset, applies the operator to the identity
and that element and stores the result in the table, and continues this way: for each
new element the operator is applied to the current value and the new element and
the result replaces the current value. The final value in the table is returned as the
result [War96].

The HiLog predicate interpMgoal (Atom) is responsible for deriving atom-certainty
pairs, which are then fed into the multiset bagReduce. As mentioned earlier, aggre-
gation operation on this multiset is done on the fly as a new certainty arrives. The

following rule in the IE module shows how this predicate is used.
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derive(Atom,CertaintyAtom) :-
functor(Atom,Predicate,_Arity),
disj_mode(Predicate,DisjOp),
bottom(Bottom),
bagReduce(interpMgoal (Atom) ,CertaintyAtom,DisjOp,Bottom) .

Processing a query posed to the TD system begins by invoking the above rule,
which on a goal G looks for every atom which unifies with G and derives its associated
certainty. The first predicate in the rule body determines the head predicate, which
would be the name of the multiset, and the second one determines the disjunction
function associated with this predicate. Then, to obtain all derivations of this goal
and its associated certainties, we invoke another predicate, interpMgoal (Atom), re-
sponsible for deriving Atom. The following rules in IE define this latter predicate.
This rule invokes the predicate interpM(Body,CertaintyBody,Conj0p) which com-
putes the certainty of the conjunction Body of atoms in a rule body, presented as a

list. The meanings of other predicates should be clear.

interpMgoal (Atom) (CertaintyAtom) :-
fact(FactNo,Atom,CertaintyAtom).

interpMgoal (Atom) (CertaintyAtom) :-
rule(RuleNo,Atom,Body,CertaintyRule),
conj_mode(RuleNo,ConjOp),
interpM(Body,CertaintyBody,Conjop),
prop_mode(RuleNo,Prop0p),
propOp (Proplp,CertaintyRule,CertaintyBody,CertaintyAtom) .

The predicate interpM “interprets” a rule body by computing its certainty. This
is done by combining the certainties of all atoms in the body into a single certainty,
using the conjunction function ConjOp supplied. In TD system, we have done this by
the following rules. The first rule defines the certainty of an empty conjunct to be

the top certainty element (Postulate 9).

interpM([],Certainty,_ConjOp) :- !, top(Certainty).
interpM([Atom|Atoms] ,Certainty,ConjOp) :-
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derive(Atom,CertaintyAtom),
interpM(Atoms,CertaintyAtoms,Conjop),
conjOp(ConjOp,CertaintyAtom,CertaintyAtoms,Certainty) .

The collection of the above rules forms the core of the IE module of the TD system,
which has about 50 rules in over 200 lines of XSB code.

6.2.5 Inference Engine of the BU System

In this section, we introduce the inference engine of BU, the bottom-up implementa-
tion of the parametric framework on top of the CORAL database language [RSS92].
A few words on CORAL; it is a powerful system with many attractive features such
as annotations through which, a user can “influence” the run-time environment. In
particular, the annotations @multiset and Qaggregation\_selection are needed in
our context, where the former allows collecting the derivations as multisets, and the

latter allows aggregation per iteration, but only for maz, min, and any?.

Our implementation project started with developing, in CORAL, an interpreter
for programs in the probabilistic framework in [LS94a]. In the course of that project,
we noticed that CORAL has to be extended to support user-defined aggregations.
which we will get back shortly. We remark that any IB framework which uses (fuzzy)
sets as the basis for the structure of the semantics could be implemented in the
existing CORAL efficiently by taking advantage of the aggregation_selection maaxz.
which instructs CORAL to discard the unwanted tuples on the fly in a bottom-up
evaluation. In fact. we have developed such an efficient implementation of the IB

framework proposed by van Emden {van86].

We have obtained an extended running of CORAL which supports user-defined
aggregations per iterations, thanks to Dr. Raghu Ramakrishnan at Wisconsin univer-
sity for supporting the idea and to Shaun Flisakowski for the design and implementing
it. Aside from formulating the problem, we contributed to the design of the module
supporting user-defined aggregations, and to the testing of the system. We believe
this increased capability of CORAL is important for deductive databases in the more

general context of fixpoint computation with arbitrary (user-defined) aggregations.

lany returns any one of its argument values, determined by an implementation of CORAL.
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e(1,2,0.75).
e(2,3,0.8).

module test.

export p[bbf,fff].

Qaggsel_per_iteration p(X,Y,Z) (X,Y) ind(2).
Qmultiset +.

pX,Y,2) :- e(X,Y,Z21), min(1,21,2).
p(X,Y,Z) - e(X,M,21), p(M,Y,ZQ), Z3=Z21xZ22, 2=0.5 * Z3.

min(Vi,V2,V1i) :- V1 <= V2.
min(V1,V2,V2) :- V1 > V2.
end_module.

Figure 6: Example of a p-program in the BU system

To see how the BU system works, consider the p-program shown in Figure 2.
This program could be represented in the BU system as a CORAL module shown
in Figure 6. Note that in this module, the propagation and conjunction functions
are “hard-coded”, in the sense that the user program, part of the inference engine,
and part of the definitions of the parameters are all defined in one module. This
should be contrasted with the modules in the TD svstem. where we had a “clean”
separation of responsibilities of the modules. The problem here is that assertion of
non-ground facts is not supported any more in the extended CORAL. and this lack
of support does not support meta-level programming. Therefore. the user has to
produce the module shown in Figure 6 directly, or develop a translator to create this
module automatically from something more convenient for the user to provide, such

as the one given in Figure 2.

Annotation @multiset in this module instructs the run-time of CORAL to collect
derivations of the atoms as a multiset, and

Qaggsel_per_iteration p(X,Y,Z) (X,Y) ind(Z).
instructs CORAL that, for every p-atom in relation p having the same X,Y values,
group as a multiset all values in the third argument, Z, over which it performs the
aggregation using ind. Recall that ind(X,Y) = X +Y — XY is the probabilistic

independence mode. If C is the result of this function, then all tuples contributed to
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module independence.
export ind[bbf].
ind([ [X,Y,0ldCertain] | Rest], OldCertains, [[X,Y,ComboCertainl])
:-~ combine_certain(0ldCertains, ComboCertain).
combine_certain([], 0.0).
combine_certain([[C1]], C1).
combine_certain([[C1],[C2]], Ans) :- Ans = C1+C2 - C1*C2.
combine_certain([[C1] |Rest], Ans) :-
length(Rest,Len), Len >= 2,
combine_certain(Rest,C2), Ans = C1+C2 - C1x*C2.
end_module.

Figure 7: A module in BU exporting a user-defined disjunction function

the group will be replaced by one tuple, p(X,Y,C), before the next iteration begins.

It remains to define the module exporting ind. This is shown in Figure 7. The
first line in this module says that this module exports ind [bbf] to any module who
calls it, where b stands for bound, and £ for free. Thus, given two values, this function
returns the combined value. Actualily, every group of values that should be combined
using this function are passed to it as a list. The assertion:

combine_certain([], 0.0).
in the module defines 0 as the certainty of the empty list: 0 is the identity for ind. The
other rules in this module define how the certainty values in the list are combined.
When the list has one element. the result returned is that element. For a list of two
elements. C1 and C2. the fourth rule in this module returns C1+C2 - C1*C2. When
there are more than two elements in the list passed to this function, the last rule in
the module is used to compute the combined value returned. Each application of this

rule reduces the number of elements in the list by 1.

One final remark about the BU system. Our extended version of CORAL im-
plements the semi-naive algorithm for evaluating query programs in the parametric
framework. Although it is possible to extend CORAL so that its computation would
correspond to the naive method, we take advantage of the BU system to compare
its results with what TD computes. Based on our understanding of how BU and
TD work, and also based on our experimenting in evaluating many query programs

using the two systems, we believe that “these systems produce the same results.” No
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formal arguments would be provided. Also, TD is easier and more convenient to use
compared to BU, although using a BU implementation with meta-level programming

would be as easy and convenient as the TD system.

6.3 Experimenting with the TD System

In this section, we demonstrate query evaluations using our implementations on some

sample p-programs.

Consider the p-program shown in Figure 2. First, note that according to the
semantics of this program defined through the parameters used, this program is not
in a well-known IB framework. Recall that the parametric framework allows defining a
new IB framework provided the combination functions satisfy the relevant postulates.
Now. if we evaluate this program in the TD system, we get the following three atom-

certainty pairs on the query ?- eval. Note that >> is the system prompt.

>> ?7- eval.

p(1,3) : 0.5
p(1,2) : 0.75
p(2,3) : 0.8

(Number of answers = 3)

Using the explain command. we get the following result showing the sequence of
rules/facts the system used to process the query. The symbol * under the rule number
means the result in that row was obtained by applying the aggregation operation. The
repetition of some atom-certainty pairs indicates that the system derived the pairs

multiple times, e.g., for proving different goals.

>> 7- explain.
Sequence of the derivations:

Rule# Atom Certainty

3 e(1,2) 0.75
4 e(2,3) 0.8
* e(2,3) c.8
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ri p(2,3) 0.8

* e(1,2) 0.75
ri p(1,2) 0.75
* e(2,3) 0.8
e(1,2) 0.75
4 e(2,3) 0.8
e(2,3) 0.8
Tl p(2,3) 0.8
* e(2,3) 0.8
* p(2,3) 0.8
r2 p(1,3) 0.5
* p(1,3) 0.5
* p(1,2) 0.75
* p(2,3) 0.8

On query 7- eval(p(1,3),C), we get the following result.

>> ?7- eval(p(1,3),C).
p(1,3) : 0.5

(Number of answers = 1)

Continuing with the session. suppose we now want to evaluate the p-program
of Example 1.2.7 in the probabilistic framework proposed in [LS94a]. Also suppose
this program is in UP module pdds_p2 and the definitions of the parameters are in
DP pdds. Then, the following is the result of TD on the sequence of the queries
reset. [pdds,pdds_p2]. eval(b,C). eval(a,C). explain. Note that the reset
command clears the definitions of the environment, and [pdds] defines the environ-

ment so that programs, such as pdds_p2 in this framework can be evaluated.

>> 7- reset. [pdds,pdds_p2]. eval(b,C). eval(a,C). explain.
>> 7- [pdds loaded]

{pdds_p2 loaded]

> ?- b : <[0.9,0.95], [0,0.15]>

(Number of answers = 1)
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>> ?- a: <[0.91,0.96], [0.01,0.04]>

(Number of answers = 1)

>> ?- Sequence of the derivations:
Rule# Atom Certainty
* b <f0.9,0.95], [0,0.15]>
1 a <[0.7,0.8], [0.1,0.2]>
4 c <fo.7,0.8], [0.1,0.2]>
* c <[0.7,0.8], [0.1,0.2]>
2 a <[0.7,0.8], [0.1,0.2]>
* a <[0.91,0.96], [0.C1,0.04]>

Finally, consider the p-program of Example 4.6.1. Suppose mine_p2 is the UP
module containing this program and mine is the DP module containing the definitions
of the parameters in mine_p2. Continuing from the previous execution, we get the

following on query eval(p(a),C). An explanation is also provided, as requested.

>> 7- reset. [mine,mine_p2]. eval(p(a),C). explain.
>> ?- [mine loaded]

[(mine_p2 loaded]

>> 7- p(a) : 1

(Number of answers = 1)

>> ?-  Sequence of the derivations:
Rule# Atom Certainty
1 e(a) 1
* e(a) 1
2 p(a) 0.8
* e(a) 1
* p(a) 0.
3 p(a) 0.
* p(a) 0.96
3 p(a) 0.96
* p(a) 0.9984
3 p(a) 0.9984
* p(a) 1



6.4 Summary and Concluding Remarks

We proposed a semi-naive method for evaluating programs with uncertainty in the
parametric framework. The proposed method extends the corresponding method in
the standard framework, and was shown to be equivalent to the naive method. We
presented our top-down and bottom-up implementations of the parametric frame-
work, both of which implement the proposed semi-naive method. The top-down
implementation is on top of the XSB system and the bottom-up implementation is
on top of the CORAL system. These implementations together with our experiment-
ing with them strengthen our belief that the ideas in this thesis lend themselves to
an easy-to-use and efficient environment for deduction with uncertainty. Although
we did not measure the efficiency of our implementations, our belief for them being
efficient is on the basis of the fact that in both cases, the underlying XSB and CORAL
systems use various advanced query processing/optimization techniques which would

surely result in efficient computations.

In order to develop a bottom-up implementation of the parametric framework
using a meta-programming approach, we need to extend CORAL to allow assertions
of non-ground facts. Without this, the BU system requires many changes to a user
program before it can be evaluated. With this extension, we would be able to use a
meta-programming approach for the BU system so that a user will not be required to
do much coding for preparing the input program. which in the current implementation
of BU is integrated with the other modules. including the IE. This extension makes
the BU syvstem more convenient to use. as is the TD system. Also. we plan to enhance
the user interface of our implementations. For this. we are working on developing a
graphical user interface using the UIM/X system [Vis93]. This will help users create
the program modules and evaluate them more readily while the unnecessary details

of the implementations are hidden.



Chapter 7
Conclusion and Future Research

Research in uncertainty is essential, as we must learn not only to cope with data of
limited reliability, but do so efficiently, with massive amounts of data [SSU91]. Our
goal in this thesis was primarily to develop an efficient environment for declarative
manipulation of large amount of uncertain knowledge. In this chapter, the work done
towards this goal and the contributions of the thesis is summarized. We will also

briefly discuss future research issues.

To reach our goal, we first studied the language aspect of the goal and proposed
a powerful framework. called the the parametric framework. which unifies and gener-
alizes the existing IB frameworks to uncertainty in logic programming and deductive
databases. \We observed that the existing frameworks differ in the underlying certainty
lattice. and in the the conjunction. propagation. and disjunction functions allowed.
which form our parameters. We identified a collection of reasonable properties which
these combination functions should satisfy. Having done so, we then developed the
semantics of the parametric framework based on multisets, as opposed to sets which
are conventionally used. We defined the declarative, fixpoint, and proof-theoretic
semantics of programs in our framework, and established the equivalence of these

semantics.

The parametric language proposed forms a basis for us to study other related
issues such as (1) query optimization, (2) termination and complexity of the bottom-
up naive evaluation of p-programs, (3) expressive power of the language, and (4)

its efficient implementation. Each of these issues was discussed in a chapter of this
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thesis, in that order. As a byproduct of studying these aspects in the context of
the parametric framework, the results obtained and the conclusions drawn are useful
for a number of frameworks. This is an advantage of our “axiomatic” approach in

studying all the above issues, making our results applicable to several frameworks.

Containment of conjunctive queries is central to query optimization in the tra-
ditional relational and deductive databases. In Chapter 3, we extended this idea to
parametric conjunctive queries and developed various results, which yield tools for
optimizing logic programs with uncertainty. An interesting direction for extending
this work is on characterizing exactly when the “no teaming up” property exhibited
by unions of classical conjunctive queries carries over to the parametric framework.
Future work should address the central questions of containment and equivalence of
programs. For instance, how can we lift the chase technique (e.g. see Sagiv [Sag88])
to IB frameworks? Can we characterize exactly when program equivalence in IB

frameworks reduces to classical equivalence?

In terms of complexity of evaluating logic programs, it is well known that when
function symbols are not allowed, this evaluation can be done in PTIME, in the size
of database. In Chapter 4, we studied this in the presence of uncertainty. We showed
that in this case the bottom-up fixpoint evaluation of p-programs (1) may terminate
in PTIME. (2) may terminate in arbitrarily large number of iterations, independent of
the EDB size. or (3) may not terminate at all. To our knowledge. case 2 has not been
discussed any previous work. In our attempt to address the termination behaviors of
p-programs, we illustrated that how sensitive the termination behavior becomes w.r.t.
rule certainties or the presence/absence of certain “innocuous™ looking rule, e.g.. ro
in Example 4.1.1. This state of affairs complicates a general analysis of termination
for a substantial class of programs. One way to distill the termination behavior of
a p-program from the rule certainties we found was to look at a strong termination
property, namely at the question of whether the program terminates on all EDBs,
regardless of the certainties associated with rules. With this as our approach, we
classified the collection of disjunction functions allow in the parametric framework
into three types — types 1 to 3. This in turn induces a classification of predicates
into types 1 to 3; a predicate is of type ¢, if its associated disjunction function is of

type ¢, for : =1,2,3.



Our study highlighted the role of the various combination functions in the termina-
tion property of p-programs. We established PTIME data complexity for p-programs
in which every recursive predicate is of type 1. When the certainty lattice 7 is finite,
the complexity of the bottom-up evaluation is PTIME in the EDB size and is expo-
nential in the size of 7. When 7 is infinite, we considered several cases, depending
on the types of recursive predicates defined in the program and the combination func-
tions employed. We conjectured that under certain conditions, given a p-program P,
we can identify a p-program @, which is the same as P except possibly for the rule
certainties, and there are EDBs D; and D, such that the bottom-up naive evalua-
tion of Q on D, terminates in finite time and that of @ on D, does not terminate.
The conjectures are based on our observations in the special case analysis performed.
Future work will address proving those conjectures. Qur approach in this study was
to analyze simultaneous (non-linear) recurrence equations induced by the input p-
programs, which essentially capture the mechanics of the bottom-up naive evaluation

of the programs.

Next, we studied the expressive power of the parametric framework, in particular,
and the expressive power of the IB approach to uncertainty compared with the AB
approach, in general. In Chapter 1, on the basis on how uncertainty is associated
with the facts and rules of a program, we classified the approaches to uncertainty
in logic programming and deductive databases into the annotation based (AB) and
implication based (IB). We also saw the relative pros and cons of these approaches in
that chapter. An important metric in a comparison of these two approaches is their
relative expressive power: are there queries one can express in one of the AB (or IB)
frameworks which cannot be expressed in the other? In Chapter 5. we pointed out the
limitations in the expressive power of known IB and AB frameworks and motivated
a paradigm of uncertainty programming with (certainty) constraints. Motivated by
this need, we proposed an extension to the parametric framework, which we called

the extended parametric (EP) framework.

To facilitate the comparison of the two approaches in terms of of expressive power,
we developed a generic AB framework, which we called the basic GAB framework.
We showed that the parametric framework can simulate the computation of any AB
program P in the basic GAB framework when no annotation constant is used and

in no rule body annotation variables occur more than once. We also extended the
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basic GAB framework with certainty constraints, and defined the ertended GAB
framework. We established that the EP framework is equivalent to the extended
GAB framework from the point of view of the expressive power, when the annotation
functions in the latter satisfy similar postulates imposed on the combination functions
in the parametric framework. This shows that the concept of certainty constraints
unifies the AB and IB approaches. Finally, we showed that while the incorporation of
certainty constraints strictly increases the expressive power of both parametric and
AB frameworks, it comes at a price. While the basic parametric framework has a

continuous immediate consequence operator, this continuity is lost when constraints
are added.

To show that the ideas in this thesis lend themselves in developing an easy-to-use
and efficient system for deduction with uncertainty, we developed two implementa-
tions of the parametric framework, a top-down and a bottom-up. We developed a
semi-naive method for evaluating programs in the parametric framework by extend-
ing the idea of the corresponding method in the classical case. We established that

the semi-naive method proposed is equivalent to the naive method.

To implement the bottom-up evaluation of p-programs on top of the CORAL
system. we noted that CORAL needs to be extended with user-defined aggregation
functions per iteration. before it can be used for this purpose. Our contribution in
this direction was in the design and the testing phases of extending CORAL with
this feature implemented by the CORAL database programmer at Wisconsin. The
current extended CORAL does not allow assertion of non-ground facts. which is
needed for meta-level programming. This extension will help separate the various
system modules in our BU system, which in the current implementation are integrated
in one module. Although we did not measure, but on the basis of the fact that the
XSB and CORAL systems employ advanced processing and optimization techniques,

we believe both of our implementations would be very efficient in their computations.

In our work, we considered negation-free clauses. What if negative literals are
allowed in the body of p-rules? Studying the semantics of general p-programs which
allow negation would be a useful direction of research to pursue. The new issue, in
addition to those introduced by the incorporation of negation in the classical frame-
work, is how uncertainties associated with negative literals should be interpreted and

manipulated? To give an idea of what it means, consider the following cases. The
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classical negation of A :  (where & could be any certainty element, not necessarily a
number in [0, 1]) is simply —A : «, which is read as “it is not the case that A : ¢”. The
negation as failure of this is simply failing to prove A : a. The epistemic negation,
which we denote by not, can be parameterized. This negation is supposed to change
the annotation « directly. A simple example where a is a point probability is that
not(A : a) is equivalent to A : 1 — . This is how it is done for instance in [Sub87].
More generally, epistemic negation is based on a symmetric function on the lattice
from which the certainties are drawn. The point here is that any symmetric function

can be used to define epistemic negation, explaining why it is parameterizable.
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