National Library

ot Canada du Canada

Bibliothéque natwonale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every efiort has been made to ensure the highest quality of
reproduction possible.

li pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially it the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL 339 (r 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése sourmise au microfilmage Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veulllez commumiquer avec
funiversité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout i les pages ornginales ont été dactylogra
phiées a'aide dun ruban usé ou si luniversié nous a tail
parvenir une photocopie de qualité inférieure

La reproduction, méme partielle, de cetle microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

Canada

PERFORMANCE ANALYSIS AND DESIGN OF AREA
EFFICIENT FAULT-TOLERANT SYSTOLIC ARRAYS

Michael O. Esonu

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montreal, Quebec, Canada.

September, 1991

© Michael O. Esonu, 1991,

.’—- -

B+E

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ONA4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, foan, distribtte or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownzrship of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-73666-b

Canada

- iii -

ABSTRACT

Performance Analysis and Design of Area Efficient

Fault-Tolerant Systolic Arrays

This thesis is concerned with the development of a systematic methodology to
design optimal or near optimal fault-tolerant systolic array architectures. The space-time
approach of mapping algorithms into systoiic arrays, has been adopted in the design of
fault-tolerant systolic arrays. The research problems considered in this thesis include: the
formulation of a methodology to obtain the desired transformed dependency matrix
(TDM) before generating its corresponding transformation matrix (7); the derivation of
more realistic optimality criteria to design systolic arrays; the identification of a unifying
performance index to measure the overall systolic array performance; and, the design of

area efficient concurrent error detection and correction systolic arrays.

In the existing approaches of mapping algorithms into systolic arrays, the structure
of the systolic array is not known until a valid transformation matrix is generated, and
then used to select the systolic matrix. Although, the systolic array obtained with this
transformaticn matrix represents a feasible design, in most cases, it does not satisfy some
important VLSI requirements. The methodology for generating the transformed depen-
dency matrix presented in this thesis, allows the desired systolic structure to be selected
first hand. This approach is computationally efficient in that, it avoids the derivation of
the TDM’s that do not satisfy the VLSI requirement, thereby, eliminating the generation

of their corresponding transformation matrices.

We have identified the optimality criteria that take into account the architectural and
technological parameters of the systolic array. The relationship between the cost measures

and the coefficients of the TDM has been established. By changing the values of the

coefficients of the TDM, the values of the cost function parameters are affected. This
cnables us to investigate the practical design issues at the design stage rather than after
the implementation of the array. Also, a Compound Objective Function has been formu-
lated to measure the overall performance of the systolic array. This is a unified perfor-
mance index which takes into consideration the effects of all the optimization factors, in
the design of the array. This approach eliminates the problem of sacrificing other factors

of the optimization criteria when only one factor is optimized.

Furthermore, approaches to design optimal Concurrent Error Detection (CED) and
Fault-Tolerant (FT) systolic arrays have been developed. The basic concept of the
approaches is the introduction of redundant computations at the algorithmic level, such
that when these algorithms are mapped into VLSI systolic array, the inherent hardware
availability allow concurrent error detection and correction in the systolic arrays. Several
fault-tolerance techniques have been presented based on the proposed FT approach. The
CED and FT approaches are area efficient. They also overcome most of the drawbacks of

other existing techniques.

TO MY PARENTS

COMFORT AND SUNDAY

-vi -

ACKNOWLEDGEMENTS

I sincercly express my gratitude and strong appreciation to Professor A. J. Al-
Khalili, for his continued guidance, suggestions, encouragement and assistance throughout
the course of this research. Besides being a great teacher, Professor A. J. Al-Khalili is
also a nice man. It has been a great pleasant experience working in association with him

and I thank him very much for that.

Also, T am very grateful to my co-supervisor, Dr. S. Hariri for his insight, guidance,
encouragement and various diligent contributions he made towards the progress of this
research. 1 would like to thank Dr. H. F. Li for suggesting the research topic and for the

initial discussions and help given to me on the topic of this thesis.

Last but not the least, my special thanks go to my wife for her support and also her
help in the final preparation of this thesis. With great pride, I acknowledge the support
and inspiration of my parents, my brother, sisters and relatives back home. Also, I would
like 1o thank all my friends and well - wishers in Montreal for their encouragement and

the special moments that we enjoyed together.

This rescarch was supported by the Natural Sciences and Engineering Research

Council of Canada under a Grant awarded to Professor A. J. Al-Khalili.

- vit -

Table of Contents

LIST OF SYMBOLS AND VARIABLES. o oot X
LIST OF FIGURES. oottt ettt ettt e e eeeae et earee e e st s e e aeeeteesse e e e e e s rereaeaens il
LIS T OF T A BLES. oot eeteerttee e eerteeeeeee s ameeeesatsane o eeseasneseeessrenenressirasaseressoesnrenes Wi

CHAPTER I: INTRODUCTION. ..ciiiiiiieie e ettt |
L1 SYStOlIC AITAYS. ooiiiiiic ittt s sttt e st er et tna e s ebas e |
1.2 Basic Problems in Systolic Array Design. 3
1.3 Error Detection and Fault-Tolerance
1.4 Motivations, Objectives and Contribution.c.ccovoiiioiiiiiiie e, 18

...

1.5 Outling 0f the Thesis.ccccoiiiiiriiiiiiee e e e st s e AR
1.0 REfEIEINCES. oot ettt et n e s sneteees seeveereeennias 25
CHAPTER II: PRELIMINARIES. ..ottt s e evette e e 31
2.1 Systolic Array Architectures: An OVEIVIEW.ooeeeevivviiiieie e e 3
2.1.1 Definition of SyStolic AITAYS ...covveeiiriirriiescens v s e, KR}
2.1.2 Properties of Systolic ArchiteCtures.ccceeeveiiiiiieiiiieceieeieece e, 15
2.1.3 Components of Systolic Array StruCtures.ccceeeivoeveoiiieciniiiinees oo 36
2.1.4 Applications Of SyStOliC AITAYS. ccccviririeiieee e e 39
2.2 Mapping Algorithms into Systolic Array ArchiteCtures.ccoecvviicvieeivicienennnn, 43
2.2.1 Mapping MethodOIOZIEs.ccceeieeiieniiiiiir et 48
2.2.1.1 Canonical Mapping Methodology. ..cccevvivieniiciiiecieeeecee 49
2.2.1.2 Direct Mapping form Linear Data Dependencies
into Systolic DESIENS. .ovvereviiiiriiiens ceeerieneierere et eveas cenea 51
2.3 Linear Transformations of Index Set and Data Dependencies. ..o covevieenne. . 53
2.4 REfEICICES. woviiiniiiiiiicieiie i et e et seee e s sabe et ve e se st e b st antseras et b bensessssennnsenteesnnns 71
CHAPTER I1I: PERFORMANCE ANALYSIS AND DESIGN

OF OPTIMAL SYSTOLIC ARRAYS. oo, 74
3.1 INTOAUCTION. eiiiiiiiiiiiritie st ettt v e s et aae e b e e st ae e e e eas e s enserbe e es 74
3.2 Determination of the Transformed Dependency Matrix (TDM). ..o, 79
3.2.1 Procedure for the Generation and Selection of the TDM. 83

3.2.2 Comparison of our Approach and the Existing Approaches of
Determining the Valid TDM. .o e 87
3.3 Designing Optimal Systolic Array ArchiteCtures.ccoceveieevvniiernineieeerieeenn, 8K
3.3.1 Optimization CrUETIA. ...ceeeveiviiiiienreiserieniire s e s sseereeese e e erereens e csiese e snee 8Y

3.3.2 The Compound Objective Function (COF).cccccvvviinnniiiinieciiinnn, 100

- viii -

3.3.3 An Approach to Choose the Values of the Weighted Constants. 101
3.3.4 Optimization Algorithm to Select a Transformed Dependency
Matrix (TDM) that Minimizes the Objective Function.c.iecieninin 104
3.4 THustrative EXAMPIES oo e 105
3.4.1 Optimization with respect to the Silicon Aread. ..., 112
3.4.2 Optimization with respect to the Throughput. ..o 116
3.4.3 Optimization with respect to the Propagation Delay. ..o 122
3.4.4 Optimization with respect 10 AT. i, 123
3.4.5 Optimization with respect to ATZ. st 127
3.4.6 Optimization with respect to Speedup per PE. 128
3.4.7 Optimization in terms of COF. .., 129
3.4.8 Summary of the Comparison Results. ..o 134
3.5 Concluding Remarks. .ottt 135
3.0 ROTEIENCES. woviiieieeiie ettt ettt ee s e sane st st s e et ae e s b e et b sh e as s e b s ase e baasaneesasaans 136

CHAPTER 1V: SYSTEMATIC APPROACH FOR DESIGNING FAULT-

TOLERANT SYSTOLIC ARRAY ARCHITECTURES. ... 138
A1 INIFOUUCHON. 1oriiieeiere ettt sttt e et esabe et bssen st besebraens s snsssnasns 138
4.2 The Importance and Basic Concepts of Fault-Tolerance. ..., 138
4.2.1 Redundancy TechniQUES ..ot 141
4.3 Mapping Algorithm into Non-Optimal and Optimal
Fault-Tolerant Systolic ArchiteCtures. ... e 142
4.3.1 Fault Model. ot e s 144
4.3.2 Fault-Tolerant Mapping TechniqQues.ccccoviveciiiinnnniciecesees 145
4.3.2.1 Method (1): 1riplicating One Version of the Algorithm. 146
4.3.2.2 Method (2): Creating Three Different Versions
of the Algorithm.iininnee, 146
4.3.2.3 Method (3): Combining the Dependency Matrices of
all the Versions of the Algorithm.cccccnvveirnnnnee. 152
4.3.2.4 Deriving Three TDM’s that Result in Near
Local Optimal Systolic Array Architectures.cccoocvvviencennenne. 163
4.4 Fault-tolerant Analysis of the Proposed Mapping Schemes.cccovveeveniivenneennn. 167
4.4.1 Comparison of the Proposed Design Schemes
With the Other TMR Schemes.cccovviviviinninnnininenn. reeeeer e s nrans 173
4.5 ConCluding REMIATKS. oottt ettt ee e e e sresesseessas e e s ne s saesves 184
G0 RELETENCES. oeeiiiiii et bbb bbb s s b e s e seaesanes 187

CHAPTER V: AREA EFFICIENT COMPUTING STRUCTURES FOR
CONCURRENT ERROR DETECTION IN

SYSTOLIC ARRAYS. cerrrrtrcrtesssreaaesieaesssnessstaeseseesssnns 191

ST IRIMOAUCHION. et eee et e s e e e sns e e e st aesbas srnressseessascssesse e susnnsesnns 191
5.2 Concurrent ErTOr DERIECHON.oviiiiiiiierin s sineneescesnessaessssssarsnsssessassessessesnnsseensasns 198
5.2.1 Fault Model, ettt b, Fereeesrerieereaesebeans 198
5.2.2 The Proposed SCheme.ccoiviiiiiininiriececce e sreea et ssaesneses 199

5.2.3 Application of the Proposed Scheme. ..o e 204

-ix -

5.2.4 Procedure for Designing Area Efficient CED Systolic

Architectures Using the Scheme Proposed in this Chapter.

5.3 Analysis of the Fault Coverage of the Proposed Scheme.,
5.4 Area and Time Overhead of this Scheme.
5.5 Comparison of Our CED Scheme with Other CED Schemes.
5.6 Concluding Remarks.
5.7 References.

CHAPTER VI: AREA EFFICIENT FAULT-TOLERANT COMPUTING

STRUCTURES FOR SYSTOLIC ARRAYS. oo
0.1 INMOAUCHION. coetniiiiiiii it eetee e eeee et en e eraeatereessstee e sresaessanssesasesesrreeereeesransnas

6.2 Concurrent Error Detection and Correction

6.2.2 Application of the Proposed Scheme.
6.2.2.1 Method One.
6.2.2.2 Method Two.

6.2.3 Procedure for Designing Area Efficient

FT Systolic ArChItECIUTES.oveireeecierineniire ettt
6.3 Fault-Tolerant Analysis of the Proposed Design Schemes. ..o

6.4 Area and Time Ove head of the Proposed Schemes.
6.5 Comparison of the Proposed FT Schemes of the Two Methods.

6.6 Concluding Remaiks.

CHAPTER VII: CONCLUSIONS AND FUTURE WORK. ...cccceoeiniveirrnnn,

7.1 CONCIUSION. coveeevieiiecriceeeeeeecreeseee e ssereeennn s
7.2 Future Work.

.............................
...
...

..

6.2.1 The Proposed SCheme. ...

..

..................

6.5.1 Comparison of Our FT Schemes with Other FT Schemes.

...

0.7 REFEIEINCES. wivvevnneiiiniitieie it ee et eeeetsenameeseesseeresrteseseesssssesessessneessssesesrssassessen

...

..

T-

D:

A:

LIST OF VARIABLES

Transformation matrix
Dependency matrix

Transformed dependency matrix

L"|J]: Index set of an algorithm

UL.:

FT:

Transformed index set
Depenuence vectors
Transformed dependence vectors

Ordering imposed by the data dependencies on set L”

: Ordering imposed by the transformed data dependencies on set L"

Matrix added to D to generate new A
Upper limit on the generation of the new TDM
Fault - tolerance variable

Constant (a coefficient in the objective function)

:Delay of an interconnection line with unit length

:Number of data routing steps

Delay of the interconnection line with the longest path

Clock frequency of a single PE

Total number of clock cycles required foi the computation of an algorithm
Total execution time of the algorithm

Number of delay units in a processor

: Total number of delay units in the array

L wal

-Xi -

A,: Area of a delay unit

AD: Total area of the delay units

mpg:Total number of processing elements in the array

m,,: Total number of I/O’s in the array

Apr:Area of a processing element

AP: Total area of the processing elements

i;: Data routing steps in the horizontal direction

v;: Data routing steps in the vertical direction

K: Indicates the degree of complexity of the interconnection pattern
A;: Area of a unit length interconnection line

A, :Area required for routing the interconnection lines
A;: Total silicon area required to implement the algorithm
SP: Speedup per processing element

COF: Compound objective function

¢;: Modulating constants of the COF function.

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.0

Figure 2.7(a)

Figure 2.7(b)

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 3.1

Figure 3.2

Figure 3.3

- Xii -

LIST OF FIGURES

Basic principle of a systolic system [3].

Inner product step processors {3].

Systolic array systems [3].

Systolic array for the multiplication of a vector by a band matrix [3].
The first seven pulsations of the systolic array of Figure 2.4 [3].
Systolic array for band matrix multiplication [3].

Four pulsations of the systolic array of Figure 2.6 [3].

The next four pulsations of the systolic array of Figure 2.6 [3].

Snapshots for a systolic matrix-vector multiplication algorithm [6].

DG for matrix-vector multiplication
(a) with global communication
(b) with only local communication [6].

Mapping of index set into VLSI array using transformation T 5.

VLSI array structure when index i determines the timing
(or valid execution ordering) of computations (for N=3).

The structure of the cell in Figure 2.11.
VLSI array structure using the transformation T4 in example 1 .
The structure of the cell in Figure 3.1 .

VLSI array structure using the transformation T in examaple 2 .

- Xiii -
Figure 3.3(a) The structure of the cell in Figure 3.3
Figure 3.4 VLSI array structure using the transformation Ty in example | (for N=3).
Figure 3.5 The structure of the cell in Figure 3.4 .
Figure 3.6 Optimal VLSI array structure for matrix multiplication (for N=3) .

Figure 3.7 The structure of the cell in Figure 3.6

Figure 4.1 VLSI Array Structure when index { determines the timing
(or valid execution ordering) of computations (for N=3).

Figure 4.2 The Structure of the cell in Figure 4.1.

Figure 4.3 Fault-tolerant Systolic Array for Matrix Multiplication
with one version of the algorithm triplicated.

Figure 4.4 VLSI array for index j determining the timing of the computations.

Figure 4.5 Another VLSI array structure when index i determines the valid
execution ordering of the computations (for N=3).

Figure 4.6 VLSI array structure which represents a combination of the VLSI
array structures for the different versions of the algorithm.

Figure 4.7(a) VLSI structure when the dependency matrices of all versions of
the matrix algorithm are combined (for N=3).

Figure 4.7(b) VLSI array structure indicating the data flow of only one
version of the algorithm in Figure 4.7(a) (for N=3).

Figure 4.7(c) VLSI array structure showing the data flow for the
second version of the algorithm in Figure 4.7(a).

Figure 4.7(d) Data flow for the third version of the algorithm
in Figure 4.7(a) (for N=3).

- Xiv -

Figure 4.8 The cell structure of the fault-tolerant systolic array of Figure 4.7(a).

Figure 4.9 VLSI aurny structure for A, (for N=3).

Figure 4.10 VLSI array structure which represents a combination of the

VLSI array structures for A,, A, and A, .

Figure 5.1 VLSI array structure that implements the matrix
multiplication algorithm (for N=3).

Figure 5.2 Mapping of index set into VLSI arrays using
transformation matrices T and T’ (for N=3).

Figure 5.3 The VLSI array structure resalting from rotation of
the array of Figure 5.1 by 180° about the vertical axis.

Figure 5.4 The VLSI array structure resulting from merging
the systolic arrays of Figures 5.1 and 5.3 (for N=3).

Figure 5.5 CED systolic array for matrix multiplication for (N=3).

Figure 5.5(a) (i) The first pulsation of the CED systolic array
for matrix multiplication (for N=3).

Figure 5.5(a) (ii) The second pulsation of the CED systolic array
for matrix multiplication (for N=3).

Figure 5.5(a) (iii) The third pulsation of the CED systolic array
for matrix multiplication (for N=3).

Figure 5.5(a) (iv) The fourth pulsation of the CED systolic array
for matrix multiplication (for N=3).

Figure 5.5(a) (v) The fifth pulsation of the CED systolic array
for matrix multiplication (for N=3).

Figure 5.6(a) The cell structure of type I cell in Figure 5.5.

- XV -

Figure 5.6(b) The cell structure of type II cell in Figure 5.5.

Figure 5.7 Mapping of index set into VLSI arrays using
transformation matrices T and T’ (for N=4).

Figure 5.8 CED systolic array structure for matrix multiplication (for N=4).
Figure 5.9 Optimal VLSI array structure for matrix multiplication (for N=3).

Figure 5.10 The structure of the cell in Figure 5.9.

Figure 5.11 Mapping of index set into VLSI arrays using
transformation matrices T (Eq. (5.18)) and 77 (Eq. (5.20)) (for N=3).

Figure 5.12 Optimal CED systolic array structure for matrix
multiplication algorithm (for N=3).

Figure 6.1 Fault-tolerant systolic array for matrix multiplication (for N=3).

Figure 6.2 VLSI array structure of § that implements the matrix
multiplication algorithm (for N=3).

Figure 6.3 Mapping of index sets of § and S’ into VLSI
arrays using transformation matrix T (for M=3).

Figure 6.4(a) VLSI array structure of S’ that implements the matrix
multiplication algorithm (for N=3).

Figure 6.4(b) The VLSI array structure of S” resulting from
rotation of Figure 6.5(2) by 180° about the vertical axis.

Figure 6.4(c) The VLSI array structure resulting from merging the systolic
arrays of §,S’, S” (for N=3).

Figure 6.5(a) FT Systolic array for matrix multiplication (for N=3).

- Xxvi -

Figure 6.5(b) The internal structure of a set of Type II cells
showing the two delay elements incorporated inside the cells.

- Xvii -

LIST OF TABLES

Table 3.1 Comparison of the computation complexity for generating
TDM of an algorithm.

Table 3.1(a) Comparison of the architectural features of the gencrated
TDM'’s of example 1.

Table 3.1(b) Comparison of the architectural features of the generated
TDM'’s of example 2 .

Table 3.2(a) Comparison of the silicon area of the generated TDM’s of example 1.

Table 3.2(b) Comparison of the silicon area of the generated TDM’s of example 2.

Table 3.3(a) Comparison of the throughput of the generated TDM’s of example 1.

Table 3.3(b) Comparison of the throughput of the generated TDM'’s of example 2.

Table 3.4(a) Comparison of the Propagation Delay of the generated TDM’s of example 1.
Table 3.4(b) Comparison of the Propagation Delay of the generated TDM’s of example 2.
Table 3.5(a) Comparison of the AT values of the generated TDM’s of example 1.

Table 3.5(b) Comparison of the AT values of the generated TDM's of example 2.

Table 3.6(a) Comparison of the AT? values of the generated TDM’s of example 1.

Table 3.6(b) Comparison of the AT? values of the generated TDM’s of example 2.

Table 3.7(a) Comparison of the Speedup per PE (SP) of the generated TDM’s
of example 1 .

Table 3.7(b) Coniparison of the Speedup per PE (SP) of the generated TDM’s
of example 2 .

Table 3.8

- xviii -

The performance measure of the respective TDM’s in example 1.

Table 3.9(a) The performance measure of the respective

TDM’s in example 2, for W =2,

Table 3.9(b) The performance measure of the respective

TDM’s in example 2, for W =35,

Table 3.10(a) The selected TDM’s in example 1 for the respective cost functions .

Table 3.10(b) The selected TDM’s in example 2 for the respective cost functions .

Table 4.1

Table 5.1

Table 5.2

Table 6.1

Table 6.2

Table 6.3

The comparison of the complexity and diagnosis performance
of various existing fault-tolerant techniques with our
propcsed design scheme.

Comparison of the complexity and diagnosis performance of
the various existing CED techniques with our proposed
design scheme.

Summary of the comparison of the percentage hardware and
time redundancy ratios required by various CED schemes
to perform matrix multiplication in systolic arrays.

Comparison of the complexity and diagnosis performance of
the fault-tolerant techniques proposed in Methods 1
and 2 of chapter VI.

Comparison of the hardware and time redundancy ratios of the
existing and proposed schemes.

Summary of the comparison of the percentage hardware and
time redundancy ratios required by various FT schemes to
perform matrix multiplication in systolic arrays.

CHAPTER 1

INTRODUCTION

1.1 SYSTOLIC ARRAYS

A systolic system consists of a set of interconnected simplc processing elements
(PE’s) or cells, each capable of performing some simple or complex operations |1,2.3].
Because simple, regular communication and control structures have substantial advamntages
over complicated ones in design and implementation, cells in a systolic system are typi-
cally interconnected to form a systolic pipeline, array or tree | 1]. Information in a systolic
system flows between cells in a pipeline fashion, and communication with the outside
world occurs caly at boundary cells. For example, in a systolic array, only the cells on

the array boundaries may be I/O ports for the system.

The systolic array features the important properties of modularity, regularity, local
interconnection, a high degree of pipelining and highly synchronized multiprocessing [4].
The data movements in a systolic array are often described in terms of the snapshots of
the activities [4]. The systolic array design differs from the conventional Von Neuman
computer [5] in its highly pipelined computations. By replacing a single processing cle-
ment with an array of PE’s (cells), higher computation throughput can be achieved
without increasing memory bandwidth [1,2]. The memory pumps data through the array
of cells. More precisely, once a data item is brought out from the memory, it can be
used effectively at each cell it passes while being pumped from cell to cell along the
array. This is especially appealing for a wide class of compute-bound computations,
where multiple operations are performed on each data item in a repetitive manner [4].
This avoids the classic memory access bottleneck problem commonly incurred in Von

Neuman architectures [5].

-2

Being able to use each input data item a number of times is just one of the many
advantages of the systolic approach. Other advantages include, modular expandability,
simple and regular data and control flows, and the use of simple and uniform cells. Sim-
ple and regular interconnections lead to cheap implementations and high densities. High
density on the other hand, implies both high performance and low overhead for support
components. Due to these reasons, multiprocessor structures which have simple and regu-
lar communication paths have been considered interesting architectures for modern sigial
and image processing applications. Also, the use of pipelining as a general method for
applying these structures is logical and attractive. By pipelining, computation may
proceed concurrently with input and output operations, consequently, minimizing the
overall execution time. Systolic arrays thus take advantages of the concepts of pipelining,

parallelism and regular interconnection structures [3].

Unlike the closed-loop circulatory system of the body, from which this type of com-
puter architecture derives its name, a systolic computing system usually has ports into
which inputs flow snd ports where the results of the systolic computations are retrieved.
In a systolic systent input and output can o.cur with every pulsation. This makes systolic
arrays attractive as specialized peripheral processors attached to the data channel of a host
computer. A systolic system may also possess a real-time data stream or be a component
in a large special purpose-system [1].

A unique property of systolic arrays is that system performance is proportional to the
number of cells. So systolic arrays in general have large numbers of cells, as required by
the special purpose applications for which they are designed. Because systolic arrays are
used to implement special purpose systems whose development costs cannot be amortized
over a large number of units, it is useful to have some flexible means of assembling many
different types and sizes of systolic arrays from a small number of building blocks. Such
a tool must provide programmability both within individual cells and at the interconnec-

tion level.

Many projects developing systolic arrays for special purposc applications s
described in the literature [6-8]. Some of the applications of systolic arrays include lincar
algebra computations such as matrix multiplication and various signal processing algo-
rithms like digital filtering, convolution, Fast Fourier Transforms (FFT). Other application
areas include robot control, medical image processing, computer vision, nuclear physics,

structure analysis, sonar, radar, seismic, weather computation and so on.

1.2 BASIC PROBLEMS IN SYSTOLIC ARRAY DESIGN

An important problem associated with the design of a systolic array is the mapping
of algorithms into systolic architectures. Many known designs of systolic architectures
are based on heuristic approaches. However, there has been a considerable effort in the
development of systematic methods for synthesizing systolic arrays based on algorithm-
oriented analyses [9-28]. Systolic arrays derive maximal concurrency by using both pipe-
lining and parallel processing. The features of many algorithms used in signal and image
processing include localized operations, intensive computation and matrix operations. In
order to facilitate the design of special purpose systolic arrays, the common features of
this algorithm should be exploited. Therefore, another important issue with the design of
systolic arrays is how to fully express the inherent concurrency in these special purpose

algorithms.

Algorithm expression is a basic tool for a proper description of an algorithm for
parallet processing. There are two approaches to derive parallel algorithm expressions
[3,4,29]. These are vectorization of sequential algorithm expressions and direct parallel
algorithm expressions, such as single assignment code, parallel codes, recursive equations,
dependence graphs and so on. In tle first approach, a vectorizing compiler processes a
source code written in a sequential language and, where pousible, generates parallel
machine instructions. This apprcach is not sufficiently effective in extracting the inherent

concurrent processing. It is advantageous to use parallel € ¢pressions o describe

algorithms.

The most important parallel expression of algorithms is the Dependence Graph
(DG). In order to achieve the maximal parallelism in an algorithm, the data dependencies
in the computations must be carefully studied. There is always a certain degree of depen-
dency which dictates the sequence of computations. The DG is a graphical representation
of these data dependencies. Once the data depenuencies are explicitly expressed, a sys-
tolic array processor implementation can then be derived by mapping the DG’s onto pro-
CCSSOr arrays.

There are two methodologies for mapping algorithms into systolic arrays. These are
the canonical mapping methodology for mapping homogeneous DG’s onto processor
arrays; and the generalized mapping methodology for mapping heterogeneous DG’s onto
processor arrays. An enormous number of algorithms have the useful properties of being
totally regular and localized [4]. The canonical mapping methodology is suitable to treat
such class of algorithms, which can be expressed by shift-invariant dependence graphs.
This mapping methodology consists of three design stages: (1) DG Design, (2) mapping
the DG onto a signal flow graph (SFG) and (3) deriving a systolic array from the SFG.
The generalized mapping methodology allows the treatment of a broader class of algo-
rithms that are not completely regular (i.e., not totally shift-invariant) but exhibit a certain
degree of regularity. This thesis concentrates only on the canonical mapping methodol-
ogy.

Systematic approaches to derive a systolic array processor implementation by using
such regular DG’s have been proposed in the literature [9-28]. Karp, Miller and Winograd
[9] proposed the systems of uniform recurrence equations. In their systems of uniform
recurrence equations, they explored the idea of local and regular Dependence Graph
(DG). They used an index space display to show the complete dependency of locally
recursive algorithms. The idea of uniform recurrence equations was applied later on by

Quinton [10,11} to the design of systolic arrays. Gachet et al. [12] described the metho-

dology underlying the DIASTOL system, whose aim is to allow systolic chips to be
designed automatically. This methodology, called dependence mapping, is also based on
the ability of someone to describe a problem as a system of wuniform recurrence equa-
tions, then mapping the problem on a systolic array. Rao [13] defines a class of algo-
rithms, namely the regular irerative algorithms similar to the systems of uniform
recurrence equations defined in [9,11]. It is shown that a subclass of the regular iterative
algorithms has the characteristics of the systolic algorithms and the corresponding systolic
architectures may be systematically derived. The notion of locally recursive algorithmy
proposed by Kung [14], stresses the locality of spatial and time indices in a recursive
algorithm and therefore is expressible in terms of a spatially local DG or Signal Flow
Graph (SFG). Many research explorations on this issue are discussed in [15,16,17,18]. A

more detailed review can be found in [13,19].

Capello and Steiglitz [20] introduced a geometric interpretation of the linear transtor-
mation on index space, which provides an insightful look into how several systolic
designs for the same algorithm relate to each other. Along the same line as the approach
proposed in [20], several researchers [21-28] address the issue of mapping cyclic (loop)
algorithms into systolic arrays. The cyclic algorithms are specified in a high-level
language, such as FORTRAN, in the form of DO loops. The approach is based on the
space-time mapping of different cyclic algorithms into systolic array architectures. The
mapping procedure is based on linear transformation of index sets and data dependence
vectors. Moldovan extended the mapping to the partitioning problem [23]. He presented
a technique for partitioning and mapping algorithms into VLSI systolic arrays. Algorithm
partitioning is essential when the size of a computational problem is larger than the size
of the VLSI array intended for that problem. His approach to the partitioning problem is
to divide the algorithm index set into bands and to map these bands into the processor
space. Finally, he presented a six step procedure for the partitioning and mapping tech-

nique. The main difference between the mapping approaches proposed in [9-20] and

-6 -

those proposed in 22-28] is that, the latter approaches started from a program using

imperative languages such as FORTRAN rather than from equations.

In this thesis, we concentrate on the approach of space-time mapping of different
cyclic algorithms into systolic array architectures [21-28]. For this approach, in order for
a computation structure to be implemented in a VLSI systolic array, the conceptual sites
(J" = (J' 423 7%, J")} must be mapped into Z" = {(i, J? VA L)}, where J"
denotes the index set of the algorithm and J" is the nth - dimensional set of an algo-
rithm. Although it is considered that VLSI arrays are (n-1) - dimensional, practical arrays
have pure planar layout. Therefore, for a two - dimensional systolic array, the conceptual
sites {J" = (i,j,k))} must be mapped into Z3 = {(t,x,y)} where t specifies the time and
(x,y) represents the 2-dimensional physical coordinates of the place in the VLSI systolic
array where the node is computed. If a computational structure is characterized by a con-
stant dependency matrix which consists of a set of vectors, D = (d.dy, . . . ,dy). Then
the structure may be mapped into a time-space representation in Z3 with new dependency
as a systolic matrix A = (8,,5,, . . ., 8,), where k is the number of columns of the depen-
dence vectors. This is done by means of matrix multiplication, TD = A , where the

matrix T s a valid transformation matrix [23-25,27].

The transformation T is chosen such that the ordering of the execution of the algo-
rithm is preserved. Necessary and sufficient conditions for the existence of valid transfor-
mations are given for algorithms with constant data dependence [20-22,24]. Many
transformation matrices T can be found for a given constant dependency matrix, and each
transformation leads to a different array. This flexibility gives the systolic array designer
the possibility to choose between a large number of arrays with different characteristics
[27]. In order to obtain an optimal design, given the cost function or the optimality cri-
teria, a heuristic procedure is used to search for the best one among many feasible
transformations. The most suitable optimality criteria are hard to pinpoint and optimizing

one factor may sacrifice other factors [4]. There are many factors in determining the

-7-

optimization criteria for the design of systolic arrays. The choice of the optimality criteria

is, in general, application dependent.

Several works on how to design optimal systolic array architectures have been pro-
posed in the literatures [4,12,13,15,23,24,30-42]. The works done by Kung [4], Dclosme
[15], Moldovan [23], Miranker [24], Wong [30], O’keefe |31] and Fortes [32] are based
on how to minimize the Computation time of a systolic array. The Computation time
(denoted by C) is the time interval between the first computation and the last computa-
tion of a problem instance by the processor array. They defined how the computation time
of a systolic array is computed given the time schedule vector of the algorithm. They for-
mulated that the range of time steps generated by points in the index set should be a set
of consecutive integers. Therefore, the computation time is equal to the difference
between the largest and the smallest time steps in the range set. Hence, in order to obtain
the systolic array which is optimal with respect to the computation time, in most cases,
all the allowable time schedule vectors are enumerated and the one that gives the minimal

computation time solution is selected.

Rao [13] worked on minimizing the Pipelining period (o) and the Block pipelining
period (B) of a systolic array. The Pipelining period is the time interval between two suc-
cessive computations in a processor. In other words, the processor is busy for one out of
every o time intervals. It should be noted that « is the reciprocal of the pipeline rate. On
the other hand, the Block pipelining period is the time interval between the initiations of
two successive problem instances by the processor array. He formulated an integer pro-
gramming problem to find the schedule vector which minimizes o, given the projection
vector. The block pipelining period can be calculated using the reservation table, which
specifies for all PE’s in the array, the time steps a certain PE is busy during the computa-
tion of one problem instance. Based on the table, the time span for each PE can be calcu-
lated, which indicates the difference between the first time step and the last time step dur-

ing which a PE is busy in the reservation table. Therefore, the block pipelining period is

-8 -

simply the largest time span of any PE in the array. Thus, a systolic array is optimal

with respect to o and B if it has the minimum o and/or B, among the numerous arrays.

In addition to minimizing the execution or computation time, Fortes [32] proposed a
heuristic approach for optimizing the hardware cost. The array sice, which is defined as
the number of processors in the array, obviously determines the basic hardware cost.
Therefore, a systolic array which has the minimum number of processors gives the
optimal solution with respect to this cost function. Gachet et al. [12] described a metho-
dology, called the dependence mapping, which is based on the ability for someone to
describe a problem as a system of uniform recurrence equations, then mapping the prob-
lem on a systolic array. In their design approach, they were interested in those transfor-
mations (projections) that will give fewer number of cells in the systolic design. Hence,
their cost function is to minimize the number of processors in the array. Leiserson [33]
mentioned that it is desirable to minitnize hardware cost by using minimal delays in a
systolic array, while preserving optimal o. He proposed a procedure to optimize the total
number of delays in a systolic array, which is based on delay transfer through nodes. This
is well known systolization scheme or the retiming of a synchronous circuit. Thus, by
minimizing the delay elements in a systolic array, an optimal solution can be obtained

with respect to this criterion.

A mapping technique to design systolic structures having limited I/O requirement
has been proposed in [34-37]. The authors argued that even though many mapping tech-
niques have been proposed for the design of systolic arrays, due to limited I/O access,
many of the algorithm mapping techniques cannot be directly applied or result in complex
designs. Some of these designs have complicated controls and non-uniform I/O patterns
[35,36]. For example, many proposed designs in the literature requires O(N) I/O
bandwidth for problems of size N2, which may be hard to realize in practice. In order to
cope with this problem, they proposed a design methodology which is based on the

linearization of arrays. Systolic design use linear connected arrays with data and control

-9 -

signals pumped at either end {35,36,37]. Their approach requires O (VN) /O bandwidth

for N x N systolic matrix multiplication algorithm,

Li et al. [38] proposed a parameter mcthod of designing optimal systolic arrays
using the parameters: velocities of data flows, spatial distributions of data and the
periods of computation. By relating these parameters in constraint equations that govern
the correctness of the design, the design is formulated as an optimization problem. The
velocity of datum x is defined as the directional distance passed by v during a clock
cycle. The directional distance of x comprises of the number of PL's and buffers
traversed by x in a given number of clock cycles. For instance, if x propagates through i
PE’s and j—i buffers in j clock cycles, and if i=1, then there are j—1 buffers between
two neighboring PE’s in the pipelining direction of x. For the data distribution, it is con-
sidered that the input elements of a systolic array, along a row or column are arranged in
a straight line and equally spaced as they pass through the systolic array, and the relative
positions of the elements are iteration independent. The number of such distinct lines is
referred to the number of streams of data flow. Their definition of period is the same as
pipelining period . The performance of a systolic design is expressed in terms of these
parameters. The number of PE’s required, denoted by mpf, depends on the directions in
which the inputs are moving. The completion time (T) can be expressed as a function of
the PE configuration and velocity. The design problem is then formulated to minimize
mpg X T2, or mpr x T, or T. Hence, the optimal solution is the systolic design that is

minimized with respect to any of these criteria.

In Ko et al. [39], algorithms are specified in terms of data dependency, and imple-
mentations are specified in terms of data propagation and sequence behavior. By estab-
lishing a relation between data propagation and sequence, an optimal mapping strategy is
formulated as a problem of finding an integer solution of a set of linear equations. The
optimal mapping strategy is as follows: (i) Find the time mapping function which gives

the fastest output propagation. (ii) Find the space mapping function which gives the

- 10 -

highest throughput and minimum computation delay. (i) Find the propagation behavior.
(iv) Find the sequence behavior. Therefore, the mapping function which gives the fastest
output propagation and highest throughput gives the optimal systolic array solution. One
problem with this approach is that, in order to find the time and space mapping functions,
the designer must choose the desired propagation and sequence vectors that will maxim-
ize throughput and give the fastest output propagation. This means that the designer must
have prior knowledge on how to select the vectors that possess these desired properties.
Therefore, the difficulty of this approach lies in determining the propagation and sequence
vectors that give the optimal mapping function. Another problem with the approach is
that, they assume that the solution matrix obtained as a mapping function consists of only
integer elements. However, in some cases, there is no integer solution for the desired pro-
pagation and sequence. In this case, they choose the integer solution that closely approxi-
mates the desired propagation and sequence, by rounding the non-integer solution to the
nearest integers. Then this means that the mapping function obtained in this case will

yield a sub-optimal systolic array instead of the desired optimal array.

In the above approaches, the criterion used for optimum architecture selection is a
space - time cost function formed by the total number of processing elements and the
required clock cycles for a task. These are purely architectural arguments, which rely on
the assumption that the maximum clock frequency is independent of processing element
count. In a monolithically integrated circuit, this is not necessarily true [41,42]. There is
an interplay between heat dissipation, signal propagation and chip area which must be
satistied if’ a system has to function in a synchronous fashion without overheating. This
interplay sets physical limits on clock frequency [40]. Lee et al. [40] compared systolic
architectures for matrix multiplication, in terms of the maximum speedup which can be
achieved with increased processor count in a monolithically integrated circuit. The com-
parison process integrates the architectural characteristics and the technological parame-

ters. The optimum systolic architecture is found for different physical limiting factors

- 11 -

including switch delay, power dissipation, 1/ bandwidth and clock skew.

1.3 ERROR DETECTION AND FAULT-TOLERANCE

Since systolic arrays in general have larger number of cells, it is incvitable that some
cells will fail in such large arrays. Therefore, systolic arrays must be designed to function
correctly in the presence of failure. In other words, they must be fault-tolerant. Fuuli-
tolerant techniques are characterized by the inclusion of redundant functional elements,
both logic circuit and interconnections in the design and the ability to modify the inter-
connection structure. This results in yield enhancement. When a defect is found during
production testing on a wafer containing systolic cells, the defective cell can be substi-
tuted by a working spare cell on the same wafer. This restructuring is done at the fabrica-

tion facility before shipping the wafer to the field.

An equally important use of fault-tolerance through redundancy results in enhanced
reliability of the VLSI wafers after shipping. Many techniques have been proposed over
the years to achieve fault-tolerance in the field [43]. Any fault-tolerance technique is
designed to tolerate a given class of faults within a system. A fault can be treated at any
level within the system. This can be from a very low level such as the transistor level, 10
a higher level such as the functional module level. Most fault-tolerance techniques have
been designed to tolerate faults in some module within a system. Such a module-level
Sault model is ideal for VLSI, where a physical failure can cause some portion of the chip
to be faulty [43]. A module fault is assumed to result in arbitrary errors at the output of
the module. It is these errors that must be prevented from appearing at the output of the

system, after the computation is completed.

Several steps are involved to achieve fault-tolerance [43]. These include, detection of
an error at some module output; correction of the error; location of the faulty module;

and reconfiguration of the system to bypass the faulty module. There are several ways to

- 12 -

detect and correct errors in systolic arrays. An example would be to check the computa-
tion in order to detect an error, and once it is detected, the computation can be rolled
back to a previously error-free state to correct the error. However, if there is sufficient
redundancy in the computation, an error due to a module failure can be masked by
correct values from other modules. This technique is employed in the design of highly
redundant systems for space applications. In the reconfiguration approach, the faulty
module must be located first before the system can be restructured. Reconfiguration
approach is a candidate for application environments in which permanent failures are the

dominant concern.

There are three redundancy approaches to fault-tolerance, namely, space, time and
algorithmic redundancies. The space redundancy can be static, hybrid or dynamic. In
static redundancy approach, which is also known as masking redundancy, N copies
(where N is odd) of a module and a majority voter are used to mask the errors from
failed modules. This scheme is also known as N-Modular Redundancy (NMR) and a
popular version for N = 3 is called the Triple Modular Redundancy (TMR). The static
technique can be combined with a set of spares through the use of a disagreement detec-
tor and a switching unit to produce a hybrid redundant system [44]. In the dynamic
redundancy approach, the faulty modules are identified and the system is reconfigured by
replacing faulty modules with spares. Time redundancy approach involves recomputing
the same computation twice in the same module or in adjacent modules at two different
but close enough time periods and then comparing the results. If they do not match. a
roll-back procedure can be used to correct the errors. Algorithmic redundancy is based on
data-encoding approach. The input data to the algorithm are encoded at the system level
in the form of error-correcting or error-detecting codes. The original algorithm is
redesigned to operate on thes> encoded data and to produce encoded output data. The

redundancy in the encoding would enable the correct data to be recovered.

Many classical fault-tolerance techniques employ the masking redundancy approach

- 13-

[5,44-48]. In this approach at least three modules are necessary in a voting system. For a
multiple processing unit systolic array, this technique can be applied by triplicating cach
of the systolic cells and having a voter at the output of the cell, or by triplicating the
entire array with one voter. The overhead for fault-tolerance is at least 200%. The tech-
nique is very general and can be applied at any level in a highly parallel system. How-
ever, due to the high hardware overhead, the cost of the fault-tolerant system is high. It
has been demonstrated that a lower cost fault-tolerance technique is to design the system
to detect the errors during normal operation. This will then be followed by steps to iden-
tify the faulty unit and provide correction to the errors. It has also been shown that the
combination of space and time redundancy can lead to a very attractive form of fault-

tolerance [43].

Many Concurrent Error Detection (CED) schemes for systolic arrays have been pro-
posed in the literature [4,49-61]. The CED scheme proposed in [50] is called Comparison
with Concurrent Redundant Computation (CCRC). In this scheme, each computation and
its redundant counterpart are performed in two adjacent cells simultaneously and then the
results are compared. This approach is applicable to a class of systolic arrays in which the
daia as well as the (sub) results keep moving from cell to cell during computation. A
similar approach to that proposed in [50] was proposed in [4,51,52], but the technique in
[4,51,52] is applicable to unidirectional data flow linear systolic arrays. The technique in
[53] employs Algorithm-based CED approach. The strategy used in the technique is to
encode input matrices and to check the encoded matrices of the output of computations to

determine whether the outputs are reliable.

The approach in [54] is based on concurrent redundant computation which is similar
to the approaches in [4,50-52]. However, the scheme in [54] is restricted to a class of
systolic arrays where the partial results most stay in the cells. In [55], the technique com-
bines systolic array circuit architectures with residue number system (RNS) computations.

Two independent residue calculations are performed and the results are compared for

- 14 -

discrepancy. A CED approach for implementing algorithm-based fault-tolerance in paral-
fe} processing arrays is proposed in [56]. It is based on the notion of diagnostic invari-
ance. Certain characteristics of the input data called diagnostics, which match the charac-
teristics of the output data are determined. A mis-match between the characteristics indi-

cates the presence of faults in the systolic array.

The CED schemes in [49,57-59], use the approach of Recomputation with Shifted
Operands (RESO) to test systolic array by repeating every computation with shifted
operands so that each cell in the arithmetic unit operates on a different set of bits. It can
be shown that, with appropriate shifts and design of the arithmetic unit, a faulty cell will
cause the two results to be different, achieving error detection. The CED scheme pro-
posed in [60] is based on the use of logarithmic coding (addition theorem of logarithms)
to detect errors in systolic arrays. Two independent matrix computations are performed
using the multiplication and anti-logarithm approaches, respectively. A discrepancy
between the two results indicates that a set of the output results is erroneous and hence
the fault can be detected. The relationship between concurrent error detection via Con-
current Redundant Computation (CRC) and space-time transfonination has been investi-

gated in [61].

These CED techniques can be employed to achieve error detection using a small
amount of hardware overhead. The error correction can be done using time redundancy,
that is using further clock cycles. This balance between the hardware and time redun-
dancy achieves the best possible utilizatior: of the system modules, since normal perfor-
mance is not sacrificed for error detection, and the overhead for error correction is needed

only after an error has occurred [43].

Several fault-tolerance schemes, which correct errors with normal operation of the
systolic array systems, have been proposed in the literature [4,43,46,52-56,62,63]. These
schemes employ concurrent error detection techniques to identify errors in the computa-

tion during normal operation. Then further procedures are taken to provide correction of

.15 -

the errors. The technique proposed in [46] uses the idle processing element in a systolic
array to achieve error correction. It is based on TMR approach, whereby three adjacent
cells in a linear bidirectional systolic array are used to produce three copies of the com-
puted results. These results can be used to correct the errors and also identify the taulty
unit. A technique to detect and correct errors using time redundancy is proposed in [4,52].
The approach is called the time redundancy with interleaving for fault-tolerance. The stra-
tegy is to perform two computations in adjacent cells at two different time periods and
then compare the results. If an error is detected in the computations, a roll-back procedure

is performed to correct the errors.

The technique proposed in [54] is a dual redundancy approach whercby identical
sequences of inputs are entered into two adjacent processing elements. The redundant
computations of two adjacent output resalts, y, and y,,q, are performed by one cell. 1f a
fault occurs and it results in discrepancies in two adjacent output results, the fault can be
localized to a particular cell. The outputs from that cell can be igrored and the
corresponding redundant output from two adjacent cells can be accepted as correct. The
detection and correction of errors arising from faults in the array can be performed either
by software in the host processor, or by hardware following the system output. The
scheme proposed in [55] combines systolic array architecture with residue number system
computations. Independent computations are performed in modulo-controlled processing
channels. Two channels in the processing model can be made redundant to form what is
in effect a triply redundant array. With the capability to correct any one erroncous resi-
due, the system becomes tolerant to any pattern of faulty cells that has no more than one
faulty cell in the processing block. The approach in [56] integrates error detection with
the execution of the algorithm itself. As mentioned before, this scheme is based on the
determination of certain characteristics of the input data called diagnostics, which match
the characteristics of the output data. If a fault occurs in the array, there will be a mis-

match between those two characteristics. After the error is detected further steps are

- 16 -

taken to locate the faulty cell and to correct the error.

Algorithm-based fault-tolerance technique has been proposed in [43,53,62,63] to
detect and correct errors in matrix operations performed by systolic arrays. The technique
utilizes a matrix encoding scheme in which the data is encoded at a higher level to pro-
tect against errors affecting a faulty module in the systolic array. The encoding is done by
considering the set of input data to the algorithm and encoding this set. The original algo-
rithm must then be redesigned to operate on the encoded data and to produce encoded
output data. The redundancy in the encoding enables the correct data to be recovered or,

at least, recognizes that the data are erroneous.

Design strategics for fault-tolerance in systolic arrays are highly dependent on the
application environments [43]. For environments in which transient errors and intermittent
failures arc dominant, the techniques proposed in [4,5,43-63], may be most effective for
detecting and tolerating the faults. However, environments where permanent failures are
the dominant concern, may best be served by reconfiguration techniques. In a
reconfiguration approach, failures are tolerated by replacing the faulty processors and
interconnections with fault-free spares or bypassing the faulty elements and reducing the
size of the computational structure. Design for reconfiguration can be utilized to tolerate
failures of a systolic array at the point of application, as well as enhancement of yield
througn toleration of manufacturing defects in a chip or wafer [43,64,65]. Such restructur-
ing can be performed only once to adapt the wafer to a specific application after
manufacturing. Dynamic restructuring can be performed as many times as required and
provides dynamically reconfigurable architectures in the field. A number of different
techniques exist for modifying the interconnection structure of VLSI cells [66,67], once
the faulty cell is located. Such techniques are particularly important in wafer scale
integration. Wafer scale systems are composed of large numbers of functional simple pro-
cessors in the wafer surface connected by on-wafer wiring. The entire wafer is packaged,

and a complete systolic array is formed from one or more such packages.

o cmeriv

217 -

In order to reconfigure the processors’ interconnection flexibly, restructurable wiring
is laid out between the processors. After testing the processors, the connection between
the functional processors are established by routing the wiring around the taulty proces-
sors. Several techniques exist for performing such reconfiguration. For instance, a com-
pletely unconnected wiring pattern can be fabricated on the wafer using double layer
metalization. The vertical wires between modules are patterned in one level of metal and
the horizontal wires are patterned on the second metal layer. The connections between the
metal layers are established by layer programming [66], thereby, defining the interconnec-
tions between the processors. Another technique involves the programmable switches that
can be inserted into the wiring. Each switch stores a switch setting in its local memory
specifying a connection between two or more incident wires |67]. Switch setting must be
detined externally, depending on the testing of the processors and the location of the

faulty ones, in order to establish a specific interconnection pattern.

Successful reconfiguration relies on the following elements [43]; (i) testing or con-
current error detection techniques for diagnosis of failures, (ii) a design strategy for place-
ment of spare computational elements, (iii) appropriate interconncction and switching
techniques for incorporation of spares [66,67], and (iv) reconfiguration algorithims, which

optimally allocate spares in the presence of multiple faults.

An und-rstanding of the design objectives appropriate for reconfigurable systolic
architectures provides a basis for the evaluation of different reconfigurstion techniques.
One of the objectives is the efficient utilization of spares. The algorithms that allocate
spares in the presence of failures should also be of reasonable complexity. Other objec-
tives for a targeted VLSI implementation include manageable VLSI layout complexity for
large numbers of processors, moderate interconnect requirements, and a bounded number
of pins per chip for multiple-chip implementations. Also, reconfiguration should not result
in significant performance degradation such as may be due to clock skew from long inter-

connects in the presence of failures [43]. All of these objectives must be evaluated

- 18 -

through ar ‘lysis that includes reliability or yield studies, and performance evaluation.

Several approaches to reconfigure systolic arrays have been proposed in the literature
[36,37,43,53,64-80]. For instance in [68], the proposed systolic fault-tolerance scheme
maintains the original data flow pattern by bypassing defective cells with few registers. In
another example, the approach proposed in [43] for cube-connected-cycles-based networks
maintain a fixed str.. ‘ture through switching mechanisms that replace faulty elements with
sparc elements. The advantage of a fixed structure is that performance of the network is
maintained throughout the life of the system. However, spare elements are usually inac-
tive during normal operation, which means that the utilization of all good PE’s is not
optimal. The difference between all the reconfiguration approaches lies in the

reconfiguration strategy employed by each approach.

1.4 MOTIVATIONS, OBJECTIVES AND CONTRIBUTIONS

In the space-time approach of mapping algorithms intc systolic array architectures,
scveral transformation matrices T are generated for a given constant dependency matrix
(D). In the previous approaches [21-28] that employ this mapping technique, a valid
transformation matrix 7 is first obtained and then used to select the transformed depen-
dency matrix (TDM (A)) by performing the matrix multiplication TD = A . This pro-
cedure has to be repeated many times until an optimal or near optimal design is obtained.
The structure of the TDM(A) is not known until all the operations to generate T are per-
formed and A is selected. Although, the resulting systolic array obtained with the selected
transformation matrix represents a feasible design, in most cases it does not satisfy some
important VLSI requirements. These requirements include improving the fault-tolerant
capability of the array, minimizing the silicon area and delay, minimizing the VLSI rout-
ing complexity, improving the speedup of computations, maximizing throughput and

obtaining the fastest propagation of output variables.

e v

-19 -

In view of this problem, one of the objectives of this thesis, is to find an approach
that will allow us to select A first, and examine it 0 see if it meets the desired VLSI
requirements. The desired systolic structure will be selected first hand and then its
corresponding transformation matrix T will be derived. We want to avoid deriving 7" for
such TDM, if we know that corresponding TDM may not satisfy our requirements. In this
way, we can eliminate those TDM's without the need to generate their comresponding

transformations.

In order to achieve the above objective, one of the contributions of this thesis, is 1o
formulate a methodology to obtain the desired transformed dependency matrix (TDM)
dirccuy from the original dependency matrix (DM). Rather than producing several
transformation matrices and selecting the one that gives optimal A, we generate the new
transformed dependency matrix directly from the dependency matrix, by adding another
matrix to the original dependency matrix (i.e. A =D + Q). The validity of this
approach lics on showing that it is possible in general, to add any valid matrix Q to D
and (i) obtain a A that does not violate the dependency constraints of the given algorithm
and (ii) find non-singular integer T. This approach gives us the option to first, examine

and then select the systolic structure (A) that meets our VLSI requirements.

Since several TDM’s that meet the desired requirements can be obtained, then it will
be imperative to select the TDM that gives the optimal systolic array based on certain
measure of cost or criteria. A literature survey [12,13,15,23,24,30-40], of several
approaches of designing optimal systolic arrays, is described above. In these approaches,
the cost function is based mostly on architectural features of the systolic array, such as
the total number of processing elements in the array, total computation time of the array,
block pipelining period and so on. They fail to take into account those realistic optimal-
ity criteria such as the cell’s complexity, the number of interprocessor connections, VLSI

routing complexity and other practical design considerations. Therefore, the second objec-

tive of the thesis is to identify a more realistic optimality criteria to design systolic arrays.

220 -

In order to achieve this objective, we have formulated a more realistic and suitable
optimality criteria that take into account both the architectural features and technological
parameter of the systolic array. For instance, the area of a systolic array does not consist
of only the number of processing elements in the array, as employed in the previous
approaches. The area is a complex function of the number of PE’s, the number of buffers,
the interconncction pattern and the available technology. The cost functions include the
speedup, cell’s complexity, number of interprocessor connections, VLSI routing complex-
ity, the propagation delay, feuit-tolerant capability of the array and other practical design
issues. We establish a relationship between the coefficients of the TDM (systolic matrix)
and the factors of the cost function. This enables us to investigate the practical design
issues at the design stage of the systolic array rather than after the implementation of the
architecture.

Also, in the previous approaches [12,13,15,23,24,30-40], the optimality of systolic
arrays is determined by optimizing only one cos* function. This cost function would be
either the computation time, or the number of processing elements, or maximum speed or
a cost function formed by combining the number of processors (mpg) and the required
number of clock cycles (T.) of the systolic array. It is important to note here that
mpg x T, or mp x T2 is regarded as one optimization factor rather than two individual
cost functions comprising of mpy and T,. Since optimizing only one cost function may
sacrifice other factors, it becomes imperative to identify a "unifying performance index"
to neasure ine "overall array perforrnance”. In view of this problem, we have proposed a
compound objective function (COF), which is composed of several cost functions, to
measure the cost of each TDM obtained directly from the original dependency matrix.
The COF is a unified performance index to measure the overall performance of the sys-
tolic array architecture. It includes cost functions like the fault-tolerant capability of the
array, the silicon area, the throughput, the propagation delay, the product of the silicon

arca and total execution time, and the speedup of computation for the systolic array. By

221 -

taking all these factors into consideration when selecting the optimal systolic array for a
given algorithm, we can avoid sacrificing any of the practical design issues, during the
design stage of the systolic array. The systolic array design is therefore formulated into an
optimization problem of finding the TDM with the minimum cost function. The optimiza-

tion algorithm is systematic and also computationally efficient.

As mentioned in the previous section, systolic arrays should be designed to function
correctly in the presence of failures. This increased reliability can be achieved through
fault-tolerance. Many techniques have been proposed to achieve fault-tolerance in systolic
arrays [4,5,36,37,43-80]. For the reconfiguration approaches [36,37,43,64-80], in general,
the problem of how to tolerate the defects once they are located is addressed in each
approach. Concurrent error correction cannot be achieved using these techniques. Also,
the fault detection problem, requiring a totally different set of techniques such as voting
and self testing is not discussed. In most cases, such fault detection techmgques are
specific to a given architecture and may not be applicable to another architecture. Addi-
tionally, the techniques may be expensive in terms of area and time overheads and as
such cannot be applied to real-time systems. Since transient errors are becoming more
frequent due to low supply voltages and decreased signal-in-noise ratios on VLSI chips
[81], techniques are needed to tolerate taults concuriently with normal operation of the
system. Concurrent error detection and correction techniques have been presented in the
literatures [4,43,46,49-63]. The drawbacks of the CED schemes [4,5,43,49-61] include:
there is a reduction in throughput by 50% [4,5,50-52,54}, they allow the detection of only
single faults, multiple fault detection requires high hardware overhead. Some of the tech-
niques are limited to only those systolic implementations in which the data as well as
(sub) results keep moving [4,5,50-52]. While some can only be applied to systolic arrays

where data are stored in the cells [54,60].

In the case of error corrcction, the techniques proposed in [5,44-48] require, at least,

hardware overhead of 200% without affecting the cost of the voter. Also the schemes in

.22 -

153,55,56,60,62,63| require high overhead to achieve fault-tolerance. The schemes in
[4,46,52] are restricted to a class of systolic arrays where the data as well as the (sub)
results move fiom one cell to another. In [54], partial results must stay in the cells for the
scheme to work. There is a halving of the maximum effective output rate from the tech-
niques proposed in [4,46,52,54]. The schemes in [4,52,53,62,63] are only effective for
transicnt faults. They are not effective for permanent faults. Error correction requires
high time overhead in [53,56,62,63]. In [46,54,55,56], the schemes cannot detect nor
correct faults in the data paths of input/output registers. The correction latency is very
long for the schemes in |53,55,56,62,63]. Also the schemes in [53,55,61-63] are vulner-
able to false alarms brought about by round-off errors. The fault-tolerant design
approaches in [46,56] are not systematic. The structure of the FT systolic array resulting

from the design schemes in [53,56,62,63] are no longer regular and granular.

One of the major contribution of this thesis is the development of a methodology for
designing reliable systolic arrays. we have proposed a novel approach to achieve con-
current error detection in systolic arrays. The methodology employs the space-time map-
ping techniques to design error detectable systolic arrays. In the proposed approach,
redundant computations are introduced at the algorithmic level such that when the algo-
rithm is mapped into systolic array, the redundancy in the array allows errors to be
detected in the array. Finally, in addition to the proposed CED technique, another major
contribution of the thesis is the development of a novel approach to design fault-tolerant
systolic array architectures. The CED technique has been extended to design efficient
fault-tolerant systolic arrays. Both the CED and FT approaches are systematic, the
methodologies are cost-effective in terms of the hardware and time overhead. The pro-
posed CED and FT schemes overcome most of the drawbacks of the existing schemes

proposed in the literatures.

-23.

1.5 OUTLINE OF THE THESIS.

This thesis presents a new methodology for evaluating the performance and also the
design of reliable systolic array architectures. The layout of the thesis is as follows:
Chapter II contains the preliminary research on the design of systolic array architectures.
Chapter III is concerned with the performance analysis and the design of optindd systolic
arrays, which is based on the formulated optimization algorithm to measure the cost of
the generated TDM'’s. Chapter IV discusses the systematic approach for designing fault-
tolerant systolic array architectures. Some techniques to design area efficient computing
structures for concurrent error detection and fault-tolerance in systolic arrays, are
presented in Chapters V and VI respectively. In particular, the main contents of cach

chapter are briefly described as follows:

Chapter II : Preliminaries.
This chapter presents a comprehensive overview and some basic concepts for designing
systolic arrays. Also the different methodologies for mapping algorithms into systolic

arrays are described in this chapter.

Chapter III : Performance Analysis and Design of Optimal Systolic Arrays.

This chapter discusses the proposed methodology for obtaining the desired TDM directly
from the original Dependency Matrix (DM). It also describes the formulation of a unify-
ing performance index to measure the overall performance of the systolic arrays. The
optimization algorithm that maps any algorithm into optimal systolic array is also intro-

duced in this chapter.

Chapter IV : Systematic Approach for Designing Fault-Tolerant
Systolic Array Architectures.

This chapter introduces a systematic approach for designing fault-tolerant systolic arrays.
In particular, a new approach of designing fault-tolerant algorithms is described. It shows

how redundancy can be incorporated at the algorithmic level such that when the algo-

- 24 .-

rithm is mapped into an architecture, the resulting systolic array will be inherently fault-

tolerant,

Chapter V : Area Efficient Computing structures for Concurrent
Error Detection in Systolic Architectures.

Based on the new approach of designing fault-tolerant algorithms introduced in chapter
IV, an area efficient technique for achieving Concurrent Error Detection in systolic array

is proposed in this chapter.

Chapter VI : Area Efficient Fault-Tolerant Computing Structures for Systolic Arrays.

In this chapter, the Concurrent Error Detection technique proposed in Chapter V is
extended to design area efficient fault-tolerant systolic arrays. The technique employed
here is termed arca-efficient in that it utilizes less area than the technique for achieving

fault-tolerance, described in Chapter IV.

Chapter VII : Conclusions and Future Work

Basic contributions of the research described in this thesis are summarized in this chapter.
Also, possible extensions of the results to specific, or perhaps new problems are dis-
cussed. A brief section on topics that have not been treated in this thesis is included as

suggestions for contributions to this area of research.

225 .-

1.6 REFERENCES

{11 A.L. DcCegama, The Technology of Parallel Processing. Parallel Processing Archi-
tectures and VLSI Hardware, Vol. I, Prentice Hall, Englewood Cliffs, New Jersey,
1989.

[2] H.T. Kung, "Why Systolic Architectures?,” IEEE Computer, Vol. C-31, pp. 37-46,
Jan, 1982,

3] H.T. Kung and C.E. Leiserson, "Systolic Arrays (for VLSD," In Sparse Matrix Sym-
posium, pp. 256-282, SIAM, 1978.

[4] S.Y. Kung, VLSI Array Processors, Prentice Hall, 1988.

[51 J. V. Neuman, "Probabilistic Logics and Synthesis of Reliable Organisms from
Unreliable Components,” Automata Studies, No. 34, pp. 43-99, Princeton, NJ -
Princeton University Press.

[6] M. Annavatone et al., "Architecture of Warp," 1987 IEEE Conference Proceedings
on Computer Architecture, pp. 264-267, 1987.

[71 B. Bruegge et al., "Programnming Warp," 1987 IEEE Conference Proceedings on
Computer Architecture, pp. 268-271, 1987.

[8] M. Annavatone et al., "Applications and Algorithm Partition on Warp," /1987 ILEE
Conference Proceedings on Computer Architecture, pp 272-275, 1987.

[91 R.M. Karp, RE. Miller and S. Winograd, "The Organization of Computations for
Uniform Recurrence Equations,” Journal of ACM, 14(3), pp. 563-590, July, 1967.

[10] P. Quinton, "The Systematic Design of Systolic Arrays," IRISA Research Report,
No. 193, March 1983.

[11] P. Quinton, "Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equa-
tions," In Proceedings of 11th Annual Symposium on Computer Architecture, pp
208-214, 1984.

[12] P. Gachet, B. Joinnault and P. Quinton, "Synthesizing Systolic Arrays using DIAS-
TOL," Systolic Arrays (edited by W. Moore, A. McCabe and R. Urquhart), pp.25-
36, Adam Hilger Ltd., Bristol, UK, 1987.

[13] S.K. Rao, "Regular Iterative Algorithms and their Implementation on Processor
Arrays," Ph.D thesis, Stanford University, Stanford, California, 1985.

[14] S.Y. Kung, "From Transversal Filter to VLSI Wavefront Array", In Proc. Int’l Conf.
on VLSI 1983, IFIP, Trondheim, Norway, 1983.

- 26 -

[15] J-M. Delosme and I.C.F. Ispen, "Efficient Systolic Arrays for the Solution of Toe-
plitz Systems: An illustration of a Methodology for the construction of Systolic
Architectures in VLSL," Int’l Workshop on Systolic Arrays, University of Oxford, pp.
F2, July, 1986. Also in Systolic Arrays: edited by W. Moore, A. McCabe and R.
Urquhart, pp. 27-46, 1987.

[16] M.C. Chen, "A Synthesis Method for Systolic Designs," Technical Report 334, Yale
University, March, 198§5.

[17] M.C. Chen, "Synthesizing Systolic Designs," Technical Report 374, Yale University,
March, 198S5.

[18] M.C. Chen, "Synthesizing VLSI Architectures: Dynamic Programming Solver,” In
Int. Conf. in Parallel Processing, pp. 776-784, Chicago, IL, August, 1986.

[19] J.LA.B. Fortes, K.S. Fu and B.W. Wah, "Systematic Approaches to the Design of
Algorithmic Specified Systolic Arrays," In Proc. IEEE ICASSP ’85, pp. 300-303,
Tampa, Florida, March, 1985.

[20] P.R. Capello and ¥. Steiglitz, "Unifying VLSI array Designs with Geometric
Transformations," In Int’l Conf. on Parallel Processing, 1983.

[21] U. Weiser and A. Davis, "A Wavefront Notation Tool for VLSI Array Design," in
VLSI Systems and Computations, Rockville, Maryland: Computer Science Press,
1981.

[22] D. Moldovan, "On the Analysis and Synthesis of VLSI Algorithms," IEEE Trans. on
Computers, vo! C-31, No. 11, November 1982.

[23] D. 1. Mbldovan, "On the Design of Algorithms for VLSI Systolic Arrays," Proc.
IEEE, Vol. 71, No. 1, January 1983,

[24] W. L. Miranker and A. Winkler, "Spacetime Representations of Computational
Structures,” Journal of Computing, Vol. 32, 1984,

[25] H. F. Li et al.,, "A Systematic Approach for Mapping Algorithms into Systolic
Arrays," Technical Report, Dept. of Comp. Sc., Concordia University, Montreal,
Quebec, Canada.

[26] D. 1. Moldovan, "Tradeoffs Between Time and Space Characteristics in the Design
of Systolic Arrays," Proc. of ISCAS, 1985.

[27] D. 1. Moldovan and J. A. B. Fortes, "Partitioning and Mapping Algorithms into
Fixed Size Systolic Arrays’" IEEE Trans. Comput., Vol. C-35, No. 1, pp. 1-12,
January 1986.

[28] D. 1. Moldovan, "ADVIS: A Software Package for the Design of Systolic Arrays,"
IEEE Trans. Comput.-Aided Design, Vol. CAD-6 January 1987.

-27.

[29] M.C. Chen, "Space-Time Algorithm: Semantics and Methodology." Ph.D thesis.
Computer Science Department, California Institute of Technology, 1983.

[30] Y. Wong and J-M Delosme, "Optimal Systolic Implementations of N - dimensional
Recurrences," ICCD, pp. 618-621, 1985.

[31] M. T. O’Keefe and J. A. B. Fortes, "A Comparative Study of Two Systematic
Design Methodologies for Systolic Arrays,” In International Conference on Parallel
Processing, pp. 672-675, Chicago, IL, August, 1986.

[32] J. A. B. Fortes, "Algorithm Transformations for Parallel Processing and VLSI Archi-
tecture Design," Ph.D. dissertation, Univ. Southern California, Los Angeles, CA.,
Dec., 1983.

[33] C. E. Leiserson, F. M. Rose and J. B. Saxe, "Optimizing Synchronous Circuitry by
Retiming,"” in Proceedings, Caltech VLSI Conference, Pasadena, CA, 1983.

[34] C. S. Raghavendra, V. K. Prasanna Kumar and A. Varma, "On systolic processing
with bounded I/O bandwidth," in Proc. ICCD, 1985,

[35] I. V. Ramakrishnan and P. J. Varman, "Synthesis of an optimal family of matrix
multiplication algorithms on linear arrays," Tech. Rep., Univ. of Maryland, Dept.
Comput. Sci., Proc. ICPP, 1985.

[36] P. J. Varman and 1. V. Ramakrishnan, "Optimal matrix multiplication on fault-
tolerant VLSI array," Proc. ICALP, 1985.

[37] V. K. P. Kumar and Y-C Tsai, "On Mapping Algorithms to Linear and Fault-tolerant
Systolic Arrays," IEEE Trans. on Comput., Vol. 38, No. 3, pp. 470-478, March,
1989.

(381 G - J Li and B. W. Wah, "The Design of Optimal Systolic Arrays,” IEEE Trans.
Comput., Vol. C-34, No. 1, pp 66-77, January 1985.

[39] C. K. Ko and O. Wing, "Mapping Strategy for Automatic Design of Systolic
Arrays," in Proc. 1988 International Conf. on Systolic Arrays, pp. 285-294, 1988.

[40] H. B. Lee and R. O. Grondin, "A Comparison of Systolic Architectures for Matrix
Multiplication,”" IEEE Journal of Solid-State Circuits, Vol. 23, No. 1, pp. 285-289,
February 1988.

[41] R. W. Keyes, "Physical Limits in Digital Electronics,” Proc. IEEE, Vol. 63, No. 5,
pp. 740-767, May, 1975.

{42] R. O. Grondin, W. Porod and D. K. Ferry, "Delay Time and Signal Propagation in
Large - Scale Integrated Circuits," IEEE J. Solid - State Circuits, Vol. SC-19, No. 2,
pp.263-263, April, 1984.

[43] J. A. Abraham, P. Banerjee, C-Y Chen, W. K. Fuchs, S-Y Kuo and N. Reddy,
"Fault - Tolerance techniques for systolic arrays,” IEEE Computer, pp. 65-74, July

- 28 -

1987.

{44] P. K. Lala, Fault Tolerant and Fault Testable Hardware Design, Prentice Hall Inter-
national, 19&5.

[45] T. Anderson and P. A. Lee, FAULT TOIL.ERANCE - Principles and Practice, Pren-
tice Hall, 1981,

[46] J-H Kim and S.M. Reddy, "A Fault-Tolerant Systolic Array Design using TMR
Method," 1985 ICCD, pp. 769-773.

[47] M. O. Esonu, S. Hariri and A. J. Al-Khalili, "A Systematic Approach for Designing
Fault - Tolerant Systolic Architectures,” in Proc. 1989 Joint Tech. Conf. on
Circuits/Systems, Comput. and Communications, Sapporo, Japan, June 25-27, 1989.

[48] M. O. Esonu, A. J. Al-Khalili and S. Hariri, "Variation on the Theme for Designing
Fault-Tolerant Systolic Array Architectures,” Pacific RIM Conference or. Communi-
cations, Victoria, B.C., May, 1991.

[49] J. H. Patel and L. Y. Fung, "Concurrent Ercor Detection in ALU’s by Recomputing
with Shifted Operands," IEEE Trans. Comput., Vol C-31, pp. 589-595, 1982.

[50] R. K. Gulati and S. M. Reddy, "Concurrent Error Detection in VLSI Array Struc-
tures,” Proc. IEEE Intl. Conf. on Computer Design, pp. 488-491, 1986.

[51] C-C Wu and T-S Wu, "Concurrent Error Correction in Unidirectional Linear Arith-
metic Arrays," Proc. 17-th Intl. Symp. on Fault-Tolerant Computing, pp. 136-141,
1987.

[52] E. S. Manolakos, "Transient Fault Recovery Techniques for the VLSI Processor
Arrays," Ph.D thesis, University of Southern California, May, 1989.

[53] K. H. Huang and J. A. Abraham, "Algorithm-based fault-tolerance for matrix opera-
tions," IEEE Trans. Comput., vol. C-33, pp. 518-528, June 1984.

[54] R. J. Cosentino, "Concurrent Error Correction in Systolic Architectures," Proc. IEEE
Trans. on Computer-Aided Design, Vol. 7, No. 1, pp. 117-125, January 1988.

[55] R. J. Cosentino, "Fault Tolerance in a Systolic Residue Arithmetic Processor Array,"
IEEE Trans. on Comput., vol. 37, No. 7, pp. 886-890, July, 1988.

[56] H. Lev-Ari and B. Friedlander, "On the Systematic Design of Fault-Tolerant Proces-
sor Arrays with Application to Digital Filtering," VLSI Signal Processing I, pp.
483-493, 1988.

[57] S-W Chan and C-L Wey, "The Design of Concurrent Error Diagnosable Systolic
Arrays for Band Matrix Multiplication," Proc. IEEE Trans. on Computer-Aided
Design, Vol.7, No.1, pp. 21-37, January 1988.

-29.

A

[58] J. H. Patel and L. Y. Fung, "Concurrent Error Detection in Multiply and Divide
Arrays," IEEE Trans. Comput., vol. C-32, No. 4, pp. 417-422, April 1983.

[59] W-T Cheng and J. H. Patel, "Concurrent Error Detection in Iterative Logic Arrays.”
FTCS, pp. 10-15, June 1984.

[60] S. R. Gupta and M. A. Bayoumi, "Concurrent Error Detection In Systolic Arrays For
Real-Time DSP Applications," VLSI Signal Processing 111, edited by Robert W. Bro-
dersen and Howard S. Moscovitz, IEEE Press, 1988.

[61] H. F. Li, C. N. Zhang and R. Jayakumar, "Latency of Computational Data Flow and
Concurrent Error Detection in Systolic Arrays,” Canadian Conf. on Verv Large
Scale Integration (CCVLSI), pp. 251-258, 1989. Canada.

[62] K-H Huang and J. A. Abraham, "Fault-Tolerant Algorithms and their Application to
Solving Laplace Equations,” IEEE Int'l Conf. Parallel Processing, pp. 117-122,
August, 1984.

[63] J-Y Jou and J. A. Abraham, "Fault-Tolerant Matrix Arithmetic and Signal Processing
on Highly Concurrent Computing Structures,” Proceedings of the IEEE, vol.74, No.
5, pp- 732-741, May, 1986.

[64] 1. Koren and M. A. Breuer, "On Area and Yield Considerations for Fault-Tolerant
VLSI Processor Arrays,” 'EEE Trans. on Comput., Vol. C-33, No. 1, pp. 21-27,
Jan., 1984.

[65] J-H Kim and S. M. Reddy, "On the Design of Fault-Tolerant Two-Dimensional Sys-
tolic Arrays for Yield Enhancement," IEEE Trans. Comput., Vol. 38, No. 4, April
1989.

[66] J. 1. Raffel ez al.,, "A Demonstration of Very Large Area Integration Using Lesser
Destructuring," IEEE International Symposium on Circuits and Systems, May 1983.

[67] P. E. Blonkenship, "Restructurable VLSI Program," Semiannual Technical Summary,
ESD_TR 81 153, MIT Lincoln Lab, March 1989.

[68] H. T. Kung and M. S. Lam, "Fault-Tolerance and Two Level Pipelining in VLSI
Systolic Arrays," MIT Conference on ADV Research in VLSI, pp. 74-83, Jan. 1984,

[69] F. T. Leighton and C. E. Leiserson, "Wafer-Scale Integration of Systolic Arrays,”
IEEFE Trans. Computers, Vol. C-34, pp. 448-461, May 1985.

[70} P. J. Varman and 1. V. Ramakrishnan, "A Fault-Tolerant VLSI Matrix Multiplier,”
ICPP, pp. 351-357, August, 1986.

[71] T. Ishikawa, S. Momoi, S. Shimada, Y. Ogawa, "Hierarchical Array Processor
(HAP) Featuring High Reliability and High System Performance,” ICPP, pp. 293-
300, August, 1986.

- 30 -

[72} F. Lombardi, R. Negrini, M. G. Sami, and R. Stefanelli, "Reconfiguration of VLSI
Arrays: A Covering Approach,"” FTCS, pp. 251-256, July, 1987.

(73} D. L. Landis, W. A. Check and D. C. Muha, "Influence of Built-In Self-Test on the
Performance of Fault-Tolerant VLSI Multiprocessors," ICPP, pp. 114-116, August,
1987.

{74] H. F. Li, R, Jayakumar and C. Lam, "Restructuring for Fault-Tolerant Systolic
Arrays," IEEE Trans. on Comp., vol. 38, No. 2, pp. 307-311, Feb., 1989.

[75] D. S. Fussell and P. J. Varman, "Designing Systolic Algorithms For Fault-
Tolerance," Proc. of the IEEE Int'l Conf. on Comp. Design: VLSI in Comp., pp.
617 4922, 1984,

[76] Y-H Choi, S. H . Han and M. Malek, "Fault Diagnosis of Reconfigurable systolic
arrays," ICCD ’84, pp. 451-455, 1984.

[77] M. S. Lee and G Frieder, "Massively Fault-tolerant Cellular Array," IEEE Int'l Conf.
Parallel Processing, pp. 343-350, 1986.

[78] J. H. Hwang and C. S. Raghavendra, "VLSI Implementation of Fault-Tolerant Sys-
tolic Arrays," ICCD '86, pp. 110-113, 1986.

[791J. H. Kim and S. M. Reddy, "On Easily Testable and Reconfigurable Two-
Dimensional Systolic Arrays,” ICPP '87, pp. 101-109, 1987.

[80] L. A. Shombert and D. P. Siewiorek, "Using Redundancy for Concurrent Testing
and Repairing of Systolic Arrays," FTCS, pp. 244-249, July 1987.

[81] D. F. Barbe, "VHSIC Systems and Technology," Computer, pp. 13-22, February,
1981.

- 31 -
CHAPTER 11
PRELIMINARIES

This chapter gives a comprehensive overview of systolic array architectures and
presents some basic concepts for designing systolic arrays. The chapter consists of three
main sections: Section 2.1 discusses the basic principle of systolic architecture and gives
a coherent definition of systolic arrays. It also discusses the justification of why systolic
arrays are preferred architectures for executing many algorithms, by presenting the major
factors of adopting systolic arrays for special - purpose processing architectures. Further-
more, the section describes the basic components of systolic array structures and then

concludes by giving the applications of systolic arrays,

Section 2.2 discusses methods of mapping algorithms into systolic arrays. It reviews
the different mapping methodologies and also, introduces the notations and defines
relevant terminologies associated with the Space - Time mapping procedure. Section 2.3
describes in detail one of the mapping methodologies, which many rescarch works on
systolic designs are based on. This is a systematic method of mapping algorithms into
systolic arrays based on the linear transformations of index set and data dependencics. In
order to illustrate this approach, a systolic design example for matrix multiplication algo-

rithm is presented.

2.1 SYSTOLIC ARRAY ARCHITECTURES : AN OVERVIEW

Systolic processors are a class of pipelined array architectures [1,2]. As described
by Kung and Leiserson |1], A systolic system is a network of processors which rythmi-
cally compute and pass data through the system. Some basic simple processing elements

(PE’s) can be locally connected together to perform some simple signal processing

-32-

operations and/or other related operations. Systolic array features the important properties
of modularity, regularity, local interconnection, a high degree of pipelining and highly
synchronized multiprocessing. The data movements in a systolic array are often described
in terms of the snapshots of the activities [1,2]. Information in a systolic system flows
between cells in a pipeline fashion, and communication with the outside world occurs
only at the boundary cells. Only those cells on the array boundaries may be 1/O ports for
the systolic system,

Computational tasks can be conceptually classified into two families: compute -
bound computations and //O - bound computations [2]. In compute - bound computa-
tions, the total number of computations is larger than the total number of input and output
operations. While in the 1/O - bound computations, the reverse is the case. For example,
ordinary matrix multiplication is compute - bound, whereas adding two matrices is /O -
bound. Speeding up the I/O - bound computations requires an increase in memory
bandwidth, which may be difficult to achieve given the present technologies. Speeding
up a compute - bound computation, however, may often be accomplished by using sys-
tolic arrays.

The basic configuration of a systolic array is illustrated in Fig.2.1 . By replacing a
single processor element with an array of PE’s, higher computation throughput can be
achieved without increasing memory bandwidth. The function of the memory in the Fig-
ure is to pump data through the array of cells. The essence of this approach is to ensure
that, once a data item is brought into the array from the memory, it can be used
effectively at each cell it passes through while being moved step by step from cell to cell
along the array. This is especially appealing for a wide class of compute - bound compu-

tations, where multiple operations are performed on each data item in a repetitive manner.

Being able to use each input data item a number of times is just one of the many
advantages of the systolic approach. Other advantages include, modular expandability,

simple and regular data and control flows, and the use of simple and uniform cells.

33.

INSTEAD OF
| e —
MEMORY t———— 5 MILLION
OPERATIONS
100 ns PER SECOND
[T'] AT MOST
LPET
WE HAVE.
MEMORY 30 MOPS
POSSIBLE
100 ns

PE|PE|PE | PE|PE PEJ
THE SYSTOLIC ARRAY

Figure 2.1 Basic principle of a s

ystolic system.

A c

{ 4
- - AR » -8
¢ — —C j(
B —— —— 8 - ~
B —‘/\A

{ .

A c

fa} 'b)

Figure 2.2 Inner product step processors. [3]

= H

{a) Linearty connected

(b) Orthogonaily connected {c) Hexagonally connected

Figure 2.3 Systolic array systems. [3]

-34-

Simple and regular interconnections lead to cost-effective implementations and high den-
sities. High density on the other hand, implies both high performance and low overhead
for support components. Due to these reasons, multiprocessor structures which have sim-
ple and regular communication paths have been considered interesting architectures for
modern signal and image processing applications. Also, the use of pipelining as a general
method for applying these structures is logical and attractive. By pipelining, computation
may proceed concurrently with input and output operations, consequently, minimizing tne
overall execution time. Systolic arrays thus take advantages of the concepts of pipelining,

parallelism and regular interconnection structures [3].

2.1.1 Definition of Systolic Arrays

A number of definitions of systolic arrays are given in the literature [1,4,5], how-

ever, a coherent definition given in [6] is as follows:

Definition 2.1 : A systolic array is a computing network possessing the foliowing

features:

Synchrony :- The data are rhythmically computed (timed by a global clock) and

passed through the network.

Modularity and regularity :- The array consists of modular processing units with

homogeneous interconnections, the computing network can be extended easily.

Spatial locality and temporal locality :- The array manifests a locally communica-
tive interconnection structure, i.e. spatial locality. There is at least one unit-time
delay alloted so that signal transaction from one cell to the next can be completed,

i.e. temporal locality.

Pipelinability :- The array exhibits a linear rate pipelinability, i.e., in terms of the
processing rate, it should achieve an O(mpp) speedup, where mpg is the number

of processing elements (PE’s).

2.1.2 Properties of Systolic Architectures

2.1.2.1 Why Systolic Arrays are Preferred Architectures for Executing Many Algo-

rithms

The major factors for adopting systolic arrays for special - purpose processing archi-
tectures are first, simple and regular design, second, concurrency and communication, and
balancing computation with I/O [1,2]. For the first factor, with the advance in integrated
circuit technology, the cost of the processing elements has decreased dramatically, how-
ever, the cost of design grows with the complexity of the system. By exploiting the VLSI
technology and using a regular and simple design, tremendous savings in design cost can
be achieved. In addition, simple and regular systems are likely to be modular and there-

fore adjustable to various performance goals.

Another important factor is concurrency which is very essential to achieve high-
speed computing systems. The concurrency depends on the underlying algorithms
employed by the system, especially for special - purpose systems. When a large number
of processors work together, communication becomes very important and significant.
Routing cost dominate the amount of power dissipation, time and area required to imple-
ment a computation [7], therefore, regular and local communication in systolic arrays

offers a great advantage.

The 1/O problem is especially severe when the computation of a large dimension

problem is performed on a small array. It involves a partitioning problem, that is, the

- 36 -

computation must be decomposed. Since this is the case in practice, therefore, the ques-
tions that are critical to the practical design of an array processor system, are how the
computation can be decomposed and how the buffer memory can be arranged to minim-
ize 1/O. A systolic array is typically used as an attached array processor, and it receives
data and output results through a host computer. Therefore, 1/0 considerations have to be
taken into account in the overall performance. The ultimate performance goal of an array
processor system is a computation rate that balances the available 1/O bandwidth with the
host. With the relatively low bandwidth of current 1/O devices, to achieve a faster compu-
tation rate, it is necessary to perform multiple operations per 1/O access. Since in systolic
arrays, multiple operations are performed on each data item in a repetitive manner as the
data is pumped into the array from the memory, therefore, available /O bandwidth is bal-
anced with the computation rate. As a result, systolic arrays are preferred architectures for

performing compute - bound computations.

2.1.3 Components of Systolic Array Structures

The single operation common to the computations of most signal processing algo-
rithms is the so - called inner product step. For example, C « C + A x B. Figure 2.2
shows two types of geometries of a processor (cell) that can be used for such computa-
tions. In cach type, the simple processor has three registers R4, Rp and R, , and each
register has two connections, one for input and the other for the output. The type a
geometry in Fig.2.2 is used for the computations of the algorithms such as the matrix -
vector multiplication and the LU - decomposition. While the type b geometry can be
used for the computation of matrix - matrix multiplication algorithm. Each of the proces-
sors 18 capable of performing the inner product step and they are called the inner product
sStep processors.

The operation performed by the inner product processor is described as follows: In

each time interval, the processor shifts the data on its input lines denoted by A, B and C

.37 -

into Ry, Rg and R, respectively. The processor computes R « R + Ry x Ry, and
makes the input values for R, and Rp together with the new value of R available as
outputs on the lines denoted by A, B and C, respectively. The inputs and the functional
block in the processor are clocked in such a way that when one processor is connected to
another, the change in one processor’s output will not interfere with the input to another

during this time interval.

A systolic array is typically composed of many inner product step processors con-
nected as a mesh (using type a geometry) in which all connections to a processor are 10
neighboring processors. A hexagonally systolic array structure is formed using the type b
inner product processors. Different types of connections are as shown in Fig.2.3. The
input/output data path of a boundary processor may sometimes be designated as an exter-
nal input/output connection for the array. A boundary processor may receive input from
the host memory through an external connection. On the other hand, a boundary proces-
sor can send data to the host memory through an external output connection. The proces-
sors in a systolic array are synchronous. They are simple and uniform, interprocessor con-

nections are simple and regular and external connections are minimized.

One example of the algorithms that can be implemented using systolic arrays is the
Matrix - Vector Multiplication algorithm. The problem is that of multiplying a matrix A
= (a;;) with a vector x represented by the transpose (x (X9, = * * ,X,) . The elements of y
=1, ... ,y,) are computed by the recurrence given in [7]. There arc many ways to
implement this algorithm using systolic arrays. In one particular version, the recurrences
can be evaluated by pipelining the x; and y; through a systolic array consisting of linearly
connected inner product step processors, as illustrated in Fig.2.4. Figure 2.5 shows the

first seven pulsations of the systolic array.
Another example of an algorithm is the Matrix Multiplication algorithm. This is the
problem of multiplying two nxn matrices. Also, the matrix product C=(¢,) of A=(q,)

and B=(b;;) can be computed by the recurrences in |7].

38

|
l "u a3 l‘
! ay 2 |
! I
b oag 932 |
’ |
' a0 aye |
| A
[od d2 T
| -~
~ d.e —r - l
T~ e
) T] ‘ ’
g ‘ I I ; ! ¥ L‘-— r
—— X, - | | [- — Vg e -
s W e N |
Figure 2.4 Systolic array for multiplication of a
vector by a band matrix. 3]
Pulse
Number Configuration Comments
[1 = T
= = = , vl y,. initialized as zero,
0 - f - — ' D I 1s pumped into the fourth
. — . N p— ' processor
' -— x, is pumped into the first
= = r-—t—-' Yy p———y | processor while y, 1s moved
L. - —- o ; . left oneplace. {From now
— % B — _ . on thex, and y, keep moving
right and left, respectively.)
- el e T - T y‘* a,, enters the second
2 | ay, | | 2! processor where y, 1s
el el x, N et .r"’ ‘ 1 updatedby yye—y, + 841 ¥,
| — ! Thusy, =a,, x,.
- - N - Y - 3y, ana a,, enter the first
Y1 1 4] and third processors,
3 - N2 | - Lu 9 i ! | respectively y, =ay, x, +3,; x;
X2 ! Xy f o | and y, =aa, X,.
y r
1——1* 1 = Ya = ' = { 7,_] v, s pumped out
4 o '-. 322 | e ! '-> l a3 Vo =dyy Xy t8yp X4
) 1*2 ; \ ! * Y3 Sag Xy
-y, T -— Vol
; ‘232 ')l Yz Sda Xy +dgXxy +ayyxy.
= i, - = | x, - Y3 Ty Xy ¥ ayX;.
2 —
iz = Y3 = Y21 ¥, 1s pumped out.
6 — - | 933 |- - | da Y3 Ta51%, ¥ 83X, +83;3X;.
‘J Xz Ya 35‘24\'2.

Figure 2.5 The first seven
systolic array o

f

ulsations of the
Figure 2.4. [3

-39.

One particular way of solving this problem is to evaluate the recurrences by pipelining
the a;;, b;; and ¢;; through a systolic array having hexagonally connected inner product
step processors, as shown in Fig.2.6. The elements of matrices A, B and C are pumped

through the systolic array in three directions synchronously. Figure 2.7 shows four con-

secutive pulsations of the hexagonal systolic array.

2.1.4 Applications of Systolic Arrays

In the above examples, the sizes of the systolic arrays required for matrix/vector
computations depend only on the bandwidths of the band matrices to be processed and
are independent of the lengths of the bands. Therefore, a fixed-size systolic array can
pipeline band matrices with arbitrarily long bands. The pipeline aspect of systolic arrays
is most effective for matrices with long bands. Band matrices are interesting since many
important scientific computations involve them, however, it should be noted that the same
techniques apply to dense matrices, since they are regarded as band matrices with max-

imum possible bandwidth.

Many projects developing systolic arrays for special-purpose applications have been
reported in the literature [8, 9, 10]. Some of the applications of these special-purpose sys-
tolic architectures include linear algebra computations of the type described in the above
examples, various signal processing algorithms, robot control and medical image process-
ing. Other applicational domain of systolic arrays covers computer vision, nuclear phy-
sics, structure analysis, analysis of speech, sonar, radar, seismic, weather and astronomical

computations and so on.

..40...

tn

Caz

ts .

ystolic array for _band malrix
multiplication. [3]

o

S

Figure 2.6

..41

(a) 2y

Figure 2.7(a) Two pulsations of the systolic array
of Figure 2.6. [3]

1 Figure 2.7(b) The next two pulsations of the systolic
array of Figure 2.6. [3]

=43 -

2.2 MAPPING ALGORITHMS INTO SYSTOLIC ARRAY ARCHI-
TECTURES.

Many known designs of systolic array architectures are based on a heuristic
approach. However, there has been considerable effort in the development of systematic
methods for synthesizing systolic arrays based on algorithm-oriecnted analyses. As men-
tioned in the previous section, systolic arrays are preferred architectures for implementing
many signal and image processing algorithms. The features of many algorithms used in
signal and image processing include localized operations, intensive computation and
matrix operations. In order to facilitate the design of special-purpose signal/image array
processors, the common features of these algorithms should be exploited. Important
issues associated with the design of these special-purpose arrays are how to eypress this
special class of algorithms and a systematic method to transform an algorithm description
to array processor. Algorithm expression is a basic tool for a proper description of an
algorithm for parallel and pipeline processing. There arc quite a number of rescarch
efforts devoted to the formal description of space-time activities in systolic array proces-
sors [2,11]. Parallel algorithm expressions may be derived by two approaches: Vectoriza-
tion of sequential algorithm expressions and Direct parallel algorithm expressions, such as
single assignment code, parallel codes, recursive equations, snapshots, dependence graphs
and so on. A major factor in selecting an algorithm expression is that it should express

algorithms clearly and concisely.

There exist abundant sequential codes for signal/image processing and scientific
computing. A conventional approach to concurrent execution is by using a vectorizing
compiler. A vectorizing compiler processes a source code written in a sequential
language, and, where possible, generates parallel machine instructions. In fact, detecting
and analyzing the dependencies between statements within loops is the major task in vec-
torization [12]. However, since a vectorizing compiler may not be sufficicntly effective

in extracting the inherent concurrent (parallel and pipeline) processing, it is advantageous

- 44 -

that a user/designer use parallel expressions to describe an algorithm in the first place.
This is a key step leading to an algorithm-oriented array processor design.

One such parallel expressions is the Single Assignment Code. A single assignment
code is a form where every variable is assigned one value only during the execution of

the algorithm.
A single assignment code is in a sharp contrast to a conventional Fortran code, which is,
in general, not written in a single assignment form. For example, consider the following

matrix-vector multiplication algerithm.

DO 10 I=14
Ch=0
DO 10 J=14

C() = C) + A(ILJ) * BQY)
10 CONTINUE

Note that in this program, the value of C(I) is assigned more than once. It is overwritten
many times to save storage space. In order to transform the above program to a single
assignment code, the number of indices of vector C is increased. The FORTRAN pro-
gram thus obtained is the same as the program above except that the statement { C(I) =
Ch+ AU * B() }isreplaced by { C(I,J+1) = C(L)) + A(LJ) * B() } and C(1)=0
by C(1,1)=0. Where A and C are 4 x 4 matrices and B is a 4 x 1 vector. Since each ele-
ment of C will be assigned one value only, thus, this program is indeed a single assign-
ment code. At each index point, three variables A, B and C are defined with no ambi-
guity.

Another convenient and concise expression for the representation of many algorithms
1s to use recursive equations. A recursive equation with space-time indices uses one
index for time and the other indices for space. By so doing, the activities of a parallel
algorithm can be adequately expressed. Snapshot can also be used to express parallel
algorithms. A snapshot is a description of the activities at a particular time instant.

Snapshots are perhaps the most natural tool an algorithm designer can adopt to check or

<45 -

verify a new array algorithm. Sample snapshots for the systolic matrix-vector multiplica-
tion algorithm are depicted in Fig.2.8. Dependence Graph (DG) is another and most
important parallel expression of algorithms. In order to achieve the maximal parallelism
in an algorithm, one must carefully study the data dependencies in the computations. In
the special case when the operations of a sequential algorithm have no data dependencies
between each other, they can be executed at the same time in a parallcl computer. How-
ever, in general, there is always a certain degree of dependency which dictates the
sequence of computation. These data dependencies can be represented in a graphical form
called Dependence Graph (DG). In essence, a DG is the graphical representation of the
data dependencies in the computations. In the previously mentioned single assignment
algorithm, C(I,J+1) is said to be directly dependent upon C(1J), A(1J), and B(J). By
viewing each dependence relation as an arc between the corresponding variables located
in the index space, a DG as shown in Fig.2.9(a) will be obtained. Only the dependencies
between the nodes are shown in Fig.2.9. The operations inside each node are not shown,
since they will be assigned to the same processing element when the DG is used to map
an algorithm to an array processor. However, it is straightforward to extend the DG con-
cept to include the operations inside each node. This DG, which is called a complete DG,
specifies all the dependencies between all variables in the index space. A computation
whose DG has loops or cycles will require infinite amount of time to be completed. It
cannot be coraputed within a reasonable time complexity and hence, it is not computable.
Thus, an algorithm is computable if and only if its complete DG contains no loops or
cycles[6]. Therefore, the complete DG is very useful for studying issues related to com-
putability. In general, global communication (broadcasting) is involved in array processor
design. In many cases, such broadcasting can be avoided and replaced by local communi-

cation[6).

At this point, we will define some of the relevant terminologies that have been

encountered so far in this section.

46

- Bl4) \ B(3)) e————{ B(2) { B(1))

{FD
=t

Al

A A

Ay Ay A

A A A, A

4
A
1 A:1
13 22 1
A A A A
1 3 1 i
~ o~ A B+
- y " e A_B(1) ,/-\'
] N ~ A B2 > !\ 2 , \
. B(4) *——— B3) rati . B(2) e B(I}
. e \\./
T i i
Al ’\zz A,,
A Ay An A

Figure 2.8 Snapshots for a systolic matrix—vector
multiplication algorithm. [6]

-
"
~—
- &

|
|

-0

I
i

—()=)

* ten dem fem few St t ‘
S ' i y Cl1) ct C©Q) C

4+ Ba -

E <
B v % ,3 >
oY) \ T —
AP0 e
h ' 2 B2 —=
B |
tnm \C b \O \C) 1 {B(l)_”(
! 3

!

OO0
)

)=))

4
—(_

1)
%

,\
2
~
—_
o
z
w
-

Figure 2.9 DG for matrix—-vector multiplication
a) with global communication

b) with only local communication. [6]

- 47 -

Definition 2.2 : Graph Terminologies. A graph G=|N ,A] is a st N whose clements are
called nodes and a set A whose elements are called arcs or edges. Each arc, a € A, con-
nects a pair of nodes i,/ € N and is written i — j . Here { is the initial endpoint of a
and j is the terminal endpoint of a. An arc whose endpoints are the same node is
called a loop. A chain is a sequence of arcs, L = d ..oy, SUch that arc @, (2sr<g-1)
has one endpoint common with arc a,_, (@,#a,_;) and its second endpoint common with
arc a,, (a,#a,,,), without regard to the direction of the arcs. The free endpoints of the
first and the last arcs of a chain are the endpoints of the chain. A parh is a chain, all of
whose arcs are directed the same way. If the endpoints of a path are the same node, then
it is a cycle. If the endpoints of a chain are the same node, then it is an undirecieu o, cle.
An elementary chain, path, cycle, undirected cycle is one in which the same node is not
encountered twice (with the exception of the endpoints). A graph is connected if there
exists a chain between every pair of nodes. It is strongly connected if there exists a path

from each node to all other nodes.

Definition 2.3 : Dependence Graph. A dependence graph is a graph that shows the
dependence of computations that occur in an algorithm. A DG can be considered as the

graphical representation of a single assignment algorithm.

Definition 2.4 : Localized Dependence Graph. An algorithm is localized if all variables
are (directly) dependent upon the variables of neighboring nodes only. A localized DG,
therefore, is one which exhibits this property, i.e., all nodes in the graph show local

dependence of computations.

Definition 2.5 : Locally recursive algorithri. A locally recursive algorithm is an algorithm
whose corresponding DG has only local dependencies, i.e., the length of each dependency
arc is independent of the problem size, and most nodes of the DG consist of the same

kind of operations [13].

- 48 -

Definition 2.6 : Signal Flow Graph (SFG). A signal flow graph is a graphical representa-
tion of both the functional and structural description parts of signal processing computa-
tions. The SFG expression consists of processing nodes, communication edges and delays.
A node denoted by a circle represents the arithmetic or logic function performed with
zero delay. An edge denotes either a dependence relation or a delay. The structural part
of an SFG can be represented by a finite directed graph, G =<V, E, D(E)>. The ver-
tices V model the nodes. the directed edges £ model the interconnections between the
nodes. Each edge e of E connects an output port of a node to an input port of some node

and is weighted with a delay count D (e).

2.2.1 Mapping Methodologices.

Having introduced several algorithm expressions, we shall now briefly consider the
issue of transforming such expressions to a systolic array processor design. There are
two methedologies for mapping algorithms into systolic arrays [6]. These are the canoni-
cal mapping methodology and the generalized mapping methodology [6,13]. The former
methodology is for mapping homogeneous (completely regular) DG’s onto processor
arrays, while the latter methodology is for mapping heterogeneous (semi-regular) DG’s
onto processor arrays. The canonical mapping is suitable to treat a class of algorithm that
have useful properties of being totally regular and localizable. Such algorithms can be
expressed by shift-invariant dependence graphs. This mapping methodology consists of
three design stages, each utilizing an appropriate canonical form. These design stages are

described in more detail in subsection 2.2.1.1 .

The generalized mapping methodology allows the treatment of a broader class of
algorithms and the corresponding dependence graphs. There are many other important
algorithms that are not completely regular, that is, are not totally shift-invariant, but exhi-
bit a certain degree of regularity. This semi-regularity very often proves to be useful for

an efficient mapping methodology. The mapping methodology allows us to deal with an

- 49 -

extended DG classification 7and to have options by linear or nonlinear
assignment/schedule. More flexibilities are also created by using multiple projections,
allowing global communication, and treating totally irregular DG structures. The general-
ized mapping methodology can provide effective designs to many algorithms including
Gauss-Jordan elimination, shortest path problems, transitive closure, simulated anncaling,
partial differential equations (PDE) problems and singular value decomposition (SVD)
[6].

In this thesis we concentrate on the canonical mapping methodology and therefore, con-

sider only regular and localizable algorithms.

2.2.1.1 Canonical Mapping Methodology.

The Canonical Mapping Methodology comprises of three design stages. In stage one,
called DG design, for a given problem, the designer first identifies a suitable algorithm
followed by a suitable algorithm expression and then generates its corresponding DG.
Since the structure of a DG greatly affects the final array design, further modifications on
the DG are often desirable in order to achieve a better design. In the second stage, called
SFG design, based on different mappings of the DG onto array structure, a number of
SFG’s can be derived from the DG. In order to determine a valid array structure for a
locally recursive algorithm, one design method is to designate one processing element
(PE) for each node in a DG. However, this in general, leads to very inefficient utilization
of the PE’s, since each PE can be active only for a small fraction of the computation
time. To improve PE utilization, the nodes of the DG are often mapped onto a fewer
number of PE’s, in a SFG form. The SFG can be viewed as a simplified graph. It is a
more concise representation than the DG. It is more specific i.e., it is closer 10 hardware
level design and also dictates the type of arrays that will be obtained. Also, while there
are no loops in any DG, the SFG can have loops, as long as there is at least one delay on

each loop.

- 50 -

There are two basic steps for mapping from a DG to an SFG. The first step is the
processor assignment. This determines the processors to which operations should be
assigned to. A criterion, for example, might be to minimize communication and exchange
of data between processors. Once the processor assignment is fixed, the second step is the
scheduling. This determines the ordering by which operations are assigned to a processor.
A criterion might be to minimize total computing time. A more detailed discussion of the
processor assignment and scheduling is given in [6].

In the third stage, called the Array Processor Design, the SFG obtained in the
sccond stage is physically realized in terms of systolic array. Several reasons exist why
one should first derive an SFG array and then convert it into a systolic array [6]. These
include , (i) SFG offers a concise expression for parallel algorithms, (ii) SFG detines the
structure of the array with minimum constraints on timing, and (iii) formal transforma-

tions from an SFG to a systolic array can be developed.

In the mapping from DG’s onto SFG’s, not all SFG schedules satisfy the conditions
of the systolic schedule. The major gap is that most SFG’s are not given in temporally

localized form, even though they are spatially localized. In other words,
systolic array = SFG array + pipeline retiming

The cut-set retiming is the procedure to transform an SFG to an equivalent and temporal
localized form so that all the edges between the PE’s have at least one delay element.
The topic of imposing temporal locality into a computing network has been investigated
by several researchers [5,34,35). A cut-set in an SFG is a minimal set of edges, which
partittons the SFG into two parts. The cut-set retiming procedure is based on two rules,
namely, time-scaling and delay transfer. Time scaling allows all delays in the SFG array
to be scaled by a factor, thus scaling the input and output rates correspondingly. Delay-
transter allows advancing a number of time units on all the outbound edges of the cut-set

and delaying the same number of time units in the inbound edges, or vice versa, without

- 51 -

affecting the overall timing of the system. An SFG is meaningful only when it is comput-
able i.e., there exist no zero-delay loops or cycles in the SFG. All computable SFG's can
be made temporally local by following the cut-set retiming rules, consequently, a spatially

local and regular SFG array is always systolizable [6].

2.2.1.2 Direct Mapping from Lincar Data Dependencies
into Systolic Designs.

Many research works on systolic designs are based on direct mapping from DG's
onto systolic arrays [14-33]. This case involves combining stage 2 and stage 3 of the
canonical mapping methodology. The approach follows the SFG mapping methodology
discussed in section 2.2.1.1. The only modification is that the schedule constraint is intio-
duced such that every edge of the resulting SFG will have one or more delay elements,
i.e., D(e) = 1, satisfying the temporal locality condition in the definiton of systohe array.

In this subsection, we review some of the works that have been done on this subject.

As reviewed in chapter I, Karp, Miller and Winograd [14] proposed the svstems of
uniform recurrence equations. In their systems of uniform recurrence equations, they
explored the idea of local and regular Dependence Graph (DG). They used an index space
display to show the complete dependency of locally recursive algorithms. The idea of
uniform recurrence equations was applied later on by Quinton [15,16] to the design of
systolic arrays. Gachet er al [17] described the methodology underlying the DIASTOL
system, whose aim is to allow systolic chips to be designed automatically. This methodol
ogy, called dependence mapping, is also based on the ability for someone to describe a
problem as a system of wuniform recurrence equations, then mapping the problem on a
systolic array. Rao [18] defines a class of algorithms, namely the regular iterative algo-
rithms similar to the systems of uniform recurrence equatons defined in [14,16]. It 1y
shown that a subclass of the regular iterative algorithms has the characteristics of the sys-

tolic algorithms and the corresponding systolic architectures may be systematically

-52-

derived. The notion of locally recursive algorithms proposed by Kung [19], stresses the
locality of spatial and time indices in a recursive algorithm and therefore is expressible in
terms of a spatially local DG or Signal Flow Graph (SFG). Many research explorations
on this issue are discussed in [20,21,22,23]. A more detailed review can be found in
[18,24].

Capello and Steiglitz [25] introduced a geometric interpretation of the linear transfor-
mation on index space, which provides an insightful look into how several systolic
designs for the same algorithm relate to each other. Along the same line as the approach
proposed in |25], several researchers [26-33] address the issue of mapping cyclic (loop)
algorithms into systolic arrays. The cyclic algorithms are specified in a high - level
language, such as FORTRAN, in form of DO loops. The approach is based on the space-
time mapping of different cyclic algorithms into systolic array architectures. The mapping
procedure is based on linear transformation of index sets and data dependence vectors.
Moldovan |32] extended the mapping to the partitioning problem. He presented a tech-
nique for partitioning and mapping algorithms into VLSI systolic arrays. Algorithm parti-
tioning is cssential when the size of a computational problem is larger than the size of the
VLS! array intended for that problem. His approach to the partitioning problem is to
divide the algorithm index set into bands and to map these bands into the processor
space. Finally, he presented a six step procedure for the partitioning and mapping tech-
nique. The main difference between the mapping approaches proposed in [14-26] and
those proposed in [27-33] is that, the latter approaches started from a program using
imperaiive language such as FORTRAN rather than from equations.

In this thesis, we will concentrate on the approach of space-time mapping of
different cyclic algorithms into systolic array architectures [18,25-33]. The approach is

described and illustrated in detail in section 2.3.

2.3 LINEAR TRANSFORMATIONS OF INDEX SET AND DATA
DEPENDENCIES

Before we describe this approach, we will present some definitions which will be
encountered in this section. Some of the definitions and notations are similar to those

found in [28,29,32].

Definition 2.7: An algorithm A over an algebraic structure S is a 5 (ple
A= (.7" .C.,D X,Y) where:

J" is a finite index set of A, J® < I" ; where / denotes the set of nonnegative
integers, and Z refer to the set of all integers. The nth cartesian powers of J./ and Z
are denoted as J,I" and Z" respectively.

C is a set of triples (7,\),1:) where fe J™ ., v is a variable and u# is a term built
from operations of S and variables ranging over S. v is called the variable generated at
J» and any variable appearing in u is called a used variable.

D is a set of triples (j,0,d) where j € J™, v is a generated variable and d is an cle-
ment of Z".

X is the set of input variables of A;

Y is the set of output variables of A

There are three types of dependencies in D,

(1) Input dependence; (j,v,d) is an input dependence if v e X and v is an operand
of u in computation (f,0,u); by definition d = 0.

(2) Self dependence; (j,v,d) is a self dependence if v is one of the operands of 1 in
computation (j,v,1); by definition d = ().

(3) Internal dependence; (J,v,d) is an internal dependence if v is an operand of 1

(,v.u) generated at (- ,v,u); by definitiond = j—J .

The dependencies D can be represented as a matrix D = [P D] where DV i a

submatrix of D containing all input and self-dependencies, and D' 15 the matrix of inter-

- 54 -

nal dependencies. Throughout this thesis, we have considered algorithms with internal
dependence, hence the dependency matrix contains only internal dependencies, i.e.,
D =D It is important to note that the model of the algorithm given in definition 2.7,
includes the algorithm index set, the computations performed at each index point, the data
dependencies which ultimately dictate the algorithm communication requirements and the

algorithm input and output variables.

Definition 2.8: The execution of an algorithm A = (—Jn ,C.,D ,X,Y) is described by

(1) the specification of a partial ordering ">" or "<" on J" (called execution order-
ing) such that for all (j,u.d) € D! we have d > 0, i.e., d larger than zero in the sense of
">"ord <0, i.e., d is less than zero in the sense of "<" .

(2) the execution rule: until all computations in C have been performed, execute
G° v, w) forall 7> jor j < j°, for which (f ,v ,u) have terminated.
The ordering larger than zero (">") or less than zero ("<") is used in the lexicographical
sense. Thus, if = j —j° > 0, or on the other hand, j~ — j<0. it means that computa-

tions indexed by 7 must be performed before those indexed by j.

Definition 2.9: Data dependencies. These are the dependencies between the variables
generated at different index points, which actually dictate the algorithm communication

requirements.

Definition 2.10: Dependency vectors. The data dependencies can be described as
difference vectors of wndex points where a variable is used and where that variable was

generated. These vectors are called dependency vectors.

Detinition 2.11: Dependency matrix. A dependency matrix D is a matrix that contains all

the dependency vectors.

Definition 2.12: Transformation matrix. This is a matrix that consists of the time and

space mapping functions used to transform the dependency matrix D into a new

transformed dependency matrix (TDM) or systolic matrix.

Definition 2.13: Systolic matriv. A column vector is systolic if its first element is strictly
negative while the other elements € Z, where Z is the set of all integer numbers. A
matrix is systolic if all its columns are systolic and at least has one non-zero element in

the second row or in the third row (for a 2-dimensional array).

Definition 2.14: A two-dimensional systolic array is a two-dimensional array of process-
ing cells each of which communicates with at least one of its eight neighbours. This

definition is easily extendible to an n-dimensional systolic array.

Definition 2.15: The gcd(a,b) is the largest (positive) integer that divides both a and b,

and ged(a,b,c) = ged (ged(a,b),c).

We now introduce the notion of linear transformation of index set and data dependencies.

An interesting mapping approach is the one called Space - Time representation of
computation structures [26-33]. In order for a computation structure to be implemented in
a VLSI systolic array, the conceptual sites {J" = (J', J2, J3,..,J")} must be mapped
into Z" = ((fl, fz, f3,..., J")}, where J" denotes the index set of the algorithm and J”
is the nth - dimensional set of an algorithm. Although it is considered that VLSI arrays
are (n-1) - dimensional, practical arrays have pure planar layout. Therefore, for a two -
dimensional systolic array, the conceptual sites (J" = (i,j,k)} must be mapped into Z° =
{(t,x,y)} where t specifies the time when a node is computed and where (x,y) represents
the 2-dimensional physical coordinates of the place in the VLSI systolic array where the
node is computed. If a computational structure is characterized by a constant dependency
matrix which consists of a set of vectors, D = (dy,d,.d,). Then the structure may
be mapped into a time-space representation in Z* with new dependency as a systolic
matrix A = (3] ,32, . ,Sk), where k is the number of columns of the dependence vectors.

This is done by means of matrix multiplication, TD = A | where the matrix 7 is a valid

- 56 -

transformation matrix |28-30,32}.

‘The transformation 7 must be chosen such that the ordering of the execution of the
algorithm is preserved. For instance, if the index set of an algorithm is defined as L")
= {(J', J%..J™)) and the ordering imposed by the data dependencies on set L" is
denoted with R. The elements of L" and ordering R form together a well - defined alge-

braic structure <L" ,R > [28]. Thus the transformation T should be sought such that,

T<L"R> — <L".Rp> Q2.1

where T has the following properties:

(@) T is a bijection and monotonic function
(b) the data dependencies of the new structure <L" R;>
can be casily selected. (2.2)

Since T is a bijection, then the two structures are said to be isomorphic, and since T is

monotonic with respect to R and Ry, thus,

d>0 - 8=T)>0 or

d<0 - J§=T(d)<0 (2.3)
In Eq.(2.3), d>0 (or d<0) , means that the data dependencies between the variables gen-
crated at different index points in the algorithm, are larger (less) than 0, in a lexicographi-
cal sense (see definition 2.8). Therefore, Eq.(2.3) simply means that the transformation T

preserves the sense of the data dependencies.

Definition 2.16: Two structures are isomorphic as graphs if there is a 1-1 correspondence
/ between them such that there is an edge p to ¢ if and only if there is an edge from
fF@) to f(qg). This means that if p — g is a dependence vector, then f (p) — f (¢) must
also be a dependence vector.

This definition leads to the motivation to consider the case where the dependence vector

p — ¢ is mapped onto the dependence vector f (p) —f (q) . ie.,

-57-

fo=-q) = fp)-rw

These are the affine mappings, and disregarding translations, they are given by lincar

maps.

For (n-1) - dimensional systolic array, the transformation 7 which transforms D into

A is defined as,

n ty i
Iy I 0 o
n]
r = [S -
Ltnl lhy - - 'lnnd

where IT is the time mapping function and S is the space mapping funcuon.

Since present practical arrays have planar layouts, thus, the transformation matrix T for a

2 - dimensional array is represented by

I Iy iy Iy
T = |8 = |t 1 Iy
S2 t31 I3 I

where the mapping IT is defined as

m:L" - L7 , n>m

nu'y2..Jm=0"J%..J0", with JeLp
and the mapping S is defined as

S:L" o Lp™
SU'J.amy=sdmrl gm gty

(2.4()

The dimension of the two functions IT and § is marked by m, which is selected

such that IT alone establishes the ordering (R;) imposed on the elements J. The first m

a
coordinates of elements JeLj' can now be related to time and the last n—m coordinates

- 58 -

can be related to the geometrical properties of the algorithm.

An interesting question is to determine under what conditions the transformation T
can exist. For an algorithm with a constant set of data dependencies D, the necessary and
sufficient conditions for integer matrix T to be a valid transformation, transforming D to

A, where A is a systolic matrix, are as follows [27-29,31]:

(@)|r] # 0
(Gi)ged d; = ged §; i=12,..k

where ged is the greatest common divisor
(iii) The first nonzero element of vector §, (T1d;)

is negative. (2.5)

This representation and the mapping approach provide a mathematical means to find

a valid transformation matrix which maps a constant dependency matrix into a systolic
matrix [30}. Moldovan and Fortes presented a six step procedure {32,33] to find a valid
transformation matrix of a given algorithm. Their procedure is an exhaustive search with
the strategy to find a solution that minimizes the parallel execution time. Li et al. [30]
proposed an approach to determine the existence of a valid transformation matrix for a
given constant dependency matrix, and to construct the valid transformation matrix
efficiently. They [30] introduced the restricted normal form of the matrix and showed
that the problem of determining the existence of a valid transformation matrix of a given

constant dependency matrix D is computable.

In order to determine the valid transformation matrix of D, the following defined

restricted elementary row operations [28,30,36] are applied on the matrix D ;

() Interchange two rows.
(ii) Multiplication of any row by 1 or -1.

(iit) Replacement of row, by row, +kk*row, where kk is an integer (i # j).

The general description of the algorithm used to obtain a valid transformation matrix 7 is

given as follows |30]:

Procedure:
Step 1. Let the matrix Ap denote the former A matrix, and the matrix Ap denote the
present A matrix. Also in the subsequent operations, Ap becomes Ap. Assume at the

beginning that the matrix D is the same as the matrix Ag.

Step 2. Perform a restricted row operation on the matrix Ap 10 obtain Ap. Then deter-
mine the corresponding restricted elementary matrix £, such that the product of £, and

Ap gives the matrix Ap.

Step 3. Repeat step 2 until the matrix Ap has all negative entries (clements) in the coor-
dinate which represents the time domain. The product of the restricted clementary
matrices gives the transformation matrix 7°.

Therefore, let a set, ER, consist of all those restricted elementary matrices and a restricted

n
matrix be a product of some restricted elementary matrices, T, = []£, where l{,el{"'
71

Jj=12,...,n for some n.

Step 4. Continue to perform restricted row operations on TD=A to obtain more valid

transformation matrices if they exist.

Then, by following the above steps , we can get the valid transformation matrices.

For the purpose of illustrating this procedure, we will consider three - index nested
loop algorithms, such as the matrix multiplication algorithm. An example which had been

used in {29} is as follows:

- 60 -

Algorithm :

DO 10 I=1
DO 10 §J=1,
DO 10 K=1,N
A(L)y = AL + B(LK) * C(K,))
10 CONTINUE

,N
N

In order to map the above algorithm into a systolic array, we need to obtain the depen-
dency matrix D, and then transform it into A. To obtain D, the algorithm has to be in the
pipeline format. In the following, we will describe the rules [6,29,30] for converting

nests of DO loop algorithms which are not pipelined into pipeline format.

The ability to perform statements of a computer program (like the algorithm shown
above) simultaneously depends on aspects of dependence relating these statements [29].
Indeed if for example, statement G references a quantity computed by statement H, then
H must be performed before G. Computer programs are written in so many styles that
the ability to characterize dependence among program statements systematically requires a
processing of the program listing transforming it into a more canonical mode [6,29]. The
difficulty of characterizing dependence is due to the problem of overwriting (also called
data broadcast or propagation). It is common practice in writing programs to use the
same symbol to represent several distinct quantities each of which stands for some prel-
iminary result which is gradually replaced by more complete results. One reason for this
practice is to reduce storage requirements [6,29}. Such a practice, inevitably, obscures the

natural relationships that exist among the parts of the algorithm.

In the computational techniques where results are developed in an ongoing manner
without the return of intermediate values to memory, the economy of storage is of minor
importance. It is the structure of the relationships in the algorithm that is more important.
Hence, there is a need to distinguish between distinct uses of same symbol. There are
two ways that a variable can be overwritten, (i) by reassigning to the same symbol a new

value in a new statement or (ii) by repeating the same statement more than once (as in

m—v—v{»’;'sm&*v«. a -

- 61 -

the matrix multiplication algorithm). To eliminate overwriting, every time a variable is
reassigned it is also renamed. For example, consider the matrix multiplication algorithm,
the program computes the product of the matrix B and C and stores it is A.

If we consider the first inner loop:

DO 10 K= 1,N
AL)) = A(L)) + B(LK) * C(K.J)
10 CONTINUE

The sequence of results of A(LJ) is
B([,1)*C(1,)), B(L,H*C(1,)) + B, 2)*C2.N,.....

It can be seen that A(I,J) does depend on index K as well, so we can rewrite the first

inner loop as follows:

DO 10 K=1,N
A(LJK) = A(LJK) + B(I,K) * C(K,J)
10 CONTINUE
In this form, each time that the statement is performed, the indices (1J,K) are
different, hence each A(I,J,K) has unique values. Thus data broadcasting is eliminated.
Each value of the variable A and each step of the computation can be parameterized by
the triple (I,J,K). We want each variable to be parameterized by (1,J,K) as well. Variables

B and C are not in this form, therefore, they have to be expressed in this form. This can

be achieved by adding four statements to the DO loop, giving

DO 10 K=1,N
B(1,1,K) = B(],K)
C(1,J,K) = C(K,))
B(1,J,K) = B(1,J-1,K)

C(1,J.K) = C(-1,J,K)
A(LJK) = A(1J,K-1) + B(1,J,K) * C(1,},K)
10 CONTINUE

This augmentation of index for variables A,B,C is called pipelining. By repeating this

- 62 -

process as often as necessary, all data propagation can be eliminated and each variable
can be made to depend explicitly on the loop variables of each loop in which it is con-
tained.

Therefore, the entire algorithm becomes,

DO 10 LJK=1N
B(1,J,K) =B(1,J-1,K)
C(1,JK) =Cd-1,1,K)
A(LJK) = A(LJLK-1) + B(LJK) * C(I,J,K)

10 CONTINUE

In fact, to pipeline an algorithm, all algorithm’s variables are supplied with any
indices which they are deficient in so that they become pipelined with respect to those
indices [29]. Therefore, in the body of the algorithm variables A, B and C are with three
indices (i,j,k). This process of pipelining is useful because it eliminates all data broad-
casting or propagation which is costly in VLSI implementations. The data of variables B
and C propagate step by step-by-step from one cell in the array to the other, without
being modified by the computation. This kind of data is called transmittent data, and the
variables are called input variables. The variable A at the left side of the assignment is
referred 10 as a generated variable while the one at the right side is referred to as used
variable [28,29]. The data of variable A is modified by the computation and such data is
referred to as nontransmittent data.

a

The dependency vector [b} corresponds to a used variable where a is the
c

difference of the index i between the used variable and its generated variable. Similarly,
b and c are, respectively, the difference of the indices j and £ between the used and gen-

erated variables. The dependency vectors associated with the used variables, A(i,j.k-1),

0 0 -1
B(i,j-1,k) and C(i-1,/,k) of the given algorithm, are [0], [—l] and [Ojl
-1 LO 0

The dependency matrix of an algorithm is the set of all dependency vectors (the

- 63 -

order is not important). The corresponding constant dependency matrix of the (matrix

multiplication) algorithm shown before is

ifo 0 -1
D=0 -1 0 (2.6)
k-1 0 0

An algorithm is systolic if and only if its dependency matrix is a systolic matrix [30]. The
dependency matrix imposes a computational order which must be respected [28,32]. All
elements of the dependency matrix are integers. The dependence relations between used
and generated variables at one point of the index set are the same at any other points of
the index set [28,31,32]. If a given algorithm is not systolic, Moldovan 28] developed a
procedure to transfer that algorithm into a systolic structure. The transformation involves
a transformation matrix T such that the product of T and D, TD=A, is a systolic matrix.

provided that the conditions for a valid transformation T [28,29], arc met.

In order to build, for example T, these steps are followed:

10010 0 -1 0 0 -1
1. 010{}0 -1 6] =10 -120
ootli-=1 0 O -1.0 0

row,y + row, i d rowy

1'10{0 0 -1 0 -1 -1
2. [010{]0 -1 O] =10 -1 O
00 1Lt-1 0 0 -1 0 0

TOW3 + TOW; — TOW;

10110 -1 -1
3. [010][0 -1 O

00 1J{~1 0 O
That is ,

100|110l 01 111
rTy=(010/1010[]010 =010 (2.7)
00100151001 001

i
T
l-‘cv—l
oL L
co b
| O |

- 64 -

-1 -1 -1
and WD = [() -1 ()} (2.8)
-1 0 0

Continuing to perform more restricted row operations on 7,0, we obtain :

row, + row,; — row,

1o o} [-1 =1 -1 -1 -1 -1]
4. o1 1o =1 o] = |-1 =1 0
00 11 0 0 -1 0 0]

100 111

that 1s T,=1011T, = (011 (2.9)
001 0 0 i
-1 -1 -1

and T-D = [—l -1 ()} (2.10)
-1 0 0

If we continue to perform further restricted row operations on subsequent TD’s, we

obtain, for example the following transformations:

111 -1 -1 -1
I, = |01 1 and T = |-1 -1 0 2.11)
0 1 2] -2 -1 0
(11 1 1 -1 —1]
ry =122 and T,D = |-2 =2 -1 (2.12)
0 1 2] -2 -1 0.
111 -1 -1 -1
Ts = {122 and TsD = [-2 =2 —] (2.13)
123 -3 -2 —1

[l -1 -1 -1
To = [0 1 1] and TD = |-1 =1 0 (2.14)
1

- 65 -

In most practical applications, the majority clements of the dependency matrin are 0,
1 or -1, and the rest of the elements are small integers which provide relative casy way
to use the restricted row operations to build a valid transformation matrin - Once a vahd
transformation matrix is found, more valid transtormation matrices, it they exst, can be
obtained by applying more restricted row operations [30].
In most cases, the best transformation matrix 7 1s chosen according to a given cost lune
tion [28,32]. In this example, T is chosen such that the paraliel exccution time v nunim-

ized, and the T that meets this requirement is T, [29].

T jkY = (kY (2.15)
Thus ,
11 1] i i+ ok i
01 1]j| =1 Jj+k | =]] (2.10)
00 1 ik k k

If we assume that the dimensions of our matrices are 3x3 then,

b1y b bn] 11 €12 €13 ayp ap; dy
bay by byl [cay €ay o3| = |dgy axy ap (2.17)
b3y bay baz| [c3 c32 €23 az; dz; ayp

The mapping of the index set (i,/,k) into the new index set (i1 .K) using the transforma

tion T given in (Eq.2.9) is shown in Fig. 2,10

- 66 -

time processor

DIED e W = WD = B = W RN = B =) D = S B e LD D =
o IR No N Bo NN No WV, e SN Bo NN o WV, e W, BN UL I N

(NRICRRIVEINRITRIVEISRIVE SR NN SN SRS N S N N N e e
WS PD NI RN e e e LW W NI I N e o U WD W NI NI P e =
N ANENLHWVARWNDIIANLUNAWREWINOONEUNLHEWR W
DI B = LD I = LI 1 = 00 DI = 0 B e 100 T e U0 N e LD B e 0 DD

N

Fig. 2.10: Mapping of index set into VLSI array using transformation T, .

Because of the way the transformation matrix is selected, the first coordinate { indi-
cates the time at which the computation indexed by (i,j,k) is computed and (f,kA) indi-
cates the processor where the computation is performed. For instance, the computation
indexed by (2,2,1) in the algorithm is performed at T(2,2,1)' = (5,3,1), meaning that the
computation time is 5 and processor cell is (3,1).

Notice that, from Fig.2.10, the computation starts at cell (2,1) at t=3. Cell (4,1)
receives its first data at t=5 (which is two clock cycle later). Each cell computes three
partial product terms. Cell (4,1) receives its last data at t=7 (which is four clock cycles

later). Therefore, the input data for this line should be piped in such that the first input

- 67 -

data element is received at =5 and the last at t=7. Cell (6,3) receives s last date at ¢ 9
(6 clock cycles later). In order to drain the pipe or collect the last output from the array,
one extra clock cycle is required, hence a total of 7 (seven) clock eveles (1= max 7 - mm
[+1=9-3+1=71s required to complete the matrin multiphicaton computation for

N=3.

The interprocessor communications result from the transformed data dependencies.

) ~1 -1 -1
D =TD = |-1 =1 0
-1 0 0

The first row of the transformed dependencies is T1ID = [-1 -1 -1]. Each element indicates
the number of time units allowed for its respective variable to travel from the processor
where it is generated to the processor where it will be used. Since cach element s one,
then no extra time delay is required for each variable to move from one cell 10 the other.

The spatial part of the dependency is specified by the vectors |

.—] _1 () »Q \\. »
[_1]) [0}) [0] , fespectively.

These vectors indicate the required connectivities for variables A, B and C. This mcans

that variable A moves from a cell to the next via a diagonal channel with direction {:i] ,

variable B via a horizontal channel with a direction of [()}, while variable C is stored in

the node itself [29]. The VLSI array that implements this matrix multiplication algorithim

is shown in Fig.2.11 .

From Fig.2.10 (which shows the mapping of the index set into VLSI array), it is
clear that 9 cells are required to perform the matrix multiplication. In the special case
when one datum is to be stored in each cell, therefore we need as many cells as the size
of the matrix whose data is o be stored in the cells. All cells in the array are identical,
and the structure of a cell results from the computations required by the algorithm as well

as the timing and data communication dictated by the transformed data dependencies (A).

0

— 6 8 _
k
O) > Pt
O o S, U
Q“)\ . &‘zfl @\‘5
DU ANt QO
AR\ Q Q
\ \

\’\ L. .Y

' (31) s (41)
O b. 11))] h]] J(llf——fcli‘ iy

__KC‘Q,

O bl bp O — 021\ Caof——
\ =

1)33 bg{g })13 O 0O - \/3<‘ \,

)

Migure 210 VLSI array structure when index i determines

the timing (or valid execution ordering)
of computations (for N=3).

- 69 -

B ————)» - —-——m~:\\-———~ e - » |3

Figure 2.12 The structure of the cell in Figure 211

- 70 -

Frgure 2,12 depicts the structure of the cell. It consists of an adder, multiplier, registers

tor storing data of cach variable and no delay elements.

Most often, many transformation matrices 7 can be found and each transformation
leads to a different array. This flexibility apparently complicates matters, but in fact, it
gives the systolic array designer the possibility to choose between a large number of
arrays with different characteristics [32]. Also tradeoffs between time and space charac-
teristics are possible.

In the next chapter, we will discuss a new method of generating the transformed depen-
dency matrices. Also, a systematic approach of mapping algorithms into optimal systolic

array architectures will be proposed.

- 71 -

2.4 REFERENCES
{1] H.T. Kung and C.E. Leiserson, "Systolic Arrays (for VLSD." In Sparse Matriv Svin
posium, pp. 256-282, SIAM, 1978.

{2] H.T. Kung, "Why Systolic Architectures,” IEEE Computer, Yol. C-31, pp. 3740,
Jan, 1982.

[3] A.L. DeCegama, The Technology of Parallel Processing. Parallel Processing Archi
tectures and VLSI Hardware, Vol. I, Prentice Hall, Englewood Chilfs, New Jersey,
1989.

14] J.D. Ullman, Computational Aspects of VLS, Computer Science Press, 19384,

(5] S.Y. Kung, "On Computing with Systolic/Wavefront Array Processors,” Invited
Paper, Proceedings of the IEEE, Vol. 72(7), July, 1984,

[6] S.Y. Kung, VLSI Array Processors, Prentice Hall, 1988.
171 C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980,

(8] M. Annavatone et al., "Architecture of Warp,” 1987 IEEE Conference Proceedings
on Computer Architecture, pp. 264-267, 1987.

[9] B. Bruegge er al., "Programming Warp,” 1987 IEEE Conference Proceedings on
Computer Architecture, pp. 268-271, 19%7.

(10] M. Annavatone er al., "Applications and Algorithm Partition on Warp,” 1987 11EF
Conference Proceedings on Computer Architecture, pp 272-275, 1987.

[11] M.C. Chen, "Space-Time Algorithm: Semantics and Mecthodology,” Ph.D thesis,
Computer Science Department, California Institute of Technology, 1983,

[12] R.W. Hockney and C.R. Jesshope, Parallel Computers, Adam Hilger Lid., Bristol,
U.K., 1983.

[13] S.Y. Kung, P.S. Lewis and S.N. Jean, "Canonic and Genceralized Mapping from
Algorithms to Arrays - A Graph Based Methodology.,” In Praoc. of the Hawaii Inter.
Conf. on System Sciences, Vol. 1, pp 124-133, January 1984.

[14] R.M. Karp, R.E. Miller and S. Winograd, "The Organization of Computations for
Uniform Recurrence Equations,” Journal of ACM, 14(3), pp. 563-590, July, 1967.

[15] P. Quinton, "The Systematic Design of Systolic Arrays," IRISA Research Report,
No. 193, March 1983.

[16] P. Quinton, "Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equa-
tions," In Proceedings of 11th Annual Symposium on Computer Architecture, pp
208-214, 1984.

-72 -

[17] P. Gachet, B. Joinnault and P. Quinton, "Synthesizing Systolic Arrays using DIAS-
TOL," Systolic Arrays (edited by W. Moore, A. McCabe and R. Urquhart), pp.25-
36, Adam Hilger Lid., Bristol, UK, 1987.

[18) S.K. Rao, "Regular lterative Algorithms and their Implementation on Processor
Arrays,” Ph.D thesis, Stanford University, Stanford, California, 1985.

[19] S.Y. Kung, "From Transversal Filter to VLSI Wavefront Array", In Proc. Int’l Conf.
on VLSI 1983, 1FIP, Trondheim, Norway, 1983.

{20] J-M. Delosme and LCF. Ispen, "Efficient Systolic Arrays for the Solution of Toe-
plitz Systems: An illustration of a Methodology for the construction of Systolic
Architectures in VLSL" Int'l Workshop on Systolic Arrays, University of Oxford, pp.
12, July, 1986.

[21] M.C. Chen, "A Synthesis Method for Systolic Designs," Technical Report 334, Yale
University, March, 1985.

[22] M.C. Chen, "Synthesizing Systolic Designs,” Technical Report 374, Yale University,
March, 1985.

[23] M.C. Chen, "Synthesizing VLSI Architectures: Dynamic Programming Solver,” In
Int. Conf. in Parallel Processing, pp. 7716-784, Chicago, IL, August, 1986.

[24] J.A.B. Fortes, K.S. Fu and B.W. Wah, "Systematic Approaches to the Design of
Algorithmic Specified Systolic Arrays," In Proc. IEEE ICASSP '85, pp. 300-303,
Tampa, Florida, March, 1985.

[25] P.R. Capello and K. Steiglitz, "Unifying VLSI array Designs with Geometric
Transformations," In Int'l Conf. on Parallel Processing, 1983.

[26] U. Weiser and A. Davis, "A Wavefront Notation Tool for VLSI Array Design,” in
VLSl Systems and Computations, Rockville, Maryland: Computer Science Press,
1981.

[27] D. Moldovan, "On the Analysis and Synthesis of VLSI Algorithms," IEEE Trans. on
Compuuers, vol. C-31, No. 11, November 1982.

28] D. . Moldovan, "On the Design of Algorithms for VLSI Systolic Arrays,"
ProclEEE, Vol. 71, No. 1, January 1983,

[29] W. L. Miranker and A. Winkler, "Spacetime Representations of Computational
Structures,"” Journal of Computing, Vol. 32, 1984,

[30] H. F. Li et al., "A Systematic Approach for Mapping Algorithms into Systolic
Arrays,” Technical Report, Dept. of Comp. Sc., Concordia University, Montreal,
Quebec, Canada.

[31] D. L. Moldovan, "Tradeoffs Between Time and Space Characteristics in the Design
of Systolic Arrays," Proc. of ISCAS, 1985.

=73 -

[32] D. I. Moldovan and J. A. B. Fortes, "Partitioning and Mapping Algorithms into
Fixed Size Systolic Arrays’ IEEE Trans. Comput., Vol. C-35, No. 1, pp. 1-12,
January 1986.

[33] D. I. Moldovan, "ADVIS: A Software Package for the Design of Systolic Arrays,”
IEEE Trans. Comput.-Aided Design, Vol. CAD-6 January 1987.

[34] C.E. Leiserson, "Area-Efficient VLSI Computation,” PH.D thesis, Carnegic-Melon
University, Pittsburgh, Penn., October, 1981.

[35] C. Caraiscos and B. Liu, "From Digital Filter Flow-Graphs to Systolic Arrays,"
IEEE Trans. on ASSP, 1984,

[36] 1. N. Herstein and D. J. Winter, "Matrix Theory and Linear Algebra,” Macmillan
Publishing Company, New York, N. Y., 1988.

-74 -

CHAPTER 1II

PERFORMANCE ANALYSIS AND DESIGN OF
OPTIMAL SYSTOLIC ARRAYS

3.1 INTRODUCTION

As we mentioned in Chapter 1 and also as illustrated in section 2.3 (Space-Time
approach of mapping algorithms into systolic array architectures), several transformation
matrices (T) are generated for a given constant dependency matrix. It is also known that
cach transformation leads to a different array. The best transformation matrix among the
many transformations is selected based on the cost function. Although the resulting sys-
tolic array obtained with the selected transformation matrix represents a feasible design,
in most casces, it does not satisfy some important VLSI requirements like improving the
fault-tolerant capability of the architecture, minimizing the silicon area and delay, minim-
izing the VLSI routing complexity, improving the speedup of computations, maximizing

throughput and obtaining the fastest propagation of output data variables.

For instance, in section 2.3, the transformation matrix T, (Eq.(2.9)) is chosen
because it meets the requirement of minimizing the parallel execution time. In the resul-
tant systolic array obtained using this selected transformation matrix (T,), the data for
variable C are stored in the individual processors of the array (Fig. 2.11). If this systolic
array is replicated such that error detection or fault - tolerance can be achieved in the
replicated array, then, to compare variable C for discrepancies, extra time and space will
be required to do so. More time will be required to flush out the data stored in the cells
after computation. Also, extra control or synchronization circuitry might be necessary to
synchronize the corresponding stored data of the replicated array. This procedure could be

costly, thus the resultant systolic array obtained using T, is not suitable for error detec-

-75-

tion or fault-tolerance. Although variable C is an input variable, the draw back is even
more pronounced for a generated variable.

One of the objectives of this thesis is to provide a cost effective systematic approach
for mapping algorithms into systolic arrays. Rather than deriving several transformation
matrices and selecting the best one which might not even give a transformed dependency
matrix (TDM) that does satisfy our VLSI requirements, we propose a methodology to
obtain the desired TDM directly from the original dependency matrix (DM). By doing so,
we can eliminate many TDM’s and avoid deriving their corresponding transformations, In
our approach, we generate only a subset of the TDM's of the given algorithm, that
satisfies given VLSI requirements. Then, the corresponding valid transformation matrices
of these TDM'’s are derived, if they exist. The advantages of this approach are two fold.
First, it ensures that the generated TDM satisfies our VLSI requirements, thus eliminating
the need for extra time and hardware to achieve, for example, fault-tolerance, when the
TDM is mapped or translated into systolic array architecture. Second, since only a
reduced set of the TDM’s is generated, this leads to a reduction in the computation time
required to generate all the TDM’s (which include the ones that satisfy our requirements

and those that do not), as demonstrated by the example in section 2.3.

As mentioned before, the best TDM that satisfies the VLSI requirements, can be
chosen based on the cost function or the optimality criteria. Therefore, in this thesis, we
are also concerned with the performance and the optimality of systolic arrays. The most
suitable optimality criteria are hard to pinpoint and optimizing one factor may sacrifice
other factors. There are many factors in determining the optimization criteria for the
design of systolic arrays. The choice of optimality criteria is, in gencral, application
dependent.

As discussed in chapter 1, there have been several works on how to design optimal
systolic array architectures [1-14], with each work concentrating on certain optimization

criteria. Moldovan [1], Miranker [2], Wong [3], O’keefe [4], Delosme [5] and Fortes [7]

-76 -

worked on how to minimize the Computation time of a systolic array. Rao [6] worked on
minimizing the Pipelining period (o) and the Block pipelining period (B) of a systolic
array. In addition to minimizing the execution or computation time, Fortes [7] proposed a
heuristic approach for optimizing the hardware cost. The array size, which is defined as
the number of processors in the array, obviously determines the basic hardware cost.
Therefore, a systolic array which has the minimum number of processors gives the
optimal solution with respect to this cost function. Gachet et al. [8] described a methodol-
ogy, called the dependence mapping, which is based on the ability for someone to
describe a problem as a system of uniform recurrence equations, then mapping the prob-
lem on a systolic array. In their design approach, they were interested in those transfor-
mations (projections) that will give fewer number of cells in the s+stolic design. Hence,
their cost function is to minimize the number of processors in the array. Leiserson [9]
mentioned that it is desirable to minimize hardware cost by using minimal delays in a
systolic array, while preserving optimal o. He proposed a procedure to optimize the total
number of delays in a systolic array, which is based on delay transfer through nodes. This

is well known systolization scheme or the retiming of a synchronous circuit.

A mapping technique to design systolic structures having limited I/O requirement
has been proposed in [10,11,12,13]. They proposed a design methodology which is based
on the lincarization of arrays The systolic design uses linear connected arrays with data
and control signals pumped at either end [11,12,13]. Their approach requires O (YN) /O
bandwidth for N x N systolic matrix multiplication algorithm. Li et al. [14] proposed a
parameter method of designing optimal systolic arrays using the parameters: velocities
of data flows, spatial distributions of data and the periods of computation. By relat-
ing these parameters in constraint equations that govern the correctness of the design, the
Jesign is formulated as an optimization problem. The performance of a systolic design is
expressed in terms of these parameters. The number of PE’s required, denoted by mpf,

depends on the directions in which the inputs are moving. The completion time (T,) can

=77 -

be expressed as a function of the PE configuration and velocity. The design problem is
then formulated to minimize mpg x T2, or mpg x T.., or T.. Hence, the optima! solution
is the systolic design that is minimized with respect to any of these criteria.

In Ko et al. [15], algorithms are specified in terms of data dependency, and imple-
mentations are specified in terms of data propagation and sequence behavior. By estab-
lishing a relation between data propagation and sequence, an optimal mapping strategy is
formulated as a problem of finding an integer solution of a set of lincar equations. In the
above approaches [1-15], the criterion used for optimum architecture selection is a space -
time cost function formed by the total number of processing elements and the requited
clock cycles for a task. These are purely architectural arguments, which rely on the
assumption that the maximum clock frequency is independent of processing element
count. In a monolithically integrated circuit, this is not necessarily true [17,18). There is
an interplay between heat dissipation, signal propagation and chip arca which must be
satisfied if a system has to function in a synchronous fashion without overheating. This
interplay sets physical limits on clock frequency [16]. Lee er al. [16] compared systolic
architectures for matrix multiplication, in terms of the maximum speedup which can be
achieved with increased processor count in a monolithically integrated circuit. The com-
parison process integrates the architectural characteristics and the technological parame-
ters. The optimum systolic architecture is found for different physical limiting factors
including switch delay, power dissipation, I/) bandwidth and clock skew.

The review of the previous approaches of designing optimal systolic array [1-16],
reveals that the optimality of systolic arrays in these approaches is determined by optim-
izing only one optimization factor. This factor could be either the computation time, or
the total number of the processing elements, or a cost function formed by combining the
number of processors and the required number of clock cycles or the maximum speedup
of the systolic array. It is important to mention that, although the number of processors

and the number of clock cycles represent two optimality criteria, however, a combination

-8 -

of both of them is regarded as one optimization factor. Since optimizing one factor may
sacrifice other factors, ii becomes imperative to identify a unifying performance index to
measure the overall array performance (speed. cell’s complexity, number of interproces-

sor connections, practical design considerations, etc.).

An important problem associated with the issue of identification of a unifying perfor-
mance index is the formulation of the more reatistic and the most suitable optimality cri-
teria. For instance, the area of a systolic array does not consist of only the number of pro-
cessing elements in the array, as employed in the previous approaches. The area is a com-
plex function of the number of PE’s, the number of buffers, the interconnection pattern
and the available technology. By using such realistic optimality criteria, which take into
account the practical design considerations, more realistic optinzal systolic arcay archiec-
tures can be designed.

Therefore, in this thesis, in addition to identifying a unifying performance index to meas-
ure the overall systolic array performance, we are also interested in formulating the most
suitable and more realistic optimality criteria for the design of systolic arrays. Having for-
mulated the suitable optimality criteria, a unifying performance index to measure the

overall array performance can be identified.

Thus, an algorithm that maps any given algorithm with constant date - dependencies,
into an optimal systolic architecture is proposed in this chapter. We formulate a com-
pound objective function (COF) te measure the cost of each TDM obtained directly from
the original DM. Therefore, the design is formulated into an optimization problem of
finding the TDM with minimum cost function. The idea behind obtaining the TDM
directly from the DM is to avoid deriving the transformation for each TDM. We first find
one valid TDM and then evaluate the objective function. If a new TDM does not provide
a better cost value than the one obtained so far, it is rejected. If one TDM gives a better
cost value, then it is retained. The TDM with the minimum cost function is always

retained.

-79 -

The formulated COF is composed of several cost functions. It is a unified perfor-
mance index to meaure the overall performance of the systolic array architecture [19].
The cost functions include, the fault-tolerant capability, the silicon area, the throughput,
the product of the silicon area and total computation time and the speedup of computation
for the systolic array. In this chapter, we compare various systolic architectures in terms
of the different cost functions [20]. The optimal or near optimal systolic array architecture
given the respective performance measures is determined for each cost function [20].
Finally, by employing the unified performance index [19], we obtain the systolic array
with the best overall array performance. The comparison process takes into consideration
the architectural features and the technological parameters of the arrays. This approach
provides an efficiert method for selecting an optimal or near optimal systolic matrix. We

illustrate our method using some examples of the iterative algorithms,

The outline of this chapter is as follows: In section 3.2, a method for obtaining a
new TDM is presented. Section 3.3 describes the optimization algorithm for designing
optimal systolic arrays. Also, the basic formula of the suitable optimality criteria are
given in this section. Some examples to illustrate our method are presented in section 3.4.

Finally, section 3.5 contains the summary and concluding remarks.

3.2 DETERMINATION OF THE TRANSFORMED DEPENDENCY
MATRIX (TDM)

This section describes an approach to determine the transformed dependency matrix
(TDM) of an algorithm.
If a computational structure is characterized by a constant dependency matrix which con-
sists of a set of vectors, D = (d,dy, . . . ,d)), then the structure may be mapped into a
time - space representation in Z" in which, the new transformed dependency matrix is

represented as a systolic matrix A = (§,,9,, . . . ,8,). This is done by means of matrix

CR-Ta 4

- 80 -

multiplication TD = A, where the matrix T is a valid transformation matrix that satisfies

the three conditions given in section 2.3,

In the previous approaches, a valid transformation matrix 7 is first obtained and then
it is used to evaluate A by performing the matrix multiplication TD = A. This ‘rocedure
has to be repeated many times until an optimal or near optimal solution is ~otained. In
this case therefore, the structure of the TDM (A) is not known until all the operations to
generate T are performed and A is selected. Although, the corresponding systolic array of
the selected A may represent a feasible design, it may not meet some of the desired VLSI
requirements. In view of this problem, our objective is then, 10 tind an approach that will
allow us to select A first, and examine it in order to determine if it meets our desired
VLSI requirements. In essence, the goal is to be able to first, sclect the systolic structure
(structure of A) that we want and then derive its corresponding transformation matrix 7T,
if ther:: exists a valid one. This will avoid deriving T for each TDM, if we know that its
TDM may not satisfy our requirements. In this way, those TDM’s that are not of interest

to us can be eliminated without the need to obtain their correspondin: ransformations.

In order to achieve the above objective, we propose an approach whercby, rather
than producing several transformation matrices and then selecting the one that gives
optimal A, we obtain the new transformed dependency matrix A directly from the depen-
dency matrix by adding another matrix Q to the original dependency matrix. The validity
of this approach lies on showing that in general, it i possible 10 add any valid matrix Q
to D and (a) obtain a A that does not violate the dependency constraints (b) find non-
singular integer T and (c) show that it will be easier to generate than T. Therefore, in
this approach, the issues are first, to prove that by adding another matrix (£2) to the origi-
nal DM to obtain the new TDM, the dependency constraints are not violated and also, the
order of computations of the algorithm is preserved. Second, to show that the proposed

approach of generating A is more cost effective than the existing approaches.

Before we proceed to state the theorem, we give the following definition.

- 81 -

Definition 3.1 : Preserving Execution Order Matrix (PEO). A matrix Q is an PEO
matrix if it has the following two properties:
(i) the row(s) or the submatrix of that determine(s) the valid execution ordering of the

computations (£2;,,) has only zero (0) or negative integer coefficients.

(ii) the submatrix of Q which defines the space (g) has integer coefficients.

Theorem : A transformed dependency matrix (TDM) can be obtained by adding to the
original dependency matrix (DM) a PEO matrix . This TDM preserves the order of

computations of the given algorithm if the elements of Qp, are selected such that

D[a,k_l + Q[b,k] = A[c,-k} and ¢; < O for all k. Where i is the time index and k is the

number of columns of the dependency matrix.

Proof :

Given that

D+Q=A 3.1)

Since the resultant matrix is the TDM theretore, if ¢;;, < 0, then the order of execution is
preserved. Also ¢y and ¢y for all j, I and k (i.e. Qgp) are integers since D is an integer
matrix.

Adding negative cogfficients to the Il row of D, affects A in such a way that it intro-
duces further delay between the time the affected variables are generated and the time
they are used. If the results of a variable can be computed after (nt) clock cycles to
satisfy the dependency constraints, then computing the results after (nt + mc) clock
cycles will not violate the constraints. Where mc is any integer. Thus, if Qg consists of
zero or negative elements, the A obtained by adding Q to D, will preserve the order of

execution of the algorithm. Also, the dependency constraints will not be violated.

-82-

Also, the addition of negative, zero or positive integers (2¢p) to the rows of 1) that
define the physical locations where the romputations are performed (i.c. the space),
merely establishes the desired geometrical properties of the structure of the architecture.
This does not affect the ordering of the computations of the new TDM (A), consequently,
the ordering of the execution of the algorithm is preserved. Thus, a TDM can be obtained
by adding a PEO matrix to the original dependency matrix. The resultant TDM will
preserve the order of computations of the algorithm and also, satisfy the dependency con

straints.

Q.ED

Now since TD = A =D + Q, thus, Q has to be selected such that the delay units
and the interprocessor communication requirements of the resulting A are minimized.
Concentrating on the algorithms with two or three abstract indices, therefore, if TD = A,

then starting with a given D and a desired A, we may write

T = AD™! (3.2)

Hence, if D is a non-singular invertible matrix then 7 can be evaluated casily. D is an
nx k matrix, it should have a full rank, r, to be invertible, where r is the number of
abstract indices of the algorithm. For the planar geometries that we are considering, i.c.,
for 1-D, r = 2 and for 2-D, r = 3.

The procedure to calculate T is simple if D is a square matrix. However, when D

is an nx k matrix and for r = n <k, then D! is given by

p' = pT (DT (3.24)

subject to |[DDT] = 0

\ The method requires the evaluation of D! only once to generate various transformation

matrices. A transformation matrix can be generated by a single matrix multiplication and

-83-

its validity checked according to the criteria given by Moldovan [21]. If D is not inverti-
ble, then the methods proposed by Moldovan [21] and Li {24] can be used to generate the
transformation matrices (7’s) and their corresponding transformed dependency matrices
(A’s). However, with these methods an exhaustive search is required and the structure of

the array will not be known until its 7 and A are generated.

3.2.1 Procedure for the Generation and Selection of A

For the problem of transforming iterative algorithms with three indices, we start with

an arbitrary structure of A = A; given below, where A is a 3 x k matrix.

a generated variable

!

-1 -1 . . . —]i=~— time index
A, = |1 0 ... OJ
o 0 ... 1

L_ a used variable

For practical systolic arrays, both the number of the delay units and the length of the
interconnection lines between the processors are to be kept to a minimum. Therefore, ele-
ments of the A matrix with large magnitudes are not desirable.

A search for a new TDM is made by varying cpq of A. We will limit our search space by

the following constraints

where

Ei=5*k*e,
and

E, =lcpq| < 2|em|

-84 -

where ¢, = max |d] (3.2h)

Each time a A is selected, its transformation matrix 7 is calculated. The validity of the I
is checked and if it is valid, then the corresponding A is a viable solution which can be
included among the list of the candidates for optimization. Having exhausted the con
straint search, the optimization technique described in [19] is applicd to select the
transformed dependency muatrix (A) that gives the best architecture with respect to the
overall optimization function. It is important to note that, with this methodology we start

by looking directly into viable solutions.

Example

In order to illustrate our approach of mapping algorithms into optimal systolic struc-
tures we use the example thit has been used previously by Moldovan and Fortes |21]

which is given as follows:

Algorithm :

begin

A(i,jk)=AG-1, j+1, k) * Bli-1, j, k+1) 5
B(i,j.k) = B(i-1, j-1,k+2) + B(i, j-3, k+2) :

end;

The corresponding constant dependency matrix is

-1 -1 -1 0
D=]1 0 -1-3 (3.2¢)
01 2 2

A B B B

given

-11 -6 -9
- 1{-2 0 0
| SN Bt 4 2
D = cl7 6 9 (3.2d)
-6 -6 6

We may apply our search technique and thus generate various transformed dependency

matrices using Eq.(3.2), as follows:

1 0 1] (-1 =2 -3 -2]

T, = {111 for Ay =0 0 0 -l (3.3)
10 0] -1 -1 =1 0]
1 0 1] -1 -2 -3 2]

T, =111 1 for A, =0 0 0 -1 (3.4)
21 1] -1 -1 -1 —1]
1 0 -1] -1 =2 -3 =

Ty =110 0 for Ay =|-1 -1 -1 0 (3.5)
2 1 1] ~1 =1 -1 -1
[2 1 1 -1 =1 =1 -1

ry, =11 11 for Ay =10 0 0 -1 (3.6)
212 -1 0 1 1
-1 -1 -1 -1

As = [0 =1 0 -1 (3.7)
-1 0 1 1
211 -1 =1 =1 -1

Teg = (212 for Ay =1|-1 0 1 1 (3.8)
1 00 -1 -1 -1 0

It is important to realize that not all transformed dependency matrices will give a valid T.

For example for A = As, a valid traasformation matrix T does not exist.

Similarly, for the matrix multiplication algorithm example which has been used in

[2], some examples of A obtained using this method are given as follows:

-1 -1 -1 [1 11
Aj=10 =1 0 and T,=,010 (3.82)
-1 0 0 l(

- 86 -

-1 =1 —1] T

Ay=|-1 -1 0 and T,=[0 1 1 (3.8h)
-1 0 -1 o1
(-1 =1 —1] o1

A= |-2 =2 ~1 and Ty= 22 (380
-2 -1 0] 01 2
1 -1 —1] 1 1 1]

Aj=[-2 -2 -] and T =122 (3.8
-3 -2 —1] 1 2 3
-1 -2 -3] [z 2 1]

As=(-1 -1 0 and Ts=101 1 (3.8¢)
-1 6 -1] l.l 0 1
(-1 =1 =2 [2 1 1]

Ag=10 -1 0 and Te=1010 (3.80)
-1 0 —1] l1 01

In the above examples of A
X
(i) ged d; = gedd, i=1,2,.k
for all A,

therefore, all the transformation matrices (T;) are valid transformai’ »ns, transforming)

to A, and the order of computations are also preserved.

The procedure to generate a valid transformed dependency matrix (TDM) using this

approach can be summarized as follows:
Procedure

1. Initialization : Given a dependency matrix D, check if it is invertible and start with
initial TDM (A;).
2. Systematically generate a new A by modifying the elements of previously gencrated A.

Check the values of E, and E,.

3. If the upper limits on E; and E, are not reached, generate the corresponding 7', deter-

.87 -

mine its vaiidity and GO TO 2.
4. When all permutations are exhausted GO TO 5. Otherwise GO TO 2.
5. END .

The elements of A are changed monotonically. First, we make an element of the
time function more negative by 1 (i.e. add -1 to it). Tnen the elements of the space func-
tion are varied one at a time to give a different systolic array structure. In this case. the
timing structure of the arrays will be the same while their interprocessor communication
requircments will be different. This process is continued until the constraint search space
is exhausted.

It is important to mention that this method of evaluating the TDM (A) and hence T,
is applicable if the matrix D has an 1. verse. In the case where it is not invertible, then
the existing procedure for generating a valid T and its corresponding A [1,2,21,22,24] can

be employed to determine several transformation and transformed dependency matrices.

3.2.2 Comparison of Our Approach and the Existing Approaches of Determining

the Valid TDM

In section 2.3, we presented the general description of the existing procedure used to
obtain a valid transformation matrix T and its corresponding TDM. The procedure
involves performing restricted row operation on the matrix Ag to obtain Ap. Where Ag is
the former A matrix, and A, is the present A matrix. At the beginning of the process of
generating valid transformations the D matrix is assumad to be the same as the matrix
Ap. After performing the restricted row operation, then the corresponding restricted ele-
mentary matrix £, is determined such that, the product of E, and Ap gives the matrix
Ap. This step is repeated until the matrix Ap becomes a systolic matrix, that is, it has all

negative elements in the row that represents the time domain. Finally, the product of the

- 88 -

restricted clementary matrices, gives the transformation matrix.
In this approach, the generation of a transformation matrix requires at icast two

matrix multiplication computation and at least one matrix addition. The matrix multiplica

n
tion operations come from performing £,Ar = Ap and T, =]’]‘I-, , - The addition opera-
)

tions come from performing at least one restricted row operation.

However, in the proposed approach described in section 3.2.1, the generation ot i
TDM requires at most one matrix multiplication (T = AD N, and at most one matny
addition (to modify the previous A) Table 3.1 shows the comparison of the computition

complexity of the existing approach and our approach for generating a TDM.

Computation Complexity Existing Approaches Proposed Approach
(1,2,21,22.24)
Number of Multiplications 22 1
Number of Additions 2 1 1

Table 3.1 Comparison of the computation complexity
for generating a TDM of an algorithm.

Since the matrix multiplication operation requires more computation than the addi-
tion operation, hence, the proposed approach performs less computations to generate valid
TDM'’s, than the existing approaches. Also, since only a subset of those A that satisty
our requirements is generated, this leads in reduction of the total computation time for
generating the TDM’s. Therefore, from the comparison it can be «een that in general, our
approach is more cost effective than the existing approaches for the generation of valid

transformation matrix T, and the transformed dependency matrix A.

.89 .

In the next section, we will formulate the optimality criteria and then describe the

optimization algorithm for the design of optimal systolic array architectures.

3.3 DESIGNING OPTIMAL SYSTOLIC ARRAY ARCHITECTURES

This section describes an optireization algorithm for designing optimal systolic
arrays. Using the results derived in section 3.2, we can in principle find a new
transformed dependency matrix (TDM). In order to determine the validity of the new
TDM, it is tested to sce if it has a valid transformation. If it does, then it is possible to
map it into a systolic architecture. In the case where a valid transformation T does not
exist for the new TDM, then it cannot be successfully mapped into an architecture.
Several TDM’s can be generated as described above and the validity of each TDM can

also be determined.

However, our motivation for obtaining the new TDM directly from the DM is to be
able to select the TDM that meets the desired VLSI requirements. We want to avoid
deriving the transformation matrix T for each TDM, a costly procedure, if we know that
the derived TDM does not meet our requirements. Thus, by so doing, we can eliminate

many TDM’s without the need to obtain the corresponding transformations.

'The new TDM may or may not be the optimum transformed dependency matrix.
Since several TDM's that meet our requirements can be obtained, then it is imperative
that we select the TDM that will give the optimal or near optimal systolic array, based on
certain measure of cost. Therefore, we need to develop methods to measure the cost of
the new TDM and then investigate how the cost parameters are affected for the different
TDM's. The TDM that has the minimum cost value constitutes the optimal cr near

optimal transformed dependenc; matrix.

Before proceeding to investigate the methods to measure the cost of the new depen-

dency matrix, we first identify the features we are interested in optimizing.

-90 -

3.3.1 Optimization Criteria

In this thesis, our objective is to select a TDM so that when it is mapped into a sys-

tolic array architecture, it will :

(i) improve the fault - tolerant capability of the array

(ii) minimize the propagation delay

(iii) maximize the throughput

(iv) minimize the silicon area

(v) minimize the VLSI routing complexity

(vi) improve the speedup of computation for the systolic array

(vii) all or a combination of the above.

We also acknowledge that some of the above features are related. Ilaving identified the
features we are interested in optimizing, the next step is to acrive the expressions that

represent the cost measure of the identified features.

(i) Fault - Tolerance Measure

In order to impruve the fault - tolerant capability of the array, it is desired that all
the data variables or at least the generated variables, in a given algorithm be propagated
from one cell to the other, when the algorithm is mapped into a VLSI architecture. In
other words, all the data variables should be accessible and should not be stored in the
cells.

For a 2-dimensional systolic array, the transformation matrix T is represented by

(Eq.(2.42))

I Iyt I
T = |51 = [t t22 123
Sa Iy 3y I33

where I is the time mapping function and S is the space mapping function.

-901.

Therefore, the fault - tolerant feature requires that the elements S,d; and S,d; are not

both zero, i.e., 1, j(T‘- and ¢4 ,(Z (for j = 1,2,3) do not simultaneously have zcro eiements.

The need for the data variables to be accessible is such that the redundant output
variables can be casily compared at the output of the array for discrepancies in the com-
puted results. Hence, the results of the replicated output variables can be voted on to
mask the effects of any tolerable faults. However, if the results of any data variable is
stored in the cell, extra cycles may be required to flush out the output results from the
cells. Also, in the case wheve data variables are replicated, complex synchronization cir-
cuitry may be required to synchronize the corresponding output results of this variable,
and this will definitely require more storage space. Hence all the data variables in a given
algorithm should be propagated from cell to cell in order to minimize these effects.
Therefore, to ensure the flow of data such that all generated outputs may be compared
simultaneously, we have to select S accordingly in such a way that no variable is stored

in the processors. Thus

if Syd; =8,d; =0
then FT=W otherwise FT=0, W>0 (3.10)

where W is a constant (a coefficient in the objective function) which will be assigned any

value corresponding to the cost of storing a data variable in the processors.

(i) Interconnection Delay Measure

This consists of the delay in the interconnection lines of the systolic array. To
mininuze the delay required for the data to propagate through the VLSI systolic architec-
ture, it is desired that the routing between the cells be to the nearest neighbors. In other
words, the intcrconnection of the processors is to the nearest neighbors. This means that
the elements in Sd; and S,d, in the TDM, should be as .nall as possible, e.g. 0, -1, 1

(Le elements € {0, -1, 1}) if possible. This will ensure that no additional propagation

-92.

delay is introduced in the interconnection lines.

The interconnection delay parameter can be measured as follows:

Let D, represent the delay of an interconnection line with unit length, where D, is a

constant determined by the technology. A unit length interconnection is defined as the

amount of interconnection wire required to either horizontally or vertically connect two

neighboring processors, from the center of one 10 the center of the other (i.e. the pitch)

and the width of this wire depends on the chosen technology. The worst case delay of the

systolic array architecture will be given by the interconnection linc with the longest path

(assuming other parameters are constant), and this is given by the interconnection line

which has the highest number of data routing steps (R;,,). Thus the interconnection line

with the longest path, assuming the Manhattan geometry, is ,

- _—
Ry = max|| 5,41 +] S | |

= max| Y| Sid; |
=

for:t =1,2, ...k

e

Therefore the delay of the interconnection line is given by

T = Dml. * Rinl

(3.11)

It is important to mention that D;,, e< (lengtn)2, and we are segmenting the length here

for simplicity.

(iii) Throughput Measure

The throughput of the systolic array is defined as the number of results that can be

completed by the array per unit time. This can be measured by the total number of clock

-93.

cycles required to complete the computation of any given algorithm for any given size of

the problem. Therefore, we wish to select the TDM that requires the smallest number of

clock cycles to complete the execution of the algorithm. The total number of clock cycles

(C') required for the computation of the algorithm can be determined in the following

way :

Once a new TDM is generated and a transformation, a new parallel algorithm results

immediately. In mapping the algorithm, if index i determines the valid execution ordering

of the computation, then the total number of cycles (C) required for computation is given

by [1,21,22]

C = ty;(%%kD -ty LNk + 1
forl =1,2,3

where 1, (i,j,k) 15 given by
i
[tn 112 tlB]i = ryi +tyy) sk
That is ,

C = maxi —mini + 1

In general, C is given by the ratio

max £;(i%,j2k% - il k) + 1

min |z1,d;]|

for any (iz,jz,k 2,6k e J, where J" is the original index set

(3.12)

.04 -

(iv) Silicon Area Measure

The area of the VLSI architecture consists of the arca of the processing clements,
the area of the delay units in the processors and the routing arca for the interconnection
lines. The area depends on the architecture of the processing elements, implementation
and the available technology and has to be assessed for each configuration scparately.
Therefore, by choosing the TDM whose systolic array architecture consists of the
optimum number of processors for computations, minimum number of buffers (delay
units) and utilizes minimum area for routing the interconnection lines, then, the overall
area of the architecture can be minimized. Although the degree of complexity of the
interconnection pattern affects the area of the systolic architecture, it also has as effect on
the difficulty of routing of the interconnection lines. That is, the more complex an inter-

connection pattern is, the greater the degree of difficulty to route such a pattern and vice

versa.

For systolic operation, Ild; < 0, and for example when Td;< -1, at least one time
step is required for data item to propagate from one celi to the other. If more than one
time unit is needed for data to propagate from one cell to another, then delay units are
added in the processors. Therefore, the number of delay units (d,) in a processor is given

by

k _
d, = Y|Nd, + 1 (3.13q)

1=1

and the total number of delay units in the array architecture is

Ud = Mpr * du (3]3b)

Therefore, the total area of the delay units in the architecture is given by

AD = Ud * Ad (3l3C)

.95 -

where A, is the area of a delay unit. mpg is the number of processing elements required
to implement any algorithm in a systolic array design and it can be determined as
described lawer in this section.

The total area of the processing elements is given by

AP = Mpr * AI)E (3.14)

where App is the area of one processor.

It is also important to consider the contribution of the routing area to the overall area of
the systolic array architecture. In this analysis, we assume that the technology and the
fabrication process permit the interconnection lines to be routed in a horizontal and verti-
cal fashion. Also, assuming that the technology can support multi - layer metalization
process, thus all the horizontal interconnection lines can be routed in one layer of metali-
zation and the vertical lines in another layer. Then the interconnection lines in one metali-
zation layer can be connected to the others in another metalization layer through vias,
with contact cuts made at each point of connection. Therefore, in addition to the silicon
area occupied by the interconnection lines, there is also the area of the contact cuts. Since
the placement of the interconnection lines must satisfy certain design rules, the more the
number of connections that have to be made between different layers of metalization, the
more the number of contact cuts and hence, the more the interconnection lines have to be
placed further apart to obey the design rules. This invariably increases the area required
to route the interconnection lines.

Here, we measure the complexity of the interconnection pattern in terms of the total
number of data routing steps in both the horizontal and vertical directions and the number
of contact cuts.

We define R, and R, as the number of data routing steps in the horizontal and vertical

directions respectively, for each interconnection line. They are given as foliows:

Ru, = ISI‘ZI

- 96 -
Rv, = ISZ‘Z'

In order to take into account the area of the contact cuts and the area resulting from the

placement of the interconnection lines, we redefine v in the following way,

R, =25 |

The factor of 2 here, indicates that we are using extra data routing step in the vertical
direction, to accomodate the area of the contact cut at the point where the horizontal and

vertical interconnection lines are connected.

The complexity of the interconnection pattern is then given as,

k
K= 3 (R, +R,)

i=1

where k is the number of the dependency vectors which corresponds to the number of

columns in the dependency matrix D.

Therefore the area required for routing the interconnection lines is given by

Ainl. = Kmp,; AL (115)

where A; is the area of a unit length of the interconnection line and it depends on the
technology, and the unit length interconnection line is as defined before % is a constant
which indicates the degree of complexity of the interconnection pattern of the architee-
ture, the higher the value of K, the more complex the interconnection pattern is, and

hence the higher the routing area.

Then, the silicon area (Ay;) required to implement any given algorithm is obtained

by combining Eqgs. (3.13) - (3.15) and this is given by

k _
Ag = mpg App + mpp Ay Y|1d; + 1| + Kmpg AL (3.16)

i=]

-97 -

The number of processing elements (mpg) required to implement any algorithm in a sys-

tolic array design can be obtained using the following procedure :

for each (i,j k)

begin o
Determine the pair (J,k) as follows :
(Jk)=Cryl,ik), 1305 k) %

where / = 1,2,3

end;
begin
k=maxk R s
mpp = Y, (maxj — minj + 1);
k=mink
end; (3.17)

(v) Speedup Factor Measure

The speedup of a systolic architecture is defined as the ratio of the total time
required for a single PE chip to complete the computation of a given problem size and
the total time required for a multi PE chip.

That is,

Total Time Required for a Single PE Chip

= 3.18
" Total Time Required for a Multi PE Chip (3.18)
The speedup per processing element is defined as [16]
S
sp = — (3.19)
MpE

where mpp is the required number of processing elements on the multi PE chip.

In [16], Lee er al. compared the speedup of some classes of systolic architectures for
matrix multiplication. The comparison was done for different physical limiting cases such

as heat dissipation, propagation delay in interconnection lines, clock skew and the 1/O

- 08§ -

bandwidth, which are of importance in VLSI technology. They showed that the maximum
clock frequency not only depends on the number of processing elements, but depends on
both architecture and technology. At the most abstract level, one encounters purely
problem-dependent limits associated with the inherent complexity of a given computa-
tional task. At a somewhat less abstract level, there are architectural features associated
with the control of data flow in space and timc. However, the technology can not be
avoided. Delays and power dissipation can be associated with virtually any operation at
the circuit level. These delays are those which change when comparisons between various
technologies such as CMOS versus bipolar, or perhaps Si versus GaAs, are made. All of
these various levels are united, however, by the integration process.

The resuits they obtained are general for systolic architectures and are adopted here for
part of our analysis of the cost function of the TDM. Conscquently, not only do we take
into consideration the architectural features of the array in deriving the cost function of
the TDM, we also consider the circuit level parameters of the aschitecture and this gives a
more complete and realistic analysis. Therefore our objective will be to select the TDM

that has the best speedup given the different physical limiting cases.

The speedup per PE of the new TDM's is compared for the following physical limit-
ing cases [16] : (a) switching delay, (b) power dissipation, (c) clock skew and (d) 1/O

bandwidth. These cases are described below.

A) Switching Delay Limit:

For a chip containing mp; PE’s, when the switching delay of a gate is much larger
than the interconnection line delay and the power dissipation is less than the heat removal
capacity of the chip, the operating clock frequency of the chip is limited by the swit~hing
delay. The speedup per PE of the systolic array architecture given this physical limiting

case is

- 99 -

SP, = N. I C mpg (3.20a)

where N is the total number of computations and C is the total number of cycles
required for a single PE chip to compute the given problem, e.g. for an NxN matrix mul-

tiplication, N. = N* where N is the size of a matrix.
B) Power Dissipation Limit:

The clock frequency of a chip is limited by the heat dissipation and the heat removal

capacity of the chip. The speedup per PE for this limiting case is given by,

sz = NC / (T\ C nlpE) (320b)

where 11 is the efficiency of the systolic architecture. This is measured by the percentage
of (busy time - space spans) over the (total time - space spans, which equals the sum of
all busy u1d idle time - space spans). In other words, this is the percentage of the number
of processors that are active in any given period of time. Zquation (3.20b) shows that the
more the number of processing element, that are active at any given time, the more

power the chip dissipates and this reduces the speedup of the systolic array architecture.
C) Clock Skew:

When the propagation delay in the interconnection lines is significant, a large sys-
tolic array operating in a synchronous fashion may have a problem in synchronizing data
arrivals. If an H - tree distribution network driven by a single buffer is used for the clock,
RC line modeling of interconnections yieids the clock skew asymptotically proportional to
N* for an NxN processor array. The clock frequency of the large array of PE’s is limited
by the clock skew. Thus, from [16], the speedup per PE for this case is,

SP3=N

c

I (Fy Dy C mpg ') (3.20c)

where F, is the clock frequency of a single PE chip, D, is the delay of an

- 106G -

interconnection line and it is a constant determined by the technology and the dimension
of a PE.
It is realized that with H - tree clock distribution, the clock skew is almost minimized,

however, rhis model is used for generality.

D) /O Bandwidth:

When the I/O requirement of a PE is greater than the I/O capacity. oft - chip inter-
connection requirements set a limit on the clock frequency. The /O requirement of a PE
is the sum of the word lengths of the coefficients or variables in the algorithm multiplicd
by the clock frequency. From [16], the speedup per PE given the I/O bandwidth limited

case is,

SPy = N. [(N C my, mpp'"?) (3.20d)

where m,, is the number of 1/O’s (which includes the external and the internal intercon-

nection lines of the array) required for any systolic array architecture and this is given by
k _

My = 2mpgp * |k = 3(54;=0 A Syd,=0) (3.21)
i=1

where k is the number of columns of the dependence vectors (which also represents the

number of operands or variables in the algorithm), and A represents the AND operator.

Therefore, the speedup factor per PE of the architecture is given by

SP = min<k]SI‘,, szPz, k3SP3, /\’45”4> (222)

where ky, k,, k5 and k4 are constants. (At this stage, fc: those physical limiting cases we

are interested in, we select k; =1 (fori =1, 2, 3, 4), otherwise, !, = ()).

- 101 -
3.3.2 The Compound Objective Function (COF)

The compound objective function (COF) that associates certain values with each

corresponding optimization parameter can be expressed in the following form:

COF = al * (Fault - tulerant parameter)
+ a2 * (interconnection delay parameter)
+ a3 * (area x square of total execution time (AT2)

+ a4 * (speedup per PE parameters)

Here, we define T, as the total execution time and it can be derived as follows. If we let

1, represent the computation time in each processor and t, represent the propagation time

delay of the interconnection line with the longest path, then the clock cycle time t, =

t, +t,.. This is equal to (+ 1;.). Therefore, the total execution time is

T. = C*(UF, + 1) (3.23)

Thus,

COF = al FT + a2t + a3 (A;T? + a4 SP (3.24)

where al, a2, a3 and a4 are weighted constants. For example, a4 * SP is a factor indi-
cating the optimum choice of a given architecture as far as the circuit limitations (switch-
ing delay, power dissipation, etc.) are concerned. The selection of the constants al, a2,
a3 and a4 are very important. For instance, if we let a2 = 1 and the rest of the
coefficients = 0, then we are interested only in the interconnection line delay constraint.
In addition to the binary values, these constants can also assume any value to indicate the

weight (importance) of the corresponding cost function. For example if al >> a2, a3 or

- 102 -

a4, then more consideration is given to the fault - tolerance capability of the architecture
and so on.

By changing the coefficients or elements of the new TDM, the values of the cost
parameters are affected. Therefore, the optimization procedure has to determine how these
changes affect the cost parameters and which change optimizes the compound objective
function. Consequently, the coefficient values of the new TDM can be changed to reflect

the importance of some of these parameters for a given algorithm.

3.3.3 An Approach to Choose the Values of the Weighted Constants

Equation (3.24) gives a closed form representation of the conipound objective func-
tion (COF), which is the performance index to measure the overall performance of the
systolic array architectures. In order to evaluate this function, the values of the weighted
constants al, a2, a3 and a4 must be appropriately chosen so that the dimensions of the
different parameters in the function are unitied. One possible approach to unify the
dimensions of the parameters would be to choose the constants such that the COF is
dimensionless. However, in this analysis, we would like to unify the dimension of the
compound objective function to the dimension of Area x square of time (AT?). This is

because the dimension of AT? gives a meaningful measure of the merits of VLSI designs.

In Eq. (3.24), the fault - tolerant parameter (FT) is dimensionless, therefore, al has
to be chosen so as to have a dimension of AT2. The interconnection delay parameter, T,
has the dimension of time, hence a2 should be selected so that it has a dimension of AT.
The (area x square of time) parameter already has the dimension of ATZ, and as such the
constant a3 is dimensionless and can be chosen to be a constant. Finally, the speedup per
PE parameter (SP) is dimensionless, therefore @4 should have the dimension of AT?. If
we represent the first parameter of the COF function of Eq.(3.24) in the form A T2, the

second parameter in the form A,T and so on, then Eq.(3.24) can be rewritten as follows:

- 103 -

COF = C]Alle FT + 02A2T2 TL + C3A3T32 + C4A4T42 SP (325)

where A,-'I‘,2 corresponds to the area and time components of the respective optimization

parameters, and ¢; are the associated weighting constants and they are dimensionless.

Comparing Eq.(3.24) and Eq.(3.25), thus, the weighted constants can be selected as
follows:
al =c,A\T?,a2=c,A,T,,a3=c; ,andad = ¢, ATE.
The next step is to determine the values of A;T;. Some interesting and meaningful values
10 be assigned to A;T; would be ,
A=A, =A;=A; while Ay =mpp Ag

TZ

and Ty =Ty =Ty =T, while T, =
int.

Thus Eq.(3.25) can be expressed as follows:

T
AsiTcz CIW + CQDL

int.

+ c3 + c4mpp SP (3.25a)

For each A, A TC2 will be aifferent, this is then multiplied by a factor.

The reason for assigning Ay; (silicon area) to A; is to associate the values of A;
with the actual value of the silicon area of the corresponding systolic array. Also, by
assigning T, (total computation time) to T;, we established a tie between the values of T;
and the total computation time of the array. Thus. when the compound objective function
of the individual systolic array is calculated, the values will properly reflect the actual

architectural and technological parameters of the corr=sponding systolic array.

The criterion for selecting Ay as mpp Ay; is that, since SP is the speedup per PE,
we want to represent the speedup factor by the total speedup of the systolic architecture

rather than by the average speedup. Hence, by this assignment, we are in effect multiply-

. -]

- 104 -

ing SP by mpg. T, is assigned T2/D,,, because, first, all the other T; (T}, T3,Ty) contain
T,. Therefore, to be consistent, we want T, to contain T. also. Second, since
T.,=D;, * R;, , has the unit of time, by this assignment, we ensure that the dimension of
the interconnection line delay factor will be area x time squared. From the manner by
which A; and T, are selected, we have succeeded in unifying the dimensions of all the
optimization criteria, while at the same time, maintaining the performance contribution

made by the individual optimization factor, towards the design of the systolic array archi-

tecture.

It is important to note that unifying the dimensions of the optimization factors, does
not eliminate the possibility of assigning different degrees of design importance to any of
these factors. In the case where any of these systolic array design criteria is to be given
more importance than the others, then a higher weight should be assigned to the
corresponding modulating constant ¢; of this factor. Also, different weights can be
assigr~d to each of these factors to reflect the respective design importance. For the case
when the same weight is assigned to all the modulating constants ¢; (i=1-4), then , the

same design importance is given to all the optimization factors.

Therefore, by substituting the corresponding A; and T; in the equations for the
weighted constants, the values of al, @2, a3 and a4 can be appropriately chosen so as
to unify the dimersion of the performance index (COF) used to measure the overall per-

formance of the systolic array and ¢, (i = 1-4) are the modulating constants.

It is important to note that in this analysis, we have modulated the performance
index (COF) to have the dimensions of AT2 However, this does not mean that only the
(area x square of time) parameter in the COF function is used to measurc the perfor-
mance of the array. Rather, all the parameters in COF (fault - tolerant, interconnection
delay, area x time squared and speedup factor) are taken into consideration in measuring

the overall performance of the systolic array architecture.

- 105 -

3.3.4 Optimization Algorithm to Select a Transformed Dependency

Matrix (TDM) that Minimizes the Objective Function .

Since several new TDM’s which satisfy our VLSI requirements cn be generated, it
becomes imperative to select one of them such that the cost function is minimized. At
first sight, it seems that the TDM with the following features IT = [-1 -1 -1] and S.d;,
Sod, = { 0, 1, -1 } will give a local optimum solution. However, we explore the possibil-
ity of optimizing the TDM with respect to the compound objective function, so as to
select the TDM whose systolic array gives the best overall performance. The optimization

algorithm 10 select the desired TDM is given as follows :

1. Initialization: initialize the modulating constants ¢;’s of COF, find a new valid
transformed dependency matrix (TDM) based on the procedure outlined in section 3.2 and

cvaluate its cost function COF.

2. Determine a new TDM and evalvate its COF value and compare this value with the

COF value of the previous TDM obtained.
3. If the new TDM is better than what is found so far, make it the current best TDM.

4. When the change in the improvement is significantly small, then GO TO step 5, oth-

erwise GO TO step 2.
5. The current TDM is the near (or local) optimal solution.

6. End.

Having selected the TDM with the lowest cost, this TDM is then mapped into a systolic
array architecture.
In the next section, we will illustrate our design approach using two iterative algorithms.

Systolic array architectures will be designed which are optimal with respect to the

- 106 -

different cost functions and a combination of all of them.

3.4 ILLUSTRATIVE EXAMPLES

In this section, we will illustrate the approach to obtain a local optimal systolic
array. We will compare various systolic architectures in terms of the different cost func-
tions which include, (i) the silicon area (ii) throughput (iii) the product of the silicon area
and the speed (time) of the architecture (iv) the speedup of computation tor the systolic
array and (v) a combination of the above respective cost functions. Then the optimum
architecture for the different cases is determined. Also, the determination of the optimal

systolic array architecture with the best overall performance will be investigated.

In order to illustrate our approach of mapping algorithms into optimal systolic archi-
tectures, we will use two examples of iterative algorithms that perform matrix muhliplica-
tion, which have been used in [20,21] and [2] respectively. For the tirst example, we will
consider the algorithm used in [20,21] which is also given in section 3.2.1.

The corresponding constant dependency matrix of the algorithm is

-1 -1-1 0

D =11 0 -1 -3 (3.26)
0 1 2 2
A B BB

If we generate a new transformed dependency matrix as follows:

-1 2 3 =2

Ay =0 0 0 -1 (3.27)
-1 -1 -1 0
1 0 -1 [i~k

Ty = |11 1|,]| = li+j+k (3.28)
10 0 k i

- 107 -

[et N=3, therefore,

C=max { -mini +1=1,,(33,1) - 1,,(1,3,3) + 1

=2-(2)+1=5Cycles =2N - 1

The number of processors is determined as follows:

(i,,k) = (1,1,3), (1,2,3), (1,3,3)
(k) = (5,1), (6,1), (7,1)

P

I =-2,

(i.j.k)=(1,12),(1,2,2), (1,3,2), (2,1,3), (2,2,3), (2,3,3)
(.£) = @,1), 5.1), (6,1), (6,2), (1.2), (8,2)

~

i=-1,

(Z,j.k) = (1,11, (1,2,1), (1,3,1), (2,1,2), (2,2,2), (2,3,2), (3,1,3), (3,2,3), (3,3,3)
(k) = (3.1), @1, 5,1), (52), 6,2), (7,2), (7,3) (8,3), (9,3)
i=0,

(.j,k)=(@2,L1), (2,2,1), 2,3,1), (3,1,2), (3,2,2), (3,3,2)
(k) =(4,2), (5.2), (6,2), (63), (7,3), (8,3)

-~

i=1,

(i.J.k)=_3G11,33.21, 33D
(k) = (5,3), (6,3), (7,3)

~

i =2,

-

£=3 R .
mpp = Y (maxj — minj + 1)=5+5+5
k=1

- 108 -

Thus, the number of processors (mpg) is :

mpg = 15 processors = NN - 1) .

The number of I/O’s is m;, = 8N(ZN-1)

Since the array has fault - tolerant capability, therefore FT =0 .
The delay of the longest interconnection line is T, = D,, .
The number of the delay units in each processor is d, =4,

and the number of the delay units in the overall array is Uy =4 mp; .

The data routing complexity is K =7 .
Therefore, the total silicon area is given by
Ag =NQ@N-1DApr + ANQN-DA; + TNQN-1) A,

Now the speedup per PE parameters are evaluated as :
SP,=N, / @QN-1) N@N-1) = N, / N2N-1)?
SP,=N, / 1.NQ@N~1)?

SPy=N. / (F; .Dy, .(2N-1).[N@N-1)P?)
SP,=N. / (1.(2N-1).8NQ2N-1).[N@N-D]'?)

COF = a2D,;, +
a3 N-12 (1F, + Dy)2 * INQN-DApp +4NQN-DA, + 7T NQN-1)A, | +
1 I
NQN-1)?2 ° NQN-1)2 ~ F, D,, (2N—-1)[N@QN-1)]2
1
8 AN-1) [IN@N-1P?

a4 N, min

COF, = a2D;, + a325(VUF, + Dy,)** |15Ap; +60A, + 105 AL | +

N ! !
4N L1 , (3.29
g% e min [75 75 ' 4357F, D,, ' 23238)

- 109 -

Now repeating the procedure for another TDM, we obtain

Ay =0 0 0 - (3.30)

-1 -2 3 -2}
-1 =1 -1 -1

10 -1 [i~k
Ty = (11 1], 1j| = |i+j+k (3.31)
21 1 k 2i+j+k

Again the transformation exists and hence the new transformed dependency is valid.

COFy = a22 D, + a325(1F, +2D;, ** [15Ap; + 604, + 1354, | +

N 1 1 1
4N o s == ’ . 2
A% Ne M1 95+ 35 4357F, D,, ' 23238 (33
Evaluating the third COF for a new TDM,
-1 -2 -3 =2
Ay = |-1 =1 =1 0 (3.33)
-1 =1 -1 -1
10 -1 i i—k
T= 110 0|, |jl = i (3.34)
2 1 1 k 2 +j+k
COFy = a22 D, + a325(1F,+2D,, Y * [15Ap; +G0A, + 1654,] +
] 1 1 1
AN —_, =, , ,
a% fe mi l 75 ' 75 ' 4357F, D,, ° 23238 (3.35)
Further still,
1 -1 -1 -1
Aj= |0 0 0 -I (3.36)
-1 0 1 1
2 11 H 2i+j+k
Ty, = {11 s Wb =1 iHj+k (3.37)
212 “ 2i+j+2k

- 110 -

COF, = alW + a22D,, + a3 81 (UF, +2 D, ¥ |154p + 1034, | +
] 1 |

4N, mi , , , 338
adNe MNIT3S 135 * 7883 F, D,, ' 3137 (3.-48)
-1 -1 -1 -1
Ay = [0 -1 O -1 RIRD)!
-1 0 1 1
T does not exist for As and hence it does not have a valid transformation.
-1 -1 ~1 ~1
Ag = -1 0 1 1 (3.0
-1 -1 -1 0
211 [2i-+j +k
Te = 212, |jI = [2+j+2 3.4
(1 00 k i
COF¢ = a22D,, + a381 (VF, +2D,, ¥* [2lAp; + 1894, | +
. 1 1 1 1
a4 N, min . , , 442
¢ [189 189" 1.8x10% F, D,, ~ 6929 (+:42)

It is important to note that several other transformed dependency matrices (TDM’s)
can be generated of which some of them may have valid transformations. However, we
generated only the above set of TDM’s because, from extensive studies, it is observed
that the magnitude of the coefficients of further valid TDM’s are higher than those in Ay,
and as such would not produce any further minimum cost.

The comparison of the architectural features of the above set of gencrated TDM’s is

shown in table 3.1(a).

-111 -

TDM No. of PE’s No. of cycles No. of 1/O’s
(mpr;) (€) (mj,)

A N(2N-1) 2N-1 8N(2N-1)
A N(2N-1) 2N-1 8N(2N-1)
Ay N(2N-1) 2N-1] 8N(2N-1)
Ay N(2N-1) 4(N-1)+1 6N(2N-1)
As : - -

Ag N(2N+1) 4(N-1)+1 EN(2N+1)

Table 3.1(a) Comparison of the architectural features of the generated TDM’s

of example 1 .

Similar analysis can be done for the algorithm in example two [2] whose depen-
dency matrix is given in Eq.(2.6). Some sample examples of the generated TDM’s for
this case are given in Eqs.((3.8a) - (3.8f)). The comparison of the architectural features

of the set of generatced TDM’s in this case, is shown in table 3.1(b).

TDM No. of PE’s No. of cycles No. of 1/O’s
(mpg) <) (mip)

A, N? 3N-2 4N?

A, 6N+1 3N-2 6(6N+1)

A, 8N+1 3N-2 6(8N+1)

A, N 3N-2 42N

Aq 6N+1 6N-5 6(6N+1)

Aq 4N+3 4N-3 6(4N+3)

Table 3.1(b) Comparison of the architectural features of the generated TDM’s

of example 2.

In order to select, in both examples, the TDM with the minimum cost, either in

terms of the different cost functions or in terms of the compound objective function, we
nced to cvaluate the corresponding cost functions of the respective TDM’s. In this

analysis, we illustrate our approach using a design example of a systolic array processor

- 112 -

[23]. This processor, which is a word level bit parallel architecture, has beei designed
using the Northern Telecom CMOS 3-um double wetal layer technology. It comprises of
a parallel array of multiply - add/ cells and latches. It performs the multiplication of two
4 - bit integers.

The following values for the unknown parameters in the COF tunction have been

obtained from the VLSI design of the systolic processor {23] :

2.5 x 10° pm?

Area of the processor (Apg)

Area of one delay unit (4;) = 5. x 10* pm?
Area of a unit length interconnection line (A;) = 4.8 x 10} umz
Unit length interconnection delay (D,,,) = 1.7 NS

Frequency of operation of the processor (F,) = 10 MHz

For the given matrix multiplication algorithm, N. = N

For the fault - tolerant capability, we choose W =2

3.4.1 Optimization with respect to the Silicon Area

Equation (3.24) (COF function), consists of several VLSI design parameters that can
be optimized when designing optimal systolic architectures. In this subsection, we are
assuming that according to the specific purpose and the fabrication process or facilitics,
the silicon area is given more importance than the other cost functions. In other words, in
this particular case, we are concerned more with the silicon area than any of the other
optimizing parameters. Using the above design values of the systolic array processor
example, the quantitative values corresponding to the cost associated to the silicon area of
the respective TDM’s can be determined. The comparison of the silicon arca of the gen-
erated TDM’s in example 1 is shown in table 3.2(a) (for N=3), while that for example 2

is shown in table 3.2(b).

- 113 -

TDM Silicon Area
(A.si)

A, 4.1004 x 107 pm?
A, 41148 x 107 um?
A, 4.1292 x 107 um?
A, 3.8004 x 107 pm?
As -

A, 5.3407 x 107 pm?

Table 3.2(a) Comparison of the silicon area of the generated TDM’s

of example 1.

TDM Silicon Area
(AM)

A, 2.2630 x 107 pm?
A, 4.8047 x 107 pm?
Ay 6.3820 x 107 um?
Ay 54214 x 107 pm?
As 5.0897 x 107 pm*
Aq 3.8610 x 107 pum?

Table 3.2(b) Comparison of the silicon area of the generated TDM’s
of example 2 .

As seen from table 3.2(a), A4 corresponds to the TDM with the minimum cost func-
tion, which in this case is the silicon area. The value of the silicon area corresponding to
the systolic array of A, is 3.8004 x 107 pm?2, and this represents the best array perfor-

mance. Since our objective is to select a TDM such that the silicon area is minimized,

thus, we select ,

-1 =1 =1 -1
Ay =0 0 0 -l
-1 0 1 1
A B B B

- 114 -

The VLSI array corresponding to the transformed dependency matrix Ay is shown in
Fig.3.1 . The structure of the cell is shown in Fig.3.2. All the cells in the array of Fig.3.1

are identical. It consists of an adder, a multiplier and no delay elements.
Similarly, as seen in table 3.2(b), A; is the TDM with the minimum silicon area, in

cqe . R L4 Al M
the case of example 2. The value of the silicon area is 2.2630 x 107 pm=. Thus, in order

to minimize only the silicon area in this example, we select ,

-1 -1 -1
A= {0 -1 0
-1 0 0
A B C

The corresponding VLSI array structure is shown in Fig.3.3 . The cell structure is as
shown in Fig.3.3(a). It is similar to that shown in Fig.2.12, but the only difference is the
interprocessor communication requirements. In Fig.3.3(a), the data of variable A travels
via a vertical caannel, variable B via a horizontal channel and variable C is stored in the

cell itself.

From the above analysis, Ay in example 1 and A; in example 2, respectively, give
the best array performance in terms of the silicon area. However, they are not suitable for
fault-tolerance, since the data of one of the variables in the respective TDM's are stored

in the processors. This does not satisfy the fault-tolerance VLSI requirements.

3.4.2 Optimization with respect to the Throughput

As mentioned in section 3.3, the throughput of the systolic array can be measured by
the total number of the clock cycles required to complete the computation of any given
algorithm, for any given problem size. Therefore, the comparison of the throughput of the
generated TDM’s in examples 1 and 2 are respectively shown in table 2.3(a) and table

3.3(b).

- 115 -

Figure 3.1 VLSI array structure using the
transformation T, in example 1.

- 116 -

13

Y

Figure 3.2 The structure of the cell in [igure 3.1

- 117 -

0 0 bg[bglb“

Y

0 baahsob; 0

Y

By3boghyz0 O

Figure 3.3 VLSl array structure using the transformation
T; in example 2.

- 118 -

B —— — |13

oo
(]

Figure 3.3(a) The structure of the cell in [Figure !

-119 -

TDM Throughput
{No. of cycles C)
A 5
A, 5
A, 5
Ay 9
As -
A 9

Table 3.3(a) Comparison of the Throughput of the generated TDM’s

of example 1.

TDM Throughput
(No. of cycles C)
A, 7
A, 7
A, 7
A, 7
As 13
Ag 9

Table 3.3(b) Comparison of the Throughput of the generated TDM’s

of example 2 .

From table 3.3(a), we find that A{,A; and A3 have the best throughput of 5 cycles
respectively. This is followed by A4 and Ag, with throughput of 9 cycles respectively.
Therefore, to maximize the throughput, any of the TDM’s A,A, or A; can be selected. If
we select A;, the corresponding VLSI array is shown in Fig.3.4 (for N=3) [20,21]. As
shown in Fig.3.4, for example, the outputs of the generated variables A and B,
corresponding to A(l,1,1), B(1,1,1), A(3,3,3) and B(3,3,3) are produced a time t=3, that
is, after three clock cycles. It takes 5 clock cycles to complete the computation of the

algorithm. The structure of the cell is depicted in Fig.3.5.

- 120 -

t=3 "o .
a_ M e,
[lI Al
=4 , { f(m)__ o :~(u,:x) _(l l:}(sa,:;)_
L=5 A3.11) B(3LI) A321) B(321) A(B31) BOB31) l H
t=4 A(3L2) B(312) A(322) B(32.2) A3,3.2) B(33.2)
t=13 M) B3

Figure 3.4 VLSI array structure using the lransformalion
T, in example 1 (for N=3).

|
UG U S
!

- 121 -

_1 t. u 1t uw

delay

Figure 3.5

The structure of the

cell in Figure 3.4.

v

- 122 -

Similarly, as seen from table 3.3(b) (example 2), A, A5A; and Ay have the best
throughput of 7 cycles, followed by Ag and then As. In this case, cither Aj AL A or A
can be selected as the TDM with the best array performance in terms of the throughput.
If we select A, the corresponding VLSI array structure is the same as that shown in

Fig.3.3. Also, the cell structure is the same as that of Fig.3.3(a) .

3.4.3 Optimization in terms of the Propagation Delay

The propugation delay consists of the delay in the interconnection lines. It is desired
to minimize the delay required for the data to propagate through the VLSI systolic archi-
tecture. The comparison of the propagation delay of the generated TDM’s in examples |

and 2 are respectively shown in tables 3.4(a) and table 3.4(b).

TDM Propagation Delay
(T.)

A, 1.7 NS

A, 3.4 NS

A; 34 NS

A, 34 NS

A -

Aq 34 NS

Table 3.4(a) Comparison of the Propagation Delay of the generated TDM's

of example 1 .

- 123 -

TDM Propagation Delay
()

A, 1.7 NS

A, 3.4 NS

A, 6.8 NS

Ay 8.5 NS

As 3.4 NS

Ay 1.7 NS

Table 3.4(b) Comparison of the Propagation Delay of the generated TDM’s

of example 2 .

In table 3.4(a), A, has the best performance in terms of the propagation delay, since
it has the lowest propagation delay among all the TDM’s in example 1. Thus, to minim-
ize the propagation delay of the systolic array design, we will select A;. The correspond-
ing VLSI structure is the same as shown in Fig.3.4 and the cell structure is the same as
that in Fig.3.5. On the other hand, in table 3.4(b), A; and A4 have the lowest propagation
delay value. Either of them can be chosen in order to minimize the propagation delay of
the systolic array. If we choose A, then we obtain the systolic array shown in Fig.3.3 .
However, if we choose Ag, the corresponding VLSI array structure is shown in Fig.3.6.

The cell structure is as shown in Fig.3.7.

3.4.4 Optimization with respect to AT

In this subsection, we will optimize the systolic array in terms of the product of the
silicon area and the total computation time of the algorithm (AT). The comparison of the
generated TDM's in terms of this optimization parameter is shown in table 3.5(a) for

example I and table 3.5(b) for example 2.

- 124 .-

00 00 0O
k 0 0 o 0 0
—T o 0 O 0 agy O
j < O O '6132 () Qo 0
2ot O a2 O ayy O
ap O ap O 0
a;p O 0 op 0

ey ot b

0 00 O bgbpo L3 _k____'_'?g'y(:s.:x)(' ™y

b0 00 00 0 U8 %_,@6 T Be)y
oo

Figure 3.6 Optimal VLSI array structure for malrix
multiplication (for N=3).

- 125 -

u.

C
Rc
delay
1t
—

Am——

e e e e . - — —

[.'3 S

A

s

The structure of the cell in Figure 3.6.

Figure 3.7

- 126 -
TDM AT Values

A 2.085 x 10! m sec
A, 2127 x 101 pmZsee
A, 2135 x 101 pumSsec
Ay 3.537 x 101 pumsec
As L

Ag 4970 x 10" pm-sec

Table 3.5(a) Comparison of the AT values of the generated TDM’s

of example 1 .

TDM AT Values

A, 1611 x 10" pmsec
A, 3.478 x 10} wnsec
Ay 4772 x 101 pmsec
A, 4.118 x 10" pmsec
As 6.842 x 10! pm2sec
Ay 3.534 x 10! pm?sec

Table 3.5(b) Comparison of the AT values of the generated TDM’s

of example 2 .

As seen in table 3.5(a), A; has the lowest AT value of 2.085 x 10" un’sec. Since
our objective function is to select the TDM with the minimum cost, therefore, we select
Ay whose array structure is shown in Fig.3.4. Similarly, in table 3.5(b), A; (cxample 2)
has the best AT performance (minimum value of AT). The AT wvalue is 1.611 x
10! pm?sec. This is followed by A, A, etc. Therefore, in this case, since Ay will give
the best performance in terms of the AT cost function, it is then selected. The VLSI array

is already shown in Fig.3.3 .

- 127 -

3.4.5 Optimization with respect to AT?

In Eq.(3.24), to optimize the systolic array in terms of the AT? value, the values of
the coefficients a1,a2 and a4 can be set to () while @3 =1 . Table 3.6(a) consists of the
comparison of the generated TDM’s in example 1 for the AT? parameter. Table 3.6(b)

shows the corresponding results but for the generated TDM’s in example 2.

TDM ~AT* Values

A 1.0602497 x 107> pm2sec?
A, 10998408 x 107> pm?sec?
A, 1.1036897 x 107 un2sec?
A, 3.2912086 x 107> pwm %sec?
As -

Ay 4.6251509 x 1075 pm?sec?

Table 3.6(a) Comparison of the AT? values of the generated TDM’s

of example 1 .

TDM AT? Values

A 1.1468718 x 107> pm %sec?
A, 25171277 x 107 pwm?sec?
As 3.5669366 x 107 un 2sec?
A, 3.1272587 x 107 un 2sec?
As 9.1964809 x 107 pm2sec?
A 3.2346458 x 107> msec?

Table 3.6(b) Comparison of the AT? values of the generated TDM’s
of example 2 .

In table 3.6(a), A, has the minimum AT? value of 1.0602497 x 107 u%sec?. This is
followed by A,.Asz, ete. With regard to this cost function, therefore, A; will be selected

since it gives the best performance measure. The VLSI array is shown in Fig.3.4.

- 128 -

Similarly, n table 3.6(b) (example 2), A, has the lowest AT? value of 1.1468718 A

107 wmZsec?. Hence it is selected. The VLSI array structure is the same as in Fig.3,3,

3.4.6 Optimization with respect to Speedup per PE

In order to optimize the systolic array in terms of the speedup per PE, the
coefficients of al,a2 and a3 in Eq.(3.24) can be set to 0 while a4 is sct to 1. The com-
parison of the generated TDM’s in example 1, for this cost function, is depicted in table

3.7(a). Table 3.7(b) shows the corresponding results for the generated TDM's in example

2.

TDM SP

A, 1.161891 x 1072
A, 1.161891 x 107
A, 1.161891 x 1072
A, 8.606949 x 107°
As -

A 3.896666 x 107

Table 3.7(a) Comparison of the Speedup per PE values of the generated TDM’s
of example 1.

TDM SP Values

A 3.571429 x 1072
A, 7.714286 x 1072
A, 5.142857 x 1073
A, 6.683168 x 1073
As 4.153846 x 107
Ag 8.437500 x 1073

Table 3.7(b) Comparison of the AT values of the generated TDM’s
of example 2 .

- 129 -

As seen in table 3.7(a), A(,A, and A5 have the same speedup per PE value, which is
the maximum among all the SP values. Since our objective here is to select a TDM
which improves the speedup per PE of the systolic array, therefore, either A,A, or A,
can be selected. Assuming that A, is selected as the TDM which offers the best improve-
ment, then the corresponding VLSI array is as shown in Fig.3.4. Similarly, in table 3.7(b),
A, has the best SP value of 3.571429 x 1072, This is followed by Ag,A,,A4,A, and finally
As. 'Thus, for this example, given the cost function of SP, A, is selected. The VLSI array

corresponds to that shown in Fig.3.3.

3.4.7 Optimization in terms of the COF

Using the above design values for the unknown parameters in the cost function, the
values of the respective weighted constants can be selected. By substituting these values
in Eq.(3.25), the cost of the respective TDM’s can be determined. We show a sample cal-

culation of how to determine the cost of a TDM for the case of A; in example 1.

The total silicon arca (Ay) = 4.1004 x 107 pm? .
The total execution time T, = 508.5 NS
Assuming ¢ =¢,=¢ 3= 4=1

therefore,

a2 = 62367627 x 10* pumZec ,a3=1 and a4 = 1.5903745 x 10~* pmZsec?
Thus,

COF, = 23052836 x 10 pmZsec?

The other cost functions can be evaluated in a similar fashion. The performance measure
of the respective TDM’s in example 1, given the compound objective function, is shown

in table 3.8.

.

- 130 -

COFy = 2.3052836 x 10 pm sec’
COF, = 3.4912067 x 1075 um>sec”
COF5 = 35034243 x 107 wm *sec*
COF 4 = 1.6880952 x 107 pm 2sec?
COFS = N s 5
COF¢ = 1.4247500 x 107" pm=<sec

Table 3.8 The performance measure of the respective TDM's in example 1.

As seen from table 3.8, A; corresponds to the TDM with the minimum cost. It has a
unified AT? value of 2.3052836 x 107> pmZsec?, which represents the best overall array
performance. Since our objective is to select a TDM such that the compound objective

function is minimized, therefore we select ,

-1 =2 -3 =2
Ay =10 0 0 -1
-1 -1 -1 0

Analysis of the above calculations clearly shows that, since A, A, and A; have
similar architectural features, either A, or A; would have been selected. However, due to

the fact that the effect of routing is more dominant in A, and A,, thus, A; is selected
instead. A, has one diagonal routing path [:}] and A; has three diagonal routing paths,

but A; does not have any. This means that the routing area and the interconnection line
delay are more in A, and A; than in A, and as result A; gives a better performance

measure than A, or A,

It is also interesting to note that either A, or Ag is not selected. Both Ay and A, do
not have extra delay units in their processors as does A,, therefore, their silicon area
comprises of only the area of the processors and the interconnection line routing arca. A
produces an array which requires 15 PE’s and 5 clock cycles to perform 27 (N3, for N=3)
computations of matrix multiplication. On the other hand, A4 uses 15 PE’s and 9 clock

cycles to do the same task, while Ag utilizes 21 PE’s and 9 clock cycles to perform the

- 131 -

same number of computations. Therefore, A; has more available computational power
than A, or A Also, the power consumption is less in A; followed by A4 and then Ag.
A4 has one diagonal routing path while Ag has two diagonal routing paths, consequently,
the interconnection line delay is more in Ay and Ag than in A;. Although A, and A4 do
not have extra delay units in their processors, however, their respective AT? value is
dominated by the number of clock cycles in Ay, the number of PE’s (and hence the total
area of the PE’s) and the number of clock cycles in A,. Therefore, A4 and Ag do not
respectively produce the minimum overall array performance measure, as indicated in
table 3.8, and hence are not selected.

Also it is interesting to see the difference between A, and Ag since both have the
same timing structure and similar interconnection pattern. Due to the lack of fault -
tolerant capability of Ay, Ag gives a lower COF value than A,. Therefore, although one
TDM may be better than another TDM given the cost of one objective function (e.g.
interconnection line delay), however, the optimum TDM is the one which gives the best

overall array performance given the compound objective function.

The VLSI array corresponding to the transformed dependency matrix A; is shown in
Fig. 3.4 (for N=3) [20,21]. The structure of the cell is depicted in Fig. 3.5. All the cells
in the array shown in Fig. 3.4 are identical. It consists of an adder, multiplier and delay
elements. Variable A with dependence d; moves from a cell to the next via a vertical
channel with direction [—f)l] and it has no time delay associated with it, in each cell.
Variable B is used for three operands, the operand which has dependence d, moves via a
vertical channel with direction [_E)J and has one - time delay unit added in the cell in
front of the multiplier. The second operand of variable B with dependence ds,
corresponds to a vertical channel [01] and has two - time delay units inserted in front of

the adder in the cell . The last operand of variable B with dependence d4 corresponds to

a horizontal channel of [_01] and has one - time delay unit inserted in front of the adder

- 132 -

in the cell.

Table 3.9(a) consists of the comparison of the performance measure of the generated
TDM’s in example 2, for W = 2 . Similar results are given for the case when W = 5 and

this is as shown in table 3.9(b).

COF| = 49561247 x 107 wm“sec”
COF, = 7.9203220 x 107 um?sec?
COF4 = 1.8293289 x 107 um3sec?
COF, = 19202452 x 107 pm?sec?
COF5 = 2.8315257 x 107 pm?sec?
COF¢ = 6.8786765 x 107 pmZsec?

Table 3.9(a) The performance measure of the respective TDM’s
in example 2, for W =2 .

b

COF, = 8.3967345 x 107 um“sec
COF, = 7.9203220 x 10> pum2sec?
COF4 = 1.8293289 x 107 wm2sec?
COF, = 19202452 x 107* wmZsec?
COFs = 28315257 x 107* um?%sec?
COF, = 6.8786765 x 10 pm ’sec?

Table 3.9(b) The performance measure of the respective TDM’s
in example 2, for W = 5

In this example, as seen from table 3.9(a) (for W = 2), A, is the TDM with the
minimum cost. It has a unified AT? value of 4.9561247 x 10~ pm2sec? , which is the
best overall array performance. Since our goal is to select the TDM such that the COF
function is minimized, then A, should be selected. However, it is important to note that,
though A, gives the minimum cost in terms of the COF function, it is not suitable for

fault-tolerance. The data of one of the variables (variable C) is stored in the cells. This

- 133 -

will be undesirable in situations where multiple output results need to be compared at the
same time in order to mask dynamically errors in a fault-tolerant systolic array.

Table 3.9(b) shows the performance measure of the respective TDM’s for W =5 . In
this case, Ag which has a unified AT? value of 6.8786765 x 10 pmZsec?, represents the

best overall array performance. Therefore, we select ,

-1 -1 =2
A(, = 0 “1 0
-1 0 -1

It is worth while noting that Ay is suitable for fault-tolerance since all the data variables
propagate from one cell to the other. This example highlights the importance of choosing
the value of W. For a very low value of W, a TDM which is not suitable for fault-
tolerance might still give the best overall array performance, as seen in table 3.9(a).
Therefore, the value of W should be chosen such that a TDM that lacks the fault-tolerant
capability is not selected.

In Eq.(3.25), the importance of each factor or cost function is not the same. Each
can be chosen according to the specific purpose of the systolic array architecture and the
fabrication facilities. Similar analysis performed to support the selection of A; in example
I, can also be done for this example. Ag is chosen as the optimum TDM since it gives
the best overall array performance given the compound objective function. The other
TDM’s are not selected because they do not give the minimum overall performance
measure. Some of them may give better performance than A4 given one cost function,
however, A, gives the best performance given the overall cost functions.

The VLSI array corresponding to the transformed dependency matrix A4 is shown in

Fig.3.6 (for N=3). The structure of the cell is shown in Fig.3.7. All the cells in the array

of Fig.3.6 are identical. Each cell consists of an adder, a multiplier and a delay element.

- 134 -

3.4.8 Summary of the Comparison Results

Tables 3.10(a) and 3.10(b) give the comprehensive summary of the selected TDMs
given the respective cost function. As seen in table 3.10(a), A, gives the best performance
given most of the cost functions. Also, it gives the best overall array performance given
the compound objective function. On the other hand, in table 3.10(b), A; gives the best
performance for most of the cost functions. However, it does not give the overall array
performance given the COF function, due to its lack of fault-tolerant capability. Instead

Ag is selected as the optimal TDM because it satisfies the desired VLSI requirements,

_Cost Function TDM
Silicon Area A,
Throughput A, Ayor Ay
Propagation Delay A,

AT values A

AT? A

Speedup per PE A LA or Ay
COF A,

Table 3.10(a) The Selected TDM’s in example 1 for the respective
cost functions.

_Cost Function TDM
Silicon Area A
Throughput A LA, (AorAy
Propagation Delay A,
AT values A
AT? A,
Speedup per PE A
COF Ag

Table 3.10(b) The Selected TDM’s in example 2 for the respective
cost functions.

- 135 -

3.5 CONCLUDING REMARKS

In this chapter, we have described a cost effective systematic approach for mapping
algorithms into optimal systolic array architectures. We proposed a methodology for
obtaining the new transformed dependency matrix (TDM) directly from the original
dependency matrix (D) so as to select the TDM that meets our desired VLSI require-
ments. Thus, we avoid the derivation of several transformation matrices (7) and the
selection of the best one which might not even give a TDM that does satisfy our require-

ments.

Also, we proposed a unifying performance index to measure the overall performance
of the systolic array architecture taking into consideration the architectural features and
the technological parameters of the array. The proposed procedure is formulated as an
optimization problem to obtain the TDM with the minimum cost function. Various sys-
tolic array architectures have been compared in terms of the different cost functions. The
optimal systolic array architecture given the respective performance measures has been
determined for each case. It is observed that, although one TDM may be better than
another TDM given the cost of one objective function, however, the optimum TDM is the
one that gives the best overall array performance given the compound objective function.
Therefore, not only that the proposed optimization mapping algorithm selects the TDM
that meets the desired VLSI requirements, without deriving the transformation for every
TDM, it also determines the optimal TDM given the respective cost function. This
approach provides an efficient and a cost effective method for mapping algorithms into
optimal systolic array architectures.

In the next chapter, we will present a novel approach for designing Fault-tolerant

Systolic Array Architectures,

3.6

(1

(2]

(3]

[5]

(6]

(71

[8]

9]

[10]

(11}

- 136 -
REFERENCES
D. 1. Moldovan, "On the Design of Algorithms for VLSI Systolic Arrays,”

ProcIEEE, Vol. 71, No. 1, January 1983.

W. L. Miranker and A. Winkler, "Spacetime Representations ot Computational
Structures,”" Journal of Computing, Vol. 32, 1984.

Y. Wong and J-M Delosme, "Optimal Systolic Implementations of N - dimensional
Recurrences," ICCD, pp. 618-621, 1985.

M. T. O’Keefe and J. A. B. Fortes, "A Comparative Study of Two Systematic
Design Methodologies for Systolic Arrays," In International Conference on Parallel
Processing, pp. 672-675, Chicago, IL, August, 1986.

J - M Delosme and I. C. F. Ispen, "Efficient systolic arrays for the solution of Toc-
plitz systems : An illustration of a methodology for the construction of systolic
architectures in VLSL," [International Workshop on Systolic Arravs, University of
Oxford, pp. F2, July, 1986. Also in Systolic Arrays: edited by W. Moore, A.
McCabe and R. Urquhart, pp. 27-46, 1987.

S. K. Rao, "Regular Iterative Algorithms and Their Implementations on Processor
Arrays," PhD Thesis, Stanford University, Stanford, California, 1985.

J. A. B. Fortes, "Algorithm Transformations for Parallel Processing and VLSI Archi-
tecture Design,” Ph.D. dissertation, Univ. Southern California, Los Angeles, CA.,
Dec., 1983.

P. Gachet, B. Joinnault and P. Quinton, "Synthesizing Systolic Arrays using DIAS-
TOL," International Workshop on Systolic Arrays, University of Oxford, pp. 12,
July, 1986.

C. E. Leiserson, F. M. Rose and J. B. Saxe, "Optimizing Synchronous Circuitry hy
Retiming," in Proceedings, Caltech VLSI Conference, Pasadena, CA, 1983.

C. S. Raghavendra, V. K. Prasanna Kumar and A. Varma, "On systolic processing
with bounded 1/O bandwidth,” in Proc. ICCD, 1985.

[. V. Ramakrishnan and P. J. Varman, "Synthesis of an optimal family of matrix
multiplication algorithms on linear arrays,” Tech. Rep., Univ. of Maryland, Dept
Comput. Sci., Proc. ICPP, 1985.

112] P. J. Varman and 1. V. Ramakrishnan, "Optimal matrix multiplication on fault-

(13}

tolerant VLSI array,” Proc. ICALP, 1985.

V. K. P. Kumar and Y-C Tsai, "On Mapping Algorithms to Linear and Fault-toleram

Systolic Arrays," IEEE Trans. on Comput., Vol. 38, No. 3, pp. 470-47%, March,

1989.

- 137 -

[14] G - J Li and B. W. Wah, "The Design of Optimal Systolic Arrays," IEEE Trans.
Comput., Vol. C-34, No. 1, pp 66-77, January 1985.

[15) C. K. Ko and O. Wing, "Mapping Strategy for Automatic Design of Systolic
Arrays,” in Proc. 1988 International Conf. on Systolic Arrays, pp. 285-294, 1988.

[16] H. B. Lee and R. O. Grondin, "A Comparison of Systolic Architectures for Matrix
Multiplication,” IEEE Journal of Solid-State Circuits, Vol. 23, No. 1, pp. 285-289,
February 1988.

[17] R. W. Keyes, "Physical Limits in Digital Electronics," Proc. IEEFE, Vol. 63, No. 5,
pp. 740-767, May, 1975.

[18] R. O. Grondin, W. Porod and D. K. Ferry, "Delay Time and Signal Propagation in
Large - Scale Integrated Circuits," IEEE J. Solid - State Circuits, Vol, SC-19, No. 2,
pp. 263-263, April, 1984.

[19] M. O. Esonu, A. J. Al-Khalili and S. Hariri, "Design of Optimal Systolic Arrays : A
Systematic Approach," IEEF Symposium on Parallel and Distributed Processing,
Dallas, Texas, pp. 166-173, Dec. 9-11, 1990.

[20] M. O. Esonu, A. J. Al-Khalili and S. Hariri, "Systolic Arrays: How to choose then,"
accepted for publication in Part E of the IEE Proceedings, Computers and Digital
Techniques, 1991.

[21] D. L. Moldovan and J. A. B. Fortes, "Partitioning and Mapping Algorithms into
Fixed Size Systolic Arrays™ IEEE Trans. Comput., Vol. C-35, No. 1, pp. 1-12,
January 1986.

[22] D. I. Moldovan, "ADVIS: A Software Package for the Design of Systolic Arrays,"
[EEE Trans. Comput.-Aided Design, Vol. CAD-6 January 1987.

[23] V. Poorniah and O. Ahmad, "Design of Systolic Cells using Domino Logic,” Tech.
Rep., Dept. Elec/Comput. Engr. Concordia University, Montreal, Que., 1990.

[24] H. F. Li, C. N. Zhang and R. Jayakumar, "Latency of Computaticnal Data Flow and
Concurrent Error Detection in Systolic Arrays," CCVLSI '89, pp. 251-258, 1989.

- 138 -

CHAPTER 1V

SYSTEMATIC APPROACH FOR DESIGNING FAULT -
TOLERANT SYSTOLIC ARRAY ARCHITECTURES

4.1 INTRODUCTION

As mentioned in Chapters I and III, we are interested in developing methodologies
for designing systolic array architectures that satisfy some important VI.SI requirements.
One of those requirements is that the systolic array should have the Fault - wlerant (I°T)
capability. In view of this, this chapter will focus on a systematic approach for designing
fault - tolerant systolic arrays. However, before we proceed to propose our approach of
designing fault - tolerant systolic architectures, we will first review some work that has
been done in this area.

The organization of this chapter is as follows: Section 4.2 bricfly discusses the
importance and basic concepts of fault - tolerance. It also gives the various kinds of fault
- tolerant techniques for systolic arrays. In section 4.3, we will describe in detail our fault
tolerant mapping technique and apply it to an algorithm for matrix multiplication in order
to demonstrate the generality and novelty of car approach to design fault-tolerant systolic
arrays. Section 4.4 discusses the fault tolerance capability of the proposed design scheme
and compares it with the other relevant design schemes. Finally, section 4.5 contains the

summary and the concluding remarks.

4.2 THE IMPORTANCE AND BASIC CONCEPTS OF FAULT -
TOLERANCE
Recent advances in Very Large Scale Integration (VLSI) and Waler Scale Integra-

tion (WSI} technologies have made it possible to manufacture speciul purpose VILSI chips

- 139 -

with multiple copies of low-cost processors to provide a large amount of computational
capability for a small cost {1,2]. With the increase in the complexity of such VLSI chips,
the probability of physical failures occurring on a chip increases. Since each processor in
such a system contributes to the computation, any single temporary or permanent failure
in a processor can break down an entire computing system, therefore, reliability and fault
tolerance have increasingly become inevitably important design issues [3].

Reliability is defined to be the probability that a given system will perform its
required function under specified conditions for a specified period of time {3]. There are
two fundamentally different approaches that can be taken to increase the reliability of

computing systems [4,5]. The first approach is called fault prevention (also known as

Jault intolerance). This approach employs the method of worst case design, using high -

quality components and imposing strict quality control procedures during the assembly
phase. However, such measures can increase the cost of the system significantly, and it is
not related to VLSI directly. Since this is almost impossible to achieve in practice, the
goal of fault prevention is to reduce the probability of system failure to an acceptably low
value. Hence, an alternative approach to achieve high reliability is through the use of

fault - tolerant systems.

In fault-tolerant approaches, faults are expected to occur during computation, but
their effects are automatically counteracted by incorporating redundancy, i.c., additional
facilities, into a systolic system, so that valid computation can continue even in the pres-
ence of faults. The redundancy introduced can be of several forms; hardware, software,
time. or a combination of all of these. They are redundant in the sense that they could be
omitted from a fault-free system without affecting its operations [4]. This approach docs
not require the use of high quality components, instead, standard components can be used
in a redundant and reconfigurable architecture. As a result of the decreasing cost of
hardware components, due to the advances in VLSI technology, it is certainly less expen-

sive o use the fault-tolerance approach to design reliable systems than the fault-

- 140 -

prevention approach.

The main purpose of a fault-tolerant system [6], whether centralized or distributed., is
to produce correct results even in the presence of faulty units. The secondiry objectives
are to provide fault - tolerance at maximum performance and to minimize the hardware
overhead. Hence, the most widely accepted definition of a fault-tolerant computing system
is that it is a system which has the buili-in capability to preserve the continwed correct
execution of its programs and inputfoutput functions in the presence of a certain set of
operational faults [4]. An operational fault is an unspecified deviation of the correct
value of a logic variable in the system hardware or a design fault in the software. Correct
execution means that the programs, the data and the results do not comain crrors and that
the execution time does not exceed a specified limit. There are two types of faults
encountered during system operation and these are the anticipated and the unanticipated
faults |4]. Anticipated faults are those whose occurrence in an operational system can be
foreseen. An example of this type of fault is the inevitable deterioration of hardware com-
ponents in a system, giving rise to faults. On the other hand, unanticipated fanlts canno
be foreseen but affect the operation of the system. For example, a VLSI chip can fail in
so many modes that it is almost impossible to anticipate the consequences. It is important
therefore, that fault-tolerance of both anticipated and unanticipated faults be taken o
consideration in high reliability applications.

Fault-tolerance involves the following steps [7): (i) fault detection ; (ii) fault diag-
nosis (identification of the faulty module); (iii) fault recovery (correction of the error) and
(iv) system reconfiguration. The detection and correction can be achieved in many
different ways. For example, checks on the computation can detect an error, and the com-
putation can be rolled back to a previous state in order to correct the error. On the other
hand, if there is sufficient redundancy in the computation, an error due 0 a module
failure can be masked by the correct values from other modules. This technique is used in

highly redundant systems for space applications. Another way is by reconfiguration of the

- 141 -

system to isolate the faulty module. This requires of course, that the faulty module be
identified first.
In the following subsection, we will address the redundancy techniques to achieve fault-

tolerance, i.e. to detect and correct errors and to identify faulty modules.

4.2.1 Redundancy Techniques

Fault-tolerance can be achieved through redundancy and various techniques have
heen proposed over the years [7]. These have usually been general techniques that can be
applied at the module level in a system. The generality makes them applicable to most
problems. There are three redundancy approaches to fault-tolerance and these include:
space, time and algorithmic redundancies. Space redundancy can be static, hybrid or
dynamic. In the static redundancy approach, also known as masking redundancy, N copies
(where N is odd) of a module and a majority voter are used to mask the errors from
failed modules. The system will tolerate upto (N-1)/2 faulty modules. This scheme is
known as N - Modular Redundancy (NMR). A popular version with N=3 is called the
Triple Modular Redundancy (TMR) and several TMR strategies have been proposed for
systolic arrays [4-5,8-11]. The static technique can be combined with a set of spares
through the use of a disagreement detector and a switching unit to produce what is known
as a hybrid redundant system [4]. In the dynamic case, the faulty modules are identified
and the system is reconfigured by replacing faulty modules by spares. Various array
reconfiguration strategies have been proposed by many authors {7,12-25].

Conventional time redundancy [9,26-28] involves recomputing the same computation
twice in the same module or in adjacent modules at two different but close enough time
periods and then comparing the results. If they maich, there is no fault. This has the
advantages of eliminating wrong results due to the intermittent faults. However, per-
manent faults may not be detected. Although time redundancy is a powerful technique

that, in general, requires only a small amount of hardware overhead, it has a fundamental

- 142 -

limitation when applied to high - performance systolic arrays. Many of these systems are
designed for high throughput signal-processing applications, and the 100 percent degrada-
tion in throughput required by the time redundancy techniques may adversely atfect the
system performance 7).

Algorithm-based fault-tolerance has been proposed 16,7,29-35], based on a data -
encoding approach. The input data to the algorithm are encoded at the system level in the
form of error-correcting or error-detecting codes. The original algorithm must then be
redesigned to operate on the encoded data and to produce encoded output data. This
redundancy would enable the correct data to be recovered, or at least, to recognize that
the data are erroneous. The checksum scheme [7,29-32] has been employed as an

appropriate low - cost code to achieve fault-tolerance in systolic arrays.

Having outlined the various techniques to achieve fauli-tolerance in highly parallel
computing structures, and in systolic arrays in particular, in the next section, we will

present a new approach for designing fault-tolerant systolic array architectures.

4.3 MAPPING ALGORITHMS INTO NON-OPTIMAL AND
OPTIMAL FAULT-TOLERANT SYSTOLIC ARCHITECTURES

The conventional approach of designing fault tolerant systolic architectures is based
on the mapping of an aigorithm onto a specitic VLSI systolic architecture, and then modi-
fying the design to make it fault-tolerant [12-25]. In most cases, the techniques employed
to make a particular systolic architecture fault-tolerant is specific only to that systolic
architecture and thus may not be applicable to another systolic array with different topol-
ogy and data flow characteristics. In our approach, fault - tolerant algorithms are designed
by introducing redundant computations at the algorithmic level, so that when these algo-
rithms are mapped into specific VLSI systolic architectures, using the Space - Time (S-T)

mapping techniques (section 2.3), the architectures will be inherently fault-tolerant. The

2143 -

VLSI array need not be modified in order to make them fault-tolerant. The mapping pro-
cedure is based on the mathematical transformations of index sets and data dependence
vectors.

We introduce redundant computations in the original algorithm by obtaining different
versions of the algorithm. This is done by first, obtaining the Dependency matrix (D) of
the algorithm, and then modifying the dependency matrix by letting different indices in
the index set, one at a time, determine the execution ordering of the computations. In
cach case, the motivation is that if only one coordinate of the index set preserves the
correctness of the computation by maintaining an execution ordering, then the rest of the
index coordinates can be selected to meet some VLSI communication requirements. Then,
the different dependency matrices corresponding to the different versions of the algorithm
arc mapped into systolic array architectures. Our approach consists of three steps: in the
first step, the dependency matrix (D) of an algorithm is modified to reflect a given fault-
tolerance requirement; in the second step, mapping techniques are applied to the fault-
tolerant dependency matrix to obtain a fault - tolerant systolic array implementation of
that algorithm. In most cases, this array is not the optimal systolic array design for the
given algorithm. Therefore, alternatively, we apply our proposed unifying performance
index which is used to measure the overall array performance (section 3.3), to select the
transformed dependency matrix which gives the optimal systolic array design. Finally, in
the third step, the fault-tolerant transformed dependency matrix is translated into a fault-

tolerant systolic array implementation of the given algorithm,

Three fault-tolerant mapping methods are investigated; in the first method, one ver-
sion of the algorithm is mapped into a VLSI systolic array and then this array is repli-
cated [10,11]. In the second method, three versions of the algorithm are obtained and
cach is mapped into a separate VLSI systolic array architecture. A fault-tolerant systolic
array is constructed by merging the respective systolic arrays of the three versions of the

algorithm, [n the third method, the different dependency matrices corresponding to the

_ e]

- 144 -

different versions of the algorithm are merged together to obtain a fault-tolerant depen-
dency matrix. The merged dependency matrix is mapped into an optimal fault-tolerant
systolic array architecture using the approach proposed in (section 3.3). Finally, an exam-
ple is given where, the three transformed dependency matrices that give the near optimal
systolic array designs are derived, and then respectively, mapped into systolic architec-
tures. In the first method, the data flow characteristics for the replicated copies of the
VLSI design are the same and hence, they exhibit the same dynamic properties. Any ten-
porary hard fault in one copy of the result will also affect the other copies in a similar
manner. Therefore, such faults, if they occur will go undetected and hence cannot be
tolerated. In the second and third methods, the different versions of the algorithm exhibit
different dynamic properties since their data flow characteristics are not the same. The
effects of any temporary hardware fault on the results produced by one version of the
algorithm will not be the same as for the other versions. Thus, such faults, if present in
the VLSI array, can be tolerated. In our approach, we adopt the spatial redundancy tech-
nique to achieve fault-tolerance and mask dynamically, errors using fault-tolerant voting

schemes.

We will briefly describe below the fault model that will be used for the fault-tolerant

design.

4.3.1 Fault Model

Faults may be inherent in the specification or design of a system. Also, they may
have physical causes, being introduced during the manufacture of the system or due to
wear-out in the field. Tolerance of design and specification faults has been an important
area of study [36]. Problems in preventing faults in hardware and tolerating faults in
software have been studied [37]. In this thesis, we will consider only the problem of

tolerating physical failures.

- 145 -

Any fault-tolerance technique is designed to tolerate a given class of faults within a
system. A fault can be trcated at any level of integration within the system, from a very
low level, such as the transistor level, to a higher level such as the logic, register transfer,
or module level. The description of the effects of physical failures at these different lev-
els of integration is referred to as the fault model [38]. Most fault-tolerance techniques
have been designed to tolerate faults in some module within a system. Such a module -
level fault model |7) is ideal for VLSI. This is because as the geometric features of VLSI
integrated circuits are scaled down, any failure in a small area of the circuit will affect a
greater amount of the circuitry and will cause a large block of logic to become faulty. As
a result, the traditional gate level single stuck-at fault assumption is not sufficient for
VLSI technology. Therefore we assume a generalized fault model for the processing ele-

ments (PE’s) or cells in the systolic array architecture.

We will assume that faults can occur in the refined level of the processing element
such as the computation unit, input/output latch registers, communication links and
switches. We will also assume that at most one of these modules or parts of the PE is
faulty at any given time. Furthermore, it is assumed that both temporary and permanent
faults can occur in the array. Finally, it is assumed that the outputs of the faulty cells

may assume any logical values independent of the inputs.

4.3.2 Fault-Tolerant Mapping Techniques

Designing a fault-tolerant computing system involves fault-detection, fault contain-
ment, fault-diagnosis, and fault recovery |9]. Static redundancy, in which multiple
modules perform the same operations and faults can be detected concurrently by compar-
ing the outputs of these redundant modules, can be used to achieve all these steps con-
currently. The faulty modules are isolated and then prevented from disrupting the rest of
the system as long as the majority vote can be attained. Triple Modular Redundancy

(TMR) is a special case of the static redundancy in which all systemm components are

- 146 -

triplicated.
In this subsection, we will describe four methods for mapping algorithms into fault-

tolerant systolic arrays using TMR configuration.

4.3.2.1 Method (1) : Triplicating One Version Of The Algorithm .

In order to illustrate our fault-tolerant (FT) design approach, we will use the matrix
multiplication algorithm described in sectior 2.3, and whose dependency matrix is shown
in Eq.(2.6). Here, the one version of the algorithm that we will use corresponds o the
case when index { is assumed to determine the valid execution ordering of the computa-
tions (section 2.3). The VLSI array is as shown in Fig.4.1 while the cell stru.ture is as
shown in Fig.4.2. The VLSI structure of Fig.4.1 is triplicated and the results are voted on
using redundant voters as shown in Fig.4.3. Apart from the mapping technique, this TMR

method is a standard technique.

4.3.2.2 Method (2) : Creating Three Different Versions Of The Algorithm,

This subsection describes the ideas of designing fault- tolerant algorithms, and the
mapping of the fault-tolerant algorithms into VLSI systolic array architectures. Different
versions of an algorithm are obtained by letting the different indices (i ,j,k) in the algo-
rithm respectively, determine the execution order of the algorithm. In the above example,
index i is assumed to determine the valid execution order of the computations, however,

the same procedure is applicable to other indices in the algorithm.

If we assume index j (for example) to determine the valid execution ordering of the
computations, therefore, to satisfy the constraints of finding a valid transformation matrix,
we need to select a mapping such that the transformed data dependency matrix
A=D =TD , has negative entries in the second row. Using the steps of finding a valid

transformation matrix described in section 2.3, and applying them to the example of the

AN
v (R1) (3.1)
0 O by by by—{Cn e et s

Figure |

- 147 -

O Q) .afgb J
O I U
A AL N0
U ’(’}\Q‘ QO

l)‘g« ' DD }D ‘ O O C31 |
¢ Lg &,13 1!3 y

1 L)

VIS] array structure when index 1 determines
the timing (or valid execution ordering)
of computations (for N=3).

- 148 -
0
A\‘/\\RA 4
(A R |
R, 7~ !‘
" - 1 » |3
0 T
w
|
|
4/\

Figure 4.2 The structure of the cell i Ihgure 41

- 149 -

O 0O bxyy by iy T\—-«%ﬁ) Qr)-(cn) > o
\ N ; -

3
0 b,&h&b.z(r—x‘»-(q? cx)-{on

\

Eryabygbna O O l\’*@v

igure 13 Faull-tolerant systolic array for matrix
multiplicalion with one version of the
algorithm triplicated.

- 150 -

matrix multiplication algorithm, we can choose the transtormation nutrix as tollows :

1 01
T =11 11 +.D
001
That is
. -1 0 -1
A=D =TD =] |-1 -1 -I (4.2)
FI=1 O 0

The mapping of the index set is given as follows:

101} i P+ k {
VLA il = |i+i+k =] (4 %)
00 1] lk k ;

In this case, the second coordinate ; indicates the time at which computation
indexed by corresponding (i.j,k) in the algorithm is computed and (k.0) indicates the
processor where the computation is performed. Figure 4.4 depicts the VLSI array struc-
ture. The cell structure is similar to that shown in Fig. 4.2 except that the data for vari-

able B is stored in the node of the cell. Variable A moves from one cell to the next diag-

onally with direction [:ﬂ and variable C moves via a horizontal channel with a direction
)
0l
The third version of the algorithm can be obtained by letting index & determine the
valid execution ordering of the computations. However, i this case, the resulting
transformed dependency matrix, for the chosen transformation matrix, would require the
results of variable A to be stored in the cells. With this arrangement, the array structure
would require extra clock cycles to flush out the results of variable A from the cells. Con-
sequently, in order to access the three output results at the same time and vote on them,
extra circuitry is required to synchronize the data propagation of the genecrated output

results. Therefore, to avoid this costly procedure, the third version of the algorithm is

0

Figure

y

3

- 151 -

VIST array for index j determining the timing
of the computations.

P

- 152 -

obtained by exchanging the second row with the third row in the matrices of Eqs. (2.9)

and (2.10). Thus the transformation matrix T becomes,

111
T = (001 (4-h)
011
. i [-1 =1 =]
and, A =D =TD = j |[-1 0 0 (-1.5)
k=1 -1 0]

The mapping of the index set can be achieved as follows :

11 1] i Pk [
00 1| |j| = i = |j (4 6)
01 1 l Jtk :

The VLSI array structure corresponding to this case is shown in Fig.d.5. The cell strue-
ture is also similar to that shown in Fig.4.2, the only difference 1s the interprocessor com-

munication requirements. The data for variable A travels via a diagonal channel with

direction [:}], variable B moves from one cell o the next via a vertical channel with
direction [_OJ and variable C is stored in the cell itself.

The structures of the systolic arrays shown in Figures 4.1, 4.4 and 4.5 are combined
into one architecture and the resulting VLSI array is shown in Fig.4.6 . The results
obtained from the three versions are voted on using redundant voters as shown in Fig.4.0.
It is important to note that data skewing is required (which is performed by the alignment
circuit) in order for the voting procedure 1o be performed on the corresponding output

results produced by the three versions.

4.3.2.3 Method (3) : Combining The Dependency Matrices Of All The Versions Of
The Algorithm.

The technique employed in this method is similar (to certain extent) to that described

- 153 -

O
O
b31
Q b
Q oy b21
LRAN 11
{ ' N
o>
S L (1.2)
q‘) Py [}
‘¢ U .
og (O'\ C11>
o QO ““’ \
%
YD)
Tt o a1 (1,3)
Yog (€2
Q

Figure 1.5 Another VLSI structure when index 1

delermines the valid execution ordering
of the computations (for N=3).

- 154 -
S
N Q O aN ARG
O, © RS PN
Q RO RGN GRS
AN T ad o a oW Q
QN A2 ¢ Q‘bv Q 5\
2D AN OV Q 5\ N
DN O
\,\ \\\‘
0 0 cpepeyy o+ &3 - "
1\3 12 h *‘(—-‘“ _.12_11> —Ql)ﬂ\ vl) n\
S C e\ Oy Cya s
0 O bybyby, '\.“,\ \‘1{\\\ il v
\\\“‘
\l\
0 C23C22C210 ""‘K_)ld) (b;g‘) (l)':‘” »
0 byyb,,b,0 - \("ek\ Cund R
CyglapCy O 0 7'1’13 \ { 1’:3) 'bd::)
b, b.b.,0 0 % i s
33723718 << << “
4
'] L) 4 [4
Vi Vo vy
bl
[| Ahtignment circt
s
l] I T Volers
* 1 !
: b
.
¢ Results of V)
o ' Resulls of Ve
* ' Results of Vo

Same as Figure 45

Figure 4.6 VL3I array structure which represents o
combination of the VISl array structures
for the different versions of the algorithim.

- 155 -

in section 4.3.2.2. The difference being that, rather than mapping the difterent versions of
the algorithm into separate VLSI architectures (as in method 2), in this method, the
dependency matrices of the three versions of the algorithm are combined to give one
dependency matnix. This resultant dependency matrix is then mapped into an optimal
fault-tolerant systolic array architecture. Similarly, different versions of an algorithm are
obtained by letting the different indices (i,j,k) in the algorithm respectively, determine
the valid execution ordering of the computation of the algorithm. If we assume that the
first coordinate of the dependency matrix always indicates the time at which the computa-
tion indexed by (i,/,k) is computed while the other two coordinates indicate the space
where the computation is performed. Then the time and spatial components of the depen-
dency matrix when indices i,j and & respectively. determine the valid execution ordering

of the computations are given as follows:

0 0 -l
D, = |0 -1 0 4.7)
-1 0 0
A B C
0 -1 0
D, = |-1 0 0 (4.8)
0 0 -1
A B C
-1 0 0]
D, = [0 0 - 4.9)
0 -1 0
A B C

In Egs.((4.7)-(49)), and as mentioned in section 2.3, the first columns of D,, D, and Dy,
respectively, consist of the dependency vectors of variable A of the matrix multiplication

algorithm, second columns for variable B and the third columns for variable C.

- 156 -

By superimposing the time and spatial components of the dependency matrices in

Eqs.((4.7) - (4.9)). we obtain ;

0 0 -l 0 -1 0 -1 0 0
Dp = |0 -1t 0 | -1 0 0 | 0 0 -1 (- 1)
-1 0 0 0 0 -l 0 -1 0

A B C A B C A B C

As observed from Eq.(4.10), some of the dependency vectors in matrin Dy are the same.
For example, the dependency vector in column one (1) is the same as those in columns
six (6) and eight (8). In this case, only one of the dependency vectors needs to be con-
sidered. Therefore, by selecting the distinct dependency vectors in matrix Dy, thus

Eq.(4.10) reduces to

0 0 -1
D = 10 -1 0 (4.11)
-1 0 0
A B C
B C A
C A B

It is important to note that though the modified dependency matrix reduces to or happens

to be the same as its original form, in general, this is not the case.

Several valid transformation matrices (TDM’s) can be generated for the dependency
matrix of Eq.(4.11). The optimization mapping algorithm proposed in section 3.3 is used
to select the TDM which has the best overall array performance. From the analysis intro-
duced in chapter 111, the transformed dependency matrix with the best overall array per-

formance given the performance index (A in table 3.9(b)) is

- 157 -

-1 -1 =2 211
A=1{0 -1 0| and T = (01 0 (4.12)
-1 0 - 101
A B C
B C A
C A B

The fault-tolerant VLSI systolic array structure corresponding to the transformed depen-
dency matrix A of Eq.(4.12) is shown in Fig.4.7(a) . The respective output results of the
generated variable (variable A) of the three versions of the algorithm, are computed in the
array, according to the data flow requirements of each version. Figures 4.7(b,c and d)
show the VLSI array structures that indicate the different data flow computations of the
three versions of the algorithm. The structure of the cell in Figs.4.7(a,b,c,d) is as shown
in Fig.3.7 (section 3.4). All the cells in the arrays of Figs.4.7(a,b,c,d) are identical. If we
assume that each version of the algorithm has separate data paths, then the structure of
the cells can be represented as shown in Fig.4.8. Each of the arrays in Figs.4.7(a,b,c,d)
contains 15 processors and requires a total of 9 clock cycles to complete the matrix multi-
plication computation for N=3. In general, to multiply any two N x N matrices, (4N+3)
processing elements and (4N-3) clock cycles are required to complete the algorithm com-
putations. The results obtained from the three versions are voted on using redundant
voters as shown in Fig.4.7(a). It is important to note that data skewing is required (which
is performed by the alignment circuit) in order for the voting procedure to be performed

on the corresponding output results produced by the three versions.

- 158 -

A/B/C C/A/B

u ’
B/C/A——q%:#ﬁLg) /iALd22) _ l\L“Bx) : I

———

~
TN

T\ /

- - : ,
“\(1D) 7 \(R,5) - (3,0)
"““@ / I T < } .
— 1 -1 !
(1,6 TN(2.6 (36 !
e Ty (T

Yy Yy 4

N 3 S * * ¥ LA A/

Ahgnment circuit

¢« Output results O
*+ OQutpul results Op
F T Voters #++ Qutput results O,

3434314

Figure 4.7(a) VLSI array structure when the dependency
matrices of all versions of the malrix
algorithm are combinced (for N 13)

- 159 -

I'igure 4.7(b) VLSI array structure indicating the data
flow of one version of the algorithm in
Figure 4.7(a) (for N=3).

- 160 -
k
. J O O 0O O 0O 0O
b= 0 O 0O 0 0 0
O O l)gl () 1)32 ()
by O by O Iy O
blz () bg:; () () < l:)’:,,
by O 0O a,, Oy,
TR SRS
0 00 00 0cyg 3yl @a)s Nl ()7
7 A <Ly
1,3), " T\ > R
0000 CoyC32) ,._(._,)(\\ JE e D T O
!
| (1,4))" (24) (:3.1)
O 0O CIBCQ)CSIO O a——-—'—bg _*“_’l’m{ /\ <)
. ‘
o i NN
0 cpcy 0 00 0 U]) (26) 1y B
i l
l
0 bl o p . |
c; 0 00 000 “’QA) .ﬁ"’(’% j (.0))
O S

Figure 4 7(c) VLSI array structure showing the dala
flow of onc version of the adgorithm in
Figure 4.7(a) (for N=17).

' |
i |
A
O 00
o
R
|

O 00
i

.
o

.
o

{

!

Iigeure

O Oy, 0 O
.

|

t !)
() i\‘)’-)il.)')) ()

1

0 i1y 1,0 0 QO

4, 0 00 000

|

()

00 0,

Data flow for

- 161 -

O 0O 0O 0
O 0 0O O
O 0 O 0O

0)

O 0 g

¢y O ¢ O
SERRY Cyy O
SR O by,

(1.2)Y "l):'n

) 2.2)

by

L
(i.3) " by,

- e

- by

(2.3)

o —

(1.1), (2.1)
_»\
(1) (2.9)
=1
!
(1.(5&" (:3.(5‘)\ \,
vy vy

the

0O O
O O
¢y O
Cyy O

Gy O
O b,
O b,

|
!

\ V,,

third version of the

algorithim in Figure 4 7(a) (for N=3).

| | | | 1 |
Y U) i LY ¥
] R‘A HoRy i R}(] | R‘() E ”‘A \ PRy
i i i
I]I delav detan detay
it oug [! bou oy It
| : .
B3 --o R oo i i '
' g i v "o -3
- - + ‘ H
¢ R : | :
» ’(
!
\ —'”Cﬁk ¢] i +
: , o !
: L ! i
. L] -
)
. A
' v v . ' .

Pigure 4 8 The cell structure of the fault Tolerand
~vstohce array of Thgure 17

- 163 -

4.3.2.4 Deriving Three TDM's That Result in Near Local Optimal Systolic Array
Architectures.

In the preceding subsection, we have used the TDM (Eq.(4.12)) that gives a local
optumal solution to design fault-tolerant systolic array for the matrix multiplication algo-
rithm. In this subsection, we will derive three TDM’s that give near optimal solutions,
using the same procedure for obtaining optimal systolic arrays discussed in section 3.3.
From the analysis in section 3.3, the following three TDM’'s have been derived as the

ones with the next best overall array performance. after the TDM of Eq.(4.12) :

-1 1 —1] 111

A, ==l -1 0} and T, = |0 1 1 413
-1 0 -1 1 01
~1 =1 -1] 11 1]

A, = |-1 -1 0| and T, = |0 1 1 (4.14)
[0 -1 -1 110
1 -1 -1] 111

A, =10 -1 =1 and T, = {1 10 (4.15)
-1 0 -1 101

The three TDM's have the same timing structure but their interprocessor communi-
cation requirements are different. Figure 4.9 depicts the VLSI array structure for A,
(Eq.(4.13)). The structure of the cell in Fig.4.9 is similar to that shown in Fig.4.2, the
only difference is that variable C is stored in the cell of Fig.4.2, while in the cell of

.

Fig 4.9, vanable C travels via a vertical channel with direction [_OJ. All the cells in
Fig A9 are abso identical. They do not conta'n any delay elements like the cells in
Fig 4.8, The array consists of 19 processors and utihizes a total of 7 clock cycles to com-
plete the computation of the algorithm (for N=3). In general, in order to multiply two

NAN matrices using this systolic structure, (6N+1) processors and (3N-2) clock cycles are

required to complete the computation of the matrix multiplication algorithm.

O
O
Q 0 o
Q . 0 0
& .
,L\‘l?“ k“
AN
si\(B,B)
0000 by .|
Q {
Q. i
.:c‘}"_ '
"Q

0 0 0 byb, - &9

l)'.’.()

Figure 4.9

- 164 -
O
O
0O o
a crp O
I'J
.L\\Q‘ ("l
Q\ ll
t (32)
SRR
|
A3
GRS
(3.5}
0O 0 O

(1.5)

(1.6)

(H.1)

VIS[array structure for A (for N -3

)

g
Q)

0
()
()

(" l/
(H .
(1,

- 165 -

Since the three TDM’s have same timing and similar spatial structures, hence, the
VLSI systolic array structures for A, and A, will be similar to that shown in Fig.4.9,
with the difference only in the direction of data flow for the different variables in the
algorithm. If we combine the VLSI systolic arrays of A,, A, and A,,, the resultant VLSI
array shown in I1g.4.10, has a similar structure as the array shown in Fig.4.9. Also, in
this case, the output results of the different versions of the algorithm can be calculated
using separate data paths and computation units. The results obtained from the three ver-
sions would be voted on using redundant voters in a similar fashion as shown in
Fig.4.7(a). 1t should be noted also, that data shewing is required in order for the voting
procedure to be performed on the corresponding output results produced by the three ver-

S1OnS.

The fault-tolerant design method described in section 4.3.2.3 is equivalent to that
described n section 4.3.2.4. By cembining the dependency matrices of all the versions

into one dependency matrix and taking the transformation, results to one array as in sec-

vields one version of the algorithm from the original algorithm, with T in Eq.(4.13),
results to the transformation that yields one array of the original algorithm. Doing this for
the three versions results in three transformations and hence three systolic arrays. These

arrays cian be combined nto one array as in section 4.3.2.4,

It is worthwhile 1o mention the distinction between the fault-tolerant systolic arrays
designed using methods 2 and 3. As seen from Fig.4.6 (using the FT design method 2),
one version of the three versions of the algorithm is mapped onto a different VLSI space
while the other two versions are mapped onto the same space. On the other hand, as
shown in Figs. 4.7(a) and 4.10, the three versions of the algorithm are mapped into the

same VLST space in cach case, since the FT design methods are equivalent.

Figure 1,10

- 166 -
N
|
| | o
Lt (32 ot (40
Py sl
. -
| |
| !
! |
} | '
- (33) L Vo
i { \r { ‘ .
|
i
: | : |
SRS ENERD (5 1) (6
) . .) : ; : } .
(45) Co) () (6.0
(1.6) (N) (6f,
}

VIS array structure which represent
a combination of Lthe VISD array
structures for A, Ay, and Ay,

- 167 -

The systolic arrays in Figs.4.7(a) and 4.10 are more regular and granular than the array in
Fig.4.6. Less silicon arca will be required for routing data into the fault-tolerant VLSI
systolic architectures of Figs.4.7(a) and 4.10 than into the array of Fig.4.6. Consequently,
the scheme proposed in method 3 is preferred to that in method 2.

In the following scection, we will analyze the proposed fault-tolerant systolic arrays.

4.4 ANALYSIS OF THE PROPOSED FAULT-TOLERANT MAPPING
SCHEMES

Two redundancy approaches can be used to tolerate single faults in the arrays of
Fgs. 4.6, 4.7(a) and 4.10. These are the time and hardware redundancy techniques. By
cmploying the time redundancy approach, in Fig.4.6, the results of the two different ver-
sions of the algorithm that are mapped onto the same VLSI space, are computed at
different times using the same building blocks in the processing elements. Then, the other
version of the algorithm can be computed at the same time as any of the other two ver-
stons. Similarly, in Figs. 4.7(a) and 4.10, the results of each version of the algorithm can
be computed at different times using the same building blocks. The key difference
between our technique and the traditional fault-tolerant techniques that use time redun-
dancy [8] is that, in the latter case, the data set for one version of the algorithm is repli-
cated and used to perform the matrix multiplication computation three times. In other
words, the same data set, having the same data flow characteristics, are applied to the sys-
ohe array to perform the computations. However, for the scheme proposed here, the data
set for each version is of course the same, but they possess different data flow charac-
teristics, as shown in Figs.4.7(b,c,d).

Our approach provides an alternative to the traditional fault-tolerance techniques
using time redundancy. The motivation for using three versions of the algorithm, rather

than metrely replicating one version of the aigorithm, is based on the possibility that the

- 168 -

latter case might mask some temporary faults if the same fault appears in cach of the
replicated data set. Since the data How characteristics for the replicated version of the
algorithm is the same, hence, they exhibit the same dynamic properties. The cttects ot
any temporary faults on one copy of the results produced with one of the repheated data
set, will also be the same on the other copies. Therefore, such faults can neither be

detected nor tolerated using the traditional approach.

In the proposed scheme, the three versions of the algorithm have ditferent data flow
characteristics, and hence, their respective dynamic properties are different. The thiee ver-
sions will not be affected the same way by temporary faults [4041]. Thus, such faults, of

they occur will be detected and masked by the proposed scheme.

For instance, let's consider the array structure of Fig4.7(b) for the computation ol
the matrix multiplication algorithm. In the traditional case, the data for this version s -
plicated. In our approach, three versions of the algorithm are used, and we assume that
their data flow characteristics are shown in Figs.4.7(b,c,d). The array structures m
Figs.4.7(b,c.d) are the same, however, the flow of data into the FT array 15 difterent. All
single temporary faults in the fault model, that affect only one version of the algonthm,
will be masked by both approaches. For example, if a temporary fault occurs in cell (1,4,
then the output results of elements ayy, @iy and a4y will be unreliable, 1t the traditional
approach is used. In our case, either the output results of (a ;. dyy, ay) Or (ayy, dysdyy)
or (a3, 412, ayy) Wwill be unreliable. Since three copies of the output results are produced
using both schemes, the majority of the results will be reliable

Furthermore, let’s assume for example, that a single transient fault (such as a voltage
spike) occurs in the path that is traversed by the elements of ay;, @), and ayy m
Fig.4.7(b). Also, it we assume that this fault affects only the elements of ¢, and not
those of b,, and ¢,,. Since in the traditional approach, the same data set is replicated, this
fault will affect all three copies of a,,. The effects of this fault will not be masked and

will go undetected by the output voter. Such faults cannot be tolerated. This example

- 169 -

clearly illustrates the strength of our approach of designing FT systolic arrays. Since the
data flow characteristics of all the versions are different, only one copy of the output
results will be affected by the fault. The majority of the results will be reliable. Thus,

such faults can be detected and tolerated by our design scheme.

In addition, both approaches can tolerate some multiple fault patterns that consist of
single temporary faults in every version. For instance, if a single tempcrary fault occurs
in cells (1,4), (2,3) and (3,2) for versions one, two and three, respectively. For the tradi-
tional approach, only one copy of the results of the elements
Ay A Ay, Ay, U, Ay, agy ayy and asy , will be erroneous. Hence, this multiple
fault pattern will be tolerated. On the other hand. employing the proposed scheme, the
output results of the following elements will be affected : ay, a4y, a3y, a3y, a;, a3 and
3. Since two copies of the results of a5 are affected by this multiple version fault pat-

tern, the effects of the faults cannot be masked by the proposed scheme.

However, consider the multiple version fault pattern which occurs in cell (1,2) for
two versions. This fault pattern cannot be tolerated by the traditional approach, since two
copies of the results of ay,a;, and a3, will be erroneous. If we consider the two ver-
sions in Figs.4.7(b.d), only one copy of the results of the elements a,y,d4;,a3; and azy
will be erroncous. Thus, this multiple version fault pattern can be tolerated by our design
scheme.

Both the proposed and traditional time redundancy schemes, utilize the same area
and time to compute the matrix multiplication algorithm. There is no area overhead since
no hardware is introduced in the FT array. It is important to mention that in our analysis
throughout this thests, the area of the voting circuits is not taken into account for area
overhead measurement. This is because, other FT design schemes where voters are
employed do not take such circuits into consideration in determining the additional
hardware redundancy required for fault-tolerance. Only the number of processors are

cosidered. In Fig.4.7(a), the multiplication of two NxN matrices requires a time

- 170 -

redundancy of 2N. The time redundancy ratio is O 2N / (4N-2)). The redundancy ratio is
defined as the ratio of the hardware or time overhead required by the fault-tolerant tech-
nique to the hardware or time complexity of the original system without fault-tolerance
[29-32). Thus, when N is large, the hardware redundancy ratio of the two design schemes

is 0% while their time redundancy ratio is less than 50%.

One of the problems of time redundancy techniques is that only transient faults can
be tolerated. Permanent faults will not be tolerated if they occur. Also, there is a degrada-
tion of time and hence the technique might not be suitable for real time application.
Furthermore, if the output results of the three versions of the algorithim have to be pro-
duced at different times, then the corresponding results from the different versions need to
be synchronized before a majority decision can be made on them. This type of synchroni-
zation of the data can only be accomplished using complex control cireuitry or synchroni-

zation mechanism.

Considering the amount of time that will be required to compute the results of three
versions of the algorithm, the complex control circuitry for data synchronizaunon and the
fact that only temporary faults will be covered using the time redundancy technique, spa-
tial redundancy technique can be adopted to achicve fault-tolerance in the systolic array
architectures of Figs. 4.6, 4.7(a) and 4.10. In Fig.4.6, the registers, the computational
units and the links of the VLSI array for computing the results of the two versions of the
algorithm are duplicated in each cell so as to satisfy the data flow requirenents of cach
version of the algorithm. In Figs. 4.7(a) and 4.10, the registers, the computational units
and the links in each cell of the VLSI array for computing the results of the three ver-
sions of the algorithm are triplicated such that each version of the algorithm is computed
on a different set of modules. The structure of the cell in Fig.4.7(a) is shown in Fig.4.8. It
depicts how the different data flow computations are performed in the cells. Three copies
of the output results are respectively produced by the VLSI structures of Figs.4.6, 4.7(a)

and 4.10, and then a majority decision is made on the three output results in cach case.

- 171 -

The scheme used here is the same as the TMR scheme since the number of the
building blocks in Figs.4.6, 4.7(a) and 4.10 is three times the number of the building
blocks in the irredundant array structure (Fig.4.1). The principle distinctions between the
traditional TMR approach and our approach are, in the former case, the three copies of
identical results are completed and they appear at the output of the array at the same
time. In the proposed scheme, the three copies of the identical results do not ppear at the
output at the same time. For instance, the results of a;, in version one (Fig.4.7(b))
appears at the output of the array after 5 clock cycles. That of the second version
(Fig.4.7(c)) appears after 7 clock cycles, while the third copy (Fig.4.7(d)) appears after 9
clock cycles. Hence, the time to produce the identical sequences of the output results is
not constant. However, both schemes use the same amount of time to complete the com-

putation of the algorithm.

Since identical output results are produced at the same time, in the traditional TMR
approach, therefore, there is the option of voting on the partial results produced by the
individual cells or voting on the final identical results produced at the output of the FT
array. Thus, both local and global voting on the identical results are possible. Our scheme
requires that voting be performed on identical output results of the different versions of
the algorithm. Therefore, only global voting on the final results produced by the different
versions, is possible. The advantage of local voting is that, it increases the possibility of
tolerating multiple cell failures in the systolic array. However, this will be achieved at the
expense of increasing the complexity of wie processing elements, since each cell will be
incorporated with a voting circuit.

Furthermore, in the traditional TMR, the same data paths can be shared between
cells at the boundary of the FT systolic array. On the other hand, in the proposed scheme,
since the data flow of each version of the algorithm is different, this limits the sharing of
data paths between the cells at the boundary of the array. However, if we assume that an

efficient data sequencer (data feeding mechanism) can be used to put the input data in

S172-

order, then the different versions may share the same data path at the boundary of the
array. The input data sequencing could be sequential or parallel. In this case theretore,
although area is saved when two or three cells are mapped onto the same VLSI space
(saving on the routing of data bus), however, this might also have the disadvantage that a

physical fault may affect the versions that share the data bus.

The proposed TMR scheme can tolerate all single transient and permanent faults in
the fault-tolerant systolic array. Three sets of the computed results are produced using
different data paths in the arrays of Figs. 4.6, 4.7(a) and 4.10. A majority of the com-
puted results is obtained using a fault-tolerant voter [39]. The voter masks the ctiects of
all single faults in the fault-tolerant systolic arrays. In order to ensure the reliability of the
voted results, it is important, however, that such a majority circut be protected against
faulty components within itself. Also, since the data flow characteristics and hence the
dynamic properties of the different versions are not identical, their corresponding output
results will not be affected the same way by temporary faults |[40,41]. Therefore, i addi-
tion to providing tolerance against hardware faults, the proposed scheme has the ability to
tolerate certain categories of temporary faults. In the traditional TMR, since replicated
copies of one version of the design are used for the FT array, it does not have the abihity

to tolerate all the single transient fault in the FT systolic array.

Although, we have considered the results of single faults, however, a number of
multiple fault patterns, in the fault-tolerant systolic array, can also be tolerated by our
design scheme. For instance, consider the FT array of Fig.4.7(a). A multiple fault pattern
that includes a failure of one R4 ,Rp R, delay unit, adder and multiphier, in any cell in
the array, will be tolerated. This multiple fault pattern will cause the output results of
only one version of the algorithm to be erroneous. Hence, the majority of the output
results will be fault-free. Also, a combination of single module failure 1 cach cell of the
array of Fig.4.7(a), will have the same effect as the above mentioned multiple fault pat-

tern. As a result, this fault pattern can also be tolerated. It is important 10 mention that,

173 -

those multiple fault patterns that affect two or more versions of the algorithm can not be
tolerated by our FT design scheme.

The scheme requires no time overhead since the three copies of the output results
are computed at the same time. However, it requires additional hardware redundancy of,
at least, a factor of 2, to tolerate single module failures.

In the following subsection, we discuss how our design schemes compare with other

fault-tolerant design techniques.

4.4.1 Comparison Of The Proposed Design Schemes With The Other Fault-Tolerant

Schemes.

In this section, we compare our design scheme with other fault-tolerant design
schemes described in the literature. Table 4.1 contains the comparison of the complexity
and performance of the proposed design scheme and those presented in [8,9,12,29-
32,3435]. The irredundant systolic array structure for matrix multiplication (Fig.4.7(a))
consists of (4N + 3) processors. The total execution time required by the array is (4N -
3). For example, if N=3, the array consists of 15 PE’s and will require a total of 9 clock
cycles to complete the compuiation. In our FT design approach, we have adopted the
spatial and temporal redundancy techniques to achieve fault-tolerance in the systolic
array. In the first technique, the building blocks or modules in each cell are triplicated.
Therefore, the hardware overhead is a factor of 2 (200%). There is no time overhead
(0%), since all the output results of the three versions of the algorithm are computed at
the same nme. The data flow characteristics of the three versions arc not identical. Hence,
the corresponding partial results of the elements of the variables in the algorithm, are

computed using the same space, but in different processors and at different times.
The proposed TMR design scheme can tolerate all single transient and permanent
faults in the FT systolic array. Also, certain multiple fault patterns can be tolerated. For

the proposed temporal redundancy technique, the additional time required is O(2N).

- 174 -

(=2

LA

‘HUSLDS LS.5S3ID DBSICI.T L7

S7C..BA ;5 SD.Puml,.3C 5.3

..
c.e X

SATSLuLDILT 2.'EL3 T3-3 7P SL.33.%3
3

(%@ CCD 8Ll L0 LIS..EIUCD 8.l v 8.G®

RR VI -3 <

‘LOLIDBULOD 4CA.3 | BDO| BUL{-UQ "UOLIDBULOD S4OUUD BUL =330 CLOLIDDUUCD JCUL® BUL|-340 40u4d |PAOLS 4C BDO| Bui|[-u)
oN uOL3IBDC| - On UOLIBDOL - SSA WOLIRDO - On TLOLIBDC! -~
ON LOL3DT%8D - AUBSSasON LOL1Dd3LD ~ S3A UOLIDIIBD - ON :LOL3D339P -
SULB3IRC 1{ne) J1dLi|MW ULRIUED SU4@32Bd (MBS BLCLI{NL ULRILED SU4831Bd 3, "B} 3| 0.3 AW ULBILID SU4BIIBA 3| MBS B dLI{ME ULRIISD
% 3Lney 3 buig pamole ¢ - 3 3Lne; @.0uLg pamoLi® # - % 31ney 9 buig :pamoy|e ¥ - ® 3ire; 9 butg pamol e # - acuew
JUDLSUBL] § 2UBUBWIDY 150L3 - ILDLSURL] § AUBLBLUDY 1S3CAY - qudiLsuea) 1SBCAY - IUBLSURL] § JUBUBUMSG :580AI - ~d0443g
sy ey s3iine4 s3ires s3res | sisouberg
TSa0OLJJBW
pUBq 943 JO YIPLM Byl BJE S
pue v *(Cu)0=(tu)Q 3eu3 sunssy
*SACUUAD YT 30DJU00 03 PaLLnbau
WLl 9y St Lou_. *Reade 40SSBD
*4abe WL Aue sL W “SUCUJD BYL IDDULCO ~oud B UL pawuoiLed uoLjeoL|diy
03 paupnbad awi3 aya St Loo._, _ | -trw e jo jey3s o3 uoiziLppe ue ;0
:V O ewil awLy mmwvnowxwmwo OL3®4 @Y3 St 4
-s3uUsWR (8 UOLIBUWNS palIubLam N/(wiaz_.v 5O uing)) Owi]
wz=tm 34 843 4O y3budL pao~ BY3 St T - (*™M/2)Q i40sSSs80.4d
Amzupzv\mAmxgpzvnA T.Emvzu cwwwmo;a_. W xXiujew pueg -
L—wZ=‘M 3t Joo | cout N/CTTLH((N)9BOLadng)) auL]
CreM) /1 e M)~ (0)IN) (VCTTIN]) O] 1 N/2 :40S§8204d 0 ewlg oL3ey Ad
$4055800.4d (N/(2+(T/N2))) O :+0s53904d uoL3EOL (dL1| MW Xtu3ew Isuag - 2 1SUOL3DBUUCOUPIUL juOSSBOOSY | -UBpUNpay
2 id03ededwod DSL
5,3d Usam3aq g + (Culmug + Sa1242 x2012
SUOLJIBULCOUBIUL BAIX] (M)CBoy + Armvmaorw 1483408 40 Jaqunu |B30% By} st | "Aedde
34 48d 2 :ueisng oo v -_(}szm : 4ppY JUBPUND3J4AL BY3 UL SjLawd|d Buts
3d 4ed | .30\ L+ ((N0Lptg) soury | TSSO0UT 4O Joqunv Bud St X S
3d 4d XMW 3400-OM3 € XMW m3+ M :40SS9204(d 3anbiuysay
. - N euwt} (N2) O 1S49ppY mwwumo;aru nu XiLdjew pueg - Y3 ym
wg= M 4t (Cy'H)-(LHEN 4% (TN sout | 1+ ((N)°BoLxing) owLy (NYO maeac p3uLNbI
L-wz='M 44 (“Ma*M)-(WEIN L+NZ }‘UUCDUIIUL /UOSSBICUd 0 HE T Aouep
1 AOSSAO0UY ¢ +AH\Zvaz 1408504 uoL3edL|dLy Ny XLajew asua] X2 1SUOLDBUUODIITUL /IOSSAD0LY ~unpay
(M M)y LweN ewLy Senb
mxa_.x 140S$300Ud -tuyo93
UCLREBOL| .I|MW XLJJBW pueg - 14
N oWt | INOYILM
2 N H-TIy} N tawt | NN :40SS3ad0uyg 1 AL Kyix
zurx 140858004 Nz 1 JOSSBD0Ud UOL3EOL L3 NW XLJajBw BSUB(] ~ % 14055820.4d -9 cdwo)
anbLuysa
yoeouddy yui (ooM) @po) wnsxoay) paiybiam awayog BuLpoouy wns®OBYD (¥Wl) Aouepunpay Jejnpow apdid] 14
[6] Aopoy 3 wiN [2€] weyeuaqy pue no; {1e-62] weyeuqy 3 bueny [g] vewnan-uop | Auobeie)

- 175 -

£/2° "

ssanuLluco |y @igel

uoL3eZ
*3OURLD| 03— NeY BUL—-430 *UOLIDBLIOD u0uUd BUL[~340 SUOLIDBUUCD Joudd (eqofb aul|-u] *UOLADBUJOD 4Cuud | Bqoyd auL|-uQ -tLt3In

KuessaooN :uOL3EDO| - AiesssoaN OL3IRDO| - ON UCL3IEOO| - 81qLssod iuoL3edo| -

paJaLNbay :LOL30338D — peiLnbay 1UOL3IDIYBP - AJESSOD0N UOLIDANBP - S$B) UOLIDO}BP -

sauanjtes Jd suus@33ed 3jnej apdiLl{nw ULe3Iuad suuaiied 3ney a|dil|nw ULe3lusdao sudasied jpne; ajdi3|nu uleluad
aidi3inw g abuLg :pamo((e § - B 31ney aLbuLg :poano|ie § -~ B 3iney albuig :pomo| e # - g 3 ne} abuts :pamolie § - aouew
uaueuLdy :59dhy - JUALSURJ| § JUBTUWIDY 1S90} - juaueuURd § juaLSued| iS9dAY - JUBLSUBL| § JUBURUMDY :sadAy - —J0j48d
s3|ne4 s3Lney sane4 s3|ned sisoubeig
(NIE - N = NINDY/OZ sowy | (2+nw)/9L sy Ne/(C L) sowt) (ANINC)O - *FL Y opzey 4o
(NMN)/N 140858004 NA L4N2)/d 3405580044 sz\.o.zm $40SS800Ud AZ\ CO $40SS8004d | —uepunpsy

*UO | SJBAUCO »me_.wnmvlm:u_.me

*Reaue *uoLSS3UdD ay3 J40j) BwLy BY3} St -4 1 8uBsyM sa) :40Ss3004d 3ISOH

JO JBJBM BY3 U} $40559004d otysoubetp ay3 Juswe|dwi SOA sRaowsy
A3Lney 4O JOQUNU BYI S|) BUBUM 03 awL3 pue aJempuey |euotiippe (34N34LD UOLFDBUIOD) N $3ENO4LD UOL3084u0) | 8nbiuyoes
ay3 Alaatjoadsad adue a.r pue d 403 ND|BD UCUUD N 148430 N $3LN0ULD BuLUO3 LUK Byl Yim
34 4od ¢ :s3tun Aepaq d ?nlmm 108§ _.lz+Nz 148381684 uOje| NMUNDOY pauLnbeus
) T4 oWk 1 ewt] 1 1wy Ne ety Kouep
N :40SS800.d d :40S530044d mzm £40SS820.4d (40ssao0ud 3S0Y) N :40SS8204d —unpay
JA9348AUCD AurULE-03—-BNPLSIY sanb
Id 48d 2 XN ADIABALCD BNPLSIY-O3-AdrULyg —~LuYOBY
3d 48d (2 - NMp)Z :S3tun Aeiag 143430 14
Nt isesng (B30} znmzm is3tun Aeisq ANOYILM
NME - N = NMNE owt) SHNY sawL | Ne ety L-NE AWL) A31x
NN £40SSA00Ud NA L4+NZ2) 40558004 sz 1 40SS820Ud Nz $A0SS8V0UAd - dwo)
yoeouddy yoeouddy anbpuyoaj
yoeouddy uoijzeunby juodey UOL39938(Q JOUL] paseq-uy3tJobly (SNY) waysAg Jaquny 3npLsay (uoraea}idng) Aouepunpay (eng 14
= {eiz] ueuysiuyewey § vewdep {ce] Jepueipatud 3 tuy {+£] ourquescy {2L] outyuesoy | Auobeje)

- 176 -

m\m.-

*SaNULIUOD | 'Yy BLqel

[e)
uotjez _
*Bupssew Jouud (eqolb sul|-up sBupisew uouud |eqolb But|-up *BoURUD| O3~ N4 BUL| =340 —LL3N
ON :uoL3eoo| -
ON :uo}3ed0| — pasLnboa 0N :uoL3DO3epP -
pOULNbaL JON :liOL3O930p - *syszed AARSSOBN UOL3eD0| —
suJa3jed ®IEp pue 3LUN UOLIEINGWOD paJinbay :uopjoelep -
3Lney opdi3{mw uielusd ay3 uf sy|ney aldi3Lnw awos ‘saJniie} 4
® 3Lhey albuig :pamoLle # - 3 3Lney albuLg :pamol|e § - aldiaLnw B 8 bulg spamolle # - souew
JUBLSURL] B JuBURULIBY :S3adAY - juaisued] :sadhy - JuaUBWITY SadAy - ~40}49d
sy ney s3|ney s3Lneq | sisouberq
‘Redse
JO J49jEM BY3 UL SJossaooUd
A3Lney jO JaqUNU BYY SL) BUBYM
0 a2t ((e-n)/N2) O o) (2 - NMNE)/NZ towy] | oizey Ao
((eNv)/(E+p)2) O :40sSac0ud 0 :40SSBO0.4 NMN/X 140Ssaooug | -uzpunpey
enbiuyoses
. Y3 Y3im
N 148307 N 148307 Id 49d ¢ :s3iun Aepag | peuinbeu
0 sewp]| (Ne)O awy) 32 towy | Kouep
(E4NV)2 :40SS8004d 0 :40SS800Ud X 140SSBOOUY ~unpey
sanb
3d +d ¢ XM —-tuyoes
3d 42d NMN is3pun Aeleg 14
¢ + NpZ isesng § 304 INoUI LA
E-NY W) E-Nv W] 2 = NINE ewg) A3 px
EHNp $40S58004d EHNp :40SS300Ud NN :J0SS800.d -8 dwo)
anbjuyose]
yoeouddy ¥l yoeouddy Asuepunpey awl] yoeouddy uoi3eunby jucooy 14
Amvo.._vmzv:uno.a&vomoaen. (1 pouzey) yoeouddy pesodoud [22] 1es) uvayp-A § 4wy g P,oaoauu“
E

177 -

If N=3, for example, the time redundancy ratio is 66%, and for a large value of N, this
ratio approaches 50%. There is no area overhead (0%) since the same array is used to
compute the results of the three versions of the algorithm. The different data flow co apu-
tations are performed on the same irredundant systolic array, but at different times. All
single transtent faults in the systolic array can be tolerated. In many other FT' design
schemes, using time redundancy approach [§,9], one copy of the design implementation
of a given algorithm can be used to perform the matrix multiplication computation several
times. Although, some transient faults will be tolerated, not all the cutegories of transient
faults can be captured, since recomputation is done using the same operands with the
same data flow characteristics. Therefore, our design schemes have better fault coverage

than many other brute force TMR design schemes.

The technique described by Von-Neuman [8], also uses the TMR approach to
achieve fault-tolerance. The hardware redundancy ratio is 200% and t rc is no time
overhead. Due to the fact that the data flow characteristics of the three copies of the
design are the same, there is the possibility that the effects of any temporary fault in one
copy of the results, will be manifested in the other copies as well. Therefore, such faults
if they occur, will not be detected by the voter and hence, can not be tolerated. Thus,
although this technique can tolerate all permanent faults that affect only one PE in the

array, it cannot tolerate some categories of transient faults.

Huang and Abraham [29-31] proposed a matrix encoding scheme (checksum tech-
nique) to detect and correct errors in matrix operations performed by processor arrays.
Their strategy is to encode the input matrices and to check the correctness of the encoded
result matrices. Their technique requires a hardware redundancy ratio of O(2/N) and a
time redundancy ratio of O(log,(N) / N) to complete the computation of the output
results. Here, N is the dimension of a square matrix or the width of a band matrix.
Applying the technique to a processor array system with N=100, for example, the

hardware redundancy ratio is 2% and the time redundancy ratio is less than 4%. The

- 178 -

approach can tolerate transient and permanent faults in the computation unit of the pro-

cessors. It has the capability of fault location.

The drawbacks of the technique include, it cannot tolerate faults in the communica-
tion lines and registers. More time is required to correct the errors after they are located.
The error correction is done off-line. However, because of the predominance of the tran-
sient faults in VLSI, the off-line testing and reconfiguration method becomes less useful.
Techniques are needed to tolerate faults concurrently with normal operation [9]. Tran-
sient errors are becoming more frequent due to low supply voltages and decreased
signal-to-noise ratios on VLSI chips [42]. The scheme can only correct errors in matrix
multiplication. It can detect, but cannot correct, errors in many other signal processing
prublems, such as matrix-vector multiplication, matrix inversion and so on. Furthermore,
the scheme requires only two-dimensional arrays for fault tolerance, and the types of sys-
tolic architectures required to perform the matrix operation are fixed. The hexagonally
connected processor arrays are used for band matrix multiplication, and the mesh - con-
nected processor arrays are used for the multiplication of two dense matrices. The struc-
ture resulting from the approach is no longer highly regular and granular. The non-
regularity even depends on the array size. As a result of this, more silicon area is required
to route data into the FT systolic array. This could cause the hardware redundancy to rise
to more than .00% instead of 24. Also, the diagnosis and correction latency is very long

and the scheme is vulnerable to false alarms brought on by roundoff errors.

Our method does not involve any fault location, errors are masked concurrently with
normal operation, hence, on-line error correction. It can be applied to any two-
dimensional array. Redundant computations are systematically introduced at the algo-
rithmic level to satisfy a given fault-tolerant requirement. Since many transformation
matrices can be generated for any given data dependency matrix, hence, the fault-tolerant
dependency matrix of the algorithm can be systematically mapped into several fault-

tolerant systolic array architectures with different characteristics.

|

F O I T

I T

- 179 -

In order to solve the problem of the inability of the scheme in [29-31] to correct
errors in many signal processing problems, Jou and Abraham [32] proposed a new encod-
ing technique, called the Weighted Checksum Code (WCC). The checksum code is a sub-
set of this new code. The code can be used wi - linear arrays. Like the scheme proposed
in [29-31], this scheme involves the encoding of the data used by the algorithm, redesign-

ing of the algorithm to operate the encoded output data.

Some of the problems of this technique are: It is not easy to implement. When the
weights are chosen, the complexity of the implementation should be considered. The user
needs to know the weights that are easy and less complex to implement. Furthermore,
choosing the checksum matrix is a problem. It must fit within a given processor array.
There is also the problem of the word length (I) of the weighted summation clements. In
order for the hardware, which is used to compute the weighted checksums, to be minimal,
the size of the linear array should not be large compared to the word length. Therefore,
the scheme is limited by the size of the linear array. The hardware redundancy ratio for
the matrix multiplication algorithm is O((2NAA + 2)/N). For N much larger than I, the
hardware overhead increases. As seen from table 4.1, the time redundancy ratio

approaches 100% if N=l, and more than 100% if N is too large compared 10 1.

The scheme requires less hardware redundancy but more time redundancy than our
design scheme. However, it can only tolerate faults in the computing units of the proces-
sor in the linear array. It cannot tolerate faults in the registers and communication lines
for data transfer. The error correction of the scheme is not done with the normal opera-
tion of the system (off-line error correction). Our technique is simple and easy to imple-

ment. Faults are tolerated concurrently with the normal operation.

Kim and Reddy [9] proposed a TMR approach whereby three adjacent cells in a
linear bidirectional systolic array, are used to produce three copies of the computed
results. The scheme requires increasing the complexity of the cells such that, in addition

to the computation unit, each cell consists of three two-port multiplexers, a voter and two

- 180 -

latches. Applying their approach to solve a problem of multiplying two matrices, requires
a hardware redundancy ratio of over 117% and a time redundancy ratio of 100%. Their
scheme can be applied to only those systolic architectures where the data for the variables
are moving from one cell to the other. It is not applicable to the case when the data are
stored in the cells. The scheme can only work if there is a reduction in throughput of at
most 50%. It is not systematic and will incur some difficulty to extend it to any two-
dimensional systolic array. Three copies of the results are computed using the same data
set of an algorithm. With the increased complexity of the processing elements and the
interconnection between them, the probability of failure of any of the cells is greatly
increased.

Cosentino |12] proposed a dual redundancy approach whereby identical sequences of
inputs are entered into two adjacent processing elements. This characteristics provides a
degree of controllability and observability that allows localization of faults to within an
adjacent pair of cells. The detection and correction of errors arising from faults in the
array can be performed either by software in the host processor or by hardware following
the system output. This sottware or hardware compares adjacent output terms for equality.
The scheme requires a hardware redundancy ratio of O(1/N) (i.e. over 1% for large N), to
perform the multiplication of two matrices. The time redundancy ratio is O(2ZN/(3N-1)),
which is about 66%. It can detect and correct some permanent and temporary faults in the
computation unit of the cells. A number of multiple fault patterns can also be detected
and corrected. It is possible to locate faulty cells, because from the time each output term
appears at the output, it can determine which cell has calculated that output result. Error

detection and correction are done during normal operation of the system.

The limitations of the technique are as follows: It can only be applied to those sys-
tolic arrays in which the cells retain partial results rather than pass them on. It requires
halving the maximum effective output rate, that is, the throughput is reduced by 50%. It

cannot detect nor correct faults in the input/output registers and the interconnection lines.

- 181 -

Also, it cannot tolerate faults in the monitoring circuit, correction circuit or host proces-
sor. Finally, since the data flow of the sequences of inputs entered into two adjacent pro-
cessing elements are identical, some categories of transient faults will not be tolerated by

the scheme.

Cosentino [34] proposed a concurrent error correction technique that combines sys-
tolic array circuit architectures with residue numbers system (RNS) computations.
Independent computations are performed in modulo-controlled processing channels. Cal-
culations done in each of the RNS processing channels are identical but for the moduli
they employ. Each cell is an independent processing eleme:it. A column of five cells con-
stitutes a processing block. Two channels in the processing model can be made redun-
dant, to automatically form what is in effect a triply redundant array. The input interfice
converts a binary input sequence into five residue sequences. The output converter
receives five unmodified residues simultaneously and converts them to their binary
equivalent. The technique does not remove the faulty processing elements, like all fault-
tolerance techniques applied to signal processing arrays, that depend on reconfiguring the

processing elements, but removes the errors produced by that faulty element.

The scheme requires a hardware redundancy ratio of O2N?2 / 3N?), which is abowt
67%. This percentage value should be higher because, it requires five cells to perform the
computation which would have been done by only one cell. As a result, the hardware
redundancy ratio could be up to 400%. Based on the same argument, the time redundancy
ratio is over 100%. The technique can tolerate single temporary and permanent faults
occurring in the cell provided that one output in onc of the channels is affected. With the
capability to correct any erroneous residue, the system becomes tolerant 1o any pattern of
faulty cells that has no more than one faulty cell in a processing block. A correctable pat-
tern may include cells from any combination of channels. It has on-line error correction

capability, since faults are corrected during the normal operation of the systolic array.

The limitations of the approach are, it requires large area and time overheads. It can

- 182 -

be applied to only the variations of systolic architectures in which the partial results
remain in place while the input data sequences are shifted through the cells. It can correct
faults in the cells, however, it cannot correct faults in the data paths, binary-to-residue
and residuc-to-binary conversion circuits, and the error calculator. Also the conversion
and the correction circuits are very complex hardware and require large silicon area for

implementation. It is prone to inaccuracies arising from the conversion.

Ari and Friedlander [35], proposed a top-down approach for implementing
algorithm-based fault-tolerance in parallei processing arrays. The approach integrates error
detection with the execution of the algorithm itself. It is based on the notion of diagnos-
tics invariance : during error-free operation of a system, certain characteristics of the
input data, which is called diagnostics, match the characteristics of the output data. Error
detection is done during normal operation. Once an error is detected, normal operation is
suspended and full processing power of the array can be assigned to locate and correct, or
replace, the faulty component. The approach consists of five steps: (i) obtain a projective
regular iterative algorithm (P-RIA). (ii) identify potential diagnostic expressions. (iii)
select the desired diagnostic expressions and merge them with the P-RIA representation
of the algorithm itself. (iv) convert the augmcnted P-RIA representation into an RIA for-

mat. (v) design a parallel processing implementation for the resulting RIA format.

The problems with this approach are as follows: It is not systematic. Only steps (iv)
and (v) can be carried out in a systematic fashion. The least systematic step is the
identification (selection) of an efficient diagnostic expression. A great amount of effort is
required to perform steps (i)-(iii). With this approach, the type of error detection scheme
depends on the diagnostic expression. This means that, the error-detection scheme could
change from one problem to the other. The properties of efficient diagnostic expressions
are not discussed, and moreover, the technique to determine and select the efficient diag-

nostic expressions are not proposed.

The scheme can detect faults in the cells but not in the interconnection between the

- 183 -

cells of the array. Also, how to tolerate faults in the error detection circuit is not
addressed. The fault location issue which is the basis of achieving fault-tolerance with
this aj:proach is not discussed. The effects of faults can only be comected off-line after
the faults have been detected or located. However, the predominance of transient faults in
VLSI arrays requires faults to be corrected with normal operations [9,21,29]. The com-
plexity of the additional hardware and time required for ertor detection depends on the
diagnostic expressions. The more efficient the expressions, the less complex the hardware
for error detection. Our design scheme overcomes the short-comings of the technique

proposed in [35].

Choi and Malek [33] proposed an algorithm-based fault-tolerance similar to the tech-
nique proposed in [35]. It involves testing the invariants of the systolic array during nor-
mal operation, which provides sufficient information for fault diagnosis. Transient and
permanent computation errors may be detected by using error checking code and redun-
dant cells. A block with single faulty cell can be located. Off-line fault testing, location
and reconfiguration are used to achieve fault-tolerance. This 2pproach inherits most of the

short-falls of the approach proposed in [35].

Varman and Ramakrishnan [21a), Kumar and Tsai [22] proposed reconfigaration
approaches to achieve fault-tolerance in systolic arrays. Both approaches involve mapping
algorithms to linear and fault-tolerant systolic arrays having limited I/O requirements.
The approach in [22] is the same as that in [21a], only that the former is an improved
version. Our design scheme is not based on reconfiguration approach. The main reason
for comparing it with these reconfiguration approaches is that the latter approaches con-
sidered design of systolic arrays with optimal I/O bandwidth of O(NN). In the lineariza-
tion of the systolic array, PE’s are laid out in a straight line with a system of buses run-
ning parallel to them. The partial results do not move, each element of the generated vari-
able is computed by one PE. The PE’s are configured using the buses through switch set-

tings, after scanning the wafer for faulty PE’s. Buses and swiwches are assumed to be reli-

- 184 -

able.

The advantages of the schemes are, they require less number of processors
(O(NYN)). Also, they require I/O bandwidth of O(N') which is less than Q(N), that
many of the designs in the literature require for problems of size N2 [22). The limita-
tions of the approaches are: the issue of fault location which is necessary for fault-
tolerance is not discussed. Only permanent faults can be tolerated, temporary faults are
not tolerated. Furthermore, the faults that can be tolerated are those that occur in the
PE’s. Fault in the buses and switches are not covered. The schemes cannot be applied in
reai time application because of high computation di:lay. Finally, error correction cannot

be done with normal operation of the system.

The TMR scheme proposed in this chapter cvercomes most of problems of the exist-
ing schemes, the only drawback is that it requires high hardware overhead to do so. It is
important to mention that transient faults are the most common and frequent faults in
VLSI systolic arrays. Any good fault-tolerant approach should address this type of faults.

Our approaches have made a significant progress in handling such faults.

4.5 CONCLUDING REMARKS

In this chapter, we have presented a systematic approach for designing fault-tolerant
systolic array architectures using space-time mapping techniques. Our approach involves
the introduction of redundancy at the algorithmic level, so that when these algorithms are
mapped into specific VLSI systolic array architectures, the architectures will be inherently
favrhi-tolerant. The procedure followed in the proposed approach include the derivation of
different dependency matrices corresponding to the different versions of a given algorithm
and the application of space-time mapping techniques to obtain a fault-tolerant systolic

array implementation of that algorithm.

- 185 -

Three fault-tolerant mapping methods have been proposed and investigated. These
can be divided into two groups. In the first group, the dependency matrices corresponding
to the different versions of the algorithm are obtained and then mapped into respective
systolic arrays. Fault-tolerant systolic array is constructed by merging the respective sys-
tolic arrays. In the second group, the dependency matrices are combined to give a resul-
tant dependency matrix that reflects a given fault-tolerance requirement. This resultant
dependency matrix is then mapped int~ a fault-tolerant systolic array. It is observed that,
for those design methods where the three versions of the algorithm are mapped into the
same VLSI space, less silicon area is required for routing data into the fault-tolerant sys-
tolic arrays. Conversely, more silicon area for data routing is required for those methods

where the versions are mapped onto different VLSI space.

In the approaches described in this chapter, both temporal and spatial redundancy
techniques are employed to tolerate the faults in the systolic architecture. The temporal
redundancy technique require a time redundancy of O(2N) and no area overhcad. While
the spatial redundancy technique requires a hardware overhead of a factor of 2. The TMR
technique can tolerate all single permanent faults and a majority of the multiple fault pat-
terns. In addition to providing tolerance against hardware faults like some other design
schemes, our approach has the ability to tolerate certain categories of transient faults that
will go undctected in some of the existing schemes. Although, the proposed alternative
TMR approach utilizes higher hardware overhead to achieve fauit-tolerance, however, it
overcomes most of the limitations of the other approaches proposed in the literature. This
fault-tolerant mapping technique could be extended such that fault diagnosis and re-
scheduling of the data flow are implemented to achieve better utilization of the inherent

redundancy in the VLSI systolic array architecture.

In our approach and other approaches that use TMR technique to design fault-
tolerant systems, at least, three modules are necessary in the voting system. The hardware

overhead for tault-tolerance is, thus, at least 200 percent, without counting the cost of the

- 186 -

voter, which could be quite complex. Therefore, the cost of the fault-tolerant systolic
arrays designed in this chapter is very high, aithough, the arrays have a better fault cover-
age than those designed using the conventional TMR technique. Since area and yield are
strongly related, it is essential that a methodology be developed by which the area
requirements of the FT technique is minimized, thus enhancing yield as well as the
overall cost.

A lower cost fault-tolerance technique is to design the FT systolic array to produce
an indication of errors in the computation during normal operation. This will then be fol-
lowed by further steps that will identify the faulty module and also provide the correction
of the errors. In order to deal with these issues, we will present in chapter V, an approach
to design area efficient architectures for concurrent error detection (CED) in systolic
arrays. Our CED technique will also be compared with many other techniques that have
been proposed in the literature. The concurrent error detection technique proposed in
chapter V will be extended to design lower cost (in terms of area) fault-tolerant systolic

arrays and this issue will be addressed in chapter VI

- 187 -

4.6 REFERENCES

[1] H. T. Kung, "Why Systolic Architectures?," IEEE Computer, Vol. C-31, pp. 37-46,
Jan. 1982.

21 S. Y. Kung, K. S. Arun, R. J. Gal-Ezer and D. V. B. Rao, "Wavefront Array Proces-
sors: Language, Architecture and Applications," /EEE Trans. Comput., Vol. C-31,
pp. 1054-1066, Nov. 1982.

(3] H. T. Kung and M. S. Lam, "Fault-Tolerance and Two Level Pipelining in VLSI
Systolic Arrays," MIT Conference on ADV Research in VLSI, pp. 74-83, Jan. 1984,

[4]1 P. K. Lala, Fault Tolerant and Fault Testable Hardware Design, Prentice Hall Inter-
national, 1985.

[51 T. Anderson and P. A. Lee, FAULT TOLERANCE - Principles and Practice, Pren-
tice Hall, 1981.

[6] P. Agrawal, "RAFT : A Recursive Algorithm For Fault Tolerance,” International
Conf. on Parallel Processing, pp. 814-821, August, 1985.

[7]1 J. A. Abraham, P. Banerjee, C-Y Chen, W. K. Fuchs, S-Y Kuo and N Reddy,
"Fault - Tolerance techniques for systolic arrays," IEEE Computer, pp. 65-/4, July
1987.

[8] J. V. Neuman, "Probabilistic Logics and Synthesis of Reliable Organisms from
Unreliable Components," Automata Studies, No. 34, pp. 43-99, Princeton, NJ :
Princeton University Press.

9] J-H Kim and S.M. Reddy, "A Fault-Tolerant Systolic Array Design using TMR
Method," 1985 ICCD, pp. 769-773.

[10] M. O. Esonu, S. Hariri and A. J. Al-Khalili, "A Systematic Approach for Designing
Fault - Tolerant Systolic Architectures,” in Proc. 1989 Joint Tech. Conf. on
Circuits/Systems, Comput. and Communications, Sapporo, Japan, June 25-27, 1989.

[11] M. O. Esonu, A. J. Al-Khalili and S. Hariri, "Variation on the Theme for Designing
Fault-Tolerant Systolic Array Architectures," Pacific RIM Conference on Commuii-
cations, Victoria, B.C., May, 1991.

[12] R. J. Cosent:no, "Concurrent Error Correction in Systolic Architectures,” Proc. IEEE
Trans. on Computer-Aided Design, Vol. 7, No. 1, pp. 117-125, January 1988.

[13] S-W Chan and C-L. Wey, "The Design of Concurrent Eitor Diagnosable Systolic
Arrays for Band Matrix Multiplication," Proc. IEEE Trans. on Computer-Aided
Design, Vol.7, No.1, pp. 21-37, January 1988.

[14] J-H Kim and S. M. Reddy, "On the Design of Fault-Tolerant Two-Dimensional Sys-
tolic Arrays for Yield Enhancement," /EEE Trans. Comput., Vol. 38, No. 4, April

- 188 -

1989.

[15] F. T. Leighton and C. E. Leiserson, "Wafer-Scale Integration of Systolic Arrays,"
IEEE Trans. Computers, Vol. C-34, pp. 448-461, May 1985.

[16] D. S. Fussell and P. J. Varman, "Designing Systolic Algorithms For Fault-
Tolerance," Proc. of the IEEE Int'l Conf. on Comp. Design: VLSI in Comp., pp.
616-622, 1984,

[17] Y-H Choi, S. H . Han and M. Malek, "Fault Diagnosis of Reconfigurable systolic
arrays," ICCD ’84, pp. 451-455, 1984,

[18] M. S. Lee and G Frieder, "Massively Fault-tolerant Cellular Array," IEEE Int'l Conf.
Parallel Processing, pp. 343-350, 1986.

[19] J. H. Hwang and C. S. Raghavendra, "VLSI Implementation of Fault-Tolerant Sys-
tolic Arrays," ICCD ’86, pp. 110-113, 1986.

[20] J. H. Kim and S. M. Reddy, "On Easily Testable and Reconfigurable Two-
Dimensional Systolic Arrays," ICPP 87, pp. 101-109, 1987.

[21] L. A. Shombert and D. P. Siewiorek, "Using Redundancy for Concurrent Testing
and Repairing of Systolic Arrays," FTCS, pp. 244-249, July 1987.

[21a]P. J. Varman and I V. Ramakrishnan, "Optimal matrix multiplication on fault-
tolerant VLSI array," in Proc. ICALP, 1985.

[22] V. K. Prasanna Kumar and Y-C Tsai, "On mapping Algorithm to Linear and Fault-
Tolerant Systolic Arrays," IEEE Trans. Comput., Vol. 38, No. 3, pp. 470-480, March
1989.

[23] H. F. Li, R. Jayakumar and C. Lam, "Restructuring for Fault-Tolerant Systolic
Arrays," IEEE Trans. on Comp., vol. 38, No. 2, pp. 307-311, Feb., 1989.

[24] F. Lombardi, M. G. Sami and R. Stefanelli, "Reconfiguration of VLS] Arrays by
Covering," IEEE trans on Computer-Aided Design, vol. 8, No. 9, pp. 952-965, Sep-
tember, 198G.

[25] 1. Koren and M. A. Breuer, "On Area and Yield Considerations for Fault-Tolerant
VLSI Processor Arrays," IEEE Trans. on Comput., Vol. C-33, No. 1, pp. 21-27,
Jan., 1984,

[26] J. H. Patel and L-Y Fung, "Concurrent Error Detection in ALUs by Recomputing
With Shifted Operands,” /EEE Trans. Computers, pp. 589-593, July, 1982,

[27] M. G. Sami and R. Stefanelli, "Fault-Tolerance of VLSI Processing Arrays : The
Time Redundancy Approach,” IEEE Comp. Soc. Press; Proceedings of the Real-
Time Systems Symp, pp. 200-207, 1984.

- 189 -

[28] R. K. Gulati and S. M. Reddy, "Concurrent Error Detection in VLSI Array Struc-
tures," IEEE Int'l Coaf. Computer Design: VLSI in Computers, pp. 488-491, Oct.,
1986.

[29] K-H Huang and J. A. Abraham, "Low Cost Schemes for Fauvit Tolerance in Maitrix
Operations with Processor Arrays,” Proc. 9th Symp. on Computer Architecture, pp.
330-337, May, 1982.

[30] K-H Huang and J. A. Abraham, "Fault-Tolerant Algorithms and their Application to
Solving Laplace Equations," IEEE Int'l Conf. Parallel Processing, pp. 117-122,
August, 1984,

(311 K-H Huang and J. A. Abraham, "Algorithm-Based Fault Tolerance for Matrix
Operations," IEEE Trans. on Comput., vol. C-33, No. 6, pp. 518-528, June, 1984.

[32] J-Y Jou and J. A. Abraham, "Fault-Tolerant Matrix Arithmetic and Signal Processing
on Highly Concurrent Computing Structures,” Proceedings of the IEEE, vol.74, No.
5, pp. 732-741, May, 1986.

[33] Y-H Choi and M Malek, "A Fault-Tolerant Systolic Sorter," IEEE Trans. on Com-
put., vol. 37, No. 5, pp. 621-624, May, 1988.

[34] R. J. Cosentino, "Fault Tolerance in a Systolic Residue Arithmetic Processor Array,"
IEEE Trans. on Comput., vol. 37, No. 7, pp. 886-890, July, 1988.

[35] H. Lev-Ari and B. Friedlander, "On the Systematic Design of Fault-Tolerant Proces-
sor Arrays with Application to Digital Filtering," 1988 VLSI SIGNAL PROCESSING
11, pp. 483-494, 1988.

[36] B. Randell, "Design Fault-Tolerance,” in Proc. IFIP symp on the Evolution of Fault
Tolerant Computing, Baden Austria, pp. 110-121, June 30, 1986.

[371 J-C Laprie, J. Arlat, C. Beounes, K. Kanoun and C. Hourtolle, "Hardware - and
Software - Fault Tolerance: Definition and Analysis of Architectural Solutions,"
FTCS, pp. 116-121, 1987.

[38] D. K. Pradhan, Fault - Tolerant Computing, Theory and Technigues, Vol. 1, Prentice
Hall, 1986.

[39] V. P. Nelson and B. D. Carroll, Tutorial: Fault-Tolerant Computing, IEEE Comput.
Society Press, pp. 205-211, 1987.

[40] L. Chen and A. Avizienis, "N-version Programming: A Fault-tolerant Approach to
Reliability of Software Operation,” Proc. int. Symp. Fault-tolerant Computing, pp.
3-9 1978.

(417 H. Hecht, "Fault-tolerant software,” [EEE Trans. Reliability, pp. 227-232, August
1979 .

- 190 -

[42] D. F. Barbe, "VHSIC Systems and Technology," Computer, pp. 13-22, February,
1981.

AT T

o

- 191 -

CHAPTER V

AREA EFFICIENT COMPUTING STRUCTURES
FOR CONCURRENT ERROR DETECTION
IN SYSTOLIC ARCHITECTURES

5.1 INTRODUCTION

As indicated in chapter IV, fault-tolerance can be achieved at a lower cost by
employing Concurrent Error Detection (CED) techniques. Consequently, error detection

has become an important aspect of fault-tolerance techniques.

Concurrent error detection is the process of detecting and reporting errors while, at
the same time performing the normal operations of the systems [1]. In general, error
detection requires some form of redundancy in either hardware, information, time, or
software. The earliest form of the error - checking technique was the use of information
redundancy such as error - detecting and correcting codes. It is quite a difficult problem
to incorporate error detection and correc ‘1 capabilities into general functional modules
[2]. This is because simple parity-based encodings are not preserved under computations
such as arithmetic operations. The methodology of using self - checking circuits for on-
line error detection in computers was first proposed by Carter and Schneider |3,4], and

has led a large amount of research on the topic.

Another common form of redundancy is the hardware redundancy. For example, a
typical hardware redundancy method is Duplication With Comparison (DWC) [3,4]. As
the name implies, the module used is duplicated and the results are compared using a
comparator. DWC involves a simple and straight forward design that is effective in
detecting all single faults that can result in an error. The fundamental problem with

hardware redundancy is its impact on physical weight, size, power consumption and cost.

- 192 -

The DWC method, for example, uses at least 100 percent redundancy in hardware of the
module.

In order to overcome some of the difficulties with hardware redundancy, time redun-
dancy has recently received much attention [5-8]. Time redundancy attempts to reduce
the amount of extra hardware at the expense of using extra time. In many applications,
additional time may be much more affordable than extra hardware [4]. For example, the
speed at which operations are performed internal to an integrated circuit (IC) may be five
to ten time the speed at which information can be transferred across the IC boundaries
[9]. Therefore, it may be completely reasonable to perform operations internal to an IC,
multiple times. The basic concept of time redundancy is the repetition of computations in
ways that allow errors to be detected. In order to allow time redundancy to be used to
detect permanent faults, the repeated computations are performed differently [4]. During
the first computation at time, say ¢, the input operands to the module, are used directly,
and the results are stored for later comparison. During the second computation at time
ty+0r, the operands are modified, prior to use, in such a way that errors resulting from
permanent faults can be detected when the results are compared. Another basic concept of
time redundancy is that the same hardware is used many times in differing ways such that

comparison o: the results obtained at the two times will allow error detection.

Many of the above classical CED techniques may be readily applied to systolic array
architectures. However, the overhead in hardware or in performance may be too high for
many of these techniques to be used in practice. Further along in the chapter, we will
show that the combination of space and time vedundancy can lead to a very attractive

form of fault-tolerance.

Severai CED schemes for systolic arrays have been proposed in the literacure
[2,6,12-24]. Gulati and Reddy [12] proposed a CED scheme called Comparison with Con-
current Redundant Computation (CCRC), in which each computation and its redundant

counter part are performed in two adjacent cells simultaneously. This approach can be

-193 -

applied to a class of 1-D or 2-D systolic arrays in which data as well as the (sub) results
keep moving from cell to cell during computation. Wu [13) proposed a similar approach
ar "» 712] which is applicable to unidirectional data flow linear systolic arrays. Kung {14}
and Manolakos [15] proposed an apprcach which is simiiar to the approaches in [12,13].
The error de.ection ar.d correction approach is called time - redundancy with interleaving
for fault-tolerance (TRIFT). Instead of using PE duplication for the purpose of error
detection and correction, the idea is to perform the same computation twice (time redun-
dancy) in adjacent PE’s at two different but close enough time periods, and then compare
the results. If they match, there is no fault. Otherwise a roll-back is necessary to correct
the fault. The most interesting feature of time redundancy versus PE duplication, is the
limited increase in chip area which in turn leads to lower cost and higher production
yield. An obvious drawback is the time overhead due to the increasing total problem
latency and the necessary roll-back due to possible faults [14]. Like the approaches in
[12,13], this scheme is restricted to systolic structures where the data as well as (sub)

results keep moving.

Abraham er al. [2] proposed a concurrent error detection approach using linear pro-
perty encoding. In their approach, CED can be easily incorporated into systolic arrays that
satisfy these two conditions: (i) Each processing element in the repetitive part of the rys-
tolic array is itself a linear system. (ii) The coefficient stream passes through the array
without being modified. In order to perform CED, new variables are introduced to the
algorithm so that it will be evaluated in a linear fashion. The key point in designing two-
dimensional systolic arrays with the CED is to suitably partition the array by rows or by
columns (so that each row or column will be a linear system), and apply the scheme to
each of the partitioned rows or columns. An extra PE is added at the end of each
row/column to perform the operation of the algorithm before it is linearized. The results
computed by the extra PE are compared with the results exiting at the output of the linear

array of each row/column. Any inconsistency will reveal that there exists a faulty PE.

- 194 -

This scheme is applicable to the linear systolic arrays where the generated variables must
propagate from one cell to another until the final results appear at the output of the linear
array.

Huang and Abraham [16] also proposed a technique to detect and correct errors in
matrix operations performed by processor arrays. The strategy used in the technique is to
encode the input matrices and check the encoded result matrices to judge whether or not
the outputs are erroneous. Cosentino [17)] preposed a concurrent error correction scheme
which is also based on concurrent redundant computation (CRC) approach. The scheme is
restricted to a class of systolic arrays in which the partial results must stay in the cells.
Furthermore, Cosentino [18] proposed a concurrent error detection and correction tech-
nique that combines systolic array circuit architectures with residue number system (RNS)
computations. Calculations done in each of the RNS processing channels are identical
but for the moduli they employ. Two residue calculations are performed, if the results
match, there is no fault in the cells of a channel. If there is a discrepancy, it means that

one of the residues is in error.

Lev-Ari and Friedlander [16] proposed an approach for implementing algorithm-
based fault-tolerance in parallel processing arrays. Their approach integrates error detec-
tion with the execution of the algorithm itself. It is based on the notion of diagnostic
invariance. During error-free operation of a system, certain characteristics of the input
data, which is called diagnostics, match characteristics of the output data. This equality or
match can be violated only by the occurrence of errors in the computations. Thus, if there
18 a mis-match between the characteristics of the input data and those of the output data,
the fault in the system has manifested itself as an error and is detected.

Chan and Wey [20] developed a RESO - based (REcomputation with Shifted
Operands) time redundancy CED scheme for the study of fault-tolerant systolic array of

one dimension. The CED scheme was later implemented in a Band Matrix Multiplication

Systolic Array (BMMSA). For their approach, each PE must be RESO-lized. That is,

- 195 -

after a PE is active for one cycle, it can be drafted to recompute the same operands
(shifted) again, in one of the following idle cycles. The latches of each PE will receive
new data only once every two cycles. Following a regular active cycle, a PE will be
activated again to carry out the recomputation step, instead of being left in idleness. Error
- contingency algorithms will be executed upon the issuance of an error signal by the
comparator inside the PE. The state of error detection is consequential of conflicting
results from the origina: and recomputed steps. They extended their scheme to implement
RESO - based CED in both the Kung-Leiserson BMMSA [10] and Huang-Abraham
BMMSA [11]. The scheme can be applied to hex-connected systolic arrays in which the

data as well as the (sub) resuits keep moving from cell to cell during the computation.

Patel and Fung [6,21] and, Cheng and Patel [22] presented CED schemes which also
use the approach of RESO to test a systolic array by repeating every computation with
shifted operands. Their approach uses the principle of time redundancy, where the coding
function ¢ is the left shift operation and the decoding function ¢! is the right shift opera-
tion. Thus, in the first computation step, f {x) is computed and stored in the register. Dur-
ing the recomputation step, x is shifted left by & bits (RESO-k) and then input to the unit
f . the output is shifted right £ bits and compared to the results of the first step. A
mismatch indicates an error in either computation step. The function ¢ is assumed to be

such that ¢c”1(f (c(x)) = f (x) .

Gupta and Baycumi [23] proposed a scheme termed as LOED (Logarithm based
On-line Error Detection) which is based on the use of logarithmic coding (the addition
theorem of logarithms) to test systolic cells. The addition theorem is given by
logab = loga + logh , where a and b are two positive numbers. Considering base 2, this

b = 2(log2a + logab)

can be rewritten as a Thus, the computation of the product 'ab’ and

pUos2a + log2b) can take place in parallel within the cell structure itself. The two separate
operations can be compared, and a mismatch indicates a faulty multiplication or faulty

addition process. Finally, the relationship between concurrent error detection via CRC

- 196 -

and space-time transformation T of a given systolic array desigr has been established in
[24].

Some of the disadvantages suffered by most of the existing schemes [2,6,12-24]
include: Reduced throughput of a unidirectional array by 50% {12,13,14,15,17,20}. They
cannot detect all transient faults without incurring major overheads in hardware [2,12-
'15,19]. They allow the detection of only single faults. Multiple fault detection requires
high hardware overhead [6,17,19,21]. Some of techniques are limited to only those sys-
tolic implementations in which the data as well as (sub) results keep moving [12-15].
Others are applied to systolic arrays where data are stored in the cells [17]. The resultant
systolic structure of the scheme in [16] is not regular and granular. The techniques pro-
posed in [2,16,18,19,23] are vulnerablc to false alarm due to roundoff errors. Also, the
accuracy of the results ol .3ined using the approach in [23] depends on the number of bits
required to calculate the antilogarithm. The hardware overhead is proportional to the

accuracy of the results.

In this chapter of the thesis, we propose an interssting method for designing testable
systolic architectures [25]. Our scheme is based on CRC approach and space-time map-
ping of algorithms into systolic arrays. The basic concept involves rescheduling the input
data, rearranging data flow and increasing the utilization of the array cells. In the pro-
posed approach, redundant computations are introduced in the VLSI algorithms, such that
when these algorithms are mapped into specific VLSI systolic architectures, certain degree
of observability and controllability are inherent in thess architectures that allow con-
current error detection in the systolic architectures. We obtain two transformed depen-
dency matrices (TDM’s) that represent the two different versions of the given algorithm.
The first TDM is obtained by selecting a valid transforination matrix which transforms
the dependency matrix of the algorithm into the new transformed dependency matrix. On
the other hand, the second one is obtained by rotating the systolic array corresponding to

the first TDM by 180 degrees about any of the indices that represent the spatial com-

e

- 197 -

ponent of the TDM. These TDM’s are mapped into respective systolic arrays. Concurrent
error detection (CED) systolic array is constructed by merging the corresponding systolic

array of the two versions of the algorithm.

A car~ful observation of the data flow characteristics of the CED systolic array
reveals that, two identical sets of output results (one for each version) may need to be
computed at the same computational site and at the same time. Our objective is to iden-
tify such computations so that by adding extra hardware only at those computational sites
at which they will be computed and by re-scheduling the input data (such that the original
input data scheduling is satisfied), the interaction between the two wavefronts can be iso-
lated. Two corresponding sets of computed output results are produced at the same time
by the CED systolic array. Concurrent error detection is achieved by comparing these out-

put results using totally self-checking circuits.

This approach offers the following advantages: It is area efficient, there is no need to
replicate all the hardware in the CED systolic array. Redundant hardware is introduced
only at those computational sites where it is needed. All the single transient and per-
manent faults in the CED array can be detected. In addition to detecting all single faults,
this method has the capability of detecting multiple fault patterns with high probability of
coverage. By rotating the systolic array of the first version of the algorithm by 180
degrees about one of the indices, it becomes possible to schedule the two independent
computations so as to start at the same time with both using the same computational
space but at different times. Consequently, there is no high-delay cost incurred. It can
also be applied to any systolic array implementatior, whether the case in which the data
as well as (sub) results keep moving ot the case in which the partial results stay in the
cells. There is no reduction in throughput. This method provides an .ffective means of
designing CED systolic array architectures and it has been shown that our scherne over-

comes the major disadvantages of the other CED scnemes.

The design method is applied to the matrix multiplication algorithm described in

- 198 -

chapter II, in order to demonstrate the generality and novelty of our approach to design
testable VLSI systolic architectures. The cost of this error detection capability is minimal
and this includes, the time required to flush out the computations of the two versions of
the algorithm, additional hardware (in worst case, the area is increased by less than 1%
only) in some of the processing elements in the CED systolic array and the totally self-
checking circuits to compare the two output results of the generated output variables for
equality.

The outline of this chapter is as follows: Section 5.2 describes in detail our approach
for designing concurrent error detection (CED) systolic arrays. Section 5.3 discusses the
analysis of the fault coverage of the proposed scheme. The area and time overhead of the
design scheme is presented in section 5.4. The comparison of the CED scheme proposed
in this chapter, with other CED schemes is described in section 5.5. Finally, section 5.6

contains the summary and concluding remarks.

5.2 CONCURRENT ERROR DETECTION

In this section, we present our design scheme for achieving concurrent error detec-
tion in systolic array architectures. The basic concept of the approach is described in
detail and then illustrated using the matrix multiplication algorithm. Also, a five-step pro-
cedure for designing Area Efficient CED systolic architectures is presented. Before
proceeding to describe the approach, we will briefly mention the class of faults that the

design scheme will detect.

5.2.1 Fault Model

The fault model considered for the error detection analysis discussed in this chapter
is the same as that described in chapter IV (section 4.3.1). That is, we are assuming that

faults can occur in the refined level of the processing element such as the computational

- 199 -

ueii, input/output latch registers, communication links and switches. We also assume that
at most one of these modules or parts of the PE is faulty at any given time. Furthermore,
it is assumed that both temporary and permanent faults can occur in the CED systolic
array. Finally, we assume that the outputs of the faulty cells may assume any logical

values independent cf the inputs.

5.2.2 The Proposed Scheme

The developed testing scheme achieves concurrent error detection (CED) through
concurrent redundant computation (CRC). It is based on the observation that at any given
time the data flow compntational activity is located in enly some cells in the systolic
array. That is, at any given time instant, some of the cells in the systolic array are per-
forming meaningful computations of the results of the data variables while some are not.
Hence, there is inherent spatial redundancy in the array which could be exploited o per-
form concurrent redundant computations. Two independent computations can be launched
into the CED systolic array in such a way that they are performed on different but partly
overlapping regions of the array. If two corresponding computations of the independent
wavefronts have to share the same computational resource at the same time, then spatial
redundancy can be added only at this resource to ensure that the two computations are
simultaneously but separately computed on the different computational resources. Thus at
the time instant when the computational wavefront of the required computation reaches
the faulty cell, its redundant counter part would have been confined to a fault-free region
of the array. Consequently, a comparison of the corresponding results would lead to the

detection of the fault and this is true because of our single fault assumption.

In our approach, redundant computations are introduced in the VLSI algorithms. We
obtain two transformed dependency matrices (TDM’s) that represent the two different
versions of the given algorithm. The first TDM is obtained by selecting a valid transfor-

mation matrix which transforms the dependency matrix of the algorithm into a

=200 -

transformed dependency matrix. However, the second one is obtained by rotating the sys-
tolic array corresponding to the first TDM by 180 degrees about any of the indices that
represent the spatial component of the TDM. These TDM’s are mapped into respective
systolic arrays. A concurrent error detection (CED) systolic array is constructed by merg-

ing the corresponding systolic array of the two versions of the algcrithm.

Since the systolic array corresponding to the second version of the algorithm is
derived from that of the first version, therefore, both arrays have the same number of pro-
cessing elements and similar interconnection patterns. However, the direction of propaga-
tion of the two data flows may be different. Hence, in this method, a merge of the two
systolic arrays is equivalent to superimposing the corresponding computational sites in the
two arrays. For example, let S represent the first systolic array with the following compu-
tationzl sites: {(J.&7), (fz,lzz),..., (. kn)) and let S’ represent the second systolic array
with the computational sites: {(f1",€1), (2sk2 e U'skn”)}. Therefore, a merge of the
two arrays represented by C=S(_S’ results in a systolic array which has the foliowing
computational sites: (((/1,£1),(1 561")) » (Fpk)i (T2 k " D) seens (ki). " MY - If the
computational sites (j;.k;) and (j;".k;”) , (for i = 1,2,...,n), are the same then the two
cells are the same and hence can be represented by one cell. However, it is important to
note that this resultant cell must satisfy the communication requirements of the two origi-

nal cells.

Although the data flow characteristics of the two versions are different, two identical
sets of output results (one for each version) may need to be computed at the same com-
putational site and at the same time. Therefore our goal is to identify such computations
so that by adding extra hardware only at those computational sites at which they will be
computed and by re-scheduling the input data (such that the original input data scheduling
is satisfied), the interaction between the two wavefronts can be isolated. In other words,
by introducing redundant hardware in only some of the CED systolic array cells, the two

independent computations can be separately computed. There is no need to duplicate all

- 201 -

the hardware in the cells of the CED array. Also due to the input data rescheduling, all
the interconnection links need not be replicated. Two corresponding sets of computed out-
put results are produced at the same time by the CED systolic array. Concurrent error
detection is achieved by compaiing these output results using totally self-checking cir-

cuits.

As mentioned above, we derive the second version of the algorithm by rotating the
systolic array of the first version by 180° about any of the principal axis (horizontal or
vertical axis). This has the advantages in that it makes it easier to merge the two systolic
arrays just by superimposing their respective computational sites. Thus, minimizing the
number of cells in the CED systolic array and producing a regular structure. Also, rota-
tion by 180° makes it possible to launch the two independent computations into the CED
systolic array at the same time, with both wavefronts propagating towards the center of
the array. Then redundant hardware is added only where these two wavefronts meet at the

same time. Therefore, because of these advantages, rotation by 180° will lead to better

implementation.

The derivation of the second version of the algorithm is achieved as follows:
Since present practical arrays have planar layouts, thus, the transformation matrix T for a

2 - dimensional array is represented by

I1 Ia tiz 13
T = Sl = t21 122 t23 (5])
Sy t3) I3 t33

where II is the time mapping function and S is the space mapping function.
If we let T be the transformation matrix of the first version of the algorithm and T’ for

the second version, then,

ty’ hy 6y
r’ ’ ’
T = t21 t22 t23’ (5.2)

’ ’
3" t3)) 33

- 202 -

For a rotation by 180° about the vertical axis, the elements of T' are given by,

/ ,_'—12‘- for I31=0
a t,; otherwise

3.3)
Hence,

A =TD 5.4

On the other hand, for a rotation about the horizontal axis, the elements of T’ are given

by,
ty' =ty
ty =ty
o A 69
Thus,
A =TD (5.6)

The mapping of the index set (i,j,k) into the new index set (i’,j’.k’), using the

transformation T’ is given by,

@ kY = TGjk) + M (5.7

where M is a 1x3 matrix defined as follows:
For a rotation of A by 180° about the vertical axis, the matrix M has the given represen-

tation,

0
M = f (Iﬂ’,t:;l ,) (58)
0

- 203 -

Therefore,

i i 0
= [T,] J| + [f G’y (5.9
k| k 0

On the other hand, for a rotation about the horizontal axis, M is given by

0
M=| 0 (5.10)
F@y'sty)

Hence,

i’ i 0
il = [T] il o+ 0 .11)
kl

fu'sty”)

The function f (z5;',t4;") is defined as follows:
Let /; be the indicator of the values of the elements (¢, °,t5;") such that, for a rotation by

180° about the vertical axis,

11 =1 for t2['¢0 and t3l=0
=0 otherwise (5.12)

On the other hand, for a rotation about the horizontal axis,

-~
[
Pk

for t5)°=0 and 14, #0
=0 otherwise (5.13)

Therefore,
’ ’ 3
FGy'tyy) = C* 3 I (5.14)
I=]

where C is a constant given by

C = min{(maxf + minf'), (maxk + mink)} (5.15)

- 204 -
5.2.3 Application of the Proposed Scheme
A Example 1

In order to illustrate our design scheme, we will consider the matrix multiplication
algorithm whose dependency matrix is given in Eq.(2.7) (section 2.3). Again, as an exam-
ple of the transformed dependency matrix (TDM) of one version of the algorithm, we will
choose the TDM given in Eq.(2.7), which is repeated below for the sake of easy refer-

ence.

111 -1 -1 -1
T =011 then, A=7TD = |[~-1 -1 0 2.7
001 -1 0 0
The corresponding VLSI implementation of this TDM is as shown in Fig. 5.1. The cell
structure is the same as depicted in Fig.2.10. In this thesis, our approach for determining
the TDM corresponding to the second version of the algorithm is to rorate, the systolic
array corresponding to the TDM of the first version, by 180 degrees about the horizontal-
axis or the vertical-axis (for a 2-D array). Thus, if we rotate the corresponding VLSI

implementation of the TDM in Eq.(2.7) by 180° about the vertical-axis and using the

results derived in section 5.2.2, we obtain the following transformation matrix T’ and

hence A’,
1 1 1 -1 -1 -1

T =0 -1 1 ad, A=A,y =TD =|-1 1 0 (5.16)
0 01 -1 0 0

Therefore, we have to prove that this TDM generated by rotation preserves the order of
computation of the given algorithm and also, all other dependency constraints are not

violated.

T PN RO TR ST

e s e b i S S G st A

- 205 -

Q) Q 2D)

O % W

2D 2% W

b @\7* 0

D\
(4,)
O O b31 b21 bll Ci3)}—-—»
O ba by b0 3 -

Figure 5.1

bg3begb3 0 0 — CB

VLSI array structure that implements the
matrix multiplication algorithm (for N=3).

- 206 -

Theorem 5.1: Rotating the systolic array corresponding to any A by 180 degrees about
any of the principle axis, merely changes the direction of propagation of the input data of
the variables affected. The order of computation is preserved and all other dependency

constraints are not violated.

Pruof: If the resultant systolic array of a given TDM is rotated about any of the principle
axis and by any angle, this operation does not affect either the time component of the
TDM or the number of interconnections of each cell in the systolic array. In section II, it
is stated that, for a two - dimensional systolic array, the conceptual sites (T =(i.,j,k))
must be mapped into Z3 = {(t,¥ y)} where t specifies the time when a node is computed
and where (x,y) represents the 2-dimensional physical coordinates of the place in the
VLSI systolic array where the node is computed. In other words, d ,f kY =Ta.jk),
where [is the time component and (f J) is the spatial component of the transformed
indices. Since (j,£) represent the physical coordinate of a node in the VLSI array, and
since this physical coordinate of a node is not a function of {, thus, any operation on the
array itself affects only the nodes and not the timing structure. The time at which the
nodes will compute the output results still remains the same. Hence the rotation about any
of the principle axis and by any angle does not affect the time component of the TDM.
Furthermore, since the number of the interconnection links is unchanged and since the
number of the cells remains the same, consequently, the only geometrical property of the
array structure that is affected by the rotation by 180°, is the direction of propagation of
the data variables. Therefore, since the timing structure and the interconnection pattern of
the TDM is not altered by the rotation operation, thus, the order of computation of the
algorithm must be preserved and also all the other dependency constraints must be
satisfied.

QED

- 207 -

The mapping of the index set (i,j,k) into new index set (i",j"k ") using the transfor-

mation T’ is given by,

i 11 1] i
It =10 =1 1} ijl +
¢ oo 1k

In section 2.3, the mapping of the index set into VLSI array using the transformation T

0 i+ +k
Cl = -j+k+C (5.17)
0 k

(Eq.(2.7)) is shown in Fig.2.10. By employing the results of Eq.(5.15), and from Fig.2.10),
the value of the constant C is 4. Figure 5.2 consists of the mapping of the index set into

VLSI arrays using the transformation matrices 7 and T’ (for N=3). In this case, =1

The VLSI systolic array structure for the TDM in Eq.(5.16) is shown in Fig.5.3 (for
N=3). The array structure is the same as that in Fig.5.1, with the difference being that the
data variable B in Fig.5.3 propagates in the opposite direction to that in Fig.5.1. Also the
cell structure of Fig.5.3 is similar to that depicted in Fig.2.12. The CED systolic array,
shown in Fig.5.4, is constructed by merging the systolic arrays of Figs. 5.1 and 5.3, using
the merging techniques described in section 5.2.2. One method of achieving concurrent
error detection in the array of Fig.5.4 would be to duplicate all the functional blocks in
each cell so that the results of the two independent computations are computed at the
same time using each set of the functional blocks in each cell [3,4]. Then the two
corresponding independent results are compared at the output of the array for equality
using the totally self-checking equality checker. Since the data flow characteristics of the
two versions of the algorithm are different, hence the two versions exhibit different
dynamic properties. The effects of any temporary faults on one version will not be the
same as in the other version as opposed to the case if only one version of the algorithm is

to be duplicated [26]. Therefore, such temporary faults, if they occur will be detected.

- 208 -

i j k ik ;K
time processor processor

WWWWWWWUWLWWRNNNNNN DN N D = - b e et
WWWMNINDN et = WWUWRIN N = = = LW RN NN =t
WO = W DD == WD DI = LI B = LI B = 0D DD = D DD v LD DD = LD D)
OO JO~-IATANO IO ~IA VMO NRAIANOWN D W AW
ANUVMBLBULMBWEAWNOAUVMAUVMBWRWNOWUMEAEWUVAWDRSWN
QIR = U DD = QIR = U B — LRI = LI BRI = LI NI = LI B = LD DD s
AWNUMEAVLOAUMALRWNULALAVMIAERDAWNWBMARLAWM S
WA = LD = WD — LWIND — WD == LI DI — LI N = LI N =) DN =

Fig.5.2 : Mapping of index set into VLSI arrays using transformation
matrices T and T’ (for N=3).

In our proposed approach of achieving CED in Fig.5.4, rather than duplicating all
the functional blocks in each cell, additional hardware is added only to those cells where
the corresponding results of the two independent computations have to be computed at
the same time. As seen from Figs.5.2 and 5.4, the results of the coefficients a;, (i=1,2,3)
for the two versions need to be computed in cells (3,1), (4,2) and (5,3) (at t=4,5,6 ,
t=5,6,7 and t=6,7,8 respectively). If the same functional blocks in these cells are to be
used to compute the two independent results and if any of these blocks fails, this fault
might have the same effect on the two output results and hence will not be detected. Con-
sequently, the functiona! blocks in cells (3,1), (4,2) and (5,3) are duplicated in order to

compute the corresponding results separately.

- 209 -

@.\,{5 @.‘L{L o
0 @,\(L @52,\
Q) O A\

(52)

Figure 5.3 The VLSI array structure resulting from the
rotation of Figure 5.1 by 180" about the
vertical axis.

- 210 -

O O bizhesbas

Figure 5.4 The VL3I array structure resulting from merging
the systolic arrays of Figures 5.1 and 5.3
(for N=3).

T LSRN T €, T s

al

YT

- 211 -

The input data for variable A are re-scheduled so as to satisfy the original data schedul-
ing. In order to synchronize the data propagation of each of the computations, additional
delay elements are introduce in the interconnection lines for variable B. The input data

for variable C are stored in the cells.

Figure 5.5 depicts the CED systolic array (for N=3) designed using our technique.
The array consists of two types of cell structures. In the first type, the functional blocks
are not duplicated, while the functional blocks are duplicated in the second type. The
respective structure of the two types of cells are shown in Fig.5.6(a) and Fig.5.6(b). Fig-
ure 5.5 also contains 6 latches which are used as delay elements to synchronize the data
propagation of the two independent computations. Also, as observed in this tigure, the
corresponding results of the two versions amrive at the output of the array at the same
time. Therefore additional circuitry is not required to synchronize the arrival of the output
results. Hence our scheme can be applied in real-time applications. The output results of
the two independent computitions are compared for discrepancies (as a result of a fault in

the array) using a totally self-checking (TSC) comparator as shown in Fig.5.5.

Figures 5.5a (i), (i), (iii), (iv) and (v) show the first five pulsations of CED systolic
array. The outputs labeled UU produce the results which are computed using the data for
variable C stored in the upper part of the cells as shown in Fig.5.5. Similarly, the outputs
labeled LL compute the partial results of the matrix multiplication using the data for vari-
able stored in the lower part of the cells. In addition, the paths labeled UU and LL indi-
cate the data flow of the two independent computations. It can be seen that the two data
flow computations traverse different functional blocks and interconnection lines in the
CED systolic array. Hence, any single fault in one of the computations will be detected

at the output of the CED systolic array.

-212 -

@'9 Q Q '0'9
0'1? Q % > s
o o9 o oy
o ot o o
o7 o o
oV o

0 0 0 bybyby

0 0 bnzbzzbnzo

0 byb,,b 0 0

error
outputs

/

Pl delay element

Q type I cell
@ type II cell

N

NN

Figure 5.5 CED systolic array for matrix multiplication
(for N=3).

i W XLeu J0j s
= a0j) UonEAMEH nd qeay aul (1) ()2 2

(
Loqie o1o1sas Q3o

bl

11
gL AN gy 30 VRN

» 0 NN o 0
.0 oy & H =T T
eeqta © 0 . - e - =SB ey e e o

0 tq! & q my“m%wmwg“‘ly W/Nm..u e O'W“muu%\w Omjmwﬁ.rmﬁ 0
o 0o N [
. . i

>

"0

-213 -

e e Bl fa—

-214 -

(g=N JI0}) uvorjeorjdrjjnut xujew J10jf
Lerie o101sAs @dD °Ul J0 uorjesnd puooas 8yl

T
Ak nn N ::
0 0 /c
ocrata g f Ses O Nas O s
- T80 ja- B — - mnoMA. - s K :m- c
o B RN wigEeqetq
\ NN
AL / N \.
2 \v... . (1 AN A.. m«V
oNENN%K \ 2CAN ag M. 0 0
° S ® g vmoﬂ B mo :
T meMA 7 o A8 sq 3¢
0 /o 0 r/ N
T N\ T
..,./ a/a, / e,
o /// .mw,v, N M»..\ \

\
@/ \\W\W
g =1

4.&9 \r@.@ Ay
@&-.9 / \F@é 0 N\
0@.@ N \\) o™

oo,

N}

(1) (e)g'g @IndLd

0

PEPTIDUIEURPESISEEY,

m o 0

n/S
il O.JA;,I\H.IHHI..”W/Wmv -HJW} !,,\m.» :o
e o % iiq oﬂ 12q

EloN

m&%& 35 0

-215.-

BN 3 4o T

(c=N\ ucj) uonyeardnnu xtrjew 10]
Avale onoysss q1) Yy Jo worjesynd PUUY oUL (mr) (e)e'c oundiy
» Y v
A N A0
2 AR 2 0N
2 > N - mw..n.v \
m@. wwbx A :D// // Tl m..‘v m,mv‘ N
b x / NN %v > .
-mq..H / c /// . ﬂb / *l‘“mw
AN el /./ N - O ' -
0%5q"%q¢® 0 e mi-!,iurmw% 0 g A/m,o O .
- €60 Je-B 3> M- 16 S AT A
= ol/mwn\u/ m 0 €0 g eiq /\uﬁ/\w\&\m&nmﬁmﬁ 0
\ NSRS
a4 .,, -./ . < \»v
b m & \.,\v N ow ml\.-v” / nMv« ‘«U\.W\ myq.”aﬂn 01
I AN
X 4
0 omfmw@_mxm;fwf RN 54 ‘mﬂmm&.;,f‘!{v
- —\BZ5 Je—-F .. _[335 . A Al
0 “Xo 0 q -¥Req . .m«o\w&ww@n 00
./V/ nh/ (5N ..V
SN N MM» , MJ\n
yr “ 3N\ - % r %
SIE AN AN y nn
u \ 1
00 Ongiitf mﬁw um.uﬂ.xllxn.rf, N%’ —Q“,O AN l.lo!t"
il (1o~ I Fohepe —— i e
0 \N.o ng '%4q /W_ /W%w%wﬁo 00
\
\
& \
N
© / an D, <&, \
€ =1 e Wb

- 216 -

(£=N Joj) uorye
fexre o1[01sAs QD dUi I°

0 O\m\&\:\- :: vﬁ | o%ﬁos/“ .wﬁmvaSo w!-;,x
: g €10, C g 210 0 it :owx

orfdiynut xtrjeur Joj
uorjesnd Yoy Y] (a1) (B)S'G 2In314

z
mmwxmw@m+
0
ANy
w@w&mmmg
3,

mv I'l y
nn

RN

; oA A o
Y. k4

:Q QA

<&

£x \%\m\ a%m/
év\@ QO <
o O
Q ©
Q

- 217 -

=\ JoJ]) uonyeoldnnu xirijew .Joj
Leaqe o1o}sss Q) oy} jo uonjesind yyy ayg

.
> x> h anw.a G\.W .
Ab \W\/ < nwp, , /n/y.a .WWx g . «n., .«.,,
o nﬁ? .m / o nu.”u\mmw,,/ \ \An.uvp.w. .Q.x .
¢ G &Wv 5 N\) N aO £ .
TI // nn ,// //,: . AN
0%%qt%qcq ¢ 0 r»\ eaq . q

k-

x5 P m— . B—_ A-uw-f-:ery
0

N\ & nnn/\¢ 0 oflqfttq o

oINgl |

-218 -

O

Ul

v
Ry

The cell structure of type I cell

in Figure 5.5.

Figure 5.6(a)

- 219 -

The cell structure of type Il cell

in Figure 5.5.

Figure 5.6(b)

- 220 -
B Example 2

The purpose of example 2 is to show that CED can be obtained almost at no area or
time overhead in some cases (usually when N is even). Figure 5.7 consists of the map-

ping of the index set into VLSI arrays using the transformations T and T~ for N=4 .

Figure 5.8 shows the CED systolic array implementation of the matrix multiplication
algorithm for N=4. All the cells in the array are identical. Since no two identical compu-
tations need to be computed using the same set of cells, hence there is no duplication of
any functional blocks in the cells. The only added hardware are the latches (three in each
interconnection line for variable B) which are used to synchronize the propagation of the
corresponding data elements for each computation, into the systolic array. As in Fig.5.5,
the input data for variable A are re-scheduled to satisfy the original input data scheduling
for this variable. The corresponding output results appear at the output of the array at the
same time and these are compared for discrepancies using the TSC error detecting cir-
cuits. The purpose of comparing Figs.5.5 and 5.8 is to point out the differences between
the two CED systolic arrays. For instance, in Fig.5.5, the functional blocks of some of the
cells are duplicated because they are required to compute the identical output results of
the two independent computations. Consequently, Fig.5.5 consists of two types of cell
structure. However in Fig.5.8, the functional blocks of the cells are not duplicated and
hence all the cells are identical and thus, CED is achieved almost at no area overhead,

but with extra delay (time overhead).

IEI

—_NAt N =N~ NG~ NN NNT NN~ NN g NANT—~ NN~ NG =~ en gt — D

M e NN N e T NN C T NO N NTNOANNT AN OO N TIN NN N~

processor

-221 -
j'-‘/

k

N NG A NAY —~NNT N~ NANT NN~ NG~ —~NNAT NN — N e — NN

NGNS IR O N O IN NN INANATINOT N O NO NN Nt NOTNO M NC oo NN T

i

- O O —
NGOG NN~ IO NO 0O SO0~ NOSOOSXON00ON =00\ — — D~ 00

Bt
o
[72]
L
L
= 8
i
(=%
3]
E
d—

]
)
(]
()
[
1
1
1
t
1
i
1
~ 1
1
t
1]
$
]
[}
1
(]
1
1

—eNAF e~~~ NN~ NN~ NNt NNt~ NN~ NN NN~ AN~ AN NS TN

et N NN NN NSt et = NN NN NI~ = AN AN NN NN T <Pt v

et ol Yt ot et ot it ot et el o — = AN AN AN NN ANNNNANNNOOON NN NN NN NN NN S <t <

B a4 b w T b s oniln W - TSI ARFL P WY DOy W &

-222 -

4 1 4 9 5 4 g 4
4 2 1 17 3 1 4 1
4 2 2 8 4 2 5 2
4 2 3 9 5 3 6 3
4 2 4 10 6 4 7 4
4 3 1 8 4 1 3 1
4 3 2 9 5 2 4 2
4 3 3 10 6 3 5 3
4 3 4 11 7 4 6 4
4 4 1 9 5 1 2 1
4 4 2 10 6 2 3 2
4 4 3 11 7 3 4 3
4 4 4 12 8 4 5 4

Fig.5.7 : Mapping of index set into VLSI arrays using transformation
matrices T and T’ (for N=4).

C Example 3

The purpose of this example is to show the generality of the proposed method. It is
also applicable to arrays where all data variables keep moving from one cell to another,
which is a different case to that given in example 1. In example 1, the data for one of the
variables are stored in the cells. Also, in the above examples, the TDM’s of the CED sys-
tolic array are arbitrarily selected. It is not certain if these TDM’s are the optimum ones.
We will take a different example where all data variables are flowing from one cell to
another. Furthermore, we will use an optimum systolic array for this particular computa-
tion. An approach for designing optimal systolic architectures has been proposed in
chapter Il [27]. Using the results in chapter III, the TDM with the besi overall array
performance given the performance index, has been obtained for the matrix multiplication
algorithm, whose dependency matrix is given in Eq.(2.6). The TDM is given as follows

[27]:

-1 -1 =2 211
A=|0-10 and T = (010 (5.18)

-1 0 -1

-223 -

-0 O bpgbgbuybiyO 0 0 O

8.4)

>
~0 0 0 by bybyb,0 0 0

Figure 5.8 CED systolic array structure for malrix
multiplication (for N=4).

-224 -

The mapping of the index set (i,j,k) into the new index set .J k) using the transforma-

tion 7 (Eq.(5.18)) is given by

i 2+ +K
HE j (5.19)
k i +k

The VLSI array structure corresponding to the transformed dependency matrix A of
Eq.(5.18) is shown in Fig.5.9 (for N=3). The data variables A and C propagate from a
cell to the next via vertical channels while the data variable B moves from cell to cell via
a horizontal channel. The structure of the cell is shown in Fig.5.10. It consists of an
adder, a multiplier, registers and one delay element in the path of variable C. In order to
obtain the secend version of the algorithm, the TDM of Eq.(5.18) is rotated by 180
degrees about the vertical-axis. The transformation matrix (T'”) and the TDM (A") for the

second version, in this case, are given as follows:

2 11 -1 -1 =2
T' =10 -1 0] and, A = Ayyey =TD =10 1 0 (5.20)
1 0 1 -1 0 -1
The new index set (i',j’,k”) is given by
i 2i +j+k
Il =1 -i¥cC (5.21)
k’ i +k

Figure 5.11 shows the mapping of the index set into VLSI arrays using the transforma-

tions T (Eq.(5.18)) and T’ (Eq.(5.20)) (for N=3). Here also, the value of C is 4 and

S

i'=1i.

- 225 -

O O O O 0O O
O O O O 0O O
0 0 00 ago
0 0 ag O Ay
ag O ag O aig O
ayy O O Cyo 0O ¢ 9
O 00 00 O by (1,2)/ \Cy (2,2)/1“'\022 (32)1'"1}(,54
\1/(321 \—T/C32 =
i e | .
0 00 O bybpo LGy @3 (3)
~ ~1
1.4), 2,4y 34)
O O bybebH O _ (L4) \f ()<) (4)\\ o
] l
0 bpbyoO 00 0 U] /___(gi)(\}w_(_i’?)(’/\
. .
bed 00 00 0 8 (26N ___(36) {
W Tﬂv v

Figure 5.9 Optimal VLSI array structure for malrix
multiplication (for N=3).

- 226 -

C
Rc
delay

1 t. u

s

p O

Figure 5.10 The structure of the cell in Figure 5.9.

- 227 -

i j k R Y 4 5k
time processor processor

WWWWWWWLWWNNINNN NN N DI et st
WOWWNRMNIN = e QWWWNNN = = WWWENNDN———
WNHWN =W W =W =WR=W—=WN—WN~—

OO0 —=Co VLI ~ANX AN NN &
WWWRNDN O™ s P OWI NN = e = W R W N — =
A NEArANPE N NEANALUNALUNDRWRWNRWNAWEN
—_m = NN IO LW T — —, NN WWW— = = NN WWW
AUMPAONVNA DI NAEAVN A LUAVLVULWRAWNDWIRRAWRN

Fig.5.11 : Mapping of index set into VLSI arrays using transformation
matrices T (Eq.(5.18)) and T’ (Eq.(5.20)) (for N=3).

By merging the resultant systolic array of the second version of the algorithm with
that in Fig.5.9, the CED systolic array shown in Fig.5.12 is constructed. The systolic
array of Fig.5.12 has been modified to reflect the given fault detection requirements. The
array consists of two types of cell structures as in Fig.5.5. In the first type which consti-
tutes of all the cells in the array except cells (2,2), (2,3), (2,4), (2.5) and (2,6), redundant
hardware are not added in the cells, while in the second type redundant functional blocks
are introduced by duplicating these blocks. The input data for variables A and C are re-
scheduled so as to satisfy the original data scheduling of these variables. The interconnec-
tion lines for the data variable B are also duplicated and a delay element is added in each

line in order to synchronize the data propagation of the independent computations.

- 228 -

0 0O 0000 0 O

az0 0000 agxo I
dog 0 0000 dog 0]

a0 ad ag) a3 0

ag ci3 g a0 ag cpy

ag C23 820 a0 ap cx

aj ca3 0 G0 ¢ ayy ca

000000 by Hd® J2A] 152
~— gL ——E—by0 00000

(1,3) (23) (33)

0 000 bybp0 __Ha™ K PungdN
21 o @y @ %fv, 0 bpby0 0 0 0
1’4) 2,4 (314)
0 O by baebig0 O<—&:)E% ‘:‘()%AHO 0 bigbaeb30 O

)

| |(18) || | {29) (35)
0 baebz0 0 00—y %ho 0 0 0 bybg0
(2,6)%'[(3.6)

=000 00 0 by

!
J

{

b0 0 0 0 0 0 U8

R

@)

error outputs

a delay unit

O type I cell
O type II cell

Figure 5.12 Optimal CED systolic array structure for matrix
mutiplication (for N=3).

-229 -

As seen from Fig.5.12, the corresponding output results of the two versions of the algo-
rithm arrive at the output of the array at the same time and these are compared for

discrepancies using TSC circuits.

5.2.4 Procedure for Designing Area Efficient CED Systolic Architectures Using The
Scheme Proposed in This Chapter

In this subsection, we present the following five-step procedure to design a CED
systolic array architecture using our scheme :
1. The TDM of a given algorithm is determined and then mapped into a systolic architec-
ture.
2. A second version of the algorithm is determined by rotating the systolic array in step 1
by 180 degrees about any of the principal axis (horizontal, vertical or diagonal axis).
3. The two systolic arrays are merged to construct the CED systolic array.
4. Add extra hardware only in those cells of the CED array that would be computing the
corresponding output results for the two independent computations.
5. The input data of some of the variables in the algorithm are re-scheduled to satisfy
their original input data scheduling. Extra time is required for the completion of the com-
putations and this corresponds to the maximum number of extra delay elements intro-

duced in the interconnection path of any of the data variables.

5.3 ANALYSIS OF THE FAULT COVERAGE OF THE PROPOSED
SCHEME

In this section, we analyze the fault coverage of the proposed scheme. Fault cover-
age can be defined as the number of detected faulty outputs given the number of faulty

outputs.

- 230 -

For the proposed scheme, a functional fault model has been assumed. Therefore,
our interest lies basically in detecting a corrupt output, to ensure the validity of the final
result. A fault that does not produce an error, or in other words, does not affect the func-
tionality of the module under test, will not be detected. The cells used to compute the
various outputs g;, for the two independent computations of the matrix multiplication
algorithm are shown in Figs.5.5, 5.8 and 5.12. For instance, in Fig.5.5, the output result
of one of the a,, is calculated in cells (2,1), (3,2) and (4,3) while the alternate result is
calculated in cells (4,1), (5,2) and (6,3). A discrepancy in the two results indicates a fault
or malfunction (temporary or permanent) either in any of the functional blocks of any of
these cells or in any of the interconnection lines in the systolic array or in any of the
added delay elements. Similarly, the results of, for instance, a,, are calculated with the
duplicated functional blocks in cells (3,1), (4,2) and (5,3). In this case also, a fault either
in any of the functional blocks in these cells or in any interconnection line in the array
will produce a discrepancy in the two answers. Since the error detecting circuits are
totally self-checking, hence any single fault in the CED systolic array or a faulty com-

ponent in the error detecting logic itself would be detected. Therefore all single faults in

the systolic array of Fig.5.5 are detectable.

It can also be shown that all single faults in the CED systolic array of Fig.5.8 can be
detected. Consider a single functional module failure of, for instance, the multiplier in cell
(3,2). This fault will cause the partial results of a@;; and a;4 (i=1,2,..,4) computed in the
cell to be erroneous. Since all the partial results of these outputs are not computed by
only one cell, therefore, the error propagates to other cells until it reaches the output. The
erroncous results computed in this cell will corrupt the other partial results computed in
cells (4,3) and (5,4). Consequently, the final results of the outputs @;; and a;4 will be
erroneous. The redundant results of these outputs are computed in cells (5,1), (6,2) (7,3)
and (8,4), which are fault-free, since single fault assumption is made. The redundant out-

put results will be fault-free, and a comparison of the original output results with their

padndiie s

- 231 -

redundant counterparts will produce a discrepancy. Hence, this fault is detectable.

Furthermore, let us consider a single failure of register B in ccll (4,3) of Fig.5.8.
Since the data for variable B is a transmittent data, it percolates from cell to cell. This
fault will corrupt the output results of only one version of a;,, because, the output results
of the other version of the computation (redundant), will be computed using the data for
register B’. Consequently, one set of computations will be fault-free while the other will

be erroneous. Hence, by comparing the corresponding output results, the fault in register

B will be detected.

In Figs. 5.5 and 5.8, a single fault in either register A, register C, register C’, TSC
circuit, an adder or a multiplier, in any of the cells, will manifest itself as an error in
some output results of one version of the algorithm. In other words, all the outputs q, , of
one independent computation will not be affected by the occurrence of any of these
faults. The consequence is that, these faults can be detected by any of the TSC circuits,
but not both. That is, the error indication output of only one TSC circuit will be activated
in the presence of any of these faults. On the other hand, a fault in either register B,
register B” or any interconnection line in the array, will cause all the output results of one
independent computation to be erroneous. The occurrence of any of these faults will

activate the outputs of both TSC circuits, and hence, will be detected.

The significance of this is that, from the state of the outputs of the TSC circuits, we
can determine the nature of the fault present in the array. We can know if the fault is
from any of the two categories discussed above. Since the effects of the faults are
detected at the output of the array (global error detection), we have no means of locating
the faulty cells. Therefore, in the proposed design scheme, the error indicator will alert us
when a fault is present. This will give us an indication of the category of the fault, but,
the location of the exact module that has failed, is not possible.

Similar analysis is also applicable to the CED systolic array of Fig. 5.12.

-232 -

So far, we have considered the tesults of single faults. A number of multiple fault
patterns can also be detected by our design scheme, provided that the corresponding out-
put results of the two independent computations are not affected by the multiple fault pat-
tern. For example, a multiple fault pattern which comprises of single faults in cells (3,1),
(4,2), (5,3), (4,1), (5,2) and (6,3) in Fig.5.5, produces a detectable error pattern when the
faulty result stream that exits from cell (6,3) is compared with the fault-free stream exit-
ing from cell (4,3). Similarly, in Fig.5.8, an example of a detectable multiple fault pattern
consists of single faults in cells (2,1), (3,2), (4,3) (5,4), (4,1), (5,2), (6,3) and (7,4).

Furthermore, let’s consider the effects of a multiple fault pattern which is a combi-
nation of all single failures of register B in every cell in the array. This multiple fault pat-
tern will cause all the output results of one version of g;, to be erroneous. Consequently,
the proposed design scheme will detect this particular multiple fault pattern. Several
other multiple fault patterns can be detected in a similar fashion as described above, pro-
vided that the output results of two corresponding independent computations are not
affected by the fault pattern. It is important to note that a multiple fault pattern that
affects two corresponding output results may cause both results to have the same errone-
ous values. In this case, the error detecting circuit would not indicate a discrepancy in the
two answers and hence, such multiple fault patterns cannot be detected. However, the

probability of occurrence of such multiple fault patterns is very low.

Also, in addition to permanent faults, intermittent errors or temporary faults can be
detected in the CED systolic arrays of Figs. 5.5, 5.8 and 5.12, by comparing the
corresponding output results of the two independent computations. They are distinguish-
able from permanent errors since they are temporary. It is known [17] that intermittent
faults missed during manufacturing testing may be caught by concurrent testing during
operation. For this reason, concurrent testing is increasingly being regarded as comple-

mentary to manufacturing tests, especially in systems that require high reliability.

In the following section, we will determine the cost of our proposed design scheme,

- 233 -

in terms of the area and time overhead required to achieve concurrent error detection.

5.4 AREA AND TIME OVERHEAD OF THIS SCHEME

In VLSI system design, there is always a trade-off involved between the silicon arca
and the desired efficiency in terms of throughput and speed. Our motivation is to propose
a scheme which is applicable to different systolic array implementations without causing
any loss in throughput. This goal is achieved by our scheme but not without some over-

head in silicon area and time.

The silicon overhead includes the additional functional blocks introduced only in
those cells that are required to compute the redundant output results. It also includes the
delay elements used to synchronize the flow of input data into the CED systolic array and
the error detection circuitry required at the output of the array. As regards to the time,
since the two independent computations are launched into the CED systolic array at the
same time, there comes a time when a computational resource would be requested by the
two different computations at the same time. In order to resolve this conflict, extra time is
introduced by delaying one computation (using the delay elements) until the other has
completely utilized the computational resource. Therefore in this respect, we can say that
our scheme involves overhead in time. For instance, in Fig.5.5, one extra clock cycle is
required to complete the two independent computations. The number of the extra clock
cycles required corresponds to the maximum number of the delay elements introduced in
the path of the interconnection line of any of the variables in the algorithm. This is as
exemplified in Fig.5.5 where an extra delay element is introduced in the path of variable

B to synchronize the propagation of data into the CED array.

In Fig.5.5, by observing the scheduling of the input data for variable A, it appears
that one computation is launched after the other. Consequently, at most twice the number

of clock cycles would be required to complete the computation of the two independent

-234 -

results. The systolic array of Fig.5.5 requires 7 clock cycles to complete the computation
of one version of the algorithm. From the nature of the data scheduling in Fig.5.5, a total
of 10 clock cycles would be required to complete the computation of the two independent
output results. However, the CED systolic array of Fig.5.5 requires only 8 clock cycles
to complete the two computations. Hence, given the nature of the data flow into the CED
systolic array after re-scheduling the input data, we can conclude that our scheme does
not involve any overhead in time. There is , of course, no loss in throughput. One of the
advantages of our scheme is that though the input data is re-scheduled, the corresponding
output results of the two coriputations arrive at the output of the array at the same time.
This facilitates the comparison of the two answers without the introduction of any addi-
tional control or synchronization circuitry.

Similar analysis and argument are applicable to the CED systolic array of Fig. 5.12.

In Fig.5.8, the silicon overhead includes 24 delay elements, two error detection cir-
cuitry (TSC) required at the output of the array and four interconnection lines. Unlike in
Fig.5.5, no additional functional blocks are introduced in the cells of Fig.5.8. This is
because, all the elements of the generated variable (matrix A), for the two independent
computations, are computed at different times, using different cells in the array. Consider-
ing that the area of a delay element and that of a TSC circuit are much smaller than the
area of a processing element, therefore, when N is even, concurrent error detection is
achieved almost at no hardware cost. Three extra delay elements are introduced in the ori-
ginal and redundant data paths of variable B. They are used to synchronize the propaga-
tion of data into the CED array. This means that, three extra clock cycles {time overhead)
are required to complete the computation of the two independent results. In order to com-
pute the results of one version of the algorithm, the systolic array of Fig.5.8 requires 10
clock cycles to do so. With the incorporation of the CED scheme, a total of 13 clock

cycies 1s required.

It is important to note that the distribution and assignment of the delays depend on

- 235 -

the array size and the algorithm under execution. For instance, in the case of the matrix
multiplication algorithm, if N is odd, exira functional blocks and delay elements are intro-
duced in the array. For the CED systolic structure shown in Fig.5.5, the cell location in
each row, where additional functional blocks are introduced, is given by (N-1)/2 + 1).
Hence, in Fig.5.5, for N=3, extra functional blocks should be added in cells (3,1), (4,2)
and (5,3). If for example, N=7, the extra functional blocks should be introduced in cells
(5,1, (6,2), (7,3), (8,4), (9,5), (10,6) and (11,7). Thus, in general, the allocation of the
extra functional blocks in the array can be accomplished in this manner, and this alloca-
tion criterion exists only if N is odd. For the delay assignment, the delay elements arc
located in both directions, at the interconnection lines after the cell ((N-1)/2 + 1). Hence,
in Fig.5.5, if N=3, the delay elements are located in one direction after cells (3,1), (4,2)
and (5,3), in the opposite direction after the same set of cells. If N=7, the delay clements
will be located in both directions after cells (5,1), (6,2), (7,3), (§,4), (9.5) (10,6) and
(1,7.

The number of delay elements assigned to these locations is (N-2). That is, if N=3,
only one extra delay element is introduced in each direction as shown in Fig.5.5. For
N=7, a total of five delay elements are introduced at these locations. Therefore, if N is
odd, the time overhead required by the proposed CED scheme is (N-2) [{N + (N-1)/2 -
[(N-1)/2 + 1] - 1} = (N-2)].

In the case when N is even, no extra functional blocks need to be introduced in the
systolic array. Only delay elements are assigned to some locations in the array. The delay
elements are located in both directions, at the interconnection lines after the cell (N/2).
The number of the delay elements assigned to these locations is given as [(N + N/2 -
[N/2 + 1]} = N-1]. Thus, if N is even, the time overhead required to complete the two

independent computations is (N-1) clock cycles.

In addition to the time overhead for a single instance of the matrix multiplication

problem, there is the possibility of an extra time redundancy for many successive matrix

- 236 -

multiplications. For instance, in Fig.5.8, (without the CED scheme) if a problem instance
is initiated after the other, then the second problem instance could start at time t=5 (after
token b4, is loaded into the array). The third problem instance could then start at time
t=9. Since two problem instances are required for error detection, this means that, the
second error diagnosis problem instance, has to wait until t=9 to be initiated. Similarly,
the third one has to wait until t=17 to start. However,if the proposed CED scheme is
incorporated, as shown in Fig.5.8, a new problem instance has to wait until t=11 cycles to
be initiated (after a 44 is loaded into the array). The next one will be initiated at t=21. The

block pipelining period for many problem instances is increased in this case.

In the following section, we will compare the merits of the scheme proposed in this

chapter against other CED schemes proposed in the literature.

5.5 COMPARISON OF OUR CED SCHEME WITH OTHER CED
SCHEMES

Several CED schemes have been proposed which achieve fault detection by duplica-
tion of operation, either of individual cells or the whole array. In this section, we compare
the proposed CED scheme with other schemes proposed in the literature [6,12-24]. Table
5.1 shows the comparison of the complexity and performance of the existing schemes

against our design methodology.

The CED method (CCRC) proposed by Gulati and Reddy [12] requires a silicon
overhead of one additional cell in every row of a systolic array, multiplexer, links for
error detection and propagation, and the error detection logic in each cell. The scheme is
limited to only those systolic implementations in which the data as well as (sub) results
keep moving. It is only applicable to structures like the bidirectional and hex connected

systolic arrays where inputs are required to be applied in alternate cycles by the

- 237 -

v/l

“3wayds USLSBP Pasodoud AP0 Yium SINDLLYDSL (3] Dullstx@ snoLaea
BU3 }O 9LEWLO0;43¢ S.50ubeLp puB A3LXB|0WCD BY3 4O UOSLIBAWD)

‘S aLqe)

uoLyez
U0130039p 4OUud |eqolb aul|-uQ *UOL3IDSIBP JCUIB (B0} BULL-UQ *UOL3IDIIBP H0UUB | BOO| BL|-UQ *UOLIDBIOP 40U BUL|~UQ -$In
ON :uOL3EDO| - S\ ‘iuoL3ed0| - S8\ UOLIEDO| - S3)\ ILOL3IBDO| -
susay3ed 3 nes adiL3| MU ULEIUBO suuazied 3(ne4 B dLI|NW ULEIUBD suud33ed 3| ney 3| dLI| MW ULRILSD suJdiied | Ney B|CLI[MU ULBILD
B 3ine; o(6uLS pamOL|® § - % 3ney a16ulg pomcy e # - B 31ne; 216uLg pomo (@ § - » 3Lnej 210uLg pamotie # - souew
JUBUBWUAY B IUBLSUBL| :Sadhy - JuaLsSURJ| B JudURULBg :53dA3 - JUBLSURL] § JuBUTWUId :S8dAY - JUBLSURU| § IUBURWUDY :58dAY - —403.48d
sypney s3|neq siLney s3pned sisoubeig
(NLYO 3w) ((-N2)/(L+N)) O o) ((2NEIN) O Bk (C(L-NeX/N) O UL | o ey o
AZ\;O 2408$8004d ANZ\sz $40S5800.4d ANZ\ZVO 140SSA00Ug ANA L-N2)/N) Q :40SS8304d | _uepunpey
ruotyebedoud pue ruoiLyebedoad pue
UOL30038D JOJJD JOJ SRUL| JBYY) | UOLIOBIBP JOUUB JO4 SHUL| 48YID
Nzw 8L N XMW | enbruyoey
2(1+N)2 :sueppy N 1OSL N IXOW 2Ne DL | U uIm
42430 N :uo3sL6ay Nz :ua3sibay Nz :ua3sLbey pouinbeu
L sowg | 15N sout | N roul | N towy] Aouep
N $40553004d N 405520044 N :40SS800uUg N $JOSSBO0Ud -unpay
sanbiu
-yse3 030
3NOYI LM
N oWt L-NZ PwLy S-NE oLy L-NE oLy A3px
Nz 1A0SS300Ud Nz :40SS800ud Nz £ 10SS300Ud NA 1-N2) 2408S800Ud —a| dwe)
"(141341)
6utpoou3 aoueua{03-3| Ney 404 Buia *shedde 0| 03sAs (D¥20) uotzendwo) juepunpay | anbiuyoe]
Ryuedoud Jeaut Bursn g3) —ee|JajuL yiim Aouepunpay awij | mopj eiep euot3oeutpiun Ul ¥ JUBLINOUDY Y3 LM UOS|Ledwo) a1
{2] "Le 30 weyeuqy ‘v {sL'yL] soxeiouey § Buny °A"S M °S-1 8 ™M “0-0 [2L] Appey 3 13eirg | Auocbere)

- 238 -

w2

o

*SanuLjuoD |G a|qe]

uoLjez
*U0130933p JOJJ4B |eqold aui|-uQ *uoL30a38p Jodds@ tego|b auL|-up *UOL30838p JO4Ud |eqoib aui)-up *UOL3D83ap J4oudd teqolb aui|-up —LL4N
Sa) :1uoijedof — ON :uUOL3EeDo| - 81qLSSOd :uUOoL3EDO| — Sa) fuOL3EDO} ~
saunj ey 3d o(diI{nw upelzusd suJajzed 3|ney a|di3pnu uLe3sB0 sudJd3zed 3(ney d|dLI| MW ULEIUBD su4a33ed 3| nej 9idiI{NW uLeILED
B a1buLg :pomojie # - ® alney aibuig :pamoLle # - R ayney o bulg :pamoi|e # - B 3Lney o buig :pamolle ¥ - aouew
Aiedodwel % jusuewudd :SadA3 - JUBLSURU] B JuBURWUDY :S8dAY ~- JUBLSURL| § JUBUEWLDY :SadAy - JUBLSUBL] B JuBURUUBY isedAy - —J0448g
s3|ney s3|ne4 s3ine4 s3|ney | siscubeLg
(2+nv)/%L — N2/ (90 — ((i-NeX/N2) O owt) z\szmwoor.}N @kl | opqey Ao
(1+NZ)N/d 14ossaooug oNE/ N 140s53004 (N/L)Q :dossecoyd (°M/1) Q t40ss8004d | -uepunpey
(%) 0= (M) O 3eus aunssy-
*Aeude 40sS8004d
® U} peuwsoj4ad uopieds|diiine ©
40 3By} 03 uoL3ippe uR jJO Bwi}
UOLINDBXd JO O(3BJL BYI S} J-
*S80tJ3eW pUBQ NeN 30
*uo| ssaudx® SYIPLA-pURg By} BuR OM puR M-
| ot3soubelp eys Juswe|dw} *UO | SUBAUOD »;mE.MnmauwaE.mog
03 peuinbeu S3LouRpUNPEU B8yl 404 Bwil Y3 St lL.w 3uBYM 2 40jeaedwod S|
BWL3 pue SJUBRMPURY {RUOL3LPpPR S9A s AaowoN 2+ ANz._.zvcEN + anbiuyoes
ay3 A|8Ai3oedsau aue ah pue d N2 0S| N :31noud Butuoz oy Amzvmmo— + ﬁ_.wvmmo_.w 1493 4ng ay3 Ypm
d 5-g-a 48430 L-N+oN ide3sibed Joje| unody v - m M+tM)E $49ppyY pa.inbeu
1 aw}) 1 Wt } NC tew}) N/(N) oOwnLﬂN -y} Kouep
d :405S800U4d Nz 1408S800.4d (40ss900ud 3SOY) N $40SSBO0UY M+ "M :J40SS8004d -unpey
JIYUDAUOD AUBULE-03-INPLSY sanb
4DIUBAUCO BNP|SAY¥-O3-AuruLg -4
43430 uyse3 032
znmzm :s3iun Aejaq INOY LM
2HNY tewy | NZ @[t L-NE oWy | ANz._.xvc_..iz = TN} R3Lx
(1+N2IN :JosSB00Ud mzm £10SS800U4 N.z 1405500044 Nznrx 140S$800.Ud -2 dwo)
yorvouddy yoeouddy anbiuysey
= UOL3De38(Q JOUU] peseq-uny3iuob|Y (SNY) wo3sAg saquny anpisay (uotjest | dng) Aouepunpay teng auByog BuiLpODUT WNSXOOYD a30
m 4epuRipeiid § iJy {8L] out3uesop {£1] ouraveso) [2t] weyeuqy § Gueny | Auobeie)

- 239 -

/e

*S3NULIUCO | *§ d1qe

J uoLlez
UOI3D939p 404D (BD0| BUi|-UD ‘UOLIDBIBP LOUUB |BDO| BULL-UQ *UOLID9}BP JOULE |BDO| BULL-UQ *UO}L33938P 4OL4D |BDO| BUL[-uQ —ELH3N
aLqLssod fuvLiedo| - 21Q}SSO4 :UOL3ETO| - ®(qLSSO4 iuOL3IBDO| -
8{q1SS04 uoL3edo0| - saunitey 34 9|diILnu sadnitey 3d oLdLILnw saun{Ley 3d
s3|ney 9 buig :pamol e ¥ - 5 o|bulg :pomo|(® # - % 9|buLg :pamo| e # - a|diynw § 3 butg :pamol e § - souew
uaLSURL| 530K - Juaisueaj :58dAy - Juaisued] :sadhy - juatsueday :sadhy - ~40348d
s3iney s3|ney sy ne4 s3ayne§ { sisoubeig
*peL1d}3 MW Bq 03 SPuBLBdO B3
40 S31Q 4O JBGUAU BUI S U BUBYM
{(Gne) /(iwe)2) O b | (O buswen)/(LN)) © oL | (B hnuime)/(1e2)) © el | (Gt huIueN)/ (L)) O oL | ouaey Ao
(zv/(2+u9)) O :dosse0Ud 0 :40SS800Ud 0 :40SS800ud 0 :40sseoodd | -uepunpey
Nz 2081
o :sJ:s160y Auszwm IXOW Amzufwm XMW Amszwm IXnW | enbruyoes
) iS43IHUS Mo M 1951 Mo M 61 MM 3261 | 843 yImm
(L-NEX2 ewky (CMetM)2 :S203S169Y (Me*M)Z :S4835168Y (%Me'M)2 :sU@3SIBRY | peuinbes
(47 (Lrupru- (1)) TN 14N Wy L+NZ By) 1+N awy | Rouep
140858204d 0 :40SS804d 0 :40SS8004y 0 :4ossaoouq ~unpay
senbiu
-yoe3 30
_— . N0y 1M
2-NE oWt} nmz._.zvc:: + N WLy (‘M tMlute + N oWy) Amz. MU LN WLy R3yx
N 40858004 CMetM u0sSBOOU4 CuxtM 3d0SSEO0U4 CuglM ru0sSBOOU] —a{dwoy
*JUBURSBAUT “3UBWISBAU] *jUBUISBAU] | @nbjuydej
yoeouddy 39 Peseq—0SIY @3 Aouepunpey awp| Peseq-0S3y @30 Aouepunpey awi| peseq-OSIY Q3D Aouepunpey euw] peseq—0SIY a3
[02°'L1] VShg [02*0L] vSwaa

[22'12'9] "tv 38 93y "H'P

weyeaqy-bueny peiseaut-q3d

UoOsS4esS1eT-0uny pe3IsSeAuL-(G3)

{02] tem 3 ueyy

Racbeyer

- 240 -

#\@-

SanUL3uUD |G aLqel

uoL3ez
*UOL30930p J04u8 (eqolb BuL|-uQ "UOLIDOIBP 40ULD |BDO| BUL|-UQ -0
ON :uoijedo| - Sap :uol3eso| —
uJazged 3ney ardinw sadniiey ||&0
uie3uao p o buls :pomoy e § - a|dianu B a|buts :pamolie § - souew
JUBLSUBL] B JUDUBWIDY :SadAy -~ JUaLSUBL] B JUBURWIDY :S0dA} - —Jd04J8d
s3Lne4 saine4 | sisouberq
((e-Ne)/(2-N)) O owk]
A Nz\.zv (Q :40sssd0ud
| J48QUNU Ppo UB S| N —
((-Ne)/(L—N)) O ou |
0 :40SS820.4g - H- Ty} oj3ey Ad
Jequnu UBAB UR S} N - - 140SS800Ud | —uepunpey
[2/N) OS2
48430
2N sae34ng N :esibey Jojyng Adowsy
2N zewy | N tae3sibey sseuppy
N :JOSS800U4d Nz SOY
J8qunu ppo ue Si N - 48y
N i051 | enbiuyoey
L-N tJejing Nz ta03s160y 3514S 8yl y3iim
L-N awt Nz 1493un0) peuinbeu
0 $40558004d - iowy | Aouep
A9qUNY UBAD UR St N - - £.40SS800Ud —unpey
sanbLu
-yoe3 Q03D
INOYZ LM
2NE Bk} 2NE uy) Aypx
N $40SS3004d N 4ossacoud -ai dwo)
yoeouddy awy |
—acedg pue (J¥)) uoL3v3INdwo) anbLuyse)
JUBPUNPAY JUBLINDUOY yoeouddy Suipo) peseq—uajliaebot a3d
yorouddy 4nQ {€2] wwnokeg § v3dng | Auobeje)

Qg s

- 241 -

underlying algorithm itself. In this case, there is no loss in throughput. However, when
the scheme is applied to a systolic structure where inputs are applied in every cycle, there
is a loss of throughput of 50%. This is highly undesirable in situations where a high
throughput is a crucial requirement. The scheme cannot detect all transient faults. Since
the method can only be applied to structures like the bidirectional systolic array, where to
perform an NxN matrix multiplication, (2N—1)? cells are required instead of N2, there is
an inherent hardware redundancy when this method is used. It this hardware reduauancy
is coupled with the additional hardware required for CED, the hardware redundancy ratio
is greater than 200%, when the value of N is large. The time redundancy ratio is of O (N
/ 3N-1), which is about 33%. In addition to this time redundancy, there is an extra time
redundancy factor that has to be taken into account. Since bidirectional data movement is
employed, a new problem instance has to wait until the data for the former problem
instance have drained the pipeline of a row of processors. Consequently, the block pipe-

line period is increased and this reduces the average throughput drastically.

The approach proposed by Wu [13] is similar to that proposed by Gulati and Reddy
[12]. The difference being that while the latter method is applicable to bidirectional sys-
tolic array structures, the former method is applicable to unidirectional data flow linear
systolic arrays. Both approaches [12,13] have similar attributes. However, Wu’s approach
[13] requires a hardware redundancy ratio of O (N / N?). For very large values of N (e.g
N=100), this is about 1%. The time redundancy ratio is of O (N / 3N-2), which is about
33%. There is a loss of throughput by 50%, since the CED technique requires inputs to
be applied to the array in alternate cycles. Although, the techniques proposed in {12} and
[13] are similar, however, the method in {13] has better design features (like the hardware

and time redundancy ratios) than the method in [12].

The TRIFT approach proposed in [14,15] requires a hardware redundancy ratio of
about 1%. the time redundancy ratio is of O (N / 2N), and this is about 50%. Like in

(12,13], the scheme in [14,15] is limited to only those systolic implementation in which

- 242 -

the data as well as (sub) results move from one cell to the other. There is a reduction in
throughput by 50%. Also, the scheme can detect some transient faults, and with roll-back
of the computations, the system can recover form such transient faults. However, since
the data flow of the two redundant computations are the same, any transient fault that
affects the results of one data flow will also affect the results of the other data flow in a
similar manner. Thus, a comparison of these results will not show any discrepancy.
Hence, such categories of transient faults cannot be detected by this scheme. The scheme
can handle multiple simultaneous faults. Since fault location is possible, the scheme can

also be easily integrated with architectural FT schemes for permanent fault recovery.

For the CED approach proposed by Abraham er al [2], the hardware redundancy
ratio required to detect errors in a systolic array and to perform an NxN matrix multipli-
cation, is more than 1%. The time redundancy ratio is also 1%. This will be true if the
respective inputs of each of the extra PE’s, are applied to the respective PE’s at the same
time. Otherwise, extra time redundancy would be required if the input data to the extra
PE’s are to be pipelined from one extra PE to the other. This scheme is not without its
drawbacks. It is applicable to those systolic structures in which the data as well as (sub)
results move from cell to cell. The CED method can only be employed if the given prob-
lem can be linearized. There is also the difficulty of linearizing the problem, there is no
systematic or unique approach of converting a given algorithm into a linear model to be
implemented using linear arrays. With the introduction of the new variables required to
perform the CED, the complexity of the PE’s is increased. There is also the possibility of
increase in computation of each PE, as a result of the introduction of the new variables.
This will in turn reduce the frequency of operation of each linear system (row or
column). Furthermore, the scheme can only diagnose errors from a single PE in each
row or column. Multiple faulty cells in a row may be handied. The diagnosis is vulner-
able to false alarms brought on by roundoff errors. Finally, with the introduction of the

extra PE and the application of input data to the respective PE’s at the same time, the

TR KR T 5T

- 243 -

structure of the systolic array is no longer highly regular and granular.

When the technique proposed by Huang and Abraham [16] is applied to a processor
array system with N=100, the hardware redundancy ratio (in terms of the number of pro-
cessors) is 2%. The time redundancy ratio is about 4%. One of the drawbacks of this
technique is that the structure resulting from the approach is no longer highly regular and
granular. The non-regularity even depends on the array size. As the array size increases,
more silicon area is required to route data into the array. Thus, for large values of N, the
hardware redundancy ratio could rise to more than 100% instead of 2%. There is also the
possibility that as the array grows bigger, long wires and non-uniform delays are intro-
duced. This could increase the time redundancy ratio. As these problems become severe,
they could limit the scalability of the design. Other drawbacks of this approach include.
the diagnosis and correction latency is very long and it is vulnerable to false alarms

brought on by roundoff errors.

For the approach proposed by Cosentino [17], the scheme requires a hardware
redundancy ratio of 1%. The time redundancy ratio is 66%. Some of the drawbacks of the
scheme include: It is applicable to only those classes of systolic arrays in which the par-
tial results must stay in the cells. There is a reduction in throughput by 50%. The scheme
cannot detect all transient and permanent faults. It allows only single faults in each row

of the array, multiple fault coverage requires high hardware overhead.

The technique proposed in [18] requires a hardware redundancy of 33%. In the RNS
computations, three channels of cells constitute the non-redundant channels which are
used to perform independent residue calculations. For error detection, one redundant
channel is required to perform another independent residue cu.mputation, which can be
compared against the residue produced by the non-redundant channelis. If we assume that
one channel of the cells could perform the computation otherwise done by the three non-
redundant channels, then, there exists extra hardware redundancy. In this case, the

hardware redundancy ratio becomes 300%. The time redundancy ratio depends on the

- 244 -

time required for the conversion of the residues produced by the non- redundant channel,
to the binary output. The longer this time is and also the more complex the residue-to-
binary circuit is, the higher the time redundancy ratio. As can be seen from table 5.1, the
RNS technique uses 2N clock cycles to perform a computation that could have been done
in N clock cycles. This increase in latency can also be taken as time redundancy. In view
of this, the time redundancy ratio can be considered to be 100%. Due to its high
hardware and time redundancy ratios, this scheme may not be employed in large problem
size systolic design. The scheme can only detect one erroneous residue, and thus, it can
detect any pattern of faulty cells that has no more than one faulty cell in any processing
block. The scheme cannot detect all the faults in the array. Only those faults that affect
the computation units of the celis are detectable, whereas faults in the data paths cannot

be detected.

In order to detect errors in systolic structures, the approach proposed by Lev-Ari and
Friedlander requires a hardware redundancy to implement the error detection subsystem.
The cost of the subsystem depends on the ability to select efficient diagnostic expressions.
The less efficient the diagnostics, the more the hardware redundancy required to imple-
ment the error detection scheme. The time overhead of the scheme also depends on the
selected diagnostics. The drawbacks of this approach are for two reasons: (i) there is no
systematic method of selecting an efficient diagnostic expression; (ii) the error detection
technique is not unique for any given problem. The properties of efficient diagnostic
expressions are not specified.

The central problem in implementing algorithm-based error detection using this
approach is to select efficient diagnostic expression. Since the approach to select the
expressions is not straight forward, this increases the degree of difficulty in using this
CED technique. The scheme can detect faults in the cells but not in the interconnection
between the cells of the array. N(2N+1) processors are required to perform matrix opera-

tions which could have been done using N? processors. This constitutes a hardware

- 245 -

redundancy ratio of 100%. This hardware overhead coupled with that of the error-
detection subsystem increases the total hardware redundancy of the scheme. It is also
mentioned in [19] that one of the efficient diagnostic expressions that could be used for
matrix multiplication operations, is the checksum method [16]. In that case, the CED
scheme in [19] will inherit all the short falls of the approach in [16]. One of such pitfalls
is that, the resulting CED structure will no longer be highly regular and this will limit the

scalability of the systolic design.

The RESQO-based CED implementition in the BMMSA proposed by Chan and Wey
[20] requires a time redundancy ratio of 100%. Since the scheme uses RESO-based time
redundancy approach, the hardware overhead is minimal. As pointed out before, Chan and
Wey [20] extended their approach to the RESO-based CED mmplementation in the Kung-
Leiserson BMMSA {10}, and in the Huang and Abraham BMMSA |11]. The CED-
invested Kung-Leiserson BMMSA requires a time redundancy ratio of 200% and also,
minimal hardware overhead. On the other hand, the CED-invested Huang-Abraham
BMMSA [11] requires a time redundancy ratio of 100%. Like the other two CED

BMMSA, it requires minimal hardware overhead.

Although, the CED approach proposed by Chan and Wey [20] can detect errors
down to a single processor, the scheme is not without its drawbacks. It can only detect
transient faults since the same cell is used to perform the two redundant computations.
Even at that, it can only detect some of the transient faults. This is because, if the dura-
tion of the intermittent or transient fault is greater than one clock cycle, the two redun-
dant computations would bc affected the same way by this single transient fault. Thus, a
comparison of the two results would be regarded as error-free results. Hence, this fault
cannot be detected. Furthermore, since the scheme can detect only some transient faults,
hence, permanent faults cannci uc detected. There is a reduction in throughput by at most
50%. The scheme can only work for a 50% per - cycle PE idlenes. It is restricted to a

class of systolic arrays in which data as well as (sub) results keep moving from cell to

- 246 -

cell during computations. Their proposed CED approach is not systematic. There is no
methodology of partitioning the PE’s and assigning them to the different clock groups.
The clock for each group determines when the processors in that group will be active.
Also, there is an increased complexity of the PE’s, each PE consists of extra three MUX,
two registers and a TSC circuit. In addition , the scheme requires more control signals -
two control clocks CL; and CL, (where CL is to lead CL, by one cycle), MUX control
signals and the control signals for the registers to latch the results at some specific times.
Finally, their BMMSA design is concentrated on the hex-connected systolic arrays, the
extention of the design strategy to other types of systolic structures is not straight for-

ward.

The CED technique proposed by Patel and Fung [6,21], Cheng and Patel [22]
requires both time and hardware redundancies for error detection. Using this scheme to
detect errors in a systolic array that performs matrix multiplication operation, the
hardware redundancy ratio is of O ((6n+2) / n?), where n is the number of bits in the
operands to be multiplied. For n less than 6 bits, the hardware redundancy ratio is greater
than 100%. However, this ratio decreases as the number of bits in the operands (n)
increases. The time redundancy required by the technique is of O(2(3N-1) / (3N-1)),
which is over 200%. The scheme can only detect single faults. In order to achieve higher
error coverage, extra hardware is needed. It is more effective for transient error detection.
The diagnosis latency is very longer. Since error detection is performed in the individual
cells, it is possible to locate the fauits that occur in the systolic array down to the indivi-

dual cells.

For the LOED CED techrique proposed by Gupta and Bayoumi [23], the error
detection logic is incorporated in each cell to make every cell self-testing. The harware
required to compute the anti-logarithm is very complex. It consists of a counter, a shift
register, a comparator, memory element (ROM), memory address register and a memory

buffer. Also, the accuracy of the anti-logarithm operation depends on the size of the

- 247 -

ROM. Therefore, the larger the size of the ROM, the higher will be the fault coverage.
With the increase in the complexity of the redundant hardware, the hardware redundancy
ratio could be as high as 100%. As regards 10 the time redundancy, if the logarithmic
operations take longer time than the multiplication operations. this could slow down the
system and hence, the frequency of operation could be reduced. The scheme can provide
fault location. Since the cells are self-testing, LOED technique has the ability to deteci

some of the multiple faults.

The shortfalls of the scheme include: It cannot detect all the faults in the array. The
adder in the cell is used for both the multiplication and the logarithm operations. It a fault
occurs in this unit such that both operations become erroneous in a similar manner, the
fault cannot be detected. The scheme is also vulnerable to false alarms due to rounding
errors. The logarithmic coding is an approximation and it is prone to introduce roundoff
errors. The exact match between the product and anti-logarithm of sum of logs cannot be
expected with finite precision. Furthermore, the accuracy of the approach and hence, the
fault coverage, lies on the size of the ROM which is used as a look-up table during the
computation of the anti-logarithm. The more accurate the anti-logarithm computation, the
more complex is the size of the ROM. This could limit the scalability of the design.
Therefore, in order to detect most of the faults in the systolic array, high hardware over-

head with complex circuitry is required to do so.

In our CED approach, the hardware and time redundancy required for CED depend
on whether the size of the matrix N, is even or odd number. If N is even, there is almost
no hardware redundancy required. The hardware redundancy ratio (in terms of the number
of processors) is 0%. Tne time redundancy ratio is of O(N-1 / 3N-2). For very large
values of N, the time redundancy ratio is 33%. On the other hand, if N is odd number,
the hardware redundancy is of O (N/N2), that is about 1%. The time redundancy ratio is
of O(N-2 / 3N-2). This represents a time overhead of 33%. Our scheme can detect all

single permanent and temporary faults and most multiple fault patterns. There is no

- 248 -

reduction in throughput. The scheme can be applied to any systolic implementation
whether the partial results must stay in the cells, or in which the data as well as the (sub)
results keep moving from cell to cell. Although, it requires extra delay elements, how-
cver, it does not require the error detecting logic in every cell in the array. It is not
vulnerable to false alarms caused by roundoff errors. The introduction of the CED tech-
nique does not affect the regularity and granularity of the systolic array. Also, since the
hardware redundancy required is very small, the scalabilty of the design scheme is not
limited to small or medium size systolic arrays. Since the error detection is done only at
the output of the CED systolic array, our scheme cannot locate faults down to the indivi-

dual cells.

Table 5.2 consists of the comparison of the percentage hardware and time redun-
dancy ratios required by various CED schemes to perform matrix multiplication in sys-
tolic arrays. From tables 5.1 and 5.2, it is observed that our scheme requires the least
hardware overhead to achieve CED in systolic arrays. If N is an even number, CED is
achicved at almost no hardware cost. Since the proposed scheme provides the best
hardware redundancy ratio, hence it is said to be more area efficient than the schemes
proposed in the literature. Althogh, the time redundancy ratio of 33% required by our
scheme is not the best time redundancy ratio, however, it is comparable or even better

than time redundancy ratios of some of the existing schemes.

The CED strtegy proposed in this thesis rely on global mechanism to detect faults in
the systolic array. Therefore, if it is employed to achieve fault-tolerance, the FT technique
will basically rely on global error masking. On the other hand, since the scheme cannot
detect errors in the individual cells, it cannot be easily integrated with some
recontiguration algorithms to locate and correct errors within the cells of the systolic
array. However, with our scheme, errors produced as a result of faults in the array can be
detected and possibly masked concurrently during the normal operation of the systolic

array.

o -

-249.

Percentage Percentage
Hardware Time
CED Techniques Redundancy Redundancy
(N=100)
(X) (X)
Gulati & Reddy [12] 200 33
Wu & Wu [13] 1 33
Kung & Manolakos [14,15] 1 50
Abraham et al. [2] 1 50
Huang & Abraham [16] 100 4
Cosentino {17} 1 66
Cosentino [18] 300 100
Ari & Friedlander [19] 100 3
Chan & Wei [20] 1 100
Patel et al. [6,21,22] 100 200
Gupta & Bayoumi [23] 100 -
Proposed Scheme 0 33

Table 5.2 Summary of the comparison of the percentage
hardware and time redundancy ratios required
by various CED schemes to perform matrix
multiolication in systolic arrays.

- 250 -

The design scheme presented in this chapter will be extended in chapter VI, to

design area efficient fault-tolerant systolic array architectures.

5.6 CONCLUDING REMARKS

In this chapter, we have presented an area efficient CED scheme for VLSI systolic
array architectures. This scheme offers solutions to several problems of the other known
CED schemes. It is applicable to a wide class of VLSI implementation of algorithms. The
technique is not limited to only those systolic implementations where the data as well as
(sub) results keep moving. It can also be applied to those implementations where either
the data or the (sub) results are stored. It has a feature of exploiting the advantages of the
interleaved computations without any reduction in the throughput of the array structure.
The scheme can detect all single permanent and temporary faults and a majority of the
multiple fault patterns. It is area efficient, there is no need to replicate all the hardware in
the CED systolic array. Redundancy is introduced only at those places where it is needed.
The silicon area is limited to one row of extra functional blocks in those cells that com-
pute the corresponding results of the two independent computations, delay elements and
the error detection logic. By rotating the systolic array of the first version of the algorithm
by 180 degrees about one of the indices, the computation of the output results of the two
versions of the algorithm can be scheduled to start at the same time with both using the
same computational space but at different times. Although the input data is re-scheduled,
the comresponding output results of the two computations arrive at the output of the array
at the same time. This facilitates the comparison of the two answers without the introduc-
tion of any additional control or synchronization circuitry. Consequently, there is no high
delay cost incurred and thus, the technique can be employed in real-time applications.
This scheme can be applied to any systolic array structure (e.g. 2D, tree - connected etc.)

and also to other types of VLSI arrays.

- 251 -

5.7 REFERENCES

(1]

(2]

(3]

(4]

[5]

(61

(7]

(8]

(9]

D. Siewiorek and R. Swarz, "The Theory and Practice of Reliable System Design,”
Bedford, MA: Digital Press, 1982.

J. Abraham, P. Banerjee, C-Y. Chen, W. Fuchs, S-Y Kuo and A. Reddy, "Fault
Tolerance Techniques for Systolic Arrays," IEEE Computer, pp. 65-74, 1987.

J. F. Wakerly, "Error Detecting Codes, Self-Checking Circuits and Applications,”
Elsevier - North Holland, New York, 1978.

B. W. Johnson, J. H. Aylor and H. H. Hana, "Efficient Use of Time and Hardware
Redundancy for Concurrent Error Detection in 32-bit VLSI Adder," IEEE Journal of
Solid-State Circuits, vol. 23, No. 1, February, 1988.

D. Reynolds and G. Metze, "Fault Detection Capabilities of Alternating Logic,"
IEEE Trans. Compuzt., vol. C-27, pp. 157-162, Dec., 1978.

J. H. Patel and L. Y. Fung, "Concurrent Error Detection in ALU’s by Recomputing
with Shifted Operands,” IEEE Trans. Comput., Vol C-31, pp. 589-595, 1982.

H. H. Hana and B. W. Johnson, "Concurrent Error Detection in VLSI Circuits Using
Time Redundsncy,” in Proc. IEEE Southeast con’86 Regional Conf., pp.208-212,
Mar. 23-25, 1986.

J. Shetlesky, "Error Correction by Alternate Data Retry,” [EEE Trans. Comput., vol
C-27, pp- 106-112, Feb., 1978.

D. Patterson and C. Sequin, "Design Considerations for Single-Chip Computers of
the Future," IEEE trans. Comput., vol. C-29, pp. 108-116, Feb., 198().

[10] H. T. Kung and C. E. Leiserson, "Algorithms for VLSI Processor Arrays," in Intro-

duction to VLSI Systems, by C. A. Mead and L. A. Conway. Reading, MA: Addison
- Wesley, 1980.

[11] K. H. Huang and J. A. Abraham, "Efficient Parallel Algorithms for Processor

Arrays," in Proc. IEEE ICPP, 1982, pp. 271-279.

[12] R. K. Guiati and S. M. Reddy, "Concurrent Error Detection in VLSI Array Struc-

tures," Proc. IEEE Intl. Conf. on Computer Design, pp. 488-491, 1986.

[13] C-C Wu and T-S Wu, "Concurrent Error Correction in Unidirectional Linear Arith-

metic Arrays,” Proc. 17-th Intl. Symp. on Fault-Tolerant Computing, pp. 136-141,
1987.

[14] S. Y. Kung, VLSI Array Processors, Prentice Hall, 1988.

- 252 -

{15] E. S. Manolakos, "Transient Fault Recovery Techniques for the VLSI Processor
Arrays,” Ph.D thesis, University of Southern California, May, 1989.

[16] K. H. Huang and J. A. Abraham, "Algorithm-based fault-tolerance for matrix opera-
tions," IEEE Trans. Comput., vol. C-33, pp. 518-528. June 1984,

{17] R. J. Cosentino, "Concurrent Error Correction in Systolic Architectures,” Proc. IEEE
Trans. on Computer-Aided Design, Vol. 7, No. 1, pp. 117-125, January 19§8.

[18] R. J. Cosentino, "Fault Tolerance in a Systolic Residue Arithmetic Processor Array,"
IEEE Trans. on Comput., vol. 37, No. 7, pp. 886-890, July, 1988.

[19] H. Lev-Ari and B. Friedlander, "On the Systematic Design of Fault-Tolerant Proces-
sor Arrays with Application to Digital Filtering," VLSI Signal Processing llI, pp.
483-493, 1988.

[20] S-W Chan and C-L.. Wey, "The Design of Concurrent Error Diagnosable Systolic
Arrays for Band Matrix Multiplication,” Proc. IEEE Trans. on Computer-Aided
Design, Vol.7, No.1, pp. 21-37, January 1988.

[21] J. H. Patel and L. Y. Fung, "Concurrent Error Detection in Multiply and Divide
Arrays," IEEE Trans. Comput., vol. C-32, No. 4, pp. 417-422, April 1983.

[22] W-T Cheng and J. H. Patel, "Concurrent Error Detection in Iterative Logic Arrays,"
FTCS, pp. 10-15, June 1984.

[23] S. R. Gupta and M. A. Bayoumi, "Concurrent Error Detection In Systolic Arrays For
Real-Time DSP Applications,” VLSI Signal Processing 111, edited by Robert W. Bro-
dersen and Howard S. Moscovitz, IEEE Press, 1988.

[24] H. F. Li. C. N. Zhang and R. Jayakumar, "Latency of Computational Data Flow and
Concurrent Error Detection in Systolic Arrays," CCVLSI 89, pp. 251-258, 1989.

[25] M. O. Esonu, A. J. Al-Khalili and S. Hariri, "Area Efficient Computing Structures
for Concurrent Error Detection in Systolic Architectures,” accepted for presentation
in the 1EEE Int'l Conf. on Parallel Processing (ICPP '91), Philadelphia, 1991.

[26] M. O. Esonu, S. Hariri and A. J. Al-Khalili, "A Systematic Approach for Designing
Fault - Tolerant Systolic Architectures," in Proc. 1989 Joint Tech. Conf. on
Circuits/Systems, Comput. and Communications, Sapporo, Japan, June 25-27, 1989.

127] M. O. Esonu, A. J. Al-Khalili and S. Hariri, "Design of Optimal Systolic Arrays: A
Systematic Approach," IEEE Symp. on Paraliel and Distributed Processing, pp.
166-173, Dallas Texas, Dec. 9-13, 1990.

[28] M. O. Esonu, A. J. Al-Khalili and S. Hariri, "On the Design of Optimal Fault-
Tolerant Systolic Array Architectures,” IEEE 5th Int'l Parallel Processing Symp.,
pp. 352-357, Anaheim, CA., May, 1991.

- 253 -

CHAPTER VI

AREA EFFICIENT FAULT-TOLERANT COMPUTING
STRUCTURES FOR SYSTOLIC ARRAYS

6.1 INTRODUCTION

In chapter 1V, we described an approach for designing fault-tolerant (FT) systolic
array architectures using the TMR technique. In this approach, each processing element in
the FT systolic array is provided with three sets of functional blocks, with each set used
to compute the output results of one version of the three versions of the algorithm.
Although, this technique is very general and can be applied to any level in a highly paral-
lel system, however, the cost of the fault-tolerant system is high. The hardware overhead
for fault-tolerance is at least 200 percent, without counting the cost of the voting circuit.
It has been mentioned that fault-tolerance can be achieved in systolic arrays, at a lower
cost by employing concurrent error detection (CED) techniques. Therefore, error detection
has become one of the corner stones of many fault-tolerance techniques. In view of this,
we proposed and presented in chapter V, an area efficient technique to design concurrent

error detection systolic array architectures.

In this chapter, the results of the CED technique will be extended to develop a tech-
nique for designing area efficient fault-tolerant computing structures for systolic arrays.
We propose two fault-tolerant design methods: in the first method, a fault-tolerant systolic
array is constructed using two CED systolic arrays. While in the second method, the
respective systolic arrays of three versions of the algorithm are merged, to produce a
fault-tolerant systolic array. The merits of these methods include: They are area efficient,
there is no need to replicate all the hardware in the FT systolic array. Redundant
hardware is introduced only at those places where it is needed. All the single transient

and permanent faults in the FT array can be detected and corrected. In addition to

- 254 -

detecting and correcting all single faults, these methods have the capability of tolerating
multiple fault patterns with high probability of coverage. Since it is possible to schedule
the computation of the output results of the three versicns of the algorithm, to start at the
same time with both using the same computational space but at different times, conse-
quently, there is no high-delay cost incurred. They have a feature of exploiting the advan-
tages of the interleaved computations without any reduction in the throughput of the FT
systolic array structure. These methods provide effective means of designing fault-tolerant
systolic array architecture.

The outline of this chapter is as follows: In section 6.2, we will describe in detail the
methods for mapping algorithms into fault-tolerant systolic arrays. The design methods
will be applied to an algorithm for matrix multiplication in order to demonstrate the gen-
erality and novelty of our approach to design fault-tolerant VLSI systolic architectures.
Procedures for designing area efficient FT systolic architectures are also presented. The
fault-tolerant analysis of the proposed design schemes will be discussed in section 6.3.
Section 6.4 gives the area and time overhead of the proposed schemes. In section 6.5, we
will compare the two methods of designing fault-tolerant systolic arrays proposed in this
chapter. Also, our FT scheme will be compared with other FT schemes proposed in the

literature. Finally, section 6.6 contains the summary and concluding remarks.

6.2 CONCURRENT ERROR DETECTION AND CORRECTION

In this section we present the design scheme for fault-tolerant systolic arrays. A
methodology to design and implement area efficient testable systolic arrays has been pro-
posed in [1] and also in chapter V. Here, we extend the techniques in {1] to design fault-
tolerant systolic architectures. The class of faults within the systolic array that the scheme
described here will tolerate is the same as that given in chapter V. In other words, the

same fault model used in chapter V will be applicable to the design scheme discussed in

™

this chapter.

6.2.1 The Proposed Scheme

The developed fault-tolerant scheme achieves concurrent error detection and correc-
tion of the faults through concurrent redundant computation (CRC). It is based on the
observation that at any given time the data flow computational activity is located in only
some cells in the FT systolic array. That is, at any given time instant, some of the cells in
the FT systolic array are performing meaningful computations of the output results of the
data variables while some are not. Hence, there is inherent spatial redundancy in the array
which could be exploited to perform concurrent redundant computations. Two or more
independent computations can be launched into the FT systolic array in such a way that
they are performed on different but partly overlapping regions of the array. If two or
more corresponding computations of the independent wavefronts hiave to share the same
computational resource at the same time, then spatial redundancy can be added only at
this resource to ensure that the independent computations are simultancously but
separately computed on the different computational resources. Thus at the time instant
when the computational wavefront of the required computation reaches the faulty cell, its
redundant counter parts would have been confined to a fault-free region of the array. Con-
sequently. a comparison of the corresponding output results would lead to the detection
and correction (masking) of the fault and this will be true for the case of the single fault

assumption.

In this subsection, we will describe two methods for mapping algorithms into fault-
tolerant systolic arrays. In our approach, fault-tolerant algorithms are designed by intro-
ducing redundant computations at the algorithmic level. Thus, when these algorithms
are mapped into specific VLSI systolic architectures, using the space-time mapping tech-
niques (described in section 2.3 and 3.2), the resultant arrays are fault-tolerant at minimal

additional cost in terms of area and frequency of operation. In the first method, an area

- 256 -

efficient concurrent error detection (CED) systolic array [1] is constructed as follows: We
obtain two transformed dependency matrices (TDM’s) that represent the two different
versions of the given algorithm. The first TDM is obtained by selecting a valid transfor-
mation matrix which transforms the dependency matrix of the algorithm into the new
transformed dependency matrix. However, the second one is obtained by rotating the sys-
tolic array corresponding to the first TDM by 180 degrees about any of the indices that
represent the spatial component of the TDM. These TDM’s are mapped into respective
systolic arrays. Concurrent error detection (CED) systolic array is constructed by merging
the corresponding systolic array of the two versions of the algorithm. Having constructed
the CED systolic array, it is then duplicated such that four sets of the output results are
produced by the two CED systolic architectures. Concurrent error correction or fault-
tolerance is achieved by voting on these results, using redundant voters. It is worthwhile
to mention that, the total area of the fault-tolerant systolic array designed using this
approach, is much less than designs that use the TMR approach, yet we obtain four ver-

sions of the output results through different dynamic paths.

In the second method, three transformed dependency matrices that represent the
three versions of the algorithm are obtained and then mapped into respective systolic
arrays. Concurrent error correction (CEC) systolic array is constructed by merging the
corresponding systolic array of the three versions of the algorithm. In this case also, as in
the first method, we identify the identical computations that may need to be computed at
the same computational site and at the same time. By adding extra hardware only at those
computational sites at which they will be computed and by re-scheduling the input data
(such that the original input data scheduling is satisfied), the interactions between the
three wavefronts are isolated. There is no need to replicate all the hardware in the cells of
the CEC systolic array and also, due to the input data scheduling, all the interconnection
links need not be replicated. Three sets of the computed output results are produced by

the different versions of the algorithm. Fault-tolerance is achieved by first, comparing two

- 257 -

of the three sets of output results for discrepancy. If these two sets of the output results
differ, then the third copy is selected as the fault - free output, otherwise, any of the com-
pared two sets of the output results is selected. Hence in this method, error detection is

followed by error correction in the presence of a fault.

The three transformed dependency matrices for the three versions of the algorithm
are derived in the following way. The first TDM is obtained in a similar fashion as the
first TDM in the first method. That is, by selecting a valid transformation matrix which
transforms the dependency matrix of the algorithm into the new trarsformed dependency
matrix. The TDM of the second version is the same as the TDM of the first version.
Therefore, their corresponding systolic arrays perform the same computations. However,
the two systolic arrays are related in such a way that the identical computations per-
formed by one systolic array at some computational sites, are performed by the other
array at a space which is a small incremental distance from the previous computational
sites [2]. In which case, the two arrays can be said to be in a Concurrent Redundant

Computation (CRC) mode.

For instance, let D and D’ be two identical computations (D’ is a redundant version
of D) such that S=A=TD and "= AN =TD' and
Cp =(i,j.k), Cp-=@"j k"), Cs={txy)), Cg =('x.y) In particular, Cp is
related to Cp- and Cy is related to Cg- by i'=i+d;, j=j+d;, k'=k+dy ,and ' =t +d,

X" =x+d, y =y +d, where d;,d;,dy,d,d, and dy are small constants and

dt di
dy| =T|d;|. Itis observed that D=D" and A=A".
d,| |4

It is defined [2] that,
S’ is a concurrent redundant computation (CRC) of § in a systolic array implementation
if and only if

() Csy-cZ?,

- 258 -

(i) CynCq =¢ ,and

(iii) dy, dy, dy are small constants.

It has also been proven {2] that there always exists a §* forming a CRC of a given § if
and only if At;, > 1 or Axp,, > 1 or Ay, > 1 for a 2-D systolic array, and Aty > 1 or

Ax,.. > 1 if § is a 1-D systolic array. At ‘s the time delay before a computational site

mn
(x,y) will be used again to perform another operation after it has just completed one. Ax

(Ay) is the difference of any two values chosen from x (y).

The TDM corresponding to the third version of the algorithm is obtained by rotating
the systolic array corresponding to the second TDM by 180° about any of the indices that
represent the spatial component of the TDM. This TDM can be derived from the TDM of
the second version, using the results presented in chapter V (Eqs.(5.1-5.15)) and also the
approach presented in [1]. In the following subsection, we will demonstrate the design

scheme using an example of an iterative algorithm.

6.2.2 Application of the Proposed Scheme

In order to illustrate our design scheme, we will consider the matrix multiplication
algorithm whose dependency matrix is given in Eq.(2.6). The same example of the algo-

rithm will be used to demonstrate the two design methods.

6.2.2.1 Method One

In the first method, our technique for designing fault-tolerant systolic arrays is to
duplicate the CED systolic array such that four sets of the output results are produced by
the two CED systolic architectures. As an example, the CED sy-tolic array shown in Fig,
5.5 will be considered for the design of the FT systolic array. The resultant fault-tolerant
systolic array architecture designed using this CED array, is shown in Fig.6.1. Fault-

tolerance is achieved by masking dynamically, errors using favlt-tolerant voting schemes.

- 259 -

B

\
©

CED systohie [

array of
Figure 5.5

-
pestlth-——— ————

Figure 6.

!

error
output

)

e
[SE— =
CED array
B = Z__7] bupheate
- e |
e
e e
cl je2
eed o .
)
——— e e 1

=B

\

error
output

v Set of output resull 0]

1 Sel of output result O

P
~

((') Stored element

-

1 TFault—tolerant systolic array for malrix
multiplication (for N=3).

- 260 -
6.2.2.2 Method Two

In the second method, the three versions of the algorithm, and hence their respective sys-
tolic arrays, arc derived as demonstrated in the following example.
Example

For the purpose of illustration, here, we will denote S as the TDM of Eq.(2.6), and
also choose it as the TDM of one version of the algorithm. The corresponding VLSI
implementation of § is shown in Fig.6.2. The TDM of the second version of the algo-
rithm, S’, is the redundant version of S. It can be obtained using the results presented in
section 6.2.1 [2]. If we choose a CRC S’ of § with d;=0,d, =1 and dy = (), then we

have,

0 11 1] |4
1| =101 1f |4, (6.1)
0 00 1|4,

From Eq.(6.1), d; =-1,d, =1,d, =0 . Thus, i'=i+d, =i-1,j = j+l and k' =k .
The mapping of the index set of S and S’ into VLSI arrays using the transformation T
(Eq.(2.6)) is shown in Fig.6.3. The corresponding systolic array of S’ is shown in

Fig.6.4(a). The cell structure is the same as that of S.

The TDM of the third version of the algorithm, §”, is determined by rotating the
systolic array of S’, by 180° about the vertical-axis. This can be derived using the results
presented in chapter V (Eqs.(5.1 - 5.15)). The corresponding systolic array of §” is
shown in Fig.6.4(b). The fault-tolerant systolic array is constructed by merging the sys-
tolic arrays of S,5" and S” as shown in Fig.6.4(c). As seen from Fig.6.4(c), the
coefficients of the generated variable (variable A) in two of the versions of the algorithm
need to be computed in cells (2,1), (3,2), (4,3), (5,1), (6,2) and (7,3). Also, the results of
the three independent wavefronts need to be computed at the same tirue in cells (3,1),

(4,2), (5,3), (4,1), (5,2) and (6,3).

Sl idt R

- 261 -

Q) Q) 2B)T
O DN %3
A AU AN
oD AN
DN Q) O

N 2) - - GBS (1)
O O by by by—~Ci}—(Cr}p —~(cu) -

\,
\\

12) - (52)
(Coyp =

<

— (3,2) | e |
R

N\

N

PO 53 - (63)
b33 boysbs O O '“"'(\(’3})

)
(Cn) () -

4 4 4

4.3

Figure 6.2 VLSI array struclure of S that implements the
matrix multiplication algorilhm (for N 3).

k ’ ‘f‘/ j ’ k ’
time processor

WWRWLWWWWLWERNNIN RN RN m——— e =
WWWNNN — - QW WERINIDN = = e 0 W R NI N et e
PRI = W = W = W = N — W = W RN — WHN) — W N —
CHNXNANA NN NN BTN UMD UNDW
UL ELEUVNAEWLARWLWNAOAVMDBEBUVMDMWRAWLWNOWVMAWUVMAWRWN
WR— WK = WN = WK WN ~ W —WN = WA — WA —
NN NNNNN = = ke it e = OO0 OO OO
PPRPPLPLVWWWNNNAERLEVWLWWNNINDARRRWWWNNDN
WD == LRI WIRNI = WA= WIN = W == W N — DN = W N
Pejie BN Ne S Ho N No BV Jo o Ko e R RV N RV I NN No MY, K NV I R, I PV
NOAUMONUNMSENHEWNOANUMON M PRPUNAEWNION VO WUMIE NS W
W = LIN = LR LN == WO — LI m= DI = LN = W) DN =

Fig.6.3 : Mapping of index sets of S and S’ into VLSI arrays using
transformation matrix T (for N=3),

In this method, our approach for designing fault-tolerant systolic array is to add
redundant computational unit in only those cells in the FT systolic array that need to
compute the results of the three wavefronts at the same time. Then, the input data is re-
scheduled such that the results of two independent wavefronts are simultaneously com-
puted using different functional blocks. The results of the third wavefront are computed
using any of the two computational units, provided that two identical computations are
not performed ucing the same computational unit.

Figure 6.5(a) depicts the FT systolic array (for N=3) designed using this technique.

The array consists of two types of cell structures. In the first type (type I cell), the com-

putational units are not duplicated (cells (2,1), (3,2), (4,3), (5,1), (6,2) and (7,3)), while in

- 263 -

Q Q) A) -
O 2N W
2 o o\
OV q\‘L Q
2\

OOtmmm~H}?ﬁ“m—
\

N (42) 52) , (6.2)
O by b bz O —~—<c,) ((») (o) -
N |

\
. (() i) (7, 3)
bag bosbi3 O O - '(g 31> <('.‘i('i) -

Figure 6.4(a) VLSI array structure of S’ thal implements
the matrix multiplication algorithm (for N-3)

Q @,\‘L Yo
Q) O\

bll b21 b31 O O

13\31 \//WI >\/\/<5.1’__
—(42) 52)>

—(cy) O by by by O
v\:)\m
033 Cyy) O O by by by

l

I'igure 6.4(b) The VLSI array structure of S’ resulting from
rotation of Figure 6.4(a) by 180" about the
vertical axis.

- 265 -

Q
Q 2P >P %
Ous O 0% a8 O oP of 'W@Q 3
K . O a9 % v o O '50 N
> . o™ o Q % Qo QO oY o
[2% 0 2% Q QQ o

OO

E Figure 6.4(c) The VLSI array struclure resulting from
g merging the systolic arrays of 5, 8 and
‘ S (for N=3).

0000

0 0 0 byb,b 00

e crror output |
°w crror output 2
1 delay eclement

(7\/ type [cell
&y type 1l cell

Figure 6.5(a) T systolic array for matrix multiplication
(for N=3).

- 267 -
A A\z
Ci ((a
- I‘ | ;‘
) 4
Ry] Ry [__RJ LRQJ [Re|
) ('. *i)
Sl | [e
S
b Le rLL |
Bz 4 j “{52 T
Y* I A
X KN
¥ 4 3 v
+]
T\‘ I
Al ‘A"

L1, L2— delay elements

Figure 6.5(b) The internal structure of a sct of

type Il cells showing the two dclay
elements incorporated inside the cells.

>

- 268 -

the second type (type Il cell), the functional blocks are duplicated (cells (3,1), (4,2), (5,3),
(4,1), (5,2), and (6,3)). The input data for variable A are re-scheduled so as to satisfy the
original data scheduling. In order to synchronize the data propagation of each of the com-
putations, two additional delay elements are introduced in each interconnection line of
variable B in the FT systolic array. In one case, the two delay elements are introduced in
the interconnection lines outside the cells, while in another case, they are introduced
inside some of the type II cells (cells (4,1), (5,2) and (6,3)). The internal structure of the
type I cells is shown in Fig.6.5(b).

In order to achieve concurrent error correction in the FT systolic array of Fig.6.5(a),
the output results of outputs 1 and 6 are compared for discrepancies using a TSC circuit.
If they are the same, it signifies that the output results are fault-free, then the results of
either output can be selected as the error-free output results. However, if the two output
results disagree, it indicates the presence of faults in the FT systolic array. The effect of
the faults can be masked by selecting the output results of output 2 in the next clock
cycle. Similarly, outputs 3 and 5 can be compared and depending on the status of the
second error output, the fault-free output results in this case, are selected. The concurrent
error correction procedure can be summarized as follows:

Let ey be the error output 1 and e, be the error output 2 (Fig.6.5(a)). Also, O; represents

the output result of output i.

() Compare O; and Og
If ¢, =0, select O or Oy

Otherwise, if ¢ =1, select O, in the next cycle.

(2) Compare Oj and Os
If ¢;=0, select O;orOs

Otherwise, if e, =1, select Oy or Oy in the next cycle.

L T

- 269 -

The concurrent error correction is accomplished by using the error correction circuit.
This can be placed on-chip or off-chip and embody the logic for correcting errors. Issues
such as how to tolerate faults in the error correction circuit (that is how to test the tester),
are avoided to focus on the basic ideas of the technique. However, since the results are
produced in triplets, errors in the FT systolic array of Fig.6.5(a) can also be masked

dynamically using fault-tolerant voters.

6.2.3 Procedure for Designing Area Efficient FT Systolic Architectures

In this subsection, we present the following two strategies to design a FT systolic
array architecture using our schemes :
A Method One
1. In the first method, the CED systolic array is constructed.
2. It is then duplicated to produce four sets of output results.

3. Finally, concurrent error correction is determined.

B Method Two

1. In the second method, the TDM of a given algorithm is determined and then mapped
into a systolic architecture.

2. The second version of the algorithm is the redundant version of the first one but in
CRC mode.

3. A third version of the algorithm is determined by rotating the systolic array in step 2
by 180 degrees about any of the principal axis (horizontal, vertical or diagonal axis).

4. The three systolic arrays are merged to construct the FT' systolic array.

5. Add extra hardware only in those cells of the FT array that would compute the output
results for the independent computations or wavefronts.

6. The input data of some of the variables in the algorithm are re-scheduled to satisfy

their original input data scheduling. Extra time is required for the completion of the com-

- 270 -

putations and this corresponds to the maximum number of extra delay elements intro-

duced in the interconnection path of any of the data variables.

6.3 FAULT-TOLERANT ANALYSIS OF THE PROPOSED DESIGN
SCHEMES

In this section, we will illustrate how faults that occur in the FT systolic arrays can
be tolerated by using the two fault-tolerance design methods describ=d in this chapter.
From the analysis of how and which faults are toleraied, then, one can have an idea of
the percentage of the fault coverage of the design scheme.

For the proposed scheme, a functional fault model has been assumed. Therefore, our
interest lies basically in detecting and correcting a corrupt output, to ensure the validity of
the final result. A fault that does not produce an error, or in other words, that does not
affect the functionality of the module under test, will not be detected. It is important to

note also that the output results will be fault-free since no error is produced by the fault.

The fault-tolerant systolic array designed by employing the scheme described in the
first method is shown in Fig.6.1 . As mentioned before, this FT array is constructed using
two CED systolic arrays of Fig.5.5. In Fig.5.5, for instance, the output result of one of the
coefficient @, is calculated in cells (2,1), (3,2) and (4,3), while the alternate result is cal-
culated in cells (4,1), (5,2) and (6,3). A discrepancy in the two results indicates a fault or
malfunction (temporary or permanent) either in any of the functional blocks of any of
these cells or in any of the interconnection lines in the systolic array or in any of the
added delay elements. Similarly, the results of, for instance, a;, are calculated with the
duplicated functional blocks in cells (3,1), (4,2) and (5,3). In this case also, a fault either
in any of the functional blocks in these cells or in any interconnection line in the array
will produce a discrepancy in the two answers. Since the error detecting circuits are
totally self-checking, hence any single fault in the CED systolic array or a faulty com-

ponent in the error detecting logic itself would be detected. Therefore all single faults in

- 271 -

the systolic array of Fig.5.5 are detectable. Also, all single faults in the copy of the CED

systolic array would be detected in a similar fashion as in the original one.

Four sets of output results are produced by the FT systolic array of Fig.6.1 and each
set of the output results is computed using separate functional blocks. These four output
results are voted on using fault-tolerant majority voter circuits. Since the voter circuit is
fault-tolerant, the combination of the four copies of the output results produced by the FT
array and the output voter can tolerate any single fault in the FT systolic array or a faulty
component in the voter itself. Therefore, all single faults in the T systolic array of

Fig.6.1 can be tolerated by dynamically masking the effects of the faults.

So far, we have considered the results of single faults. A number of multiple fault
patteins can also be detected and masked by this design scheme, provided that the
corresponding output results of two or more independent computations are not aftected by
the multiple fault pattern. For example, a multiple fault pattern which comprises single
faults in cells (3,1), (4,2), (5,3), (4,1), (5,2) and (6,3) in Fig.5.5, produce a detectable and
maskable error pattern, since no corresponding output results of a,, would be affected by
the fault pattern. However, it is important to note that a multple fault pattern that affects
two corresponding output results may cause both results to have the san.e erroncous
values. In this case, the error detecting circuit would not indicate a discrepancy in the two
answers and hence, such multiple fault patterns cannot be detected. Also, since the
erroneous values of these two output results would be different from the values of the
other two fault-free outputs, thus, a majority decision would not be reached at the output
and hence, such multiple fault pattern cannot be tolerated. We have illustrated the cases
where a multiple fault pattern can either be detected and corrected or not detected and not
tolerated. It is possible to have cases where the multiple fault pattern can cither be
detected but not tolerated or vice versa. To illustrate the case wiere the rault pattern can
be detected but not tolerated, consider a single fault in cell (2,1) (Fig.5.5) of one copy of

the CED array. If the same fault occurs in cell (2,1) of the other copy of the CED array

in Fig.6.1, this multiple fault pattern is detectable. However, it cannot be tolerated since
this will not produce a majority vote at the output of the FT systolic array. The case
where the fault pattern cannot be detected but can be tolerated, corresponds to when a
multiple fault pattern does not produce an error or does not affect the functionality of the
circuit under investigation. It is important to note however, that the probability of

occurrence of these multiple fault patterns is very low.

The CED and the error masking strategies employed in this method, focus on a gle-
bal mechanism for fault-tolerance. The proposed method does not focus on local error
detection or local error masking. As a result, it does not provide error location capabili-
ties. We are not interested in locating faulty PE’s, rather we want to mask the effects of
faults that occur in these PE’s. Due to the fact that fault location is not provided by this
scheme, it may not be integrated with some reconfiguration algorithms. However, since
errors are dynamically masked at the output of the fault-tolerant systolic array,

reconfiguration algorithm is not necessary.

Furthermore, the fault-tolerant systolic array designed using the scheme of the
second method is shown in Fig. 6.5(a) Figure 6.5(a) consists of two types of cell struc-
tures. In the first type (type I cell), the computational units in the cells are not duplicated,
while they are duplicated in the second type (type II cell). The type 1 cells correspond to
those that compute part of the output results of only two independent computations (e.g.
cells (2,1), (5,1)). On the other hand, type II cells compute part of the output results of
the three independent computations (e.g. cells (4,1), (5,2), (6,3)). As seen from Fig.6.5(a),
the output results of all the coefficients a;,, except those of a,5, (for the three versions of
the algorithm) are computed on separate functional blocks. For instance, the result of
coefficient ay; for the three versions, are respectively computed in cells ((2,1), (3,2),
4,3)), (3,1), 4,2). (5,3)) and ((5,1), (6,2), (7,3)). The output results of a;, for two
independent computations are computed in cells (4,1), (5,2) and (6,3). Since the compu-

tational unit in these cells are duplicated, the two results are computed using separate

- 273 -

functional blocks. Therefore, the output results of the three versions of the algorithm are
computed in the FT systolic array of Fig.6.5(a), using separate functional blocks of the

cells but at different times.

Also, a set of the input data for variable B is used to compute the output results of
the two versions of the algorithm, as shown in Fig.6.5(a). Any fault that occurs in the B
- data path will corrupt the results of two independent computations. Hence such faults
cannot be tolerated or corrected by the correction circuitry. However, in designs where
the data paths are conservatively designed, faults in these elements may be much more
unlikely and can essentially be treated as hardcore [5]. In order to truly tolerate faults in
this B - data path, the input data of the B variable for this two independent computations
should be duplicated. Another possibility to achieve fault-tolerance in the B - data path is
to employ error correcting codes [27,28]. If we assume that the error correction circuit is
fault-free, and from the abov. analysis, then all single faults in the FT systolic array of
Fig.6.5(a) can be tolerated. Also in addition to permanent faults, intermittent errors or

temporary faults are detected and corrected by these design schemes.

Like the design scheme proposed in method one, this scheme can also tolerate a
number of multiple fault patterns, provided that the corresponding output results of two
independent computations are error-free. For instance, consider a multiple fault pattern
consisting of single faults in cells (2,1), (3,2), (,2), 4,1), (5,2) and (6,3). This multiple
fault pattern will cause only one set of te output results of (a1,a;1,231) oOr (@ 12,@92,233)
or (a,3,a,3,a33) to be erroneous. Since the majority of the output results of these ele-
ments are fault-free, hence the multiple fault pattern can be tolerated. This example

demonstrates the case when the multiple fault pattern can be detected and corrected.

In order to illustrate the case when the multiple fault pattern can be detected but not
corrected, consider a single fault in cells (3,2) and (4,2) respectively. It is assumed that
the fault in cell (4,2) affects the computation unit used to compute the output results of

elements a,,.a,; and a3,. The three copies of the results of these elements are respec-

-274 -

tively produced at outputs 0y, O, and Og¢ of the FT systolic array of Fig.6.5(a). The
results from outputs O, and O, will be faulty due to the occurrence of the multiple fault
pattern, while those from output O¢ will be fault-free. The comparison of the correspond-
ing results of outputs O; and O¢ will detect the discrepancy in the results. Since the
results of output O, are to be selected when those from O; and O disagree, thus, a
faulty output result is selected as the fault-free one. Hence, this multiple fault pattern can

be detected but not tolerated.

Also, it is possible to have the case where the multiple fault pattern can neither be
detected nor corrected. This case can be illustrated by considering a combination of single
faults in cells (4,3) and (7,3). If the corresponding output results of the elements ay, a;,
and a3;, from outputs O, and O ¢ have the same erroneous values, the comparison of the
results from these two outputs will not indicate any discrepancy. Either of the faulty out-
puts will be selected and hence, this multiple fault pattern can neither be det ed nor
tolerated. Although, some of the multiple fault patterns cannot be detected nor tolerated,
however, a great majority of them will be tolerated as long as ihey affect only one copy
of the three copies of the output results produced by the fault-tolerant systolic array of

Fig.6.5(a).

6.4 AREA AND TIME OVERHEAD OF THE PROPOSED SCHEMES

It is a well known practice in VLSI system design, there is always a trade-off
involved between the silicon area and the desired efficiency in terms of throughput and
speed. Our motivation is to propose a scheme which is applicable to different systolic
array implementations without causing any loss in throughput. This goal is achieved by

our scheme but not without some overhead in silicon area and time.

In the first method, the silicon overhead includes the additional functional blocks

introduced only in those cells that are required to compute the corresponding output

-275 -

results of the two independent computations. It also includes the delay elements used te
synchronize the flow of input data into the CED systolic array, the duplicate of the CED
array and the fault-tolerant voters. The error detection circuitry is not necessary since the
errors at the output of the array are masked by the redundant voters. As regards to the
time, since :hc two independent computations are launched into the CED systolic array at
the same time, there comes a time when a computational resource would be requested by
the two different computations at the same time. In order to resolve this conflict, extra
time is introduced by delaying one computation (using the delay elements) until the other
has completely utilized the computational resource. Therefore in this respect, we can say
that this scheme involves overhead in time. For instance, in Fig.5.5, one extra clock cycle
is required to complete the computation of the two independent results. The number of
the extra clock cycles required corresponds to the maximum number of the delay ele-
ments introduced in the path of the interconnection line of any of the variables in the
algorithm. This is exemplified in Fig.5.5 where an extra delay element is introduced in
the path of variable B to synchronize the propagation of data into the CED array. Since
the duplicated CED arrays produce their output results at the same time, hence only one
(rather than two) clock cycle is required to complete the computation of the output

results.

In the second method, the silicon overhead includes, the additional functional blocks
introduced only in those cells that are required to compute part of the output results of
the three versions of the algorithm. It also includes the delay elements used to synchron-
ize the flow of the input data into the FT systolic array, and the fault-tolerant voters or
the error detection and correction circuits. Two delay elements are introduced in the inter-
connection lines of variable B. Here, the number of the extra clock cycle required is
given by the (number of delay units + 1), hence, three extra clock cycles are required to

complete the computation of the three independent computations.

In Fig.6.5(a), from the way by which the input data for variable A are re-scheduled,

-

W A

o st Al

- 276 -

it appears that ore computation is launched after the other. Consequently, at most twice
the number of clock cycles (required by the irredundant array) would be required to com-
plete the computation of the three independent results. The systolic array of Fig.6.2
requires 7 clock cycles to complete the computation of one version of the algorithm.
From the nature of the data scheduling in Fig.6.5(a), a total of 13 clock cycles would
have been required to complete the computation of the three independent output results.
However, the CED systolic array of Fig.5.5 requires only 8 clock cycles to complete the
iwo comrutatons. While the FT systolic array of Fig.6.5(a) requires only 10 clock cycles
to complete the computation of the three independent compuiations. Hence, given the
nature of the data flow into the CED (Fig.5.5) and FT (Fig.6.5(a)) systolic arrays after
re-scheduling the input data, we can conclude that our scheme does not involve any over-
head in time. There is , of course, no loss in throughput. One of the advantages of these
schemes is that though the input data is re-scheduled, the corresponding output results
arrive at the output of the array almost at the same time. This facilitates the comparison
and voting on the output results without the introduction of any additional control or syn-

chronization circuitry.

In the following section, we will compare the two proposed methods of designing
fault-tolerant systolic arrays. Also, we will compare our FT schemes with other FT design

schemes.

6.5 COMPARISON OF THE PROPOSED FT SCHEMES OF THE
TWO METHODS

The FT systolic array of Fig.6.1 designed using the technique described in the first
method (example 1, section 5.2.3), consists of 18 processing elements (PE’s) and 12
delay elements. Figure 6.5(a) depicts the FT systolic array designed using the second
method. It consists of 12 PE’s and 12 delay elements. By taking into account the extra

interconnection lines and extra area required to route data into the duplicate CED array in

- 277 -

Fig.6.1, it can be observed that the FT scheme of the second method has less area over-
head than that of the first method. However, the FT scheme of the first method has less
time overhead than that of the second one. [t utilizes only one extra clock cycle to com-
plete the computation of the output results, while the second method requires three extra
clock cycles. Although the above comparison is based on an example, it reflects a general
result.

Also, four copies of the output results are produced by the FT design scheme of the
first method, while three copies of the output results are produced by the scheme of the
second method. Hence, more work is done and hence more energy is consumed by the
FT systolic array designed using the first method than that designed employing the
scheme of the second method. Therefore, there 1s a trade-off between the FT schemes of
the two methods. However, in general, the FT scheme of the second method offers better

advantages than that of the first method.

6.5.1 Comparison of Qur FT Schemes With Other FT Schemes

Several fault-tolerant schemes for systolic arrays have been proposed in the literature
[3-26]. The approaches proposed in [3-14] use reconfiguration techniques to achieve
fault-tolerance in systolic arrays. In [3], the proposed systolic fault-toleraric scheme main-
tains the original data flow pattern by bypassing defective cells with few registers. Other
approaches to reconfigure VLSI systolic arrays have also been presented in [4-14]. The
differcnce between the approaches lies in the reconfiguration ctrategy employed by each
approach. However, in general, the problem of how to tolerate the defects once they are
located is addressed in each approach. Therefore concurrent error correction cannot be
achieved using these techniques. Also, the fault detection problem, requiring a totally
different set of techniques such as voting and self testing is not discussed. In most cases,
such fault detection techniques are specific to a given architecture and may not be appli-

cable to another architecture. Additionally, the techniques may be expensive in terms of

U S

R

- 278 -

area and time overheads and as such cannot be applied in real-time systems. Also, the
approach proposed in {3] can only tolerate faults in the computation units once the faults

are located. It cannot tolerate faults in the registers and the interconnection links.

The fault-tolerant methods proposed in this chapter do not use reconfiguration
schemes, hence we will compare our design schemes against other relevant schemes. In
table 6.1, we compared the complexity and performance of the schemes proposed in this
chapter with those shown in table 4.1. Two fault-tolerant methods have been presented in
this chapter. Table 6.1 consists of the comparison of the complexity of these fault-tolerant
methods. For ease of comparison, the hardware and time redundancy ratios of the existing
and proposed schemes are presented in table 6.2. The proposed technique in method one
of this chapter, requires a hardv-are redundancy ratio of a factor of 1 (i.c. 100%), and a
time redundancy ratio of O(N-1/ 3N-2). For large values of N, the time redundancy ratio
is about 33%. The technique employed in method two requires a hardware redundancy
ratio of about 2% and a time redundancy ratio of less than 33%. It can be seen that the
technique of method one has the same time redundancy ratio as that of method two.
However, the hardware redundancy ratio of the scheme in method two is much less than

that proposed in method one.

The time redundancy approach of achieving fauli-tolerance, proposed in chapter 1V
(method one), requires hardware and time redundancy ratios of 0% and 50% respectively.
While the spatial redundancy approach (TMR, method two), requires hardware and time
redundancy ratios of 200% and 0%. The FT approach (TMR) proposed by Von Neumann
[15] requires a hardware redundancy ratio of 200%. There is no time overhead required
for computations since the replicated arrays perform the computations at the same time.
The technique, like all TMR techniques, is very general and can be applied to any level

in a parallel system.

For the FT technique proposed in [16-18], the structure of the resulting FT systolic

array is not highly regular and granular. More silicon area is required to route data into

- 279 -

. —

l Category | Proposed Approach (Method 1) Proposed Approach (Method 2)
FT Dual Redundancy (Duplication) Error Detection/Masking
Technique | Approach Approach
Comple- Processor: !'2 Processor: N°
xity Time: N-2 Time: 3N-2
without
FT
techni-
ques
Redun- Processor: N2 Processor: 2N
dancy Time: N-1 Time: N
required Voter: [n/2] Voter: -
with the Buffer: aN Buffer: 4N
technique | yge. _ T1SC: [n/2]

Other: - Other: Error correction circuit
Redundan- | processor: O (N2/N2) Processor: O (2N/N2)
cy Ratio | 1ine: O ((N-1)/(3N-2)) Time: O (N/(3v-2))
Diagnosis | ~aults Faults
Perfor- - types: Permanent & Temporary - types: Permanent & Temporary
mance - # allowed: Single faulr & — # allowed: Single fault &

certain multiple fault patterns certain multiple fault

~ detection: Yes patterns

- location: No - detection: Yes

~ location: Possible
Utit4- On-1ine global error masking. On-line global error
l zation correction, or error masking.

Table 6.1

Comp~rison of the complexity and diagrosis performance of the fault-

tolerant techniques proposed in Methods 1 and 2 of Chapter VI,

- 280 -

Hardware Time
FT Techniques Redundancy Redundarcy
Ratio Ratio
Von-Neuman [15] 0(2) 0

Huang & Abraham [16-18]

- dense matrix multiplication
0 (2/n)

- band matrix multiplication
0 (2/w,)

- dense matrix multiplication
O (((2*r*10g,y(N))+T_ I/N)

- band matrix multiplhication
O (((2*r*1095(N))+T__ I/N)

Jou & Abraham {19}

O (((an/1)+s2)/N)

O ((nvL1+1__)10)

Kim & Reddy [20]

O ([NC3m)-(Hy*Wp) 1/ (Wy)
if W,=2m-1

O ([N(3m+1)~(W,*Hp) 1/ (W *W,)
if Wy=2m

o)

Cosentino [21] 0 (1/n) O (2n/(3N-1))
Cosentino [22] O (282/3?) O (1, o/2N)
Ari & Friedlander [23] O (p/(2N+1)2) O (1,/(an+2))
Kung & Manolakos [26,27) O (1/N) O ((n+1)/(2N-1))
Varman & Ramakrishnan [24] | O (k/NN) O (2¢/(4NIN-N-3IN))
Kumar & Tsai [25] O {x/tiN) O (2k/(3NIN-2))
Proposed Approach (Method | 0 O (2n/(aN-3))

1, Chap.1V)

Proposed Approach (Method 0(2) 0

2, Chap.1V)

Proposed Approach (Method o(1) O ((N-1)/(3N-2))
1, Chap.VI)

Proposed Approach (Method C(2/N) O (n/(3N-2))

1, Chap.VI)

Table 6.2 Comparison of the hardware and time redundancy
ratios of the existing and proposed schemes.

- 281 -

the array. As a result, the hardware redundancy may approach 100%. The error correction
is done off-line. Extra time is required to correct the errors after they are located. For
crror detection, the time recundancy ratio is about 4%. However, for error correction, this
ratio increases and may approach 50%. In the case of the technique proposed in [19], if
the array size is much larger than the word length of the weighted suimmation elements,
the hardware redundancy ratio is about 100%. When the extra time required for error
correction is added to the time redundancy for computations of the matrix elements, the
time redundancy ratio will be greater than 100%. The hardware redundancy ratio of the
approach nroposed in [20] is over 100%. Since the throughput of the array is reduced by

half, hence, the tnne redundancy ratio may be about 100%.

The approach proposed in [21] requires a hardware redundancy ratio of 1% (for
"rge values of N). The time redundancy ratio is over 66%. In [22], the hardware redun-
dancy ratio required by the scheme is 300% while the time redundancy ratio is 100%. For
the approach proposed in [26,27], the hardware and time redundancy ratios are respec-
tively 1% and 50%. The hardware and time overhead required by the scheme in [23]
depend on the diagnostic expression chosen for error detection. If the checksum error
detection scheme is selected as the diagnostics expression, then, the hardware and time
redundancy ratio will be similar to those in [16-18], that is, 100% and 50% respectively.
The hardware and tinie overhead required by the reconfiguration schemes in [24,25],
depend on the error detection techniques and the number of faulty processing elements in
the systolic array.

Table 6.3 consists of the summary of the percentage hardware anc¢ time redundancy
ratio required by the various fault-tolerant schemes to perform matrix multiplication in
systolic arrays. As observed in table 6.3, the FT approaches proposed in {21] and [26,27],
require less hardware redundancy than the scheme proposed in method two of this
chapter. Although, their hardware redundancy ratio is 1% while that of the proposed

scheme is 2%, nonetheless, the values are comparable. However, in [21], each row of the

Percentage Percentage
Hardware Time
FT Techniques Redundancy Redundancy
Ratio Ratio
(N=100)
(%) (%)
Von-Neuman [15] 200 0
Huang & Abraham [16-18] 100 50
Jou & Abraham {19] 100 100
Kim & Reddy [20] 100 100
Cosentino [21] 1 66
Cosentino [22] 300 100
Ari & Friedlander [23] 100 50
Kung & Manolakos [26,27] 1 50
Varman & Ramakrishnan (24] - -
Kumar & Tsai [25] - -
Proposed Approach 0 S0
(Method 1, Chap. 1V)
Proposed Approach 200 0
(Method 2, Chap. 1V)
Proposed Approach 100 33
(Method 1, Chap. VI)
Proposed Approach 2 33
(Method 2, Chap. VI)

Table 6.3 Summary of the comparison of the percentage
hardware and time redundancy ratios required
by various FT schemes to perform matrix
multiplication in systolic arrays.

- 283 -

FT systolic array requires an error correction circuitry, hence, the number of such circuits
increases with the size of the array. In our case, only a single error correction circuit is
required. If the number of the error correction circuits is taken into account, this could
increase the hardware overhead in [21] considerably. The scheme in [26,27] can only
correct transient faults, correction of permanent faults require additional hardware. Even
though, the schemes proposed in [21] and [26,27] have slightly better hardware redun-
dancy ratio than our scheme, the proposed scheme has the best hardware and time redun-
dancy ratio combination, 2% and 33% respectively. Therefore, our approach provides a

low cost technique to detect and mask errors in processor arrays.

In addition to possessing better figure of merits in terms of the combination of the
hardware and time redundancy ratios, our design scheme overcomes most of the problems
of the other schemes. For instance, the proposed scheme can be applied to any systolic
array implementation. It is not restricted to a class of systolic arrays in which the partial
results must stay in the cells as in [21]. Also, it is neither restricted to implementations
where the data as well as the (sub) results move from one cell to another as in [20].
There is no halving of the maximum effective output rate, that is, there is no reduction in
throughput by 50% as in the schemes proposed in {20,21,26,27]. The proposed scheme is
effective for transient and permanent faults, while the schemes in [16-18, 26,27] are
effective for transient faults. Error detection and error masking are performed with the
normal operation of the system (i.e. on-line error masking), while in [16-19], the error

correction is done off-line.

The proposed scheme can detect and mask all single (both permanent and transient)
faults and most multiple tault patterns in the FT systolic array. In [20,21,23], the schemes
cannot detect or correct faults in the input/output registers and the interconnection lines
tor data transfer. The scheme in {22] cannot correct faults in the data paths, binary-to-
residue and residue-to-binary conversion circuits, and the error calculator. The diagnosis

and correction latency of the proposed scheme is not very long as in the case of the

- 284 -

schemes in [16-19,22,23]. A'so, the schemes in [16-19,22,23] are vulnerable to false
alarms brought about by roundoff errors. In our scheme, there is no roundoff errors intro-
duced in the computations of the matrix multiplication algorithm. The redundant compu-
tations produce exact output results if there is no fault in the array. A discrepancy exists

only in the presence of a fault.

In the propesed approach, redundant hardware is added only at those computational
resources that need to compute three (two) independent computations at the same time,
This, in most cases, results to area efficient systolic designs. Furthermore, the FT design
approach is systematic as oppesed to the approaches in [20,23] which are not systematic.
Finally, the structure of the FT systolic array resulting from our design scheme is regular
and granular. This is not the case with the schemes proposed in [16-19,23], where the

non-regularity of the structures even depends on the array size.

The proposed design scheme detects and masks the effects of faults at the output of
the FT systolic array, it cannot locate faults in the array. Also, is not possible to
reconfigure the array. However, since our fault-tolerant design scheme is based on error

masking approach, thus, fault location and array reconfiguration are not required.

6.6 CONCLUDING REMARKS

In this chapter, we have presented fault-tolerant (FT) schemes for VLSI systolic
array architectures. From the comparison of the two proposed methods, it is observed that
the second method has better advantages than the first method and hence, it is the pre-
ferred technioue for designing FT systolic array architectures. This scheme offers solu-
tions to several problems of the other known FT schemes. It is applicable to a wide class
of VLSI implementation of algorithms. The technique is not limited to only those systolic
implementations where the data as well as (sub) results keep moving. It can also be

applied to those implementations where either the data or the (sub) results are stored. It

|

- 285 -

has a feature of exploiting the advantages of the interleaved computations without any
reduction in the throughput of the array structure. The scheme can tolerate all single per-
manent and temporary faults and a majority of the multiple fault patterns. It is area
efficient, there is no need to replicate ail the hardware in the FT systolic artay. Redun-
dancy is introduced only at those places where it is needed. The silicon area is limited to
one row of extra functional blocks in those cells that compute the output results of the
two or more independent cornputations, delay elements and the error correction logic. The
computation of the output results of the two or more versions of the algorithm can be
scheduled to start at the same time with both using the same computational space but at
different times. Although the input data is re-scheduled, the corresponding output results
of the independent computations arrive at the output of the array almost &t the same time.
This facilitates the comparison of the results without the introduction of any additional
control or synchronization circuitry. Consequently, there is no high delay cost incurred
and thus, the technique can be employed in real-time applications. This scheme can be
applied to any systolic array structure (e.g. 2D, tree - connected etc.) and also to other

types of VLSI arrays.

- 286 -

6.7 REFERENCES

1

[2]

(3}

[4]

(5]

[6]

(7]

(8]

[9]

M. O. Esonu, A. J. Al-Khalili and S. Hariri, "Area Efficient Architectures for Con-
current Error Detection in Systolic Arrays," IEEE Int’l Conf. on Parallel Processing
(ICPP ’91), Chicago, August, 1991.

H. F. Li, C. N. Zhang and R. Jayakumar, "Latency of Computational Data Flow and
Concurrent Error Detection in Systolic Arrays," CCVLSI ’89, pp. 251-258, 1989.

H. T. Kung and M. S. Lam, "Fault-Tolerance and Two Level Pipelining in VLSI
Systolic Arrays," MIT Conference on APV Research in VLSI, pp. 74-83, Jan. 1984,

F. T. Leighton and C. E. Leiserson, "Wafer-Scale Integration of Systolic Arrays,"
IEEE Trans. Computers, Vol. C-34, pp. 448-461, May 1985.

I. Koren and M. A. Breuer, "On Area and Yield Considerations for Fault-Tolerant
VLSI Processor Arrays,” iEEE Trans. on Comput., Vol. C-33, No. 1, pp. 21-27,
Jan., 1984.

P. J. Varman and 1. V. Ramakrishnan, "A Fault-Tolerant VLSI Matrix Multiplier,"
ICPP, pp. 351-357, August, 1986.

T. Ishikawa, S. Momoi, S. Shimada, Y. Ogawa, "Hierarchical Array Processor
(HAP) Featuring High Reliability and High System Performance,” ICPP, pp. 293-
300, August, 1986.

F. Lombardi, R. Negrini, M. G. Sami, and R. Stefanelli, "Reconfiguration of VLSI
Arrays: A Covering Approach,” FTCS, pp. 251-256, July, 1987.

H. F. Li, D. Pao and R. Jayakumar, "Dynamic Reccutiguration for Fault-Tolerant
Systolic Arrays," ICPP, pp. 110-113, August, 1987.

[10] D. L. Landis, W. A, Check and D. C. Muha, "Influence of Built-In Self-Test on the

Performance of Fault-Tolerant VLSI Multiprocessors,” ICPP, pp. 114-116, August,
1987.

(11} M Hou and H. T. Mouftah, "Fault-tolerant System Using 3-Value Logic Circuits,”

IEEE Trans. on Reliability, Vol. R-36, No.2, pp. 227-231, June, 1987.

[12] J. M. Char et al., "Distributed and Fault-Tolerant Computation for Retrieval Tasks

Using Distributed Associative Memories,” IEEE Trans. on Comput., Vol. 37, No. 4,

pp. 484-490, April, 1988.

[13] J. A. Abraham, P. Banerjee, C-Y Chen, W. K. Fuchs, S-Y Kuo and N. Reddy,

"Fault - Tolerance techniques for systolic arrays,” IEEE Computer, pp. 65-74, July
1987.

- 287 -

[14] J-H Kim and S. M. Reddy, "On the Design of Fault-Tolerant Two-Dimensional Sys-
tolic Arrays for Yield Enhancement," IEEE Trans. Comput., Vol. 38, No. 4, April
1989.

[15} J. V. Neuman, "Probabilistic Logics and Synthesis of Reliable Organisms from
Unreliable Components,” Automata Studies, No. 34, pp. 43-99, Princeton, NJ :
Princeton University Press.

[16] K-H Huang and J. A. Abraham, "Low Cost Schemes for Fault Tolerance in Matrix
Operations with Processor Arrays,” Proc. 9th Symp. on Computer Architecture, pp.
330-337, May, 1982.

f17] K-H Huang and J. A. Abraham, "Fault-Tolerant Algorithms and their Application to
Solving Laplace Equations," IEEE Int'l Conf. Parallel Processing, pp. 117-122,
August, 1984,

[18] K-H Huang and J. A. Abraham, "Algorithm-Based Fault Tolerance for Matrix
Operations,”" IEEE Trans. on Comput., vol. C-33, No. 6, pp. 518-528, June, 1984.

[19] J-Y Jou and J. A. Abral.am, "Fault-Tolerant Matrix Arithmetic and Signal Processing
on Highly Concurrent Computing Structures,” Proceedings of the IEEE, vol.74, No.
5, pp. 732-741, May, 1986.

[20] J-H Kim and S.M. Reddy, "A Fault-Tolerant Systolic Array Design using TMR
Method,” 1985 ICCD, pp. 769-773.

[21] R. J. Cosentino, "Concurrent Error Correction in Systolic Architectures,” Proc. IEEE
Trans. on Computer-Aided Design, Vol. 7, No. 1, pp. 117-125, January 1988.

[22] R. J. Cosentino, "Fault Tolerance in a Systolic Residue Arithmetic Processor Array,"
IEEE Trans. on Comput., vol. 37, No. 7, pp. 886-890, July, 1988.

[23] H. Lev-Ari and B. Friedlander, "On the Systematic Design of Fault-Tolerant Proces-
sor Arrays with Application to Digital Filtering," 1988 VLSI SIGNAL PROCESSING
111, pp. 483-494, 1988.

[24] P. J. Varman and I. V. Ramakrishnan, "Optimal matrix multiplication on fault-
tolerant VLSI array,” in Proc. ICALP, 1985.

[25] V. K. Prasanna Kumar and Y-C Tsai, "On mapping Algorithm to Linear and Fault-
Tolerant Systolic Arrays," /EEE Trans. Comput., Vol. 38, No. 3, pp. 470-480, March
1989.

[26] S. Y. Kung, VLSI Array Processors, Prentice Hall, 1988.

[27] E. S Manolakos, "Transient Fault Recovery Techniques for the VLSI Processor
Arrays," Ph.D thesis, University of Southern California, May, 1989.

[28] F. J. Aichelmann, Jr., "Fault-Tolerant Design Techniques for Semiconductor Memory
Applications," IBM J. RES. DEVELOP., Vol. 28, No. 2, pp. 177-183, March, 1984,

- 288 -

[29] R. W. Hamming, "Error Detecting and Error Correcting Codes," Bell System Tech.
J., Vol-29, No. 1, pp. 147-160, Jan., 1950.

- 289 -

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

in this thesis, one of our goals has been to provide a cost-effective systematic

approach for mapping algorithms into optimal systolic arrays. In particular, we have con-

sidered and provided solutions for the following problems:

(i) the direct method to produce a transformed
dependency matrix (TDM) of an algorithm.

(ii) the problem of identifying a unifying performance
index to measure the overall systolic array
performance (speed, cell’s complexity, number of
interprocessor connections, practical design
considerations, etc.)

(iii) the formulation of suitable and more
realistic optimality criteria for the design
of systolic arrays.

(iv) the *ormulation of the Compound Objective Function
(COF) to measure the cost of each TDM obtained
directly from the original dependency matrix (DM).

(v) the problem of developing an optimization algorithm
for designing optimal systolic arrays.

An important problem associated with the design of systolic arrays is the mapping of

algorithms into systolic architectures. In this thesis, using the space-time mapping tech-

nique, we have proposed a new methodology to obtain the desired TDM directly {rom the

original dependency matrix, so as to avoid deriving the TDM’s that do ot satisfy our

VLSI requirements. By so doing, we can eliminate many TDM’s and also avoid deriving

their corresponding transformation matrices. This technique has the advantage of reducing

the computation complexity.

- 290 -

As demonstrated before, in the thesis, several TDM’s that meet the important VLSI
reanirements can be generated using the proposed methodology. As a result, it becomes
necessary to select the TDM that will yield the optimal systolic array based on the cost
function. The choice of the optimality criteria is very imnortant. By using those optimal-
ity criteria that take into consideration the practical design issues like the architectural
features and technological parameters of the array, realistic optimal systolic arrays can be
designed. We have identified the more realistic optimality criteria for designing systolic
arrays and also, have derived the expressions that represent their cost measures. We esta-
blished the relationship between the cost measures and the coefficients or elements of the
TDM. Thus by changing the coefficients or the elements of a new generated TDM, the
values of the cost parameters are affected. This enables us to investigate the practical
design issues at the design stage of the systolic array rather than after the implementation

of the array.

A Compound Objective Function (COF) is formulated based on these factors that
determine the optimality criteria. Since optimizing one factor may sacrifice other factors,
it becomes worthwhile to measure the cost of a TDM with respect to all the factors rather
than one factor. In this dissertation, we proposed a unifying performance index to llow
us to measure the overall performance of the systolic array. The COF function which is
the performance index, is modulated to have the dimensions of AT2. This does not indi-
cate that the only cost factor in the COF function that is used to measure the performance
of the array is the area x square of time. Rather , all the paramcters or factors in the COF
function (which is a complex function of fault-tolerance, interconnection delay, area x
time squared and speedup) are taken into consideration in the measure of the overall sys-
tolic array performance. This approach eliminates the problem of sacrificing many other

factors of the optimality criteria when only one factor is optimized.

Furthermore, we formulated the design of systolic arrays into an optimization prob-

lem. An optimization algonthm for designing optimal systolic arrays is developed. Since

- 291 -

changes in the coefficients of the new TDM are reflected in the cost parameters, there-
fore, the optimization procedure has to determine how th=se changes affect the cost
parameters and which change optimizes the Compound Objective Function. Consequently,
the coefficient values of the new TDM can be changed to reflect the importance of some
of the cost factors for a given algorithm. The advantages of the optimization algorithm

proposed in this thesis can be summarized as follows:

(i) It is computationally efficient, only the TDM’s that satisfy some of ihe
important VLSI requirements are generated.

(ii) The procedure allows the designer to investigate some practical design
issues such as fault-tolerance, speedup, etc. at the design stage rather
than the implementation stage. Thus, by exporting the practical design
problems to the design stage, efforts will not be wasted in designing
feasible but sub-optimal systolic arrays.

(iii) Since the approach is systematic, it can easily be automated. The designer
can specify the algorithm for a specific application as an input to the
optimization routine and then an optimal VLSI systolic array implementation

of the algorithm can be generated. This in other words, will be like a
silicon compiler for systoiic arrays.

Because of these advantages, the approach proposed in this thesis provides an efficient
method for mapping algorithms into optimal systolic arrays than the presently available

approaches.

During the course of this research, not only have we made contributions in the
design of optimal systolic array architectures (which is one of our goals), but also in the
design of reliable systolic arrays. Reliability of systolic arrays can be increased through
fault-tolerance. In this thesis, we have developed a methodology for designing fault-
iolerant sysiolic array architectures using space-time mapping techniques. The basic con-
cept of our approach of designing fault-tolerant systolic arrays, involves the introduction
of redundancy at the algorithmic level, such that when these algorithms are mapped into
systolic VLSI array architectures, certain degree of hardware availability are inherent in

these architectures that allow concurrent error detection and correction in the systolic

-292 -

architectures. The procedure followed in the proposed approach includes the derivaiion of
different dependency matrices corresponding to the different versions of algorithm and the
application of space-time techniques to obtain a fault-tolerant systolic array implementa-
tion of that algorithm.

The approach proposed in this thesis is different from the conventional approach of
designing fault-tolerant systolic architectures, which is based on tne mapping of an algo-
rithm onto a specific VLSI systolic architecture , and then modifying the design to make
it fault-tolerant. In most cases, the techniques employed to make the particular systolic

architecture fauit tclerant is specific only to that systolic architecture and thus may not be

applicable to any other systolic array with different topology and data flow characteristics.

We have contributed towards the development of a methodology to design Con-
current Error Detection and Fault-Tolerant systolic arrays. Several fault-tolerance tech-
niques have been presented based on our approach. The basic idea of each technique is
that independent redundant computations can be launched into a concurrent error detec-
tion or fault-tolerant systolic array at the same time. Two or more identical sets of output
results (one for each version of the algorithm) may need to be computed at the same
computational site and at the same time. By identifying such computations, extra
hardware can be added only at those computational sites at which they will be computed.
Then by re-scheduling the input data such that the original input Data Scheduling is
satisfied, the interaction between the multiple wavefronts can be isolated. Since the
independent computations are performed on different computational sites, thus concurrent
error detection or correction can be achieved by comparing corresponding sets of com-
puted output results for discrepancies. We have demonstrated in this thesis some methods
of achieving CED or FT in systolic arrays. Also, the advantages of our techniques over
the existing ones have been pinpointed. One of the major advantages of our approach is
the area efficiency. There is no need to replicate all the hardware in the CED or FT sys-

tolic array, redundant hardware is introduced only at those computational sites where it is

-293 -

needed. Therefore, based on this methodology, we have proposed a new systematic

approach for designing reliable systolic array architectures.

7.2 FUTURE WORK

It is in the nature of research that the solution of one problem often gives rise to
many new issues or questions or open problems. In most cases, these questions lead to
the improvement of the present research. However, in some cases, the open problems cul-
minate into a new ground of research. In the case of the research which is presented in

this thesis, the followir g issues need to be investigated:
Systolic Array Mapaer :

We have proposed a unifying performance index to measure the overall performance of
the systolic array architecture taking into consideration the architectural features and the
technological parameters of the array. The proposed procedure is formulated as an optimi-
zation problem to obtain the TDM with the minimum cost function. The generation of the
desired TDM'’s and the selection of the optimal one (given the cost function) is presently
performed manually. There is a need to develop a scftware package in order to facilitate
the performance evaluation procedure and hence, the mapping of any given algorithm

with constant dependence vectors into an optimal systolic array architecture.
Rearrangement of data flow :

In order to isolate the interaction between components of the different versions of the
algorithm in a CED or FT systolic array, the input data is re-scheduled such that the ori-
ginal input data scheduling is satisfied. The re-scheduling is presently done in an adhoc
manner. It will be useful to develop a mathematical analysis or representation of the pro-

pagation of the input data of the variables of the algorithm, after re-scheduling.

Multi-dimensional Systolic Arrays :

Present practical arrays have pure planar layouts. That is, the conceptual sites of a com-
putation structure {(J = JYJ273) } must be mapped into Z3 = ((t.x,y)). Recently, verti-
cal processes are becoming available, thus increasing the available implementation space.
It will be interesting to investigate the design of multi-dimensional systolic array architec-
tures (i.e. for n >3, e.g. n =4) with indices {((J =J'J%J3J%)). This approach can be
used to design layered systolic architectures which can be employed in the design of

super systems.
Minimization of TDM’s search space :

Currently, we have proposed a methodology for deriving the transformed dependency
matrix (TDM) directly from the original dependency matrix. Although the methodology is
clear, but, since several TDM’s that satisfy the VLSI requirements can be generated, a
limit has been imposed on their search space, in the optimization algorithm. The search
for a new valid TDM is stopped when the change in the improvement of the performance
of further generated TDM’s, is significantly small. It will be ideal if a systematic

approach can be found to limit the search space of the valid TDM’s.

