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Abstract
Performance Evaluation of a Prudent Two-Phase Commit Protocol
Boutros S. Boutros

A distributed database system is subject to data inconsistency in the presence of failures.
Coordinating the execution of the subtransactions of a global transaction, and committing
or aborting transacticns, are used to maintain data consistency in case of failures. Two
classes of atomic commitment protocols have been proposed in the literature. The first
class, fault tolerant, aborts a transaction without checking for alternative solutions. The
second, optimistic, ignores the occurrence of errors and assumes that a global transaction
commits in most cases; hence, it leads to compensating transactions to preserve data
consistency, in case the global transaction aborts.

In this thesis, we study the performance of a Prudent Two-Phase Commit protocol, which
in the presence of failures does not abort a transaction carelessly. The prudent protocol
uses a second chance for a transaction before it decides to abort it. This careful approach
prevents a transaction from aborting in case of transient communication failures. In this
way, it improves system performance and reliability.

For the purpose of this study, we simulate a distributed database system. The performance
of the simulated distributed system is measured while using the Prudent, Basic, and
Optimistic Two-Phase Commit protocols. The performances of these protocols are
compared and evaluated according to a number of widely accepted performance metrics.
The final performance results are presented with a discussion and interpretation of the
graphs generated by the simulation. The result of these simulations confirms the
improvement in system performance with the Prudent Two-Phase Commit Protocol.




Acknowledgments

First and foremost, I would like to thank my thesis supervisor, Dr. Bipin C. Desai, for the
support and encouragement he has given me duvring the course of my studies. I am very

grateful for the advice he has offered, and for the patience and understanding he has
shown towards me.

I thank the Computer Science staff for the help they offered during the implementation of
my programs. Special thanks to Mr. Stan Swiercz for the considerable time and effort he

spent to instail and maintain the Modula-3 compiler.

I thank all my friends in the Department of Computer Science. Special thanks to Shiri
Nematollah for his advice and help.

Finally, many thanks to my parents for their caring emotional support.

iv




Epigram

God hath constituted every other animal, one to be eaten, another to serve for tilling the
land, another to yield cheese, anvther to some kindred use; for which things what need is
there of the observing and studying of appearances, and the ability to make distinctions in
them? But man He hath brought in to be a spectator of God and of His works, and not a
spectator alone, but an interpreter of them.

Epictetus (50 AD)
Dissertations, 1.,6.
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CHAPTER 1

INTRODUCTION

1.1. OVERVIEW

Currently, database systems are among the most important and widely used computer
applications. The increased reliance on database systems by many applications and users
requires databases to deal with a variety of demands, involving large amounts of data.
Such applications could be banking, airplane reservation or many other on-line information
systems. Consequently, a database management system (DBMS) should provide in
addition to high performance, high availability, reliability and maintainability.

A database is a collection of objects satisfying certain integrity constraints, which may
vary from one system to another. As an example, in a banking system no user account
may have a negative value, or in a reservation systtem the number of confirmed
reservations on a flight should not exceed the number of available seats on it. The
integrity constraints must be respected by the user program and enforced by the DBMS.
The user program is responsible for testing the values specific to its application before
performing updates on objects. The DBMS is responsible for the correctness of updates
on objects. Hence, updates running concurrently should not interfere with each other.

A transaction is a sequence of read and write actions issued by a user program on
database objects. A transaction possesses certain properties to ensure the correctness of a
DBMS: atomicity, consistency, isolation and durability. A transaction commits after it
performs all of its actions. Hence, a commit will make the effects of the transaction
permanent.

The data objects of a DBMS may be distributed among different locations which are
geographically dispersed. This distribution is required in organizations with different
operating units, each having a local database which is shared with other sites. Such
DBMS are called distributed database management systems(DDBMS). DDBMS
provide high availability and reliability by the distribution of data among many sites. Each
site has an independent DBMS. These sites are connected by a communication network.
A transaction in a DDBMS may require the use of data not available on its local site; such




a transaction is called a global transaction. A global transaction splits into a number of
subtransactions, one for each site containing the objects of its read and write sets.

1.2. THE PROBLEM

The global transaction execution in a DDBMS creates a special problem: the atomic
commit property of a global transaction, running a number of subtransactions, must be
preserved; either all its subtransactions commit or none of them. Thus there is the need
for a distributed atomic commitment protocol (ACP) that ensures the atomic
commitment of a global transaction [BERN87]. Many ACP protocols have been
proposed for DDBMS; the most simple and commonly used one is the Two-Phase
Commit protocol (2PC) [BERNS7], which we will refer to as Basic Two-Phase Commit
(B2PC). B2PC ensures the atomicity of a global transaction. In the B2PC protocol there
is a coordinator site and one or more participant sites. A coordinator site, usually the
site where the global transaction originates, is responsible for orchestrating the sub-
transactions. Its responsibility is to coordinate the atomic commitment, by receiving the
votes of participants and sending the final decision after all votes are received. Each site
participating in the execution of the global transaction is a participant. The responsibility
of participants is to send their votes after they are ready to commit or abort. In the
former case, the coordinator's decision is required before the actual commit. Participants
communicate with their coordinator by messages sent through the communication
network.

The Optimistic Two-Phase Commit protocol (O2PC) [LEVY91] is an ACP that works
under the optimistic assumption of rare failures. In O2PC, participants which are ready
to commit send their commit votes, and instcad of waiting for the coordinator's decision
go ahead and commit. This early commitment will violaie the atomic commitment rule in
case one of the other subtransactions aborts. For such a case, the O2PC uses the notion
of compensation. A.compensating transaction will undo the effects of a committed
subtransaction semantically without resorting to cascading aborts.

A DDBMS is subject to site and communication failures which might violate the
transaction atomicity rule. B2PC is designed to tolerate failures; the solution to a failure
in B2PC is to abort the global transaction and all its subtransactions. Unfortunately,
B2PC treats a transient communication failure as a site failure, leading to aborting the



transaction even in cases where the failure is transient and the abort could be avoided.
Such aborts affect the system throughput and fault tolerance.

1.3. THE GOAL OF THIS THESIS

The cost of aborting a transaction is high, especially in systems where a delay in
transaction execution may affect system throughput and response time. Hence, it is
desirable to avoid aborting transactions whenever possible. A Prudent-Two Phase
Commit protocol (P2PC) that is careful about aborting a transaction was first proposed in
[DESA]. P2PC will give a coordinator or participant another chance before deciding to
abort a transaction in case of a failure. This second chance could save the transaction
from an abort when a transient communication failure occurs.

In this study we implement P2PC, simulate it and compare its performance with B2PC and
O2PC. The results of this simulation study demonstrate the performance of these
protocols according to certain performance metrics used widely in the database literature,

1.4. THE THESIS OUTLINE

In chapter 2 we describe the different components of a distributed DBMS. Chapter 3
reviews the different commit protocols in the literature. In chapter 4 we present the
algorithms for P2PC, O2PC and B2PC. Chapter 5 presents the simulation model and the
distriputed database system which is used to compare the performance of these protocols.
Chapter 6 presents the results of our study and compares their relative performance.
Finally, in chapter 7 we give our conclusions and suggestions for future work.




CHAPTER 2

BACKGROUND

“Distributed database system (DDBMS) technology is the union of what appear to be two
diametrically opposed approaches to data processing: database system and computer
network technologies." [OZSU91]. Ozsu thus defines the components of a distributed
database sysiem to be the union of two disparate technologies, and points out that these
two contrastive approaches can be synthesized to produce a technology that is more
powerful and more promising than either one alone. In this chapter we briefly describe the
database system, the database transactions, and the computer network which are the main
elements of a DDBMS,

2.1, DATABASE SYSTEM COMPONENTS

A database system consists mainly of four modules [BERN87):

1. A Transaction Manager (TM), which performs the necessary pre-processing of a
transaction before it starts.

Il. A Scheduler, which controls the relative order of transaction executions. A
Scheduler can reject, delay or forward a transaction.

III. A Recovery Manager, which is responsible for ensuring that the database contains
all of the effects of committed transactions and none of the effects of aborted ones.

IV. A Data Manager (DM), which is responsible for operating directly on database
objects.

2.2. THE DATABASE TRANSACTION

A transaction in a database system is an execution of a program that accesses a shared
database [BERNS87]. The goal of concurrency control is to ensure the atomicity of
transactions that are executing in parallel. A transaction may be viewed as a sequence of
read or write actions. Two transactions executing in parallel may conflict if they want to
access the same object at the same time, and at least one of the actions upon that object is
a write operation.




A database is a set of objects each having a value. The set of values of the objects at any
time constitute the state of the database. A transaction changes the state of the database
from a consistent state to another consistent state. The effects of a transaction are made
permanent once the transaction commits. A transaction that has issued its start but not
committed is called an active transaction. A transaction that aborts is a transaction that
did not complete its execution successfully. An aborting transaction does not change the
state of the database, since none of its effects are made permanent. Hence, it is invisible to
the users of a database system.

When a transaction starts it is forwarded first to the Transaction Manager, which does the
necessary pre-processing before it is forwarded to the Scheduler. For example, in a
distributed database system the preprocessing of a global transaction would be to
determine which sites are involved in its execution and how to divide it into a number of
subtransactions.

Before executing an operation, the transaction passes that operation to the Scheduler.

When the Scheduler receives an operation, it can perform one of the following actions
[BERNS87]:

I.  Execute: The Scheduler can pass the operation to the DM. Once the operation is
finished the DM will inform the Scheduler.

II. Delay: The Scheduler can delay the operation by putting it on its internal queue.
This delay can happen in case the transaction is blocked due to a lock conflict (i.e.
another active transaction has reserved the right to write to some objects involved in
this transaction).

III. Reject: The Scheduler can reject the operation. Such a decision will force the
transaction to abort.

Using these actions, the Scheduler can control the order in which the operations are
executed. Hence, the Scheduler controls the concurrent executions of transactions, and
can play a role in deadlock detection and prevention.

2.3. CONCURRENCY CONTROL CORRECTNESS

The execution of a number of transactions concurrently leads to the interleaving of the
operations of these transactions. Interleaving could lead to an inconsistent database; this




could be prevented by Serial execution, in which one transaction performs all of its
actions before the second starts. Serial executions are correct, because a transaction is
internally consistent. The execution of a number of transactions is said to be serializable
if the result of their execution is the same as if the transactions were executed in some
serial order. Serializability is one of the main tools for proving the correctness of
Concurrency Control algorithms. All serializable executions are equally correct; therefore
the DBMS might execute the DB operations in any order, as long as they are serializable
[BERNB87].

Locking is a mechanism used to ensure serializability in a Database System; it is
commonly used to solve the problem of synchronizing access to shared resources. Each
data item has a lock associated with it. A transaction requests a Jock for the item it wants
to access. If the item is already locked by some other transaction in an incompatible
mode, the requesting transaction will be blocked until the lock is released. Otherwise, the
lock is granted and the transaction can perform its operations on the ittem. There are at
least two kinds of locks, a read lock and a write lock. A read lock is a shared lock, i.e.,
many transactions can read the same item at the same time. On the other hand, a write
lock is exclusive, i.e., only one transaction can write to an item at a time. Therefore,
conflicts exist on the same object between read and write, write and write.

Two-Phase Locking (2PL) is a protocol widely used to synchronize locking in a DBMS,
due to its simplicity and ease of implementation; a brief description of 2PL is given by the
following three rules [BERN87]:

I. When the 2PL Scheduler receives an operation to lock a database object, first it
checks whether it is already locked by another active transaction. If so, the 2PL
Scheduler delays the transaction requesting the lock until all objects involved are
released. Otherwise, the 2PL Scheduler grants the lock to the requesting transaction,
and locks the objects.

II. Once the 2PL Scheduler sets a lock for a database object, it may not release that lock
until it receives a signal stating that the operations on the object have been
accomplished.

IT1. Once the Scheduler has released a lock for a transaction it may not set any more locks
for that transaction.



The third rule is the main source of the name "Two-Phase". The first phase is the
growing phase, where the transaction requests locks. The second phase is the shrinking

phase, where the transaction releases its locks. Once a transaction releases & lock it
cannot obtain any more locks.

2.4. DISTRIBUTED DATABASE MANAGEMENT SYSTEMS (DDBMS)

A centralized database system has one shared database under its control. A number of
terminals can access this database at the same time. If the system fails in a centralized
DBMS no access can be done to the database until the system recovers, and the sysiem
throughput is limited to the maximum number of users that the local CPU's can handle.
Therefore, the availability reliability and performance of a centralized DBMS are relatively
lower than a DDBMS. The notion of distributed database systems comes from
distributivity, i.e., distributing the database over a number of computer systems.

Distributed databases constitute a single relatively large database, distributed over many
sites connected by means of a communication network. A distributed database offers
many advantages; the first is the increased availability of data. If one site fails, data can
still be obtainable from other sites. The second advantage is load distribution; the data
is distributed on the network. If the number of sites is n, and if the level of concurrency at
each site is equal and is p, then the total throughput of the system is n*p. Compare this to
a throughput of p on a centralized DBMS. These advantages are the goals of an ideal
DDBMS, but unfortunately there is a price to pay for these additional features. The price
includes the high cost of DDBMS, the additional difficulty of distributed concurrency
control, the managzement of replicated data and the communication costs between sites.

A DDBMS can be strictly partitioned, partially redundant or replicated, or fully
redundant [DESA91]. A strictly partitioned database contains no replicated data
among different sites. In a partially redundant DDBMS only certain fragments of the
database are redundant. In fully redundant DDBMS, complete database copies are
distributed among all sites. The main reason for redundant databases is to increase the
database availability by storing the critical data at multiple sites; in this way, the DBMS
can continue to operate even though one of its sites has failed. Furthermore, the
performance is improved since there are many copies of a data item. The data may be
read from the ciosest site, thereby reducing communication costs.



The advantages of a DDBMS can be summarized as being: high data availability and
reliability, increased performance and throughput. On the other hand, a DDBMS
involves increased overhead for controlling global transactions, and the associated
problems that are to be solved in order to achieve the above advantages.

2.4.1. AtoMiC COMMITMENT

In a distributed system a transaction's execution may involve many sites, i.e., a transaction
T may split into n subtransactions at n sites. To satisfy the atomicity property of a
transaction, either all these subtransactions commit or none of them. Consider a
distributed transaction T whose execution involves n sites. Suppose that site s; supervises
the execution of the transaction. Before s; sends commit decisions to the other sites it
must make sure that they are able and ready to commit. Assuming that each site has its
own process which controls the subtransaction at the site, these processes at each site are
responsible for ensuring the atomic commitment protocol for 7. The process at T's home
site, 5y, is called T's coordinator. The remaining sites are T's participants. The
coordinator site is aware of the participant sites, so that it can communicate with them.
The participants know who their coordinator is but may not necessarily know the other
participants. An Atomic Commitment Protocol (ACP) [BERN87] is an algorithm meant
to synchronize the commitment of the distributed transactions such that either all the sites
of that transaction commit or they all abort. Each process may vote a Yes or a No, and
can reach exactly one of two decisions: either commit or abort.

An ACP protocol is an algorithm for a number of co-operating processes to reach a
decision such that [BERN87]:

1. All processes that reach a final decision reach the same one.

2. Aprocess cannot reverse its interim decision after it has reached one.

3. The commit decision can only be reached if all processes have reached an interim
decision to commit.

4. If there are no failures and all processes voted to commit, then the decision will be to
commit.

5. Consider any execution containing only failures that the algorithm is designed to
tolerate. At any point in its execution, if all existing failures are repaired rapidly and
no new failures occur for a sufficiently long period of time, then all processes will
eventually reach a decision.




Rule 1 says that all processes should reach the same final decision, either a commit or an
abort. Rule 2 forbids a process to change its decision after it has reached one. Hence
once a process sends a Yes or No vote, it cannot reverse this vote later. If a process is
allowed to change its vote, then the coordinator's decision according to the first vote
would no longer be consistent. This might end up with processes not reaching the same
decision, hence violating the atomic « ommitment rule.

Rule 3 implies that even if a single process votes No, the commit decision will not be
reached. Aconsequence of rule 3 is that a process can decide to abort at any time before
it has voted to commit. On the other, hand after voting Yes, a process cannot change its
decision to an abort. The period between the processes voting Yes and receiving the
coordinator's final decision is called the uncertainty period. During this pcriod, a
process is not certain regarding the final decision, and cannot decide to unilaterally
commit or abort before the coordinator's decision.

Rule 4 states that in the absence of failures, with all processes reaching a commit decision,
then the decision will be to commit. This rule excludes the existence of trivial and useless
protocols which most of the time abort, i.e., a protocoi that in the absence of failures will
often reach an abort decision with no valid reason. Rule 5 says that if a failure occurs at
any point of the protocol execution, and this failure does not last for a long period of time,
then the processes should reach a decision. This rule excludes the existence of protocols
which, in the presence of a failure that can be tolerated, will not reach a decision after the
failure is repaired.

Unfortunately, these rules might lead to blocking. A process will block if it is unable to
communicate with other processes during its uncertainty period. This process will be
blocked from the time of a failure until it is able to communicate with the other processes.
This possibility leads to blocking in some ACP protocols, such as B2PC. The case of
B2PC will be studied in detail in chapter 4, where we will introduce P2PC, the subject of
this thesis.

2.4.2. THE COMMUNICATION NETWORK

A computer network can be defined as an interconnected collection of autonomous
computers that are capable of exchanging information among themselves {Ozsu91}].




The network allows these autonomous computers to exchange information among
themselves. Computers on a network may be referred to as sites, nodes, or hosts.
Computer networks may be classified according to many criteria; one criterion is
geographic distribution, another is the structure of interconnection. A network
consisting of a number of sites interconnected over a large geographical area, where the
distance between any two sites is greater than 20 km, is called a wide area
network(WAN). A computer newwork that exists on small geographical area, is called a
local area network(LAN); the distance between any two sites of a LAN is less than 20
km.

The network connection, which is also called the network topology, may be either a: star,
ring, mesh, bus or other configuration [DESA91].

1.  Star topology: all sites or nodes are connected to a central node.

2.  Mesh topology: Each node is directly connected to all other nodes.

3. Bustopology: All nodes are connected by taps to a single linear cable.
4. Ring topology: Nodes are connected in a circular manner.

2.5. FAILURES

Hardware failures in a computer system can be attributed to deficiencies in its
components, in its design, in its construction or assembly. Two types of failures can occur
in a system, permanent and non-permanent. A permanent or hard fault causes an
irreversible change in the behavior of the system. Recovery from these failures requires an
external intervention to repair the fault. The other type of failure, a transient failure,
manifests occasionally due to an unusual state of the system, heavy load, sudden change in
the room environment or other cause. It may be possible to recover from some of these
transient failures, since the fault can be traced to a component of the system [OZSU91].

Two approaches are followed to structure a reliable system, fault tolerance and fault
prevention. Fault tolerance refers to building a system that recognizes the occurrence of
faults. This system includes mechanisms to detect faults when they occur, and try to
repair them. Fault prevention involves building a system that prevents the occurrence of
faults; this system will be error-free, with no possibility of certain errors occurring.
Building a totally fault-preventing system is difficult. A reliable system will make use of
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these two notions, by trying to eliminate error occurrence, and in case errors occur it is
able to detect them and recover intemally.

2.5.1. FAILURES IN A DDBMS

In a distributed DBMS many types of errors and failures can occur, including transaction
failures, site failures, media failures and communication failures.

Transaction failures: A transaction can fail for a number of reasons. It can fail due to an
incorrect input, due to a deadlock encountered during its lifetime or due to failure in
performing a certain test, etc. The recovery from a transaction failure is simply to abort it.

Site failures: A site failore may be due to a hardware failure, including failures in the
processor, main memory or power supply. It may also be due to a software failure, a bug
in the operating system or in the DBMS. It is assumed that a site failure will be fail-stop
[BERN87], hence all transactions taking place on the site where it fails will stop. A site
failure will lead to main memory loss; on the other hand, the database is stored on
secondary storage. Upon recovery the state of the database may be restricted to the last
state before it failed. '

Media failures: They occur when the secondary storage at a local site fails. Such
failures may be due to an operating system or a hardware device failure. The solution
to such failures is to use multiple devices; when a device fails the system uses the backup
device which keeps a copy of the data. Such failures do not affect the performance of
other sites in a distributed database system, since they are resolved within the failed site.

Communication failures: The three types of failures discussed above are common to
both central and distributed DBMS. However, communication failures occur only in a
DDBMS. The most common ones are: corrupted messages, messages delivered in the
wrong order, lost messages and line failures. The first two types of failures are resolved
by the communication network, which has its own techniques to detect corrupt and
misordered messages.

The last two types, the line failures and lost messages, are the consequence of
communication link failures. A communication link failure may divide the network into

two or more partitions which are unable to communicate with each other. Such a failure
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is called a network partitioning. When a network partitioning occurs, the sites are still
operating, but they can only communicate within their partition.

If messages cannot be delivered, we assume that the network does nothing about it.
Hence, it is the responsibility of the database software to detect lost messages. One way
to do this is by the use of timeouts. Timeouts are usually set to a value greater than the
maximum round-trip propagation delay of a message in the network, for the destination to
respond to the message and for the response to reach the source. Timeout values may
vary from system to system, depending on the network topology used and the load of the
system,

This aspect of failure in a DDBMS does not exist in the central DBMS, where failures are
complete; either the site operates or it doesn't. However, a part of a distributed DBMS
may be functioning while the other part has failed. This aspect makes a DDBMS more
reliable, but also it imposes more overhead in detecting errors and in minimizing their
effects on data consistency.

2.6. CONCLUDING REMARKS

In this chapter, we have reviewed the different components of a distributed DBMS. It is
clear that a distributed DBMS offers more advantages than a central DBMS. However,
more care must be taken in resolving the possible system errors that might occur, leading
to data inconsistency. In the next chapter, we review the work done in concurrency
control to improve the reliability and performance of DDBMS.
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CHAPTER 3

REVIEW OF DISTRIBUTED CONCURRENCY CONTROL ALGORITHMS

In this chapter we review some of the concurrency control algorithms that are
implemented and discussed in recent database literature. We consider two classes of
algorithms; the first class deals with the algorithms that are based on Two-Phase
Commit and Two-Phase Locking protocols and enhancements of those algorithms. The
second class deals with a set of algorithms that implement different strategies by using
similar mechanisms to 2PL and 2PC, but violate their strict rules. Then, we show the
strategies and models used in performance studies of commit protocols.

3.1. 2PC AND 2PL ENHANCEMENT ALGORITHMS

In [TRAV92] optimization strategies and performance issues of 2PC were studied. A
2PC protocol was designed that insured atomicity of updates even in the case of failures.
"We have implemented the Two-Phase commit for five different topologies: tree, star,
chain, ring and complete graph” [TRAV92]. In the case of a tree, the algorithm was
called Hierarchical Two-Phase Commit. The communication of messages in the
Hierarchical case as done in the first phase from the root down to the leaves, and in the
second phase from the leaves up to the root node. Performance was evaluated in terms of
message complexity; the comparison was drawn between Hierarchical, Circular and
Distributed Algorithms. The message complexity for Circular broadcast algorithms
was 2n messages, for Distributed algorithms 2n+1 messages, and for Hierarchical
models 2(d+n-1) messages. Here, d is the number of subtrees and n is the number of sites.

In [WOLF90] four variants of the 2PC were compared, the Tree Commit,
Decentralized, Linear and Central-site algorithms. The results in {WOLF90] indicated
that communication costs of Tree Commit are equal to these of the Linear and Central-site
algorithms; its communication time cannot be worse, but it can be twice as fast as they.
The communication time of the Decentralized algorithm is better than that of Tree
Commit, whereas Tree Commit is better as far as communication cost is concerned.
When comparing the communication complexity of the latter two algorithms, the product
of communication cost and communication time, Tree Commit is better.




In [STAM90] a Coordinator Log Transaction Execution protocol is proposed. This
protocol eliminates two rounds of messages, and reduces the number of log forces needed
for distributed atomic commit (A log force is when the DM moves the log of a transaction
from volatile storage to non-volatile stable storage). In the absence of failures, the
Presumed Commit protocol (PC) eliminates the last round of 2PC and halves the number
of log forces compared to 2PC. Another way used to reduce failures was the Early
Prepare (EP) protocol, which lets each Data Manager enter the prepared state after it
performs its work and before it replies to the coordinator. Finally, a Coordinator Log
(CL) is proposed, wherein all the log records for the transaction are placed in a single log.
This results in minimizing the number of log forces required to execute a given
transaction.

3.2. ALGORITHMS THAT VIOLATE THE RULES OF 2PC AND 2PL

In [LEVY91], a revised 2PC protocol is described to overcome the difficulty of the
potential unbounded delay that a transaction may have to endure if certain failures occur.
In the revised protocol, the transaction at a participant site is committed or aborted locally
and locks are released as soon as the site votes to commit or to abort. This scheme solves
the indefinite blocking problem of the B2PC. This protocol is called the Optimistic Two-
Phase Commit Protocol (O2PC). Later, if it is found that the transaction is to be
aborted, then its effects are undone semantically using a compensating transaction. The
Optimistic 2PC protocol is a modification of the B2PC protocol. The same message
exchange is carried out as in the B2PC protocol. If a site votes to abort 7j, then as in the
standard protocol, an abort is sent back to the coordinator. In this case, the locks held by
the transaction are released at once but without waiting for the coordinator's final commit
or aborl message.

The key to an adequate solution when a global Transaction aborts is the notion of
compensating transactions. They are intended to handle situations where it is required
to undo a subtransaction which had committed and whose updates have been read by
otirer transactions, without using cascading aborts. Unfortunately, the idea of
compensating transactions cannot work in environments where a missile has been fired or
funds delivered; these effects cannot be undone by a compensating transaction.

In [DASG90] a Five-Color Cuncurrency Control protocol, that applies to general
databases, is presented. The protocol uses five kinds of locks: read locks, intent locks,
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write locks and two types of marker locks. This protocol requires each transaction to
pre-declare its read and write sets. This can be achieved by static data analysis by the
query compiler; the pre-declared read and write sets need not be the exact read or write
sets, but may be a superset of them. The performance depends, however, on the closeness
of the pre-declared sets to the actual read and write sets. The Five-Color protocol allows

Non-Two-Phase locking by keeping track of transaction ordering using the pre-declared
read and write sets.

In [AGRA92], a new relationship between locks called Ordered Sharing is proposed, to
eliminate blocking that arises in the traditional locking protocols in real-time database
systems. Ordered Sharing eliminates blocking of read and write operations, but may
result in delayed commitment. This delay is exploited to allow transactions to execute in
the slack of delayed transactions. For example, in order to eliminate read/write blocking,
a transaction Tj can be granted a write lock on an object even if a transaction T; holds a
read lock on the same object. The rule of the ordered sharing is as follows :

"If Tj acquires a lock with an ordered shared relationship with respect to a lock held by
another transaction T, the corresponding operation of Tj must be executed after that of
T;; furthermore, 7; cannot commit until T; terminates.” [AGRA92]. This scheme places
onT; the burden of ensuring the consistency of the shared objects.

In [MOHAB92] a transient versioning method is proposed. This scheme permits read-
only ansactions, that do not mind reading a possibly slightly old but still consistent
version of the database, to execute without acquiring any locks.

3.3. PERFORMANCE EVALUATION OF CONCURRENCY CONTROL ALGORITHMS

In this section, we review the different implementations, models and parameters used in
database performance studies. Many studies have been done to evaluate the performance
of concurrency control algorithms. Some of their results are contradictory, as noted in
[AGRA87): "These performance studies are informative, but the results that have
emerged, nstead of being definitive, have been very contradictory." The main reason
behind this is the different implementation models and parameters chosen for the
simulation models; the choice of models and parameters are very important to any
simulation study. One of the greatest problems in performance study is to choose
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appropriate parameter values, which are able to demonstrate the performance
characteristics of the protocols to be studied.

In [AGRAB87] three main parts of a concurrency control model were examined: A
database system model, a user model, and a transaction model. The database system
model defines the relevant characteristics of the system's hardware and software including
CPU's and disks. The user model describes the temporal pattern of arrival of user
transaction requests. The transaction model captures the reference behavior and
processing requirements of the transactions in the workload. Three main algorithms were
compared: blocking, immediate restart and optimistic.

In [AGRAB87] there are a fixed number of terminals from which. transactions originate;
there is also a limit on the number of transactions allowed to be active at any time in the
system. If the system has already a full set of active transactions, any new transaction
enters the ready queue, where it waits for an active transaction to commit or to abort.
The transaction then enters the concurrency control queuve, and makes the first of its
concurrency control requests; if this is granted, the transaction proceeds to the object
queue and accesses its first objects. If the result of a concurrency control request is such
that a transaction must block, it enters the blocked queue until it is once again able to
proceed. If a request leads to a decision where a transaction must restart, it goes back to
the ready queue and restarts after a randomly chosen delay. When a transaction decides to
commit, if it is read-only it is finished; if it involves writing, then it enters the update
queuc and writes the deferred updates into the database.

The database is assumed to be main memory resident in [HUNG92]. Real-time
databases are main memory resident, to support fast input output response. In the model,
it is assumed that for each transaction, the deadline and execution times are known upon
its arrival. Before the execution of a transaction, its deadline will be compared with its
remaining expected execution time. If it is found that it is not feasible to complete before
its deadline, the transaction will be immediately decided to abort so as to minimize the
amount of wasted work. In this model, transactions will be continuously generated. The
inter-arrival time is assumed to be exponentially distributed. Each amiving transaction will
be put in the ready queue, which uses the discipline priority on deadline; a transaction
has a priority over another transaction if the deadline of the first is before the deadline of
the second. The performance of the concurrency control protocols in this paper was
evaluated by calculating the missing ratio and the relative missing ratio. A relative
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missing ratio is calculated as the missing ratio divided by the missing ratio for the base
model which has no data contention. A missing ratio is the mean proportion of
transactions missing their deadlines in each set of simulation runs, each set consisted of 6
runs of 1000 terminated transactions.

An analysis of concurrency coherency protocols for distributed transaction processing
with regional locality was performed in [CICI92). The simulation results were presented
for a distributed system with 10 local sites, each connected to the central site through a
link with 200 ms communication delay. The central CPU has 10 MIPS, while each local
site has 1 MIPS. Transaction arrivals are Poisson-distributed processes, with the same
arrival rate at each distributed site. A global lock space of 32K elements was used; for
local transactions each site makes lock requests uniformly over one tenth of the entire lock
space, while central transactions make lock requests over the entire lock space. The
simulation maintains a lock table, explicitly simulates lcck contention, and waits for locked
entities.

A study on empirical performance evaluation of Concurrency Control protocols for
database sharing systems was done in [RAHM93]. A major effort was invested in
implementing a detailed simulation system for message-based Database Sharing
complexes. The system is structured in a modular way such that different algorithms and
realization strategies for the main component may easily be incorporated. In this paper, a
trace-driven approach was chosen instead of synthetic workloads. The simulation
system uses a representation called reference string, containing only the relevant record
types for the trace. Four different types were essential for the purpose of the study: (1) A
begin of tramsaction (BOT); (2) An end of transaction (EOT) record for every
transaction; (3) a FIX and an (4) UNFIX record for every page record. A page reference
is actually represented by the FIX record, while the UNFIX record is used to indicate to
the buffer manage: that the page may be considered for replacement.

Simulation runs were conducted for six different transaction loads originating from real
applications with a non-relational DBMS. The largest reference string contained over 1
million page references and 17,500 transactions. But for this size of load, simulation time
turned out to be too long, so most runs had to be conducted for smaller loads. In the
simulation, the cost for transaction processing is modeled by requesting a certain number
of instructions for every unit of processing (UP), which is either a page reference, a
BOT, or an EOT. The values of "Number of instructions per UP" are based on the path
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length measurements, and differ from load to load. The simulation system was built in
PL/1, and models a Database sharing syslem with a random number of nodes.
Communication costs are represented by CPU overhead for sending, receiving and
processing messages, as well as communication delays for their transmission in the
network. For each of the nodes a fixed multiprogramming level p is applied, so the
maximum level of programming is n*p where n is the number of sites. The simulation
system determines throughput and response time as the main performance measures.
Throughput is not expressed as transactions per second, since transactions differ
significantly in size; instead the number of UP's per second is used as the throughput
measure.

3.4. CONCLUDING REMARKS

After reviewing the different concurrency control algorithms and the various simulation
models that exist for these algorithms, one could remark that all these studies were made
to improve the performance of a database system and to maintain the maximum level of
reliability and confidence in the system. The common factor in the evaluation of the
database systems is how fast the system can be. This is indicated by the level of
throughput; the higher the rate of throughput, the better the system is. All these studies
were based on synthetic workloads except the last one [RAHM93), where a trace-
driven workload taken from a real-life application was used. The reason mentioned in
[RAHM93] that others used a synthetic workload was that obtaining a real-life application
was difficult. However, one may argue that a real-life application is a special case because
it applies to a specific implementation, and cannot be generalized.

The common goals of various studies are summarized by the following points:
¢ Toimprove the system performance.

To improve the system reliability.

To reduce the cost of the system.

To maintain the simplicity of the system.

In the next chapter we propose a P2PC that satisfies all the above characteristics, and
which gives a second chance to a global transaction before deciding to abort it. Also we
study, in detail, the following three protocols: B2PC, O2PC, and P2PC. These
algorithms are presented along with a case study of their behavior in the presence of
failures.
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CHAPTER 4

DESCRIPTION OF B2PC, 02PC AND P2PC PROTOCOLS

In this chapter we describe and compare the following commit protocols for a distributed

DBMS: Basic Two-Phase Commit, Optimistic Two-Phase Commit and Prudent
Two-Phase Commit.

4.1. BASIC TWO-PHASE COMMIT (B2PC)

Basic Two-Phase Commit is a simple and elegant protocol; it ensures the atomicity of a
global transaction in a distributed database system. It extends the local atomic
commitment of a transaction to distributed transactions, by insisting that all
subtransactions reach the same decision; either they all commit or they all abort.

A description of B2PC that does not consider failures is as follows[OZSU91):

I. Initially, the coordinator writes a begin_commit protocol record in its log; then it
sends the vote-request to the involved sites, and enters the wait phase.

II. When a participant receives the vote-request, it checks whether it can commit the
transaction. If so, the participant writes a ready record in its log, and sends a vote-
commit; otherwise it writes an abort record, and sends an abort message to the
coordinator.

II1. After the coordinator has received a reply from every participant, it decides whether to
commit or to abort the transaction. If even one participant has voted No, then the
decision of the coordinator will be to write an abort in its log, to send an abort
message to all the participants, and to enter the abort state. If all the participants
voted Yes, it writes a commit-record, sends a global commit, and enters the commit
state.

IV. The participants either commit or abort the transaction according to the coordinator’s
decision and then send back an acknowledgment, at which point the coordinator
terminates the transaction by writing an end-of-transaction log in the log-record.

Two important points can be observed in the B2PC protocol:




o First, B2PC permits a participant to unilaterally abort a transaction until it has decided
to register an affirmative vote.
o Second, once a participant decides to vote Yes, it cannot change its decision.

COORDINATOR STATES PARTICIPANT STATES

Figure 4.1. Basic Two-Phase Commit transition states in the absence of failures

Note that the coordinator and participants enter states where they must wait for messages
from one another (Figure 4.1). To guarantee that they can exit from these states and
terminate, timeouts are set usually according to the maximum delay that a message can
encounter. If the expected message does not arrive for one reason or another before the
timeout expires, then the process times out and invokes its timeout protocol.

4.1.1. DEALING WITH SITE FAILURES

A site failure that occurs at a participant's or coordinator's site can delay the global
transaction commitment until the site recovers. The period of time a site needs to recover
is non-deterministic, and can be very large compared to the lifetime of a transaction.
Consequently, the other transactions waiting for a reply from that particular site will
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block, holding their locks, and prevent other transactions from using the objects they have
locked. Since the B2PC protocol is subject to blocking, participants should be able to
terminate after their timeouts have expired, either normally or abnormally. Termination
protocols are called when a timeout is detected, to terminate a transaction, so that locks
are not held unnecessarily for a long time. Termination protocols serve the timeouts for
both the coordinator and the participant processes. The method for handling timeouts
depends on the timing, as well as on the types, of failures. We need therefore to consider
failures at various points during the execution of a Basic Two-Phase Commit protocol.

There are two places where the coordinator can timeout: during the wait vote-decision
state, and the wait acknowledgments state (Figure 4.2).

I.  Timeout in the wait vote-decision state. In this state the coordinator cannot decide
unilaterally to commit, since this will violate the global commit rule. On the other
hand, it can unilaterally decide to abort the transaction, and send a global abort
message to all participants.

II. Timeout in the wait acknowledgments state. In this case the coordinator is not
certain that the commit or abort procedures have completed at all participating sites.
Thus the coordinator will resend the global commit to those sites which have not yet
responded, and wait for their acknowledgments.

A participant can timeout in two states: the wait vote-request state and the wait decision
state (Figure 4.2).

I. Timeout in the wait vote-request state. In this state the participant can unilaterally
decide to abort, and write an abort decision in its log.

II. Timeout in the wait decision state. In this state the participant has voted to commit
the transaction, but does not know the global decision of the coordinator. The
participant is unable to make a unilateral decision, since it cannot change its decision
from a Yes to a No. In this case, the participant will remain blocked until it receives
a commit or abort decision.

Let us consider a centralized communication structure, where participants can only
communicate with their coordinator. In this case the participant, after timing out in the
wait-decision state, must ask the coordinator for its decision and wait for its response. If
the coordinator has failed, then this participant will be blocked. If the participants are
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allowed to communicate with each other at the time of commit, then a blocked transaction
might reach a decision from other participants without waiting for the coordinator's
decision. We will use the latter case in our study.

A termination protocol in the case where all participants can communicate with each other
at the time of commit can be as follows [0ZSU91]: If P; is the participant which timeouts
waiting for the coordinator's decision, and Pj are the rest of the participants, then all PJ
would respond in the following manner:

I If Pj is in the wait vote-request state, this means that P; has not voted yet. It can
therefore unilaterally abort the transaction and reply by a vote-abort message to P;.

IL. If P; is in the wait-decision state, then P; cannot help P; since it is in the same
situation.

III. If Pj is has received a global commit or abort decision, then it can send P; a global
commit or abort decision.

P; will interpret Pj responses according to the following possible cases:

I.  P;jreceives at least one vote-abort message, then P; will abort.

II.  P; receives a note that all the other processes are in the wait decision state, then P;
can't reach a decision; in this case blocking is unavoidable.

III. P; receives at least one global commit or abort decision, then P; will decide
accordingly and terminate.

4.1.2. RECOVERY PROTOCOLS

These protocols are used by a coordinator or a participant when a site fails and then
restarts:

In the case of a coordinator's Site failure:
1.  The coordinator fails before sending the vote-request, therefore it will continue by
sending the vote-request.

II. The coordinator fails while waiting for vote-decisions, upon recovery it will restart
the commit process by sending the vote-requests one more time.
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IIL. The coordinator fails while in the wait acknowledgments state. In this case the

coordinator would have informed the participants of its decision; it does not need to
do anything upon recovery, if all the acknowledgments were received; otherwise the
termination protocol is invoked.

@i’lmeout

@Temllmtlon protocol

COORDINATOR STATES PARTICIPANT STATES

Figure 4.2. Basic Two-Phase Commit transition states in the presence of failures

In the case of a participant Site failure:

I

1L

A participant fails in the wait vote-request state. Upon recovery the participant
should abort the transaction, because the coordinator will be waiting for vore-

decisions and may have sent abort decisions during the failure of that site.

A participant fails while waiting for the decision. Upon recovery the participant at
the failed site can treat this as a timeout in the decision state and calls the termination

protocol.

termination condition, so after recovery it does not need to do anything.
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In all of these cases we have considered that writing a record in the log and sending a

message is atomic, and no failures can occur between those two actions. This assumption
is made for simplicity.

Coordinator's algorithm:
begin;
start;
send vote-request to all participants;
initialize Timeout; (* reset the value of the timeout *)
WHILE (NOT Timeout AND NOT (all vote-decisions received)) DO
Receive vote-decisions;
END;
IF (NOT (all vote-decisions received)) THEN
Send ABORT message;
ABORT;
ELSE
IF (all vote-decisions = Yes) THEN
Send COMMIT messages;
COMMIT;
initialize Timeout;
WHILE (NOT Timeout AND NOT (all acknowledgments received)) DO
receive acknowledgments;
END;
IF NOT (all acknowledgments received) THEN
resend COMMIT messages to sites that did not send acknowledgments;
END;
ELSE
Send ABORT messages;
ABORT;
END,
END,
Terminate;
end;
Figure 4.3. Coordinator's algorithm for Basic Two-Phase Commit protocol

4.2. OPTIMISTIC TWO-PHASE COMMIT (O2PC)

The O2PC protocol as described in [LEVY91] is based on the optimistic assumption that
the probability of B2PC terminating unsuccessfully is very low. Therefore, locks can be
released earlier than in the B2PC protocol. This will result in reducing the waiting time
due to data contention, thereby improving the overall performance of the system. The
O2PC is a slightly modified version of the B2PC protocol; the same message exchange is
carried out as in B2PC. In B2PC releasing of locks is done after the transaction receives
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the coordinator’s decision, in case the transaction vote is Yes. In case the transaction vote
is No, it sends its decision and releases its locks (Figure 4.5). However in O2PC the
transaction voting Yes does not have to wait for the coordinator's decision; it sends its
decision, commits on the local site, and then releases its locks.

Participant's algorithm:
begin
START
Initialize Timeout; (* reset the timeout *)
WHILE (NOT (received vote-request) AND NOT Timeout) DO
wait vote-request;
END;
IF NOT (received vote-request) THEN
send No decision; (* Unilateral abort *)
ABORT;
Terminate;
END;
Send vote-decision;
IF vote-decision = Yes THEN
initialize Timeout;
WHILE (NOT Timeout AND NOT (decision received)) DO
wait-decision;
END;,
IF decision received THEN
IF decision = COMMIT THEN
COMMIT;
ELSE
ABORT;
END;
ELSE
decision := Termination-protocol();
CASE decision OF
COMMIT: COMMIT;
ABORT : ABORT;
BLOCK : WHILE ( NOT (decision received)) DO
wait-decision; (* blocking *)
END;
IF decision = Yes THEN
COMMIT
ELSE
ABORT
END;
END;
END;
END,;
Terminate;
end;

Figure 4.4, Participant's algorithm for Basic Two-Phase Commit protocol
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4.2.1, COMPENSATING TRANSACTIONS

The uncoordinated local commitment may result in the violation of the transaction's
atomicity rules. If at least one of the subtransactions of a transaction T votes to abort,
this will result in T committing at some sites and aborting at other sites, thus violating the
atomicity rule of a transaction. To rectify this situation, the effects of the committing
subtransaction must be undone locally at their sites. The solution for this problem is the
idea of compensating transactions [LEVY91], intended to handle situations where it is
required to undo the effects of a committed subtransaction the results of which have been
used by other transactions. Compensating transactions, along with the O2PC, are a way
of ensuring the atomicity of a transaction. A compensating transaction undoes the effects
of a committed transaction semantically, without resorting to cascading aborts which
affects the system's throughput. The side effect of compensation is that the system may
not be in the same state as if the original transaction had not taken place, while on the
other hand, compensating transactions guarantee the consistency of the system. The
success of a compensating transaction is guaranteed by the property of persistence
[LEVY91], which ensures that a compensating transaction completes successfully.

QPTIMISTIC TWOPHASE COMMI |

COORDINATOR STATES PARTICIPANT STATES

Figure 4.5. Optimistic Two-Phase Commit transition states in the absence of failures
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4.2.2. O2PC AND FAILURES

It is obvious from the description in section 4.2.1 that O2PC is identical to B2PC in
dealing with failures, except for the case where the failure results in aborting a transaction
that will lead to compensating transactions at all sites where subtransactions have
committed. The originators of this algorithm [LEVY91] claim that the overhead of a
compensating transaction is compensated for by the gain of releasing the locks earlier than
the B2PC, thereby increasing the system's throughput.

We have seen in the description of a site failure in section 4.1.1 that the transaction will
block if and only if all participants are in their uncertainty pet.ud at the time of the failure,
and the failure occurs before the coordinator sends the decision messages. Therefore the
probability of holding the locks for a long time is limited to the probability of having a site
failure while all participants are in their uncertainty period. In all other cases, a failure will
result in a Commit or Abort without blocking; the termination protocol ensures that. We

will evaluate the performance of O2PC in Chapter 6, where the simulation and its results
are presented.

4.3. PRUDENT TWO-PHASE CoMMIT (P2PC)

Unfortunately, neither the B2PC nor O2PC protocols distinguish between communication
failures and site failures; they treat both failures in the same manner. This can lead to
aborting a transaction even in the case of a transient communication failure. We believe
that in this case, the situation can be rectified without the need to abort the transaction.
We consider that a communicaticn failure may cause a message to be lost, and that the
network cannot detect this lost message. The P2PC algorithm, given in Figures 4.8 and
4.9, gives another chance to a participant or coordinator before aborting the transaction;
this compensates for most lost messages.

In the B2PC protocol, when a participant which has completed its transaction and is
waiting for a message timeouts, it is simply aborted. This leads to aborting the global
transaction. In the same situation P2PC will allow the participant to resend the vote-
decision again and wait an additional timeout before it decides to abort (Figure 4.9),
thereby avoiding unnecessary aborts. In B2PC, if the coordinator did not receive a vote-
decision from a participant, it sends a No decision and aborts the global transaction, while
in P2PC the coordinator is allowed to communicate another time with the participant that
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its message was not received, by resending the vote-request and waiting one additional
timeout before it decides to abort (Figure 4.8). We have excluded the ping action in the
case of a site failure, as mentioned in [DESA], for the reason of simplicity. However, it
can be added in a future study to improve P2PC. In brief, before giving another chance
the coordinator or participant pings the site it is sending a message to; if the site does not
respond, P2PC does not give a second chance. Instead it will act as the B2PC, hence
saving the additional messages.

4.3.1. DEALING WITH COMMUNICATION FAILURES

In B2PC there are three places where the participant and coordinator must communicate
by sending messages; we will consider communication failures in these three cases:

I.  If a vote-request message to a participant is lost, then the coordinator will timeout
waiting for a vote-decision from that participant. Also, the participant that did not
receive the vore-request will timeout after waiting for the coordinator's vote-request,
which was already sent. The other participants will time out in their uncertainty
period (wait-decision state). In such a situation, B2PC results in an abort of the
current transaction; in O2PC this would result in an abort plus Compensating
Transactions on the sites that have committed.

II. If a vote-decision message fiom a participant to a coordinator is lost, then the
coordinator will timeout in the vote-decision phase. In such a situation B2PC leads
to zn abort; O2PC leads to an abort plus Compensating Transactions on the sites
that have committed.

III. If a decision message to a participant is lost, then this participant will time out
waiting for the coordinator's decision, and according to B2PC the coordinator not
receiving the acknowledgment will resend the decision, or a termination protoco! ‘will
be called. Thus, this situation can be rectified with the B2PC protocol.

We conclude that the B2PC protocol takes care of only the last situation, and solves the

other two situations by aborting the global transaction. The P2PC protocol attempts to
take care of the other two situations, without the need of aborting the global transaction.
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4.3.2. P2PC ALGORITHM

The following illustrates the P2PC algorithm and how it handles the situations that B2PC
and O2PC do not handle:

There are two places where the coordinator can time out: during the wait vote-decision
state, and in the wait acknowledgments state (Figure 4.6).

IL

Timeout in the wait vote-decision state. In this state the coordinator cannot decide
unilaterally to commit, since this will violate the global commit rule. On the other
hand, it can unilaterally decide to abort the transaction and send a global abort
message to all participants. Before the coordinator decides to unilaterally abort the
transaction, it gives another chance to the participants whose votes were not received
yet, by sending them another vote-request message. Subsequently, the coordinator
waits for an additional timeout. If, after the second timeout, the coordinator doesn't
receive all the vote messages, then it decides to abort the transaction (Figure 4.8).
Timeout in the wait acknowledgments state. No modifications are done in this case;
it is handled in the same manner asin B2PC.

A participant can time out in two states, the wait vote-request state, and the wait decision
state (Figure 4.7).

L

IL

Timeout in the wair vote-request state. In this state, in the B2PC protocol, the
participant unilaterally decides to abort, and writes an abort decision in its log.
However, in the P2PC protocol, before deciding to unilaterally abort, the participant
gives the coordinator another timeout chance (Figure 4.9).

Timeout in the wait decision state. In this state the participant has voted to commit
the transaction, but does not know the global decision of the coordinator. The
participant is unable to make a unilateral decision, since it cannot change its decision
from a Yes to a No. Before calling a termination protocol, the participant resends its
decision and gives the coord:it*ator another timeout chance (Figure 4.9).
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To show logically that P2PC handles the two cases that B2PC does not, we will consider
its actions for all possible cases:

Case 1. A vote-request message from a coordinator to a participant is lost: In P2PC the
coordinator must send another vote-request to the sites that did not vote and wait for
another fimeout, and the participant that did not receive the vote-request will give the
coordinator another chance by resetting its fimeout. In the meantime, if any other
participant timeouts in its uncertainty period, before calling the termination protocol it will
give the coordinator another chance by resending its vote-decision and by resetting its
Timeout. Therefore the participants that did not receive the vofte-request the first time,
because of a communication failure or a delay in receiving the coordinator's message, have
another chance to send their votes, without the need to abort the transaction.

Case 2. A vote-decision message from a participant to the coordinator is lost: This will
restlt in the participant's timeout in its uncertainty period, and the coordinator will timeout
waiting for a vote-decision. In P2PC, all participants that timeout in their uncertainty
period send their vote-decisions again, and reset their timeouts. The coordinator gives the
participants that did not vote another chance by resending them a vote-request, and by
resetting its timeout. Therefore, the participants that did not vote yet or whose vote-
decision was lost have another chance to vote before aborting the transaction.

Case 3. A decision message from the coordinator to a participant is lost: Although this
case is solved by the B2PC protocol, we trace it for the sake of completeness. First, the
participant will timeout in its uncertainty period, send its vote-decision again and wait for
another timeout before calling the termination protocol. Second, since the coordinator did
not receive an acknowledgment from this participant, it will send it another decision
message.

This demonstrates that the P2PC protocol prevenis a global transaction abort in the case
of a transient communication failure or delay.
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Coordinator’s Algorithm.
begin;
start;
send vote-request to all participants;
initialize Timeout; (* reset the timeout *)
WHILE (NOT Timeout AND NOT (all vote-decisions received) ) DO
Receive vote-decisions;
END;
IF (NOT(all vote-decision received)) THEN
send vote-requests to participants which did not vote; (* Give another chance *)
initialize Timeout;
WHILE (NOT Timeout AND NOT (all vote-decisions received)) DO
Receive vote-decisions;
END;
END;
IF (NOT (all vote-decisions received)) THEN
Send ABORT message; (* Unilateral abort *)
ABORT;
ELSE
IF (all vote-decisions = Yes) THEN
Send COMMIT messages;
COMMIT;
WHILE (NOT Timeout AND NOT (all acknowledgments received)) DO
receive acknowledgments;
END;
IF NOT (all acknowledgments received) THEN
resend COMMIT messages to sites that did not send acknowledgments;
END;
ELSE
Send ABORT messages;
ABORT,;
END;
END;
Terminate;
end,;

Figure 4.8. Coordinator's algorithm for Prudent Two-Phase Commit protocol
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Participant's Algorithm;
n

START
Initialize Timeout; (* reset timeout *)
WHILE (NOT (received vote-request) AND NOT Timeout) DO
wait vote-request;
END;
IF NOT (received vote-request) THEN
Initialize Timeout;
WHILE (NOT (received vote-request) AND NOT Timeout) DO
wait vote-request; (* give another chance *)
END;
END;
IF NOT (received vote-request) THEN
send No decision;
ABORT; (* Unilateral abort *)
Terminate;
END;
Send vote-decision;
IF vote-decision = Yes THEN
initialize ‘Timeout;
WHILE (NOT Timeout AND NOT (decision received)) DO
wait-decision,
END;
IF NOT (decision received) THEN
resend vote-decision; (* give another chance *)
initialize Timeout;
WHILE (NOT Timeout AND NOT (decision received)) DO
wait-decision;
END;
END;
IF decision received THFN
IF decision = COMMIT THEN
COMMIT;
ELSE
ABORT;
END;
ELSE
decision := Termination-protocol();
CASE decision OF
COMMIT : COMMIT;
ABORT : ABORT ;
BLOCK : WHILE ( NOT(decision received)) DO
wait-decision; (* blocking *)
END;
IF decision = Yes THEN

END;
END;
END,
Terminate;
end;

Figure 4.9. Participant's algorithm for Prudent Two-Phase Commit protocol
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4.4. CORRECTNESS AND RELIABILITY OF P2PC

A transaction in a database system is an execution of a program that accesses a shared
database. The goal of concurrency control is to ensure the atomicity of transactions
executing concurrently. A transaction must satisfy certain properties in order to ensure
the correctness of the database system.

These properties are:

I. A transaction is atomic, either all of its effects are made permanent to the database or
none of them.

II. A transaction must not introduce any inconsistency in the data which are modified.

III. Transactions executing in parallel must not interfere with each other.

IV.All the effects of a transaction which has terminated successfully are made
permanent.

The correctness of any algorithm depends on the preservation of these properties. Thus,
to prove the correctness of P2PC protocol, we must demonstrate that P2PC preserves the
properties of a transaction.

44.1. AToMIC COMMITMENT OF P2PC

A distributed system is composed of a number of local database systems, plus a network
that connects them. A global transaction is a transaction that involves more than one site.
P2PC orchestrates the execution of global transactions, and controls their commitment.

The correctness of a local transaction is ensured by the protocols applied at each local site;
in our case it is ensured by the correctness of the Two-Phase Locking protocol, which is
assumed to be correct. A proof of the correctness of the 2PL protocol can be found in
[BERNS87]. Thus properties II, III, and IV are ensured locally; the remaining property to
be proven is the atomic commitment of a global transaction.

An Atomic Commitment Protocol (ACP) for a global transaction is an algorithm meant
to synchronize the commitment of the distributed subtransactions, such that either all the
sites involved in the global transaction commit, or they all abort. The rules of ACP are
described in detail in section 2.4.1.
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We can see clearly that the P2PC algorithm, in Figures 4.8 and 4.9, satisfies rules 1-4
(section 2.4.1) of an atomic commitment protocol:

o The coordinator either sends an abort or a commit decision to all participating sites,
and a participating site cannot decide to commit unless it has received th- commit
decision from the coordinator.

* A participant is not allowed to change its interim decision once it has voted.

o The Coordinator sends a Commit decision if and only if all sites have reached an
interim decision to commit.

To satisfy rule 5 (section 2.4.1) and guarantee that all processes will eventually reach a
decision, Timeouts are used as in the case of the B2PC algorithm. The difference from
B2PC is that P2PC gives an additional Timeout in the case of a failure; if the failure
persists after this additional Timeout, then processes will reach a decision either by a
unilateral abort or by calling the Termination protocol, thus satisfying rule 5.

4.4.2., EVALUATION OF P2PC

An ACP can be evaluated according to many criteria [BERN87]:

Resiliency: What are the failures that the protocol can tolerate?

Blocking: Can blocking of processes occur, and if so in what situations?

Time complexity: How long does it take to reach a decision?

Message complexity: What is the maximum number of messages to be exchanged in
order to reach a decision?

The two first criteria refer to the ACP's reliability, and the last two to the efficiency of
the ACP.

4.4.2.1. RELIABILITY OF P2PC

In the case of a site failure P2PC behaves the same way as B2PC, except for the additional
message exchange and the extra Timeout. Note that in the case of a site failure,
depending on the timing of the failure, a Timeout will call the appropriate termination
protocol and terminate the processes. In the case of a transient communication failure,
B2PC will act exactly as if there were a site failure, and will terminate the transaction in
the same manner. However, P2PC assumes that the Timeout is not necessarily due to a
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site failure, and it gives another chance to the transaction before it terminates it. Therefore
P2PC is more resilient to transient communication failures than B2PC, by giving the
transaction another chance to recover from the communication failure.

The P2PC protocol does not eliminate the possibility of blocking that existed in the B2PC
protocol. The blocking can happen when a process timeouts in its uncertainty period, and
the only processes it can communicate with are in their uncertainty period also.

To illustrate blocking, we consider the case where all processes are in their uncertainty
period, and the coordinator's site fails before sending the decisions. In this case, the
participants timing out in their uncertainty period send their vote-decisions another time,
and reset their timeout according to P2PC. Timing out the second time, the participants
call the termination protocol, which will return an undecidable answer since all participants
are in their uncertainty period. Hence, blocking of participants still occurs in P2PC. Such
blocking could be resolved by the SOS protocol [DESA90].

4.4.2.2. EFFICIENCY OF P2PC

The efficiency of P2PC is calculated in terms of time and message complexities.

Time Complexity: In the absence of failures, P2PC protocol requires three rounds of
messages to reach a decision. This is the same as in the case of B2PC [BERN87]. A
round is the maximum time for a message to reach its destination. The use of Timeouts to
detect failures is based on the assumption that such a maximum message delay is known
[BERN87]. Two messages belong to different rounds if one cannot be sent until the other
is received. So, in the absence of failures in P2PC, the three rounds of messages are: (1)
the coordinator broadcasts the vote-request, (2) the participants reply with their vote-
decision, and (3) the coordinator broadcasts the decision message.

In the case of a transient communication failure, the coordinator must send the vote-
requests again to the sites whose votes were not veceived. Simultaneously, the
participants in their uncertainty period resend their votes. Those participants who resend
their vote-decisions have already received a vote-request. Hence these two rounds of
messages may overlap, and are considered a single round of messages. The other round of
messages is the case where a participant did not receive the vote-request the first time.
Such a participant must wait for the coordinator’s second vote-request before it sends its
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vote-decision message. Therefore, this will add two additional rounds of messages to the
time complexity; that is (4) the coordinator rebroadcasts the vote-requests and the
participants resend their vote-decisions, and (5) the participants that did not receive the
first vote-request send their vote-decisions.

In case of site and communication failures that persist, the termination protocol may need
two additional rounds of messages [BERN87]: (6) one for the participant that timed out
to send a decision-request to other participants, and (7) one for the participant that
received the decision-request to send the decision.

Therefore, in the presence of failures that persist, P2PC needs two more rounds of
messages than B2PC, which has 5 rounds. These two additional rounds of messages are
the cost to make the system more reliable. The results and effects of additional messages,
and the possibility that they will be compensated for by the fact that the transaction is not
aborted, will be shown in detail in the simulation results in chapter 6.

Message Complexity: The message complexity is measured by the number and lengths
of messages issued by the protocol. Since the messages are uniformly short, then the
number of messages exchanged will be sufficient to calculate the message complexity
IBERN87]. In the B2PC protocol the number of messages without failures is 3n; with
failures it becomes n(3n+7)/2 {BERNS87] in the worst case, where n is the number of
participants. These figures do not consider the acknowledgments sent from the
participants to the coordinator; they add n messages for a total of 4n in the absence of
failures, and n(3n+9)/2 in the worst case.

In the absence of failures P2PC has the same number of messages, namely 4n, including
the acknowledgments. In the presence of failures we have three cases:

Case 1. The vote-message from the coordinator did not reach one or more participants.
Suppose m is the number of participants that are in the wait-vote state, and k is the number
of participants that are in their wait-decision state. Here m + k < n, since a participant
cannot be in both wait-vote and wait-decision states. Furthermore, the sum may be less
than n because a failed participant may not be in any state. Therefore the coordinator will
send m vote-reqizest messages to m participants, and the remaining participants that could
timeout in their uncertainty period will send £ messages to the coordinator. These will add
up to a maximum of n messages in this case.
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Case 2. One or more vote-decisions did not reach the coordinator. Assume that all
participants are in the wait-decision state. The coordinator will resend vote-requests to
the participants whose vote did not reach the coordinator. If the number of participants,
m, whose vote was not registered is 0 < m < n, the coordinator will send m vote-requests.
At the same time, participants which timeout in their uncertainty period will send n vote-
decisions. This will add up to a maximum of n + m messages; in the worst case it will be
2n messages.

Case 3. A decision did not reach one or more participants; these participants resend their
vote-decision. At the same time the coordinator, not receiving an acknowledgment from
these participants, will resend them the decision. In this case the maximum number of
messages would be 2n if we consider that all decisions did not reach all participants.

Scanning the three possible cases, we realize that in the worst case the additional number

of messages is 2n, where n is the number of participants. Hence, in the worst case, P2PC
requires a total of n(3n+13)/2 messages.
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CHAPTER 5

THE SIMULATION MODEL

The objective of our simulation experiments is to validate the P2PC and compare its
performance with B2PC and O2PC protocols. To meet our objective, we model a
distributed database system which uses these three commit protocols. Each simulation run
produces results in terms of the performance metrics discussed later in this paper. A
distributed database system is composed of a number of sites, each site representing a
centralized database system; the sites are interconnected by a communication network.
We have used the incremental concept in implementing the different components of the
system; we first build a simple centralized database system, then we move to a distributed
database system. This method was used for the following reasons:

s To examine the behavior of our centralized database system independent of the
distributed database system.

e To guarantee the correctness of our system, since an error in the centralized database
would propagate to the distributed one and be harder to detect .

o To make the implementation of the DDBMS easier, since it is built on top of our
DBMS.

5.1. THE PERFORMANCE MODEL

We start by the study of the performance model of a centralized database system;
subsequently we move to the distributed one. Agrawal defined the main parts of a
concurrency control performance model to be [AGRAS87]): a database system model, a
user model, and a transaction model. The database system model defines the
characteristics of the system's hardware and software, the characteristics of the database,
i.e. its size and granularity, and the concurrency control algorithm itself. The user model
defines the pattern of arrival of requests from users. Finally, the transaction model
captures the transaction behavior in the workload.



5.2. THE CENTRALIZED DATABASE SYSTEM MODEL

The database contains 4096 distinct items; each item can have a distinct lock. The
concurrency control for the centralized database system is based on locking; we use the
Two-Phase Locking protocol (2PL) [BERN87]).

5.2.1. SOFTWARE COMPONENTS

The centralized database system is mainly composed of two processes: a Transaction
Manager (TM), and a Scheduler plus a Data Manager (DM). The Scheduler and the
DM are embedded into a single process, which we refer to as the Scheduler process.

The Transaction Manager process is responsible for receiving the transactions and
forwarding them to the Scheduler. Once the maximum multiprogramming level is
reached, the TM will block all new incoming transactions, and will forward a blocked
transaction as soon as one of the running transactions completes its execution.

The Scheduler process is responsible for the execution and coordination of transactions.
It involves obtaining locks and handling deadlocks and conflicts. First, when the
Scheduler receives a transaction, it may delay it for a period of time before the transaction
actually starts. After the delay the Scheduler will start servicing read and write operations
for that transaction. For each read or write operation issued by a transaction on a data
item, the Scheduler will obtain the necessary locks before the transaction can proceed. In
case there is a lock conflict, the transaction will be blocked until the lock is obtained. In
case the lock is obtained and the resources are all currently being used, the transaction
must wait on the appropriate queue until it can be serviced. When a deadlock is detected
by the Scheduler, one of the transactions involved in the deadlock will be aborted and
restarted by creating a new transaction. The Scheduler will serve the transactions
according to FCFS basis, with no scheme for deadlock prevention or avoidance;
deadlocks are detected as they occur.

5.2.2. CONCURRENCY CONTROL ALGORITHM

The concurrency control algorithm used in our simulation for the centralized DBMS is the
Two-Phase Locking protocol (2PL). We use probability theory to simulate deadlock and
conflicts. Given the database parameters, the probability formula computes the probability



of a conflict or a deadlock in 2PL. In case a transaction encounters a conflict, it will be
delayed for a period of time, which is predicted by a probability formula. In case a
transaction encounters a deadlock, it will be aborted and restarted. [THOM91] presents
2PL results from probability theory, and formulas for deadlock and delays; we use these
results in the simulation of 2PL concurrency control in the centralized database system.
Thomas considered two types of transactions: a fixed size transaction and a variable size
transaction with identical step duration. A fixed size transaction exists in a system where
all transactions are of the same size; a variable size transaction exists in a system where
the size of transactions may be different. We use these two types of transactions in our
system. Below, we present the different formulas that were adopted from this paper.

M The number of transactions activated in the system.

The number of data items in the database.

The number of distinct locks requested by a transaction.

The mean processing time of a transaction step.

The mean residual processing time of a transaction step, s'=s/2.

The ith moment of the number of requested locks
(K=Y, k'P(k)). P(k) represents the probability that k locks
are requested by a transaction.

Table 5.1. Probability Notations and their Meanings

x b b

Probability of Result for Fixed Size Transactions:
The probability that a transaction requesting K distinct locks experiences a lock conflict
during its execution, per lock request assuming the independence of lock conflicts, is:

(M -1K*
T e r———— 1
fe 2 N ( )
The probability that a transaction encounters a deadlock of cycle 2 (deadlock that involves
two transactions) during its execution is:

_(M-nK*

= 2
Poy = @
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The delay when a transaction encounters a lock conflict is:

(K-1)s

W, = 3

+s' 3

Probability of Result for Variable Size Transactions:
The probability of lock conflict per lock request is:

- (M-1)(K, +K))

e = @
2(K+1)N
The probability of a deadlock of cycle 2 is:
_M-1)K,-K)(K, -1 (5)
w2 12(K, +1)N?
The delay in the case of a lock conflict is:
K,-K, ,
= S+ S 6
AR AK) ©

5.2.3. HARDWARE COMPONENTS

Object access requires the use of two resources: the CPU and disks. The access time and
the number of resources are used as parameters in the model. CPUs and disks are
considered as scitally shareable resources, i.e., a CPU can only service only one
transaction at a time. When a transaction needs CPU service, it is assigned a CPU server;
otherwise the transaction will be blocked until one is free (this applies also to I/O
requests). Thus, the CPU servers can be considered as a pool of identical servers, serving
one main global CPU queue. Requests in the CPU and disk queues are served according
to the first-come first-served (FCFS) discipline.

5.2.4. TRANSACTION MODEL

In our system the transaction is modeled by the set of read and write requests performed
during its lifetime. There is a limit on the number of transactions allowed to be active at
any time, specified by the current multiprogramming level (MPL). Whenever a
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transaction terminates it is automatically replaced by a new one. The transaction
execution time starts from the time it is forwarded to the Scheduler, up to the time where
it commits or aborts. Once the transaction is in the Scheduler, it will execute all of its read
and write operations. When the transaction encounters a lock conflict computed by the
probability of conflict equation (1) or (4), according to its type, it will be delayed by a
period of time determined by delay equation (3) or (6).

The delay is implemented using the global logical clock of the system. For example, if we
consider delaying transactions 7; and Tj respectively by 100 and 110 ms. taking the logical
clock as 500 ms at the delay request, then T; can only resume its execution when the clock
value becomes 500+100 = 600 ms, and Tj when the clock value becomes 610. The clock
is an infinite process that is incremented by 10 ms each time the control transfers. A
transaction can be in one of the following states: running, blocked, or delayed. If a
transaction is in the delayed state, then it will wait until its delay value expires. A delayed
state results from the transaction waiting for its 1/0O or CPU service to be completed. A
blocked state is the result of the transaction being blocked, waiting for its turn on the /O
or CPU service queue.

A transaction involved in a deadlock will be aborted and restarted. After a transaction
performs all of its read and writ2 requests successfully, it will commit and release all the
locks. The release of locks in our case is dene by subtracting 1 from the number of active
transactions in the system. This changes the probability of conflict, since the number of
active transactions is a parameter in the equation.

5.3. RESULTS OF THE CENTRALIZED SYSTEM SIMULATION

Although our focus is not on a centralized database system, we discuss its performance
behavior, because it is a main component of a distributed database system. The remainder
of this section presents and analyzes the centralized database system experiments,

5.3.1. PERFORMANCE METRICS

The primary performance metric we used throughout our study is transaction
throughput, the number of transactions that finish per second. The throughput is
calculated for a number of different MPL, each run for a period of 200 simulated seconds
to calculate its throughput. This duration is large enough to give more than 95 percent
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confidence in the throughput values as discussed at Figure 6.10. The confidence interval
will be determined for the results of the distributed system.

Response time, given in seconds, is also used as a performance metric. It is the time
interval between the submission of the transaction to the Scheduler and the time the
transaction commits. This metric is useful to measure the system's convenience to the
user.

Another performance metric used is the blocking ratio. It is the measure of the number
of times a transaction blocks on a lock conflict in its lifetime per commit. Average
Blocking ratio is computed as the ratio of the number of transaction blocking events to the
number of transaction commits. This metric indicates data contention and its effects on
lock acquisition.

5.3.2. PARAMETER SETTINGS

The parameters of the model reflect the state of the database, and give it a particular
flavor. They are important to the simulation model, since they can make it close to or far
from reality depending on the selected values. If, for example, a study were based on a
very small ¢. infinitely large database, then the study would be unrealistic and its results
not representative of real systems. Another point to be considered is the logical relation
between different parameters; they must be considered as a unit, and not in isolation. For
example, the CPU access time might be set to 30 ms, and the disk access time to 15 ms;
however, these values are not realistic because the disk cannot be 2 times faster than the
CPU on most current systems. Therefore, choosing the model parameters and their values
is of great importance to any performance study; the results of the simulation depend
heavily on them. Table 5.2 shows the model parameters as well as their meanings: these
parameters are used to simulate a centralized database system,

The values of the parameters used in our simulation are given in Table 5.3. These values
are similar to those used in [AGRA87, THOMY91, RAHM93], and are not specific to a
particular database and do not represent extremes. As an example, a database of size
4096 represents an average database size. This applies also to the other parameters used
in the simulation. Therefore, the parameters values we use do not represent a specific
application. Also these values were tuned according to extensive tests on the program




behavior for different values for each parameter. As an example we varied the transaction
size for different runs and chose the size that has the most representative performance.

Some of the parameter values are modified in different simulation runs; these new values
are indicated whenever they are changed. The MPL varies between MinMpl and the
MaxMpl; the former is 10 and the latter is 300. The MPL indicates the number of users
or terminals requiring transactions on the database.

The MaxMpl is the maximum MPL that our system is going to reach. Throughput and
other performance metrics are calculated for each MPL between MaxMpl and MinMpl,
which is incremented in steps of 10. ThinkTime is the mean time of delay before a new
transaction starts executing, due to processing or to a delay by the Scheduler. TrMin is
the minimum size of a transaction; TrMax is the maximum size of a transaction.

Parameter Meaning

Items Number of items in the database

TrMin The minimum size of a transaction's read-write set.
TrMax The maximum size of a transaction's read-write sel.
MaxMpl The maximum MPL used in the simulation,
MinMpl The minimum MPL. used.

Disk The number of disks

CPU The number of CPUs

ThinkTime The think time before a transaction starts.
DiskAccess The disk access time in milliseconds.

CpuAccess The CPU access time in milliseconds.

Table 5.2. Centralized DBMS Simulation Parameter Meanings

5.3.3. SIMULATION GENERAL INFORMATION

We use the SRC Modula-3 [© 1990 Digital Equipment Corporation], which provides
concurrency programming facilities by the Thread library interface. We did not have any
major problem using Modula-3 to implement our simulation. The only minor problem was
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when we moved to the distributed database system. Here, the larger number of threads
used a lot of main memory, obliging us to reduce the MaxMpl from 300 to 200 per site.
The simulation was performed on a DEC-ALPHA under OSF/1. Each run took an
average of 6 hours of real CPU time, simulating 200 seconds per MPL and a MaxMpl of
300 in the centralized system. The same CPU time was needed for the distributed system

for MaxMpl of 200.

Parameter Defauit Value
Items 4096 items
TrMin 7 (minimum)
TrMax 12 (maximum)
MaxMpl 300

MinMpl 10

MaxDisk 15 units
MaxCpu 7 units
ThinkTime 100 ms (miiliseconds)
DiskAccess 35ms
CpuAccess 15ms

Table 5.3. Centralized DBMS Simulation Parameter Values

5.3.4. SIMULATION RESULTS

Our experiments concemning the centralized database system cover three types of
transactions: (1) a fixed-size transaction, of size equal to TrMax; (2) a variable size
transaction, of size chosen randomly between 1 and TrMax; (3) and a variable size
transaction of size chosen randomly between TrMin and TrMax. We refer to these types
as fixed-size-transaction, variable-sizel-transaction and variable-size2-transaction
respectively. We have done three expesiments where we varied the number of resources:
in the first we had infinite resources; in the second 15 disks and 7 CPUs; finally in the
third one we restricted the number of resources to 5 disks and 2 CPUs. These
experiments were meant tp show the behavior of a central system.
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Figure 5.1. Throughput with infinite resources for the centralized system

Experiment 1: in this experiment we had infinite resources. This means that the
transactions do not encounter any resource conflicts. The only conflicts are due to lock
conflicts and deadlocks. We will show graphs based on the chosen performance metrics:
throughput, lock conflict and response time.

As we can see in Figure 5.1, the throughput for the variable-size1-transaction reaches 225
transactions per second at the highest MPL level, and is increasing. This shows that the
data contention is low for a variable-sizel-transaction, while the variable-size2-
transaction, whose size varies between 7 and 12, has less throughput, around 170
transactions per second. The third type of transaction, the fixed-size-transaction, has the
lowest throughput results, of nearly 90 transactions per second. It is clear that the size of
the transaction, requiring more locks and more resources, reflects its time to complete.
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Figure 5.2. Conflict ratio with infinite resources for the centralized system

The more lock conflicts the transaction has, the longer time it takes to execute and finish.
We can see in figure 5.2 that the maximum number of lock conflicts per transaction
commit for the variable-sizel-transaction is approximately equal to 2 conflicts per
transaction commit at the highest MPL. For the variable-size2-transaction it reaches 2.8
conflicts. The worst case remains the fixed-size-transaction, where it reaches 5.2 conflicts
per committed transaction.

Examining Figure 5.3, we see that for infinite resources the response time is relatively low.
This is because a transaction does not need to wait in a queue for its I/O or CPU service.
The only delay is the lock conflicts, which will make a transaction wait if its lock cannot
be granted. Again, the variable-sizel-transaction outperforms the other two types of
transactions. The results of the response time in seconds are shown in Figure 5.3.
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Figure 5.3. Response Time with infinite resources for the centralized system

Experiment 2: Here the number of resources was limited to 15 disks and 7 CPU's in the
centralized site. We chose these figures because if we give more resources, the system
performance will be close to the infinite resource assumption. These figures reflect a real
system more closely than an infinite resources assumption.

We can see in Figure 5.4 that the throughput keeps on increasing up to MPL 50 for the
three types of transactions, and then a plateau is reached which indicates that by increasing
the MPL the throughput will not increase; however, the response time continues to
degrade in Figure 5.6. We notice also that the difference in terms of throughput between
the fixed-size-transaction and the variable-size2-transaction has become less than that in
the infinite resource case. This reduction is due to the increase in CPU and Disk resource
contention.
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Figure 5.4. Throughput with 15 Disks and 7 CPUs for the centralized system

However, the conflict ratio results are the same as with the infinite resources! To explain
this, we recall that the conflict ratio represents only lock conflicts and not resource
conflicts. Hence the conflict ratios are independent of resource conflicts. The throughput
decrease is caused by the resource conflict due to decreasing the number of resources.
The graphs in Figure 5.5 are very similar to those in Figure 5.2. We deduce that an
increase in both lock and resource conflicts results in decreasing the throughput of the
system. It is obvious that resources are a big bottleneck to performance, since they are
limited and resource conflicts occur more frequently than lock conflicts.

The response time plays a big role in determining the behavior of the system where a
plateau is reached; increasing the MPL does not increase the throughput of the system.
In this experiment, the throughput results do not show any difference of performance
between one MPL and another. This difference can be seen in the response time results.
In the worst case, an infinitely high response time is similar to thrashing; both ratios of
active transactions to completed or committing transactions are high.
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Figure 5.5. Conflict ratio with 15 Disks and 7 CPUs for the centralized system

In Figure 5.6 we see clearly that the response time increases constantly as we increase the
MPL beyond 50. This is the effect of reaching a plateau, as shown in Figure 5.4. The
response time in the case of fixed-size-transaction reaches 10.2 sec; with variable-size2-
transaction it reaches 8 sec; while with variable-sizel it is around 5.5 sec. These results
are much higher than corresponding values in Figure 5.3 (3, 1.6 and 1.3 sec) for the three
transaction types respectively.

Experiment 3: This experiment uses 5 Disks and 2 CPUs. The results show further
degradation of performance. We omit the results of the conflict ratio, since they are nearly
the same as in the previous two sections, for the reasons given in Experiment 2. The
results of throughput and response time are given in Figures 5.7 and 5.8 respectively.
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Figure 5.6. Response Time with 15 Disks and 5 CPUs for the centralized system

We can predict that the performance with this number of resources will degrade
dramatically. It is easy to notice the influence on chroughput due of the lack of resources
in Figure 5.7. The plateau is reached at a level lower than in Experiment 2, and the level of
throughput remains constant up till MPL 300. For the fixed-size-transaction it does not
exceed 8.2 transactions per second, for variable-size2-transaction it is 11 transactions, and
for variable-size I-transaction it is 16 transactions per second. These results indicate that
for 5 Disks and 2 CPU's, extending the MPL above 30 does not improve throughput. On
the other hand, performance will degrade with respect to response time, which will
become higher as shown in Figure 5.8,

The response time is affected seriously in this experiment by low throughput and high

resource conflict. We can see in Figure 5.8 that it jumps above 30, 25 and 15 sec for the
fixed-size-transaction, variable-size1-transaction and variable-2-transaction respectively.
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Figure 5.7. Throughput with S Disks and 2 CPU's for the centralized system

Conclusions from Experiments: We present the results of these =xperiments for the
sake of showing the behavior of the centralized system, and for studying its performance
in detail. We proceed in developing our distributed system, knowing the response of the
underlying centralized system. Comparing our results to those in [AGRA87], we see that
our results are precty similar to the blocking concurrency control results. Finally, we
conclude for the centralized study that resources are the bottleneck of a database system,
in cases where requests are more that the resources can handle. In such a case,
concurrency control enhancements do not improve the system performance much, while in
the case where adequate resources are available, concurrency control enhancements can
play a bigge: role in improving system performance.
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5.4. THE DISTRIBUTED DATABASE MODEL

Having examined the centralized database system, we discuss the components of the
distributed database model, keeping in mind that all the components of the centralized
system are preserved at each site, except where stated explicitly.
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Figure 5.8. Response Time with 5 Disks and 2 CPU's for the centralized system

5.4.1. HARDWARE COMPONENTS

Our distributed database system is composed of 6 sites, each running a centralized
database model, and a network that connects them. The sites communicate by sending
messages through the network. A site may issue a global transaction, which requires more
than one site to participate. Whenever a message is sent from site a to site b or vice versa,
the load of the logical line (a,b) is incremented by the message size. Messages encounier a
delay according to the load of the line they travel on. Timeouts are defined according to
the maximum delay that a message may encounter before reaching its destination.
Therefore, in the absence of failures, a participant or a coordinator will not Timeout.
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Timeouts have minimum and maximum values, the minimum value at the lowest MPL, and
the maximum value at the maximum MPL.

Site failures occur according to a fixed number of failures during the simulation run. For
example, we simulate 3, 6 and 9 site failures; these are normally distributed over the
period of the an. When a failure occurs at a site, the processing will stop. Hence all
transactions running on that site will be suspended; they resume when the site recovers.
Once a site fails, a process responsible for the recovery of that site is created. This
process delays the failed site for a random period. Once the delay has expired, the site
recovers and the transactions are resumed. The effect of site failures on local transactions
is limited to the delay encountered by the site failure, since the recovery of these
transactions can be accomplished locally. On the other hand, for a global transaction a site
failure may cause the abort of the transaction; if the coordinator site fails before sending
the decision message, and participants are in their uncertainty period, blocking will occur.

Communication failures are simulated according to the probability of a message being lost.
Each time a message is sent, we check whether it will be lost according to the given
probability; if the message is lost, then it will not reach its destination. The effects of
communication failures are limited to global transactions. The worst effect is aborting the
transaction; blocking is not possible due to the fact that participants can communicate
with each other at the time of commit in all protocols.

5.4.2. SOFTWARE COMPONENTS

The distributed database system simulation is composed of a coordinator process, a
participant process, and a global clock process. The synchronization beiween participants
and their coordinator is done by one of the following Atomic Commitment protocols:
B2PC, P2PC, and O2PC, which are discussed in detail in Chapter 4.

Once the Coordinator Process receives a global transaction from the TM of a site, it is
responsible for splitting that transaction into subtransactions, and forwarding them to the
appropriate sites. After delaying itself for a period of time, while the part.cipants have
some time to do the processing at their sites, it will start one of the threc commit protocols
used in this paper. Once the commit protocol is accomplished, the coordinator will
terminate itself.

55




The Participant Process is responsible for receiving and following the instructions of its
coordinator, according to the protocol used. The participant process at each site starts
when the coordinator splits the global transactions and forwards them to the appropriate
sites.

The Global Clock Process represents the progress of real time; hence its value is shared
among all sites. It synchronizes all the actions involved in the ACP used. It is assumed,
for simplicity, that the processing time is uniform on all sites, hence all CPU's have the
same speed.

5.4.3. TRANSACTION MODEL

Two kinds of transactions are considered in our distributed system: transactions that are
running locally, and global transactions that split into subtransactions. A subtransaction
performs the same steps as a local transaction on its site; it acquires locks and performs
its read and write operations. On the other hand, a subtransaction commitment or abort is
controlled by its paricipant, which operates according to an ACP. Hence, the
subtransaction will not commit until it receives a commit message through the ACP.

The size of a subtransaction is between 1/3 and 2/3 of the maximum transaction size. The
percentage of local transactions in our system at each site is 40%; the rest are
subtransactions of global transactions. The MPL is thus composed of 60%
subtransactions of global transactions and of 40% local transactions. For example, for an
MPL of 10 or each site, the number of local transactions is equal to 4, the number of
subtransactions is less than or equal to 6. The reason for the upper limit of 6 global
subtransactions is that it is not necessary to gencrate a subtransaction at all sites. Global
transactions are issued from each site with uniform probability, and in turn issue between 2
and 6 subtransactions at random sites. The global MPL is controlled by the gencra.ion of
global transactions; when a global transaction terminates, a new global transaction is
issued. For local transactions we adopted the variable-size2-transaction type, used in the
centralized database system.
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5.4.4. PERFORMANCE METRICS

The performance metrics we used for the distributed system are:

* Average local throughput per second is the average number of transactions that have
committed on each site, local transactions and subtransactions included. ‘This
throughput is calculated for the total MPL (local and global transactions). It is
calculated by dividing the sum of all committed transactions and subtransactions on all
sites by the number of sites.

e Global transaction throughput per second represents the number of global
transactions committed per second for each global MP'..

e Global transaction aborts per second is the numbe.r of global transactions that have
aborted per second for each global MPL.

» Local transaction response time represents the local transaction's average response
time, excluding the subtransactions.

e Global transaction response time is measured from the time that the global
transaction is generated on the sites, to the time that the coordinator terminates it.

e Number of messages exchanged per commit is the total number of messages
exchanged divided by the number of global transactions that committed. It includes
the messages of both global transactions that have aborted and those that have
committed.

o Number of compensating transactions is the average number of compensating
transactions issued at all sites per second. It is applied only to the O2PC protocol.

5.4.5. PARAMETER SETTINGS

Table 5.4 shows the parameters we used as default values for the simulation of a
distributed database systzm. Any change in the values will be indicated. The site failure
rates are indicated with the results, since they vary from experiment to experiment. The
time that a site fails is 8-10 sec, including recovery time. We choose this lime since
simulating a longer time of failure recuires extending our time of simulation, which in turn
would require longer execution times. The Communication Failure gives the probability
of failure for each message sent; this failure might be due to noise in the link, network
partitioning, or a long delay.
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Parameter Default Value

Items 4096 items (each site)

TrMin 7 (minimum for local transactions)
TrMax 12 (maximum for local transactions)
MinMpl 10 (each site)

MaxMpl 200 (each site for both local and global)
MaxDisk 15 units (each site)

MaxCpu 7 units (each site)

Nsites 6 sites

Subt-Size 1/3 - 2/3 of TrMax

GlobaiMpl 60% of Mpl

Timeout 1-4 seconds

Message-Delay 16 ms per 512 bytes
Message-Length 512 bytes

Site-Failure-Time 8-10 seconds
Communication-Failure 0.2 %

Table 5.4. DDBMS Simulation Parameter Values

5.5. CONCLUDING REMARKS

Finally, in this chapter we have described the characteristics and details of our
implementation model, taking into consideration the whole system from the centralized
database system up to the distributed database.
performance of the centralized database, independent of the distributed database. The

next chapter presents the final simulation results of this study.
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CHAPTER 6

SIMULATION RESULTS

In this chapter we present the results of the simulation experiments for a DDBMS. The
experiments were conducted for three different Atomic Commitment Protocols, P2PC,
B2PC and O2PC. The performance of these protocols in thes experiments is determined
in terms of their tolerance of failures in a Distributed Database Management System. The
strategy we used was to measure the performance of these protocols for various failure
rates. In the first sct of experiments the performance was measured in the absence of
failures; the second set of experiments dealt with communication failures; finally the last

set of experiments were conducted in the presence of both communication and site
failures.

6.1. CONFIDENCE INTERVALS

Confidence intervals [AGRA87] or error bars are the range of y abscissa values between
different runs for the same values of x. Before starting our experiments we measured the
confidence intervals between different runs with the same parameters, to make sure that
results are independent of a particular run. Confidence intervals were measured in the
absence of failures, since they affect confidence intervals by their unstable behavior. We
did four runs with the absence of failures using B2PC, and two graphs were produced
from the results showing the error bars. Figure 6.1 shows the global transaction
throughput, and Figure 6.2 shows the average local transaction throughput.

The "GLOBAL MULTIPROGRAMMING LEVEL" in Figure 6.1 stands for the number
of global transactions running in the system. The "LOCAL MULTIPROGRAMMING
LEVEL" in Figure 6.2 indicates the total number of local transactions plus subtransactions
running at each site. The local MPL may be less than the actual transactions running on
each site, because a global transaction may involve between 2 and 6 subtransactions.

The error bars for the global transaction throughput vary between O and 4% (Figure 6.1),
which makes the confidence intervals between 95 and 100%. Therefore, the possibility of
error between two different runs is less than 4%, which is an acceptable range in this
context [AGRAS87]. The difference between two runs occurs because different runs of the




simulation do not have exactly the same sequence of transactions, due to the use of a
random number generator.

For the average local transactions the error bars show a very tight range, which is hardly
noticeable (Figure 6.2). This is due to the fact that this range involves the average of all
the sites, which makes the error more tight than the global transaction one.
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Figure 6.1. Error Bars for Global Transaction Throughput

6.2. SIMULATION GENERAL INFORMATION

We implemented a program that simulates the three different protocols used in our study.
Each protocol is used as an input parameter inside the program, and requires an
independent run. This entailed running the simulator once for each protocol using the
same experimental parameters. Each run of a protocol produces a separate result file for
each performance metric used in this study. Graphs were plotted from these result files
using the GNUPLOT [© Thomas Williams and Colin Kelley, 1986-1993] software under

UNIX.



6.2.1. SIMULATION OF COMPENSATING TRANSACTIONS

As described in Chapter 4, a participant in O2PC releases the locks before the
coordinator's decision. This may result in the need to run compensating transactions on all
committed sites, if the coordinator decides to abort the global transaction. A
compensating transaction is one that undoes the effects of a committed transaction
semantically. Unfortunately, we can't incorporate the cost of semantic compensations in
the simulation; this is difficult to determine, because it involves semantic knowledge of
the transactions. Hence, we limit the cost of a compensating transaction to the cost of
issuing an additional transaction on its local site; this will decrease the local throughput.
Thus the cost of a compensating transaction will mostly affect the average local
throughput and not the global throughput; we ignore any economic or real cost of an
optimistic commit.
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Figure 6.2. Error Bars for Average Local Transaction Throughput
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6.3. SIMULATION RESULTS: NO FAILURES

The first set of experiments was conducted with no failures, except those due to
deadlocks. The purpose of these experiments was to compare the performance of O2PC
with that of B2PC in the absence of failures. In this way we have an idea about their
relative performance due to deadlocks only, before we move to experiments involving
failures. Three graphs were produced by these experiments: global throughput (Figure
6.3), average local throughput (Figure 6.4) and compensating transactions graphs (Figure
6.5).
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Figure 6.3. Global Transaction Throughput with no failures

For our database, the global throughput results show that the performance of O2PC is at
best slightly better than the B2PC protocol, due to releasing the locks earlier. The results
do not show a big difference, since in the absence of failures locks are not held long;
therefore an early release of locks does not make much difference on the global

throughput level.
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The average local throughput results confirm the global results, and show that O2PC
cannot overcome the overhead of its compensating transactions, even in the absence of
failures. We can see in Figure 6.4 that O2PC performs slightly better between MPL. 40
and 90. As data contention increases, performance drops to overlap that of B2PC, due to
the compensating transactions issued because of failures due to deadlocks.

Figure 6.5 shows the number of compensating transactions per second; the maximum
number of compensating transactions reached is 0.06 transactions on each site. These
compensating transactions are issued due to a deadlock that a subtransaction encounters
during its lifetime. Compensating transactions are required when at least one
subtransaction of a global transaction is aborted due to a deadlock, while subtransactions
of the same global transaction go ahead and commit and release their locks. Sincc
participant sends the abort message to the coordinator and not directly to other
participants, the latter rely on a message (to abort) from the coordinator. In the meantime,
some participants that have reached the wait-decision before others will release their
locks. Therefore the abort message resulting from a deadlock at one or more participants
will reach them after they have unilaterally committed. Hence, a deadlock at even one
participant will lead to compensating transactions for the other sites.

6.4. SIMULATION RESULTS: COMMUNICATION FAILURES

For communication failures we developed two experiments; the first with medium failure
rates, the second with higher failure rates. The rates of failures were 0.2 % and 1% per
message sent respectively. These experiments provide performance results for all three
protocols; the performance metrics measured are: global throughput, local throughput,
number of messages exchanged, global response time, local response time, number of
global aborts, and number of compensating transactions.

Experiment 1: The results of this experiment show clearly the difference between the
three protocols in the presence of communication failures. A communication failure will
result in an abort in the case of B2PC, but in the case of O2PC, in an abort and a number
of compensating transactions. For P2PC, communication failures are mitigated by a
second chance, a possibility of not aborting the transaction: this in turr results in
improving the system performance.




The global throughput presented in Figure 6.6 shows that P2PC protocol is the best
among the threc protocols, due to not always having to abort a global transaction in the
case of a transient communication failure. We see also that the graphs of B2PC and O2PC
interleave, and exhibit better or worse throughput at different MPL.. We conclude that the
performance of the latter protocols is, on the average, comparable, and that P2PC
outperforms them. The difference is around 12% improvement at the highest MPL in
favor of P2PC.
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Figure 6.6. Global Transaction Throughput with Communication Failures (0.2%)

The local throughput results show also a difference of performance, since they embody a
combination of both local and global transactions. An improvement in global transaction
throughput will lead to improving the average local throughput, with no change in local
transaction throughput. The performance of O2PC (Figure 6.7) and P2PC show slightly
better throughput than B2PC for global MPL less than 80. Beyond an MPL of 80 P2PC
reaches a plateau, but it outperforms the other ACPs. The performance for O2PC
degrades and becomes lower than B2PC beyond MPL. 140.
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The results of this experiment confirms the results of the first experiment, which was done

with no failures; the performance of O2PC is no better than B2PC, and considerably
poorer than P2PC,

Let us consider the number of messages exchanged. Figure 6.8 shows that P2PC has the
lowest number of messages, while the results show that O2PC and B2PC have comparable
numbers of messages. The maximum number of messages required is with O2PC (13.7
messages), and the lowest with P2PC (11.8 messages).

As discussed in chapter 4, P2PC is characterized by .1e most complex message exchange
among the three protocols. However, the graph in Figure 6.8 show a decreased number
of messages for it. The reason for this is as follows: in P2PC a global transaction, instead
of aborting, uses additional messages to run to completion. In the other two protocols, a
global transaction will abort after the maximum number of messages have been exchanged.
Such action requires that the global transaction restart again; this restart adds to the
number of messages. Hence, P2PC has the lowest number of total messages, and the
lowest messages per transaction. Note, that the number of messages exchanged includes
messages for transactions that abort and must restart.

The number of compensating transactions for O2PC protocol reaches 0.55 per second,;
this is shown in Figure 6.9. Comparing the compensating transaction graph with the
O2PC abort graph in Figure 6.10, we notice that the two graphs are similar in shape,
indicating that an abort leads to a compensating transaction in most cases. The numbers
are not identical, since an abort of a global transaction does not necessarily require
compensating transactions at all participating sites. We can see that aborts are lower in
the case of P2PC, the maximum abort being 0.18 transactions per second, while in the
case of O2PC, it reaches 1 transaction per second. The intersecting graphs of O2PC and
B2PC show that they have the same performance and rate of failures; they do not overlap
exactly, because failures are generated randomly and do not give the exact same numbers
for both runs.

The local response time (Figure 6.11) indicates very similar results for three protocols.
The difference is less than 0.1 second at the highest MPL. Hence, the only discriminating
measure of performance is throughput, is best for P2PC, which outperforms the other two
protocols. The average local response time for the three protocols is around 1.9 sec in
this simulation at MPL 120, as shown in figure 6.11.
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The global response time in Figure 6.12 also shows very close and comparable results.
The maximum response time reached, at the highest MPL, is 5 seconds. This indicates
that a global transaction needs around 2.5 times as much time as a local transaction. This
is due to the overhead of sending messages and waiting for the coordinator's decision
message. Again, the only measure of performance for global transaction is the global
throughput graph. As we see from Figure 6.6, P2PC has better throughput than B2PC or
O2PC.

Finally this experiment shows that P2PC outperforms B2PC and O2PC in terms of
throughput and number of messages. This improvement, as shown in Figures 6.8, 6.11,
and 6.12, is not at the expense of the response time, or the number of messages
exchanged.
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Figure 6.9. Average Compensating Transactions with Communication Failures (0.2%)
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Figure 6.12. Global Transaction Response Time with Communication Failures (0.2%)

Experiment 2: In tiis experiment we increased the communication failures to 1% of
messages sent. This compares the behavior of the three protocols under a higher
communication failure rate, and verifics whether O2PC performance persists compared to
B22C, and whether the advantage of P2PC holds.

A difference in performance among the three protocols is illustrated by the global
throughput result in Figure 6.13. P2PC reached 23 transactions per second at the highest
MPL, while O2PC and B2PC reached 16 transactions per second and then dropped to 15
at MPL 200. The performance of O2PC was similar to B2PC, as in experiment 1.

The results for average local throughput in Figure 6.14 show what we expected for O2PC.
02PC deg-aded in performance with respect to B2PC, and did not overcome the overhead
due to compensating transactions, which degrades around a global MPL of 100, due to the
combination of deadlocks and the high rate of global aborts caused by communication
failures. The difference in performance between P2PC and B2PC is larger than in the
previous experiments, showing that P2PC performance does not degrade with higher
communication failures.
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Comparing the abort rates with the previous experiment, we notice from results in Figure
6.15 that P2PC has a slightly higher abort rate than in Figure 6.10; this indicates that not
all communication failures aborts were prevented. A communication failure may result in
an abort if it persists, which may happen when two consecutive messages fail. The first
time a message fails, the transaction uses the second chance; the second failure has no
backup, and the transaction aborts. The abort results show that B2PC and O2PC have a
much higher rate than the previous experiment, reaching 2 global transactions failures per
second. This high rate of abort is the cause of lower throughput and poorer performance
of the system.

Finally, the number of messages in Figure 6.16 are higher than in the previous experiment
(Figure 6.8). This is due to the higher abort rates, requiring restart of global transactions
before a commit. The maximum number of messages is 17 per commit for both B2PC and
O2PC, compared to 13.7 in Experiment 1. For P2PC it is between 12 and 13.2, compared
to between 11.8 and 12.2 for Experiment 1.
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Figure 6.16. Number of Messages with Communication Failures (1%)

Our conclusion from these communication failure experiments is that for this system P2PC
outpe. ‘ormed B2PC and O2PC in terms of throughput, number of messages exchanged
and number of transaction aborts; it is equivalent in performance for response time.
O2PC outperformed B2PC slightly in throughput for low MPL, and was equivalent in
higher MPL for low communication failures in Experiment 1. For higher failure rates, as
in Experiment 2 (1% of communication failures), O2PC performance degraded due to
higher abort rates, necessitating increased numbers of compensating transactions.

6.5. SIMULATION RESULTS: SITE FAILURES

After evaluating the performance of our system in the presence of communication failures
only, we move our attention to the effects of both site and communication failures. Site
failures affect the throughput of the system much more than communication failures, since
their effects extend over more than a single transaction, to all transactions executing on
the failed site. A failed site will stop all its actions, therefore causing a delay to local
transactions, and possibly an abort of subtransactions of global transactions running on its
site. When the site recovers it will resume execution of the local transactions after
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recovery procedures, and try to reach a decision for subtransactions that started before it
failed; the algorithm that handles site failures is explained in detail in chapter 4.

B2PC is designed to tolerate site failures, and it guarantees the preservation of a
transaction's atomic commitment. The price to pay is to abort the global transaction, or to
block the subtransaction in the worst case. P2PC is similar to B2PC in the case of a site
failure, except that it offers a second chance. This will result in additional unnecessary
messages, in the case of site failures only. Fortunately, the rate of site failures is low, and
as we will show the P2PC protocol compensates for these unnecessary messages by the
transactions saved from an abort due to transient communication failure. O2PC
participants decide unilaterally to commit by releasing their locks; this avoids blocking,
but leads to compensating transactions, if the coordinator decides to abort.

The following experiments evaluate the performance of P2PC and O2PC due to site
failures. In these experiments we increment site failures to the point where all protocols
are equivalent or worse in performance than B2PC, to see the fault tolerance of each
protocol in the environment of high site failure rates. The number of site failures is taken
to be constant at all MPL for all protocols, and we increased the simulation time from 200
to 400 seconds per MPL to decrease the range of error. For example, if the number of
site failures for an experiment is 3, then each MPL will have 3 site failures normally
distributed over the period of each simulated MPL run, which is 400 sec. The duration >f
each site failure is from 8 to 10 seconds. At the same time, we choose the probability of
0.2% for communication failures, instead of a higher communication failure rate which
would favor the P2PC protocol.

6.5.1. RESULTS FOR 3 SITE FAILURES

The first experiment was done simulating of 3 site failures for each level of
multiprogramming for the tiree protocols. The results of this experiment show the
degradation of performance for all three protocols as compared to Experiment 1.
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Figure 6.17. Global Transaction Throughput for 3 Site Failures
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The throughput results show that P2PC still outperforms the other protocols for average
local and global throughput. However, the difference is slightiy less than in Experiment 1
(0.2% of communication failures), where it was nearly 3 transactions per second or 12%
(Figure 6.6), while in this case the difference in performance has dropped to 2 transactions
per second (10%) for the global throughput (Figure 6.17). The degradation of O2PC in
the presence of failures is now more visible in Figure 6.18 for local throughput, where it
performs three transactions (7%) worse than B2PC.

The global response time shown in Figure 6.19 is interleaved for the three protocols,
showing that there is no relative degradation with respect to Experiment 1 (Figure 6.12).
Also, the local transaction response time in Figure 6.20 is similar to Experiment 1 (Figure
6.11). One difference we notice is that O2PC has a slightly higher response time, since its
throughput decreased due to the higher number of compensating transactions.

The global transaction aborts results in Figure 6.21 reveal an increase in the abort rate.
For 3 site failures it increases up to 0.6 transactions aborts per second for P2PC, which is
around three times the rate of Experiment 1 (Figure 6.10). In B2PC and O2PC it
increases to around 1.5 times the rate of Experiment 1, with a maximum of 1.6 aborts per
second. For the compensating transactions in Figure 6.22, the rate increases slightly
compared to Experiment 1, and has a maximum of 0.65 compensating transactions per
second which indicates that 3 site failures increases slightly the number of compensating
transactions.

The number of messages exchanged with 3 site failures is higher for all protocols as shown
in Figure 6.23. P2PC has a maximum of 13.5 messages exchanged per commit at the
highest MPL; In the case of O2PC and B2PC, it is 14.6 messages exchanged per
transaction. This shows that, for P2PC, the extra messages sent in the case of site failures
were compensated for by the prevention of aborts in the case of communication failures,
thus resulting in a lower message exchange per commit for that protocol.

We conclude from these simulation results that P2PC still outperforms B2PC and O2PC in
the presence of 3 site failures. The additional number of messages required in case of a
failure are compensated for by the decreased rate of aborts. O2PC performance degraded
with respect to average local throughput, due to the number of compensating transactions
issued.

77




e T T Y B T v T3 S~y ST W T TS
e GLODAL TRANSACTION ABORTS FOR 3 SITE FRILURES
. Y T T T T
PRUDENT BPC ===
BASIC 2PC ~-- |
OPTIMISTIC BPC sevoe- o
1.6 RE
14r .": ,.-""' 7
é . |
1.2 b §f -
~ 'l' P
o od
- Lo
¢ e
g tr 7
L4 s
& S
~ K /
2 0.8 i~ -".,. / -
o g tiar?
[ AN
= R
< o
0.6 |
0.4 |
0.2 |
e [ A L X 1
(-] -] 40 60 80 108 128
GLOBAL MULTIPROGRAMMING LEVEL
Figure 6.21. Global Transaction Aborts for 3 Site Failures
E—
AVERAGE COMPENSATING TRANSACTIONS FOR 3 SITE FAILURES
8'7 T ¥ T T Ll
OPTIMISTIC 2PC =
8.6 |-
”~
o
[
"
- 0.5 |
[+
[ J
[
»
A d
(24
£ e}
-
e
(%3
L 1
o
E
&
& 0.3 |
o
z
o)
[
&
2
5 e.2f
(%
: 3
[=4
(]
0.1 |
. 1 'l A 1 1
] g8 40 69 80 100 120
GLODAL MULTIPROGRANMING LEVEL
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6.5.2. RESULTS FOR 6 SITE FAILURES

We increased the number of site failures from 3 to 6 per MPL. The results show that the
throughput of P2PC is closer to B2PC, but did not fall below it. Figure 6.24 for the global
transaction throughput shows close results for all three protocols. In this case, with higher
MPL, we notice that the performance begins to fall off. P2PC performance is still
distinctly better than the others, and it still outperforms slightly B2PC. The throughput
reaches a maximum of 18 trans/sec at MPL of 60 in the case of P2PC, and then drops to
17 trans/sec at MPL of 120.

For the average local transaction throughput, P2PC results are same as those for B2PC at
some MPL, as shown in Figure 6.25. However, on the average it outperforms B2PC,
indicating the advantages of P2PC's second chance in overcorning the problems caused by
the increased rate of failures. A visible difference can be seen now in the performance of
O2PC, which drops dramaticaily to make a difference of 5 uansactions per second (12%)
between it and P2PC.
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Figure 6.24. Global Transaction Throughput for 6 Site Failures
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Figure 6.25. Average Local Transaction Throughput for 6 Site Failures
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The global transaction aborts as shown in Figure 6.26 has increased for all protocols; it is
close to 1 transaction per second for P2PC, and in the range of [2,2.5] for the other two
protocols at the highest MPL. This shows again that P2PC has a lower rate of aborts,
even in the presence of increased site failures. Also, the rate of compensations for the
O2PC increased to reach 0.8 transactions per second, versus 0.65 for 3 site failures
(Figure 6.27).

For this level of site failures, the number of messages exchange for P2PC, as shown in
Figure 6.28, is closer to the other protocols, indicating that the additional messages sent in
the case of a site failure are growing compared to the messages saved by not aborting the
transaction in the case of a communication failure. However, this number is still lower
than in the other two protocols.

Comparing the results of this experiment to the one for 3 Site failures, we can deduce that
increasing the site failure rate affects the performance of P2PC and O2PC more than
B2PC. P2PC still outperforms B2PC, while O2PC performance degrades dramatically.

6.5.3. RESULTS FOR 9 SITE FAILURES

In this experiment we increased the site failures to 9 for each MPL. The results of this
experiment met our goal, which was to achieve a throughput for O2PC and P2PC equal to
or worse than B2PC. In fact, by increasing the rate of failures to this level, the graph of
P2PC and B2PC criss-crossed, as shown in Figure 6.29. This illustrates that in the worst
case the performance of P2PC was not lower than B2PC. The throughput figures also
show that the global transaction performance for the three protocols interleave after MPL
of 60, indicating a similar performance for all three protocols. We also notice that
throughput decreases with increasing MPL, which is a sign of thrashing; this happens
because the system is not completing the transactions, and the abort restart rate is high
due to increased site failures.

The global throughput results in Figure 6.30 demonstrate the similar level of performance
of P2PC and B2PC. It is to be noted that B2PC does not outperform P2PC, even in the
presence of high site failure rates. This again supports our conclusion that taking care of
communication failures is not at the expense of site failures. Contrast this with O2PC,
where one is at the expense of the other.
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Furthermore, basing a protocol on the assumption that failures do not occur or rarely
occur creates a simulation which performs badly when the assumption is wrong. This is
seen clearly in Figure 6.30, where a high difference is visible between O2PC and the other
two protocols.

Let us now consider the number of messages exchanged, which may be used as a measure
of message complexity (Section 4.4.2.2). The results of messages exchanged, as shown in
Figure 6.31, are similar for all protocols; however, the values for P2PC never exceed
those of the others. This demonstrates that the message complexity for P2PC is the
lowest per transaction commit in the presence of failures.

6.6. CONCLUDING REMARKS

We notice in these experiments that B2PC is tolerant of site failures, but at the expense of
communication failures, which were treated the same as site failures and resulted in a
lower system performance. In the absence of failures O2PC outperforms B2PC slightly,
but in the presence of failures B2PC outperforms O2PC.

Finally, we conclude from these experiments that the performance of P2PC was better
than the other protocols; even in the worst cases it is as good as B2PC. Communication
failures are handled better with P2PC; even with high site failures P2PC overcomes their
effects and avoids aborts, as in the communication failure cases.
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CHAPTER 7

CONCLUSION

The Basic Two-Phase Commit protocol is a simple and elegant Atomic Commitment
Protocol. It is designed to treat all failures in a distributed system as a site failure.
Unfortunately, this leads to aborting global transactions even in the case of a simple
communication failure, resulting in a iower system performance.

In this thesis we present the Prudent Two-Phase Commit, and study its performance using
a distributed database simulation. The salient feature of P2PC is that it provides another
chance to a global transaction before aborting it. P2PC gives another chance to a
participant or coordinator before making a decision; this second chance rectifies many
faults due to communication failure. In this way it prevents an unnecessary abort and, as a
result, improves system performance.

The cost of implementing a P2PC is the additional rounds of messages and the associaled
Timeout. We demonstrated using our simulation that this cost is justified by abort
prevention, which in turn leads to fewer messages per transaction commit, and an increase
in throughput. Also, we demonstrated that in the case of high site failure rates, P2PC
does not degrade, nor does its performance fall below B2PC.

We compared the performance of P2PC to B2PC and O2PC, two well-known protocols
that use different strategies. O2PC is known for its optimistic assumption of low failure
rates, hence permitting the participants to unilaterally commit befors the final decision of
the coordinator. The side effect of this protocol is in issuing compensating transactions,
to undo semantically the effects of the miss-committed transaction without resorting to
cascading aborts. The overhead of semantic compensation is not discussed in our study,
however; we treated this compensation as an additionai transaction, therefore limiting the
effects of the compensation to local throughput.

The strategy we followed for testing the performance of P2PC was to test according to
low levels of failures, and then to increment the rate of failures up to the point where the
protocol degrades in performance to the level of B2PC. We performed our experiments in
the following order: no failures, only communication failures, increased communication
failures, 3 Site failures, 6 Site failures, and finally 9 Site failures.




The results of our experiments reveal that O2PC slightly outperforms B2PC in the absence
of failures at medium MPL; at higher MPL its performance is similar to BZPC. With the
presence of site failures O2PC's performance degrades dramatically compared to B2PC
and P2PC, showing its intolerance of failures. A high rate of compensating transactions is
behind this degradation of O2PC peirformance, revealing that O2PC was designed at the
expense of robustness and fault tolerance.

P2PC outperforms B2PC and O2PC in the presence of communication failures; its
improvement was 12% at the highest MPL for global throughput results, 8% for the
number of messages exchanged, and 4% in the average local throughput. P2PC
outperforms the others for low and medium site failure rates; it is similar in performance
to B2PC in the presence of high site failure rates, demonstrating that P2PC is more robust
than B2PC and O2PC in the presence of both site and communication failures.

We deduce the following rules in order to use one of the ACP studied in this thesis:

o O02PC is good for systems where site and communication failures do not occur or the
probability of their occurrence is extremely low. It also requires that running semantic
compensation is possible without resorting to cascading of compensating transactions.

e B2PC is good for systems where communication failures occur rarely and the site
failures is high. The communication failures rate should not exceed the site failures
rate.

o P2PC is good for systems with both communication failures and site failures. The site
failures rate should not exceed the communication failures rate. The advantage of
P2PC is that without failures or delays it is equivalent to B2PC,

Finally, we conclude that P2PC retains the elegance and ease that are inherent in B2PC,
with the additional feature of taking into account communication failures by treating them
differently than a site failure, thus producing a protocol that has robust system
performance. Future enhancements to P2PC would involve adding the ping operation
[DESA] to its implementation; future work would involve applying this protocol to
Highly Distributed DBMS (HDDBMS) where each database itself is a HDDBMS
[DESA).
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ATPENDIX A. SOURCE CODE FOR THE SIMULATION PROGRAM

This appendix lists the source code for the program used in the ditsributed database
simulation. This listing includes the main module; some functions are not listed due to
their secondary role, such as input and printing functions. This program was written in
SRC Modula-3 code; it compiles and runs under DEC-ALPHA under OSF/1.

This module simulates a distributed database system having n sites, each site is a centralized
database system by itself. The locking protocol used is the two phase locking protocol, the atomic
commitment for global transactions is synchronized by the two phase commit protocol. The goal
of this program is to produce performance results of Basic, Optimistic and Prudent Two-Phase
Commit protocols. The system performance is measured by the throughput which is the number of
committed transactions per second.

MODULE Main;

IMPORT Thread, Rnd, Scan, Rd, Wr, Fmt ;

FROM InOut IMPORT WriteTxt, WriteCard, WriteLn, Writelnt, WriteLongReal,
WriteReal,;

FROM Scheduler IMPORT Yield,

FROM IO IMPORT OpenRead, OpenWrite;

(* Defining the parameters used as constants in the system *)
CONST

Thr = 200;
Unit = 1000000.0; (* Unit of time with respect to one second *)
Maxnt = 350; (* The maximum number of transactions that exist *)
Maxdt = 200; (* The maximum number of global transactions *)
Maxns = 700; (* The maximum number of seconds for an interval *)
Nsites = 6; (* The number of sites *)
Lpercent = 40; (*The percentage of local transactions in the system*)
Messlength= 512; (* Average message iength *)
Messunit = 64; (* The unit of a message *)
Sitef =2; (* 2 will give the same number of failures each Mpl,

1 the number of site failures may vary between Mpl.*)

TYPE
Transaction = RECORD
id : CARDINAL;
rw : CARDINAL,;
END;

(* declaring the log record, where the information of a global
transaction are kept *)
LOG = RECORD
vote_decision, commit_decision, vote_request, finished : TEXT;
site_fail, deadlock, location : TEXT,




END;

(* Declaring the failure record where the count of the different kinds
of failures are kept. *)
FAILURE = RECORD
deadlock, site, message : ARRAY [1..Maxns + 1] OF CARDINAL,;
END;

(* Declaring the transaction's manager ¢losure *)
(* The parameters should be passed to the transaction manager upon its
creation *)

Tmclosure = Thread.Closure OBJECT

id : CARDINAL

OVERRIDES

apply .= TM

END;

(* Declaring the transaction closure *)

(* the different parameters are: *)

(* site: the site of the transaction *)

(* seq : the sequence of the transaction *)

(* id : The unique id of the transaction *)

(* did : The global id of the subtransaction *)

(* coordinator : The site of the coordinator *)

(* index :The index that will serve to store the log information *)

(* nparticipant : The number of the participants in the case of a global transaction *)

(* type : The type of the transaction if it is local or global *)

(* class : The class of the transaction if it is a participant ora coordinator *)

(* participant : is the list of participants involved in the global transaction *)

(* SCHEDULER : is the body of the transaction, i.e the procedure that the transaction
is going to take place *)

Tclosure = Thread.Closure OBJECT
site, seq, id, did, coordinator, index, nparticipant : CARDINAL;
type, class : TEXT;
participant : ARRAY[1..Nsites] OF CARDINAL,;

OVERRIDES
apply := SCHEDULER
END;

(* Declaring the coordinator closure *)

(* the different parameters are : *)

(* site: the site of the coordinator *)

(* id : The unique id of the coordinator *)

(* index :The index that will serve to store the log information *)

(* nparticipant : The number of the participants *)

(* participant : is the list of participants involved in the global transaction *)

Cclosure = Thread.Closure OBJECT
site, id , nparticipant, index : CARDINAL,;
participant : ARRAY[1..Nsites] OF CARDINAL
OVERRIDES
apply := COORDINATOR
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END;
(* Declaring the siterecovery closure *)

Rclosure = Thread.Closure OBJECT
Sid : CARDINAL;

OVERRIDES
apply := SITERECOVER
END;

(* declaring the site record with all the necessary variables *)
(* The variables are : *)
(* Trc : is the transaction count *)
(* Tid : is the transaction unique id *)
(* Nudisk : is the number of utilized disk *)
(* Nucpu is the number of utilized CPU *)
(* Ntrans: is the number of transaction left *)
(* NT: is the number of finished transactions in a second. *)
(* Conflict: is the count of conflict *)
(* TRC : is the transaction count for each type of transaction *)
(* Thruput: is the count of transactions that finish *)
(* Response : is the response time of a transaction *)
(* Fail : will record if the site is failing or not *)
(* Tra . is the thread transaction *)
SITE = RECORD
Trc, Tid, Nudisk, Nucpu, Ntrans : CARDINAL,
NT, Conflict : INTEGER;
TRC : ARRAY[1..2] OF CARDINAL;
NTRANS, CONFLICT : ARRAY([1..2] OF INTEGER;
Thruput : ARRAY[1..Maxns+1] OF CARDINAL,;
Compensate : ARRAY([1..Maxns+1] OF CARDINAL;
THRUPUT : ARRAY(1..2], [1..Maxns+1] OF CARDINAL;
Response : ARRAY[1..Maxns+1] OF REAL;
RESPONSE : ARRAY/[1..2], [1..Maxns+1] OF REAL;
Fail, Lfail : TEXT,
Tra: ARRAY [i..Maxnt] OF Thread.T;
(* Declaring mutex semaphores *)
mutex, mutex1, mutex3, mutex4, Mfail : MUTEX;
END;

(* Declaring the communication links *)
LINK = RECORD
Sites : ARRAY [1..Nsites), [1..Nsites] OF CARDINAL,;
Mutex : ARRAY [1..Nsites), [1..Nsites) OF MUTEX;
END;

declaring the global variables

VAR
(* declaring global variables that are common to all threads *)
(* Timer : is the time of the clock in terms of seconds. *)
Timer : REAL;
Ntime, ii, jj, Mpl, Lmpl, Dmpl, Maxcpu, Dtid, Dpercent, Dtri : CARDINAL,;
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Ndtrans, Dtrc, Nsfail : CARDINAL;

Dthru, CouFail, Dmessage : ARRAY([1..Maxns+1] OF CARDINAL;
Dresponse, Dmresponse : ARRAY[1..Maxns+1] OF REAL;
Scount : ARRAY/[1..Nsites) OF CARDINAL,;

Site : ARRAY/1..Nsites] OF SITE;

Log :ARRAY[I1..Maxdt], [1..Nsites] OF LOG;

Link :LINK;

Failure: FAILURE;

(* declaring the coordinators threads *)
Coord : ARRAY[1..Maxnt]OF Thread.T;

(* declaring the transaction managers threads *)
Transm : ARRAY(1..Nsites] OF Thread.T;

(* declaring the other threads *)
Clock, Throughput, Site_recover, Sitefail : Thread. T;

(* declaring the mutex semaphores that will be used for mutual exclusion *)
(* to protect global variables, and resources. *)
Moutput, MUTEXCD, DMUTEX, MUTEXF, MUTEXM := NEW(MUTEX),

300l AR o o o 3R g 2 o kokok oo o o ook

The variables that will be read from an input file.
e ojeofe e sfe e ook o o 298 o o ok o e e 3o o h ook ok o Lt

N, Thrt, Trmin, Trmax, Stept, Debug, MaxMpl, Timeout, Transt : CARDINAL,

Timeoutl, Timeout2, Ddebug, Debugt, Fdebug, Mdelay, Atimeout : CARDINAL,;

Smpl, Nthr, Maxdisk, Diskaccess, Cpuaccess, Extthink, Protocol : CARDINAL,;

Cpause : CARDINAL,;

Psitefail, Pmesslost : REAL;

Outfile, Outfilel, Outfile2, Qutfile3, Outfile4, OutfileS : TEXT;

Outfile6, Outfile?, Outfile8, Outfile9, Outfile10, Outfilel1 : TEXT;

(* N : Number of items in the database *)

(* Thrt is the unit of time that the throughput is calculated *)

(* Trmin is the minimum set of read and write actions *)

(* Trmax is the maximum set of read and write actions *)

(* Stept is the execution time of a single step of a transaction *)

(* Debug is the debugging level : 1,2,3 *)

(* MaxMpl is the maximum multiprogramming level *)

(* Transt is the type of the transaction 1- variable, 2- fixed*)

(* Qutfile is the name of the file that the data output will be printed *)

(* Smpl is the increment that will be added to the current Mpl level i.e
The next Mpl will be equal to Mpl + Smpl *)

(* Nthr is the number of times that the throughput should be done before
calculating the average throughput*)

(* Maxdisk is the maximum number of disks *)

(* Diskaccess is the average time to read or write to a disk #)

(* Cpuaccess is the average time to access the cpu *)

(* Extthink is the external think time of a transaction *)
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Pause
This procedure will make the transaction pause for a certain number of microseconds.

PROCEDURE Pause(time : REAL; delay : CARDINAL ) =
BEGIN

(* Wait until the detay + time of trans will be less than the Timer *)
WHILE (time + (FLOAT(delay)/Unit)) > Timer
DO

Yield(); (* switch to the next ready process *)
END l;ause;

This procedure will make the transaction pause for a certain number of seconds.

PROCEDURE LongPause (time : REAL; delay : CARDINAL) =
BEGIN
(* Wait until the delay + time of trans will be less than the Timer *)
WHILE (time + FLOAT(delay)) > Timer
DO
Yield(); (* switch to the next ready process *)
END;
END LongPause;

This procedure will return the exponential of a real number

PROCEDURE EXP(V : REAL; N : CARDINAL).REAL =
VARI1i : CARDINAL;

¢: REAL;
BEGIN

c:=1.0;

FORi:=1TON DO

c:=c*V;

END;

RETURN ¢;
END EXP;

MOMENT
This procedure will return the moment of a lock that is given by the formula Km = SUM
k>0 k” m Pi(k)

PROCEDURE MOMENT(m, p : CARDINAL):REAL =
VAR mr, pr: REAL;

i, sum : CARDINAL;
BEGIN

mr ;= FLOAT(m),
pr := FLOAT(p);
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sum ;= 0;
FORi:=1TOp DO

sum := sum + TRUNC(EXP(FLOAT( i), m));
END;

RETURN (FLOAT(sum)/FLOAT(p));
END MOMENT;

EDEADLOCK
This procedure will return the probability of deadlock for the current type of transaction.

PROCEDURE PDEADLOCK(sid : CARDINAL).CARDINAL =
VAR k1,k2,k3, k : REAL;
M, Nr, pr: REAL;
BEGIN
M := FLOAT(Site[sid].Trc); (* Number of transactions in the system *)
Nr:= FLOAT (N); (* The size of the database *)
k := FLOAT(Trmax); (* The number of locks required by a fixed size tr *)

(* If the transaction type is variable then apply the formula on the
variable type, else apply the fixed type formula *)

IF Transt = 1 THEN
k1 := MOMENT(1, Trmax); (* Get the first moment *)
k2 := MOMENT(2, Trmax); (* Get the second moment *)
k3 := MOMENT(3, Trmax); (* Get the third moment *)
pr:=(M- 1.0) *(k2 - k1)* (k3 -1.0)/( (12.0*(k1 + 1.0)) *

EXP(Nr, 2));

ELSE
pr = (M- 1.0) * EXP(k, 4) /(12.0*(EXP(Nr, 2)));

END;

RETURN(TRUNC (pr * 10000.0));

END PDEADLOCK;

PCONFLICT

This procedure will return the probability of conflict fc: the current type of transaction.

PROCEDURE PCONFLICT(sid : CARDINAL).CARDINAL =
VAR k1,k2,k : REAL;
M, Nr, pr: REAL;
BEGIN
M := FLOAT(Site[sid]. Trc); (* Number of transactions in the system *)
Nr:= FLOAT (N); (* The size of the database *)
k := FLOAT(Trmax), (* The number of locks required by a fixed size tr *)

IF Transt = 1 THEN

k1 := MOMENT(1, Trmax); (* Get the first moment *)
k2 := MOMENT(2, Trmax); (* Get the second moment *)
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pr:= (M- 1.0)*(k2 + k1)/ (2.0 *(k1 + 1.0) * Nr)

ELSE
pri=(M-1.0)*k/(2.u*Nr);

END;

RETURN(TRUNC (pr * 10000.0));

END PCONFLICT;

DELAY

This procedure will return the delay time for a conflict according to the type of
transaction.

ROCEDURE DELAY():CARDINAL =
VAR K1, k2, k3, k,s: REAL;

BEGIN

k := FLOAT(Trmax); (* The number of locks required by a fixed size tr *)
s := FLOAT (Stept); (* The step duration *)

(* If the transaction type is variable then return the delay for the
variable type, else return the delay for the fixed type *)
IF Transt= 1 THEN
k1 := MOMENT(1, Trmax); (* Get the first moment *)
k2 := MOMENT(2, Trmax); (* Get the second moment *)
k3 ;= MOMENT(3, Trmax); (* Get the third moment *)
RETURN( TRUNC ( ((k3-k1)/(3.0* (k2 +k1)) *s)+82));
ELSE
RETURN (TRUNC ((s *(k- 1.0)/3.0)+s/2));
END;

END DELAY;

CREATETRANS

This procedure will create a local transaction.

PROCEDURE CREATETRANS(sid:CARDINAL)=
VAR ntrans : CARDINAL;
BEGIN

LOCK Site[sid].mutex4 DO
(* WHILE the number of transactions is less than the Mpl *)
WHILE (Site[sid]. TRC[1] < Lmpl ) DO
Site[sid).Ntrans := Site[sid].Ntrans + 1,
IF Site[sid).Ntrans > Maxnt THEN
Site[sid).Ntrans := 1;
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END;

ntrans ;= Site[sid).Ntrans;

(* Increment the number of total transactions in the system *)
Site[sid]. Trc := Site[sid).Trc + 1;

(* Increment the number of local transactions *)

Site[sid). TRC{1] := Site[sid). TRC[1] + I;

(* Give an id to the transaction *)

Site[sid,. Tid := Site[sid].Tid + 1;

IF (Debug = 3 AND (Debugt = 1 OR Debugt = 3)) THEN
WriteTxt ("Local Transaction "); WriteCard(Site[sid).Tid);
hV':l'lt;te'l‘xt (" is created at site : "); WriteCard(sid); WriteLn();

(* Create a transaction *)
Site[sid). Tra[ntrans] := Thread.Fork(NEW(Tclosure, site := sid,
seq := ntrans, id .= Site[sid].Tid, type := "local",
class := "local"));
END;
END;
END CREATETRANS;

CREATEDTRANS

This procedure will create a global transaction.

PROCEDURE CREATEDTRANS() =

VAR ntrans, min, i, j, coord, nsubt, temp, sno : CARDINAL,;
pick : ARRAY[1..Nsites] OF CARDINAL;
flag : BOOLEAN,
classt : TEXT,

BEGIN
LOCK MUTEXCD DO

FOR i := 1 TO Nsites DO
pick[i} := 0;
END;
(* Keep on creating a global transaction until the maximum current global
multiprogramming level is reached. *)
WHILE (Dtrc < Dmpl ) DO

Dtid := Dtid + 1; (* give a unique id *)
Dtrc := Dtrc + 1; (* increment the count *)
Dtri :=Dtri + 1; (* give the index*)

IF Dtri > Maxdt THEN
Dtri = 1;

END;

Ndtrans := Ndtrans + 1;

IF Ndtrans > Maxnt THEN
Ndtrans := 1;

END;
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min := Scount[1); coord :=1;
FOR i :=1 TO Nsites DO
IF Scount[i] < min THEN
min := Scountfi];
coord :=1;
END;
END;
Scount{coord) := Scount[coord] + 1;
(* pick the number of subtransactions randomely *)
nsubt ;= Rnd.Subrange(Rnd.Default, 1, Nsites - 1);
FOR i:=1 TO Nsites DO
pick[il := 0;
END;

(* pick the sites that the subtransactions would take place *)
IF (nsubt= Nsites -1 ) THEN
i := Nsites;
FOR j := 1 TO Nsites DO
pick({j] :=j;
ND;

ELSE
pick[nsubt+1] := coord;
i=0
END;

WHILE (i < nsubt) DO
temp := Rnd.Subrange(Rnd.Default, 1, Nsites);
IF temp # coord THEN flag := TRUE;
ELSE flag := FALSE;
END;
FORj:=1TOiDO
IF pick[j] = temp THEN
flag .= FALSE;
END;
END;
IF flag THEN
i=it l;
pick[i] := temp;
END;
END;
(* Create the coordinator that is responsible for the
subtransactions *)
Coord[Ndtrans] := Thread Fork(NEW (Cclosure, site :=coord,
participant := pick, nparticipant := nsubt, id :=Dtid,
index := Dtri )),
END; (* WHILE (Dtrc < Dmpl ) *)
END; (* LOCK MUTEXCD *)

END CREATEDTRANS;
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CLOCK
This process will simulate a clock that will synchronize all sites

PROCEDURE CLOCK (self : Thread.Closure): REFANY =

BEGIN
(* Create the transaction manager at each site *)
FOR i := 1 TO Nsites DO
EN’l‘mnsm[li] := Thread Fork(NEW(Tmclosure, id := ii));
D;

(* Create the throughput process *)
Throughput := Thread.Fork(NEW(Thread.Closure, apply := THROUGHPUT));

(* Create the site failure process *)
Sitefail ;= Thread.Fork(NEW(Thread.Closure, apply := SITEFAILURE));

(* Simulate an endless timer, until the maximum MPL is reached *)

WHILE Mpl <= MaxMpl DO
IF ((Ntime+1) * Maxns) < TRUNC(Timer + 0.01) THEN
(* Ntime is used to calculate a rotatory timer, that
will be useful in the throughput process. *)
Ntime := Ntime + 1,
END;
Timer := Timer + 0.01;
Yield(); (* Switch to the other processes *)
END;
RETURN NIL;
END CLOCK;

THROUGHPUT

This process is responsible for writing the results of the system into the corresponding files.
Every certain number of iterations it will calculate the average results for one second and
writes the results, i.e. if the run consists of n seconds at each Mpl, then this process will
compute the metrics per 1 second in some cases, and in the other cases it will compute with
respect to a transaction commit.

PROCEDURE THROUGHPUT (self:Thread.Closure):REFANY =

VAR
(* Declaring all the local necessary variables. *)
cou, Thru, thruo, Thrul, Thrud, thruol, thruod, dthru, dfail, nmessage : CARDINAL,;
dummy, ntime, i, count, countl, countd, dsitefail, deadlock, message : CARDINAL;
Comp, t1: CARDINAL;
Trime, Conflictr, Conflictrl, Conflictrd, avg, Resp, Respl, Respd, avgr : REAL,;
avgrd, avgrl, dummyr, dummyrl, dummynrd, avgd, dresponse, avga, avgpercent : REAL;
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avgsitefail, avgdeadlock, avgmessage, avgnmessage, tmessage, avgtm :REAL;
avgcomp: REAL;

(* Declare the files to write the results *)

File, Filel, File2, File3, File4, File5, File6, File7, File8, File9, File10 : Wr.T;
Filell : Wr.T;

BEGIN
Ttime := Timer;
LongPause(Ttime, 5); (* wait for § seconds until the system stabilises *)
Ttime := Ttime + 5.0;
cou := 1; ntime := Ntime;
Lmpl := (Mpl * Lpercent) DIV 100; (* compute the local MPL *)
Dmpl := (Mpl * Dpercent) DIV 100; (* compute the global MPL *)
File .= OpenWrite(QOutfile); (* Open the output file for throughput*)
Filel := OpenWrite(Outfile1); (* Open the output file for conflict ratio*)
File2 := OpenWrite(Outfile2); (* Open the output file for response time *)
File3 := OpenWrite(Outfile3); (* Open the output file for global thruput*)
File4 := OpenWrite(Outfile4); (* Open the output file for global abort *)
File5 := OpenWrite(OutfileS); (* Open the output file for global response *)
File6 := OpenWrite(Outfile6); (* Open the output file for site-failure *)
File7 := OpenWrite(Outfile7); (* Open the output file for message-failure *)
File8 := OpenWrite(Outfile8); (* Open the output file for deadlock *)
File9 := OpenWrite(Outfile9); (* Open the output file for # messages *)
File10 :=OpenWrite(Qutfile 10); (* Open the output file for % time in 2pc *)
Filel1 :=OpenWrite(Outfile11), (*Open the output file for the # compensate*)

(* Initializing the variables *)
FOR dummy := 1 TO Nsites DO

Site[dummy).NT := 0;

Site[dummy).Conflict := O;
END;
Thru := 0; Resp :=0.0; Thrul :=0; Thrud :=0; dthru := Q; dfail := O;
dresponse := 0.0; dsitefail := 0; deadlock := 0; message := 0,
nmessage ;= 0; tmessage := 0.0, Ccmp :=0;

(* while the maximum multiprogramming level is not exceeded *)
WHILE Mpl <= MaxMpl DO

(* If the number of calculation of the throughput for ampl is greater than the given
number then calculate the average throughput for that multiprogramming level
and print the results on the file as well as on the screen *)

IF (cou > Nthr AND Mpl <=MaxMp! ) THEN
(* Local Throughput *)
avg := FLOAT(Thru)/( FLOAT(cou-1)* FLOAT(Nsites));
(* global throughput *)
avgd := FLOAT(dthru)/(FLOAT(cou -1));
(* global abort *)
avga := FLOAT(dfail)/(FLOAT(cou -1));
(* Avg # of compensating transactions on each site *)
avgcomp := FLOAT(Comp)/( FLOAT(cou-1)* FL.OAT(Nsites));
IF dthru # 0 THEN
(* average global response time per commit*)
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avgrd := dresponse/FLOAT(dthru),
(* average site fail per second *)
avgsitefail := FLOAT(dsitefail)/FLOAT(cou - 1);
(* average deadlock per second *)
avgdeadlock := FLOAT(deadlock)/FLOAT(cou - 1);
(* avg message failure per second *)
avgmessage = FLLOAT(message)/FLOAT(cou - 1);
(* avg number of messages per commit *)
avgnmessage := FLOAT (nmessage)/FLOAT(dthru);
(* percentage of time spent in the 2pc *)
avgtm := tmessage/FLOAT(dthru);
avgpercent := (avgtm/avgrd)*100.0;
END;
dresponse :=0.0; dsitefail := 0; deadlock :=0; message :=0;
nmessage := 0; tmessage := 0.0;
IF Thru # 0 THEN
avgr = Resp/ FLOAT (Thru), (* Response Time *)
ELSE

avgr := 0.0
END;
(* local response time *)
IF Thrul # 0 THEN
avgrl := Respl / FLOAT(Thrul);
ELSE
avgrl := 0.0
END;

dummy := 0; dummyr := 0.0; dummyrl := 0.0; dummyrd := 0.0;
FORi := 1 TO Nsites DO

(* calculate the conflict ratio *)

IF Site[i].NT # 0 THEN

dummyr := (FLOAT(Site[i].Conflict)/
FLOAT(Site[i].NT)) + dummyr;

END;
END;
Conflictr := dummyr / FLOAT(Nsites); (* Conflict ratio *)
Thru := 0; Resp := 0.0; dthru := 0; dfail := 0; Comp :=0;
WriteLn();
WriteTxt("##The average local throughput for Mpl ");
WriteCard(Mpl); WriteTxt(" is =");
WriteReal(avg); WriteLn();
WriteTxt("The global throughput for Mpl :");
WriteCard(Dmpl); WriteTxt(" is = "), WriteReal(avgd); WriteLn();
WriteTxt("The global abort :");
WriteReal(avga); WriteLn();
WriteTxt("The Conflict ratio : ");
WriteReal(Conflictr);
WriteTxt(" The local Response time : ");
WriteReal(avgrl); WriteLn();
WriteTxt(" The global Response time : ");
WriteReal(avgrd); WriteLn();
WriteTxt(" The site-failure per second is : "),
WriteReal(avgsitefail);, WriteLn();
WriteTxt(" The message-failure per second is : "');
WriteReal(avgmessage), WriteLn();
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WriteTxt(" The deadlock per second is: ");
WriteReal(avgdeadlock); WriteLn();

WriteTxt(" The number of messages per transaction commit: ");
WriteReal(avgnmessage); WriteLn();

WriteTxt(" The percentage of time spent in 2pc is: ");
WriteReal(avgpercent);, WriteLn();

WriteTxt(" The average # of compensating transactions: ");
WriteReal(avgcomp); WriteLn();

(* write the average local throughput results *)
WRITE(Mpl, avg, File);

(* write the conflict ratio results *)
WRITE(Mp), Conflictr, Filel);

(* write the local response time resuits *)
WRITE(Mpl, avgrl, File2),

(* Write the global transaction results *)
(* write the throughput results *)
WRITE(Dmpl, avgd, File3);

(* write the abort results *)
WRITE(Dmpl, avga, File4);

(* write the response results *)
WRITE(Dmpl, avgrd, FileS),

(* write the site-failure results *)
WRITE(Dmpl, avgsitefail, File6);

(* write the messaage-failure results *)
WRITE(Dmpl, avgmessage, File7):

(* write the deadlock results *)
WRITE(Dmpl, avgdeadlock, File8);

(* write the number of messages results *)
WRITE(Dmpl, avgnmessage, File9),

(* write the percent of time spent in 2pc *)
WRITE(Dmpl, avgpercent, Filel0);

(* write the average # of compensating transactions *)
WRITE(Dmpl, avgcomp, Filell);

cou:=1;

FOR dummy := 1 TO Nsites DO
Site[dummy].NT :=0;
Site[dummy].Conflict := O;

END;

Mpl := Mpl + Smpl;

Lmpl := ( Mpl * Lpercent) DIV 100;
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Dmpl := (Mpl * Dpercent) DIV 100;

END; (*IF*)
LongPause(Ttime, Thrt); (* Pause for a certain number of seconds *)
dummy := TRUNC(Ttime) - (Maxns * ntime);

(* ACCUMULATE THE RESULTS INTO LOCAL VARIABLES *)
FOR i :=1 TO Nsites DO

Thru := Site[i). Thruput{dummy] + Thru;

Thrul := Site[i}. THRUPUT{1, dummy] + Thrul;

t1 := Site[i].Compensate[dummy];

Comp := Site[t].Compensate[dummy] + Comp;

IF Protocol = 3 THEN
IF t1 < Thru THEN
Thru := Thru - t1;
ELSE
WriteTxt("Error 1 ");
WriteCard(t1); WriteTxt(" ");
WriteCard(Thru); WriteL.n();
Thru ;= 0;
END;
IF t1 < Thrul THEN
Thrul := Thrul -t1;
ELSE
WriteTxt("Error 2 "),
WriteCard(t1); WriteTxt(" ");
WriteCard(Thrut); WriteLn();
Thrul := 0,
END;
END;
Thrud := Site[i]. THRUPUT{2, dummy] + Thrud,
thruo := Thru + thruo;
Resp := Site{i).Response[dummy] + Resp;
Respl := Site[i). RESPONSE[ 1, dummy] + Respl;
Respd := Site[i). RESPONSE[ 2, dummy] + Respd;
END;
dthru := Dthru[dummy] + dthru;
dfail ;= CouFail[dummy] + dfail;
dresponse := Dresponse{dummy] + dresponse;
dsitefail ;= Failure.site[dummy] + dsitefail;
deadlock := Failure.deadlock{dummy] + deadlock;
message .= Failure.message[dummy] + message;
nmessage = Dmessage(dummy] + nmessage;
tmessage := Dmresponse[dummy] + tmessage;

Ttime := Ttime + FLOAT(Thrt);

ntime := Ntime;

IF (Debug # 0) THEN
(* WriteLongReal((r1-r)/1000000.0d+00); WriteLn(); *)
WriteLn(); WriteTxt("***The average local Throughput is : ");
WriteCard(thruo DIV Nsites);
WriteLn(); WriteTxt("The global Throughput is : *);
WriteCard(Dthru[dummy]); WriteL.n();
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WriteTxt("The number of global failures =");
WriteCard(CouFail[dummy]); WriteLn();
count := O; countl :=0; countd :=0;
FOR i := 1 TO Nsites DO

count := Site[i).Trc + count;

countl := Site[i]. TRC[1] + countl;

countd := Site[i]. TRC[2] + countd;
END;
WriteTxt("The number of remaining local transactions: ");
WriteCard(count DIV Nsites); WriteLn();
WriteTxt("The number of remaining global transactions: "),
WriteCard(Dtrc); WriteLn();

END;

FOR i := 1 TO Nsites DO
Site[i]. Thruput[dummy] :=0;
Site[i].Compensate[dummy] := 0;
Site[i). THRUPUT(1, dummy] := 0;
Site[i}. THRUPUT(2, dummy] := 0;
Site[i].Response[dummy] := 0.0;
Site[i]. RESPONSE[1, dummy]) := 0.0;
Site[i]. RESPONSE[2, dummy] := 0.0;

END;

Dthru[dummy} := 0,

CouFail[dummy] ;= 0;

Dresponse[dummy] := 0.0;

Failure. site{[dummy] := 0;

Failure.deadlock[dummy] := 0,

Failure. message[dummy] :=0;

Dmessage[dummy] := 0,

Dmresponse[dummy] := 0.0;

cou=cou+1;
END;
Wr.Close(File);
Wr.Closce(Filel);
RETURN NIL;
END THROUGHPUT;

WRITE

This procedure will save the information on a file.

PROCEDURE WRITE(mp! : CARDINAL ; res : REAL; File: Wr.T) =

BEGIN

Wr PutText(File, Fmt.Int(mpl));
Wr.PutText(File, " ");
Wr.PutText(File, Fmt.Real(res));
Wr.PutText(File, "\n");
Wr.Flush(File);

END WRITE,
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IM

The transaction manager process is responsible for creating the transactions and forwarding
them to the Scheduler.

PROCEDURE TM(self:-Tmclosure): REFANY =
VAR |, cs : CARDINAL;

BEGIN
cs = self.id;
(* This loop will create number of transactions until the Mplis reached*)
WHILE Mpl <= MaxMpl DO (* While the Mpl is less than the MaxMpl *)
Yield();
CREATETRANS(cs); (* create a local transaction *)
CREATEDTRANS(); (* create a global transaction *)
END;
RETURN NIL;
END TM;

SCHEDULER

The Scheduler is responsible for the completion of the transaction, conflicts and deadlocks
are encountered in this process.

PROCEDURE SCHEDULER(self:-Tclosure):REFANY =
VAR, Prs, delay, dummy , sid, type, Pc, Rndm, PD2, stepf, idf: CARDINAL;
Trans : Transaction,
flagd, flagp, flagc : BOOLEAN;
Time, Tr, Stime, elapsed, stimel : REAL;
typep : TEXT;

BEGIN

sid ;= self.site,
IF self.type = "local" THEN
type := 1,
typep := "Local Transaction “;
idf := self.id;
ELSE
type = 2,
typep := "Subtransaction ";
idf .= self.did;
END;
THme := Timer; (* Assign the current time to transaction time *)
Stime := Ttime; (* Save the transaction start time *)

(*** CHECK FAIL **¥)
IF Site[sid).Fail = "Y" THEN
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Ex’l;\l'I'RECOVER(sid, typep, idf, Ttime);

Trans.id :=self.id;
Trans.rw = Trmax;
(* Pick up arandom number between Trmin Trmax, this random
number will be the number of actions of the transaction *)
IF Transt=1 THEN (* If the transaction is of variable type *)
LOCK Site[sid).mutex DO
Trans.rw .= Rnd.Su range(Rnd. Default, Trmin, Trmax);
END;
END;
(* if the transaction is a global one then pick the number of r/w sets *)
IF type =2 THEN
LOCK Site[sid].mutex DO
Trans.rw := Rnd.Subrange(Rnd. Defauit, Trmin DIV 3, Trmax * 2 DIV 3),
END;
END;

IF (Debug = 3 AND (Debugt = type OR Debugt = 3)) THEN
LOCK Moutput DO
WriteTxt("Site "); WriteCard(sid); WriteTxt(" :");
WriteTxt (typep); WriteCard(self.id);
WriteTxt( " started time:");
WriteReal(Ttime); WriteTxt(" # r/w actions=");
WriteCard(Trans.rw); WriteTxt(", # transactions=");
WriteCard(Site[sid]. Trc); WriteLn();
END;
END;
(* The probability of a deadlock of cycle 2 *)
PD2 := PDEADLOCK(sid ),
(* Pick a random number to decide at which step the deadlock *)
(*is going to happen *)
LOCK Site[sid].mutex DO
Prs := Rnd.Subrange(Rnd.Default, 1, Trmax);
END;
Pause(Ttime, Extthink); (* ext_think_time *)
Ttime := Ttime + ( FLOAT(Extthink)/Unit) ;
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flagd := FALSE;
FOR i :=1TO Trans.rw
DO

(*** CHECK FAIL ***)
IF Site[sid).Fail = "Y" THEN

W AITRECOVER(sid, typep, idf, Ttime);
END;

(* The probability of a lock conflict Pc *)

Pc := PCONFLICT(sid);
LOCK Site[sid].mutex1 DO
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Rndm := Rnd.Subrange(Rnd.Default, 1, 10000);

(* Rndm := Rnd.Real(); *)
END;
(* If there is a deadlock *)
IF (Prs =i AND Rndm < PD2) THEN
delay .= DELAY();
Pause(Ttime, delay); (* Pause *)
Ttime := Ttime + (FLOAT(delay)/Unit);
IF (Debug # 0 AND (Debugt = type OR Debugt = 3)) THEN
Mes3(sid, Trans.id, Ttime, typep, "Deadlock aborting");
END,
flagd := TRUE,; (* set the flag of deadlock to true *)
(* If this is a subtransaction record a deadlock in its log *)
IF type = 2 THEN
Log[self.index, sid).deadlock :="Y";
(* Increment the deadlock *)
dummy := Second(Ttime);
LOCK MUTEXF DO
Failure.deadlock[dummy] := Failure.deadlock{[dummy] + 1;
END;
END;
Site[sid).NT := Site{sid).NT - 1;
Site[sid]. NTRANS{type] := Site[sid]) NTRANS|[type] - 1,
EXIT; (* Abort *)
END;

(* If there is a lock conflict *)
IF Rndm < Pc THEN
Site[sid].Conflict := Site{sid].Conflict + 1;
Site[sid]. CONFLICT(type] := Site[sid]. CONFLICT[type] + 1;
IF ((Debug = 2 OR Debug = 3) AND (Debugt = type OR Debugt = 3)) THEN
LOCK Moutput DO
WriteTxt("??7Site "); WriteCard(sid);
WriteTxt(" :Conflict, "); WriteTxt(typep); WriteTxt(" *);
WriteCard(Trans.id);
WriteTxt(" is blocked, attime "); WriteReal(Ttime); WriteLn();
WriteTxt ("Number of transactions :"); WriteCard(Site{sid).Trc);
WriteLn();
END;
END;

(* block the transaction until the lock is acquired *)
delay ;= DELAY();
Pause(Ttime, delay) ;
Ttime := Ttime + (FLOAT(delay) / Unit),
(* Release the transaction *)
IF ((Debug = 2 OR Debug = 3) AND (Debugt = type OR Debugt = 3)) THEN
Mes3(sid, Trans.id, Ttime, typep, "has resumed its execution");
END;
END;
(* Execute the step *)

Pause(Ttime, Stept - Diskaccess - Cpuaccess);
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Ttime := Ttime + (FLOAT(Stept - Diskaccess - Cpuaccess) / Unit);
IF (Debug = 3 AND (Debugt =type OR Debugt = 3))THEN
Eh?;l)esS(sid, Trans.id, Thme, typep, "is currently executing the step");

(* ACCESS THE DISK *)
Tr := Ttime,
flagp := FALSE;
IF (Site[sid].Nudisk + 1) > Maxdisk THEN

flagp := TRUE,;

IF ((Debug = 2 OR Debug = 3) AND (Debugt = type OR Debugt = 3)) THEN

Mes3(sid, Trans.id, Ttime, typep,
"is currently blocked at a Disk req");

END;

END;,

WHILE (Site[sid]. Nudisk + 1) > Maxdisk DO
Yield();
END;
IF (flagp AND (Debug =2 OR Debug = 3)AND(Debugt = type OR Debugt = 3))
THEN
LOCK Moutput DO
WriteTxt("Site "); WriteCard(sid);
WriteTxt(typep); WriteCard(Trans.id);
WriteTxt(" has obtained the disk req, Current time="),
WriteReal(Timer); WriteTxt(" Waiting time=");
WriteReal(Timer - Tr); WriteL.n();
END;
END;
Ttime := Ttime + (Timer - Tr);
LOCK Site[sid].mutex3 DO
Site[sid].Nudisk := Site[sid]. Nudisk + 1,
END;
Pause(Ttime, Diskaccess); (* ACCESS THE DISK *)
Ttime ;= Ttime + (FLOAT(Diskaccess)/Unit);

LOCK Site[sid].mutex3 DO
Site[sid).Nudisk := Site[sid].Nudisk - 1;

END;

(* ACCESS THE CPU *)

Tr := Ttime;

flagp := FALSE;

IF (Site[sid].Nucpu + 1) > Maxcpu THEN
flagp := TRUE;

IF (Debug =2 OR Debug = 3)AND (Debugt = type OR Debugt = 3)) THEN
Mes3(sid, Trans.id, Ttime, typep,
"is currently blocked at a Cpu req");
END;
END;

WHILE (Site[sid].Nucpu + 1)> Maxcpu DO

Yield();

END;

IF (flagp AND (Debug =2 OR Debug =3 )AND (Debugt = type OR Debugt = 3))
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THEN

LOCK Moutput DO
WriteTxt("Site "); WriteCard(sid);
WriteTxt(typep); WriteCard(Trans.id);
WriteTxt(" has obtained the cpu req, Current time=");
WriteReal(Timer); WriteTxt(" Waiting time=");
WriteReal(Timer - Tr);, WriteLn();

END;

END;

Ttime := Ttime + (Timer - Tx);

LOCK Site[sid].mutex3 DO
Site[sid].Nucpu := Site[sid].Nucpu + 1;
D.

Pause(Ttime, Cpuaccess); (* ACCESS THE CPU *)
Ttime := Ttime + (FLOAT(Cpuaccess)/Unit);
LOCK Site[sid).mutex3 DO

Site[sid].Nucpu := Site[sid).Nucpu - 1;
END;

IF (Debug =3 AND (Debugt =type OR Debugt = 3)) THEN
LOCK Moutput DO
WriteTxt("Site "); WriteCard(sid); WriteTxt(" : ");
WriteTxt(typep); WriteCard(Trans.id);
WriteTxt(" has finished step # "); WriteCard (i);
WriteTxt(" time :"); WriteReal(Ttime); WriteLn();
END;

END;

END; (* FOR ¥

IF THE TRANSACTION IS A SUBTRANSACTION CALL THE VOTE AND COMMIT
PROCEDURES.

flagc := TRUE;
IF (type = 2 ) THEN

stimel := Ttime;

IF Log[self.index, sid].commit_dccision # "N" THEN
PARTICIPANT(sid, self.index, seif.did, self.nparticipant,
self.coordinator, Ttime, self.participant);

END;

IF (Log[self.index, sid].commit_decision = "N" OR
Log[self.index, sid].vote_decision = "N" OR
Log[self.index, sid).vote_decision = "U") THEN
flagc := FALSE;

Mes1(sid, self.index, Ttime, "is ABORTING");
ELSE

Mes1(sid, self.index, Ttime, "is COMMITING");

stimel := Ttime - stimel;

dummy := Second(Ttime),

(* store the time spent in 2pc *)

LOCK MUTEXM DO

Dmresponse{dummy] := Dmresponse[dummy] +
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(stime 1/FLOAT(self.nparticipant));
END;
END;
END;

(* Decrement the number of transactions *)
IF (Protocol #3 OR type = 1) THEN
Site[sid).Trc := Site[sid). Trc - 1;
END;
(* Decrment the number of distributed or local transactions *)
Site[sid]. TRC[type] := Site[sid]. TRC[type] - 1;
(* If the transaction was not aborted then commit it *)
IF (NOT flagd) AND flagc) THEN
(* Increment the number of finished transactions *)
Site[sid).NT := Site[sid].NT + 1;
Site[sid]. NTRANS|type] := Site[sid]. NTRANS|type] + 1,

dummy := Second(Ttime);
(* Increment the system throughput *)
Site[sid]. Thruput[dummy] := Site[sid]. Thruput[dummy] + 1;
(* Increment the throughput of the transaction type *)
Site[sid]. THRUPUT[type, dummy] := Site[sid] THRUPUT|(type, dummy] + 1,
elapsed := Ttime - Stime;
Site[sid].Response[dummy] := Site[sid].Response[dummy] + elapsed,
Site[sid]. RESPONSE[type, dummy] := Site[sid]. RESPONSE[type, dummy] +
elapsed;
IF ((Debug = 2 OR Debug = 3)AND (Debugt =type OR Debugt = 3)) THEN
Mes3(sid, Trans.id, Ttime, typep, "finished its execution");
END;
END;
IF (type =2) THEN
MESSAGEDELAY(sid, self.coordinator, Ttime);
Log[selfindex, sid].finished :="Y";
END;
CREATETRANS(sid);
CREATEDTRANS();

RETURN NIL;
END SCHEDULER;

PARTICIPANT

In this procedure the participant synchronizes the two phase
commit with its coordinator.

PROCEDURE PARTICIPANT(sid, ind, did, np, coord : CARDINAL,; VAR Ttime : REAL;
pick : ARRAYT(1..Nsites] OF CARDINAL)=

VAR

flagc : BOOLEAN;
BEGIN
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(* Call the vote procedure *)
VOTE(sid, ind, did, coord, Ttime);
(* IF it is optimistic 2PC then release the locks *)
IF Protocol = 3 THEN

LOCK Site[sid]). mutex4 DO

Site[sid).Trc := Site[sid]. Trc - 1;

END;

END;

(* If the transaction vote is yes the call the commit procedure *)

IF (Loglind, sid].vote_decision # "N" AND Log[ind, sid}.deadlock # "Y") THEN
COMMIT(sid, ind, did, np, coord, Ttime, pick);

END;

END PARTICIPANT;

YOTE

In this procedure the transaction waits for a vote_request from the coordinator and then
sends its vote-decision.

PROCEDURE VOTE(sid, ind, did, coord : CARDINAL; VAR Ttime : REAL)=
VAR time : REAL;

flagf : BOOLEAN;

timeout : CARDINAL;

BEGIN
flagf .= FALSE,;
(* Wait for the vote request *)
Log[ind, sid].location ;= "WV",; (* mark the location of the participant *)
IF Loglind, sid).vote_request = "U" THEN
Mesl(sid, did, Ttime, "is waiting for the vote_request");
END;
time := Ttime;
(* Timeout if the vote is not received *)
timeout := TIMEOUT(Timeout1);
WHILE ((Loglind, sid].vote_request = "U" ) AND
(Timer <(time + (FLOAT(timeout)/Unit)))) DO
Ttime := Timer;
(*** CHECK FAIL ***)
IF Site[sid}.Fail = "Y" THEN
WAITRECOVER(sid, "Subtransaction", did, Ttime);
flagf .= TRUE;
END;
Yield();
END,;

(PR AD)PC R R *¥)
time := Ttime;
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(* If it did not receive the vote_request and the protocol used is P2PC
then give an~iher chance *)

TF (Logfind, sid].vote_request = "U" AND Protocol = 2) THEN
timeout := TIMEOUT(Timeout1);
WHILE ((Log[ind, sid].vote_request = "U" ) AND
(Timer <(time + (FLOAT(timeout)/Unit)))) DO
Ttime := Timer;
(*** CHECK FAIL ***)
IF Site[sid).Fail = "Y" THEN
WAITRECOVER(sid, "Subtransaction”, did, Ttime);
flagf := TRUE;
END;
Yiela();
END;
END;

(HERERRRRO A RRRAk Ok *

..... * ook ok e o ¥)

(* If the transaction did not receive the vote_request or a failure
occured then abort it *)

IF Loglind, sid].vote_request = "U" OR flagf THEN
Mesl(sid, did, Ttime, "did not receive the vote_request");
Loglind, sid).vote_decision := "N";
RETURN;

END;

Mes1(sid, did, Ttime , "has received the vote_request");

(* send your vote *)
(*** CHECK FAIL ***)
IF Site[sid].Fail = "Y" THEN
WAITRECOVER(sid, "Subtransaction"”, did, Ttime);
END;

IF Log[ind, sid].deadlock = "N" THEN
Mesl(sid, did, Ttime, "is sending the vote YES");
MESSAGEDELAY(sid, coord, Ttime),
(*** CHECK FAIL ***)
IF Site[sid).Fail = "Y" THEN
WAITRECOVER(sid, "Subtransaction”, did, Time);
END;
IF (NOT MESSLOST() OR sid = coord) THEN
Log[ind, sid).vote_decision := "Y";
ELSE
Mes7(sid, did, Ttime, "MESSAGE FAILURE IN VOTE Y DECISION");
END;
ELSE
Mesl(sid, did, Ttime, "is sending the vote NO(DEADLOCK)");
MESSAGEDELAY(sid, coord, Ttime);
(*** CHECK FAIL ***)
IF Site[sid] Fail = "Y" THEN
WAITRECOVER(sid, "Subtransaction”, did, Ttime);
END;
IF (NOT MESSLOST() OR sid = coord )THEN
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Log[ind, sid).vote_decision := "N";
ELSE
Mes7(sid, did, Ttime, "MESSAGE FAILURE IN VOTE N DECISION");
END;
END;

END VOTE;

COMMIT

In this procedure the participant waits for a commit_decision from the coordinator and then
does the appropriate action.

PROCEDURE COMMIT(sid, ind, did, np, coord : CARDINAL; VAR Ttime : REAL;
pick : ARRAY[1..Nsites] OF CARDINAL) =
VAR time : REAL;
flagf : BOOLEAN;,
terms, timeout : CARDINAL,;
BEGIN
flagf := FALSE;
IF (Log(ind, sid].commit_decision = "U") THEN
Mesl(sid, did, Timer, "is waiting for the decision");
END;
(* Mark the location of the participant *)
Loglind, sid].location ;= "WC";
(* Timeout if the commit decision is not received *)
timeout := TIMEOUT(Timeout2);
time := Ttime;
WHILE ((I.oglind, sid}.commit_decision = "U") AND
(Timer <(time + (FLOAT(timeout)/Unit)))) DO
Ttime := Timer;
(*** CHECK FAIL ***)
IF Site[sid]).Fail ="Y" THEN
WAITRECOVER(sid, "Subtransaction”, did, Ttime);
flagf := TRUE;
END;
Yield();
END;
Ttime := Timer;

(*#*###**##******m ok o oo o e e o e o) )

(* If a decision was not reached give the coord another chance *)
IF (Log[ind, sid).commit_decision = "U" AND Protocol = 2) THEN
(* send your vote another time *)
Mesl(sid, did, Ttime, "is sending the vote YES again™);
MESSAGEDELAY(sid, coord, Ttime);
(*** CHECK FAIL ***)
IF Site[sid}.Fail ="Y" THEN
WAITRECOVER(sid, "Subtransaction”, did, Ttime);
END;
IF (NOT MESSLOST() OR sid = coord) THEN
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Log(ind, sid).vote_decision := "Y";
END;

(* wait for the decision another time *)
timeout := TIMEOUT(Timeout2);
time := Ttime;
WHILE ((Logfind, sid].commit_decision = "U") AND
(Timer <(time + (FLOAT(timeout)/Unit)))) DO
Ttime := Timer;
(*** CHECK FAIL ***)
IF Site[sid].Fail = "Y" THEN
WAITRECOVER(sid, "Subtransaction”, did, Ttime);
flagf := TRUE;
END;
Yield();
END;
END;
Ttime := Timer,;

(* If adecision was not reached or a failure was detected
Then call termination protocol *)

IF (Log(ind, sid).commit_decision = "U" ) THEN
Mesl(sid, did, Ttime, "Calling termination protocol");
terms := TERMINATE(sid, ind, np, pick, Ttime);
CASE terms OF

I 1 => Log(ind, sid].vote_decision := "N";
Mes4(sid, did, Ttime, "TP decided to abort #1");
RETURN;

| 2 => Mesd(sid, did, Tiime, "TP decided to block");

I 3 => Log|ind, sid].commit_decision :="Y";
Log[ind, sid}.location := "CS";
Mesd(sid, did, Ttime, "TP decided to commit");
RETURN;

| 4 => Logfind, sid].commit_decision :="N";
Logl[ind, sid).location := "AS";
Mesd(sid, did, Ttime, "TP decided to abort #2"),

a2k oo o o ol o 30 30 o o9 3o e 3ol o 0 e o o e e o ko ook ok e e s o oo oo s o o e e o o o e afeo oo ok
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IF Protocol = 3 THEN
COMPENSATE(sid, Ttime);
END;
RETURN;
ELSE
WriteTxt("ERROR in TERMINATE"); WriteLn();
END;
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Yield();
END;
(* IF all the participants are in the wait state then block waiting
for the commit decision *)
WHILE (Loglind, sid).commit_decision = "U") DO
Yield();
END,
IF Log(ind, sid).commit_decision = "Y" THEN
Loglind, sid].location :="CS";
Mesl](sid, did, Ttime, "has received commit decision");
ELSE
Loglind, sid].location :="AS";
Mes](sid, did, Ttime, "has received abort decision");
(* If The protocol is O2PC THEN do a compensating transaction *)
IF Protocol = 3 THEN
COMPENSATEC(sid, Ttime);
END,
END;

END COMMIT;

COMPENSATE

This procedure will do a compensating transaction, that will be physically deducting a
transaction from the number of finished transaction, the semantic overhead for compensating
transactions are not represented in this program, the only cost is an additionnal local
transaction.

PROCEDURE COMPENSATE(sid : CARDINAL; Ttime:REAL)=
VAR dummy : CARDINAL;
BEGIN
dummy := Second(Ttime);
(* Increment the number of compensating transactions *)
LOCK Site[sid]).mutex4 DO
Site[sid]. Compensate{dummy] := Site[sid).Compensate{dummy] + 1;
END;
WriteTxt("Compensate is performed");
WriteLn();
END COMPENSATE;

JTERMINATE

This procedure will send a message to other participants asking them if they have received a
vote decision or not, and according to their reply the participant will decide either to abort
or commit or block waliting for the decision.

PROCEDURE TERMINATE(sid, ind, np : CARDINAL; pick:ARRAY[1.Nsites] OF
CARDINAL; VAR Ttime: REAL):CARDINAL =
VAR, loc : CARDINAL;
Ic : TEXT;
BEGIN
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BROADCASTDELAY(sid, np, Ttime, pick); (* broadcast the request *)
?ROA:)CASTDELAY(sid, np, Ttime, pick); (* wait for the answers *)
oc = 1;
FORi :=1TO np DO
lc := Log[ind, pick[i]}.location;
IF Ic = "PP" THEN
RETURN 1;
END;
IF lc - "wv" T!_lEN
RETURN 1;
END;
IF Ic = "WC" AND pickli] # sid THEN
loc :=2;
END;
IFlc ="CS" THEN
RETURN 3;
END;
IF Ic = "AS" THEN
RETURN 4;
END;
END;
IFloc = 1 THEN
WriteTxt("TERMINATE UNKNOWN"); WriteLn();
END;
RETURN loc;
END TERMINATE;

COORDINATOR

This process is the coordinator that is responsible of the atomic commitment of the global
transaction. This process coordinates according to the 2PC protocol, first it sends vote
requests, then when it receives the vote decisions, it decides and sends the decision to the
participants, and it waits for their acknowledgments.

PROCEDURE COORDINATOR(self : Cclosure) : REFANY =
VAR
nsubt, coord, sno, ntrans, ind, id, timeout, dummy, cou: CARDINAL;
pick, nack : ARRAY/[1..Nsites] OF CARDINAL,;
classt : TEXT;
ctime, time, stime, elapsed : REAL;
flagv, flagc, flage : BOOLEAN;

BEGIN
(* Initialze the local variables *)
nsubt := self.nparticipant +1,;
coord := self.site;
pick := self.participant;
ind := selfindex;
id = self.id;
ctime := Timer;
stime := ctime;
(** SF **)
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SITEFAIL(coord, id, ctime); (* SEE IF SITE has failed *)

(* Initialize the log record to undecidable before creating the
transactions®)

FOR i := 1 TO Nsites DO
Log(ind, i].vote_decision := "U";
Log(ind, i}.commit_decision := "U";
Log(ind, i}.vote_request := "U";
Log[ind, i}.finished :="N";
Log(ind, i).deadlock := "N";
Loglind, i}.site_fail := "N";
Log[ind, i].location := "PP";

END;

(* Creating the subtransactions at all the partipating
sites *)
IF (Ddebug = 1) THEN
LOCK Moutput DO
WriteTxt("Creating subtransactions at sites:");
FOR i := 1 TO nsubt DO
\:rileCard(pick[i]): WriteTxt(", ");
END;
WriteTxt(".Coord is site:"); WriteCard(coord); WriteTxt(", ID#");
WriteCard(self.id);
WriteLn();
END;
END;

FOR1i:=1TOnsubt DO

sno := pick[i];

IF sno = coord THEN
classt := "coordinator";

ELSE

classt := “participant”;

END;

LOCK Site[sno].mutex4 DO
Site[sno].Ntrans := Site[sno).Ntrans + 1;
IF Sitefsno).Ntrans > Maxnt THEN

Site[sno].Ntrans := I,

END;
ntrans := Site[sno).Ntrans;
Site[sno].Trc := Site[sno].Trc + 1;
Site{sno).TRC[2] := Site[sno). TRC[2] + 1;
Site[sno].Tid := Site[sno}.Tid + 1;
(* Creating each subtransaction at its site *)
Site[sno).Tra[ ntrans] := Thread.Fork(NEW(Tclosure,
site := sno, seq := ntrans, id := Site[sno).Tid,
type := "distributed", class :=classt, did := self.id,
coordinator := coord; index :=ind, participant := pick,
nparticipant := nsubt));

END;

END;

ctime := Timer;
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flagv := FALSE;
stime := ctime;

(* WAIT BEFORE SENDING THE VOTE REQUEST *)
Mes2(self.id, ctime, "is waiting before sending a vote_request");
Cpause := TIMEOUT(Timeout)DIV 10;

Pause(ctime, Cpause);

ctime := ctime + (FLOAT(Cpause)/Unit);

Send Vote requests

(* CHECK IF SITE OF COORDINATOR HAS FAILED *)
IF Site[coord).Fail = "Y" THEN

SITEFAIL(coord, id, ctime); (* block the coordinator *)
END;

(* send the vote request *)
Mes2(self.id, ctime, "is sending a vote_request");
BROADCASTDELAY(coord, nsubt, ctime, pick);
(* CHECK IF SITE OF COORDINATOR HAS FAILED *)
IF Site[coord) Fail = "Y" THEN

SITEFAIL (coord, id, ctime); (* block the coordinator *)
END;

FOR i := 1 TO nsubt DO
IF (NOT MESSLOST() OR pickl[i] = coord) THEN
Log[ind, pick[i]].vote_request := "Y",
ELSE
Mes6(id, pick[i], ctime, "MESSAGE FAILURE IN VOTE_REQUEST");
END;
END;

(** SF *¥)
SITEFAIL(coord, id, ctime); (* SEE IF SITE WILL FAIL *)

PHASE 1
Wait that all sites send their
vote decision

Mes2(self.id, ctime, "is waiting for vote decisions");
time := ctime;
timeout:= TIMEOUT(Timcout); (* call the timeout according to Mpl*)
WHILE (Timer < (time + (FLOAT(timeout)/Unit))) DO

flagv := TRUE;

FOR i :=1TO nsubt DO

IF Loglind, pickfi]].vote_decision = "U" THEN
flagv .= FALSE;
END;
END;
ctime := Timer;
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IF flagv THEN

Mes2(self.id, ctime, "Has received all the votes");

EXIT;
END;
(* CHECK IF SITE OF COORDINATOR HAS FAILED *)
IF Site[coord).Fail = "Y" THEN

SITEFAIL(coord, id, ctime); (* block the coordinator *)
END;

Yield();
END;
IF NOT flagv THEN

cou :=0;
FOR i := 1 TO nsubt DO
IF Log(ind, pick(i]].vote_decision = "U" THEN

cou :=cou + 1;
nack[cou] := pick[i];
END;
END;

IF Ddebug = 1 THEN
LCCK Moutput DO
WriteTxt("Coordinator #"); WriteCard(self.id);
WriteTxt("->did not receive votes from sites:");
FOR i := 1 TO nsubt DO
IF Loglind, pick[i]).vote_decision = "U" THEN
WriteCard(pick[i)); WriteTxt(", ");
END;
END;
WriteTxt("Time:"); WriteReal(ctime); WriteLn();
END;
END;
END;

sopokkopop Rk ok kR R DIPC * ok oo e

give another chance by resending the vote-requests to
the appropriate sites, and by givmg another timeout.
Aok o ok ook e 3 o e ol e ok o) ok o oo ok ok o ok
IF (NOT flagv AND Protocol 2) THEN
(* send the vote-requests *)
Mes2(self.id, ctime, "is resending the vote_requests");
BROADCASTDELAY (coord, cou, ctime, nack);
(* CHECK IF SITE OF COORDINATOR HAS FAILED *)
IF Site{coord].Fail = "Y" THEN
SITEFAIL(coord, id, ctime);, (* block the coodinator *)
END;
FOR i :=1TO cou DO
IF (NOT MESSLOST() OR nack[i] = coord) THEN
Loglind, nack{i}).vote_request := "Y";
ELSE
Mes6(id, nack[i], ctime, "MESSAGE FAILURE IN VOTE_REQUEST"),
END;
END;
(* wait for a second time *)
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Mes2(self.id, ctime, "is waiting again for vote decisions ");
time := ctime;
timeout:= TIMEOUT(Timeout);
WHILE (Timer < (time + (FLOAT(timeout)/Unit))) DO
flagv := TRUE;
FOR i := 1 TO nsubt DO
IF Loglind, pick{i}].vote_decision = "U" THEN
flagv := FALSE;
END;
END;
ctime := Timer;
IF flagv THEN
Mes2(self.id, ctime, "Has received all the votes");
EXIT;
END;
(* CHECK IF SITE OF COORDINATOR HAS FAILED *)
IF Site[coord].Fail ="Y" THEN
SITEFAIL(coord, id, ctime); (* block the coordinator *)
END;
Yield();
END;
END;

PHASE 2
Send decision to participants.

(* See if all sites have decided yes *)
flagc .= TRUE;
FOR i :=1TO nsubt DO
IF Log(ind, pick[i]].vote_decision # "Y" THEN
flagc := FALSE;
END;
END;

IF NOT flagv THEN
flagc := FALSE;
END;

(* If all sites have voted yes then send commit decision*)

(* CHECK IF SITE OF COORDINATOR HAS FAILED *)
IF Site[coord).Fail ="Y" THEN

SITEFAIL(coord, id, ctime); (* block the coordinator *)
END;

IF flagc THEN
Mes2(self.id, ctime, "is sending the commit decision");
BROADCASTDELAY/(coord, nsubt, ctime, pick);
FOR i:=1 TO nsubt DO
IF (NOT MESSLOST() OR pick[i] = coord) THEN
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Log(ind, pick(i]].commit_decision :="Y";
ELSE
Mes6(id, pick[i], ctime, "MESSAGE FAILURE IN COMMIT_DECISION");

END;

ELSE
Mes2(self.id, ctime, "is sending the abort decision");
BROADCASTDELAY(coord, nsubt. ctime, pick);

FOR i := 1 TO nsubt DO
IF (NOT MESSLOST() OR pick[i] = coord) THEN
Log[ind, pick[i]].commit_decision := "N";
Nies6(ld, pick[i], ctime, "MESSAGE FAILURE IN COMMIT_DECISION");
EN.D; ’
END;

(* CHECK IF SITE OF COORDINATOR HAS FAILED *)
IF Site[coord).Fail = "Y" THEN

SITEFAIL(coord, id, ctime); (* block the coordinator *)
END;

Wait for acknowledgments

flage := FALSE,;
time := ctime;
timeout := TIMEOUT(Atimeout);
WHILE (NOT flage) DO
(* If timeout then resend commit or abort decision *)
IF (Timer > (time + (FLOAT(timeout)/Unit))) THEN
time := Timer;
IF flagc THEN
Mes5(self.id, time,

"is sending the commit decision again");
BROADCASTDELAY(coord, cou, time, nack);
FORi:=1TCcou DO

Logl[ind, nack[i]).commit_decision ;= "Y";
END,
ELSE i
MesS5(self.id, time,

"is sending the abort decision again");
BROADCASTDELAY/(coord, cou, time, nack);
FORi:=1TOcou DO

Log[ind, nack(i]).commit_decision := "N";
END;
END;
Yield();
END;
flage := TRUE; cou :=0;
FOR i := 1 TO nsubt DO
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IF Log{ind, pick(i]].finished = "N" THEN

cou ;= cou +1;
nack{cou]) := pickli];
flage := FALSE;
END;
END;
Yield();

END;
ctime := Timer;

(* dummy := TRUNC(ctime) -(Maxns * Ntime);
IF (dummy = 0 OR dummy > Maxns + 1) THEN
dummy := Maxns;
WriteCard(dummy); WriteTxt(" dummy1"); WriteLn();
END; *)
dummy := Second(ctime);
elapsed := ctime - stime;
(* DO THE PROCESSING NECESSARY TO THE THROUGHPUT MANAGER *)
LOCK DMUTEX DO

(* If the global transaction has commited then increment the
throughput, else increment the failure *)

IF Logfind, coord].commit_decision = "Y" THEN
Dthru[dummy] := Dthru[dummy] + 1;
Dresponse[dummy] := Dresponse[dummy}+elapsed;

ELSE
CouFail[dummy] := CouFail[dummy] + 1;

END;

(* Decrement the number of global transactions *)

Dtrc :=Ditrc- 1,

END;
Mes2(self.id, Timer, "***HAS FINISHED***"),

RETURN (NIL);
END COORDINATOR;

Second

This procedure will return the current rotating second

PROCEDURE Second(time :REAL).CARDINAL=
VAR dummy : CARDINAL;

BEGIN
IF (Maxns*Ntime) > TRUNC (time) THEN
dummy :=0;
ELSE
dummy := TRUNC(time) -(Maxns * Ntime);
END;

IF (dummy = 0 OR dummy > Maxns + 1) THEN
WriteCard(dummy); WriteTxt(" dummy"); WriteLn();
dummy := Maxns;

END;

RETURN dummy;
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END Second;

SITEFAILURE
This process will check if a site fails according to a random number.

PROCEDURE SITEFAILURE(self : Thread.Closure):REFANY =
VAR ctime : REAL,;

i, nfail, tpause, cmpl, psite, dummy : CARDINAL;

flagp : BOOLEAN;
BEGIN

IF Sitef = 1 THEN

ctime := Timer;

WHILE Mpl <= MaxMpl DO
Pause(Timer, 75000); (* pause for 75 milliseconds *)
FOR i :=1 TO Nsites DO

PICKSITE(), Timer);
END;
END;
ELSE

nfail ;= Nsfail;

tpause := Nthr DIV (Nsfail + 1);

WriteCard(tpause); WriteLn();

cmpl := Mpl;

WritcCard(Mpl); WriteLn();
WHILE Mpl <= MaxMpl DO
IF cmpl # Mp]l THEN
cmpl := Mpl;
nfail := Nsfail;
END,
IF nfail > 0 THEN
nfail ;= nfail - 1;
LongPause(Timer, tpause);
flagp := TRUE;
WHILE flagp DO
psite := Rnd.Subrange(Rnd.Default, 1, Nsites);
IF Site[psite].Fail #"Y" THEN
flagp := FALSE;
END;
END;
Site[psite].Fail :="Y";
IF Fdebug = 1 THEN
WriteTxt("Site #"); WriteCard(psite);
WriteTxt(" Has failed, Time:");
WriteReal(Timer); WriteLn();
END;
dummy := Second(Timer);
L.OCK MUTEXF DO
Failure.site[dummy] := Failure.site[dummy] + 1;
END;
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Site_recover := Thread. Fork(NEW(Rclosure, Sid := psite));
END;
Yield();
END;
END;
RETURN NIL;

END SITEFAILURE;

PICKSITE
This procedure will decide if the site will fail randomely.

PROCEDURE PICKSITE(sid:CARDINAL; VAR ctime: REAL) =
VAR mdm, sind, dummy : CARDINAL;
BEGIN

LOCK Site[sid}.Mfail DO
IF Site[sid).Fail = "N" THEN
rmdm := Rnd.Subrange(Rnd.Default, 1, 100000);
srnd = TRUNC(Psitefail * 100000.0);
IF ( rndm <= srnd )THEN
Site(sid}.Fail :="Y";
IF Fdebug = 1 THEN
WriteTxt("Site #"); WriteCard(sid); WriteTxt(" Has failed, Time:");
WriteReal(ctime); WriteLn();
END;
(* Increment the site failure *)
dummy := Second(ctiine);
LOCK MUTEXF DO
Failure site[dummy] := Failure.site[dummy] + 1,
END;
Site_recover := Thread.Fork(NEW(Rclosure, Sid := sid)),
END;
END;
END;

END PICKSITE;

SITEFAIL

This procedure is called by the coordinator, it checks if there is a site failure, if there is one
it will block the coordinator until the site recovers.

PROCEDURE SITEFAIL(sid, id:CARDINAL; VAR ctime: REAL) =
VAR rmdm, stnd : CARDINAL,

BEGIN
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(* Wait until the site recovers *)
IF Site[sid}.Fail = "Y" THEN
LOCK Moutput DO
IF Fdebug = 1 THEN
WriteTxt("Coordinator #"); WriteCard(id),
WriteTxt(" has stopped, Failure site:"); WriteCard(sid);
WriteTxt(". Time:"); WriteReal(ctime);
WriteLn();
END;
END;
WHILE Site[sid).Fail = "Y" DO
Yield();
END;
LOCK Moutput DO
IF Fdebug = 1 THEN
WriteTxt("Coordinator #"); WriteCard(id);
WriteTxt(" has resumed, Recover site:"); WriteCard(sid);
WriteTxt(".Time:"); WritcReal(Timer);
WriteLn();
END;
END;
END;
ctime := Timer;

END SITEFAIL;

WAITRECOVER

This procedure will make a transaction wait until its site recovers.

PROCEDURE WAITRECOVER(sid:CARDINAL,; typep: TEXT; id :CARDINAL,;
VAR Ttime : REAL) =
BEGIN
IF Fdebug = 1 THEN
Mes3(sid, id, Timer, typep, "Has stopped, Site failure");
END,
WHILE Site[sid].Fail = "Y" DO
Yield();
END;
IF Fdebug = 1 THEN
Mes3(sid, id, Timer, typep, "Has resumed, Site recovered");
END;
Ttime := Timer;
END WAITRECOVER;

SITERECOYER
This procedure will make a failed site wait for a random time, before it can recover.
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PROCEDURE SITERECOVER(self : Rclosure):REFANY =
VAR rndm, srnd : CARDINAL;

BEGIN

mdm := Rnd.Subrange(Rnd.Default, 8, 10);
LongPause(Timer, mdm);
Site[self.Sid) Fail := "N";
IF Fdebug = 1 THEN
WriteTxt("Site #'); WriteCard(self.Sid);
E;Vﬁte'l‘xt(" Has recovered, Time:"); WriteReal(Timer); WriteLn();
D;
RETURN NIL;

END SITERECOVER,;

MESSLOST

This procedure is called every time a mesage is sent, it will decide if the message will be lost
or no according to a random number generator.

PROCEDURE MESSLOST():BOOLEAN =
VAR mdm, stnd, dummy : CARDINAL,;
BEGIN

mdm := Rnd.Subrange(Rnd.Default, 1, 100000);
srnd := TRUNC(Pmesslost * 100000.0);
IF ( rndm <= srnd )THEN
(* Increment the message failure *)
dummy := Second(Timer);
LOCK MUTEXF DO
Failure.message{dummy] := Failure. message[dummy]+ 1,
END;
RETURN TRUE;
ELSE
RETURN FALSE;
END;

END MESSLOST;

MESSAGEDELAY
This proced.'re will delay the process according to the bandwidth of the system.

PROCEDURE MESSAGEDELAY (source, dest : CARDINAL; VAR Ttime : REAL)=
VAR sitel, site2, buffer, waitunit, pauseunit, pause, dummy : CARDINAL;
BEGIN

(* if it is the same site then return without a delay *)

IF dest = source THEN
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RETURN;

END;

(* Increment the number of messages *)

dummy := Second(Ttime);

LOCK MUTEXM DO

Dmessage[dummy] := Dmessage{dummy] + 1,

END;

IF dest < source THEN

sitel ;= dest;
site2 := source;
ELSE

sitel := source;
site2 ;= dest;

END;

LOCK Link.Mutex[site1, site2] DO
Link.Sites[site1, site2] := Link.Sites[site1, site2] + Messlength;
buffer := Link.Sites[sitel, site2];
pause := (buffer * Mdelay) DIV Messlength;

END;

waitunit := Messlength DIV Messunit;
pauseunit := pause DIV waitunit;
WHILE waitunit # 0 DO
waitunit := waitunit - 1,
Pause(Ttime, pauseunit),
Ttime := Ttime + (FLOAT(pauseunit)/Unit),
LOCK Link.Mutex[sitel, site2] DO
Link.Sites[site1, site2] := Link.Sites[sitel, site2] - Messunit;
END;
END;

END MESSAGEDELAY;

BROADCASTDELAY

This procedure will broadcast the message and delay the message according to the highest
bandwidth.

PROCEDURE BROADCASTDELAY(coord, np : CARDINAL; VAR Ttime : REAL;
pick : ARRAY([1..Nsites] OF CARDINAL)=

VAR sitel, site2, buffer, waitunit, pauseunit, pause, i, max, dummy : CARDINAL,;
BEGIN
max =0,
IF np=0 THEN
RETURN
END;
FORi:=1TOnp DO
IF pick[i}) < coord THEN
sitel := pick(i];
site2 := coord;
ELSE
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sitel := coord;
site2 := pickli);
ND,

IF site1 # site2 THEN
LOCK Link.Mutex|sitel, site2) DO
Link.Sites[site 1, site2] := Link.Sites(site1, site2] + Messlength;
IF max < Link.Sites[site1, site2] THEN
max := Link.Sites[site1, site2] ;
END;
END;
END;
END;

(* Increment the messages count *)
dummy := Second(Ttime);
LOCK MUTEXM DO
FOR i:=1 TO np DO
IF pick(i] # coord THEN
Dmessage[dummy) := Dmessage[dummy] + 1;
END;
END;
END;
pause := (max * Mdelay) DIV Messunit;
waitunit ;= Messlength DIV Messunit;
pauseunit ;= pause DIV waitunit;
WHILE waitunit # 0 DO
waitunit ;= waitunit - 1;
Pause(Ttime, pauseunit);
Ttime := Ttime + (FLOAT{pauscunit)/Unit),
FOR i :=1TO np DO
IF pick{i] < coord THEN
sitel := pick[i];
site2 := coord,
ELSE
site1 := coord;
site2 := pick{i};
END;
IF sitel #site2 THEN
LOCK Link.Mutex[sitel, site2] DO
Link Sites[sitel, site2] := Link.Sites[site1, site2]-Messunit;
END;
END;
END;
END;

END BROADCASTDELAY;

JIMEOUT

This procedure will return the timeout accoring to the current Mpl and the load of the
system.
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sl;(l)lCEDURE TIMEOUT(maxtimeout: CARDINAL). CARDINAL =
basic, remain : CARDINAL;

BEGIN

basic := 1000000;

remain := maxtimeout - basic;

RETURN (basic +(remain * Mpl DIV MaxMpl));

END TIMEOUT;

[ MAIN PROGRAM

BEGIN (* Main *)

(* Initialize the global variables *)
FOR ii := 1 TO Nsites DO
Site[ii).Trc := 0;
Site[ii].TRC[1] :=0;
Site[ii].TRC[2] :=0;
Site[ii}.Tid := 0;
Site[ii].Nudisk := 0,
Site[ii}).Nucpu := 0;
Site[ii].Ntrans ;= 0;
Site[ii].mutex := NEW(MUTEX);
Site[ii].mutex]1 := NEW(MUTEX);
Site[ii].mutex3 := NEW(MUTEX);
Sitefii}. mutex4 := NEW(MUTEX);
Site[ii].Mfail := NEW(MUTEX),

Site[ii].Fail := "N";

Scount[ii} :=0;

FOR jj := 1 TO Maxns +1 DO
Site[ii]. Thruput(jj] := 0;
Site[ii).Compensate[jj] := 0,
Site[ii]. THRUPUT(1, jj] :=0;
Site[ii). THRUPUTI(2, jj] :=0;
Sitefii}.Responseljj) := 0.0;
Site[ii}. RESPONSE!, jj] :=0.0;
Site[ii). RESPONSE[2, jj] :=0.0;

END;

FOR. jj :=1 TO Nsites DO
Link.Sites[ii, jj] :=0;
Link.Mutex[ii, jj) .= NEW(MUTEX);

END;

END;

FOR jj := 1 TO Maxns +1 DO
Dthru(jj} :=0;
CouFail(jj] := 0;
Dmessage(jj] .= 0;
Failure site[jj]:= 0;
Failure.deadlockl[jj):= 0;
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Failure.messagel(jj] := 0;
Dmresponse[jj} := 0.0;

Timer := 1.0; Ntime :=0; Dpercent := 100 - Lpercent;

Dtrc :=0; Ndtrans := 0; Dtid = 0;

(* Read the data from the input file *)

ReadInput();

Mpl :=Smpl;

Maxcpu := Maxdisk DIV 2;

Nsfail := TRUNC(Psitefail * FLOAT(Nthr) * FLOAT(Nsites) * 13.0);
WriteCard(Nsfail); WriteLn();

IF Maxcpu = 0 THEN
Maxcpu :=1;
END;

(* Initialize the random number *)
Rnd.Stari(Rnd.Default, 1);

(* Start the system *)
Clock := Thread Fork(NEW(Thread.Closure, apply := CLOCK));
EVAL (Thread.Join(Clock));

END Main.






