National Library
of Canada

Acquisttions and
Bibliographic Services Brancn

395 Wellington Street
Ottawa, Ontano

K1A ON4 K141 N4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfiiming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
tvpewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

il

Canada

395, rue Wellington
Ottawa (Ontano)

Bibliothéque nationale
du Canada

Direction des acquisiions et
des services bibliographiques

Your e Vole el e

Ot e Note iMereng o

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Mous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec luniversité
qui a conféré le grade.

La qualité d’'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Polymorphism and Object-Oriented Languages

Mitch Cherniack

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements for the
Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

August, 1992
© Mitch Chemiack, 1992

L |

National Library
of Canada

Acqunsitions and
Bibliographtc Services Branch

395 Wellington Street

Jibliotheque naticnale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington

Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Qttawa (Ontano)

Yot N olre eV ten, o

Ot bt Notre iedferen o

L’'auteur a accordé une licence
irrévocable et non exclusive
permeftant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN Q-315-B8910 9

i+

Canada

Abstract
Polymorphism and Object-Oriented Languages
Mitch Cherniack

Object-oriented languages are potentialiy polymorphic. Inheritance alor¢ can
achieve three of four polymorphisms identified by Cardelli and Wegner [CaWc85]:
overloading, genericity and inclusion. Unfortunately, the use of inheritance to
achicve multiple forms of polymorphism is problematic. Redefinition policies that make
inheritance useful can also make inheritance unsafe. This is relevant to the design of
production languages, where it must be guaranteed that objects understand all messages
received (strong typing), and where it is desirable to make this guarantee at compile-time
(static typing). Our objective is to establish inheritance redefinition policies that are flexible
but that do not compromise static and strong typing.

This thesis has three components: analysis, survey and design. The analysis
examines the Cardelli-Wegner polymorphism taxonomy and identifies three tensions of
inheritance policies; one for each polymorphism potentially captured by inheritance. In the
survey section, language proposils of Bruce ({Br92]) and Palsberg and Schwartzbach
([PaSc90a - PaSc90d, PaSc91]) are evaluated by how they resolve these tensions. We
conclude that the latter proposul (PS theory) offers greater potential for flexible, type-safe
polymorphism even though formalizations of the theory prohibit some useful classes and
are incompatible with multiple inheritance and inclusion polymorphism. The design
section addresses these limitations. An alternative interpretation is introduced that removes
the restrictions on its use, and is casily extended to incorporate multiple inheritance. A
prototype parser implementing alternative algorithms is described, and its output presented.
Finally, preliminary work is shown extending this proposal to incorporate inciusion
polymorphism, laying the groundwork for future study.

1

Table of Contents

List Of EXamples......ocviiiniiuiniiii i X
LSt Of FIBUIES ..ottt it i e e e et s et ien Xii
List Of Tables ..oovvnniiii i xiii
List of Symbols.......ooiiiiii Xiv

Chapter 1: Introductionooiiiiiiiii 1

1.1 Object-Oriented Terminology......ccccooooiiiiiiiii 2

0 T T 4

1.3 Class Relations..........c.oiiviiiiiniiii D

1.3.1 Supplier Relations.........c.covvviiiiiiiiiiiiiini

1.3.2 Subclassing Relations.......ccooee i 5

1.4 Type Safery. ..o e 6

1.4.1 Degrees of Language Typingccoviviiiiiiiiiiiiiinnnn, 6

1.4.2 Type CReCKS . ovoinitiriiiii e e 7

1.4.3 The Tension of Type Checks ..., 8

LS O ECtIVES et iits ettt e 9
1.6 An Example OOP Language: Mini-Deeoo 10
Chapter 2: Analysis: Discerning the Polymorphisms and Tensions of Inheritance 12
2.1 Classifications of Polymorphismcoooiiiiiiii, 12
2.1.1 The Cardelli-Wegner Classification of Polymorphism.............. 13
2.1.2 Mapping Invocations to Code............... viiiiiiiiniens oo 16
2.2 The Tensions of Polymorphisms ..o, 19
2.3 Nominal Polymorphism: Subclassing with Code Redefinition................ 21
2.3.1 Directions of Signature Redefinition............................. 26
2.3.2 Scope of Signature Redefinition................ooooi 29
2.3.3 The Tension of Nominal Polymorphism................o.ooe 29
2.4 Static Bindingooeoviiiiiiiiieinin e 3

2.4.1 Direction and Scope of Signature Redefinition
of Static Bindingcoovveniviiiiii 32
2.4.2 The Tensions of Static Binding...............ooce 33
iv

2.5 Dynamic Bindingooiiiiiiiiiiiiiiiiie e e 37

2.5.1 Dynamic Binding, Non-Singleton Types and Subtyping........... 38
2.5.2 Interpretations of Non-Singleton Types................ooiiiii, 38
2.5.3 The Tension of Dynamic Binding...........c..ocoooiiiiiii, 39
2.6 Conclusion: The Conflicting Roles of Inheritancec.oli. 41

Chapter 3: Survey: An Examination of the Polymorphisms of

the Bruce Language Proposalccooooiiiiiii 42

3.1 IntroduCtion....cooiiei i e 42
3.2 Basic Language Features of the Bruce Approach..................oil 43
3.3 Polymorphisms in the Bruce Approach.................on 45
3.3.1 Nominal Polymorphism.........c.oooiiiiiiiii . 45

3.3.2 StaticBinding........oooiiiii 46

3.3.3 Dynamic Binding.........coooiiiiiiiiiiii 46

3.4 Type-Safety is not Class Validitycooovviiiiiniiiiiii, 47
3.5 Cooperative Subclassing and Dynamic Binding: A Case Analysis........... 49
3.5.1 The Three Componentsofa Bind................oooiiiiiiini. 50

3.5.2 Classifying EXPressions.........coccoviviiioiiiiiiiianiiiinineeen. 50

3.5.3 The Structure of the Case AnalySiS...ccoooovieiiciiiiiiiieninen. 51

354 The Cases oo 53

3.6 Choices of the Bruce Approach and their Consequencesoeeene 74
3.7 An Evaluation of the Bruce Approach...........c.ooiiiiiiiiiiiiiiiiin i, 75

Chapter 4: Survey: An Examination of the Polymorphisms

of the PS Language Proposal......c.ccccccovminiiiiiiiniiiiininiiiinnee 77
4.1 IntroduCtioN. ..ottt e 77
4.2 Basic Language Features - Classes with Singleton Types..................... 78
4.3 Nominal Polymorphism and Static Binding in the PS Approach 79
4.3.1 Informal Descriplion.......ccvoiiiiiiiiiiiiiii e 79
4.3.2 PS Subclassing ...o.oviiiniiii e 80
Representations of Classes: L-Trees 80
Subclassing: A Relation On L-Treesooceinens 82
4.3.3 Subclassing Mechanisms...........ooviiiiiiiiiiiiiiiiiiiienienes 85

4.3.4 An Evaluation of PS Subclassingoooiiiiiiiiinn, 100

4.4 Dynamic Binding in the PS Approach. ... 109

4.4.1 The PS Interpretation of TYpes.....ccooviviieiiiiiiiiiiniininenennn. 109
4.4.2 Evaluating the PS Approach to Typescovviiiiiiinnn, 11
Chapter 5: Design: An Altemnative Interpretation and Extension of PS Subclassing..... 115
5.1 INITOQUCHON. it e 115
5.2 AnExtensionof Mini-Dee...........ooooiiiiiiiii 116
5.3 The Node Representation of Classescocovviiiiniiiiiiiniiininininonn. 117
5.3.1 Some Example Nodescccocovviviniiiiiiiiiiiii, 118
5.3.2 An Example Class and its Node Representation..................... 118
5.4 Type Safety Defined Over Node Representations..........cccovvivivuennnne, 119
5.4.1 Formal Definitions of Supplier and System in terms of Nodes. ... 120
5.4.2 The Attribute Grammar of Extended Mini-Dee 121
5.5 Subclassing Defined in terms of Nodes.........cocoooviiiii i 121
5.5.1 Examples of Mapped Systems..........ooooooii 122
5.5.2 Mapped Systems Preserve Type-Safety of Reused Code 126
5.5.3 Subclassing Defined in Terms of Mapped Systems................. 127

5.5.4 Defining PS Inheritance and Class Substitution in terms of
NOAES. o ittt e 129
5.5.5 Results. .o 133
5.6 The Additions to PS Subclassing ... 136
5.6.1 Multiple Inheritance and Multiple Subclassing....................... 136
5.6.2 Temporal Cycles....ccoccooviiiiiiiiiiiiii 136
5.6.3 CONSTANIS. ...ttt it eet et s ettt re e it e aaes 140)
5.7 A Prototype Parser of PS-Based Mini-Dee..............oooiiin 142
5.7.1 Data StruClureS...ccoeeviiiiieeiniiiiiiiin i, 143
5.7.2 Design Issue: Representing Class Identifiers 144

5.7.3 Design Issue: Handling Compiler Dependencies (and

Temporal Cycles) oovviiiiiiiii s 145
5.7.4 Sample Output from the Mini-Dee Parser 148
5.8 ConCIUSION. ...ttt 153

vi

Chapter 6: Future Work: Marrying Dynanvc Binding to PS Classes and PS

SUDCIASSING et 155
6.1 Marryine Dynamic Binding to PS Classes.......cccvniinnninninnnnnein, 156
6.1.1 A Proposal: Subclass-Independent PS Types.........cceevnneene. 157
6.1.2 Class MetamoiphosiScoovviiiiiiiiniiniiii e 159
6.1.3 An Extension of Mini-Dee....ccoiiininninin 160
6.2 Marrying Dynamic Binding to PS Subclassingcoooiiininnnnn. 160
6.2.1 A Node Representation of Non-Singleton Classes.................. 160
6.2.2 Type-Safety Defined Over Non-Singleton Classes.................. 161
6.2.3 Extending the Definition of Subclassing........ccccovinieeacins 163
6.2.4 Extending the Definitions of Inheritance and Substitution.......... 165
6.2.5 A Proposal for Useful, Intuitive Covariant Subclassing............ 170
6.3 A Summary of Short Term Goals.......ccccooeiiiniiiiiiiininiiinininn. 174
6.4 Long Term Goalscoviiiniiiiii i e 175
Chapter 7: Summary and Conclusionooooiiiiiiiiii e 177
L 11T 111 HY P 177
T L ADRIYSIS o e 177
2 I 1 11 7 O O e 178
T.13 DSIEN o s 180
7.2 ConCUSION. e 180
D 1 (11 e 183
Appendix I: Grammars for the Language and Extensions of Mini-Dee.................... 186
I-A. Core Mini-Dee (Chapter 1) ...t 186
I-B. Bruce-Based Mini-Dee (Chapter 3)........ooiiiiii 188
I-C. PS-Based Mini-Dee (Chapterd)oooviiiiiiiiiiiiiiiiiiiiin, 190
I-D. Extended. Singleton Class, PS-Based Mini-Dee (Chapter 5) 192
I-E. PS-Based Mini-Dee - Explicit Classes Only (Type-Safety Defined)
(Chapter 5, Appendix ID). 194
I-F. Extended, Non-Singleton Class, PS-Based Mini-Dee (Chapter 6) 196
1-G. PS-Based Extended Mini-Dee - Explicit Classes Only (Type-Safety
Defined) (Chapter 6. Appendix V). 198

vii

Appendix II: Type-Safety: An Attribute Grammar of PS-Based, Singleton

Classed, Mini-Deeooiiiiiiiiiiiicii i 200
II.LA. Type Definitions
II.B. Functions
IL.B.1. Environment Search Functions.............o.ooiinn 201
I1.B.2. Type-Safety Check Functionscooooooici 205
II.C. The Attribute Grammar.......ccoooveeiiiinrinrirniniiinii e 207
Appendix III: Proof: Mapped Systems Preserve Type-Safetyo. 215
ITLLA, Lemma 3.l i e e e 210
IILLB. Lemma 3.2 . i e 210
HLC. Theorem 3.1 . i e 220
Appendix IV: Proof: Class Substitution Denotes Mapped Systems...................... 228
IVLA, Lemma 4.l e 228
IV.B. Theorem 4. 1. . . i e s 228
IV.C. Lemma 4.2, it e e 230
IV.D. Lemma 4.3 . i 231
IV.E. Lemmad.d . .o i e 232
IV.F. Theorem 4. ..t 233
Appendix V: Mini-Dee Parser OQutput.......ocooviiiiiiiiiiiiii e 236
VA Base Classes. oottt et e e 236
V.B EXample 2.7 oot e e 240
V.C Example 4.6 ...couviiiiiiiii i e e 244
V.D Examples 5.7a and S5.7b.....ccoooiiiiiiii 247
V.E Examples 4.10a, 4.10b...ccccoiiiiiiiii 250)
V.F Example 411 253
V.G Examples4.12a - 4.12f ... 257
V.H Examples5.3and 54 ..., 262
V.I Examples 5.3and 5.5ooiiiiiiiiiiiii i 266

viii

v.J
V.K
V.L
V.M
V.N
V.0
V.P
V.Q
V.R
V.S
V.T
V.U

Subclassing is Structural (1).....oooveeiiuiiiiiiee 269

Subclassing is Structural (2)....ooieiniiiii 273
Bruce Case Analysis: ExI3a........ccooviiiiiiiiiiiiiin . 279
Bruce Case Analysis: Ex14a.......ccoooiiiiiiiiiiiiiiiiiinn, 283
Bruce Case Analysis: EX15a.......cccoiiiiiiiiiiiniiiiiiien 287
Temporal Cycles: Voter/Candidate (1)......cooeeniiimnviiiiniininnnnnnnne. 291
Temporal Cycles: Voter/Candidate (2).....cccooeiiiiiiiiiiciinnniiinnnn, 294
Compiler Dependencies (1)......c.ovvieiiiniiiiiineiiniiiniieeneiienee, 297
Compiler Dependencies (2)........ccoevee vviviiiiiieeeniiiireasiinieenn, 300
A Complex Example with Multiple Inheritance............c.ccooieeii 303
PS Examples: Stacks and AITayS........ccccevonimiiiiniiiienmiinnninennnne, 313
PS Examples: Matrices and ATTayscoooviiiiiiiiiiiiinin i, 318

Appendix VI Type-Safety: An Aturibute Grammar of PS-Based, Non-Singleton

Classed, MINi-Dee. . ..ottt et ieerene e enanes 325

VLA. Type Definitions
VI.B. Functions

VI.B.1. Environment Search Functions.....coovviviiiiiiiiineiiiiiiienene. 325
VI.B.2. Type-Safety Check Functionsc.oooviiiiiiiiiiininn, 326
VI.C. The Atribute Grammirl.....cccccoiiiiiiiiiiiiiiieireiieirereesnerrireesasenens 327

ix

List of Examples

Example 2.1 - A Pascal swap Function..............coovviiiniiiiii e, 13
Example 2.2 - A Generic Ada swap Function.........c.ccoiiviiveiiiiininenn, 14
Example 2.3 - The Dee Parametric Class, Paircooeiiivviiiiniiiiniiiiennnnns 15
Example 2.4 - Subclassing as Parametric Polymorphismooooviiiiieinain. 17
Example 2.5 - An Example of Dynamic Binding.......ooooooiiiiiiiiinin, 19
Example 2.6 - Subclass-Based Binding Checks...oooiveeiiiiiiiiiiiiiinean, 20
Example 2.7 - Turt 1le: A Desirable Superclassccoooovvviiiiiiiiinennnnnn, 23
Example 2.8 - Covariance and Selective Scope (Nominal Polymorphism)........ 30
Example 2.9 - Covariance and Selective Scope (Static Binding) 34
Example 2.10 - Covariunce and Selective Scope (Parametric Classes) 35
Example 2.11 - Contravariance and Genericity (Static Binding).....ccoveenen..n. 36
Example 2.12 - Contravariance and Genericity (Parametric Classes) (1).......... 36
Example 2.13 - Contravariance and Genericity (Parametric Classes) (2).......... 37
Example 2.14 - Covariance and Subclass-Based Binding Checks 40
Example 3.1 - The Bruce Example: Type-safety is not Class Validity 47
Example 3.2 - Bruce Classes and Doutle Dispatching......cc.. wveeivineennn. 49
gxample 4.1 - Some Example L-Trees...occooiiniiiiiiiniiicinniniininn, 80
Example 4.2 - L-Trees Used to Determine Subclassing Relations (1) 83
Example 4.3 - L-Trees Used to Determine Subclassing Relations (2) 84
Example 4.4 - Demonstrating the “Unfolding Algorithm”.........ccccocevennnnnn. 86
Example 4.5 - Example Temporally Cyclic Classes......cooviiiiiiiniiniinnnnn, 87
Example 4.6 - Resulting Classes from the “Unfolding Algorithm™ 90
Example 4.7 - An Example of Class Substitutionooiviiiiiiiiiinnn, 92
Example 4.8 - The Consistency of Class Substitution............cooeiiniini, 93
Example 4.9 - The System-Wide Consistency of Class Substitution (1).......... 93
Example 4.10a,b - The System-Wide Consistency of Class Substitution (2)..... 94, 95
Example 4.11 - Class Substitution is more than Deep Substitution 96

Example 4.124, .., 12f -

Complex Substitutions are not necessarily equivalent to simple

SUDSEIEULIONS ..o vttt et ettt e ettt et ettt ea e eeaetenas 97 - 100
Example 4.13 - Subclassing Parametric Classes.....oooovviiiiviniiine v, 102

Example 4.14 - Parametric Classes as Type Constraintscoovvevvininienensen. 103

Example 4.15a,b - L-Trees and Multiple Subclass Relations 106, 107
Example 4.16 - PS Subclassing and Constants........ooovvviiiiviiiiiininina.. 108
Example 4.17 - Int: A PS Base Class Definition......ccccovvvennieciinnininnns 109
Example 4.18 - NIL: The Value of All Types....ccccooiviiinniininiiniiiininienens 112
Example 4.19a,b - L-Trees and Non-Singleton Types........coevviimniinirennnns 113
Example 5.1 - Some Example Nodes.........coooviiiiiiiiiiiiiiiie, 118
Example 5.2 - An Example Class and its Node Representation.........ouecvevene 119
Example 5.3 - An Example System of Classesccocooiiiiiiiiiiiininnn, 123
Example 5.4 - Mapped Systems: Retaining Recursive References................. 124
Example 5.5 - Mapped Systems: A Minimal Recursive System.................... 125
Example 5.6 - Mapped Systems: Mutual Client Relations Must be Retained...... 126
Example 5.7a,b: Inheritance Definition is Well-Defined...........cooeviiiiinnniis 130, 132
Example 5.8 - An Example Application of the Function, filter...................... 134
Example 5.9 - Inheritance and Temporal Cycles (1) cooeviiiiiiiiiiiiiiiiiinnnnan. 137
Example 5.10 - Inheritance and Temporal Cycles (2)...ovvviiiiiiiieiiiaiiinaannns 137
Example 5.11a,b - Denoting an Infinite System of Classescooevvvininen... 139, 140
Example 5.12 - A Possible Subclass of Int. .. 14)
Example 5.13 - A Class Definition of Arraycocoviiviiiniiiiiiininnn... 141
Example 5.14 - Representing Mutual Supplier Classes in an Implementation 144
Example 5.15 - Definitions frm the Mini-Cce Class Librarycoooiii 150
Example 6.1 - A Non-Singleton Class and its Node Representation............... 161
Example 6.2 - PS Subclassing and Dynamic Bindingoooocviiiiiiiiinnie 166
Example 6.3 - Using the “Narrow by Intersection” (<~) Operation................ 171
Example 6.4 - The Etfects of the “Narrow by Intersection” Operation 172

X1

Liist of Tables

Table 4.1 - Tracing the “Unfolding Algorithm”......c.ccovvvviievevnerniininen. 89
Table 4.2 - A Comparison of the Bruce, PS and Extended PS Proposals......... 105

Table 5.1 - Tracing the Mini-Dee Parser and Node Representation Generator.... 145

Table 6.1 - Hlustrating the Binding Checks of Non-Singleton Classes............ 158
Table 6.2 - Illustrating the Effects of Type Intersection........cco.ovvevivveevenane. 172

X1

List of Figures

Figure 2.1 - Measuring Distances Between WrappingTurtles....................... 24
Figure 3.1 - The Bruce Subclassing Case Analysis Treecccvvvviinvniiennns, 52
Figure 4.1a - The L-Tree of Example 4.1cc.ooviivmininiiinninnnnnnienncn. 81
Figure 4.1b - The Generator L-Tree of Example 4.1...c...ccvinvinninicciiniinnns 81
Figure 4.2 - The Generator L-Tree of Example 4.2oooviiiiiiiinin, 83
Figure 4.3 - The Generator L-Tree of Example 4.3 ..., 84
Figure 4.4 - A Graph-Based Representation of Example 4.4...............oueel. 86
Figure 4.5 - A Graph-Based Representation of the Results of the

“Unfolding” AIZOrithmoeviiriiiiiiiii i e ereaeneaes 89
Figure 4.6 - Portions of the PS Class Hicrarchy and Type Lattice................. 110
Figure 5.1 - The Mini-Dee Base Class Library lllustrated.....ocoviiivinns 148
Figure 6.1 - A Grammar for Expressing Non-Singleton Typesc.cccoivvenen. 160
Figure 6.2 - An Attribute Grammuar Defining Type-Safety with

Non-Singleton Typesoviiiiiiii e e 162
Figure 6.3 - A Class Hierarchy with Multiple Subclass Relations................. 171
Figure 6.4 - A Model for a Class Library Databasecoooeiiiiiiviniiininnns 176

xii

List of Symbols

Sequences, Sets and Set Operations

{ay, ..., a,)} - The set of items: ay, a2, ..., dp
{xIp) - The set of all «’s such that p holds
€Ay ooy Qp» - The sequence of items: ay, a3, ..., dp
(}or@ - The empty set

Siu s - The union of §; and §>

AYEaRY) - The intersection of §; and S,
S;cS, - S, is a subset of S,

S;c§s - Sy is a proper subset of S
$128; . S, is a superset of S

S;o8; - Sy is a proper superset of S
ieS - iisanelementof S

ie S - i is not an element of S

Symbols Defined in the Text of the Thesis:

A[B &« C] - The class, A with C substituted for B
A (B ¢peep Cl - The class, & with C deeply substituted for B
A<B - B is a subclass of &
A QB - B is a subclass by inheritance of A
A <.B - B is an equivariant subclass of A
i A=B - B is an equivalent class to &
|
A#B - B is not an equivalent class to A
Ta - The set of all subclasses of &

Xy

-

The class, C “narrowed by intersection” with type, T

The empty L-Tree
The recursive L-Tree

XV

Chapter 1.

Introduction

Approaches to language design can be viewed as top-down or bottom-up. A top-
down approach begins with some mathematical model that is given representation as a
computer language. Functional and logic languages such as Lisp and Prolog were
developed using this type of approach. Abstractions of machine operation constitute the
bottom-up approach. The evolution of imperative languages from “low-level” machine
languages to block structured and modular languages demonstrates the bottom-up approach
carried out in increasing degrees.

As is true with their analogs in program design, top-down and bottom-up
approaches should be viewed as ends of a spectrum rather than distinct categories.
Mathematical models are compromised to add practical capabilities to functional and logic
languages. Lisp supports functions with side-effects and Prolog includes control
operations in the interests of efficiency and practicality. Imperative languages are
buttressed by mathematical theory such as Hoare laws [Ho69], designed as a response to
rather than as a basis for their designs.

A recurring theme of studies of the Object-Oriented Programming (OOP) paradigm
is that it can be viewed in conflicting terms. In the context of language design, OOP
languages can appear at either end of the top-down/bottom-up spectrum. The disparate
views result from the definition of OOP being made only in retrospect. Simula is regarded

as the first OOP language though its designers made no such claim in their original
proposal [DaMyNy70]. Abstract data types (ADT’s) are considered the mathematical
model for the modular aspect of QOP languages, though ADT’s were introduced 7 years
after the appearance of Simula and without reference to OOP languages [LiZi74]. That
Simula extended Algol 60 makes OOP seem a result of bottom-up design. That the
Abstract Data Type is the mathematical basis for OOP modules or classes, makes the
paradigm seem top-down.

1.1 Object-Oriented Terminology

The disparate views of object-oriented programming makes a consensus as to its
meaning elusive. Typically, object-oriented languages support a number of features that
allow source code to be modularized and easily reused. Common to all object languages is
the anthropomorphic notion of an object; a run-time entity that can respond to messages and
has identity. In many languages, the transmission of messages (or invocations) to objects
resembles record selection in Pascal. Given some object, o that can respond to the

message, m, one would “send a message to 0" or “invoke m on 0" by writing:

How an object responds to a message is dependent on whether it is defined in a prototype-
bascd or class-based language [Ta91]. In a prototype-based language, each object has the
capability of responding to a given message in a unique way. In a class-based language, an
object’s response depends on its c/ass; a template that defines the protocol and behavior for
some collection of conceptually related objects. Only class-based languages are discussed
any further in this thesis.

An object is said to be “of class C” or “an instance of C” when the object responds
to messages as the class definition for C dictates. A class definition can contain instance
variable declarations, and method definitions. An instance variable is a variable defined in
a class’ definition, and local te all methods defined in the same class. The value of an
object’s instance variable is another object bound to the variable via an assignment
statement. Frequently, languages consider instance variables to be private to a class’
definition, and demand that access methods be defined if update and referencing privileges
are to be granted externally. Some languages such as Eiffel [Me88] and Dee [Gr91] relax
the reference restrictions on instance variables, and allow a value to be examined externally

(%)

by sending the variable name as a message to the object which owns it. In such languages,
instance variables are public.

A method is a procedure defined within a class definition. It can include local
variables and parameters, and is understood to include an implicit parameter named self,
which is bound at run-time to the object on which the method is invoked (the receiver
object). The code of a method can include statements that send messages to instance
variables from the same class, or to local variables and parameters (including sel1f). The
code of a method can also include statements that bind objects to instance variables from the
same class and to local variables. Parameters are bound to arguments when the method is
invoked. Self is automatically bound at runtime to the receiving object of the most
recently processed message.

Signatures are associated with method and variable definitions, and their
invocations. A definition signature specifies how a message should be sent to a receiving
object to trigger invocation. The collection of definition signatures contained within a class
is the class’ interface. The invocation signature resembles the definition signature except
that information about arguments rather than parameters is specified. It should be
presumed in the object-oriented context that invocation signaturss include information about
the receiver object argument, and correspondingly, that definition signatures include
information about the implicit parameter, self. We refer to explicit invocation and
definition signatures when the implicit components of signatures are to be ignored.

A class” method definition need only include a signature and not code, provided that
the code is defined elsewhere (see 1.3.2). A method defined without code is an abstract
method. An abstract class’ definition includes only abstract methods. A partially abstract
class defines at least one abstract method. A concrete class includes code for all of its
methods.

The amount of information that signatures reveal depends on whether the language
involved is typed or untyped. A method signature in any language reveals the method
name and the number of parameters/arguments demanded of the message invoking the
method. Variable signatures reveal variable names in languages in which variables are
public. A signature in a typed language such as Eiffel, Dee or C++ also associates a type
with each variable, parameter, argument and method.

1.2 Types

In the context of programming languages, types offer information about values that
are unknown until run-time. The type of an expression reveals what values it can take, and
therefore what operations can be invoked on it. The operation, ‘+’ for example, can be
applied to the Integer values 3 and 4, but not to the Boolean values TRUE and FALSE. In
object-oriented languages, the type of an expression can be expressed as a set of classes
whose instances can be referred to by the expression.

A typed object-oriented language demands that every variable in a class be
associated with a type that specifies the expressions that can be bound to the variable. As
well, a method can be associated with a return rype that specifies the type of the expression
returned by the method. Variables and methods are associated with types by way of rype
declarations, usually of the form:

var v : C or method m : C

where typically, C is a class name that denotes a type. Since a class name can refer to a
class or a type, the convention used in this thesis is to italicize type names, and to use a
typewriter type style for class names. Thus, C refers to a class, while C refers to the type
denoted by that class.

Languages differ on how class names denote types. In some languages, C would
be a class reference, meaning that v could only be bound to objects of class C, and m could
only return expressions of class C. Such languages support singleton types, since the set
of classes denoted by C is the singleton set, {C}. The variable, v whose type is a singleton
type is a homogeneous variable, since ii can only name objects of a single class [PaSc90a].

In other languages, C would denote a type that includes more than one class and v
would be a heterogeneous variable since it could refer to objects of more than one class
[PaSc90b]. Such languages support non-singleton types. Languages that support both
singleton and non-singleton types must distinguish between them in the type expression.

For example, the declaration,

var v :TC

could declare v to be heterogeneous while the declaration,
vax v : C

would make v homogeneous. The statement that an expression, variable or method “has
type, C” should be interpreted in light of the language involved. For example, in a
language that interprets a class name to cenote a singleton type, an expression of type, C is
also of class, C.

Subtyping is defined in terns of substitutability. A type is a subtype of another
type, if expressions of the first 1y pe can always be used where expressions of the second
type are expected [CaWeBS5]. Naturally, criteria defining subtypes are dependent on the
interpretation of types as a whole.

1.3 Class Relations

1.3.1 Supplier Relations

Relations on classes of typed object-oriented languages, can be defined on the basis
of their signatures. A class B is said to supply a class A if any signature in A includes a
reference to the type B. The reference to a B can appear anywhere in A’s interface: in the
declaration of an instance variable, a parameter, a local variable or in the return type of a
method. The set of classes that are connected by the transitive closure of supplier, is
referred to here a' o system of classes. The inverse relation of supplier, is the client
relation. Classes that are suppliers of themselves are recursive classes, and methods or
variables have recursive signatures or “are recursive” if their signatures contain type
declarations that make their containing class recursive [CoHiCa89). Thus, a recursive
method has a recursive signature, but not necessarily recursive code as the standard
interpretation of recursion would imply.

1.3.2 Subclassing Relations

Class definitions can serve both as the basis for code reuse, and as a specification
for other class definitions. Inheritance is the means by which both ends are served. Class
definitions can list other classes which they irherit. The definition of a class that inherits

another class includes all of the method and variable definitions of the inherited class. The
class which inherits is a subclass. The class from which it inherits is its superclass.

Inheritance can be used to associate class specifications with their implementations.
An abstract class can specify with signatures, a minimal sct of methods to be provided by
all subclasses. Inheritance acts as a contract, ensuring that concrete subclasses provide the
code for the abstract methods of their superclasses. Inheritance also allows subclasses to
reuse the code of their superclasses without demanding duplication or recompilation.
Thus, a superclass that is concrete acts as a code library for its subclasses. A superclass
that is abstract acts as a specification for its subclasses. A partially abstract class assumes
both roles. Realizing the many potential uses of inheritance, some languages such as
Eiffel, Dee and recent versions of C++, allow a class to have more than one superclass.
Such languages are said to support multiple inheritance.

A subclass can add new methods and variables, and redefine the code and
signatures of those inherited from the superclass. Languages differ by how inherited
signatures of superclasses are constrained to be redefined. These differences can be
characterized as the direction and scope of signature redefinition. Subclassing with
redefinition is one of the ways that object-oriented languages achieve polymorphism. An
operation is polymorphic if it can be invoked with varying numbers and/or types of
arguments [CaWeR5]. A language is polymorphic if it provides support for polymorphic
operations. Polymorphism is not unique to object-oriented languages. However,
polymorphic languages that are not object-oriented tend either to be monomorphic with

polymorphic exceptions, or to support only selected forms of polymorphism.

1.4 Type Safety

1.4.1 Degrees of Language Typing

Type-safety is defined for object-oriented languages as the property of a class
which guarantees that no statement in its code results in an object receiving a message that it
does not understand [PaSc90d]. As an example, a class that has an instance variable of
type Integer, would not be type-safe if the code for one of its methods included a statement
that atempted to add a Marrix to that Inzeger. A language for which type-safety can be
completely guaranteed is said to be sirongly ryped. A language for which at least some
type-safety checks occur at compile-time is said to be starically ryped. 1t is preferable for a
language to be strongly typed so that “message not understood” run-time errors can be

avoided. It is preferable for a language to be statically typed to as large a degree as
possible, since dynamic type checking results in target code that is riddled with the
inefficiencies of run-time type checks. The challenge of much of the current work in
object-oriented type theory is to include strong and static typing in a language without
sacrificing the language’s flexibility and expressive power.

1.4.2 Type Checks

For a language to be both statically and strongly typed, the semantic analysis
performed by its compiler must include three type checks: binding, signature and parameter
binding checks. This classification is a variation of that of Palsberg and Schwartzbach
[PaSc90a] who distinguish between *‘early” and “equality” type checks. We generalize
“equality” checks to be “binding checks” (not necessarily demanding equality of types),
and then divide them according to whether the bindings are via assignment statements or
the passing of arguments. Qur “signature checks” are indentical to the “early checks™ of
[PaSc90a].

® Binding Checks ensure the validity of assignments statements, (which bind objects
denoted by expressions, to local variables and instance variables), and of statements
that return method results (where the object returned must be able to be bound to any
variable declared of the method’s return type). Thus, binding checks ensure the
validity of all bindings of objects to variables, save for the bindings of invocation
arguments to method parameters.

The strictness of a binding check depends on how a type declaration, such as

is interpreted. For example, if in the above example A is interpreted to denote the
singleton set of classes, {A}, then the binding check must be strict and ensure that any
object bound to a will be of class A. On the other hand, if A is interpreted to denote the
non-singleton set, {all subclasses of class A}, then the class of any object bound to a
can be any subclass of A.

o Signature Checks ensure that all invocations will be understood by their receiver

objects. Given the declaration of & above, any message m invoked on & with n

arguments must be mapped to a definition of m with n parameters, in every class
denoted by A.

e Parameter Binding Checks are like binding checks, but monitor the binding of
invocation arguments to method parameters. Parameter binding checks are performed
after signature checks provide the mapping between arguments appearing in an
invocation, and parameters declared with a method’s definition.

1.4.3 The Tension of Type Checks

There is a natural tension between the flexibiiity of binding checks on the one hand,
and the flexibilities of signature and parameter binding checks on the other. Signature and
parameter binding checks succeed only if a given invocation can be guaranteed understood
by all potential receiver objects. Naturally, more flexible binding checks mean that larger
numbers of classes can in general define objects that can be bound to a variable. Thus,
more flexible ninding checks should result in stricter signature and parameter binding
checks.

In practice, the tension between binding checks and signature checks does not pose
a problem. Binding checks are usually defined so as to allow a given variable to be bound
to objects from a set of related classes. These classes usually have as a common interface,
the interface of one of the classes in the set. From the success of the signature check over
this one class, success can be inferred over the entire set. For example, when the type A is
interpreted as the set of all subclasses of A, then signature checks need on!y examine the
definitions in A. The monotonic nature of subclassing is such that subclasses must include
all of the declarations and definitions of their superclasses, and cannot redefine any method
such that the number of parameters associated with the method changes. Thus, the success
of a signawre check over a set of subclasses of A can be inferred from its success over A
alone. So as to keep type-checking simple and signature checks flexible, interpretations of
types usually allow signature checks to be confined to a single class.

Ideally, binding and parameter binding checks should be identical. Whether or not
this is possible depends on the nature of the binding check, and therefore on the
interpretation of types as a whole. For example, let the variable a be defined as before, let
F be any class, and let the definition for A include a method m, with signature:

method m (receiver_object : A, other_parm : P).

When the type declaration for a assumes its type to be singleton, the binding check ensures
that any object bound to a will be of class A. In this case, it is known that a parameter of
type P is required when m is invoked on a. On the other hand, if the type declaration for a
assumes its type to be the set of all subclasses of class A, then the required type of any
argument sent when m is invoked on a, will depend on policies regulating subclassing
redefinition to which the language concerned subscribes.

In theory, the more classes that define objects that can be bound to an expression,
the less behavior that can be statically inferred of the expression. This should result in a
tension between flexible binding checks on one hand, and flexible signature and parameter
binding checks on the other. In practice, type interpretations are such that bindings 10 a
given expression are restricted to objects of related classes. This allows signature checks to
be confined to a single class. The tension of binding checks and parameter binding checks
is not easily reconciled and is further complicated by the tension with flexible subclassing
redefinition when subclassing becomes the basis on which binding checks are decided.

1.5 Objectives

The objectives of this thesis are three-fold:
1. Analysis:
To categorize all forms of polymorphism, identify the polymorphisms that can
be achieved by inheritance, and identify the tensions associated with each of
these forms of polymorphism,

2. Survey:

To compare and evaluate existing languages and theories on how their
proposals:

a. provide each of the forms of polymorphism described above and
b. guarantee type-safety while resolving the tensions of polymorphisms,

3. Design:

To design an object-oriented type and subclassing system that offers the most
varied and most flexible forms of polymorphism, while resolving all tensions in

the most practical way possible.

These objectives are addressed in the chapters that follow. Chapter 2 (Analysis: Discerning
the Polymorphisms and Tensions of Inkeritance) classifies the polymorphisms that can be
achieved by inheritance, and identifies the associated tensions. Chapters 3 and 4, (Survey:
An Examination of the Polymorphisms of the Bruce Language Proposal) and (Survey: An
Examination of the Polymorphisms of the PS Language Proposal) examine tw. recent
language proposals in terms of what forms of polymorphism are supported, an k=
tensions associated with those polymorphisms are resolved. Included in this chapter is a.
extensive study of “PS subclassing”: judged here to be the most promising because of its
inherent flexibility. Shortcomings of this proposal are described in this chapter, and either
remedied in Chapter 5 (An Interpretation and Extension of PS Subclassing) or explored in
detail in Chapter 6 (Future Work: Marrying Dynamic Binding to PS Classes and PS
Subclassing). Thus, Chapter 2 contains the analysis, Chapters 3 and 4 the survey, 2nd
Chapters 5 and 6, the original contributions to the field.

1.6 An Example OOP Language: Mini-Dee

A simple, generic object-oriented language is presented here. The language closely
resembles Dee and is herein referred to as “Mini-Dee.” Its purpose is to facilitate
comparisons of various theories, and it is therefore used in this thesis as the language of all
examples illustrating those theories.

The core language is informally describer below, and is formally defined by way of
a grammar in Appendix I-A. Various extended versions of Mini-Dee are used to illustrate
proposals for typing and subclassing presented at later points in this thesis. Before each
theory is presented, the appropriate extensions to the core language are described. The
complete grammuars of these Mini-Dee extensions are also found in Appendix I.

The core language is strongly and statically typed. A program in the core language
consists of a system of classes. The Mini-Dee grammar demands that an entire system of
class interfaces appear before the code of these classes. Such a separation is useful for
theoretical purposes, but need not be enforced in an implementation since the separation can
be achieved by a compiler. Classes included in a system can be base classes provided by

10

the Mini-Dee library or classes defined by the user. The basc classes are Int, Bool,
Float, Stringand Object (the empty class that is a superclass of all classes). User-
defined classes can be explicitly defined and can be said to inherit other classes.

The code of a method consists of statements contained within a “begin ..end”
block as in Pascal. A statement can bind an expression to an instance variable or local
variable, or can send a message to an object denoted by an expression. An expression can
be anything that denotes an object: an instance variable, a method parameter (including
self), or a result of an invocation made of another expression. Invocations are made
using the record selection notation described earlier. Invocations without explicit receiver
objects are assumed to be invoked on self, and are legal provided that the methods or
variables invoked, are defined in the class containing the statement. Extensions to Mini-
Dee differ both semantically and syntactically. Semantic differences between extensions
include their interpretations of types, their restrictions governing redefinition in subclasses,
and their binding, signature and parameter binding checks.” These attributes of Mini-Dee
extensions are described informally as they are needed. Syntactic difterences include
whether the extended language supports single or multiple inheritance. The Mini-Dee
grammar provides alternative rules for the nonterminal, IList (Inherits List), the first of
which is applicable to single inheritance extensions and the second to multiple inheritance
extensions. Descriptions of all Mini-Dee extensions in this thesis include indications of
which form of inheritance is supported, and thus which of the two grammar rules applies.

For an example class in the Mini-Dee core language, the reader is referred to
Example 2.7.

* Definitions of these type-checks vary, but the times at which they interrupt the parse do not. The checks
are performed following the parse of rules indicated in the grammar of Appendix I1.

11

Chapter 2.

Analysis: Discerning the
Polymorphisms and Tensions of
Inheritance

2.1 Classifications of Polymorphism

Polymorphic operations are those defined over varying numbers and types of
arguments. The definition is broad as it captures those operations which share any of
name, code, or signature. Discerning how inheritance achieves polymorphism is further
complicated by the muany options that implementations of inheritance tend to allow.
Cardelli and Wegner propose a useful taxonomy of polymorphism [CaWe85], but suggest
that the polymorphism of inheritance can be captured within a single category. It becomes
clear when distinguishing these categories on the basis of mappings from invocations to
code, that inheritance can realize three forms of polymorphism. Descriptions of the original
and modified taxonomies follow, with tensions associated with each category identified.

2.1.1 The Cardelli-Wegner Classification of Polymorphism

Cardelli and Wegner divide polymorphism into four categories: overloading,
coercion, parameterization and inclusion. The former two categories fall under the heading
of “ad-hoc” polymorphism. Overloading is the polymorphism achieved when more than
one operation shares the same name. For example, “3 + 2" and “3.2 + 2.7 are both legal
expressions in otherwise monomorphic languages such as Pascal. The meaning of “+” is
determined by context: it is an /nteger operation in the first case and a Float operation in the
latter case. The code for the two operations is distinct; only the name of the operation is
shared. The expression “2 + 3.4” demonstrates coercion. The operation of adding
Integers to Floats is meaningless. Languages supporting coercion would coerce the Integer
value, 2 into the Floar value, 2.0, and then pass it with 3.4 to the operation that adds two
Floats. That coercion and overloading fall under the pejorative classification, “ad-hoc” is
likely a result of their origins as polymorphic exceptions to monomorphic languages. As
Danforth and Tomlinson point out [DaTo88], the disdain for overloading is unwarranted.
Overloading is given new-found respectability under the guise of subclassing with code
redefinition in object-oriented languages.

Parametric and inclusion polymorphisms fall under the heading of “universal”
polymorphism. Parametric polymorphism is the polymorphism that requires a type
parameter. An operation such as swap, which swaps the values bound to any two
variables of the same type, would ideally be defined as a parametrically polymorphic
operation. Monomorphic languages such as Pascal would require a separate swap
operation over all types for which it was defined. A Pascal definition for swap, as defined
over Integers, is shown in Example 2.1:

procedure swap (var a, b: Integetr)

var temp : Integer

begin
temp := &;
a = b;
b := tenp;
end

Example 2.1

Every Pascal swap definition would be identical to the one above, save for the types of the
parameters, a and b, and the local variable temp. Languages such as Ada, that support
parametric polymorphism, would allow a generic swap to be defined in terms of a type
parameter. An Ada definition for swap is shown in Example 2.2.

generic

type T is private;

procedure swap (a, b: in cut T) is
temp : T
begin
temp = a;
a := b;
b

fl

temp;

end swap
Example 2.2

Parametric polymorphism especially lends itself to operations that act on collection
data structures such as lists, stacks and trees, since these operations tend to be independent
of the types of items contained within the collections. For example, assuming some sort of
reference semantics which makes the size of an item (as it appears in the collection)
constant, the same procedure is used to pop a stack, no matter what the stack contains.
That many related operations are all parameterized by the same type parameters allows an
extra level of abstraction, and the data structure rather than the operation can become the
parametric entity. Object-oriented languages supporting parametric polymorphism such as
Eiffel and Dee, do so by parameterizing data structures with parametric classes; higher-
order class generators with type parameters. Parametric class definitions resemble regular
class definitions except that types are denoted both with class names and type variables.
Type variables are defined as parameters to the class definition and in some languages are
constrained. Acting as higher-order types, constraints limit the bindings to (or
instantiations of) type variables.

An example parametric class is shown in Example 2.3. The class Pair (asin
Ordered Pair) is borrowed trom the Dee class library [Gr91] and translated into an

extension of Mini-Dee that supports parametric classes.

14

class Pair [T : Order]

var a : 7T

var b : T

method makepair (x : T, y : T)

begin

end

method min : T

begin
if a < b then
return a
else
return b
£i
end

end Pair
Example 2.3

Pair has a single type parameter, T, constrained by the class, Order, the class of objects
that belong to partial orders. T is used as the type of both instance variable components,
and of the method, min.

Definitions of paramerrically polymorphic operatio.. ~an be independent of the
types over which they are defined and iherefore can be defined over disjoint types.
Conversely, inclusion polymorphism is the polymorphism of operations defined over types
and their subtypes. Typically associated with object-oriented languages and inheritance,
inclusion polymorphism is supported by any language that recognizes subtypes and allows
their values to be bound to variables declared of their supertypes. It is the polymorphism
that results when an operation requiring an argument of some type T can be interpreted as
also allowing arguments of any subtype of T.

15

The Cardelli-Wegner taxonomy is useful, both as a conceptual classification of
polymorphisms and as a timetable charting the development of polymorphism over several
generations of languages. The “ad hoc” polymorphisms of overloading and coercion are
considered the most primitive and in fact have the earliest origins. That coercion is even a
form of polymorphism is debatable. Polymorphism has a connotation of flexibility on the
part of the operation to accept arguments of varying types. Coercion can be viewed as a
“backward polymorphism” since the onus is on the argument to conform, rather than the
operation. The “universal” parametric and inclusion polymorphisms are considered more
sophisticated, and products of languages of more recent generations. Parametric
polymorphism is supported by languages such as Ada and ML [MiToHa90] and Object-
Oriented languages such as Eiftel and Dee. Since inclusion is considered to capture the
polymorphism of inheritance, it is thought to be supported by all object-oriented languages.

2.1.2 Mapping Invocations to Code

That the polymorphism of inheritance is presumed to be captured by a single
category is where the Cardelli-Wegner taxonomy falls short. Inclusion only captures one
type of polymorphism achieved by inheritance; the polymorphisin of subtyping. The
polymorphisms of inheritance also include overloading and a form of parametric
polymorphism. The Cardelli-Wegner classification distinguishes between the various
forms of polymorphism, but not in such a way as to identify all of the polymorphisms of
inheritance.

The classification can be viewed in another way that helps to distinguish the
polymorphisms of inheritance. Type-safe code has the property that every invocation can
be associated with code whose execution it triggers. The mapping is from the signature of
an invocation to code. Polymorphisms can be distinguished by the nature of the mapping.
For example, a one-to-one mapping of invocation signatures to code is achieved both by
overloading, and by subclassing with code redefinition. Overloading involves two
operations sharing a name, but having distinct signatures and code. An inherited method
whose code is redefined will share the same name as the method inherited, but will .ave a
distinct signature (if only because of the automatic redefinition of se1f) and distinct code.
Since the polymorphism of overloading and subclassing with code redefinition only
involve the shuaring of operation names, they are referred to here as nominal polymorphism.

The polymorphisms of many-to-one mappings are those where invocations of
varying signatures can result in the eaecution of a single block of code. This category
includes parametric polymorphism. A parametrically polymorphic operation such as swap

16

- X

- Y

can be called with two Inreger arguments, or two Boolean arguments and so on. Each of
the resulting invocation signatures results in the execution of the same block of code. The
category also includes subclassing when inherited code is not redefined. Subclassing
without code redefinition results in invocations of varying signatures triggering the
execution of the same block of code. Example 2.4 is written in the core language of
Mini-Dee supporting either single or multiple inheritance. (Policies concerning type
interpretations, type-checking and signature redefinition in subclasses are irrelevant to this
example). As will be the case in many examples shown in this thesis, parts of some class
and method definitions are replaced by ellipses, demonstrating that the actual contents of
these definitions are not pertinent to the example.

class P
method m
begin
end
end P

class C inherits P
{m is not redefined}

end C

class example_class

var ¢ : C

method example_method

begin

end

end example_class

mxample 2.4

17

The invocation, ¢.min example_class calls the method m defined in P. The
invocation’s signature,

m (receiver_ckbject : C)

is one of many that could be used to invoke the code of m. The receiver object could also
be of type P, or of any other type denoted by a subclass of P that does not redefine m.

The mapping of invocution to code of both parametric polymorphism and
subclassing can be achieved at compile-time or link-time. This is because in both cases, the
same code is executed no matter the types of the arguments in the invocations. For this
reason, this form of polymorphism is referred to here as static binding.

Static binding is the polymorphism resulting from a many-to-one mapping from
invocation signature to executed code. Dynamic binding on the other hand, results from a
one-to-many mapping. Dynamic binding is the polymorphism that results when a single
invocation can result in the execution of many different blocks of code. The classes of
Example 2.5 are written in an ex:ended version of Mini-Dee which supports single or
multiple inheritance, and defines binding checks assuming that an object can be bound to a
variable if its type is denoted by a subclass of the class denoting the type of the variable.

class P
method n
begin
end
end P

class C inherits P
method m
{Redefined version of m)

begin

end

end C

18

B e sew

class example_class
var p : P

var ¢ : C

method example_method

begin

end

end example_class

Example 2.5

Though the receiver object, p of invocation, p.m is declared to be of type P, the code
whose execution the invocation triggers is defined in C. In general, depending on what is
assigned 1o p, executed code could be that defined in any subclass of P including P itself.
Thus, a single invocation can be mapped to many blocks of code. Note that the one-to-
many polymorphism resembles the inclusion polymorphism of the Cardelli-Wegner
taxonomy. Object-oriented inclusion allows the code of m to differ according to the class of
the receiver object argument at run-time. Because the class of the receiver object cannot in
general be inferred at compile-time, the mapping of invocation to code must be made
dynamically.

2.2 The Tensions of Polymorphisms

When found in object-oriented languages, the polymorphisms above are subject 10
tensions that affect how type-safety is established or preserved. Nominal polymorphism
can result in an invocation in the superclass being mapped to code in the subclass, and must
be regulated such that subclass code is type-safe given this mapping. Static binding can
result in an invocation made of objects of the subclass being mapped 1o code defined in the
superclass and must be regulated such that superclass code is type-safe given this mapping.
Dynamic binding can result in an invocation being mapped to any of a number of blocks of
code, and must be regulated such that every block of code is type-safe with respect to each
mapping.

To discuss these tensions, it is necessary to preview the sections on type-safety
found in section 2.5. The tensions discussed are those evident, even given the most liberal

19

possible binding and parameter binding checks that are found in typed object-oriented
languages. Liberal type checks allow an object to be bound to an expression provided that
the object’s type is denoted by a subclass of the class denoting the expression’s type.
Accordingly, such binding and parameter binding checks are referred to here as subclass-
based. To illustrate, statements 1 and 2 of the class example of Example 2.6 would
only be type-safe if defined in an extension of Mini-Dee that used subclass-based binding
and parameter binding checks respectively. It should be assumed for this example, that A

is a subclass of A.

class example

method m (2 @ A)

begin . erd
method m,
var a, : &'
Legin
a := a, {1}
m (a,) (self is implicit receiver obiject} {2}
end

end example
Example 2.6

It can be inferred that tensions evident given subclass-based binding checks, are also
problematic given more conservative binding checks. Thus for the examples of sections
2.3 and 2.4, it should be assumed that subclass-based binding and parameter bind.ag
checks establish the type-safety of code defined in any extension of Mini-Dee.

20

2.3 Nominal Polymorphism: Subclassing with
Code Redefinition

Nominal polymorphism can be achieved by subclassing in two ways:

1. Code Redefinition: The code of an inherited method is redefined and the signature
(save for the implicit redefinition of self) is inherited as is.

2. Code and Signature Redefinition: The code of an inherited method is redefined and
explicit parts of its signature (parameters or return type) are also redefined.

The tension of nominal polymorphism and subclassing concerns what limits should
be placed on redefinition to ensure that the type-safety of inherited code is maintained.
Code redefinition is never a concern since redefined code must always be type-checked,
and this redefinition does not aftect the type-safety of other inhenited methods. Signature
redefinition can affect the type-safety of other inherited methods, since their code may
include invocations of the original method. The class Turt 1e of Example 2.7 is written
in the core language of Mini-Dee, and illustrates how both forms of nominal polymorphism
achieved by subclassing might be desired, and why signature redefinition constraints are
necessary. For this example, some mathematical operations (+, -, v, square, mod) are
assumed defined in class Int, and others (+, £, round, sin, cos) in class Float. The
invocations of these operations are written in standard mathematical notation to improve
readability.

class Turtle

var = : Int {horizontal coordinate of Turtle}
var y : Int {vertical coordinate of Turtle]
var directicn : Float {direction Turtle facing (0 .. 359))

method move (m : Int)

{move m in current direction)

begin

» + round ((m) (cos (direction)))

~
i

y + round ((m) (sin (direction)))

b
%

end

method distance (a : Int b : Int) : Float

{returns distance between Turtle and (a,b)}

begin

return VQx—a)P - (y—b)2

end

method turn (amt : Float)

{turn Turtle clockwise, amt degrees}
begin
direction := direction + amt

end

method set_pos (a : Int b : Int)

{fabsclute move to {a,b) }

begin

end

{1}

{2}

{3}

{4)

PUTTNPY TODUE TUROUL T

[ST T

method within_one (a : Int b : Int) {51
{returns true if turtle within one unit distance

of (a,b))

begin
return (distance (a,b) £ 1)

end
end Turtle

Example 2.7

Nominal polymorphism might be desired when creating a subelass of Turt le
such as WrappingTurtle, the cluss of Turrles whose movements are confined to appear
on a screen. Assume for this example, that the screen in question is square, that (0,0) is
the coordinate representing the bottom left of the screen, and (k-7, k-1), the coordinate
representing the top right. For this example it should be also be assumed that ScreenRange
(0...k) is a subrange and hence a subtype of /nt.

The class WrappingTurtle might redefine the code (though not the signature) of
the method, move, and redefine both code and signature of the method, distance, as
described below:

(1) method move - Code Redefinition
The move of WrappingTurt le should ensure that the WrappingTurtle
object appears at one edge of the screen when it disappears off the opposite edge.

Thus, the redefined version of move could be:

method move (i : Int) {1}

{move m units in current direction}

begin

~
]

(2 + round ({m) (cos (direction)))) MOD k-1
y = (y + round ((m) (sin (direction)))) MOD k-1

end

23

Note that it is not necessary to redefine the method’s explicit signature since the
move of a WrappingTurtle still requires an /nz value to determine the degree of the

move. Thus, this is an example of code redefinition.
(2) method distance - Code and Signature Redefinition

The method distance, in WrappingTurtle should return the smallest
distance between the Turtle and the pixel, (a,b). Unlike the regular Turtle, the
WrappingTurtle can reach (a,b) by traveling in two directions. The two trips,
trip_for and trip_bac, are illustrated in Figure 2.1.

(0,k-7) (k-1,k-1)

trip for="5
trip bac=a+c

0.0 k-1 0)

Figure 2.1

The new definition for distance should redefine the signature of the inherited
method to ensure that the input coordinates constitute a point on the screen. The
new definition should also redetine inherited code so that both possible journeys w
(a,b) are measured, and the shortest distance returned. Thus the new method
definition and signature might be:

method distance (a : ScreenRange b : ScreenRange) : Float

{returns distance bhetween Turtle and (a,b)}

var trip_for, trip kac : Float

begin
trip for := ka~ar - (y—b)D
trip bac :=
if trip_for € trip bac then
return trip for
else
return trip bac
fi
end

The calculations determining the value of trip bac are rather complicated and
irrelevant to the example. Therefore, they are omitted from the code here. The
important point is that the redefinition of the inherited method involves both code
and signature.

It should be apparent from the exuamples above that there is a need to regulate
signature redefinition to ensure that the type-safety of other inherited methods is retained,
even when binding and parameter binding checks are liberal'y defined as subclass-based.
If the redefinitions of move und dictance above were the only redefined methods of
class, WrappingTurt le, then the invocation stateinent of the method, within_ one
would no longer be safe since the parameter binding check (now binding a Float to a
ScreenRange) would fail.

|20]
)

-
o

}

2.3.1 Directions of Signature Redefinition

Policies of signature redefinition can be characterized by direction and scope. The
direction of signature redefinition determines how an individual type reference found in a
signature can be redefined. Two direction guidelines are shown here.

Covariance

Covariant signature redefinition allows any type reference to be redefined to refer to
a subtype (specialized). As applied to subclasses, it allows any variable declaration of a
superclass, v : A, to be specialized in a subclass, whether the type declaration is for an
instance variable, parameter, local variable or method return type. (Note that covariant
signature redefinition would allow the method distance of class WrappingTurtle,
above, to be redefined to accept parameters of type ScreenRange).

Covariance is the most flexible and natural form of signature redefinition for
subclassing. A superclass usually defines a generalization in that it houses code that is
applicable to specialized subclasses. It is most natural for generalized code to be defined in
terms of general types, and for specialized versions to interpret the general code in terms of
specific types.

Contravariance

As applied 1o subclassing, contravariant signature redefinition limits the type

references that type:

e method return types to be specialized,
e method parameter types to be generalized (redefined to refer to supertypes),

e instance variable types to stay constant,

As a guideline for signature redefinition, contravariance arises from the work of Cardelli
and Wegner [CaWeB5], who attempt to justify the equation of subclasses with subtypes.
In their record-based model of objects, ({label,value) pairs model instance variables,
functional record components model methods and record types are based on class
interfaces. An example point record and record type are shown below:

26

Record:
point = {x_coord : 4.2,y _coord : -3.6}
Type of Above Record:
PointType = {x_coord : Int; ¥ _coord : Int}
1. Subtyping Cardelli-Wegner Record Types
Record subtyping (<) holds if all components of the supertype are also found in the
subtype. The corresponding components of supertypes and subtypes need not have the
same type. The type of @ component in a record subtype can be a subtype of the type of its
corresponding component in the supertype. For the example record types below, it should
be assumed that ColorType is a type, and that Posint is a subtype of Int.
ColorPointType = {x_coord : Int; y_coord : Int; color : ColorType)

PositivePointType = {x_coord : Posint; y_coord : Posint}

ColorPositivePointType =
{x_coord : Poshut; y_coaord : Posint; color : ColorType}

The subtyping relations below hold, given the above definitions and assumptions:

e ColorPointType < PointType

o PositivePointType < PointType

e ColorPositivePointType £ PoinType

e ColorPositivePoiniType < ColorPointType

Intuitively, PointType should be interpreted to include all records with at least the x_coord
and y_coord Integer fields. Thus the setof records whose type is PointType includes all of
those which are ColorPoints, PositivePoints and ColorPositivePoints.

2. Subtyping Records with Functions

Function subtyping is less intuitive thuan record subtyping. Given types A, B, A’
and B’, where A" <A and B’ £ B, the following subtype ordering holds:

A — B < A -B < A" > B
R D
(1) (2)

A—- B <A - B (1)since a function f;, of type A — B’ will behave in any context
where a function of type A — B is expected. fjcan accept any value of type A as an
argument and returns a result of type B’ which by the subtype relation is also a B. The
ordering of (2) is less obvious because of the counterintuitive ordering of the function
domain. But a function, f>of type A — B is substitutable in any context where a function
of type A" — B is expected. Since f7 is defined for values of type A it is trivially the case
that it is defined for values of type A”. Note that by a combination of the reasoning of (1)

and (2) it is also the case that:

A - B

IN

A = B.

Cardelli and Wegner point out that since every class’ signature includes the implicit
parameter self, every class is implicitly recursive and a contradiction arises if it is
assumed that subclasses denote subtypes. Given an arbitrary class, C, any signature found

in C’s class definition will be of ihe form,
C X C‘/ X DX C" - C“.f]

where C; is a class name denoting a type. If we assume that subclasses denote subtypes,
then any subcelass of C, €' will inherit the above signature, and automatically redefine it to
adjust the type of self, to be of type, C'. We arrive at a contradiction, since the inherited
function signature is not a subtype of the original signature. Inherited signatures are
automatically and covariantly redefined through the specialization of self. Because
function subtypes must be contravariant versions of their supertypes, subclasses cannot
denote subtypes.

e

3. The F-Bounded Model

Because every signature in a class has an implicit recursive parameter self,
subclasses cannot denote subtypes. Cook et. al. modify the Cardelli-Wegner record model
by removing the parameter representing se1£, from all signatures defined in a class, and
making it a parameter to the class definition [CoHiCa89]. In their F-Bounded model,
classes are record generating functions, and self is both a parameter and result, An
object is created by application of a fixpoint operator to the record generating function,
allowing the object’s method definitions to refer to itself. Thus the F-Bounded model of
classes and objects captures the self-referential aspect of objects while interpreting
subclasses to denote subtypes, despite the automatic covariant redefinition of self in
subclasses. Only the explicit signatures of subclasses must be contravariant versions of
corresponding signatures in superclasses. Explicit parameters to methods can only be
generalized in subclasses. Method return types can be specialized. Instance variables, as
both parameters to their own implicit updite methods, and expressions returned by implicit
reference methods, cannot be redefined.

2.3.2 Scope of Signature Redefinition

The scope of signature redefinition determines whether the redefinition of a type
reference must be applied consistently throughout a class or system of class definitions, or
whether it can be applied selectively. As applied to subclassing, when a class contains two
declarations, v; : Aand v, : A,redefinition scope determines whether it is possible to
redefine the type of v; in a subclass without redefining the type of v,. Selective scope
allows this, while consistent scope does not. Naturally, selective redefinition is more
flexible than consistent redefinition. Most object-oriented languages support selective
redefinition with nominal polymorphism.

2.3.3 The Tension of Nominal Polymorphism

The only tension of nominal polymorphism involves signature redefinition that is
covariant in its direction and selective in scope. Languages that support both forms of
signature redefinition can allow subclasses that do not preserve the type-safety of inherited
code. The classes of Example 2.8 are written in an extension of Mini-Dee that supports
either single or multiple inheritance, uses subclass-based binding and parameter binding

29

checks, and allows both corariant and selective redefinition in subclasses.

assumed for this example, that 2 is a subclass of A.

class P

var a : A

method m (x

begin

method m,

begin
end
end P
class C inherits P
{m, redefined,
method m (x
begin

end C

Example 2.8

A)

. end

(a)

m, inherited as is}

Al)

end

It should be

In the above example, the parameter binding check which succeeds in P, fails in C, since

the invoration attempts 1o bind an object of type 4, to a variable expecting an object of type

Al

It should be noted that though selective redefinition fails to cooperate with

covariance, it can coexist with contravariance. In the above example, covariant redefinition

of m; would demand that the type of the parameter x be a supertype of A. The code of m,

could thus be safely inherited since an A can be bound to any variable declared of a

supertype of A.

2.4 Static Binding

Static binding is achieved by subclassing in two ways:

1. Prefixing: A method or variable is inherited “as is”. Because the implicit
parameter, self is automatically redefined in subclasses, a new invocation
signature is defined for existing code, and static binding is achieved.

2. Genericity: The explicit signature of an inherited method or variable is altered,

while the associated code is inherited *“as is”.

Given the example Turtle class of Example 2.7, it might be desirable in the subclass
WrappingTurtle to use prefixing and genericity to redefine the methods, turn and
set_pos respectively.

(3) method turn - Prefixing
WrappingTurtles can turn just as Turtles do. That their movements are confined to

the screen does not affect the directions in which they turn. Thus,
WrappingTurtle should inherit the signature and code of turn, “as is”.

(4) method set_pos - Genericity

The signature of set_pos should be restricted so that only coordinates that
designate a pixel on the screen are accepted. The code of set_pos is unaffected.
Thus the redefined version of set pos, below, has redefined signature and code

inherited “as is”.
method set_pos (a : ScreenRange b : ScreenRange) : Bool
The redefinition of this method is therefore, generic.
Prefixing and generic redefinition liken subclassing to parametric polymorphism,
since the polymorphism in euach cuse results from the creation of new signatures to
substitute for the signature originally associated with some block of code. Subclassing

differs from parametric polymorphism by the way in which new signatures are created.

31

Parametric definitions include type variables which are constrained by a type expression.
Creation of new signatures results from instantiating type variables. Regular class
definitions contain declarations with actual types but no type variables. Subclasses create
new signatures by substituting for the original types.

As was the case with nominal polymorphism, type-safety issues with regard to
static binding concern how signature redefinition must be regulated. The only concern of
nominal polymorphism is how redefined signatures affect the invocations found in the code
of other inherited methods. Static binding must also ensure the type-safety of the code
whose signature is redefined.

2.4.1 Direction and Scope of Signature Redefinition of Static
Binding

The direction and scope of signature redefinition guidelines can be characterized for
static binding as they are for nominal polymorphism. Covariant and contravariant, and
consistent and selective redefinition guidelines are applied to subclasses as described in
Section 2.3, but can also be used to describe how parametric classes and vperations are
constrained to be instantiated. As applied to a parametric operations defined using some
type parameter T constrained by type A, (t : A), direction and scope guidelines indicate
the types to which T can be bound.

Direction

As applied to a parametric operation with the type parameter defined above,
covariant instantiation would allow T to be bound to any subtype of A. Like superclasses,
parametric classes and operations are generalizations and ideally house code defined over
general types. Covariance is the most natural guide for instantiation of parametric classes
and operations since it allows resulting classes and operations to apply general code to
specialized types.

Parametric classes and operations rarely require contravariant redefinition. If they
did, then the binding of types to T would depend on how T was used:

e if T were the type of an instance variable, then T could be bound only to A;

e if T were the type of a method parameter, then T could be bound only to a class
denoting a supertype of A;

e if T were only used as a return type of methods, then T could be bound only to a

class denoting a subtype of A.

Scope

As was the case with direction characterizations, the designations of selective and
consistent scope can be applied to both subclassing redefinition and parameterization. With
regard to the latter, given a parametric operation or class with type parameter, T : A,
redefinition scope deiermines if it is possible to declare two variables:

vy ¢ T and

vy, ¢ A

If the above is possible, then the scope of redefinition is selective. If not, then scope is
consistent. Just as parametric operations and classes are almost invariably covariant in
direction, so too are they selective in scope. As will be shown below, this combination is
problematic.

2.4.2 The Tensions of Static Binding

Covariant Direction and Selective Scope

Two tensions can be identified with static binding, both concerned with how
signature redefinition affects the type-sufety of inherited code. The first tension is identical
to that of nominal polymorphism, and concerns how the type-safety of inherited code that
invokes a redefined method or variable can be lost in subclasses. This tension concerns the
combination of covariant direction and selective scope. The classes of Example 2.8
illustrated this tension 1s it applied to the nominal polymorphism of subclassing, and these
classes can easily be modified to show how this tension affects static binding and
subclassing. Example 2.9 is identical to Example 2.8 except that the redefined method
is generically redefined, rather than redefined by code and signature.

class P
var a : A
method m (# : &)

begin .. end

33

method m,
begin
m_(a)

end

end P

class C inherits P

{m, generically redefined, m, inherited as is}

method m_ (2 : A')

end C

Example 2.9

Example 2.10 illustrates this same tensioa as it applies to parametric classes and
operations with covariant direction and selective scope. The parametric class, P is written

in an extension of Mini-Dee that allows definitions of parametric classes. P is type-safe,

but no instantiated version of P is.

class P [t : A]

var a : A

method m, (x : t)

begin .. end

)
S

[T

Lx

method m;

begin
end
end P
Example 2.10

The invocation statement of method m; would fail the parameter binding check, given any
instantiation of P,P [A'].

Contravariant Direction and Genericity

The previous tension concerned how type-safety of invocations could be violated if
the signatures of the code invoked were redefined. The tension of contravariant direction
and any form of genericity concerns how the type-safety of code mapped to the redefined
signature is violated. Example 2.11 illustrates this tension and is written in an extension
of Mini-Dee that supports single or multiple inheritance, and allows both contravariant and
generic redefinition in subclasses.

class A
method m
begin .. end

end A

class P

method m, (a : &)

begin

end

end P

)
whn

class C inherits P

{generically reaefines my}
method m, (& : Chbject)

end C
Example 2.11

The signature check of the invocation in method m, in class P, would be successful in P but
not in C, since no methods can be invoked on objects of class Object.

The tension is applicable to parametric classes also, though it rarely affects them
directly since parametric classes rarely demand contravariant instantiation. Given an
extension of Mini-Dee allowing parametric classes with contravariant instantiation, class P
below is type-safe, though instantiations of P such as P [Object] are not.

{class A as defined above)

class P [t : A]

method m (2 @ ©)

begin

end

end P

Example 2.12

Though parametric classes demanding contravariant instantiation are rarely found in object-
oriented languages, this same tension can be revealed in languages with parametric classes
allowing covariant instantiation, and subclasses that can be redefined using contravariant
direction. This is illustrated in Example 2.13 which is written in an extension of Mini-
Dee supporting these features.

class A
method m (i : Integer)
begin .. end

end A

class A' inherits A

{redefines at least the signature of m}

method m (i : Object)

end A'

class P [t : A]

method m (x : t)
begin
<.m (45)
end

end P
Example 2.13

Note that though P should be considered type-safe, the parameter binding check of the
invocation in method m will fuil, given such instantictions of P as P [A' }. Parametric
classes can demand covariant instantiation, but can be undermined by contravariant
subclassing.

2.5 Dynamic Binding

Dynamic Binding difters fiom static binding and nominal polymorphism not only
by the r.aiure of the mapping from invocation to code that defines it, but also by how it is
related to subclassing and how its tenston is related to type-safety. As a code and signature
reuse mechanism, subclassing results in static binding and nominal polymorphism.
Subclassing relations between classes only affect dynamic binding when these relations are
used in some way to define types. The tensions of nominal polymorphism and static
binding concern how type-safety is maintained when code and signatures are reused. The

37

tension of dynamic binding concerns establishing type-safety in the first place, and is the
tension between type checks discussed in Chapter 1.

2.5.1 Dynamic Binding, Non-Singleton Types and Subtyping

For a language to support dynamic binding, it must interpret types to be literally or
effectively non-singleton. Effective non-singleton interpretations can result from support
for subtyping, since this also allows objects of more than one class to be bound to any
given variable. Languages lacking support for both non-singleton types and subtyping
would demand that all objects bound to the variable a, with declaration,

be of class, A. Since every invocation on a would be mapped to a single definition or
declaration found in the class definition for A (or one of its superclasses), the mapping of
invocation to code would be either one-to-one or many-to-one, and the resulting
polymorphism would either be nominal or static.

Interpretations of non-singleton types differ by what set of classes constitute a type.
These interpretations must bulance the tradeoff between flexible binding checks and flexible
rarameter binding checks. The policy on the former decides that of the latter. Languages
that enforce disciplined binding checks can statically infer more of expressions, and thus
can have relatively flexible parameter binding checks. At the other extreme, languages for
which binding checks allow any object to be bound to any variable have to forbid argument
passing or sacrifice strong, static typing. Interpretations that rely on subclassing relations
to determine binding checks must also balunce the flexibility of redefinition in subclasses.

2.5.2 Interpretations of Non-Singleton Types

Interpretations of non-singleton types can be divided into two categories according
to the nature of the binding checks that result from the interpretation. As their names
imply, subclass-based and subclass-independent type interpretations Giffer by how closely
they are tied to the subclassing hierarchy.

Subclass-based binding checks were described briefly at the start of this chapter, as
those binding checks that allow an object to be bound to a variable provided that the type of
the object is denoted by a subcelass of the class denoting the type of the variable. Subclass-
based type interpretations use subclass-based binding checks, though not necessarily,

subclass-based parameter binding checks, as will be shown shortly. Some subclass-based
interpretations literally interpret a type denoted by a ciass name to be the non-singleton set
of all subclasses of the named class. In other interpretations, the named class denotes a
singleton type that is effectively non-singleton, since objects belonging to subtypes can be
bound to expressions of that type. These latter interpretations are subclass-based when
subclasses denote subtypes. The PS interpretation of types described in Chapter 3 is
subclass-based and interprets types 1o be non-singleton. Type systems of such object-
oriented languages as Eiffel, Dee and Trellis/Owl [ScCoBuKiWi86], interpret types to be
singleton, but because these languages support subtyping, types effectively include more
than one class and are therefore, effectively non-singleton.

Subclass-independent type interpretations were first advocated by Danforth and
Tomlinson [DaTo88}, and realized in a recent language proposal by Bruce [Br92}. In these
interpretations, the determination of what objects can be bound to a variable does not
depend on whether the classes denoting object and expression types are subclass-related.
Subclass-independent type interpretations result in separate hierarchies for types and
classes, but avoid the tension of dynamic binding and covariant subclassing redefinition,
described below.

2.5.3 Tiie Tension of Dynamic Binding

An explanation of the origins of contiavariance in section 2.3.1 showed the
problems associated with subtyping. When self is included as an implicit parameter to
every signature in a class definition, it is impossible for subclasses to denote subtypes.
Even when self is extracted from interface signatures and made a parameter to the class,
redefinition of explicit signatures in subclasses must still respect contravariance. The
tension can be more generally identified as that of subclass-based type interpretations and
covariant subclassing redefinition. If covariant subclassing redefinition is supported in a
strongly and statically typed language with subclass-based binding checks, then parameter
binding checks can never succeed.

The conflict of subclass-based binding checks and covariance was first discussed in
[GrBe89] and [Co8Y] and shown to have concrete implications in languages such as Eiffel.
Grogono and Bennett named the problem, the “*binary operator problem’ and showed that
languages which support both features must forbid the sending of meaningful arguments to
methods, or forego static and strong typing. The following example is written in an
extension of Mini-Dee with both subclass-based binding checks and covariant subclassing

39

redefinition. Consider a variable, a : A, where A is defined by the class definition

below, and where P is any class:
class A

method m (p : P)
begin

end
end A.
Example 2.14

Since covariant redefinition is supported, subclasses of A can redefine m to accept an object
of any type denoted by a subclass of P. Any invocation of m on a must be accompanied by
an argument that can be bound to p, no matter which subclass of P denotes its type. Thus,
if a can be bound 1o an object of any subclass of A, then m can be invoked on a only with
an argument that can be bound to variables of all subtypes of P. Only a trivial value that
can be bound to variables of all types satisfies this demand, and only this value can be sent
as an argument to m.

Languages that use subclass-based binding checks differ by how they resolve this
tension. Trellis restricts subclassing redefinition to be contravanant. This allows
parameter binding checks to be identical to binding checks, but restricts subclassing
significantly, denying potentially usetul reuse of class definitions. Eiffel allows covariant
subclassing redefinition, but sucrifices strong and static typing. Early versions of Eiffel
allowed code such as that of Example 2.14, to compile and produce unpredictable and
potentially disastrous results. More recent versions of Eiffel provide dynamic type-
checking. Palsberg and Schwartzbach do not discuss this tension in their papers, and one
must assume that their proposal does not allow meaningful arguments to sent with method
invocations, or that their claim of strorg and static typing is exaggerated.

40

2.6 Conclusion: The Conflicting Roles of
Inheritance

Resolution of the tension of dynamic binding does not bode well for subclass-based
type interpretations. Such interpretations are appealing because they allow flexible and
intuitive binding checks, and demand that the programmer be aware of only one class and
type hierarchy. Unfortunately, these interpretations also demand that one of:

e covariant subclassing redefinition,
¢ argument passing with method invocations, or

® strong or static typing

be sacrificed. Inheritance is a suitable basis for determining the mappings of nominal
polymorphism and static binding since the tensions of the latter include that of the former,
and both can be resolved while maintaining some flexibility. When used as the basis for
dynamic binding also, the added tension demands that inheritance mechanisms be unsafe or
too restrictive to be practical.

Subclass-independent type interpretations should be the basis for dynamic binding
components of object-oriented languages. Subclassing should be viewed as a mechanism
for reusing code and signatures, and should address the tensions of:

e covariant and selective signature redefinition and

e contravariant signature redefinition and genericity.

The design of an object-oriented type and subclassing system based on the above
philosophy, is the focus of Chapters 5 und 6 of this thesis. These chapters borrow ideas
found in Chapters 3 and 4 which are surveys of the language proposals of Bruce [Br92]
and Palsberg and Schwartzbach [PaScY0a, PaSc90b, PaSc90c, PaSc90d, PaSc91]
respectively. The proposals are compared and evaluated according to the kinds of

polymorphisms that are supported, and how the tensions of polymorphisms are resolved.

4]

Chapter 3.

Survey: An Examination of the
Polymorphisms of the Bruce
LLanguage Proposal

3.1 Introduction

This chapter and the next examine the polymorphisms supported in the recently
proposed languages of Bruce [B192] and Palsberg and Schwartzbach [PaSc90a, PaSc90b,
PaSc90c, PaSc90d, PaScY1]. The languages differ markedly. The emphasis of the Bruce
approach is flexible and type-safe dynamic binding, while Palsberg and Schwartzbach are
primarily concerned with nominal polymorphism and static binding. Appropriately, the
strengths of each proposal are the polymorphisms emphasized, and the weaknesses, the
polymorphisms ignored. The Bruce approach, while supporting a subclass-independent
type interpretation, does not provide much support for static binding and only limited
support for nominal polymorphism. The Bruce approach also places excessive limits on
the composition of a class. The PS proposal allows more reasonable class composition,
offers flexible and provably type-safe static binding and nominal polymorphism, but only
in the absence of dynamic binding. A description of each proposal follows, broken down
into the support oftered for each form of polymorphism. Euch proposal is evaluated for the

choices made to resolve the tensions of polymorphism identified in Chapter 2. The survey
sets the stage for an original desig.i of a type system and subclassing system which
borrows from both, and which is the subject of Chapters 5 and 6.

3.2 Basic Language Features of the Bruce
Approach

The Bruce language is based on the F-Bounded model of objects of Cook et. al.
[CoHiCa89] It might be remembered that the F-Bounded model of objects is an extension
of the Cardelli and Wegner model, and uses recursive class definitions and fixpoints to
resolve the difficulty of associating subclasses with subtypes. Despite the functional and
subclass-based lineage, the Bruce lunguage incorporates both state (allowing values of
instance variables to be updated) and a subclass-independent interpretation of types.

Types are associated with specifications and classes can provide varying
implementations of those specifications. Thus types are literally non-singleton. A type can
be denoted by a class name, or by the special recursive name, MT (short for “My Type”)
which is the type of sel£f. The type denoted by a class name is the set of all classes which
share the same method interface as the named class. (Variables are private in the Bruce
language, and considered to be relevant to type implementations (classes) but not to type
specifications.) The type denoted by MT is the set of all classes sharing the same method
interfuce as the class in which the type reference appews.

Subtyping is supported. One type is considered a subtype of another if its method
interface is a contravariant version of that of its supertype. Resulting binding checks are
therefore similar to those found in Trellis/Owl, though unlike Trellis/Owl, subclassing is
not restricted by requirements of subtyping.

All example classes of the Bruce approach will be translated into an extension of

Mini-Dee which extends the core linguage syntactically by:

e supporting single inheritance. Therefore, the first rule for IList (Inherits List) in

the grammar for Mini-Dee of Appendix 1-A applies.

43

» Allowing use of the type nume, MT. Therefore, MT is added as a token symbol,
and the following rule should be added for the nonterminal, T (Type) to the core
Mini-Dee grammur of Appendix 1-A:

T = MmT

For reasons that will be discussed in Section 3.6, the recursive type reference can
only appear in a method signature and not in an instance variable signature. This
should demand that the Mini-Dee grammar distinguish between variable and
method types, but the distinction is made informally to keep the grammar simple.
The grammar for the Bruce-bused extension of Mini-Dee is presented in Appendix
I-B.

Semantic extensions to the core language are described briefly here, and explored in
greater detail in the sections on polymorphisms that follow. With regards to type-checking,
binding and parameter binding checks are identical, and allow an object to be bound to a
variable provided that the class denoting the type of the object is a contravariant version of
the class denoting the type of the variable. (This reflects the definition of subtyping given
above). Signature checks can be contined to the class denoting the type of a receiver object
since all classes in the type and its subtypes will include the methods defined in that class.

44

3.3 Polymorphisms in the Bruce Approach

3.3.1 Nominal Polymorphism

Explicit subclassing redefinition in the Bruce approach is limited to that which
results in nominal polymorphism. Both forms of nominal polymorphism described in 2.3
are supported. When a method’s code is redefined, the new code must naturally be
compiled and type-cheched. A method’s code and signature can be redefined provided that
again, new code is type-checked, and signature redefinition has contravariant direction.
That signature redefinition is contravariant allows redefinition to be selective in scope. It
also means that instance variable types cannot be redefined and that method parameters can
only be generalized in subclasses,

The inflexibility of contravariunt signature redefinition is evident when examining
how the Bruce approach constrains the definition of the class, WrappingTurtle from
section 2.3. It might be remembered that it was desirable for this class to be a subclass of
class Turtle, but redefining the inherited methods. In particular, it was desired that:

o the code of the method move be redefined and

o the code and signarure of the method distance be redefined.

The Bruce approach would allow the first redefinition, but not the second. It is not a
problem to modify code and signature of @ method, but signature redefinition must respect
contravariance. The method distance cannot be redefined as desired because to do so,
the types of its parameters must be specialized from /nt to ScreenRange.

An exception to contravariant and selective redefinition demands that a method
parameter be specialized in subclasses, if its type is MT. MT always refers to the type
denoted by the class in which it is used. An inherited signature containing a reference to
MT cannot be redefined such that the reference 1o MT is replaced. Like self, any variable
whose type is MT is automatically and covariantly redefined in subclasses. Thus, signature
redefinition as a rule is contravariant and selective, but in the case of recursive signatures is
covariant and consistent.

It was shown in Chapter 2 that the coexistence of covariance and selective
redefinition is problematic. The tension is evident in the Bruce approach because the
redefinition of recursive signutures, though covariant, is consistent only within a class. It

will be shown in section 3.5 that classes that include bindings of recursively typed objects

45

to non-recursively typed variables found in other classes cannot be subclassed in the Bruce
approach, and thus must be considered invalid, despite satisfying all type-checks.

3.3.2 Static Binding

One weakness of the Bruce approach is its weak support of static binding.
Prefixing is supported though because recursive signatures must remain recursive in
subclasses, the explicit portion of a signature can only be inherited “as is” if it contains no
recursive references. Genericity is not supported. The redefinition of the explicit portion
of a signature must be accompanied by a recompilation of inherited code. The language
also does not support parametric operations or classes. Extending the language by offering
support for such forms of genericity is suggested in [Br92] as a possible direction of
further research. It is not clear however, how the tension of genericity and contravariant
signature redefinition in subclasses will be resolved given this addition to the language.

Static binding was required to redefine the inherited methods and variables of the
class Turtle, in the cluss WrappingTurtle from section 2.3. In particular, it was
desired that:

« no redefinition be made of the method, turn (prefixing) and
e the signatures of the method. set _pos, and the instance variables, x and y be

redefined (gencericity)

The Bruce approach would allow the first redefinition but not the second. The method
set_pos cannot be redefined as desired because genericity is not supported in any form.
The types of the instance variables » and y cannot be changed because of the demand for

contravariant signature redefinition in subclasses.
3.3.3 Dynamic Binding

The dynamic binding component of the Bruce language is its greatest strength. The
Bruce interpretation is subclass-independent since subtypes need not be denoted by
subclasses. That both subtyping and subclassing rely on contravariance means that a
subclass can denote a subtype provided that it inherits no methods with recursive
parameters. Subtypes do not have to be denoted by subclasses however, since the
inherited instance variables of a subclass must be typed and named as they are in its
superclass, whereas the 1vpes and names of instance variables in classes denoting

46

subtypes, need not have anything in common with the classes denoting supertypes.
Because its type interpretation is subclass-independent, binding and parameter binding
checks are identical, and do not interfere with the flexibility of subclassing redefinition.
Because subtyping demands contravariance and contravariance implies name conformance,
signature checks can be confined to the class which names the type.

3.4 Type-Safety is not Class Validity

It is shown in the Bruce paper [Br92] that the type-safety of a class is not sufficient
for establishing the validity of a class. There are some classes which would type-check but
are considered unsafe in the Bruce system because the guarantee cannot be made that their
subclasses will be type-safe. |Br92] cites an example of this. Assuming the existence of
classes Student and Person such that Student is a subtype of Person, Bruce claims that
the class Friend of Example 3.1 will not type-check:

class Friend

method who () : Person

begin .. end
method same (other : Person) : Bool
begin
return (who () = other)
end

end Friend.
Example 3.1

The reason given for this class’ fuilure to type-check concerns the expression,
who () = other. Itis possible for a subclass of Friend to redefine the method who
so that it returns a Student rather thun a Person since Student is a subtype of Person. Thus,
itis argued that the prefixed method same will no longer be type-safe since the comparison
will be made of objects not belonging to the same type.

This example is flawed because of an assumption made about the ‘=" operation.
Though the dot notation is not used to invoke ‘=’, it appears that ‘=" is a method defined in
class Person, and that it requires another Person object as an argument. (If on the other
hand, ‘=" is applicable to objects of uny class, then it is implicitly defined as a method in

47

every class including Percon, and the same argument follows). Because it is a method
with a recursively declared parameter, any subclass of Person must inherit ‘=" and retain
the recursive parameter. Thus any subclass of Person (including Student) will notbe a
subtype because contravariance is not respected in the signature of this method. Since
Student cannot be a subtype of Person, the specialization of the return type of ‘who’ in any
subclass of Friend is invalid.

Though the above example is flawed, there are other classes whose subclasses do
not retain the type-safety of inherited code. These classes are those with a method with a
recursive parameter, and with a method whose code includes the binding of an object of
recursive type to a variuble of non-recursive type. An example of this kind of binding
occurs with a double disparch; a method invocation where self is sent as an argument.
Double dispatching has been shown in [HeJo90) to be a useful means of defining
arithmetic operations and other operations where the resolution of overloading should
depend on the class of more than one argument. Any Bruce class containing both code that
executes a double dispatch and a method with a recursive parameter, cannot guarantee the
type-safety of its subclasses. The classes of Example 3.2 demonstrate:

class Uses_A

method m (a : A)

begin .. end
end Uses_A
class A
var u : Uses_A;

method p (x : MT)

begin .. end

methed g
begin
u.m (self)
end

end A
Example 3.2

Because p has a recursive parameter, no subclass of A denotes a subtype of A. Therefore,
the method g cannot be safely inherited since the binding of sel £ to the parameter, a of
type A will fail.

3.5 Cooperative Subclassing and Dynamic Binding:
A Case Analysis

An exhaustive case analysis is presented that shows classes containing all possible
forms of bindings and parameter bindings, and that considers how these classes are
subclassed. Nine examples (ex13a - ex15¢) are presemed of classes that cannot be safely
subclassed because of the binding of recursively typed objects to non-recursively typed
variables. The exhaustive case analysis that follows examines the bindings and parameter
bindings that can be type-safe in a superclass, to see if they are ever unsafe once inherited
by a subclass. For each case, a potential superclass is shown and the type-safety of its
potential subclasses is considered.

The cases are distinguished by the nature of the binding found in the potential
superclass. Before categorizing the forms which a binding can take, preliminary
discussion demands that the components of a bind be identified, and the forms that
expressions can take, classified.

49

3.5.1 The Three Components of a Bind

All bindings (including parameter bindings) can be broken down into three
components: the expression bound, the variable to which the expression is bound
(receiver), and the expression which owns the receiver (owner). For example, given the
binding of the constant, 45 to the instance variable, 1i:

i = 45

the expression bound is 45, the receiver is i and the owner is self, since i must be
defined in the same class as this statement. As another example, let a be one expression,
and e : E another expression where the class E includes a definition for the method, m

with explicit signature:
method m (g : P).
Then, given the binding,
e.m (a),
the =xpression bound is a, the receiver is p, and the owner is e.
3.5.2 Classifying Expressions

There are two expressions involved in every bind: the bound expression and the
owner expression. These expressions can be categorized by how their types can be
modified in subclasses.

1. Constant Expressions: These expressions are those which denote objects whose
type cannot be modified in subclasses. In the Bruce language, both constants (such as
NIL, 17, TRUE etc.) and instance variables fall under this heading.

2. Type Generalized Expressions: These expressions denote objects whose types can
be redefined to be supertypes in subclasses. Non-recursive method parameters fall
under this heading.

3. Type Specialized Expressions: These expressions denote objects whose types can
be redefined to be subtypes in subclasses. Since the return types of methods can be
redefined in this way in subclasses, results of method invocations fall under this
heading.

4. Class Specialized Expressions: This heading captures all expressions whose type is
MT. This includes recursive method parameters, recursive method return types and
self. Note that these expressions are not necessarily type specialized since subclasses
do not necessarily denote subtypes.

3.5.3 The Structure of the Case Analysis

The case analysis considers the binding of an object expression of every possible
category, to a variable owned by an expression of every possible category. The tree of
Figure 3.1 demonstrates all possible bindings that will be considered in the following
section.

Constant

©) Class

Constant / Specialized
Type
Generalized L.
Type Type Specisiized
Specialized

Class

Type Generalized -
N ’ Specialized

Constant

Type Class Specialized
Cluss Generalized Type

Specialized Specialized
Constant

Type Class
Generalized Type Constant @ Specialized
Specialized
Type
Generalized Type

Specialized
Figure 3.1: Case Analysis Tree

The boldfaced Labels of the above nee concern the classifications of the bound expressions.
The labels of all leaves concern the classifications of the owner expressions. Each leaf
address is numbered, and each example in the case analysis is matched with the address of
the leat with which it is assoctated.

The 16 cases examined form a tedious analysis, though one that confirms that type-
safety can be guaranteed of all inherited code, except for that involving the binding of

recursively typed objects 10 non-recursively typed variables. (Cases 13a - 15¢).

N
1.2

3.5.4 The Cases

For the following examples, it should be assumed that there exist classes V (short
for Variable) and O (short for Cbiect) such that the type O is a subtype of the type V.
Every example class will include a binding of an O to a V, and all possible subclasses will
be considered to see if the binding or parameter binding check will still hold in subclasses
given all possible redefinition. For the sake of readability, some consistency in naming is
employed. Every bound object is named o, and every variable to which it is bound is
named v. When v is a method parameter, it is a parameter for a method, m. with the
explicitly defined signature:

metncd mo (v o V)

When m.. is a method located in another cliss besides the example class, then it is found in
a class, ¢. The method or variable, ¢ is always either of type C or MT, depending on
whether C or the containing class contains i definition form .

Bound Object is a Constunt Ty pe Expression

For these examples, the bound vbject could be i constant or an instance variable
since the types of constants are constrained m subclasses in the same manner as instance
variable types in the Bruce system. All of the examples here will only include bindings to
instance variables, with the understanding that the conclusions drawn are applicable to

examples with constants.

1. Owner Objectis a Constant Type Exoression (1)

clacs en:
var C
var ¢ o

enz

1

W
w

The types of both © and < will be the same in all subclasses. Since ¢ has the same
type in all subclasses, so too does the method parameter, v. Therefore, the
parameter binding check of the invocation, “c.me (o) will hold in all subclasses

of ex1.
2. Owner Object is a Type Generalized Expression (2)

clasz exe

var o : C
methea mo (2 0 C)
begin
. (o)
en
end ex2

The type of o will not change in subclasses of ex2. If the signature of method, m
is not redefined in a subclass of €22, then the type of ¢ (and therefore the type of
the parimeter. v also) will not change, and the parameter binding check of the
invocation, “c.mo (o7 will hold. If the signature of m is redefined, then m must

be recompiled.

3. Owner Objectis a Type Specialized Expression (3)

class ex:
Val -
e Ut S o) C
toa. erna
1 e .
Loegarn

c ().m (o)
ol

Cona e d

In o subclass of e 3 0the type of ¢ will be O, and the return type of the method ¢
will be a subtype of €. Because of the demand for contravariance in subtypes, the
type of the parameter v, n the method m; will be a supertype of V. Since 0 is a

n
p N

subtype of V', it 15 also a subtype of any supertype of V. Thus, the parameter
binding check of the invocation, "¢ () .m. (o)™ will still hold in subclasses of

ex3.
4. Owner Object is a Class Specialized Expression (4)
Class specialized expressions can be any whose type is MT. This includes self,
any explicit recursive parameter, and any recursive return type of a method. Each
possibility is considered here.
a. Owner Objectis Self
Since the owner expression is self, binding need not involve passing an
argument to a parameter, but could be the assignment of an expression to an

instance (or local) variable. Both kinds of binds are considered.

binding parameter binding

class exd4b

class anda
var ¢ @ U var o ¢ O
var v : V method m, (v : V)
methcd m begin .. end
Leqgin method m
v o= ¢ begin
e d m. (o)
erd erba en-

end exdh

In any subclass of e 44, the types of o and v will be @ and V respectively.

Thus, the binding check of the assignment, s = <" will hold.

In any subclass of <45, the type of ~ will be O, und the type of the variable, v
of method - will be some supertype of V. Since O is a subtype of V, O is a
subtype of any supertype of V. Thus, the parameter binding check of the

invocauon, . (<) 7 will hold.

55

b. Owner Expression is i recursive parameter

var ¢ : ©
method me (v @ V)

begin . erd

method m (¢ @ MT)
Legin
c.i (o)
end

end exndge

In any subclass of ex4c, ¢ will still have type MT, o will still have type O, and
the parameter v of method m, will be of some supertype of V. Since O is a
subtype of V, it is also a subtype of all supertypes of V. Thus, the parameter

binding check of the invocation. *c.m_ (o)™ will hold.

¢. Owner Expression is i recursive return type

method ¢ () @ MT

tegon end
Ne-thed oo (B V)
Legar er.d

methed
Legarn

().m (0)

(@]

[SHHTCINTRA N 1

In any subclass of ex4d, the return type of ¢ will be MT, the type of o will be
O, and the type of the parameter v of m. will be a supertype of V. Therefore, the
parameter binding chech of the invocation, "¢ () .m¢ (o)™ will hold in any
subclass of ex4d.

Bound Object is a Type Generalized Expression

1. Owner Object is a Constant Type Expression (5)

rethed o (o @ Q)
b=gin
c.m (o)
end
end exb

In any subclass of e=5, the type of ¢ will be C. If the signature of m is not
redefined, then the type of the parameter o will be O and the parameter binding
check of the invocation, “c.m (o)™ will hold in any subclass. If the signature of

m is redefined, then m must be recompiled.

2. Owner Object is a Type Generalized Expression (6)

end ext

In any subcliss of e, if the signature of m is not redefined, then the types of
parameters o and ¢ will be O and C respectively, and the parameter binding check
of invocation, "c.m (o) " will still hold. If the signature of m is redefined, then

m must be recompiled

57

3. Owner Object is a Type Specialized Expression (7)

class ez?
method ¢ () ¢ C

begin .. end
methed o (o ¢ Q)

&

Y

;gir‘

c ().m_ (0)

end

end ex’

Inany subclass of e:27, the return type of the method ¢ will be some subtype of C.
Because of the demand for contravariance in subtypes, the type of the parameter v
in the method re inany subtype of C, will be a supertype of A. If the signature of
method m is not redefined, the parameter binding check of the invocation,
“c () .m (o) will still hold since O, as a subtype of V is also a subtype of all
supertypes of V. If the signature of m is redefined, the code of m will have to be

recompiled.
4. Owner Object is a Class Specialized Expression (8)
Like the examples of case 4, the owner expression in these examples can be self,
a recursive parameter or a recursive method return type. All possibilities are
considered here.

a. Owner Object is self

Since the owner object is e 1 £, binding need not involve passing an argument to

a parameter, but could be the assignment of an expression to an instance (or local)

varible. Both hinds of binds are considered.

binding: arameter bindi

class exta class ex8b
var v oV method m¢ (v : V)
begin .. end
method m (o : 0)
begin method m (o : O)
v = 0 begin
end p (o)
end ex¥a end

ex8b

In any subclass of €x8a, the type of v will be V. If the signature of m is not
redefined, then the type of the parameter o will be O and the binding check of the
assignment, “v = o” will hold. If the signature of m is redefined, then the
code of m must be recompiled.

In any subcliss of ex&t, the type of the parameter v of method m. will be some
supertype of V. 1t the signature of method m is not redefined, then the parameter
binding check of the invocation, “p (o)™ will hold because O, as a subtype of
V, is a subtype of any supertype of V. If the signature of the method m is

redefined, then the code of m must be recompiled.

b. Owner Expression iy a recursive parameter

byl enu

meth.~e m (2 « MDD o ¢ Q)

hegirn

(D]

i, (o)
erd

end &néc

59

In any subclass of ex8&c, ¢ will still have type MT, and the parameter, v of
method m. will be of some supertype of V. If the signature of method m is not
redefined, then the type of its purameter, o will be O, and the parameter binding
check of the invocation, **c.m_ (o)™ will hold because O, as a subtype of V, is
a subtype of all supertypes of V. If the signature of m is redefined, then its code

must be recompiled.
¢. Owner Expression is a recursive return type
class extd

method ¢ () @ MT

begin end

methed mo (v @ V)

begin .. end

method mo (o 0 Q)
tegan
c O.m (o)
end

end exbd

In any subclass of ex8d, the return type of the method, ¢ will be MT, and the
type of the parameter v of m - will be a supertype of V. If the signature of method
m is not redefined, then the type of the parameter o will be O and the parameter
binding chech of the invocation, *"m, () .m,_ (b)” will hold because O, as a
subtype of V, is asubtype of all supertypes of V. If the signature of method m is

redefined, then the code of mmust be recompiled.

o)

Bound Object is a Type Specialized Expression
1. Owner Object is a Constant Type Expression (9)

class exY

var ¢ : C

method ¢ () : O

begin . end

method
begzirn
c.m (o ())
end

end ex9

In any subclass of €9, the type of ¢ will be C and the return type of the method, o
will be a subtype of O. Since O is a subtype of V, any subtype of O is a subtype of
V and the parameter binding check of the invocation, “c.m, (o ())" will hold.

2. Owner Object is a Type Generalized Expression (10)

class exl0
methoed o () : O

tegin . end
netrtod m (¢ @ C)

Leglir.

c.im. (o ())
end exll
In any subclass of ex10, the return type of the method, o will be some subtype of

O. 1If the signature of m is not redefined, then the type of its parameter, ¢ will be C.
Since O is a subtype of V', any subtype of O is also a subtype of V and the

61

parameter binding check of the invocation, “c.mc (b ())" will hold. If the
signature of method mis redefined, then its code must be recompiled.

3. Owner Object is a Type Specialized Expression (11)

class exll
methea o () @ O

begir. .. end

methed ¢ () @ C

begin .. end

method m
Legin

c {(Y.m {c ())

end ex1l1

In any subclass of ex11, the return type of method o will be a subtype of O, and
the return type of method ¢ will be a subtype of C. By the rules of contravariance,
the type of the parameter v of the method m. might be any supertype of V. Since O
15 a subtype of V', any subtype of O will be a subtype of any supertype of V. Thus,
the parameter binding check of the invocation, “c () .me (o ()) ™ will hold.

4. Owner Objectis a Class Specialized Expression (12)
Like the examples of cases 4 and 8, the owner expression in these examples can be
self, a recursive parameter or a recursive method return type. All possibilities are
considered here.

. Owner Objectis celf

Since the owner object is self, binding need not involve passing an argument to

a parameter, but could be the assignment of an expression to an instance (or local)
variable. Both kinds of binds are considered.

62

binding: arameter binding:
class exl2a class exl2b
var v : VvV method m, (v : V)
begin .. end

methoed o () : O

begin .. end method o () : ©
begin .. end
methed m
begin method m
v := 0 () begin
end m, (o ())
end exl2a end
exlzlb

In any subclass of exx12a, the type of the variable v will be V, and the return type
of the method o will be a subtype of O. Since O is a subtype of V, it is a subtype
of any supertype of V. Thus, the binding check of the assignment, “v := o ()"
will hold.

In any subclass of ex12b, the type of the parameter v in method m. will be a
supertype of V, and the return type of the method o, will be a subtype of O. Since
O is a subtype of V, any subtype of O will be a subtype of any supertype of V.
Thus, the purameter binding check of the invocation, “m, (o ()) ™ will hold.

b. Owner Expression is i recursive parameter

class exl2c

metheod . (v @ V)

begin end
nethza o () @ C
begyin end

63

method m (¢ : MT)
begin
c.m. (o ())
end

end exl2c

In any subclass of ex12¢, ¢ will still have type MT, the parameter v of method
m, will be of some supertype of V, and the return type of the method o will be
some subtype of 0. Since O is a subtype of V, any subtype of O will be a
subtype of any supertype of V. Thus, the parameter binding check of the

invocation, “c.m. (o ())” will hold.

¢. Owner Expression is a recursive return type

method ¢ () : MT

begin .. end

method m (v : V)

begin .. end

methed ¢ () @ O

begirn .. end

method m
begin
c ().m. (0 ())
end

end exlld

In any subclass of ex12d, the return type of ¢ will be MT, the type of the
parameter v of m. will be a supertype of V, and the return type of method ¢ will
be a subtype of C. Since O is a subtype of V, any subtype of O will be a subtype
of any supertype of V. Thus, the parameter binding check of the invocation,
Yo () .m~ (o))" will hold.

64

Bound Object is a Class Specialized Expression

This is the category of examples that involve binding recursively typed expressions
to variables. The examples of this category are problematic when the examples involve
binding to variables that are defined in different classes than the classes containing the
obje- < bound, where such variables would not be recursively typed.

For each example, three bindings are shown:
e the binding of self,
e the binding of a recursive method parameter and

e the binding of a recursive return type.

For these examples, it is necessary to redefine the class C to include 8 method m.

with signature:

method m_ (v : ex1l3)
where the type of the parametcr v should be the name of whichever example class is
being considered. Thus for the example of cluss ex13b, the type of v is ex13b.
For the example of class ex14c, the type of v should be ex/4¢ and so on.
1. Owner Object is a Constant Type Expression (13)

class exl3a
method rec_method (any : MT)

begin . end

var ¢ : C

method m
begin
c.i. {(self)
end
end exl3a

65

var ¢ c
meerood o (L0 MT)
k_)‘:g; "
c.m_ {(0)
<l

end exlin

method rec_methed (any @ MT)

Peogan ena

nethod o () ¢ MT

Legin el

[
o)

¢l exld

Subclusses of each of the example classes above will not denote subtypes of the
types denoted by these classes because each ciass has a method with a recursive
(covariantly redefined) parameter. As a result, the parameter binding checks of

the invocations of
scin el INexdla,

eV m (o), inexl3b and

ec.m (¢ (), inex13c

066

will not hold mn subclusses. In any subclass, the types of the objects bound
(self,oand o()) are not subtypes of the types of the variables numed v to
which they are bound.
2. Owner Object is a Type Generalized Expression (14)
class exlsga
nethoa rec_nethod (any @ MT)

Legin erd

method m (¢ @ C)

ena enlda
class enish
recthed m (o @ M2 o o)

Legan

[FY% |

era emlat

exlac

(9]
[
Iy
o
(&}

methold e metn 4 (any @ MO

Legirn end

methcs o () @ MT

hegzar. end

mether o (¢)

cegin

e

67

Subclasses of each of the example classes above will not denote subtypes of the
types denoted by these classes, because each class has a method with a recursive
(covariantly redefined) parameter. As a result, the parameter binding checks of

the invocations of

.t

®“c.m (self)”,inexlda,

®*“c.m,_ (o), inexnldb and

e“c.m (o ()) ,inexli4dc

will not hold in subclasses. In any subclass, the types of the objects bound
(self,oand o()) are not subtypes of the types of the variables named v to
which they are bound.

3. Owner Object is a Type Specialized Expression (15)

class exlba
method rec_method (any : MT)

begin .. end

method ¢ () : C

begin .. end

method m
begin
c ().m (self)
end

end exlb5a
class ex15b

method ¢ () : C

begin .. end

68

recthed no (o MY
tegin
(y.m (o)
ena
ena exl5h
class exlSc
method rec_method (any : MT
begin end
methed ¢ () C
Legoin end
methed o () M7
Legir enid

methed m

end exlbc

Subclasses of each of the example classes above will not denote subtypes of the

types denoted by these classes because each class has a method with a recursive

covariantly redefined) parameter. As a result, the parameter binding checks of
Y p p g

the invocations of

®'c ().m (celf),hexlba,

ec (. (), inexlSL and

e“c ().m (o ()7, InexlSc

will not hold in subclasses. In any subclass, the types of the objects bound

(self, o and o ()) are not subtypes of the types of the variables named v, to

which they are bound.

(6]

4. Owner Object is a Class Specialized Expression (16)

Like the examples of cases 4, 8 and 12, the owner expression in these examples can
be self, a recursive parameter or a recursive method return type. All possibilities

are considered here.

a. Owner Objectis celf

Since instance variables cannot have recursive type, it is not possible to bind the
expression, self 1o an instance variable. Therefore, it suffices for this example
to show the eftects of binding self to a parameter of a method defined in the

same class.

claucs exlte
method mo (v @ MT)

Legin . end

met hoed m

k.cglﬂ

—

T (Self)
end

end exloa

class exléb
method m (v @ MT)

begin end

nethed m (¢ @ MT)
beain
m, (o)
end

end exlob

70

class exlcec

method m (v : MT)

begin . end
rethod ¢ () « MT
begin end

method m
begun
m. (o ())
end

end exl6¢

The bindings of recursively typed expressions is not a problem here, since the
variables 1o which they are bound are also recursively typed. Since signature
redefinition is consistent and covariant within the class, all subclasses of the

above class are type-safe.

b. Owner Expression is a recursive parameter

method o v ¢ M)

begin . ena

method m (¢ : MT)
begin
c.m (self)
end

end exléd
class esxlite

method m, (v : MT)

begin end

71

(c : MT ¢ : MT)

et h o g

Legin
c.n, (o)
er.d
end Al
clases enlef
method mg (v MT)
Legin . end
methed o () : MT
begain . ena
nethoa nm (o M)
begzirn
c.m. (o ())
end
end e¢xlef

The bindings of recursively typed expressions is not a problem here, since the
variables to wiich they are bound are also recursively typed. Since signature
redefinition is consistent and covariant within the class, all subclasses of the

above class are type-safe.

¢. Owner Expression is i recursive return type

class exltg
method mo (v @ MT)

begin enu

nethed ¢ () @ MT

begin . end

methecd m
begzin
¢ O).m
end
end exltg

class exléh

methoa

method ¢ ()

method m

end exl6h
class exit2

rethed m (v

method ¢ ()

methed o ()

methcd m

end exlé6i

n (v @ MT)

begin . end
MT

begin erd

(¢ @ MT)

Legin
c ().m
end
MT)
Legin e
MT
begin end
MT
beyirn end
(c MT)
begin
c ().m,

end

73

(o)

(o

(self)

()

The bindings of recursively typed expressions is not a problem here, since the
variables to which they are bound are also recursively typed. Since signature
redefinition is consistent and covariant within the class, all subclasses of the

above class are type-safe.

3.6 Choices of the Bruce Approach and their
Consequences

The Bruce approach might appear to some to include a strange combination of
language features. For example, dynamic binding is subclass-independent, but subclassing
is still quite restrictive and contravariant in its direction. As well, no form of genericity is
supported and no recursive instance variables are allowed. The combination of features in
the Bruce approach can be waced to three language choices and their consequences. These

choices and their corresponding consequences are hsted below:
Choice 1: Signature Redefinition is Selective
Conscequences:

1. Signature redefinition is contruvariant in its direction, to resolve the tension of

nominal polymorphism between covariant and selective redefinition.

2. Statements involving the binding of constant expressions to variables or parameters

such as:

(1) 1 := 45 or
(2) e.m (45)

can be safely inherited since the types of instance variables (1) cannot change in
subcliasses and the type of parameters (2) can only be generalized. (We will see that the
use of constant expressions is problematic in the covariant and consistent redefinition of

PS subclassing).

3. Noform of genericity is supported, to resolve the tension of static binding between

contravariant signature redefinition and static binding.

74

-

Choice 2: Recursive type references are designated with the name, MT,

and are bound to remain recursive in subclasses.

Consequences:

I. Since recursive signuture redefinition is automatic and consistent, it can be
covariant; an exception 1o the general rule demanding contravariant signature
redefinition.

2. Subclasses do not necessarily denote subtypes of the types denoted by their
superclasses. In particular, if a subclass inherits a method with a recursive parameter,
then it cannot denote a subtype of the type its superclass denotes.

3. A class must be considered invalid if it includes both a method with a recursive
parameter, and a method with code that binds u recursively typed object to a non-
recursively typed variable.

Choice 3: Classes and objects in the Bruce language are modeled as in the

F-Bounded model, but compromise the functional nature of this
model by allowing updates of instance variables.

Consequence:

1. Classes cannot include recursive instance variables. This is because objects are
modeled by recursive records that are generated by the application of a fixpoint
operation on a record-generating function. Instance variables cannot be part of the
records generated by the application of the fixpoint since this would imply that instance
variable values must remain constant throughout the life of an object, and that these
values are common to all objects belonging to the class. Thus, the scopes of the
recursive parameter, self and its associated type, MT are limited to the methods of an
object.

3.7 An Evaluation of the Bruce Approach

The strengths of the Bruce approach are its support for flexible, and subclass-

independent dynamic binding, und its support for selective redefinition in subclasses.

75

Support for subclass-independent dynamic binding should allow subclassing redefinition to
be quite flexible. Unfortunately, resolution of the tensions of nominal polymorphism and
static binding in this approach make subclassing redefinition inflexible. The inflexibilities
of the Bruce approach outweigh its strengths.

The inflexibilities of the Bruce approach concern class composition and subclassing
redefinition. Regarding class composition, recursive instance variables are hot supported
and therefore it is impossible o represent recursive data structures such as lists and trees.
With regard to subclassing redefinition, Bruce subclassing resolves the tension of nominal
polymorphism by allowing selective but contravariant signature redefinition. To counter
the restrictive nature of contravariant redefinition, recursive method parameters are allowed
that must be covariantly and consistently redefined. That the covariant redefinition of
recursive signatures must only be consistent within a class is problematic. Nine example
bindings were shown (examples 13a - 15¢ of 3.5.4) that satisfy binding and parameter
binding checks, but must be considered invalid because the checks would not succeed in
subclasses.

Static binding support is severely limited. Prefixing is supported, but because of
the tension with contravariant direction of signature redefinition, genericity is not. Thus, it
is not possible to modify the signature of an instance variable in a subclass, nor to modify
the signature of a method without redefining or recompiling the associated inherited code.
Bruce comments that support for genericity might come with extensions to the language
proposal. However, support for genericity will not come easily because of the tension with
contravariant signature redefinition.

The complex and strict redefinition rules lead Bruce to conclude that inheritance is a
mechanism to be avoided in general. Indeed as defined in this language, inheritance has
limited uses. ‘The type-safety of the Bruce subclassing system in the presence of dynamic
binding is a worthy achievement. But the lack of support for genericity, contravariant
restrictions on the modification of inherited methods, and restrictions on class validity
above and beyond type-sifety make the resulting system impractical in its present form.

76

TCTERE S v e

Chapter 4.

Survey: An Examination of the
Polymorphisms of the PS Language
Proposal

4.1 Introduction

Over the course of several papers [PaSc904, PaSc90b, PaSc90c, PaSc9(d,
PaSc91], Palsberg and Schwartzbach present a type system and accompanying proposal
for subclassing. The papers include discussion of both subclassing and dynamic binding,
but the proposals for each must be considered separately. PS subclassing, which achieves
nominal polymorphism and static binding and is the focus of PS theory, is only well
defined with respect to classes that only include signatures with singleton types, and hence
no dynamic binding.

The description of basic language features which follows, defines a language on
which PS subclassing theory can be described, where class interfaces only include
singleton types. A description of PS subclussing and how it achieves nominal
polymorphism and static binding follows. Finally, a section describing proposals for
dynamic binding includes a description of a type system which allows types to be non-

singleton, and a description of the problems associated with applying this type system to
their subclassing proposal.

4.2 Basic Language Features - Classes with
Singleton Types

PS subclassing is defined in terms of languages without dynamic binding. All
types denoted in class definitions are singleton, and non-trivial subtyping is not supported.
All examples of PS subclassing are translated here into an extension of Mini-Dee, that
extends the core language syntactically by:

e supporting single inheritance. Therefore, the first rule for IList (Inherits List) in

the grammar fo- Mini-Dee of Appendix I applies.

¢ allowing the types of type declarations to be derived. Class substitution
(described in 4.3.2) allows a class to be denoted as indicated by the following
grammar 1ule:

CName —» CName; ‘| CName; ‘<=’ CName, ‘)

This rule should be added to tne rules for class names found in the Mini-Dee
grammar of Appendix I-A.

e not allowing constant expressions. It will be shown in 4.3.4 that the use of
constant expressions in classes that muet be consistently redefined in subclasses,
is problematic. In terms of the core Mini-Dee grammar, the rule, “E — Con”

should be removed as should all rules for the nonterminal, Con.
The modified grammar is shown in its entirety in Appendix I-C.

As usual, semantic extensions of Mini-Dee concern definitions of type-checks and
regulations concerning redefinition in subclasses. With regard to the former, binding and
parameter binding checks are identical and demand that the class denoting the type of an
object be the same as the class denoting the type of the variable to which it is bound. For
any invocation, the signature check is naturally confined to the class denoting the type of
the receiver object. Redefinition in subclasses has consistent scope, and resembles

78

covariance in its direction." More detailed descriptions regarding subclassing redefinition
follow from the sections below on PS subclassing.

4.3 Nominal Polymorphism and Static Binding in
the PS Approach

4.3.1 Informal Description

Flexible subclassing redefinition is the most impressive achievement of the PS
approach. The subclassing mechanisms described :n the PS approach achieve all forms of
nominal polymorphism and static binding. Code redefinition in subclasses must be
followed by compilation of the new code. Prefixing is supported, though like the Bruce
approach, recursive components of signatures are constrained to remain recursive and
therefore true prefixing is achievable only when inherited signatures are not recursive.
Signature redefinition (with or without code redefinition) is supported and must be
covariant and consistent. This results in flexible subclussing redefinition since instance
variable, method parameter and method return types can all be specialized in subclasses.
By avoiding contravariant and selective redefinition, the tensions of nominal polymorphism
and static binding are resolved.

As a PS class, WrappingTurt le of section 2.3 can be derived in its entirety
from class Turt le. Specifically,

e the code of the method move can be redefined,

e the code and signanre of the method di stance can be redefined, specializing
the types of the parameters from /nt to ScreenRanye,

¢ no redefinition need be made of the method, turn (prefiving) and

e the signatures of the method, set_pos, and the instance variables, » and y can
be redefined (gencricity), specializing the types of the variables and method
parameters from It to ScreenRange.

* Because PS subclassing is only defined over clas<es with singleton types, it is not accurate to say that
subclassing redefinition is covariant. Signatures ca 1 be redefined such that any type denoted by some class
named C, can be replaced by a type denoted by a class named C* provided that C* 15 a subclass of €. Since
types arc singicton, the type C s not a subtype of the type €. In languagces that support non-singlelon
types however, the type €’ would be a subtype of the type C. Therefore, the direction of subclassing
redefinition in the PS schieme is referred to here as being covarant,

79

WrappingTurtle is an ideal PS subclass since all desired signature redefinition
(specializing the type /nt to the type ScreenRange) is consistently applied to all signatures.
The only requirement of this redefinition is that ScreenRange be a subclass of Int.

The consistent scope of redefinition is achieved by viewing redefinition as an
operation over a system of classes rather than on an individual signature. Subclasses result
frem the application of redefinition operations on their superclasses. The operations, and
the subclassing relation over classes, are described below.

4.3.2 PS Subclassing
Representations of Classes: L-Trees

A structural subclissing relation is described in [PaSc90d] in terms of L-Trees: tree-
based representations of cliss code. Forany clasy, C, the L-Tree representing C, is named
TREE (C). Theroot of TREE (C) is a node labeled with the untyped code of C. Branches
extend from where type references occurred in the original code to the L-Trees representing
the class naming the type.

The simplest tree is TREE (Object), denoted by Q. Definitions for two classes

are shown in Example A.1 showing less trivial L-Trees.

class A

var x Object
end A
class B

var » : Object
method set (y : Object) : B
begin
=Y
returr. seli
end

end B

Example 4.1

Derived from & and B above, TREE (2) and TREE (B) are illustrated in Figure 4.1a.

TREE (r) =

var #Z: °

Q2

TREE (B) =

var ¥: ¢ method set (y: *): begin X 1=y return self end
| |
Q Q
var x: v me:thod set (yr o+) e Legin X =y return self end
| |
Q 0

Figure 4.1a

Because of its recursive reference, TREE (B) is infinite. The symbol, ¢ is
intreduced to represent the entire tiee, allowing some recursive trees to be finite. Trees that
use this symbol e referred o ay generator trees and are denoted by the function, GEN.
GEN (TREE (B)) is as shown in Figure 4.1b.

var x: ¢ method set (y:oe) e begin X =y return self end

-~
T

Q

0
Figure 4.1b

Recursive classes have finite representation with the use of the special symbol, 0. Clients
of recursive classes still have infinite representation, since 0 can only refer to the entire tree
and not just to a subtree.

Subclassing: A Relation On L-Trees

Subclassing (<) is described as a partially ordered relation on generator L-Trees.
Informally, a class C is a subclass of another class, P if GEN (TREE (C)) has the same
structure as GEN (TREE (P)), and differs only in the following ways:

1. Monotonicity : Labels in GEN (TREE (C)) must be extensions of, or equivalent to
corresponding labels in GEN (TREE (P)). This ensures that signature checks are
preserved in subclasses.

2. Stability : Equivalent subtrees of GEN (TREE (P)) must have correspondingly
equivalent subtrees in GEN (TREE (C)). This requirement ensures that binding and

parameter binding checks are preserved in subciasses.

3. Recursive Retention © 1t should be possible to map each of the recursive subtrees of
GEN (TREE (P)) to cortesponding recursive subtrees at corresponding positions in
GEN (TREE (C)). This is necessury to ensure stability since recursive subtrees are
equivalent to the implicit subtrees which represent the type of self. The subtrees of

self are automatically kept recursive in subclasses.

The Mini-Dee classes of Example 4.2 demonstrate how L-Trees can be used to

determine subclassing relauons.

class &

var ¢ : Object

var o, : Object
end A
class A’
var o Objent
var o, Croect

method m (o

[
I8l
[V
iy
(8]
t

begin | end

end A'
Example 4.2
GEN (TREE (A)) and GEN (TKREE (A")) are shown in Figure 4.2.

GEN (TREE (1)) =

vdr o : e var o2 : e
Q Q

GEN (TREE (') =

var o : e var 2 : e method m (o : e) begin ... end
Q Q Q
Figure 4.2

Monotonicity holds between GEN (TREE (1)) and GEN (TREE (a')) since the only label
of the latter wee entends the only label of the former by the addition of text corresponding to
the declaration of the method. ni. Stabiliry holds since the only equivalent subtrees of
GEN (TREE (a)) (both being) are also found at the same positions in
GEN (TREE (n")). Recursive retention trivially holds since A is not a recursive class.
Thus,A a A",

Example 4.3 uses the definitions of A and A of Example 4.2,

class C
var ¢ ¢ C
method oo (o @ Crliect a @A)
begin end
end C

class C!
var ¢ : ¢
method m (o : Cbiect a : A")
beyin . end

end C'
Example 4.3

GEN (TREE (C)) and GEN (TREE (C ")) are shown in Figure 4.3.

GEN (TREE (C)) =

var ¢ : ¢ method m (0 :e¢ a :e)

0 Q var o : ® var ol : e
Q Q
GEN (TREE (cH) =
var ¢ : o method m (¢ @ @ o : @)
0 Q
var o : e var c2 :® method m (o @ e) begin ... end
0 Q Q

Figure 4.3

Monotonicity holds between GEN (TREE (C)) and GEN (TREE (C')) because the root
labels of the trees are identical and because the subtree label of GEN (TREE (C')) is an
extension of the corresponding label in GEN (TKEE (C)). Stability holds since the
equivalent subtrees of GEN (TREE (C)) (all three being €2) are found at the same positions
in GEN (TREE (C')) and are equivalent at these positions also. Kecursive retention holds
since the only recursive subtree of GEN (TREE (Cyy is found in GEN (TREE (C')) at the
same position in the tree. Thus, T < C'.

&4

4.3.3 Subclassing Mechanisms

The function TREE is only well-defined over classes whose definitions do not
mention classes that are inherited. Classes with references to superclasses must first be
converted to classes without mention of superclasses before being represented as L-Trees.

Inheritance

The conversion is referred to in [PaSc90d] as an “unfolding.” A description of the
unfolding algorithm is used to define the PS notion of inheritance. Input to the unfolding

algorithm consists of:

e an initial system of classes whose definitions can include mention of inherited

classes, and

o the systems of each inherited class.

All input classes are converted into a graph-based representation of class definitions. The
output from the untolding algorithm is another graph, equivalent to that generated of the
input, but without indication of subclassing relations. Class definitions containing no

mention of inherited superclasses can then be inferted from the resulting graph.

1. The Graph-Based Representation of Cluss Definitions

In this representation, every class name is a label for a node. Edges in the graph are
of two tvpes. “Has-a” edges connect client classes to their suppliers. “Is-a” edges connect
subclasses 1o their superclasses. Definitions for sample classes, U, V, W and R are shown
in Example 4.4. The graph representation for this set of classes is illustrated in Figure
4.4.

class U
var a : U

end U

o

class V inherits U

var b : W
end V
class W

var ¢ : V
end W

class R inherits V
var d : W
end R

Example 4.4

Graph:

_—* -8 4

> --hava

Figure 4.4
2. Temporal Cycles and Multiple Inheritance
The unfolding algorithm demands that input cluss aefinitions contain no temporal

cycles and limits each class’ defininon to listing one inherited superclass. A temporal cycle

exists when a cycle in the representation gruph contains at least one “is-a” edge.

%6

Intuitively, the temporal ordering corresponds to the order in which one would write
classes. Ideally, a subclass is written after its superclass and thus should not be known to
the superclass. In pructice, the illegality of temporal cycles rules out some useful systems
of classes including the Verer and Candidate classes, and the Employee and

Manager classes of Example 4.5,

class Voter
var backs : Candidate

end Voter
class Candidate interits Veoter
end Candidat o

class Employce
var works_fcr : Manager

end Employee

class Manaae:r anherits Enpl-yee
end Manage:

Example 4.5

A Candidare is a speciahzed Vorer and a Vorer backs a Candidate. An Employee works for
a Manager who is also an Employee.

Nodes in the represeintation graph are also limited to be sources only for one “is-a”
edge, thus eliminating the possibility of multiple inheritance. It will be shown in the next
chapter that restricnons forbidding systems with temporal cycles and multiple inheritance
are unnecessary. The untolding algorithm is limited to such systems, and therefore all
input to the algorithm should be assumed free of temporal cycles and classes with moie

than one immediate superclass.

87

3. The Unfolding Algorithm Described

The unfolding algorithm unfolds the graph of a system of classes containing “is-a”
and “has-a” edges into a graph containing only “has-a™ edges. The algorithm processes
the original graph in butches. At any point during the unfolding process, a node will fall in
one of three categories:

¢ D (Done) = the set of nodes which have been processed,
¢ C (Current) = the set of nodes which are currently being processed, or
e T (To Do) = the set of nodes which have yet to be placed in a batch for

processing.

An out-going “is-a” edge originating trom a node in C will only lead to nodes in D, and an
out-going “has-a” edge originating from a node in C will only lead to nodes in C and D.
Because systems with temporal cycles or multiple inheritance are excluded as input, the
algorithm is guaranteed to avoid deadlock.

A node in the current batch 1s processed by replacing its outgoing “is-a™ edge (if it
exists) with a set of “has-u’" edges corresponding to the out-going “has-a” edges of the
superclass (the receiving node of the “is-a™ edge being replaced). If any of the “has-a”
edges of the superclass lies on a cycle, then @ copy must be made of each node in the cycle
and all edges using any one of these nodes as a source. The new set of nodes and edges
resembles the corresponding set of nodes and edges of the original graph, except that the
superclass node is replaced by the subclass node.

4. An Example Application of the Unfolding Algorithm

The unfolding of the classes U, v, W and F of Example 4.4 is described here.
The expansion can be completed in three butches. Class U is temporally independent since
itis a client only of itself and is i subcliss of no class. Once the node for class U has been
processed, classes V and v tollow since Vv “is-i” U and “has-a” W and W “has-a” v. The
node for class K is the sole member of the last batch, dependent on the processing of its

superclass, V. Table 4.1 sbows how the gruph is trunsformed in processing each batch,

8%

Batch Node Added Edge Removed “Has-a” Edge Added
3] - - -
VvV, W - (V,U) - “is-a" (V,V)
F W (K,V) - “is-a” (R, R)
(W,R) - “has-a” (RW")
(W',R)

Table 4.1

Processing of the first batch does not alter the graph since class U has no superclasses.
Removal of the “is-a" edge, (V,U) requires the addition of the recursive variable, a to the
class v and this the addition of the edge (V,V) 1o the graph. The removal of the “is-a”
edge, (R,V) requires the addition of a new node, W' which represents a new implicit
subclass of class W. This new node must be added to ma“e sure that R has the same
recursive structure as its superclass, V. Vis a client of a class (W) which in turn is a client
of V. Itis necessary for class k1o be a client of a class (W') which is in turn a client of R
and not a client of V. Thus, the “has-a" edge, (R,W) is removed and replaced by (R, W').

The resulting graph and assocrnted source code is shown below:

% - his i

Figure 4.5

89

Code:

class U

U

<
»
r
ol

end U

class V
var a : V

var b : W

end V
class W
var ¢ : V
end W
class R
var a R
var Lk W'
var o W'
end R
class W'
var < kR
end W'

Example 4.6

The L-Trees of subckisses generated by the unfolding algorithm differ from the L-
Trees of their superclasses by having a rout label which is a superstring of the of the
original tree’s root lubel, and by having ull (possibly deep) recursive subtrees of the
superclass tree, adjusted in the subclass tree to refer to the subclass.

Class Substitution

Inheritance allows for prefixing (with automatic redefinition of recursive

references), code redefinition and the additun of new methods and variables in a subclass.

Y0

Class substitution controls all signature redefinition involving non-recursive type
references. In terms of L-Trees, inheritance results in the construction of subclass L-Trees
which differ from the supercluss L-Trees by the root label. Class substitution results in the
construction of subclass L-Trees which differ from the superclass L-Trees by the labels of
any nodes except the root. Since class substitution is associated with signature
redefinition, it is an alternative mechanism to parametric classes.

Like inheritance, substitution is defined as a function over class definitions. Like
the unfolding algorithm, the effect of the substitution algorithm is to translate classes
denoted using the notation of substitutions, into classes that can be represented as L-Trees.
Given classes D, B, and C , where C_ is a subclass of B_ (B, < C;), one can denote a

subclass of D, D' with the expression:
D'=D (B, .,E. & C, .., C]
As an example, given the class 2:

class A
var o, : Obj=ct
vdr ¢ Object
methoa m

begin

end

end A

the expression, A [Object « Irnt] would be 2 shorthand for denoting the class A,

shown in Example 4.7.

class A
var ¢ Int
var o, Int

9l

methcd m

begin

(o)
f
G

enl

end A'

Example 4.7

Class substitution can be used to denote both a class and a type, since in the
singleton interpretation of types, the two are roughly equivalent. A declaration can use
class substitution to denote a type, as in:

A class definition can use class substitution to denote a clasy, as n;

class A' inherits A [Object & 1Int)

The latter example shows that inheritance and class substitution are complementary

operations. They can and should be used wgether to denote subelasses of existing classes.
1. Class Substitution s Consistent Throughout A System of Classes

At first glance substitution appears similar to parametricity, differing by the use of
every type reference as a potential type parameter and by the use of every class as a
potentially generic class. While both of these statements are true, class substitution differs
from parametricity in that it is inherently consistent throughout a system of classes. A
parameiric version of cluss A from Example 4.7, might not use a type variable to denote
the types of both o- and o, . Example 4.8 shows a variation of A where the type of o, is

defined by a type pirameter and the type of o, is defined by a class name.

class A [T : Object]

92

method m

begir

erd

end k.

-

Lxample 4.8

As was mentioned in Chapter 2. such parametric classes do not resolve the tension of
covariant and selective redefinition. Normully, a parametric class will type-check if the
replacement of all type variables with their constraints results in a concrete class that type-
checks. The parametric class, & should type-check since in this concrete version of A, the
variable o, belongs to class Object and thus the assignment in method m is of an object
of type Object, 1o a variable of type Object. Despite the type-safety of the parametric class
itself, any instantiation of A save for A [Ob ject] will not be type-safe.

The problem is not resolved by demanding consistent redefinition within a class.
Consider the system of parrmetric classes of Example 4.9, similar to the classes of

Example 4.8.

class B [T : O ject]
var o T
var o~ T
var o, : C
method m
begin
o) = 0..p ()
end
end B
class C

method p () @ Object
begin .. end

end C

Example 4.9

Redefinition is consistent throughout the class in that there is no possible instantiation of B
in which one variable is typed as an Object, and another is typed as some subtype of
Object. But redefinition is consistent only within a class, and not throughout a system of
classes. B and C satisfy all type-checks, but any instantiation of B besides B [Object] is
unsafe because of the resulting fuilure of the binding check over the assignment statement,
“o;i 1= o35.p0)".

Class substitution uses a deeper form of redefinition than does parametricity. ‘The
equivalent PS classes to B and C above are as shown in Example 4.10a.

class B
var o, : Object
var o, : Object
var o, : C

method m

begin
e = 0,.p ()
end
end B
class C
nethed p () @ Obdect
Legin .. end
end C

Example 4.10a

and the subclass, B [Object ¢ Int] isthe class B, where B is as defined in

Example 4.10b.

class B’
var ¢ : Inx
var o, : Int
var o, : C'

94

method m
begin
0. = 0,.p ()
end

end B

class C!
metrhod p o () @ Int
begin .. end

end C'
Example 4.10b

Deep redefinition results in the denotation of the implicit subclass of €, C', that redefines

the only method of € to return an Inr instead of an Object.

2. Class Substitution is not just Deep Substitution

Deep substitution alone does not guarantee type-safe subclasses. In the above
example, B @« B', C <« C' and both subclusses retain the type-safety of their superclasses.
But if class substitution were just deep substitution, then the class, B {C « C'] would

be equivalent to the class B of Example 4.11.

class B"
var o, : Object
var o, : Cbject
var o; : C'
method m
begin

c..p ()

O
[

end

end B"

class C!
method p () : Int

begin .. end
end C'

Example 4.11

Note that B" does not safely reuse the code of B, since the assignment of
“o; = o3.p ()7 now binds an object of type /nr to a variable of type Object.
(Remember that binding checks in the PS scheme demand that the types of objects be the

same as the types of the variables to which they are bound).

3. What then, 1s Class Substitution?

In their initial proposal, [PuSc90a] Palsberg and Schwartzbach contend that class
substitution is not deep substitution, and that 5 [C « C'} from Example 4.10a
should be an alternative expression for denoting B [Object « Int]. Itcan be
inferred from [PaSc90u], that class substitntion is deep substitution followed by some
“cleaning up” where various type references are altered to preserve type-safety. In the
above example, the “cleaning up’ would demand that the types of the instince variables, o,
and o, in class B" be redefined to be of type /nt. This meaning of class substitution was
not formalized.

In their later presentation of class substitution {PaSc90d|, the algorithm for class
substitution is a deep substitution followed by a check of the resulting class for type-safety.
If the result is not type-safe, like B ubove, then the algorithm reports failure and does not
return a result. One effect of this latter resolution is to make unclear how it is that the
substitution mechanism can be used safely. In the initial proposal, the result of any
substitution, K (M & NJ produces a type-safe subcliass of ¥ provided that M a4 . Itis
not made clear what should be the relanonship between 14 and 1 to guarantee successful
results when substitution is a deep substitution followed by a safety check.

The first proposed descripuion of class substitution, though not formalized, is
preferable to the second proposal. Not only can the success of the first version be
determined in advance, but the second version waters down much of the expressive power
of class substitution. Using the first interpretation of class substitution and given the
example classes above, B [C ¢« C'] = E {Uhject ¢ Int]. Itisnotalways the

96

case however, that complex substitutions are equivalent to simple ones. The example
classes of Example 4.12a demonstrate.

class Animal
var mate : Aninal
var owns : Object
method lends () : Object
begin
return owns
end

end Animal

class Family
var leader : Animal
var has : Cbkiject
method borrow ()
begin
has := leader.lends ()
e ndd

end Family

class Human inherits Animal [Opject « Int)
method marry (other : Human)
begin . end

end Human

Example 4.12a
To define the class Human, inheritance and class substitution are used in conjunction to
denote a subclass of Animal. The easiest way to think of the result of this class

denotation is to think of the substitution first, and then the inheritance. The class
expression, Animal [Object « Int] is a shorthand for the class definition of a

class, Animal' defined in Example 4.12b.

97

class Animal’
var mate : Animal!'
var owns : Int
method lends () : Int
begin
return owns
end

end Animal'.
Example 4.12b

As a result of inheriting this class and adding the method ma rry, the class definition for
Human is equivalent to the class definition of Example 4.12¢.

class Human
var mate : Human
var owns : Int
method lends () : Int
begin
return owns
end
uzthod marry (other : Human)
begin . end

end Human.
Example 4.12¢

Thus, Human is a subclass both of Animal and of the denoted class Animal!.

A desirable subclass of Family might be Human_ Family, denoted by the
expression, Family [Animal ¢ Human]. To ensure type-safe code reuse of the
code defined in Family, the class Human _Family should be defined as shown in
Example 4.12d.

B

c¢lass Human_Family
var leaaer . Humarn

var has : Int

9%

44j_-.-------.--...---------IIIIIIIIIIIIIIIIIIIIIIW

meth.od borrow ()
begirn
lias := leaaer.lends ()

end

end Human_Family,
Example 4.124d

Assuming the second definition of class substitution found in [PaScd], then
Family {Animal ¢ Human) would fail since the class it would return is not type-

safe because of the assignment in method borrow of an /nt to an Object. This class is

shown in Example 4.12¢.

class Human_Family,
var leader : Human
var has : Cbject
method borrow ()
begin
has := leader.lends ()
end

end Human_Family,
Example 4.12¢

The classy denoted by the expression Human Family; =
Family [Object ¢« Integer] (Example 4.12f) is type-safe but is not equivalent

to the class Human _Family ,since the class Human is not equivalent to Animal’.

class Human_ Family.
var leader : Animal!

var has : Int

99

method borrow ()
begin
has := leader.lends ()
end

end Human_Family,
Example 4.12f

It will be shown in the next chapter that the class denoted by the deep substitution,
Human [Animal ¢ Human] can only be type-safe if Animal @« Human by
inheritance (ie: if Human can be formed by inheriting Animal and then adding any number
of variables and methods). An alternative definition of substitution will also be presented
that like the original PS proposal in [PuSc90a], accepts any class/type expression,
K [M & NJ and returns a type-safe subclass of K, provided that M < N. Given this new
definition, the class expression Family [Animal « Human] denotes

Human_Family:, the type-sufe subclass of Family that was desired.

4.3.4 An Evaluation of PS Subclassing

The w=aknesses of PS subclassing concern its incompleteness and the unintuitive
nature of its formal definition. Its strengths we the applicability of subclassing mechanisms
to all classes, and the flexible resolutions of the tensions of nominal polymorphism and
static binding that do not impose weighty restrictions on class composition and subclassing
redefinition. The strengths outweigh the weaknesses because most if not all of the
weaknesses can be remedied with an alternative class representation to L-Trees. On the
other hand, the irresolution of these tensions in languages with parametric classes, and the
restrictive resolutions of these tensions in the Bruce approach, appear to be inherent to
those approaches.

Strengths of the PS Approach: A Comparison with Languages
Supporting Parametric Classes

1. Guaranteed Type-Sufe Nominal Polymorphism and Static Binding

Perhaps the most important achievement of PS subclassing is its guarantee of type-
safe and covariant signature redefinition. Class substitution does not provide as flexible

100

signature redefinition as parametric classes, but it can guarantee the type-safety of
mappings of new signatures to existing code.

Signature redefinition resulting from the instantiation of parametric classes is
invariably covariant in direction while selective in scope. It is easy to see the appeal of
selective redefinition. Selective redefinition offers flexibility to the class designer, allowing
him/her to insist on the constancy of some type references in instantiated classes. That
class substitution demands consistent redefinition means that the class designer cannot
control as readily, the potential subclasses of the designed class. That class substitution
demands that redefinition be consistent throughout a system of classes means that the
system and not the individual class becomes the module for code reuse. Parametric classes
offer more flexible forms of genericity, but as was shown in Chapter 2, the tension of
covariant and selective redefinition nukes it impossible to statically ensure the type-safety

of instantinied classes.

2 A More General Approach to Subclassing

Another advantage of the PS approach over languages with parametric classes is
that potentially all PS classes are superclasses that can be redefined in subclasses to realize
nominal polymorphism and static binding. Conversely, languages that support parametric
classes have three categories of ¢lass that differ by how they can be used: explicitly defined
classes, parametric classes and instantiated parametric classes.

Explicitly defined classes are classes that are defined without the use of type
variables. They can be inherited from, and their names can be used to denote variable
types, and type parameter constraints. They cannot be used as templates for generic
subclassing.

Parametric classes have definiuons that include type parameters. They can be used
as templates for generic static binding. Their names cannot be used to denote types nor
type parameter constraints. Arguably, they can be used as superclasses to parametric
subclasses, though this brings up the issue of how parameters must be defined in these
specialized subclusses. Tt might be desirable for example, for a subclass to have a different
number of parameters than its superclass. The parametric class List (of Example 4.13)
might have a subclass Indexed_List with an extra parameter constrained to be a
subclass of Order, the class of objects belonging to a partially ordered set.

101

oo

class List [T : Contains]

end List

class Indexed List ([index : Qrder, T : Contains] inherits List
end List

Example 4.13

Whereas List is purameterized by the type of the object contained in the list
Indexed List would also be parameerized by the type of the index used to sort the
List. A language that allows a parametric class to have subclasses must provide a means of
matching up the type parameters of the subclass with those of the superclass. The issue
becomes more complicated when multiple inheritance is introduced since it is possible that
the same name might be used for u parameter in more than one porent class.

The third category of class is the instantiated class. An instantiated class is similar
to an explicitly defined class in that 1t can be used as a basis for inheritance (eg: class
Alphabet inherits Set {Chax), and s name can be used to denote a type in a variable
declaration. Its use as a constraint for type parameters causes the same problems that were
shown of class substitution when equated with deep substitution. To demonstrate this, a

parametric version of an earlier example is shown in Example 4.14.

class C [T : Object]

end C'

class B [T : C [Okject])
var o- : Object
var o, : Object

var o, : T

102

method m

begin
0: = O;.p ()
end

end B
Example 4.14

In this example, the class B is parameterized by the type parameter, T constrained to be a
subclass of the instantiated class C [Object]. Any instantiation of B (save for
B [C [Object] }) will not be type-safe despite the fact that the parametric class itself is
type-safe. Symptoms of this problem are similar to those discussed earlier, of redefinition
that is not consistent over a system of classes. It should be noted however, that deep and
consistent substitution rules do not remedy the insecurity, just as they did not in the earlier
example that showed that class substitution is not just deep substitution. The problem has
no easy wolution except for the restriction that instantiated parametric classes not be used as
type parameter constraints, thus making this form of class fall in a different category than
explicitly defined classes.

Class substitution is a more general mechanism than parametricity, allowing all
classes to be subcluassed via inheritance and genericity, allowing all type references to be
replaced, and allowing the class name to be used as a type reference and to constrain how a
type reference is replaced in subclasses. Parametric classes result in three categories of
class: the explicitly defined class, the parametric class generators, and instantiated
parametric classes. Each category defines a class that can be used in some but not all of the
ways that a PS class can. Language implementations which support parametric classes
such as Eiffel and Dee allow various categories of class to be used in contexts for which
they are unsafe, and are thus subject to type insecurities. Even when restrictions are added
to govern the use of each category of class, type-safety cannot be guaranteed of instantiated
classes because of the selective nature of parametricity.

Strengths of the PS Approach: A Comparison with the Bruce Approach

1. Flexible Resolution of Subclassing Tensions

The flexibilities of the PS approuch to subclassing are apparent when compared to
the Bruce approach. Both approuaches resolve the tensions of nominal polymorphism and

103

static binding, but limitations on class composition and redefinition in subclasses are less
restrictive in the PS system. Unlike Bruce classes, PS classes can include recursive
instance variables, and the types of instance variables can be redefined in subclasses.
Whereas Bruce subclassing does not support genericity, PS subclassing supports all forms
of nominal polymorphism and static binding. Whereas Bruce subclassing demands that
signature redefinition be contravariant, the redefinition of PS subclassing is covariant.
Whereas Bruce classes cannot include bindings of recursively typed objects to non-
recursive variables, PS classes have no problem with such bindings.

The inflexibilities of the PS approach in comparison to the Bruce approach are its
demand for consistent signatuie redefinition, and its incompatibility with dynamic binding.
Consistent signature redefinition is necessary because subclassing redefinition is covariant.
Bruce subclassing suffers from contravariant signature redefinition and a lack of support
for genericity to achieve selective redefinition. The incompatibility of PS subclassing with
dynamic binding is the subject of current study, described in Chapter 6. Table 4.2
summarizes the features of the PS and Bruce approaches. The last column of the table
shows the features supported by the extended version of PS subclassing, presented in the
next two chapters.

104

Feature Bruce PS Extended PS
Polymorphisms
Nominal
Polymorphism
Code Redefintion | ¥ v v
Code and Ssgnature | contravanant covariant and covariant and
Redefinition | and selective consistent consistent
Static Binding
Prefiximg | ¥ V N
Genericity | no covariant and covariant and
sclective selective
Dynamic Binding N no V6
Tension
Resolution
Covariance + Sclecuve | contravariant consistent consistent
Redefinition | direcuon redefinition redefinition
Contravanance +| no genericity covariant covariant
Genenicity selective sclective
redefinition redefinition
Subcluss-Based Binding | subetass- no dynamie subclass-
+ Covanance | independent binding indcpendent
{ binding bindingé
Language
Features
Constants | o V5
Recursive Instance | no v v
Variables
Temporad Cycles | no no V3
Muluple Inheriance ! no no \s

* - Added Feature Described in Chapter 5

b~ P-oposed Feaure Described in Chapter 6

Table 4.2

a——t e

Bt o i s Hat. 7,

P

Weaknesses of the PS Approach

The weaknesses of the PS approach concern its complexity and incompleteness.
Definitions of subclassing, inheritance and class substitution are complex and unintuitive.
PS subclassing is incomplete because multiple subclassing and multiple inheritance are not
supported and because the tension associated with dynamic binding is not resolved. The
lack of incompatibility with dynamic binding is the most troublesome weakness, and issues
regarding its resolution are presented in Chapter 6. All other weaknesses concern PS
subclassing as applied to classes with singleton types. These weaknesses are identified
here and remedied in Chapter 5.

1. No Muliiple Subclussing and No Multiple Inheritance

Like the Bruce approach, no PS class can have more than one superclass (except
for ancestral superclasses). The lack of support for multiple subclassing is a result of the
use of L-Tree representations of classes as a basis for determining structural subclassing
relations. L-Trees provide a name-free, structural class representation. However, the
composition of an L-Tree is dependent on the order in which variables and methods appear
in a class. As an example, L-Trees for the classes defined in Example 4.15a would be
considered distinct.

class A

var o : Object

var i : Int
end A
class B

var i : Int

var o : Object
end B

Example 4.15a

Because subclassing is defined over L-Trees, it oo is sensitive to the order in
which variables and methods are declured and defined. Therefore, given the additional

106

classes C and D in Example 4.15b, class &4 would only be a subclass of C, and class B
would only be a subclass of D.

class C
var o : Object

end C

class D
var i : Int

end D
Example 4.15b

In fact, classes A and B should be considered equivalent and should be subclasses of both
C and D. Multiple subclassing cannot be supported when L-Trees represent classes
because the interfaces and code of a superclass must form a prefix for the interfaces and
code for the subclass. For no class can multiple numbers of classes with distinct method
and variable definitions satisfy this property.

Lack of support for multiple inheritance is related, not only to the lack of support
for multiple subclassing, but to limitations of the unfolding algorithm. Input classes that
inherit from more than one class can force the algorithm into deadlock.

2. No Temporal Cycles

We have seen alieady that temporal cycles cannot be handled by the PS unfolding
algorithm and are therefore prohibited. This restriction not only rules out useful sets of
classes, but also makes class validity an unintuitive concept; dependent on more criteria
than just type-safety. It should be pointed out here that this weakness is a weakness of the
Bruce approach also. The Bruce paper does not discuss temporal cycles, but does exclude
recursive instance variables and does demand that all recursive type references found in
method signatures be made with the type name, MT. Given these restrictions, it can be
inferred that Bruce subclassing forbids temporal cycles. Suppose for example, that the
Voter and Candidate examples of Example 4.5 are programmed in a Bruce system.
The class Vot er has an instance variable, “backs” of type Candidate. Since Candidate
is & subclass of Voter, it is constrained 10 keep the types of its inherited instance variables
constant. Thus, class Candidate violates Bruce class composition rules in two ways: it

107

has a recursive variable which is not declared to have type MT, and the recursive variable is
an instance variable.

3. No Constants

Whereas the restriction forbidding temporal cycles is discussed in [PaSc90d],
problems with constants are not discussed. The class of Example 4.16 demonstrates that
PS classes with constants also cannot be guaranteed to have type-safe subclasses.

class example
var i : Int
method m

begin

end

end example

Example 4.16

Consider that one possible subclass of Int might be MODULO_10; the class of Integers
between 0 and 9 inclusive. Because of the use of the constant 45, the method m of class
example would not be safely prefixed in the subclass,
example [Int ¢ MODULO 10]. This is because the statement of method m would,
in the subclass, make the meuningless assignment of 45 to a MODULQO_10 object.

Classes whose instances are constant values (such as Tnt, Bool and Char) are
herein called base clusses. While Palsberg and Schwartzbuch do not discuss the problems
concerning base classes and type-safety, they do argue in [PaSc90d| that NIL should be
the only constant in a PS-based language. In their approach, NIL is an instance of no class
and therefore base classes are thought no longer to exist. Classes such as Int, Bool and
Char are defined in the language like any other class. For example, |PaSc90a] contains a
class definition for Int as shown in Example 4.17.

108

class Int

var value : Ohject

method plus (other : Int)
begin .. end

method times (other : Int)
begin .. end

method zero : Int
begin .. end

end Int
Example 4.17

Class definitions such as the one above, do not eliminate constant expressions and base
classes. The constant, 45 is an Object in this interpretation, and can be bound to the
instance variable, value. Cbject is thus a base class, and subject to the same problems
that beset all base classes. Any class that includes code that binds a constant to the instance
variable, value will have unsafe subclasses when some other class is substituted for
Object.

4.4 Dynamic Binding in the PS Approach

An interpretation of types as non-singleton sets can be found in [PaSc90d].
Discussion of this proposal has been separated from the discussion of PS subclassing
because of the incompatibility of the two approaches.

4.4.1 The PS Interpretation of Types

Palsberg and Schwartzbach propose that a type can be any set of classes (singleton
or non-singleton), and that subtyping is captured by set inclusion. Because types are sets,
the universe of all types can be represented as a lattice. Since theirs is a single inheritance
system, the class hierarchy is a wree. Figure 4.6 shows portions of the universal class
hierarchy and type lattice corresponding to class definitions for Object, Vehicle, and
two Vehicle subclasses: Bus and Car. Note that the notation, TA means the set of all
subclasses of A. Note also that Tobject (the set of all classes) and @ (the set of no

109

A S Bt ot - S ek omom e oAy e e < BT

classes) serve as top and bottom not only of the partial lattice, but over the entire universal
type lattice.

Object T Object

' &
veniele T Vehicle
A

T Bus _
{Venhicle, Car, Bus}
&~ ¥

{Vehicle, Bus} {Bus, Car} {Vehicle, Car}

TCar

{Bus} \{\Vehlcle {Car}

has subclass has subtype

Figure 4.6

In practice, the PS interpretation of types is subclass-based. The PS interpretation
is more general in theory than the interpretations of types that associate classes and their
subclasses with types and their subtypes. A PS type can be any set of classes and not just
a set of subclasses of some given class. But only sets of related classes form useful types,
since only for these types can signature checks be confined to a single class. Since useful
non-singleton PS types are sets of subclasses of common ancestry, the binding of an object
to a heterogeneous variable is allowed if the class denoting the object’s type is a subclass of
the class denoting the variable’s type. Thus, binding checks are subclass-based and the PS
type interpretation results in equivalent type-checks in practice to those of traditional
subclass-based interpretations.

110

5

4.4.2 Evaluating the PS Approach to Types

An Intuitive and Practical Model for Subclass-Based Type
Interpretations

One advantage of the PS approach over the traditional subclass-based approaches is
in its intuitive definitions of types and subtypes. The PS approach uses subclass-based
binding without equating subclasses with subtypes and thus without having to incorporate
the complications and ill-effects of the F-Bounded model. (As was shown in Chapter 3,
recursive instance variables cannot be supported when the F-Bounded model is used to
model languages where objects have state).

Set inclusion captures what is desired in subtyping. By definition, an object of a
subtype can be substituted for an object of its supertype, and should therefore understand
all messages presumed understood of objects of the supertype. The intersection of class
interfaces included in a type define the messages that can be presumed understood by
objects of that type. Thus, the common interface of any subset of classes (subtype) will be
at least as large as the common interface of the superset (supertype). As is desired of
subtyping, the subset ordering defines an implicit reverse ordering of understood

messages.

NIL: The Value of Al Types

One of the arguments that Palsberg and Schwartzbach contend to justify their type
proposal, is that it provides a home for the constant value, NIL. Typically, NIL is used in
object-oriented languages as a means of introducing state to object creation. In particular,
cyclic structures typically are created with NIL used as @ temporary value since NIL can be
assigned to variables of any type. Suppose for example that classes A and B are clients of
one another where A has an instance variable declared as a B, and B has an instance
variable declared as an A. Instances of A can only be created once there exists an instance
of B and vice-versa. In a lunguage with NIL, one would create an instance of A by using
NIL asatemporary value of its instunce variable of type B, and then replacing that value
with an instance of B, once the instance of B had been created.

In most object-oriented languages, N11 enjoys a special status. It can be bound to
any variable though does not respond to any messages. Palsberg and Schwartzbach argue
that NIL’s role can be justified as a member of no class, and with empty type. Because
NIL belongs to no class, it cannot respond to any messages, and it has the set of no classes

111

(@) as its only type. That the empty type is a subtype of all other types justifies the binding
of NIL to any variable.

Unfortunately, the use of NIL as an expression that can be assigned to any variable
but incapable of understanding uny message is inherently contradictory, and demands that
static guarantees of type-safety be sacrificed. The example core Mini-Dee class of
Example 4.18 shows that allowing NIL to be bound to a variable means that NIL should
be able to respond to the messages that can be sent to that variable.

class example

var a : example

method m;
begin .. end
method m,
begin
a := NIL
a.m
end

end example
Example 4,18

By the reasoning of Pulsberg and Schwartzbach, the above class satisfies binding and
signature checks. However, if HIL can respond to no messages, this class will fail when
the method, mj, is executed.

If strong and static typing is to be achieved, then an expression that can be bound to
variables of all types must be able to respond to any message. This point follows from the
desire that members of subtypes be able 10 respond at least to all messages to which
members of the supertype can respond. If NIL can be bound to any variable, then its type
must be a subtype of all types. Therefore, to maintain a consistent 1-'ne system NIL must
be able to respond to any message, even if the response is that the message is not
understood. It would appear that strongly typed object-oriented languages cannot
completely avoid the “message not understood” runtime errors of weakly typed object-
oriented languages such as Smalltalk [GoRo83]. Fortunately, such errors in strongly typed
object-oriented languages would only occur when messages are sent to objects as yet

unconstructed.

The Incompatibility of PS Types with PS Subclassing

Palsberg and Schwartzbach note in [PaSc90d] that their inheritance and class
substitution definitions are incompatible with classes whose types are non-singleton. Their
claim is that inheritance and class substitution do not denote type-safe subclasses of classes
whose signatures contain types that are infinite sets of classes.

In fact, subclassing, inheritance and class substitution are not well defined in terms
of classes with even finite, non-singleton types in their signatures. The problem mostly
lies with the L-Tree representation of classes. L-Trees themselves are only well-defined
over classes with signatures with singleton types. For example, while the L-Tree
representation for the class 4 of Example 4.19a is easily determined, it is not clear what
would be the representation tree for the non-singleton class, B, of Example 4.19b, even
though the type of the instance variable » is a finite set of classes.

class A

vdar o : Object
end A
L-Tree Representation for A:

var o : e

Q

Example 4.19a

class B
var x : {Object, Int}

end B

Example 4.19b

Since subclassing is defined as a relation on L-Trees, it too is only well-defined
over classes with signatures with singleton types . Every example subclass presented in
[PaSc90a, PaSc90b, PaSc90d] is a subclass of such a class. Inheritance is not defined at
all over classes with non-singleton types in their signatures, and it is not clear how the
inheritance algorithm of [PaScY0d| could be adapted to apply to these classes. As well,
contradictory assumptions are made in {PaSc90d] concerning how class substitution
applies to these classes. (see Chapter 6)

Inheritance and class substitution can be defined so as to resolve the tensions of
nominal polymorphism and static binding, even in denoting subclasses of classes with non-
singleton types in their signatures. A presentation of an alternative representation of classes
to L-Trees, is found in Chapter 5. The alternative representation:

e allows for intuitive definitions of subclassing, inheritance and class substitution,

e supports multiple subclassing and multiple inheritance,

e guarantees type-safe nominal polymorphism and static binding of classes whose code
includes constint expressions, and

e allows most temporal cycles as input.

Chapter 6 contains a description of preliminary work done to incorporate PS subclassing
and subclassing mechanisms in classes with non-singleton types in their signatures. It will
be shown in this chapter that the incomputibility of PS subclassing with PS type
interpretations concerns the tension of covariant subclassing redefinition with subclass-
based interpretations of types, and not with the inapplicability of subclassing definitions to
classes containing signatures with non-singleton types.

114

Chapter S.

Design: An Alternative
Interpretation and Extension of PS
Subclassing

5.1 Introduction

PS theory provides a number of useful resulis but has significant practical
limitations. L-Trees, the tree-based representations of class code, are free of class names
but are not finite for all classes. As the basis for definitions of subclassing and subclassing
mechanisms, L-Trees provide little intuitive insight. The lack of support for temporal
cycles rules out useful sets of classes and makes class validity dependent on other criteria
besides type-safety. The PS approach is also incompatible with such commonly used
object-oriented linguage features as multiple inheritance, constants, and dynamic binding.

The purpose of my work thus far has been to interpret and to provide an intuitive
understanding of PS Subclassing, and to address the shortcomings described above. An
alternative representation of classes is presented which provides a finite representation for
all classes and which is based on the intertace rather than the code of a class. Type-safety
is formally defined as a property of code with respect to a system of class interfaces. New
definitions for subclussing and subclussing mechanisms follow. The resulting system is

compared with the PS system and shown to be more flexible, allowing for constants, most
temporal cycles, and supporting the use of multiple inheritance. (The incompatibility of PS
subclassing with dynamic binding is addressed in the next chapter). In the end, the original
proposals — novel though incomplete and somewhat unintuitive, have been reinterpreted
and extended.

5.2 An Extension of Mini-Dee

The proposal presented here is described in terms of an extension to Mini-Dee that
is identical to the PS-based extension described in 4.2, except that multiple inheritance is
supported. The grammar for this extension can be found in Appendix I-D. Since the
work described in this chapter does not address the incompatibility of PS subclassing with
dynamic binding, types are still singleton and binding and parameter binding checks still
demand that types of objects and variables to which objects are bound be identical.
Signature checks are still confined to the class denoting the type of the receiver object.
Signature redefinition in subclasses is still covariant and consistent though the operations
which achieve consistent redefinition, inheritance and class substitution are defined
according to an alternative representation of classes described in Section 5.3.

-116-

5.3 The Node Representation of Classes

The “node representation” of classes is presented here as an alternative
representation to Palsberg and Schwartzbach'’s L-Trees. This representation will be used
as the basis for alternative definitions of PS subclassing, inheritance and class substitution.

The representation is based on class interfaces rather than code. All instance
variable, local variable and method signatures are included in a class’ representation.
Informally, a node represents 4 signature and contains all relevant information such as the
kind of signature it represents, the name of the entity declared, its return type and so on.
Formally, the node type is defined as the type of sextuples of the form
(kind, id, type, context, parms, locals) where:

kind: {m,v} —
is m when the signature is that of a method, and v when it is a variable
id: String —
is the name of the method or variable
type : Class Identifier” —
is the declared type of the variable, or the retum type of the method®
context : Class Identifier —
is the class in which the signature is declared
parms : Sequence of Node —
is the sequence of nodes representing the puarameters of the method (or & for
variables)
locals : Set of Node —
is the set of nodes associated representing the local variables of the method (or &

for variables)

For any class €, the value of Rep (C) is the set of nodes obtained by parsing the
interface of C.

* For the time being, it is useful o think of a Class Identifier as a string corresponding to the name of a
class. Once inhertance and class substituton are reinroduced, Class Identifiers may refer to unnamed
classes. Therefore, the representition is kepl absiract,

 Following the convention employed by Palsberg and Schwartzbach [PaSc90d), and Cardelli and Wegner

[CaWe85], methods which do not exphicitly return a result will be represented as methods which return
self.

117

5.3.1 Some Example Nodes

As an example, let C be a Mini-Dee class whose definition contains the example

declarations of Example 5.1.

(a): var g : R -~ jnsiance varlavle
{b): retnoc r (p, @ Sy, s 5.
Locals
{c): metheocao s Ts -- method with no parms,
var 10Caly
o
ot T
Example 5.1
The nodes representing these three signatures are:
tay: (e, =, o, ©,0)
(b): (m, r, T, C,
«v, sef, o, O, B0, e, L B00) iy Bpy S C
2)
(c): (m, s, T, <,
«(v, sc.:, C, 4, @,0)»
[, 1o, 7, ¢, 8,0), ...tve oy .. L, 2,9)))

-~ mvthoed with parms, no return type, no

return type, or

z' G) .'

Note that the implicit method parameter, se 1£ is represented as a parameter of

every method node.

5.3.2 An Example Class and its Node Representation

An entire Mini-Dee class interface with variable and method declarations, is given in

Example 5.2.

-118-

class A
var a : A
method m (o : Object)
var a : A
begin .. end

end A
Example 5.2
Given the class A in Example 5.2, the value of Rep () is:

{(v. a. A, A, @, D),
(ml ml AI A'
«fv, self, A, A, B, @), (v, o, Object, A, D, D)»,

{tv. a, a, A, B, D))

Unlike L-Trees which provide an entirely structural representation of classes, the
node representation is dependent on class names and individual nodes can be likened to
symbol table entries. This approach allows all classes to have finite representation,
including clients of recursive classes. As well, whether or not one class is a subclass of
another, is dependent on the sets of signatures of each class and independent of the order in
which these signatures appear. While the PS representation is free of class names, it does
not capture the structural nature of subclassing that establishes the order of appearance of
methods and variables to be irrelevant to determining subclass relationships. The node
representation, preferable in this regard, is able to capture multiple subclassing
relationships and supports the use of multiple inheritance.

5.4 Type Safety Defined Over Node
Representations

The class is a module for code but does not define a program. Since a class’ code
can coniain invocations of methods and references to variables found in other classes in its
system, a system of classes comprises a program. Type-safety can be formally defined as
a property of systems of Mini-Dee classes. A formal definition is given by way of an

-119-

attribute grammar of extended Mini-Dee, found in Appendix II. A description of this
formalization follows.

5.4.1 Formal Definitions of Supplier and System in terms of
Nodes

The definition of a system of classes is dependent on a definition of the supplier
relation between classes. Both definitions are given below. It is assumed beforehand, that
there exists a function, type_of, that accepts a node argument and returns the type of the
variable or return type of the method that the node represents. Thus:

npe_of (k,i,t,¢,p, 1) =1

The Supplier Relation

The supplier relation (Class 1dentifier x Class Identifier) holds for classes B and A
when B is used in a type declaration for an instance variable, method parameter, metbod
result or local variable defined in A. In other words, supplier (B,A) holds when B is a
supplier of A. The relation is defined formally in terms of node representations of classes:

supplier (B,A) &
Jwx,y,pl e
(w,x,y,A,p,l)e Rep (B) A
ly=8 v
Fiel1<i<lipl erype of (p (i) =B) v
(3ne l erype_of (n) = B))

Since a node representing self is found in every method representation, supplier (A,R)
always holds when A includes a method definition.

The System Function

Intuitively, a system of classes is the set of classes that are direct or indirect
suppliers of some given class. Formally, system is defined as a function
(Class Identifier — 2 Class ldentifiery where given some class identifier, A;

system (A) = { x | supplier (x ,) v (Jy o supplier (y ,B) A x € system (y)) }

-120-

Again, because a node representing self is found in every method representation,
A € system(®) when A includes a method definition.

5.4.2 The Attribute Grammar of Extended Mini-Dee

Type-safety is formally defined in Appendix II with respect to the extension of
Mini-Dee described in 5.2, but without inheritance and substitution. It might be
remembered that the grammar of Mini-Dee separates class interfaces from code. This
allows the parse of a program to be divided into two distinct compo:-cnts: environment
generation and type-checking. It also allows type-safety to be defined .. a property held
by class code with respect to the interfaces from a system of classes. Type-safety is
formally defined as an attribute value synthesized from the parse of the attribute grammar
of Mini-Dee. It is dependent on binding, parameter binding and signature checks, for
which formal definitions are also given in Appendix IL

5.5 Subclassing Defined in terms o” Nodes

In this section, structural subclassing relations between systems of classes will be
definer. in terms of nodes. A definition of subclassing requires a definition for mapped
sy< ms. Informally, one system, system (B) is a mapped system of another, system (3),
if 1 ' code of system (3) can be safely reused with the interfaces of system (B). In terms

nodes, system (B) is a mapped system of system (&) if there exists a “mapping
function”, f, which maps all class references found in the classes of system (a) to
corresponding references found in the corresponding classes of system (B). Note hat the
correspondence is applied in two ways. Given a single signature (node) with type t and
context ¢, the same signature with type f(z) must be found in the representation of f{¢c).
That the corresponding signatusce has type f{t) guarantees binding and parameter binding
checks in the mapped system. That the corresponding signature has context f{c) guarantees

signature checks.

The Map Function

A formal definition of the mapped system relation depends on the definition of the
higher-order function. map: (Class Identifier — Class Identifier) x Node — Node; a

function which applies a mapping function, f to a node to produce a new node with each
type reference 1, replaced by f{1). More formaily, given the mapping function, f and node,
n=0U1itc«pr ..opm» il ..., L))

map (f .n) =k, i, (1), fie)
«map \(fypr)y, ..omap \f, pm)»,
{map (£, 1;), ...,map (f, [)})
Map is guaranteed to return a finite node despite the recursive nature of its definition since
all nodes contained in the sequence, «py, ..., p,p» and the set, {1y, ...,];} have empty

parameter sequences and empty local variable sets. Map is extended to sets and sequences
of nodes so that:

map ({1, ...) =map (f,1;),,map (f,)} and

map (f, «pts ..., pm») = «map (f.pp), ..., map {f, py) »

The Mapped System Function

Given systems of classes S;and S, mapped system: 2 Class Wentifier

2 Class Identifier jg formally defined as the following relation:
mapped system (S;,52) < 3f: S, = Sy e map (f, Rep (51)) < Rep (S2)
5.5.1 Examples of Mapped Systems

An example system of classes, system (&) is defined in Example 5.3. Potential
mapped systems of system (R) are then considered.

-122-

Let system (&) = (A, D} where A and D are defined as in Example 5.3.
class A
var a : A
method m (other ¢ A} : D
begin .. end
end A
class D
var d : D
end D
Example 5.3
From the above declarations, we have:

Rep (system (B)) =

[(v, a, A A, o, D),

(7oL A w v, co S A A, @, D), (v, oL, Ay A, e, D)», D),

(v, d, 5,0, en, @)

L Ace

Now consider the following potentially mapped systems of system ():
Example 1: Recursive References Must be Retained in Subclasses

Let system (B;) = (A, D, B-} where B; is as defined in Example 5.4 and classes
A and D are as defined in Example §.3.

class B;
var a : A
method m (other : A) : D

begin .. end

var b : B,
end B,
Example 5.4
From the declarations of Example 5.4, we have:
Rep (system (B;)) =
{ (v, a, A, B, o, D),
{m, r, =, T (v, veL ey, RN Dy, tv,cLrner, h, By, wn, g) », g)

(v, b, 21, By, «w, @),

(v, d, L, 2, «», @) }

Note that syszem (B,) is not a mapped system of system (8), despite the fact that the
interface of A is a prefix of the interface of B;. An examination of the variable g
alone shows that both A and B. would have to be images of A in any mapping
function. Thus, it cannot be guaranteed that code which is type-safe with respect to
system (A) will be type-safe with respect to system (B,). The code for method m
might for example, contain the assignment:

a := self
which would be safe only in the context of the interfaces of system (3).
Example 2: A Minimal Recursive Mapped System

Let system (B,) = {B,, D} where B, is as defined in Example 5.5 and and class
D as defined in Example 5.3.

class B
var a : B,
method m (cther : B,) : D

begin . end
var b : B,
end B,
Example 5.5
From the declarations of Example 5.5, we have:
Rep (system (B))) =
l (v, o, Bk, an, O)_
(M, m i et e e e @), (v, Lt er, By, By oo, @) » , @)

(Vo e, @),

(v, a, 0,0, ey @) l

System (B,) is a mapped system of system (A) by the mapping function:
[(A) BZ)r (DaD) }.

Applied to the type field of a node, the first pair in the mapping assures that
recursive references are retained (all type references to A in system (A) become type
references to B). Applied to the context field of a node, the first pair in the
mapping assures that syszem (B,) defines all of the same methods and variables
defined in system (a). The second pair of the mapping establishes that references
to the type D in system (A) are maintained in system (B,).

Example 3: All Muwal Client Relations must be Retained

Suppose that system (A) is redefined so that class D now is defined as in
Example 5.6.

class D
var d : A

end D
Example 5.6
and Rep (D)= [(Ve ooy wn, @))

Now consider system (B;) once more. Even though class B, is the same as class A
with the recursive references retained, it is not the case that system (B,) is a mapped
system of system (A), since A must be replaced by B, in several nodes, but left
unchanged in the node for the variable, d.

5.5.2 Mapped Systems Preserve Type-Safety of Reused Code

The proof of Appendix 111 shows that code that is type-safe with respect to the
interfaces of any system of classes, system(z) will be type-safe with respect to the
interfaces of any mapped system of system (). The environment generated from the parse
of some system, system (B) (which suay is a mapped system of system (A) by some
mapping function, f) is a superset of map (f, Rep (system (2)). A case analysis examining

-126-

the attribute grammar of Mini-Dee shows that any statement which is type-safe with respect
to Rep (system (n)), will also be type-safe with respect to map (f, Rep (system (2)) and
hence to Rep (system (B)). This is b:cause binding, parameter binding and signature
checks are still satisfied with respect to the mapped system. Binding and parameter
binding checks are still satisfied because type references are replaced consistently
throughout the mapped system, and therefore equal types remain equal. Signature checks
are still satisfied because the class denoting the type of every expression in the mapped
system defines at least the protocol of the class denoting the type that it replaced.

5.5.3 Subclassing Defined in Terms of Mapped Systems

Given the definitions for systems and mupped systems, it is possible to define
subclassing relations and various functions over class identifiers. The functions are later
used to formally define inheritance and class substitution.

o superclass (@ — Class ldentifier % Class Identificr)

Given classes A and B, A < B if the code of A can be safely reused in the context of
class B. With respect to systems of classes, A is a superclass of B if the code of A is
type-safe with respect to both the interface of system (&), and the interface of
system (B).

A <« B < mapped system (system (B), system (B))

If A < B, there is a unique mapping function, f that maps system (B) to system (B).
“A < Bbyf"is written when there is a need to mention this function explicitly.

o cquivalence (= — Class Identiher x Class Idenufier)

Given classes A and B, A = B if the code of A can be safely reused in the context of B

and vice-versa. More formally:

A =B& A a«aB A B gaA

. [tution

(~pecp— (Class Identificr x Class Identifier x Class Identifier) — Class Identifier)

Given classes &, B and C, A [B «pcep C] denotes a system of classes which resembles
system (A) except that all type references denoted by B and found in system (a) are
replaced by references to C. More formally:

for any classes A, Band C, A [B “pecp Cl =
ifa = B
then C
elseif B = C or Be& system (A)
then A
else
A" where Rep (system (A*')) =
{ (k,i,t|B € Deep Cl,c|B € Deep CcLp.i
e (k,i,t,c,p, 1) € Rep (system (2))
sp' = [(X, (K, 1, '[B &peep Cly €' {B é=peep C, «»,)1
p(x)= (ki 1, ¢, «»)]}
ol'= {(k\,i,t'[B ¢ peepCl ' |B peep Cl, «», D)
kWi, ¢,o,D)el)

(e-Deep — (Node x Class Identifier x Class Identifier) = Node)

The deep substitution operation is extended over nodes such that:

for any node, (k, i, t, ¢, p, 1), and any classes, Band C, (k, 1,1, ¢, p, 1) [B €=peep Cl =
(k,i, t [B €peep Cl, € |B =peep CJ, p's 1) where
ep' = {(x,p(x)[B epep Cl) 11 <x<1pl) and
ol' ={n [Béepeep ClInelj

ﬂ

Given the definition of ¢, over nodes, the version defined over Class Identifiers

can be rewritten in a more readable form:
(¢-Deep — (Class Identifier x Class Identifier x Class Identifier) — Class 1dentifier)

forany classes A, B and C, A [B ¢—pecp C] =
ifa =B
thenC
elseif B = C or B¢ system (A)
then A
else
A" where Rep (system (A')) = { n [B ¢=peep C] I n € Rep (system (2) }

e parent (<y — Class Identfier x Class Identifier)

A <) B denotes a special superclass relationship between A and B, where the
interfaces of system (B) form a superset of the interfaces of system (a) with all
references to A in system (A) replaced by references to B in system (B). Formally:

For any classes, A and B:
A 9 B & A < Bby ((X,X|A & pepB)) |t x e system (2))

5.5.4 Defining PS Inheritance and Class Substitution in terms of
Nodes

Inheritance and substitution mechanisms provide shortcuts for denoting mapped
systems of existing systems. Given classes A, B and C where B « C by f, A [B « C]

denotes the interface and code for an entire system. The interface of the mapped system
has node representation X Y, where:

« X =map (f, Rep (svstem (R))) and
® Y =Rep (system (C))

The code of the mapped system is found in system (A) (for methods with signatures in X)
and in sysrem (C) (for methods with signatures in Y). The expression, A [B « C] can be

-129-

used in both parts of the class interface where a class name can appear: in a variable
declaration and as an argument to the inherits operator.

Inheritance allows for the denotation of mapped systems which include variables
and/or methods not declared elsewhere. A class C, declared in its interface to “inherit B”,
consists of the same code and interface as B (with all references to B found in the system
interfaces changed to C) as well as any additional methods and variables unique to C.
Inheritance, like substitution, can be viewed as a higher-order function on systems of
classes denoting mapped systems of those systems. Formally, we have:

o inherits (inherits — Class Identifier x 2Node — Class Identifier)

For any class A, and set of nodes N, inherits (A, N) denotes a mapped system of
system (B) where all (possibly deep) recursive references are maintained. Thus:

inherits (A, N)= A", where Rep (system (A')) =
N (n[A épepA']Ine Rep (system (B)))

The definition appears to be recursive but is well-defined. The deep substitutions
resulting in the set, {n [A ¢pep A'11n € Rep (system (2))}, involve symbolic

manipulations only. As an example, let B be defined as in Example 5.7a.

class B
var b : B
method m (other : B) : Object
begin .. end
end B.

Example 5.7a

-130-

Then we have:
Rep (system (B)) =

{ (v, b, B 8 w, @),
(m, m, Opject, i,
«(v, sclf, B, B, «», @) (v, other, B, B, «w», &) »,

2)

By application of the inherits and deep substitution definitions we can define a new
class, B' which inherits the class definition of B and adds the instance variable,
i : B'.

B! =inherits (B, { (V‘ i,Int,B', «», @) })
As aresult,
Rep (system (B')) =
[v, b, BY, 80, o« D),
(m, m, v et e,
wfv, ser’, H', B', w»n, @)‘(\v' ciner, B', B', «», @)»‘

),

(v, i, Int, BY, «», @)

from which the cluss definition of Example 5.7b can be inferred.

class B!
var b : B'
method m (other : B') : Object
begin {as defined in B} end
var i : Int

end B'.
Example 5.7b

Note that for any class A, inherits (A,) is an identity operation.

o subst

(& — Class ldentifier x Class Identifier x Class Identifier — Class Identifier 1 fail)

Givenclasses A, Band C where B « C by f, A [B « C] denotes a mapped system of
system (A) where (at least) all references to B’s have been replaced by references to

C’s. More formally:

For any classes, A, B and C:

A[Be&C]=
ifB « Cbyf
then
ifa =8B
then C
elseifB = C
then &
elseif B a; C
then A {B <peep CJ
else --f={...,(D,E), ...) wher¢c E£D [B ¢peep Cl’
then A|D « E] [B ID &« E] « C]
else
fail

*Note thatif B ¢ CbutE < C by f, thenf must include somie panr, (D,E) wherc E £D [B ¢=Deep Cl.

-132-

5.5.5 Results

It is necessary now to demonstrate that the inherits and substitution definitions
above denote mapped systems, to ensure that their use leads to type-safe code reuse. The
first result (for any class A and any set of nodes N, A < inherits (&, N)), trivially follows
from the definitions of <| and inkerits. Appendix IV contains a proof that the definition
of a substitution denotes a mapped system (ie: thatB < C=A < A[B « C]). This
result is dependent on the result: B <1 C= A < A [B ¢ peep C]. Both results are
summarized below:

Intuitively, what is established here is that a deep substitution of one class for another
(C for B) results in a mapped system provided that C is a subclass of B that can be
created by inheriting B. This result is proven using a case analysis on the definition
of «peep. In the first case, we are given thatA = B, B <] C and A [B ¢Deep C)=
C. Itfollows thatA < A [BépepClsinceA < B,B < Cand < is transitive.
In the second case where A [B ¢—pecp C] = A, the result trivially follows. In the third
case we are given that B e system (A) and A [B ¢ peep C] = A' where
Rep (sysiem (A*)) = {n |B «peep C] I n € Rep (system (A))). That A < A' can
be shown by considering a partition of Rep (system (A)), that depends on the
definition of a new function, filter.

o filter

Given some classes X and Y belonging to system (B), filter (X,Y) returns the class
with the same interface and code as class X, minus any signature (and associated
code) containing a reference to Y. As an example, the interface of class W' of
Example 5.8 is the same as the interface of filter (W,2) [W ¢—peep W'].

class W
var w ¢ W
var wy ¢ 2
method m (i : Int) : W

begin .. end
method m; (i : 2) : W

begin .. end

end W

class W'
var w : W
method m (i : Int) : W
begin .. end

end W'
Example 5.8

The filter function allows for a natural partition of Rep (system (A)). Since
B € system (B), it follows that system (B) < system (3), and therefore that:

® Rep (system (B)) = Rep (system (B)) U Rep (system 'filter (A,B)))

Now consider any node, n € Rep (system (a)) and the possibilities for its
corresponding node, n' € Rep (system (A')):

If n € Rep (system (B)) and n & Rep (system (filter (7, B))), then
n'=n[B «peep C) by the definition of epecp.

If n ¢ Rep (system (B)) and n € Rep (system (filter (A, B))), then
n'=n[B ¢pep C] since B «; C.

If n € Rep (system (B)) and n € Rep (system (filier (a, B))), then corresponding
nodes are found in Rep (system (A')) from B <j C and from the definition of
Deep- Since in both cases, the corresponding node is n [B ¢=peep C}, then n
has bur one image and A < A' by { (t, t[B ¢—peep Cl) I t € system (A)}.

Thus the result holds in the third case, and is proved.
Note that it is the third case that demonstrates that B « C by f is not a sufficient

condition by itself, 10 guarantee that 2 < & [B ¢=peep C), since it could be for some
type, s # t [B =Deep CJ, that f (1) = ».

-134-

2) B « C=A<A[BC)

This result follows from an inductive proof that depends on the previous result. For
this proof it is necessary to define a function that given some classes X and Y, where
X < Y, returns the number of substitutions necessary to apply to denote a class that
is a parent of Y.

* DOS
The function, DOS (or “degree of substitution™) returns for any classes X and Y,
where X « ¥, 0if X < Y, and n if it takes n deep substitutions on X to denote a class
which is a parent of Y. More formally, given that X < Y by f:

DOS (%, ¥)=|{(UuVv)e f1V2 U[B ¢peepCl} |

The proof of result (2) is an induction proof on the value of DOS (B,C):

In the base case where DOS (B,C) = 0, then either we have equivalent cases to cases
1 and 2 of the previous proof, or B 4) C and the result of the previous proof applies.

In the inductive case, we are to show that A <« A |[D « E] [B [D « E] ¢« C] given
that B « C by some function f, but B 4 C. In this case, there exists some pair of
classes, (D,E) € f where E2 D [B «pecp C]). Clearly,

e DOS (B|D « E],C)<DOS (B, C)

Then, by the inductive hypothesis:

eA[D«E] <A [D«E]|B[D¢ E]¢C].

It is shown in the proof that D < E and that DOS (D, E) < DOS (B, C). By the
inductive hypothesis,

*A <A [DéeE]

and the result follows from the transitivity of <.

5.6 The Additions to PS Subclassing
5.6.1 Multiple Inheritance and Multiple Subclassing

Unlike L-Trees, the node representation of classes allows for a class to have more
than one unrelated superclass. This is because the node representation is based on the
interface rather than the code of a class, and because subclassing relations do not demand
that the labels of nodes of superclasses be prefixed strings of corresponding node labels in
subclasses.

The unfolding algorithm of 4.3.3 cun result in deadlock when multiple inheritance
is allowed. The alternative inheritance algorithm of 5.5.4 can be extended in a natural way
to support multiple inheritance. As is the case in all languages supporting multiple
inheritance, type-safety of inherited code demands that no two variables or methods with
the same name are inherited from different sources. Assuming that no two variables or
methods with the same name are defined more than once in the set of classes denoted by the
set of Class Identifiers, § and given some additional set of nodes, N:

inherits (S,N)=A", where Rep (system (A')) =
NuU | J{n[Cé&peprt)ine Rep (system(C)))
ce S

5.6.2 Temporal Cycles

PS subclassing disaliows sets of classes that comprise temporal cycles because the
unfolding algorithm of section 4.3.3 results in deadlock given such classes as input. Itis
informally argued in [PaSc90d] that classes such as Candidate and Voter of Example
4.5 should be irresolvable because Vorer “has-a” Candidate and Candidate “is-a”

-136-

Voter, and thus there does not appear to be an order in which these classes should be
parsed.

The definition of inheritance of section 5.5.4 allows the Candidate/Voter
classes as input, as well as most other classes with temporal cycles. The system of classes
denoted by the class definitions of Example 4.5 are shown in Example 5.9.

class Voter
var backs : Candidate

end Voter

class Candidate
var backs: Candidate

end Candidate
Example 5.9

and Voter = Candidate by the mapping function, {Candidate, Candidate}.
A more interesting example results from adding any method to the definition of
class Vvoter. Forexample, if the cluss Voter were defined as:

class Voter
var backs : Candidate
method vote () : Candidate
begin .. end

end Voter

then class Candidate would be as defined in Example 5.10.

class Candidate
var backs : Candidate
method vote ()} : Candidate
begin end

end Candidate

Example §.10

Because of the addition of a method to the superclass, (and thus the implicit parameter,
self, to the node representations of both classes) the above two classes are no longer
equivalent. The node representations for the classes in this system are:

Rep (system (Voter)) =

{ (v, backs, Carc.aate, Voter, an, @),

(m, vete, Vater, Voter, «(v, selt, Voter, Voter, «», @) », @),

(v, backs,Cand.uale, Lanaidate, w, D),
(m, vote, Cana.aale, Cana.date,
(v, self, Lavz gate, caraiaite, en, D) o»

@)

and Voter < Candidate by { (Voter, Candidate), (CAndidate, Candidate)].
Note how the types of the inherited variables and methods of Candidate are determined.
The return type of the method vote in class Candidate is
Voter [Voter éppCandidatel,or Candidate. The class denoting the type of
the variable backs is Candidate [Voter e, Candidatel, whichis Candidate
since Voter € system (Candidate).

While the new interpretations of PS subclassing remove some of the restrictions
detailed in the original proposal, they do not remove them all. In particular, node
representations cannot be generated for systems containing two mutual supplier classes,
where one is a subclass of the other, An example is system (Voter) = {Voter,
Candidate) shown in Example 5.11a.

class Voter
var backs : Candidate
method vote () : Voter
begin . end

enc Voter

T

class Candidate inherits Voter
var influernce : Voter
method vote () : Voter
begin .. end

end Candidate
Example 5.11a

The system denoted by the class definitions above is the infinite system described in
Example 5.11b.

class Voter
var backs : Candidate
method vote () : Voter
begin .. end

end Voter

class Candidate
var backs : Candidate'
method vote () : Candidate
begin .. end
var influence : Voterx

end Candidate

class Candidate'’

{ = Candidate [Voter “Deep Candidate]}
var backs : Candidate'’
method vote () : Candidate!
begin .. end
var influence : Voter

end Candidate

class Candidate''
{z Candidate' [Voter «Deep Candidate))
var backs : Candidate''’
method vote () : Candidate‘’
begin .. end
var influence : Voter

end Candidate

Example 5.11b

Because both Voter and Candidate [Voter «—Decp Candidate] belong to
system (Candidate), system (Candidate) is infinite. Classes forming temporal
cycles are acceptable as input to the alternative inheritance resolving algorithm of section
5.5.4, provided that they do not denote infinite systems.

5.6.3 Constants

It was shown in section 4.3.4 that PS subclassing mechanisms do not denote type-
safe subclasses when classes contain constant expressions. Example 4.16 contained a
class named example that contained code assigning the constant value 45 to a variable of
class (type) Int. It was shown that in any subclass of example, where Int had been
substituted with some subclass of Int, this assignment would violate the binding check.

The PS proposal demanded that base classes be defined in the language like any
other class. A sample definition from [PaSc90a}, for the class, Int was shown in
Example 4.17. It was shown that class definitions such as this did not eliminate conswant
expressions and base classes. The constant, 45 became an Object instead of an Int in this
interpretation, as it could be bound to the instance variable, value of type Object. It was
shown that any class that included code that bound a constant to the instance variable,
value would have unsafe subclasses when another class was substituted for Object.

That Int, Bool and Char are not constant classes in the PS approach, is also
problemaiic. Given the class definition for Int of Example 4.17, the class expression
Int [Object « Bool] denotes a distinct subclass of Int, equivalent to the class

definition of Example 5.12.

-140-

class Int'

var value : Bool

method plus (other : Int')
begin .. end

method times (other : Int')
begin .. end

method zero : Int'
begin .. end

end Int'
Example 5.12

Note that Int ' is not structurally equivalent to Int because the instance variable, value
has type Bool in Int'. While it is unlikely that the class expression,
Int [Object « Bool) would ever be used in a variable declaration, this class would
inadvertently be a supplier to the class, Array [Object « Bool], given the class
definition for Array that is borrowed from [PuSc¢90d] and shown in Example 5.13.

class Array

method at (i : Int) : Object
begin .. end

method atput (j : Int, % : Object) : Array
begin . end

method init (size : Int) : Array
begin .. end

method arraysize () : Int
begin . end

end Array
Example 5.13

Because of the deep nature of substitution, the parameters i (of method at), j (of method
atput)and size (of method init) would have its their types denoted by the class,

-141-

Int [Object ¢ Bool]inthe cluss, Array [Object ¢ Bool]. What was desired of
course, was for these parameters to have the type /nt in this subclass.*

Problems with constants arise if it is possible for base classes to have subclasses.
Statements that bind constants to variables are not safe if the class of the constant (and
hence of the variable) is replaced by a subclass. Subclasses of base classes can
inadvertently become suppliers to the subclasses of base class’ clients, because of the deep
nature of subclassing mechanisms. The solution proposed here is to restrict base classes to
have no subclasses, save for themselves. Thus, given a base class C and a set of nodes N,

inherits (C,N) =C
and given classes A and B where A « B,
claeB|=C.

Given this interpretation, Int |Object « Bool] would be equivalent to Int, and
therefore Int would be a supplier class for Array and also for all subclasses of Array.
If Int also has no subclasses by inheritance, then the loss of binding checks in the
presence of constants is countered since the types of variable, wat are bound to constants
are guaranteed not to change in subclasses.

It is unfortunate but necessary to distinguish between regular and base classes. The
division is a natural one, and while the aesthetic appeal of having only one form of class is
lost, only classes in the base system are irregular. One of the next steps in my research will
be prove that P§ subclassing mechanisms ensure type-safety in subclasses, given this
property of base classes, and given an extension of the PS-based Mini-Dee grammar that
reintroduces rules allowing constant expressions.

5.7 A Prototype Parser of PS-Based Mini-Dee

Appendix V contains output from a prototype Mini-Dee purser, implemented as
part of the preliminary work for this thesis. Complete systems of class interfaces (both

* This problem can be resolved by removing the instance vanable, value from the class definstions for Int,
Bool and Char. By doing this, any subsutution applied (o onc of these classes results in a class that is
structurally equivalent to the ongnal class. This solution does not solve the initial problem that arises
when constant values are bound 1o variables whase types can change i subclasses.

-142-

explicitly defined and those denoted by inheritance and substitution) are input to the parser.
Node representations of these class interfaces are generated as output. Representations of
systems denoted by inheritance and substitution are generated using the algorithms of
sections 5.5.3 and 5.5.4. Also output is a list of every class given a representation, and
every other class of which it is a subclass. For each subclass/superclass pair, the output
includes the mapping function that establishes the pairing. The parser is implemented on a
Macintosh using Think C; a variation of the hybrid ubject-oriented language, C++.

5.7.1 Data Structures

The important data structures for this implementation are defined using class
definitions. The most fundamental data structure is the node. Collections of nodes are kept
in class representation objects. Collections of class representation objects are kept in a
table. Of these structures, the table is simplest. It contains an array of class representation
objects as well as various operations that search and insert into the array. The class
representation object contains a hist of nodes comprising the representation of some given
class. It also contains a list of strings (“aliases™) by which the class is referred. For
example, given any classes identified as A, B and C, where B « C and B € system (B), the
name “A [B « CJ” is an alias for the class A. Upon seeing a reference to A [B ¢ C}, the
parser generates its representation and seeing that it is equivalent to the representation for 3,
removes it from the table and adds the string, “A |B « C]” as an alias associated with the
representation for A.

Two data structures are used to implement the node. These data structures are
implemented as separate subclasses of an abstract node class; one for variable nodes and
the other for method nodes. Therefore, of the six components of the node tuple described
in section 5.3, only five are explicitly represented. The kind component that distinguishes
between a variable and method node, is unnecessary given the inforrnation provided by the
subclass hierarchy. The id field, giving the name of the variable or method, is implemented
as a string. The parms and locals fields only part of method nodes, and are implemented as
lists of variable node objects. The rype and context fields that show the declared class of
the variable or method and the class in which the variable or method is declared, are
implemented as indices into the table of class representation objects. The reasons for using
table indices to represent class identifiers are outlined below.

5.7.2 Design Issue: Representing Class Identifiers

The Mini-Dee parser was designed in two stages. The original design was for a
parser that generated node representations for systems of explicitly defined classes only.
At this stage of the design, three representations of class identifiers were considered. Since
the first parser did not allow the use of inheritance and substitution to denote systems of
classes, it would have been possible to identify class references appearing in nodes with
class names. However, it became clear that the addition of support for inheritance and
substitution to the parser would result in some cases in the denotation of unnamed classes
(see the footnote of section 5.3).

Another design considered was to represent class identifiers with the class
representation objects themselves. As the mutual supplier classes of Example §.14

demonstrate, this choice would not have allowed the parser to terminate in some cases.

class A
var b : B

end A

class B
var a : A

end B
Example 5.14

If a class identifier were implemented as a class representation object, then the
representation for class A would be incomplete until the representation for B was complete
and vice-versa. Therefore, this approach was abandoned and the third approach was taken.

The third approach involved adding an extra level of indirection to allow the parser
to generate representations for systems of classes such as the one above. In this scheme, a
“dummy” representation is stored in the array while a class representation is teing
generated. Indices to these “dummy” representations are used 1o represent the references to
the class whose representation is as yet incomplete. When the actual class’ representation
is complete, the “dummy” record is replaced by the completed representation object,
keeping all index references found in other representations valid. Table 5.1 shows the
sequence of events occurring during the parse of the above system of classes, and the

contents of the table of class representation objects at each stage of execution,

-144-

Step | Action Table

1 Table is searched for representation | —
for A,
2 Aisnotin table. A “dummy” 11 A} "dummy"

representation for A is inserted.

3 Parse of A begins.

Node for variable b of class A
triggers table search for
representation for B.

>

5 B is not in table. A “dummy”

representation for B is inserted. 2| B} "durmy

Parse of B begins.

7 Node for variable a of class B
triggers table search for
representation for A. A found at
index, 1. 1 inserted into node for
variable, a.

8 Parse of B ends. “Dummy” 1A} "dummy”
representation for B replaced by 2l Bl ((v,a,1,20,0))
node representation for B.

Completing step 4, index for B (2)
inserted into node for variable, b.

9 Parse of A ends. “Dummy” 1Al {(v,b2,1,89)
{(v,a,1,2,83 9)

W
ve)

representation for A replaced by

node representation for A.

Table 5.1

5.7.3 Design Issue: Handling Compiler Dependencies (and
Temporal Cycles)

The use of table indices to represent class identifiers allows explicitly defined

classes to be parsed in any order. The order in which representations of classes can be

generated cannot be random however, once inheritance and substitution can be used to

-145-

B

necessary to generate the complete node representation of A completing the representation
of . (Thus, given the temporally cyclic system of classes, {Voter, Candidate}, itis
necessary to finish the parse of Vot er before finishing the parse of Candidate).
Similarly, it is necessary to generate representations of the classes C, D and E before
generating the representation of C [D « E].* These dependencies are referred to here as
compiler dependencies. They not only determine the order in which classes must be
parsed, but also what systems of classes cannot be resolved. A system of classes is
irresolvable if there exists a cvcle on the graph that has a node for every class, and edges
indicating compiler dependencies. As a simple example, if A inherits B and B inherits A,
then (A, B} is an irresolvable system. We saw earlier, that classes which are subclass-
related and mutual clients must also be considered irresolvable, since such classes compiise
infinite systems.

Two approaches to handling compiler dependencies were considered. One
approach was to have a front-end preprocessor that would examine all classes in the input
systems and establish an order in which these classes should be parsed. This approach
was ruled out because it was incompatible with the design of the initial parser that generated
node representations for explicitly defined classes. The order in which classes were parsed
in the initial parser depended on the order in which references 1o them appeared in other
classes. Thus, the parse of a class A that had a variable declared 1o be of type/class B, was
interrupted to parse B if B had not yet been pursed.

The second approach to handling compiler dependencies was used in the final
design. This approach introduces state to class representation objects. At any point during
the parse, a class representation object can have been completely generated (resolved) or in
the process of being generated (unresolved). Given some compiler dependency, A — B,
the resolution of the class representation object for A is delayed until the state of the class
representation object for B is resolved. Once B is resolved, the processing of A is triggered
and subsc juently the state of the class representation object for A can become resolved.
This in wrn, triggers the generation of representation objects for classes that depend on A
and so on. This approuch wis compatible with the initial parser since the order in which
classes were parsed still depended on the order in which references to classes appeared in
other class definitions. (Though the order in which class parses were completed depended
on compiler dependencies).

* In fact, it is only necessary to gencrate the complete node representation of C to gencrate the node
representation of C [De-p, EL (1 thys were not the case, then the inhents defimtion of 5.4 would not be

valid). ButC[D « E]is only equivalentto C D ¢y E] when D @ E, and the latter relation can only
be determined 1f the representations of T and E are complete.

-146-

The most interesting challenge of this approach was representing state in objects. A
simple flag in the object that indicated its current state, was insufficient since the behaviors
of an object also depended on its state. For example, a message to a class representation
object to parse itself should do nothing if the object is resolved, but should initiate a parse if
it is unresolved. The ideal object-oriented solution was to declare all methods whose
implementations depended on state in an abstract class and to provide the varying
implementations in separate subclasses. Resolved and Unresolved could name
unique subclasses of some abstract representation class, and a class representation object
would be able to change its class from Unresolved to Resolved dynamically.
Untyped languages such as Smalltalk and CLOS support the dynamic change of class of an
object; herein referred to as “class metamorphosis.” Support for class metamorphosis in
typed object-oriented languages is the subject of some current research [Ta%1], but has yet
to be implemented in any well-known typed object languages.

Class metamorphosis is simulated in my design using the supplier/client
relationship between classes. Resolved and Unresolved states are implemented as
subclasses of an abstract representation class, with varying implementations of inherited
abstract methods. The class representation objects themselvez do not belong to these
classes but are clients of them. Each object has un instance variable state, declared of the
abstract representation class. Methods whose implementations depend on state, are defined
in the representation object to invoke the corresponding method in the state object. Thus, a
class representation object cian change its state by reassigning a new object to its state
instance variable. The state object acts like the class of the representation objec: vecause it
contains implementations of object methods. The state of the representation object though,
can be chunged dynamically.

This simulation does not work as well as true class metamorphosis should. At the
implementation level, there is an overhead of an exira level of indirection in method calls,
as well as some memory management necessary to dispose of discarded state objects when
objects change their stute. Also, self-reference can only be clumsily simulated. It is
necessary to keep some variables and methods declared in the representation object since
they are not altered by a change of state. Since some of the method definitions found in the
state object must refer to these variables and methods, it is necessary for the state object to
keep a reference to the class representation object that owns it. As a result, separate state
objects are required for each cluss representation object, and self-reference that would be
inherent if state were implemented as a class must be simulated instead as a clumsy network
of interrelations that makes coding difficult and that violates encapsulation. A language’s
support for class metamorphosis should allow an object to change its class provided that it

-147-

did not change its type. (By not allowing it to change its type, we can statically ensure that
type-safety will not be violated). Class metamorphosis thus results in a form of dynamic

binding, and its support is dependent on resolution of type issues that have been discussed
here.

5.7.4 Sample Output from the Mini-Dee Parser

Appendix V contains sample output from the Mini-Dee parser. Twenty-one
examples are given, illustrating many of the issues that have been discussed here.

The output from the first example (V.A) consists solely of the base classes of the
Mini-Dee system and their superclasses. This class structure is borrowed somewhat from
the Dee class library ([Gr91]) and presumably would constitute the minimal library of
classes previded to the user of Mini-Dee. The graph of Figure 5.} shows how each class
is related in the subclassing hierarchy:

Object\
Comparable Ring
Order
Integer Char Boolean

A —P B indicatesthat A < B

Figure 5.1

Object is the superclass of all classes, defining no variables nor methods.
Comparable is a partially abstract class that contains a method declaration for the
comparison operator, ‘=" and a definition for ‘#’. Order is also a partially austract class
containing declarations and definitions for other compurison operators such as ‘<’, ‘<’ etc.
Ring contains declarations for the operators **+” und “zero.” Int, Char and Bool arc
base classes since their instances are constants. The definitions for all of these classes are
shown in Example S5.15.

-14§-

class Object

end Object

class Comparable

method equals (other : Comparable)

begin .. end

end Comparable

class Order inherits Comparable

method 1t fother
begia .. end
method gt {other
begir .. end
method lte (other
begin .. end
method gte (other
begin . end

end Order

class Ring
method plus (other
begin .. end
method zero : Ring
begin .. end

end Ring

class Bool inherits Ring

method and (other
begin .. end

method or (other
begin . end

method not : Bool

begin . end
end Bool

Order) : Bool

Order) : Bool

Order) : Bool

Order) : Bool
Ring) : Ring

Comparable
Bool) : Bool

Bool) : Bool

-149-

Bool

R PO TR

Dane

class Char inherits Ring Orde:

method asc : Int
begin .. end

end Char

class Int inherits Order Ring
method times (other : Int) : Int
begin .. end
method div (other : Int) : Int
begin .. end
method mod (other : Int) : Int
begin .. end

end Int

Example 5.15

The output for this and other examples consists of three parts. The first part
describes every unique class representation object generated during the parse. The second
part shows for every class thit wis parsed, the superclasses of that class. For each
class/superclass pair, also output is the mapping function that establishes the pairing. The
last part shows for every class that was parsed, the parent classes of that class. Again,
along with every class/parent pair, the mapping function establishing the pairing is also
output.

The table output lists the name of each class given representation, the index of the
representation in the table, the aliases for the represent. tion, the final state of the
representation object, and if the final state is resolved, the nodes that comprise the
representation. It is necessury to output the index of each class representation since the
classes that are the type und context ficlds of 4 node are identified by indices.

As the base classes and their superclasses are always ¢ sailable for use by the Mini-
Dee user, they are always parsed before input systems of classes are parsed. As a result,
they always appear in the same positions in the table. Therefore, the node representations
of base classes are only provided in V.A.

The second example (V.B) consists of the Turtle, WrappingTurtle classes
of Example 2.7. This example demonstrates that PS subclassing captures the form of
subclassing redefinition usually desired by programmers.

The third example (V.C) consists of classes used 1o demonstrate the PS
“unfolding” algorithm. Used as input to the Mini-Dee parser, it is evident that the

-150-

alternative definition of inheritance presented in Section 5.5.4 results in the denotation of
the same system of classes prduced by the “unfolding” algorithm.

The example classes of V.D are taken from Example 5.7a and Example 5.7b
that show that the alternative definition of inheritance presented in Section 5.5.4 is well-
defined.

The example classes of V.E are borrowed from section 4.3.3 (Examples 4.10a
and 4.10b), where it was shown that class substitution is consistent throughout a system
of clusses. Of interest in this example is the type of the variable, o3, in class B'. If class
substitution were not consistent over a system of classes, then the type of o3 would be C,
and not C [Object « [nt].

The example classes of V.F are also borrowed from section 4.3.3
(Example 4.11), where it was shown that class substiiution is more than just deep
substitution. Of interest in this example, are the types of o; and o, in class B" (B [C «
C']). If class substitution were only deep substitution, then the types of these variables
would be Object rather than /nt. As was demonstrated in Chapter 4, the resulting class
from deep substitution could not be guaranteed type-safe. We can see by examining the
aliases for the class representation of B", thut B [C « C '] is equivalent to B [ObJject ¢
Int}, and that the argument to the method p in this class must be of class Int. The
classes of V.G are also borrowed from section 4.3.3, showing that a complex substitution
is not necessarily equivalent to a simple substitution. In this example, the class Fam [An
« Hum| (HF,) is not equivalent to Fam [Object « Int] (HF;).

The classes of V.H and V.1 are tuken from Examples 5.3 - §.5 that provide
example “mapped systems.” V.J shows that subclassing is structural and not just
determined by the transitive application of explicitly defined inheritance relations. In this
example, classes E and F are formed by multiply inheriting different and unrelated pairs of
classes. Though class E inherits A and B, and class F inherits C and D, and A,B,C and D
are not in any way related, E and F are structurally equivalent and hence given the same
representation. V.K carries this idea a step further, showing eight very similar classes. Of
the eight, only I is equivalentto A This is because classes A and B are mutual suppliers,
and hence any subclass of A must preserve this relationship, and thus be both a client and
supplier of some subclass of B. Classes C and H are also equivalent since each has a
recursive variable named a, and a method p with one recursive parameter and one /nt
parameter, and returning a B.

The classes of V.L, V.M and V.N ure taken from the exhaustive case analysis of
Chapter 3, used to show that Bruce classes are not necessarily valid just because they are
type-safe. Classes that are problenuitic to the Bruce system are valid as PS classes because

-151-

of the consistent nature of signature redefinition that extends through a system of PS
classes.

The classes of V.0 and V.P illustrate how temporal cycles are handled. Both
examples is a variation of the {Candidate, Voter} system first shown in
Example 4.5. It should be pointed out that the classes of V.P comprise an irresolvable
system. This example has as its input, the class interfaces first presented in section 5.6.2.
It was shown in this section, that because this system contains two mutual supplic. classes,
one of which is subclass of the other, that the denoted system is infinite.

V.Q and V.R also show irresolvable systems. These systems are irresolvable
because of compiler dependencies. In both examples, A and B are mutually dependent.
V.S demonstrates that multiple inheritance is supported in this subclassing scheme. Class
Ainherits three classes, two of which are themselves generated via substitutions.

V.T and V.U are borrowed from [PaSc90d]. Palsberg and Schwartzbach used the
classes of V.T to show how class substitution might be used in a practical application.
The classes Array and Stack are defined explicitly as collection classes whose items are
Objects. Bool and Int stack specializaiions are denoted using substitution. This example
shows how the deep nature of substitution can result in the denotation of classes that have
not been explicitly named. Stack is implemented with a variable, space, that is an array
of objects. Appropriately, in Int stack, space is an array of Ints and in Boolstack,
an array of bools. These unnamed subclasses of Array are given representation at indices
16 and 23 respectively in the table.

V.U shows another system of classes involving Arrays. Two things should be
noted about this example. Firstly, the variable, r in the class Mat rix, is declared of a
class denoted via substitution. (All previous examples only used substitution to denote
classes that were arguments to the “inherits” class operator). Secondly, this example
shows the structural nature of subclassing as defined on node representations of classes.
The classes BoolMatrix and MatrixMat rix are subclasses (and also child classes) of
the class Ring, even though they are not explicitly declared as such. Similarly, the class
DoubleRingArray is a subclass and a child class of Array, though not defined in this
way.

This example shows the transitive nature of subclassing. DoubleRingArray is
a subclass of DoubleArray which in tum is a subclass of Array.

-152-

5.8 Conclusion

It was argued in Chapter 4, that despite its shonicomings, the PS approach to
subclassing offers more potential as a subclassing approach than does the restrictive
approach of Bruce. It was pointed out however, that the PS approach is as yet incomplete.
The PS representation of classes and accompanying algorithms for inheritance and
substitution, while useful for proving results, are not intuitive. PS subclassing is
incompatible with classes containing constant expressions and is not well-defined for types
that are anything but singleton sets. Classes forming temporal cycles are invalid in the PS
approach, and thus some useful classes that directly or indirectly, are clients of their own
subclasses are disallowed. Finally, PS subclassing only allows for single inheritance and
single subclassing relations.

An original and alternative interpretation of PS subclassing has been presented in
this chapter. The node representation of classes is based on interfaces rather than code, and
gives a finite representation of all classes. Various new terms have been introduced. A
mapped system denotes a set of classes that can safely reuse the code of some existing
system of classes. If there is a correspondence between classes in one system, to classes
with at least the same structure in another system, and all references to classes in the
original system are replaced by references to corresponding classes, then the latter system
is a mapped system of the former. Subclassing is not a relation between classes but
between systems of classes, and 1s based on the mapped system relation. Inheritance and
class substitution are defined as higher-order functions that denote mapped systems.
Inheritance denotes a mapped systern which resembles the original system except that
recursive references in inherited signatures are deeply replaced. Substitution involves the
replacement of one system of classes, Sg with a mapped system, Sc i some other system,
Sa. by applying the mapping function which maps Sp 10 S¢, t0 §4. These definitions are
less restrictive than the algorithms presented in [PaSc90d], since they accept most systems
containing temporal cycles as input and are compatible with multiple subclassing relations
and mulaple inhenitance. Finally, a resolution to the problemis with constants is presented,
which establishes constant classes to have no subclasses,

The ideas presented in this chapter have been implemented in a prototype parser
which is also described, and whose output is presented in Appendix V. These
contributions interpret and exterd the original PS subclassing proposals, though do not
resolve all of their shortcomings. Thought has been given to extending PS subclassing so
as to be compatible with dynamic binding. Preliminary ideas are described in the next
chapter, which outhnes the future work being considered.

-153-

PAGINATION ERROR. ERREUR DE PAGINATION.
TEXT COMPLETE. LE TEXTE EST COMPLET.
NATIONAL LIBRARY OF CANADA. BIBLIOTHEQUE NATIONALE DU CANADA.

CANADIAN THESES SERVICE. . SERVICE DES THESES CANADIENNES.

Chapter 6.

Future Work: Marrying Dynamic
Binding to PS Classes and PS
Subclassing

It is claimed in [PaSc90d] that PS subclassing, inheritance and class substitution are
well-defined over classes whose signatures include non-singleton types (such classes are
herein referred 10 as non-singleton classes) provided that all non-singleton types are finite
sets of classes. PS subclassing and subclassing operations, it is said, do not result in type-
safe subclasses when applied 1o non-singleton classes whose tvpes are infinite sets of
classes.

This argument was refuted in Chapter 4. PS subclassing and subclassing
operations are only well-defined over classes whose signatures include singleton types
(Such classes are herein referred to as singleton classes). L-Trees are only well-defined
over singleton classes and it is therefore not clear how subclassing, defined over L-Trees,
applies to non-singleton classes, even when the types of such classes are finite. It is also
not clear how the graph-based representation of class definitions (used in the unfolding
algorithm described in 4.3.3) can be extended over non-singleton classes and therefore it is
not clear how inheritance is defined over such classes. Finally, there are conflicting

interpretations in [PaSc90d] of how class substitution is defined over non-singleton
classes.

Alternative definitions of subclassing, inheritance and class substitution, based on
node representations of classes, can be naturally extended over non-singleton classes. It
will be shown in this chapter that the new definitions for inheritance and class substitution
result in type-safe subclasses, even when applied to non-singleton classes. Still, two key
problems remain, that must be addressed before PS theory can be put into practice:

e The classes that result from application of inheritance and class substitution
operations to non-singleton classes are type-safe subclasses, but include types that are
difficult to express, not very useful, and not easily predicted. One problem that
remains is how to achieve useful and intuitive subclassing of non-singleton classes.

¢ The combination of PS subclassing and the PS interpretation of types results in the
tension described in Chapter 2, of subclass-based type interpretations and covariant
subclassing. This tension must still be resolved.

These two problems are the focus of our current research. A detailed description of
the problems, and informal descriptions of possible solutions are given here.

6.1 Marrying Dynamic Binding to PS Classes

It was pointed out in Section 2.5.3 that object-oriented languages with subclass-
based type interpretations must sa-.sifice one of the following features:

e covariant subclassing redefinition,
e argument passing with method invocations, or
e strong or static typing.

None of these choices is appealing. It was suggested in Section 3.7 that the Bruce
approach to dynamic binding, which adopted a subclass-independent interpretation of
types, is preferable to subclass-based interpretations. A proposal follows, for a variation
of the PS type interpretation that is subclass-independent.

156

6.1.1 A Proposal: Subclass-Independent PS Types

The PS interpretation of types establishes a type to be any set of classes, and a
subtype any subset. These are more general definitions than are typically used, but as was
argued in Section 4.4.2, only certain sets of classes make for useful types and subtypes. It
was contended in this section that the only useful types were those for which signature
checks could be confined to a single class. The types that resulted from this restriction
were of three kinds: empty type, singleton types, and non-singleton sets of all subclasses
of given classes. '

In fact, the above interpreiation of non-singleton types is not entirely useful,
because it does not help to resolve the tension of subclass-based binding and covariant
subclassing redefinition. An added criterion is proposed to discern useful types. This
criterion demands that binding and parameter binding checks be the same. The types that
result are also of three kinds:

* D - the empty type. The signature check of an expression whose type is empty
always succeeds, since an object of empty type should respond to any invocation,
with the output of a string such as:

“message sent to object of empty type” or
“message sent to unconstructed object.”

o(C - thesingleton type, {C) (where C is a class). A signature check of an
expression whose type is singleton, is confined to the class denoting the type of
the expression.

o TC - the non-singleton type, {all equivariant subclasses (<) of C). Equivariance
is defined as the strict direction of signature redefinition which is both covariant
and contravariant. A class is an equivariant subclass of another class if the
signatures of the superclass’ system are redefined in the subclass’ system
according to the following rules:

1. neither the types of instance variables nor method parameters are

redefined, and
2. method return types, if redefined, are specialized in subclasses.

157

An equivariant subclass must also be covariant since PS subclasses allow for
genericity. An equivariant subclass must also be contravariant so as to resolve
the tension of covariance and dynamic binding. The result is a fairly strict
dynamic binding, though arguably not much more strict then contravariance. (It
is hard to think of an example class and subclass, where the generalization of a
method parameter is desirable!)

A signature check of an expression of type TC is confined to class C.
Binding checks for variables and objects of any of the type categories are
identical to equivalent paramete: binding checks. The nature of these binding
checks are summarized in Tabie 6.1. It is assumed for this table, that an
object, o of type O is being bound to a variable or parameter v of type V (as in
the assignment, v := o.) Each row in the table demonstrates a different case
with regard to the types that are V and O. It should be assumed for these
examples that A and B name classes.

| 4 0 bind (V,0)

Anything 1%, TRUE

%] Anything but © | FALSE

A B A=B

A T8 FALSE

Ta Bor TB Aa.B
Table 6.1

It should be pointed out here, that the binding checks above only succeed if the type
of the object bound to a variable, is a subtype of the type of the variable, and is also a
useful type. Strictly speaking, the set of all subtypes of 7A is the set of all subsets of,
{(x1A <¢x)

which is larger than the set of all useful subtypes,

{{x} 1A cex) U{z]x <c2z)! A qex].

158

6.1.2 Class Metamorphosis

The advantages of an OOP language’s support for class metamorphosis were
outlined in Section 5.7.3. It should be remembered from that discussion that support for
class metamorphosis allows an object to change its class dynamically. The PS-based Mini-
Dee parser, implemented as part of the preliminary work for this thesis and described in
Section 5.7, would have benefited from support for class metamorphosis. In order for the
parser to handle cyclic structures such as mutually supplying classes or classes lying on
temporal cycles, it was desirable to introduce a notion of state to class representation
objects. At any point during execution of the parse, class representation objects could be
resolved or unresolved and could change their state from unresolved to resolved
dynamically.

Support for class metamorphosis comes for free with the support of non-singleton
classes, and definitions for type-safety over these classes. An object, through some
syntactic mechanism would be able to change its class to any other class included in its
type. As an example, given that B and C are subclasses of some class A, an object denoted
by the expression, e : TA would be able 1o change its class with the execution of

statements such as:

e becomes (C),
e becomes (A)

or e becomes (B).

For any class X, the type-checker can statically guarantee the safety of the statement,

e becomes (X)

by establishing that A <. X. This follows, since as far as type-safety is concerned, the
changing of the class of e to X is equivalent to assigning an object whose type is {X} to e.
In either case, every message that is sent to0 e is guaranteed understood by the signature
check of A.

Class metamorphosis would be meaningless in a language that supported only
singleton classes since singleton types only include objects belonging to a single class. It
appears that in expanding class definitions to include non-singleton types, support for class
metamorphosis comes for free.

159

6.1.3 An Extension of Mini-Dee

Support for non-singleton classes demands that a new extension of Mini-Dee be
defined, over which new definitions of nodes and type-safety can be based. The grammar
for this extension can be found in Appendix I-G. Semantically, the new extension of
Mini-Dee is the same as that defined for PS theory in 4.2. Syntactically, the rules for types
below should replace the rules for the nonterminal, Type found in the extended PS-based
grammar for Mini-Dee in Appendix I-E.

T - ‘@ - the empty type
! CName -- the singleton type, {CName)
I “T* CName -- the non-singleton type,

(all equivariant subclasses of CName }
Figure 6.1

Semantically, binding, parameter binding and signature checks should be as described in
Section 6.1.1. Binding and parameter binding checks should be the same, and should both
demand that the type, O of an object o be denoted by an equivariant subclass of the class
denoting the type of the variable to which it is bound. Signature checks need only be
confined 10 the class which denotes the type of the expression which receives a given
message. Subclassing redefinition should still be covariant and consistent. Descriptions of
inheritance, substitution and other subclassing mechanisms, as applied to non-singleton
types, are provided in the next section.

6.2 Marrying Dynamic Binding to PS Subclassing

6.2.1 A Node Representation of Non-Singleton Classes
It is necessary to redefine nodes to reflect the fact that types can be non-singleton
sets of classes. Accordingly, type and context fields of nodes (type_rep) are no longer

represented by class identifiers, but labeled pairs of the form:

(name : Class Identifier, kind: {e, s, n})

160

ey

where name identifies a class, and kind is e if the type is empty, s if the type is the
singleton set of classes identified by name, and n if the type is the non-singleton set of all
equivariant subclasses of name. Nodes are thus defined as in Section 5.3, but for the type
and context components that are pairs of the above form. Thus, given the class definition
for C in Example 6.1 below,

class C
var em : {})
var a : A
method m () : Tx
begin . end
i end C

Example 6.1
we have

Rep (C) =
{ (v, em, (c.e) (C,s). «, D),
(\'. a, (K.S). (C,S). “«», @)-

(m, m, (X,n), (C.s), «(v, self, (Cs) (C.5), «», @)», &)

As should be evident from the node representing the variable em, the empty type can be
represented by a pair (z,), where z is any class identifier. It should also be noted that the
value of a node’s context field is always of a singleton type. Strictly speaking, it is
unnecessary to use the pair representation of types to represent the context of a node since
the context is always a single class. However, the grammar defining type-safety of
Appendix VI, relies on the equivalence of type and context representations, and therefore
the pair representation is used for both node components.

6.2.2 Type-Safety Defined Over Non-Singleton Classes

The attribute grammar that defines type-safety in Mini-Dee for singleton classes
must be revised in two additional ways to account for non-singleton classes also. Firstly,
the actions that annotate the grammar rules for Type, CName, Cj, and Cc must be revised.

161

The new actions and rules are shown in Figure 6.2 and should replace the rules and
actions associated with the nonterminals, Type, CName, and Cj in the attribute grammar of
Appendix II. Note that the attributes Type.value, CName.value, and Cy.id are assigned
type representation pairs (as described in 6.2.1) to reflect the fact that the environment
generated by the parse of a Mini-Dee program consists of a set of nodes what can be used to

represent non-singletor classes. Additional rules and modified actions are emphasized with
shading.

Type ~» 1)

type.value 1= {type.context, e)

| CName

type.value := CName.value

| TCName

tvpe.value :«= (CName.value.name, n)

CName — IDEN

CName .value := ({IDEN,value, 8)

C - CLASS IDEN AList END IDEN

C,.env := Alist.env
|c;.id := (1EN.value, s) |
C,;.unique_names := Alist.unigue_names

Alist .context := C;.id
Figure 6.2

The second revision necessary concemns the bind and parm_bind functions which
perform binding checks. The behavior of the new binding check is summarized in
Section 6.1.1. The entire atrribute grammar defining type-safety on this version of Mini-
Dee with non-singleton classes is given in Appendix VI.

162

6.2.3 Extending the Definition of Subclassing

It should be relatively straightforward to extend the definitions of subclassing, and
subclass-related relations and functions to account for the new definidon of nodes and the
corresponding definition of type-safety over non-singleton classes. When defined over
singleton classes in Section 5.5, the subclass relation (<) was defined in terms of the
mapped system relation, which in turn was defined in terms of the function, map. Map can
be redefined in terms of the node representation presented in this chapter. The mapped
system relation over such nodes has an equivalent definition to that of Section 5.5, but
defined in terms of the new map definition. . is then defined as « was before, but in
terms of the modified mapped system relation.

The new definition of map depends on the definition of an auxi‘ary function, map-,
which maps a function over an instance variable, local variable or parameter node. It is
defined as:

map..: ((Class Identifier — Class Identifier) x Node) — Node
map. (f, (v, n, (¢},), (€2, 5), @, D) = (v,n, (c1,1), (f (c2), 5), «», D)

where n is any name, ¢; and c; any class names and 7 is one of: e, s or n. Note that map-
returns a node with identical type, though differing context.

As was the case with the original definition of map of Section 5.5, the definition of map.. is
extended over sets and sequences of nodes such that:

map= (f, {n;,nk}) = {map= (fin;), ...,map-(f,n) } and

map= (f, «p;, ..., px») = «map=(f,p;), ..., map=(f,py) »

163

The node returned by the function map, depends on whether the input node is a variable or
method, and on whether it has empty, singleton or non-singleton type. The definition is
given by cases below:

i. method or variable nodes of singleton type:

Here, map is defined as map was defined over nodes, sets of nodes and sequences
of nodes in Section 5.5.

map (f, k, i, (c1. 1), (c2,5), p, 1)) =
k, i, (f (), 0, (f (c2), 5), map (f, p). map (f, 1))

ii. instance variable, local variable and parameter nodes of non-singleton (or
empty) type

map (f, (v, I, (c;,), (c2, §), «», D)) =
map =(fy (v, i, (Clv n), (CZv 8), «w», g))

Though defined in terms of a node with non-singleton type, the same definition
applies over variable nodes with empty type.

iii. method nodes of non-singleton (or empty) type

map (f, (m, i, (¢;, n), (¢2,8), p, D)) =
(m, i, (f (c1),), (f(c2),), map =(f, p), map=(/, 1))

Though defined in terms of a node with non-singleton type, the same definition
applies over method nodes with empty type.

It should be noted that the definition for <. only recognizes subclasses which can

be defined in the explicit Mini-Dee grammar. For example, given a class A which contains

a single method with interface,

method m : Tc

164

then another class, A' is a subclass of A if it defines the same method with a return type
which is a subset of the set (x 1 C «. x}. The only subclasses of A recognized by the
definition of «., are those with method definidons such as

method m : Tc! or method m : C"

where C ¢, C' and C a. C". Note that if a class A', were to include a method definition
for m such that its return type were the set of classes, {C', C"}, it would not be recognized
as a subclass, despite the fact that it is one.

6.2.4 Extending the Definitions of Inheritance and Substitution

The definitions of «.and mapped sysiem over nodes of the kind introduced in this
chapter, are identical to the definitions of < and mapped system given in Section 5.5, but
defined over a modified map function. Similarly, inheritance and substitution should be
defined over modified nodes as they are defined in Section 5.5, but in terms of a modified
deep substitution operation (¢—peep) -

Palsberg and Schwartzbach claimed in [PaSc90d] that subclasses of non-singleton
classes denoted by substitution did not preserve the type-safety of inherited code.
However, two contradictory assumptions are made in [PaSc90d] concerning how class
substitution is defined over non-singleton classes, and more specifically, non-singleton
types. The first assumption can be inferred from a result that shows that subclassing
preserves subtyping. From the proof of this result, it would appear that given any classes,
Cy, ..., Cp, A,and B:

{Ci1,....Cr}J[AeBl=[Ci[AeB), ...,ChlAa&B]).
On the other hand, another section of [PaSc90d] describes how:

Tobject [Object « Boolean] = TBoolean and that
Tinteger [Object « Boolean]=TInteger.

The latter assumption is not stated explicitly, but can be inferred from the discussion of

how PS subclassing does not preserve type-safety when applied to classes with infinite
types. The text includes definitions for the two classes shown in Example 6.2.

165

class T
var x : Tobject

var y : Tinteger

method m
begin
X =y
end
end T
class §

var x : TBoolean
var y : TInteger
method m

begin

end

end S

Example 6.2

The claim is made that the second class is a subclass of the first, and discussions with one
of the authors [Pa92] confirmed that this is because S is considered equivalent to
T [Object « Boolean]. The authors further conclude that the above example shows
that class substitution cannot denote type-safe subclasses when applied to classes with
infinite types, since the assignment of y 10 x satisfies the binding check in class T, but does
notin class S.

The above two interpretations of class substitution are contradictory. If we assume
the first interpretation, then

Tobject [Object « Boolean] # TObject
and TInteger [Object ¢« Boolean)# Tinteger

166

In fact, applying the initial interpretation of class substitution to determine the meaning of
T [Object « Boolean] does yield a type-safe subclass. Consider the following

reasoning:

1. Whatis T [Object « Boolean}]?

By application of the algorithms presented in Chapter 5, since Object «j Boolean,
T [Object ¢« Boolean] = T [Object ¢pep Boolean] = S, where S is defined
below:

class S
var x : TObject [Object épey Boolean]
var y : Tinteger {ubject épe, Boolean)
end S

2. What is the type of x in S?
The type of x is equivalent to the set of classes:
{ ce TObjec: { Object € system{c))
by the reasoning below:

a. Partition Tobject into sets A and B where:

A = {c € Tobject | Object € system(c))
B = {c € Tobject | Object € system(c)}

b. Clearly:

. TObject [Object ¢-p., Boolean] =
A [Object ¢-peg Boolean] U B [Object ¢—pepBoolean)

¢ B [Object « Boolean) = B

167

—_——————-——

The latter point follows since Object <) Boolean and for any b, b € B,
Object & system (b)

c. To see whatis A [Object e-pep Boolean], consider any clussa € A:

¢ Object & system(d [Cbject €., Beolean))

® Since 4 € TObject, and d 9 d [Object é-pepBoolean], then

a [Object ¢p, Boolean] € Tobject

Therefore, A [Object & peep Boolean] g B, and

TObject [Object ¢p.p Boolean] =8
3. What s the type of y in S?
The type of y is equivalent to the set of classes:

{ c € TInteger | Object € system(c)}

by the reasoning below:

a. Partition TInteger into sets C and D where:

C
D

{c € TInteger | Object € system(c)}

{c € TInteger | Object € system(c)}
b. By the same reasoning as was given in 2b:

. TInteger (Object &g Boulean] =

C [Object ¢, Bocleanj v D [cbiject € Deep Boolean]

o D (Object ¢, Boolean] = D.

168

¢. By the same reasoning as was given in 2,
C (object | Boolean) ¢ D and Tinteger [Object ¢p., Boolean] = D

Thus, the subclass S = T [Object « Boolean]is:

class S
var x : {c € Tobject | Object & system(c))
var y : {c € Tinteger | Object € system(c))
method assign ()
begin
o=y
end

end §
and S preserves the binding checks satisfied in T.

There is no explicit description in [PaSc90d) of how substitution is applied to non-
singleton sets of classes. However, two contradictory interpretations are assumed. Of
these, the interpretation that defines the substitution of some classes, A < B, over a set of
classes to return another set of classes, where each class C in the initial set has as its image
C [A « B] in the resulting set, ensures that type-safety is preserved in subclasses of non-
singleton classes.

The definition of the substitution operations, inherits, ¢, and ¢pecp of Chapter 5
can be extended over nodes that represent signatures with non-singleton type references to
reflect this interpretation. But while this interpretation does achieve covariant signature
redefinition (the types of x and y in S are subtypes of their corresponding types in T), itis
not a very useful form of covariance. The resulting types of substitutions such as those of
x and y above, are neither intuitively predictable, nor easy to express without greatly
enriching the grammar defining type expressions (ie: they are not “‘useful” types). Further,
the resulting subtypes are not the kind of subtypes usually desired from covariant
redefinition. Considering the example above, no more behavior can be inferred of the
types of x and y in S than could been have of their types in T. On the other hand, if the
type of x could be specialized from TObjectto TBoolean, then it could be statically inferred
that any object bound to x would understand messages defined in the class Boolean.
Finally, it should be noted that substitution over sets of classes does not yield a large range

169

of subclasses. For example, the class S above would have resulted from the substitution of
any class for Object and not just Boolean. When applied to a class C with non-
singleton types, the substitution C [A « x] appears to give the same result no matter what
the class denoted by x.

We have given thought to how to achieve the more powerful form of covariance
that is usually desired and that no doubt motivated the second interpretation of substitution
over sets of classes in {PaSc90d]. One proposal is presented along with its advantages and
shortcomings, in the section that follows.

6.2.5 A Proposal for Useful, Intuitive Covariant Subclassing

A more desirable form of covariance would allow a type reference of TObject be
specialized to be TInreger or TBoolean or some other set of classes for which more
behavior can be statically inferred. In other words, it is desirable to be able to specialize the
root class of the set of subclasses, since the variable and method names understood by the
root class are also understood by their subclasses. We have seen that selective signature
redefinition in subclasses demands contravariance. The PS approach which involves
applying a redefinition operation 1o a class, demands consistency of redefinition but allows
covariance. Therefore, tht ideal subclassing mechanism should specialize type references
intuitively, but via some kind of operation that can be applied to all type references
consistently.

Since types are sets of classes, and subtyping is set inclusion, the most natural
operation that results in specialized types is set intersection. ‘M’ could be introduced to the
language as an operation on types. The operation, <~ (“*specialize by intersection™) could
be introduced as an operation that when applied to a class, results in a subclass with type
references specialized by intersection. An example follows that illustrates how < could
work. The class that is used as a superclass in this example is quite similar to class T of
Example 6.2, but avoids the use of base classes in deference to the conclusions drawn in
5.6 establishing that base classes should have no subclusses. For this example, it should
be assumed that there exists a class hierarchy as shown in Figure 6.3.

170

V (Vehicle)

— |

TWYV (Two-Wheeled Vehicle) MV (Motorized Vehicle)

T~

TWMYV (Two-Wheeled Motorized Vehicle)

/\

Motorcycle Moped

Figure 6.3

where given classes A and B,A —» BifA <« B.

Let class T be defined as in Example 6.3.

class T
var x : TV
var y : TMy
method m

begin

end

end T
| Example 6.3
Note that T is type-safe since the set of equivariant subclasses of Vehicle subsumes (is a
supertype of) the set of equivariant subclasses of Motorized_Vehicles. If one
wanted to denote a subclass of T where the type of x is specialized to be the set of
equivariant subclasses of Two_Wheeled_Vehicle, then one would write:

class S = T <~ TTWV

which denotes the class S defined in Example 6.4.

171

class §
var x : TTWV
var y : Trwmv
method m

begin

end

end S
Example 6.4

TVehicle n TTwo_Wheeled_Vehicle is TTwo_Wheeled_Vehicle, and
TTwo_Wheeled_Vehicle n TMotorized Vehicle is TTwo_Wheeled_Motorized_Vehicle.
Class S is a type-safe subclass of T.

Besides achieving a more natural form of covariance over non-singleton classes
than does class substitution, the addition of < to the language machinery does not demand
that the grammar for type expressions be enriched. M can be defined over type expressions
as shown in Table 6.2. It should be assumed while interpreting the table that A and B are
class names and that T; and T, are type expressions. Euach row of the table describes a
different scenario depending on the forms that 7; and T can take.

T, T, T,nT,
@ 1 Anything : D
B ifAzBthenaelse @
A T if B <. A then A else @
Ta ig if A <. B then B else @
Ta | T8 ifA o, BthenTB
elseif B <. Athen Ta
else T(inherits ({A,B}, @)

Table 6.2

* This row shows how class § was derived from class 7. TV Trwvas TIWwV because Vv 4 TWV,
TMV ~ TIWV is T(inkerits((Mv, TWV), @) (or TIWMV) because MV and TWV arc not subclasses of one
another.

172

The intersection of any two type expressions results in a type expression of the usual kind:
@, a, or TA where A is a class identifier. Therefore, the addition of set intersection to the

language machinery need not require enriching the grammar of type expressions.

Given the definition of N over type expressions as described above, <~ can be
defined as a higher order operation on class identifiers. Therefore, we have
<n: Class Identifier x Type_Rep — Class Identifier defined for any class identifier C

and type expression, T as:

C<~T=C" where
Rep (system (C')) = { Kk, i, enT, c<~T,p 1) |
e (k,i,t,c,p,l) € Rep (system (C))
ep' = ((x, ki, ' AT, ¢' <;T, «», D)) |
p)= Kk,i0, '«))
o' = [k, '\ t'NT, c'<T, «», D) |
k', i't', h',«», D)e l)

As was the case with the definition of «p,,, given in Chapter 5, the above definition can
be simplified by first extending < over nodes, such that:

ki, t,coapry oo Py gy s W)) <~ T =
ki, tNT, ¢ <A T «pi <aTy oo P < To, (I} <AT, ..o 1<~ T)).

Then, <~can be redefined over classes as:

C<~T=C"' where
Rep (system (C)) ={ n<~T In € Rep (system (C)) }

The proof that <, preserves binding and parameter binding checks in subclasses is
fairly straightforward. The binding of an expression of type O to a variable type V only
holds if V2 O. In any subclass formed by <, the types of the corresponding variable
and expression will be VAT and O N T, for some type T. Since V3 O, then
VAT 20N T, and the binding check holds in the subclass.

< preserves signature checks in subclasses provided that the assumption is made
that an expression whose type is the empty type, can be sent any message. We saw in
Chapter 4, that such a property has to hold of any expression that can be bound to variables

173

of any type, if guarantees of static type-safety are :~ be achieved. The problem arises again
with the use of < as a subclassing mechanism since resulting subclasses can contain type
references that have been specialized to the empty type. The cade of superclasses might

include the sending of messages to expressions whose type is specialized to the empty type
in subclasses.

Analysis of the table that summarizes how ‘M’ is applied to type expressions
reveals that empty types only arise in subclasses if the original type in the superclass was
empty or a singleton type. It is only the latter case that is problematic, since only
expressions of non-empty types would have been sent messages in the superclass code.
Therefore, if a language is to avoid values whose types are empty, then < should only be
applicable to pure non-singleton classes (classes with no signatures with singleton types).
Because of this, and because substitution appears only to be useful when applied to
singleton classes, the ideal solution might be to not allow subclasses of “impure™ non-
singleton classes. Subclassing of singleton classes would be by inheritance and class
substitution. Subclassing of pure non-singleton classes would be by specializing by
intersection. It is not clear as yet what would be the benefits and consequences of such a
segregation of classes. Among the questions that would have to be considered:

o Is there an intuitive division between objects whose classes should be defined as

singleton classes and those whose clusses should be non-singleton? Would it be
obvious to a programmer when to use each?

e Should impure non-singleton classes be ullowed with a restriction limiting the

subclassing of such classes? Are such classes strictly necessary?

e Does the demand that classes strictly include or exclude non-singleton types provide
any insight on the binary operator problem?

Questions such as these will provide the basis for further research.
6.3 A Summary of Short Term Goals

The previous section described two challenges to the extension of PS theory. The
first challenge is to expand the rules for class composition 1o allow rion-singleton classes,
and hence, dynamic binding. Itis fairly easy to extend the grammar for type expressions to

174

allow for the infinite types of equivariant subclasses of some given class. As well, given
such type expressions it is straightforward to define binding checks using superclass and
class equivalence algorithms. With support for dynamic binding should also come support
for class metamorphosis; the ability of an object to change its class dynamically. However,
dynamic binding requirements are quite strict, requiring the class denoting the type of an
object be an equivariant subclass of the class denting the type of the object to which it is
bound. Equivariance requirements are strict, demanding that a subclass’ interface be both
contravariant and covariant versions of the interface of its superclass. It remains to be seen
whether useful dynamic binding can coexist with covariant subclassing.

The challenge of defining subclassing mechanisms which generate type-safe
subclasses of classes containing non-singleton types has been resolved, though not in an
intuitively satisfying way. Class substitution and inheritance can be naturally extended as
operations over non-singleton cliasses, and resulting subclasses are guaranteed to retain the
type-safety of inherited code. However, the subtypes that are type references in subclasses
are neither intuitive, nor easy to express without a rich grammar for type expressions.
Further, no more behavior can be statically inferred of these types since the class whichis a
superclass of all other classes in the subtype, is the same class with that property in the
superclass.

A more intuitive form of covariance was addressed as the follow-up extension of
PS theory. Set intersection was proposed as an operation which could be applied to every
type, and the “specialize by intersection” (<) operation was introduced as a subclassing
mechanism that guarantees type-safe code reuse in subclasses, and which specializes type
references in a manner usually desired by programmers. Much work has yet to be done
with regard to this proposal. The practicality of the proposal is dependent on determining
the usefulness of supporting a constant expression that can be bound to variables of all
types, and which understands all messages. If such an expression is allowed, then the
“specialize by intersection™ operatic» might be practical in its present form. If such an
expression is not allowed, then it is worth exploring whether classes should be segregated
with singleton classes subclassed by inheritance and substitution, and non-singleton classes
subclassed by “specialize by inersection.”

6.4 Long Term Goals

Once the short term goals have been addressed, I would like to consider carrying
extended PS theory into a working implementation. In particular, I would like to add the

175

- o S

PS type system and subclassing mechanisms to a typed object-oriented language such as
Dee [Gr91]. Work in this area will bring up a number of related issues such as:

* Designing a browser that would present the user in some readable form, the interfaces
from a system of classes at one time (and not just the interface from a single class).
With such a browser, the user could preview the results of a particular substitution or
inheritance.

e Designing a database that minimizes the space occupied by a class’ definition. Ideally

this database would manage two structures, as shown in Figuve 6.4,

¢)
Class Interfaces

Class Code Modules]
.\

"t
L

Figure 6.4

Given some function f that can map several class interfaces to a single class’ code, an
effective class would consist of some interface, i and its code image, f(i). Compiled class
code would be independent of its environments, and no duplication of code would be
necessary. Subclassing mechanisms and browser operations would manipulate the ciass
interface segment of the database only.

Naturally, long term concerns have been considered only to a limited degree since
addressing long term goals is dependent on the resolutic 1 of short term goals.

176

Chapter 7. -

Summary and Conclusion

7.1 Summary

The six chapters of this thesis can be partitioned according to the three objectives
outlined in Chapter 1: analysis, survey and design.

7.1.1 Analysis

Chapter 2 contains a study of polymorphisms and classifies them while identifying
the tensions associated with each classification. The Cardelli-Wegner taxonomy is used as
a starting point for the classification. Each category in their hierarchy is distinguished
according to the resulting nature of invocations to code. Their category of overloading is
shown to result in a one-to-one mapping of invocation to code, and is renamed “nominal
polymorphism” because of the sharing of operation name which is solely responsible for
making operations polymorphic. The category of parametric polymorphism is shown to
result in @ many-to-one mapping of invocation to code and is termed “static binding” to
include the equivalent polymorphism resulting from inheritance. Inclusion polymorphism

is shown to result in a one-lo-many mapping of invocation to code, and is referred to as
“dynamic binding” because of the requirement that it be implemented using the mechanism
of dynamic binding. The final Cardelli-Wegner category, coercion is not included in the
final analysis as a form of polymorphism because of the spirit of its intent which demands
that arguments be flexible, rather than operations.

In using the mappings of invocation to code as criteria determining natures of
polymorphism, it becomes clear that inheritance typically achieves all forms of
polymorphism, and not just inclusion. Nominal polymorphism results when a subclass
redefines the code of inherited methods. Static binding results when a subclass does not
redefine inherited methods or inherits variable definitions. Dynamic binding results when
inheritance relations are used as the basis for determining what objects can be bound to a
variable. Tensions are identified with each category of polymorphism, as each relates to
the use of inheritance. These tensicns are:

e Covariance and Selective Redefinition (for nominal polymorphism and static
binding),

e Contravariance and Genericity (for static binding) and

o Covariance and Subclass-Based Type Interpretations

7.1.2 Survey

Chapters 3 and 4 contain detailed surveys of two language proposals, and examines
how each proposal achieves the three forms of polymorphism and resolves the associated
tensions. The Bruce language proposal is examined in Chapter 3. It is shown that nominal
polymorphism and dynamic binding are achieved in this proposal. Dynamic binding is
subclass-independent, since objects whose type is denoted by a subclass cannot necessarily
be bound to variables declared of a type denoted by a superclass. Static binding is
supported by way of prefixing, but not by way of genericity. Signature redefinition in
subclasses must be accompanied by redefinition of code, and must be contravariant in its
direction while selective in scope. (Except for recursive signatures which are covariant and
consistently redefined).

The validity of a class is dependent not only on its type-safety, but on other more
subtle criteria. Class code cannot bind recursively typed objects to variables whose type is
not recursive, and therefore. code such as that which Jouble dispatches is illegal. This
restriction is a result of the coexistence of covariant signature redefinition (in the case of
recursive types) and redefinition scope that is only consistent within a class. Classes also

178

cannot have recursive instance variables because of limitations of the object model when
applied to a language where objects have state. This precludes the creation of non-trivial
data structures such as lists and trees. Classes are also invalid if they contain temporal
cycles, and can only use single inheritance to borrow code from other classes.

In the final analysis, the Bruce approach successfully resolves the tension of
dynamic binding, but offers very limited class composition and subclassing flexibility. The
extent of the latter inflexibility is such as to lead Bruce 1o conclude that inheritance is a
mechanism to be avoided in general.

In contrast to the Bruce proposal, the PS language allows for flexible subclassing
redefinition, and somewhat more lenient class validity criteria, but only in the absence of
dynamic binding. All forms of nominal polymorphism and static binding are supported,
and all signature redefinition must be covariant in direction and consistent in scope.
Consistent redefinition is achieved by inheritance and class substitution: redefinition
operations on systems of classes that denote systems of subclasses. Class validity depends
not only on type-safety, but also demands that classes not comprise temporal cycles and
contain no constants, save for the constant that can be bound to variables of all types.

An intuitive proposal for dynamic binding is given, but is subclass-based and thus
subject to tensions with covariant subclassing redefinition. As a result, PS subclassing has
flexible redefinition, but is only well-defined over classes whose types preclude dynamic
binding. Class validity criteria are less strict than in Bruce, but still disallow temporal
cycles, constants, and only allow for the use of single inheritance.

179

7.1.3 Design

Chapters 5 and 6 constitute original design proposals. Chapter 5 contains an
extension and reinterpretation of PS subclassing that we think offers more intuitive
definitions of subclasses, inheritance and class substitution than the original proposal, and
which is compatible with constants, multiple subclassing relations and inheritance and most
temporal cycles. New definitions of subclassing and its associated operations are presented
in terms of an alternative representation of classes, which are based on the interfaces rather
than the code of a class. The alternative representation improves on the original
representation, by making all class representations finite, and by defining subclassing
relations such that any given class can have any number of superclasses. This chapter
includes references to proofs found in the Appendices, which establish that inheritance and
class substitution preserve type-safety in the subclasses they denote.

Chapter 6 contains a discussion of preliminary work being done, to add dynamic
binding to the subclassing proposal of Chapter 5. Two issues are addressed in this
chapter. A proposal for the addition of non-singleton types to PS classes, and the resulting
definition for type-safety are presented first. Thereafter, it is shown that natural extensions
of subclassing, inheritance and substitution definitions are such that inheritance and
substitution result in type-safe subclasses of classes which include non-singleton types.
Unfortunately, the types resulting from inheritance and substitution are neither intuitive nor
very useful. An alternative subclassing mechanism is proposed, that is covariant and
consistent and based on set intersection. Exploration of issues related to the use of this
operation constitute the bulk of immediate demands for further study.

7.2 Conclusion

The important conclusions drawn from the work of this thesis can also be classified
according to the three-part objectives outlined in Chapter 1. With regards to the analysis of
polymorphism, we conclude that:

e Inheritance is Typically Overloaded:
Restrictive or unsafe inheritance found in most current typed object-oriented

languages results from its overlouded use as a means of achieving all forms of
polymorphism. Because each form of polymorphism has an associated tension,

180

inheritance redefinition guidelines must either be made strict to resolve all tensions,
or must ignore some tensions and be unsafe.

With regards to the survey of language proposals, we conclude that:

e The Bruce Approach achieves Flexible Dynamic Binding:

The Bruce approach achieves flexible dynamic binding, but overly limited nominal
polymorphism, static binding and flexibility of class composition.

e The PS Approach Achieves Flexible Subclassing:

The PS approach acl.ieves flexible nominal polymorphism and static binding, but as
it stands in the original proposal, is incompatible with dynamic binding, is not
intuitive and is overly strict in its criteria determining the validity of a class.

With regards to the design, we conclude that:
e The PS Approach Can Be Muade More Flexible:

The limitations of the PS approach with regard to how intuitive it is, and its
strictness of class validity criteria, cian be overcome by use of an alternate class
representation, and by use of corresponding definitions for subclassing and
subclassing operations.

e The PS Approach Can Be Combined with Dynamic Binding:

The limitations of the PS approach with regard to dynamic binding reflect
inattention to the tension of subclass-based dynamic binding and covariant
subclassing, rather than to the inapplicability of inheritance and substitution
operations to classes for which dynamic binding can take place. The tension can be
resolved by employing a Bruce-like subclass independent interpretation of types.
Subclassing operations do result in subclasses that while type-safe, are not
particularly useful. Alternate subclass operations that are still covariant and
consistent are worth exploration.

181

References

[Br92] Kim B. Bruce. A paradigmatic object-oriented programming language: Design,
static typing and semantics. Computer Science Department, Williams College. CS-
92-01, 1992.

[CaWe85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 17 (4), December 1985.

[Co89] William Cook. A proposal for making Eiffel type-safe. In Proc. ECOOP'89,
European Conference on Object-Oriented Programming, 1989.

[CoHiCa89] William R. Cook, Walter L. Hill, and Peter S. Canning. F-bounded
polymorphism for object-oriented programming. In Proc. Conference on Functional
Programming Languages and Computer Architecture, 1989.

[DaMyNy70] Ole-Johan Dahl, Bjorn Myrhaug and Kristen Nygaard. (Simula 67)
Common base language. Publication N. §-22, Norsk Regnesentral (Norwegian
Computing Center), Oslo, October 1970.

[DaTo88] Scott Danforth and Chris Tomlinson. Type theories and object-oriented
programming. ACM Computing Surveys, 20 (1), March 1988.

[GoRo83] A. Goldberg and D, Robson. Smalltalk-80-The Language and its
Implementation. Addison-Wesley, 1983.

[Gr91] Peter Grogono. Issues in the design of an object-oriented programming language.
Structured Programming, 12 (1), January 1991,

[GrBe89] Peter Grogono and Anne Bennett. Polymorphism and type checking in object-
oriented languages. SIGPLAN Notices, 24 (11), November 1989.

[HeJo90] Kurt J. Hebel and Ralph E. Johnson. Arithmetic and double dispatching in
Smalltalk. Journal of Object-Oriented Programming, 2 (6), March/April 1990.

[Ho69] C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12 (10), October 1969,

[LiZi74] Barbara H. Liskov and Stephen N. Zilles. Programming with Abstract Data
Types. Computation Swructures Group, Memo no. 99, MIT, Project MAC, Cambridge
(Mass.), 1974.

[Me8R] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[MiToHa%0] B. Milner, M. Tofte and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

[Pa92] Jens Palsberg. Personal correspondence.

{PaSc90a] Jens Palsberg and Michael 1. Schwartzbach. Type substitution for object-
oriented programming. In Proc. OOPSLA/IECOOP'90, ACM SIGPLAN Fifth Annual ‘
Conference on Object-Oriented Programming Sysiems, Languages and Applications,
European Conference on Object-Oriented Progranuming, 1990.

[PaSc91] Jens Palsberg and Michael 1. Schwartzbach. What is type-safe code reuse? In
Proc. ECOOFP91, Fifth European Conference on Object-Oriented Programming,
1991.

[PaSc90b] Jens Palsberg and Michael I. Schwartzbach. Genericity and Inheritance,
Computer Science Department, Aurhus University. PB-318, 1990.

[PaSc90c] Jens Palsberg and Michael 1. Schwarizbach. A unified type system for object-
oriented programming. Computer Science Department, Aarhus Univers . PB-341,

1990.

[PaSc90d] Jens Palsberg and Michael I. Schwartzbach. Static typing for object-oriented
programming. Computer Science Department, Aarhus University. PB-355, 1990.

184

[Ho69] C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12 (10), October 1969,

[LiZi74) Barbara H. Liskov and Stephen N. Zilles. Programming with Abstract Data
Types. Computation Structures Group, Memo no. 99, MIT, Project MAC. Cambridge
(Mass.), 1974.

[Me88] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[MiToHa90] B. Milner, M. Tofte and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

[Pa92]) Jens Palsberg. Personal correspondence.

[PaSc90a] Jens Palsberg and Michael 1. Schwartzbach. Type substitution for object-
oriented programming. In Proc. OOPSLAIECOOP90, ACM SIGPLAN Fifth Annual
Conference on Object-Oriented Programming Systems, Languages and Applications;
European Conference on Object-Oriented Programming, 1990.

[PaSc91] Jens Palsberg and Michael I. Schwartzbach. What is type-safe code reuse? In
Proc. ECOOP'91, Fifth European Conference on Object-Orierted Programming,
1991.

[PaSc90b] Jens Palsberg and Michael 1. Schwartzbach. Genericity and Inheritance.
Computer Science Department, Aarhus University. PB-318, 1990.

[PaSc90c] Jens Palsberg and Michael 1. Schwartzbach. A unified type system for object-
oriented programming. Computer Science Department, Aarhus University. PB-341,

1990.

[PaSc90d] Jens Palsberg and Michael 1. Schwartzbach. Static typing for object-oriented
programming. Computer Science Department, Aarhus University. PB-355, 1990.

184

[ScCoEuKiWi86! Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian and Carrie
Wilpolt. An introduction to Trellis-Owl. In Proc. OOPSLA'86, ACM SIGPLAN First
Annual Conference on Object-Oriented Programming Systems, Languages and
Applications,; European Conference on Object-Oriented Programming, 1986

[Ta91] A. Taivalsaari. Towards a taxonomy of inheritance mechanisms in object-oriented
programming. Licentiate thesis, University of Jyviiskyli (Finland), 1991.

[WeZd88] P. Wegner and S.B. Zdonik. Inheritance as an incremental modification

mechanism or what like is and isn't like. In Proc. ECOOP'88, European Conference
on Object-Oriented Programming. Springer-Verlag (LNCS 322), 1988.

185

Appendix 1.

Grammars for the Language and
Extensions of Mini-Dee

For the purposes of a theoretical discussion, the interface of a class is separated
from the code implementing its methods. In fact, an implementation of Mini-Dee need not
require the programmer to separate interface from code. Such an implementation though,
will require a linker which while compiling a class A will allow for the use of the interfaces
of supplier classes of A. The result is the same. The interfaces for all classes needed will
be available to the compiler as it compiles each class.

The set of n classes which comprise a program in Mini-Dee are meant to
correspond to a system of classes. It should be remembered that for any class A, system
(a) corresponds to the set of all supplier classes of A as well as all suppliers of those
classes, and so on.

The grammars below are in extended BNF form, and use the conventions of
capitalizing nonterminals, boldfacing tokens which are keywords, and quoting tokens
which are punctuation. All metasymbols are italicized. Braces, (/ and]) are used to denote
optional clauses within arule. Ellipses (...) indicate 0 or more occurrences of the specified
pattern. Numeric subscripts are used to distinguish between tokens or nonterusinals which
are found more than once in the same rule. Variations betw 2en extensions of Mini-Dee are
emphasized by shading. Comments are prefixed with double dashes (--) as in Ada.

I-A. Core Mini-Dee (Chapter 1)

The core Mini-Dee language is informally described in Section 1.6, and is the skeleton
language upon which all extensions are based.
(Program)
P -Gy ...Cn Cep ... Con
(Class Interface)

G — CLASS IDEN [INHERITS IList] AList END IDEN

(Class Name)

CName — IDEN

(Inheritance List)

LList — CName -- rule for single inheritance
or
IList — CName; ... CName, -- rule for multiple inheritance
(Attribute List)
AList - Aj .. Ay
(Attribute)
A -> VAR IDEN "' Type

| METHOD IDEN, ['('IDEN; ' Type; ... IDEN, ' Typex)'] R
[VAR
IDEN,, ' Typers

IDEN, " Type,, /

(Type)

Type — CName
(Result)

R — "' Type

I €

(Class Code)

Ce - M; ..M,
(Methods)

M —> METHOD IDEN B
(Method Body)

B — BEGIN 8% ... VS, END

187

(Statement)

S — IDEN =" E
| RETURNE
| E''IDEN
| Eg''ipeEN 'CE;..E ")
| IFE THEN S; ELSE §)

(Expression)
E ~— SELF
| NEW IDEN
| IDEN
i E''IDEN
| Ep''mbeEN ['CE;...Ey")]
I Con
(Constant)
Con — INTNUMBER

| FLOATNUMBER
| CHARACTER
| BOOLCONSTANT

I-B. Bruce-Based Mini-Dee (Chapter 3)

The following Mini-Dee extension is described informally in Section 3.2, and is
used as the basis for a description of the Bruce language proposal ([Br92]) in Chapter 3.
This extension supports single inheritance, and demands explicitly recursive type
references with use of the special type name, MT.
(Program)
P - Cii...C Ccy ... Ccn
(Class Interface)
C — CLASS IDEN [INHERITS IList /] AList END IDEN

(Class Name)

CName — IDEN

188

L

(Inheriiance List)
IList -~ CName -- rule for single inheritance
(Attribute List)
AlList = Ay .. Ag
(Attribute)
A — VAR IDEN "' Type
| METHOD IDEN, ['(IDEN, "' Type; ... IDEN, "' Typex ")’]
[VAR
IDEN,,; ' Typek+1
;l.).l-l.\',, "' Typen /
(Type)
Type — CName
i MT
(Result)
R — "' Type
| €
(Class Code)
Cc - M; ..M,
(Methods)
M — METHOD IDEN B
(Method Body)
B — BEGIN S; %' ... V' Sy END
(Statement)
S — IDEN ="E
RETURN E
E " IDEN

|
|
| Eg''IDEN '(CE;...E, "
| 1F E THEN Sy ELSE S7

189

(Expression)

E — SELF
I NEW IDEN

| IDEN

| E'IDEN

| Eg'twex ['CE; ..Ex)']
| Con

(Constant)

Cun -> INTNUMBER
| FLOATNUMBER
| CHARACTER
| BOOLCONSTANT

I-C. PS-Based Mini-Dee (Chapter 4)

This extension of Mini-Dee is described informally in Section 4.2, and is used as
the basis for a description of the PS type and subclassing proposals ([PaSc90a, PaSc90b,
PaSc90c, PaSc90d, PaSc91]). The extension supports single inheritance, and class
substitution. Constants expressions are disallowed so as to preserve the property that
inheritance and class substitution denote type-safe subclasses.

(Program)
P - Cn...Cwn Ccp ... Con

(Class Interface)

Ci — CLASS IDEN [INHERITS IList /| AList END IDEN
(Class Name)
CName — IDEN

I CName; '|' CNamey '«' CNames ')’

(Inheritance List)

IList — CName -- rule for single inheritance

190

(Attribute List)
AlList
(Attribute)

A

(Type)

Type
(Result)

R

(Class Code)

Cc
(Methods)

M
(Method Body)

B

(Statement)

S

- Aj ... Ag

~> VAR IDEN "' Type
| METHOD IDENy ['('IDEN, ":' Type; ... IDEN,
[VAR
IDEN,,; "' Typeks+)

ILEN, "' Type,]

— CName

—> METHOD IDEN B

- BEGIN S; %' ... %'Sp EXND

— IDEN ='E

| RETURNE

| E''"IDEN

i Eo' 1DEN '(CE; .. Ep ")
| 1F E THEN S ELSE S2

191

|:v Typek l)l]

(Expression)

E — SELF
| NEW IDEN
| IDEN
| E'IDEN
| Eo''1bEN ['CE;..Ey")]

Missing: Rules for Constants (Con), "E - Con"

I-D. Extended, Singleton Class, PS-Based Mini-
Dee (Chapter 5)

This extension of Mini-Dee is informally described in Section 5.2 and resembles
that of 1-C, but supports the use of constants and multiple inheritance. Additions to this
extension are made possible by the alternate interpretation and extension of PS subclassing
presented in Chapter 5.

(Program)

P = Cit...Cn Cei ... Con
(Class Interface)

G — CLASS IDEN [INHERITS IList] AList END IDEN
(Class Name)

CName — IDEN
| CName; '[' CName; '«' CNames ‘'

(Inheritance List)

IList — CName, ... CName, -- rule for multiple inheritance
(Attribute List)
Alast = A .. A

(Attribute)

A

(Type)
Type
(Result)

R

(Class Code)
Cc
(Methods)

M
(Method Body)

B

(Statement)

S

(Expression)

E

—» VAR IDEN "' Type

! METHOD IDEN, ['('IDEN, ' Type)
[var
IDEN,; " Typeksy

IDEN, ' Type; |
— CName

- "' Type
I e

_‘) M] eve Mn
— METHOD IDEN B
- BEGIN S7 % .. 'Sy END

— IDEN "='E
| RETURNE

I E''IDEN

| Eg''mEN '(E;...Ey ")
| 1F E THEN S) ELSE)

| NEW IDEN

I IDEN

| E''IDEN

| Eo' mEN ['(E; ..En "D]
i Con

193

.. IDEN, "' Typex)] R

(Constant)

Con — INTNUMBER
| FLOATNUMBER
| CHARACTER
| BOOLCONSTANT

I-E. PS-Based Mini-Dee - Explicit Classes Only
(Type-Safety Defined) (Chapter 5, Appendix
II)

This extension resembles the PS-Based extension of I-D, but does not include
inheritance and class substitution. Appendix II consists of an attribute grammar built
from this grammar that formally defines type-safety. Inheritance and class substitution are
reintroduced and formalized in Chapter 5, and shown to denote systems of classes which

preserve the type-safety of their superclasses.

(Program)
P - Cit ... Cy Ccy ... Cep

(Class Interface)

G — CLASS IDEN AList END IDEN
(Class Name)

CName — IDEN
(Attribute List)

AList - Ay ... Ay
(Attribute)

A — VAR IDEN "' Type

| METHOD IDEN, ['('IDEN; ' Type; ... IDEN, "' Typex)'] R
[VAR
IDENy,; "' Typeks:

IDEN, "' Type, /

194

(Type)
Type — CName
(Result)
R — "' Type
=
(Class Code)
CC - Ml .es Mn
(Methods)
M ~— METHOD IDEN B
(Method Body)
B — BEGIN §; %' ... %'Sp END
(Statement)
S = IDEN ='E
| RETURNE
| E''IDEN
I Ey''IDEN '(CE; ... Ep)
| 1FE THEN S; ELSE S
(Expression)
E — SELF
| NEW IDEN
| IDEN
| E''"IDEN
| Eo''meN ['CE;..Ex")]

Missing: Rules for Constants (Con), "E — Con", Rules for inheritance (IList), and
Substitution (CName)

195

I-F. Extended, Non-Singleton Class, PS-Based
Mini-Dee (Chapter 6)

This extension is PS-based and resembles the extension of I-E except that types
can be non-singleton or empty, and not just singleton. This extension is informally
described in Section 6.1.3, and is used to describe a preliminary proposal for including
dynamic binding within PS classes.

(Program)
P - Chy ...Cn Cep ... Con

(Class Interface)

G —> CLASS IDEN [INHERITS IList] AList END IDEN
(Class Name)
CName — IDEN

I CName; '[' CNamej '«' CNames ‘'

(Inheritance List)

1List —> CNamey ... CName,, -- rule for multiple inheritance
(Attribute List)

Alist — Aj .. A
(Atribute)

A — VAR IDEN " Type

| METHOD IDEN, ['(IDEN,; "' Type; ... IDEN, ' Typex)'] R
[var
IDENy,; ' Typek+1

IDEN, "' Type,]

196

(Type)

Type - D'
I CName
| TCName
(Result)
R — "' Type
| €
(Class Code)
Cc - M,; ..M,
(Methods)
M — METHOD IDEN B
(Method Body)
B ~» BEGIN S; %' ... ' Sy END
(Statement)
S — IDEN "='E
| RETURN E
| E''IDEN
| Eg''IDEN '(CE; ... Ex)
| 1r E THEN Sj ELSE S)
(Expression)
E — SELF
| NEW IDEN
| IDEN
| E"IDEN
| Eg''mex ['("Ey.. E,")']
I Con
(Constant)
Con — INTNUMBER

| FLOATNUMBER
| CHARACTER
| BOOLCONSTANT

197

I-G. PS-Based Extended Mini-Dee - Explicit
Classes Only (Type-Safety Defined) (Chapter 6,
Appendix VI)

This extension of Mini-Dee is based on the extension of I-F just as the extension of
I-E was based on the extension of I1-D. Inheritance and class substitution are removed
from the grammar, allowing one only to define explicit classes. An attribute svrplemented
version of this grammar is used in Appendix VI to define type-safety formally, over
classes that allow for non-singleton types and hence, dynamic binding.

(Program)
P - Ci...Ch Cey ... Con

(Class Interface)

G — CLASS IDEN AList END IDEN
(Class Name)

CName — IDEN
(Attribute List)

AlList - Al ... Ay
(Attribute)

A — VAR IDEN "' Type

| METHOD IDEN, ['('IDEN; "' Type; ... IDEN, ' Typex)'] R
[VAR
IDEN,; @' Typeg+

IDEN, ' Type, |

(Type)
Type - Q'
I CName
I TCName

198

(Result)
R

(Class Code)

Cc
(Methods)

M
(Method Body)

B

(Statement)

S

(Expression)

E

(Constant)

Con

— "' Type

b 4 Ml ver Mn
— METHOD IDEN B
— BEGIN S§;%' ... 'Sy, END

= IDEN"='E

| RETURN E

| E''IDEN

| Eg''IDEN '(E; ..Ey Y
| IF E THEN S; ELSE S>

— SELF
| NEW IDEN

| IDEN

| E'IDEN

| Eg''IDEN ['CE;..Ey")']
| Con

— INTNUMBER

| FLOATNUMBER

| CHARACTER

| BOOLCONSTANT

199

Appendix II.

Type-Safety: An Attribute Grammar
of PS-Based, Singleton Classed,
Mini-Dee

The Mini-Dee extension on which type-safety is defined is that of Appendix I-D.
This grammar is of the PS-based extension which defines the structure of all explicitly
defined classes (ie: without inheritance and substitution).

The attribute grammar has two components: environment generation and type
checking. The environment generation is part of the parse of class interfaces, and for any
class C consists of generating the environment Rep (C). The type checking uses the
information contained within the environment to ensure that the code associated with each
method declared satisfies binding and parameter binding checks (which in PS-Based Mini-
Dee, are identical) and signature checks. In the context of the attribute supplemented
grammar for Mini-Dee which follows, a program P = {Cyy, ..., Cin, Ce1y oy Cenl i
type-safe if the parse of P results in the attribute, P.type_safe being TRUE.

IILA. Type Definitions:

Type_Rep = Class Identifier

node = (kind : {m,v],
name : String,
type : Type_Rep,
context : Type_Rep,
parms : Seq (node),
locals : P (node))

FRRNENDSE PR PO,

o

II.B. Functions:
II.B.1. Environment Search Functions

Ervironment search operations are defined in terms of domain calculus, since they
involve searches of symbol-table like data structures.

function locals_of (n : String, ¢ : Type Rep, e : P (nodel} : P (node} | undefined

~= return set 0f l10Ca. Vdr.al.(NOUCSH ubsatialea wWith nooe with name, n and

-- defined in class, ¢ in tre environwent, e

begin
if 3 p, 1, t ® signature ((m, r, L, ¢, g, 1},) then
t1 1+ 3 p, t e signatuvre ttm, n, L, ¢, p, 1), e))
else
undefined

end

Note that the environment database has as its primary key, name + context.
Actions of the parser that build the environment ensure that no two main nodes have the
same name and context (although, nodes with the same node and context might be found in

the parm or local fields of nodes).

201

functiorn parme of (r : Suri~g, ¢ ! Type_kep, e : ¥ (node)) P (node) | undefined
= return sel 0! parfaTCller TGLUCL atsLl.aled a.lt noge wilh narve, n and
-- defined in class, ¢ 1ir the environment, e
begin
if 3 p, 1, t ® signature ((m, 0, t, c, P, +J, €) then
(p (1) ¢+ 31, ¢ ® agmature ({7, n, L, €, P, L), €) A 1S 1S |pl)
c¢lse
unac! 1nea
end
function type_of (n : String, c : Type_kep, e : F (node)) : Type_Rep | undefined
-- return type assoc.ales w.tr ~0ge wW."! rare, r o ang
~= definca n Clast, ¢ 07 Tte (Tl TLnT ,
begin
it 3 p, 1, t, k ® sigrat.re ({k, n, L, ¢, L, 2}, e then
(t + 31, p, kK ® signature (K, #, L, C, p, 1), e))
else
unae!1nea
end

D
<
o

AT

function mtype_of (n : String, ¢ : Type_Rep, e : P (nooe)) : Type_Rep | undefined

-— return type assCC.&lee w.t't =ethoa neace w.th pame, n and

' ~-- definea in class, ¢ is the environmery, e

begin

if 3 p, 1, t ® signature ((m, n, t, ¢, p, L), e) then
(131, pe signature ((m, n, t, ¢, p, 1), e))
else
undefined

end

function vtype_of (n : String, c : Type_Rep, ¢ : P (node)) Type_Rep | undefined

-- return type associated with variablie ncee with nare, n ano

-~ defined in c.ass, ¢ in Lhe eruv.rgnmeny, ©

begin
if 3 p, 1, t ® s1grature ((v, =, L, ¢, p, .1, ©) then
(t t 31, pe sigrature (v, o, L, ¢, ¢, 1}, el)
else
uncefinec

end

203

function comrmon (ey, e, : P (rcoc)) : Beol

-- returns TRUE if a node 1in e; shares its name with a node in e,

begin
(3 ky, kg, ty, ty €3, 3 Py P2y 1y, 1z ne
signature ((ky, n, t;, ¢3, Py, ly), ey} A
signature ((ky, n, ty, <c, Py, 13), €2))
end

function W (e;, e; : P {(node)) : P(noace)

-- infix function: returns the set of noces in e; U e,, minus those

-- nodes in e} which share their naves with nodes in e

begin
it ey = @ then
)
else --ey = ((k, I, t, c, p, 1)) VR
if common {(k, I, t, c, p, 1)}, ey) then

R W €

{(k, I, t, ¢, p, D}V (RW e))

end

II.LB.2, Type-Safety Check Functions

Bind and Parameter Bind Checks:

function bind (v, o : Type_Rep) : Bool
-- return TRUE if an object of type,
-~ of type, v
begin
((v=0) A (v # undefined))

end

Signature Check:

function signature ((x, n, t, ¢, a, l)

o can be bound to a variable

node, e : P (node)) node |

undef ined

~-- return node in e, with kind, k; name, n; type, t; context, c and same

-~ numbers of parameters as a; or undefined

begin
if 3p, 1v @ ((x, *, L, c, p, .)€
((k, n, v, ¢, g, .'}) € ¢ o
else
undefinea
end

205

« A tal - 4pil)} then

Signature + Parameter Binding Check:

function sig_ang_parrcinag (n

-~ return TRUE n i

var

begin
t := signature (n,
if t # undefinea
Vi e 15 . g
b.ra (v
else
false

end

Lype of

ngae, o

s unh e,

e)
Lhorn
PUREerms @

(L.parms

P

ana binaing of

(nocej})

arguments is valid

viype_of

Bool

(n,parms

(i)))

II.C. The Attribute Grammar

The following is an attribute supplemented version of the Mini-Dee extension
grammar of Appendix I-D.

(Program)

P = Cy...Cn Coy ... Con

n

P.env := ' . C;;.env
3 =1
Vj e 1< j<neCq.env := P.env
Vj L4 ISan‘ch.id =C1j.id
n
P.type_safe := /\ Cyy.unique_names A
1

Pl

n
/\ Cecy.type_safe

’

Notes:

- The code for Cc, corresponds to the interface for Cy,

— Each block of code must be associated with its corresponding interfuce via the attribute, id.

- P is type safe if every feature in a given class interface is uniquely named and all class code blocks are
type-safe with respect to the environment

- Note that given some class C with class interface Cy, Cr.env = Rep (C)

207

(Class Interface)

C — CLASS IDEN AList END IDEN

C;.env := Alist.env
C;.id := IDEN.value
C;.unique_names := AList.unique_names

Alist.context := C;.id

Note:

~ IDEN.value contains the identifier name (in both cases here, the name of the class)

(Class Name)

CName — IDEN

CName.value := IDEN.value

(Attribute List)

AList — Aj ... A

< k ¢ Ayj.context := AList.context
Alist.env {Ay.node | 1 € j < k}
AList.unique_names :=

Vielsgisg

ltid 1 3 a, t, ¢, p, 1, J ® A;.node = (a, id, t, ¢, p, 1) }| =k

Note:

- Check on assignment of TRUE to AList.unique_names makes sure that no two attributes are declared
with the same namce

(Attribute)

A — VAR IDEN ;' Type

Type.context := A.context
A.node := (v, IDEN.value, Type.value, A.context, «», @)

| METHOD IDEN, ['(IDEN, %' Type; ... IDEN, ' Typey V'] R
[VAR
IDEN,,; "' Typek+1
IDEN, "' Type,]

Vj e 1< 3j<n e Typey.context := A.context

R.context A.context
pnodes :=
{(j, (v, IDENj.value, Typej.value, A.context, «», @)) |
1 £ 93 £k}
lnodes :=
{ (v, IDENj.value, Typej.value, A.context, «», @) |
k+1 € j £ n}
A.node := (m, IDENg.value, R.type, A.context, pnodes, lnodes)

(Type)
Type - CName

Type.value := CName.value

(Result)

R — ' Type

Type.context := R.context
R.type := Type.value

le

R.type := R.context

‘ Note:
- -~ Methods without an explicitly declarcd retum Lype are assumcd 1o return self

PIAE SN)

209

(Class Code)
CC - Ml 1ee Mn

€ n e My.env := Cc.env
) S n e My.context := Cc.id

n
Cc.type_safe := /\ M,.type_safe
P=1

-

M — METHOD IDEN B

.env := M,env

.lenv := locals_of (IDEN.value, M.context, M.env)

.penv := parms_of (IDEN.value, M.context, M.env)
.expected_type := mtype of (IDEN.value, M.context, M.env)
.context := M.context

wwowoo

M.type_safe :=
3 r, pe signature ((m, IDEN.value, r, M.context, p, @), M.env)
A —Common (M.lenv, M.penv)
A B.type_safe

Note:

- B's environment consists of three parts — the global environment inherited from M, and the
environments of parameters and local variables found in the entry in M.env corresponding to the method
named IDEN . value. Parameters and tocal variables cannot share the same name, but can share the same

name as variables or methods found in the global environment.

Fiea W M s wen

A

(Method Body)
B = BEGIN §; %' ... 'S, END
Vjel1g3j<n *S;.env := B.env
V jel1s3j<Sn *Sy.lenv := B,lenv
V je1l<3j<neS,.penv := B.penv
V je1l<3j<neS, context := B.context
V je1<3j<nes, return_type := B.expected_type

n
B.type_safe := /A\ Sy.type_safe

Note:
~ The body of a method is type-sale if cach statement in the body is type-safe and if the expected retum

type is what is returncd by the statements

(Statement)
S — IDEN ='E

.env := §S.env
.lenv := S.lenv
.penv := S.penv

Mo m

.context := S.context
.type_safe :=
bind (vtype_of (IDEN.value, S.context, S.env w S.lenv),
E.type)

nm

Note:
- Any variable receiving an assignment must be a parameter, local variable, or instance variable declared in

the enclosing class, and must be declared of the same type as the entity it is assigned.

| RETURN E

.env := S.env
.lenv := S.lenv
.penv S.penv

mmm

t

E.context := S.countext
S.type_safe := bind (S.return_type, E.type)

211

I E'IDEN

.env := S.env
.lenv := S.lenv
.penv := S.penv

nmEmm

E.context := S.context

S.type_safe :=
3 x ¢ signature ({x, IDEN.value, E.type, E.type, «» @),
S.env & (S.lenv U S.penv)

Note:
- Any reference 1o an instance variable or method call with no parameters (x can refer to m or v) must have

a corresponding declaration node with context, E.type.

| Eo''1DEN 'CE; ... Ey ")

V je 0<jsneEjenv :=S.env

Vje 0<3j<neEjlenv := S.lenv

V je 0<3Jjs<neEjpenv := S.penv

V je 0< 3j<neE context := S.context

p:={ (3, (v, ", Ey.type, S.context, «», @)) | 1 < j S n)

S.type_safe :=
sig_and_parmbind ((m, IDEN.value, Eg.type, Eq.type, p, @),
S.env)

Note:
- Any mcthod call with n paramcters must have a corresponding declaration node with context, Eq.type

(signature check), and with parameter types the same as the types of the corresponding arguments

(parameter binding check).

| IFE THEN S; ELSE S

S.type_safe := E.type # undefined
A S;.type_safe
A S;.type_safe

|38
—
o

(Expression)

E — SELF

E.type := E.context

| NEW IDEN

E.type := vtype of (IDEN.value, E.context, E.env @& E.lenv)

Note:

- One can assign ncw objects 1o local and instance variables, but not to parameters

| IDEN

E.type :=
vtype_of (IDEN.value, E.context, E.env ¥ (E.lenv U E.penv))
Note:

~ Variables referred to as expressions can be instance variables found in E.context, or local variables or

parameters declared in the current method

| E;''IDEN
E,.env := S.env
E;.lenv := S.lenv

E,.penv := S.penv

E;.context := S.context
S.type := type_of (IDEN.value, E,.type, E.env w E.lenv)

Note:
- Any reference 1o an instance variable or method call with no parameters (x can refer to m or v) must have

a corresponding declaration node with context, E.type.

28]
)

I Ep' "N '(CEy .. Ep ")

V je 0< j<neE;env :=S.env
V je 0< 3j<neEjlenv := S.lenv
v 3 0 £ j< neEypenv := S.penv
V jo 0< j<neEjcontext := S.context
p:={ (j, (v, "", Ey.type, S.~ontext, «», &)) | 1 S 3j S}
E.type :=

if 3t e

sig_and_parmbind ((m, IDEN.value, t, Ey.type, p, @), E.env)
then t

else undefined

Note:
- Any method call with n parameters must have a corresponding declaration node with context, Fo.type

(signature check), and with paramcler types the same as the types of the corresponding arguments

(narameter binding check).

214

Appendix III.
Proof: Mapped Systems Preserve
Type-Safety
IILA. Lemma 3.1:

Given node n and mapping function f

(f (type_of (n)) = (type_of (map (f, n)))
Proof:
Consider n = (k, i, 1, ¢, p, I).
We have:

type_of (n) =t
map (f,n)=(k,i,f @), f), map (f, p),map (f, 1))

Thus:
f(oype_of (n)) = f(t) = type_of (map (f, n))

III.B. Lemma 3.2:

Let system (a;) = {A,, ..., A} be a system of classes, and
f: Class Identifier —» Class Identifier, a total function over the domain, system ()

Let environment p, = Rep (system (3;)), and py = map (f, p1).

Let e be a well-formed expression used in the code for an arbitrary method q, found in
the code for an arbitrary member of system (,), A ; with type t in environment p;.

Then e has type f(t) in environment pj.

Proof:

Let T4 be the parse tree of the code for system (A;), generated from the grammar of
Mini-Dee and decorated with attribute values calculated from environment, p;.

Let Tp be the corresponding parse tree of the code for system (A,), but decorated with
attribute values calculated from environment, p,.

Let S4 and Sp be subtrees of T4 and Tp respectively, corresponding to the parse of the
expression e. Note that S4 and Sp are identical trees (as are T4 and Tg), save for the
values of the attributes of the nonterminal ree nodes. The nonterminal labels of nodes
of Sp will be distinguished from those of S4 by the affixing of primes ('). Thus the
root of S, is labeled E while that of §p is E'. Nonterminals in the grammar
corresponding to node labels will be italicized. Thus, a possible rule determining the
structure of the top-most levels of S4 and Sz might be E — SELF.

The proof is an induction proof on the depth n, of S, and Sp.

Base Case: n= 1

Given that the depth of S4 and Sp is 1, the grammar rule which determines the structure
of the subtrees must be one of the following:

93] E — SELF

(2) E — NEW IDEN
(3) E — IDEN

Attribute values inherited by E and E' are easily determined, given the grammar for the
entire tree and the information provided above:

E.context= 4,
E'.context =f(A,)

Eenv = P
E'env = p;

-216-

,'

For some class, Ay, some sequence of nodes, p and some set of nodes, !:
e (m, q,A, A5, p0) € Py
Since py = map (f, py):

o (m’ q’f(Ak)’f(Aj% nlap (f!p)’ maP (f’ 1)) € Pz

Therefore:
E.penv =p
E.lenv =

\ E'.penv = map (f, p)
E'lenv =map (f,)

Case (1) E — SELF

E.type = E.context = A;

E'type = E'.context =f (A) = f (E.type)
Case (2) E — NEW IDEN

Since e is well-formed, then for some class, t :

e (v, IDEN.value, t, A, «»,D)e p, U !
and eE.type=t

Since p2 =map (f, p1):

e (v, IDEN.value, f(t), f(A5), «», @) e p, U map (f,)

Since E'.context = f (A:), it follows that E'.type = f (t) = f (E.type)

Case (3) E — IDEN

Since e is well-formed, then for some class, t :

® (v, IDEN.value, t, Ay, «», D)€ p, U [U range (p)
and eEtype=t

Since p2 =map (f, p1):

® (v, IDEN.value, f(t), f(A5), «», D) €
P, U map (f, 1) v range (map (f, p))

Since E'.context = f (a,), it follows that E'type = f (t) = f (F *vpe)

Inductive Hypothesis:

For some k 2 1, Lemma 3.2 is established for all values of n k.

Consider subtrees S, and Sp with depth, k + 1.

Since these subtrees have depth > 1, the rule which determines their structure must be
one of:

(1) E - E; ""IDEN
(2) E = Eg "IDEN '(E; .. E, ")

-218-

A case analysis follows:
Case (1) E —E; ''"IDEN
Since e is well-formed, then for some class, t:

e (x, IDEN.value, t, Ej.type, «», @) € p,
and eE.type=t

Since pa =map (f, p1):
e (v, IDEN.value, f (t), f (E;.type), «», D) € p,
By the inductive hypothesis:
* El.type = f (E;.type)
Therefore it follows that E'.type = f(t) = f (E.type)
Case(2) E — Ey ""mEN 'CE; .. E,)

Since e is well-formed, then for some class, t, some sequence of nodes, p, some
set of nodes, ! and for x ='m'orx = 'v":

® (x, IDEN.value, t, Eg.type, p,) € p,
oVjel<j<zeEtype =type_of (0 ()
and eEtype=t
Since pp =map (f, p1):
e (x, IDEN.value, £ (t), f (Eg.type), map (f,p), map (f,0)) € p,

Also, by the inductive hypothesis:

Vje0<j<ze E.ype=f(E.type)

-219-

By Lemma 3.1:

Vjelsjsze flype_of (p () = type_of (map (f,p ()
Therefore it follows that:

Vje1<j<ze Eitype = type_of (map (f.p ()
and that:

E'type =f(t) = f (E.type)

III.C. Theorem 3.1

For any class A, given that the code for system (3), c ic type-safe with respect to the
interface of system (a), Rep (system ()), then ¢ will be type-safe with respect to the
interface of any mapped system of system (A).

Broof;
Let system (A;) = (A4, ..., A}

Let ¢ = {Cy, ..., Cx) be the corresponding blocks of code for the classes listed in
system (A,). Assume ¢ to be type-safe with respect to the environment (interface) p; =

Rep (system (A,)).

Let system (B) be a mapped system of system (A:) by the mapping function, f.

w

e

Let p2 =map (f, p1). pa2 is a subset of the environment produced by the interfaces of
system (B), Rep (system (B)). Note that p; might be larger than Rep (system (B))
because:

(1) system (B) might contain more classes than the actual range of f

or (2) for any class A; € system (A;), it will be the case that
IRep (Ag)l <IRep (f (A NI if f(A;) has added methods or instance variables
not found in A;.

A proof that ¢ is type-safe with respect to p; is sufficient to prove that ¢ is type-safe
with respect to Rep (system (B)), since the former is a subset of the latter.

From the grammar of Mini-Dee it is clear that a program is type-safe if each of its class
code blocks is type-safe, and a class code block is type-safe if each of its methods is
type-safe. Thus it will be sufficient to prove that an arbitrary method, m found in an
arbitrary member of ¢, C; with corresponding interface, Rep (system (a))), is type-safe
with respect to p;.

Given the parse tree of ¢, generated from the grammar of Mini-Dee and decorated with
attribute values calculated from pi, let S4 be the subtree of this parse tree
corresponding to the parse of method m. Let Sp be the corresponding subtree showing
the parse of m decorated with attribute values calculated from p;. Note that S5 and Sp
have nodes labeled by the nonterminals of the grammar and are identical in structure,
differing only by the attribute values attached to their respective nodes. The labels of
nodes of Sp will be distinguished from those of S4 by the affixing of primes (). Thus
the root of S4 is labeled, M while that of S5 is M. Nonterminals in the grammar
corresponding to node labels will be italicized. Thus, the rule determining the structure
of the top-most levels of S4 and Spis M — METHOD IDEN B,

-221-

:F

Attribute values inherited by M and M’ are easily determined, given the grammar of
Mini-Dee and the information provided above.

M.env = p,;
M'env = p,

M.context = A;
M'.context = (A;)

Level 1: Root nodes: M, and M'. Rule: M — METHOD IDEN B
Thus, the attribute values attached to B and B' are:

B.env = p;
B'env = p,

B.context = A;
B'.context =f (a,)

Since M.type_safe holds, then for some class A, (1 < h < k), some sequence of nodes,
p and some set of nodes, /:

e (m, IDEN.value, A, Ay, p,) e p
Since pa = map (f, p1):

o (m, IDEN.value, f (&), f (A;), map (f,;p). map (f,)) € p2

-222-

Thus:

B.lenv =1
B'lenv =map (f,)

B.penv=p
B'.penv = map (f, p)

B.extype =r
B'.extype = f(r)

Since M.type_safe holds, then so too does common (M.lenv, M.penv). Since map
introduces no new attribute names and changes no old names, it is also the case that
common (M'lenv, M'.penv) holds. Since (m, IDEN.value, f (Ap),f(A}), map (f,p),
map (f,1)) € pa, it need only be shown that B'.type_safe holds to show that
M'.type_safe holds.

Level 2: Root nodes: B and B'. Rule: B = BEGINS; '..."' S, END

A method body is type-safe if each of the statements contained within the body is type-
safe. Thus, in showing that an arbitrary statement, s found in m is type-safe with
respect to pa, it is also demonstrated that B'.type_safe holds. From the rule for B, we

can determine the attribute values passed to the corresponding nodes for s:

S.env = p;
S'.env = ps
Slenv=1

S'.lenv =map (f, 1)

S.penv=p
S'.penv = map (f, p)

S.context=A-

-

S'.context = f (A-)

-223-

S.extype =r
S'.extype = f (r)

Level 3: Root nodes: S and S'.
Rules:
(1) § = 1IEN"='E
(2) S —» E "'"IDEN
(3) S - Ep '"IDEN '(E; ...E,
(4) S = RETURN E
(5) S > IFE THEN S, ELSE 5>
Case (1) - S = IDEN ="' E
Since S.type_safe holds:
e (v, IDEN.value, E.type, Ay, «», @) € p; L |
Since py =map (f, p1):
® (v, IDEN.value, f (E.type), f(A,), «», @) € pp U map (f,])
By Lemma 3.2, we know:

e E'.type = f (E.type)

Therefore: S'.type_safe holds.

Case (2) - S = E ''IDEN
Since S.type_safe holds, then forx='m'orx ="'v'

e (x, IDEN.value, E.type, E.type, «», @) € p;

Since py = map (f, p1):

* (v, IDEN.value, f (E.type), f (E.type), «<», &) € p2
By Lemma 3.2, we know:

e E'type = f (E.type)

Therefore: S'.type_safe holds.

Case 3) - S - Ep "'IDEN '(E; .. Ep)
Since S.type_safe holds, then for x = 'm' orx = 'v":

® (x, IDEN.value, Eq.type, Eg.type, p, 1) € P
eVzel<z<sneLE,type =1ype of (p(2)

Since py =map (f, p1):
e (v, IDEN.value, f (Eq.type), f (Eo.type), map (f, p), map (f,1)) € p2
By Lemma 3.2, we know:
* Ep.type = f (Eo.type)
By extending the result of Lemma 3.1 over sequences of nodes, we know:
eVzel<z<noype_of (map (f, p (2)) =f (type_of (p (2)))
and thus that:
eV zel<z<neE,type = type_of (map (f, p) (2))

Therefore: S'.type_safe holds.

Case (4) - § D RETURNE
Since S.type_safe holds:
E.type = S.extype =r
By Lemma 3.2, we know that:
E'.type = f (E.type) = f (r) = S'.extype
Therefore: S'.type_safe holds.
Case (5) - S — IFETHEN S; ELSE S7 FI

We know since S.type_safe holds, that E.type # undefined, and that S.type_safe and
Sa.type_safe both hold.

From Lemma 3.2, we kncw that since E.type = t for some class, t, then E'.type is
not undefined but is instead, f(t).

That S'.type_safe then holds follows from an inductive proof on the number, n of
nested IF statements that form the parse tree of S.

In this case, both S) and S; are statements of one of the forms ciscussed in Cases (1)
to (4). We know from the preceding case analysis that if S;.type_safe and
Sa.type_safe both hold, then Sj.type_safe and Sj.type_safe also hold. Therefore,
S'.type_safe holds.

Inductive Hypothesis:

For some k 2 0, then n < k is sufficient a condition to ensure that S.type_safe implies
S'.type_safe.

Assumen=k + 1.

In this case, the number of nested IF statements forming S; and S; are at most n-1. By
the inductive S;.type_safe and S;.type_safe imply S.type_safe and S>.type_safe, and
therefore S'.type_safe. Thus, if s is an IF statement, then it is type-safe with respect
to p; provided that it is type-safe with respect to pj.

All cases then considered, statement s is type-safe with respect to pa if type-safe with
respect to py, and thus so too are m, C; and c.

-227-

Appendix 1IV.

Proof: Class Substitution Denotes
Mapped Systems

IVA. Lemma 41: A <BAB<C = AaC
Broof:
By the definitions of « and mapped system, for some functions, fand g:

Rep (system (B)) 2 map (f, Rep (system ()))
Rep (system (C)) = map (g, Rep (system (B)))

where fis a total function over domain, system (A) and with range, system (B),
and g is a total function over domain, system (B) and with range, system (C).

By the transitivity of 2:
Rep (system (C)) 2 map (g, map (f, Rep (system (B))))
and,A < C bygof.
IV.B. Theorem 4.1: B ojC = A aA|[B épeep Cl
Proof:
This can be proven using a case analysis of the definition of ¢=peep:
Case]: A=B, A[Bépeep C]=C

Since B < C, trivially B <« C.
SinceA= B, A < B.

By the transitivity of < established in Lemma 4.1, A <« C and thus
A 9 A [BépeepCl

Case2: (B=C v B ¢ system (A)), A [B épeep C]=A

It is trivially the case that A « A by {(x,x) | x € system (B)}.
Thus, A < A[B ¢—pep Cl.

Case3: A#B,B£C, Be system (3),
A[B¢DecpCl =A"
where Rep (system (A')) = { n [B ¢—peep C] | n € Rep (system (2)))

Note that since B € system (3):

o system (B) C system (B).
*® Rep (system (B)) < Rep (system (3A))

By the definition of ¢—pecp, fOr every node in Rep (system (a)), there is a
corresponding node in Rep (system (A')).

Let n be any node in Rep (system (A)), and ¢ any type reference found in n.
Then there is a corresponding node, n' € Rep (system (A')) with a corresponding

type reference to 1, 1. There are three possible ways that t'is determined from ¢.

Case 3a: n & Rep (system (B)),
n € (Rep (system (A))— Rep (system (B)))

In this case, n’ is determined by the definition of «—pecp, and 1= [B ¢—pecp C]

Case 3b: n € Rep (system (B)),
n & (Rep (system (A))— Rep (system (B)))

In this case, n’ is determined by the relationship between B and C. Since B <
C, then B < C by {(x,x|B ¢« peep C]) ! x € system (B)}, and thus
t'=1[B & DpeepCl.

Case 3¢; n € Rep (system (B)),
n € (Rep (system (n)) ~ Rep (system (B)))

In this case, it is possible for two nodes, n’ and n” to be found in

Rep (system (n)) where n’ is determined from n by the definition of ¢ peep,
and n" is determined by the relationship between B and C. However, because

B <) C,infact n'and n"” will be the same node, and ¢’ =t [B €—peep Cl.
It is Case 3c that demonstrates that B « C by fis not a sufficient condition by itself to

guarantee that A @ A [B é~peep C], since it could be for some type, 5 # ¢ [B €—peep Cl,
thatf (1) = s..

IV.C. Lemma4.2: A <Bbyf={(...,(D,E),...} = D<Ebyg gcf
Eroof;

Since (D,E) € f
® D € system (B)
e system (D) ¢ system (A)
® E € system (B)
® system (E) ¢ system (B)

Letn=(k,i,,D, «py, ..., py», U}, ..., In)) € Rep (system (D)). Then:
(1) etre system (D)
(2) eVze 1<z jerype_of (p;) € system (D)
(3) eVze 1 <z<merype_of (I;) € system (D)

Since n € Rep (system (3)) also:

n’=map (f, n)
=k 0, f O, E,map (f, «py, ..., pp), map (f, {1, ..., In})) € Rep (system (B))

It is clear from the context field of n’ that n’ € Rep (system (E)) also.

-230-

|
a
A
j
i
]
3

Since n € Rep (system (D)) and n' € Rep (system (E)):

® te system (D)
* f(t) € system (E)

Since t € system (D), we can choose another node, g:
g=&,i 0t «pi, ..., p» I, ..., I,}) € Rep (system (D))

We only require that type_of (q) € system (D). Thus g generalizes any node in
Rep (system (D)). By the same reasoning as before:

q' =&, i f@)f®), map (f, «pj, ..., p»), map (f, {}, ..., LD e
Rep (system (E))

And thus for any node, n € Rep (system (D))
map (f, n) € Rep (system (E))

Thus, at the very least, D < E by f. Naturally, we can narrow f to include only pairs
whose first member belongs to system (D). Thus we have:

D <Ebyg={xy) e flxe system (D) }

IV.D. Lemma 43: a<B = DOS(AaB)=0

Let DOS: (Class Identifier x Class Identifier) — Z* be a function which returns the
“Degree Of Substitution” for any (superclass, subclass) pair. Intuitively, DOS (a,B) will
be 0if A <1 B, and will be » if it takes n substitutions on A to denote a class which is a
parent of B. More formally:

-231-

For any classes A and B, where A <« Bby f:
DOS (aB) =

Y ify=x[A ¢ peep B] then 0 else 1
(xy)e f

Proof:
By the definition of < -
® A a B by ((x, x [A <—peccp B]) | x € system (3))

The result follows.

IVE. Lemma 44: AzB = DOS(aB)=0
Proof:
By the definition of =:
eAaBbyfandB < Aby ¢
Therefore:
e system (A) 2 map (f, map (g, system (3))
and:

of:g'l

e e e e

By Lemma 4.2, for any pair (x,y) € f,x « y. Since (yx) € g:
°eyax
and thus:
°ox=y
Since A=B:
ex=x[A ©Decp B] =y
o f={(x,X[A ¢pecp B}) | x € system (B))
®A 41 B

By Lemma 4.3:

¢ DOS (n,B) = 0.

IV.F. Theorem 4.2: B<«C = A<A[B«C]

Theorem 4.2 will be proved by induction, on the value of n = DOS (B, C). Note that
since B « C, DOS(B, C) is defined.

Base Case: n=0

There are three possible cases for determining the value of A [B — C], given that
n=0.

Case (1)-a=B, A[B«C]=C
Since A= B:

® AgB

-233-

By the transitivity of < established in Lemma 4.1, and since B « C:
*AaC
Case 2)-B=C, A[B«C]=A
Trivially, A <« A by {(x,x) | x € system ())
Case (3)-B <1 C
By Theorem 4.1, A < A[B ¢pecp C]
For some k 2 0, the theorem holds for all n < k.
Inductive Step: n =4,k >0.
There are three possible cases for determining the value of A [B — C], given that
n > (0. The first two cases are the same as Case (1) and Case (2) shown in the proof

of the base case. The third case is:

Case (3)-GivenB « Cbyf={...,(D,E), ... }, E#D[B ¢=pcep C])
AlBe—Cl=A[D«E][B[DE] ¢]

By Lemma 4.2,D < E by g ¢ f. Therefore it follows:
®B[D & E] <« Cbyfyg
Since (D,E) € fand (D,E) € f-g:

sgcf
of-g<f

-234-

Since E £ D [B ¢pep C):

e DOS(B[D «E],C) < DOS (B,C)
By the inductive hypothesis:

eA[D<E] « AD«E}[B[IDeE] ¢«]
Since D < E by g (and by the inductive hypothesis):

¢A aA[D«E]

By the transitivity of < established in Lemma 4.1,

o2 a« A[D«E][BID«E] ¢ C]

-235-

Appendix V.
Mini-Dee Parser Output

V.A Base Classes

Input File: Tests:]l - Base Classes:;Example 1

Input

Index: 1
Class: Object
Aliases:

"Object®
State: Resolved
Nodes:

Index: 2
Class: Bool
Aliases:
"Bool"
"Bool |[Comparable <- Booil"
“Bool ([Comparable <- Order]”
"Bool [Order <- Int}"
"Bool {Order <- Fleatl"™
“Bool {Order <- Cha:;"
State: Resolved

Nodes:
(m, and, 2*, 2, « (v, s0.!, 2%, 0, «», ;1 v, cirver, 2%, 2, «», {}) », {)
(m, or, 2%, 2, « (v, se.t, 2%, 2, «», 1) (v, ouner, 2%, 2, «», {}) », { })

(m, not, 2%, 2, « (v, self, 7=, 2, «», (i »n, 1)

{(m, plus, 2%, 2, « (v, seif, 2*, 2, «», 1}) (v, ciner, 2%, 2, «», {(}) », { })
(m, zero, 2%, 2, « (v, self, 2+, 2, «», t}}) », { I3

(m, equals, 2*, 2, « (v, self, 2=, 2, «», {(}} (v, cther, 2*, 2, «», {}) », { 1)

Index: 3
Class: Ring

Aliases:
leingn
State: Resolved
Nodes:
(m, plus, 3*, 3, « (v, self, 3+, 3, «», {1) (v, other, 3*, 3, «», {(}) », { })
(m, zero, 3%, 3, « (v, selt, 3>, 3, «», (1) », { }}
Index: 4
Class: Comparable
Aliases:
“Comparable"
State: Resolved
Nodes:
(m, equals, 2, 4, « (v, self, 4*, 4, «», {}) {v, other, 4*, 4, «», {}} », {)}
Index: 6
Class: Int
Aliases:
llIntll
State: Resolved
Nodes:
{(m, times, 6%, 6, « (v, self, 6*, 6, «», (}) {v, other, 6*, 6, «», {}) », { 1))
(m, div, 6=, 6, « (v, seif, €, 6, «», {}) {v, other, 6*, 6, «», {}) w», { })
{m, mod, 6*, 6, « (v, self, €*, &, «», {1} tv, cther, 6%, &, an, {}) », { })
(m, 1t, 2, 6, « (v, self, 6", 6, «», {}) tv, oLaer, €%, 6, «o, (1) », { 1
(m, gt, 2, 6, « (v, se.f, &6*, €, «»n, (}) (v, crer, 67, 6, «», {}) », { })
(m, lte, 2, 6, « {v, self, 6=, €, «», (1} (v, cLner, €, 6, «», {}) », (})
(m, gte, 2, 6, « (v, se.l, €*, v, «», (1) (v, ctner, 6*, 6, «», {}) », { 1})
{m, equals, 2, 6, « (v, self, €, € «»n, 1)) (v, cther, 6*, 6, «», {})) », |))
(m, plus, €*, 6, « (v, self, €*, 6, uw», {}) {v, olner, 6*, 6, «, (1) », { 1
(m, zero, 6*, 6, « (v, self, 6*, 6, u», {}) », { 1
Index: 7
Class: Order
Aliases:
“Order"
State: Resolved
Nodes:
(n, 1t, 2, 7, « (v, sell, *, 1, «», ;) (v, otner, I*, 7, «», {}) », { }}
(m, gt, 2, 7, « (v, se.f, i*, i, «», i1} (v, otner, I*, 71, «»n, }} », | n
(m, lte, 2, 7, « (v, se.f, i, I, «», «}) v, coher, 1*, 7, «», {(}} », { })
(m, gte, 2, 7, « (v, se.f{, /I, I, «n, i,} (v, other, I*, 1, «an, {}) », | 1)
(m, equals, 2, 7, « (v, scif, I*, &, «», {}) v, eitner, 1%, 7, «», {}) », { })

237

Index: 10
Class: Float
Aliases:
"Float"
State: Resolved
Nodes:
(m, times, 10*, 10, « (v, sclf, 10+, 10, «», {}) (v, other, 10*, 10, «», {}) », { 1
{m, div, 10*, 10, « (v, sesf, 10+*, 10, «», {}) (v, other, 10*, 10, «», {}) », { 1
(m, sqrt, 10*, 10, « (v, self, 10=, 10, «», {}} », { 1}
(m, sin, 10*, 10, « (v, self, 10*, 10, «», {}) », { })
(m, cos, 10*, 10, « (v, self, 10+, 10, «», {}) », { })
(m, 1t, 2, 10, « (v, self, 10%, 10, «», {}) (v, other, 10*, 10, «», {}) », { })
{m, gt, 2, 10, « (v, self, 10*, 10, «», {}) (v, other, 10*, 10, «», ({}) », { 1)
(m, lte, 2, 10, « (v, self, 10=, 10, «», {(}) (v, other, 10*, 10, «», (}} », { })
(m, gte, 2, 10, « (v, self, 10", 10, «», {}) (v, other, 10%, 10, «», {}} », { })
(m, equals, 2, 10, « (v, self, 10*, 10, «», {)}) (v, other, 10*, 10, «», {(}) », { })
{m, plus, 10*, 10, « (v, self, 10%, 10, «», {}) (v, other, 10*, 10, «», {}) », { })
{m, zero, 10*, 10, « (v, self, 10+, 10, «», {(}} », t })
Index: 12
Class: Char
Aliases:
"Charll
State: Resolved
Nodes:
{(m, asc, 6, 12, « (v, self, 12*, 12, «», {}) », { })
(m, plus, 12+, 12, « (v, self, 12+, 12, «», {}} (v, other, 12*, 12, «», {}) », { })
{m, zero, 12*, 12, « (v, self, 12=, 12, w, {}) », { })
(m, 1t, 2, 12, « (v, self, 12*, 12, «», {}) {v, other, 12+%, 12, «», {}) », { })
(m, gt, 2, 12, « (v, self, 12+%, 12, «», {}) (v, other, 12*, 12, «», {(}) », { })
(m, lte, 2, 12, « (v, self, 12+*, 12, «», {}) (v, other, 12+, 12, «», {}) », { N
(m, gte, 2, 12, « (v, self, 12*, 12, «», {}) (v, other, 12+*, 12, «», {}) », { 1)
(m, equals, 2, 12, « (v, self, 12+, 12, «, {}) (v, other, 12%, 12, «», (}) », { })
Class: Cbject is a subcl.ss cf,
Object (1) by: { }
Class: Bool is a subclass cf:
Object (1) by: { }
Bool (2) by: { (Bool, Bool) } Ring (3} by: { (Ring, Bool) }
Comparable (4) by: { (Boel, Bool) (Comparable, Bool) }

Class: Ring 1is a subclass of:

Object (1) by: { }
Ring (3) by: { (Ring, Ring) }
Class: Comparable is a subciass of:
Object (1) by: (}
Comparable (4) by: { (Boe., RBoel) (Comvuratle, Co~varab.e) |
Class: Int Is a suoclass of:
Object (1) by: {)
Ring (3) by: { (Ring, Int) }
Comparable {(4) by: { (Bool, Bool} (Comparable, Int) }
Int (6) by: { (Int, Int) (Bocl, Hoocl)
Order (7) by: { (Bool, Boci) (Order, Int))
Class: Order is a subclass ot
Object (1) by: { !
Comparable (4) by: { (Hoeo., Boel) (Ce-parec.e, Craer) o
Order (/) by: § (Beoo, Hecly (vraer, Craecry

238

Class: Float is a subclass of:
Object (1) by: { }
Ring (3) by: { (Ring, Flecat) }
Comparable (4) by: { (Bool, Bool) (Comparable, Float))
Order (7) by: { (Bool, Boo:) (Order, Float))
Float (10) by: { (Float, F.cat) (Boeecl, Boeol))

Class: Char is a subciass cof:
Object (1) by: { }
Ring (3) by: { (Ring, Char) }
Comparable (4) by: { (Bool, Bool) (Comparable, Char) }
Order (7) by: { (Bool, Bool) (Order, Char) }
Char (12) by: { (Int, Int) (Char, Char) (Bool, Bool) }

Class: Object is a child (subclass by inheritance) of:
Object (1) by: { }

Class: Bool is a child (suoclass by inheritance) of:
Object (1) by: { }
Bool (2) by: { (Bool, Bool)
Ring (3) by: { (Ring, Bocl) }
Comparable (4) by: { (Booc:, Bocl) (Comparable Hool) |}

Class: Ring is a child t(subclass bty innheritance) of:
Object (1) by: { }
Ring (3) by: { (Ring, Ring) }

Class: Comparable is a child (supoclass by inheritance) of:
Object (1) by: { }
Comparable (4) by: { (Bocl, Bool) (Comparable, Comrparable))

Class: Int is a chilo (subc ass vy :17rcritarce) of:
Object (1) by: { }
Ring (3) by: { (Rirg, (nu)
Comparable (4) opy: { (Boo., dec.) (Comparab.e, .nt) g
Int (6) by: { (Int, Int) (Hoo., Hool)
Order (7) by: { (Bool, Bocel) (Droer, Int)

Class: Order is a child (subclass by :nheritance) of:
Object (1) by: { }
Comparable (4) by: { (Booi, Bool) (Comparable, Order) }
Order (7) by: { (Bcol, Bool) (Order, Oraer) }

Class: Float is a child (supclass by irheritance) of:
Object (1) by: { }
Ring (3) by: { (Ring, F.cai) i
Comparable (4) by: { (Boc., Beo:) (Cerparakbice, Fuoal))
Order (7) by: { (Bocl, HBouz.) (Orcer, :loat}) |}
Float (10) by: { (Float, F.cal) (Boc., Buul)

Class: Char is a chile (surclase by :rner.tarce) of:
Object (1) by: {)
Ring (3) by: { (Ring, Char) }
Comparable (4) by: { (Bool, Bool) (Ccmparable, Char)
Order (7) by: { (Bocl, Bool) (Orcer, Cnar)
Char (12) by: { (Int, Int) (Cnar, Char) (Beol, Boo:))

239

V.B Example 2.7

Input File: Tests:2 - Turtle:Example 2

class Turtle

var x : Int
var y ¢ Int
var direction : Float

method move (m : Int)
begin ... end

method distance (a : int b : Inu
pegin ... erd

method turn (amt @ Fioat)
begin .., enc

method set_pos (a : Int Db : Int)
begin ... end

: Float

method within_one ta : Int b : Int)

begin ... era

end Turtle

class ScreenRange inherits Ipt
var k : Int

end ScreenRange

class WrappingTurtle inherits Turtle [Int <~

end WrappingTurtle

240

Output

Index: 1
Graph: Otject
Aliases:
"Object"
Index: 2
Graph: Bool
Aliases:
IIBOOI"
“Bool [Comparable <- Bool}"
" ,00l [Comparable <- Order}"
"Bo0l (Order <- Int)"
"Bool [Order <- Float)"
"Bool (Order <- Char]"
"Bool [Int <~ Screenkangel"
Index: 3
Graph: Ring
Aliases:
llRingll
Index: 4
Graph: Comparable
Aliases:
"Comparable"
Index: 6
Graph: Int
Aliases:
“Int®
Index: 7
Graph: Order
Aliases:
“Order"
Index: 1C
Graph: Float
Aliases:
"Float"
“rloat [lnt <= Screerxanze
"Floatr [Turt.e "Iri <= Soreerdange
Index: 12
Graph: Char
Aliases:
“"Char"
Index: 14
Class: Turtle
Aliases:
“Turtie"
State: Resolved
Nodes:
(v, x, 6, 14, «», i1}y
(v, ¥y, 6, 14, «n, <)
(v, direction, 10, 14, «w», in
(m, mcve, 14*, 14, « (v, se¢ !, 147, 4, «n,)

24]

(v,

.

4,

- wWravn.ongTartie]"

up,

th

»,

(m, distance, 10, 14,
« (v, self, 14*, 14, «», }) (v, a, 6, 14, «», {}) (v, b, 6, 14, «», {})) »,
{)
(m, turn, 14*, 14, « (v, selt, 14*, 14, «», {})
(v, amt, 10, 14, «w», {}) », { 1
(m, set_pos, 14*, 14,
« (v, self, 14+%, 14, «», {}) (v, a, 6, 14, «», {}} (v, b, 6, 14, «», {}) »,
{ 1
{(m, within_one, 14+, 14,
« (v, self, 14, 14, «», {}) (v, a, 6, 14, «», {}) (v, b, 6, 14, «w», {}H) »,
{t N
Index: 15
Class: ScreenRange
Aliases:
"ScreenRange"
"Int [Int <- ScrecnRangel"
“ScreenRange [Turtle [Int <~ ScreenRange| <- WrappingTurtle]"
State: Resolved
Nodes:
(v, k, 6, 15, «», {(})
{m, times, 15*, 15, « (v, self, 15=¢, 15, «», {}} (v, other, 15%, 15, «», {}} », { })
{(m, div, 15*, 15, « (v, selif, 15+, 15, «», {}) (v, other, 15*, 15, «», {}) », { }}
(m, mod, 15*, 15, « (v, self, 15=, 15, «», (}) (v, other, 15*, 15, «», {}) », { })
(m, lt, 2, 15, « (v, self, 15*, 15, «», {}) (v, other, 15*, 15, «», (}} », { })
(m, gt, 2, 15, « (v, serl, 15*, 1%, «», {}) (v, other, 15%, 15, «», {(}) », { }}
{m, lte, 2, 15, « (v, se:f, 1t*, 15, «», {}) (v, ctner, 15+, 15, «», {}}) », { })
(m, gte, 2, 15, « (v, self, 15=, 15, «», {})) (v, ctner, 15%, 15, «», {(}) », { 1)
{m, equals, 2, 15, « (v, seif, 15+, 15, «», {}} (v, ctner, 15+, 15, «», {(}) », { })
(m, plus, 15*, 195, « (v, seif, 15, 15, «», {}} (v, cther, 15=%, 15, «», {}) », { })
{m, zero, 15*, 15, « (v, scif, 15 15, «», {}) », })
Index: 18
Class: WrappingTurtle
Aliases:
"Turtle {Int <- ScreenRangel”
"WrappingTurtle"
State: Resolved
Nodes:
(v, x, 15, 18, «», {})
(v, ¥y, 15, 18, «», i})
(v, direction, 10, 18, «»,)
(m, move, 18%, 18, « (v, so.!, .8*, b, «», i) (v, =, 15, 18, «», {}) », {(})
{m, distance, 10, 18,
« (v, self, 18+, (8B, «», 1) vV, a, 23, .8, «», () (v, b, 15, 18, «», {}) »,
{ h
(m, tarn, 18+, 18, « (v, self, 18+, 18, «», (}) (v, arz, 10, 18, «», {(}) », { })
(m, set_pos, 18+*, 18,
« (v, self, 18+, 18, «», {}) (v, a, 15, 18, «», {}) (v, b, 15, 18, «», {}} »,
{ N
(m, within_one, 18», 1§,
« (v, sclf, 18+, B, «», 1) v, a, -z, 18, «», {}) (v, b, 15, 18, «», {}} »,
{ 1)
Class: Turtie is a subclavs o
Object (1) by: { }
Turtle (14) by: { {(lInl, inv) (F.vat, f.var) (Turiie, Turtle) (Bool, Bool) }

Class: ScreenRange is a subclass cof:
Object (1) by: { }
Ring (3) by: { (Ring, ScreenRange) i
Comparable (4) by: { (Bool, Bocl) (Cecmparable, ScreenRange))
Int (6) by: { (Int, ScreenRange) (Bool, Bool) }
Order (7) by: { (Bool, Bool) (Order, ScreenRange) |}
ScreenRange (15) by: { (Int, Int) (ScreenRange, ScreenRange) (Bool, Bool) 1}

Class: WrappingTurtle is a subclass of:
Object (1) by: { }
Turtle (14) by: { (Int, ScreenRange) (Float, Float) {(Turtle, WrappingTurtle) (Bool, Bool) }
WrappingTurtle (18) by: { (ScreenRange, ScreenRange) (Float, Float)
(WrappingTurtle, WrappingTurtle) (Int, 1lnt) (Bool, Bool))

Class: Turtle is a child (subclass by inheritance) of:
Object (1) by: { }
Turtle (14) by: { (Int, Inu) (Flce., Float) (Turtle, Turtle) (Bool, Bool) }

Class: ScreenRange is a child (suoclass by inheritance) of:
Object (1) by: (1}
Ring (3) by: { (Ring, ScreenRange) }
Comparable {4) by: { (Bcol, Bool) (Comparable, ScreenRange) }
Int (6) by: { (Int, ScreenRange) (Bool, Bool) }
Order (7) by: { (Bool, Bool) {(Order, ScreenRange))
ScreenRange (15) by: { (Int, 1lnt) (ScreenRange, ScreenRange) (Bool, Bool) }

Class: WrappingTurtle is a ch:id (subciass by 1inheritance) of:
Object (1) by: { }
Turtle (14) by: { (Int, ScreenRarge) (Flcat, I'loat) (Turtle, WrappingTurtle) (Bool, Bool)
}
WrappingTurtle (:8) cy: { (ScreenRkanoe, ScreerRange) (Float, Float)
{Wrappingiuriice, Wrappinglurtle) (Int, Int) (Bool, Bool) |

243

V.C Example 4.6

Input File: Tests:3 - Inheritance:Example 3

class V inherits U
var b : W
end V

o+ = - A = o 2 L = = " T = = o o A s = e - o o

class W

end W

————— v - " 7> " S v = T o o = e e = e . = - 48 TS S T -

class R inherits v
var < : W

end R
AR AN S S AL R T A SRR R S S I T RS AN T T ST A . - SRS TS EESSSREES S ESSREE
Output
Index: 1
Graph: Object
Allases:
"Object”
Index: 2
Graph: Bool
Aliases:
"Bool"
"Bool [Comparable <- Bool]"
"Bool [Comparable <- Order!"
"Bool {Order <- Int]"®
“Bool {[Order <- Float]l™®
"Bool (Order <- Char'"
Index: 3
Graph: Ring
Aliases:
“Ring"
Index: 4§
Graph: Comparable
Alliases:
“"Comparabic"

ot Sl

4
\
!
]

3
3
A
4
iv
J
,
T
3
E
3
3

Index: 6
Graph: Int
Aliases:

"Ing®

Index: 7
Graph: Order
Aliases:

"Order"

Index: 10
Graph: Float
Aliases:

"Float"

Index: 12
Graph: Char
Aliases:

“"Char"

Index: 14
Class: U
Aliases:

IIU"
State: Resolved
Nodes:

(v, a, 14=, 14,

Index: 15
Class: V
Aliases:

IlVlI
State: Resolved
Nodes:

(v, b, 16, 15, «», {
(v, a, 15%*, 15, «»,

Index: 16
Class: W
Aliases:

llwu
State: Resolvea
Nodes:

(v, ¢, 15, 16, «», |

Index: 17
Class: R
Aliases:

IIR"
State: Resolved
Nodes:

(v, d, 16, 17, «», |
(v, b, 18, 17, «», {
(v, a, 17, 17, «w»,

«»,

1)
{h

3]

)
(8]
v)

i}

245

Index: 18
Class: W
Aliases:

v

State:
Nodes:
{v,

c, 17,

Class: U is
Object (1)
U (14) by:

Class: V is
Object (1)
U (14) by:
V (15) by:

Class: W is
Object (1)
W (16) by:

Class: R is
Object (1)
U (14) by:
V (15) by:
R (17) by:

Class: W
Object (1)
W (16) by:
W [V <- R]

v

Class:; U is
Object (1)
U (14) by:

Class: V is
Ob ject (1)
U (14) by:
V (15) by:

Class: W is
Ok ject (1)
W 116) by:

R is
(1)
by:
by:
by:

Class:
Object
U (14)
vV (195
R 1M

Class: W
Object (1)
W (16) by:
W [V <- R}

v

ll'”
Resovlved

<~ Rj

(V<= R'"

18, «», {})

a subclass of:
by: { }
{ (U, U |

a subclass of:
by: { }

{ (L, V) }

{ (W, W) (v, V)
a supclass of:
by: {)
{ (V, V) (W, W) }
a subclass of:
by: { }

{ (U, R) }

{ (W, W [V <= RI})
{ (W, W) (W

v, ?) }

Vv <= R}, W [V <= R} (R, R) (V, V)
<= Rj is
by: { }
{ (V, R) (tw, wn

(18) by: { (R,

a L.

i)

W)

Vo<~
k) (W, [

a child (subclass
by: { }
{ tu, U i

inheritance)

a child inreritance) of:
by: { }
{ w, vy

{ (W, W) (v,

(subclass

vy
a chilo SO L la L)
by: { }
{ (v, V)

[ST oy

(W, W)

(2

a child (supc.ass .nneratatce) o
by: { }

{ (U, R)

{ (W, W [V <-
{ (h, W) (W [V

2y

R)

o=

Ry

IV <= R})

w,

Ry, W (R, R) (V, V)

<- R] is a chilo of:
by: { }

{ (V, RY (h, w \V «= R)

(18) by: | (n, Wi

{stbclass by inner:tance)

R, ®)

}

[V <= R})

}

V <= R;)

V.D Examples 5.7a and 5.7b

Input File: Tests:3 - Inneritarce:Exampie 4
Input

class B
var b : B
methoa m (other : H) : Opiect
begin ... end
end B
class B' inherits B
var i : Int
end B!
Output
Index: 1
Graph: Object
Aliases:
"Ooject"”
"Object [B <~ B'"
Index: 2
Graph: Bool
Aliases:

"Bocl"

"Boc. \Corpdarar.e < Lt
"Boe. (Llomparan ¢ <= (ral”
“"Beo, (Oroer <= r-u™
"Boo. {0roer <- t.catl "
“Bool [Order <- Char!"

247

Index: 3
Graph: Ring
Aliases:

IIRjnq"
Index: 4

Graph: Comparable
Aliases:
"Comparat.ce”

Index: €
Graph: Int
Aliases:
*Int"
Index: 1
Graph: Order
Aliases: '

"“QOroer"

Index: 10
Graph: Float
Aliascs:

"“tloat"

Index: 12
Graph: Cnhar
Aliases:

llcn(]rll
Index: 14
Class: B
Aliases:
"}’ll
Stato: Keuoivea
Nodey:
(v, b, 14=, 14, «», (1}
(m, m, 1, 14, « (v, sc.t, 1467, 4, «»,
Index: 15
Class: B!
Aliascs:
Ili!lll
State: hesolveo
Nodes:
(v, &, 6, 1H, «», i)
(v, b, 15*, 1%, «», 1}
(m, m, -, 15 « (v, s¢ ', .=, S, w»,
Class: B Is a subclass cf:
Obiect (1) by: {1}
B (14) by: { (B, B) (v ecy, Cuv ect)

{v, ctrer, 14+,

ioe,

l4,

15,

«»,

«»,

h

{h

»,

»,

{

{

})

3]

Class: B' is a supbciass of:
Object (1} by: { }
B (14) by: { (B, B') (Objec., Cbrecy)
B' {15) by: { (Int, Irt) (B', B') (Cbrect, Oblect) (Bool, Bool)

Class: B is a chila (supciass by :nneritance) ol:
Object (1) by: { }
B (14) by: { (B, B) (Cclec:y, Courect) |

Class: B' is a child (supclass oy :-neritance) ot:
Object (1) by: { }
B (14) by: ((B, B') (Ocjeci, Coject) 1}
B' (15) by: { (Int, Int) (B*, %') (Cbject, Obiect) {(Bool, Bool)

249

)

V.E Examples 4.10a, 4.10b

input File: Tests:4 - (S:txar~p ¢ =

Input
class B
var ol : Object
var o2 : Object
var o3 : C
method m ()
vegir ... ena
class C
methoa p () ¢ Ob cct
pegin ... ena
end C

clace B' inherits B 100 wect <= it

Index: 1
Graph: Object
Aliases:

"Ob et

Index: 2

Graph: Booi

Aliases:
"“Bool"
"Bool [Corparable <~ Boo:s!"
“"Bool {Comparable «- Craeri®
"Boo! [Order <- Jrt *
“"RBool [Order <= Ficati®
"Boo. [Oroer <= Cnar'®

Index: 3
Graph: Ring

Aliases:

llRingu
Index: 4
Graph: Comparable
Aliases:

"Comparable"
Index: 6
Graph: Int
Aliases:

IlInt"

“Int (B [(Object <- Int} <- B'}"
Index: 7
Graph: Order
Aliases:

"QOraer"
Index: 10
Graph: Float
Aliases:

"Float"
Index: 12
Graph: Char
Aliases:

llcharvl
Index: 14
Class: B
Aliases:

I'BII
State: Resclvea
Nodes:

(v, o1, 1, 14, «», {})
(v, o2, 1, 14, «», (})
(V' 03; 151 141 a», {1})

(m, m, 14*, 14, « (v, sc.:, T4*, 14, «n, 1
Index: 15
Class: C
Aliases:
IICII
State: Resclvea
Nodes:
(m, P, 2, 23, « (¥, se.f, 13*, o, «»n,

251

Index: 17

Class: B!

Allases:
"B [Opject <- Int)"
llBl "

State: Kesolved

Nodes:

{v, ol, €, 17, «n, {1
(v, o2, 6, 17, «», {1)
(v, 03, 18, 17, w», (1)

(m, m, 17*, 17, « (v, sc.t, I*, 11, «», {}) », i })
Index: 18
Class: C [Object <- Int)
Allases:

"C [Object <- Inu, ™

"C [Cbject <- irnt, 'H Opject <= Int}! <- B* "

State: Resolved
Nodes

Class: B 1s a subclass o!f:

Object (1) by: { }

B (14) by: { (Object, Ovject) (C, C) (B, B) }
Class: C is a supbclass ct:

Object (1) by: { }

C {(15) by: ((Object, Object) (C, C) ¢

Class: B* is a submciast !
Object (1)} by: { }
B (14) by: { tvo _cct, %)
B* (17) by: (tint, ') (v oot <= s .

(o, < O A R e e

o~

[SN T4

Class: C [Object <= Inl, .8 o Sutc.aSs Ol
Object (1) by: { }
C (15) by: { (Object, inx) (T, € ,Ocvject <= Intj) }
C {Object <~ Int) (18) by: { (lry,
{Beel, Bool))

Class: B is a chilc (subiiass by .rheritance) of:
Object (1) by: {
B (14) by: ¢ (O o, Celect) (0, Sy (¥, W)
Class: C is a chila (s.ti.are 0y *reritance) of:
Object (1) by: {
C (15) by: { (Object, Criect) (o, Ji
Class: B* is a chila (subclass oy .nheritance) c¢f:
Object (1) by: { }
B (14) by: |
B* (17) by: |

.

(Obiect, int) (C, C Obiject <- Int]) (B,

Class: € [Object <- Int; 1s a chr:o (scbclass py :inherit

Object (1) by: {)

C (15 by: { (Orrecy, 2) (T, o L Croert <= e
C [Oblect <= Irt {lE) 24 + it l, (70 0wt vl s
{ . ‘ I

9
(%
N

BN

Irt) (C [Ovject <= Int],

B')

C [Object <~

tint, Int) (T iObiect <- inti, C 1Obiect <= Int}) (B*, BY")

ance) of:

{Bool, Bool)

Int))

{(Bool, Bool)

C Coject <~ Int])

}

}

V.F Example 4.11

Input File: Tests:4 - CS:Exarpie €

Input
class B
var cl : Orcject
var 02 : Oblect
var o3 : C
method m ()
begin ... end
class C
methed p () : Co oo
LeY.r ... era
end C

class C' inherits C [Obiect <- Intj

class B" inherits B {C «- C'.

253

Output

Indax: 1
Graph: Object
Allases:
"Object "
"Object |C <- C')"
Index: 2

Graph: Bool
Aliases:
“HBool"

“Bool [Comparaoie <- Booli]"

"HBool [Comparable <- Oragerl"
“"Hool {[Order <- Int)"
"Bocl {Order <« Float}"
"Bool [Order <- Char)"
Index: 3
Graph: Ring
Aliases:
“Rinq"
Index: 4

Graph: Comparable
Aliascs:
“Corparat.«"

Index: 6
Graph: Int
Aliases:
“lnt"
“Tru € [Orect <= L
"Int !B {OLiegt <= Irt <= HU©

nti <= Cv "

Index: 7
GCraph: Oraer
Aliases:

"Craoer"”

Index: 10
Graph: Float
Aliases:

“Float"

Index: 12
Graph: Char
Aliases:

"Char"

Index: 14
Class: B
Aliasces:

I|!§ll
State: Resolvea
Nodes:

(v, ol, 1, 14, «»,)}
(v, o2, 1, 14, «», })
(v, 03, 15, 14, «», (M)
(m, m, 14°%, 14, « (V, so.', T, LG, ww, Y om,

Index: 15

Class: C
Aliases:

llc"
State: Resolved
Nodes:

m, p, 1, 15, « (v, se.f{, 5=, Tz, «»,) », })

Index: 17
Class: C!
Aliases:

“C [Object <- Inti"
IICI "
“C! [B [Object <= Inuj <- Bujw
State: Resolved
Nodes:

(m, p, 6, 17, « (v, sel!, 17, 17, «», {}) », { 1)

Index: 22
Class: B"
Aliases:
"B [Object <- .-t)"
"B (C <~ C* "
"B {Cociect <= .:r° 1o Crin onpen
State: Resolved
Nodes:

(v, ol, 6, 22, «», ¢})

(v, 02, 6, 22, «», i})

(v, 03, 17, 22, «», {})

(m, m, 22», 22, « (v, s0.f, 22*, /7, «», ¢}) »,

Class: B is a supc.ass o*:
Object (1) by: {
B (14) by: { (Ociect, Oricciy (o, () g,)

Class: C is a subclass of:
Object (1) by: { }
C (15) by: { (Coject, Co,ect) (L, O

Class: C' is a supciass ¢f:
Cbject (1) wby: { }
C (15) by: ((Opjeci, .-t} (C, C'}
C' (17) by: { (Ire, Int) (L*, C') (lilue., Bool)

Class: B" is a s.oclass 0f:
Object (1) oy: { 1}
B {14) by: { {(Object, Int)y <, T') (s, #') 4
B" (22) by: { (Iry, irnt) (L0, C')og@v, B (4., Buol)

Class: B is a chila (suibciass cy .rner’tanee) b
Object (1) by: 1 }
B (14) by: { (Opiect, Ooniecz) (T, € (4, #)

Class: C is a CF..a {SJLT.ALS Ly .0ICY "at 0y '

Obiject (1) ozy: « -
C (i%) by: { (Co,ecy, L ey (L, L)

255

Class: C' is a child (subclass by :nheritance) of:
Object (1) by: {)

C (15) by: { (Object, Int) (C, C'))
C' (17) by: { (Int, Int) (C', C') (Bool, Bool) }

Class: B" is a child
Object (1) by: {)}
B (14) by: { (Object, Int) (C, C*) (B, B") }

B" (22) by: { (Int, Int) (C*, C*') (B", B'") (Boco:, Bool)}))}

(subclass by inheritance) of:

o

V.G Examples 4.12a - 4.12f

Input File: Tests:4 - CS:Example 7
Input

class Animal

var mate : Animai
var owns : Opjec:t

methoa lenas () : Oovlect
oeg.r ... €1a

end Animal

class Human inherits Animal {Obiject <- Int]
method marry (other : Human)
pegin ... end

end Human

class Familty
var leager : Arl-o
var has : Ovject

methed berroew ()
pegin ... ena
end Family

class Human_Familyl inherits Fa~lly [Ani~a. <- Human,

o
S
o
€
c
3
o
=}
i
o
o
3
o
o
~<
A

oy e

EEEERTS SIS =S .. . - - e - -

257

Ooutput

> > = e - e e = > = = = -~ - - -

"Object |Animal <- Human}"

{Comparapijc <= Bool)"

[Comparanle <- Order)™

{Oraer <- InL]"™

[Order <=~ Float "

[Order <~ Charl™"

[Animal [Cbiect <- Int}] <~ Human]"“

Index: 1
Graph: Object
Aliases:
"“Object"
Index: 2
Graph: Bool
Aliases:
OIBOOllI
"Bool
"Bool
"Bool
"Bool
"Bool
"Bool
Index: 3
Graph: Ring
Aliases:
“Rj nqﬂ

Index: 4
Graph: Comparabie
Aliases:

"Compardaple"

Index: 6
Graph: Int
Aliases:

“Int"

“Int [Animal |Object <~ Int! <- Human)"
“Int [Family (Animal <- Human] <- Human_Familyl}"
“lnt {[Famiiy [Opbject <- Int} <- Human Family2]"

Index: 7
Graph: Order
Aliases:

"Oracr"

Index: 10
Graph: Float
Aliases:

"Float"

Index: 12
Graph: Char
Aliases:

Ncharll

Index: 14
Class: Animal
Aliases:

"Anima
State: PResolvea
Nodes:

(v, mate, 14+,
(v, owns, 1, 14
(m, lends, 1, 1

v

14, «», {3)

’
4, « (v, seql, 14, 14, «», {3} », +

Index: 15
Class: Muman
Aliases:
"Human”
"Animal [(Animal <~ Huran!™
"Animal {Object <= Irt [Anira. |Ooiect <= Int] <= Human)"
“"Human [Family [Anima. <- Human] <- luaman_Familyl}®
State: Resolved
Nodes:

(m, marry, 15*, 15, « (v, self, 15+*, 15, «», (}) (v, other, 15+, 15,
(v, mate, 15%, 15, «», {})

(v, owns, 6, 15, «», {})

(m, lends, 6, 15, « (v, self, b+, 15, «», {}) », { })

Index: 16 '
Class: Animal [Object ~- 1lnt!
Aliases:

"Animal [Object <- Inpt}"

«»,

n

"Animal [Object <- Inti {Family [Object <- Int] <= Human_Family2}"

State: Resolved
Nodes:

(v, mate, 1l6*, 16, «», ()}
(v, owns, 6, 16, «», {})
{m, lends, 6, 16, « {v, self, 16*, 16, «», {}} », { }}

Index: 18
Class: Family
Aliases:

“Familiy"
State: Resolvea
Nodes:

(v, leader, 14, 18, «», {}
(v, has, 1, 18, «», {})
{m, borrow, 18*, 18, « (v, se.f, 18*, 18, «», (}) », { 1

Index: 20
Class: Human_Famijy!
Aliases:
"Family [Arirma!l <= =»umar "
"Family [Oblect <- ' "Ae v, .Colec <= Int] <— Human]"

“Human_Farilyl"
State: Resolvea
Nodes:

(v, leader, 15, 20, «», {})

(v, has, 6, 20, «», (1})
(m, borrow, 20*, 20, « (v, sclf, 2C*, 2C, «», {(}) », { })

259

»,

Index: 23
Class: Human_Far..ys
Aliases:

Inv)

“"Parilys (Lh o ¢~ Iecm
"Humar, bar:.y2"
State: Resolvea
Nodes :
(v, leader, 16, 23, «», (i)
v, has, 6, 23, «», i,)
(m, borrow, 23*, 23, « (v, secif, 23+, «r, 1}y o», 1))
Class: Animal 15 d 5.L¢.uss O
Obiject (1) by: { }
Animal (14) by: ¢ (Ar.ra., h a.) (Ovaecy, € ecu)
Class: Human is a subc.iass ¢!
Object (1) by: |
Animal (14) by: { (Ani~a., P.~ar) (Oc-ert, Int)
Human (15) by: « (PHura-, buras) (0%, Inw) (Beol, Boel)
Animal [Object <~ [:i; (10) ty: ¢« thrn.ral Object <= Intl}, Huran) (Int, Int)
tsuecl, Bool)
Class: Anriral ,Ob:cc' <= lrv' (< o subec.ass ot
Object (4) vy: ¢ o
Animal (14) by: the va, A™.~a. 0D cct «= Int,) (Cprect, Int)
Animal [Object <= It tle) t,: i (hriral 'Criect <= Irt}, Animal [Object <- Int})
P nt) thce., Beol)
Class: Family 1s o sut .. *:
Ob ject (1) bpy: ¢
Family (!B) cy: « (A ~,., 7 R T T, S0 oty (ramiuy, Family))
Class: Hurman Farilyl (& o subo.as: [
Object {1) by: { }
Family (18) by: { (An.~a., hura) (Cc L, Int) tiew.ly, haran_Familyl) }
Human_Farilyl (2C0) by: « (#.~a’, n.7a'y (I-i, Irx) (hemar_Far.lyl, Human_Familyl)
(. t., M
Human Farm lys (/3 tyt o (Ari~a. Tt oo - , hwema“h o tirnt, Int)
«o.T e , T av.Ly {¥3ee., Bool) |}
Class: Human lam..y¢ .o a wat awe o4
Object (1) by
Family (18) by: ¢ (A -~a , foo~a. Ot lect o= 07 (Ceiect, int)
ramo oy, raeman :'d"_..:y(‘) }
Human Fariiy/ (51 by (e .ma Je,e~t «~- IrL,, A~iva. 'Copject <- Int}) (Int,
(Fomw' a7 aye, taT.iyZ2) (32¢l, Bocl) }
Class: Anima. js o €1.:0 (subl.abs by 1nher.tance) of
Cbiject (1) by: ()
Animal (14) by: (A ~a., Ar:~al) (Criecy, Cojoct)
Class: Human is a chila (suoc.ass oy 1.ner: ance) of:
| Object (1) by: { }
| Animal (14) by: { (An:ra., human) {(Ouzer* Int) o
! Human (15) by: ¢ (Euman, =.man) Ling, v (Beel, Beel)
i Animai [Obrect <= Intt (lt) by: « (An. “clect <= Inlj, human) (Int, Int)
‘ (o dvwa) 2
|
|

260

(scociass by :nheritance)

Class: Animal [Object <- Int, 1s a chila

Object (1) by: { }
Animal (14) by: ((Ani=al, A-~.~,. .dbject <= .nt.) (Object, In)
Animal {Object <- Irt' (l{) vy: ¢ (Arira. (Otrect <= Int], Anima
(.n%, I-t) (Beo., Hool))}

S LrnerlLance) of

Class: Family s a cnlla ts.tc.asey ty

of:

}
1 [Obiect <=

Ohject (1) by: {
(Family, Family))

Family (18) by: \ (Anira., An.ral) (Opjell, Colect)

Class: Human Familyl is a ch::a (subcliass by inheritance} of:
Object (1) by: { }
Family (18) by: { (Animal, tiuran) (Object,

Human_Familyl (20) by: (liuman, Human)
(Hoo., Bocl)

Human_Family2 (23) by: { (Ar:ma. !(Object <- Intj, Human) (Int,
(Ho=ar _tamilyZ, miran_Familyl) (Boo!

Class: Human_Family2 is o tn..8 (f.0C.ass by arnhetitance) of:

Int) (Family, Human Familyl) }
(Int, lnt) (Human_tramilyl, Human_Familyl)

Inty
, Bool) }

Object (1) by: {)
Farily (i8) Dy: { (A . ~a., A" .7a. "L . -) tCLojoect, iat)
GoatoLy, ~a at oy
Human_fa~iiy2 23) c©y: + (A .~ o UL - L, ALma. (Colect <= Int))
: WTut taT. ., aamat rarisy2) tBooi, Bool)

Int])

)

V.H Examples 5.3 and 5.4

Input File: Tests:t - L.nc avucuinyarc.e B

Input
class A
var a : A
methoa m (other ¢ Ay : D
begin ... eno
end A
class D
Varl
end D
class B3]
var a : A
moet Loe A {Lther A}
noea.,” e OOTQ
var Lo B,
end Bl
class B2
var a : B2
method m (other ¢ BZ2) : D
begin ... eno
var b : B?
end B2

o
(o]
~o

Output
Index: 1
Graph: Obiect
Aliases:
"Obiect™
Index: 2
Graph: Bocl
Aliases:
llBoolll
"Bool [Comrparap.e <- Bocl ;"
“Bool (Comparamle <~ Crocri®
"Boc. [Oroer <- [nu'™
"Boo. [Order <- ploa:r "
"Bool [Creoer <= Crar|"
Index: 3
Graph: Ring
Aliases:
ller\qll
Index: 4
Graph: Comparabpie
Aliases:
"Comparapie"
Index: 6
Graph: Int
Aliases:
|Ilnt "
Index: 7
Graph: Order
Aliases:
"Oraer"
Index: 10
Graph: Floa:
Aliases:
"Float"
Index: 12
Graph: Char
Aliases:
"“"Char"
Index: 14
Class: A
Aliases:
IIAII
State: Resolves
Nodes:

(v, a, 147, 14, «», 1})
(m, m, 15, 14, « (v, se.f, 14*, 14, «»,

1}

263

(v,

wLner,

4,

i4,

«n,

{th

»,

{

B

[

Index: 15

Class: D
Aliases:

IID"
State: Resculved
Nodes:

(v, d, 15, 15, «»n, i)

Index: 1€
Class: Bl
Aliases:
llBl'l
State: Resolvea
Nodes:
{v, a, 14, 16, «w»n, {}}
(m, m, 1%, 16, « {v, seclf, 16, 1€, «n, {}) {v, other,
(v, b, 16*, 16, «», {})

Index: 17
Class: B2
Aliasces:
"Ro"
State: Resolvea
Nodes:
(v, a, 11*, 11, «», {})
(m, m, 15, 3/, « (v, sclf, 17!+, 17, «», {}) (v, other,
(v, b, 17*, 11, «», {})

Class: A is a subclass of:
Object (1) by: { }
A (14) by: { (A, Ay (2, Iy

Class: D 1s a subclass of:
Object (1) by: 1
D (15) by: { (L, Dy

Class: Bl is a subciass ol
Cbject (1) by: {
Bl (16) by: { (A, A) (D,) (Bl, Bl)

Class: B? is a subclass ot
Object (1) by: { }
A (14) by: { (A, B?) (D, D) }
Bl (16} by: { (A, B?)} (D, D) (8B,, B2)
B2 (17) by: « (B2, BS)Y (D, M >

Class: A is o cniid (s.0 sasy Ly L nteritance) cf: Ooject
A (14) by: { (A, AY (',)

Class: D is a ch:ld (surclass by inheritance) otf: Coject
D (15) by: { (D, D) }

Class: Bl is a child (subclass oy inheritance) of: Ocject
Bl (16) by: {((A, A) (D, D) (Bi, Bl) }

264

14,

(1)

(1)

16,

by:

by:

{1) by:

«»,

{1

{}

{}

(8}

»,

{

3]

Al i

Class: B2 is a cniio (scbciass py 1rher:tance) ot: Ovject
A (14) by: ((A, B2) (T, D)

Bl (16) by: { (A, B2) (D, Dy (8, B2))

B2 (17) by: { (B2, Bz) (2, &) »

265

(1)

by:

{

}

V.I Examples 5.3 and 5.5

Input File: Tests:d - Subc.asseuibxamr.e 9

Input
class A
var a A
methoa o (otter @ Ay oL
Leg. " e . NG
end A
class D
Var d A
end D
class B2
var a b
TeLnNLG mo(ulrer) >
pey. ... 07
var o @ e
end B2
R L EE F. e T EE. Bk EE e oo e+ . caewramssszaosz=s

266

Output

Index: 1
Graph: Otject
Aliases:
"Object"
Index: 2
Graph: Bool
Aliases:
“"Bogcl"
“Bocl {oriarar ¢ o= Hooo'M
"Bool (Corparat.o <= Jreos'"
"Becol ,Croer «- ~u'®
"Bool (QOroer <- tigat "
"Bool {Oroer <- Cnar'"
Index: 3
Graph: Ring
Aliases:
"Ring"
Index: 4
Graph: Cocmparap.e
Aliases:
“"Cerparat o
Index: 6
Graph: Int
Aliases:
"Int"
Index: 7
Graph: Order
Aliases:
"Oraer"
Index: 1C
Grapn: Float
Aliases:
"Float"
Index: 12
Graph: Char
Aliases:
“Char"
Index: 14
Class: A
Aliases:
IIAII
State: Resolveo
Nodes:

(v, a, 14~*, 14, «w», i)

(m, m, 15, 14, « (v, se.l, .4*, .4, «n, i1} (v, oLrer,

267

Index: 15

Class: D
Aliases:

IID"
State: Resolvec
Nodes:

(v, d, 14, 1%, «», {1})

Index: 16

Class: B?
Aliases:

"p2*
State: Resolved
Nodes :

(v, a, l6*, 16, «», (]}

(m, m, 15, 16, « (v, sclf, 16, 16, w», {}) (v,

(v, b, 16, 16, «», (1})

otner,

Class: A is a subclass of
Object (1) by: { }
A (14) by: { (A, A (2,

Class: D is a subeclauvs !

Object (1) by: 1
D (1% by: { (A, A) (3,

Class: B? 1ls a subclass of:

Object (1) by: { }
B2 (16) by: { (B2, B2)

(b, =}

(A, A}

Class: A is a child {subc
A (14) by: ((A, A) D,

iass by inheritance) of:

3)

Oplect

Class: D is a chila tsubciasy ty 17ner:tance) c¢f: Object

D (15) by: { (A, A) (D,

Class: B2 is a chi.o (5.0C avy Ly L7ner. Lo o0y
B2 (16) by: { (BZ, 832) (.

Dy

PSS N A 1Y

[

Lo lect

268

167,

(D]

16,

{1) by:

(1) by:

py:

{

{

«»,

}

}

}

{H

»,

{

h

V.J Subclassing is Structural (1)

Input File: Tests:5 ~ Subclasses:Exarple 1C

Input
class A
var ¢ Char
var f Ficat
end A
class B
var b : Bocl
var i Int
end B
class C
var c Crar
var o Roo!
end C
class D
var f Float
var i int
end D

class E inherits A &
methoa ary (i

LeYLT .., Cru
end E
class F inherits C D
method any () : F
peg." ..., eLa
end F

269

Graph: Object

Aliases:
“Object™

Index: 2

Graph: Bool

Aliases:
DIBOOI (1]
"Bou! [Comparable <- Booll"
"Bool [Comparabic <~ Orderj"
"Bool [Order <- Int]})"
"Rool {Order <- Float'"
"Bool [Order <- Charl"
"Bool [B <~ E]"
“Bool [C <- F)"

Index: 3

Graph: Ring

Aliases:
“Rinq"

Index: 4

Graph: Comparabie¢
Aljases:

“"Comparabloe”

Index: 6
Graph: Int
Aliases:
"Int"
"Int [B <= F|"
“In. (D <= F]"
Index: 7
Graph: Ordex
Aliases:
"Order"
Index: 10
Graph: Float
Aliases:
“Float"
“"Fioat |A <~ E]"
"Float [D <- F)"
Index: 17
Graph: Char
Aliases:
"Char"
“Char [A <= BI"
“"Char [C «- »r'"
Index: 14
Class: A
Aliases:
|IA|I

State: Resolveo
Nodes:

(v, ¢, 12, 14, «», 1}
(v, £, 10, 14, «», 1)

Index: 15
Class: B
Aliases:

llBll
State: Resolved
Nodes:

(v, b, 2, 15, «», (]
(v, 1, 6, 15, «», {})

Index: 16
Class: C
Aliases:

I|CII
State: Resolved
Nodes:

(v, ¢, 12, 16, «», {})
(v, b, 2, 16, «», {(}}

Index: 17
Class: D
Aliases:

IIDII
State: Resolved
Nodes:

(v, £, 10, 17, «», {})
(v, i, 6, 17, «», (]}

Index: 18
Class: F
Aliases:
IlEll
"FII
State: Resolvea
Nodes:

(m, any, 18=, iB, « (v, se.f, i8*, 18, «», {(}) », | vy (v, ¢, 12, 18, «», {})
(v, £, 10, 18, «», {})
(v, b, 2, 18, «», {}}
(v, i, 6, 18, «», {})

Class: A is a subclass of:
Object (1) by: { }
A (14) by: { (Char, Crar) (Flcei, Float) (Ini, Int) (Bool, Booi))

Class: B is a subclass c!f:
Object (1) pby: { }
B (15) by: { (Bocl, usct) (.7, ")

Class: C is a subclass c¢f:

Object (1) by: { }
C (16) by: ((Char, Cnar) (Becec., Bool) (int, .oty |}

271

AR

Class: D 1s a subciassy o!f:
Object (1) by: { }
D (17) by: { (Float, Fivat) {(!n*, Inv) (bcol, Bocl) |}

Class: F is a supbclass of:
Object (1) by: {)

A (14) by: { (Char, Char) (Float, Flocat) (Int, Int) (Bool, Bool) }

B (15) by: { (Bool, Bool) (Int, Int) }

C (16) by: { (Char, Char) (Booi, Bool) (Int, Int) }

D (17) by: { (Float, Float) (Int, Int) (Bool, Bool) }

F (1B) by: { (F, F) (Char, Char) (Flecat, Float) (Bool, Bool) (Int, Int) }

- - - " e e e a4 s = e e e e > T e A e e

Class: A is a chila (subclasy Dy rrer.itance) of:
Object (1) py: { |}
A (14) by: { (Char, Crar) {r.oa., Fleoat) (Int, Int) (Bool, Bool) }

Class: B is o chilo (sunclaess vy nheritance) cof:
Object (1) by: {)
B (15) by: { (Bool, Bool) (Ilnt, Int))

Class: C is a child (subclass by inneritance) of:
Object (1) by: ({ }
C (16) by: { (Char, Char) (Bool, Bcol) (Int, Int)

Class: D is a childg (scbclass by inheritance) of:
Object (1) by: {)
D (17 by: { (Float, Flovaz) (Int, Int) (Bool, Bocl) }

Class: F is a child (supc.iass py Irneritance) ol
Object (1) by: 1« }
A {(14) by: { (Cuar, Unar) (:loar, rleat) (Int, Int) (Beol, Bool) }
B (15) py: { (Beo., bBovl) ('ry, 10U} 0
C (16) by: { (Char, Char) Beol, Bool) (in., irt)
D (17) by: { (Float, Fleat) (Int, Int) {(Booi, Bocl) }
F (18) by: { {F, F) (Char, Char) {(Float, Floal) (Bool, Bool} (l1nt, Int) }

N
~J
o

V.K Subclassing is Structural (2)

Input File: Tests:% - Subclasses:txamrplie 11

Input
class AT
var a ¢ A
method p (a ¢ A i : Int) : B
begin ... end
end A
cwass BT
var b : B
methoed p (b : B i : Int) : A
pegir ... cnha
end B
ctass ¢
var a c
method p (a : C i : int) : B
pegin ... eno
end C
s o T
var a : A
mechoa p (a ¢ O A
OCY." ... N0
end D
cassE T
var a ¢+ D
rernca p (a ¢ A FR o B
Lo eee OO
end E

273

class F
var a : A
methoa p (! ¢ F . : Int) : B
beg: ..oona
end F
class H
var a : H
method p (a ¢+ H 1 : Int) : B
begir ... ond
end H

class I inherits A

end 1

274

Output
Index: 1
Graph: Obiject
Aliascs:
"Ob ject ™

Index: 2

Graph: Bool

Aliases:
“Bool"
"Boovl [Cerparaplie <= Hooli"
"Bool {Conpdraple <= Lracer'"
"Bool [Oruer <= Invl"®
“Bool {Oroer <= Ficau!"
“"Booul [Order <- Crarj®

Index: 3
Graph: Ring
Allases:

“Ring"

Index: 4
Graph: Comparablc
Aliases:

"Comparatb,:e”

Index: €
Graph: Int
Aliases:
"Int"
"Int LA <= 1"
Index: 7

Graph: Oraer
Aliases:
"Oracer™

Index: 10
Graph: Float
Aliaves:

"Float"
Index: 12
Graph: Char
Aliascs:

“Char"
Index: 14
Class: 1
Aliases:

" A "

1] 1 "
State: Resousveo
Nodes:

(v, a, 147+, 14, «», i

(m, p, 15 1.4,
« (V, so
{ V)

i Ar. o, e, o) Y, W, LAt L4, w, o)) v, i, 6, 14, «w, {))

Y

Index: 15
Class: B [A <- I}
Aliases:

IIBII

"B O[A <~ I'm
State; Resol.ed
Nodes:

{v, b, 15%, 15, «», (})
(m, p, 14, 15,
« (v, self, 15+, 15, «w», })

{ h
Index: 16
Class: H
Aliases:
llCll
" H "
State: Resc.vea

Nodes:

(v, a, 1€+, 16, «», 1)
{(m, p, 15, 16,
« (v, self, 16, 16, w», «})

{ 1)
Index: 17
Class: D
Aliases:

State: Rescivea
Nodes:

(v, a, 14, 17, «», {:)
(m, p, 15, 17/,
« (v, self, 1I*, i, «wn, i}

{ 1
Index: 18
Class: E
Aliases:
L1 Ell
State: Rescliveo

Noaes:

(v, a, 17, &, «»n, +-)
(m, p, 13, 186,
« (v, selfl, .vr, &, «n, <y

(I

(v,

(Vl

o, 15+,
a, 16,
<, ‘.(‘,
o, b,

276

)

15,

i,

.8,

un,

«n,

«»,

Wi,

(1

{}}

{h

thy

(v,

(v,

jl

'i'

i,

6,

6,

6,

15,

lo,

18,

«»,

«»,

«»,

(N

th

{h

»,

»,

»,

Index: 19
Cilass: F
Aliases:

" !‘ L
State: Resuvivea
Nodes:

(v, a, 14, 19, «», {})

(m, p, 15, 19,
« (v, self, 19+, 19, «», {}) (v, £, 3197, 19, «», {}) (v, i, 6, 19, «», (}) »,
[

Class: I is a subclass of:
Object (1) by: { i

I (14) by: { (I, I) (I8 [A <= I;, B [A <= I}) {(Int, Int) (Bool, Bool) }

H (16) by: { (H, 1) (B A<~ 1,, B [A <= 1)) (Int, Int) (1, I) (Bool, Bool) }

D (17) by: ((1, 1) (% A <- 1], B {A <= Il) (D, I) (H, I) (Int, Int) (Bool, Bool) }

E (18) by: { (D, I) (B (A <~ 1), B [A <= 1) (E, I) (I, I) (Int, Int) (H, I) (Bool, Bool) }

Class: H [A <~ || .S a “.fe.asvs 0§
Object (1) cy: {)}
B [A <= 1) (15) by: ¢« (I A<= 1,, B A<= 1) (I,) (Int, Int) (Bool, Bool) }

Class: H is a subclass of:
Object (1) by: { }
H (16) by: { (H, ¥) (B [A <- 1), B {A <~ I}) (Int, Int) (I, 1} (Bocol, Bool) }

Class: D is a subclass of:
Object (1) by: { }
D (1) by: { (I, 1D (B A<= 1,, 8 'A<« 1) (2, O} (4, H) (Int, Int) (Bool, Bool) }

Class: F 15 a2 suptlass o'
Object (1) by: { }
E (18) by: { (D, D) (8B A<= 1,, = A «= 1) (., E} (I, I} (Irt, Int) (H, H) (Bool, Bool) }

Class: I 15 a sLbc.ass ¢l
Object (1) by: ()
F (19) by: { (i, 1) (B ‘A<= .y, B A<= _) (}, £) tirt, Int) (Boocl, Bool) }

Class: 1 is a child (supclaus vy irneritarce) of:
Object (1) by: { }
1 (14) by: { (1, 1T) (B "A <= I+, 8 !k <= 11} (Int, Irt) {Bool, Bool) }
H (16) by: « (I, i) (* 'A «= 1 | % A<= 1) (I, T:t) (I, I) {(Bool, Bool) }
D (17) by: (1, 1)t th <= ', 4 A<= L) (2,) (¥, 1) (Int, Int) (Bool, Bool) }
E(18) by: { >, 1) (Y A<= ., v~ A<=,) -, I) (!, I) (Int, Int) (H, I) (Bool, Bool) }

Class: B IA = L6 o o' a0 ate oane ry cner o tance) o
Objoct (1) wy: ¢
B {A <= I' (1%) wBy: (B A<= ", 8% A<= 1) (., 1) (Int, Int) (Bool, Bool) }

Class: H 1s a ch.la (subclass by :nneritarce) of:
Object (1) by: { }
H (16) by: { (H, }) (B A «- {,, B (A <~ 1]} (Iny, Int) (I, I) {Bool, Bool) }

Class: D 1s a child {(supc.ass by .rheritance) cf:
Object (1) by: {(!}
D (i7T) by: { (I, 11 B A<= I', & Ac<- ') (Z, D) (&, i) (Int, Int) (Bool, Bool) }

Class: E 15 a ©~:1la (r.0ola s by TOTLlaToer Lt
Cbect (1) by:
Foeig) by o (32, Y s A o= B U, 0 1.,) {Iny, Int) (K, H) (Bool, Bool) }

e — e —

Class: F is a child (subclass oy inheritance) otf:
Object (1) by: { }

F (19) by: { (I, I) (B (A <= I , B A<= 1j) (b, ¥ (Int,

278

Int)

(Bool,

Bool)

)

V.L Bruce Case Analysis: Ex13a

Inpat File: Tests:t - ve groceibaamp.e 12
Input

class Exl3a

rethod rec rmeltoa (any ;1 kxl3a)

veg.r ... cnao
var ¢ : C
method m ()
besin ena
end bkx1a
class C
meLnLoa rL (v oroa a)
Lo [SRS
end €
class Chila ¢f Exloa .oror m e i,
var ¢ @ Ot e

end Chila of tx!jie

279

Pt T

Output
Index: 1
Graph: Object
Aliases:
"Object "
Index: 2
Graph: Boo.
Aliases:
“"Beel"
"Bool [Cemparab.ce <~ doees'”
"Bool [Comparab.e <- Oraer)"
“Bool [Qraer <= 1lrtl"
"Bool [Order <- F:icat}"
“Boc! {Craer <- Chari"
Index: 3
Graph: Ring
Aliases:
"Ri.".’.}"
Index: 4
Graph: Comparable
Aliases:
“"Corparae.ce”
Index: 6
Graph: Int
Aliases:
I'Int."
Index: 7
Graph: Craer
Aliases:
"Groer"
Index: 1C
Graph: Float
Aliases:
"racat”
Index: 12
Graph: Cnar
Aliases:
“Crar"
Index: 14
Class: Exl3a
Aljases:

"Ix.3a"
State: Resclvea
Nodes:

(m, rec_rethoa, 14>, 14,
« (v, self, 14+, 14, «n,) (Y, aiy, 4°,
(v, ¢, 15, 14, w»,
t)

(r, =, 14, T4, « v, , T, L, wn, o ”,

280

Index: 1%
Class: C
Aliases:

State: keso.ves

Nodes:
(m, me, 157, 15, « (v, we.!, .=, 1u, «n, <3} (v, Vv, 14, 15, «», (}) »®, { })
Index; 1€
Class: Chilu_of haiose
Aliases:
"Cniio of talda”
State: Reso.veo
Nodes:
(v, o, 1, .6, «», 3}
(r, rec revnoc, €7, LG,
« (v, scel!, 1€, 6, wn,) (v, any, -€+, 16, «», {}) »,
[BN
(v, ¢, 17, 16, wn, 'y
(m, m, 6%, 1€, « (v, <« ', i, b, wn, 2} o», v M)

Index: 11
Class: C !txilda - lo.i.a ' o~
Aliases:

WCOlEX. e <= {rrLa o XL sat”
State: Resolved
Noaes:

(m, me, 17+, 17, « (v, ¢

Clase: Exida 1f o sure
Cbiject (1) by: « o
Ex123 (14) by: { abxose, Bxo oo o, O

Class: C is a sunclass o!:
Object (1) by: {
C (15) by: { (C, T (+xTzsa, "a. v

Class: Chilo ¢f Ix.3u .% u Sutu.abs o
Object (1) oy: «

Ex13a (14) oy: ¢ (Fxlsa, Jro.a 0! -a sa) (0, € x sau <~ Cn.lo_cf Exl3a}) }
Child of talla (1€} pry: (bt ovt, UL o) <. o cf_iLx.3a, Cni:o_of Exl3a)

(0 ra’sa <= TrLco ! _Exods,, C [Exi3a <~ Child_of Ex13al) }

Class: C [Exl2a <= In
Object (1) by: «

C (15 by: { (L, C »x o v= v La ot xisa) (zalza, Jhaila_o! Exl13a) |}

C {Ex1da <«- Cn:ila ol bx sa 1) oy

{ (C [Exila <= - LN LN

LSl rX e 'Y e Swic.ats of:

(Ch Lo ¢ bEx s, O

Class: kxi3a is a (hL..a (sutv ass vy
Object (1) by: 1

Ex133 {14) by: ((Ex%13a, FExI134) (T, &)

.nrerfiance) ol

Class: € 1s a chiig (s5ubec.adsy Oy L7her.ta ce) ot
Object (1) by: {

C (15) by: { (L, &) (¢x13a, ixl3a))

Class: Child_of _Ex13a :s a chilo tsubclass by inher.itance) cof:
Object (1) by: {)

Exl13a (14) by: ((Exl3a, Cn
Child_of_Exl3a (.€) py: {

o cf_E
! L
(C [Ex13a <=~ Cn.lo ¢f E

13a) (C, ¢ [Ex.3a <- Child_o!_Exllal))}
biect) (Crilo _of _Ex13a, Child_of_Exl3a)
C ifxlda <- Chila_of_Ex1l3al))

X
o}

Class: C [Exl3a <- Cn..c_cf
Object (1) by: ¢
C {15) by: { (C, T (Exl3a <~ {°
C [Exl3a <~ Chilo_o! _Ex13a’ (1% vy:

{ (C [Ex13a <= Ch:rla of Enxil3a;, € [Ex13a <- Child_of_¥xl3al)
(Child_of Ex13a, Crila_of_Ial3al (Object, Object) }

tAxlla .S 8 Cch.:a {subc.ass by inheritance) of:

Lo oe! ExToat) tbxlda, Child_of Exl3a) |}

V.M Bruce Case Analysis: Ex14a

Input File: Tests:6 - vs Bruccibxarp.c 33

class Exld4a
METLGD r1ec melr L taty oPxl4a)
Leut oo, €73

rethoeo r (. ¢ C)
end kxida

clasy C

end C

class Chi.d o! Exlda irter-te IX.4a
var ¢ i Cu e

end Chala of ¢t x.4a

[RS)
j= o)
‘'

Outpat

Index: 3

Graph: Ckject

Aliases:
"Cbject"

Index: 2
Graph: Bool
Aliases:
"Boc."
"Beey (Corcaras.e <= 000"

Y"Bocel Comtardt.e <= ctaert "

"Hool (Qraer <= "
"Hoc., 'Croer o= Lol M
“Boo, Lrevr o= (o ™

Index: 3
Graph: Rinrg
Aliases:

"Rj nqn

Index: 4
Graph: Comparavic
Aliases:

"Comiarat "

Index: ¢
Graph: Inu
Aliases:

IGID:‘II
Index: 7
Graph: Oracr
Aliases:

"Croer"

Index: 1C
Graph: Fuicac
nliases:

Incex: 12
Graph: Crar
Aliases:

ne n
Crar

Index: 14
Class: EXiba
Aliases:

W S
State: kes..vio
Nodes:

(m, rec_mel i3, LA, 0,

« (v, seli, b4, L0, wem, N I A
{0
{(r, ™, 14'1 b, o« L., ‘e, L, wu, ! ta, oy

Index: 15
Class: C
Aliases:

llc ”n
State: Resclveo
Nodes

{m, me, 15, 1L, « (v, se.f, .5*, 5, «»n, i} v, v, 14, 15, «», {})

Index: 16
Class: Child_of _kxidu
Aliases:
“"Chaoid ¢f rr ba®
State: Resolvea
Nodes:
(v, o, 1, 16, «n, {1}
{m, rec_methou, 6", 1¢,
« (v, scltf, 16*, 16, «», ‘1) {v, ary, 6=, 1€, «», (])
{ N

»,

tm, m, lv*, 16, « (v, seif, ~t*, Y&, wn,) (v, ¢, -7, 16, «», {})

Index: 11
Class: C [tXl14a «- Cr.ia ¢ 'X.4u
Aliases:

" ta ha o= 7 .) Lla ™

State: Restulivoeu

Nodes:
(m, mc, Y/*, Y4, « (v, el f,0b, wn, o) v, v, 16, 3,

Class: Exlha 16 o »lbo.any ol
Ob ject (4) by: «
Exl4a (14) by: « (ix.ba, Pxada) (0, 0
Class: C 19 9 HubLClasy il
Object (1) pby: (
C (15) Dby: « (o, 7 Arv.ha, *» woel) o

Class: Clhila ! 1¥.da © o« tl.en o
Object (1) bty:

»

’

Exl4a (14} Ly: v {i>.ne, o0 o 0 oa dar 10, T rxihe <= Cnlio_of_Exidal)
Child of Ex.4a (16) ry: « (<t o0, Co ety {ir..a ' zxl4a, Chilo_of_Exlda)

(C {PXi163 <= € g ¢' X.4u , O *x.ha «= Cro.c i _Exléa

Class: € (Exlda «= CnrLa o Pa.dd L d 8.l l.ads O
Obiject (1) by: «)
C {15 by + {(, B T T T T Y VRS Y o B+ 34
C ibxld4a <~ v La i N da L) oty

A0 T ERabda o= 0 L 0t b A, Sxha o s= Um0 oot ExD
(Cholo ol Tx" 46, 0 o A rar (lroecy, Coo,vot)
Class: Exida 1o a 0" L0 (hel. o wrs vy Ltter o tatoey i
Ob tect (1) by
Exida (14) oy ot wL et [T SR
Class: C 25 a0 Cchod (nuloa. t Tt UL ‘s

Obvject (X)) oy +
CAHY byt v (o, T e e, N sy

[®,
oc
'

I

Exl4a)

4a

}

}

Class: Child_of_Exl4a is a ch.la (subcliass by irheritance) of:
Object (1) by: { }
Exl4a (14) by: { (Exl4a, Chila_of Exl4a)

{C, C [Exlda <- Child_oi_Exl4a}) |}
Child_of Exl4a (16) by: ¢ 0cviccy,

Coject) (Ch:lae_of Exld4a, Child_of_Exlda)
(C [Exl4a <- Ch:ilo_o! _Falébda , T lixld4a <- Child_of Exléal) }

Class: C (Exl4a <- Chilo_cof fxl4al 15 a chilo (sibclass by inheritance) of:
Object (1) by: { }

C {(15) by: { (C, C [Exl4a <- Child_of_Lxldaj) (kxl4a, Child_cf_Exlda) }
C {Ex1l4a <- Child of_Exlé4al (17) by:
{ (C [Exl4a <~ Chilo_of_Exl4a], C [Exld4a <- Child_of_Fxl4a])
{Chitd_of Exi4a, Child_cf_Ex144) {(Object, Object))

i o 47 " e e 1 " o e e S A= S e . o - - -

286

V.N Bruce Case Analysis: Ex15a

Input File: Testsié - vy kroce:bxarc:c L4

class Ex15a
rethod rec_rethoa (any : Exlba)

begir ... ena
methou ¢ () @ C
Leac.r L,. vra

methea mo ()
beg.n ... ena

end Fx15a
class C
method mec (v : Fxib%a)
vegilr ... eno
end C

class Child of Exlba innersts xlve
var o : Object
end Child_of Exibda

Quiput
Index: 1
Graph: Object
Aliasoes:

"Object ™
Index: 2

Graph: Bool
Aliascs:

"Beel™

"Boo. (Comrdarav.e o= oo, !
“"Roe Temtiran, e v Craer
Hooo o Jraee o= "

PHReCL Craer - e "

" : ey .
Roc. Orae AN

287

rIII-I--Il--l-----lIIlllllllllllllllllllllllllllllllllllllllIllllllllllllllllllIIIIIIIIIIIIIIIIIIIIIIII

Index: 3
Graph: Ring
Aliases:

IlRingll

Index: 4
Graph: Comparable
Aliases:

"Comparable"

Index: 6
Graph: Int
Aliases:

lllntll

Index: 7
Graph: Order
Aliases:

"Order"

Index: 10
Graph: Float
Aliascs:

"FiLoaw"

Index: 12
Graph: Cnar
Aliases:

“Char®

Index: 14
Class: Exl%a
Aliases:

"Exl15a"
State: Resolvea
Nodes :

(m, rec_methoec, 1l4~, 14,
« (v, se:f, .4, 4, «», o) (v, dy, 4%, 4, «nw, 1) »,
{ hH

(m, <, 15, 14, « (v, sc.f, 6, 4, «n, <3} », o+ })

(m, m, 14%, 14, « (v, self, &, .46, «n,) », 1)

Index: 15
Class: C
Aliases:

[LYeXl}
[

Sta.e: Resolvea
Nodes:

(m, mc, 15%, 1%, « (v, sc.f, Is%, 1% «», ()} v, v, 14, 15 «», (}} », { }}

288

Index: 16
Class: Chilo of kxi.a
Allases:

"Crnila @l Fa.oa"
State: Resclvea
Nodes:

(v, o, 1, 16, «», {})

(m, rec_method, 16+, 16,
« (v, selt, 1é*, 16, «», {}) (v, any, 16*, 16, «», {})} »,
{ 1

{m, c, 17, 16, « (v, sclf, 16=, 16, «», ¢}} », { i)

{m, m, 16*, 16, « (v, self, 16, 16, «», {(}) », L })

Index: 17
Class: C [Exl5a <~ Chi.a o! ¥xi5a
Aliases:

"C [Ex1Hdg <~ Chi.u of =xlZal"
State: Kesolveao
Nodes:

(m, mc, 17+%, 17, « (v, self, 1/t+, 17, «», {1}) (v, v, 16, 17, «», {})

Clars: Fxlba is a subcluss of:
Object (1) by: {
Exlha (14) by: « ((xloa, *» ~a) {2, O)

Class: C is a sunc.asy o°
Object (1) by: ¢
C (]5) l‘y: { (¢, (1} (-"X:Lu, Py LLL) b

Class: Child of Ex15d ls d subC.ars =03
Cbject (1) by: {)
Ex15a (14) by: { (Exlba, Cnilo_of Ex.ba) (C, C [kxiba <- Cniid_of_Exl15a]) }
Child_o! Fx15a (16) by: { (Opject, Coject) (Chi:c_cf_Exiba, Child_of_ Exl15a)
(C TEX15%a <~ Chuid of Ixita,, C i1x1Ba <- Child_o(_ExlSa]))

Class: € ttxlha <= Chliic ¢! Pxlza, is o s.bclass cf:
Object (1) oy: {)
C {15 by: { (C, C [ixl1Ba «- ..o «f rxidal) (Exiba, Child_of Exl5a) }
C {Exlba «- Chiiu 0of Ial=a (71 uy:
{ (C [Exi%a <- ¢ oot oaita , U rxlue <= Cnllc_of Exibdal)
(Chila v Ex .o, «r. ¢ ¢! Px za) (Opect, Colecl) |}

Class: Fx1lba 1s a chila (surclase by Inter.tance) of:
Object (1) by: { }
Exl5a (14) by: { (Exlbua, Exlba)r (C,)

Class: C is a chiid (subclass by irher:tance) ol
Object (1) by: «
C (19 by: ¢ (C, TV (i1x.2u, .X.3a)

Class: Chila ¢! ¥xlda vt ('L, o (%.DC.u58 LY .""er.tance) cf:
Objoct (1) by: «
Exlda (14) by: « (ralba, Jrulae of Ixatlna) (C, ¢ #xlda <- Child_of Exl15al) }
Child et txlba 16) ©y: « (lecect, Cetet.) (Chito_of_txi%a, Child_of_Exl5a)
W ERIDA <= ry e el oal e, o raTza <= Jrouce_of Exl3aj))

»,

e syt T

e

Class: C [Exli3a <- Chilo_cf_

Object (1) by: { }

C (15) by: { (C, T (EXida
C {Ex15a <~ Child_cf Exl:s
{ (C (Exi%a «- Chl6!

{Child_of_Exi3a,

- Cr.‘ovc:.Exlba;)

Exlra

Gt
cf hx

la of

:s a child (subclass by inheritance)

(Ex15a, Child_of_Exlba)

oy
£a,, C 'txlba <- Child _of_Exlb5a])

Fal%a) (Ckject, Object))

290

of:

}

V.0 Temporal Cycles: Voter/Candidate

Input File: Tests:l - vs, poihxarp.e 15

class Voter
Val backs : Candicate
var infliuencea_by : Voter

methoa vere ()
pegin ... cno

end Voter
class Candidate (nnmor.ts Votio:

var voles recelvea o,
end Candidate

- - T~ - = = = = A= = > = = . - e e e = T = o

mm¥ARECREZSZIEIRE S - =L o

291

Cutput

Index: 1
Grapn: Object
Aliases:
"Object®
Index: 2
Graph: Bool
Aliases:
“"Bool™"
"Boo. [Cc¢ parable <- Beell!"
"Bool {Comparaklc <~ QOrgeri"
"Bool [Order <- Inti"
"Bool [Oraer <=- Floa:}"
"Bool [Oraer <= Charl"
Index: 3
Graph: Ring
Aliases:
"Rirg"
Index: 4

Graph: Comparable
Aliases:
"Corcarapl.o"

Index: 6
Graph: Int
Aliases:

ninL"

Index: 7
Graph: Order
Aliases:

"Oracer"

Inaex: 1C
Graph: Float
Aliases:

“Float*®

Index: 12
Graph: Char

Aliases:

"Cnar"
Index: 14
Class: Voter
Aliases:

“Vorer"
State: Resolvea
Nodes:

(v, backs, 15, 14, «», 1}
(v, influercea_by, 14*, .4, «wr, 1)

(m, vote, 14", 14, « (., r¢ ‘', Lo, T, wm,) ”,

292

Index: 15
Class: Candidgate
Allases:
"Candigate®
"Cana.cat ¢ JLter o= lat . aglen
State: Reso.oveo
Nodes ;

{v, votes_recelvea, 6, 15, «»n, {})

(v, backs, 15*, 1%, «», {(})

(v, influenced_by, 15*, 15, «», {})

(m, vote, 15*, 15, « (v, self, 15, 15, «», {}} », 1 })

Class: Voter s a subciass =t
Object (1) by: «
Voter (14) by: ¢ (Larc.cu v, Tara.cate) {Voter, Voter) (Int, Int) (Bool, Bool) }

Class: Candigate i o LulC.asw Cf:
Object (1) by: (}
Vater (14) by: { (Cansicate, Canv.oate) (Veiter, Candioate) (Int, Int) (Bool, Bool) }
Candidate (15) by: { (Int, int) (Cancloate, Canolaste) (Bool, Bcol) }

Class: Voter is a chila (subclass by 1inher.tance) of:
Object (1) by: (}
Vater (14) by: { (Candioate, Canaidate) (Voter, Voter) (Int, Int) {(Bool, Bool))

Class: Candidate is a chila (s.uc.ass Ly inheritarce) of
Obiject (1) by: ¢
Voter (143 ty: { (Curg da'(, Luta a3 ") (7o, Cane oace) {int, Int) (Bool, Bool) }
Candidat e (1%) Ly o @ on, b G w8t e, wat Sa.) (oL, Bool))

e a e .

V.P Compiler Dependencies 1

Input File: Tests:7 - vs FSizxamt.e .6
class Voter

var backs : Canaiaate
var influencea_by : Vo

px
2
=]

method votes ()
pegin ... ena

end Voter

class Candiocate innerits Veier
var best_trieno @ Voler
end Candiaate

Qutput

= = " e~ = = = = e S - o e e e o A an A

Index: 1
Graph: Obilect
Aliases:

"Or ject”

Index: 2

Graph: Bool

Allascs:
l|uool "
"Hool [Comparap.ce <- Bucl)"
“Bool [Comparabie <- Order)"
“Bool [Oraer <- Inu]"
"Bool {Order <- Floatij"
"Bool {[Order <- Charl*

Index: 3
Graph: Ring
Allascs:

", rat

Index: 4
Graph: Comparablce
Aliases:

"Comparable”
Index: 6
Graph: Int
Aliases:

Tint"

Indox: |/
Cruph: Craer
Aliases:

“oraer”

Index: 2C
Graph: llcatl
Aliases:

“Pioat®

Index: 12
Graph: Char
Aliaues:

N

Inaex: 14
Class: Veter
Aliases:

“Voter"
State: Resolvea
Noaes

(v, backs, 15, 14, wn,)

(v, nf..onieo By, 9%, 14, «»,)
(r, voton, A%, b, @ ge, et A,

Th, w»,

S |

Index: 15
Class: Canacicace
Aliases:

“"Cana.cate"
State: Resclves

Nodes:
(v, best_friena, 14, .5, «»,
(v, backs, 16, 15, «»,)
(v, influenced_by, 15+, .=,
(m, votes, 15*, "5, « (v,
Index: 16
Class: Canaiaaze [Vole:r <= Ca-
Aliases:
“"Canaicate V.ter

. f M
Sv.l, 42°,

<~
State: Unresolvea: Ceep Derives with iase: 15

. o)
<= Uaraidatl e

«»,)
.

10, W, i)

a.oate’

Carg.aatel"”
15

12 6 5.LC.dus f:

Ly

a.sa'e 1S d (ha.0 {s.0¢0luss DY inhoritance)

Class: Voter is a s.vclaess i
Object (1) oy: { »

Class: Cand.iga%e is a sute.dsus
Object (1) by: }

Class: Cardidaze [Vcte:

Class: Voter is a ¢rl.a (L.0C.uLs
Object (1) by: « »

Class: Candiocate .s a v < (.
Object (1) by: ¢ »

Class: Cancidate {Vctoe: <= Car

296

of

V.Q Compiler Dependencies (1)

Inpyt File: Tests:?7 - vs PS:hxarp.e 17

class B innerits C

var b : B

class C inherits A

vat ¢ : Char

Qutput

- e 0 o e o 1 > - S = = e 4 e T . e .

Index: 1
Graph: Object
Aliases:
"Objecz™
Index: ¢
Graph: Bool
Aliases:
"Bool"
"Bool [Comparabie <- Hooll"
"Bool [Comparabie <- Oraer)*®
“"Bool [Order <- Int]"
"Bool [Order «<- Floatr]"
"Bool (Order <- Lnar!"
Index: 3
Graph: Ring
Aliases:
"Ring"
Index: 4
Graph: Comparable
Aliases:
“"Ccmparable"
Incex: 6
Graph: Int
Aliases:
ltlnt-ll
Index: 7
Graph: Order
Aliases:
"Craer®
Index: 10
Graph: Float
Allases:
“Float"
Index: 12
Graph: Char
Aliases:
"Char"

294

Index: 14
Class: A
Allases:

"AQI
State: Unresolvea: Exniicit.y
Index: 15
Class: B
Aliases:

QlBll

Unresolvea:

State: Exs..c.t.y

Index: 16
Class: C
Aljases:

IIC "
State: Unresolved: Explicitly

Class: A is a subclass

Class: B 15 a sunciass

subclass o'

Class: A is a Cr..G (S.i. b
Class: B i5 a chii.o (subDl,abs
Class: C is a chilu (supCc.ass

weeflnea

Cefined

Irher L Lat W)

vy

vy 1nher.lance)

299

V.R Compiler Dependencies (2)

Input File: Tests:7 - vs PS:Fxarv.e 18

- - . e O e et o it e e T e o S e e e e T A 4% T = e o e e = A -

class A inherits B {C <~ T:

var x : Int

end A
class B
var ¢ : C
method g (d : D e : C)
begin ... end
end B
class C
var a : A
end C
class D
var d A
var e B
end D

300

output
Index: 1
Graph: Object
Aliases:
"oL jecu”

Index: 2

Graph: Bool

Aliases:
"Bool"
"Bocl [Comparapn.e <~ Bocl]"™
"Bocl [Comparap.c <~ Oraerij”
"Hool [Order <= nutl"
"Bocl [Ordaer <~ §iGat "
“"Boo, |(Uroer <~ Crag- "

Inaex: 3
Graph: King
Allases:

"Ring"

Index: 4
Graph: Comparanle
Aliases:

"Comparabloe®
Index: 6
Graph: Int
Aliases:

llInp 1]

Index: !
Graph: Oraoc:
Aliases:

"Oracor"
Index: 10
Graph: Float
Aliases:

"Fleat”

Ingex: 1/
Graph: (har
Aliasvs:

"Char®

Index: 14
Class: A
Aliases:
IIAII
State: Unrescivea! bap oootly D! nea

Inden: 10
Class: R

Allases:
an "

State: Rosc.vea
Nodes:
(v, ¢, le, %, un .

301

(m, g, 15, 15,
« (v, self, 15, Io, «», 1) (v, o, 2., 15, «», {}) (v, e, 16, 15, «», {})

{)
Index: 16
Class: C
Aliases:
lICII
State: Resolved
Nodes:

(v, d, 14, 16, «», {1})

Index: 17
Class: D
Aliases:

IIDII
State: Resolved
Nodes:

(v, d, 14, 17, «», {})
(v, e, 15, 17, «», ()
Index: 18
Class: B {C <= D?
Aliases:
"B {C <~ D'
State: Unresclvec: Serivea < tn Hase: 1o kewl: 10 w'thy 1)

Class: A is a sutbclass ¢!

Class: B is a suoclass «!:
Object (1) by: { }

Class: C is a subclass c¢f:
Object (1) by: ¢ }

Class: D is a subclass of:
Object (1) by: { }

Class: B [C <= 3 .s o suDl ..u C':

Class: D is a chi.u (s.pt.ass Ly . ¢r.ta t¢) of Cnjee (1) by: {)}

i

V.S A Complex Example

Input File: Tests:& - De~cibxa~w.o 19
Input
class C
var ¢ ¢ C
var o Object
end C
vlass H
var h : Char
end H
class F
var ¢ C
var | Ob ject
end b
class E
var { : Object
method r o (ether @ F) o or
becin ,.. '@
end t
class D inherits C [Obiect <= !nt:.
method g () @ Coject
begin ... c¢na
end D
class B
var b : R
var ¢ :+ C
method (e @ U o 0 2) ¢ Co (et
Val o ;o
beagin ... ¢na
end B
class & innerites b JC «- 3
me* hea s ()
beair . ©na
end G
class A 1onerite o= [T)
va: a A
end A

T ¥ Ty

R T R R R . S TN SN S S SRS S RAS T IESFTSI ST EOTSEY ST T
Output
Index: 1
Graph: Object
Aliases:
"Object"

"Object {C <- D"
“"Object [F [C <~ D) <- G|"

Index: 2
Graph: Bool
Aliases:
IIBOOI L1}
“Bool {[Comparable <- Booll"
"Bool {(Comparable <~ Orgoer!"
"Boel |[Qrder <= I~*1%
“"Boc.: 'Orae:r <- +.oat "
"Bool [Qrder <= Crar:"
"Bool {C ,Ooject «= i, <= * %
"Bool {F [C <= D} <~ Gj»
Index: 3
Graph: Ring
Aliases:
"Ring"
Index: 4
Graph: Comparap.c
Aliases:
"Comparapin"
Index: 6
Graph: Int
Aliases:
Illnt "
"Int (C [Object <~ Int] <= NI" *int [F [C <~ D} <= G}"

"Int [Object <- Int}"
"Int {E [F <= G! <~ A}"
"Int (B [C <~ D] <- A"

304

Index: 7
Graph: Order
Allases:

"“Oracr"

Index: 10
Graph: Float

Aliases:
"Floav"
Index: 12
Graph: Char
Aliases:
"Cha r "
“Char [H <- A!"
Index: 14
Class: C

Aliases:

e

e “ <= "
State: Resolved
Nodes:

(v, ¢, 14=, 14, «», {})
(v, o, 1, 14, «», {})

Index: 15
Class: H
Aliases:

L1} l_{ (1]
State: Resolvco
Nodes:

(v, h, 12, 15, «», })

Index: 16
Class: F
Aliases:

" }“ L1}
State: Resolved
Nodes:

(v, [, 14, le, «w», (1))
(v, i, 1, 16, «», {»)

Index: 17
Class: E
Aliases:

IlEll
State: Resolveo
Nodes:

(e

«n,

L)

[

olner,

17+,

i1,

«»,

{h

»,

{

3]

e

Index: 18
Class: D
Aliases:
IIDII
“"C [C <~ DI*
"C [Object <- Int |C {Cbject <~ Int) <- DI"
"D [F {C <= D' «- g
“D [B [C <= D) <= Ainm
State: Resclved
Nodes:

(m, g, 1, 18, « (v, sel:, 186=, 18, «», «}) », ¢ 1)
(v, ¢, 18*, 18, «», })
(v, o, 6, 18, «», {})

Index: 19
Class: C [Object <= Int,
Aliases:

"C [Object <= Int'®
State: Resolvea
Nodes

(v, ¢, 19=, 19, «»n,)
(v, o, €, 19, «», {1)

Index: 21
Class: B
Allases:

llBll
State: Resolved
Nodes

(v, b, 21*, 21, «», 1}})
v, c, 14, 21, «», {})
(m, p, 1, 21,
@ (v, se.f, 2i%, 2l wn, o) v, o A, FL, s, (N (v, d, 18, 21, o,
{ (v, o, 21", 2%, «», <))

Index: 22
Class: G
Allases:
IIG "
"G [E |F <= G} <= A"
State: Resolved
Nodes:

{m, s, 22*, 22, « (v, scil, 22*, 22, «», ({}) », | V)
(v, £, 18, 22, «», i)
(v, i, 6, 22, «», {1})

Index: 23
Class: F {C <~ D}
Aliases:
"F IC <~ D"
"“F [Cbiect <- Int; :C ilosect <= [pLt <= DI
State: Resolved
Nodes:

(v, £, 18, 23, «», {})
(v, i, 6, 23, «», :})

306

n

B,

Index: 26
Class: F [Object <~ Inv,
Allases:

" 1Onicct <- Int ™
State: Resolved
Nodes:

(v, £, 19, 26, «», (})
(v, i, 6, 26, «», (})

Index: 31
Class: A
Allases:
CIA"
State: Resclvea
Nodes:
tv, a, 31+*, 31, «», {(})
(v, £, 6, 31, «», {})
(m, r, 22, 31, « (v, self, 31-, 31,
{v, h, 12, 31, «», {})
(v, b, 31», 31, «», {1})
(v, c, 18, 31, «», {})
{m, p, 6, 31,
« (v, self, 31, 31, «», {}}
{ (v, b, 31*, 31, «», ()} V)

Index: 32
Class: E [F «<- C,
Aliascs:

"LO[F <= ("

"EO[C <= Dy o 'C - L, <= C)"

State: Resolveo
Nodes:

(v, I, 6, 32, «», {}}
(m, r, 22, 32, « (v, scif, sr~, 32,

Index: 34
Class: E |C <= D
Aliascs:

" OIC <= D¢

"E jObjoct = It C Co
State: Resolvea

Nodes:

(v, £, 6, 34, «», (1}
(m, r, 23, 34, « (v, sol!, 34», 34,

Inaex: 34
Class: E [Object <- int
Aliases:

"E {Obiject <= j:r° "
State:! Resclvea
Nodes:

(v, t, 6, 35, «», {}}
(m, r, 26, 35, « (v, welt, 3+, sz,

«»,

«»,

307

th

c,

1)

ls,

(v, other,
31, «»,
(v, cther,
< - D]"
{v, other,
v, other,

31+,

h

32,

34~,

35+,

31,

(v,

32,

34,

35,

«w, {})
d, 40, 31,
wr, {})
«», {})
w, {})

», |
«»,
», |
», {
», |

1}

{1 »,

h

h

1)

Index: 38
Class: B [C <= D]}
Aliases:
"y lc <= D"
"B {Object <- Int IC [Cbject <=- Int} <= D"
State: Resolved
Nodes:

(v, b, 38=, 38, «», 11})

(v, ¢, 18, 38, «», {})

(m, p, 6, 38,
« (v, self, 38+, 38, «v», {}) (v, c, 18, 36, «», {}) (v, d,
{ (v, b, 38%, 38, «», {}) })

Index: 39
Class: B {Cbject <- Int}
Aliases:

"B {Cbject <- Inu "
State: Resolved
Nodes:

(v, b, 39+, 39, «», 1})

(v, ¢, 19, 39, «», {}}

(ml pl 61 39:
« (v, self, 39%, 39, w», i) (v, ¢, 19, 39, «», ()} (v, d,
{ (v, b, 39, 39, «», ())

Index: 40
Class: D [Object <- In:
Aliases:
"D {Otject <«- "L v
"D !Corect <~ rt. U Otijuc <= lvry <= L0
"D [Obiect <= Int] 18 .C <~ Ly <= A"
State: Resclved
Nodes:
(m, q, 6, 40, « (v, se.t, 4C*, 4C, «w», ¢}}) », { 1
{v, ¢, 40*, 40, «», {})
(v, o, 6, 40, «», (})

Class: C is a subciass of:
Object (1) by: { }
C (14) by: { (C, C) (Cujec., v ccl) o

Class: H is a surciass of:
Object (1) pby: i i
H (15) by: { (Char, Cra") (Int, .nv) (v ., Mo) o

Class: F is a suoclass of:
Object (1) by: ()}
F (16) by: { (C, C) (Oovject, Oviect) }

Class: E is & subciass cf:
Object (1) by: { }
E (17) by: { (Opject, Scien) (%, v) (3, H) (7, O)

Class: D is a su.pc.avs !l
Object {.) oy:
C (14) by: « (C, 2) (Suw, e, "1ty o
D (18) oy: ¢ (Ouiect, Cu ety (., b .7y, .U (Buo., BODL)
C |Object <= Int) (19) oy: i 1T {Oojec <= .o

308

40,

40,

L. W) {iny, Int) (Boug,

38,

39,

Buoul)

«»,

«»,

}

(R

tn

»,

»,

Bool)

D)

Int)

D)

Bool)

Class: C {Opject «- [rnt, 15 a4 s.oL.ass cf:
Object (1) wy: (
C (14) pby: (L, C Lo,eet <= ,-°) (Colecy, Irvy
C lOpject <= Int, (19) py: (L Lo,ect <- nt,, € -Cpject <=~ Int]) (Int, Int)
(Bcoi, Bool)
Class: B is a subc.ass of:
Object (1) by: { }
B (21) by: { (B, B) (C, C} (Object, Opbject) (D, D) (Int, Int) (Bool, Bool) }
Class: G is a subclass of:
Object (1) by: (}
F (16) pby: { (C, D) (Oobject, Int) }
G (22) by: { (G, G} (D, D) (int, Irt, (Obiect, Object) (Bool, Bool) }
F {C <= D) (23) pby: { (), L (iny, Int) (Object, Object) (Bool, Bool) }
F [Opject <= Int, (26) wy: { (L .Coject <- Int}, C) {Int, Int) (Bool, Bool) }
Class: F {C <- D] is o sunc.ase of:
Object (1) by: { }
F (16) by: { (C, D) (Qbject, Int) }
F [C <= D} (23) py: « (2, B}y (Iry, inty (Schect, Ociect) (Bool, Bool) |
F {Object <- Int] (2€¢) by: { (C {Opiect <- Int}, D) (Int, Int) (Bool, Bool) }
Class: F [Object <~ Int)] is 4 subciass of:
Object (1) by: { }
F (16) by: { (C, C [Object <~ Int]) (Opiect, Int) }
F |Object <= Int] (26) by: { (C {Opject <~ int), C [Cpject <= Int]) (Int, Int)
(Bool, Bool)
Class: A is a s.pclass of:
Object (1) by: . -
B o(1b) by: { (Char, {rarr o', Lrv) (Heo., Bue.)
E (17) by: { (Ovject, Iriy (5, 8) 4%, Ay (C, B)
B (21) by: { (8, A) (C, 2) (Cvjecy, Int) (D, T [Coject <= Int]) (Int, Int) (Bool,
A (31) by: (A, A) (inv, I=t) (G, G) (Crar, Char) (D, D)
(D [Object <=~ Int}, D {Opbject <- Irt]) (Bool, Bool) (Object, Object) }
E {F <~ G] (32) by: { tint, Inv) (G, G) (E [F <- G}, A) (Bool, Bool) (D, D)
{Object, Object) }
E [C <~ D} (34) by: { (Int, Int) (F {C <- 2!, G) (E [C <~ D], A) (Bool, Bool) (D,
(Object, Object) }
E [Object <~ Int! (35 by: ¢« (Int, Int) (F {Opbject <= Int], G) (E [Object <- Int], A)
(Bool, Bcol) (C !0plect <= i,)
B {C <= D] (38) oy ¢« (B ,C <=3, A (4, J) (InL, Inu)
(D [Cbject <= Inty, 3 Cp.eect <= [-U') (Seject, Oplect) (Bool, Bool))
B [Object <~ Int, (39) oy: + (i Dbject <- I~z , A} (T [Opject <= Int], D) {Int,
{D [Object <= ,ni}, " !Ccrect «= lau,) (Heo., Bool))
Class: b [} <= G! 18 a LLDC.d&E Q'
Object (1) by: | }
E (17) by: { (Object, Irt) (F, &) (L, E {F <= G}) (C, D) }
E [F <= G] (32) by: { (Int, Int) (G, G) (E IF <~ G], E [F <~ G]) (Bool, Boocl) (D,
{Object, Object))
E |C <= D] (34) by: { (Int, Int) (F ,C <- D}, Gy (E {C <~ D}, E [F <= G)} (Bool,
(D, D) (Object, Object)
E [Object <=~ Int' (3% oy: + (anz, Int) (+ lO0otect <= Int}), G)
(F (Object <=~ .nt,, t % <= {) ({Ree., Sse.) (Z ,Object <= Int}, D))

309

}

Class: E [C <~ D] is a subclass cf:
Object (1) by: ({ }

E (17) by: { (Object, Irt) (¥, F {C <~ D)) (E, E [C <~ D]}

E [C <= D] (34) oy: { (Int, !nL) (F (C <~ D], F (C <~
(Bool, Beol) (D, D) (Opbject, Cbject))

E [Object <- Int] (353) by: { (Int, Int) (F [Cblect <-
(E {Object <~ Int}, E [C <~ D}) (Bool, Bool) (C

Class: E {Object <- Int]) is a supclass of:
Object (1) by: { }
E (17) by: { (Object, Int} (F, F [Object <= Int]) (E,
(C, C [Object <~ Int})
E [Object <=~ Int] (35) by: ¢ (Int, Int) (F [Object <-

Int],

(C, D))
D}y (E

IC <= D], E [C <=-D))

F [C <~ D))
{Object <~ Int], D) }

E [Object <~ Int])

Int],

(E [Object <~ Int], E [Opject <~ Int))} (HBool, Bool)

{(C [Object <~ Int], C {Object <- Int]) }

Class: B [C <~ D) is a subclass of:
Object (1) by: { }
B (21) by: { (B, B [C <- D]) (C, D) (Opject, Int) (D,
(Rool, Bool))
B {C <= D} (38) oy: { (B 1€ <= 0D,, B 1€C <~ D)y (b, D
{D {Object <~ iInyj, D ;0b‘ecct <= [ni;) (Cbiject,

B [Object <- Int] (39) pby: { (B |Obiect <= ;ntj, B {C <= D})

{Int, Int) (D [Object <- Int}, D !Coject <- Intrj

Class: B [Object <- Int] is a subclass of:
Object (1) by: {)
B (21) by: { (B, B [Object <= Int]) (C, C [Object <~ 1
{D, D [Object <~ Int]) (Int, Int) (Bool, Bool) i}

F

[Object <- Int})

D {Object <- Int]) (Int, Int)

(Iny,

1

Object)

nt)
(Bool, Bool) |}
(C |[Object <= Int], D)

) (Bool, Bool))}

nt])

B [Object <=~ Int} (39Y) oy: { (B .Object <~ Int}, B [Opject <=

PR4R4N A

(C {Object <= int], C |Opject <= Int]) (int, Int

)

(D [Object <~ Int!, O Object <~ Int}i) {Boos, Hool) }

Class: D [Object <= Int s a succlass uls
Object (1) by: { }
C (14) by: { (C, D Corect <= Int}) (Coqct, lruy b

D (18) by: { (Cbjecy, Inz) (B2, & Cou_eer <= ru) {ine, Inl)

C {Object <~ Int, (19) oy: { (C Ou,ee¢® <= v, o Cu,ect <=~
{(Bocl, Bocl)

D [Object <~ Int} (4C) oy: { (Int, Irt) (I (Lo)ecL <= Intj,

(Booi, Bocl) }

Class: C is a child (sibclass oy inheritance) of:
Object (1) by: { i}
C (14) by: { (C, C) (Ovjecy, Zo,cL)

Class: H is a cn:ila (s.rc.avs oy rrer.larce) <l
Obsect (1) by: 1
H (15) by: { (Cnar, Cram) o v S, e
p Class: F is a cnile (surc.ass vy raner.teste) ol
Object (1) by: { }
F (16) by: { (C, C) (Opject, Oolect) }

Class: E is a chiid (stbclass by inheritance) ci:
Object (1) by: { }
E (17) by: { (Cbject, Cuvrect) (f, F} (&, F} (L, C))}

b i,

310

D

{Object, Int)

Int])

(Bovol, Bool))
Int]) (Int, Int)

[Object <= Int))

Class: D is o chi.d (suptiass py .nner.tarce) of:

Opject (1) py: { }

C (14) by: { (C, L) (Lu,ccn, ru))

D (18) by: ((Ovec., Lueet) (L, D) (1at, Int) (Boo., Bool))

C [Object <= Int, (19 pby: « (L Object <- Int;, 0) (Int, Int) (Bool, Bool))
Class: C [Object <- Int' 1s a ch.ilo (subclass by inheritance) of:

Object (1) by: { }

C (14) by: { (C, C [Object <- Int]} (Object, Int) }

C [Object <- Int] (19) by: { (C {Object <~ Intj, C |Object <- Int]) (Int, Int)
(Bool, Bool) }
Class: B is a child (subclass by inheritance) of:
Object (1) by: { }
B (21) by: ((B, B) (C, C) (Obrect, Coject) (D, D) (Int, 1Int) (Bool, Bool) }
Class: G is a chilo (subc.avs oy .rneritante) of:
Object (1) by: { }
Fo(16) by: { (L, D) (Uiecey, 1t
G (22) by: { (G, G) (&L,) lry, .nt) {(Luject, Opject) (Bocl, Bocl) }
F [C <= D} (23) by: i (D,) {Iny, !nt) (Cociccu, Op.ect) (Boo., Bool) }
F {Object <~ [nt; (2€) by: ¢ (C |Opvject. <- Inwl, D) (Int, Int) (Bool, Bool))}
Class: F [C <= D} is a4 chila (supclass by .nheritance) of:
Object (1)} by: { }
F (16) by: { (C, D) (Objecy, Int) }
F [C <- D} (23) by: { (3, Z) (Iny, Int) (Object, Object) (Bool, Bool))}
F [Object <= 1at] (26) by* 1« (C [Objec. <~ Int}, D) (Int, Int) (Bool, Bool) }
Class: F {Object «= It 1¢ a ('. o (s.uc.ass by .rneritance) of:
Object (1) oy: (}
F (16) by: { (C, T 'LL ¢y «= 1:ru]) (Qkjercy, Inv)
F [Object <= Int: (Z2u) oy: « (& Leies <= Int!, £ Opiect <= Int}) (Int, Int)
(Bool, Boci)
Class: A is a chila (scbec.avs py .nneritance) of:
Object (1) by: { }
H (15) by: { (Char, Crar) (Inr, Int) (Rool, Bocl) |}
E (17) by: { (Object, Int} (¥, G} (k, A} (C, D))}
B (21) by: { (B, A) (C, D) (Coject, Int) (3, D (Object <= Int}) (Int, Int) (Bocl, Bool)
A (31) by: { (A, A) (irL, Inv) (G, G) (Cnrnar, Char) (D, D)
(D [Obiect <= Int , 3 Cor-ect <= Irt!) (Boo!, Bocol) (Object, Object))
E [F <= G} (32) by: « ('rt, Irv) (G, &) « 'F <= T, A) (Boo., Bool) (D, D)
(Ot ject, Loty o
E [C <= DY (341 vy 1 (1-, e T e, U i T <= D25, A) (Bool, Bool) (D, D)
(Ou ject, o focy)
E [Object <- Ir: [ST I O S (U S A S I | Lo,00t <= Inty, G) (E [Object <= Int], A)
(Boos, Hecl) (&0 vt ol [T A S
B {C <= D' (38) by: ((B { «~= 0, A (2, 2) (inz, n%)
(& (Obiect <= Inty, & Ctlect <= 371)) (Object, Onject) (Bool, Bool) }
B [Object <= Int; (39) vy: ¢« (¥ Coject <~ lat), A) (C {Object <- Int), D) (Int, Int)
(D |[Object <= Int:, 2 ,Couiect <- 1rt]) (Boc., Boel) |}
Class: F |} <= G! 1s & cnila (scrciass ey irheritarce) of:
Object (1) by: ¢ ¥
E (27) by: { (Coject, .~t) (b, G) (R, E it <=~ G]) (T, D) 1}
E [F <= G! (3)) by: « (.n., rt) (G, T) tF <- Gj, E |F <= G]) (Bool, Bool) (D, D)
(Obect, Cbv.ect)
E {C <= D1 (34) oy « (", Y (* T <=D , C) (L C <-D,, E [F <= G]) (Bool, Bool)
(D, DY Letect, Ju ooct)
E [Object «=- i1t ty Vv, v oty Ity (0 COrcect <= Iny,, G)
(F [Cb et «- . <= T b akeo., Horly (T Cpject <= Int], D))}

}

Class: E [C <= D! is & ¢n.lo (£.0C.a85s By .nneritance) of:
Object (1) by: {

E (17) by: { (Opiect, Int) (F, * [C <= D")

(¢, E [C <= DJ]) (C, D) }
E [C <= D] (34) pby: { (Int, Ial) (F IC <= D;, F [C <= D]) (E [C <~ D), E [C <= D])
(Bool, Becol) (D,) (Cr-ecy, Object))
E [Object <~ Int; (3%) e©y: « (Io:, int) (F ;Object <= Int], F [C <= D))
(E [Object <- Invj, ! :C <= Dl) {Beeol, Beol) (C [Object <= Int), D))
Class: E [Object <- Int] is a c¢n.ld
Object (1) by: { }
E (17) by: { (Object, Int) (F, F i{Object <~ Int]) (E, E
{C, C {Ob2ect <- Irt;) }
E [Object <- Int] (35) by: { (Int, Int) (F |Object <- Int], F
(E [Object <~ Int], E {Object <= 1nL))} (Booi, Bool)
(C [Object <~ Int}, C [Object <= Int}) }

(subclass by inheritance) of:
[Object <- Int])

[Object <~ Int]))

Class: B [C <= D) is a cni:a
Object (1) by: { }
B (21) by: { (B, B [C «- L]) (C, D) (Opject, Int) (D, D
(Bool, Becol) 1}
B IC <= Dj (38) py: { (B .C <= 13, B {L «= 1) (2, D)

v,

tsupclass by inheritance) of:

|Object <- Int)) (Int, Int)

M {Int, Int)
(D [Object <~ Int}, o Colect <= [nt]) (Objlect, Object) (Bool, Bool) }
B [Object <~ Int! (39) py: 1 % [Dvject <= Iatj, B [T <= []) (C [Object <= Int], D)
(Int, Int) (D (Obj)ect <= irtj, B OCouiect <= Intl) (Bool, Bool) }
Class: B [Object <= Iri i o €i.0 (subi.ass Ty J7neritance) ol
Object (1) by: { }

B (21) by: { (B, B Co,ect <= Inti) (€, € [Object <= Iar)}) (Opbject, Int)
{D, D [Object <~ Inl) (Int, Int) (Hool, Boci) }

B [Object <~ Int} (39) ey: { (B {Cbicct <~ Int}j, B {Object <-
(C [Object <- Int,, C i(Cblecl <~ Int]) (Int, 1Int)

(D [Opject <= Int;, . (Op.ect <= Int}) (Bool, Bool))

Int])

Class: D {[Object <= iri; is a a'..¢
Object (1) by: {
C (14) by: { (C, T . Le,ect <= Ir') (Zujeny, lrt) o}
D (18) by: { (Cz:ecy, vy (L, Lo et o= it) Int, int) (Boel, Bool))
C {Coject <~ In*, (1Y) ey: : (L Cr,eet <= .rv),) (Ouject <= Int]) (Int, Int)
{Boci, Bocl)
{Object <= Int; (4C) cy:
(Bool, Bcol})

(u.oc.ass ©y Jnreritance) of @

o

int, Int} (" ,Cojoce <- Intji, D (Object <- Int])

312

V.T PS Examples: Stacks and Arrays

Input File: Tests:8 - Tero:Exarmp.e 20

Input

class Array
method at (i : Irt) : Object
begin ... ecna

method atput (1 : Int x : Object) : Array
begin ... end

method initialive (size : 1nt) : Array
beg!n ... cna

end Array

class BoolStack 1nner.ts Stac< (Coject <= dooei!

end BoolStack

class IntStack inherits Stack [Opjiect <~ Int]

end IntStack

class Stack

var space : Array

var inaex @ 1ot

metheo push (X 0 Co ect) @ Blads
begin ... oro

method top () @ Oorec:
begin ... eno

method pop () @ Stack
begin ... eno

method inftial:ze (size : inl) : Stack
begin ... end

end Stack

mIme: o= 3 x = - -= * - -

313

Output

Index: 1
Graph: Object
Allases:

"Obiect”
Index: 2

Graph: Bool
Aliases:
"Bool"
"Bool {[Comparable <- Bool]"
"Bool [Comparable <- Crder!®
"Bool (Order <= Int]|"
"Bool [Crder <- Ficaz'"
“Bool [Oraer <- Crarj"
"Bool [Stack (Opject <= Booi. <~

Boe.Hlack "

Bo.o

_nlal A,

Index: 3

Graph: Ring

Aliases:
"Ring"

Index: 4

Graph: Comparable

Aliases:
“"Comparaole"

Index: 6

Graph: Int

Aliases:
“Int®
"Int [Object <- Beov.'"
"Int [Stack LConect <= Hoo <=
“Int iObject <- Iru %
"Int [Stack ‘Co.ect <=~ 1nt, <= Iatlracet”

Index: 7

Graph: Order

Aliases:
“Oraer”

Index: 10

Graph: Flcat

Aliases:

"Floaw"

Index: .2
Graph: Chnar
Aliases:

“Char“
Index: 14
Class: Array
Aliases:
"Array"
State: Resolvea
Nodes:
(m, at, -, 14, « (v, sc ¢, (7, !, un,

(m, atp<t, 4%, 14, « (v, C.', L, L6, wn,

)

vy
i

.

"

.,

4

«n,

iy

»,

(v, L, 6, 14, «», {})
(v, %, 1, 14, «», {}} », { r)
(m, initialize, 14>, 14, « (v, seif. 14*, 14, «», {}) (v, size, 6, 14, «», {}} », { })
Index: 16
Class: Stack
Aliases:
"Lrack"
State: Resolvea
Nodes :
(v, space, 14, 16, «», {}}
(v, index, 6, 16, «», {})
(m, push, 16*, 16, « (v, self, 16*, 16, «», {}) (v, %, 1, 16, «», {}) », { })
(m, top, 1, 16, « (v, self, 16+, 16, «», {(}) », { 1)
(m, pop, 16+%, 16, « (v, self, 16*, 16, «», {}) », { 1))
(m, initialize, 16*, 16, « (v, self, 16*, 16, «», {(}) (v, size, 6, 16, «», {}} », { }}
Ingex: 1/
Class: HouolStack
Allases:
"Stack JOpject <= Houil"
"HoolLtack"”
State: Resolveo
Nodes :
(v, space, 18, 17, «», {(})
(v, index, 6, 17, «»n, {})
(m, push, 17*, 17, « (v, self, 17=, 17, «», (}) (v, %, 2, 17, «», {}} », { })
(m, top, 2, 17, « (v, self, 17, ¥7, «», {}) », { })
(m, pop, 17*, 1!, « (v, self, I, 1%, «», {}) », { })
(m, dinitialize, 17=%, 17, « v, wolf, J0*, 17, «», <3} (v, size, 6, 17, «», {}} », { 1
Index: 18
Clasa: Array [Object <= g
Aliasce:
"Array (Obicct <= -duo. "
"Array |Ooject <- Bdueol) {Stack [Cbject <- Bool] <~ BoolStack]"
State: Resolved
Nodes:
(m, at, 2, 18, « (v, sclf, 18*, 18, «», {}) (v, -, 6, 18, «», (1)) », { })
(m, atput, 18+, 18,
« (v, sclf, T8+, T8, «», {}} (v, i, 6, .8, «»n, 11}) (v, x, 2, 18, «», {}) »,
t h)
(m, dritiarize, 8%, T0, « (v, LOQLE, Lwmr, LB, «n,) (v, si1ze, 6, 18, «», {1} », { 1

Index: 24

Class: IntStack

Aliases:
"Stack [Object <= Inu}®
"IntStack"

State: Resolved

Nodes:

(v, space, 25, 24, «», })

(v, index, 6, 24, «», })

(n, push, 24*, 24, « (v, seif, 724*, 24, «», {}) (v, X, 6,
{m, top, 6, 24, « (v, secl{, 24~, 24, «», () », ¢ 1)

(m, pop, 24*, 24, « (v, self, 24, 24, «», (}) », { 1))
(m, initialize, 24*, 24, « (v, self, 24>, 24, «», ()) (v,

Index: 25
Class: Array {Object <~ 1int,
Aliases:
“"Array |[Ociject <~
"Array (Objec <-
State: Resolved
Nodes:

The
int l5Lack ‘Colect <- Int) <-

(m, at, 6, 25, « {v, sc.f, 23%, /2, «», .}) (v, ., 6, 25,
{m, atput, 25+, 25,
« (v, self, 25%, 25, w», 1) v, ., &, 75, «w», (})
{ 1)
{(m, initialize, 25*, 25, « (v, self, 25*, 2%, «», 1}) (v,

Class: Array is a subclass of:
Object (1) by: { }
Array (14) by: ((Opoiect, Ociccl) (Array, Array) (int, Int)

Class: Stack is @ subc.ass ol
Object (1) by: { ;

Stack (16) by: { (Array., Array) (ire,) (Stack, SLatk) (OLject,

Class: BoolStack .s g s5.DC.abs ¢
Object (1) by: { !}
Stack (16) by: { (Array, hrray Co,ect <= Buoly) (iry, int)
(Object, Bool) (Heol, wee) o
BoolStack (17) py: { (Array Qo e «= < ., hrray Go et
(BoolStack, HBoc!SlaCr) (it., Bui.))

Class: Array [Object <~ is¢o.) is o Sutt.as:s of:
Object (1) by: { }
Array (14) by: !

24, «», |

size,

6,

h

24,

IntStack|”

«r, (})

v, %,

size,

{Hocl,

6,

6,

(brack,

- HBoo

(Ovijec, Heos.) (Array, Array Coiec: <= Booll)

1

tint,

)

i

», {
25,

25,

Bool)

Object)

», |

«»,

|3
«»,

«»,

}

N

h

{h

th

(Bool,

BoolStack)

Array [Object <= Beu.! (1) ny: « (Hoo., 3cs.) {Arrdy (Opject <= HBooll,

Array (0 ject <= a0 3 {.tL, %)

Class: IntStack 18 & 5.4nC.d%% L
Object (1) oy: {
Stack (i6) by: ¢+ (Arrey, hr o1y Lulect <= ety (7o, lnu)
(Ocjecy, Inl) (2eo., Lal) o
IntStack (24) oy: ¢ (Array O
(IntStack, invltenx) (Heol, Boul) o

~

316

Copject <= It Atray upjucl <-

(StaCK,

fnt)

)

{iny,

Inv)

(Int,

IntStack)

Int)

(Bool,

Inv)

»,

»,

Bool)

Bool)

{

{

N

b

}

}

Class: Array [Object <- Irt] is a subclass of:

Object (1) by: { }
Array (14) by: { (Ociect, !nt) (Array, Array [Object <- Int])} (Int, Int) (Bool,

Array {Object <- Int] (25%) cy: { (Int, In%t) (Array [Cbiject <- Int],
Array [Ubjoect <= .nv:) (sce., Boel))}

Class: Array is d chiiuo (sutc.ass oy inher.tance) of:

Object (1) by: { }
Array (14) by: { (Opbject, Object) (Array, Array) {(Int, Int) (Bool, Bool) }

Class: Stack is a child (supclass by inheritance) of:
Object (1) by: { }

Stack (16) by: { (Array, Array) (Int, Int) (Stack, Stack) (Object, Object) (Bool,

Class: BoolStack is a child (subclass by inheritance) of:

Object (1) by: { }
Stack (16) by: ((Array, Array {Object <- Bool)) (Int, Int) (Stack, BoolStack)

(Object, Bool) (Bool, Hoo') i

BoolStack (17) by: { (Array iCu.cct <= Hoosl, Array [Ooject <- Bool]) (Int, Int)

(BoolStack, or- Suace) (00, sus)

Class: Array |Cb oot <= B, Y6 3 L, (L.Dt.ass Ly lnreritance) of:
Object (1) by: { }

Array (14) by: { (Coject, Beol) (Array, Array i10Opiect <- Bool)) (Int, Int) (Bool,

Array [Object <- Bool] (18) by: { (Bool, Bcol)
(Array [Object <- Boc!}, Array [Object <- Boe'}) (Int, Int) }

Class: IntStack is o child (subclass by inheritance) ¢f:

Object (1) by: {)
Stack (16) nby: { (Array, Array [Opject <= Int}) (.nt, Int) (Stack, IntStack)

(Object, Int)y (Beot, Hoci)

IntStack (?4) my: + (A~ray Ju ot <= -1, Array QCpoect <= Int}) (Int, Int)
LIRUSLACR, .fd st 10a) (.., el)
Class: Array [Opject <= i1 4 e Ll.)a (suec.ass by inheritance) of:

Object (1) by: {)
Array (14) by: 1 (Opject, I!rvy (Array,
Array [Object <= Int] (25} oby: { (Int, Iav)

(Array [Object <- int., Array 'Crciect <- Int}) (Booi, Bool) }

A e e e 8 o e e e e = = e T e - = ——

317

Array [Oo cctl <- Int}) (Int, Int) (Bool,

Bool)

Bool)

}

Bool)

Bool) }

V.U PS Examples: Matrices and Arrays

Input File: Tests:8 ~ Derc:Examule 21

class Array

method at (i : Int) : Object
begir ... end

method atput (i : Int x : Object) : Array
begin ... end

method initialize (size : Int) : Array
begin ... end

end Array

class BoclMatrix inherits Malr.ix Hine <- sool:

end BoolMatrix

class DoubleArray inherits Array [Object <- Arrayl

end DoubleArray

class DoubleRinghrray inrerits Dovblencray 100 ject <~ Ring]
end DoubleRingArray
class Matrix inherits Rong 'Osices <o DousloRi-ghrray)

var i : int

var j : Int
var r : Array |[Object <- Ring'

end Matrix
class MatrixMatrix inherits Matrix [Ring <- Malrix|

end MatrixMatrix

318

Index: 1

Graph: Object

Allases:

Index: 2
Graph: Bool
Aliases:

Index: 3
Graph: Ring
Aliases:

Index: 4

"Object"

“Rool"

"Bool

[Comparavle <- Bool)"
[{Comparable <- Qroer}"

<- Inu)"
<= Flcat)"
<= Char)"

[Ring <~ Bool]"

"Bool

"Bool [Order
“"Bool [Order
"Bool [Order
“Ring

“Ring"

"Ring [Object <~ DocbieRingArrayi™

Graph: Comparable

Aliases:

Index: 6
Graph: Int
Aliases:

“Comparabic"

"Int"
"It
"Int
"Int
“Int
“Int
"Int
"Int
"Int

[{Opbiect
[Array
[Obyect

<= Array;"
{Obicct <= Arrey}
<= Ring "

{DeubicArray "Criert <= R

[Ring <= Roo. !

[Matrix

[Rire <= Boe, <=

'Ring <= Matrix*®

[Matr.x

R.rg <= Matrlix,

319

<- DoupleArrayi"®
iry, <= LoeuscleRingArray]®
doeiMatrix) "

o= Maitr.xXMalrixi®

ST

Index: 7
Graph: Order
Aliases:

"Order"
Index: 10
Graph: Float
Aliases:

“Flocat"
Index: 12
Graph: Char
Aliases:

"Charll
Index: 14
Class: Array
Aliases:

"Arl’ay"

"Array lArray [Cb oct <= Array <- so.vicArrayl”
State: Resclved
Nodes:

(m, at, 1, 14, « (v, self, 16*, 164, «», t}) (v, i, 6, 14, «», (D) », {)
(m, atput, 14=, 14,
« (v, self, 14=, 14, «w», {}) (v, i, 6, 14, w», {}) (v, %, 1, 14, «», {}) »,
{ hH
(m, inivialize, 14+, 14, « (v, sclf, 14~, 14, «», {}) (v, size, 6, 14, «», {}) », { })

Index: 16
Class: Matrix
Aliases:
"Matrix"
"Ring |RI= g <~ Mautr.x "
State: Resclvec
Nodes:

(v, i, 6, 16, «», {}}

(v, j, 6, 16, «», {}}

(v, r, 25, 16, «», (})

(m, plus, 16*, 16, « (v, seif, 16*, 16, «», {}) {v, other, 16*, 16, «», {(}) », { 1)
(m, zero, 16*, 16, « (v, self, 16, 16, «», (}) », { })

Index: 19

Class: JoubleArray

Aliases:
"Array (Cociect. ¢- Array."
“DecubleArray"”

State: Resclved

Nodes:

(m, at, 14, 19, « (v, se.f, .4, 34, «», {}) (v, i, 6, 19, «», {}) », {
(m, atput, 19>, 189,
« (v, self, 19=, 19, «», {}) (v, i, 6, 19, w», (}) (v, %X, 14, 19, «n, {}) »,
{ N
(m, initialize, 19, 19, « (v, self, 14, 19, «», {}) (v, si1ze, 6, 19, «», {)) », { 1)

320

Index: 23

Class: DoubleRingArray

Aliases:
"DoubleArray [(Cclect <~ R.ong'"
“"DoubleRingArray"

State: Resolvea

Nodcs:

(m, at, 25, 23, « (v, seif, 23*, 23, «», {}} (v, 1, 6, 23, «», {}} », { }}
(m, atput, 223*, 23,
« (v, sclf, 22+, 23, «», «}) (v, ., 6, 23, «», {}) (v, %, 25, 23, «», {}} »,

{
(m, initiallze, 23*, 25, « (v, self, 23+, 23, «», {}) (v, size, 6, 23, «w, {}} », { 1

Index: 25
Class: Array [Object <- Ring,
Aliases:
“"Array (Object <- R.ung!l®
"Array [Opject <- Ring; 'DeupnicArray iOoject <- Ring) <- DoubleRingArray}®
State: Resclved
Nodes:

{m, at, 3, 25, « (v, sc.f, 25, 2z, «», i1} tv, 2, 6, 25, «», {}) », { })
{m, atput, 2b=, 2%,
« (v, self, 25=, 2L, «n, i) (v, 1, 6, +%, a», (}) (v, %, 3, 25, «», {(}) »,

t
(m, initialise, 25*, /5, « (v, colfl, 2L*, /5, «», {}} (v, size, 6, 25, «», {}) », { })

Index: 29
Clavs: HoolMatrix
Allases:
"Matrix |[Ring <= Hiol.m
"BoolMatrix"
State: Resolved
Nodces:

(v, I, 6, 29, an, 1))

(v, }, &, 29, «», {})

(v, r, 32, 29, «», {})

(m, plus, 29+, 29, « (\, sel!, 29, 2% «»n, 1)) {v, ouher, 29%, 29, «», {}) », { })
(m, ¢ero, 29*, 29, « (v, so.f, 729, 29, «»,)y o», s« })

Index: 32
Class: Array {Coivct <= wityg Ring <= ¢
Aliases:
"Array ;0D cct <~ Rinc Romg s~ BGO. -
"Array |Ob ect <= Ri~g, {Ring <~ Beg.,; Matrix {Ring <~ Bool] <- BoolMatrix)"
State: Resolveo

Nodes:
(m, at, 2, 32, « (v, se.l, ', 3, «w»,) gy, o, 6, 32, «», {}) », { })
(m, atput, 42+, 37,
« (v, SO, sot, ar, w», o) (v, ., b, o5z, «», {}) (v, X, 2, 32, «, {}) »,
t]

tm, dritiaLice, 2728, or, @ (v, so.f, o/t 32, «», 14 v, size, 6, 32, «w, {(}) », { })

)
[A9]

Index: 36

Class: MatrixMatrix

Aliases:
“Matrix [Ring <- Matrix!"
"MatrixMatrix"

State: Resolved

Nodes:

(v, i, 6, 36, «», {})

(v, 3, 6, 36, «», {})

(v, r, 39, 36, «», {V)

{m, plus, 36*, 36, « (v, sc't, 6%, 36, «», {}) (v, other, 36*, 36, «», {})
(m, zero, 36*, 36, « (v, se.t, d¢*, 30, «», (}) », { })

Index: 39
Class: Array [Object <- Ring} [Ring <- Matrix)
Alliases:
"Array [Object <- Ring) [Ring <- Matrix}"
“Array [Object <~ Ring] [Ring <- Matrix]
{Matrix |Ring <- Matrix] <- MatrixMatrix]"
State: Resolved
Nodes:
{m, at, 16, 3%, « (v, sc:f, 39+, 33, «», {}) (v,
{m, atput, 39, 39,
« (v, seif, 39, 59, «»,) (v, ., €, <, «», (1) (v, x, 16, 39, «»,
{ »)
(m, initialize, 39, 5%, « (v, o f, yur, <2

S 6, 39, o, (1) », { })

Class: Array is a subclass o!l:
Object (1) by: { }
Array (14) by: { (Object, Ooject) (Array, Array) (Int, Int) (Bool, Bool) }

Class: Matrix is a subclass of:
Object (1) by: { }
Ring (3) by: ((Ring, Maur
Matrix (16 by: { (Irz, In
(Matrix, Ma rix) f{:

{(hrray Go ccot <= Ripg,, Array |[Object <- Ring])

Lo, HeG) e, wirg)

Class: DoubleArray .s a s.uC.uss 0of:
Object (1) by: {
Array (14) by: { (Ocject, Array) (Ar:ray, DovrieArray) (Int, Int) (Bool, BHool)
DoubleArray (19) oy: { (Arzay, Array) (Du.cichrray, LoubleArray) (lnt, Int)
(Object, Opject) (Boul, usorl))

Class: DoubleRingArray is a supbclass cf:
Object (1) by: { }

»,

tn

, wn, o) tv, sice, 6, 39, an, (})

}

Array (14) by: { (Object, Array [Ooject <- Ring]) (Array, DoubleRingArray) (Int,

(Bool, Bool) }

»,

», |

Int)

DoubleArray (19) by: { (Array, Array iCbject <- Ring}) (DoubleArray, DoubleRingArray)

(Int, Int) (Oplecy, «irg) {idoo., HuG.)
DoubleRingArray (23) cy: « (Ar-u, Lou,ctr <= <1, hrray [Coiect <« Ring])
(CoubleRirgArray, Ju.v.¢’ cab-ray) 0, ©) iny, K.ng) (Buol, Bool}

Class: Array !Cojoc: <= <.ry L ou Lub o dus ol
Object (1) by: {)}

Array (14) oy: ((Ooject, k.-g} (Array, Ariay [Cuiect <~ Ringl) (Int, Int) (Bool,

Array [Object <= Ringl (253) oy: { (king, Ring)
{Array {Object <- Ringj, Array !uUoject <~ Ringl) (int, Int}) (Bool, Bouol)

)

}

Bool)

1)

)

Class: BoolMatrlix 1s o sunc.dse ©f:
Object (1) by: ()
Ring (3) by: { (Ring, BoolMatrix) }
Matrix (16) by: { (Int, Int)
(Array {Object <- Ring], Array [Object <- Ring] [Ring <- Bool]))
(Matrix, BoolMatrix) (Bool, Bool) (Ring, Bool))}
BoolMatrix (29) by: { (Int, Int)

{Array [Object <- Ring] {(Ring <- Bool}, Array [Object <- Ring} [Ring <- Bool])
(BoolMatrix, BoolMaurix) (Bocl, Bcol) |}

Class: Array [Object <- Ring, !'kirg <=- Bool)
Object (1} by: {)
Array (14) by: { (Object, Bovl) (Array, Array [Cbject <~ Ring] [Ring <= Bool))
(Int, Int} (Bool, Bool) }
Array [Object <- Ring] (2%) by: { (Ring, Bocl)

(Array [Object <= Ringl}, Array [Object <~ Ring] [Ring <~ Bool]) (Int, Int)
(Bool, Bool) }

Array [Object <- Ring| [Ring <= Bool] (32) by: { (Bool, Bool)

(Array [Object <- Ring! [Ring <~ Bocl}, Array [Object <- Ring] [Ring <- Bool})
(Int, Int) }

is a subclass of:

Class: MatrixMatrix is a subclass of:

Object (1) by: (}

Ring (3) by: { (Ring, MatrixMat:ix) }

Matrix (16) by: { (Iny, Int)
(Array [Object <- Ring:;, Array [Objcct <- Ring! fRing <~ Matrix])
(Matrix, MatrixMatrix) (Hool, Heol) (Ring, Matrix) }

MatrixMatrix (36) by: ¢ (in., Inu)
{Array [Object <- Rirg) ,Ring <= Matr:ix], Array [Object <- Ring] [Ring <- Matrix))
(MatrixMatrix, MatrixMatrix) (Booui, Beol) (Matrix, Matrix)
(Array |Object <- Ringl], Array [Object <~ Ring]) (Ring, Ring) }

Class: Array [Object <=~ Rirng [Ri~a <- Moirix,
Object (1) by: ()
Array (14) by: { (Opjoect, Matrix) (Array, Array
(Int, Int) (HBcol, Boc:)
Array [Object <= Rinc. (25) o©y: + (Rirg, Mairix)
(Array (Opject <- Rirqg,, Array .Coject <= Ring! [(Ring <~ Matrix)])) (Int, Int)
(Bool, Hool) }
Array [Object <- Ring}! ,Rira <= Mautrix, (39) by: {
(Array [Ooject <- R,ra; IR

!s a supoclass of:

.Ceciecct <- Ring) [Ring <~ Matrixl})

(Matrix, Matrix)

1nyg <- Matrixj, Array !Object <- Ring) [Ring <~ Matrixl)
{Int, Int) (Array .Ce,ect <- Rirg.,, Array {Ocject <- Ring)) (Bool, Bool)
(Ring, Ring) }

Class: Array is a chi.o (suébclass by inhoritance) of:
Object (1) by:)
Array (14) by: (Object, Corject) (Array, Arrayl) (Int, Int) (Bool, Bool) 1}

Class: Matrix is a chilo (subclass by inreritance) of:
Object (1) by: ()

Ring (3) by: { (Ring, Matrix) !
)

Matrix (16) by: { (Iny, !t) (Ar-ay -Oojecc: <- R:ng!, Array [Object <- Ring])
(Matrix, Matrix) (Booz., B8ool) (R.ong, Ring)

v
{
"

Class: DoubleArray 1s a crilc

(supctiass by irneritance) of:

Object (1) by: { }

Array (14) by: { (Cb;ect, Array) (Array, "ouer.cArray) (Int, Int) (Bool, Bool) }
DoubleArray (19) by: « (Array, Ar::ay)

{oewe.oArray, CcuvnleArray) (Int, Int)
{Cbject, Object) (Boo

L. sool) o

Class: DoubleRingArray is o cnllc (sdbclass vy inheritance) of:

Object (1) by: { }

Array (14) by: { (Object, Array [Ooject <~ R:ingl) (Array, DoublelingArray) (Int, Int)
(Bool, Bool))

DoubleArray (19) by: { (Array, Array [Object <- Ring])} (DoubleArray, DoubleRingArray)
(Int, Int) (Object, Ring) (Becoi, Bouol) }

DoubleRingArray (23) by: { (Array [Object <- Ring], Array [Object <- Ring))
(DoubleRingArray, DoubleRingArray) (Int, Int) (Ring, Ring) (Bool, Bool) }

Class: Array [Object <~ Ring] is a child (subclass by inheritance) of:
Object (1) by: { }

Array (14) by: { (Object, Ring) (Array, Array (Object <- Ring]) (Int, Int) (Bool, Bool)
Array [Object <- Ring] (25} by: { (Ring, Ring)}
(Array (Object <- Ring}, Array [Object <- Ring]) (Int, Int) (Bool, Bool))}
Class: BoolMatrix is a cniia (suociass by lnneritance) ot:
Object (1) by: { }
Ring (3) by: { (Ring, Boo:Malr.x)
Matrix (16) by: { (Int, Int)
(Array {Object <- Ring}, Array |Ooject <- Ring] {Ring <- Bool})
(Matrix, BoolMatrix) (Boo., Bool) (Ring, Bool) }
BoolMatrix (29) by: { {(Int, int)
(Array [Object <- Ring] [Ring <- Bool], Array [Object <- Ring] [Ring <= Bool])
{BoolMatrix, BoolMatrix, (Boci, Bocel) }
Class: Array [Object <~ Rirg: {Rirg <- Bool! .s a4 ch:i:id (subclass by inheritance) of:
Object (1) by: { i
Array (14) by: { (Ooject, Hoo.) (Array, Array (Ocicer <- Ring) [(Ring <= Bool))
(Int, Irmv) (Bec., Reo,)
Array [Ooject <= Rirg; (2z) ey: « (Ring, socl)
(firray [Ooect <~ Ring,, Array Co,oct <- R.ngj [Ring <- Bool]) (Int, Int)
(Bcol, Bool) }
Array {Cbiject <= Ring! [R.,rg <= Boeil (32) by: { (Hcol, Bool)
(Array [Object <~ Ring! iR.rg <- Hoc.), Array {Ovject <- Ring] [Ring <- Hool])
(Int, Int) }
Class: MatrixMitrix is a cn.ld (sibclass by inkeritance) of:
Cbject (1) by: { }
Ring (3) by: { (Ring, MatrixMawrix))
Matrix (16) by: { (Int, Int)
(Array [Object <- Rirg,, Array (Oolect <- Ri~g, [Ring <= Matrjx])
{Matrix, Matrix¥aur.x) (%swe., see')r (Ring, Matrix) |}
MatrixMatrix (3€) oy: . (;-t, !r2)
(Array ,Ocfect <= Ri»g: R'-u <= Mgtr.x , Ar-ay Ouject <= Ring)l [Ring <- Matrix))

(MatrixNMatrix, Yoor.x¥ar rix) (Moo, o) (Matrux, Malrix)
(Array !Ooiect <~ R.ro., Array Ji vt <= x.-u) (Ring, Ring) }

Class: Array |Object <- Ring’' {Rirg ¢=- Matr.x) is a child (subclass by inheritance)
of:
Object (1) oy: { }
Array (14) by: { (Obiject, Matr.x) (Array, Array |[Object <= Ring} [(Ring <- Matrix])
(Int, Int) (Boc., Beol) |
Array [Object <~ Ring; (2% by: { (Ring, Matrix)
(Array |Opject <~ Ring|, Array Ousect <- ¥irng,K 'Ring <- Matrix}) (Int, Int)
(Bcol, Buol))
Array [Cpoiject. <- R.ryg Rorg <= Matrax' (s%) Lyt ¢ (Matrix, Matrix)
(Array Cocect <- @ ol
(I~t, Inv) (Array 'Coilonr <- Wung,, Ar-ray Op,ect &- Kingj} (Bool, HBool)
({Rirg, Ring) »

}

X ong <= Matr x , hrray !Cbject <- Ring] [Ring <- Matrix})

Appendix VI.

Type-Safety: An Attribute Grammar
of PS-Based, Non-Singleton
Classed, Mini-Dee

The Mini-Dee extension on which type-safety is defined is that of Appendix I-F.
This grammuar is of the PS-based extension which defines the structure of all explicitly
defined classes (ie: without inheritance and substitution), and which includes non-singleton

classes.

As in Appendix II, the attribute grammar has two components: environment
generation and type checking, and a program P = {Cjy, ..., Cin, Cc1s <., Ccn} is type-
safe if the parse of P results in the attribute, P.type_safe being TRUE. All changes from
Appendix Il are emphasized with shading.

VI.A. Type Definitions:

Type_Rep = (name: Class Identifier, kind : {e, s, n})

node = (kind : {m,v},
name : String,
type : Type_Rep,
context : Type_Rep,
parms : Seq (node),
locals : P (node))

VI.B. Functions:

VI.B.1. Environment Search Functions

Environment search operations are as defined in Appendix 11, Section I1.B.1.

VI.B.2. Type-Safety Check Functions

Bind and Parameter Bind Checks:

fusction blnd {v, ¢ : Type Rep) : Bool
~= rvetyrn TRUE if anr object of type, o can be bound to a variaple

~~ af type, v

begin
C4F o.kind = e
then TRUE
else if v.kind = c.kind or (v.kind = s and o.kind = n)
then FALSE

else Lf v.kind = & and o.kind = &

then v.name & o.namd

else v.name <y o.name

end

Signature Check:
As defined in Appendix 11, Section I1.B.2.

Signature + Parameter Binding Check:

As defined in Appendix II, Section 11.B.2.

326

VI.C. The Attribute Grammar

The following is an attribute supplemented version of the Mini-Dee extension
grammar of Appendix I-F.

(Program)

P = Cy..Cu Ceoy...Ccn

n

P.env := ' l Ciy.env

Vijel< 3jsne Cey.env = P.env
Vj e 1< 3j<neCyy.id = Cry.id
n
P.type_safe := /l\ Ciy.unique_names A

/\ Ccy.type safe
1~

Notes:
~ The code for Cc, corresponds 1o the interface for G
- Each block of code must be associated with its corresponding interface via the attribute, id.

— P is type safc if cvery feature in a given class interface is uniquely named and all class code blocks are
type-safe with respect Lo the environment

— Note that given some class € with class interface Cp, Cr.env = Rep (C)
(Class Interface)

C —> CLASS IDEN AList &ND IDEN

C,.env := Alist.env
cy.id := (IDEN.value, s) |

327

Ci.unique_names := AlList.unique_names

Alist.context := C;.id

Note:

— IDEN.value contains the identificr name (in both cases here, the name of the class)
(Class Name)

CName — IDEN

|cName . value := (IDEN.value, s) |

(Attrit ate List)

Alist — Aj .. A

Vj e 1 £ j £k e Aj.context := AList.context
AList.env := {Aj.node | 1 S j < k]

Alist.unique_names :=
[{id t 3a, t, ¢, p, 1, J * Ay.node =

Note:

— Check on assignment of TRUE 1o AList.unigue_names makes surc that no two attributes are declared
with the same name
(Attribute)

A — VAR IDEN "' Type

Type.context := A.context

Anode := (v, IDEN.value, Type.value, A.context, «», ©)

328

(a, id, t, c, p, 1Y }| = %k

| METHOD IDEN, ['C IDEN; ' Typep ... IDEN, ' Typex)'] R

[var
IDEN,.; " Typek+1
IDEN, ' Type,]

Vje 1l < j< n e Type,.context := A.context
R.context := A,context
pnodes :=

{{(j, (v, IDENj.value, Typej.value, A.context, «», D)) |

1€ 3 <k}
lnodes :=

((v, IDENj.value, Typej.value, A.context, «»,)

k+1 € § € n}

Anode := {(m, IDEN;.value, R.type, A.context, pnodes,

(Type)

Type -]

Type.value := (Type.,context, e)

I CName

Type.value := CName.value

I TCName

Type.value := (CName.value.name, n)

(Result)

R - "' Type

Type.context := R.context
R.type := Type.value

le

R.type := R.context

Note:
— Methods without an expliitly declared return type are assumed to return se1f

k2

(Class Code)

CC - Ml "o Mn

[WAKWN
INIA

s M,.env := C..env
¢ M, .context := C¢.id

-

n
n

(=
INIA

n
Cc.type_safe := A M..type_safe
31

M — METHOD IDEN B

B.env := M.env

B.lenv := leccals_of (IDEN.value, M.context, M.env)
B.penv := parms_of (IDEN.value, M.context, M.env)

B.expected type := mtype_of (IDEN.value, M.context, M.env)
B.context := M.context

M.type_safe :=

3 r, pe signature ((m, IDEN.value, r, M.context, p, @), M.env)
A - Common (M.lenv, M.penv)
A B.type_safe

Note:

- B's environment consists of three parts — the global environmient inherited from M, and the
environments of parameters and local variables found in the entry in M.env corresponding to the method
named IDEN. va.ue, Parameters and Jocal variables cannot share the same nane, but can share the same

name as variables or methods found in the global environment.

330

(Method Body)

B — BEGIN §; %' ... ' Sp END
V jel< j<nesSy.env := B.env
V jel<3j<nes,lenv := B.lenv
V j* 1< j<neS, penv := B.penv
V jel< j<n eSS, context := B.context
V jeis j<nes;.return type := B.expected_type

B.type_safe

]
/\ S;.type_safe

M i

Note:
- The body of a mcthod is type-safe if cach statement in the body is type-safe and if the expected retum

type is what is returncd by the statements

(Statement)
S — IDEN ='E
E.env := S.env
E.lenv := S.lenv
E.penv := S.penv

E.context := S.context
S.type_safe :=
bind (vtype_of (IDEN.value, S.context, S.env W S.lenv),
E.type)

Note:
- Any variable recciving an assignment must be a parameter, local variable, or instance variable declared in

the enclosing class, and must be declared of the same type as the entity it is assigned.

| RETURNE

E.env := S.env
E.lenv := S.lenv
E.penv := §S.penv

ontext

E.context := S.c
= bind (S.return_type, E.type)

S.type_safe :

(U]
(e
—

| E'IDEN

E.env := S.env
E.lenv := S.lenv
E.penv := S.penv

E.context := S.context
S.type_safe :=

3 x e signature {((x, IDEN.value, E.type, E.type, «» ©),
S.env & (S.lenv U S.penv)

Note:
~ Any reference 10 an instance variable or method call with no parameters (x can refer 1o m or v) must have

a comresponding declaration node with context, E.type.

| Eg''mbEN 'CE; .. Ep ")

Vje 0< j<necE, env := S.env

Vje 0< 3j<neEjlenv := S.lenv

Vje 0< 3j<neEjpenv := S.penv

V je 0< 3j<ne Ejcontext := S.context

p:=1{ (3, (v, "", Ey.type, S.context, «», @)) | 1 €493 S n}

S.type_safe :=
sig_and_parmbind ((m, IDEN.value, E,.type, E;.type, p, @),
S.env)

Note:
— Any method call with n paramcters must have a corresponding declaration node with context, Eg.type

(signature check), and with paramcier types the same as the types of the corresponding arguments

(parameler binding check).
| IFE THEN S| ELSE S3
S.type_safe := E.type # undefined

A S .type_safe
A S,.type_safe

(Expression)

E — SELF

E.type := E.context

| NEW IDEN

E.type := vtype of (IDEN.value, E.context, E.env & E.lenv)

Note:

- Onc can assign new objects to local and instance variables, but not 1o parameters

[IDEN

E.type :=
vtype_of (iDEN.value, E.context, E.env w (E.lenv U E.penv))
Note:
- Variables referred 10 as expressions can be instance variables found in E.context, or local variables or

parameters declared in the current method

| E; "IDEN

E,.env := S.env
E;.lenv := S.lenv
E,.penv := S.penv

E,.context := S.context
S.type := type_of (IDEN,value, E,;.type, E.env W E.lenv)

Note:
— Any reference 10 an instance variable or method call with no parameters (x can refer (o m or v) must have

a corresponding declaration node with conteat, E.rype.

333

| Ep''IDEN 'CE;..Ep"

vV j 0 j<neE;env := S.env
VY 3 0 £3j<<neEjlenv := S.lenv
vV 3 0 £ j<nekEypenv := S.penv
V je 05 3j<sne Ejcontext := S.context
p:=1{ (j, (v, ", Ey.type, S.context, «», @)) | 1 £ j S n}
E.type :=

if 3t e

sig_and_parmbind ((m, IDEN.value, t, E;.type, p, @), E.env)
then t

else undefined

Note:
~ Any method call with n parameters must have a corresponding declaration node with context, Eg.lype

(signature check), and with parameter types the same as the types of the corresponding arguments

(parameter binding check).
I Con

E.type := Con.type

(Constant)

Con > INTNUMBER

Con.type := (Int, s)

] FLOATNUMBER

Con.type := (Float, s)

| CHARACTER

Con.type := (Char, 3s)

| BOOLCONSTANT

Con.type := (Bool, s)

334

