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ABSTRACT : x
Polynomiel Scaling *
Sadegh Ghader Panah . s

’

&

A wide variation in the magnitude of coefficients of polynomials may .be
a source of computational - problems in root-findings algorithms, as the
ﬂoatiné-point arithmetic operations~ on such coefficients Mmay .render"

floating-point overflow or underflow, This thesis presents a new discrete

method for (real) polynomial scaling; specifically, it determines a scale t:g,ctbr )

which minimizes variation in the magnitude of the “coefficients of real ,

5

polynomials.  The method is conceptually simple'and is easy "to implement.
"It is based on the phenomenon that the scale factor coincides with the

intersection of certain mornomials, defined by the respective fnagnitudes of the

nonzero terms of the polynomial to be scaled. A constructive descriﬁfion of *

this phenomenon is presented. The method compares favorably with an

existing general’ mathematical programming approach. Results on the effect
of L gcaling polynomials on the numerical quality of their approximate roots ”

are presented; these results show’ tﬁat the effect, if any, is insignfﬁcant._

2

3
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J+ANTRODUCTION - '

. Flbatip{époigg_‘ arithmetic - operations involving ;/alueé with wide variation i ™®fheir -

magnitédes may render results outside the floatigg-point range provided by the
computer in use. {F\.Lrt.hermore, floating-point arithmetic operations on such
values might yield few éigniﬁcant figures of accuracy, }if any. One source
where such resu;ts are likely to -occur is in the applica;ion\ of root-finding
methods (particularly those involving calculation of the geratest common divisors
of two polynomials) to polynomials whose coefficients vary widely in magnitude.
Thert;fore, in order to suppress floating-point. overflow/underflow and round-off
error, it is desirable to supplement root-finding methods with " efficient
algorithms for qcaling down the variation of the magnitudés of the' coefficients
of such poiyn’o'mials, er simply for scaling‘ of  such polynomials, before
approxlmatmg their roots. One root-finding method of whxch the mltxal[scalmg
of ‘the polynomnal il an lmportunt feature, is a composlte method lll which :s
based on rpolynomial factorization by means\of Euclid’s algorithm. A'lt.hough it
_i8 concluded in [1]‘ tl}at scaling of polynomial coefficients g:reatly improves the.
efficiency of the factoring process in the composite method, .little‘ attention is

. {
paid to the efficiency of the'‘gcaling process itself. To-

The primary object of this thesis is to present a new and efficient discrete
method for scaling of real polynomials; spec:ﬁcally, the method determmee an
optimal scale * factor ; whxch minimizes vanatlon in the magmtude of the
coefﬁcxents * real polynomlals The method is conceptually gimple, and easy
to 1mplement._ It is essentlally based on the phenomenon that the optlmal
scale factor comcxdes w1th the intersection ?f certain monomials, . which are'

defined by the respective magnitudes of the nonzero termis of the polynomial to
| , , . .
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N . , %

) ' . L} N
be scaled. This method compares favorably, in terms of the complexity (in the

v

3 " .
sense of the work involved), storage, operation count, and numerieal stability,

with the general mathematical programming ,approacﬁ of [1].

. ) . B
The secondary object of this thesis is to investigate numerically the effect of
J I

»*

scaling of real polynomials on their approximate, roots obtained by generalﬂ

root-finding methods which do not inVolve calculation of the greatest cbmmé%

divisors of two ,pofynomials. The Laguerre root-finding method is chosen in

any) of scaling on the numerical quality of the approximate roots.
=

The remainder of. this thesis is organized as follows., The problem is

[

formulated in Section 2,.and the Fessentie of the scaling method is specified in
Section 8. A remaxzk on a pertinent nota‘tion is made in Section 4. Based on
a constructive proof of the phenomencn mentioned, three algorithms .a;'e
prdsented ‘in- Sections 5-7, respecl:ively:3 which together describe a discrete

process for detemin}ng. the optimal scale factor. A comparison between the

. . ‘ ;
this investigation. The numerical results indicate an insignificant effect C(f

method of this thesis and that of [1] is presented in Section 8. Also, some -

results on the effect of Bcaling real polynomials on th¢ numerical quality of

their approximate roots are provided in Section 9. Finally, sdme concluding

»remarks are made in Section 10.

g
— »

£



-2. PROBLEM DEFINITION

‘ Al
L3

Let P(z) be a polynorr_xial of degree ;1,

‘
- . - /

@1 . N P@) = a:"/+ @ -1

+ ..+ 8

n-1% 0 . anﬂO:'f:o'

/

/

with real coefficients {ak}; tipd“ with real or complex . roote: ZpeaR, In_

" addition, let Kw={k : 8,0} with N=|K| denoting the cardinality of K. Thus,

-

- 2<N<n+l1. ‘ / . . ,
+ . / ) . 1
Define the variation v(P) /6f P(z) by . ‘
. // Loc
. - max c, - 1
o o v(P) = log (min ck)‘ : keK
* vwhere
~ 3
(2.2)‘ ' ck = lakl ’ N kGK

.

¥

. And finally, let the scaled polynomial Q(s,P) associated with P(z) be given by:

~ ’ . R k k . f
2.3 -~ Q(8,P) = P@ex) = 8,8 X 8e(0 ,00)
’ ! k=0
— © with the .param:ater 8 referred to, henceforth, as a scale factor. -

TR g .
\D The object of this work is to present a\ discrete method for: solving the

%
following minimization problem:

’ v

’ (MAX ¢, 8
/2.4 Minimize: v(Q) = log (——-—)7) subject to: se(0 ,00), k€K
‘ ’ . ‘min C,8 -

,
The solution s* of (2.4) shall henceforth be referred to as the optimél scale . '

-factor. ~

[




3. ESSENCE OF THE METHOD

Consider the monomials <
L] " d
A Y -

3.1) : W@ = s€(0 ,00), keK

-—

and lé&t S.. denote the nonzero intersection bf the monomials Wi(s) and Wj(s),

which is given by °

N
N
s
-

(3.2) . ‘8 = (?)j“ i<j, ijekK
- . j . “

k’and which shall henceforth be referred t™hs a critical point. In- additfo\n?- let:

the minimization problem X2.4) be rewritten in the form:

D
(3.35 . - ‘Mini'mize: v(Q = log %(S)l' subject to: s€(0 ,00)
.1 . Lo ) R -,
where, *
. <
(8.4) ‘ M(s) = max ,{Wk(s)} se(0 ,00), keK
. and ' . o / ' .
S G X m@ = min (W@ = s€(0 ,00), keK

Evidéntly, solving (8.3) involves considerations on how to handle ‘the prgsence of
the generally defined functions¥m(s) and M(s). . One rﬁay consider, for éxample, .

to’ relax the explicit. dependence of (3.8) on m(s) and M(s), by converting (8.8) {

H \

into an ‘équivalent nonlinear mathematical programming \‘%oblem [1] of the

form:
.. t . N, k ;
8.6) . Minimize: log d subject to: thks , dscks , keK, s>0, d>0

[ v . N -



3

'where Ck=iog c,, IéeK répresent the constants, and where T=log t,” D=log d,

. (3.8) . Minimize: f(s) = M(g)’ subject to: 8€(0 ,00)

. ) N o - .
‘ ® ! ) . ) ) .
in which the relations ¥>Ms) and d<m(s) are, ,implicitly satisﬁed by virtue of )

(8.4) and (8.6), . respectively. The nonlmear problem "(8.6) may readily ° be
transformed into an equwalent linear mathematlcal programming problem 1] of

the form:

-
3

2 L .

3.7 Minimize T-D  subject to: ~ T—kS >Ck, D-kS<C, and keK T
E . \ - N , ’ «

\ i 4 -

S=log 8, which are ewdently, um'estncwd in sngn, represent the mdependent
. .
vanables of this problem By applymg a slmple trans}'ormat.non to the -

independent vanables, this  problem may be solved (for log s8*) by a g,lmear
programming method, such as. that of* the re\nsed simplex “ethod. The

purpose of this work is td~offer an alternative mmethod for solving ‘(23.3), which

‘is substaritielly more efficient tHan the simplex approa'ch’/ in terms of, theb

-

complexity, storage, operdtion count-and numerical stability.

.
%

he essence of the present method is to utilize the phenomenon that thef

Al

3

solution s* of the problem 3.3), or equivalently of the problem;

~a, ‘s

¢ R . m(‘s) . - ' ] ¢ ¢
coincides with one of the critical pbints 8,» g0 N=1, j=i+1N, given by
' ' 1) Edd ¢ ()’ .
(3.2). ‘ . n AR

An —immediaté 1mphcat.tox\ of this phenomenon ie a dlrect but mefﬁcient

approacli for determining the .optlmal scale factor .s*, as follows: 81mply- ?
) 4’

det.erxm e t;he N(N—I)/2 cntxcal pomts S and chopse a8 s"‘ ‘the eritical poirt

at which v(Q in (2.4) is minimized. Althoughmlready more efficient than the ’

application of the simplex process to (3.7), this direct approach may be



-

improved considerably by further exploiting the nature of the phenomenon, to

"explicitly characterize the functions m(s) and M(s) over (0 ,00), and hence to

explicitl;' minimize f(8) 'over (0 ,00). The objective funttion f(s) in (3.8) shall
P, © Y
henceforth be reférred to as the scale function. In- Sections 4-7 below, the
@m;{lg/ed approach is described 'in termg, of a constructive proof of the

pheriomenon mentiondd; ’the proof makes use of the following obvious( relations:

v -
}

‘ Wi(s) < Wj(s) : if 8 > Sij
(3.9)/‘/ - W = W® if 5 = S i<j, ijeK
o W.(s) 3 W& . ifs <S8,
s i J i

. ! \

4. REMARK : ’ ~.
3 - rl

Throughout the remainder of this work, frequent references are made to an

NxN upper * triangular matrix 'S-[S'ZI'] whose upper and off-diagonal entries Si},'

i=0,--,N-1, j=i+1,.- N, are defined by the critical points (8.2). It is noted,

howevér, that this is merely for illustrative fmrposes“, and that the construction

of S may not necessarily be required in practic(e. .

—

L



N
5. DETERMINATION OF THE FUNCTION m(s)

5

Define the function m(s) as: =
4 * 4

7 S W (@ if se€®© S ' | .
o] x [ 3
/ p - p=I-p
W @ if se€lS AR I=1, p—1
(5,.1) ‘ m(s) . alL—" @y, g al_chl
. w @) if selS ,0 °
1 : 20 . - %%

where the 'integérs p and aiEK’ i=0,--p are determined such that

N
. N s - (
\ .
u

O~ . (6.2 0=Gay<a; <..< a, = n ~
)
. and \
(5.3 S, o >8, 4. > >8,
01 1"2 p-1"p
)' ' Essentially,. the a-sequence agr i ap, satisfying (5. 2) and (5.3), is det,ermmed *

by using 8.9) so that m(s) represents the greatest lower bound for the

‘monomials (3.1). Thus, m(s) may be considered as a piecewise monomlal over

\ (0 ,00), which remains constant over [S/; o ,00) and stnctly decreasing over
0°r
, S~ ] as 8—*0 in fact, h m(s)- 11 W (8).
. . The m-algérithm degined leow determines t};e a-sequence a,, a;, ..., clxp with
R * ) A * - . . &
. respect to (6.2) and (6.3). . |
T
P . '
s e '/’/ 4 v
\‘. .
a R ¢ b 4
¥ - "



’ 1. Initialization ‘step.

ap = 0, a_; = —'1;’4 S~1..0 = o00; p =10

% B . .
g 2. Induction gteps. * .
v ! a8

A Let | = p; If o, and S are known and a, # n, then S
‘ 1% ~ ! %S
is the largest element in the al-th row of S which does not exceed

. -
‘ Sal—lal. 'I"he integer o1 18 Phe largest column mde;: Jj sueh that

‘S.=8 . '
at] alaHI .

B. Letp = £+1; If a, = n then @e me-algorithm is terminated.

¢ %

~

EAre o N A
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.8. DETERMINATION OF THE FUI*CTION M(s)
Define the functi'on M(s) as: /A‘J
£ ..
W, (8) it 8 € 0, S,
| Po ﬂoﬂ1

6.1) . M) = Wﬁk(s) if* s € [Sﬂk_lﬂk' ﬁkﬂk+1l k"],"'.q-*l

W, ®&® -~ if 8gf(S ,00)" , :

8, ‘ By 1P, B

. § - -

where the integers ¢, and ;9J.EK, j=0,--,q are determined such that

e

6.2) 0 =By < By <R B =

and '
(6.3) S <S8, <..<8

N »Pofy Py Fo-1Pq

'Essentially, the ﬂ-sequencb ﬂo, ey ;S;q, satisfyi'ng (6.2) and (6.3),‘ is detérmined
by using' (3.9) so that Mg represents the least upper b(\Jund for the
monomials (3.1). Thus, M(s) may be ‘considered as a piecewise monomial over
A0 ,oo), which remains constant over (0, S y, OﬁI] \Rﬁ strictly increasing over -

3 ,00) as s—oo; in fact, hm Mf’s)= Ylm w (s)
Cets

o

-

The M-algorithm defined below determines the p-sequence ﬂo, ﬂ;, eenr ﬂq with
respect to (6.2) and (6.3). n ‘ ' :
R )

”o
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’

Initialization Step.

|

ﬂo =0, ﬂ_l - "‘1; S—1,0 =09 =0

Induction Steps.. :

A

" i such tl_mt S

9

Let‘k - q; If ﬂk and Sﬂk—lﬂk
S 9 4 is the smallest elemeut in the ﬂk-th row of-S which does
k" k1

are known and By, # n, then

not precede S The integer ﬂk +1 is the smallest column index — o,

Pr—1Pr
=8 .
Pt PbPrar

!

Let g = k+1; If ﬂq = n then the M-algorithm is terminated.
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7. MINIMIZATION OF THE SCALE FUNCTION f(s) .

As noted in Sections 5 and 6, the functions m(s) and M(s) are non-decreasing

functions over (d ,00), a8 s—oo, and represent respectively, the greatest lower

bound and the least upper bound of the  monomials (8.1). Thus, the scale

function f(s) in (8. 8) represents the ratio of the upper bound M(s) to the lower

bound. m(s), which is ‘3:6 mmmnzed over (0 ,oo) It turns out, however,

that the point s* at whidlr this ratio is minimized coincides with one of the a-
or f-critical points determined byl the m- and M-algorithms, respectively. The

following lemmas present a constructive proof of this phenomenon.

Lemma 7.1. No monomial {?‘G.(s),,}'EK—{O,n}, may be involved in the definitions
of both functions m(s) and M(s). |

Proof. Let K—{O,n} be nonempty, and let al-jeK—.{O,n} for .some I, 0<l<p; 80

that m(g) is characterized by the monomial W _(s) within S, , S ).

oA 1 %=1

Now, for Wa (8) to alsc be involved in the definition of M(a), it has to
l - a

intersect, by virtue of (6.1), with monomials of degrees higher than oy within

[Sd o ,00). But this is impossible, because by virtue of (6.1), Wa (8) has
I-171 ¢ l
already intersected with all monomials of degrees higher than o within
(S , ~ \ Q.ED.
l *l41 —

Lemma 7.2. Let the subdomain

(7.1) D =[S

P

be . formed by merging the a- and ﬁ-cntxcal points with respect to (6.3) and

»
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“ 8

) § ¢

'(8.3), and discarding the P-critical points to ‘the right of S, and the
| ‘ ’ 0”1 .
a-critical points to left of S ﬂ 0‘61' Th‘en, the global’ minimqlm g* of the scale

function f(s) over (0 ,00) is located within D. - . . v
4 o __
Proof. It. is firat noted that S 8,6 and Sa . Tepresent ‘regpectively, the
1 01

" smallest and largest points of intersection of the constant monomial Wo(s) with
w

S <8
J BoP1™ 0°1
that s*eD, it suffices to show that the respective minima of f(s) over the

(8), YjeK~{0}; that is, , and Lence the form of D. To show
subdomaing D ﬂ-(O, S 5 OﬁI] and Da-[Saoal,oo? m.aj'r occur only °at; thc? critical
points S and S, . . This readily follows' by noting that in view of (5.1),
. aoa 1 ﬂOﬂI ] o

m(s)-co and M(s) strictly increasing within, Da, as 8—oo, and that in view

of (6.1), M(s)-co and m(s) is strictly decreasing within D o as s—0. Hence,

w ‘ : e OBD

Lemma 7.3. If there exists a point ;:E(O ,00) at which m(x)=M(x), then s"';x,

and in particular, the subdomain D in (7.1) reduces to {x}.

/
Proof. Since m(s)<c,<M(s), over (0 ,c0), it follows from (3.8) that f(s)>1,

Vee(0 ,00), and in particular, f(x)=1. Hence s*=x, and by Lemma 7.2, xeD.

LY

Now, since m{s)<c,<M(s) within the open intervals 0, Sy (S, ,, S )
0 pet /‘9/ 1 PPl 2o

or x=8 , or both. But,
01 Pfr — /%01 :

S #8 would imply m(x)<M(x) contrary to’the assumption. Hence,
PP1" 20 . /

and (Sa ,cof .it follows that either x=S

x=S, o =S and D={x}. ' e QED.
~FoPr ey - - po
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" Lemma 7.4. Let the subdomain D in (7.1) be divided into ap-subdomains of ‘

the types: ) . " .
7.2) o D.=[S .S, ] ) -
‘ ap o1 PrPreg L : ,
(7.3) B . D, =[S, ..S ]
) fo = B 1By oy Y
(1.4). . " p = .8 ] - «
/‘ i ‘aa alal+1 al_ a! . \
L | D.ﬂﬁ = [Sﬂk—zﬁk' 84 4 ) o ’

. . R ‘ ’
where the indicew { and k are adjusted so that the boundary points of each

type repr"ésent: a. pair of :onsecut.iye aﬁ-critical points within D, Also let the
indices { and j be chosen such that S 8, . ﬂED is the \neaf‘esf P-critical point to
i-17

. the left of S €D _ , and that S €D is the nearest a-critical point to
the right of. S €D_ .. Then, the respective .monomials characterizing .the
e BPrrs P :

f;mctions m(s) and M(s) within the aboye af-subdomains are. defined as in the

4
following Table: ’ . . /-' 4

>~ gubdomain l D, 8 and DTBa D, D 08
(7.6 . M@): | W ﬁk(s) - w ﬁi(s) w ﬂk(s) |
m(s): ’ Wal(g) W “1(8) w aj(s) , P

.
\

Momovér, if [x,y] is an af-subdomain of any of the types (7.2)-(7.5), within
which M(s)-wﬁ (s) and m(s)-Wa (g), then the minimum s m of f(s) within [x,y] o

| r ¢ , N
is located at 8, X if ﬂr>at, or at 8,y if ﬂr<at.

: © .
~ | e
R o
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Proof. Clearly, (7.2)-(7.5) represent the only possible types of op-subdomains

whose boundary‘ points are defined by pairs of adjacent critical points within D.

The characterization of the functions m(s) and M(s) within an af-subdomain, is
simply based on' the type and ' position of the boundary pc;ints of that

aﬂ-suMomain. To be specific, consider an ap-subdomain (x,y] of one of the

types (7.2)-(7.5). Now, if [x,y]EDa v, or [x,yl=D o’ then it readiliy follows from .

(6.1) and (6.1) that m(s) and M(s) are charact;;'/zed' as givén in Table 7.6.
Hc;wever, the function M(s) within [x,y]sf)aa anz

not directly identified by the respective type of the aﬂ;subdomain [x,y].
Nonetheless, information about these fux;ctions within . [x,y] may easily be
obtained by considering the nearest aﬂ-c;'itical point within D,—[xfy], whose type
is the opposite of that of the boundary points x and y of [xy]. The existence
of: at least one such nearest point is' guaranteed by Eloting that D=D e and
[x,y]1CD; specifically, thgre always exists a p-critical point to the"left of x if
[x,y]_—-.-Daa, and there always exists ~an a-critical poifvxt to the right of y if

[r.,‘y]ED 86" Hence (7.6).

As regards the minimum s, of f(8) within the of-subdomain [xy], it suffices

to explicitly express and minimize f(s) within [x)y]l. Specifically, in view of
. LI

(8.1) and (8.8), the scale function may explicitly be expressed in.the form:
" | . \
W, -
M(s) By (ﬂ r] s(ﬁr—at) 3
p .

flo) =he) "W ® ~ |o
. %

s€lx,y]

o

-

-

which is, by Lemma 7.1, strictly increasing, or decreasing depending on whether
ﬂr>°' ; OT ﬂr<a . respectively. Thus, the minimum 8, of f(s) within [x,y] is

locat,efi at 8= X if Br>at, oré 8,,"Y if ﬂr<at.. ~ QE.D.

L

m(s) within ’[x,y]EDﬂﬂ, are



o
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b -
This completes a constructive proof of the. phenomenon that the scale factor is

indeed a critical point.

We s‘hall now describe an élgori’thm\ f;)r determining the global minimum of f(s;
within D. Let the array of all apf-critical points within D be denot.ed by x,
with xO-Sao.aI and X;, 15X {>0. Thus, the af-subdomains of the t}lr;;es
(7.2)-(7:6) may be expres?ed in the form [xi + 1’xi] for‘ appropriate values of iz‘o.
The f-algorithm described below, first determines the type of the af-subdomain
[xi + 1’xi] at “hand, and. then‘ determines the local minimum of f(s) over the

subdomain accordingly. Among the local minima thus found, the scale factor

s* is tp.ken to be the one at which “f(s) attaing its minimum value.
5 -

To simplify thel description “of l\ the f-algorithm, the following construct is defined
separately. b - -

L

B: IF ﬂk?“al THEN

-~ (8 3,0 ‘
k E V. o
£ = T‘) S A R N )
R O 1
f, = rci' (x )(ﬂk*al) cg. =X . B '
A O e R .
U,

This construct will be referred to as- block B. Evidently, the inputs to this
block' are the aﬂ-crjtica] points x; and X\

, representing ‘the af-subdomain
-~ . L] R - #
. [x;, ;%1 and the vslues o and By, characterizing myfe) and M(s) over [xi+1’,

) .
xi], respectively. This block returns 8; as the minimizér of f(s) over [xi + I'Xi]’

and f, as flg). The falgorithm is described as follows:

¥



b.

6. Terminate with 5 = min’'(f) and &* = 5

16

.

IniCallmz i =0; x; = S"Oal : fO

IF xl..-S GO TO 6

PPy

Let Xi01 be the largest ap-critical point smaller than X

n
-c.X; /co ) 8 = X

IF x =8 . THEN
*1-1%1
f // .
: - N B
T /x!H .Sﬂk—zﬁk THE
JELSE x;,, = 8

o Ty

v
/

8,y "t

B P '
ELSE x. = S, ..
- - ‘ PrPret o
Fx,, - .S“z°z+1 THEN B

f

i

.8 =' X,

N o I
"m>0; |
B; S o

|

i =i+l ; GO 'ro/ 2

>

= x. . is the next immediate P-critical point with j>0;

1

is the last immediate a-critical point with
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. ' 7.1. REMARK o ,

_ In this section we present a lemma which will_be used in Section 8 «for

N detq/fgxining an estimate of the number of arithmetic operations involved in the
'\“‘tb; o = : N
‘ m-T@M-algonthms. - \ ‘ T

-

Lemma 7.1.1. ;l‘here may exist at ;n;)st N-1 af-subdomains of the’%/

(1.2)-(7.5) within D, * ' :
Proof. 'It ‘sufﬁc‘es to show that D may contain at most N critical points. To
do this, it is first n&t,'ed that in the ‘case th.e functions m(s) - and Mi(a)
intersect, say‘ at x, we have by Lemma 7.3, l?a ﬁED'ﬂaED'{X}’ qregardless of
the ‘value; c;f N. Now su;;pose that -the functions m(s) ahd M(s) do not
intergectl Then, ‘ except for Wo(s) and Wn(s) which are permanen.t.ly fixed in
the definitions of m(s) and M(g), thgre may exist monomia}s V\{].;s). JeK-{0,n},
passing betwe;n m(s) and -M(s) without being involved "in their definitions.

| That is, if L of the monon;xigls 'W}.(sl, jeEK={0,n}, are present irg the ‘deﬁnition

. of m(s), there can be at most N-(L+2) of t}.le remaining 'n'gonomials present in

" the definition of M(s).‘ Therefore, in this case, ‘there Jare L+1 a-critical points . e

and at most N—(L+I) B-critical points,r giving a ma:di‘qum of N apfgritical

points over (0 ,00); and hence within D. - QE.D.
, .



8. COMPARISON p

In this section, the present discrete . minimization method is compared with
Dum{wa{s general mathematical programming approaéﬁ 11 Evide;ltly, the
problem (3.7) readxly suggests for its solution, the use ‘of a linear, programrmng
- method such a€ the revised simplex method. The comparigon, therefqre,
renuires speciﬁzation of essential’ factors involved in the application of the
_revigsed simplex ‘process to (3.7). Any realistic comparison must "inch'lde the . ‘
four factors: complexity, storage requirement, operation count gpdr‘ numerical
stability. . In the following, these fouf factors are considered.
) ' .
8.1 'Complexity '

7

-~ . ﬂ
\ Problem (8.7) consists of 2N inequality constraints and 3 unrestricted (in sign),

‘independent vaxliat;les, T, D and S In order to begin Phase’ I of the drevised
simplex metkod, this system of inequality constraints must 'ﬁrst. be transformed
into a system of equality bonstraints The transformation involves [2, p 173).
replacing each of the unresfncted vanables T, D and S by the dxﬁ'erence of a
‘paxr of nonnegatxve variables, and thus doubling ‘the number of’~1ndependent ‘

variables to 6. In addition, it involves the introduction of a total of 2N slack ,

and eurplus variables, resulting in a system of 2N equations in 2N+6

- nonnegative“variables. Moreover, the coefficients of the system of
" thus obtained may have to be adjusted so that the right hahd gide trem®—of
.the syatem' are all nonnegdtive; .the result is a system of equatiofls thh
nonnegatwe nght hand sides, contammg a total of 2N p%smve and negative
unit vectors. Now, for the Phase I of the sunplex process to be applicable,
this last system -of equations must undergo another transformation to .oonvert

¢ <L : )

3
» 3

K



all but one of the negative unit vectors (if any) to distinct positive unit

vectors; the remaining negative unit vector remains unchanged while an

additional artificial variable is introduced. . T L

Fortunately, most computer centers generally support a linear programming
[y ¢ - 3

system; otherwise, one would have to be proficient in the theory of the linéar

programming “methods, and tHe associated computational techniques, to embark

on the design of such systefn with an overwheln'.\'iﬁg amount of coding.
. >

1!

L

HBwever, since the supported, linear programming systems a; generally coded . -

to be much more than an implementatiq’n of the simplex method they may _

\
. require” a certain level of familiarity on how to use and mteract with® them.

Ri

For mstance, we have access to the IMSL/Zx2LP [4] linear programming
package, . whlch may be invoked by a Fortfan call statement mvolvmg 18
parameters of which 7 are used as mputa,)4 as outputs, and 2 as auxiliaries.

Thus the coniplexity and/or size of such ‘dystems may be factors of conqem to

— o

‘users unfamiliar with linear programming methods;' and/or to users of

computérs with limited core storage. S
L - . .

>

In contrast, the present method is conceptually® simple arid easy to implemént. |

It may be coded into .a small size program (e.g:;, about 100 statements in
Fortran) requiring the coefficients a;xd -degree of the polynomial to be scaled as

inputs, and returning the scale factor as 'output. .

&
- . -

8.2 Sto:"age Requirement 0

o

It follows from the preparatory traneformatxons dxscussed in Section 8.1 that

) the maJor storpge requirement of the revised simplex method on problem 3.7

consists of 2Nx(2N+7) locations in the presence of an artnﬁcnal variable, or.

1 ¢ '
o ' » . ’ s -
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otherwise, of 2Nx(2N+6) locations.

3

In the present method, the major storage requirement may at first seem to-

congist of N(N—I1)/2 locations for storing the entries S}, t=0,---,N-1, j=i+l1,---,N,
of the matrix S, whxch are computed according to (3 2) and are referenced only
by the m- and M algorithms. It turns out, however, that the major storage
requiremeniy of the present method consiete of at most N locations. . To justify
this fact, it suffices to note that except for the first row, no other rows'(of the
matrix S may be scanned by both the ,m- .and M-algorithms during tl}e

determingtion of the a- and f-sequences (5.2) and (6.2), respectively; and that,

~

one scan of the first row of S is adequate for determining both o, -and /31.

In fact, the maximum number of referenges to the S.. entries may be at most

<
N(N-1)/2, because mf@lew of Lemmas (7.1) and (7 3), some rows of S may

never get scanned In partlcular among the S entries referenced only; those

located within the subdomafn D in (7.1) need be stored; these stored ’ S*.].,
entries are utilized by the f:-algorithm for- the global minimization of the scale
function. And it follpws from Lerﬁma (7.1.1), that there are at most N
af-critical points thh:%? D. ﬁenw, the requirement of at most N storage

o -
locations.

s
' 3
- E

B

3 ry .'3
3 "
k)
. , R )

8.3. Operation Count

L - . ¢

In this Section, estimates +of the humber .t‘>f arithmetic operations involved in
each method are determined. The arithmetic operations taken into account are
] + . .

‘those of n‘lultiplications,. divisions, and expoﬁentigtions; the latter operations are

used only by the present method. These operations ate usually performed in

eomputer‘ hardware by similar ‘methods using only shifting, \additjen and -

*
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L

subtraction operations; quch' methods for logarithm and exponentiation are éiven

in [6, p. 26l

As suggested in [3, p. 215], the total numbg.x". of operations performed at each
iteration by, the revised simplex method, appl{ed to (3.7), is about 2N@N+7 +
(2N)2 + 3(21\\1:)"/= 14(21}12 + 5N). According to [2, p. 65], there are usually
between 2N and 4N iterations ' involved in the simplex process to find a
minimum feasgible solution of (3.7). Thps, in the linear programming approach,

‘the total number of operations is between SCN°+5N2) and I6@N°+5N),

[N

In; the present method, the bulk of the arithmetic operations takes'pl'ace in the
m- and M-algorithms for computing the af-critical points according to (3.2),
and in block B of the f-algorithm for computing the local ~minima. As pointed
out in Section 8.2, the m- and M-algorithms may invqlve at most N(N-1)/2
references \to (3.2), with each reference requiring 3 operal‘:ions. And, in view of

Lemma 7.1.1, the f-algorithm may inyolve at most N—1 invocations of block B,
¢ . N 'k,:;'"." aad )
with each invocation involving 3 operations. Thus, the present method involves

13

a maximum of N-I multipligations,; (N-I)(N+1) divisions and (N-1)(N+2)
t

exponentiations, adding up to a maximum .of 3IN-1)(N+2)/2 operat'ions.

sl ¢ ’ ¢

8.4 Numerical Stability and Accuracy of finding s*
!

Ir;herently;: the present method is numerically stable as it i‘nvolvea no posgibility
of degeneracy, g;cling, or propagation: c;f accumulated round-off or numerical
errors thr'ougix the minimization process. This, however, fhay not be the case
for the simplex. method, althbugh effective methods exist to handle these

possibilities in the simplex procése (2]. Numerically,, the system of

.
4

T
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-

simultaneo;m equations pqssed. to Phase I of the ’revised simplex process,

represents a perturbed, version of ] the prob'lem. (3.7); " this is ;iue to the

" preparatory transformations (désctjﬂ;ea in Sec\tio‘n’ 8.1) applieq to (8.7.

g Moreaver, the solution determined by the simplex "pr"ooess has to undergé) a

' final transformation, as it répresents an approximation, to (the logarithm -of the
—a8cale_factor. - ’ s

Computationally, the cost of preserving maximum numerical accur:acy "thro{xgh )

the simplex procesﬁ can increase, it involves periodical inversion of the basis

matrix.:

In the' present method, howevey, the scale factor. ‘is determined to be one of
the critical points computed dirextly by (3.2). The accuracy of the optimal
scale factor, theréfore, )depends' golely on the limiting accuracy of the finite

-

precision arit._hmetic used in computing .(3.2).
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. where the superscnpts denote the -iteration numbers, and_~¢here z
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. NUMERICAL RESULTS AND REMARKS"

'To investigate numerically the effect of scaling on the roots of polynomials, we
adapted the use of Laguerre’s mqt-('{nding method.  Our c}?oice of Laguerre’s
method was solely based on its usefulness as a gpneral ifurpose Fpot-ﬁndtng
‘method [8]; indeed, the ,choice of the root-finding method was not particularly

important, as the primary concern in this investigation was the numerical

. S. ' -
. /quality of the approximated roots before and after scaling, as opposed -to how

they were approximated.

-

?

‘Thé 8numerical quality of l::he approximated rpots. wéq measw in terms of the
rriaximum relati‘ve erx"of involved. However in most of the tests carried out. it
turned out that in general the scaling d1d not_ sxgmﬁcantly Gf at all) aﬁ'ect. the ‘
quahty of the approxlmated roots.  Therefore, the cost of approximating the
roots with and without scaling 'wa‘s alsoh congidered as a fattor in measuring

r

the effect® of scaling.. The approximation cost “was measured in terms of the -

. nurnber c;f Lagué;‘rrle.’s iteratjons invgived‘ in approximating' the roots.before and

after scaling. For each root Z., i=1, ., this number comprised Laguetjp‘e“s

iterétiong in two' successive groups: the first group consisted of iterations

leading to an appx"bzdmate f'oqt sz) satisfying the st.opping criteria ,~
©.1) 25D 2®) < ¢ = 10720 0<k<100, inl,m

) “”-o, the

second group consisted of _iterations 1°admg posslbly to an - improved
k)

approximation z; satisfying simult,aneously the stopping critera (10, p.463]:

t



o (k+j+1) _ (k) (k) __(R+j—1)
. Izi J 2, Jl Izi J_,_zi J |
0<j<50, i=1,-,n

Ge)_y =D

|z
‘

with k& satiafying (9.1). The iterations involved in these two groups shall

~ henceforth be referred to as the primary and secondary iterations, respectively.

-

Once approximated, each root was extracted from the resbective 'polynomial by
the polynomial deflation process. It is noted that the choice of ZEO) =0, {=1,n,
always resulted, at le\nat. for polynornia with real roots only, in the
approximate roots in incrensing order; this was a desirnb!e feature as it kept

the polynomial deflation p?ocess stable [9]. .

Finally, once ,all the roots were approximated, each was optionally reﬁned by
one last application of Laguerres iteration to the undeflated polynormal 9, p.
66]. The refinement step was taken optlonally, becauge the computations
- involved in this last step might possxbly render exponent underﬂow or overflow
on polynomials with high variations in the magnitude of their coefficients. In
this respect, we also investigated the extent to which- the degrees of such

polynormals could be ralsed with and without this last refinement step.

In all test runs, the scaled polynomlal was taken to be' the normahzed version

of (2.3) deﬁne@l by the monic polynomial: '

. ’ . .., bh a8 k
0 REP) = ¥ (——-—) . ,
- k=1 *n ‘

It is noted that, because of the ﬁmt.e precision arithmetic involved in the
computatnon of thq coefficients of (2.8) and (9.2), the numerical representation
of bath Q(s,P) and R(s,P) may be{in error [9, p. 80); this is, of course, in

addition to the error that already mny be. present in the coefficients of the
a N * @ \

‘
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original polyﬁomial P(z).b One way to avoid the introduction of possible errors
in the ooefﬁciet}ts._ of the scaled polynomials is to choose, as the scale factor,
the integer s**-2i with j minimizing |s*—2i |. This essentially has the effect
of adjust _the exponents of the coefficients without altering their

corresponding mantissa. The choice of s** as an alternate optimal scale factor
. L

was also investigated.

The algonthms described in this thesis were coded in Fortran usmg double
precision floating-point arxthmetlc. The program was successfully used on the
CYBER 830D machine providing an 11 binary digit exponent and 96 binary

digits double precision mantissa for floating-point opérations.

The effect of scaling - was examined on a large ‘number of test polynorﬁials.
some well-conditioned, some ill-conditioned and others randomly 'generated by a
" number of techniques [5]. The followmg represents only a small sample of the
polynoxmals tested; this sample epxtomxzes polynomlals with wide variations in

the magnitude of their coefﬁcxents. ' s

n / .. 3 .
P@ =1 G-100 2, =10%, k=1,n
k=1 '
n —k, —k ‘
P,(z) =]] (z+10 ™) z, =10 7, k=l,-n
2 k
k=1 .
n even .
Py = T (210 ato™®ly g5 ot 14i399, h20@n
"L R=0@)
h 3 | gk, ket
P (Z) = H (Z—k) , ) z,=k, k=1,-n
4@ =1 &0 , | k



n -k y -k
P.(z) =[] (z—-10-10 ™) z,=10+10 ~, k=1,--n
b Py’ ' : k P
& [3+1
P.(z) =[] (z—10k) z, =10k, k=1,---,n
6 pel k
- ‘\\:

The collected data on the effect of scaling the aboye polynomials on their roots
are presented by‘ Tables 1-6,” respectively. TI‘}(xese Tables are organized as
follows: the first column (DEG) gives the degrees of the particulfir polynomial
tested; columns 2-6 give the results\ obtained on the original polynomial P(z);
columns 6-10 on the scaled polynomial R(s**,P); columns 11-15 ;>n the scaled
polynomial R(s*,P); thfa last column (RO) indicates whether the final refinement
option was enabled (E) or disabled, (D). More s'p?iﬁcal.ly: columing 6 and 11
show the corrésponding optimal scale factors s** and s*, respe(;tively; columns
£ 7 and. 12 ‘the variations (VAR); oglumns 3, ? and 13 the maximum relative
error (MRE) amang all the approximated roots; columns 4, 9 and 14 give the
total number (NP) of p}imary iterations involved in approximating all the ‘roots;
columns 5, 10 and 15 t\}}e total number (NS) of secondary iterations involved
in improving, all the approximate roots. The presence of blank entries .in
.columns 8-5 indicates that, on our machine, the original polynomf'al could not
be handled computationally for the corresponding degrees specified in column 1.
. Finally, in all the tests carried‘out, the refinement option was initially enabled;

however, if during a test run this option resulted in cofnputational breakdown

due to ﬂoatirig-point underflow or overflow, then —the test would be repeated

with the refinement option disabled.
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. The polynomials P“l, P2, and P3‘ are well-conditioned. Pg amr P3 wém tak;n
from . [5] and [7], respectively. For higher degrees, overflow is likely to occur
in the evaluation. of P1 ‘and P3. and underflow is likly in the evaluation of .
P2. ‘Tables‘ 1:3 show t:hat the scaling has virtually no effect on the accuracy
of the approximated roots before and after scaling, and that, for higher
degrees, the scaled .p'olynomials involve fewer iterations than does the or;ginal

polynomial.

Polynomials of the form &P 4 represen‘t‘ typical examples of ill-conditioned
polynomials; it is the ,l'i‘near distr;'bution of the \roots of such polyr;omials that
make them iil-conditioned [9]1. Table 4 shows that the results before and after
scaling are of comparable qualities, and that i‘or higher degrees. fewer iterations
are involved in the approximation of the roots‘of the scaled polynomials. qu
n=20, the: coefficients of P 4 and R(s*,P 4) are given by Table 7. Comparison
shows thét our result of tl:ne scale factor for*P 4 {;vith n=20 is slightly better
- than that obltajned in [1]); this is prgbably because the present scaling process

«

is less subject to accumulation of rounding or numerical errors than the

simplex process.

-Polynomialg of the form P5 are very ill-conditioned, as each possesses a cl[xs‘ter
of \r;early equal roots. Table 5 shows the results with and without the final
refinement step. In this case too, the results are of comparable qualities;
although for higher degrees, the approximated roots of both the original an(}
scaled polynomials are greatly in error. As shown by the results in Table 6,

“gimilar remarks apply to the polynomial P with roots z, of multiplicity

|3%+1|, k=1,-,n, where |.] denotes-the floor function.

9
]
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10. CONCLUSION

Ag the primary object of this work,.a x;ew and eﬁ"icient discrete method for
scaling of real polynomials has been presgnted. On the theoreia;ical side, thé
method i85 based on the phenomenonﬁ that the “scale factor coincides with one of
the intersections between monomials defined by tl-le respective magniiudes of the
nonzero terms of the polynomial to be. scaled. A constructive proof of this 0
phenomenon has been presented. On the practical side, the method has been
described in terms of three efficient and easy to irr;piement algorithmse, which
may be codéd, for example, into a small Fortran program of about 100
statements. . In addition, on both theoretical and practical sides, it has been
s‘hown' that the method com;mres favourably with an existing mathematical
programming approach, in terms of " the complexity, storage requirement,

operation count, and numerical stability.

As the ;econdary c;bject of this work, an extensive numerical investigation has
been carried out on the effect of scaling of real polynorr;ials on their
approximate roots obtained by a general root-finding method which does not
ipvolve the calculation of the greatest common divisor of two polynomials. ’It
. has  been numericrally experienced thgt scaling of polynomi;.ls has an
insignificant, if any, effect on the numerical quality of the appi‘qﬁﬁxabed roots.
However, it has been obser}r_e_d that the initial scaling may extend the range of
polynomials, v;»:ith wide variation in the magnititude of their coefficients, to be .

solved by general root-finding algorithms.

H [
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In continuing this research work, t:he author has undertaken the development
of a- me:hod for' parallel determination of -appr'mcimat; factors of real
polynomials using Euclid’s algorithm; the approximate factors of interest t'xre
those with only one rdhl multiple root or one pair of compl;ax conjugate
mulgple roots. Moreover, the author is also concerned with the theoritical
justification of j;he numerical ingensitivity of the roots of real polynomials to’

/ . .
scaling. ) v



30

0

REFERENCES ‘

(1] D. K. Dunaway, Calculation of Zeros of a Keal Poly;xomi“al Through
Factorization Using. Euclid’s Algorithm, SYAM .J. Numer. ‘Anal., Vol

¢

11., No. 6, Decembwr 1974, pp. 1087-1104.

[2]). S. Gass, Linear Programming: Methods and Applications (fourth edition),
McGraw-Hill, New York, 19765. /

[3] G. Hadley, Linear Programming, Addison-Wesley, Reading, Mass., 1962. '

[4] IMSL Library, Fortran Subroutines for Mathematics and Statistics, Vol. 4,

_ Edition 9.2, IMSL LIB-0009, Houston, Texas, November 1984.

[6] M. A. Jenkine and J. F. | Traub, Principles for Testing Polynomial
Zerofinding Programs, ACM Transaction on Mathematical Software, Vol.

1, No. 1, March 1976, pp. 26-34. v

s v

N Ny .
[6] D. E. Knuth, The Art _of Computer Programming, Vol. 1, . 2nd edition,

ﬁ\ddison-Wesley, Reading, Mass.; 1973.

~[7]1 G. Peters and J. H. Wilkinson,. Practical Problems ArfSin g:' in the Solution

o

‘

of Polynomial Equations, J. 1Inst.* Maths Applics, No. 8, 1971, pp.
© 1685, |
[8] A. Ralston, A First Course in Numerical Analysis, Mch'gw-Hill, New York,

1965.

[9] J. H. Wilkinson, Rounding errors in Algebraic ﬁnoesses, Prentice-Hall,
. ‘

Englewood Cliffs, N.J., 1968. ’ / - .

[10] J. H. Wilkinson, 'I"f,:e Algebraic Eigenv;lue - Problem, London, "Oxford
Uni;rers'ity Press, 1966. ‘ '



- - »sS Ag pateds g (ld°eeS)H . +S AQ paeds ld (ldes)y
. {rZ - oS} Butziwiuiw [ yim 2 ssS 4030®3 ajeds (ewiidp *8
sdajs s,9dsa8nbel Auepucdas 40 uaquhy SN sdays s,3au3nbe Ausewiad 30 s8qQunpN dN
] o2 pPai|gesip:Q ‘pPaigeua:ly suoiido judwout jay oy J0JJd BALIR{DS wniuy xRN EL ]
. N . UOL3IBLJBA cow HVYA 4 (z)lq 40 29a6aQ 9309
- a (L€ 641 LZ-36S6¥° Z0»3G099° €£1+30001° Q€ 641 LZ-36V0E€° Z0+3GG99° E£i+3001t° , €0+309¢L2° €2
g €€ -08 LZ-32ZLS" ZO+3SS09° Z1+3Z91€° ZE . 08 LZ-3289Z° ZOQ+32Z19° Zi+3I6PLZ” €0+30€S2"- 2ZZ
g 82 9L LZ-32L1v* TO0+3S0SS° Z1+30001° vE 9L L2-38912° ZO+3LS99S™ ZLl+3rLEL” €0+301€2° 12
- a LE ZL LZ2-3S08E° ZO+3S00S" LL+3Z9LlE" 92 ZL LZ-3218Z° Z20+3t1H0S~ t1+39€EPE" ) E0+3001Z° 02Z.
> 0 Lz 89 4Z-361-99° Z0+3S0S¥° ti1+30001° vZ 89 LZ-309Z€° ZQ+3145¢° .01+306S8° . €0+30061"° 61
a ¢ v9 LZ-30162° Z0+35S0t° 01+3Z91E" =€ v9 LZT-3Z02Z° ZO+3SLLY° 0OL1+3S62Zv° €0+30121° 8l
o 62 09 ,.LZ-369vE° ZO+3IG09€" 0L+3000Lt° O a9 LZT-3LYSZ" ZTO+3IEEQE" 0OLl+3IPLOL° . €0+30€S81° 1
a 9z 9s LZ-3Z16S° ZO0+3S0ZE" 60+3Z9LlE" LZ 9% LZ2-382LT° 2Z0+3Z9ZE° 60+3vB9Z° €0+309€t1 " 91
g ez ZS LZ-3061S" 20+3508Z° 60+30001° 92 ZS LZ-328YZ° Z0+3L062° 60+3ZvEL° ; €0+30021" Gt
c o, a 6l 8y LZ-36YSk° ZO+3SSYZ° BO+3Z91lE" 92 14 LZ-328EZ° ZO+3ELYZ® BO+3GSEE’ . . £0+30501° w1
. 3 02 Sv LZ-3LPIT° Z0+3S0LZ° 80+30004° 8t Sv LZ-3G2S\° Z0+3BS1Z" L0+368€8" 20+30016° €L
g vl ov L2-30222° 20+3S081° L0+43291€° GSi oy LZ-3GEL1° 2Z20+36L8L° LO+3v6LlY" EL t44 LZ-3SELL" ZO+3008L° - 2t
a si 21 LZ-360EE" ZO+3S0S1 "~ L0+30001" €1 9€ LZ-3EE0Z"° ZO+3L1S1° (0+36v01L" 2t LE+ (ZT-3EE0Z° Z0O+30099° t1
a zt zZg LZ-3696Z° Z0+3G6GZ1° 90+3Z91€" L1 Z¢e LZ~-3SSEL" Z0+396ZL1° 90+3129Z° L1 Z€ 4Z-3GGEL1 " Z0+3008S" 01
3 2L 6z L2-38902° Z0+3S001° 30+30001° 62 8Z-3¥696° Z0+3¥90L° Q0+3LLEL" 1t 62 82-3¥696° ZO0+3008¢° 6 .
. 3 11 sz LZ-39ZEZ° 10+31508° GO0+3Z91E€E° £ - G2 8Z-3GEZV° 10+32118° S0+3LL2€° L Sz 8Z-3SEZ¥° ZO+3009E°, 8
i . 3 9 1z L2-36081° 10+31509° S0+30001° S X4 82-39€Lv" L0+3L6€9" tvO+32618° S (¥4 8Z-39€1v° Z20+3008Z° (L
3 1 L1~ LZT-3B90Z° 10+31SSY" v0+3Z9LE: 9 Lt 8Z-3041S8° 10+3888v° v0+3960v° 9 L\ BZ-30L1S" Z0+3001Z° 9
3 ¢ €l B8Z-39Z266° 10+30S0€° $0+3000L° € £l 8Z-39€LYv° 10+3180€° v0O+3vZ0L° € . €l 8Z-39¢€L¥¢° Z0+3006G1L " S
’ . A ’ . .
. oY SN dN Bt VA S SN dN Bl UYA S SN dN JHN YVYA 93a
(td*es)H (!d'sss)H ‘ R (2)lg
O
» N"Q .H -
: . fcwlnv H= @'q -t °aes :
: ) - u . - . ’ :




A

’

@

| *+S AQ pa|ess Zg awa.o,.wvz ~ +S AQ: pajess Zg (Z4d°es)H
« - _nN - #5| BuirZiwiuiw [ yitm F esS 40310€3) 8|EdS jBW|3IUD s
sdajs s,a8J4d4enbe Auepucdas jo LwnErz SN sdais s,sauanbey Adewiud 30 saquwan dN
paiqestp:Q. ‘paiqeud:y fsuoiido jusawauj oy oM 40449 BALIR(8I WNW| veN I4N
‘ uoiieLden VYA ’ s (2)T4 40 @84BBQ 93g
a < | 43 LZ-3EELY° ZO+3GSOvY° 60-3Z9lE" dZ v9. th.m.No:‘. Z20+3902ZYy° 60-3LS9Y " €0+301LL " gl
a sz 09 L2-320L¥° ZO0+3S09¢° 80-30001° 22 03 LZT-3LBLE" ZO+38BYBE" BO-3£981° LZZ: 901 90-35688%° E0+30ESL" I
a o¢ 9g L2-39299° Z0+350z2° BO-3Z201E° 12 \M% L4Z-3LBLE" ZO+3IE0SE° BO-IISHPL® LIZ L6 . GZ-3v8L1° £0+309€L° o1 ®
g €2z Zs LZ-30Z8E" ZO+3S08Z° L0O-3000t° 61l S LZ-318LE° ZO+3bv6Z°,. LO-3061° 891 98 L2-30S69° €0+3002t° St
a 61 314 LZ-3LLVE" TO+3SSYZ° L0-3Z91E" 61 8v - LZT-3SSLE" Z0+38v9Z° L0-3096S° 611 ZL - LZ-30V8Z° €0+30G0L" ¢t
3 Si 14 £2-31942° TO+3S012% 90-30001° 8I Sy LZ2-38LS1 " Z0+369€Z° 90-3vBEZ" 89 LS LZ-3€9L1° Z0O+30016° €1
3 (L v L2-3S0ZE° ZO+3S0BL " 90-3Z91E° 8Bl 84 LT-3LLEL" TO+3Z161° 90-389Ly° 02 6€ LZ-3L1EL° Z0+3008L° ZI
3 vl LE LZ-3E681° ZO0+3S0SL.: S0-30001° 61 LE 82-399¥6° Z0+3EL91° S0-3L061° OZ 9¢€ LZ-38LSt° Z0+30Q099° (1
3 01 EE LZ-3v0GZ° Z0+3SSZ1° S0-3Z291£° L1\ €€ LZ-3S0S1 " ZOD+39pvPi° SO-3629L° LI €e 4Z-36061°- ZO+300SS° 0! .
3 1t 62 LZ-3EE9Z" ZO+3500L° +0-30001° 1} ' 62 42-38Z11° Z0+31601> v0-39ZG1° 11t 62 LZ-38ZL1" ZO+300SY° 6
E N SZ. [LZ-3S891° 10+31S08° v0-3Z91¢° 8 sz 8Z-31986° 10+3£616" v0-3¥0t9" B T4 8Z-31986° Z0O+3009€° 8
3 9 12 LZ-36L¥1° 10+31S09° €0-30001L° 6 (%4 £Z2~329Z4° 10+3109L° €0-3ivrZ" 6 4T 8Z2-3688L° Z0+3008Z° (L
3 8 Lt £2-38LSL° 10+3F1SSPy” E0-3Z9lE” 6 Lt LZ2-30SL° t0+3LL1S° £O-3EBBY” 6 L4 LZ-31pSL° ZO+3001Z° 9
3 € €1 L2Z-36¢81° 10+30S0€° Zo-30001° S . €1 LZ-3JEEZL" 10+3ZZ6E° ZO0-3ES6L° S >4 LZ-3CETL" Z0+300SL° S
Ju— 2 M\\-l/.rl - ——— '
) N . “\
‘ : ) :
[0}, ] SN dN EL HVYA *5 SN dN " aum UYVA ssS SN dN EL YA uwo
. - . '
- ) (Zd*ees)y (2)2q .
. < - I=Y ‘ .N . - ’
flcw -2) [I= (2°g -z siges s
Lt u

a

ze




. » . » .
5 . . .
<. - . N * ' .
- . ¢ ‘ ) -0 '
- - el .
' : . AT b " . ?
. . ° h s & . .
N . . [
~ . > - T .
a ! ° Il
< Y - rFa R - . . .
- . Lo .
[ - ’ - L " - I3
v »+S Aq pajeds €4 (Ed‘ses)Y s «S Aq poajeds Eg° (Egq'es)y
) frZ = ¢S] Butziwiuiw [ ylise .z casS R J03de; ajeas (ewy3idg oS
$da3}s s,3uu3nbe Aseppodras jo0 saquhpy SN sdajs s,asu9nbeq Aawwiid j0 Jaquny dN
paiqesip:g ‘Pa[Qeud:3 :suOL3Cd0 JUBWAUL JIY oy ’ JOJJ3 BAFIE|DJ WNW|XEN NN
- UOLIELUBA UVA (z)€q 30 sesbBeg 930 ° -
. , , N 7 — = = - ,
a ¢S 0t} LZ-3vZ0GE" TO0+300ZL° Ti+3Z9LE" . 89 Ot LZ-3S1S1° Z0+3ELZL™ CL\+36¥VLZ” €0+309L2° v '
a vy 00t LZ-JZIEE" ZO+30D09" 11+43Z9LlE" BS 0QlL LZ~3Z6SZ° ZO+3EVD9” (L1+39EVE" €0+30tEZ" 2Z2Z
a 9SS 06 LZ-3€E¥0Z° ZO0+3000G° 0{+329LE° S 06 L2-38291° Z20+3£LiS" 0l+3862Zv° . - €0+30064° 02
. a_ze 08  LZ-36ZLl° Z0+3000v° 60+32Z91€" vt 08 LZ>318S1° Z0+31.0v° 60+3v89Z° £0+30€G1 " 81
g B8t 0L LZ-3L4LZ°"Z0+30QZ€" 80+3Z9iE° 9E (172 L2-386L1° No+w—NNm“°mo+wmmmn. €0+30021° 91
b ~ 3 9¢ 19  1Z-3Z€B1° Z0+300vZ" 'L0+3Z91€° BZ 19 8Z-32196° Z20+386vZ"° LO+3Pv6IY" P . Z0+30016° #1
. a 9z 0S LZ-3Zp8L° Z0+3008t° 90+3Z291E° vz as LZ~3L601° Z0+36V8BL° 90+31Z%7° vZ 0s LZ-31L601° Z0O+30099° zt
3 oz v 22-3.bzi° zZ0O+300Z1/ S0+3291¢8° 22 It 8Z-3Z196° Z0+360Zl; -50+3L128° 2Z2Z ity  BZ-3Z196° Z0+300Sv" Ol '
3, Ol . lE. B8Z-359G8° 10+30008° v0+3Z9LE" vl 1€ LZ-3¥9Z1° 10+30Sv8° ©0+3960v° i € - LZ-3p9Z1° zZO0+3008Z° B
3 01° 12z LZ-392ZZ1° 10+3000v° E0+3Z9LE" 8 1z -Lz-39zzZ1,” 10+3BP9EY" £0+309GZ° € L\Z. Lz-39ZZ1° ZO+300SL° 9 -
o4 SN dN 2N yvA .S SN - dN 3uN UVA - esS SN dN. ET) uvA 93a
.. _ * . L .. .
. % F ¢ T T
(Ed*ss)Y . (Ed*seS)y . ) (2)€d -
N . - . M
‘ . - (@0-% e - } c
AN +§c~+n§c~+wd II = @®° °¢ etqur
‘ » usAe U - —~ %

o P

2t D e et e Vi




N a
. a a

+s+S AQ pateds ¥q (Yd4'essS)y «S £q pajeds ¥d (Vd'es)y

: g2 - ws| Bulziwiurw € yatm 7 ssS JOolley ¥|eds _Mw_:uno +S

. - sdails s,9aa8n6e AJgpudias <40 LwnE%z " SN sda3s s,asu8nbe Asewtad j0 4oqunN dN
- paj|qgesip:Q ‘paiqeus:] {suolLlido JUWAUL Y ® oy JOJJD BALIE [0 wWhw| Xel IHUN
. - : . uoijEjaep VA, (2)Pg j0 aluBag 930

.t N

134 898 80-3S.48t° 10+31268° Z0+3.9Llt" 6v L66 B80-306vE" ZO+31011 Z0+3009L° zZ¢ 1ZZ1 BO-36091° ZO+3EBLE" 62
k314 99S- B0-3€0S1° (0+3v8S8° TO+3I0E(L" 6E 09L 60-30Z.S° Z0+3680(° 10+30008° 9¢ 691t 60-3851G6° Z0+38c0C° 214
23> B8OV 60-3LES1° L0+31S2Z8° Z0+3Z601° (€ 64S 60-3vLvl” ZTO+3vZ0OL~ 10+30008° 6F SE€6  H0-368SL° Z0+3688Z° (LT
9¢ vvZ OL-3L¥ZZ° 10+3916L° ZO+38501L° €€ 8vE  11-3£68S6°, L0+30196° 10+30008° SE S19- j0L-38112° ZOo+3vyLZ” 92
=1 tZl 11-39v.8° 10+3EBSL” Z0+3810L°  6€ Ll 11-38609° .10+36868°- 10+30008° 8F 69S 11-3.458€° 20+3109Z°, S
SE Skl Z1-31ZvS° 10+36HZL° 10+3£086° Eb iyl Z1-396SE€°- L0+39LE€6° 10+30008° VpE LLE Z1-3IGE9S° ZO+309vZ° v
62 62l Z1-3Z6ZE" 10+39169° 10+362v6° SE ECdn €1-328BL6° L0+36LLL" 10+30008° €€ Eve Z1-310Zt° 2Z0+30zez" €2
1544 L1l €1-30011° 10+3S889° 10+3pS06° b Lt €1-31212° 10+43902L° 10+30008° &¢ Ll  €i-3EZ2ZL% Z20o+3€81Z° zZ¢
ZE tit vL-3L60S° 10+32G29° t0+36£498° It til vi-3¥E6BL° 10+31099° 10+30008° OF il b1-30bbE" 20+38p0Z° 12
o€ S0t P1-3¥SSL° 10+3EZ6S" 10+3r0EB° SE SOl S1-3619Z°, '0+39809° 10+30008, &€ S0l S1-3619Z° 20+3vi6t° 02
e 66 S1L-3B19E€° 10+306GS° 10+3626L° vE 66 ‘w-|w—mmth—04memm.._o+mooom. veE - 66 9L-316SL° Z0+3€BLI" 61
(4359 Z6 91 -3LSEY° 10+3PI9ZS° 10+3ESSL” ZE Z6 L1-3SS6L° 10+368vS° 10+30008° [ >4 €6 L1-35G6L° ZO+3ES9L” et

. 88  Lt-38VLiV° L0+3LEGY" 10+3LL1L" B2 S8 Li-3E11Z° LO+36EES" 10+30008° (2 8 LL~-3EL1Z° ZO+392ZS1° LI
sz 08 L1-35%01° 10+3609y° 10+30089° GZ (0]:] B1-3EBLS" LO+3VLIS" 10+430008° GS2Z 08 8t-3EBLS” Z0+310vL° 9t
62 ve 81 -3EE91 " 10+3SL2Zy° 10+3€2p9° 92 L 61-396vE° 10+3Z20S" 10+30008° .92 ve 61-396vE" zb+36LZ1° S1 .
X4 89 61r-302v1 " 10+38S6E° L0+39v09° 1Z 9 6L=3vL11L" L0+3168v° 10+30008° 12 89 6L-3PILL" Z0+36GLL" I
vz Z9 0Z-3€9Z28° 1Q0+3p29€° 10+38995° 92 19 0Z2-30L1Z° 10+328S9¢° 10+30008° G2 9 RQZ-301L1T° ZO0+3Zv01L° €I
81 SS 0Z2-302t1° 10+3CLEE" 10+3682S° 61 SS - 1Z2-398S¥° 10+300iv° 10+3000¢° 61 11 LZ~-398Sv° 1Q+398Z6° 21
rx4 A4 1Z-30v¥9° 10+3646Z° L0+3606Y° L1 LY ZZ-31L89° LO+3ELISE" 10+3000y° 91} 314 22-31189° 10+36L18° {1

T

Huwwwwwwwwwwwuuwwwwywowww
@
o~

Sl &4 Z2Z-38BZ9E° 10+3GL9Z" 10+36ZSY° Z¢ (84 ZZ-3PELZ’ LO+3SP6Z° 1043000 22 ItV NNIWVMBNW 10+3901L° 01

* €L 9€ €2-389vS° L0+3ZYEZ" LO+3LPLIY" EL 9¢t EZ-3v¥161° 10+302ZvZ° 10+3000v° €1 9t €Z-3P161° 10+36909° 6

. \ tE €2-dLSG1° 10+38v0Z° 10+309LE° 8 1€ v¥Z-3819v° L0+3bS1Z° 10+3000¢° 8 t€ vZ-3819v° 10+32L0S° '8
ﬁll\W\\“ﬂ/ 9z vZ-3166S° 10+3S1LL° 10+308BEE" Z1 9z vZ-3ZLEL° L0+3B661° 10+3000v° . 21 9z vZ-32ZLE1° 10+38LLY" £

£ te SZ-3Lv8Z° 10+3BEVL 10+3¥66Z2° Ot (X4 GZ-3Z8LL° LO+3S1BL° 10+3000%° OI 12 GZ~-3ZBL1 " 10+39vZE" 9

S

L 91 SZ-310SZ° 10+3G011° 10+3609Z° € 91 J@‘NWNNN. L0+36PrtL° 10+30002° €, 91 9Z-39zL2° —o+wom%N.

*
< 04 SN dN ETT ) . HVA ¢ . SN dN JuN YVA _ esS SN dN Juw . ¥YA - 930
. . . ; . . . . 4
T (Pates)u . . e T (Yd ses)y oy (z)%a .,
- o~ - " P a
: - : : ’ I=y . ,
) ' S - -2 1l = Aﬂvvam ‘¥ @1qQey” i
. u - .
“ . : . g
] ] ' )
L % -
. , . _ . 4 N
) . . - 7 ve
T kS x - -U . . -
. ~ ‘ - - 4 - - ~ L4
’ : . A . . : . :




. . ) o eeS AQ D@ B3S Sd (Sd'esS)H «S AQ pajeds Syg (Sd°'eS)H
. jrZ - S| Burziwiuiw £ yyem ;2 +sS J033®Ry .8 w3S |ew\3d0 *S
/ sHais s aJsanbe -Auepuodas 30 J9aquhn SN sdai1s § alsuanbe Auvwigd 305 2BQWNN dN
N M.. Ow_nmmmnuﬁx.ompnmcwum tsu0L3do JUlWaUL Iy o . 20448 BALIPLOO EJEW:QI I
uoLiIetaBA UVYA (Z)°d 3o asubag 93a
, a 9z $Z0OL 10-3L18Z° 10+30L1v° 10+3€666° Z€ B8Z0OL 10-3462° 10+3826v° 10+30008° B8BZ 9.0t t0-3Z96Z° Z0+302Z91° Ot
‘“~Ng 6z 192 00+30vS8° (0+3608E° 10+3£666° 61 A (t0-36ZZ° t0+2318Sr° 10+30008° [ X4 LEQL L0-3I6EZT° ZO+ILLISGL® St
, "a vz Z10L 10-3€¥L1l° 10+39ESE" 10+32Z666° 91 8z t0-3vELt " 10+30SZv " 10+30008° ©Bt PLOL "LO-3PELL" ZO+3¥1IPL" vl
va 8t 828 10-3G681° L0O+3GEZE" 10+31666° Si 618 10-310EL° 10+3016E° 10+30008° €t i1Z8 10-3t0EL" ZO+JLLEL" €L
B . g Bt 96L T0-368Z9° 10+3996Z° 10+31666° 8i ZBL 20-3vBl6° 10+3v4LSE° t0+30008° 8!t Z8L Z0-3v8L6° Z0O+320Z1° Tt
, g 91 OlL 20-3G9LYy° 10+3699Z° 10+30666° ¢! 9 Z0-3129€° 10+3EPZE" 10+30008° vl 999 . Z0-3129€"° ZO0+3v0LL - 11
e Sl 816 L0-32Z€EL° 10+310v2° 10+36866° G} B82S 10-390E1° 10+3t06Z° 10+30008° Gt 8ZS 10-390EL" 10+39666° 0!
Q 91 9€S EO-31S¥8° 10+30012° 10+38866° 8t 9ZS €0-3viE6” 10+3Z68ST° 10+30008° 81 9ZS €0-3vLEE" 10+3S668° 6
a it 6y E£0-30G6Z° 10+3Sp8B1° 10+39866° 6 vSE  €0-31181L° 10+30€Z2" 10+30008° 8 GGE EO0-3118t1° 10+3566L° 8
g S 1Z€ vO0-3Spit° 10+3pbSL° 10+3¥866° S GZ1 v0-39GYE° 10+36Z6!° 10+430008° & GZlI t©0-39SPE° 10+3G669° ¢
: a v 001l -£0-36S¥8° LO+310€EL" 10+31866° ¢+ vi L0~-3Z2Z9E° 10+368S1° 10+30008° . v ve L0-3ZZ9€" 10+35668 O
_ a g Zit v1-3S9Ly° 1L0+3000L° 10+38.66° 9 B8€E Z1-3L121° 10+3688ZL° L0+30008° °E Zs €1-3Z78F° L0+3G66+° S°
_ g S 8 81-3G8BBZ° 00+3Z8LL7 —oomwhmm.. v 8 ‘81-39011° 00+39696° 10+30008" -4 8 81-39011° 10+3866¢° | 4
3 92z GZOlL L0-3¥6YE" 10+301LY° 10+3E666° € 6201 10-3GS.62" .10+3826¢° 10+30008° B82Z 10t 10-3£96Z° Z0+30291° 9l
X 3 62 Z9Z Z0-365S8° 1G+3608E° 10+3E666° 61 8S8 10-3ZI1E€Z° 10+318S¥° 10+30008° 12 8EQt 10-31982Z° ZO+3L1SL° GlI
" 3 vz €101 10-38B0L1"° (0+39€ESE" 10+3Z666° 91 628 10-38491° t0+30G8Z¥° 10+30008° 81 S101 10-3€891° ZO0+3vivi" ¢!\
o : 3 Bl 6Z8 10-3Z1Zi7 10+3SEZE; 10+31666° Si 0ZB8 LO-JEBSL . LO+30I6E" 10+30008° E1l ZZ8 Lt0-3€B8SL° ZO+3LLEL"™ €I
3 81 L6L 2Z0-38104° 104399627 10+31666° 8! €8L Z0-3.v89° L10+3vLSE" 10+30008° 81 €8L Z0-3Lv89° ZO+3L0Zt1° 2t
3 9t tiL .qumhmcv. 10+3G99¢2° 10+30666° Vvl Sb9 20-36ILEYT 10+3€EPZE" _o¢mbbom. vl L99 NOnum_nv.QNo+mvo._. 9 S
3 Sl 61'S /N -3Z2G60G° 10+310vZ° .10+36866° Sl 625 Z0-30105° | 0¥31062° 10+30008° SlI 628 Z0-3010S° L0+39666° Ot
. 3 01 LES £0-38E6L° 1'0+3001Z° 10+38866° 8BI LZS £D-3GBE6" tDW3ZBSZ® 10+30008° Bi L2S €£0-3SBE6° 10+35668° 6
3 11 ovy £€0-398vZ° 10+3G6PBL° 10+39866° 6 GGE €£0-389ZZ° 1 P+30€ZZ° 10+30008° _ 8 9GE €0-389ZZ° t0+3566L° 8
3 S ZZE ¢$0-30vBE" LO+3bPSL° 10+3¥B66° S 9ZlI t©0-3Z6LE" 10+36Z61° 10+30008° S 9Z1 $0-3Z61E° 10+3G669° ¢
3 v 10t 90-382lY° LO+3L10€L° LO+31IB66° © SL L0-3€S88° LO0+368G1° 10+30008° ¢ S¢e L0-3€G88° L0+3566S° 9
3 ¢t €il  £1-3tSS1° 10+3000t° 10+38L66° 9 6¢ Z1-3GSEL " 10+38821° 10+30008° € £S ZL-38411° 10+3866° S .
3 S 6 8L-31ELY° 00+3Z8BLL" 10+32L66° . v 6 Bl-3LZE€1° 00+39696° 10+30008° Vv 6 B1-3LZEL1° L0+3G66E" v
L A - ..
. ’ _ —_— —_—
’ . ~ - * -
P oy SN dN YN UyvAa sS SN dN L YA *sS SN dN yn UVA 93a
(Sd*es)H (Sd'ssS)H S (2)S4
X £:
_ =4 4 ]
- - (,_01-01-2) Il = (z7qd - -s ®1qes
i Q -ﬁ
' . - SE




Fid
-

S om\\,n—lmnmhm. LO+3ESOL " Z0+38¥02Z° 12 OrlL L0-3116Z° 10+3VLEL" Z0+30091° 12 OvlL L0-3116Z° 10+4395S89° &

{ .
. i . ’ . ‘ - s
® . . *
T ' -~ !
" . .
L]
s <
. t
AN
, . 3 ‘
++S AQ pajedss 9y .awn.oowua R : +S Aq pajeds 9y (9g‘es)y
|c2 - »S| Burzrwiutw [ yiim oz ssS - . Jo3oey 3|ede |ew3dp ¢S -
) sdajs s,9uuanbe AJepuodss j0 Jaquwhpn SN sdais s,8ua9nben Asewisd 30 uaqunN T dN
. pa(qesip:q °‘pa|qeua:3g !suoiido juswaul jay oY JOJJD BALIR|BJ WNW{XBY IJ4N
uoijetaen ' VA ; ()84 j0 sauBeg 930
. - 3 : .

. - 3 €8 0012 L0-3L9GZ° 10+36ZEB" Z0+300vS° 8BS vS0Z 10-39€8L° 10+3vEP6° Z0+300v9° &S 822z 10~39€8L° Z0+3p¥ZOS° 62

o3 v vl 10-30€6t° 10+38829° ZO0+3GS8Y° 2Z¢v 9Gel 10-31€91° 10+390€8° Z0+300v9° SE 108t 10-3L291L° ZO+3LYOP" ©Z

N 3 €2 0SE1 v0-3S0S6° LO+3EYZS" Z0+32S2v° (€ €SOl $0-388Y9° 10+30ZS9" Z0+300ZE° €2 LY0Y v0-36Z6L° ZO+3560€° 61

. : 3 LZ llLL SO-38SE9° 10+4312Z0v° Z0+38ZLE" O0OF 8ES £0-366vL° 10+3ZSSy° TO+300ZE" €€ 118 €0-366vL° ZO+3L8€Z° St

3 El _BLE LO-3ZBZE" 10+3ELBZ" ZO+39ELE" 61 S19 LD-3SE6Z° 10+3098Z° Z0+300ZE~ 61 S19 LO-3SE6Z° ZTO0+39¢¥91° 11

3 0ot 9€Z ©80-30809° |0+3vP6Ll°- ZO+3IZEQZ" 6 ZSZ ©P0-3EVPYL° LO+3IEBZZ" ZO+300ZE" 6 8ly —~v0-JEPYL " ZO+39ELL" .8
. 3

- i Y
- o £4

oy SN dN JuN YYA S SN dN EL. HVA s SN dN EDY ] YVYA 930

-

- - k]
- Awa./v; (9d*sss)H (%)% :

=y 9
- : Tt +£«._30N -2 [I- @4 "9 21qe1
- u




i

N ++S AQ pateds Vg (P4 eeS)Y ) +»S Aq pajeds Vg (Vd's®)
. . 1eZ - oS| Bulziwiuiw § yitm (2 ssS Joidey 31838 |Rwyido ‘ o®
- i - - -
o 10+0180Si2¥v.L2SE0BZEELEOZLIOEYOER =S 10+0000000000Q000000000000000008 =S ' N .
~ - }
. 10+0196608PL0rE19SS616L1016EE265° | 10+090€199169L610€68E0ASYESSSB09° ZQ+Q19GG.0t 1 LOBLEBEPOZSELEEE6EL6L "  THVA
- 1 0+00000000000000000000000000001 ° 10+00000000000000000000000000001% * 10+@0000000000000000000000000001 ° oz-
Z20+0008GZ00Z I E9ESBEEEBLELLIBLBZSE "~ 20+00000000000000000000000006292 "~ £0+000000000000000000000000000t 2 " = 61
£0+0ZL9508£59896E£1061599v60E6862° €£0+000000000000000000005.€60122€E" S0+00000000000000000000000051902Z° . 81
v0+Q9LrYO91ZEC60PYEEPSOIVLYIYELZ "~  $0+000000000000000005295158L8SvZ° -  £L0+0000000000000000000000056982L "~ LE
S0+QrERB9BSLVYE68L906061PEDZELLTLL” S0+0000000000000SZ90v990815610EL " 80+0000000000000000000009Y6LZEES” 9t
* SO0+06LS0L9061Z8GBCLLEBLE61S9ZVYELZY ™"~ S0+000000000005Z90682 1 LS096EE€01S8° - 01+00000000000000000000280822L91 "~ St
: 90+06vLZ1SBSEIPOBZLELQIGBLSBYZZL 90+000000SLBLZE6YBZLZZEELYIEDZESL 11+0000000000000000000€91LLLLIOY" [ 4
90+08850989G1 0920GLEVLEQEYYIOLLE " - 90+0000SZ9G1GESELBLSZ0S8061¥S09€E " - 2 1+0000000000000000000GPBLIL19SL" - [543 ~
90+08ZB09ESELZLBYSO666ELLY19000S” 90+01 E0LS6SGELLE689560292v0SP LY LY " ¥1+0000000000000001 BES669LZ01ELL " Z1
\ 90+QvEELYSEIISOSELLIZ0986L259812ZL 7~ L0+Q€E9BYELSI BOPI9091L+62EEBBIOLO0L " - §1+000000000000000£S6682815895€1 ~ - it
90+09116Z2ZZGZ08S8VE1 GBBZ69EBZBER” LO+QbPOLSBLE6L60GLSEQIYZLBIELLLIZL® 91+0000000000000S6E€0¥S0L0SESLOEL "™ Ot
90+0Zp099ZP9GEYLELB609596L0110€8L "~ LO+QLPSSLIOPEBELEGLBOGZOLE6LL08LL " - L1 +3000000000000SY1 L GSG9866ZZPL0L © - 6
90+0L282V0CLELOVELBEYOZLLLELBSBS” 90+06S8EBZLLSPZIOLSOVPVYEQBLZLLIE” 41+000000000000968v6Z660Z B0E0EY " '8
- 90+0Z8LEVLPSLGS0LS6SI6VIZEEESBYE "~  90+09LLLEOBI9I8LYI6BLLBLE6GZIEI9S ~  81+000000000000v906E191EPIEEELLIE - £ .
. . 90+019966EYSYE6SYEO6YB061 6999291 ° 90+06L8ZS6E0LBYLELYOL I LOPEESEVLLE” 61+000000000C09EELEQBLEOBLYIT0QZ L " 9
. S0+QZ6SL6ELL9EZLOI19VLZYBIOISBEYRS "~ 90+0DEVEDL LZ6ZOBLZISYIBLLSLLIEZOL “~ 61+3000000000002L09LY6L156L4666SE° -, S
. SO+QPBLZLELIYELYDLZBZO0ELIPTZLLSL " G0+01L9GE9ZI9L LV IOVSEEB00LP09SG8L” 61+00000000009LL1S0509228118L€08° 14
®  0+0£S8Z6ZBYOZ0ZEBYESYBZBOEL6Z0E - v0+0v89650055881S8SLE69989LP8GLLS ~  03+00000000000BBRE0SISHPZLIE60L8ZL - €
£0+Q010ZLE1B8LESE00EZLE09TBLLZLEE " £0+0EPEOPE96EBYOVE6ZYPIS6SZIZI9L " 0Z+300000000000v0L0¥IESLESLEOBEL " z
- Z0+ALZESOZELEBSLYLZPE66296Z69L86Z ~ Z0+0668Z90S51S660810SELLLLLSELD9 ~  61+000000000000000919.9€08v625L8 - l N
10+0€BS00LEZESOY0S1 0000000000001 ° 10+08266L66018B¥9L95491¥ 119020t LT 61 +Q0000000000000r99L1B00ZP6ZEYZ " 1)
N \ 3
z . T b .
(Yd*es)y . .0 (Pd*ess)y (2)¥d b ]
N.uu& V - R . Q
, -2 [I= @"g ‘uitn paareroosse sjuataiygaly  c-2 eiqey Py )

0¢




