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ABSTRACT

PORTMANTEAU TESTS IN ECONOMIC TIME SERIES

Andy Cheuk-Chiu Kwan, Ph.D.
Concordla Unlversity, 1994

Testing for the adequacy of an autoregressive-moving average
process of order (p,q) [ARMA(p,q)] has been one of the most widely
discussed topics in time series analysis. This dissertation
presents a comprehensive study of the finite-sample properties of
some well-known and computationally straightforward tests in this
area. The tests examined include: (i) the portmanteau tests of
Box and Pierce (1870), LJjung and Box (1978}, Dufour and Roy
(1986), LJjung (1986), and Bera and Newbold (1988); (ii) Godfrey’s
(1979) Lagrange multiplier (LM) test; and (1ii) the McAleer et al.

(1988) tests of separate hypotheses.

This dissertation uses large-scale simulation experiments to
invest .ate the empirical performance of some selected portmanteau
tests and Godfrey's (1979) LM test. As well, a critical note is
given in order to address the fundamental problems of the McAleer
et al. (1988) tests of separate hypotheses in commonly-used sample
sizes. Many simulation results given in this part of the

dissertation have not been reported in previous studies.

iii




The last part of this dissertation focusses on modified
portmanteau tests for the randomness of a Gaussian time series.
Recently, Kwan et al. (1982) have argued that, in testing the
adequacy of an ARMA(p,q) model, the poor performance of the
Ljung-Box portmanteau test may be attributed to the slow
convergence of residual autocorrelations to normality. This
dissertation extends their investigation to the area of testing
randomness of a Gaussian time series. In addition, two modified
portmanteau tests, based on an application of Hotelling’'s (1953)
transformations to sample autocorrelations, are proposed. The
simulation results strongly favour the use of these two modified
tests and the Kwan et al. (1992) portmanteau test in empirical

.applications.
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CHAPTER ONE

APPROACHES TO TESTING THE ADEQUACY OF UNIVARIATE

TIME SERIES MODELS

1.1 Introduction

The idea of modcling an autoregressive-moving average (ARMA)
process for a stationary time series traces back to a plioneering
contribution by Yule (1927), published more than sixty years ago.
In his paper, Yule (1927) presented an idea of autoregressive
series which represented a significant breakthrough in time domain
modeling. This, together with the illustration by Wold (1938)
that the non-deterministic part of any stationary series may be
represented as a moving average, opened up a new page In the

modern history of time series analysis

Since the publication of Box and Jenkins’ (1970) book, and
with the rapid evolution of powerful, high-speed computers, the
use of ARMA models is becoming Increasingly popular. Although Box
and Jenkins (1970) are not the original contributors in the field
of ARMA models, their oft-quoted book has generated further
interest in the area. Hence, many time series analysts have also

referred to ARMA modelling as the Box-Jenkins approach.

The Box-Jenkins approach requires iteration on a three-stage



process: (1) the identification of the orders of the process,
written ARMA(p,q); (11i) the estimation of the tentative ARMA(p,q)
model, as given in the first stage; and (1i1) diagnostic checking
of (i1) which involves testing for possible inadequacies in the
tentative mnmodel. While the literature dealing with these three
stages is voluminous, attention has recently focussed on model
identification and diagnostic checking. This is partially due to
the rapid development of efficient statistical software which not
only has removed most of the computational burden of nonlinear
estimation but has also produced accurate estimates in
commonly-used sample sizes. In addition, it is known that the
predictive performance of the ARMA model can be affected by the
appropriateness of the identified process in step (i) above. This
has led to a continuing search for reliable diagnostic procedures.
However, most of these available procedures have only a
large-sample Jjustification, and many require very large samples to
be accurate. In contrast, many economic and financial time series
are short. Therefore, it is of considerable importance to know
whether the finite~sample distribution of a test statistic is well
approximated by asymptotic theory. The main objective of this
dissertation is to shed light on the finite-sample properties of

portmanteau test statistics that have an asymptotic justification.




1.2 Pure Significance Tests for Model Adequacy

As mentioned earlier, testing for the adequacy of an
ARMA(p,q) model has been one of the most widely discussed topics
in time series analysis. In general, three broad approaches to
testing model adequacy have been proposed. These are referred to
by Godfrey and Tremayne (1988) as (i) pure significance tests,
(ii) tests of nested hypotheses, and (iii) tests of separate

hypotheses.

It is important to note here that several alternative

approaches to testing model adequacy have been excluded from this

dissertation. Some of these approaches include correlograms,
Akaike's information criterion (AIC), Schwartz’'s Bayesian
criterion (SBC), and other model validation procedures. A

correlogram consists of a number of residual autocorrelations.
However, a convenient measure of the significance of an entire
correlogram can easily be carried out by using pure significance
tests [see Box and Jenkins (1970)]. As for the AIC and SBC, these
are often employed to measure the closeness of fit and the number
of estimated parameters. These closeness-of-fit criteria, as
indicated by Maddala (1892, pp. 539-540), are similar to the ﬁe or
minimum ag—type criterion. Nonetheless, once the order of an ARMA
model has been determined on the basis of the AIC or SBC, it is

stil]l necessary to apply the aforementioned diagnostic approaches




(1)-(111) to examine for possible model inadequacy. As to other
mode]l validation procedures, these are appropriate for exercises
involving, in particular forecasting, but are beyond the scope of

this dissertation.

The most frequently used test statistic, among the three
approaches enumerated by Godfrey and Tremayne (1988), is the one
proposed by Box and Pierce (1970). It proceeds on the assumption
of no specification error, and uses the fact that the estimated
residuals will reflect the process presumed under the null. In
these circumstances, Box and Pierce (1870) showed how inferences
concerning goodness of fit could be based upon the residual
autocorrelations, either individually or by combining a number of
them into one statistic. In view of its all-inclusive nature,
this method has come to be referred to as a "“portmanteau test”
[see Box and Jenkins (1976, p. 290}]. Moreover, since the
distribution of the Box-Pierce test does not explicitly take an
alternative hypothesis into consideration, it is also known as a

pure significance test [see Cox and Hinkley (1974)].

The introduction of the Box-Plerce test has stimulated
further research on the usefulness of this statistic in sample
sizes which are commonly employed in economic and financial
applications. Unfortunately, Chatfield and Prothero (1973) and

Prothero and Wallis (1976) found that low values of the Box-Pierce



test often arise when several models are fitted to the same data.
Theoretical studies by Davies et al. (1977), Ljung and Box (1978)
and Dufour and Roy (1886) have all shown that the exact sampling
distribution of the test can differ markedly from the asymptotic
distribution, even when the sample size is quite large. Moreover,
the simulation results of Clark and Godolphin (1982) indicate that
the test has difficulty in detecting deviations from model

specification.

The poor empirical performance of the Box-Pierce test
subsequently led to the development of many modified versions
{"modified portmanteau statistics"). Examples are Ljung and Box
(1978), Godolphin (1980), Newbold (1980), Ljung (1986), Dufour and
Roy (1986), Bera and Newbold (1988), and Kwan et al. (1992). With
the exception of the Ljung-Box test, the finite-sample properties
of the other modified portmanteau statistics are still not yet

well known.

In light of the above, Chapter two will provide an extensive
evaluation of the empirical performance of some selected
portmanteau tests for univariate time series models, paying
special attention to estimated size (i.e., type I errors), means,
variances, and empirical power. There are three main features of
this chapter: (i) The investigation 1is conducted using three

large-scale simulation experiments focussing on seasonal as well




as non-seasonal time series. (11) The power calculations are
carried out for wide ranging values of the number of residual
autocorrelations. (iii) Simulation results obtained from seasonal
and non-~seasonal data are compared. The second feature Iis
motivated by LJjung’'s (1986) finding that the poor power
performance of the Ljung-Box test can be attributed to the use of
a large number of residual autocorrelations. In view of this
finding, it would be Iinteresting to see whether other portmanteau

statistics exhibit similar behaviour.

1.3 Tests of Nested and Separate Hypotheses

The portmanteau test may be considered as a test against all
possible alternatives at the same time. If a specific alternative
is chosen and a test is established for it, the power of the test
against that specific alternative cannot be less than the power of
the portmanteau test against the same specific alternative.
Considering specific hypotheses H1 and Ha’ a distinction can be
drawn between two cases: (a) When the intersection of H1 and H2 is
either H1 alone or H.2 alone; and (b) when H1 and H2 are disjoint
or intersecting such that the intersection is neither entirely H1
nor entirely Hz’ Alternative (a) refers to nested hypotheses and

(b) refers to separate hypotheses.

In the context of testing nested hypotheses, Whittle (1952)




derived a general test-statistic for assessing the goodness of fit
of an ARMA(p,q) model which is based on the likelihood-ratio
criterion. Since Whittle’'s (1952) procedure involves deliberately
adding an extra parameter to the fitted model, it is similar to
the "overfitting procedure" proposed by Box and Jenkins (1976, p.
286). It may alsc be regarded as a test of restrictions upon a
maintained model. Using the Lagrange multiplier (LM) principle,
Godfrey (1979) developed a test of the ARMA(p,q) model agalinst an
ARMA(p+r,q) or ARMA(p,q+r) alternative, where r is the number of
restrictions. Like Whittle’'s (1952) mecthod, the LM test 1is
constructed on the basis of testing a restricted model against a
broader maintained model. Thus, these tests are asymptotically

optimal (or most powerful) against nested alternatives.

When the null and alternative hypotheses are separate, the
optimal property of tests of separate hypotheses ceases to hold.
The classic example is the case of AR(p) against MA(q) processes.
Using Cox’s (1961, 1962) theory on separate hypotheses, Walker
(1967) presented a thorough discussion on how tests for AR(p)
versus MA(q) processes can be carried out in these situations.
However, his procedures are too complicatecd to use, and do not
receive much attention in the literature. Note that in the area
of testing AR regression disturbances against MA regression
disturbances, King (1983, 1985a, 1985b) proposed several

"point-optimal" tests which "are most powerful invariant in a




given neighbourhood of the parameter space of the alternative
hypothesis" [Dastoor and Fisher (1988, pp. 97-98)]. As shown by
Dastoor and Fisher (1988), King's optimal tests can be interpreted
as a Cox test for separate hypotheses. Recently, McAleer et al.
(1988) suggested several procedures to examine separate time
series moaels. Their tests involved simple calculations which are
similar to those of the LM test. The simulation results presented
in McAleer et al. (1988) and Hall and McAleer (1983) indicate that
the tests of separate hypotheses can be useful in revealing model
inadequacy, both in the cases of apprcporiate and inappropriate

alternatives.

In Hall and McAleer’s (1983) simulation study, the
finite-sample properties of a number of tests of nested and
separate hypotheses are examined, including the portmanteau
statistics proposed by Box and Pierce (1970) and Ljung and Box
(1978). Their main conclusion seems to favour the use of the
McAleer et al. (1988) tests of separate hypotheses, due to their
relatively good power performance. However, Chapter 3 will point
out that the finite-sample performance of the McAleer et al. tests
is far from perfect. In fact, there are many important issues
which have not been fully addressed in their original paper and in
the follow-up study by Hall and McAleer (1989). As will be
indicated, caution should be exercised when using tests of

separate hypotheses to check for the adequacy of separate time



series models.

Notwithstanding their questionable conclusion, Hall and
McAleer’'s (1989) simulation results indicate a number of areas
where further investigation of the empirical performance of
Godfrey’s LM test is needed. First, since the LM test is based on
testing restrictions against a more general model, the cholce of
the number of restrictions, r, definitely requires some care.
Studies carried out by Godfrey (1979), McAleer et al. (1988) and
Hall and McAleer (1989) have examined the validity of the LM test
when the value of r is small. It is, however, apparent from these
simulation results that the quality of the xa approximation to the
distribution of the LM test can deteriorate rapldly as r
increases. It would therefore be of considerable importance to
investigate the effect of the choice of r on the finite-sample

distribution of the LM test.

Second, almost all existing simulation studies on the
empirical power of the LM test have focussed on data generated
from a simple non-seasonal ARMA model. The conclusions based on
this particular experimental design would seem doubtful {if
seasonal data are employed. Hence, it appears that a useful
addition to the existing literature on the subject would be to
examine the effect of the nature of the data (seasonal vs.

non-seasonal) on the empirical power of the test. 1In particular,




it would be interesting to see whether or not the choice of r can
be affected in such situations. One of the main goals of Chapter

3 is to look at these two areas carefully.

1.4 Modified Portmanteau Tests for Randomness of

Gaussian Time Series

Portmanteau tests have been one of the main statistical
instruments in examining the adequacy of an ARMA(p,q) model.
Quite surprisingly, little attention has been paid to their
empirical performance in the area of testing the randomness of
Gaussian time series. Recently, Dufour and Roy (1986) have
carried out a comprehensive investigation on the empirical size of
the Box-Pierce and the Ljung-Box tests in this context. Their
simulation results reveal that while the size of the Box-Fierce
test is often too small, the Ljung-Box test rejects the null too
frequently. Moreover, the tests can have substantial dispersion
bias when the number of sample autocorrelations is large relative

to the sample size.

Kwan et al. (1992) have recently argued that, in testing the
adequacy of an ARMA(p,q) model, the poor performance of the
Box-Plerce and the Ljung-Box tests may be due to the slow
convergence of residual autocorrelations to normality. A solution

proposed by these authors 1is to transform each residual

10



autocorrelation employed in the tests to a new random wvariable
which converges to normality with greater rapidity. In their
study, Kwan et al. (1892} recommend the Fisher {1921)
variance-stabilizing transformation. Indeed, their simulation
results indicate that a portmanteau test based on this well-known
transformation performs better than the Ljung-Box test in moderate

samples.

Motivated by the results of Kwan et al. (1992), Chapter 4
will examine the following three areas: First, Kwan et al.
(1992) confined their attention to univariate time series models
and it would be useful to extend the analysis to the area of
testing the randomness of a Gaussian time seriles. Second, the
relative performance of the Kwan et al. (1992) test is a relevant
issue. Since the portmanteau statistics have a large-sample
appeal, it is important to examine their empirical performance for
small to moderate samples. Third, almost all existing studies in
this area have dealt solely with the empirical size of the
portmanteau test [see e.g., Dufour and Roy (1986)]. It would be

interesting to examine the empirical power of the tests.

The major finding of Chapter 4 is that, in testing randomness
of Gaussian time series, the test proposed by Kwan et al. (1992)
performs much belter than the LJjung-Box and the Dufour-Roy

statistics in terms of controlling test size and minimizing

11




dispersion blas. Encouraged by this finding, Chapter § will
develop two modified portmanteau tests based on the Hotelling
(1953) transformations. As indicated by Kendall and Stuart (1877,
vol. 1), the Hotelling transformations may work even better than
the Fisher variance-stabilizing transformation in small samples.
In view of this, an investigation of the relative performance of
these proposed tests and the Kwan et al. (1992) test is necessary.
The result emerging from this comparison would be particularly

useful in terms of selecting diagnostic checks in empirical

applications.
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CHAPTER TWO
A MONTE CARLO STUDY OF THE FINITE-SAMPLE DISTRIBUTION OF SOME

PORTMANTEAU TESTS: THE CASE OF UNIVARIATE TIME SERIES MODELS

2.1 Introduction

The portmanteau tests proposed by Box and Plerce (1970) and
Ljung and Box (1978) have been among the most commonly used
methods for detecting model inadequacy in applied econometrics and
time series analysis. The widespread popularity of portmanteau
tests can be attributed to a number of reasons. First, the null
hypothesis of such tests is white noise and the alternative is
essentially the whole portmanteau of time-dependent series,
including autoregressive and moving average errors. Second, the
tests can be used to examine serial correlation beyond the first
order. Third, in contrast to the classical test given by Whittle
(1952), the "overfitting" procedure suggested by Box and Jenkins
(1970) and the Lagrange multiplier test developed by Godfrey
(1979), portmanteau tests have optimal properties when the
alternative is vague ([see e.g., Hallin, Ingenbleek and Puri
(1987)]. Fourth and perhaps most important from the practical

viewpoint, the .ests are easy to compute.
It is now common knowledge that, in the area of testing the
adequacy of an ARMA{p,q) model, the finite-sample properties of

the Box-Pierce and LJjung-Box tests can be distinctly different
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from their predicted performance from asymptotic theory. For
example, the Box-Pierce test suffers a location bias and has very
poor empirical power even when the sample size is moderate [see
e.g., Ljung and Box (1978) and Clark and Godolphin (1982)]. The
Ljung-Box test, on the other hand, can have empirical variance
which is greater than the value predicted by asymptotic theory.
Moreover, the simulation results of Davies and Newbold (1979),
Godfrey (18789), Clark and Godolphin (1982), Kwan and Sim (1988),
and Hall and McAleer (1989) indicate that the test possesses low

empirical power against a range of simple alternatives.

As for other portmanteau statistics, Godolphin (1980) has
suggested a procedure which requires a transformation of the
residuals prior to the calculation of residuval autocorrelations,
such that the transformed residuals are uncorrelated. Newbold
(1980) has proposed a test which 1is based upon the first few
residual autocorrelations. However, both tests can be highly
unrellable due to their small-sample bias. Dufour and Roy
(1886), on the other hand, demonstrate that, when the observations
are independently and identically distributed (i.i.d.) normal with
unknown mean, improvements of the Box-Pierce and L jung-Box tests
can be made by using the exact first and second moments of the
sample autocorrelations. Since portmanteau statistics are based
on quadratic forms in residual autocorrelations, Ljung (1986)
suggested that the finite-sample distribution of the Box-Pierce

and Ljung-Box tests can be approximated by the scaled chi-square
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distribution. Recently, Kwan et al. (1992) have developed a test
which 1s based on an application of the Fisher (1921)
variance-stabilizing transformation to the residual
autocorrelation. The simulation results of Kwan et al. (1982)
indicate that their proposed test dominates the Ljung-Box test in
cases where parameter values are from small to moderate. However,
the empirical size of this test can become too large when

parameter values approach the boundary of the stationarity region.

It is important to note that the aforesaid portmanteau-type
statistics require the estimation of the residuals from =a
specified ARMA(p,q) model. Bera and Newbold (1988) developed
diagnostic checks which are based only on the calculation of
either the sample autocorrelations or partial autocorrelations of
an observed time series, The Bera-Newbold tests seem useful,
especially since they establish a direct 1ink between model

selection and model checking.

While the finite-sample performance of the Box-Pierce and the
Ljung-Box statistics is well-documented in the literature, flve
points seem germane to this chapter. First, the portmanteau tests
are asymptotic statistics and may require very large samples to be
accurate. Since many economic and financial time series are not
long [see Godfrey and Tremayne (1988)], it is of considerable
importance to know in these circumstances whether their

finite-sample distributions are well approximated by asymptotic
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theory. In the absence of exact results, it Is necessary to
examine the empirical performance of the tests considered for

small to moderate samples by means of simulation experiments.

Second and closely related to the first point, almost all
available studies have dealt only with the well-known tests of Box
and Pierce (1970) and Ljung and Box (1878). Thus, a useful
addition to the existing literature on the subject would be an
investigation of the finite~sample distribution of the recently
proposed portmanteau tests. Also, it would be interesting to

compare their relative performance in commonly used sample sizes.

Third, the portmanteau statistics of Box and Pierce (1970),
Ljung and Box (1978), Dufour and Roy (18986), and Kwan et al.
(1992) require the selection of the number of residual
autocorrelations, m. Therefore, it is important to investigate
the effect of the choice of m on the finite-sample distribution of
the aforementioned portmanteau tests [see Poskitt and Tremayne’s
(1981) rules of thumb on the selection of m 1in empirical

applications].

Fourth, LJjung (1986) recently demonstrated that the poor
power performance of the portmanteau tests can be attributed to
the use of a large number of residual autocorrelations. A
plausible explanation is that if the underlying data-generating

process can be represented by a simple ARMA model, lack of model
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adequacy will appear in the first few residual autocorrelations
when the data are being fitted to either low-order AR or MA
models. Thus, the use of a smaller number of residual
autocorrelations in such situations will lead to a more powerful
test. This argument is, indeed, supported by the simulation
results of Ljung (1986, Table 3). In view of this finding, it is
important to see whether this power property can be extended to
other portmanteau tests; particularly since it is known that they
possess the same asymptotic distribution [see Dufour and Roy

(1986)1].

Fifth, portmanteau tests are intended to have at least some
power agalinst a class of alternatives that is broader than simple
low-order ARMA models. Further, it 1is well-known that the
occurrence of higher-order or seasonal autocorrelation is possible
when one works with monthly or quarterly data. Hence, one of the
main reasons for using a portmanteau statistic with a large number
of residual autocorrelations is to get greater power against some
higher-order autocorrelation spikes. For this reason, it would be
interesting to examine the effect of the nature (or frequency) of

the data on the empirical power of the portmanteau tests.

The principal aim of this chapter is to provide an extensive
evaluation of the empirical performance of some selected
portmanteau statistics in sample sizes which are commonly used in

empirical applications. Our attention 1is confined to the
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portmanteau tests of Box and Plerce (1970), LJjung and Box (1978),
Ljung (1986), Dufour and Roy (1986), and Bera and Newbold (1988).
The rest of the chapter is organized as follows: Section 2.2
presents a review of the test procedures. Section 2.3 discusses
the design of the Monte Carlo experiments. Section 2.4 reports

the main results and some concluding remarks are given in Section

2.5.

2.2 Test Procedures

Let the stationary and invertible time series LA (t=1,...,n)

be generated by the ARMA(p, q) process

¢(B)w& = G(B)at, (2.2.1)
where $(B) =1-¢B- ... - ¢po,
6(B) =1-6B- ... -0BY%
1 q

and Bhﬁ=wpq' The polynomials ¢(B) and 6{(B) are assumed to have
roots outside the unit circle and to have no factors in common.
The white noise series, a., is assumed to be i.i.d. with mean O
and finite varlance of. To examine the adequacy of a fitted ARMA
model, such as (2.2.1), one may test the independence of the

residual series

At = ‘-f-(—?l}wt. (2.2.2)
(B)
where #(B) =1 - &18 - ... - &pB",
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8(B) =1—615-... -8 B9,

and (;1"."$p) and (51,...,6q) are the least squares (or maximum
likelihood) estimates of the coefficients of (2.2.1). A useful
technique proposed by Bartlett (1946) and Box and Pierce (1970) is
to examine the statistical significance of the residual

autocorrelations (the residuals having mean zero):

n-k R
~ t§1 at at+k
rk= - (k =1,2,...). (2.2.3)
T a’
t=1 ¢t

If (2.2.1) were correct and the parameters were known, Box and

Pierce (1970) show that the white noise autocorrelations

t

are approximately distributed according to a normal distribution
with mean zero, var(Fk)=1/n and cov(Fk,Fh)=O (k#h). Using these
conditions, they subsequently suggest a portmanteau test on the

basis of ;k:

QBF = r'D]’r , (2.2.4)
where i=(;1,...,;'m)7 and Di=(1/n)1n. If the model is correctly

specified, QBP is asymptotically distributed as xa with (m-p-q)

degrees of freedom, provided that m is large and (m/n) is small
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[Godfrey and Tremayne (1988, p. 7)]. However, it was demonstrated
by Davies et al. (1977), Ljung and Box (1978), Godfrey (1979) and
Dufour and Roy (1986) that the finite-sample distribution of QBP
can deviate significantly from the xz(m—p—q) distribution. Using
the result given in Ljung and Box (1978, p. 298), it is not
difficult to show that when an ARMA(p,q) model is fitted to data,

the expected value of QBP is given approximately by

_J m(m+5))]
E(QBP) = {m m P q, (2.2.5)

where m(m+5)/{2(n+2)} is the location bias. Thus, when the ratio
m{m+5)/{2(n+2)} causes a noticeable deviation from (m-p-q),
application of the xa(m-p-q) distribution is not appropriate. In
practical terms, this means that for small to moderate samples,
it iIs inappropriate to use the asymptotic chi-square distribution

with (m-p-q) degrees of freedom to set critical values for QBP.

In order to alleviate the problem of location bias, two
methods have been recommended by Ljung and Box (1978). The first
method directly attacks the problem by applying the distribution
with the proper number of degrees of freedom. i.e. the number of

degrees of freedom given by the right-hand side of (2.2.5):
QBP1 ~ x*(E(QBP)), (2.2.6)

In this chapter, QBP1 is called the modified Box-Pierce test.
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The second method is to regard the cause of the bias in QBP
as the variance of ;'k. It is then natural to replace the
large-sample variance of ;u’ viz. 1/n, used in QBP by the variance

of the 1lag-k correlation of a white noise process, viz.

(n-k)/{n(n+2)}. This gives the following Ljung-Box statistic:

QLB = r'D’r , (2.2.7)

where D =diag(C,...,C), and Co=(n-k)/{n(n+2)}. Since the
Box-Pierce and the Ljung-Box tests are asymptotically the same,
QLB is distributed as xa with (m~p-q) degrees of freedom.
According to the simulation results reported in Ljung and Box
(1978), the empirical significance levels of both QBP1 and QLB
agree much more closely with the xz(m-p—q) distribution than do
those of QBP.

Dufour and Roy (1885} point out that for testing the
randomness of an 1.i.d. series, say (xl....,xn). both the
Box-Pierce and the Ljung-Box statistics are based on approximate

normalizations of the sample autocorrelations

n-k _ -
L o(x-x)(x -x)
t=1 te+k , 1 s k < n~1, (2.2.8)

r =
k

M 9 |e

=32
X - X
ti(t )

n

where x= th/n. While Box and Pierce (1970) and LJjung and Box
t=1

(1978) assumed that the mean of rk is approximately zero, Moran

(1948) proved that
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_ _  =(n~k)
E(r‘k) = “k = m . (2.2.9)

The exact second moments of r'k remained unknown until recent
studies by Dufour and Roy (1985, 1886, 1989) and Anderson (1990).

They show that

_ n*-(k+3)n°-3kn?+2k (k+1)n-4k?

var'(rk) =0 . 1 =k < n/2, n3,

kk (n+1)n%(n-1)2
(2.2.10)
and
2
cov(r .r ) = v = 2(kh(n-1)-(121-h)(n2—4)). 1=k<h=n-1.
ko h (n+1)n“(n-1)
(2.2.11)

Prior to Dufour and Roy’s (1985, 1986) finding, QBP and QLB made
use of the approximations var'(rk)=1/n and var‘(r'k)=(n-k)/(n(n+2)},

respectively.

The simulation results of Dufour and Roy (1985) indicate
that normalizing of r. with its exact first and second moments
will yield distributions that are better approximated by the
asymptotic N(0,1) distribution than the distribution of QBP and
QLB. Motivated by this finding, Dufour and Roy (1986)
subsequently proposed two parametric portmanteau statistics for
examining the specification of an ARMA(p,q) model [for

notations, see Dufour and Roy (1986, p. 2957)]:

= (r - ) (2.2.12)



and

(r - u), (2.2.13)

where g=(u1....,pm)T and z =[°kh] is the variance-covariance

~

matrix of r given by (2.2.10) and (2.2.11), and
D3=d1ag(cll,oéa,...o;m). Dufour and Roy (1986) also recommend a
nonparametric portmanteau statistic based on rank autocorrelations

n~k

. E,R-RE® -R
r = — , 1=k sn-1, (2.2.14)

k n - p
£, (R - R)

~

where Rt is the rank of a., §=t§1Rt/n=(n+1)/2 and
t'él(R-ﬁ)2=n(n2-1)/12 if all ranks are distinct. This test 1is
useful for model checking when the distribution of Qt is not
known. Dufour and Roy (1986) suggest that the mean of Fk is given
by (2.2.9) because (Rl....,Rn) are exchangeable. The variance of
;k is developed in Dufour and Roy (1985, 1986) and has the

following form:

~2 _ 5n'-(5k+8)n’+9(k+2)n”+2k(5k+8)n+16k"
k 5(n-1)%n%(n+1)

’

var(rk) =

1 s k s n-1. (2.2.15)

Combining (2.2.9) and (2.2.15) gives the following nonparametric

statistic [see Dufour and Roy (1986, p. 2963)]:

QOR2 = (F - W'D (F - w, (2.2.186)
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where ;=(;1....,;m)1 and D4=diag(51,....;n). Since QDR, QDR! and
QDR2 are asymptotically equivalent to QBP and QLB on the null,
their 1limiting distribution is xa(m-p-q) given that the fitted

model is indeed ARMA(p,q).

Because portmanteau statistics are based on quadratic forms
in i. Ljung (1986) has suggested that they can be approximated by
a linear combination of independently distributed 12(1) random
varlables. Such an approximation, as shown by Box (1854), is
asymptotically equivalent to an axz(b) distribution with the scale
parameter, a=ZAf/ZAl. the degree of freedom, b=(EA‘)2/ZAf, vhere
A‘ (i=1,...,m) are the eigenvalues of the variance-covariance
matrix of ; given in McLeod (1978). As the value of m increases,
this axa(b) distribution approaches to xa(m—p—q) as a-»1 and
b>(m-p-q), respectively I[see Ljung (1986, p. 726)]. The
simulation results of Ljung (1986) indicate that using the scaled
chi-square distribution to set critical values for the L jung-Box
test can considerably improve the accuracy of its significance
level when the number of residual autocorrelations is small. 1In
this dissertation, this modification is called the modified

LJjung-Box statistic
QLB1 ~ ax>(b). (2.2.17)

Bera and Newbold (1988) have recently developed new
portmanteau tests of model adequacy based on employing either the

sample autocorrelations or partial autocorrelations of the
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observed time series W, In the case where LA follows an AR(p)
process, it is known that the theoretical partial
autocorrelations, \Ilkk. are equal to zero for kzp+l. Moreover, the
variance of \Pkk (for kzp+1) is 1/n [see Box and Jenkins (1978, p.
178)]. Thus, the adequacy of an AR(p) model can be evaluated by

the following portmanteau statistic

Q@BN1 = ¥'D]'Y, (2.2.18)

T

where \_'il_=(\‘l~lp+ ,...,\i’m) are the estimated partial autocorrelations

1

of W, and D5=(1/n)1(m_p). If the true model is AR(p), QBN1 is
asymptotically distributed as xz(m-p). For testing the hypothesis
that W, follows a MA(q) process, Bera and Newbold (1988) exploit

the fact that the autocorrelations of W, satisfy
plim(r‘k) = 0, k = g+l (2.2.19)

Using the Bartlett (1946) formula for the variance of ro they

recommend the following portmanteau test

QBN2 = r'D T, (2.2.20)
wher r=( r )T D =diag(b® b ) and b=(1+2 ; r2)
€ - r‘q+1"“' n ' 6 g m-q ! kK k=1 k

If the true specification 1is a MA(q) process, QBNZ2 Is
asymptotically distributed as xz(m-q). A summary of the

portmanteau tests in this section is given in Table 2.1.
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2.3 Experimental Design

In order to examine the finite-sample distributions of the
portmanteau tests, three separate simulation experiments were
used. In the first experiment, our attention was confined to the
empirical significance levels, means and variances of the
portmanteau statistics outlined in Section 2.2. All simulations
were carried out on a CDC Cyber 830 computer. The data were
generated from some selected cases of an ARMA(2,1) process,
(l—nlB)(l-naB)wt = (1—w1B)at. with proper zero restrictions on the
roots of the AR and MA processes ("1'"2) and (wl). respectively.
The starting value W, was set at 0. N(0,1) random deviates, a,.
were generated by using the subroutine RNNOA of IMSL. Additlonal
IMSL subroutines such as CHIIN and EVCRG were employed to find the
critical values of the chi-square distribution and the eigenvalues
for QLB1, respectively. Estimates of significance levels (a=5%4),
means and variances of the various statistics were based on 1000
replications. The sample size, n, was set to be 50 and 100 in the
case of pure AR processes. For the MA(1) process, n was fixed at

50 in order to comply with restrictions on CPU time.

The second experiment examines the empirical power of the
portmanteau tests. All data were first generated from some
selected cases of an ARMA(2, 2) process,
(1-n18)(l—nzB)wt=(1—wlB)(l-sz)at, and were subsequently fitted

to the AR(1), AR(2) and MA(1) models, respectively. The sample
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size, n, was set at 50 and 100 for the AR models. In the case of
the MA(1) model, n was kept again at 50 in order to meet the
CPU-time requirement. Since one of the obJjectives 1is to
investigate the effect of the number of residual autocorrelations
on the empirical power of the purtmanteau tests, m was allowed to
vary for all experiments; 2sm=15 for the AR(1) and MA(1) models,
and 3sm<15 for the AR(2) model. The power calculations reported
in Section 2.4 are the proportion of times that the hypothesis of
correct model specification was rejected for tests at the 5% level

of significance. All power estimates were based on 1000

replications.

The third simulation experiment allows for the impact of the
pature of the data on the empirical power of the portmanteau
tests. To do so, four seasonal ARMA models adopted in Abraham and

Ledolter (1983, p. 285) are used:

0.4, 0.7, 0.9] (2.3.1)

w = (1 - eB%a, [©
t s t

(1 - 4»'13")»:L =a, (& = 0.4, 0.7, 0.8] (2.3.2)

w o= (1-yB)1 - SsBs)at. [(y,,8) = (0.6,-0.5), (~0.5,0.6)]

t
(2.3.3)

s - - - -
(1 - OBB )wt = (1 wlB)at. [‘°-’w1) (0.6,-0.5), (-0.5,0.6)]

(2.3.4)

vhere s=12 {(monthly data). The set-up of this simulation
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experiment is similar to the second one except that (i) the fitted
processes are only AR(1) and AR(2) models, and (ii) the first
fifty observations were discarded for each sample in order to

account for the presence of seasonality in the data.

2.4 Monte Carlo Results

Tables 2.2 to 2.4 report the empirical significance levels,
means and variances of the eight portmanteau statistics. On the

basis of these results, the following points are noteworthy:

(1) As expected, the Box-Plerce test, QBP, has significance
levels which are considerably lower than the nominal levels when
m is large; e.g. m=10 and 15. This ocbservation holds regardless
of the sample size and the choice of the fitted models. For ms3,

=50 and parameter values that are close to the boundary of the
stationary or invertible region, QBP tends to over-reject the null
hypothesis far too often (i.e., the significance levels of this
test are too high). It 1is also noteworthy that this
"over-re jection" problem is still quite serious when the sample
size increases to 100. As for the estimated means and variances,
these are consistently lower than the theoretical values. Our
simulation results also support the finding of Ljung-Box (1978, p.
301) that the empirical variances of QBP are approximately twice
the mean when mz10 and the data are fitted to an AR(1) model.

This evidence, however, does not hold in the case of a MA(1) model

28




n=15
20.57
20.S7

=10
12.53
12.53

6.02
6 02

n=5

4.78
4.78

Empirical Variances
n=4

318
3.19

a=3
70

1.70

n=15
10.73

»=10
7.27

a=5%

B )w‘-a‘
n=S0
Empirical Means

»=5
2.62 3.47
2.62 3.47

n=4

Table 2.2

means and variances of Portsanteau Tests for
1.80
1.80

m=3

0 98
0.98

n=2

the AR(1) Model (1 - =

»=15
1.3
4.8

=10
1.7

3.7

=5
2.8
3.9

Eapirical Significance Levels,

4

=
2.8
3.9

n=3

3.2

Empirical Significance Levels (in percent)

=2
4.7

Portmanteau
Tests

QBP

QBP}

= 0.4

AR(1) Model

Parameters of

~MNOWY
2283 223 aS@lRe
j ’ e N OO
dEARTSN JANSRBAERA
~m@t s N
uUNRLy LSRG BER
NN OR O N mEmooanoaN
R ] -t o e (]
VOEONN OOT LN
FeN~Mn MOOOONIN
MNNNR®RO O WORNNOROO
NN O M -
WHOR~D OROAONLSOND
oo n ) ©
0« WwO WY
2883 NNG®OO =D
G ] LK
0 wm e NNG DO N~
BREBIB HNEGEPBGR
-;-cNN(\i-. — ot = (NN
seaaeO ToNNgung
*IBONG ODBDENO
MM - comEmmMn
LR o B I I ) Lol o BT B B
WOWeQ Ao @N o
0006 MM OOO®O -
00 mo®~ NN oo o ~
©OTO N TSonmoon
V0D~ W0 NN A —~OND
nomnem GG
DHNWOODN OO~
0VONOO K~ RRDO O~ N0
NN NN e NaNNm &
MO0 ® N NNG @~
DHOO~® aoocoNNMA
- NN e ~eNNNNN
LY ® COw O
LR AN NTOTO
- ] [ERO-AFL S S S
¢eeO~00 ~O®mOenon
COWEea NeIBoneo
oMmowo NowwwONW
deven eSS P
NN~ N DO DN e
TR R ) NessnFOn
O NO~Oome-n
TR R ) EE XX
won~®© woOMmMOoOMNON
deT IO MedOBNnS
NE et~ cuwTwmwve~ow
NWONOe DO S ~©F
"xégg miﬁﬁmﬁgg
aq o ol I=R=--K
gggooc coodo0o00
~
o
"

30

1515 23 36

1515 23 36

8 46 20.77 35.88
8.46 20.77 35.89
9.47 22.23 38 02
9 13 2118 36.58
9.68 2224 3903
12.05 16 02

16.40 24.82

16.40 24.82

2225 3775

22.25 37 75

24 01 40.25

24.96 43.13

23.62 40.36

10.66 15 08

6 80
6.90
6.09
7.91
7.91
S 64
S.54
10.76
10.99
10.82
S 00

5.35
5.35
6.42
6 42
7.24
7.05

17
4.68
6 32
6.32
7.55
7.855
8.40
8.55
8.19
318

7.

3 87
3.87
4 54
4.53
5.21
5.11
5.09
3.38
4.66
4.66
5 45
5.45
6.05
14
5.62
2.

2.50
2.50
2.88
2.88
3 41
3 339
3.23
1.67
3.24
3.24
374
3.74
4.17
4.22
377
1.34

11 03
11.03
13.75
13.75
14 22
14.14
14.31
10.70
11.36
11.36
14 10
14.10
14.65
14.81
14.66
9 09

7.57
7.57
8 88
8.88
8.29
9.17
9.38
7.38
7.81
7.91
8.25
8.25
9 638
9.72
9.69
6.18

3.78
3.78
4.19
4.19
4.51
4.48
4.57
3.50
4.14
4 58
4.58
4 86
4.88
4.84
2.95

2.99
2.99
3.27
3.27
3.55
3.52
3.57
2.72
3.32
3.32
364
3.64
3.87
3.88
3.83
2.28

226
2.26
2.45
2.45
2.67
2 65
2.71
1.89
2 55
2 55
2.76
2.76
2.94
2.94
2.92
1.52

1 53
183

64
1.64

81
1.80
1.82
0.97

78
178
1.91

81
2.04
2.04
2.00
0.82

1.

25
4.9
6.0
60
6.7
6.8
6.8
0.5
6.0
6.8
5.8
8.1
0.2

2.6
4.5
5.8
5.3
§.7
1.0
5.0
5.3
4.5
7.2
0.7

3.8
5.2
6.7
6.7
6.8
3.2
6.4
7.1
4.3
g4
2.3

4.5
6.1
73
3.4
8.6
5.2
10.4
2.4

54
6.3
8.4
8.8
3.3
8.2
5.3
10 9
10.8
11.0
2.0

8.9
10.5
10.3
11
11.4
11.7

4.0
11.5
13.8
12.8

5.8
13.8
14.0

2.5

QBP

QBP1
QLB1
QDR

QDR1
QDR2
QBN1
QBP

QBP1
QLB1
QDR

QDR1
QDR2
QBN1

= 0.9
= 0.99

n
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with ,20.7.

{ii) Except when m is very small or the parameter values are
large, the empirical levels (or estimated sizes) of the modified
Box-Pierce test, QBPl, are generally close to the values predicted
by asymptotic theory iIn all cases considered. This seems to
suggest that using (2.2.5) to set critical values for QBP can
improve the small-sample distribution of the test. Nevertheless,
it is found that in the AR(2) case, QBPl1 can still yleld low

empirical values when n=850, naso.s and m=10.

(iii) The results of the Ljung-Box statistics, QLB, shown in
Table 2.2 are comparable to those of Kwan and Sim (1988, pp.
343-344) when the data are fitted to an AR(1) model. With the
exception of cases when the parameter value ("1) is greater than
0.9 or m is small, the significance levels are falrly close to the
nominal levels. We can draw similar conclusions for the MA(1)
model. However, in both the AR(1) and MA(1) models, the estimated
variances of QLB are appreciably greater than the theoretical
variance 2(m-1) for m=z10. This is most apparent in the MA case.
As for the AR(2) model, the entries for the xz(m-Z) distribution
are generally close to the nominal levels especially when mz4 and
11250.5. For n2=0.8, a larger m (at least 10) is needed in order

to use QLB.

(iv) The empirical performance of the Dufour-Roy statistics
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(QDR, QDR1 and QDR2) is quite similar to that of QLB when the
parameter values are from small to moderate (e.g., n150.7). For
parameter values which are close to the unit circle, QLB dominates
the Dufour-Roy statistics in terms of controlling the empirical
level. This can be seen from Tables 2.2-2.3 where QDR, QDR1 and
QDR2 always have estimates of size which are higher than those of
QLB when ms4 and the data are fitted to the AR(1) and AR(2)
models, respectively. Also, it is found that the dispersion bias
seems to be more serious for the Dufour-Roy statistics, especially
in the case where both the parameter values and m are large.
However, these observations cannot be generalized to the MA(1)
model. When W1=0-99» QDR, QDR1 and QDR2 have significance levels
which are slightly closer to the nominal levels than those for
QLB. Moreover, their empirical variances are less sensitive to
the boundary values (i.e. wle.Q), even though they are still

considerably larger than the theoretical value 2(m-1).

As regards the individual performance among the Dufour-Roy
statistics, the results suggest that QDR always has empirical
significance levels which are closer to the nominal levels than
those for QDR1. This is most evident in the case where m=10. The
nonparametric portmanteau statistic, QDR2, performs marginally
less well than do the parametric ones, namely it always has
relatively large estimated sizes for n=50. However, when the
sample size Iincreases to 100, there seems to be no noticeable

difference among these tests.
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{(v) The Bera-Newbold tests, QBN1 and QBN2, have empirical
significance levels which agree with the theoretical levels only
when m is small. In cases where the data are fitted to the AR
models, the simulation results indicate that the value of m cannot
be chosen Lo be more than 3 and 5 when n=50 and 100, respectively.
For larger m, the empirical levels are substantially lower than
the nominal levels. Also, the size of (BNl can be affected by the
parameter value; namely it is too low for nlso.s and mz4. When
the AR(1) model is near a random walk (i.e., n1=0.99), the size is
even vworse. As for the estimated means and variances, these are
significantly smaller than the theoretical values for n=50.
Moreover, there is no substantial improvement when n increases to

100.

The results of the MA(1) model are in contrast to those for
the AR models. It is found that with the exception of W1=0-4 or
m=15, the test size is often larger than the nominal levels,
ranging from 5.2% to 9.5%4 In addition, the empirical variances of
QBN2 are substantially greater than 2(m-1) in almost all cases.
In work not reported here, the overall quality of the results of
QBN2 does not improve even when the sample size increases from 50

to 100.

(vi) The modified Ljung-Box statistic, QLB1, ylelds the best

results. It can be seen from Tables 2.2-2.4 that the estimated
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significance levels of QLB1 are more in agreement with the nominal

levels than those for the aforementioned portmanteau tests (QBP,

QBP1, QLB, GDR, QDR1, QDR2, QBN1 and QBN2) when m<10., In order to

highlight this feature, consider examples of the following ranges

of estimated significance levels:

Example 1: AR(1)

QBP:
QBP1:
QLB:
QLB1:
QDR:
QDR1:
QDR2:
QBN1:

Example 2: AR{(2)

QBP:
QBP1:
QLB:
QLB1:
QDR:
QDR1:
QDR2:
QBN1:

Example 3: MA(1)

QBP:
QBP1:
QLB:
QLB1:
QDR:
QDR1:

model fitted; n1=0.99;n=50 and 2=m=10

N NNO DWW o W!m

to
to
to
to
to
to
to

to

11.8%
13.8%
12.8%
5.8%

13.9%
14.0%
14.0%
2.5%

model fitted; 1r1=0.8 and n2=0.8; n=50 and 2sm=10

1.9 to 11.8%

4.1
4.

Lo B 4 ) B = Y A )

to
to
to
to
to
to
to

16.7%
13.5%
4.6%

14.0%
14.7%
15. 4%
4.4%

model fitted; ¢1=0.99; n=50 and 2sms10

5.8
8.6
6.0
6.0
7.4
8.1

to
to
to
to
to
to

11.6%
14.8%
14.3%
8.5%

13. 0%
13.9%
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QDR2: 8.8 to 13.4%
QBN2: 6.6 to 9.5%4

These three examples clearly 1illustrate that, with the
exception of QLB1, asymptotic theory does not work well for
portmanteau tests when the parameter values are large. In many
cases, the true size of these portmanteau tests can be more than
double the theoretical level. This 1is indeed discouraging
especially since most economic time series are belleved to be
highly correlated with parameter values close to the unit circle.
QLB1, on the other hand, does not exhibit excessively large
estimates of size. This performance, along with its empirical
pover which will be shown below, favour the use of QLB1 1In finite

samples.

As a minor note on the finite-sample distribution of QLB1,
its size estimates are very similar to those for the LJjung-Box
test QLB, when m=15. This confirms Ljung’'s (1986, p. 726)
assertion that for large m, the scale parameter, a, and the degree

of freedom, b, approach 1 and (m-p-q), respectively.

(vii) It should be noted that test results (size and power)
for 10% were also calculated. These simulation results are

qualitatively similar to those at the 5% level but are not shown.

Tables 2.5-2.7 present a summary of the simulation results on

the empirical power of eight portmanteau tests in cases where the
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data were generated from low-order ARMA models. Several points

are clearly noticed from the reported findings:

(1) With the exception of the results on QBN1 and QBNZ2, the
empirical power of the other portmanteau tests (QBP, QBP1, QLB,
QLB1, QDR, QDR! and QDF2) is much higher for smaller numbers of
residual autocorrelations. In all cases considered, the optimal
values of m are 2 and 3 for AR(1) and AR(2) models, respectively.
This observation holds regardless of the sample size and the
chosen values of parameters. This finding strongly supports
Ljung's (1986) assertion that when the data-generating process is
modelled as a simple low-order ARMA model, portmanteau tests can
be quite powerful in detecting model misspecification as long as
the value of m is kept small. However, such a statement cannot be
generalized to the Bera-Newbold tests, QBN1 and QBN2. It can be
seen from the results reported in these tables that in several
cases, a slightly larger m is needed in order to obtain "maximum"

power for QBN1 and QBNZ.

(11) In terms of the ability to detect derivations from
model specification there seems to be no marked differences
amongst QLB, QDR and QDRI. These results are not entirely
unexpected since the variance formulae for them are O(n-l). When
the sample size ranges from moderate to large and the underlying
time serles model 1is relatively simple, the empirical power of

these tests should be almost the same.
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Data generated from

B}(1 - ¢ Bla; a = 5%

H

Table 2.5

Empirical Powers of Portmanteau Tests; AR(1) Model fitted

the model (1 -w B)(1 - x B)w = (1§
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-*l
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2
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n=50
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m=4
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@=5 m=10
14 9 10.1
16 8

a=3
21.2

a=2
28.0

n=10 m=1S

=5
6.8

=4
83
97
9.8

a=3
9.6

10.9

=2

150

3.6

qQBpP

0.4

11

18 2 132
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30.5
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13.9 119
11

13 9

17 0
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QL8
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[=]
o~

13 9
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QDR1

el
N

10.4 1 8.3 87 87 28 8 170 14 13 6
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10 3
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30 3

S3

9.7
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17 4
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81 74 0 52 8 41
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93 8

17 5
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4 2
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0.7

o
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n
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30 5
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1
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n=15
1
523
S 4
37
25
16.1
21
22 S5
210
21
19 8
21
35 7
49 2
48 2
48 2
44
39 4
28 3
39 7
36 S
37 9
36 6
7
78 2
78 2

=10
27
38
q2
48
37
26 9
24 §
23 2
24
330
49 4
S8 7
57 8
57 7
S1
S0 6
46
84 8
31
43 5
46 ©
46 0
43 2
43
77
s2
77 2
80 3
a9
B3 3
73

n=100
(in percent)
33
56
4

37 6
42.5
42
419
38 4
37
36
47
85 4
84 9
84 6
80
77
n
85 0
69 3
68 4
68 2
65
64
60 S
73
96 6
87 4
S8 4
98
86 1
3.

6.4
78
65
8.1
47 S
S1
50 6
S0 3
47 8
45 9
43.4
49 O
87 §
89 8
89 4
89 3
86 3
84 9
79 3
80 8
74 6
77 2
76 S
76 0
738
72 3
€8 0
76
87 7
38 0
98 8
28 7
87 0
96 4

t

2
m=3
T7
88
8 8
1
79
62 6
66
84
64 0
61
58 g
45 2
g4 0
84 9
94 2
93 3
93 ¢
92 6
89
68 9
84 9
87 &
86 9
84 3
831
78 0
68 8
99 4
99 7
a9 8
99 7
38 7
S8 7
a8

1
m=15
13
36
36
3§
07
10 0
11
11 2
EN:]
10 8
11
45
18 6
20 4
16 0
17 6
17 7
69
16 4
18 0
18 0
18
16 9
16 0
183
358
35 9
308
33

= (1 -y B)(1 -yBla, a=5%
20 4

t
m=10
1
34
36
ls8
2.5
10
11
110
90
10
38
12
18 3
17 &
19 5§
29 4

Table 2 6
Empirical Powers of Portmanteau Tests, AR(2) Model fitted, Data generated from
29

23 2
107
18 7
18 8
18 8
15 9
17 9
17 8
14 4
42 3
32 3
42

377
39

2

-x BH1 - n_Blv
naS0
(in percent)
=5

49
47
44
50
11
16.8
16 3
16 2
14 6
13.9
14
17 2
26 2
37 0
36
26.0
27
20 0
24 5
38 8
21 §
28 6
28 1t
27 6
28 4
23 0
33
S5 3
66 3
68 7
64 O
56 1

m=4
5.3
42
45
S0
16.1
21
19 4
19 2
16 8
15 2
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20 4
35 s
46
44 8
43 8
36 0
26 3
30 3
41
29 1
37 9
53
4!
308
29 S
28 8
€9 9
78 5
76 1
8 2
85 2

m=3
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S5
49
25 0
34
23 7
28 3
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23
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60 7
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5 0
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37 3
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Table 2.6 {(cont’d)
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Table 2 7

Emplrical Powers of Portmanteau Tests, MA(1) Model fltted, Data generated from
the model {1 *KlB)(X - uzB)u‘ = (1 -0‘8)(1 - &zs)a‘. a s 5%

Parameters

n
04

089

n
0

08

o

n=50

Portmanteau
tests (in percent)

m=2 na) m=4 L] m=10 m=ib
QBP 19 0 12 3 97 94 6 4 49
QBP! 20 8 146 12 0 11 2 93 91
QLB 20 4 14.7 12.4 116 10 § 10 7
QLB! 20 4 14.7 12 4 11s 10 § 10 7
QDR 18.0 13.6 12 0 10 4 8 8 92
QDR1 19.8 14.3 12 8 12 2 10 6 12 3
QDR2 19 8 138 19 10 7 92 89
QBN2 10 2 8 8 78 74 6 2 55
QBP 86.0 77 4 72.8 68 4 55 2 47 5
QBP1 87 3 798 75 S 725 63 4 S9 9
QLB 87 2 79 8 75 5 730 63 6 59 1
QLB1 86 7 79% 1785 1730 63 6 59 1
QDR 82 2 72 0 68 O B6S 2 53 8 48 6
QDR1 82 7 736 70 3 66 3 57 4 SS B
QOR2 78 8 69 2 63 8 s9 7 51 2 47 3
QBN2 63 7 56 2 50 3 47 1 41 8 379
QBP 99.3 89 2 98 7 88 2 97 1 84 5
QBP1 89 4 89 2 93 0 S8 4 97 4 87 4
QLB 89 4 99 2 93 0 98 4 97 3 97 2
QLB1 99 4 89 2 83 0 98 4 87 3 97 2
QDR 98.8 97 8 96 8 95 6 93 S 92 7
QDR1 98.9 980 968 9589 84 2 93 0
QDR2 98 0 96 8 96.2 84 6 91 5§ 89 9
QBN2 95.4 940 9802 891 83 7 80 1
QBP 96 8 94.6 91 8 89 3 79 2 718
QBP1 97 4 950 98930 911 83.7 81 4
QLB 97 3 95 ¢ 93.1 80 7 83 8 795
QLB1 96.8 94.9 929 906 817 79 4
QDR 95.5 83.1 905 B8 4 78 3 728
QDR1 95 6 V1 90 9 88 6 79 7 76 9
QDR2 931 8 805 871 84 2 731 68 4
QBN2 T7.4 650 577 834 50 7 45 6
QBP 99 9 99 9 93 9 99 8 83 7 99 6
QBP! 100 9 9 89 9 9 g 99 8 99 9
QLB 100 99 9 899.9 99 9 93 8 99 9
QL1 99 9 99.9 989.9 999 99 8 99 9
QDR 99.9 99.7 838 7 99 7 99 3 99 2
QDR1 99 9 99.7 98 7 99 7 89 3 99 2
QDR2 89 8 89 7 88 7 99 6 98 8 a8 8
QBN2 98 8 96.9 85 5 94 6 89 1 84 8
QBP 100 100 100 100 100 100
QBP1 100 100 100 100 100 100
QLB 100 100 100 100 100 100
QLB1 100 100 100 100 100 100
QDR 100 100 100 100 100 100
QDR1 100 100 100 100 100 100
QDR2 100 100 100 100 100 100
QBN2 100 89.8 99.6 98 6 99 8 97 5
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Table 2 7 (cont'd)

Parameters
1 Wl
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02 08
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Portmanteau
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QBP
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QLB
QLB
QDR
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QBN2

Q8P
QBP1
QLB
QLB1
QDR
QDR1
QDR2
QBN2

(in percent)}

n=50

m=2 m=3 med m=5 m=10 m=15
338 28.8 23 0 19.9 14 0 10 4
J6 9 31.8 27.8 24 6 20.3 17 5§
36 2 31.2 27.7 24.9 20.6 17 8
28.4 279 253 23S 20.4 17 6
41 0 3.0 299 277 21.8 19 3
0.5 335 28,4 264 20 4 130
40 2 334 297 279 201 18 5

8 8 10 8 1.1 116 12 7 109
€69 6 579 50.8 459 320 35
731 620 6859 8527 42 1 50 4
719 618 68§54 525 42 5 49 4
S6 6 51.3 48 5 46.3 39.9 48 1
75 9 64.8 530 557 43 2 47 6
76 4 65.1 S8 4 54.2 40.7 44 )
78 60.9 65.3 S0 0 419 45 9
02 114 131 12 8 143 12 2
97 6 948 882 815 61 5 52 9
97 9 97 0 91.6 867 737 723
97 7 96.8 815 8BS 6 712 69 8
94 6 89.6 840 798 68.4 68 7
98 1 953 900 856 70 86 66 9
98 3 96 1 803 851 68 6 64 7
96.4 909 856 800 64 B 62 2
120 12.9 142 138 15 0 12 9
45 6 40.5 407 381 29 4 23 7
48 1 47 437 424 36 2 34 0
48 S 45 0 44 3 43 0 371 34 4
48 3 45.0 443 430 371 34 4
41 8 71 334 321 26 4 23 8
42.1 38.3 36.1 353 N0 30.8
40.0 35.9 33.9 318 24.9 20 9
32.9 32.8 29.9 27.9 22 1 18 6
10.4 10.2 63 6 2 5.0 38
12 7 12 4 89 81 73 B0
12.5 12.5 9 4 86 813 98
12 2 12§ 9 4 86 813 98
120 117 88 82 88 101
112 115 8.7 [: o] 82 89
12 1 110 9.1 865 85 10 1
10.4 88 7.7 66 68 49
9.2 62 6.4 51 31 28
11 8 7.8 79 71 66 6 1
1t 8.0 81 74 76 72
72 6.9 786 71 75 72
12 2 95 9.8 8.3 77 85
115 87 9.1 81 7.7 76
11.0 90 90 758 81 87

8 6 83 79 8.0 77 §6

46




(i11) The empirical power of QLB and QLB1 is similar. Only
in a very few instances do the simulation results {ndicate a
fairly sizable difference in their empirical power. However, in
work not reported here, a further investigation of the results
reveals that this difference can be substantially narrowed by
considering a smaller value of m. For example, 1f the data were
fitted to an AR(1) model with n=50, the empirical power of QLB}
can be improved when only the first residual autocorrelation (m=1)
is taken into consideration. For the MA(1) process, a similar

strategy can be used to increase the power of QLB1.

(iv) The nonparametric Dufour-Roy test, QDR2, performs
almost equally as well as the parametric ones, QDR and QDR1. This
is, indeed, an encouraging finding because, unlike all the
parametric portmanteau statistics considered, QDR2 is valid even
in the presence of non-Gaussian (or non-normal) errors. Since
Hall and McAleer (1989) found that the commonly-used parametric
portmanteau tests such as QBP and QLB are not robust to
non-Gaussian errors, this result could be of considerable interest
and importance to both applied econometricians and time serles

analysts.

(v) QBP1 is consistently more powerful than QBP. This is
most evident in cases where the sample slze 1is 50 and the

parameter values (n's and y's) are large. In addition, it is easy
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to see from Tables 2.5-2.7 that the difference in power between

QBP and QBP1 increases rapidly with the value of m.

(vi) When an AR(2) model is being fitted to the data, the
empirical power of the portmanteau tests examined is generally
lower than those yielded in the case of an AR(1) process. This
result indicates that an AR(2) model provides a much better
approximation to the generated data. This observation Iis
supported by the well-known duality theorem which states that any
stationary ARMA representation can be well approximated by a

higher-order AR or MA model.

Tables 2.8-2.9 summarize the simulation results of the third
experiment in which the data were generated from four low-order
seasonal ARMA models and were subsequently fitted to the AR(1) and
AR(2) models, respectively. The following important points emerge

from the reported results in these tables:

(1) The most significant observation appears to be the
occurrence of some high-order autocorrelation spikes when m=12.
It is easily seen from the results in Tables 2.8-2.9 that, with
the exception of a few cases, the empirical power of all
portmanteau tests examined display a discrete rise when m is 12.
Although this finding Is entirely anticipated due to the use of
seasonal data, it 1is, nonetheless, important to highlight the

effect of the nature of data on the choice of n.
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Table 2.8

; Data generated
and o = S%

tted
Ja

v

o

AR(1)} model
(- wlB)(l - 8‘2

Empirical Powers of Portmanteau Tests,

[V
t

8'%)

from the Model (1 - 0‘2

n=100

n=50

Portmanteau

Parameters

(in percent)

{in percent)

Tests

m=15
61

m=12
61

m=10
34
41

m=4 m=5
18.2 240 289 217

m=4 me5 n=10 =12 n=15 m=2 m=3

a=3

m=2

12
0.4 QBP

1

7

69 S

68 S
71

21.0 2539 306 344

207 260 311

16 0
20 8

17 3
23 0

66 5.9 64
58

9.3

QBP1
QLB

72 3
T2
71

42
42
41

351

-

69

71

9.0

207 260 311 351 71

20 8
13 6

20 6
18 9

1 s8 69 23 0

8.0

QLB1

QDR

202 257 317 351 70 3

20 6

72

70 8
41

42 S

202 258 326 3489

17 6

88 204

76 66 6.9
7

86
85

QDR1

339 6

27 S

199 312 228

18 9

QDR2

343

43 4

6 8

49 46

60

QBN1

83 4 81

40 0

216 259 326 368

16 6
23.0 27 1

74 58 67 665

86

07 Q8P

o}

86 6

86 9
88
88

46 2

333 394

o]
39 7
39

QBP1

QLB

88 7
88

1

46 2

22.7 272 3346 402

107 423

4 94
8 4

S0
90
94

97

46 2

226 272 346 402

10 7 42 3

11

9 4

QLB

QDR

87 S
88
59
79

87 4
88

223 279 337 401 46 3

8 6
38 S
338

11

30 9

98
99
10 4

47 0

222 278 347 337

41 6
37

95 12.0
10 0 11

8.8

94

QDR1

59 8
85

28 8

12

1989 232 239 266

1

73

94
8

QDR2

2

111 119 11

95

17 &

7.2

1

88

QBN1

87 85 5

41
a7

38 1

21.3 270 331

21

26 0

09 QBP

Q

232 284 350 408 90 2

39 4

10

10 6

QBP1

17

91 7
2

1

q 4

87 0

g1
91
[

91
91
a1
S0 8
66
90 4

48 3
48
48 7
439 1
0
14 3

352 40S
124 12

196 226 238 277
12 2

229 286 355 414
233 283 34.9 40 8
100

22.9 286 355 414
233 281

43 8
2
5]

45 7
s 7
S

39
14 5

43 6
49 6
46 S
47
41
2

12
12.
12 6
13
12 0
6 4

100

100
o]
0.
g

92
10
16 0
9
8

1

102 10
102 10
105 100
10.6 10
106 9
95 8

QLB
QLB1
QDR
QDR1
QDR2
QBN1

49

72 8

T4 7

46 S
52 4

199 252 296 RS

14 8

5.9 §8 59 83 17
75 7 12 5

1

90

Q8P

o}

04

78 6

73 4
81

35 8

210 268 321
208 270 325 367

28 2
34

67

QeP1
QLB

BO &

S3 6

31

13 9

85
8 S

80 6

81

S3 6

208 270 325 37

232 278 328 364

31
30
31

72 139 345

758

89

QLB

73 9 80 S

80

53 8
536

33 6

13 5

87 7

1

e[ -]
205 232 232

232 280 331

6
29 3

72 82 137 350
96

83

83

8 4

QDR1

53 4
48

309

10

139

S0

1
1

QDR2

QBN1

93 10 33 16 4 573

88

7

10 8

-

98 S a7 7

70
73

287 404 478 51 89

63 7
81

15 8 22 3 74 S

1

143 15
18 2

130
15

0 Q8P

[o}

-

93 2
39

a8 3

299 416 490 S3 S

305 854

18 2

180

Q8P1

543 733 9314
2965 413 4923 543 73

286 419 433

182 189 18939 330 30 86 6

14 8

33
93

9 4

182 189 198 330 900 86 6

14 8
19

QLB

QDR

442 S06 S51 743 993

347 423 508 554
250 309 2382 377

34

86 2

19§ 202 1987
21 0

180 204 211

2

39 5
33

74 5

89 7

340

QDR!

99

54

64 2
52

87 7
66

QDR2
QBN1

93

s8

2 190 2843 308 3389

19 7 33

185 2043

16 S

100

1C0

98 1 35 2 384 540 642 722 85
390 553 659

45 3

228 278 313 326

QBP

09

20

N

88 5
88

t~

38 S
99 2
39 2

36 552 933

24§ 303 372 398

245 3068 361
285

Q8P1

QU
O Oy

(e

e e

s
s

RES
-
7

€5 4 66 &

57 9 38
57 9 83 3

S 372 W8

Qs
QLB
QDR

83

99 § 39 2 463 538 700 T34
375 46

80 1

313 355 413 432

QDR1

4]

m

73 939

545 SB 4

98 3 98 8

a7

58 7

299 352 407 28

47 7 588 67 8 30 5 100

B 7

408 430 €70

34

CBN1




m=15
86

m=12
89 0

n=z4 m=zS m=10
723 634 692 679 71

736 709 700 €393

m=15

m=12
s

10
27 8

Table 2 B (cont'd)
28

o

m=5

m=4

m=3

Portmanteau
Tests

12
0& -05 9BP

Parameters

U]

30 7

8

435 317 264 230
375 1355 305 278§

46 8 357 310 27.6

91

3t 6
63 9
85 2
84 5
88 6
30 0
80 0
89 S
89 4
63 9
85

95 4
97

97 6
97 6
97 6
97

83 8
ar 7
88 8
93 4
93 0
93 0
93

93

74 2
94 0

912
a1

91

-}

65 2
87 0
90 5
91

N9
a1

65 7
84.7
96 0
97 5
97 9
97 9
97 8
98 1
B6.2
96 9
91

94 4
9% 6
94.6
94

93 9
75 2
92 6

75

75

7S 4
75 8
75 7
48 3
62 8
60 8
64 2
64

64 6
63 9
42.6
34.1
74 0
77.1
71
77

78 8
78 €
S48
64

7.9
75.1
75.6
75 6
74.7
75

S0 S
57.1

69 S

69 §

€9 0

729 710 700 €88
622 620

48 6

594 617 64.0 64.3

534 620 643 645
58.6 61 9 64.2 64 S

63.2 645 66 4 67 4
62.2 S9 0 622 602
708 705 73.7 74.7

70.5 70.5 737 747
69 0 68.0 70.8 72.9

736 710 701

733 709 701

734 714 711

43.7 465 44 9 433
715 723 729 720
S57 548 580 617
573 S68 535 631
S70 568 597 644
S64 568 S97 644
557 562 590 633
42.4 3B 3 387 417
52.9 S0.6 47.8 44 9
634 650 669 678
45 7 452 456 44 3
69 6 68.5 71.0 72.6
709 704 73.3 746
688 675 707 721
48 6 458 471

664 705 704 67.9

57 4 60.1

4
4
75 4
S
9
9
59 §

49 8
60 8

46 0
S0

50 7
45

23 9
27 4
43 6
439 8
47 8
48 0
43 5
17

52 8
75 5
77 2
40

44 0
57 8
59 6
38

4
4
S

47 6
52 0
s2 0
S0
52 6
48
339
el |
45 9
s2
52 8
49
S0 8
a5
23
60 8
73
797
79 7
79 9
81
77
47 8
49 6
59 7
65 3
65 3
62
62
60 O
39

6
28
28
28 8
28.8
27
27 1
16
22 6
237
23 7
22.8
24 6
24 6
13.2
26 1
34
36 0
3B O
398
38 8
38
36 G
27.8
35 1
370
37 0
330
35 S
337
25 0

26 1
20.6 212
24 9
22.7
21§
22 7
293 257
325

23 7
32.8 299

312 344

343 291

1

230 335 287 265
405 314 272 257
417 335 389 3IES
B0 253 239 256
344 255 240 26.2
342 255 240 262
317 234 228 245
322 242 241t

336 32.3 302 272
333 323 30.2 272
3834 358 330 299

394 360 342 311

378 351
496 3399 358 375

465 357 310 276
45

317 221

310 229 22.9

29 3 261

308 275 251

34.4 321

40 9 348 35.1

455 36.4 307 318
492 400 36 2 381
483 400 36.2 381
42 8 363 312 3365
420 351

3393 328 315 329
41.4 410 386 355

QLB1
QDR

QBP1
QLB
QLB1
QDR
QDR1
QDR2
QBN1
QBP1
LB
QDR1
QDR2
QBN1
QBp
QBP?
QLB
QLB1
QDR
QDR1
QDR2
QBN1
QB8P
Q8P1
QLB
QLB1
QDR1
QDR2
QBN1

-05 06 QBP

06 -05 ©
-0.06 O

4]



Table 2 9

Data generated

mode | fl%%ed.
8 “la, a = S%
12 3

1

AR(2)

= (1~ ¢B)1 -8

B'?)w
12 t

Powers of Portmanteau Tests,

from the Model (1 - &

Empirical

n=100

n=50

Portmanteau

Parameters

(in percent}

(in percent)

Tests

m=12 n=15

m=10
30 2
a5

m=5

m=4
185 230 263

m=3

m=4 m=5 m=10 m=12 m=15

m=3

12
04 QBP

12

56 6
65 3

58 6
65 4
67
67

46 4.6 30
62 S1

66
58

0

2
1
1

20.3 2513 298

12 4
16
16

14 8

44

QBP1
qL8

67 3

e}
36
36

18 7 1 196 253 29.7

57

s9

87 3

5.7 18 7 1 19.4 252 297

]

QLB1

QDR

5.5 18 0 15 4
5.7

59

S9

376

195 250 298

185 15 9

56

QDRt

8 6
3S 3

62 67 6.1 16 2 14 4 241 248 285 257 407

60

QDR2

42 9

QBN1

80 S 77

34 6

21.4 25.8 310

23

B

17 11

50

S 2
789

58
83

o7 Q@QBP

o

84 2

40 3

1
1
1

26 2

29 7

70
73
73
7

78

QBP1
QLB

412 867

278 342
278 342

22

330

3B 7

TT 758
77 1.8

41 2

22

330

w7

QLB
QDR

86 2 8S 7

86

415

230 273 330

330

35S

85 S
54

1

323

s e
33

1

QDR1

57 7

27 3

11

265 24.8 27 2

28 5

1

82

1

59

QDR2

78 7

8BS 0

¢}

100 9

8.5

106

16 9

1

1

QBN1

N~
w o

358 8339

41

213 260 221

13 7
30 2

21

39
758

82

SB6 5S4
89
88
8.8

63

09 QBp

0

232 287 359

330
44 4

8 6

90

QBP1
QLB

83 7 89 0

]
9

41

223 287 358

38 7

80 83
78
8

89 7 83 0
89 88

41

41

22 2 287 35 8
236 282 3593

38 7
6

44 4
40 6

83
8

QLB1
QDR

51

a3 3 83 8

42 2

233 285 35 4

36 8

42 6

QDR1

60 2

63 3
91

29 8

258 257 298

32

82 82 330
60 5.3

8 4

86 9

96 12 2

10

89
178 230 254

12 8
10 6

19 §
14
23

68

65
52

QBN1
QapP

67 9

71

41 2
45
46
46

4.5

1

04

75 6
77
77

199 287 277 76 0

20 2

1

QBP1
QLB

189 247 276 78 0

S8 90 278 24 9

60

63
59

78 0
77

187 247 2786

24 9

27 8

80
10 3
10

s8

59

QLB1

QDR

77

46 S
45

180 254 278

24 5

28 4

67

8 4
6

776
52

3
S3

8
0

190 255 278

29 3

68
7.6
61

1

72

QDR1

1

31

233 239 241

82 102 2734 25 1
S7

1
49

158 578 47 5

77

78

62

10 6

QBN1

37 8

38
98
38

59

54

273 357 403

S4 5

68 §
81

10 5 13 7
14 21

10 0

10 5

QBP

93 8

75 0

14 0

139

Q8P

QLB

9y 3

65 3

283 373 432

81 4
81

136 144 229 B8
14
16

127

38 39

86 5

22 g

13 6

125
16

QLB1

GOR

93 9 28 9

67
66

305 403 44 8

BS 8 81

25 8

39 0 98 3

8

45 2
317 338

163 262 278

305 41

1S6 164 251 878 92 7

15 2

QDR1

31 6 28 3

48 6

85 9 80 O 311

25 4

QDR2

QBNI

33 5 33 S

S5 8

153 14 287 632 48 2

11 6

100

120

78 9

33 533 537

324 973 g2 3

21 5 24.3

1

18
212 272 298

QB8P

9

120

100

98 2

42 6

QBP1

190

1
1

82 0
82

28 4 98 8
38

43 3
43

198 265 298

408 5390 62 4

98 4

197 263 298

266 311

QL31

QDR

100 192

84 S

463 S75 641

4739 9% 3 98 8

31 4

98 9
ag

L3

46 5

318

60 311!

Q2R1

3

44 8 49.6 40 &7 33 3 3
47 0 55 ¢

23

AwR2
I8Nt

v
IS

103

88 0

3% 7 91 4

9

51

280 316

13 ¢




Table 2 9 (cont’d)

Portsanteau

Tests

Parameters

a=lS

=12

m=4 w=S w=10
41.3 403 407

na3

a=15

w=4 a=5 @=10 m=12
11

11 §

na3

12
06 -05 QBP

48 9

1§ §
29 0

20 3

9.0
14 0

15 4

0

317 442 432 437 552

38
39

13§

QBP1

84 C

83 S

429 428 43.3

330

14 6

135

18

56 1
1

56

84.0

83 5

41 9 42.6 43.2

330
31

1

152 134

17 7

QLB1

QDR

83 7 84.1

S5 7

44 S 44 3 44.3

8

1

15 2 14.2 15 0 36.3
14

18 8

83 9 84 S

58

S5.5

435 439 43.8

156 400 34
15

14.3

1

QDR1

38 7 S7 6

J4.5 32.5 N 6

16.7 135 14.2 6 23514 332

QDR2
QBN1

70 8 68.1

309

31.2 32.7 33.8

3

174 172 123 19

14 8

77 4 733

395

28.3 31.7 38 4

30 4 34.1

11.8
26 4

7.0 5.0 169

10.5

T7
11.7
11

9.5
13

-05 06 QBP

0

82 7 81 6

44.0

28.7

QBP1

85.2 83 3

295 337 401 44.7
29.1

31.7

35.2

85 2 83.3

44.7
45

33.6 40 1

8.4 35.2

110 10.3

10.8

QLB1

QDR

82 7

85 0

29.9 4.0 41.7 1

8
1

31

11.5 11.9 9.5

12.5

84 8 83 0

45 3

303 340 41.7

31.1

. 11.7 9.5 1352 31
11 10 7

110
83

12.9

QDR1

519
74.4

30.4 310 395 552
170 1S0 141 72.0

16 0

8.1
101

8.4 70 48

12.9

QDR2
QBN1

52

CNDON -

3
6
S
S
0.

OTWWNL

3088885

93.4

56 3
61.8
62 2
62 2
62.5
62.3
42.3
42.6

32.3 378 40.7
34.4 400 434
33.7 396 432
329 39.4 43.2
35.0 406 440
35.3 408 43.9
32.8 339 32.5
14.7 227 25.4

oon

ah8

m -

~ o
©ow

66 2
66 3
25.5

7 3
6
3
77
72.9
73
0.
20

2.
8
200
14.3  20.0
218
1
1
20

10.
14.1
14.
16.1
6
6
11

11.4
15
13.7
13.5
16.8
16.4
6

6.9 115

12.5
16
14.4
14.2
18.0
8
8

.

Q8P
QBP1
QLB
QLB1
QDR
QDR
QDR2
QBN1

-05 0

0.6

85 § 839

47 9

42.0 452 48.2

20 3
3

27 4

127 122 8.9
13 5
14
1
1

16 5

QBpP

-0.50.6 0

89.1 88 4

45.6 47.8 523 S3.7

16 6 41.5 S.3

17 8

19.7

QBP1

89.9

48.8 42 3 435S 475 S52.3 54.1

16.9

16.7

42 4

48 8

4.4
3.3

16.5 16.8

18.8

qQLBt

83 S
9 3

2
S3.7

40.8 455 49 2

g 2
40 7

5 45 8
14.0 14 4 13.9 45 8

14.0

16.6
14.5

64 8
83.8

35.6
26.4

33.7 346 35.1
28.7 308 28.1

37 6
17.8

43.0
20.4

14.1
10.

14.1
12.5

12.6
14.4

15.9
15.4

QDR2
QBN1




(i1) The empirical power of QLB and QLB1 is almost
identical. This is true irrespective of the choice of the number
of residual autocorrelations, the fitted models, the sample size,

and the chosen values of parameters.

(1ii) Among all tests investigated, QDR2 and QBN1 perform the
worst. This 1is especially evident in the case of QBN1. For
instance, when the data were fitted to the AR(1) and AR(2) models
with n=50, the difference in empirical power between QBN1 and the
other portmanteau statistics like QBP1, QLB, QLB1, QDR and QDRI1,
can be as large as 41.7% (see the AR(2) model with 012=0.6 and

'w1=—0.5). However, this difference is considerably reduced when n

increases from 50 to 100.

(iv) Unlike the case of non-seasonal data, the performance
of QBP1 is not as good as QLB. This may be attributed, in part,
to the weighting criteria of the residual autocorrelations used in
QBP1 and QLB [see Ljung and Box (1978), p. 301]. While QBP1 gives
equal weight to residual autocorrelations at any given time lag,
QLB gives more emphasis to residual autocorrelations at larger
time lags. When seasonal or higher-order autocorrelations are
expected, it would be advantageous to use QLB in the said

situation.

Although it is not intended that a rigorous comparison of the

83



results obtained from seasonal data be made with those from
non-seasonal data, two points seem to deserve special attention.
First, the most important feature is the contrast between the
choice of the optimal value of m when different types of data
(seasonal vs. non-seasonal) are used. The bulk of the simulation
evidence presented here partially supports Ljung’'s (1986)
assertion that when the true data-generating process can be
modelled as a simple low-order ARMA model, the portmanteau tests
considered are powerful in detecting model misspecification when
the number of residual autocorrelations is small. However, this
assertion needs to be modified to account for the nature of the
data used. The findings reported in Tables 2.8-2.9 clearly
illustrate the importance of seasonal data on the choice of m. In
this circumstance, it would be useful to choose m on the basis of
the frequency of the data. Second, it is evident that the first
few autocorrelations, as in the seasonal case, carry little
information about model adequacy. This suggests that a good
empirical strategy would be to remove the redundant
autocorrelations. One would, therefore, expect improvements in

the empirical power of the portmanteau tests considered.

2.5 Concluding Remarks

In this chapter, three separate Monte Carlo experiments were
conducted to investigate the finite-sample distribution of eight

portmanteau statistics of model adequacy, with special attention
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being paid to their empirical significance levels, means and
variances. Additionally, the empirical power of these tests Iis
investigated in the cases of seasonal and non-seasonal data.
Based on the results reported above, several features that emerged

are worth mentioning:

(i) The accuracy of the size of the portmanteau statistics
considered depends not only on the choice of m but alsc on the
underlying parameter values. With the exception of QLB1, size
distortions can be substantial for portmanteau tests in models
with parameter values approaching the boundary of the stationary
or invertible region. This poor empirical performance becomes

more serious when m is small.

(1i1) QLB1 has estimated significance levels which are much
closer to the nominal levels than those of the other portmanteau
statistics for m=10 and parameter values which are large. 1In this
respect, QLB1 is considered to be the most reliable (or preferred)
test. Also, QLB1 can be used for model diagnostics even when m
is as small as 1. This gives QLB1 the added advantage over the
other portmanteau statistics of being valid over a wider range of

m.
(1i1i) The basic obJjective of the corrections suggested by
Dufour and Roy (1986) is to obtain more reliable statistics from

the point of view of controlling the empirical level. However,
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Judging by the simulation results reported above, the extra
computational effort does not yleld clear gains in terms of a

conformity between nominal and actual significance levels,

(iv) As for the empirical power of the portmanteau
statistics examined, the simulation results reveal that each has
good power when m is small and the underlying data-generating
process can be modelled as low-order ARMA(p,q) models. However,

this power property ceases to hold when seasonal data are used.
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CHAPTER THREE
A MONTE CARLO STUDY OF THE FINITE-SAMPLE DISTRIBUTION OF SOME
TESTS OF NESTED AND SEPARATE HYPOTHESES: THE CASE OF

UNIVARIATE TIME SERIES MODELS

3.1. Introduction

Over the past twenty years many methods have been proposed in
the time series literature to complement the portmanteau-test
approach. The most frequently employed method is that of
Godfrey’'s (1978) Lagrange multiplier (LM) test. The main
advantage of the LM test is that it is asymptotically optimal when
the null model is nested within the alternative. Moreover, for
testing against simple alternatives, the empirical performance of
the LM test can be as good as that of the modified LJjung-Box
portmanteau statistic but requires fewer computations [see Godfrey

and Tremayne (1988) and Hall and McAleer (1989)].

McAleer et al. (1988) have recently suggested several
computationally straightforward procedures for testing the
adequacy of an ARMA(p,q) model. Contrary to Godfrey’s (1979) LM
test, their procedures are asymptotically optimal against
alternatives which are separate from the null specification.
Because of the treatment of the alternative hypothesis and its

relationship to the null model, the McAleer et al. (1988) tests
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have been referred to as tests of separate hypotheses (or tests of

non-nested hypotheses).

McAleer et al. (1988) conducted Monte Carlo experiments to
investigate the finite-sample properties of the tests of separate
hypotheses. Their main simulation findings can be summarized as
follows: (1) The empirical size of the tests is generally close to
the nominal level when the sample size is moderately large. (ii)
The tests have high empirical power against separate alternatives.
(1i1) The tests can be more powerful than Godfrey’'s LM test, even
in cases where the latter is supposed to be dominant. In a
follow-up simulation study, Hall and McAleer (1S83) confirmed

these findings.

The principal objective of this chapter is to provide a
detailed assessment of the work of Godfrey (1979), Hall and
McAleer (1989) and McAleer et al. (1988). Several features
characterize the chapter. First, as shown by Newbold (1980), the
LM test of an assumed model against an alternative of ARMA(p+r,q)
or ARMA(p,q+r) is equivalent to the test based on the first r
residual autocorrelations from the fitted model. It follows that,
in the case when r is chosen to be large, the portmanteau and LM
tests coincide [see also Ljung (1986) and Godfrey and Tremayne
(1988)]. Due to this equivalence, it is important to investigate

the impact of the choice of r on the finite-sample distribution of
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the LM test. This issue is also of considerable importance since
the simulation results of Hall and McAleer (1989) and McAleer et
al. (1988) indicate that the xz approximation to the distribution

of the LM test may not hold for a large value of r.

Second, an investigation of the emplrical power of the LM
test Is carried out for both seasonal and non-seasonal data. As
well, it is known that the test is usually conducted in such a way
that the value of r is selected on the basis of the frequency of
the data. However, such a selection strategy, as cogently argued
by Godfrey and Tremayne (1988), suffers from a potentially serious
problem, namely it is not always the case that all restrictions
considered are relevant to model diagnostics. In this chapter, we
will show that the LM test can easily be modified to alleviate

this problemn.

Third, although the simulation evidence on the finite-sample
properties of the tests of separate hypotheses is encouraging,
there are a number of relevant issues which have not been fully
addressed in Hall and McAleer (1983) and McAleer et al. (1988).
In light of this, the present chapter 1is aimed at a critical

review of the finite-sample performance of these tests.

The remainder of this chapter is organized as follows:

Section 3.2 presents the test procedures. Section 3.3 discusses
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the design of the Monte Carlo experiments and reports the main
simulation results regarding the empirical performance of the LM
test. Section 3.4 gives comments on the finite-sample
distribution of the tests of separate hypotheses. Section 3.5

offers some concluding remarks.

3.2 Test Procedures

In order to examine the adequacy of the ARMA(p,q) model given

in (2.2.1),
¢(B)wt = e(B)at,

it is important to define the variables:

WS W+ 0w o+ + LA (3.2.1)

d a = a +6a + +0a (3.2.2)
an a = a 1a'h_1 qa'._q. 2.2
for t=1,...,n and with w:=;:=0 for non-positive t. For purposes

of testing (2.2.1) against an ARMA(p+r,q), Godfrey (1979)
suggested a two-step procedure to calculate the LM statistic.
First, we obtain the residuals, ;‘t’ from (2.2.1). Second, we

perform the following OLS regression:

. . ~8 ~8

a=alwt1+...+a + B a + ... + B

W a .
t p+r t-p-r 1 t-1 q t-q t

(3.2.3)

The computed value of the LM test, denoted by LM(r), is given by
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LM(r) = nR%, (3.2.4)

that 1is, the sample size times the coefficient of determination
from (3.2.3). If the model (2.2.1) is correct, the quantity LM(r)
is asymptotically distributed as xz with r degrees of freedom.
For purposes of testing (2.2.1) against an ARMA(p,q+r), we repeat

the similar steps, except that (3.2.3) is replaced by

- [ ] [ ] X ] ~9
a = ow + ... + aw + B a + ... +8 a + v,
t 1 t-1 P t-p 1t-1 q+r t-q-r t

(3.2.5)

The LM(r) statistic is computed as n times R° from (3.2.5) and is

distributed as xa(r) when (2.2.1) is the correct model.

Poskitt and Tremayne (1980) have shown that if an ARMA(p,q)
is the null hypothesis, then an LM(r) test statistic against an
ARMA(p+r,q) alternative is numerically equivalent to testing an
ARMA(p,q+r) alternative. Thus, since these are equivalent, only
one of the two nR® statistics need be used for testing additional
r restrictions [see Harvey (1984, pp. 156-157) for a detalled

explanation of this issue].

For the purpose of testing an AR(p) null against an MA(q)
alternative, McAleer et al. (1988) proposed two test statistics
(the separate model test and the separate prediction test) which,
in terms of calculatlions, are similar to those of Godfrey's LM

test. Specifically, the test procedures involve a two-step
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estimation: First, we obtain the residuals, QL and gt. from the
AR(p) and MA(q) models, respectively. Second, we perform the

following OLS regressions:

-~ ~ ~

a = o w + ... + aw +

+a a + +
t 1 t-1 p t-p p+l t-1 K

a a
p+tq t-q t

(3.2.6)

and

~

>

a = oW + ... + aw + 0 W o+
t 1 t-1 p t-p pr1 t Hy»

(3.2.7)

where ;t are the fitted values of the MA(q) process. The separate

model test statistic is glven by

SM(q) = nRa,

where R® is the coefficient determination from (3.2.6). Using the
fact that Gt = -(518 - L .. - Squ)at, vhere 8's are the least
squares (or maximum likelihood) estimates of the coefficlients of
the MA(q) process, McAleer et al. (1988) recommend the separate

prediction test which is denoted as

SP(gq) = nR%,

where R is the coefficient determination from (3.2.7). If the AR
model is the true data generation process, SM(q) and SP(q) are
asymptotically distributed as xz(q) and xa(l), respectively. As

indicated by McAleer et al. (1988), SM(q)=SP(q) when q=1.
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For testing an MA(q) against an AR(p) alternative, it is

necessary to define the following variable:

* .

-s.82 N - N
a, ot eiat_1 Bqat_q (3.2.8)

The separate model [SM(p)] and separate prediction [SP(p)] test

statistics are based on the following two-step regressions:

~ ~® ~8

a = a + ...+ a + W + ... + W + v

t Bl t-1 Bq t-q Bqﬂ t-1 Bq+p t-p t
(3.2.9)

and

~ ~8 ~e ~

a = a + ... + a + w o+ v

t Bl t-1 Bq t-q Bqu t ¢’
(3.2.10)

where ;c. are the fitted values of the AR(p) process. The separate
model and separate prediction test statistics in the respective
equations (3.2.9) and (3.2.10) are computed as nR%. If the MA(q)
process is the true model, SM(p) and SP(p) are asymptotically
distributed as xa(p) and xa(l), respectively. It must be noted
that, from the definitions of the predictions and residuals,

SM(p)=SP(p) when p=1.

3.3 Experimental Designs and Some Monte Carlo Results

of the Finite-Sample Distribution of LM Tests

In examining the effect of the choice of r as well as the
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nature of the data on the flnite-sample distribution of the LM
test, three simulation experiments were employed. The first
experiment focussed on empirical significance levels, means and
variances of the LM test for various choices of r (1=rs5), For
purposes of interpreting the simulation results, we worked with
the roots of the lag polynomials in (2.2.1). All data were
generated from a few special cases of an AR(2) process,
(l-nlB)(l-nzB)wt=at, with proper zero restrictions on the roots of
the AR process ("1’"2)‘ The starting value wo was set at zero and
the first 50 observations were discarded to minimize the influence
of the initial value. Estimates of the significance levels (a=1%,
5% and 10%), means and variances of this test were based on 1000

replications. The sample size, n, was 25, 50, 75 and 100.

The second and third simulation experiments evaluated the
empirical power of the LM test when the data were generated from
both seasonal and non-seasonal ARMA models. In the case of
non-seasonal data, all data were first generated from some
selected cases of an ARMA(2,2) process,
(1‘"13)(1‘“23)“5(1"W15)(1‘V’23)a,_’ and were subsequently fitted to
the AR(1) and AR(2) models. In many instances, the chosen values
of parameters ‘"1"'2""1'*”2’ were obtained from McAleer et al.

(1988) and Hall and McAleer (1989).

As regards the case of seasonal data, the set-up of the

simulation experiment is similar to that of the non-seasonal one.
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However, in order to allow for the impact of the nature of the
data on the empirical power of the LM test, we use the seasonal
ARMA models given in Chapter 2. Since one of the objectives is to
examine the effect of the choice of r on the ability of the LM
test to detect model misspecfication, r was allowed to vary: 1srsS
for data generated from non-seasonal models, and 1sr=12 for data
generated from seasonal models. Finally, for the last two

experiments, the sample size was set at 50 and 100.

Table 3.1 provides a summary of the simulation results on the
empirical significance levels, means and variances of the LM test
in commonly used sample sizes. On the basis of these results,

several points seem to merit attention:

(i) The results of the empirical significance levels of the
LM test are close to the nominal levels only when (1) rs2 and
n<50, and (2) rs4 and n=75. For n=100, the value of r can be
chosen as large as 5. The main conclusion .hat emerges from these
results is that the value of r should be kept small relative to
the sample size when computing the statistic. This is particularly
important when the sample size is not more than 765. This
conclusion holds when the nominal significance levels are 5% and

10%.

(i1) When the assumed model follows an AR(1) process and the
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Table 3.1 (cont’d)};
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Table 3.1 (cont’'d); n=100
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values of m ere close to the boundary of the stationarity region
(i.e., "120‘9)’ the results, in general, are closer to those

predicted by asymptotic theory.

(i11) The empirical variances of the test are substantially
smaller than the theoretical value 2r. This 1s particularly
evident when r&2 and ns75. For n=100, the dispersion bias |is

still pronounced when r=5.

(iv) As regards the ratios of empirical variances to
empirical means, these values are considerably smaller than 2
for rz2 and ns75. Both points (iii) and (iv) suggest that the x°
approximation to the small-sample distribution of the LM test is

questionable.

(v) As a minor point regarding the computation of the
Godfrey procedure, the simulation results of the AR(1) model
presented are more numerically stable than those of the
conventional method which requires computation of the information
matrix for the (p+r) AR parameters [see Ljung (1986, Table 4);
Ljung (1988, p. 353)]. It is interesting to see from Table 3.1
that even in cases where rz4, and «=5% and 10%, the empirical
significance levels of the LM test do not display any unusually
large values. This evidence strongly favours the use of Godfrey's

procedure in empirical applications.

70




Tables 3.2 and 3.3 summarize the simulation results of the
second simulation experiment in which the data were generated from
a few selected cases of an ARMA(2,2) process and were subsequently
fitted to the AR(1) and AR(2) models. The following important

points emerge from the reported results in these tables:

(1) The results for the empirical power of the LM test are
much better for rx3 in the majority of cases considered. This is
especially obvious when the fitted process is an AR(1) model with
n=50. Even in those cases where the chosen r should be greater
than 3, one can easily see that the gain in the empirical power
'from selecting such higher values is fairly minimal. Thus, the
most important conclusion that emerges from the results in Tables
3.2 and 3.3 is that for examining possible model misspecfication,
the choice of r, again, should be kept small relative to the
sample size when non-seasonal datzs are fitted to low-order

ARMA(p, q) models.

(ii) In several cases, the loss in empirical powers due to
the use of high values of r (i1.e., r24) cau be quite large. For
instance, when the data, which were based on a true AR(2) process,
were fitted to an AR(1) model with n=50, the test can lose power

by as much as 31.8% [see the case where (nl.n2)=(0.8,0.5)].
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Table 3.2
Empirical Powers of LM Tests; AR(1) Model fitted; Data generated
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(i11) When the fitted process is an AR(1) model, the LM test
is asymptotically optimal against the AR(2) and ARMA(1,1)
alternatives for r=1. An inspection of the results shown in Table
3.2 reveals that the optimal value of r is indeed equal to one.
It is also noteworthy that even in cases where Inappropriate
alternatives such as the MA(1) and MA(2) models are considered,
the power of the LM test is fairly high when the size of ¢¥'s

ranges from moderate to large.

(iv) The empirical power for ARMA(1,1) is relatively low
compared to AR(2) models (see Table 3.2). A plausible
explanation is that the degree of model inadequacy is more serious
in cases where the data were generated by the AR(2) models than in
those of the ARMA(1,1) models. For example, consider an ARMA(1,1)
model with "1=O'8 and w1=0.5, then this model is almost equivalent
to an AR(2) process wt=0.3w;_1+0.15wi_2+at. If the data are
generated by an AR(2) model with n1=0.8 and u2=0.5, this model can
be written as wt=1.3wt_1—0.4wt_2+a. A comparison of the two

t
models, wt=0.3wt_1+0.15wt_2+at and w&=1.3v&_1-0.4wi_2+at,
indicates that the extent of model misspecification 1is more
serjous in the latter case as the coefficient of ‘Q-a is larger in

absolute terms than in the former one. Consequently, the empirical

powers for the LM tests are higher in the latter case as well.

(v) The power of each of LM tests is small (0.21-0.11 for
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n=50 and 0.4-0.21 for n=100) when the data are generated from the
ARMA(1,1) models. This poor performance can easily be explalined
using the example given in point (iv). As indicated above, the
approximation of an ARMA(1,1) model (l—O.BB)wt=(1—O.SB)at is a
simple AR(2) process W =0. 3w, +0. 15w __+a . Since the
coefficient of LA is small, then the power would be low. This
is because the first-order autoregressive model can provide an
adequate approximation to a second-order autoregressive process as

long as '¢2| is small.

(vi) When an AR(2) model is being fitted to the data, the
empirical power of each LM test is unambiguously lower than that
of the AR(1) model. This finding is supported by the well-known
.duality theorem which states that any stationary and invertible
ARMA representation can be well approximated by higher-order AR

models.

(vii) When the sample size increases from 50 to 100, the LM
test 1is very successful in revealing deviations from model

specification in most of the cases examined.

Tables 3.4 and 3.5 report the simulation results of the third
experiment in which the data were generated according to the
seasonal models given in Section 2.3 and were subsequently fitted

to the AR(1) and AR(2} models. The most noticeable features of

75




these two tables are as follows:

(1) The main conclusion based on the results of non-seasonal
data (see Tables 3.2 and 3.3) does not appear valid in the present
experiment. Once the effect of seasonality was introduced, the
chosen values of r, which are intended to obtain "maximum" power,
become fairly large. For the AR(1) and AR(2) models, the optimal
values are at least 10 and 11 in most cases considered.
Additionally, it is observed that the LM test can suffer from a
substantial loss in power when r 1is selected less than these

optimal cholces.

(ii) For data generated from the seasonal AR(1) and MA(1)
models [i.e., (2.3.1) and (2.3.2)], there are many cases where
the LM test is virtually powerless. Quite interestingly, Iits
power is rarely larger than 10% with 0.4581250.9. ¢12=0.4. r=<10
and n=50. Even in a few cases, it is smaller than the designated

significance level (nominal size).

(11t) A comparison of the results obtained from seasonal
data (Tables 3.4 and 3.5) and non-seasonal data (Tables 3.2 and
3.3) indicate that the test power as well as the choice of r are
significantly affected by the nature of the data. Clearly, the
findings reported in Tables 3.4 and 3.5 illustrate a potential
weakness of the LM test; namely, many restrictions tested in the

case of seasonal data are irrelevant in the sense that they carry
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5.0
27.6
54.3
28.1
16.
30.
31.3
r=12
47.1
19.4
100
100
36.7
38.

1
1

)at; o
25.85
53.4
31.
20.2
29.8
35.9
r=11
51.
21.
Q4.

100
37.6
38.

ﬁzData generated

B

12
20.5
43.5
34.1
21.
30.9
37.9
r=10

.1
32.6
65.9
28.2
21.

1
n=50
r=3
18.4
38.7
37.6
24.9
32.6
40.3
r=9
7.9
31.
62.8
21.
14.4
31.

(1 -yB)(1 -©

r=2
r=8
9.0
29.4
15.1

Table 3.4
Tests; AR(1) Model fitted

12

18.0
31.0
37.8
27.6
32.3
42.4
59.2
24.0

)wt

5
7

B

12
15.5
25.9
42.0
31.
34.7
44.6

r=

8.0
28.3
56.0
26.0
15.4

0.6
12

-0.5 0.6
-0.5 0.6

0.6 -0.5 O

Empirical Powers of LM
from the Model (1 - @
Parameters

P
-0.5 0

43.7 74.0 75.9
23.7 35.7 56.1 55.8

30.2
26.4

29.7
29.3

0.6

o o

wm
oo
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Table 3.4 (cont'd)
Empirical Powers of LM Hgfts; AR(1) Model fittedazData generated
from the Model (1 - @128 )wt = (1 - wIB)(l - 9128 )at; o = 5%

n=100

¢ ] (] r=1 r=2 r=3 r=4 r=5 r=6
12 1 12

0 0 0.4 7.1 7.7 7.8 7.0 5.4 6.2
0 0 0.7 9.8 10.3 10.9 12.0 8.7 11.3
0 0] 0.9 10.7 12.1 11.8 13.0 10.2 11.7
0.4 O 0 8.4 8.9 8.0 8.5 14.6 15.2
0.7 O 0 18.9 25.7 29.6 33.2 45.1 48.6
0.9 O 0 33.6 45.9 56.7 64.1 76.2 79.1
0 0.6 -0.5 70.6 72.8 70.9 69.2 66.9 64.5
0 -0.5 0.6 54.7 51.6 48.2 46.5 42.3 38.7
0.6 -0.5 0O 52.6 58.1 57.8 57.1 57.4 59.0
-0.5 O 0.6 68.3 71.2 71.7 68.7 68.1 64.6
o v e r=7 r=8 r=9 r=10 r=11 r=12
12 1 12

0 0 0.4 6.7 7.2 7.5 7.3 £54.2 48.89
0 0 0.7 12.0 11.7 13.1 13.1 83.7 91.4
0 0 0.9 13.2 13.3 14.7 14.8 87.0 97.0
0.4 O 0] 14.8 15.2 15.5 16.2 70.2 66.2
0.7 0O o) 49.4 51.0 52.7 56.89 100 100
0.9 O 0 81.4 82.5 84.2 87.3 100 100
0 0.6 -0.5 61.8 60.3 57.4 71.3 87.7 89.3
0O -0.5 0.6 37.0 33.9 33.5 53.0 89.9 93.4
0.6 -0.5 O 58.7 57.8 58.3 77.2 99.3 899.7
-0.5 0 0.6 61.5 58.2 57.3 75.9 86.0 86.7

All entries are expressed as percentages.
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12 g
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; AR(2) Model fitted; Data generated
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)at; n = 100

12
B
12

1
n=100

(1 - ¢B)(1 - ©

and a = 5%

)wt

Table 3.5 (cont’'d)
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little or no information about model inadequacy. In light of this
problem, one would prefer to omit these redundant restrictions
when the LM test is used. Indeed, a recent study by Godfrey and
Tremayne (1988, p. 31) demonstrated that when looking at tests for
serial independence employing quarterly data, the LM analogue ot
their T3 test may be useful. Motivated by Godfrey and Tremayne's
(1988) suggestion, three modified LM tests are constructed to
account for the situation in which Irrelevant restrictions are

omitted. Here, two specific examples are considered:

Example 1:
Null hypothesis Ho:

w=¢pw +a
t ¢1 t-1 t

Three specific alternatives, namely

H: w=pw +¢ w +a
A t ¢1 t-1 ¢12 t-12 t

(Tested Restriction ¢ =0; LM1 ~ x2(1))

B = + + \7 ) +a
H wt ¢1wt-1 ¢2wt"2 ¢12 t-12 ¢t

(Tested Restrictions ¢_=¢ =0; LM2 ~ 22(2))

: W= W +pw + W + W + W +a
HA t ¢1 t-1 ¢2 t-2 ¢11 t-11 ¢12 t-12 ¢13 t-13 t

(Tested Restrictions ¢2=¢11=¢12=¢13=0; M4 ~ 12(4))

Example 2:
Null hypothesis Ho:

W= +¢ W ta
t ¢1wt.-1 ¢2 t-2 t

Three specific alternatives, namely
HA: wt=¢1wt_1+¢2wt_2+¢12wt_12+at 2
(Tested Restriction ¢12=O; LM1 ~ x"(1))

B1



: = + +d W +P w +a
H wt ¢th.-l ¢2"’t.-2 ¢3 t-3 ¢12 t-12 t

(Tested Restrictions ¢_=¢ =0; LM2 ~ 2(2))

: = + + + +¢ W +9 w +a
H wt ¢1wt-l ¢2"lt.-2 ¢3wt-3 ¢11wt-11 ¢12 t-12 ¢13 t-13 t

(Tested Restrictions ¢ _=¢ =9, =¢ =0; LM4 ~ x2(4))

Since the null models considered in these two examples are
nested within more general models, one can apply the LM test to
examine the statistical significance of the coefficient

restriction(s) [see for example Godfrey (1879, p. 70)].

The results reported in Table 3.6 support the above
conjecture that the modified LM tests (LM1, LM2 and LM4) are very
powerful in detecting model inadequacy when most of the irrelevant
restrictions are excluded. As for their relative performance, LM1
is favoured when the data were generated from (2.3.1) and (2.3.2).
For (2.3.3) and (2.3.4) there seems to be no clear-cut winner. It
should also be noted that, as compared to the findings of the
conventional LM tests (see Tables 3.4 and 3.5), the gain in
empirical power from the use of such modifications is fairly large

and, in many cases, is more than two-fold.

Following Godfrey (1979), we also compare the empirical power
between each of the modified LM tests and the corresponding
LJung-Box test QLB. The results clearly suggest that the modified
LM tests outperform QLB in terms of thelr ablility to detect

deviations from model adequacy. In some cases, the empirical
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Empirical Powers of Modified LM Tests and QLB Test;
12 _ _ ~ 12 . - &
from the model (1 @123 )wt = (1 wlB)(l 9123 )at, a = 5%

Table 3.6

Data

generated

Fitted process is

an AR(1) model

Parameters
Q12 w1 012
0 0 0.4
0 o 0.7
0 0 0.8
0.4 0 0
0.7 O 0
0.9 0 0
0 0.6 -0.5
0 -0.5 0.6
0.6 -0.5 0
-0.5 0.6 0

Fitted process is

Parameters

12 w1 @12
0 0 0.4
0 0 0.7
0 0 0.9
0.4 O 0
0.7 O 0
0.9 0 0
0 0.6 -0.5
0 -0.5 0.6
0.6 -0.5 0
-0.5 0.6 0

n=50 n=100

M1 LM2 LM4 QLB Ml LM2 LM4 QLB
67.3 58.0 40.6 23.0 85.0 89.7 79.7 71.5
94.1 88.6 77.6 42.3 100 99.8 99.7 88.1
86.5 92.9 85.4 48.6 100 100 89.9 91.4
80.6 69.6 54.9 34.5 98.0 96.1 89.2 80.6

100 93.8 99.2 90.0 100 100 100 99.6

100 100 100 99.4 100 100 100 100
73.8 77.3 71.0 52.0 96.1 98.6 98.0 89.0
84.3 83.1 78.1 52.5 99.4 99.6 99.0 91.9
97.9 96.8 896.4 79.7 100 99.9 100 97.9
88.4 88.9 85.0 65.3 99.3 99.8 99.5 84.6
an AR(2) model

n=50 n=100

LM1 LM2 M4 QLB LM1 LM2 LM4 QLB
66.6 55.6 38.9 18.7 94.6 88.1 78.9 67.1
93.6 87.9 76.4 29.7 899.9 99.7 89.4 86.7
96.2 92.3 83.8 44.4 100 99.9 99.7 89.7
78.9 67.5 52.4 23.1 97.9 95.6 88.1 78.0
99.9 99.7 98.0 86.5 100 100 100 99.1

100 100 100 99.4 100 100 100 100
40.2 33.5 42.6 38.1 70.0 64.3 83.8 83.5
64.1 53.8 61.6 35.2 80.3 85.1 93.6 85.2
97.9 95.0 94.2 73.7 100 99.9 100 96.6
86.8 81.5 78.1 48.8 9%.2 98.7 98.4 84.9

The number of residual autocorrelations (m) used in the LJjung-Box test,

QLB, is 12.
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powers of QLB are only one-third of those of LM1. Thus, the
findings favour the use of modified LM tests over QLB in these

circumstances.

3.4 Comments on the Finite-Sample Distribution of

Tests of Separate Hypotheses

In this section, several comments are raised regarding the
empirical performance of the tests of separate hypotheses proposed

by McAleer et al. (1988) in commonly-used sample sizes:

First, the empirical size of the tests of separate
hypotheses, namely the SM test and the SP test, is significantly
affected by the orders of the AR(p) and MA(q) models. To
highlight this feature, the empirical significance levels of these
tests obtained by McAleer et al. (1988, pp. 181-182, Tables 1 and
2) are reported in Tables 3.7 and 3.8. On the basis of these

simulation results, two points deserve special attention:

(1) For testing an AR(p) null against an MA(q) alternative,
the SP test is highly unreliable even when the sample slize is as
large as 100. As for the SM tests, the empirical significance
levels of the SM(1) test are much closer to the nominal level than
those of the SM(2) test. Interestingly, with the exception of

n1=0.8, n2=0.5 and n=100, the size of the G6M(2) test is
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Table 3.7
Significance Levels of Tests of Separate Hypotheses for the True Model

(1 - "1)(1 - 1vta)yt =a.

parameters of

AR(2) model Nominal level = 5%
n n n, SM(1) SM(2) SP(2)
25 0.1 0 7.30 14.13 22.25
0.5 0 6.88 10.58 19.21
0.9 0 6.91 12.20 23.25
0.8 0.2 5.64 11.84 19.61
0.8 0.5 4,09 16.68 28.13
0.8 0.8 1.86 27.56 36.94
50 0.1 0 5.28 6.61 10.31
0.5 0 5.60 6.48 12.93
0.9 0 6.11 7.41 13.89
0.8 0.2 5.65 6.88 11.94
0.8 0.5 5.76 9.45 15.68
0.8 0.8 3.03 16.05 20.48
100 0.1 0 5.13 5.28 7.04
0.5 o 4.63 5.64 10.89
0.9 0 5.33 5.49 8.20
0.8 g.2 5.36 5.36 8.20
0.8 0.5 5.48 5.26 9.04
0.8 0.8 4,11 7.58 9.98
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Table 3.8
Significance Levels of Tests of Separate Hypotheses for the True Model
y, = (1 - wl)(l - wz)av

Parameters of

MA(2) model Nominal level = 5%
n wl wa SM(1) SM(2) SP(2)
25 0.1 0 4.13 3.56 4.24
0.5 0 3.79 3.26 6.00
0.9 0 5.51 4.19 4.25
0.8 0.2 9.43 7.28 11.08
0.8 0.5 16.51 14.29 17.20
0.8 0.8 22.93 20.10 21.99
50 0.1 o) 4.15 3.79 4.59
0.5 0 4.29 3.95 5.21
0.9 o) 5.48 4.94 4.21
0.8 0.2 6.08 5.36 6.95
0.8 0.5 11.93 10.84 11.06
0.8 0.8 18.18 16.18 16.45
100 0.1 0 4.79 4.70 5.19
0.5 0 4.89 5.13 5.01
0.9 0 5.583 5.24 4.93
0.8 0.2 4,80 5.09 5.14
0.8 0.5 6.85 6.44 6.35
0.8 0.8 12.74 12.09 11.94
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consistently larger than the designated significance level (S5%).

This observation ls particularly clear when n=50.

(11) For testing an MA(qg) null against an AR(p) alternative,
the simulation results of Table 3.8 reveal a potential problem,
namely, the empirical significance levels of the separate model
tests are undersized vhen the fitted process is an MA(1l) model
with wISO.S and ns50. This under-rejection problem becomes even

more serious when the value of p increases from 1 to 2.

In short, we can easlily see that the quality of the x2
approximation to the finite-sample distribution of the tests of
separate hypotheses considered can deteriorate rapidly as the

values of "p" and "q" increase.

The second comment focusses on the empirical power of the SM
tests. As mentioned in McAleer et al. (1988), the SM tests are
asymptotically optimal against separate alternatives. For
example, in testing the adequacy of a fitted AR(p) model, the
SM(q) tests are expected to yield high power against an MA(q)
alternative. In terms of power calculations, this can be done by
generating the data by an MA(q) process, and then fitting them
into an AR(p) model. Thus, the SM(1) test is asymptotically
optimal agalnst the case where the data are generated by an MA(1)

process. Likewise, the SM(2) test 1is asymptotically optimal
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against the situation where the data are generated by an MA(2)
process, and should have higher empirical power than that of the
SM(1) test. However, the simulation results presented in McAleer
et al. (1988) and Hall and McAleer (1983) reveal that this optimal
property does not hold in many cases. In order to illustrate this
point, the power estimates given in Hall and McAleer (1989) (see
pp. 99-100, Tables 5 and 6; pp. 103-104, Tables 9 and 10) are

reproduced in Table 3.9.

The overall results of Table 3.9 indicate that, except for
1H=0'2 and W1=0.2, the SM(1) test dominates the SM(2) test in
terms of empirical power. This is true regardless of the sample
size and the chosen parameter values. It is important to note,
however, that when the data generation process is either an AR(2)
or MA(2), the SM(2) test is supposed to "out power" the SM(1)
test. Evidently, these empirical estimates do not support such a
power property. But what causes this peculiar behavior? We

believe further investigation on this 1ssue is needed.

The third comment raises concern about the design of the
simulation experiments used in McAleer et al. (1988) and Hall and
McAleer (1989); namely, the effect of the nature of the data on
the finite-sample properties of the separate tests is missing from
their analyses. This concern is of importance for the following

reasons: First, their experimental designs are based on low-order
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Table 3.8
Empirical Power of Tests of Separate Hypotheses; Data Generated from
the ARMA(2,2) Model (1 - "1)(1 - nz)yt = (1 - wl)(l - wz)at.

n = 50 n = 100

Fitted process: AR(1) model
n1 n, Wl Wz SM(1) SM(2) SM(1) SM(2)
0 0 0.8 O 95.9 80.0 100 99.8
0 0 0.5 0 37.9 29.3 66.1 55.1
0 0] 0.2 O 8.2 8.4 8.0 7.6
0 0 0.8 G. 99.9 899.6 100 100
0 0 0.8 O. 99.1 g7.4 100 100
0 0 0.5 0. 66.0 54.9 91.7 85.3

Fitted process: AR(2) model

SM(1) SM(2) SM(1) SM(2)

0 0 0.8 0 64.3 54.5 85.3 89.9
0 6] 0.5 0 9.4 8.1 19.4 13.9
0 0 0.2 O 5.0 5.8 3.4 5.5
0 0 0.8 0. 92.3 g1.2 99.5 89.4
0 0] 0.8 0. 78.0 69.1 98.5 96.1
0 0 0.5 O. 17.2 16.5 35.3 26.3

Fitted process: MA(1) model

SM(1) SM(2) SM(1) SM(2)

0.8 0O 0 0 91.2 86.2 99.8 99.4
0.5 0 0 0 24.4 18.1 52.4 41.5
0.2 0 0 o 3.5 3.8 4.5 5.2
0.8 0.5 O 0 99.8 89.7 100 100
0.8 0.2 O 0 97.4 84.4 100 100
0.5 0.2 0 o 50.9 38.6 87.3 80.3

Fitted process: MA(2) model
n U1 v ¥ SM(1) SM(2) SM(1) SM(2)
c.8 O 0] 0 59.0 47.9 92.1 89.2
0.5 0 0] 0 7.5 4.9 13.5 9.9
0.2 O 0 0 4.4 3.7 5.4 3.9
0.8 0.5 0 0 94.6 91.8 100 100
0.8 0.2 O 0 70.4 62.3 98.8 97.7
0.5 0.2 O o] 10.6 8.3 27.2 19.7
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ARMA(p,q) models. As a result, their conclusions are only valid
in these cases. Second, seasonal ARMA models are commonly
employed when one works with monthly or quarterly data., Third, it
is known that the empirical performance of other popular
diagnost:cs such as portmanteau tests and Godfrey’s LM test, can
be significantly affected by the nature of the data (seasonal vs.
non-seasonal data). For instance, Ansley and Newbold (19739) found
that the L jung-Box portmanteau test tends to have excessive size
distortions when the true models are low-order seasonal ARMA
models. In this chapter, we also showed that the empirical power
of Godfrey’'s LM test can be quite low when seasonal data are
fitted to simple ARMA models. In light of these reasons, an
important direction for future research would be to incorporate
the effect of seasonality in the experimental design. Such an
extension will be wuseful in terms of understanding how the

tests of separate hypotheses behave in the said situation.

3.5 Concluding Remarks

In this chapter three simulation experiments were conducted
to investigate the finite-sample distribution of Godfrey’'s (1979)
LM test. As well, many critical comments were raised with regard
to the finite-sample performance of the tests of separate
hypotheses proposed by McAleer et al, (1988). Based upon our

results, a few remarks are in order:
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(i) The performance of the LM test in finite samples depends
on the choice of r. More importantly, its empirical significance

levels are close to the nominal levels only when the value of r is

small relative to the sample size.

(i1) The LM statistic suffers a substantial dispersion bias
even when the sample size is as large as 100. Interestingly, this

finding has not been reported in previous studies.

(iii) In order to obtain higher power for the conventional
LM tests in the case of non-seasonal data, it is important to make
r small. This conclusion, however, ceases to hold when such tests

are used in cases where the data are generated from seasonal

models.

(iv) 1In the case of seasonal data, the LM test can easily be
modified to yield high empirical power once most of the irrelevant
restrictions are removed from model diagnostics. This strongly
indicates that restricted alternatives offer a better chance of
constructing reasonably powerful tests involving relatively fewer

restrictions.

(v) As for the finite-sample performance of the tests of
separate hypotheses suggested by McAleer et al. (1988), three
important 1ssues were addressed in this chapter. First, the

orders of the AR(p) and MA(q) models can significantly influence

g1



the empirical size of the tests. Second, the empirical power of
the SM(1) test always dominates the SM(2) test in a situation
where the latter is asymptotically optimal against a specific
separate alternative. Third, since there is no discussion on the
effect of the nature of data on the empirical performance of the
separate tests, the claim of their superior performance is hardly
convincing. 1In light of these issues, caution should be exercised
when using the tests of separate hypotheses for the adequacy of an

ARMA(p, q) model.
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CHAPTER FOUR

A MODIFIED PORTMANTEAU TEST FOR RANDOMNESS OF GAUSSIAN TIME SERIES

4.1 Introduction

The finite-sample properties of some selected portmanteau
tests have been carefully examined in Chapter 2. As a sequel to
this earlier chapter, the focus of Chapter 4 is on their ability
to detect non-randomness of a Gaussian time series. As Indicated
by Dufour and Roy (1886), testing for the randomness of a time
series Is one of the most fundamental 1issues in statistical
analysis. As well, many economic theories utilize the assumption
of randomness; a notable example is the random-walk consumption
function [see Hall (1878)] which postulates that changes 1in

consumpt ion from one period to another are unpredictable.

At the theoretical level, there has not been much recent
research on the portmanteau test of randomness in the context of
Gaussian and non-Gaussian time series [see Johnson and Kotz (1988)
and Harvey (1984) for a detailed discussion on other tests of
randomness]. The only exception is the work by Dufour and Roy
(1986) in which they show that the normalization procedures used
in the Box-Pierce and the Ljung-Box tests are not appropriate for
an independently and identically distributed normal series with

unknown mean (see Chapter 2, Section 2.2). Subsequently, Dufour

93




and Roy (1986) propose several modified (parametric and
non-parametric) portmanteau statistics which are intended to
eliminate this problem. However, the finite-sample performance of

these tests is still far from perfect [see Dufour and Roy (1986)].

The parametric portmanteau tests proposed by Box and Plerce
(1970), Ljung and Box (1978) and Dufour and Roy (1978}, are
constructed using a number of sample autocorrelations, r
(k=1,...,m), which are assumed to be independent normal random
variables. However, it is well known that the finite-sample
distribution of rk may converge to normality very slowly. As a
result, we may expect poor empirical performance from a

portmanteau test when the sample size is small to moderate.

Recently, Kwan et al. (1992) have argued that, for testing
the adequacy of an ARMA(p,q) model, the empirical performance of
the Box-Pierce and the Ljung-Box tests can be improved by
applying the Fisher (1921) transformation to each residual
autocorrelation. The main argument presented in the Kwan et al.
(1992) study 1is that the wunderlying distribution of the
transformed variable is closer to a normal distribution than that

of the residual autocorrelation.

This chapter extends the investigation of Kwan et al. (1992)
to the area of testing the randomness of Gaussian time series.

There are several Iimportant features which make the present
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analysis different from their work and previous studies. First,
the theoretical mean and variance of the Kwan et al. test (QKWS)
as given in thelr paper are Incorrect. As a result, these
quantities are derived here using the symbolic manipulation
program Mathematica. Second, & simplified proof of the null
distribution of QKWS is given. Third, contrary to most of the
studies in this area, the simulation experiments also focus on the
empirical power of the aforementioned portmanteau tests in the

cases of seasonal and non-seasonal data.

The organization of the remainder of this chapter is as
follows: Section 4.2 presents a brief discussion on the
theoretical mean and variance of QKWS. Section 4.3 gives a simple
proof of its null distribution. Section 4.4 describes the design
of the Monte Carlo experiments. Section 4.5 reports the
simulation results and some concluding remarks are offered in

Section 4.6.

4.2 The Theoretical Mean and Variance of the KSW Test

Consider an independently and identically distributed
(i.1i.d.) normal time series X, (t=1,...,n) such that E(xt)=u and
var‘(xt)=o—2 v oot. Next, define the k-th order sample

autocorrelation as given in (2.2.8):
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n~-k

t§1(x - x)(x“k - x)

r =

" » 1 sk s n-1,

(%, - x)2

™M o]

t

n
where x = t§1xt/n. In a classic paper, Bartlett (1946) derived

several important formulae for computing var(rkL Specifically,

for any time series:

P

i-k

00
_ -1 2
var(rk) = n { ¥ (pl +p Lok

1=-0

2 2
PP P Y 2plpk)}

(4.2.1)

where the p’'s are population autocorrelations of the series [see
e.g. Kendall and Stuart (1977, Vol. 3, p.548)]. This is true for
large samples even irrespective of the assumption of normality.
It is only in the special case when all P, (1#0) are zero and the
sample size is large that the R.H.S. of (4.2.1) reduces to nt.
Note that the portmanteau statistic proposed by Box and Pierce

(1970) is, for this special case, given by:

T, -1

QBP =r D't , (4.2.2)

where Eé(r,...,r)r, D1=(1/n)Im, and E(Pk) is assumed to be

approximately zero. Under the null hypothesis of randomness, QBP

is asymptotically distributed as xz(m).

As for the modified portmanteau tests of Ljung and Box (1978)

and Dufour and Roy (1986), they can be written as follows:
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QLB = r'D]'r , (4.2.3)

QR = (r - W' =7 (r - ), (4.2.4)
and

QDR1 = (r - W) D' (r - p), (4.2.5)

_ 2 2 2 - T
where Da—diag(Cl.....C.). Ck-(n k)/{n(n+2)}, b ("1""’"-) ,

Z=[o;h] is the variance-covariance matrix given by (2.2.10) and
(2.2.11), and D3=d1ag(¢ru,...,o-_) [see Chapter 2 for notations].
Under the null hypothesis of randomness, the asymptotic
distributions of QLB, QDR and QDR1 are distributed as xa with m

degrees of freedom.

To demonstrate the rationale for the Kwan et al. test, first
note that the Bartlett formula given in (4.2.1) contains the
population autocorrelations, the p’s, which are usually unknown.
However, as indicated by Kwan et al. (1992), the presence of p’'s
in (4.2.1) may cause var(r'k) to be unstable and consequently, lead
to slow convergence to normality. A plausible solution is to
employ the Fisher (1921) variance-stabilizing transformation:

1 (1+rk)
Zk = iloge W ’ (4.2.6)

where z 1is normally distributed with E(zk)uo and var(zk)=(n-3)-1.
Fisher (1921) suggested that this transformation serves two main
purposes: (a) to stabilize var‘(r'k) and (b) to normalize the

underlying distribution of r. Based on (4.2.6), Kwan et al.
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(1982) propose the following portmanteau test statistic:

n
QKSW = kgl(n—k-S)z: . (4.2.7)

On the null, the asymptotic distribution of QKSW is xz(m). For
finite samples, it can be shown that their proposed test requires

an adjustment to 1its theoretical mean. To highlight this

o 2_]+1

important feature, let M r J+1 ] Using a McLaurin serles Mo
j=1

1 =
to represent 2loge(l-o'r‘k)/(lﬂ"k) , it can be shown that z = (rk +
1 2 ls
3T + 5"y + M ) and
2 2.4 23 8
z = [r +3 +45rk+MM +] (4.2.8)

Substituting (4.2.8) into the R.H.S. of QKSW, one obtains

- 2,24, 238
QKSW =k§1(n-k-3)[r‘k tar. v, t MM + ... ] (4.2.9)
and
2 - 22 2.2 2.4 4 4 4
(QksW)" = ¥ ¥ (n-k- 3)(n-h—3)[r r.* §r r +3r r * 3% n
k=1h=1
23, 2 86 4 B 6 4 23,2, 68 _8
E(rkrh+rr‘)+()( )(r‘krh+rr)+( )(rr)
+ ] . (4.2.10)

It is clear from (4.2.9) and (4.2.10) that exact formulae for
the first two moments of QKSW will be difficult to obtain.
However, good approximations of E(QKSW) and var(QKSW) can be
derived using the univariate and blivariate moments that appear in

(4.2.9) and (4.2.10). According to Moran (1948), Davies et al.
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(1977) and Ljung and Box (1978), the expected values needed to

evaluate (4.2.9) and (4.2.10) can be expressed as follows:

2, _ nk _ ~1
E(rk) = m = O(D ) (4.2.11)
4, _ 3{n%-(2k-6)n+(k-10)k} _ -2
E(rk) = T h(n+2) (h+2) (n76) =0(n°), (4.2.12)
E(r®) = 15{n°-(3k-18)n%+(3k®-48k+92) n+ (30k*-k>-212k)} _ o(n=)
T’ = n(n+2) (n+2) (n+6) (n+8) (n+10) ’
(4.2.13)
and for k < h,
2 2, _ {n°~(h+k-12)n+(hk-8h-12k)} _ ., _ -2
E(r:r:)

3{n”- (2h+k-18)n°+(hZ+2hk-16h~32k+260 ) n- (2h2-8k 2~24hk+h?k+304h+280k) }

n(n+2)(n+4)(n+6)(n+8) (n+10)
= 0(L™Y, (4.2.15)

2 4, _
E(rkrh) =

3{n%-(2h+k-18)n%+(hZ+2hk-28h~20k+260) n+(6h>+24hk-h>k-456h-116k)}
n(n+2)(n+4) (n+6) (n+8)Y (n+10)

= o(n™Y), (4.2.16)

4 4 2.6 8 2 -4 46 6_4
E(rkr‘h). E(rkrh) and E(rkrh) are O(n ), E(rkrh) and E(r‘krh) are
O(n's). and E(r:r:) is 0(n”%). Note that the expressions for
E(r':), E(rfr‘:) and E(r:r‘:) are derived using the identity gliven in

Ljung and Box (1978, p.298).

From (4.2.11)-(4.2.13), it can be shown that the first three

terms on the R.H.S. of E(QKSW) are of O(1), O(n™') and 0O(n™2),
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respectively. When n is large and m small, the third term can be

dropped and
: 2, 2., 4 -2
E(QKSW)=[k§1(n-k—3)[E(rk)+§E(rk)]+O(n ) (4.2.17)

Upon substitution of (4.2.11) and (4.2.12) into (4.2.17), it can

be shown approximately, for a large n relative m, that

E(QKSW) = m - '“(2"4) . (4.2.18)

Upon taking the limit of (4.2.18), we have %%3 E(QKSW)=m. Thus,

QKSW has the same asymptotic mean as QBP, QLB, QDR and QDR1.

The variance formula for QKSW can be derived by taking
expectations of (4.2.10) and subtracting the square of the

expected value of (4.2.8). Thus, we have
var(QKSW) = E{(QKSW)?} - {E(QKSW)}Z. (4.2.19)

From (4.2.12)-(4.2.16), a suitable approximation of var{QKSW) can

be obtained by ignoring terms smaller than o(n™'):

n
var(QKSW) = { T (n—k-B)Z[E(r:) + %E(r:)]
k=1
mloa 2 2 2., 2.4 2., 4.2
+2% % (n-k-3)(n—h—3)[E(rkrh) + §E(rkrh) + §E(rkrh)]
k=1h=k+1
- (E(QKSH))Z}. (4.2.20)

m 2
where (E(QKSW)2}={k§1(n—k-3)[E(rf) + gE(r:)]] . Upon substitution

of (4.2.12)-(4.2.16), var(QKSW) is approximately equivalent to
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var(QKSW) = 2m - -l—i—@- R (4.2.21)

when the ratio of (m/n) is small. Based on (4.2.21), it can
easily be shown that %33 var(QKSW)=2m. Thus, QKSW has the same
asymptotic variance as QBP, QLB, QDR and QDR1. This result along
with (4.2.18) support the above assertion that the asymptotic

distribution of QKSW is approximately xz(m).

It is important to mention that, since the derivations of
(4.2.18) and (4.2.21) require some tedious algebra and involve
some cumbersome expressions, the two formulae were checked with
the symbolic manipulation program Mathematica. The detalled

derivations of (4.2.18) and (4.2.21) are given in Appendix A.

4.3 A Simple Proof of the Asymptotic Mean and Variance of QKSW

The obJjective of this section is to provide an alternative

proof of the mean and variance of QKSW when n approaches infinity.
Recall that the approximation of E(QKSW) is
- 2,.2_, 4
E(QKSW) = {Z (n—k-3)[E(rk)+§E(rk)]}.
k=1

Upon taking the limit of E(QKSW), we have

- 2, 2, 4 _
}\%E(QKSN) = k)=:1r1.-1y';"a(n-k—3)[E(Pk)+§E(ru)]} = m.
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This is because (n—k-S)E(ri) and (n—k-S)E(r:) are 0(1) and O(n-l).

respectively.

An approximation of E{(QKSW)% is

2, _ z \2 4, 4 6
E{(QKSW)®} = {kgi(n-k—al [E(rk)+§E(rk)]

m-1 m
2 2,.2 2 4, 2 4 2
~r2k§m§“1 {n-k-3) (n-h-3) [E(rkrhhé-l-:(rkrh)+§E(r‘krh)]}.

Upon taking the limit of the above approximation, we have

2, _ [ o 2 4, . 4_, 8
lim E{(QKSW)“} = {k§“1‘f_l)g(n—k-3) [E(rk)+§E(rk)]

1

n- m
2.2, 2 2 4, 2 4 2
+2k§ Z lim(n-k-3)(n-h-3) [E(rkr‘h)+§E(rkrh)+§E(rkrh)]}.

1h=k+1n-0
Since each of E(r‘i), E(r:r:) and E(r:r:) is of O(n-a). thus each
of (n-k-3)E(r}), (n-k-3)(n-h-3)E(r’r}) and (n-k-3)(n-h-3)E(r;r’)

is 0(n—1) and converges to zero as nyw. Therefore,

m
2, _ Y-Sy
l];_w E{(QKSW)} = {kz_:“l\_i)g(n k-3) E(rk) +
n-1 n 2 2
2k§1h§k+1 ,1,!,2}(“""3) (n-h--Q)E(r‘kl‘h )}.

Using (4.2.12) and (4.2.14), it is straightforward to show that
2., 4,_ vl h 2 2,
rlifl__m;q (n-k-3) E(rk)—S and 'l\i_xrg (n-k-3)(n-h S)E(rkrh) 1. As a result,

we have
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-1

2, _ Y = 2
,1‘_1)3 E{(QKSW)“} = 3m + 2k§1(m k) 2m + m

From (4.2.18), we have

;1\-1)2 var(QKSW) = 2m.

Thus, lim E(QKSW)=m and lim var(QKSW)=2m, as was required.
n-xo n-o

4.4 Experimental Design

The proposed statistic by Kwan et al. (1982) 1is a
large-sample test statistic because it requires a large sample
size to Justify its use. Naturally then, it 1is important to
investigate the empirical performance of QKSW in small samples,
expecially commonly-used sample sizes. Also note that when n
ranges from small to moderate or the (m/n) ratio is large, E(QKSW)
and var(QKSW) given in (4.2.18) and (4.2.21) can be smaller than m
and 2m. Furthermore, E(QKSW) as well as var(QKSW) are not
necessurily integers for finite n. In order to use QKSW for
practical purposes, it is therefore necessary to adjust the mean
of the proposed test statistic [see also Ljung and Box (1978,
p.301)}. A "chi-square" test based on QKSW can still be carried

out by executing the following steps:

Step 1. Compute the sample autocorrelations r. (k=1,...,m).
Step 2. For each r.o compute z, .
Step 3. Compute QKSW.

Step 4. Compute E(QKSW) using the approximation, E(QKSW)=
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m
2, .2, 4 2 4
[k§1(n k 3)[E(r'k)+3E(rk)]]. where E(rk) and E(rk) are given by
(4.2.11) and (4.2.12), respectively.
Step 5. Reject the null hypothesis of randomness whenever

QKSszz(E(QKSW)) in which « is the level of significance.

In order to examine the finite-sample performance of QKSW,
two Monte Carlo experiments are used. In the first experiment,
attention was confined to the empirical significance levels, means
and variances of QLB, QDR1 and QKSW. QBP is not examined here
because earlier simulation results indicate that 1t is not a
reliable statistic when n ranges from small to moderate. Also,
QDR is excluded because QDR1 is as good as QDR and requires fewer

computations [see Dufour and Roy (1986, pp.2965-2968)]).

All simulations were carried out on a VAX2 computer. N(O0,1)
random deviates, Xt, were generated by using the International
Mathematical Subroutine Library (IMSL) subroutine RNNOA. IMSL's
subroutine CHINN was used to compute the critical values for each
statistic. Estimates of significance levels (a=1%, 5% and 10%),
means and variances of these statistics were based on 20,000
replications. The sample size, n, was set to be 50, 100 and 150,
and the values of m were chosen from 1, 3, 5, 10, 15, 25, 50, and

75.

The second experiment evaluated the empirical power of QLB,

QDR1 and QKSW. All data were first generated from some selected
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cases of the following multiplicative seasonal model:

4 -
(l-nlB)(l-nlB )Xt =a.

The starting value Xo was set at 0. N(0,1) random deviates, at,
were generated using the subroutine RNNOA of IMSL. In this
experiment, the first fifty observations were dropped before each
sample was collectad. This is due to the fact that we want to
account for the presence of seasonality in the data. Although the
choice of m is identical for both experiments, the sample size in
all power calculations was set to be 50 and 100. It is also
important to point out that we only recorded the proportion of
times that the hypothesis of randomness was rejected for tests at
the 1%, 5% and 104 levels of significance. Again, all

computations were based on 20,000 replications.

4.5 Monte Carlo Results

Table 4.1 reports the empirical significance levels, means
and variances of QLB, QDR1 and QKSW. The results of QLB and QDR1
are generally similar to those of Dufour and Roy (1886). On the
whole, QDR1 appears to be better approximated by the xz(m)
distribution than QLB. However, it is apparent that both tests
tend to reject the null hypothesis far too often when the ratio
(m/n) is large. This observation holds regardless of the choice
of significance levels. Also, both QLB and QDR1 suffer from the

problem of dispersion bias. For example, when mz3, their
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Table 4.1: Empirical Significance Levels, Means, Variances and Variance-Mean
Ratios of Portmanteau Statistics (QLB, QDR1 and QKSW) for a Normal! White Nolse

1% 5% 10%
n m QLB QDR1 QKSW QLB QDR1 QKSW QLB QDR1 QXSW
50 1 0.84 0.87 0.91 5.06 4.77 4.75 10.24 10.05 9.91
3 1.11 1.11 0.99 5.13 4.85 4.71 10.01 9.74 9.49
5 1.51 1.44 1.22 5.66 5.39 4.97 10.31 9.75 9.41
10 2.18 2.08 1.55 7.11 B6.76 5.64 11.73 11.22 9.83
15 2.97 2.87 1.79 7.96 7.47 5.57 12.82 12.17 10.27
25 4.08 3.80 1.91 9.65 8.86 5.90 14.62 13.69 10.25
100 1 1.06 1.02 1.05 5.20 5.068 5.08 10.29 10.12 10.09
3 1.16 1.09 1.08 5.51 8§.37 5.29 10.44 10.36 10.12
5 1.24 1.18 1.13 §.38 5.30 5.086 10.45 10.34 10.10
10 1.79 1.78 1.50 5.97 §5.82 65.27 11.00 10.75 10.06
15 2.22 2.10 1.82 6.86 6.66 5.80 11.70 11.26 10.34
25 3.20 3.10 2.14 8.18 7.87 6.25 13.20 12.70 10.94
50 4.54 4.23 2.25 10.55 9.80 6.869 15.41 14.57 11.11
150 1 0.83 0.81 0.92 4.99 4.95 4.86 8.95 9.79 9.79
3 1.05 1.00 1.00 5.07 5.03 4.89 10.13 10.08 9.90
5 1.21 1.18 1.15 5.23 5.18 65.14 10.22 9.84 9.93
10 1.50 1.52 1.34 5.95 5.81 5.48 10.66 10.53 10.06
18 1.74 1.73 1.41 6.37 6.19 5.71 10.87 10.69 10.10
25 2.50 2.45 1.81 7.20 7.02 6.01 12.26 11.89 10.79
50 3.91 3.79 2.32 9.39 9.09 6.73 14.72 14.30 11.41
75 4.93 4.65 2.41 10.88 10.49 7.09 15.78 15.22 11.861
Empirical Means Empirical Variances (var/Mean}
n m QLB QDR1 QKSW E(QKSW) QLB QDR1  QKSW QLB QDR1 QKSW
50 1 1.02 1.00 0.82 0.90 1.85 1.88 1.71 1.91 1.88 1.86
3 3.06 3.00 2.64 2.58 6.18 6.18 4.98 2.02 2.05 1.88
5 6.11 5.01 4.22 4.12 10.98 10.85 8.11 2.15 2.18 1.82
10 10.20 10.03 7.54 7.37 25.79 25.62 15.28 2.83 2.56 2.03
15 15.31 15.04 10.08 9.86 43.84 43.37 21.00 2.87 2.88 2.08
25 25.56 25.06 13.28 12.97 84.90 83.8686 27 57 3.32 3.34 2 08
100 1 1.02 1.01 0.97 0.95 2.04 2.00 1.92 2.00 1.98 1.98
3 3.068 3.03 2.85 2.79 6.26 6.21 5.64 2.05 2.05 1.98
5 6.06 5.01 4.61 4.55 10.47 10.43 8.06 2.07 2.09 1.96
10 10.11 10.12 8.74 8.64 23.24 23.17 18.08 2.30 2.31 2.07
15 15.17 15.03 12.43 12.28 37.72 33.57 26.46 2.49 2.50 2.13
25 25.29 25.06 18.58 18.35 74.32 73.89 42.16 2.94 2.95 2.27
50 50.60 50.10 27.80 27.55 184.28 182.70 64.50 3.64 3.65 2.31
150 1 1.00 0.98 0.96 0.97 1.97 1.94 1.89 1.98 1.6 1.96
3 3.03 3.01 2.88 2.86 6.039 6.05 5.68 2.01 2.01 1.96
5 5.04 5.00 4.74 4.70 10.28 10.25 9.34 2.04 2.05 1.97
10 10.08 10.01 9.186 9.08 22.17 22.14 18.79 2.20 2.21 2 0S
15 15.12 15.02 13.27 13.16 35.18 35.07 27.88 2.37 2.33 2 10
25 25.19 25.02 20.58 20.43 65.50 65.19 45.20 2.60 2.61 2.20
50 60.31 49.93 34.24 34.00 164.01 163.04 80.15 3.26 3.26 2.34
75 75.49 74.98 42.43 42.13 278.88 277.13 99.85 3.69 3.70 2.35
Note: (Var-/Mean) is the ratio of empirical variances to empirical means
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empirical variances and variance-mean ratios are larger than 2m

and 2, respectively. This is particularly evident when (m/n) is

large.

On the other hand, the simulation results suggest that the
performance of QKSW is significantly better than QLB and QDR1 in
terms of controlling test size. When (m/n} is large, and a=5% and
10%, the empirical significance levels of QKSW are still close to
the nominal levels. However, at the 1% level, the test rejects
the null hypothesis too frequently. But even in these cases, the

over-rejection problem is far less severe for QKSW,

From the point of view of minimizing the dispersion bias,
QKSW performs remarkably well. This can be seen from the fact
that its variance—mean ratlios range from 1.86 to 2.35, while QLB
and QDR1 can have ratios larger than 3.6. The main implication of
these results is that QKSW is valid over a wider range of m than
either QLB or QDR1. For 50=n=100, a value of mz10 may not be
suitable for elther QLB or QDR1. This may limit the practical
application of either QLB or QDR1. In contrast, this limitation

does not necessarily apply to QKSW when nz50.

Finally, the empirical means of CKSW are very close to the
theoretical values which are computed basing on (4.2.17). After
simple calculations, it can be shown that, in the worst case, the

percentage difference between the theoretical and empirical means
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does not exceed 2.4%. This indicates that the mean formula stated
in (4.2.17) provides an adequate approximation to the theoretical

mneans.

Table 4.2 reports the empirical power of QLB, QDR1 and QKSM.
The main conclusion is that their power performance is quite
similar. Focussing on the case where the data were generated from
an AR(1) process (i.e. n4=0). the empirical power of the tests
examined is very high. However, it is obvious that the ability of
these tests to detect non-randomness is reduced when the value of
m increases. This is particularly true when 1:1:0.7. A plausible
reason for this phenomenon Iis that if the underlying
data-generation process (DGP) follows a simple AR process, lack of
randomness of a time series will most 1likely show up in the first
few sample autocorrelations. This finding is consistent with
Ljung's (1986) results which indicate that the use of a smaller
number of residual autocorrelations in model diagnostics will lead
to a more powerful test when the DGP is represented by lower—order

ARMA models.

In cases where the data were generated from a restricted
AR(4) process (i.e. n1=0), the simulation results reveal that the

loss in empirical power due to the use of small values of m (i.e.

m=3) can be quite substantial. In many cases, the loss can be
more than two-fold. On the other hand, when the data were
generated from a multiplicative AR(4) process, the pover

108




Table 4 2: Empirical Powers of Portmanteau Statistics (QLB, QDR1 and QKSW).

Data Generating Processes: (1 - an)“ - 'rrAB)XL =a .
n = 50
n LA QLB QDR1 QKSW QLB QDR1 QKSW QLB QDR1 QKSW
0.7 © 1 98.08 98.56 98.04 99.54 99.72 95.54 99.84 99.3930 99.84
3 95.16 96.30 95.76 98.22 98.90 98.44 99.14 99.36 89.20
5 92.90 94.26 94.02 97.32 87.80 §7.62 98.52 98.92 98.72
10 83.02 90.84 92.00 95.14 86.14 96.42 97.02 97.80 88.00
18 86.62 88.10 91.08 93.78 94.76 96.04 96.06 96.82 97.32
25 85.52 85.98 90.42 91.76 $82.04 95.34 94.18 94.60 96.84
0.9 0 1 100 100 100 100 100 100 100 100 100
3 99.86 99.90 99.90 99.98 100 100 100 100 100
5 93.68 99.84 ©3.98 99.94 99.84 88.94 99. 96 100 99.98
10 99.24 99.38 99.56 99.76 99.86 89.86 99.88 99.88 89.92
15 99.02 99.18 99.44 99.50 99.60 99.84 99.70 99.84 99.90
25 98.68 98.78 99.44 99.36 99.54 99.78 989.66 99.72 99.90
0 0.7 1 8.46 7.34 8.36 17.22 15.90 16.80 24.78 23.12 24.20
3 25.78 23.34 25.56 42.42 38.86 41.22 §2.20 48.80 51.30
] 91.26 92.60 80.66 97.26 97.80 96.86 88.48 98.84 988.32
10 88.56 89.86 88.74 94.82 95.54 95.04 86.70 97.28 86.90
15 85.66 86.64 86.98 92.68 93.24 83.54 84.B0 95.68 96.22
25 83.74 84.16 85.92 90.52 90.15 92.44 83.12 93.32 g7.76
0 0.9 1 20,78 18.82 20.70 31.90 29.62 31.52 38.62 36.12 38.26
3 59.42 54.24 58.48 75.16 71.52 74.32 81.04 78.52 80.56
5 99.70 998.78 99.66 99.98 99.88 99.98 100 100 100
10 g9.52 99.66 99.58 99.56 99.90 99.88 99.84 99.98 99.98
15 99.32 99.46 99.44 99.80 99.82 99.84 89.88 99.86 99.90
25 98.82 98.92 99.32 95.50 99.52 99.74 89.76 99.74 99.90
0.7 0.3 1 97.40 98.10 97.38 99.28 99.40 99.28 89.74 99.84 99.72
3 94.54 95.88 95.10 97.76 98.38 97.94 2 86 99.18 98.90
5] 93.84 95.24 97.42 97.42 98.32 97.80 88.74 99.12 98.82
10 92.52 93.42 93.56 96.04 97.00 97.06 97.54 98.10 98.20
15 91.34 92.34 93.06 95.36 96.06 96.54 96.94 97.36 97.80
25 90.02 90.56 92.42 94.42 94.78 96.30 96.04 96.36 97.54
0.9 0.3 99.94 99.98 99.94 99.98 100 98.98 100 100 100

1

3 99.78 99.86 99.84 99.98 99.98 89.88 98.98 938.98 99.98
S 99.76 98.84 99,80 99.92 99.96 989.86 99.98 88.98 99.98
10 99.64 99.74 99.76 99.80 99.90 99.92 98.92 98.98 99.98
15 98.50 99.60 99.68 99.84 98.86 89.892 99.92 99.94 99.94
25 89.38 99.40 99.64 99.74 89.72 99.86 99.78 99.80 99.94
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Table 4.2 (Cont'd)

n n
4
0.7 O

0.7 0.3

0.9

89
99
98

99.

10.
31.
9s.
98,

99

3.
Q8.

25.
68.

99
89
98
89

QLB

100
100
100
100
.80
.34
.80

100
100
100
100
100
100
98

22
54
80
84
.82
38
€6

9z
96
ice
100
100
100
100

100
100
100
.98
.80
.76
.64

100
100
100
100
100
100
100

i%

QDR1

Qg
8s
g8

gg.

30.
9.
99.
89.
8s.
98.

24.
B67.

g9
98
98
a9

100
100
100
100
.80
.44
.80

100
100
100
100
100
100
a8

.74
16
92
94
88
42
72

64
00
100
100
100
100
100

100
100
100
.98
.92
.80
.66

100
100
100
100
100
100
100

QKSW

99
99
99

10.
31.
98.
8.

99

Q9.
89.

25.
68.

99
a9
98
98

100
100
100
100
.92
.84
.62

100
100
100
100
100
100
100

186
18
80
94
.88
72
50

80
58
100
100
100
100
100

100
100
100
.98
.96
.92
.88

100
100
100
100
100
100
100

n

99
99
99

99.

20.
46.
998.
99.
gs.
99.
gs.

37.
78.

Qg
a9
g9
29

QLB

100
100
100
100
.96
.92
.54

100
100
100
100
100
100
a8

o8
78
98
896
94
84
48

40
a8
100
100
100
100
100

100
100
100
.98
.98
.96
.90

100
i00
100
100
160
100
100

100

5%

QDR1

a9
S8

99.

19.
44,

89

8s.
99.
99.
89.

36.
77.

99
99
99
99

100
100
100
10C
100
.82
.80

100
100
100
100
100
100
98

36
96
.98
96
94
84
44

16
52
100
100
100
100
100

100
100
100
.98
.98
.94
.90

100
100
100
100
100
100
100

QKSHW

89

18.
48.
99.
99.
99.
99.
8.

37.
78.

89
99
99

100
100
100
100
100
100
.96

100
100
100
100
100
100
100

88
06
98
96
98
86
86

14
46
100
100
100
100
100

100
100
100
100
.98
.98
.94

100
100
100
100
100
100
100

99

28.
54.
99.
99.
99.
98.
99.

44.
83.

99
a9
9s

QLB

100
100
100
100
100
100
.74

100
100
100
100
100
100
100

02
88
98
96
a8
92
72

98
30
100
100
100
100
100

100
100
100
100
.98
.98
.94

100
100
100
100
100
100
100

10%

QDR1

99

27.
53.
99.
3.
88.
as.
99.

43.
82.

99
g9
99

100
100
100
100
100
100
.14

o0
100
100
100
100
100
100

18
64
98
98
98
94
72

34
42
100
100
100
100
100

100
100
100
100
.98
.98
.96

100
100
100
100
100
100
100

QKsW

99

27.
54.
99.
9.
99.

g9

99.

44,

83

99

100
100
100
100
100
100
.98

100
100
100
100
100
100
100

78
32
98
98
98
96
94

70
12
100
100
100
100
100

100
100
100
100
100
100
.98

100
100
100
100
100
100
100
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performance of QLB, QDR1 and QKSW is remarkably good. It can be
seen from the results given in Table 4.2 that the rejection rates
are unanimously greater than 90%. This observation holds

regardless of the sample size, the value of m and the choice of

significance levels.

4.8 Concluding Remarks

Portmanteau tests have been one of the main statistical
instruments in examining the randomness of a time series. 1In this
chapter, an attempt has been made to compare the finite-sample
performance of the recently proposed test by Kwan et al. (1992)
with that of Ljung and Box (1978} and Dufour snd Roy (1986). The
Monte Carlo simulation results indicate that (KWS performs better
than QLB and QDR1, in terms of bcihh controlling test size and
minimizing dispersion bias. In addition, the power calculations
reveal that the tests examined exhibit similar power performance.
This holds true whether the data are seasonally or non-seasonally
generated. Thus, the findings favour the use of the Kwan et al.

test In applied statistical and econometric applications.
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CHAPTER FIVE
ON THE SMALL-SAMPLE DISTRIBUTION OF SOME MODIFIED PORTMANTEAU

TESTS FOR RANDOMNESS OF GAUSSIAN TIME SERIES

5.1 Introduction

In Chapter 4, it is shown that, in the area of testing the
randomness of a Gausslian time series, the empirical size of the
Kwan et al. test is more accurate than the Ljung-Box and the
Dufour-Roy statistics. This finding supports the conjecture thsat
the poor finite-sample performance of a portmanteau test can be
attributed, at least to a large extent, to the slow convergen:e of

the sample autocorrelation to normality.

While the simulation evidence of the Kwan et al. test |is
encouraging, two areas are worthy of furthzr Iinvestigation.
First, all results reported in Chapter 4 are hased on moderate
samples (n=50). It would clearly be interesting to see whether the
test performs well in smaller samples. Second, Hotelling (1953)
has suggested some alternative transformations which may perform
better than the Fisher (1921) variance-stabilizing transformation
in small samples. It would be useful to construct portmanteau
tests which are based on the Hotelling (1953) transformations. In
this context, a comparison of the empirlcal performance of the

proposed tests and the Kwan et al. test would be of practical
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importance in terms of choosing diagnostic checks in empirical

aprlications.

The organization of the remainder of this chapter 1is as
follows: Section 5.2 derives the theoretical distributions of the
new portmanteau tests. Section 5.3 describes the design of the
Monte Carlo simulation experiments and reporis the main simulation

results. This chapter closes with Section 5.4 which offers some

concluding remarks.

5.2 Modified Kwan-Sim-Wong Portmanteau Tests

The simulation results of Chapter 4 indicate that, except for
QKSW, size distortion as well as dispersion bias can be
substantial for portmanteau tests such as the Ljung-Box and
Dufour-Roy statistics for 50=n=<150. Inspired by these findings,
two modified versions of QKWS are constructed by employing the
transformations suggested by Hotelling (1853). The main advantage
of the Hotelling transformations is their ability to make r.

converge more rapidly to normallity than the statistic based on zr

The Hotelling transformations of rk are

32k+rk
zlk = zk - a(n-k » (5‘2.1)

and
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3
] Iszﬂ'k 232k+33rk Sr'lt

% =% T ilnxy (5.2.2)

96 (n-k) 2

It can easily be seen from (5.2.1) and (5.2.2) that the difference
between these two formulae and the Fisher variance-stabilizing
transformation is the additional terms, (32k+rk)/{4(n-k)) and
(232k+33rk-5r:)/(96(n—k)2), which appear on the R.H.S. of (5.2.1)
and (5.2.2), respectively. For moderate samples, the Fisher and
the Hotelllng transformations should perform similarly in terms of

normalizing the distribution of r'k.

Hotelling (1953) showed that the distributions of z. and Z,

are approximately normal with mean zero and

var'(z“)=var(22k)=(n-1)-l. Using these conditions, two modified

portmanteau tests can be constructed on the basis of C and z,

m
— - - 2 b
Q1 = l‘Ei(n k l)zm, (5.2.3)
and
» 2
Q2 = kEl(n—k—l)zzk. (5.2.4)

Under the null hypothesis of randomness, both Q1 and Q2 are
distributed as x°(m) for large n. When the sample size is small
to moderate, the theoretical distributions of Q1 and Q2 can be

derived using proofs similar to those given In Chapter 4.

To obtain the theoretical means and variances for Q1 and Q2,
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2)+1

first let a MclLaurin series M [PJ+1 . It can easily be shown
that
I 1 +B M (5.2.5)
2 T .Fk.ork ¥ SBk lrk * 5R, 1rk By 3]’ e
I 1 3, 1
Z T _5k,0rk * 36k,1rk * §6k 2 k ] (5.2.8)
2 (2 2 4 2 1 8
e T _Bk,oru * 3Bk OBk.l k (§B B §Bk,1)rk o ]’
(5.2.7)
2 2 2 2 4 2 1.2 6
and  z, = [6u.ork * 3ak,06k,1rk * (gak,oak,2+§6k,l)rk MR ]’
(5.2.8)
1
where Bk 0 " 1 -~ K
_ _ 3
Bk,l =1 4(n-k) °'
S 0= 1° nik - ’ 2
’ 12(n-k)
3 1
5 =1- -
k1 4(n-k) 12(n-k)?
3 1
and ] =1 - -
k,2 4(n-k) 23(n-k) 2
Substituting (5.2.7) into (5.2.3) ylelds
2 2 4 2 1.2 6
k§1(n k- 1)[Bk 0k * 3Bk,OBk,1rk * (gﬁk,oﬁk,1+§-ﬁk.1)rk MR ]'
(5.2.9)
and
2 m m 2 4
@)= ¥ T o k-l)(n-h—l)[ﬁk £l v B e 8 (r2rh)
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2,2 4 2 4 4 4
* SBh,OBk,OBk,I(Pkrh) * §Bk,08k.18h,06h,1(rkrh)
2 ,2 1. 2 2 8 2 2 1.2 8_2
* Bk,o(gﬁh,oﬁh,l+§ﬁh,l)(rkrh) * Bh.O(B-Bk,OBk,1+§Bk,1)(Pkrh)
2 2 1.2 4 6
* §BR,OBR,1(§Bh,OBh,1+§Bh,1)(rkrh)

2 2 1 2 6 4
* 5Bh,OBh,1(§Bk,OBk,1+§Bk,1)(rkrh)

2 1.2 2 1.2 6_6
+(§B B, 1*58, )(gB B, *5f )(rkr‘h)+...].

k,0 k,1 )1 h,0 h,1 9 h,1
(5.2.10)
where Bh o=1-(1/(n-—h)) and Bh 1=1—{3/[4(n-h)]).
Similarly, substituting (5.2.8) into (5.2.4) yields
m
_ u_ 2 2 _ 2 4 2 1.2 8
Q2 -ka(n k 1)[:‘5“’01"k + 35k,05k,1rk + (gak'oak';g«sk’l)rk + ... ]
(5.2.11)
and
2 . - 2 2 , 22 2.2 2 4
(Q2)° = kg:mZ:l(n—k~1)(n-h—1) [Gk,oah.o(rkrh) + §6k.°6h’°6h.1(rkrh)

2.2 4 2 4 4 4
+ 36h,05k,06k,1[rkrh) * §6k.06k,lah,06h.l(rkrh)

* ai,o(g‘sh,oah,2+éa:,1)(P:r:) * 6:0(26&,06*.2%6:’1)(r:r:)
* gak,oak,1(§6h,oah,2+%6:,1)(P:rﬁ)

* %ah,oah,1(%k,oak.2+éai,1)(r:r:)

* (éak,oak,2+é612¢,1)(gah,oah,2+%6i,l)(rgr:) * ] !
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(5.2.12)

where
o = 1 - nih - ’ 2’
! 12(n-h)
1 =17 4(g-h) - 12(;—h)2 '
and bz = 1 4(2—h) - 23(;—h)2 '

Upon taking expectations of both sides of (5.2.9) and (5.2.11), we

get
- 2 2 2 M
E(Q1) = kgi(n-k-l)[ﬁkﬂg(rk) + EBk,OBk,le(rk) +
(2e g +18% HE(r®) + (5.2.13)
57%,07k,1 97k,1 k T ’ ter
and
s ow revo1n [<2 2, 2 .
E@) = (nck 1)[6k.oE(rk) + 25, 8, E(ch) +
+ (% +152 JE(rD) + ] (5.2.14)
5%,0 k,2 9 k,1 K Tt ' T

where E(Q1) and E(Q2) are simply a linear function of E(r2)) v
positive integers j. As was the case for the mean formula of
QKSW derived in Chapter 4, truncation of (5.2.13) and (5.2.14) is
required in order to set critical values for the proposed tests.
Following the previous chapter, adequate approximations of E(Q1)
and E(Q2) may be obtained by omitting the univariate moments

smaller than E(r:), whereupon:
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m
E(Q1) = E(n—k-l)[ﬁi oa(ri) + ‘gB 8 E(r‘)].
k=1 i

k,0 k,1 = k
(5.2.15)
and
- 2 2 2 "
E(Q2) = k§1(n k 1)[5u,oE(ru) + 36k,06k,1E(rk)]' (5.2.16)
To derive var(Ql) and var(Q2), we use the identities
var(Q1) = E{(Q1)% - {E(Q1))? (5.2.17)
and
var(Q2) = E{(Q2)% - {E(Q2)}?, (5.2.18)
where
2 o 2 2 .2 2 2
B(Q% = T E (kD nhen) 8] 62 ECeEr?)
k=1h=1
+ 282 8 g E(r?r') +28% g B8 E(r'rd)
37%,0 h,0 h,1 k h 37h,0 k,0 k,1 k h
4 4 4 2 ,2 1.2 2 8
+ §Bk,OBk,lBh.OBh,1E(rkrh) + Bk,o(gﬂh,oph,1+§Bh,l)E(rkrh)
* Bp (88, oy 5P JErErD)
2 2 1 2 4. 8
* §Bk,OBk,1(§Bh,OBh.1+§Bh.1)E(rkrh)
2 2 1.2 6 4
+ §Bh,08h,1(-S-Bk,oﬁk,l+§6k,l)l:(rkrh)
2 12 2 1 2 68_6
* (gﬁk,OBk,1+§Bk.1)(§ﬁh.06h,1+§Bh,1)E(rkrh) * ] ’
(5.2.19)
and
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2, u oo 2 .2 2 2
E((Q2)%) = k§lh§l(n—k-1)(n-h—1)[Sk.oah.ol-:(rkrh)

* gai,oah,oah.iE(rzr:) * gai,oak,oak,xE(r:r:)

* gak,oak,lah,oah,IE(r:r:) * af.océah.oah.2+é<s:,l)E(r:rs)

* 6;0(%61(.051:.2%6:.1)E(rsri)

* gau.osk,1(§6n.oah,z+é‘s: 1)E(r:r':)

* gah,oah,1(§6k,oak.2+%62,1)E( ir:)

* (éak,oak.2+%6i.1)(gah,oah.z'%a:nmh:r:) * ]
(5.2.20)

As in the case of the mean formulae glven in (5.2.15) and
(5.2.16), approximations of var(Ql) and var(Q2) can be obtained by

omitting terms smaller than O(n™'):

- 2| .4 4 4 3 6
var(Q1) = {‘El(n—k-l) [Bk'oE(r‘k) + §Bk'oﬁk'1E(rk)
m-1 2 2 2 2 2 2.2 2 4
* 2k)=:1h§kd(n-k—1)(n-h-1)[Bk’oﬁh’oE(rkrh) * §Bk,08h,03h,1E(rkrh)
2.2 4 2 2
+ 5Bh,08k,08k,1E(rkrh)] - {E(Q1)} } R (5.2.21)
and
S v 112[<8 s, , 4.3 6
var(Q2) = k§1(n k-1) [Gk'oE(rk) + 36k’°6k'1E(r‘k)
n-1 m

ol e 2 2 2 2 2.2 2 4
+ 2k§1h§ku(n k-1)(n-h 1)[6k’06h'0E(rkr‘h) + 36k’06h'06h’1E(rkrh)
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2.2 4 2 2
. §5h'06k'06k,1E(rkrh)] - (E(Q2)} } . (5.2.22)

where E(Ql1) and E(Q2) are given by (5.2.15) and (5.2.16),

respectively.

The theoretical means and variances of Q1 and Q2 can be
derived by substituting appropriate univariate and bivariate
moments of r into (5.2.18), (5.2.16), (5.2.21) and (5.2.22).

When n is large relative to m, it can be shown that

E(Q1) = n - (AN (5.2.23)
E(g2) = m - {ZA)M (5. 2.24)
var(Q1) = 2m - 28, (5.2.25)
and var(Q2) = 2m -~ lgﬂ . (5.2.26)

As n approaches infinity, it can easily be seen that %%& E(Q1) =
%gm E(Q2) = m, and %gm var(Q1) = %3& var(Q2) = 2m. These results
suggest that the asymptotic distributions of Q1 and Q2 are
approximately xa(m). It Is important to note that the derivations
of (5.2.23)-(5.2.26) require laborious algebra. We therefore use
the symbolic program Mathematica to verify the results. Detalled

derivations of (5.2.23)~(5.2.26) are provided in Appendix B.

Equations (5.2.23)-(5.2.26) suggest that the (finite n)

theoretical means and variances of Q1 and Q2 are less than m and
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2m. Also note that both E(Ql) and E(Q2) are not integer.
Therefore, it is necessary to adjust the large-sample means of Ql
and Q2 in order to set critical values for these tests. Following

Chapter 4, we use the five-step procedure to execute Q1 and Q2:

Step 1. Compute the sample autocorrelations T (k=1,...,m).
Step 2. For each re compute Z and Z,
Step 3. Compute Q1 and Q2.

Step 4. Compute E(Ql) and E(Q2) using the approximations,

- 2 2 2 4 _
E(Q1) = k§1(n—k-1)[Bk,olii(r‘k) + §Bk'°Bk’1E(r‘k)] and E(Q2) =
l(Z‘,I(n-k-l)[cSi.OE(r'f) + %ak'oak.lE(r:)], respectively.

Step 5. Reject the null hypothesis of randomness whenever
°012x2(E(Q1)) or szxz(E(QZ)) in which « is the level of

significance.

5.3 Experimental Design and Simulation Results

To examine the empirical performance of the proposed test
statistics, Q1 and Q2, a Monte Carlo simulation experiment is
performed. In this experiment, attention Is focussed on estimated
sizes (1.e. type I errors), variances, and variance-mean ratios of
QKSW, Q1 and Q2. For the sake of comparison, the simulation

results of QBP, QLB and QDR1 are also reported.

All simulations were carried out on a VAX2 computer. N(0,1)

121




random deviates, Xt, were generated for six sample sizes (n=10,
15, 20, 25, 30, and 40). Estimates of empirical size (a=5% and
10%), means and variances of the aforementioned statistics were
based on 20,000 replications. As for the value of m, it is set
between 1 and (n/2). The largest value chosen for m is 7 when

n=15 and 12 when n=25.

The results of our simulation experiment are summarized in

Tables 5.1, 5.2 and 5.3. The main points are as follows:

(1) The empirical performance of QBP, QLB and QDR1 is
similar to that reported in Dufour and Roy (1986). QBP has
estimated sizes which are consistently lower than the values
predicted by the asymptotic theory. QLB and QDR1, on the other
hand, tend to reject the null hypothesis far too frequently when
the ratio of (m/n) is from moderate to large. Note that this

"over-rejection” problem is particularly serious for QLB.

(1i) As regards the varliance-mean ratios, QBP always has a
value around 2 for nz30 and 3=m=<15. On the contrary, QLB and QDR1
can have values which are substantially greater than 2 for m=7
with n=15 and for m27 with 20sn=40. This problem 1is, by and
large, due to the presence of dispersion blas. For example, when
n=25 and m=12, the empirical variance of QDR1 is 36.06 which is

significantly larger than the theoretical value 2m.
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Table 5.1: Empirical Significance Levels of Portmanteau Tests for
a Normal White Noise; a=5%

n m QBP QLB QDR1 QKS Q1 Q2
10 1 2.18 5.27 4.38 4.02 4.21 4.22
3 0.89 5.57 4.80 2.58 2.86 3.01
5 0.50 6.77 5.52 2.39 2.65 2.84
15 1 3.25 5.56 4.75 4.65 4.71 4.71
3 1.86 5.71 5.07 4.00 4.13 4.21
5 1.51 6.76 6.17 3.98 4.22 4.30
7 1.20 7.88 6.72 4.00 4.18 4.38
20 1 3.42 5.32 4.869 4,58 4.64 4.64
3 2.70 5.25 5.01 4.19 4.25 4.27
5 2.21 6.24 5.68 4.31 4.39 4.52
7 1.98 6.94 6.22 4.43 4.57 4.860
10 1.46 8.05 6.96 4.30 4.40 4.47
25 1 3.99 5.47 5.01 4.87 4.89 4.89
3 2.78 5.09 4.90 4.21 4.26 4.29
5 2.70 5.76 5.50 4.43 4.48 4.57
7 2.47 6.90 6.32 4.74 4.81 4.83
10 2.00 8.14 7.39 4.80 4.85 4.94
12 1.57 8.81 7.91 4.81 4.84 4.91
30 1 3.97 5.14 4.98 4.73 4.74 4.74
3 3.14 4.99 4.88 4.28 4.30 4.30
5 2.98 5.87 5.45 4.77 4.80 4.83
7 3.03 6.51 6.12 4.80 4.84 4.87
10 2.56 7.87 7.38 5.30 5.38 5.48
12 2.10 8.73 7.96 5.48 5.51 5.58
15 1.54 9.17 8.27 5.42 5.45 5.89
40 1 4.51 5.30 5.10 4.98 4.98 4.98
3 3.66 5.10 4.91 4.58 4.60 4.60
5 3.48 5.66 5.52 4.89 4.92 4.85
7 3.48 6.26 5.95 4.96 4.97 4,98
10 3.20 7.07 6.72 5.18 5.20 5.27
12 2.89 7.73 7.08 5.42 5.47 5.52
15 2.44 8.66 8.21 5.64 5.66 5.73
20 1.64 9.42 8.57 5.79 5.82 5.82
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Table 5.1: (cont’'d); a=10%
n m QBP QLB QDR1 QKS Q1 Q2
10 1 6.19 11.08 8.80 9. 96 10.03 10.08
3 2.70 11.59 9.94 7.60 8.00 8.16
5 1.22 12.75 10.24 7.18 7.65 7.79
15 1 7.75 10.89 9.94 9.92 9.97 9.96
3 4.87 10.78 Q.89 8.80 9.00 9. 00
5 3.46 11.94 10.71 8.51 8.80 B.86
7 2.43 13.09 11.27 8.50 8.67 8. 86
20 1 8.28 11.29 10. 16 0.41 10.42 10.42
3 5.53 10.68 9.53 8.83 8.91 8. 96
5 4,81 11.31 10.24 8.64 8.74 8.87
7 3.86 12.02 10.89 8.66 8.75 8.79
10 2.63 13.15 11.55 8.61 8.66 8.75
25 1 8.98 10.84 10.14 0.24 10.25 10.25
3 6.27 10.40 9.78 g.11 9.16 9.16
5 5.31 10. 88 10.25 8.68 8.76 8.85
7 4,93 11.45 10.61 8.79 8.86 8.97
10 3.64 12.74 11.70 9.05 9.10 9.24
12 2.97 13.32 12.01 9.09 9.19 9.33
30 1 8.05 10.80 10.05 0.19 10.19 10. 19
3 6.94 10.17 9.71 9.19 9.22 9.21
5 6.10 10.90 10.37 9.17 9.23 9.30
7 5.41 11.60 10.88 9.35 9.38 9. 46
10 4.70 12.81 11.84 9.69 9.77 9.82
12 4.06 13.72 12.49 9.84 g9.92 10.00
15 2.81 14. 40 12.89 9.80 9.90 9.97
40 1 9.30 10.67 10. 30 0.14 10.14 10. 14
3 7.74 10.64 10.23 9.72 9.75 9.78
5 6.94 10.78 10. 40 9.61 9.62 9.63
7 6.42 11.12 10.35 9.34 9. 39 8.42
10 5.49 11.74 11.25 9.52 9.54 9. 56
12 5.25 12.21 11.58 9.69 9.71 9.75
15 4.40 13.16 12.35 Q.87 g9.88 9.99
20 2.96 14.29 13.21 9.75 9.78 9.89
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Table 5.2: Empirical Variances of Portmanteau Tests
n m QBP QLB QDR1 QKs Q1 Q2
10 1 1.01 1.79 1.60 0.70 0.79 0.81
3 2.80 6.35 5.99 1.38 1.61 1.72
5 4.01 11.31 10.81 1.56 1.85 2.03
15 1 1.29 1.90 1.74 1.11 1.17 1.18
3 3.64 6.22 6.ve 2.58 2.72 2.80
5 6.05 12.11 11.67 3.57 3.79 3.97
7 8.01 18.67 17.93 4.07 4.34 4.62
20 1 1.43 1.91 1.76 1.31 1.34 1.35
3 4.27 6.40 6.21 3.48 3.58 3.64
5 7.19 12.086 11.68 5.14 5.29 5.44
7 10.00 18.84 18.24 6.34 6.54 6.78
10 13.25 29.44 28.62 7.27 7.53 7.90
25 1 1.52 1.92 1.78 1.43 1.45 1.46
3 4.47 6.16 6.02 3.83 3.90 3.94
S 7.69 11.60 11.38 5.98 6.08 B.18
7 11.04 18.29 17.85 7.79 7.93 8.12
10 15.58 29.59 28.99 8.65 9.85 10.18
12 17.85 36.90 36.06 10.33 10.55 10.94
.30 1 1.61 1.96 1.88 1.56 1.58 1.68
3 4.78 6.24 6.16 4.30 4.34 4.37
5 8.20 11.53 11.38 6.79 6.87 6.95
7 12.04 18.31 17.85 8.20 9.31 8. 46
10 17.56 29.97 29.38 11.97 12.12 12.41
12 20.67 37.99 37.24 13.18 13.38 13.74
15 24.45 49.82 48.56 14.40 14.60 15.08
40 1 1.76 2.04 1.98 1.74 1.75 1.75
3 5.23 6.38 6.35 4.89 4.91 4.93
5 8.84 11.38 11.34 7.80 7.84 7.89
7 12.67 17.22 17.03 10.54 10.60 10.70
10 18.58 27.46 27.22 14.22 14.31 14.50
12 22.65 35.83 35.11 16.39 16.50 16.786
15 28.64 49.04 48.12 19. 16 19.30 19.67
20 35.85 70.01 68. 84 21.70 21.87 22.40
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Table 5.3: (Variance/Mean) Ratios of Portmanteau Tests
n m QBP QLB QDR1 QKS 10} Q2
10 1 1.26 1.68 1.62 1.23 1.32 1.34
3 1.29 1.85 2.00 1.08 1.17 1.20
S 1.25 2.05 2.16 1.00 1.07 1.10
15 1 1.49 1.81 1.75 1.56 1.60 1.60
3 1.50 1.96 2.00 1.42 1.46 1.48
S 1.62 2.29 2.33 1.41 1.45 1.48
7 1.66 2.50 2.55 1.38 1.42 1.45
20 1 1.58 1.83 1.76 1.65 1.67 1.68
3 1.65 2.02 2.08 1.64 1.66 1.68
5 1.77 2.30 2.33 1.65 1.68 1.70
7 1.87 2.57 2.60 1.65 1.68 1.70
10 1.91 2.79 2.85 1.61 1.64 1.66
25 1 1.66 1.86 1.79 1.73 1.74 1.74
3 1.68 1.98 2.00 1.68 1.69 1.70
5 1.82 2.24 2.27 1.73 1.74 1.76
7 1.96 2.52 2.55 1.77 1.79 1.81
10 2.08 2.86 2.90 1.79 1.81 1.83
12 2.08 2.96 3.00 1.76 1.78 1.80
30 1 1.71 1.88 1.86 1.79 1.80 1.80
3 1.76 2.01 2.04 1.78 1.79 1.80
5 1.88 2.23 2.27 1.82 1.84 1.85
7 2.04 2.53 2.54 1.91 1.92 1.94
10 2.21 2.89 2.92 1.96 1.97 1.99
12 2.26 3.05 3.08 1.95 1.97 1.99
15 2.28 3.20 3.22 1.93 1.94 1.97
40 1 1.82 1.96 1.95 1.90 1.91 1.91
3 1.85 2.04 2.08 1.88 1.89 1.89
5 1.93 2.19 2.24 1.91 1.92 1.92
7 2.04 2.38 2.40 1.96 1.86 1.97
10 2.19 2.66 2.70 2.02 2.03 2.04
12 2.29 2.87 2.90 2.06 2.07 2.08
15 2.43 3.17 3.18 2.11 2.12 2.13
20 2.47 3.40 3.42 2.08 2.09 2.11
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(111) QKSW performs adequately even when the sample size is

as low as 15. For ns10, mz3, and a=5% and 10%, QKSW is undersized.

(iv) The modified Kwan et al. tests, Q1 and Q2, perform
slightly better than QKSW for n=15. To highlight this feature, we

consider, as examples, the following range of estimated sizes:

5% 10%
n m QKSW Q1 Q2 QKSW Q1 Q2
10 1 4.02 4.21 4.22 9.86 10.03 10.08
3 2.58 2.86 3.01 7.60 8.00 B8.16
5 2.39 2.65 2.84 7.18 7.65 7.80
15 1 4.65 4.71 4.71 9.92 8.97 9.96
3 4.00 4.13 4.21 8.80 8.00 9.05
5 3.98 4.22 4.30 8.51 8.80 8.86
7 4.00 4.18 4.38 8.50 B.67 8.86

Although both Q1 and Q2 perform better than QKSW in these cases,
the gains are clearly marginal, and indicate that QKSW can behave
almost as well as Q1 and Q2 for n>15. Note that the empirical
significance levels of QKSW, Q1 and Q2 are considerably smaller
than the nominal level for n=10 with m=3 and 5. As well, their
empirical variance-mean ratios can be far below 2 in these

situations.

(v) For a larger sample size (nz20) and m25, the
variance-mean ratios of QKSW, Ql and Q2 are much closer to 2 than
those of QLB and QDR1. It is noteworthy that these values are

always less than 2.12 even when m is (n/2). This performance
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strongly indicates that the dispersion bias which s inherent in
both QLB and QDR1 <can be removed by adopting the

variance-stabilizing transformations here.

5.4 Concluding Remarks

In this chapter, an attempt has been made to compare the
small-sample performance of some portmanteau statistics of Ljung
and Box (1978), Dufour and Roy (1986), and Kwan et al. (1982). In
addition, two modiflied versions of the Kwan et al. test, Q1 and
Q2, based on the application of the Hotelling (1953)
transformations to sample autocorrelations, are studied. The
simulation results reveal that QKSW, Q1 and Q2 perform fairly well
in small samples (nz15). Furthermore, these statistics were found
to be more reliable than QLB and QDR1 when the number of
autocorrelations is large. In this respect, QKSW, Q1 and Q2 have
a clear advantage over other portmanteau statistics as they are

valid over a wider range of m.

Lastly, the simulation results presented do not imply that
portmanteau statistics such as QLB and QDR1 should not be used for
testing the randomness of a time serles when the sample size is
very small. For instance, in a few cases where n 1s 10, QLB and
QDR1 perform better than QKSW, Q1 and Q2. However, from the

practical point of view, such a small sample size is hardly

128




enough to carry out any meaningful time series or econometric

modelling.

129



CHAPTER SIX

SUMMARY AND DISCUSSION

6.1 Introduction

This dissertation has provided a comprehensive study of the
empirical performance of some well-known and computationally
straightforward tests for univariate time series models. The
tests examined include: (1) the portmanteau tests of Box and
Pierce (1970), Ljung and Box (1978), Dufour and Roy (1986), Ljung
(1886), and Bera and Newbold (1988); (1ii) the Godfrey (1979) LM
tests (or tests of nested hypotheses); and (iii) the McAleer et
al. (1988) tests of separate hypotheses. While considerable
attention has been paid to the empirical size of these test
statistics, their ability to detect deviations from model
specification has also been investigated in cases where the data
are seasonally or non-seasonally generated. Since many of the
portmanteau tests considered can also be wused to test for
randomness of Gaussian time series, this dissertation also looks
into their finite-sample performance. As well, two modified
portmanteau tests based on an application of Hotelling's (1953)

transformations to sample autocorrelations are proposed.

In Chapter 2, three large-scale simulation experiments are

used to examine the finite-sample properties of the aforement ioned
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portmanteau tests for the adequacy of univariate time series
models, with special attention being pald to test size, means,
variances, and empirical power. A similar analysis is undertaken
in Chapter 3 which provides a detailed assessment of the
finite-sample distribution of Godfrey's (1979) LM test. In that
chapter, a critical review of the tests of separate hypotheses
proposed by McAleer et al. (1988) is also presented. Chapter 4
deals with the issue of testing the randomness of Gaussian time
series. Its objective is to examine how the Kwan et al. (1932)
portmanteau test performs Iin commonly-used samples. Lastly, in
Chapter 5, the relative performances of two modified portmanteau

tests and the Kwan et al. (1992) test are investigated.

6.2 Main Simulation Results of Some Selected Portmanteau

Tests for Univariate Time Series Models

Since the empirical investigations of Chatfield and Prothero
(1973) and Prothero and Wallis (1976), considerable attention has
been paid to the finite-sample distribution of the portmanteau
test proposed by Box and Pierce (1970). Ljung and Box (1878), for
instance, showed that the Box-Pierce test suffers a location bias.
Dufour and Roy (1986), on the other hand, indicate that the
normalization procedure used in the Box-Pierce test is
inappropriate for an independently and identically distributed
normal series with unknown mean. Consequently, the poor empirical

performance of the test is not entirely unexpected.
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The introduction of the Box-Plerce test has led to many
modified versions, especially in the area of testing the adequacy
of an ARMA (p,q) model; notable examples are Ljung and Box (1978),
Godolphin (1980), Newbold (1980), LJjung (1986), Dufour and Roy
(1986), Bera and Newbold (1988), and Kwan et al. (1992). However,
all of these modified portmanteau tests have only a large-sample
appeal, and require very large samples to Jjustify their use. In
view of the fact that many economic ana financial time series are
short, their relative performance in commonly-used samples is an

important issue that must be confronted by applied practitioners.

In line with the above, one of the principal objectives cf
this dissertation is to investigate the finite-sample properties
of the portmanteau tests suggested by Box and Pierce (1970), Ljung
and Box (1978), Ljung (1986), Dufour and Roy (1986), and Bera and
Newbold. On the basis of the simulation evidence presented in

Chapter 2, two important results can be summarized as follows:

(1) The modified Ljung-Box test, QLB1, is found to be the
most reliable test in terms of controlling test size. This is
particularly obvious when the number of residual autocorrelations
is small and when the parameter values are close to the boundary

of stationarity or invertibility region.

(i1) With the exception of the Bera-Newbold tests, QBN1 and
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QBN2, the portmanteau tests considered exhibit similar power
performance, namely they tend to have high empirical power when
the number of residual autocorrelations 1is small and the
alternatives are chosen to be lower-order ARMA models. This
observation, however, cannot be generalized to cases where the

data are seasonally generated.

6.3 Main Results of the Tests of Nested and Separate Hypotheses

for Univariate Time Series Models

It is well established that a test for a specific alternative
will exist, and will have power no less than the portmanteau
statistics. Two popular testing procedures, namely the tests of
nested hypotheses and separate hypotheses, possess this
characteristic. Godfrey (1979) has shown that the LM test is
asymptotically optimal when the null model is nested within the
alternative. Recently, McAleer et al. (1988) have suggested tests
of separate hypotheses. Their procedures are asymptotically
optimal against alternatives that are separate from the null

specification.

Existing simulation evidence reported iIn Godfrey (1979},
McAleer et al. (1988), and Hall and McAleer (1989) favours the LM
test and the tests of separate hypotheses over the portmanteau
tests of Box and Pierce (1970) and Ljung and Box (18978) in

commonly-used samples. Chapter 3, however, does not share the
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same degree of enthusiasm. Using three large-scale simulation
experiments, Chapter 3 shows that the finlte-sample performance of
Godfrey’s (1979) LM test depends on the number of restrictions (r)
that is imposed on the null model. Similar to the findings of the
portmanteau statistics, the empirical power of the LM test can be
significantly affected by both the choice of r and the nature of

data (seasonal vs. non—seasonal data).

Chapter 3 also expresses serious reservations regarding the
empirical performance of the McAleer et al. tests of separate
hypotheses. Three relevant issues are raised: (1) the empirical
size of thelr tests can be affected by the orders of the AR(p) and
MA(q) models; (ii) the empirical power of the SM test contradicts
the optimal property of the tests of separate hypotheses; and
(ii1) their conclusions regarding the ability of the test to
detect model inadequacy appears unconvincing as seasonal data were

not used in their simulation experiments.

6.4 Some Theoretical Properties and Results of the

Modified Kwan-Sim-Wong Portmanteau Tests

A major theoretical contribution of this dissertation is the
development of two modified portmanteau tests for randomness of
Gaussian time series. Let z, be the Fisher variance-stabilizing
transformation of r: The Kwan et al. (1992) portmanteau test,

based on zk. is:
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| -}
QKSH = El(n—k-s)z: : (4.2.7)

k
where E(QKWS) = m - "‘—(2*4’. (4.2.16)
18m
and var(QKWS) = 2m - 5 - (4.2.21)

In Chapter 4, it is shown that both E(QKWS) and var(QKWS)
converge to m and 2m, respectively. These results suggest that
the asymptotic distribution of QKWS is approximately xz with m
degrees of freedom. However, E(QKWS) is not an integer 1in
commonly-used sample sizes. For practical purposes, it |is
necessary to adjust the mean of QKWS in order to set appropriate

critical values for the Kwan et al. (1992) portmanteau test.

The simulation results presented in Chapter 4 indicate that
the QKSW dominates QLB and QDR1 in terms of controlling test size
and minimizing dispersion bias. In addition, the power
calculations suggest that there is no loss in power when QKSW is
used. Encouraged by these findings, a similar investigation is
extended to incorporate the Hotelling (1953) transformations which
may perform better than the Fisher transformation in small
samples. lLet z and z2k be the Hotelling transformations of rk.

1k
The modified Kwan et al. (1992) portmanteau tests are:

n
2
Q1 k‘_f.'l(rl-k—l)zm, (5.2.3)

B
2
and Q2 kEl(n'-k l)zak. (5.2.4)
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It is demonstrated in Chapter 5 that, both the theoretical means
and variances of Q1 and Q2 are identical to those of QKSW, at
least to O(n™'). As in the case of QKSW, the means of Q1 and Q2

have to be adjusted in order to carry out tests of randomness.

The simulation evidence reported in Chapter 5 indicates that
Q1 and Q2 perform better than QKSW in smaller samples, though the
empirical significance levels of these tests can be substantially
different from the nominal level when n=15. When the sample size
is at least 20, the empirical performance of Q1, Q2 and QKSW is
superior to that of QLB and QDR1, in terms of controlling test
size. This conclusion 1is evident when the number of sample

autocorrelations is large.

6.5 New Research Directions

As for future research, a number of areas are worth
investigating:

(1) As in many simulation studies, the conclusions drawn in
Chapters 2 and 3 are valid only for the models considered. It may
be fruitful to extend these investigations to higher-order or more
complicated ARMA models.

(11) The robustness of all the tests examined in the
presence of non-Gaussian errors is important to applied work.
Existing studies, including Ljung and Box (1978), Hall and McAleer

(1989) and Kwan et al. (1992), have reported mixed results
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regarding this issue. In light of this, it would be important to
examine the effect of non-Gaussian errors on the empirical
performance of these diagnostic checks.

(111) The simulation findings of Chapter 3 demonstrate that
the empirical power of Godfrey’'s LM test for model adequacy can be
improved by removing redundant restrictions. Since the
portmanteau statistics of Box and Pierce (1870) and Ljung and Box
(1978) are equivalent to Godfrey's LM test [see Newbold (1980)],
it seems useful to employ a similar strategy for these tests in
empirical applications.

(iv) This dissertation has considered two well-known
variance-stabilizing transformations. Jenkins (1954, 1956) has
suggested a transformation which produces a more nearly normally
distributed variable than Fisher’s. Hence, it would be
interesting to construct a new portmanteau test based on the
Jenkins transformation. As well, an examination of Iits

finite-sample performance would be a welcome addition to the

existing literature.
6.8 Conclusion

This chapter summarizes the maln results obtalned in this
dissertation. It also presents a discussion of some of these
results. The main contributions of this dissertation are:

(1) It reports important simulation evidence regarding the

finite-sample properties of some selected portmanteau tests and
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Godfrey’s (1879) LM test, in the context of univariate time series
models. Many simulation results have not been reported in
previous studies.

(11) It criticizes the empirical performance of the McAleer
et al. (1988) tests of separate hypotheses. The “"critique"
presented enables one to understand the basic problems of the
finite-sample properties of the tests.

(i11) It compares the relative performance of the existing
portmanteau tests of Ljung and Box (1978), Dufour and Roy (1986),
and Kwan et al. (1992), in the area of testing Gaussian time
serles.

(iv) It proposes two modified portmanteau tests, based on an
application of the Hotelling (1953) transformations to sample
autocorrelations, for randomness of Gaussian time serles. The
proposed tests are major innovations of this dissertation. The
simulation results strongly favour the use of these two modified
tests and the Kwan et al. (1992) portmanteau test in empirical

applications.
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APPENDIX A: Derivations of equations (4.2.18) and (4.2.21)

To derive (4.2.18}, we use the Mathemaica program to obtain

the following quantitlies:
- 2
(1) k§1(n—k-3)E(rk). and

2, 2 4
(11 Az (nk-DEE.

m
2—
(1) _E, (n-k-3)E(r?)=

3

(m+1)n  _ 2(m+1) _ (n+1)® . (m+1)® _ (& m1 1y (me1)
n+2 n+2 n+2 n(n+2) 3'n(n+2) 3'n(n+2)

2 4,
(i1) (§)k§1(n-k-3)E(rk)—

2n®(m+1) , _ Sn(m+1) ____25(m+1)
(n+t2) (n+4)(n+8) (n+2)(n+4)(n+6) (n+2) (n+4) (n+6)

o Snmn?® _ 1amn)? 45, (m1)®
(n+2) (n+4)(n+6) (n+2) (n+4) (n+6) 2 (n+2)(n+4) (n+6)
3 3
_ (gg) m+1 R 2(m+1) + (11) (m+1)
3'n(n+2) (n+4) (n+6) (n+27(n+4)(n+6) 3'n(n+2) (n+4) (n+6)

- (m+e1)* _ 2n° _ 6n
2'n(n+2)(n+4)(n+6) (n+2)(n+2)(n+6) (n+2)(n+4)(n+6)

36
* e 2) (n+d) (n+6)
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Upon substitution of (1) and (ii) into (4.2.17), it can be shown

that, after some nlgebraic manipulation,

m(m+d) | m(m+(1+n%)/3)

n 2
n

- 2,2, 4
E(QKSW) « [kEI(n-k-S)[E(rk)+§E(rk)]] xm -

m(17m+4m>-116) n(606m-22m>-3m°+5225)
3n3 Sn‘
_ m(12529m+874n°+10m +67008) |

Sn‘l

+

o(mn™>).

To get (4.2.21), we use the Mathematica program to derive the

following quantities:

m
(a) ¥ (n—k-a)as(r:).
k=1

4, o 2., 6
- (b) (3) T (n-k-3)%E(rD),
k=1
m-1 m
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Upon substitution of (a)-(e) into (4.2.21), it can be shown that,

after some algebraic manipulation,

var (QKSW)

; 2 4 4. 8
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4
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Note that simpler expressions for E(QKSW) and var(QKSW) can be

obtained by keeping terms only larger than O(mn-z). Thus, we have

E(QKSW) =« m - _"‘_(1;_4_2, ,
and var(QKSW) « 2m - -1—33 .
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APPENDIX B: Derivations of equations (5.2.23), (5.2.24), (5.2.25)
and (5.2.26)

In order to yield tractable expressions for equations

(5.2.23)-(5.2.26), it is necessary to replace the terms, (n-k) and

B

’ S s , &
h,0

h,1' k,0° k,1

(n-h), which appeared in Bk o’ B8 B

k,1° h,O

and & by n. Once the substitution is done, we use the

h,1’
Mathematica program to obtain the following quantities given in

equations (5.2.15) and (5.2.16):

n -1
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2 4 5
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[ -1
(111) k§1(n-k—1)6: 05(rih=[24n3(n+2)] {m(n—l)(4n—3)(14+15m-2m2
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n -1
2 4 5
(iv) (§)k§1(n-k—1)6k’ ‘sk,xs(r‘k)u[BStln (n+2)(n+4)(n+6)]

0
{:m(1+9n—12n2)(7+12n—12n2)(14+15m—2m2—3m3-30n+6mn+12m2n-sn2

—18mn2+12n3)}

Upon substitution of (1)-(ii1) and (1ii)-(iv) Iinto respective

equations (5.2.15) and (5.2.16), it can be shown that, after some
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algebraic manipulation,

»
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To get (5.2.21) and (5.2.22), we use the Mathematica program

to derive the following quantitles:
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k=1 '

-20m%+15m>+6m*+150n+6umn-60m°n-30m°>n-60n2+90mn>+60m>n>-60n"

-60mn +30n* )}

» -1
(b) (g) I (n-k-1)°8] 8, IE(PE)N[IOnB(n+2)2(n+4)2(n+6)2(n+8)(n+10)]
k=1 ’ ’

{m(n—l )3(-3+4n) (-46-75m-20m>+15m°+6m" +150n+60mn-60m2n-30mn-60n>+

-60n2+90mn2+60m2n2-60n3—60mn3+30n‘)}

183



m-l m
(e 2 ¥ (n-k-1)(n-h-1)8
k=1h=k+l

282

E(r’r?)a|g -1
k,0%n, oE (T, Ty )*[9n(n+2) (n+4) (n+6)

{m( m-1) (1-n"?)*(~162-301n-166n>-26m +n*+474n+483mn+111m°n-6m°n-
375n2—153mn2+15m2n2+72n°-18mn°+9n‘)}

2 2 4
B B E(rkrh)ﬂ

n=-1 m
4
(a) (3) )=: ) (n-k—l)(n-h—l)Bk.o n, 0P, 1

k=1h=k+1
s -1 3
[1260n (n+2)(n+4)(n+6)(n+8)(n+10)] {m(m—l)(n-l) (-3+4n)
(-375288-685808m-367658m°-55108m>+1970m*-60m>+807914n+989709mn+
234759m°n-10416m°n+420n*n-638820n2-299460mn>+21840mn>-1260m>n>+
118440n3-21315mn°+1995m2n°+8400n‘-1680mn‘+630n5)}
n-1 m

(€) (I I (nk-1)(n-h-1)
k=1h=k+1

3 4 2
h,OBk,OBk,lg(rkrh )

-1
[1280n5(n+2) (n+4) (n+6)(n+8) (n+10)] {m(m-l )J(n-1 )3(4n-3)
(-375288-685808m-367658m2~55108m"+1970m*-60m°+907914n+989709mn+
234759m°n-10416m°n+420n'n-638820n°-299460mn>+21840m°n-1260m°n>+

118440n°-213 15mn"+1995m2n3+8400n‘—1880mn‘+630n5)}

»n ~1

(f) ¥ (n—k-l)za;r:(r:)z[207360n°(n+2)(n+4)(n+s)] {m(—7~12n+12n"’)‘
k=1
(-46-75m-20m>+15m"+6n*+150n+60mn-60m>n-30m°"n-60n>+30mn>+60m>n>-

60n3-60mn°+30n‘)}
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8
.lE(rk)“

4. - 2.3
(g) (5) ; (n-k~-1) Gk’oak

k=1
-1
[51840n‘°(n+2)2(n+4)2(n+e)2(n+8)(n+10)] {m(-7-12n+12n2)3

(-1-8n+12n?) (~46-75n-20m>+15m°+6m*+150n+60mn-60mn-30m"n-60n>+90mn"

+60m2n"’-60n”-60mn°+30n‘)}

a1 =

-1
(2% T (nk-1)(n-h-1)8 & oE(r‘iri)ﬂ[Qn(mZ)(n+4)(n+6)]
k=1h=k+1 e

{m(m—l ) 1—n"-én‘2)‘( -162-301m-166m>-26m +m*+474n+483mn+111m°n-

smsn—375n2—153mn2+15m2n2+72n3—18mn°+9n‘)}

mn-1 m

4 2 2 4
(1) (5) Y X (n—k-—l)(n-h-l)Bk'oah’osh’lE(rkrh)ﬁ
k=1h=k+l

-1
[315n(n+2) (n+4) (n+6) (n+8) (n+10)] {m(m—l)(l—n‘l_l_'zrn-z)a

( 1-gn"-1—;-n‘2) (-375288-685808m-367658m2-55108m>+1970m*-60m5+
907914n+989709mn+234759m°n- 104 16mn+420m*n-638820n2-299460mn>

+21840m°n2-1260m°n%+118440n°-21315nn">+1995m°n"+8400n*- 1680mn*

+630n5)}
(J) (5)-)-:15 (n-k-1)(n-h-1)8° & & E(r'r®)=
3 h,0 k,0 k,1 k h
k=1h=k+l

-1
[315n(n+2)(n+4)(n+8)(n+8)(n+10)] {m(m-n(1-n“-T§n'2)3
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(1-%n"—T%n'2)(-375288-68saoam-as7658m2—ss108m°+1970m‘-60m5+

907914n+989709mn+234759m°n-10416m n+420m*n-638820n2-299460mn>+

21840m°n2-1260m°n+118440n°-21315mn>+1995m°n>+8400n*-1680mn*+

630ns)}

Upon substitution of (a)-(e) and (f)-(J) into respective

equations (5.2.21) and (5.2.22), it can be shown that, after some

algebraic manipulation,

- 2( .4 4 4. 3 8
var(Ql) =« kE:l(n-k-l) [Bk’oE(rk) + §Bk’06k'lE(r‘k)]
m-1a 2 2 2 2 2
+2%¢ T (n-k-l)(n-h-l)[B B, E(r,r.) + 3B

2 2 4

E(r'r
k,0 h,0 k Bp.of (kh)
k=1h=k+i

k,0 h,0 h,1

2.2 4 2 2
+ §Bh’°Bk’oBk,1E(r-krh)]- {E(Q1)} }

18m _ m(289m+10m°-13) , m(16314m+1551m°+8n°+4185)

n 3n° 6n°

_ m(18059325m+2422860n"+32620m -456m*-1209264) , olmn=S)
4

360n

x 2m -

and

- 2(.4 4 4.3 8
var(Q2) =« T (n-k-1) [Sk’oE(rk) + §8k.08k’1E(rk)]

k=1
n-1m -
22, 2

‘ zkah?uu(n-k-”(n-h—l) [6"06*"°E(rkrh) 36k.06h.06h.1E(rkrh)

2.2 4 2 2
+ §6h'°6k,06k'12(rkr~h)]- {E(Q2)} }
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18m _ m(289m+10m°+1) . m(16314m+1551m>+8m°+4487)

o« 2m =
_ m(8998555n+1210090n"+46310n°-228n" -566017) , (. -8,
4 .
180n

To get equations (5.2.23)-(5.2.26), we simply omit terms

smaller than O(mn™'). Thus, E(Ql) = m - rf4m(m+4), E(Q2) = m -

1

n"'m(m+4), var(Ql) « 2m - 18mn~", and var(Q2) « 2m - 18mn .





