INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

A Software Tool for Providing Suggestions for
Call Management

Imad-Roland Younes

A Major Report
In

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

June 1997

© Imad-Roland Younes, 1997

vl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Otftawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre référence

Our file Notra réfdrance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protege cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-40237-1

ABSTRACT

A Software Tool for Providing Suggestions for Call Management

Imad Roland Younes

Telecommunication is fast changing. New products and services are constantly
introduced. Due to competition in this field, the time gap between the conception of a
product/service to its deployment should be cut as small as possible. In addition users do
not like to make to much effort to learn about new product/services. A software agent that
can monitor the actions of a user and make proactive suggestions would be desirable. It is
in this context, the present report is developed.

One of the problems in the use of agents in Telecommunication is: “How to offer
“appropriate” proactive suggestions?” For a suggestion to be appropriate, it should be
consistent with the previous actions taken by the user, the suggestion should be event-
based, and it should be timely-based. A software tool is developed as part of this major
report so that it can be used in two different ways in solving this problem. The first way is
for researchers to simulate an agent’s competency for offering appropriate suggestions to
end-users. The second way is for researchers to demonstrate to vendors how an agent can
develop proactive suggestions to be offered to users.

The goal of the software tool developed in this report is for researchers to study
different strategies in offering appropriate suggestions to end-users, and demonstrate their
outcomes to potential vendors who might be interested in such a product. The software
tool is called FATMA (Futuristic Automated Telecommunication Management Agent) and

is implemented using CLIPS, C, and TCL/TK.

Acknowledgments

Firstly, I would like to thank both my supervisors Dr. Clifford Grossner for helping
me in my project and helping me writing my report, and Professor T. Radhakrishnan for all
the ideas he gave me for my project and all the help for writing my report.

Special Thanks to Dr. Pardo Mustillo for the help and support throughout my
project. I would also like to acknowledge Sasha Lenir, Steve Shepherd, Tu Nguyen, Jean-
Pierre Rabbath, Denis Mcgonigal, and Luiza Solomon for the discussions and ideas that
we had throughout the project.

Special thanks go to my uncle, Albert Younes, who provided me with his house to
stay for all of the period of my Master Program. I appreciate and would like to thank my
family for their financial and moral support, and strength. Finally, I would like to thank my

Aunt, Ferial Younes, for her moral support throughout my Master program.

iv

To the memory of my

Grandparents

Maroun Habib Younes 1909-1989

Hana Laurence Younes 1909-1996

Table of contents

LSt OF FIGUIEScv.voveecuemreresnsesessesssecs s s S vii
LSt OF TADIES... o veoeeeeeeeeeeeeeeseeemeeseeesuceseueessea s ama e s st s e e e s st s st ix
1 IEETOGUCHION. . o ooeeeeeeeeeeeeeeeesseemsmeseeseteeeeaneassas s s s s s e e RS e Ea s ettt 1
1.1 What is 2@ Proactive AZENT?ccooveuriiiiiireniennicssnesress sttt 3
1.2 How to Offer Proactive SUZEESHONSTcoocieeeimmimniiesntin et 6
1.3 Organization Of this REPOTt.......ccuiu it 7

2 A Survey of Related WOTKocoiimiimiiiniincse st 9
2.1 Problems with interface AZENLS..........c.cocoirirrmreieerirmremneses ettt 10
2.2 Interface Agents for Telecommunication Applications.........ccoooiinicne 17

D 3 COMCIISION. - o eeoeeeeeeeeeeeeseeeeseeeteeteeeee e e e sea s s ne e s serrr e ettt n bttt 21

3 Testbed for Call MANAZEMENLc..c.couiuiiimimeerateresienn s ettt 22
B 1 FATMA oo ooeeeeeeeeeeeeeeeessaeeeseeeteeesanas e e e s s seae e on st st s e s a sttt 24
311 FATMA’S USAEE ..oorooveorooeveeeoeeereeseseseesssesemsesssses it 25
3.1.2 FATMA’s Feature Set e 29
3.1.3 FATMA’S SUZEESHOMSooiiiiiiieeiriceiaimest sttt 32
3.1.4 FATMA?S ODSEIVADIESveeeeeeeroreresssssreeeeseseessvmseamsssssssssssssssesssssssesensrsssesss 35

3.2 System ATCHITECTUTE.coucuecueimiinimiinn s 38
3.3 Rule Sets fOr FATMAooooiiimiin et emnnes st sttt 40

3 4 Test and DEMONSITAtONcocorrtrururieirrireree s ceesemsee ettt 48

4 Conclusion

4.1 FULIEE WOTK oo ooeeeeeeeeeeeeeeeeeeceeeeeescseemeceeeeecmannra e s enresa e ee s s s omees s anmna e e e r e et e s s s e

References...

List of Figures

Figure 3.1 FATMA’S COMPOMENLS.cooomrmrmmimraemttitemineis st st 25
Figure 3.2 Main WINAOW.c.oovimiiiiec et 25
Figure 3.3 Call Screening WindOw.cccoimiioii e 26
Figure 3.4 Suggestion WIdOW.ooirimmmiici st 27
Figure 3.5 Control WINOW. ..ot 28
Figure 3.6 Envelope WINAOW.ooouiimeecriiiie s 29
Figure 3.7 Pending Suggestion Window.c.cccorirmiiii 29
Figure 3.8 Simulation Application Diagram.............. e emee e ee——eeeenaanerorre e e e s e e nes 38
Figure 3.9 FATMA’s Language Diagram.ccoooiiimicncee 40
Figure 3.10 Flow Chart for the rule sets proCess. ..o 42
Figure 3. 11T RUIE SELS......oomiimiiiiiiiee e e 43
Figure 3.12 Pattern Rule Sets.............oooiieiiii 44
Figure 3.13 Conditions for Pending Suggestions. ... 46

List of Tables

Table 2.1 Summary for Problems and Solutions with Various Agents...............ccoceeneeec 16

Table 3.1 Scenario of a Family. ..o 49

1 Introduction

Whether at home or at work, people are relying more and more on computers and
telephones for their daily tasks. Many cf these tasks involve interactions between humans
and machines. Some of these tasks require repetitive activities such as call forwarding,
checking voice mail, searching for specific interests on the web, scheduling meetings
between participants, incorporating and filtering e-mails, etc. Many researchers have tried
to facilitate the performance of these tasks, by having machines assist humans.

One solution for relieving the user from performing repetitive tasks, is to develop a
software program that automates the repetitive tasks on his or her behalf. These software
programs should be somehow autonomous, in the sense that they control their own
actions as opposed to direct manipulation by the user[13]. These software programs are
called “intelligent agents.”

Many researchers defined the word intelligent agent [4, 6, 7, 8, 9]. For our
purposes, the definition of the word intelligent agent would be that intelligent agents are
autonomous software programs that can achieve some of the user’s tasks, without his or
her intervention. In the last decade, many researchers have worked and focused on the
issues of intelligent agents. The purpose of these studies were either to create agents that
have a different task to achieve, or to design agents themselves. Such research lead to

different types of agents. These agents could be categorized into the following categories:

3«

1. Interface Agents: An interface agent is a “semi-intelligent”, “semi-autonomous” agent
that assists the user in dealing with his or her repetitive tasks. An interface agent is like a
personal assistant that learns about the tasks, behavior, and preferences of its user, and
uses what it learns to act on the user’s behalf[4]. They are called semi-intelligent because
they learn only the repetitive tasks of their user. If each situation is different from all prior
ones, the agent would not be able to assist the user in automating his or her tasks.
Furthermore, the agent is semi-autonomous because it automates only the tasks assigned
to it from the user. Examples of interface agents include work by Kozeriok on an interface
agent to help the user in scheduling his or her meetings[4]. Caglayan et. al. developed
Open Sesame! for Apple Macintosh. Open Sesame! is an interface agent that learns high-
level user events and automates these events[9]. Ali-Ahmad and Velasquez worked on
“ElAgent”, they extended a user interface agent’s learning and behavior through emotion
perception for e-mail filtering[10].

2. Networked Agents: Networked agents are intelligent agents that are connected to a
computer network. Networked agents provide an intelligent interface to the user and make
extensive use of the various services available in the network[8]. A networked agent can
access local as well as remote resources for achieving its tasks. A good example of
networked agents are “search engines.” Lieberman introduced Letizia, an agent that assists
in Web Browsing[11]. Letizia will search for documents and web sites that could interest
the user and recommend these sites to the user.

3. Collaborative Agents: Collaborative agents are multi-agent systems that coordinate

with each other to achieve a specific task[14]. Collaborative agents coordinate with each

other by sharing their knowledge, goals, and skills to jointly take actions or solve

problems[8]. One type of collaborative agent, is where agents communicate with each
other in the form of request and reply messages. An example of this type of collaboration,
is Lashkari et. al.’s e-mail agent where agents of different users communicate with each
other, so that every agent will learn the behavior of its user faster than by only observing
the actions of its user{12].
4. Mobile Agents: Mobile agents are intelligent agents that travel in large computer
networks offering a number of sophisticated services. Examples are ranging from
advanced Internet filter and search agents, smart messaging, to intelligent communication
and management. They may communicate with the user, the services available in the
network, and other agents[8]. Mobile agents travel through the network in a pseudo-
connectionless fashion. When an agent navigates in the network to reach its destination,
the agent does not keep track of the path it took. However, they can find their way back
to their owner, if the assigned task requires so[13].

In this paper, we will focus our work on interface agents. Other types of agents

will not be discussed in this report.

1.1 What is a Proactive Agent?

Reactivity and Proactivity are two important characteristics in an interface agent.
An interface agent is reactive if it perceives the changes in its environment and responds to
those changes. An interface agent is called proactive if it takes initiatives to achieve
goals[13]. A proactive agent, not only reacts or responds to the user’s needs, but also
takes initiatives and acts without the interference of the user when the agent needs to do

SO.

Many techniques can be used in order for a proactive agent to assist the user in his
or her tasks and applications. One is the knowledge-based approach suggested by Kaye
and Karam[2], where a knowledge engineer programs the agent in advance with a
comprehensive set of rules. In this approach, the agent is preprogrammed with a set of
rules that are invoked to automate a particular task. Another is the user-programming
approach suggested by Malone and Lai[3], where the user programs the agent to perform
the tasks he or she wishes to have automated. In this approach, the user has to learn how
to program the agent. There is a third approach which is more flexible than the
knowledge-based approach, and does not require the user programming expertise. This
approach is called the machine learning approach.

“The Agent learns the user’s behavioral patterns by observing the user’s

interaction with the application. When it is “confident” that it knows what

the user would do in a situation, it can automate that action for the user, by

interacting with the application in the ways it has observed the user doing

so. It can receive feedback from the user when its prediction is

incorrect.”’[4]

In this learning scenario an algorithm is necessary whereby the agent is able to determine if
it is confident enough to act on behalf of the user. This learning approach is called
Memory-Based reasoning[5].

In order to have a proactive agent, the agent must satisfy the following features:
Learning: In the learning process, the agent must observe the actions of its user while the
user is performing a certain task. The agent must then remember the actions and behavior

of its user when performing this task. One way for remembering the behavior of the user is

for the agent to store the required data in a database. The agent must also have knowledge
about the features of the task the user is performing. This knowledge could be acquired,
either from a knowledge engineer who instructed the agent about the features required,
and/or learned by the agent when observing and remembering the behavior of its user.
Then the agent must be able to apply what it observed and remembered in performing
similar tasks.

Trustworthy: Another aspect for a proactive agent is to be able to show how trustworthy
it can be. The user must feel confident about the actions of his or her agent and feel
comfortable assigning tasks to it. In order for the agent to show how trustworthy it can
be, it could interact with the user to either ask questions on how to act for a particular
task[10], or to offer recommendations and suggestions[11]. The user will then see that the
agent will not act unless it is certain of its own actions, and so the user will feel confident
about his or her agent actions. The interaction between the agent and the user leads to
fewer errors in the agent’s actions because the user is helping the agent learn his or her
behavior, and this will lead the user to gradually trust his or her agent and feel comfortable
assigning tasks to it.

Helpful: The agent becomes helpful to the user only when it starts acting on his or her
behalf. The agent should be consistent with its action in terms of what the user is trying to
achieve. In other words, the agent should only perform a specific action when this action
needs to be done, thus relieving the user from performing it, and saving the user’s time.
The user will then feel that having his or her agent was worthwhile because it is helping

him or her in performing some of his or her tasks.

1.2 How to Offer Proactive Suggestions?

One of the problems in the use of agents that are proactive and learn in
telecommunications is: “How to offer “appropriate” proactive suggestions?” For the
suggestions to be appropriate, they should satisfy the following three criteria:

e Suggestions should be consistent with the actions the user has taken in the past. The
agent should offer a suggestion to the user to automate a particular task if the agent
observed the user consistently performing that activity in the past. Sometimes offering a
suggestion for a particular tasks shows that the agent is less intelligent, if the user never
or rarely uses this task.

e Suggestions offered should be event-based'. The suggestions will be appropriate only if
they are relevant to the context of what the user is trying to do. The agent should not
interrupt the user to offer a suggestion about a particular task when the user is
performing a different type of activity. Otherwise, the agent will be interrupting the user
at a time where he or she is busy working with other activities and might confuse him
or her.

e Suggestions offered should be timely-based®. The suggestions will be appropriate only
if they are offered at an appropriate moment in time. If the user is working on a
particular activity, the agent should not offer a suggestion to perform this activity if its

suggestion is at an inappropriate time.

! Event-based means that the suggestion offered depends on the event arising out of the user’s action.
2 Timely-based means that the suggestion offered depends on a certain moment in time. actually, for a
suggestion to be offered, event-based and time-based criteria should be satisfied.

6

As a component of my research, a software tool is developed so that user interface
designers can study different solutions for determining the criteria used to ensure that a
proactive agent offers suggestions that are appropriate. To enable the development and
testing of criteria for offering appropriate suggestions, I developed FATMA (Futuristic
Automated Telecommunication Management Agent). For FATMA to efficiently serve its
purpose, and efficiently help researchers in studying solutions for offering appropriate
suggestions, I developed a set of observables that FATMA uses to learn the behavior of
the user. I also developed sets of rules to activate the proactive functionality for FATMA
to offer suggestions, and to demonstrate how FATMA works.

Wildfire is a telephone voice assistant that manages incoming and outgoing
telephone calls, contact lists, and voice messages[1,15]. Wildfire can take messages, check
who is calling before passing the call to the user, forward calls to other remote locations,
etc. FATMA resembles Wildfire in that FATMA is a testbed built to help the user with his
or her call management tasks, with the capabilities for it to offer suggestions to automate
the user’s repetitive tasks. In doing so, the user will benefit by being relieved from

performing some repetitive tasks when managing his or her calls.

1.3 Organization of this Report

Chapter 2 discusses various studies on the design of interface agents, how to build
interface agents that help their users in an easy and friendly way. Chapter 2 also discusses
other related interface agents, the problems encountered with these agents, some attempts
to solve these problems by either changing the learning approach or by extending the

existing learning approach, and some lessons learned from these problems. Finally, chapter

2 discusses some command driven SUI (Speech User Interface) agents used for
telecommunication services, and some problems encountered with these agents.

In Chapter 3, I introduce FATMA. I describe the way in which researchers can use
FATMA, I state the feature sets and proactive functionality that FATMA provides, and
the way FATMA observes the behavior of the user. I also describe FATMA’s system
architecture; and I describe the rule sets I developed to test and demonstrate how FATMA
works. Finally, I describe the scenario I built, and the demonstration I did to evaluate my
study.

Chapter 4 provides a short summary and conclusion of the paper. It also discusses
some future work to enhance and extend the functionality of FATMA, and some ideas for

more studies on how can FATMA offer appropriate suggestions.

2 A Survey of Related Work

In the last ten years, there has been a growing interest in the design and creation of
software agents. Several researchers have focused on the issues of intelligent agents[7, 8,
16]. Some of the studies were to improve the design of the agents, and others were to
build agents for achieving specific tasks. The desirable characteristics of an agent varies
widely for it to be useful and acceptable to the users. Kautz et. al.[16] believe that agents
must relieve the users from low-level tasks. Many users don’t like to spend time working
on low-level routine tasks to achieve their objectives. Agents could assist users in
performing mundane and routine tasks. Users must feel that having an agent to assist them
is worthwhile. Another aspect Kautz et. al. address is that agents should be as much
friendly and easy to use as possible, because people don’t like to change their work habits.

In his paper “Attaching Interface Agent Software to Applications”[7], Lieberman
discussed the idea of how to include software agents into existing applications. Attaching
agents to existing applications aimed to solve two problems. The first problem is to deal
with the reluctance of users to change. Attaching an agent to an existing application
minimizes the amount of learning in using a new application; the agent will adapt to the
user’s behavior and relieve him or her from performing repetitive tasks, instead of having
the user adapt to the new features. The second problem addressed by attaching an agent to

an existing application, is that the researcher, designer, or agent would not have to create

a new application just to test his or her agent. Besides, with commercially available
applications, the researcher will be able to test his or her agent with more realistic features.

Having the above characteristics in mind, many researchers have built software
agents to assist in specific tasks such as, e-mail filtering, performing administrative and
clerical tasks, searching for “interesting subjects” in news-groups, searching for interesting
documents and web sites on the Internet, meeting scheduling, supporting interactive
features in telecommunication, etc. With the design of these agents, new problems arose.
In the next section, I discuss some of the tasks which interface agents perform; what
problems they encounter; and some solutions to those problems. In section 2.2, I discuss
several telecommunication interface agents; and what problems they encounter. Section

2.3 concludes this survey.

2.1 Problems with interface Agents

Kay and Karam developed a cooperating knowledge-based agent for the office[2].
Their system called COKES is a knowledge-based office agent aimed to support several
concurrent activities. It is also integrated with a computer-based message system (CBMS).
In their work a “consultation” represents a high-level office task. A consultation begins
with some target goal that is to be achieved, which may originate from human operator or
from another office agent. The office agents use a conventional passive CBMS to
exchange two types of active messages when communicating with each other:
consultation requests, and knowledge transfer. A consultation request is a request for the
message receiver to carry out a specific consultation. Knowledge transfer via message

passing is used to send knowledge from one office agent to another.

10

COKES’ knowledge is based on logic obtained from knowledge engineers. The
knowledge engineers preprogram the office agents so that the agents can cooperate and
solve problems independent of their users, whenever appropriate. Although the system, in
some cases, is capable of reasoning, acting, and clarifying its own actions, the problem of
flexibility remains. The actions that the agents perform are dependent on the
preprogrammed rules. Since their rules are preprogrammed, the agents do not observe the
behavior of their users, and they do not adapt to their users’ behavior and performance.
Another problem for the knowledge-based approach is that the agent’s ability is
determined by the knowledge engineer’s expertise in predicting all the situations that an
agent might find itself in. This type of approach would be helpful when the applications
that the agent is solving are well defined. However, this is not always the case; many
problems are complex and not fully defined, and the knowledge-based approach will fail in
solving such problems because the user’s behavior cannot be fully known a priori.
Furthermore, the user will not be able to trust the agent because he or she does not know
how the agent would perform when faced with an unknown situation.

Lai and Malone[3] took a different approach on how an agent could relieve the
user by performing some tasks on his or her behalf. They built “Object Lens: A
“Spreadsheet” for Cooperative Work”, a user-programming approach where already built
rules are visible and changeable by the user. “That is, users must be able to easily see and
change the information and the processing rules included in the system.” Furthermore, the
user could also create his or her own rules so that the agent will automatically perform the
given tasks. In this approach, the user definitely trusts his or her agent since he or she built

the rules and usually expects the agent to perform the appropriate actions. However, the

11

agent’s ability to act, depends on the user’s ability to program the rules. The user must
first find time to learn how to program the rules, and then find time to program them
correctly. Furthermore, the user must be an expert in knowing and understanding all the
system tasks as well as the programming rules, otherwise many of the rules he or she
builds will not be very helpfil in solving complex problems.

To solve some of the above problems, Kozeriok{4] considered the machine
learning approach to design her meeting scheduling agent. She used memory-based
reasoning and rule-based induction as the approach for learning the user’s behavior. In this
approach, the agent is flexible because it gains its knowledge by observing the user’s
actions instead of having all its knowledge provided by a knowledge engineer. The agent
will gradually learn the user’s behavior in performing certain actions and when it reaches a
given level of confidence, it will start acting on his or her behalf, relieving the user from
performing those actions. The agent here is reactive because it perceives the changes in
the user’s behavior, and responds to those changes, making it adaptable to the user’s
behavior. Moreover, the user will gradually gain trust in his or her agent because the
actions of the agent depend only on the user’s prior actions. The explanations provided by
the agent could validate that its actions depend on the user’s past performance. In the
machine learning approach, the user does not need to leamn how to program the agent,
instead the agent learns and observes how the user behaves for it to act like the user. In
this approach, the agent is more helpful than both knowledge-based and user-
programming approaches since the agent will not act in a contradictory way to the user,

and the user does not take a lot of time to teach the agent.

12

One problem in Kozeriok’s approach is that the agent needs a sufficient amount of
time to learn and observe the user’s actions before it can be of any use[12]. Another
problem is to decide when should the agent offer its suggestions to the user. Although the
suggestions are consistent with the past actions of the user, these suggestions may not be
event-based suggestions. The agent does not know what the user is performing right now.
If the user is working on something not related to the suggestion offered by the agent, the
suggestion offered could confuse the user and may not get the right feedback from him or
her; the suggestion could also be annoying considering that the user may be busy doing
other work and not wanting to be disturbed.

Lashkari et. al.[12] tried to solve the problem concerning the elapsed time required
for the agent to learn by building a collaborative interface agent. Agents communicate and
coordinate with each other to learn more quickly the user’s behavior and act on their
behalf Lashkari et. al. applied their study to an e-mail filtering system and used the
machine learning approach to supply the learning behavior of their agent. They also
extended this learning approach by building an interface where the agents could
communicate with each other by asking questions on how to act for a certain task. The
agent’s first approach for learning, is by observing the user’s actions. “When faced with an
unfamiliar situation, an agent consults its peers who may have the necessary experience to
help it.” When consulting its peers, the agent gets predictions only from agents that have
sufficient experience on how to act for this particular behavior. The agent then, accepts
one of these predictions and suggests it to the user. If the suggestion is rejected by the
user, the agent will disregard future suggestions from the agent that gave it this incorrect

prediction. With this approach, the agent starts narrowing down the agents that might help

13

it in the future. Furthermore, the agent will learn faster and can start acting on the user’s
behalf more quickly than a non-collaborative agent. However, using other agents’
predictions is not always a good solution. The agent might get a good prediction from one
agent for a certain situation and a bad prediction from the same agent for another
situation. An agent which had been disregarded in the past, due to a bad prediction, might
give a good prediction for another task, if it is reconsulted. (But it will not be
reconsulted). Although the agent learns faster in this approach, many of its predictions
may be incorrect and could anﬁoy the user and make him or her lose trust in the agent.
Ali-Ahmad and Velasquez[10] took another approach to address the elapsed time
taken by an agent to learn its user’s behavior. To test their concept, an agent “E!Agent”
was implemented. They considered MAXIMS, (an existing e-mail agent that was
implemented at the Media Lab at MIT) which uses Memory-Based Reasoning as its
learning algorithm. They extended this learning algorithm to include the “emotional state
of the user”. In this context, the agent would rely not only on repetitive tasks performed
by the user for learning purposes, but also would observe the user’s emotions. E!Agent’s
emotion learning process was based on the user’s spoken words when receiving or
- filtering an e-mail. E!Agent needs a speech recognition system for it to understand what
the user is saying. The agent determines the user’s “situation” through a keyword analysis
and by interacting with him or her to ask about what caused the situation. Although in this
approach, the agent is shown to learn faster, the behavior of a user depends very much on
the emotions. The same emotional state of the user does not always lead him or her to
take the same actions. For example, receiving an e-mail telling the user that he or she was

granted a job in a certain company, could result in the same emotional state as when

14

receiving a very funny joke in an e-mail. In both cases the user might be Aappy, but in the
first case, the user may want to reply to the sender, while in the latter case, the user may
re-file the e-maii. Another problem is that speech recognition and natural language have to
be flaw less for this approach to work.

Lieberman[11] used the machine learning approach to supply the learning behavior
for Letizia: an agent that assists the user in Web Browsing. Letizia uses the past behavior
of the user to anticipate a rough approximation of the user’s interests. Letizia does not
take control of the user interface by acting on behalf of the user, it only offers suggestions
for some documents and Web pages, when it finds them to be of the user’s interest.
Besides, this agent does not interrupt the user to offer a suggestion, but waits until the
user explicitly asks for suggestions. This approach ignores the potentials of proactiveness
of the agent; and if the user never asks or forgets to ask for any suggestions, a valuable
suggestion found by the agent would be useless.

Unlike Lieberman, Caglayan et. al[9] defined and discussed several issues
encountered with proactive agents. The problems they showed were derived from actual
customers’ feedback from the commercially available agent Open Sesame!. Open Sesame!
observes high-level user events in the use of general Macintosh applications and automates
them. The agent uses machine learning to automate repetitive tasks performed by the user.
The tasks are categorized into time-based and event-based tasks. Before the agent
automates any new task, it first suggests the user that it can automate the task; the user
could accept this, reject this, edit the suggestion to fine tune the task, or postpone the
decision until a later time. The problems Open Sesame! encountered were more related to

users interaction and people’s high expectations for their agents. Many users found that

15

the agent has too few types of actions that it can automate. The users expected the agent
to automate more actions than it normally handled. Other problems were the interactions
between users and their agents. Some users claimed that interruptions for suggestions
should happen less often, while others claimed that they should happen more often, but
both type of users agreed that the agent’s interruptions for offering suggestions should be
controlled and prioritized. The agent should not interrupt ihe user any time it wishes, to
offer a suggestion. Another problem that users noted, was that the agent could re-suggest
automating a certain task even if the suggestion was already rejected by the user.

In table 2.1, I summarize related problems and solutions discussed thus far in six
agents. It lists the advantages for using interface agents to assist users in their daily tasks.
It shows the problems that occur while having an interface agent, and offers some

solutions to those problems. Finally, it gives an idea of problems that are still open for

future research.
Interface Agents Problems or Solutions or
Shortcomings Advantages
Knowledge-Based COKES -Do not observe nor adapt to the | -Relieve the user from
Agent user’s behavior. predefined tasks.
Approach (KBA) -Actions limited by the | -Clarify its own actions.
knowledge engineer expertise.
-User do not trust the agent.
User-Programming | Object- -Actions of the agent are limited | -Relieve the user from
Agents Lens to the user’s expertise user-defined tasks.
Approach (UPA) -Time consuming for the user to | -User edits and changes
learn and program the rules. already defines rules.
-User Trusts the agent.
Meeting -Agent needs sufficient amount | -Agent observes and learn
Scheduling | of time to learn. the user’s behavior.
Agent -Suggestions are not time-based | -Relieve the user by
nor event-based suggestions. automating repetitive
tasks.
-User trusts the agent.
-The agent is more
helpful than KBA and

16

UPA

Machine Learning
Agents
Approach (MLA)

“Agents

Collaborat- | -Agent may give a bad communicate

ive prediction to the user. with each other to leamn

Interface -Many incorrect predictions | faster and act on their

Agents annoy the user. users’ behalf.

El!Agent -Same predictions for the same | -The agent learns faster
emotional state could be | the behavior of the user
incorrect. depending on the user
-Speech Recognition and | emotional state.

Natural Language are not|-The agent takes action
reliable. depending on emotion and
repetition.

Letizia -Agent is not Proactive -The agent does not
interrupt the user, it waits
for the user to explicitly
asks for recommendations

Open -Agent has too few types of | -Users like the

Sesame! actions. automation of
-Interruptions should be | maintenance tasks that
controlled and prioritized. are easily forgotten.
-Agent suggests already rejected | -Users like the ability to
suggestion. defer reviewing
-When the agent offers time- | suggestions.
based suggestion without the | -Users like the idea of
context of other events, makes | editing suggestions.

the suggestion useless.

Table 2.1 Summary for Problems and Solution with Various Agents.

2.2 Interface Agents for Telecommunication Applications

Modern telephones having built-in intelligence are far more than a passive

communication device. Telephones can assist their users in their daily tasks like a human

assistant does[15]. The number of “features” that telecommunication companies offer

keep increasing and to make use of them or even choose the right feature for oneself is

difficult[17]. Some features are easy to use such as the call display where the callee can

see on a small telephone screen who the caller is; some other features are hard for the user

to learn and remember how to use them: for example, for the user to hear the messages

left on his or her voice mail, he or she has to remember at least two strings of numbers, the

17

first is the Dialing Number (DN) to connect to the voice mail, and the second is his or her
Personal Identification number (PIN). Other hard features to remember are the “*”
features. There are many sﬁch * features: can enable the user to check and call back the
last number that called him or her, to make private calls, to disable the call waiting, to
make a three way call, to forward his or her calls to another DN etc. In order to make use
of many of these features, one could integrate them into a single service. This service
could be made easy and friendly to select a feature and use it. In this section, I discuss two
telecommunication services: The first is “Wildfire” which assists the user in his or her
telecommunication tasks[18]. The second is “SpeechActs” which assists the user in some
of the computer tasks such as checking and reading his or her e-mail, meeting scheduling
between participants etc. through the telephone[21].

Wildfire is an interface agent that integrates most of the call management features
that are provided by telecommunication companies. It makes use of speech recognition.
As an electronic voice agent, Wildfire provides the user with many telephone-related
tasks[18]:

e It announces to users their incoming calls,

e forwards incoming calls to a remote location, if necessary.

e maintains a “contact list” where the user can voice-dial his or her outgoing calls,

e schedules and reminds the user of his or her follow-up calls and action items,

e handles all the user’s messaging, giving him or her voice-mail features,

e creates three way calls from any remote telephone.

The most important characteristic in Wildfire, is that the user can obtain all the above

features using voice commands. The user does not need to remember the keystrokes to

18

use for each feature. The speech recognition component of Wildfire, makes the system
more friendly and easy to use.

SpeechActs is a research project at Sun Micros System that allows users to
telephone their Sun Workstation and interact with a wide range of Solaris applications,
using voice input[19]. This project will allow users to read and filter their e-mail
messages, voice messages, check for meetings and appointments and enter new meetings
in their computer calendar, check the weather and stock quotes. With the mail application,
users can hear their messages, reply to messages, skip forward and backward from one
message to the next, and send a new message to any person whose name is on the user’s
list. The calendar application allows users to browse their own calendars as well as other
users calendars[20]. The most important feature in SpeechActs is that the user can switch
from one task to another in a single session.

Both, Wildfire and SpeechActs, are interface agents that assist the user in
telecommunication oriented tasks with a Speech User Interface (SUI). One advantage of
interface telecommunication agents such as Wildfire or SpeechActs is that such agents can
assist the user at anytime anywhere because of the POTS. The user can call his or her
agent from any telephone at any time and check for messages, place calls, check his or her
e-mail, etc.[19]. With the rise of Telecommunication interface agents, such as Wildfire and
SpeechActs, new problems arise:

o The first problem is to cope with less than perfect speech recognition and natural
language processing. Both agents are SUL, so the interaction between the user and the
machine depends on speech recognition and natural language[20]. SpeechActs

researchers are working to solve such problems, but since speech recognition and

19

natural language are not in the scope of my project, I refer the reader to [19, 20, 21]
for more information.

e Another problem is that researchers, as well as users, should diﬁ'erentiéte between a
SUT and a GUI[20]. First, when building a SUI the researcher should make the
interaction feel conversational. The user feels that he or she is in conversation with
another human-like-agent and not talking to a machine. At the same time, the user must
be able to interrupt the system whenever he or she feels appropriate. With a GUI, the
user could always cancel a task performed by the agent, while with a SUI “the
synthesizer' is difficult to interrupt due to cross-talk in the telephone lines which
prevents the speech recognizer from listening while the synthesizer is speaking”[20].

e Finally, with a GUL, the user could postpone feedback to the computer until later time,
specially when he or she is dealing with windows, whereas with a SUI, the user can’t
control his or her feedback or actions if the agent is waiting for a certain action from
the user.

Proactivity, as discussed in section 2.1, showed to be a very important
characteristic for learning interface-agents. Without the proactive characteristic, the
machine learning approach could become useless if the user does not ask for any
suégestions or recommendations. In this context, a learning interface-agent must be
proactive to meet its usefulness.

Wildfire and SpeechActs, as currently designed, are command-driven agents. Their

functional capabilities depend on speech commands given by the user. Adding proactive

functionality to these agents could improve the effectiveness of their interface in the

20

conventional telephony[17]. For example, if the agent takes an initiative to act on behalf of

the user, the user will be relieved of many interactions that would otherwise be needed.

2.3 Conclusion

In the next chapter, I discuss how I designed and developed FATMA (Futuristic
Automated Telecommunication Management Agent) a tool for researchers to study
different solutions on how to offer appropriate suggestions at an appropriate time, making
the suggestions event-based and timely-based.

Being proactive, interface agents face new sets of problems such as: the elapsed
time they take for learning the behavior of the user and taking initiatives to act on his or
her behalf, or to offer him or her suggestions. The proactive suggestions offered should be
relevant to the context of what the user is trying to do and should be timely and useful.
Lashkari et. al.[12], and Ali-Ahmad and Velasquez[10] have studied one problem in
depth, that is the time required for an agent to learn before it acts. They have extended the
machine learning approach to collaboration between agents, and learning to recognize the

emotional state of the user.

! A synthesizer is what the agent use to talk or converse with the user.

21

3 Testbed for Call Management

The field of interface agents is in its infancy. As discussed in chapter 2, there are
still a lot of problems that are worth looking at. As much as researchers want to relieve the
user from performing repetitive tasks, researchers understand that the user does not want
to spend a lot of time training his or her agent. On the other hand, researchers also want
the user to trust his or her agent. These two problems caused the rise of the machine
learning approach where the agent learns the behavior of the user, interacts with the user
to offer suggestions which is expected to build a trust relationship[4].

The machine learning approach also has some problems: with this approach, it can
so happen that the agent interrupts the user to offer suggestions without considering the
task the user is performing, or it can take a “long” time for the agent to learn the behavior
of the user. My research contributes to the field of interface-agents in that I designed
FATMA (Futuristic Automated Telecommunication Management Agent) a testbed
containing Call Management features. FATMA is intended to be used as a tool for
researchers to study different strategies for offering “appropriate” suggestions. For the
suggestions to be appropriate, they have to be consistent with the actions that the user has
taken in the past; the suggestions have to be event-based in terms of being relevant to the
context of what the user is trying to do; and the suggestions have to be timely-based.
Furthermore, FATMA has the limitations of a SUIL The user cannot withhold the response

when FATMA is waiting for an answer. i.e., although FATMA was designed with a GUI,

22

I took into consideration that it will be taking voice commands from the user as well as
offering suggestions to the user in a speech form.

In the rest of this chapter, the word “researcher” defines the person who uses
FATMA to study different strategies on how to solve the problem of offering appropriate
suggestions. The word “user” (or end-user) defines the person who will be using the
product derived from FATMA, for a telecommunication service.

FATMA can be used in two different ways. The first usage for FATMA, called
“the simulation application”, is for researchers to study solutions for how an interface
agent can offer appropriate suggestions. Researchers can simulate any actions that the user
normally makes when using the features provided by FATMA. Depending on the user’s
actions, FATMA observes certain behavior and offers suggestions as specified by
researchers. The second usage of FATMA called “the Demonstration Application”, is for
researchers to demonstrate to potential vendors in detail how an interface agent observes,
determines what suggestions could or are ready to be made, and how suggestions are
offered, based on any predefined scenario that researchers create.

In this chapter, I will discuss FATMA, a tool to study solutions for offering
appropriate suggestions. In the next section, I will describe how to use the testbed, I will
present the Call Management feature-set provided by FATMA, the suggestions that could
be offered by FATMA, and the observations made by FATMA. In section 3.2, I will
discuss the system architecture of FATMA. Section 3.3 discusses the rules I developed to
demons.trate the usage of FATMA. Section 3.4 will conclude this chapter by presenting

the demonstration that I gave to evaluate the concept of my work.

23

3.1 FATMA

The Call Management features provided by FATMA are very similar to the ones
offered by Wildfire: a commercial product described in [1]. Researchers can simulate the
user placing calls through a voice dial, placing a private call, screening incoming calls by
either taking the calls themselves, or having FATMA handle the call first, or directly send
the incoming calls to voice mail, forwarding all calls to a different remote location,
checking if there are any messages, etc. More details about the features provided by
FATMA are given in section 3.1.2. While offering suggestions, the FATMA system
follows two criteria: frequency and consistency. By the term frequency, 1 mean the
occurrence of a certain task a relative number of times within a certain period. By the
word consistency, I mean a repetitive action being performed routinely in the same
manner. The suggestions provided by FATMA are discussed in section 3.1.3. To enable
FATMA to offer suggestions, it must record the features requested by the user which I
call Observables and discuss in section 3.1.4.

Figure 3.1 is a data flow diagram that shows the components contained within
FATMA. The Observables are a set of facts that are recorded when the user requests a call
management feature. The rule sets are designed by researchers to enable FATMA to offer
appropriate suggestions. Based on the observables, these sets of rules will first try to
match a pattern in the user’s behavior, and asserts facts based on those patterns which are
called Pattern Facts. Based on the Pattern Facts, the rules will assert new facts that might
be used as suggestions later on to the user, these facts are called Pending Suggestions.
Finally, Based on the Pending Suggestions, the rules will assert facts called Suggestions

which will be suggested to the user. The rule sets will be discussed in detail in section 3.3.

24

FATMA

Proactive Functionality

Observables

Call Management
Feature Sets

Figure 3.1 FATMA'’s Components.

3.1.1 FATMA’s Usage

The Simulation Application

In the simulation application, several user actions can be simulated (see figure 3.2).
Researchers can simulate the activity of a user placing a call, placing a private call, setting

disposition for call screening, call forwarding, or checking his or her messages.

Figure 3.2 Main Window.

Depending on the feature selected, a second level window will appear. Figure 3.3

is an example of a call screening window where the user could

25

set any screening

disposition to either an individual, or to a group of callers. When the user requests a
feature and performs some actions in that context, FATMA will record the actions made
by the user and depending on the feature, FATMA will store the data used to record the
feature in an “observable”. The data contained in the “observable” will be the name of the
individual or group involved in the action taken by the user, the day, date and time the

feature was requested and other data depending on the feature requested’.

Figure 3.3 Call Screening Window.

When the user quits FATMA, the rules specified by researchers within FATMA
are executed. The rules will take the observables as the basic input and asserts new facts
such as the pattern facts or pending suggestions. Other rules in the rule set will determine

which pending suggestions (if any) should be offered to the user the next time the user

! The data stored for every feature are described in section 3.1.4

26

requests a feature. The suggestions will be offered only if the user chooses the feature
where a suggestion for that feature is ready. An example of a screening suggestion offered
to the user is shown in figure 3.4 where FATMA is offering to set a group of callers to the

voice mail for the weekdays from 9:00am to 5:00pm.

gestion

Figure 3.4 Suggestion Window.

The Demonstration Application

In this application, researchers can demonstrate to potential vendors in detail how
FATMA records the actions of the user, how FATMA asserts pending suggestions, and
how FATMA offers suggestions to the user specified by the researcher. For the
demonstration application to work properly, it needs to have the simulation application
running in the background, otherwise FATMA will not be able to offer any suggestions.

The demonstration a.pplication starts with a Control Window as shown in figure
3.5. In this window, the researcher will download different sets of observables to FATMA
(up to three sets -the observables created from a predefined scenario- that will be shown in
the Envelope Window (figure 3.6)). The Envelope Window shows the observables created
by FATMA when a user makes a feature command from the simulation application, or by

the researcher if the researcher is downloading a predefined scenario.

27

Figure 3.5 Control Window.

When the researcher runs FATMA from the control window with the predefined scenario,
another window wxll appear, the Pending Suggestion Window {figure 2.7). The Pending
Suggestion Window shows the suggestions that are ready to be offered when they are
determined to be worth offering by FATMA through the rules. A pending suggestion is a
fact that holds the following data: the name of the person or group involved with the
feature, the days, starting time, and ending time of the feature performed by FATMA, and
other data such as the disposition code for the call screening feature. After presenting the
pending suggestions in the pending suggestion window, if the researcher chooses a
specific feature from the main window of the simulation application (figure 3.2), FATMA

will offer the suggestions related to this feature, if there are any.

Tt nvelope

o NN XA ST TR T R RN R

AR A AR SARARAAAR SARAAR A AR AR AR A RANASATARATAIARRANG, TATIRARS,
" e G

R o

Figure 3.7 Pending Suggestion Window.

3.1.2 FATMA'’s Feature Set

The features provided by FATMA are the following:

e Contact List: FATMA has a directory where the user can store the dialing number
(DN) of a person using the keypad, and store his or her name using voice. The user can
add a name, delete a name, and review the list of names. The Contact List can hold up
to 50 names. The user can call any DN in the contact list in 3 ways:

B The user can dial the DN with the keypad.

29

B The user can voice-dial by saying “Call”, then the name of the person as
mentioned to the Contact List.

W The user can voice-dial by saying “Private Call”, then the name of the person.
With a private call, the callee will not be able to know who the caller is.

e Message List: FATMA has another directory where it stores the DN of the 10 last
callers. If the DN of a caller is in the Contact List, the name attributed to the DN is also
stored. A DN cannot be stored more than once. FATMA will store in the Message List
the DN of the caller, his or her name if it is available in the Contact List, the number of
times this DN called, and the time of the last call placed. The commands the user can
give with this feature are:

@ The user requests this feature by saying “Message List”.

B The user can delete a DN from the Message List by saying “Delete”.

B The user can lock a DN in the Message List by saying “Lock”™.

8 The user can unlock a DN from the Message List by saying “Unlock”.

B The user can call back a DN from the Message List by saying “Call Back.”.

e Call Screening: The incoming calls will be handled by FATMA in three ways depending
on how the user instructed FATMA to select from numbers the three different
disposition sets. The dispositions the user can give with this feature are:

B Directly to User: The incoming calls will directly be handled by the user. The
user sets this disposition by saying “Directly to User”.

B Agent First: The incoming calls will be handled by FATMA first, then either by
the user or by the Voice Mail depending on the user’s request. FATMA will

handle the call and ask for the name of the caller if the DN is not in the Contact

30

List; then FATMA will inform the user who the caller is; finally the user will
either take the call by saying “I’ll Take it” or tell FATMA to transfer the caller
to the Voice Mail by saying “Take a Message”. The user sets this disposition by
saying “Agent First”.

B Voice Mail: FATMA will directly transfer the incoming calls to the Voice Mail.
The user sets this disposition by saying “Voice Mail”.

e Call Forwarding: The user can forward his or her incoming calls to any remote location
such as work, mobile phone, etc.

B The user requests this feature by saying “Call Forwarding”, then the name of the
person as mentioned in the Contact List, or the DN where the user wants to
forward his or her calls to.

e Call Waiting: When a user is talking on the telephone and he or she gets a second call,
the second caller will directly be handled by FATMA as if it is “Agent First” screening.
FATMA will notify the user about the second caller. The user could either take the call
or send it to Voice Mail.

o Groups: All the incoming calls are divided into 2 groups: the “Known Callers” are the
callers that are on the Contact List, and the “Unknown Callers” are all other callers. An
incoming private call is considered as an Unknown Caller even if the Caller’s DN is in
the Contact List. Call Screening could be made to all callers, or any group.

o Individual: An individual is a caller that could be a Known Caller or an Unknown
Caller. Call Screening could be made to an Individual. For example The user could

screen all calls to Voice Mail, while screens only an individual to Directly to User.

31

3.1.3 FATMA's Suggestions

FATMA’s proactive functionality is designed to meet the requirement for
researchers to study various solutions for the problem of offering appropriate suggestions
to callers based on repetitive actions performed. Since the use of FATMA is to try to
determine the criteria that can be used to ensure that its suggestions are appropriate, other
type of suggestions are not integrated to FATMA.

The suggestions that could be offered by FATMA are divided to three categories:
Outgoing Call, Call Screening and Forwarding, and Incoming Call Handling suggestions.
There are two kinds of suggestions: the suggestions could be always ask me, where
FATMA always needs to offer the same suggestion to the user for it to perform the task,
or could be ask me and do it, where FATMA offers a suggestion once, if it is accepted,
the action will always be performed by FATMA on behalf of the user. The suggestions

that could be offered by FATMA are:

Outgoing Call

e FATMA suggests to add a DN to the Contact List. This suggestion is made on a
always ask me basis. The user can add the DN suggested by FATMA to the Contact
List permanently, temporarily, or could choose not to add the DN. Note that
temporarily could be several weeks or months. (Alternatively, the user could say
“temporarily”, to which FATMA would then ask “for how long?”, the user coulci reply
“two weeks”. FATMA then, could specify the beginning and ending dates.)

e If the user adds a DN to the Contact List temporarily, before removing that DN,

FATMA reconfirms the removal of the DN with the user. The user could remove the

32

DN, or keep it permanently or temporarily. This suggestion is made on a always ask
me basis.

If the Contact List is nearly full, FATMA could suggest to remove a DN if that DN is
rarely voice-dialed. This suggestion is made on an always ask me basis.

FATMA suggests adding a DN from the Message List to the Contact List if the user
calls back this DN, and if the DN is not already stored in the Contact List. . This
suggestion is made on an always ask me basis.

FATMA suggests removing the DN that the user normally removes from the Message
List. This suggestion is made on an ask me and do it basis.

If the user dials a DN that is already in the Contact List, FATMA could remind him or
her that this DN is already in the Contact List, and therefore the agent could call on
behalf of the user.

FATMA could suggest always placing a Private Call for a certain DN. This suggestion
is made on an ask me and do it basis.

If a particular DN is locked for a certain period of time, FATMA could suggest adding

this particular DN to the Contact List if it is not already stored there.

Call Screening and Forwarding

All screening suggestions from FATMA to the user are offered within the Call Screening

feature.

e FATMA could suggest transferring a call from a particular DN as an Individual to

“Voice Mail”. This suggestion is made on an ask me and do it basis.

33

o FATMA could suggest to set the disposition to “Directly to User” to a call from a
particular DN as an individual. This suggestion is made on an ask me and do it basis.

e FATMA could suggest to set the disposition to “Agent First” to a call from a
particular DN as an individual. This suggestion is made on an ask me and do it basis.

The three suggestions mentioned above could also be proposed for Known, Unknown, or

all callers. The actions for the suggestions mentioned above will be enforced for a period

of time® set by either FATMA or the user. The actions for the suggestions mentioned
above are set back to the original disposition set by the user, when their period of time is
over.

e If the user forwards his or her calls to a particular DN, FATMA will suggest to
automatically forward the calls to that particular DN for the user for a period of time.
This suggestion is made on an ask me and do it basis.

e If the user calls FATMA from a particular remote location, FATMA will suggest to
automatically forward the calls to the DN of that particular location for a period of

time. This suggestion is made on an ask me and do it basis.

Incoming Call
The suggestions offered by FATMA to the user for the Incoming Calls are only made

when the screening disposition is set to “Agent First” or when FATMA is handling a call

waiting process.

2 period of Time starts when the user sets a screening disposition to certain incoming calls and ends when
the user sets another disposition to the same incoming calls.

34

o FATMA will suggest transferring a call from a particular DN to “Voice Mail”. This
DN will be set as an Individual in the Individual table. This suggestion is made on an
ask me and do it basis.

« FATMA will suggest to set the disposition for a call from a particular DN to “Directly
to User”. This DN will be set as an Individual in the Individual table. This suggestion
is made on an ask m.e and do it basis.

The two suggestions mentioned above could also be proposed to Known, Unknown or all

callers. The action of these suggestions will be set off as soon as the user cha;nges the

screening disposition, or when the call waiting process is over.

3.1.4 FATMA’s Observables

The most crucial part for an interface agent to act on behalf of the user is its
learning process. An ineffective learning process could lead to erroneous suggestions and
actions on the agent’s part, which in turn could lead to the user not trusting the agent’s
competence. The agent must be selective when learning, in terms of what data it should
observe, as well as what internal structure it should consider when storing these data[22].

I divided the observables of FATMA into four observation sets: observables for
Outgoing Calls, observables for Call Screening, observables for Call Forwarding, and
observables for Incoming Calls. These sets are mutually disjoint. Within each set, FATMA
should also be selective in choosing its facts to determine whether to offer a suggestion or
not, for a certain observation. In other words, within an observation set, FATMA’s rule

sets for pattern matching, and pending suggestions for a certain behavior should only

35

select the facts that deal with that behavior and not all the facts of the observation set

itself The observables are as follows:

Outgoing Calls
e FATMA observes the DN dialed by the user, the date, day and the time at which the
call is placed, and stores these data items in a database. The table holding this
information is called Qutgoing Envelope.
o FATMA observes the calls placed by a user to a DN.
B For calls placed by the user when dialing a DN from the keypad.
B For calls placed by the user from the Message List.
@ For private calls placed by the user.

e FATMA observes the DN that is deleted from the Message List by the user.

Call Screening
o FATMA observes the screening commands given by the user and stores these items in
the Screening Envelope. The Screening Envelope will include the DN for Individual,
group code for Known, Unknown, or all, starting date, ending date, day, starting time,
ending time, and disposition code for the Screening Commands.
B FATMA observes the call disposition set by the user for a particular DN as
Individual.
B FATMA observes the call disposition set by the user for Known, Unknown, or

all incoming calls.

36

Note: The call disposition hold in the Screening Envelope could be: “Directly to User”,

“Agent First”, or “Voice Mail”.

Call Forwarding

FATMA observes the date, the day, the starting time when the call is forwarded to a
certain DN by the user, the ending time when the calls are forwarded back to the
original DN, and the DN to which the user forwards his or her calls to, and stores
these data items in the Forward Envelope.

B FATMA observes the call forwarding set by the user to a particular DN.
FATMA observes the locations from which the user contacts it (e.g. home, work,

mobile phone, or any remote location.)

Incoming Call

FATMA observes the DN, the time, the date, the day and the name of the caller
associated with the DN if it is in the Contact List, and stores these data items in the
Incoming Envelope.

When the call disposition is set to “Agent First”, or in Call Waiting process, FATMA

observes the actions taken by the user in terms of “I’ll Take it” and “Take a Message”.

Note: The data will be stored in the Incoming Envelope only when the call disposition is

“Agent First”, or in a Call Waiting process.

37

3.2 System Architecture

FATMA’s data is contained in two tables. The Envelope table is the table that
represents the actions FATMA observed the user performing. The Pending Suggestion
table is the table that represents the suggestions FATMA could possibly offer to the user.
For a suggestion to be offered, the user should perform a task for there which already
exists a particular pending suggestion, and the time and date the user is performing that

task, matches the time and date for that particular pending suggestion.

Envelope Table
the Envelope __.-"
User : I Creates the
Interface "‘\\Pmchng\ ing Suggestions
k'
~~~ .qurrent time and .
---------- (.h): Pending Suggestions Tabld
performns
User a task Legend:

~———— Flow of Control

"""" » Flow of Data

Figure 3.8 Simulation Application Diagram.

. As shown in figure 3.8, at the implementation level, the main modules of FATMA
are divided into three parts: the user interface, the event handler, and the rule sets. The
user interface waits for an action to be performed by the user. The event handler is the
module that receives from the user interface the event performed by the user, that adds to
it the time, date, and day the feature that was requested, and stores it in the Envelope
table. The event handler also takes from the Pending Suggestion table, the suggestions

that are ready to be made, checks if they match with the current time and day; if the time

38



and day match together, the event handler gives the suggestions to the user interface to be
offered to the user. The rule sets run on the completed envelopes in the envelope table to

modify, change, or add pending suggestions to the suggestion table.

FATMA is intended to model a telecommunication service for Call Management,
i.e. agents based on FATMA should reside in a telecommunication network, however
FATMA itself is built to study solutions for offering appropriate suggestions to the user.
The implementation of FATMA was carried out using an HP terminal as the user interface
device, under UNIX operating system, using TCL/TK as the GUI, C as the event handler,
and CLIPS as the rule based language. See figure 3.9: TCL/TK (Tool Command
Language/Toolkit) as the GUI, researchers communicate with TCL/TK to perform
specific tasks, and the GUI communicate with researchers to offer suggestions. Event
handling was realized through programs written in C. They interact with the user interface
either to take the command performed by the researcher, or to give the user interface the
suggestions that should be offered to the researcher. The event handler takes the time and
date from the Operating System time function, and also controls the firing of rules in the
CLIPS rule base. CLIPS (C Language Integrated Production System) is the rule based
language used for FATMA to perform the observation rules, pending suggestion rules,
and the rules to determine which suggestions should be offered. CLIPS was embedded in

C, i.e, all CLIPS command were given to it as C functions.

39



UNIX System

OS Time Function

FATMA
TCL/TK C Program LIPS Rules
User Event Rule
Interface Handler Sets
User |

Figure 3.9 FATMA’s Language Diagram.

3.3 Rule Sets for FATMA

In order for researchers to study solutions for offering appropriate suggestions,
they should be able to create rule sets to activate FATMA’s proactive functionality. When
necessary, they should add new rules to the current ones, or change and modify the
existing rules. In this context, the independence between the three modules: the user
interface, the event handler, and the rule sets (see figure 3.9) is crucial because any change
in one module should not cause a change in any other module. We aim at any modification
in the CLIPS rules not leading to any modifications in the two other modules.
Furthermore, CLIPS facilitates the development of software to model human knowledge,
and being a stand alone rule base language, CLIPS facilitates the tasks for researchers to

build, add, modify rules, and embed them in FATMA so that the researchers can evaluate

their studies and demonstrate their solutions.




To be able to test and demonstrate how FATMA works, I developed rule sets for
FATMA to offer “appropriate” suggestions for the “Call Screening” features it provides.
The rule sets where divided into the following:

e The first set of rules called “Pattern Rules” are for FATMA to search for a pattern in
the actions performed by the user and records them as Patter Facts.

e The second set of rules called “Pending Suggestions Rules” are for FATMA to
determine from the Pattern Facts what are the pending suggestions.

e The third set of rules called “Offering Suggestions Rules” are for FATMA to
determine, from similar pending suggestions, which pending suggestions should be
offered and which should be disregarded.

e The fourth set of rules called “Re-offering Suggestions Rules” are for FATMA to
determine if, which, and when a suggestion that was rejected by the user, should be re-
offered.

Figure 3.10 is a flowchart that describes how the rule sets work to enable FATMA offer

suggestions. This flowchart describes how the rule sets search and match a pattern. If a

pattern in the user’s behavior is found, the rule sets assert pending suggestions. The

pending suggestion that best describes the user’s behavior, is offered. If the suggestion is
rejected by the user, it could be re-offered by FATMA at a later time if FATMA continues

to observe the same regularities in the user’s behavior.

41



G

Search of a Pattern
e Pattern \, Yes —of Assert Pending Suggestions
found?

Offer the suggestion that
best describes the user’s behavior

Re-offer the rejected
Suggestion

Figure 3.10 Flow Chart for the rule sets process.

In figure 3.11, I show the different rule sets and how they interact with each other.
The pattern rules asserts facts that I call Frequency and Consistency facts, from which the
pending suggestions rules determine what are the pending suggestions. The offering
suggestions rules are the rules that determine from the pending suggestion table which

pending suggestions should be offered and assert them as Offer Suggestions Facts.

42



\

Uy
; /////////
//7/ / ///

/ // /// 7 /
//////4//////////// ///// /

Screening Envelope Table Pending Suggestion Table

Pattern Pending Offering Re-offering
Rules Suggestions Suggestions Suggestions
Rules Rules Rules
Frequency & Consistency Facts Offer Suggestions Facts

Figure 3.11 Rule Sets.

If there are any suggestions that are rejected, the re-offering suggestion rules will
determine if these suggestions should be re-offered by checking the Frequency and
Consistency facts and the Pending Suggestion table. If the same pattern is found the re-
offering suggestion rules modify the Offer Suggestions Facts.

For a suggestion to be offered, the three modules are involved; the rule sets should
determine the suggestions that could be offered, the event handler determines which
suggestions match the current day and time, and the suggestion that is ready to be offered
should match the feature used at the current time in the user interface. The rest of this

section describes in detail the rule sets and the algorithms developed.

The pattern matching of FATMA totally depends on the observables given to
FATMA. Thus, the Screening Envelopes are the basic facts for FATMA to offer

suggestions. Since FATMA depends on regularity in the user’s behavior, in the pattern

43



matching process and for simulation purposes, I assumed that users have weekly patterns.
So in the pattern rules, FATMA performs two major sets of rules as shown in figure 3.12:
the first set of rules called “Rules for Frequency” determines how frequently a feature is
performed. The second set of rules called “Rules for Consistency” determines the features
that are consistently performed on a proposed cyclic pattern. In the first set of rules, for
FATMA to consider the same feature being performed frequently, the condition for that
feature should satisfy the following criteria: the feature should be performed for a number
of consecutive weeks on the same day of the week at approximately the same time for the
same group of callers or individual. When the above condition is satisfied, FATMA will
count the number of times this feature was performed (This condition will be referred to as
C1 in figure 3.13). In the second set of rules, for FATMA to consider the same feature
being performed consistently in the same week, the condition for that feature should
satisfy that the same feature is performed to set the same disposition for the same group of
callers or the same individual at approximately the same time for at least two days of the

same week (This condition will be referred to as C2 in figure 3.13).

N

Screening Envelope Table

Consistency Facts

i

Pattern Rules

- R

Rules
for
frequency

Rules
for
Consistency

Frequency Facts

Pending
Suggestions
Rules

Figure 3.12 Pattern Rule Sets.



When the first condition (C1) is satisfied, it could lead FATMA to create a pending
suggestion; but since I assumed a weekly pattern as the behavior of the user, to determine
a pending suggestion only from the first condition, the occurrence of such a feature should
be accomplished a “great amount” of time. On the other hand, when both conditions (C1,
C2) are satisfied, I assume that the feature requested by the user is consistent with his or
her behavior, thus a pending suggestion would be created with less occurrences than with
only the first condition. The other conditions that should be satisfied for the agent to
create pending suggestions are: The three conditions referred to as C3, C4, CS5
respectively in figure 3.13 (1) are the same, these conditions should satisfy the two
conditions (C1, C2) mentioned above and repeatedly performed for a threshold chosen by
researchers. These conditions (C3, C4, CS5) should satisfy the same disposition for the
same group of callers or the same individual for at least three, four, and five days from the
same week for at least three consecutive weeks on a row. The fourth condition referred to
as C6 in figure 3.13 (2) should satisfy the two conditions (C1, C2) mentioned in the
pattern rules by occurring two days in the same week for at least four consecutive weeks
on a row. The last condition referred to as C7 in figure 3.13 (3) for creating a pending
suggestion is the occurrence of the first condition of the pattern rules for at least six weeks
on a row. In Figure 3.13 the markings (1) (2) (3) show what conditions should be satisfied
for asserting pending suggestions. Note that a pending suggestion will not necessarily be
offered. Later, we will examine which pending suggestions would be offered and which

would be disregarded.

45



If If
C1 and C2 and Ct1and C2
(C3 or C4 or C5) and C6
for 3 consecutive weeks for 4 consecutive weeks
Then Then
assert Pending Suggesion assert Pending Suggesion
(1) (2)
If
C1and C7
for 6 consecutive weeks
Then
assert Pending Suggesion
(3

Figure 3.13 Conditions for Pending Suggestions.

The offering suggestions rule set totally depends on the pending suggestions
determined by FATMA. Before offering a suggestion, FATMA will scan the pending
suggestions table to see which pending suggestions are similar. Two pending suggestions
are considered similar if they have the same disposition for the same group of callers or
same individual for the same starting and ending times, and the days of one pending
suggestion are less and included in the second pending suggestion. When FATMA finds
similar pending suggestions, it disregards the pending suggestions that have less days to be
suggested, and keep the one with the most days ready to be offered. For example if
FATMA finds two pending suggestions:

(pending suggestion: Known, Voice Mail, 3:00-17:00, mon, tue, wed),

(pending suggestion: Known, Voice Mail,.9:00-17 :00, mon, tue, wed, thu, fri),
FATMA will disregard the first one and suggest the second one, based on the assumption
that such suggestion is best considered to describe the behavior of the user. The pending

suggestion disregarded will stay in the pending suggestion table but will not be offered to



the user. When the pending suggestion that was chosen from its similar ones is offered and
accepted by the user, other pending suggestions similar to the accepted one will be
removed. If the suggestion offered was rejected, the similar pending suggestions would
then be reconsidered to be offered to the user.

In my study, I also considered re-offering a suggestion if it was rejected. Since
FATMA is assumed to be using a speech user interface, it is more difficult than with a
GUI to know the reason why the user rejected the suggestion because the user cannot give
the reason for his or her rejection. In this context, I took into consideration tw!o cases for
when suggestions are rejected. The first case is that all the suggestions offered at the same
time were rejected. FATMA will not know if the user rejected them because they are all
wrong, or because the user was too busy to worry about the suggestions at the time the
suggestions were offered, or because the user did not know what he or she should do. In
this case, FATMA will wait exactly one week to re-offer the same suggestions. While
waiting, FATMA keeps observing the user’s behavior, and if any change occurred in the
behavior of the user regarding any of the suggestions to be re-offered, the suggestion
which the user’s behavior changed, would be disregarded. The second case, is if at least
one of the suggestions offered is accepted. I assumed that FATMA will know that the
other suggestions were refused because the user does not want such automation of
features. In that case, FATMA will not re-offer the same suggestion unless it observes
some change in the behavior of the user. In any of the above cases, we stipulate that a
suggestion cannot be offered more than twice. If the user rejects the same suggestion

twice, then one of the similar pending suggestions could be considered after another set of

47



similar observation. If a suggestion is accepted by the user, all similar pending suggestions
should be removed from the pending suggestion table.

As described above, the rules will determine what suggestions should be offered,
and if they should be re-offered, but the rules do not determine when these suggestions
should be offered. When to offer a suggestion is very delicate particularly in the context of
a SUIL, because when FATMA offers a suggestion, it takes control of the user interface
and waits for an answer from the user. Before offering a suggestion FATMA must be sure
that the user, is not involved in any other activity, and totally free to be able to understand
the suggestion and reply appropriately. In this context, the algorithm I used for FATMA
to offer a suggestion is event-based. The suggestion should be relevant with the context of
what the user is trying to do. For example, FATMA should not offer a “Call Screening”
suggestion if the user is trying to call someone. A “Call Screening” suggestion should be
offered only if the user is performing a “Call Screening” feature. The suggestion should be
made very timely. For example, FATMA should not offer a “Call Screening” suggestion
for the afternoon if the user is performing a “Call Screening” feature in the morning, and
FATMA should not offer a “Call Screening” suggestion for a different day unless one of
the days in the suggestion matches the day the user is performing the “Call Screening”
feature. Furthermore, considering FATMA as a SUI, FATMA should offer a suggestion as
soon as the user requests the appropriate feature because if the suggestion is offered in the
middle of a process, the user might get lost and not respond appropriately. Moreover if the
suggestion is offered at the end of the process, the user might be switching to another

feature or quitting FATMA, and might not hear the suggestion completely.

48



3.4 Test and Demonstration

To demonstrate how FATMA works, I developed a scenario (table 3.1). The
scenario is about a family of two working people who set all their calls to Voice Mail in
the morning before going to work, They set “known callers” to “Directly to User” at
around 5:00pm, and after supper they set all callers back to Directly to User. Not wanting
to be disturbed before going to sleep, they first set “Unknown Callers” to “Voice Mail” at
9:00pm and all callers to “Voice Mail” at 11:00pm. On Thursday and Friday, there is a
slight change assuming that they go shopping or leave the house at around 7:00pm, they
set all callers- to “Voice Mail”. On Saturdays and Sundays, the dispositions are totally

different. Table 3.1 describes in details the dispositions set for a certain week.

Monday | Tuesday | Wednesday | Thursday Friday Saturday Sunday
7:00am | AIVVM | AIVVM All/’VM AlYVM Al/'VM Al’'VM Al’'VM
9:00am All/DU Al/DU
1:00pm AlVVM
5:00pm | KC/DU | KC/DU KC/DU KC/DU KC/DU Al'DU
7:00pm | AI/DU Al/DU Al/DU All’VM AlVYVM
9:00pm | UC/VM | UC/VM | UC/VM KC/DU KC/DU UC/VM UC/VM
11:00pm | AI'VM | AIVVM | AIV'VM AlY'VM AIlVVM Al/'VM All’'VM

Table 3.1 Scenario of a family. KC = Known Callers, UC = Unknown Callers, VM = Voice Mail,
DU = Directly to User.

For demonstration’s purpose, I created two sets of “Screening Envelopes”. The
first set are Screening Envelopes describing the table for the first three weeks of usage,
and the second set are Screening Envelopes describing the table for the fourth week of
usage. Then I assumed the next time FATMA will be used on a Monday morning at
7:00am where the family is going to set the disposition for all callers to Voice Mail. I
loaded the first set of Screening Envelopes, ran the rules, I came up with a set of pending
suggestions. I used the “Simulation Application” and as soon as I requested the “Call

Screening” feature, I got two suggestions from FATMAL: the first one is for FATMA to

49



automatically set Known Callers to Voice Mail for Monday to Friday from 7:00 to 17:00;
and the second suggestion was for FATMA to automatically set Unknown Caller to Voice
Mail for Monday, Tuesday, and Wednesday from 7:00 to 19:00. For both suggestions I
responded by “No”. Then, I loaded the second set of Screening Envelopes which describes
only the fourth week of usage, I ran the rules, I saw new suggestions determined by
FATMA, but I only got the same two suggestions that I had before.

After the first demonstration, I reset FATMA and reloaded the same Screening
Envelopes sets. This time, I responded “Yes” to the first suggestion, and “No” to the
second suggestion. After I ran the second set and went to the Call Screening Window, this
time I only saw new pending suggestions, FATMA had no suggestions to offer.

The third test that I did was to modify the second set of Screening Envelopes by
adding to it a fifth week of usage, i.e. the second set had now two weeks worth of
Screening Envelopes. I loaded the first set, ran the rules and went to Call Screening
Window where I got the same suggestions mentioned above. I accepted the first one and
rejected the second one. Then I loaded the second set of Screening Envelopes, and ran the
rules. At this point I saw new pending suggestions that were determined by FATMA.
Then I went to the Call Screening window, and FATMA offered me the suggestion that I
refused before.

With these demonstrations, I tested FATMA to see if it was performing correctly
in terms of accepting the commands given to it by the user, asserting the proper envelopes
and so on. I was also able to test how FATMA could offer suggestions with the rule sets
that I have developed. This concluded that FATMA could be used by any researcher to

study the proposed solutions on how to offer “appropriate” suggestions just by designing

50



and developing sets of new rules, embedding them in FATMA, and analyzing the user

reactions.

51



4 Conclusion

A software system called FATMA (Futuristic Automated Telecommunication
Management Agent) is designed and implemented. This is a software tool used for
studying various solutions for the problem of “how to provide “appropriate” proactive
suggestions related to call processing features utilized by telephone users”. Proactive
suggestions are considered appropriate when the following criteria are met:

o The suggestions made should be consistent with the previous actions of the user.
¢ The suggestions should be relevant to the context of what the user is trying to do.
¢ The suggestions should be timely-based.

FATMA was developed so that user interface designers can study different
strategies on how to assist the user by suggesting the use of appropriate call management
features in telecommunication. In order to best serve its purpose, FATMA was designed
and developed in three different and independent modules: the user interface to FATMA,
the event handler, and the rule sets. This modular organization gives researchers the
opportunity to change, modify, and add features and rules as they find necessary in an easy
fashion without causing any major changes in the other modules.

FATMA was developed so that it can be used in two different ways. The two
usages that FATMA offers (the simulation and demonstration applications) give
researchers the opportunity to simulate an agent’s competency using FATMA and

demonstrate how it can offer suggestions.

52



With the simulation application, researchers study how an agent observes and
reacts to the user’s actions when the user’s actions are consistent and repetitive. The
suggestions offered by FATMA as per the rules developed by researchers may be accurate
or not, depending on the rules. Although FATMA when used as an agent, may take a few
weeks to learn the user’s habit and start offering suggestions, the simulation application is
crucial for researchers to conduct efficient studies for offering appropriate suggestions.

With the demonstration application, researchers can demonstrate how an agent can
observe the users behavior, and how an agent can develop proactive suggestions to be

offered to users. Demonstrations are useful in the very early stages of product planning.

4.1 Futuire Work

As of now, FATMA can offer independent suggestions with respect to a selected
feature. If the user wants to set many different features at one time, FATMA will wait for
the user to request a specific feature for it to offer the suggestions related to that feature.
One way to enhance FATMA, is to enable it to offer multiple suggestions when different
features are in use. These suggestions could be sequenced according to suitable criteria.

As mentioned in section 4.3, FATMA can offer a suggestion for a second time, if it
is rejected the first time. Re-offering a suggestion sometimes could be annoying to the
user. One way to solve this problem and enhance FATMA is by enabling the user to either
edit the suggestion to fine tune the feature by changing the time and/or days for that
feature, or postpone giving an answer for the suggestion for a later time, or both.

Another way to enhance FATMA is by extending its proactive functionality to

provide a level of confidence. The level of confidence will be used by FATMA to

53



determine if it is ready to start offering suggestions to the user or not. The level of

confidence could possibly be based on two thresholds that could be set by the end-user:

the ask me threshold, and the do it threshold[4]. With these two thresholds, three levels of

confidence could be developed:

e The level below the ask me threshold: FATMA only observes the actions taken by the
user.

e The level between the ask me and dbo it thresholds: FATMA will offer a suggestion to
the user, and will act on behalf of the user only if it is permitted to do so.

e The level above the do it threshold: FATMA will act on behalf of the user on a certain
feature without offering the suggestion.

Extending FATMA with the level of confidence, will enhance its capability to offer

suggestions, not only by observing regularity in the user’s behavior, but also by taking into

consideration the user’s acceptance of FATMA to act on his or her behalf.

54



References

[1] Wildfire Manual, Emit Corporation, 12 Baby Point Road, Toronto, Ontario,
M6S 2E6, Tel: 1-800-wildfire. Http://www.wildfire.com/thanks.html.

[2] Kaye, A.R. and Karam, G., Cooperating Knowledge-Based Assistants for the
Office, in: ACM Transactions On Office Information Systems 5, 4 pp.297-326
October 1987.

[3] Lai, K., Malone, T., and Yu, K., Object Lens: A “Spreadsheet” for
Cooperative Work, in:. ACM Transactions on Office Information Systems, 6, 4
pp-332-353 October 1988.

[4] Kozierok, R., A Learning Approach to Knowledge Acquisition for Intelligent
Interface Agents, M.I.T. Media Laboratory, Learning and Common Sense Section,
Technical Report. 1993

[5] Stanfill C. and Waltz, D., Toward Memory-Based Reasoning, in:
Communications of the ACM 29, 12 pp.1213-1228 December 1986.

[6] Gilbert, Don, Aparcio, M., Atkinson, B., and Brady, S., The Role of Intelligent
Agents in the Information Infrastructure, IBM Corporation, Research Triangle
Park, NC USA. 1995. Http://activist.gpl.ibm.com:81/WhitePaper/ptc2.htm.

[7] Lieberman, H., Attaching Interface Agent Software to Applications, Media
Laboratory, MIT. 1993. Http://Ics.www.media.mit.edu/groups/agents/papers.htmi.
[8] Magedanz, T., Rothermel, K., Krause, S., Intelligent Agents: An Emerging

Technology for Next Generation Telecommunication?. INFOCOM March 1996.

55



[9] Caglayan, A., Snorrason, M., Jacovy, J., Mazzu, J., and Jones, R., Lessons
from Open Sesame!, A User Interface Agent. Proceedings of the Practical
Application of Intelligent Agents and Multi-Agent Technology (PAAMOY6).
London, pp.61-73. April 1996.

[10] Ali-Ahmad, W, and Velasquez, J., E!Agent: A Friendly E-mail Agent. Center
for educational Computing initiatives, MIT. 1995.
Http://beirut.mit.edu/MAS962/e_agent.htm.

[11] Lieberman H., Letizia: An Agent That Assists Web Erowsing. Proceedings of
the 1995 International Joint Conference on Artificial Intelligence, Montreal,
Canada, August 1995.

[12] Lashkari, Y., Mztral, M., Maes, P., Collaborative Interface Agents.
Proceedings of AAAI '94 Conference, Seattle, Washington, pp.444-449. August
1994.

[13] Karmouch, A., Proposal for A Mobile Agent-Based Architecture for Wide
Area Networks. University of Ottawa. January 1996.

[14] Grossner, C., Models and Tools for Cooperating Rule-Based Systems.
Doctoral Thesis, McGill University, 1994.

[15] Isaacson, P., Wildfire Launches a New Generation of Telephone Voice
Assistants and Agents. Http://www.dreamit.com/articles/wildfire.htm. 1995.

[16] Kautz, H., Selman, B., Coen, M., Ketchpel, S., Ramming, C., An Experiment
in the Design of Software Agents. Proceedings of the 12th National Conferenice on
Artificial Intelligence. Volume 1. Seattle, WA, USA, July 31 August 4 pp.438-443.

1994.

56



[17] Murugesan, S., Radhakrishnan T., Intelligent Agents in Telecommunications
Applications. Technical Report, Dept. of Computer Science, Concordia University.
December 1996.

[18] Wildfire Home Page. Http://www.wildfire.com.

[19] Yankelovich, N., Talking vs. Taking: Speech Access to Remote Computers,
ACM CHI 94 Conference Companion, Boston, MA, April 1994.

[20] Yankelovich, N., Levow, G.A., Marx, M. Designing SpeechActs: Issues in
Speech User Interfaces. ACM CHI 95 Conference on Human Factors in
Computing Systems, Denver, CO, May 1995.

[21] SpeechActs home Page. Hitp://www.smli.com/research/speech.

[22] Foner, L. N., Maes, P., Paying Attention to What’s Important: Using Focus
of Attention to Improve Unsupervised Learning. The Third International

conference on the Simulation of Adaptive Behavior, Brighton, England 1994.

57



