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ABSTRACT

Programming Language Support for
Distributed Applicatians

4
Alan Jeffrey Madras

The language d—Pascél was defined to provide high-level support for
distributed applications prograéming, performing the functions of the
Applid@giﬂﬁé Layer  of>the 1S0-0SI Reference Mg@e{mJTANE,Bl]. JInterpro-
cess cowmunication in d-Pascal is accomplishe;\by the asynchronous ex-
change of messages. d-Pascal is des¢fibed as a set of source language
exten;ions to sequential Pascal [WIRT 71), and several annotated exam-

ples of d-Pascal programs. are given. An implementation of d-Pascal is

also described. A preprocessor that translates d-Pascal programs into

sequential Pascal has been built, and the source transformations are de-

scribed in detail. Operating, system suppo?t required by .the preproces-

oo ;
sor is also discussed. ‘ .

This thesis also includes a survey of other concurrent programming

languages, categorizing them according to the model. of interprocess

communication used, ' "

111
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Chapter 1

INTRODUCTION

Py ]

It is commonly - said that "two heads are better than one." It is

-

generally implied by this expression that two 'people may be able to

solve a difficult problem in less time by coopérating than either’person
L v 5
could working individually. Of course, if the problem is trivial,

participation of the second 'head" may slow down the solution process,

as it may take longer for the first person to explain the problem to thé

second person than to solve it outright.

”j)The:>foregoing analysis may also be applied to problem solving by.

computer. Several computers working together on a problem may . be abl;
to find a solution in less time than could any one of the maghineﬁ_gy
working alone, assuming that the intercomputer communication is noél{gs
great .as to supersede the time spent working-on the problem itself. Of
course, the mo;; com%ute—bound the algorithm relative to the amount of
communication required, the .greater the potential advantage of .concur-

rent processing.

-

Programming concurrent systems is very difficult. In addition to

all of the -skills required for sequential programming, the concurrent.
- AL

programmer must also deal with nondéterﬁinacy and, naturally enough,

concurrengy: many a¢tivities (p;ocesses) are executing concurrently,

and each process may have to deal with external events, such as inter-

action with other processes, which occur at unpredictable times. Many
A )

concurrent programming laﬁéuages ‘have been developed to enable the

programming of such systems. These languages must acknowledge the con-
8
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L
cepts of processes, synchronization of processes, and communication b;-
tween processes. That- many concurrent languages were invented with
operating .systems applications in mind should not come as any surprise,
as the twin problems of nondeterminacy and concurrency are, the hallmarks
of operating systems on both un§proc&hsors and multiprocessors. Chapter
Two of this thesis presents a surveyJof'some of the more representétive
concurrent programming languages.. The survey attempts to introduce the
major software concepts in concurrent programming, and show how they are
used in a variety of languages. The dif ferent models of‘interprocess
_ﬂ:communicaiion, message passing versgs_ procedure call, are <ontrasted, as

1

are synchronous versus asyxchronous communication.

This thesis introduces d-Pascal, a language derived from sequential
¢

Pascal [WIRT 71], which ;ffers the programmer high-level support neces-
 sary to write concurrent programs for a network d%’computers.- d-Pascal
supports processes which may-cémmunicate and synchronize with each other
by exchanging messages across the network. It is intended to ge used in
research into df;fributed algorithms and program’decomposition, areas of
difficulty in the field of concurrent applications programmingf} The
overriding goal in the design of d-Pa;calﬁhas been to create an appli-
cations vehicle which was not so complex as to impede the programmer's
ability to program apélications,'yet was sufficiently_powerful to permit

a range of applications wide enough to provide a viable environment for

distributed algorithm research.
. . v

Chapters Three through Five describe .d-Pascal. Chapter Three de-
fines and discusses the concurrent programming features of d-Pascal;

Chapter Four describes an implementation of d;Pascal, aﬁd dischsses the

Introduction ' ) 2
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. support required of the programming enyironmerit ; Chapier Five contains
some programming examples tha* demonstrate how the concurrent language

L .
features of d-PascalsarE”ﬁged.'

d-Pascal has been implemented for this thesis on Cuenet, a loosely
. . : o \
. - coupled network of microcomputers. As it 'is intended for algorithm re-
s P & ) ot .

search applications, d-Pascal falls within layer seven of the I Refer-

-~

o ence ) Model gf- Open Systems Interéonnectiqn (0sI) jTAﬁf.pld. the
Applications layer. Session layer (layer five) aqg .greggnyation J;yer
(layer six) issues are beyond the scope of d-Pascal, although ;h; rela-

\2ion§hip.between d-Pascal and tPe l?yer five and 1ayerﬂsi§ requirements

of the operating system is\discussed in Chapter Four.

)

&

Apperidix A describe Cuenct, the network upon which d-Pascal hps
been implgmented. Appendix Bf gives a summary of the syntax of the d-
Pascal concurrency features, apd Appendix C contains the source code of

a the d-Pascal programs discussed in Chapter, Five.

£

Introduction .
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Chapter 2
b -& AN O)V?WIEV 05‘. CONCUI‘XREN'T PROGRAMMING LANGUAGES
L .. ¢
N
. - v I \

&

\Qﬂ:gxconcurrent programming languages have been propossd by lan-
. N
guage igners. + 1ln a concurrent program, several%activit}ﬁf'han be
2 ,
- L
specified which may be executed concurrently. These activitfb§ are

called processes. . AN

v‘ v \
~

. 4 ' ~
@\\ , Concurrency may be either real or apparent. With real concurrency;™

two or more, processes Are executing at exactly the same time, as opposed
N »
to apparent concurrency, in which execution switches back and forth

;, among started processes, but only one is actually executing ét any given
ihstaqt. Real concurreﬁcy reqhires a different proéessor for each
concurrent process, while.apparentrconcurrency can be 1mplemented on a
aingl:'processor. See, for example, [LOR! 72} for further discussxom.

-« .

In the wide spectrum of concurrent programming languages, no single

’

hY o ,
definition of a’process will suffice ié all cases. Consequegtly, none

§

B ' will be formally given here. loosely speaking, in the context of this

surveys, a process can be considnréd to be part 55 a program which can
‘ 9y ¥
run concyrrently with. other parts of.ghe same program. The prograw it-
T
self can be anything from a very specxfic applicatxon to a general pur-
b

-

pose operating system. g .
¢ ) When several processes in a concurrent program cooperate in the

solutioh of a problem, some interaction will generally be required to

»

F ' coordinate the p}oblem solving effort. Process interaction may take the
N '
’ . . o
An Overview of Concurrent Programming Languages ) b
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\
form of synchroni%ation. data exchange, or the exclusion of other pro-

&
cesses while a shared resource is accessed.

! o

<dn general, processes are not necessarily dependent on other pro-

cesses for their existence, except if some master p%?pess is required to

. b

initiate all t.he‘ﬁ other processes, such Yas in the )anguage Hodula
[WIRT 77]. Processes live "a long time" as compared with procedufes in

. .bldck-sgructured languages. In fact, sometimes they live "forever" (for

[}

“the lifetime of the job). Except when explicitly communicating, pro-
. q
cesses are generally n?f aware of the .existence or Activities of other
.4 C .
processes.

‘Different’ models of interprocess communjcation will be presented in
Pl b
4
the next section, followed by a survey of some existing concurrent

programﬁing languages .in the' 'light of Lhei; concurrent facilities and

a

constructs.

2.1 MNODELS OF COMMUNICATION

v : |

por
., Two themes for interprocess4communication.£ave come to dominate the
discipline of co;current programmin& la;guage desi&n. They are the
- Procedure Call Model and the Message Transfer Model (STAU 82]. Many

-

“ ,
variations on both themes exist, but most proposals can be classified

according to one of the two models. . A A

,

-

In 8 compdrison of the models, J. Staunstrup [STAU 82] 'notes an

orthogonal dimension: synchronous versus asynchronous communication.
4
(¢}
N

An Oforview of Concurrent Programming Languagca' . -
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When two processés communicate synchronously, the first of the gﬁﬁL
. ) S

cesses to request theccommunication is suspended until the other Jakes

-

the cofrespondlng request. When communicating asynchronously, the/ pro-

, . o P
cesses interact with a medium (such as a monitor or message buffer), not

’ a

"with each other. Consequently, the processes need not necessarily wait

for each other.

k4
There exists a tradeoff between synchronous and asynchromous commu-
nication. Asynchronou$ communication offers the possibility of maximum

5.
¥

parallelism, but {t is less seécure than synchronous communication be-

cause error conditions such as buffer%overflow‘may occur in the medium
betwe;n the communicating processes. When communicating synchroaously,
each process which participates in the communication can be certain that
.the other process partitipated as well, but the synchronization does

inhibit concurrency to a certain degree. A

N

Note that there are other definitions of synchronization which do

not apply here. For instance, ié [ LINT 81]; proce;;es are considered to
be synchronous if they run simultaneously (on different processors) and
‘are controlled by the.same processor clock, whereas asynchronous pro-
cesses run with their o;n clocks, synchronizing only to communicate. The

latter scheme is similar to the synchronous scheme of this survey.

Generally, a process—c<4n contain any number of procedures. In lan-

guages employing the procedure call model, procedures in a process can

call procedures outside of the process. These external procedures are

defined either in monitors [HOAR 74} or in othe; processes. The calling

p?ocess iibsuspended until the called brocess completes execution of the
>

L . : '
called procedure.: Languages employing monitors or monitor-like concepts

v

An Overview of Concurrent Programming Languages ’ 6



include Cgncurrent Pascal [BRIN 75], Edison [BRIN 8la], Concurrent

Euclid [CORD'81] and Maotlula [WIRT 77]. - These lapguages communicate

&

asynchronously. - éynchronous procedure call languages include Ada
[ADA 81]° and D}gtributeﬁ Procééses.[BRIN 78}, where prBEedures”in one

s, i ~
© process can directly call procedures in othetr. processes.

&

A recent area of research in synchronous procedure call languages,

intended mainly for processes executing on different computers, is the

Remote Procedure Call (KPC) [(BIRR 84). RPCs 3re designed to look like

? <

regular (sequential) procedure calls to the programmer,obut, because the
called procedure is remote, the underlying implementation is similar to

that of a distributed mcssage passing system. -

il

In languages using the message transfer model, a process commu-
nicates by sending data messages to other processes. The messages are

structured in some format known to the communicating processes.’

When communicating asynchronously, a process can send a message and
continue executing, the receiving process accepting the messaje any time
after it was sent. This implics some type of interprocess bu{feri;g
system to‘hold messages until they are received. &his method of commu-

:

nication is used in Platon [STAU 76], PLITS [FELD 79}, '"Communication

Schemes" [{JOSE 81] and d-Pascal, the latter being developed in this the-
4 N
sis. - :% =~ - «\w*f/

In the synchronous version of the model, a sending process is sus-
. 4 g
FO |
pended until the receiver is ready to receive the message. No!bufferin¥$
. N , . ./

is provided, as messages are sent directly‘from one process to another.

P

An Overview of Concurrent Programming Languages .
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Synchironous message passing is used in Communicating Sequential Pro-

cesses (CSP) [HOAR 78] and CCS [MILN 80]. .

As with most seemingly reliable classification® schemes, objeéts
which cannot be classified are found. I will suggest a third model of

comminication which will I refer'to as the Process Call Model, found in

—— s

Pascal-C [LAM 82) and a proposal by Andre and Decitre [ANDR 78].

o —

In the ?rocess Call Model, thp runtime process structure mirrors

the procedufe structure. Each concurrent process is a procedure desig-
, 5.

nated to run in parallel with its calling procedure. This allows a pro-

cess to initiate several slave processes to run conturrently. Slave

processes can be nested. The lifetime of a process is the same as the,

lifetime of the ‘procedure which makes up the process.’

2.2’ THE PROCEDURE CALL MODEL

The procedure call model is appropriat; for applications in which
the pattern of process interaction is similar to that of procedure
calls.  For example, if some process provides access to a resource, an-
other process requiring the resource will'request it, likely with argu-
ments, and wait until the request is serviced before resuming execution.
It is very convenient for the user to be able to code this type of

interaction in the familiar fo}m_of the procedure c&ll.

Na

The kind of process generally Qsed to fielé requests in the above’
example {s " the monitor [HOAR 74]. A monitor-is a passive process con-
iaining private data, externally callable entries, a process queuing
mechanism and an initialization settion. A monitor is passive in the

An Overview of Concurrent Programming Languages - 8
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sense that, after performing initialization operations on its private
data, it only acts in response to external calls to one of its proce-
dures. Whgn no call is being serviced and no calls are pending, "the

monitor is quie;cent.~ Note, however, that unlike blocks in a block-
\ . v

o -

structured language, the monitor, including its data and proiedures,

continues kp exist even when none of its procedures are executing.

It is essential to the integrity of a monitor's private data that
only one external process be allowed to complete'a call to a wmonitor
procedure at any given time, for if more than one procedure body were
executing simultaneously within a monitor, the effect on the local vari-
ables of the monitor would be unpredictable. Therefore, all requests

must be suspended as long as one request is currently being serviced.

5

To this end, Hoare introduces a new type of variable known as a
condition, and requires of the writer of the monitor to declare a.condi-

tion variable for each reason why a precess might have to wait.

A condition variable is not a true variable, in _that it has no
accessible value. It can be considered to be a queue of processes wait-
fhg on the condition. The queue, initially empty, is invisible to a

process executing in the monitor.

Processes are delayed by a wait operation whjch causes the calling
program to be delayed on a specified condition. A signal operation will
cause exactly one program delayed on a specified queue to be resumed

immediately, without the possibility of an intervening entry call from a

third program. A signal on an empty condition has no effect.

An Overview of Conc&rrent Programming Languages : 9
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b 4

.
Any appropriate queuing disripline can be used to schedule the

waiting calls in such a way that all will be served eventually. Acti-

vating the longest waiting process is one such disciplihe.

Monitors are used in the asynchronous procedure call°languages, as
any communication between; (active) processes.takes place through the
shared resource of a monitor. Calls to monitor entries are also asyn-
chronous in the ‘'sense that the monitor procedures do not explicitly wait
for a particular call: they passively wait for any ahonymous call to

s

occur.

.« In synchronous procedure call languages, processes call procedures
in other (active) processes directly. A called process generally states
that it is ready to accept an interprocess call to certain of its proce-

_dures im order for the call to complete.

[}

The synchronous mechanisms in Distributed Processes and Ada will be

~

discussed in "Synchronous Procedure Call Languages" on page °15.

., >

2.2.1 Asynchronous Procedure Call Languages -

The Hoare monitor concept is the dominant common feature of asyn-

«

_chronous procedure call languages. ™

\

The language Concurrent Pascal {BRIN 75] is derived from Pascal
[WIRT 71), differing mainly in the addition of concurrent programming'

constructs called processes, monitors, classes and queues.

An Ove;view of Concurrent Programming Languages 10
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,° Concurrent Pascal ‘was ' developed by Per Brinch Hansen of the
/
/églifornia Institute of Technology during the years 1972 to 1975, and

was intended for the structured programming of operating systems.

A Concurrent Pascal! process consists of parameters, private data,
and a sequential program to operate on them. One process cannot access
the private data of another process. However, data may be Shared if
they are defined in a monitor, which is based on the Hoare monitor de-
scribed above. To access a given monitor, a process requires access
rights for that monitor. Access rights are given to a process through

its parameter list when the process is initialized.

Concurrent Pascal monitors contain queue vdriables, which corre-

spond to Hoare's condition variables.. The oporations delay and continue
5 . .

can be performed on queuc variables, .oiresponding to Hoare's wait and
2

signal, respectively.

A class is a system component which acts like a monitor in that it

describes a dazf stiucture and the possible operations on it, but any
C

given instance of a class-can only be called by the process which de-
clared 1it. Several processes can declare (local) instances of the same

class. Classes scive mainly as a progrdam structuring aid.

Modula [WIRT 77) 15 another concurrent langnage intended for oper-

~ »

ating system design. Like Congurreunt Pascal, Modula is derived from

(sequential) Pascal. Added are fcatures for modular design, multipro-

gramming and device operation. But unlike Cuucurrent Pascal, Modula is
intended primarily for progiamning dedicated computer systems. The de-

signer of Modula, Niklaus Wirth,‘hopcd Lo reduce the amount of a;sembly

.

A
Y

An Overview of Concurrent Programming Languages 11
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- the process ceases to exist.-
| . <

- language programming required to implement applicatfbns such as process
control systems and input/output device drivers:
"Assembly code is still used virtually exclusively in those

applications whose predominant purpose i{s not to design a new sys-
tem based on abstract specifications, but to operate an existing

machine with all its particular devices.... A major aim of the
research in Modula {s to conquer that stronghold of assembly cod-
ing, or at least to attack it vigorously." [WIRT 77] .

9

o

Modula attacks the problem by providing facilities for multipro-

gramming as well as facilities for operation of a computer's peripheral

——

devices. To effect the latter, Modgla allows the programmer access to
the ;omputer's device registers and interrupt facility, but encapsulates
such machine-dependent items in ébnstructs called modules.‘ whiéh are
similar to Concurrent™ ‘Pascal classes in that they aliow only very re-
stricted operations on their priva£e data and are only callable from
their defining process. (A type of module for concurrent programming
will be discussed later 1; this section.) Modules are actually geheral
purpose constrbicts, by no means restricted to localizing devigé-

dependent operations. They are of central ‘importance to Modula, and

have lent the language their name (MODUlar programming LAnguage).
\

A Modula process looks like a procedure, except that it is executed
concurrently with the program which initiated it. Processes can only be

created by the ﬁain program. When control ‘reaches the end of a process,

Synchronization is achieved by the use of signals, which correspond-
to Hoare's conditions and Brinch Hansen's queues. Signals can be sent,

and\processes can wait for signals.

.
]
<

An Overview of Concurrent Programming Languages 12
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Processes cooperate via common variables. In Modula, the critical

sections of a program are contained in interface modules, corresponding
. # “

to Hoare's monitors. o

~

Other similar languages have been proposed as well.

Concurrent Euclid [CORD 81, HOLT 83]), designed by Jaﬁ;s Cordy and
Richard Holt, is a language suited for implementing operating systems,
compilers and specialized microprocessor applications. In [CORD 81},
the authors state that Concurrent TEuclid can serve as the basis for
implementing software whicﬂ is formally verifiable. This is because it
is based on the programming ianguagc Euclid [LAMP 77}, which was de-

'signed in 1976 as a language for developing verifiable software. It is
based on Pascal, but several alterations wero’mude to make programs more
easily verifiable. For example, Euclid functions are prevented (by the
compiler) from having side effects, As well, Euclid allows the program-

mer to insert assertions to aid in verification.

a
A subset of Euclid was extended with concurrent features based on

monitors to give Concurrent Euclid.

The Edison programming language [BhIN 8la}, designed by Per Brinch

‘ 3
Hansen in 1980, is yet another language interded to perform the same

sorts of tasks as the other languages discussed in this section, but th§
design philosophy is different [BRIN B81b). Edison is a small language,

derived from Pascal and Concurrent Pascal, which contains very few con-

structs.

In Edison, several concurrent processes can appear and disappear

dynamically, as long as they appear and disappear at the same time. This

An Overview of Concurrent Programming Languages . 13
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is performed using a cobegin statément:(similar to Dijkstfa's parbegin
[DIJK 68])‘which, along with modules (gimilar to Modula mod;les and i;
shared version of concurrent Pascal classes [BRIN 73]) and a when state-
ment .(a simple form of Hoare's ;onditional critical region (HOAR 721),

’

make up Edison's set of concurrent constructs.

/

Edison does not contain explicit monitors, but one can be coded as

a module in which the procedure bodies contain single when statements.

Monitors in Edison are the product of programmers style and discipline,

not of= language semantics enforced by the compiler. In [BRIN-81b],

~—

Brinch Hansen discusses his design decisions:

- .
"The result is a more flexible langdage based on fewer con®
cepts in which one can achieve the same securiity as in Concurrent
'Pascal by adopt1ng a programming style that corresponds to the
processes and monxtors of Concurrent Pascal. Or one can use the

language to express entirely different concepts. On the ‘other
hand, it is also possible: to break the structuring rules and write
meaninglegs programs with a very erratic behaviour. I 'have

adopted this more general and less secure approach to programming

to -learn from it. It is still too early to make f1rm conclusxons
about the consequences of such a compromise.'’ ~
~

r'd

{

-

” B ) @
The principles of thesec languages are simildr, as they are intended

for roughly the same type of programming. Operating systems, whether
- n . ’

general purpose or for process contrg}, are very complex, and special

languages and constructs which mirror the structure of operating systems

greatly simpliﬂ& their design and implementation. Operating system pro-

cesses can be mapped ontér;;ocesé constructs in the language. Shared

. resources such as abstractions of peripheral drivers or file systems can

be _coded in monitors or interface modules. Concrete machine dependent

representations of these abstractions can be coded into classes' or de-

vice mo@ules, where all implementation details not required by the pro-

An Overview of Cbncurren; Programming Languages . 14
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cesses are hidden anq protected, and only the names of "the operations . -

2
appear. . e, .
z;_,,
2.2.2 “Synchronous Procedure Call Languages A
a Ry

"

In the synchronous version of the procedure call model, processes

. % i .
communicate directly with one anotherfJéThey do’'not require the ,intgr-
l -

position of a passive "middleman process' of the monitor variety.

/ 2
When an interprocesé’protedure call is made, the calling process {

suspended until the called process is ready to accept the call. Of

course, ifJthe called process was already waiting for a call, the call

¢

will "cohnect" without delay. The calling process is then further de-

layed until the call completes.

Y

The mechanisms for accepting procedure. calls 'by a process vary
among languages, but all must deal with the unpredictability of the orZ
der of external events. The ramifications in active précesses are

[} X b .
different than in passive processes. When a quiescent monitor process

. “w

is ready to receive a~call (that is, none of its procedures are active},
N \ - N . - -
it can accept a call to any of its procedures. Some service will be

o

performed for tﬁé calling process: and the monitor will return to its

’

quiescent state. Selection among waiting processes is purely a schedul- 7 -
ing decision, the queuing discipline being determined at theg&:ime of
imglemeﬂ%ation'bf the mgpitor: It is entirely beyond the control of the

programmer using the monitor.

°

¥ .

The situation in active processes, in which a program is generally

o

running, is different. Some control must be exercised by the programmer
An Overvtév of Concurrent Programingkl.angluages - 15
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over which procedures can be called af\di.gierent stages of the algo-

rithm.

Most synchronous procedure call. languages use some variation of

Di jkstra's guarded commands [DIJK 75] as the basis for controlling non-
determinacy in a process' environment. A sequence of guardeqd commands
J fo- y '

is called a guarded comimand set. A guarded command set can appear in
either an alternative construct or a repetitive constnﬁct. ]
? g

.
A guarded command is composed of a guard and a guarded list. A

guard is Boolean expression and a guarded list is a sequence of state-
N .

ments associated with a guard. A guarded list is eligible for execution

Tt . ; . 1
whenever its guard is true. >

When a guarded command set appears in an alternative construct, one

. of the guarded lists with a true guard will be selected for executjon in

» L4

. 3 ¥
* a nondeterministic way. If none of the guards are true, the program

aborts.

b ﬂ y

s
When a guarded command set appears in a repetitive copstruct,
: .

guarded lists with true guards will be selected onc at a time in an un-

predictable order as long[as at least one of the guards is true. Guards

are reevaluated between each execution of a guarded list. When a repet-
- - *

itive construck terminates, it is known that all of the guards are
+
i o . . P ‘
false. . .
y o ¥

.o . \

— !
/ Y

Guarded commands themselves are not concurrent constructs, -but they
"are well-suited for expressing and, to some extent, controlling the

nondeterministic nature of parallel processing. Eé?h guarded list can
[o4

- * be coded to correspond to a procedure which mayqbe called from another
3 .

- AN
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process. The guards ensure that no procedasé can be called unless the L

process is in an internal state, suitable fof the procedure's execufion.

The “potential for guarded commands ,to lead to formal derivation of
programs through the dev,elopment of a mathematically rigorous calculus
.as introduced in [DIJK 75) is not’" exploited in synchronous procedure

‘o ’ :
call languages. Synchronous message passing languages rely much more

heavily on guarded commands and therefore can be-subject, to rigorous ’

° mathematical examination. This will be discussed "inlthe néxt section. G\
-
. —s -

The programming language Ada [ADA 81) was designed by &4 team led by
Jean Ichbiah in response to an initiative by the U.S. Department of De-
fense. Ada is’'a block-structured language intended for large real-time

applications, with facilities for modular and, concurrent programming.

Ada subroutines r)‘e modules in which algorithms are defined. They °
\ 4

_can be separately comp{led. )

Types in Ada impose modularity on data

structures. Packages are modules which specify collections of preogram

?
and data resources. A task is a program unit very similar to a package,

s

except that a task can run concurrently with other tasks. Tasks are the

concurrent processes of Ada. s

v .
A task can contain entries. Externally, entries look like proce-
dures, possibly with parameters. Other tasks can call entries by means
of entry call statemernts. Within a task, the actions to be performed by

one of its entries are specified in dn accept statement. The actions

are only executed when the called task is prepared-to accept the entry

call, i.e., reaches an accept statement. The accepx.a}ce of an antry

[

s

k2]
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put.ln,g%ys tems. ) Tl
. A} ] } -

call is called a rendezvous. ' The ¢alling task is suspended until the
entry call is completed.

.

As well as providing a mechanism for synchronization and exchange

of data through entry parameters, the rendezvous provides mutual exclu-
. - t

sfon, since, if two or more tasks call the same entry, only one call can

-

-
i

be accepted at a time.

The select statement is a construct containing several accept

statements. It allows a task to accept a call to any one of* several en-
‘ N Y . <

tries. | The aécep}s-may each be associated with guards. A guard is a

Boolean expression which must be true for its accept to be selected. The

B

'select‘statedont with guards 66rresponds to Dijkstra's alternative con-

. struct. oy v

nx

v

. ) ‘ .
A task will be suspended if {t éncounters an accept with an entry

‘" which has not been calle&. or 4 select 'with: no entries (having true

|

. .
" guards, if anyi‘ which have been talled. A select with one of its en-

trias exiled (or one entry with a true gdgrd called) will not be sus-

-

pended, the corresponding” accept being immediately executed. If more

- thgn one en§;y (with true guards) in a select has been called, only one

“
of the _entries will be accepted, the choice being determined arbi-

trarily. : .
\

L)
{

‘« The concept of Distributed Processes [BRIN 58] was presented by
. ¢

Brinch Hansen as a basis for real time programming of distributed com-

N\

o~ g .
Distributed Processes are able to ﬁ%act ~to nondeterministic re-

_ quests from -an envirqg;ont in which several things way be happening

§
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simultaneously. Programs consist of a fixed number of concurrent pro-

-

cesses which are started simultaneously and live for the duration of the
application. “Any process can ohly access its own data. Erbcqsses

' L

communicate solely by calling procedures in other processes? A process

dccepts a procedure call only when it is suspended whilé waiting for

»
<

some condition to become true. .

s

* Nondeserminacy is controlled by two kinds of statements: the
o “
R ANDN
guarded tommand and the 3uard§d.region.

v

A guarded command in Distributed Processes has the same meaﬁing as
Dijkstra's guarded commands [DIJK 75]. There exists both the alter-

native form and the repetitive form.

. ~ F , .
-8ynchrounization of processes is handled by means of
nondeterministic guarded regions [BKIN 78a, HOAR 72] Guarded regions

are similar to gdardcd statements, except that guarded regions will de?.
’ ,‘ N . A ! ¥
lay the process in which they occur, as long as all its guards are false.

The alternative gudrded region will wait untii one of the guards is true

-

and execute the corresponding statements. The repetitive guarded region
(49

P
o

is an endless repetition of an alternative guarded region.
£
N

If several guards in a gudrded command or region dre true, one of

them will be ;¥lected in an unpredictable manner.

4

2.3 ' THE MESSAGE TRANSFER MODEL L%

The\, pfocedure call model is appropriéte for applications in which

process jinteractions are bidirectional, where each communication re-

©
o
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initiated by the destination process.

quires a response. In cases where communication tends to be

»

unidirectional, such as in a producer-consumer ‘framework in which

-

explicit acknowledgements are not required, the message transfer model

is called for. ‘

-

In the message transfer model, processes communicate by sending and

receiving meésgges. A mesgage is simply information which is output by

one process and input by one or more other processes. Messages travel-

' The actual transferring of a message

over logical or abstract "links.'
is generally not performed by the sending or rgceiving procesées, but by
some transparent serving process, such as message handling software in
an operating system. To send or receivé a meséage, a proc;ss simply
places the message on or accepts the message from its repregsentation of

the interprocess link.

.

In the asynchronous version of the message transfer model, a pro-
<

cess does not undergo any noticeabhe suspension in sending a message.
(A process may be interrupted as the message handling software takes
control of the message, but this traqséarent delay is not a language is-
sue.) The message As sent, regardle§$ of whether the destination pro-
cess is ready to receive it., This implies that automatic. buffering of
messages. must be provided by the runtime environment. The destination
" . &

process can accept the message any t}be after it was sent.

i

The. synchronous version of the model requires that the send oper-
ation ‘and receive operation be completed simultaneously. The send oper-

ation will be suspended until a' corresponding receive operation is

Cils”

-

‘
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In both the synchronous and asynchrohous versions, -a receive oper-

ation clearly must be suspended if there is no message ready to be re-

ceivéd, but in neither version of the message transfer model is the

sending process required to wait for the receiving Rrocess to issue a

.

response after processing the message. The sending process is free to

)

continue running as soon as the message is sent. This is the main

" semantic difference between the message transfer model and the procedure

*

call model.

o ¥ .

2.3.1 Synchronous Message Transfer Languages

o

In the article Communicating Sequential Processes (CSP) [(HOAR 78],

4

C. A. R. Hoare proposes a language for distributed computing. . In CSP,

~

input amd output are treated as basic primitives of programming.

A CSP program consists of a fixed number of concurrently running
processes with disjoint address spaces. This anticipates implementation t
on a moderately coupled network [FATH 83] of microcomputers. Archi-

tectural issues will be discussed in the next Chapter.

Communication and synchronization in CéP are accomplished through
the.input and output>opcrations.' For two processes to communicate, each
must name the other, one in an input statement and one in an output
statement. When this occurs, data is copied from the gﬁtputting (send-
ing) process to the inputting (recgiving) process. There is no bﬁff—

N
ering of messages. I/0 to a physical device appears the same as

1

interprocess communications, as devices are considered to be processes

implemented in hardware rather than software. The value of the ex-

LRI .
Sk
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pression sent in an output operation must correspond in type to the

variable in the matching input statement,

t

Sequential control and nondeterminacy in CSP are expressed entirely

through Di jkstra's guarded commands, with minor ch nges in syntax. Input

commands are permitted in guards. They are compleied before the guarded
list is executed. Extensions to CSP allowing outpGt commands in guards

have been proposed [HOAR 78, SILB 79]. .

Concurrent processes are created using a variation of Dijkstra's
parbegin‘iDIJK 68]. All processes are created simultaneously, and the
program generating the processes js suspended until all the processes
finish. The concurrent processes cannot access variables belonging to

any otlier process

As defined in [HOAR 78], CSP is not suitable for use as a program-
ming language. The article presents only a partidl solution ‘to the
communication and synchronization broblems, concentrating on semantic
issues énq ignoring any implementation details, as well as keeping the

notation extremely tersec.

In fact, while the terseness of the language does not ighibit the
) : 2
‘expressive power of CSP, it anticipates rigorous mathematxgéi anglysis.
Hoare states ' that the most serious problem ignored in the article is
that of a proof method to assist in the development and verification of

correct programs.

The proof issue is dealt with in "A Calculus of Communicating Sys-
.tems' [MILN 80f; in which Robin Milner presents a notation for describ-

ing communicating systems in a mathematically precise way. The calculus

" -
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is called CCS. CCS is not a programmiﬂg language, but one can be de-
rived from it. :Hilner states that CSP is similar to CCS, _tr;;slations
of algorithms from one to another being rather straightforward, and
hopes that a sémantids and proof theory for CSP can be developed from

v

CCs.

Languages such as Euclid (and concurrent Euclid) that contain as-
sertions supply redundant information to the compiler to allow partial
verification of programs, but Euclid is much too large a langua&g;to
permit complete mathematical treatment. CSP is small enough and close
enough to a ﬁathematical formulation to permit manual derivation of cér-
rect programs. Pure!y algorithmic derivation and verification of’

concurrent programs is still an ope&_topic in research,

v

2.3.2 Asynchronous Message Transfer Languages
* »
The distinguishing feature in asynchronous message transfer lan-

guages is the so-called "no-wait send". A process is free to send mes-

sages af/;;; time, regardless of whether the receiver is ready to

\{fceiVe. After sending, the sender is free to continue executing.

&
-

Message buffering must be Provided by message handling software ex~
ternal to ‘the processes. The message handling software may or may not
éuarantee anypping about the order in which messages are received {ela—
tive to the order in which they were sent. If a language has such a

. «

requirement, the message handling software must fulfill it.

The versatility of asynchronous message communication is indicated

by the diversity of concurrent languages which use it. Examples are the

An Overview of Concurrent Programming Languages o 23
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PLITS system [FELD 79}, which is intepded for distributed applications

with low density communication on a moderately coupled network, and .

Platon [STAU 76], a multiprogramming language for communications appli-
cations. The paper "Cémmunication Schemes" [JOSE 81] by Mathai Joseph
demonstrates how procedure call communication can be simulated with

asynchronous message passing.

o

The PLITS system [FELD 79] was developed at the University of
Rochester. PLITS .is not a programming language, but a set of concepts
which can be used to extend a sequential language. It combines modules,

messages and assertions to provide a framework for concurrent program-

ming.

In PLITS, processes are ‘called modules. A module is a self-
contained sequential program unit which runs in parallel with other mod-

ules. There is no common address space among modules.

Modules coﬁmunicate with each other solely via messaées. A message
is ; set of (nafe, value) pairs called slots. S1ot names are declared
iﬁ public declarations. To send a message, a module must name the
appropriate public slot in the éestinatibn module. The value portion of

a slot is an element of some primitive domain (such as integers) whose

representation 1is generally understood._ AssertionQ‘give additional

"* information to the compiler to aid in program verification. They are

beyond the scope of this thesis.

- In PLITS, each module has its oﬁn buffer'space, Ellocatgd and main-

- _ "tained by the operating system, to hold messages sent to, but‘npt yet

U
L]

2,
. . R
\
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requested by, the module. The programmer is not concerned with uhow or

where 3 message is stored after it is sent.

The language Platon [STAU 76] is dn asynchronous message passing
language with quite a different philosophy from that of PLITS. Devéloped
at the University of Aarhus, Deggg;&?’by Staunstrup and Sorensen, Platon
is derived from Pascal by introducing processes, shared variables and
queue semaphores. Platon is primarily a m&ltiprogramming language for
the programming of devices such as terminal concentrators and controller

simulators.
o,

Platon processes can be declared and invoked in a nested fashion
just like Pascal procedures. A given process can be invoked several
times, each invocation runnf;g concurrently. A parent process can pass

parameters to child processes.

'

In typical Platon applications, it is generally necessary for pro-
cesses to exchange large amounts of data. Platon uses shared variables
as the medium for‘interprocess communication. A shared variable can
only be accessed by one process at a time. Access to shared variab}ep

is controlled by variables of types reference and semaphore.

&

The value of a variable of type reference is either a reference to
a shared variable or nil. No shared variable éan\ have more than one

reference variable referring to it at any given time.
L)

Processes exchange access to shared variables by means of variables
of type semaphore, which are implemented as queued semaphores [LAUE®IS],
combining the synchronizing effect of Dijkstra's binary semaphores

[DIJK 68) with the 1xchange of data. Queued seméphores can be con-
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iidergg to be mailboxes of unbounded capacity through which all inter-
process communication must take place. Shared variables act as the
envelopes in wliich messages are transmitted. Two standard operations,

-wait and signal, are used to exchange access to shared variables.

Another asynchronous message 'pHssing language is presented in

Y -
"Communication Schemes" ([JOSE 81) by Mathai Joseph. One of the main

goals of the language is to supbort different schemes of communication

as required by the application or the hardware without modification of

the language.

The unit of concurrency is the module,. Concurrently running mod-~

ules can communicate with each other via ports. A message is sent

through an oport and is received at the iports of one or more other
# J

modules. Each port declaration carries information on the data type of

-

the message which can be sent through it, as well as a control rule for
that port. When sending a message, the cantrol rule for the oport
determines whether the sender must wait for a response from the receiver

or not. The control rule for an iport tells the receiver of a message

whether or not a return message must be sent and whether the sender is

O

suspended waiting for it.

A connect statement is provi#ed to specify how oports of one module
are to be‘congected with iports of other modules. Connected iports and
oports must have c;mpatible control.rules. For example, an oport which
suspends the sender until a resqfhding message is recelved must be con-
necteé to an iport whose control rule compelsayhe recefver to send a re-

sponse.
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The automatic response control rule is equivalent to a procedure
1 :'5 - .

call protocol. Thus this language can be used conveniently when either

.o« ,

or both K the message transfer or procedure call "communication schemes"

w

are required by an application. b

2.4 THE PROCESS CALL MODEL 7

: 2
. .

st

Some languages; while suppob&ing concurrency, do not support inter-
! 1
process communication in the manner of either procedure call languages

or message transfer languages. ‘A new model, the Process Call Model, is

P

proposed.

A striking feature of process call languages is their similarity to ‘P\§§§
sequential block sttuctured languages. Whereas many languages discussed ’
in the previous sections were derived from Paséal, very‘*’ew bore more
than a passing resemblance td®it, due to the addition of numerous ma jor
syntactic entities, such as modules, monitors, semaphores, etc. There -
are veé& few new syntactic constructgztequired to specify céncurrgpcy in

| . o A

‘ _ ‘. '
process ,pall languages. This is-because of the unification of the con-

cepts of process and procedure.

The language Pascal-C [LAM 82) was developed at Concordia Univer- ‘ - A
sity for solving combinatoric problems, where iree—structured searches

.

requiring vast amounts of computation are common.

<

¢

Pascal-C is derived from, and closely resembles, sequential Pascal.
The unit of concurrency is the down procedure. It looks like a sequen-
tial procedure, ~:axcept that {ts declaration 'is preceded by the word

"down." (A down procedh(? is so named because, in 'typical Pascal-C

An Overview ¢f Concurrent Programming Languages ’ 27



nppjlications‘, calling a down procedure is essentially Al’ike descending
one “level in a tree-structured algorithm.) However, when calle.d, a down
procedur;a runs in parallel thh its master (the process which called
it), and is ref_erred to as a slave process. A master g:an have any num-
ber of slaves, running the same or different down pr;ncedures. As well,.
‘any slave process can be a master to its own slaves. Slaves can receive
call-by-value or call-by-reference parar;xeters when invoked. Once run-

ning, a slave process cannot receive any more data from its master.

L’

A set of slaves with a common master &ll rur'miné identical code is
ca‘lled a process class. A master can execute two types of statements on
a process class. The wait statement suspends the master until all slave
processes of a given process class are terminated. The terminate state-

[

ment terminates all slave processes of the given class. This 1is the

. only way in which a master can affect a running slave in Pascal-C.

- {

Return communication, from the slave to the master, can be accom-
plished in t:wo ways:
o
%. while running, a slave can call a critical procedure in its master,
or ;
2. upori(r'}'eaching normal termination, the slave updates the actual

parameters of its master with its call-by-reference parameters.

\

Updating can only occur when the master is executing a wait on the

slave's process class.

A critical procedure can be called either by the process in which

it is defined or hy one of its slaves. Once invoked, it cannot be
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interrupted. Critical procedures provide a way for slaves to invoke an®
action in their master. ’ .
Communication in Pascal-C has the form 'of procedure call commu-)
x
nication, but functions like message transfer gommunication in that
communicatdons tend to be one way, not requiring an immediate response.

The "no-wait’ call" of a down procedure gives a high potential for

N
concurrency without introducing complicated new structures.

- The simplicity of the "no-wait call" was also exploited by Andre
énd Decitre in their spaper, "On Providing Distributed Application
Progrgﬁmers with Control over Synchronization'" {ANDR 78], Their appli-
cation, acéessing i%:;LribuLed data bases, is far, removed from that of
Pascal-C, byt their aim is similar: to provide applications programmers
with access to distributed systems without requiring them to learn un-

L 4 I3

familiar high~level languages.

In their propo%al, Andre and Decitre allow the -programmers to in- -

o

voke remote processes by naming them in a call to a special procedure

«INIT, whose parameters are:

¢ the location in the network of the process to be called;

e the name of the process to be called; '
. a continuation; and
*  any number of call-by-value parameters.

AN

A continuation-is the name of the procedure which should be called

by the remote process to,esume execution on the original Ealling site.
’

-

o

An Overview of Concurrent Programming Languages 29



£l

The remote process uses the INIT procedure to return its regults by in-

voking.the continuation procedure on the 6riginal site.

-

Process call languages are designed to run in %istributed environ-~
ments where the time for intérprocess communication is of minor relaiigé

importance when compared with processing time§\§

.

This surveﬁ presented several concurrent languages, categorized by

e

the model of interbrocess commu%ication used. d-Pascal, discussed in

L3

the following chapters, uses the asynchronous message passing paradigm.
8 )

v

B . \’ -
o N .‘
Q . 7:\a
- & 4
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Chapter 3

DESGRIPTION OF d-PASCAL

.
S
s
/

3 h

d-Pascal is a language for distributed applications programming.

e

It is de}ived:grom sequential Pascal [WIRT 71}, "~ with additional con-

structs to implement communication and synchronization primitives. This

o

Chapter describes the d-Pascal extensions only, and .assumes the' reader

2 “

has knowleldge of standard Pascal. . , ’

- . ’ L}
~

d-Pascal is an asynchronous message passing language. A d-Pascal

application (called a distributed job, or d-job), consists of a set of

program modules which are intended to execute simultaneously-as concur-

rent procéesses. The processes are allocated statically and start-exe-

"

cuting at the outset of the q-job. Each process is assigned a process

ID by the operating s§stem. Processes may refer to each other by their

process IDs. |
¢

d-Pascal assumes that the runtime environment will provide queues

[y

for incoming messages. The environment must queue a message before the
d-Pascal process to which the message was sent can. receive it. The

-

runtime enwironment must keep a log of queued meséages, which is acces-
v X&

sible to d-Pascal primitives. u

. ' ’ :
" « Messages in d-Pascal are sent and received through//iogical .ports

(l-borts), ' Each l-port has a type structure, and all messages are as-

. sumed to have the structure of the l-port through which they‘pass. The

<
structure %f an l-port is ‘the qoncatenatidﬁ of breviously def ined-ab- -
ps . . X h -
\ . w o ; . )
’[' \\\ w7 A " B :
\\>" //“‘ \ L . L 4 3
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1 ’ .
stract data types. . Consequently, a8 message contains the concatenation

o

of data values of appropriate types ih‘thb appropriate sequence.

-

+ It is possible for processes to exchangé data with no processing by

A

the runtime environment:’ the ‘environment simply moves strings of bytes
. . .

from origin to destination, without regard to the structure of the data.

L

‘Hoycve}. a sophi(}icated envirénment could perform two igportan; "Qpnc-
tions with knéuledge of a logical port's structure: type checking and
data traandiién. Type checking is posstble if the environment knows
'ihé structures of'fhe origin and destination yPS's through which a mes-
sa§£ is to travel. If the LPS's are'of.differept structure, the message
transmission violates th,tybe rules, and a runtime error_occurs. Data
translation wouldzge an jmportant function if d-Pascal modules within a

4

d-job are intended to run on machines with different ijinternal data

- ~ ~
representations. For cxample, if a message containing character data is

to ‘be sent !rue 8 computer with the ASCII character set to one with the
EBCDIC character set, the runti;e environment could perform the char-
acter translation. The sender would output characters in ASCII, and the
.reco!vér Qill receive them in EBCDIC. These functions are, howéver, be-~

yond the sgope of the application language.

To send a message (that is, data valﬁes)) the application program
must exocute a SEND statement, specifying the destination of the mes-
sage, ;he l-port; through which the message is to pasg, and a sequence
of expressions which evaluate tq values of the types which make up the
1-port (and the message). To receive a Qessage, the program executes a
. RECEIVE state-ont; speclfy{ng the originating point of the desired mes~-

- /

sage, tﬂ; 1-port tﬁrough which it is to be received, and a 1ist of vari-
' : -~ .

k]
~
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ables, the types of which cprgespbnd to the structure of the 14portj(and

the message). The full description of d-Pasqal ctommunication and

synchronization features follows.

3.1 LPS DECLARATIONS

<LPSDECL> := LPS <LPSDEF> [*; <LPSDEF> } ; | empty
<LPSDEF> ::= <LPS CONST> : <LPSMODE> : <LPSLIST> )
<LPSMODE> ::= IN |-OUT | IN,OUT | OUT,IN | °
<LPSLIST> := ( <ITEMS> ) a
<ITEMS> := empty | <type ID> [ , <type ID> |
<LPS CONST> ::= <pumeric one byte global CONST id or

literal constant> .
Figure 1. BNF definition of LPS declarations !

L

All me$sages must be sent or received through logical ports (1-
ports). The mode and ;tructure of each logical‘p;rt must be specified
in‘the LPS declaration section, which begins with the key word LPS and
follows the TYPE d?glarati?n section in the main block. "LPS" is an

acronym for Logical Port Structure.

Each LPS declaration begins with an integral constant in the range
0..255. This constant, the logical port number (LPN), is the sole means

pf referencing an l-port.

- 7,

The ‘mode of a logical port determines whether the l-port is to be
udéd to send or receive messages. The modes are named OUT and 1IN,

respectively. The structure of a logical port is the concatenation.of

o : . . . L
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-

"

any number of previously defined data typés. The structure of an:;-port
Ao

is declared by simply list{ng the names of the required types in the de-

sired sequence. *

Two l-ports ;ay have the same LPN on1§ if they are of different
modes . If two 1-ports, one IN and one ouT, have the same structure,
they can be declaréd simultaneously, with the mode specified ~was IN,OUT
or OUT,I&. Any number of logical ports may have the same structure. The

syntax of the LPS declaration is given in Figure 1 on page 33.

| AN

- An 1-port is said to be local to a module if it is declared within

that modu]e; otherwise, it is external. All local 1l-ports must be

’ €
uniquely identifiable by their LPN and mode, but LPNs need not be unique

between processes.

3

£
3.2 SYSTEM VARIABLES
K/?

A system variable is a varjable which carries information about a

message which has been queucd by a process' opurating environment, wait-
8 q P P

ing to be received by the process. It is denoted by an ampersand (&)

followed ,by a system variable name. d-Pascal defines two system vari-

ables, &SENDER and &LPORT. They dre set when the MESSAGE function“ is

&

called and returns the value TRUE, or when the WAIT statement termi-
nates. They are of type 0..255. (See "MESSAGE and WAIT" on page 35 for

the descriptions of MESSAGE and WAIT.)
<

P

A system variable can be used anywhere a user-defined variable of
the same type is allowed. System variables are global within a module.

Description of d-Pascal ' 3
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3.3 ' MESSAGE HANDLING CONSTRUCTS

Four extensions are available for handling messages. In various
combinations these low-level constructs can be used to implement a wide

range of high-level communication and synchronization schemes.

Recall that a message is said to be queued if it has been received
ﬁt?y the runtime enviroﬁmcnt but’ not (yet) requested b; the process to
/
which it was sent. d-Pascal processas dssume that the messages are
queued in thé érder in which they were recejved by the cnvironmeﬁt, and,
more significantly, that two messages sent ferth; same origin to the
same destination are Queued by the recciver's environment in the order
in which they were sent, although there may, of course, be inter;ening
B
messages from other sources. After a queued message has been .requested

by a d-Pascal RECEIVE statement (described in "SEND and RECEIVE" on page

37), it is deleted from the -environmént's quene.?
<
A queued message can be identified by two characteristics: the
process ID of its originator and the local l-port through which it was
received. The application programmer make® use of Lhcse’identifying
characteristics when using the message handling constructs described in
this section. 1f wmore ghéhN one message bearing identical charac-

teristics is queued, the first onc queued is the one selected by the

environment.

3.3.1 MESSAGE and WAIT . .

i
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<MESSAGE> -

= MESSAGE ( <ARGLIST> )
<WAIT> = WAIT ( <ARGLIST> )
<ARGLIST> = empty | <LPORT ARG> | <LPORT ARG> , <SENDER ARG> |

<SENDER ARG> | <SENDER ARG> , <LPORT ARG>
LPORT = <expressjon>
SENDER = <expression>

<LPORT ARG>
<SENDER ARG ::

Figure 2. BNF definition of MESSAGE and WAIT

A ) . ¥ R |

-

The MESSAGE construct is a Boolean function which can be called
with zero, one or two'qrguments, and which has side effects gffecting

the system variables. It is used to enquire of the slave 0S about mes-
¢ f

)
¢

~sages that are queued. Two Boolean conditions are associated with the

MESSAGE construct. They are AND'ed together to give the result. Each
condition corresponds to a possible argument to the MESSAGE function.
None, one or both of the arguments may be present in the call, but both

conditions are always evaluated.
-«;'

The possible arguments of the call are the SENDER and LPORT argu-
’ ’

gents.  If the SENDER argument is present, the corresponding condition

can‘be TRUE only if a queued message has been sent by the process whose
process ID is equal to the value of the SENDER argument. If the SENDE§
argument is absent, a queued message from any process will satisfy th;
sender cbnditioq, If the LPORT argument is present, the LPORT condition
can only be satisfied if a queued message was sent to a local l-port
whose LPN is equal to the value of the argument. If the LPORT argum;nt
is absent, a messége received at any lsport will satisfy the condjtion.
If both conditions are met, MESSAGE returns the valué TRUE, and the sys-

tem variables are set to values appropriate to a message which fulfilled
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the MESSAGE conditions: &SENDER is set to the process Iﬁ:gf the sender
of the message, and &LPORT is set to the LPN of the 1-port through which .
the message was received. If either condition is not met, MESSAGE re-

turns FALSE and the system variables remain unchanged. t

For example, consider the Boolean-valued expression:

message( 1port=REQUEST)

~ \

- The LPORT argument is present, the SENDER argument is absent. If, at
the time the above call was made, a message is queued which was received

( S 4
through the l-port whose LPN is equal to the value of REQUEST, irre-

spective of the source of the message (the SENDER argument is absent,
any sender will satisfy the SENDER condition), the vaf;e TRUE is re-
turned and the system variables &SENDER and &LPORT are'set\to the pro-
cess ID of the originator of the messag;, and the LPN of the l-port to
which iﬁe message was sent, respectively. If no message,. received

.through l-port:REQUEST, is queued at the time \f the ’call to MESSAGE,

FALSE is returned and the system variables remain unchanged.

The WAIT consdﬁxﬂ. is very similar to the MESSAGE construct, im
that it bhas the same cbnditions and the same effects on the system vari-
ables as MESSAGE. However, instead of returning the valué of the condi-
tions, WAIT is a statement which.SUSpends execution of the process until

both conditions become TRUE.
y

MESSAGE and WAIT implicitly suppo}t'nondetermfhism, as they permit
messages of unspecified types, or sent by unspecified senders, tq be ac-

cessed.
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3.3.2 SEND and RECEIVE

SEND TO <expression> AT <expression> VIA

<SEND> =
<expression> : ( <SENDLIST> )
<SENPLIST> = empty | <expression> { <BAR> <expression> }
<RECEIVE> = RECEIVE FROM <expression> VIA <expression> :
( <RCVLIST> )
<RCVLIST> := empty | <identifier> { <BAR> <identifier> }
<BAR> = <the vertical bar character>

i

Figure 3. BNF definition of SEND and RECEIVE

€ 4

The SEND statement is used to transfer data between processes. When
\\\ﬁpqgfég data, the application must provide the number of the external
l—por£ (belonging to the dgstination process) to which the data is to be
sent (TO clause), the process ID of the destination process (AT clause)
and the number of the local l-port through which the data is to be sent
(VIA clause). All clauses must be present. The datd to be sent are
given as a list of expressions whose valués are of the types déclared
for the LPS n;med in the, VIA clause. The expressions are sepgrated by

the vertical bar (|) character,
+

The RECEIVE statement is used to acquire data sent by-another pro-
cess. To receive data, the.application program must specify the process
ID of the sender of the message (FROM clause) and the pumbe; of the lo-
cal l-port £o which the message was sent (VIA ¢lause). The latter must
be the number of an prort declared to be of IN mode. A list of viri-
able names 1is given. The variables will be assigned the values con-

tained in the fields of the message. The variables must corrvespond 1in
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number and in type to the list of types g{yen in the LPS declaration of

the l-port through which the data is to be received.

The SEND statement is executed without blocking the sending pro-

e

cess. It is not necessary for the intended receiverH to execute a RE-
CEIVE statement for the 'message to be sent, as the receiver's slave O0S
will queue the message until it is requested. (Note that a totally non-
blocking send may be impqssible to implement, as the receiver's physical

message buffer must be of a finite size: 1{f the buffer is exceeded, ei-

4

ther messages will be lost, or the run time environment will be forced

a

to intervene and suspend the sending process until there is space in the

4

receiver's .buffer.) In contrast, the RECEIVE statement will execute

without delay only if a messiage from the specified sender, sént to the
specified l-port, is already queued, waiting to be requested. Otherwise,

the RECEIVE statement will suspend the process executing it until an

appropriate: message is queued by the runtime environment.

One effect of the non“bldcking SEND is that the sending process has
no, direct way ‘of knowing when its messageiis actually received at its

%
destination. The programmer may implement message acknowledgement ‘ by

deéTarfﬁg an IN l-port sﬁecifically for this purpose, and ihcluding its

LPN in the outgoing message which is to ‘be acknowledged. When the

destination process receives ‘the message, it sends a message back to the

designated l-port of the original sender. Note that this return message

need not contain any data. The following sections of code, belonging to:

N

the sending process, illustrate this concept:

-~
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f - ) 1

lps _
OUTGOING : out : ( ... , byte ); (* l-port for message
, 0 to be %cknowledged *)
ACK s in : O); (* no fields *)
: '
. 2 T
send to EXTLPN at OTHER via OUTGOING : ( ... | ACK );

Tw

receive from OTHER via ACK :-(); ,

where:

BXfPLN is the LPN of the external l;portxto which -the message is be-
ing sent;

OTHERA is the process ID of theﬂreceiving process;

OUTGOING is the LPN of a local OUT l-port;

ACK is the LPN of a local iN l-qut; and
is the list of expressions containing the data in the message

v

which is to be sent and acknowlsdged.

'

Note that it is possible for an I-port to not have any fields. The

reception of a message through such an l-port ismgignificant even though

the message does not contain any data.
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Chapter 4

-

AN IMPLEMENTATION OF d-PASCAL

. | <

4.1 WORKING ENVIRONMENT

4

d-Pascal . has been implemented on 'Cuenet [GROS 82, RADH 85], a

loosely-coupled network of microcomputers. Cuenet is described in de-

tail in "Appendix A.:The Cuenet Facility for Distributed Computing' om
page 76. This section introduces Cuenet as a :site for the imple-
.

mentation of d-Pascal.’ <

Cuenet is inteﬁded for research in general distributed programming
applications. One of the computers on the network is specially desig-

nated to be fﬁﬁimé&ter processor; the remainder are slave processors.

The function of the master is to act as the interface between the

K

user and Cuenet's computing resources.- The master handles all user re-
quests, such as the creation, editing, storing and cataloguing of files,

compiling, loading, linking and running of programs, and the reporting

of statistics on the user's jobs. The master may invoke slaves to carry
out the actions. The master is also responsible for allocating sSlaves

aQ
to the user for running distributed jobs (d-jobs).

A typical d-job consists of several modules. Each module is a com-

plete, independently compiled (or assembled) executable program. The

running of a d-job is the simultaneous running of each of "its component

modules. Concurrently running modules (processes) are. able to commu-

nicate with each other%Py exchanging messages. A message, on Cuenet is a

\
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sequence of bytes. The first few byteS make up the header, and the re-
maining bytes comprise the text of the message. The header contains
information such as the source an& destination of the message, sequenc-
ing )information, and possibly other details. The precise physical de-
shriplion of a Cuenet messagé is given in° "Appepdix A. The' Cuenet
Facility for Distributed Computing". It is not of great importance to

the applications programmer, as d-Rascal contains high-level constructs

which: provide the runtime environment with the information required to

/ - .
construct and send, or recé}ui and interpret, a Cuenet message.

The main function of a Cuenet slave computer is to be a processing
site for a module. Each slave has a& operating system called a slave
operating system (S0S), which is generally a standard opérating system
extended for wuse with Cuenet. Each SOS has the capacity to send mes-
sages to other SOS's, to receive messages from other SOS's, and to queue
messages until they are requested by an application process. All mes-
sages are generated by the d-job. SOS'; do not generate messages, they
simply‘effect their transmission and reception. In fact, the slave
operating system on Cuenet performs mos£ of the functions required of
the‘ryntime environment, which are functions of layers 5 and 6 of the
1S0/0S1 Reference Model.

&
4.2 IMPLEMENTATION OF D-PASCAL FEATURES

A preprocessor has been written which translates d-Pascal into
P-6800 Pascal [GIBB 81}, a dialect very .similar to ‘standard" Pascal

[JENS 74). - The preprocessor is written in P-6800 Pascal, and runs on

-
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the Motorola 6809 microcomputer. Non-standard P-6800 features used by

the preprocessor will be described in this Chapter.

v
’

. The input to the d-Pascal preprocessor is a_d-Pascal program; the

-

output is P-6800 Pascal program. The former will be referred to as the
preprocessor source, while the latter will be referred to as the com—~
piler source. Any statement in the preprocessor source which does not
contain any d-Pascal extensions will be output to the compiler source
unchanged. d-Pascal extensions will be translated to P-6800 Pasc.al
equivalents betore being output to the compiler source. .This Chapter .
describes these translations, and the way in which the resulting Pasdal
ptogram int.erja\ct.s with its environment to implement t.held~Pascal fpa-

tures.

-

4.2.1 Constant and Type Information

The preprac;:ssor maintains a symbol table of all the identifiers
derc‘laret.;l in the CONST and TYPE declaration sections of the main progr;:\m.
For each CONST declaration, tf\e value ol thelconstant and the number of
bytes required to store it are recorded. For each TYPE declaration, the

o

number of bytes required to store a value of the declared type is deter-

mined and recorded. For example, given the declarations:

const :
A = 1.5; . 5 \
-~ type . o i )

V = arrayl[l..40] of byte; b 2

R = record A B ) e
F1,F2 : real;
F3 ")

end; ‘

\‘;\
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the symbol table for a P-6800 preprocessor would contain ,the following

#ntries:

(4 \\ (
A. ... .. §5 . .constant ) “ .
BYTE .. .. I . . type .
R. ... ..5 ., type ‘
REAL . . .. 35 . . type
V. ... .. . . type

' \ '

- (The type BYTE is predeclared in P-—6800‘ Pa‘.:cal as 0..255. A REAL value

: &
requires five bytes of st‘.orage.) Other predeclared type and constant

ident i fiers (ALFA, CHAR, TRUE, etc.) wgll also appear in the table. Noten

that record field identifiers are not included, as they do not represent
~ -

o

a data type.

4

The number of bytes of data raepresented by each type is important
because the preprocessor must be able to determine the size of each 1-

port declared in the preprocesdsor source program.

‘4

'4,2.2 LPS Declarations l ‘ Y

An l-port may be considered to be a window thrbugh which messages

of a8 particular structurc pass in order to reach other modules. However,

"‘d-Pascal does not de‘scnbe the nature, of the intermodule- medtum. In the

Cuenet environment, as the Slave Operating System effects the transfer

-~

of messages, there must be a mechanism to.;@ransfer the message data, as

well as associated data such as addressing. information, t.o\the S0S.

e

The current implementation of d-Pascal require# two pieces of ob-

ject code which must be p;rt. of the S05's message handling software: one

N ‘

N\
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loaded when the compiled modules will eventuafly be run.

i/ ;
for executing SEND's, and one for executing RECEIVE's. This Chapter re-
/ -, ‘ :
fers to them as SOS SEND and“sgs RECEIVE, respectfvely. The d-Pascal

preprocessor must know the a&dres.;.\es\gy which these programs will be'

¢
n

o ‘ . ¢ "

The preprocessor t.ranslatzs each LPS declaration into.an EX;I'ERNAL
procedure declaration in the compiler source file,' but the external ad-
dresses for all procedures co{rresponding to IN l-ports are the same (L}xa'
add\ress of SOS_RECEIVEi; and the addresses fp} .procedukres corresponding
to OUT l-ports are i the address of SOS_SEND. IN,OUT (and OUT,IN) LPS
declarations generate two procedure declarqtigns, one for the IN l-port,

and one for the OUT l-port. As will be described in "SEND and RECEIVE"

on page 51, the d-Pascal SEND and RECEIVE statements are translated-into

* calls to the appropriate procedure heading. Thus, the traqslation of ,

say, .a SEND statement, which 1s a viocedure call, causes the arguments
of the call to be placed on ’the Pascal"run time stack using the f,amilia::
Pascal parameter passing methods, and control is then p;;ssed to
SOS_SEND, which is able to read data from the same program stack, thus
accessing all the data required to effect the SEND operation.

P

The procedure names used in the external declarations are, con-

LY

structed from the LPN and the mode of the l-port. Figure 4 on page 46

illustrates an example of LPS translation.

! pP-6B00 Pascal allows separate ceompilation of routines. . External

\:-gcedures must be. declared EXTERNAL by the calling program, and

a

their load address must appear in the declaration.-

o
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[ ]
|
| - 1ps
{ $ : out : (byte);
: 6 ; in : (integer, real);
| ,
The above LPS declarations will be translated to the | .

following procedure declarations:

4’

| ,
| . - procedure 222205(ZZZRPI, ZZZRLP, 2ZZNUM : byte;
. Z1Z) : byie);
external S$XXXX;
procedure 222216(222SPI, ZZZRLP, ZZZNUM : byte; ., ‘ N
. var 2221 : integer; var 2222 : real;’ )
1 . 22ZA, 27ZB : byte); . |
_external SYYYY; : .

Figurm 4. The tronslation of LPS declarati.ons: The strings $XXXX
, and SYYYY represent the addresses of SOS_SEND and
g SOS RECEIVE, respectively. ® .

’ R -
L

d 3
4.2.2.1 'lmplementation of an OUT l-port

v

‘The code addressed by a declaration such as that for 222205 in Fig-
ure 4 is the SOS assembly language program referred to as SO@END. When

fnvoked, SOS_SEND has access to the P-6800 run time stack, as P-6800

-«

Pascal stores the stacli pointer at a known address. The data on the

stack vill be as diagrammed in Figure 5 on page 47, showing the follow-

~

ing parameters:

&

2

ZZIRP1  the process ID of the destination process, used by the S0S to

i
.
AN

address the physical message.

)
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ZZZRPI'| - the ‘prdcess ID of the destination process
.| 2ZZ2RLP | - the external LPN to which the message is sent
| 22ZNUM | - the number of data bytes in the message A SN
2221 - the values of the n items being sent -
. a ¢ , .“ :,. ° y \
-9 | ‘
22Zn ) .
| F—-
| Figure 5. The run time'stack duting a SEND ‘ :
L ~ !
« ™ -
ZZZRLP the number of the external logical port to which the message is
being sent. The receiving SOS includes this information in its
log of received messages. K »
' ' - - . ' ‘
22ZINUM the number ol data bytes in the application message. The pre-

L] * a

processor is able to calculate this number from the types named
in the LPS decllaration, and the Pascal compiler can ensure its

correctness through strong type checking, as discussed in

-’ “ .

. "Programming In d-Pascal” on page 53.

. / ' .
ZZ221...222Zn the values of the data items constituting the application

ﬁessage. The types of the 2ZZi parameters in the procedure
declaration are the same, in sequence and number, as the types

listed in the LPS declaration.

t

{

j ‘ .
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" % \hen called, the program SOS_SEND creates the text of the message
by simply copying ZZZNUM bytes from the program stack to the output mes-
.sage area. '

o

4.2.2.2 Implementation of an IN l-port

Al

t
, 222SP1 | - the process 1D of the sending process
| I ’ ’ ©
rA$ ZZZRLP | - the local LPN to which the message was sent
——of
2ZZINUM | - the number of fields in the receiving l-port
2221} | - the addresses of the Variables to which the
. | received data fields are to be assigned
I 7| - '
| |
| | 22z2n |}
. - | 2220 | - the lengths (in bytes) of the types of the
|| R | fields in the receiving l-port .
|| |
I |
| Z22x | .
g
Figure 6. The run“time stack during a RECEIVE |
o

'
v

When SOS_RECEIVE is called, the program stack should be configured

as shown in Figure 6, containing the followiné values:

3 -

ZZZSPI  the process ID of the process which originated the message.

s

S

An Implementation of d-Pascal ) ! 48

C3 R N - " N

E“g‘;
P,
i

s 1
~



*

ZZZRLP . the LPN of the local IN l-port to which the message was sent.

o

2ZZNUM  the number of fields in the receiving l-port (not the number of

bytes, as in SOS_SEND).

2221...222n the addresses of the /variabfes to which data received

through the fields of the l-port are to be assigned. Note in

. Figure 4 that theée variables arc call-by-reference.

»> »
4
-

. ZZ2ZA...22Zx  the lengths of the values which are received through the

\

l-port, in bytes.

SOS_RECEIVE loops ZZZINUM times, copying ZZZA bytes from the ‘data
portion of the message to memory starting at address 4221, ZZZB bytes to

memory starting at address 2222, etc. )

2

4.2.3 System Variables

In the present system, system varlablgs‘a;e) implemented as vari-
ables declared in the main ‘b}ock of the compiler source with P-6800
Pascal's $A=..,. compiler 'optiou ({GIBB 81}, p. 3-3).2? When setting &
system variable, the slave operating system need only set the appro-

priate memory location (when MESSAGE returns TRUE).

i

N A
°
| s
’

®  The $A=... oplion forces variables to be stored at a fixed, 'static

address specified\in the source code.

An Implementation of d-Pascal ) . 49

b N | | B



P

te The system variables &SENDER and &LPORT are named 22225 and 2ZZIL,

, respectively, in the compiler input file.

=

4.2.4 Message Handling Constructs ~
" The MESSAGE predicate is translated into a function call, the WAIT
statement into a REPEAT loop, and SEND and RECEIVE are translated into

,proéedurc calls. The significance of the arguments are given in this

LN

section.

4.2.4.1 MESSAGE and WAIT

* - »

After: the -translations of the LPS declarations' into procedure -
headings, the preprocessor gencrates a declaration for an external func-

tion named 2ZZZM.  2ZZZM accepts two BYTE arguments, and returns a

0

Boolean result.

>

The . translation of the MESSAGE construct is a call to the function

-~

2Z2ZM. The first argument of the call is the string of tokens, copied

* ¢haracter by character, making up the expression to be evaluated for the

SENDER condition. If the condition is absent, the argument is the con-
stant -1. The second argument of the call is the expression to be eval-

uated for the LPORT qondiﬂion, or -1 if the-condition is absent.

A Y

.
Al
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Bl : message;
B2 := message(lport=1);
wait(lport=&LPORT,sender=N+M);

above d-Pascal statements are translated by the
pfeprocessor to.the following gascal source:

Bl := Z22ZM(-1,-1); .
B2 := Z2Z2ZIM(-1,1); ~
repeat until 2Z2ZZM(N+M,Z22Z2L);

Figure 7. Translations of MESSAGE and WAIT

WAIT is simply translated into "REPEAT UNTIL 2222ZM(...)," which can

&

. \
be ‘thought of as ‘'wait until MESSAGE rcturns TRUE."® See Figure 7 on

page 51 for examples of translations of calls to MESSAGE and WAIT.

4.2.4.2 SEND and RECEIVE

-

The SEND and RECEIVE statements are translated into calls to the

external procedure headings discnssed in "LPS Declarations” on page 4.

The name of the procedure called is made up of '22ZZ', an 'O' for SEND

or

)

an 'I' for RECEIVE, and the number of the local LPSsspecified in the

VIA clause of the SEND or RECEIVE statement. Figure 8 on page 52 shows

This primitive busy-wait implementation is suitable- for thg preseni

Cuenet environment, as the SOS does not éupporg multitasking.

a
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!
the translations of SEND and RECEIVE statements which coul@ send and re-

ceive messages through the l-ports shown in Figure 4 on page 46.

send to EXTLPN at PROCESS_ID via 5 : (N+127);
receive from PROCESS_ID via 6 : (INT_VAR | REAL_VAR);

The above d-Pascal statements will be translated
‘to the following procedure calls:

-
——
a

222205(PROCESS_ID,EXTLPN,1,N+127);'
222216(PROCESS 1D, 6,2,INT_VAR,REAL_VAR;2,5);

Figure 8. Thé translation of SEND and RECEIVE statements

t

’ In the translation of the SEND statement, the first argument is the

log}éal module nomber of the intended reéciver, infefred.by the pre-
processor.frqm the AT clause. The second éréhment is the number of the
external l-port (at the receiving sitg) to wh}ch the message is to be
sent (TO clause). The-third argument is the total number of bytes in
the message, calculated by the preprocessor when parsing‘the correspond-
ing LRS declaration. The nex; a;guments are the expressions given in
the SEND statement, which are listed between parentheses and separated

by the wvertical bar (|) in the application program. The preprocessor

need not evaluate the expressions: ' it just copies them verbatim.

1

In the translation of the RECEIVE statement, the first argument is
the logical module number of the sender of the message (FROM clause).
The second argument is the number of the local LPS through which the

message 1is to be received (VIA clause). The third argument is the num-

¢
v
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ber of fields in the message to be received (determined while parsing
the LPS declarations),l say, n. n arguments follow, the names of vari- ‘
ables into which the data in fields of the mes;age are to be stored,

which are obtained from the list in the RECEIVE statement. n more argu-
ments follow, the lengths in. bytes of the data types of each of the
fields in the l-port.

4.3 PROGRAMMING IN D-PASCAL

Coding in d-Pascal is similar to coding in sequential Pascal, as
the languages are very similar. Pascal is a strongl”y typed language,
and strong typing is evident in the d-Pascal extensions as well, with
some exceptions. The_use of Pascal’ procedure call facilities to trans:-
fer message data b%ween the application prog.ram and the S0S during a
SEND operation ensures type conformability between a message and its OUT‘
l-port, but no such checking can be done when a message is received, as
received bytes are transferred to the storage locations of the receiving
application's variables outside of Pascal's jurisdiction, i.e. by

"

SOS_RECEIVE. The current version of the slave operating systems on
Cuenet provide no assistance to the programmer on this issue, but the
d-Pascal preprocessor is capable of providing sufficient information to

permit the enhancement of the operating system to check types of wmes-

sages between modules.

The preprocessor produces a file containing information on the
fields in the l-ports of a module as it translates the module to P-6800
Pascal. The S0S of a module which originates a messag/ecmtid send the
information about the structure of the OUT (senﬂfﬁ)/l-port to the re-

. . / '

——
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ceiving SOS, which can compare it to the structure of the IN l-port to
which the message was sent. If the l-ports are conformable, then the
SEND statement and the RECEIVE statement in the communicating modulés

are also conforhable. .

: &
The preprocessor sgans the preprocessor source looking for inter-

esting” constructs, such ‘as CONST and TYPE declarations and d-Pascal
keywords. Standard Pascal statements are copied to the compiler séurce
verbatim. The preprocessor source is parsed in recursive descent, and
exténsive syntactic diagnostics are issued for all églended statements,
but, of course, the bulk of source code errors are detected by the
Pascal compiler, and thus relate to line numbe;s in the compiler program
listing. To facilitate the matching of a compiler source line with the
preprocessor source file, the preprocessor writes a comment to e&sh ine

v

of the compiler source: file, indicating from which line in tﬁE‘pbe-

‘processor source file the compiler source line was generated. As an

additional aid to debuggfng, the statement indentation in the preproces-

sor source is also maintained as much as possible in the compiler source~

- -

file. . ' '
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Chapter 5

PROGRAMMING EXAMPLES ]

Asynchronous message passing is an extremely versatile paradigm for
distributed computing, in that programmers can simulate other commu-
nication schemes by following certain disciplines while programming an

[

applicat}on. Most trivially, synchronous message passing may be sisu-

lated by always waiting for an acknowledgement just after sending a mes-—

-

sage, thus synchronizing the communicating processes by simulating

blocking sends. This, of course, is not the true synchronous mode}l, as

message buffers are still required. ,
;

The programming examples in this Chapter have been chosen to high-

light d-Pascal communication features and indicate some of the require-

ments for interactions between d-Pascal and the slave operating systems.

5.1 A PROCESS FOR MERGING

To illustrate the SENQ;and RECLIVE statements, a gimﬁle merge pro-
cess is presented. The process inputs two streams of inteéergj\both as~-
sumed to be strictly ascending, and outputs a merged list of these
values. Any value that appears in both input streamg is not duplicated
in the output stream, and each input streaﬁ is terminated. by the value

MAXINT, which:is also used to terminate the output stream.

apo——

The merge process will assume two producing processes Pl and P2,
and a consuming process, C, with input l-port 1. Integers will be re-

ceived from Pl and P2 through an IN l-port STREAM, and sent to C through

A}
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an QUT l-port of the same structure. The two l-ports are declared
simultaneously:
9. w
' 7 n -
lps

STREAM : in,out : (integer);

\

AN

(These ‘two l-ports may be pictured as one bidirectional l-port, al-

though, technically, this is not the case.)

The merge algorithm is coded i® d-Pascal:

A

' \

receive from Q REAM : (V1);

receive fg'm P2 via STREAM : (V2);

DONE := FALSE;
“repeat

end

if V1<V2 then begin .
send to 1 at C via STREAM : (V1);
receive from Pl via STREAM : (V1);
end
else if V2<VI then begin
send to 1 at C via STREAM : (V2),
receive from P2 via STREAM : (V2);
else if VI<>MAXINT then begin )
send ‘to 1 at C via STREAM : (V1);

receive from Pl via STREAM : (V1);

receive from P2 via STREAM : (v2);
end

else (* VI-YZ'MAXINT *)

by the SOS.

L

~

Progrannlng Examples . -
}

DONE := TRUE; 2

until DONE; ' @
L ]
Recall that the RECEIVE statement will block if no message from the

4specif1ed process has been received through the specified logical port

N\
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The complete d-Pascal code for the MERGE process is given in
\\\\\\6

"Appendix C. Sample Programs".

5.2 A TEXT FORMATTING EXAMPLE

0
b,

Consider a text formatter which is capig}e of hyphenatxng words at

the ends of output ‘text lines as required. The sequential algorithmd

- %

could be as shown in Figure 9.

program FORMATTER

T

read WORD from INPUT_FILE
initialize CURRENT_LINE = "'

loop until end of INPUT_FILE

| if WORD fits on CURRENT_LINE then

| add WORD to end of GURRENT LINE

else
try to hyphenate WORD into FIRST_.PART and SECOND_PART
add FIRST_PART to end of CURRENT LINE |
format CURRENT_LINE .
write GURRENT LINE to OUTPUT FILE
initialize CURRENT LINE .= thOND _PART

| end if .
~ '
read WORD from INPUT FILE N |
end loop
|
write CURRENT_LINE to OUTPUT_FILE g '

-

| end -
l

Figure 9. Pseudocode for a Sequential Text Formatter

Assume that the hyphenation routine requires two inputs, the word to be

hyphenated and the maximum number of letters which may by put at the end
¢
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of the current line. The two outputs of the routine are the two parts

of the split word. For simplicity, assume that the first paft is re-

. N " 4
turned with a hyphen appended to it.. If the hyphenator is unable to -

split a word, it returns the null string as the first part, and the en-

tire word is returned as the second part.

Two activities in the formatter's loop are candidates for ;emoval
to ébncurregg précesses: word hyphenation, and line formatting and out-
put. Say the text formatter Qetermines that the next input word will
not fit on the current line. It can send that word to the hyphenating
process, and 'start reading words for the next line. Of course, while
counting space; on the next line, the formatter must allow for the
possibility that the hyphenator will be quble to split its word, and
that the whole word will have to be placed at the beginning of the negt
line. In any case, as soon as the hyphenator returns itsyresult, the

line just completed can be sent to the output process fof*™final formatr

ting (e.g. blank insertion for justification) and output. :
"} &

The concurrent formatter algorithm is shown in Figure 10 on page
59. The control structure is somewhat moge complex than in the sequen-

tial algorithm. Two line buffers are required, a flag is required to

determine whether the previous line is waiting for the results of the

°

hyphenation process, and the test "if WORDﬂfits on CURRENT_LINE" must
take. into account the Taximum number of characters which may be returne&
from the gyphenation process to SECOND_PART. (The control should be
slightly more complex than shown, as the test for WORD fitting on
CURRENT_LiNE should be repeated after the results of the hyphenation
process are obtained, but this detail has been omitted so as not to ob-

-4
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prohess 'CONCURRENT_FORMATTER ,,,._,ff/"’“"“'““*~\\

read WORD. from INPUT FILE
initialize CURRENT_LINE = ‘°

. loop until end of INPUT_FILE
if WORD fits on CURRENT_LINE then
‘add WORD to end of CURRENT_LINE o
el'se . o
if a hyphenation attempt is pending
RECEIVE result of pending hyphenation

add FIRST_PART to end of PREVIOUS_LINE

\ SEND PREVIOUS_LINE to format/output process s
insert SECOND_PART at beginning of CURRENT LIME
end if
. if current situation is viable for hyphenation
SR send WORD to hyphenation process ’
copy CURRENT_LINE to PREVIOUS _LLINE
end if
[, initialize *CURRENT_LINE = '' . B
| end if , »
~— .
read WORD from INPUT_FILE v
1
| end loop
(* last line of input file... *) ,

| SEND CURRENT_LINE to format/output process

end ) , -

L

| Figure 10. Pseudocode for the Concurrent Text Formatter
H ;

scure the example. This "bug" will, in practice, have little impact

the resulting formatted text.)

' ¢

on

The test "if «ituation is viable for hyphenation" examines such

‘factors as the length of the word to be spiit and the number

of

[4

spaces

available on the current line in order to determine whether an attenﬁt

should be made to 'split the word, or whether it should be carried to the

next line directly.’

Programming Examples
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b4 . .
The main formatting proggam will riquiu the following detiarations

A 1

for the logical ports:

\1

type : ’
WORDSTKING = packed array(l..MHAXWORDSIZE] of char;

LINESTRING = packed array(l..MAXLINESIZE] of char; ‘ -

X .

lps .
® HYPHENATE : out : (WORDSTRING, byte); v . »
RESULT i in @ (WORDSTRING, WORDSTRING);
FORMAT : out : (LINESTRING, Bgplean);
[ 4 L. 4. J

Y ” -

)

Vs

(The socound (icld of the FORMAT l-poft is used to indicate to the

. ©

formatter pro.oss when the last line is be ing sent.) -

o

The communication structurns used in the HYPHENATE process and the

FORMAT procoss ara slfﬁightfnrward, corresponding fo the l-ports {R the
main process. The communication features in'a d-Pascal implementation
of the concurrent text formatler are outlined in "Appendix C. Sample

Programs"” on page 90. . . .

. .

5.3 DATA ABSTRACTION

) 4 ' ;
hJ
Gongider, & very simple form of resource allocation, in which'there

iy 3

exists a pool ‘of n identical .rasources, aach with an index numbar in the

range (1..n]. Processes may try to grab a rcsource from the pool or re-
tUrn a resource to the pool. As each process must have exclusive-access
n' . -

to tha resource pool, we shall implement the pool as ' an abstract data,

!

‘atructure controlled by a server procoss. 1 S .
"4 ) P ‘
. . ot \1 l
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The server is a very simple process, outlined in Figure 11 on page
61. It can accept two kinds of messages: one to Allocate a resource,

and one .to return a resource to the pool.

- process SERVER

-T‘_—.‘

injtialize representation of resource pool

loop forever , '
if there is at least one resource available then
wait for cither a REQUEST or RELEASF : \
else
wait for a BELEAS§ only

if received a REQUEST then

v . .«
. . S— " ———— —— A S— T = T S— S— G— S —— A— S W— c——
-~
14

allocate a resource S ) }
: else if received a RELEASE :thcu . - S
) deallocate the rcleased resource
~end loop

‘ |
end ' . |
. ]
Figure 11. Pseudocode fbr the Server Process . e |
’ |
3

3

In the d-Pascal solution, Lgc resource pool will be -a{ntained ;s a
:Boéiean -array R of sizg HAXPGOLS!?E (o deglarcd constant), the -ax}-un
pumber of rgsouicés possible in SE?VER'; poél., If the i'th r;§our£e"is
availabie, g{i] ;\ll be true;‘}f'tho i'th resource is oot available,

.

. ﬁ(f} will be false.
’ ' .

[3
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type .
POOLRANGE = 1, .MAXPOOLSIZE; X .
POOL = array[ POOLRANGE] of Boolean;

var -
R : POOL; (* the resource pool ) .
N, (* agtual number of resources in pool *)
COUNT, (* number allocated at any given time *)
1 : integer; (* an 1ndex variable *)
. RETURN : byte; (* the "return address" - k)
' FOUND : Boolean; (* loop control variable *)

L s 1

“

Three logical ports are required: one to receive request messages,

. one to receive release messages, and one to send the index of the allo-

o

cated resource -to a requester. The LPNs of these ports are the declared

constants REQUEST RELEASE and ALLOCATE, respectxvel\ The agclarations

of the l-ports are:

a

1ps " ' :
REQUEST : in :.(byte); . ‘
o RELEASE : in .: (POOLRANGE);
ALLOCATE : out : (POOLRANGE);

/ ' . .
The request message is very simple. Since'there is only dne type

of resource in this example,‘the‘type of resource to allocate need not

be specified. . The process * ID of the originator of a request can be

. found in &SENDER after a UAIT statement senses thq presence of the re-

quest. The only data required in 8 request message is the number of the
1-port to which the allocate message must be sent (a "return address"),

o

The release wessage bears the index of the resoirce to be released, and

. + N
) R R e
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source.

A o

the allocate message contains the address of the newly allocated re-

°

The resource pool is initialized by siuc\ply reading in N, the number

of resources, and setting their ind}cies in R to TRUE. The courit of

[

allqcated resources will be i1nitialized to 0:

read(N); . \
for I ;= 1 to N do R[I] := TRUE;

COUNT := O;

The server will loop forever, receiving messages and managing re-

sources. It must ensurc that it does not receive a request message {f
there dare no resources - -available to be alloucated, 4 condition indicated

by the value of COUNT being equal to the number of resources:

e
if COLNT = N then
wait(lport=RELEASE) .
alse . : i .
 wait();
L J
V.4 \ \ ' /

.

If a request is received, the server must search for an available
resource, knowing that at least one exists. It must then receive the

request message and allocate thJ resource Lo the requesting process:

—

0

Programming Examples , 63



s
e gE

(* if request is received: *)
1 :=0; FOUND := FALSE;
while (I<N) and not FOUND do begin
1 :=1+];
JFOUND := R[1};
end
receive from &SENDER via REQUEST : (RETURN);
send to RETURN at &SENDER via ALLOCATE’: (I); ‘
COUNT := COUNT + 1;
R{1] := FALSE;

¢ . y .
If a relcase is received, the resource must be returned to the

pool: ‘

receive from &SENDER via RELEASE : (I);
R{1) := TRUE; : )
COUNT := COUNT - 1;

A complete d-Pascal program for a server is given in "Appendix C.
Sample Programs" on page 90.. The examplc does not tr& to .perform any
data verification (for instance, verifying that !eleased resources had
actually been Q&located to the relecaser), although such checks would be

implemented in practice.

S.4 QUICKSORT

Quicksort, first presented by C.A.R. Hoare in (HOAR 62]), is a re-
cursive sorting algorithm in which disjoint parts' of an array arg sorted
independently. In the single process version of Quicksort, the array is

divided into two sections, and the Quicksort procedure is called

Programming Examples l 64
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recursively on each partition. The recursion terminates when a parti-_
tion contains one element. The Quicksort aigorithm is given in

. Figure 12 on page 65.

—

procedure™~QUICKSORT(m,n); .
(* sort partition of array A from A[m] to A{n]), inclusive, *)
(* into;jon-decreasing order. Record A[lm] is arbitrarily *)
(* chosem\as the pivot record. It is assumed that the *)
(* value qf the pivot is less than or equal. to A[n+1]. *)

9 if m < n then begin
| arrange A such that:
" - the pivot i{s in the correct location in A, call it j
- all elements of A between A{m]. and A[n] which are
less than the pivot are moved before Afj]
-~ all clements of A between A[m] and A{n] which are
greater than the pivot are moved after Al j]

call QUICKSORT{(m, j-1) (¥ recursive call *),
call QUICKSORT(jfl, n) (* recursive call *)

end

Figure 12. Pseudocode for the méin Quicksort process

o it e SfE—. Satinin, S— A— — ——— —

In the d-Pascal program for Quicksort, the recursive calls can be
programmed in one of two ways: in the standard (sequential) fashion, or
as the invocation of a concurrent process. Concurrency can be achieved
. by passing one partition to’another p}ocess while sorting the second

partition.

!
A ]

"The main process must be responsible for reading the initial array

from disk, and writing the sorted array back to disk. All other pro-
« . )

cesses to which partitions were sent during the recursion input their

data from and output their results to l-ports. All processes require
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o

the following declarations, assuming a declared constant MAXSIZE, the

largest possible data arfay that can be sorted:

type
VECTOR = array([1..MAXSIZE] of integer;

var -
A : VECTOR; (* the data array *)
M,N : integer; (* range of partition to be sorted #)

Each process ;equires five l-ports: one l-port for sending and re--
ceiving unsorted data along with the bounds of the partition to be
sorted, one for sending and receiving the sorted array, and three to

communicate with the resource server:

L

’ ips N T

UNSORTED : in,out : (VECTOR, integer, integer);

SORTED : in,out : (VECTOR);

REQUEST : out : (byte); s

RELEASE : out : (byte);

RESOURCE : in : (byte); |
1

-
>

The resource server is required because it is not possible to cre-
ate processes dynamically in d-Pascal. A pool of Quicksort worker pro-
cesses must Abe created when the d-job is initiated, and they are used
(invoked) when their process ID {s chosen by thé server. The server

must be initiated as parL.of the d-job.

The‘ main process must input the data, sort it, and then ocutput the
sorted data. (Assume the data is simply a sequence of integers.)

4
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begin (* Quicksort main *)
read(SIZE); .
for I := 1 to SIZE do read(A[l}]);
A[SIZE+1] := MAXINT; . .
call QUICKSORT(1,SIZE);
for I := 1 to SIZE do write(A[I]); .

end. (* Quicksort main *)

[

;-

The worker processes arc similar to ‘the main process, except that

they receive and send instead of rpad and write:

begin (* Quicksort worker *)

wait (lport=UNSORTED);
receive from &SENDER via UNSORTED : (A | ™M | N);

call QUICKSORT(M,N);
.send to SORTED at &SEXDER via SORTED : (A);
end. (* Quicksort worker *)

T

The quicksort procedure is the same in the main process and in the

L

-

_workers. If the partition contains at least one member, it partitions

|

the partition, using the M'th elem¢nt as the pivot:

\ ~
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procedure QUICKSORT(M

,N : integer);

var .
1,J,PIVOT,TEMP : integer;
begin - ¢
if M < N then begin ) ° .
I :=M; J := N+1; PIVOT := A[M];
repeat
repeat I := I+l until A{I] >= PIVOT; i

repeat J := J-1 until A[J] <= PIVOT;
if I<J then begin (* swap A[I] with A[J] *)

TEMP := A
end
until I >= J;

[I]é AlI] := A[J]); A[J) := TEMP;

TEMP := A[M]; A(M] := A[J]; A[J] := TEMP;

o

At this point, the pjgot is at the J'th position of A, and the fol-
°"

lowing hold:

Ali] <= A[J], for all

Ali] >= A[J], for all

Now, the partitions
sznt to another process to
partitiog will be sorted
the éerver process for the
Note that it sends the LPN

’

the server will know to
t

its response message.

\,,

Programming Examples

i <= 7J; ¥
i >=J;

N
must be sorted. The first partition will be
be sorted concurrently, while the other

by the current process. The program will ask
process ID of an available work;r process.
of the RESOURCE l-port to the server, so that

which l-port of the quicksort process to send
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send to SERVERREQ at SERVER via REQUEST : (RESOURCE);
. receive from SERVER via RESOURCE : (PROCESSID);
send to UNSORTED at PROCESSID via UNSORTED : (A | M | J-1);

call QUICKSORT(J+1, N);

- )

When the call to QUICKSORT r‘evturns, A is sorted from A[J] to A[N],
inclusive. The clements from A[M] to A{J-1] must be received from the
concurrent process into a temporary array and copied into A. (If the

RECEIVE statement named A directly, the part that is already sorted will
get overwritten.) A is then sent back to the process which sent it to
* the current one, and the worker process which just completed the sorting

LY
can be returned to the resource pool:

b - S e e e S e e ' -
l receive from PROCESSID via SORTED : (B);

for T := M to J-1 do AlI} := B{1];

send to SORTED at &SENDER via SORTED : (A);

The complete code for QUICKSORT is given in "Appendix C. Sample
Programs" on page 90. There dre several ways of improving the perform-
ance of the d-job. One way would be to allow a process to sort parti-
tions internally if the were not "large enough' to merit being sent over
the network to another process. Another way would be to use a slightly

_more complex server, which would return a negative response if no re-
sources were available. This also wonld allow a process to decide to

sort a partition internally. (The d-job presented here would block

while waiting for a'resource to be allocated to it.)

Programming Examples . 69



Chapter 6
SUMMARY
X g

This thesis presents d-Pascal, a programming language for a

loosely-coupled‘network of computers, which successfully implements

" layer seven of the I1SO-0SI Reference model [TANE 81). d-Pascal is an

asynchronous message passing language which augments standard Pascal

. with a set of constructs whith permit interprocess communication.

s,

%

—\ . Each process in d-Pascal is called_ a module, and is a separately
compiled program with its own private address space, and its own unique
process 1ID. ‘éach module may declare logical ports, or l-ports, which
act as windows Lhrougﬁ whicg messages cdan be'seAL or received. Each I-

port has a type structure, and the messages which pass through them

should be of comformable type.

sl

The SEND and RECEIVE_statcments are used for message communication.
The SEND statement is non-blocking: a sending process may send messages
at any time, irrespective of whether the intended destination processes
are ready to recejve them. The SEND statement must name the process ID
of the intended recciver, the local l-port through which the message is

to be sent, and the external l-port through which the receiver is to re-

ceive the message, as well as provide the data, in the form of ex-

pressions, which are to b?j:ent in the body of the message. The RECEIVE

statement must name the process 1D of the originator of the message, the
local l-port to which the message was sent, and the variables which are

to b& assigned the contents of the fields of the message. The process

executing a RECEIVE statement will block if no message of the kind re-

, \
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quested has been sent to it. When such a message becomes availab{e, the
data will e assigned to the specified variables and the RECEIVE state-
ment will terminate. Language facilities also exig&w to deterq}ne
whether a message from a particular process, and/or sent to a particulaf

Q

local l-port, is available’'to be received.

That no explicit data structure for messages is required in either
d-Pascal or its preprocessor may sound surprising, but the actual con-
struction 'of messages from d-Pascal expressions, and the splitting of
messages into their component fields to be received, are I[SO-0OSI layer

five functions, and are beyond the scope of the application language.

&

Of course, the implementation of the language must provide an interface

-

between the compiled program and the underlying message handling soft-

ware of the operating system, while providing the programmer with a di-

rect virtual interfdace between processes. In d-Pascal, this interface
between processes takes the form of the logicual ports in the origin and

destination processes.

d-Pascal has been implemented as d preprocessor for sequential

Pascal on Cuenet [GROS 82, RADM 85), a distributed network at Concordia

-

University that is described in"ippendix A. The Cuenet Facility far

Distributed Computing'". The closeness of d-Pascal to widely known
standard Pascal makes it a fairly quick language to learn. The actual
line-by-line céding of d-Pascal is very similar to coding in sequential
Pascal: the only dramatically new syntax appears in the LPS declaration’

‘

section, and the SEND and R%CHIVE statements.

One difficulty with the d-Pascal environment becdme evident while

writing d-Pascal programs: the process IDs of all the modules must be
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kriown at compile time. This makes it difficult to create a module which
is intended Lc; be used in more than one d-job, such as a utility like
the SERVER process discussed in Chapter Five, because every module which
wants to communicate with it must know its process ID. (The SERVER did
not have to know at compile time the process IDs of the modules which
used it, because the process IDs of the processes which send mes;ages to
it are found in &SENDER \ench time SERVER received one oi’ thgir mes-
sages.i The situationrcould be rectified if, at the time the d-job is
loaded onto the network, each S0S had access to a table relating names
of processes to their process IDs. Applications would then refer to
other processes by name, and the message handling sof;.u'a{e of " the SO0S
w;)uld convert the names to process IDs at run time. (Solutions to the
naming problem in a4 distributed system have becen reported in the liter-
ature [TANE 85]. They could be incorporated in f:Jture extensions of
this work.) - The quicksort example, which uses the ‘SERVER process, would

be much simpler {f the operating system provided the means for duplicat-

ing processes, relicving the programmer of the burden of resource

A8

- management. (The quicksort application is more suited to a language

such as Pascal~-C [LAM 82], in which new instances of down procedures arc

created as required.)

The d-Pascal preprocessor is now fully operational. Operating sys-
tem support on Cuenct includes the implementation of the send and re-
ceive operations, including the qucuing of messages. Oneymportant
feature still out.standiné is the integration of the reconfigurability
aspect of Cuenet into the d-Piscal d-jobs, to allow programmers to

experiment with algorithms on different ‘network configurations.
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Appendix A

M

- THE CUENET FACILITY FOR DISTRIBUTED COMPUTING

.

. The diversity of multicomputer systems is as great as the diversity

of languages which have been developed to program them. This Appendix

> ,  detajled description of Cuenet, the facility upon which much of the work

58

of this thesis is implemented.

*J
“'A.1 DISTRIBUTED COMPUTING SYSTEMS

o

A distributed computing system consists of several interconnected

computers. TE; computers are generally‘under the control of a single
operating system, although each computer may aiso have ité’ owd }Acal
operating system. One nifion;le for building a distribu}ed'sygtem is
that several computers working concurrently may be able to solve\a prob-

lem faster than a single computer. If diverse computations are re-
quired, each‘iprocesslng site may he specialdy designed to carry out a

;ar&;cular type of task. Alternatively, if reliability is a prime

- ’ ) L 4

:consideration, a distributed computlng'sy;tan may be designed to intro-’

-

duce reduncancy, by having all processors perforn"thaf same operations

and then compare results. This concept is' used in the shuttle orbiters
\ N

of NASA's Space Transportation Sysien (the "Space Shuttle" program in

the United States). Each shuttle orbiter contains four Xdentica;,
\ . ty’ncl"toniz,od computers running identical qpftuqre.) a

| S 7
& . A‘ I} . - i)/ ’ .
o ‘ ,Appbndix'h. The Cuenet Faciliiy for Distributed c&-putlng , 76

. .
. . s - '
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presents a bridi\gzj;vieu of multicomputer systems, followed by a more
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Two properties which can be used to glass!fy multicomputer systess
are the degree of coupling that exists between processing sites, and the
topolggy in which the processing sites are arranged (FATH 83]. The de-
gree of coupli53 o;hibited in a multicomputer system can range from
tight coupling to loose coupling. In a tightly coupled system, all com-
puters share a common memory address-space, aﬁd communicate through this
shared mémory. In a loosely coupled system, each computer has its own
private memory address space, and communicatés with other cowmputers by
passing méésages over a medium linking the computers.. The pattern in
which computers are linked to each other is called the topology of the

: mui}icomputer. Some common topoloéies are shown in Figure 13 on page

78. oo . L e

-
«

.Examples of research projects in distributed computing include:

1. Cao* \{SWAN 77] at Carnegie-Mellon University. Cm* is a group of

tightly coupled LS&-II microgomputars. The system's topology is a

fixed, two-level hierarchy.

2. Micronet [WITT 78] at the State University of New York. Micronet is
. \ )
a loosely coupled network of microcomputers connected in a matrix-

topology. o .

3. 'A% [CIVE 82) at Poliiecngpo di Torino, Italy. M* uses a multi-

level star topology, in which clusters of processors are connected

over intercluster links.

"

. 'Appondlx A. The Cuenet Facility for Distributed Computing 17
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&

4. Cuenet [GROS 82, RADIl 85) at Concordia University. , Cuenet 1is a
loosely coupled network of heterogenous computers, capable of being

configured into any topology desired by the applicationé programmer.

’

=

A.2 CUENET

o

Cuenet is a redG%figurablc network of microcomputers which uses one
or more C-buses as the interconnection medium, Each computer is con-
' '

nected to C-bus through a Jedicated C-bus interface. Figure 14 on page

80 shows the configuration of Cucucet

.~

Cuenet 15 said to be reconfigurcble because 1t is capable of assum-
ing whatever topology is rcqnxfud by the application  Whereas Figure 14
shows that all c;mpntcrs are physically interconneffted via C-buses, each
é-bus interface contains 41 acress vector which dpfines the set of othcr.
computers w{th which each compute1r can communicate. By defining appro-
priate access patterns, the application prgg}dmmer can l;Eically create

2 .
Configurability" on page 3.

" any topology. " Access vectors (Fé‘ discussed in 'Programmer-specified

A}

i

A.271 The Components of Cuenet

-

The components df Cueriet arc described. in this section.

The Master Computer: IL is xhréugh'Yha master computer that the appli-

cations{programmer interfaces with Cuenct. ‘the master is respon-

&
sible for the' following operations: '
{ L]
f {. } N \\ . ) - ,
Appendix N The Cuenet Facility for Distributed Computing 79
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»

N .
14, e Configuration of Cuenet

¢
e el R —

W -
; ~
the allocation-of slaves to an application program;
LY

ioading of the modules résulting from a program decomposait.ion'
. L

onto the appropriate slaves;

inftializing t.h,L access vectors to configure Cuenet into the
* L4
topology required by the app]icatwl\l;
1 .
/

-

.
) .
. «
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e processing exception conditions, including program termination,

”

irrecoverable errors and access rights violations.

N

Cuenet contains only one master, but since it does not contain
any special hardware, any computer in Cuenet that can run the mas-
ter software can function as Lhe“haster. One computer must be act-
ing as the master a} all times. If the master fails, distributed"
computing on Cuenet is halted until thc master Iunégion is rein-

stated on another computer.

- L)

Note that application programs never run on the Cuenet master,

-

The Slave Computers: There can be up to 63 slave computers in Cuenet.

The slaves exccute the modules of a program dectomposition.
1

Cucnet may be a heterogenevus network in that the slaves do

-

not have to all be of the same type. A slave may be a special pur-

pose computer, such as a processor for signal processing. The

L4

slave's native operating system must be augmented to handle the

resporsibilities of Cuenet. The augmented operating system is

called a ilévb‘operaying system (S0S).

-

. a
NI

Slaves may be either 8-bit or 16-bit computers, and may have

.whichever peripherals.they require.

A

C-bus: Communicatidn between computers on Cuenet is via messages trans-
mltted‘bver one or more timeshared buses called C-buses. The C-bus

' ) )
A interconnection mechanism was designed to be fast enough to support

message traffic generated b& a distributed algorithm, yet flexible

Y —
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enough to be wused as an experimental research tool. bhysically,
C-bus consists of twisted pairs of wires logically grouped into
four categories: data linﬁ;, send address lines, receive address
lines ané control lines. Computers are plugged into T-junctions

inserted at arbitrary locations along the bus.

The C-bus Controller: Each C-bus is managed by a C-bus controller. This
centralized controller consolidates the hardware required for bus
arbitration and control into a single unit, thus reducing the
complexity required at each local stution. Centralization comes at
the cost of reliability, however. If.the reliability of Cuenet is

critical, more chan one C-bus should be used.
[-3

1

s

C-bus Interface Units: Each computer is connected to C-bus through a
C-bus interface unit. Each unit includes input and output buffers
and queues for messages, an access vector, lock and key registers,
and status and control registers.® IL is due to the interface units

that the integrity of the user defined topology is maintained.

The NetvorELHemory Unit: A common storage facility is available on
Cuenet. This funczion is provided by specialized slave computers

called NMU's, or Network Mémory Units. Each NMU is a general pur-

. 3 L]
-

. o The functions of these elements are desctibed in "Programmer-
specified Configurability" on pagh 83 and "How Messages are Trans-

mitted" on page 84. , ' -
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pose microcomputer with a large memory. NMU's are considered to be
shared resources by the other slaves. Centralizing the storage and
. maintenance of common data in intelligent NMU's saves memory by
avoiding duplication of data, and saves time by reducing the number

of messages transmitted over C-bus whenever the common data needs

to be updated. ‘
A.2.2 Programmer-specified Configurability

It is possible to configure the processing sites in Cucnet into any

.

topology desired by the application programmer. This is accomplished by
restricting the comiminication patterns between computers, which are all

physically interconnected by C-bus.

Each computer in Cuenet is associated with A C-bus interface unit,
and each interface unit contains an access vector, which is essentially
a list of all other Cuenect computers with which a given computer is
permitted to communicate. The access vectors can only be written to by

the Cuenet master.

F

C-bus interface units also contain lock and key registers. A set

-

of mechanical switches is used to set the lock registers on each inter-
facé unit to a value called the combination. A program can only access
the interface by unlocking it, that is, by writing the combination into

the key register. In a "friendly" environment, it can be assumed that
e .

"

the system sof twarc knows the combination, but the application software
does not: therefore, an applicatior program can only access the inter-

face thraugh calls to the system software (slave operating.system).
&

~ .
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A.2.3 How Messages are Transmitted

-

Each slave operating system on Cuenet includes message commu-
|
nication software contuining the data structures shown in Figure 15 on

page 85.

Y

When an application program wants to send a @essage, it supplies
the SOS with the message data and the intended destination of the mes-
sage. The SOS builds the message header and footer (sce Fiéure 16 ;n
page 86), places the message in the 1h;erface's send buffer, and asserts
one of the C-bus control lines, the Bus Request lingfx (If the send

buffer, which’has space for one message only, is full, the message is

placed in the send queue.) Cén;rol i{s then returned to the application

-
~

modulae, which will now execute as if the message has been sent.

When the C-bus controller senses the presence of the message in the

. ¢ .
send buffer, it interrupts the slave application, places the message
onto Crbus, and directs it to the destination specified in the message --

. header. When the d buffer is free, the slave's message handling

software will move the next message from the head of the send queue (if

one is there) to the send buffer, and contxol will return to the appli-

cation. 4

<

When a ‘ message is placed in the Qend buffer, a copy is written to

. \
the message backlog, in case¢ retransmission is requested.

’The C-bus controller will transfer the message to the receive

buffer of the destination slave, and cause an interrupt in the receiv-

er's message handling software. The message will then be transferred to

Appendix A. The Cuenet Facility for Distrlbntod‘Ca-putin; 84
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the receive queue for processing b ‘hc $0S, which decodes the header,

transfers the data portion into the (k coded message buffer, and makes an
NG L}

Y

entry in the message log.

-
,-\‘ .

B
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DA | 1" 71 1
| I [ o
SA | RA | MT PI | TS I Data Il cs. |
| | I oo
1 1 il i1 J
SA: Sender Address - 8 bits
. RA: Receiver Address - 8 bits
MT: Message Typo - 8 bits .
P1: Packet ldentification - 16 bits
TS: Time Stamp - 16 bits R
CS: Check Sum. - B bits
Figure 16. Structure of a Cuenets Message

U S —

°

The application program recaeives the message by searchiné for its
entry in the wessage log and retrieving it from the decoded message
buffer. The application is not signaled when a message is received by

the interface unit: {t must query the log to determine {f a particular

message is present.

~

It is important to note that "sending" and "rccciving;’havo differ--
ent connotatiops in different contexts. An application program views
sending and receiving as atomic actions, totally asstracted from the
ﬁhyslé&l ~aspects of message transmission seen from the SOS perspactive.
The applié&tion consid;ra a mossage to be sent as soon 4s it is passed

off to the local SOS: it is unaware of when the message actually leaves

the C-bus interface, as SOS message handling software is interrupt
’t

‘

*
driven and totally transparent to the application. Similarly, a slave
is unaware of the physical reéeption of a message by its SOS. A massage

can only be logically received by an application after it checdks the
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'nessggn log, which is updated by the S0S when to message s physically

4

received,

:
£

o HNost significantly, a sending application is unaware of when the
message is received by the destination application, and the reception of
a ‘message has no ¢ffect on the originator. In‘fact, the sending aﬁpli-

cation is not even aware.of exdctly when its S0S physically sends the

4]
K

message across C-bus.

A.2.4 The Structure of a Cuenet Message

”

Figure 1b on page 86 shows the structure -0f a Cuonet ilessage. A
message is divided into threc parts: : ’

e o

1. The Header-

;
+ ! ¥

e Sender Address - the pﬁysical slave number of the sender. The
s -3

Y ' ’
network must -have a unique physical address for each slave.

e Roeceiver Address - the phys(ggl slave number of the intended .
. . Y et
hro

receivor of the message.

“ S
* Message Type - a4 messdge mdy be eirther a standard application

s e o=t
K} 0"

§ o - : 3 '
message (between slaves), a cmamP méssage sent from the ms:}

to"a slixgyopcrating system, or a program or file segmont being

sent between the master and a slave. N )

identify messages, to request

o o

"Packet Identification - used to

éigsends. to reconstruct logical massages which required more’
o . ¢ . - .

than one physic?f}aessagu for their trausmission.a?té. :

o 4
v I ‘ N 1
- 3 o
. L . v oo s ./

. ' . ~ s
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) \ > Ia o ’
F U & i
\ 4 \ »
‘ﬂ‘\. ' . * N
t ©." s Time Stamp - the time that the message wasexsent, to maifitain the
V3 B Y
"% correct temporal sequencing. & \ .,
» ) ‘
! .
‘ i ey . - g
2. The Data Portion:
. > N
‘ . -
~ " The data being sent by the application. Cuenet doées not inter- ‘
. 0 . . - . - PR ; .
. _pret this data in any way. . , ‘
[ N
(- N t \
3. “The Footer: . N X e
- | | .- ) .
'Y / " ’ L N .
An  eight bit check sum:™ {T—the check sum'do€s noy verify, the v
v < o ) ‘ o Ty '
‘ receiving mcssa'gmandling\softwarc will request a retransmission of
. . ™ :" * Vol
the message . ° B
. . s ,,- -
. - , . o . - IR o
The length uf.a physical message’ ig{ 256 bytes. \T'he ‘data portion is - .
. 248 ngfgy long. ; e v )
s t /‘ -~
N IR
) ' ! v -3 .
\ » .,
y ot ; )
' ¥ ’ N
4 ’
. »~ N ~ 2
* . ¢ .
/ . ) .
v , ’. /, . \ l h.
L 9 I
‘ ‘ @ . * 6 .
. ’ o - !
< - | N
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This Appendix
d-Pascal. .

<LPSDECL>
<LPSDEF>
<LPSMODE>
<LPSLIST>
<ITEMS>
<LPS CONST>

' <SEND>

<SENDLIST>
<RECEIVE>
<RCVLIST>
<COMMARG>
<BAR>

<MESSAGE>
<WAIT>
<ARGLIST>

<LPORT 4RG>

<SENDER ARG> ::

<SYSVAR>

<SYSVARNAME> ::

r ‘Eg‘

~

summarizes the extensions to standard Pascal

...........
nouaunnn

n

non

Appendix B ‘ Y

SYNTAX OF d-PASCAL EXTENSIONS

M

» ’
~

LPS <LPSDEF> § ; <LPSDEF> } ; | empty e
<LPS CONST> : <LPSMODE> : <LPSLIST> .
IN | OUT | IN,OUT | OUT,IN
( <ITEMS>, ) e
empty | <type ID> { , <type ID> }
<numeric one hyte global CONST id or

literal constant>

SEND TO <COMMARG> AT <COMMARG> VIA <LPS CONST> :
<SENDLIST>

( <EXPRESSION> { <BAR> <EXPRESSION> } ) -

RECEIVE FROM <COMMARG> VIA <LPS CONST> : <RCVLIST>

( <ID> { <BAR> <ID>*} ) | ()

<var ID>,| <SYSVAR> | <LPS CONST>

<the vertical bar character "|">

MESSAGE ( <ARGLIST> )
WAIT ( <ARGLIST> ) i
emp‘?‘+‘_DPORT ARG> | <LPORT ARG> , <SENDER ARG> |
<SENDER ARG> | <SENDER ARG> , <LPORT ARG>
LPORT = <byte-valued expression>
SENDER = <byte-valued expression>

@

& <SYSVARNAME>
SENDER | LPORT

v

AT - e e —— e s

Appendix B. Syntax of d-Pascal Extensions
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Appendix C .

~

' 'C.1 THE MERGING PROGRAM

-program MERGE;

const: T s
STREAM = 1; . o
Pl = 10; (* process ID of Pl *)

'APPENDIX. C. SAMPLE PROGRAMS

!

{
P2, respectively *)

\

* P2 = 11; (* process ID of P2 ¥)
C =12; (* process ID of C *)

lps
STREAM :- in,out : (integer); °

var ,
V1, V2 : integer; (* integer from P},
DONE : Boolean;

begin  (* MERGE *) !
receive from Pl via STREAM : (V1);
receive from P2 via STREAM : (V2);

~  DONE := FALSE; L

repeat.

if VI<V2 then begin

-send to 1 at C via STREAM :
, receive from Pl via STREAHM :

end B
+ else if V2<V1 then begin
send to 1 at C wvia STREAM

end v
else if V1<>MAXINT then begin

send to 1 at C via STREAM :
rece&ye from P1 via STREAM :
receive from P2 via STREAM :

eng
else
DONE
) until DONE ;

(* V1=V2=MAXINT *) ° _
:= TRUE;

(v1); '
(v1); .

: (V2);
receive from P2 via STREAM :

(v2);

(V1);
(vi);
(v2);

send to 1 at C via STREAM : (MAXINT); (* end of merged li§t *)

. end. (* MERGE *)

5

'Appendix.c; Sample Programs
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C.2 THE TEXT FORMATTER PROGRANMS, '

—program CONCURRENT_FORMATTER; \\\\\\\

const
HYPHENKTE = 1; (* local LPN *)
RESULT = 2; (* local LPN *)
FORMAT = 33 (* local LPN *)
HYPH_PROCESS = 2; (* external process ID *) .
FORM_PROCESS = 3; ' (* external process ID *) -
HYPH_LPORT = 1j, (* external LPN *)
FORM_LPORT = 1; T (* external LBEN.*)
MAXWORDSIZE = 32; “a,
MAXLINESIZE = 80 ! e -

Pty type . . .

WORDSTRING # packed array[1l..MAXWORDSIZE] of char; "
LINESTRING = packed arrayfl..MAXLINESIZE] of char;

lps " <//
HYPHENATE : out : (WORDSTRING, byte);
RESULT : in ¢ (WORDSTRING, WORDSTRING), :
FORMAT : out : (LINESTRING); .

var
WORD, '
FIRST_PAKT, )

SECOND_PART : WORDSTRING;

CURRENT_LINE, ' .

PREVIOUS_LINE : LINESTRING; \

HYPH_PENDING : Boolean; (* TRUE when a call to the *)
hyphenation process is pending *)

N_LEFT : byte; (* number of character positions
remaining in current line *)

_begin  (* CONCURRENT_FORMATTER *)
(* INITIALIZATION: - set CURRENT LINE to all blanks
. ~ set HYPH_PENDING to FALSE
. - set all formatting parameters
and line indicies
- read the first.word into WORD ¥) -

while not eof(input) do beginmi \\\
if (* WORD fits on CURRENT LINE *) then begin
(* add WORD to CURRENT_ LINE *)
N_ LEFT := (* no. of character positions remaining *)
end - .
else begin
if HYPH_PENDING then begin
receive from HYPH_PROCESS via RESULT : .
(FIRST_PART | SECOND_PART);
(* add FIRST_PART to end of PREVIOUS_LINE *)
send to FORH_LPORT at FORM_PROCESS via FORMAT :
“(PREVIOUS_LINE | FALSE);

Appéhdix C. Sample Programs . 91



(* insert SECOND_PART at beginning of CURRENT LINE *)
o ——end :

if (* hyphenation attempt is viable *) then'begin‘
send to HYPH _LPORT at HYPH_PROCESS via HYPHENATE :

(WORD | N_LEFT);
* " PREVIOUS_ LINE := CURRENT_LINE;

HYPH_PENDING := TRUE;

end , %.
else
HYPH_PENDING := FALBE;
end; .
(* read next WORD from input %) ‘ .
end; (* while not eof ... *)

(* send last line, indicate end of file *)
send to FORM_LPORT at FORM_PROCESS via FORMAT :
(CURRENT _LINE | TRUE);

.end, (* CONCURRENT_FORMATTER *)
"‘/’ i -t 3 -

-« ¥

e

\ |
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program HYPHENATE;

const
v SPLIT_THIS = 1; (* local LPN *)
RESULT = 2; (% local LPN *) o
RESULT_LPORT = 2; (* external LPN *)
MAXWORDSIZE = 32; , 5

type 5
s WORDSTRING = packed array[1..MAXWORDSIZE] of char;

lps " s
" SPLIT_THIS : in : (WORDSTRING,byte);

RESULT : out : (WORDSTRING® WORDSTRING); N
var '

WORD,

FIRST_PART, K.\
LAST_PART : WORDSTRING;
MAX_FIRST :, byte; (* maximom size perm1tted for
, FIRST PART ; *)
" begin  (* HYPHENATE *)
while TRUE do. begin;
wait(lport =SPLIT_THIS);
- . receive from &SENDER via SPLIT_THIS : (WORD | MAX_FIRST);
(* attempt to hyphenate WORD, sucK that first part has
. fewer than MAX_FIRST letters. If successful, assign
. ’ the' first part of the split word to FIRST PART (add
a hyphen to the end of the string), and the second

, ’ " part of the split word to SECOND_PART. If not suc-
- - cessful ; assign blanks to FIRST PART and WORD to
SECOND_PART. , *)

send to RESULT LPORT at &SENDER via RESULT :
(FIRST_PART | SECOND_PART);
end (* while farever... *)

end.  (* HYPHENATE *)

Appendix C. Sample Progranms ’ : \
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3 .
_program FORMAT_LINE;® '
cogst' ,
MAXLINESIZE = 80;
" .
T type ) .
. LINESTRING = packed array{'l..MAXLINESIZE] of char;
‘ 1ps
1 : in : (LINESTRING,Boolean);
var :
. TEXTLINE : LINESTRING; s gt W
EOF_FLAG : Boolean; (* true on message containing
last line/ *)
begin (* FORMAT_LINE *) ’ ?
wait(lport=1);
repeat
receive from &SENDERMWia 1 : (TEXTLINE | EOF/FLAG);
v (* formAt TEXTLINE in suitable form for
output device ’ )
(* output formatted line to output device *) . =
until EOF FLAG;
~  end. (% FORMAT LINE *) -
o ’
‘ 4
2
rl
t
[ " ‘\ /‘ .
\ , /
;
/

Appendix C. Samplé
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C.3 THE SERVER PROGRAM. . ~
program SERVER' e v .
N o r .- i . . I —
const ) . .
MAXPOOLSIZE = 500; ® '
REQUEST = 1; (* Jogital port numbers *)
RELEASE = 2; )
ALLOCATE = 3;
4 type , @
POOLRANGE = 1..MAXPOOLSIZE; . ’
POOL .= array[POOLRANGE] of Boolean;
" lps . )
REQUEST : in : (byte); / .
y RELEASE : in : (POOLRANGE);
,/ ALLOCATE : out : (POOLRANGE); ‘
var ,
R : POOL; (* the resource pool X)
N, (* actual number of resolirces in pool *)
COUNT, . (* number allocated at any given time *)
s 1 : integer; (* an. index variable ' ° *)
RETURN : byte; (* the "return address" *)
* . FOUND :'Boolean; (* loop control variable *)
begin (* SERVER *) . . J
. . read(N);
— ' for I':= 1 to N do R[I] := TRUE;
COUNT := 0; ) 9

repeat  (* loop forever *)

if COUNT-= N then !
wait(lport=RELEASE)
else
) wait();
~ if &LPORT=REQUEST then begin (* a request is repeivéd
\ I :=0;. FOUND := FALSE;
while (I<N) and not FOUND do begin ’ »
T:=1+1; '
‘ FOUND := R[I1;
oo end ¢
H receive from &SENDER wia REQUEST : (RETURN);
send to RETURN at &SENDER via ALLOCATE : (I);
COUNT := COUNT + 1;
R[{I] := FALSE;
end ‘ ,
else begin (* a release is received *)
receive from &SENDER 'via RELEASE : (I);
R{1] := TRUE;

-

\ : v

. Apperidix C. Sample Prograas ' ' .
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' COUNT := COUNT - 1; - : .
end . i )
N until FALSE (* end of loop forever *) 2
end. (* SERVER *)
\
. 5// ' .
1
o
L
p f
{
1 ,
>
- - |
. @
) !
. i

-
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C.4 THE QUICKSORT PROGRAMS . o
program QUICKSORTMAING

const ' 5
MAXSIZE
UNSORTED
SORTED
REQUEST
RELEASE

. 'REsougca

—
(=]
o
o
-e

(* logical port numbers *)
1

type
VECTOR = arrayfl..MAXSIZE] of integer;

1ps ; .0
UNSORTED : in,out : (VECTOR, integer, integer);

SORTED : in,out : (VECTOR);

REQUEST : out : (byte); ; .
RELEASE : out : (byte); '
RESOURCE : in : (byte);e
var : ‘ : i
4 A » : VECTOR; (* the data array ' *)

M,N :‘'integer; (* range of partition.to be sorted %)

.

procedure QUICKSORT(M,N : integer);

/

const . .

SERVER = 100; (* procé&g ID of server process *)

4 SERVERREQ = 1; . (* external LPN in server process ¥*)

var ' o

1,J,PIVOT,TEMP : integer;

B : VECTOR; (* to hold temporary result ¥*)

_PROCESSID : byte; (* ID of allocated process *)
begin

if M < N then begin
I :=M; J := N+1; PIVOT := A[M];
repeat
repeat I := I+1 until A[I] >= PIVOT;
repeat J := J-1 until A[{J] <= PIVOT;
if I<J then begin (* swap A[l] with A[J] *)
TEMP-:= A[1]; A[I] := A[J]; A[J] := TEMP;
.end . :
until I >= J3% )
TENP := A[M]; A[M] := A[J]; A[J] := TEMP;

send to SERVERREQ at SERVER via REQUEST : (RESOURCE) ;
receive from SERVER via RESOURCE : (PROCESSID); ..
]send to UNSORTED -at PROCESSID via UNSORTED :

! » (A ‘ H’xl J-1);

!

‘cal] QUICKSORT(J+1, N);

Appendix C. Sample frograms
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" receive from PROCESSID via SORTED : (B);
for I := M to J-1 do A[I] := B|I];

send to SORTED at &SENDER via SORTED : (A);-

end

' "end; _~(* procedure QUICKSORT *) ‘//
//////ﬁ\\ begin (* Quicksort main *) //

A v
read(SIZE);
for I := 1 to SIZE do read(A[I]);
A[SIZE+1] := MAXINT; .

call QUICKSORT(1,S1ZE);

for I := 1 to SIZE do write(A[I]));
. .

end.J) (* Quicksort gain *)

o

r
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program QUICKSORTWORKER;

const
MAXSIZE
UNSORTED
SORTED
REQUEST
RELEASE

* . RESOURCE

’ ' )
(* logical port qu%sers *)

: type_ . " d -
VECTOR = array(1..MAXSIZE] of integer;

lps .
, UNSORTED. : in,out : (VECTOR, integer, 1uteger),
- "SORTED +: in, out (VECTOR); S

.

REQUEST : out ' : (byte); )
RELEASE : out : (byte); .
RESOURCE : in : (byte); b
var .
-A -+ VECTOR; (* the data array. *)
M,N : integer; (* range of partition to be sorted *)
- o
* procedure QUICKSORT(M,N : 'integer);
. ¢ N M
. = const ‘ .
. .- SERVER = 100; (* process ID of server process *)
SERVERREQ = 1; (* external LPN in server process *)
var : ) - -
I4J,PIVOT,TEMP : integer; ' ~
B : VECTOR; (* to hold temporary result %*)
PROCESSID : byte;  (* ID of allocated process *)
X begin
- ] if M < N then begin .
. h 1:=M; J:= N+l; PIVOT := A[M];
‘repeat A
. repeat I := I+l until A[I] >= PIVOT; .
- . repeat J := J-1 until A[J] <= PIVOT;
, if I<J then begin  (* sWap Af1] with A[J] *)
TEMP := A{1]; A[I] := A[J]); AlJ] := TEMP;
, end ' p
\ , until I >= J' * N ' )
,TEMP := A[M]; A[H] := A[J]; A[J] := TEMP;
° " © send to SERVERREQ at SERVER via REQUEST : (RESOURCE);
receive from SERVER via RESOURCE : (PROCESSID);
send to UNSORTED at PROCESSID via UNSORTED :
(A M| Iy
, / call QUICKSORT(J+1, N);  -- .
‘ " receive from PROCESSID via SORTED : (B); | !
x L °
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for I := M to J“iﬁﬁo A1) := B{I); "~ ' .
send to SORTED at &SENDER via SORTED : (A); & -

. end .
_end; (* procedure QUICKSORT *) S

- beginm  (* Quicksort wprker *)

{ N
‘repeat g , , ////

)

wait(1port=UNSORTED); ,
receive from &SENDER via UNSGRTED : (A ] M | N);

call QUICKSORT(M,N); | ' e

‘send to SORTED at &SENDER via SORTED : (A); * . = - o~

L d

\/\
until FALSE

end. (* Quicksort worker{*)

-
v, ’



