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i N '\, ’ Reachability and thucnclng'
: . in Marked .Graphs and State Graphs: -
v A ! Algorithms Based on Network Proqraggtnp

+ . ’

Marc Andrew Comeau, Ph.D. ,
Concordia University, 19686. -

4 ~~

' This thesis is concerned witﬁ an algorithmic study of
reachability and sequencigg ﬁrublnmi in marked grapgs' and ' !
state graphs. Most of the results prnientcd in the thesis . Lo
are based on linear-programming formulations of relqylnt ‘

’ L — . .
problems. ‘ . : ’ }

Our study of problems related.to ' marked 6ra§hs is “

’

presented 1in Chqﬁtcr: 2 to 6. In Chapter 7, we d{lcuSl

. 0 %
certain questinng relating to 'state graphs.

- . - ~ ¢

In Chapter 2, we first give angrithmic " proofs of
., reachability theorems for capacitated and uncapacitated

mqued graphs. We then define thp concept of scatter of a

firingi suqu;ﬁte“wind coni}dgr the pFoblcm of pcsionQAg—
minimum—scatter fgriﬁq sequences executing a 6iv¢n firing-
" count vcctuf.L» Ve conq}ud; this chapter with a graph-
theoretice chiract;rization of the reachability probl’myfér

(0.1)-caﬁ|citatld marked graphs.

In Chapter 3, we consider the problem of obtaining a
maximum—-weight marking reachable from a given initial
marking. Ve formufatn the problem as a linear program and.

give details of an algorithm based on the Simplex Method.

3
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We offer iqﬁcrprqtationi. in terms of firing operations, to

those which one encounters in the theory of network

pragr;mming. Our study covers both live as well as nonlive

"

capacitated marked graphs.- ,

In Chapter 4, we study the submarking—-reschability

prablem. We ahow that this problem reduces to an

equivalent I;near—proqramming‘broblnm defined on a smaller‘

graph. UWe present an approach which unifies this study for
¥
both the‘cnpacitated and uncapacitated cases.

In Chapter 5, we prove the lquidzlnnce between the

submarking-reachability problem and the problem of testing

" fmasibility of the dual transshipment problem. We then
& -

'give an algorithm,- called Algorithm REACH, to solve this
feasibility testing problem, Proof of correctness and

complexity analysis of this algorithm are aisc presented.

¢
©

In Chapter 6, we distribute Algorithm REACH. Ve

‘present the several procedures constituting  this
distributed alqoritﬁm. The place of this distributed
llgoﬁifhm in the context of dilfributna \gladrithms for
other graph problems as well as the ponsibiliti;s it opens
up for distrisutinq general network optimization problems

~

are discussed.

In Chapter 7, we study ceartain problems on state
.graphs dual to same of those discussed in the wesarlier

chapters on marked gr‘bhé.

—iv -
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_ dther researchers involved in

» Chapter 1

INTRODUCTION

A variety of models have been developed for, and

[

applied to, the ruprnsenfation. analysis and specification

of communications protocols ind parallel computeE programs.
These models are ihrgely 1l anguage—theoretic and/or net-
‘ . . /

theoretic in -nature. -They include state-machine modelg,

formal -1 anguage méacit. proqramming—languaqe models, Pethj-

net models and mixed models [11, £21].

~

The central naii&n‘in the network-theoretic'mndell is
Qoncurroncy.among discrete events and conqitions. The c&n-
ditions dictate uh;cﬁ nvqﬁté nrc.cuncurrcntly related and
the svents affect thej:ondigzon;: Discrete events and con-
ditions and th!ir interactions are represented with a graph
modei such as the Petri b-t:  It should pe mentioned that
a greﬁt qeélldf language-theoretic ressarch has besn cent-

ered around Petri nkts. The net-theoretic or system—theor-

etic approach reflects the philapophy of Petri, Holt and

his area. Other graph models

o

which are either generalizations, extensions, variants, or

special casés of Petr;lnnks include timed -Petri nets,

numerical Petri nets, complex bilogic or UCLA graphs, par—

gk;el—proqr!g~schumata, computation $raphs, state machines,

and marked graphs. Reference to these and other models may

.be made through [1] and [2]. The inhcren} feature of these

K]

¥
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. qribh models is that concurrency relations among events in

&

the process being modeled uvolQI uiﬁh the process hs' it
executes. With the possible exception' of timed Pitri~n¢£§:
the notion of time is absent in the ne¥\modnls. The net

>

‘?Ipﬁll!nt! an interplay between states and activities and

e

thus, the representation is independent of\timc. The pas-
sage of time only imposes a partial ordering on the occur- |
ence of events. Hence, all bbllible executions of a model-

ed system are r‘presented\in the net. This greatly facili-

[

tates the modeling  of control in asynchronous discrete

-

concurrent systems. . "

i
H
i
i
H
.

an important characteristic of these models, as with

models 'in general, is the trade off between madeling power

and analytic tractnbility. ngstiuns of interest concerning

Petri nets are, in general, exponentially hard to answer. S

~

Some important decision guestions are sven undecidable (an

\

algoritﬁm cannot be constructed to answer them) [11, [2].
any significant extension or generalization of the Petri
net tends to result in a Turing machine equivalence, and

fé(,hen;e, intractability prevents easy analysis. ~

Iﬁ the next four sections, we describe, briefly, the

Petri net and three specfil\cqggg of the net, namely, - the

e

state graph, the marked graph, and the computation gqaph.

o

1.1 Petri_NQtn

A Petri net is a directed graph G = (P,T,E) with a set




of vertices P,
transitions: and ; set of directed edges E C (P x T)‘U
}T x P) coﬁnectinql places to transitions and vice—versa.
In the terminology of graph theory, \a Petri 6et is bipar—
tite with bipartition (P,T) because' the edge set E contains
no wedges from either P x Por T x T. The topn!ogy of a

Petri net defines input and output sets for each place and

&

trlnlition AS

+

=

Using the set notation, we have P & {p.,p=,P=.Pa}, T 8 {t,,
tzvts}v and E # {‘vatx)o(Px'ta)-(sztz)v(vat:)v‘{;npi)!

(t,,p3),(tng.),(ts.p.)}' for the Petri net of Figure 1.1.

called places,

a set of vertices T called

I(p,) @ {tt.(tt!p4’ € E}s
o(p,) & {t.1tp,,t,) € E},

1tt,) @ {p,1¢p,,t,) € E},

o(t,) & {p.I(t,,p,? € E}.

'

Figure 1.1 depicts a Patri net whare places are repressnt-

"~ed with circles and transitions are represented with bars.

By inspection, the input and output seats are

-

I{p,),
I(p=)

I(ps)

1(pa)
CI(t,)

S )

1(ts)

8 {t},

# {t.},

¢ {t.},
8 {3},
e {p.},
¢ {p=}
g {p.ips}y

© 0(ts)

0tp,) {taota}[
{tz}p‘ '
{ts},

£
O(p,) &
8

Oi{p,) R 9,
t £
8
f

O(ps)

o

{p=.pi}s
{Px}c
{pa}.

Q(t,}

0(ty)
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Associated with each place.p, € P is a nonnegative

integer M(p,) called the marking or state or token-count of

place p,. The distribution M of token counts is calln? the
ncF*ing orpstltcvof the Petri nat. In the Petri. net of
Figure 1.1,tokens are F-prelentcd by the solid dots occupy-
ing the places. “Thus, for this net, M(p,) = 1, M(p;) = O,

Mipy) = 3 and M(p,) = O,

Associated with each transition t, € T is a transition
function d, (M) mapping M into a new marking M’ rcsultiné
from the firing of tFapsitiQn t,. The transition function

6. (M) removes one token fqom each place in I(t,) and puts

-+ aone token on each plnée in O(é‘). Since M’ must be nonneg-

ative, a transition t, can fire if and only if each place
in I(t,) has at ieast one token under M. A trlngttion
t, ET with M(p,) > 0, V Py € I(t,) is said to be  enabled
in M ;nd, henc¢: nligigiéﬁ;or firing in M. Both transitions
@; and t< are enabled in M in the Petri net Qf Figure 1.1.
Note thlg transitions t, and t5 are in conflict in the
sense th;t although they are simul tanecusly enabled in M

they cannot fire concurrently since the firing f either

. disables the other. The firing of t, under M riesults in

€ . :
the marking shown {9,Figur! 1.2,°
1.2 State Graphs s

4 FPetri net G = (P,T,E) is a state graph i

@
IT(t,) | = |OCt )| = 1, ¥ ¢,

-5 -
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Figure 1.3
A state graph as a Petri net

) ~
f f

Figure 1.4 -

A state graph




Figure 1.3 illustrates a state graph. éince each transitiqn
has exactly one input plaEc and one output place, then the
bars may be dropped from the diagram and transition; may be
represented simplycwith edges of a graph as shown in{Figure
1.4. Thus, a ;tht! graph is n-direct;d graph .G = (V,E) on
vertex set V and n&ge set E, Auhose verticps represent
places and whose' edges represent transitions between

pla:;s. “The state graph derives its name from the state

machine in which vertices represent states anduedges repre—

sent possible transitions betwsen states. The state graph

is wlightly mbrl general in that vertices represent state

A variables. We think of the marking M (the values of the

‘variables) as the state of G. A state michiﬁg is included

in this definition as the special case of a state graph G

containing dx;ctly one token. The state grabh illustrated

'

in Figure 1.4, is defined by the sets - §

' .
. 1

vs{i 920314}9

YLE R {01,10,01,2) (2,3, (2,8) 4 (3,1), (3,3) , (4,10 }

\

_and has the marking M(1) =1, M(2) = {, M(3) = O and_

M(4) = 2. Transitions (1,1), (1,2), (2,3, (2,4) and (4,1)
are enabled under M. The firing of a transition e = (i,J)
€ E. simply moves one token from place i- to place j. In-

tuitively, we see that the token mévement induced by activ-
) .

ity in a state graph behaves like a token flow. ‘Indeed, a

state graph models a qloscd network of queues wits a single

“customer class.

T
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1.3 ghrknd Graphea

A Petri net G = (P,T,E) is a marked graph if

L] —
1ICp,) | = |OCp,)| = 1, ¥ p, € P. . .
f’{»m'
This definition is dual to that of'a\;tatg‘grlph. _Figure
1.5 shows a markedv graph. Spincc. !;ch plac; has exattly one
fnput transition and 6ne»output transition, then the cir-
‘cles may be dropped fr‘,om the di-g‘mm by representing the
places with edges of a graph and " the transitions with
v-rt_ices as sho;m in Fiqﬁre 1.4, where circles replace the

{ .
bar r'éprclsentntion of transitions. Thus, a marked graph is

a directed graph G = (V,E) on vertex set V and edge set E,

A

whose vertices represent transitions and whose edges repre- f

sent places interconnecting transitions. \:l'oknns occupy the

L

edges of a marked graph. The marked graph of Figur;l 1.6 is

1

L

E-& {(1,2),(1,3),(2,2),(2,%),(3,4),(4,4),(4,5),(5,2)}

defined by the sets

- v g {1,2,3,4,5},

i

and has marking M((1,2)) = 1, M((1,3)) = O, etc. The firing
of a transition v €V .in ‘s marked graph G removes one
token from each JInput edge of v and puts one token on each
output" edge of v. It should be clear from this def'inition .
that, in general, the tc;ken movement induced by activity iln
a marked graph differs radically in character from that in
a state qrﬁph.” In apite of this, th- marked graph provides

a model for a class of queueing networks in which every

-g - ! .
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e

queue is fed from wxactly one input process and feeds

exactly émc output process. Such a model arises as a re-

)

stricted data~flow graph in ’>which the flow of control has

'
’

no data—dependent branches. ‘ v
, : , /o
1.4 Computation Graphs ‘ .

An  extension of'a nlmrlm;! graph called a computation
graph was introduced by Karp and Miller (3] as a rconc'ur-.r!nt
model fur‘,rcpr.scntinq‘ the flow of data—independent control
inherent /'in a number of iterative type computations, 'A4
computation graph G = (V,E) is a marked graph in which an
input quantum Q;(e),, an output quantum 00(/0) and a thres—
hold er) are associated with each edge e € E‘.‘ Thcse‘
quantities are defined as folloyas.' If # = (i,j) € E, then
‘cach firing of vertex i puts 0,:(3) tokens on edge ®. 8imi-—
larly, Q.(e) tokens are removed from edge @ each time
vertex j fires. A v“'!.r‘tlx v €V is snabled under M if and
only if M(e) ) H(e) on each input edge of vertex v. A
marked graph eis the special ca_le of a computation graph
when Q;(e) = Q (e) = H(e) = {|, ¥V @ € E. Figure {.7 shows a.

computation graph representing the iterative solution to a

set of difference equations.
1.5 Analysis of Marked Gf‘lphl'

We now briefly introduce some important definitions
and results which will be us'dd in our presentations in the

following chapters.

- 10 =
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Figure 1.7

& camputation graph
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the edges inc[g;nt into 1.

The definitions for marked graphs that follow carry
, ' v .
over to equivale#t definitions for state graphs and Petri

nets.

™\

A wmarked graph, as defined in Section 1.3, is a di-

v

rected graph G = (V,é) with vertex set V, edge set E, a
nonneﬁative—integen column vector M associated with E,
calledra marking, state or tokdg di:}rieution qf G, ;nd a
statc-tFansltlon function d, (M) mapping M into a new mark-
ing M resulting from #iriﬁg vertex i Evy; The transition
function subtracts one token from M on each edge incident
into i and adds one token to M on each edge incident out of

i, to obtain M. Since M’ must be nonnegative, d, (M) can

be applied only‘if M has a positive token count on Qagh

edge incident into vertex i. In other words, to be legally-

fired, a vertex must have at least ong token on each one of —

4its input edges. A vertex .is said to be enabled under a
marking M, if it is legally firable under M. The enabling

number of vertex i is the minimum of the token counts "on
Y

*

A marking ‘ M’ is reachable from a marking M if some

sequencé. of legal firings will transform M into M. The

reachability set R(M) of a marking M is defined as the set

' éf all markings reachable from M. Since the null sequence

is trivially legal, M € R(M).

A marked graph G is live under a marking M if wmach




Fid

=
X
S

'vortlg i€

Y . .
G can be enabled through some legal firing

»

sequence starting from M. The marﬁing M is then called a

live marking. Liveness is characterized in the <following.

theorem [(4],. where the term dead-subgraph refers to a
. . 4

LY

token-free directed circuit.

Theorem §,it A marked graph G is live under a marking M if

and onfy if G contains no dead-subgraphs under M.8

a markeq graph G is bouﬁdcd under a marking M, if the
token count on each edgek)e € G, im finite in every marking
in R(M,). “Boundedness is‘guarénteed if and Dnly if weach
edge of G belongs to a directed circuit with a finite token

count. The marked graph is called k-bounded under. .M, if

Mie) L ky Ve € G, VM E RM,). ' A 1-bounded marked graph

is called safe. The safeness condition is charqcteriznd in
the following theorem [41, wﬁcre the token count of - a
directed circuit refers to the sum of the tokens on the

edges of the circuit.

N
'

Theorem 1,21” A marking of a marked graph is live and safe

if and only if every edge in the graph belongs to a dirnht-.

ed circuit with token count 1.8

. Let G be a marked grapﬁ with an initial marking M, .n&

let M € R(MS). Then, the differential marking &, 2 M - M,
satisfies Kirchhoff’s voltage law in G [5]. Thus, if B, is

Pe

a fundamental-circuit matrix of G, then

B,A. ® 0. (1.1)

>,




S

i

This simple and elegant r.sﬁlg, due té Murata, as profound
as Tellegen’s theorem, is the basis of almost all of the

results in this thesis.

In . view of Equation i.l, we can consider the ele-

ments of A, as voltagls of the corresponding .dg!s of G.

d:inq well-known network-theoretic results, we can deter-—
mine a set of node voltages {o,,&z,oo-.an} of G such that

o, — 0, = Dyle) where @ = (i,j) EE is the edge directed

from vertex i to vertex j and A,(e) is the component of A,

corresponding to edge e. Let £ & (o,,05,°°¢,0,,1% denote the

column vector of o,’s. Note that

AL = A, (1.2)

whera A is the incidence matrix of Q. I1f the lmallalg

’

entry in ¥ is not a zero, then we can obtain such” a vector

Lo by adding an appropriate number to all cntrifs in E. It

is easy to show that I, also lntilfips (1:2) and it ‘is

‘.

unique for a given value of A,,. The Viétor Foc is called the
minimum nonnegative-firing~count vector and the o,’s are

called firing numbers or firing counts. The i*".element of

Eo indiﬁatns _the minimum number of times vertex i would .

fire in a firing sequence leading from M, to M. The vertex

with Zero firing count will be referred to as a datum.

As an example, twoﬁmdﬁkings Mo and M of a graph G are

.

shown in Figure 1.8. The corresponding .

- T _— ‘ - .
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It can be verified that A, satisfies Kirchhoff’s voltage

law in G. Furthermore,
\,~

ViyVzsV3eVaeVe
E=¢ 0,-1, O, O, 11%,

satisfies Equation 1.2. Adding 1 to all of the slements in

£, the minimum firing-count vector I  is obtaingd as
Eo = [l’ 0’ 1‘ 1’ 2’]t-

The . following legal firing ;uquonce executes £, and takes

N

M., to M: .

1,2,1.,1
VaiVaVaeVxy

"~

{
where vj§ refers to the operation of firing vertex v,, k

times, consecutively.

g ,
W

& nonnegative firing-count vector £ is said to  be

executable frum M, if a legal firing sequence exists start-

ing from M, .and its firing-count vector is L. 'Note that

"for any b, satisfying Equation 1.1, -existence of [ sat-

isfying Equation 1.2 is guaranteed. Howév-r,*thit alone

dne3‘not.guarantee,exccutability of L. Exicutability of Eo,
e . ’

or, equivalently, r.a:haﬁility af M from M, is éharncterf

ized in the following theorem [51:

A

Theoren 1.3 (Reachability Theorem): Let M_, and M, be twd

markings of a m‘?ked grqpp G. . Let A, =M, - M. M- i

iN

P
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— . * L L.

reachable from M, if and only if

i) B, = 0, and /A‘\\‘*”"’///)

ii) o, is zero for mach vertex belonging to a dead-sub-

graph of G, where

Eo = [0,402,°%%,0.3% ) O

is the minimum nonnegative solution'of

L
W

Atz Ld An- .

‘ .
A capacitated marked graph is a marked graph G = (V,E)

in’ which: a Towarbound L(e) and an upperbound U(e) are

specified on the token count N(ei of each éﬁge e €EE, for

_all markings of G. . | ) -

'A marking M of é is called feasible if and only if
L(e) ( M(e) ( U(e) V' e €EE. We  state this feasibility"in
vgctar notation as L (M ¢ U. \§hil définition reduces to
the original definition when L(e) = O'lnd“U(c) = m,@ht é E.
In a qheueing, network context, the upperbounds can repre-

;.

sent ltnragé capacities for the associated queues. Nonzero

’lowerbounds may seem meaningless in this context. However,

we include them since they present no further complications

and they represent the general case. \ "

The enabling number of a ‘vertex v G\b under a marking

M of a capacitated mark.d graph G is defined as

-

. = min{ min {M(e) - L(=)}, min {Ule) - M(e)}}, (1.3)
e € EC e € ES

\
- 17 2




where E. and f: are the input and output edge sets of

vertex v, respectively, This reduces to the usual defini-

‘tion for uncapacitated Ggraphs when L(e) =0 and

s

\qq?A

3

“Ule) = w, Ve € E.' A vertex v is enabled or legally fir-

‘able under a marking M if its enabling number under M is

greater than zero.

1

Let CCE be a ;;rcuit of G and define an arbitrary

orientation for C. Let €, and C_ denote the subsets of C(

consistfhg of all edges following and opposing that orien-’

-

-tation, respectively. A dead-subgraph of a capacitated

marked gnaph‘G under a marking M is either

N

1ui) an edge e € E with L(e) = M(e) = Ul{e), or
‘1i) a circuit C = C_ U C_ € E such that either
M(e) = L(e), Ve €C, and M(e) = J(e), V @ €E C_,

or .
- M(e) = U(e), Ve EC, and Mle) = L(w), V & € C_

T irst form of a dead—-subgraph is trivial. An edge

@ = (i,j) € E with L{e) = M(®) = Ule) forces u, = u, = O in

. ’very f---th- marking of G.

N . 4 - / e
4 capacitated marked graph is Ilive under a markgﬁgg‘H

if each vnrﬁ-x i € G can be enabled through some legal

7
firing sequence starting at M. Liveness of a capacitated

. marked graph is characterized in the following theorem. .

»

T rem 1.41 A capacitated marked graph G is live under a

harking M if and only if G has no dead-subgraphs under M.8

- 18 -
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Necessary and sufficient conditions for reachabilxty
of capacitated markcd graphs are grv.n in the follouing

tﬁeorem. ’ X

Theotrem 1.5 (Capacitated-Reachability Theorem): Let M, and
M. be two feasible markings of a marked graph 6. Let A,

= M. -M,. M. is reachable from M, if and only if

°

i) B,A, = 0, and
. , T
ii) o, is zero for mach veartex belonging to a dead-sub-

graph of G, where
I, = tv,,v;,---ea * )0
is the minimum nonneqativc'solutiaﬁaof

. ASE = 5,..8

[

We nmxt give a brief review of the literature on the
study of marﬁ.d qrnpﬁ:. Broadly spnaking, contributions to
the theory " of marknd graphs and their oxt-nsiops can be
categorized into three grnuéll analysis, synthesis nnd"
applicatibns. ' . '

&

As regards analysis, a numbor of interesting ro-ults

- have b-en reported [11 «» [35]. Of lpccial relevancn to the

work presented in this thesis are [3] ¢« (7]. In (3], Karp
and Miller have cuhiidnred laviril problems related to the
computation graphs which are a q.neralization of the marked

graph. In T4, Cnmmunor, Holt, Even and Pneuli have pre-

Y
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sented, among other things, an algorithmic upprbuch‘to the

reachability probl!@‘ and have also studied the maximum;

marking problem. As we have already mentioned, Murata [3]

»’

has presented a circuit-theoretic approach to the study of
the rcachability prnblnm; R;cnntly, Kum;gai, Kodama and
Kit:qawn 63, £71 have introduced and studied the submark-—
ing reachability pr-;:blnm. Related t& the problem of reacha-
qility is that of controllcbiiity wh‘ch has bsen considered
in [83 and [?}l. Different class;s of extended marked graphs
have been proposed and igvestfgated'in £10] s« [12].‘ An
cxtcnd;d marked graph is an augmented marked grabh having

specified arcs between some pairs of places and transitions

to' represent the pqrmisqive controlling function for fir-

. ings ofhthe Forreshonding transitions.

As regards synthesis problems related to marked

graphs, in [5) has been considered the problem of finding a
marked graph which possesses a given set of markings as
set (s) of specified mutually-reachable markings. 'Cartain

reduction and expansion téchniqucs useful in analysis. and

synthesis have been presented tn q13J and [143. In [361,

Murﬂta has presented a method for synthesizing or growing
.\ !

live and safe marked graph models of decision-free
concurrent computations. In this synthesis, certain
properties of the required marked graph such as liveness,

safeness, the number of reachability classes etc., can be

prescribed. In [37] has been considered the problam of
b

o o i e < s




t

realizing the synchronic distance matrix of a marked graph.
Suzuki and Muratad have prcslntod’h refinement technique in

{161 which can be uswd as a top-down approach for synthes-—

izing Petri-net models of concurrent systems. Recently,

Datta and Ghosh .[38] have introduced a new class of Petri

nets called regular nets and have presented a syst‘matic,

method for synthesizing regular nets.

o

Several applicationms of P-tfl nets and their variants

have been reported [IP] ¢ [65]. These lbplicatinnq include

per-formance evaluation, communications protocols, computer

software, robotics, etc. e

1.6 Bcope of th‘,Th-si:

This thesis is concerned éifh an algorithmic stu&y* of

reachability and sequencing problems in marked qraphi and

¢

state graphs. Most of the results presented in the thesis

"are based: on linear-programming formulations of -relevant. .

~

problems.

Our’ study of p;bbllms related to marked gqraphs is.
1 -
presented in Chapters 2 to 6. In Chapter 7, we diicuis
certain questions relating téxltatc graphs.

In Chapter 2, we first give algérithmic proofs of

%

‘reachability theorams for.capacltatld and uncapacitated

marked graphs. We then define the concept of scatter of a '

14
iirina“suquence and considér the problem of designing

L4

\

» .
1
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minimum-scatter firing sequences exscuting a given firing-

count vector. We conclude this chapter with a graph-

theoretic characterization of the reachability pfoblem for

(O,1)~capacitated marked graphs. This result has been

>

motivated by results presented in [464] and [4671].

. 7,/
Ig/Chaﬁt;% 3, we consider the problem of obtaining a

maximum—weight marking reachable from a ‘qivcn initial
bnrking. We formulate the problem as a linsar program and

give details of an algorithm based on the Simplex Method.

\ﬂc o*ch lnferpretations, in terms of firing cperations, to

those which one encounters in the theory of network
programming. Qur ltudy covers both live as well as nonlive

capacitated marked graphs.

:, In ‘Chapter 4, we study the lubmarktngfrcachability

prohlpm; We show that this problem reduces to . an

. |
equivalent liqeur-progrnmminq problem defined on a2 smaller

graph. We present an approach which unifieés this study for

both the capacitated and uncapacitated cases.

B

In Chapter 5, we prove the equivalence between the

submarking-reachability broblim and the problem of tes‘ing
herr——

feasibifity of the dual'transshipment~problem. We ¢t
give an algorithm, called Algorithm REhCH, to solve this
feasibility testing proBlcg. Proof of correctness and

complexity analysis of this algorithm are ailo presented.

In Chapter 6, we distribute Algorithm REACH. We

1
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.preasent’ the ssveral {proéodﬁﬁcs | constitutin; this
distributed  algorithm. The place of this distributed
algorithm 1in ‘thl_ context of diithibutod wjgorithms for
iothcr graph problnm!'a- well as the po:sibilifici.it ,opens
up for d;stributing general netwérk optimization problems

are discussed.

In Chapter 7, we study certain problems on state

graphs dual to some of those discussed .in the earlier

' chapters on marked graphs.

f

Finally, in Chapter 8, we summarize our contributions
in this thesis and point out several open 'problems for

futuhe research.




' Chapter 2 '
REACHABILITY AND SEQUENCING PROBLEMS ON MARKED. GRAPHS

\\ .

hr’% .
N
In fhis chapter, unlltudy certain questions relating

S~

to‘thn'rnachability problem on marked grfnpl". We first give

an algorithmic proof of the reachability theorems (Theorems

1.3 and 1.5). We then define thq concept of scatter of a -

'firing' sequence and discuss algorithms for constructing

. ¥ .
firing sequences with minimum scatter, executing a given

executable minimum firing-count vector. Algorithms for °

diffekont classes of graphs are devclapld.. ‘Finally, we
study the ftructurn nf the Flachability problem on (0,1)-
c.paci}ated marked graphs aﬁd give a graph-theoretic ' char-
a:t-riiniiun of this problem. Our study here is motivated

"by similar results reported in [66]1 and [&71.
2.1 Executability of a Firing—Count Vector ‘ .

In this saction, we qivi an algorithmic proof aof the
reachability theorem (Theorem 1.3) due to Murata ts1. The
proof here is based on that of Theorem 5 in [41]. We then

extend this pﬁoof to the capacitated case.

. f
Thetrem 2.1 (Reachability Theorem): Let M, and M. be two
markings of .2 marked grqph G. LQtAA" = M. - M. . is

reachable from M, if and only if

i) 'B,b,, = O, and : 2.1)

|
]
|




ii) o, is zero for wmach vertex belonging to \a dead-

BI subgraph of G, where
) Lo = to’xvo'z!f"vo'njt 20

y A

is the minumum nonnegative solution of

AL = A.. (2.2) .

Proaf: .

»

N-ccll;tya Obvious.

£
Bufficiency: ye may assume that Lo ¢<0. Otherwise, M, = M_
and the case is trivial. To prove the theorem, we shall
first show that there exists a‘legally firable or enabled
vertex with its firing éount‘nunzcro. Consiqcr any oy } 0.
1§ vertex i, is not -nabléa, then thgre exists an edge e’-
(iz41,), directed from some vertex i, to vertex 1i,, with
Mo(m) = 0. C(Clearly, LT ) 0. If vertex i, is also not

anabled, then repeat this process until a sequence of

vertices i, ,io,***,i,_,,i, is located such that:

® j,4in,ve,i, _, are all distinctj;
c o, 00, for j = 1,2,%ee,k}
e for each edge'e = (i, ,,i,), J = 1,2,009,k~1, direct-

ed from vertex i,,, to vertex i,, M (e) = 0.

Case 11 vertex'ik is legally firable or

Case 2t i, = i , for some j € {1,2,000,k=2}.
; .

.

!




' . '
One of the two cases abave should occur because the graph G

is assumed to be finite. ‘If Case 1 déLurs, then an enabled .
e ,%.‘ ‘ i
vertex with nonzero firing count hasgsgen found. Case 2

cannot occur § .ﬁ;t would/wcan the existence of a token-
ree directed circuit (dead ;ubquph) {,_,,ik_z,-;O.i,,lk_‘

with lgch of the vertices on this circuit having a nonzero

firing count, thorgpv contradicting the hypothesis aof the

theoren. : - ;

.

Now, fire the vertcx’ik. This would result in a new I

-

P -

marking M, and a new firing-count vector E,. The marking ,ﬁ‘
M, is obtained by -increasing by one the token counts of all

the edges direcﬁed’lwly from i,, and by decreasing by one

L4 . . N
the token caounts g& all the edges directed into i,. Also, \ .

E, ~obtained from\to by subtracting one from o Clplr—

[N U

ly, M,, I,, and the vector M. - M, satisfy the hypothesis

N

of tﬂp theorem. If M, = H;,‘ihen L, = 0 and we have estab-
ished the reachability of M. from M. Otherwise, loc;tn
an enabled vertex in M, with a nonzero firiné coungan' E,
’l .and fire this vertex.  Repeat ghig ﬁrocass until a marking
equal to M, is reached, with a 4iring—cognt vector f:leéﬁal
to zero. The hypothesis of the thaakem guaraﬁtous the

termination of this process and, hence, the execufability i

of E, leading grom M, to M_.B
: /

Theorem 2,2 (Capacitated-Reachability Theorem): Let M, and
M. be two feasible markings of a capacitated marked graph

G, Let A, =M. - M,. M_ is reachable from M, if and only . if

» q !
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i) B,A, = 0, and

ii) o, is zero for each rtex belonging to a dead-

subgraph of G, where ‘ o . -
\xo“' [0,4024°%%40,1% ) O J d

"is the minimum nonnegative solution of

Is [

A*E = A, " . ;
\ - P ' i
s ;
Proo+ts
Necessity: Obvious. ’

- SBufficiencyt An edge @ € E is depleted. whenever M(e) = L{e) :

' ‘ ,and is saturated whenever M(e) = U(e). In these terms, we

may say that a vertex of G is legally firable or enabled

hixY

under a marking M if and only if it has no depleted input’

‘ mdges and no gafurated output edges. oL

Proceeding along the same lines as in the proof of the

uncapacitated reachability theorem (Theorem 2.1, we shall

first demonstrate the existence of an enabled vertex under
L P “ith nonzernlfiring count. Consider any . ) 0. I¢ .
vertex i, is not nnab}ed in My, then there exists either a
. ' depleted edqe: e, - (inyi,) or a saturated edge e, =
- (i§,i2). Note that oi; ) 0. | If vertex i. is also not
enabled under Mo,' thgn there exists eithe; a _depleted mdge
es = (iy,in) or a saturated edge ez.- (i—,ix). Repeating

this process identifies a sequence of vertices i,,i., cee,

'




~

f{u-s1¢i, and edges ew,,e2.,*** . e, _, such that

* i,5izy%00,i,., are all distinct;

oiJ ) O, for § = 1,2,008 k3. < x
e for each edge e,, J = 1,2,%0¢ k-1
either e, = (i;,i,+,) and e, is saturated

4
or e, = (i,.,, iy) and e, is dua&nted.

J

Two cases arise for finite graphs:

Case 1: vertex i, is enabled or

Case 21 1, = i,, for some j € {1,2,*¢,k-2}

- -
’ .

- In Case 1, we have'located an enabled vertex of G
under M,. Case 2 does not occur for tpat,wbﬁld imply the
existence of a dead-subgraph, V(thd circuit i, 4i,_=,°°°",

i,yi,.,) in which all the vertices have a nonzero firing

: ~
count. Jhe_remgind-r of the proof follows exactly as in the

uncapacitated case.l
[ : :

2.2 Scatter in a Firiﬁg Sequence

/

A Tiring traversal of a marked graph.-is a traversal of

-the. vertices of the graph which executes a' given legal

firing sequence. Thus, a firing traversal must. visit Yer;
tices of a marked graph in éhe order ;ictated by the legal
firing sequence and. uﬁq;tn the marking by +firing the-
vertices. With_ this algori£hmic hefinition‘of a firing
;rhversal, equivalent ’fi(inq sequences l;adinq from a

1

common initial marking to the same final making' may be




J

* e

.y

4

studied. Consider execut{ﬁg the firing sequance a=bSac*.’.

This rcpré#entation is ﬁsed toAindtcate'fﬁat the vertex
Igbelnd a is visited and ;irqd two .t;mes, consecutiveLZ&
then vertex b is visited and fired three times, consac;—
tiyely. ;tc. Among all possible legal firing sequences
betwean two markings on a marked graph, which of these will
require a minimum number of vertex visits in a fi;ing

traversal of the marked graph? This questioné leads us to

the cdnc.pt of scatter in.. firing sequence.

The scattdr of a firing sequence F, which we denote by

‘wscatter(F), is the difference between the number of vertex

b

visits needed to execute F, and the number of distinct

vertices visited in a firing trnvnrla}. For examble. if

F = a*b~ac*, then scatter(F) = 1 because a firing traversal

with F would reduire_four vertc& visits (a,b,a,c) and

three distinct vertices a, b and c would be visited.  Thus,

the scatter is a nonnegative integer.:

Note that in this definition of scatter, consecutive

#irings of a vartex are considered to occur during the same

visit\ of that vertex. An algarithm to perform a firing:
“\

’

traversal might use a representation of F as an ordered

list of bqirs of the form (label, coefficient). The scat-

ter in F\‘would then' be the number of pairs in a firing

N

sequence miﬁhs the number of distinct jﬁbels. I€¢. the

scatter of a firing sequence is zero, then a firing traven‘”

sal uxecut%hg it will visit each vertex at most once, For

s
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graphh as shown in Figure 2.1. Each vertex in this graph

‘Viﬁtices 1’ to p’ represent commodity sinks or distribﬁtiun
centers to the external world. The token count on edge

‘{1,3) incident into vertex j reprcsénts the number of units

A : ’ ‘

a . general graph, a zero—-scatter fiFinq sequence is nﬁf

always present between an initial marking and a reachable
final marking. This leads to the problem of finding a,

minimum~scatter firing sequence leading from some initial

marking to a reachable final maﬁkinq.

We now discuss an application which provides the moti- *

vation for introd&cinq the concept of ;cdttar.' Consider - ~

modeling a general industrial environment with a marked I

represents an activity. Vertices 1 to k represent

commodity sources of possibly different cdmmodities gzjnq ‘ )

introduced into the ;nvironm-nt from the external world.

of some commodity made available for procn;sing at vertex
5. For an ;ctivity i to occur, there must be at least Dne\

unit of all the required commodities uhich,‘ in fact, cor- ' v
respuqu to having at least one token on each input‘edge of

vertex i. Occurrence of an icfivity i, thus, corresponds to

firing vertex i in the marked graph. Firing a 'vertex
consumes one .unit of commodity from each input edge and
produces one unit of cémmodity on each oufput -adge. 1f

edge (i,j) is incident out of vertex i, then comﬁlttion of

activity i makes one unit of some commadity availabie for

prncessing_‘at vertex j. It may be noted that| initially

/
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cerﬁain edges may have a nonzero token count. This may

represent the initihl‘léltc of the environment. The final

state corresponds to a ﬁredefiﬁ.d level of production, made
aQnilable for con:uﬁption to the axternal world through the
distribution centers. In other words, in f‘fgfinal -tnéc,
the wedges incident into the sinks will be required to have

certain specified numbers of tokens.

At each vertex, a machine is available for carrying

1

out the correspoqﬁing activity. Starting a machine from
the shutdown state may involve considerable overhead cost.

It is obvidusly cost~effective to minimize the idle running

LY

times of the machines, so0,. a machine at any vertex is shut
down whenever that vertex cannot be activated. Thus, it is

desirable to minimize the number of machine starts. It
@&

should be QnQy to see that the numbér of'vlsitl in a firing
JI

sequence leading ?rom the initial marking to the final

marking is a measure of the overhead cost incurred in

reaching the desired production level. This motivates the

. N
introduction of the concept of scatter as well as the

problem of determining wminimum-scatter firing ' sequences.
This model can be further generalized by. modifying the
firing ‘rule or by incorporating a set of firing rules or

semantics [468] as described for the design of a distributed

bperating system kernel.

!

To illustrate the concept of scatter in firihg se-

quences, consider the darkf&qs M. and ﬂ,b of the directed

- 32 -
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Marking M,

Figure 2.2(b)

Marking M,
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graph shown in ﬁigure 2.2. The #iring-count've:tor I, 2
Cogs0ps02,051% = [3,3,4,0]1° is executable from M, and leads
to ﬂ;o. Some possible legalu¥iring sequences are a“b ac®,

L)

ba’b’c‘, ca®bac® and abZa®bc*. The first two of these
have scatter one and the last two have scatter two. " The
sequences a*b~ac® and bab?c* are minimum-scatter firing

sequences executing E, from Mo;

The‘ effective enabling nu,bcr 6§,’ vertax v is the
minimum of the‘anabling and firing numbers of v. Thus, the
efféctive enabling number of vertex v at any visit in a
firing. traversal is the maximum ndmper of times v can be
legally fired auring that visit without exceeding the fip-
ing number at that visit. The disabling number of a vertex
v, at any visit, is the difference between its firing and

effective enabling numbers at that visit.

Before presenting the algorithms to determine minimum-—
scatter' firing sequences, a few observations can be made

about marked graphs.

1. Since a datum vertex always exists, at least'one of
the firing counts is zero. That is, at least one vertex of
the qraﬁh need not be fired to bring any initial marking to

a reachable final marking.

-

2. The markings on‘ail input mdges to a datum vertex must
either remain the same or strictly increase %nnm their

initial values in any legal firing sequence.

- X4 -




2.3 The Greedy Firing Policy -

e

3fi The .markings on all output edges of the datum vertex

must either remain the same or strictly decrease from their

‘initial values in any legal firing sequence.

i

4, 1f, at any visit during the generation of a firing:
sesquence, some vertex is encountersd that is enabled to its
corresponding firing number, then it can be fired rcp-ntndi¥<'

ly until its firinglnumber has been satisfied and then

removed from the graph together with all edges incident on

'

it. The problem then reduces to finding the remainder of

-the firing sequence on the resulting subgraph.
. * .

W
2

" . -
5. A source vertex (that is a vertex with no input edges)

can be fired independently since it an no .input edges.
Thus, a souﬁca need be visited only once in a fihjnq trave-

ersal.

A

In the example of the previous section, the -fflctive’

enabling number A, of vertex a under the marking M, is

given by

< 4

A, 8 miq{a:.ﬁo(n‘),ﬂo(az)} = 2,

There are two possible ways of firing vertex a iiajit is

visited under the marking M,. The two. firing sequences

;abZaZhc* and a*b“ac® are examples of both. In general, if

A, is the effective eqabling number of vertex v, under a

marking M, then there are A, possible ways to fire vertex

-35 - N
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v, if it is visited under M (since it can be fired up to A, ¢

times and it muat be firedlat least once during a visit).

/

An algorithm that:. generates m{nimum-scatter firing

v ] sequences must employ some vertex—firing policy at each
b | _vnrtbx visit in order to alleviate the ambiguity asiociated
N " with multiply-snabled vertices. An obvious choice is to-
fire mach vertex as much as possible at sach visit. Before

» employing such a greedy firing policy, we must ;how that we
| do not overlook all optimal solutions by ekamining oﬁly
| ~ those sequences which fire a vertex to its effective ena-

t ‘ ) ‘ bling number at each visit. In other words, we must prove

that a minimum-scatter legal firing sequence exists between - -

-

8
any reachable markings, on a marked graph, gn which each
\ visit fires some vertex to its effective enabling number at

that visit of the vertex. Such a firing seqﬁence will be

referred to as a greedy fTiring sequence. Unless explicitly
stated, all firing sequences referred to will be assumed to

i

be legal. ' &

B - - Theorem s For any executable firing-count vector [,, ’ Ty
v". ' G . .
: from a rking M, on a marked graph G, there exists a '

greedy minimum-scatter firing sequence F

g* executing I,
from M,, in which each visit of a vertex fires the vertex

to its corresponding effective enabling number.

Egbafl Let F be any minimum-scatter sequence -xecdting Eo

from M, and let 9 denote the total number of visits in F,

| ¥ 4 \ : | -.36 -, . ~’ v )
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I+ F is not a greedy sequence then let v, be . the, first

vertex of G which F fails to fire to its effective enabling
number at, sa'y; the u®" visit. Construct another legal
firing sequence 4F; which is identical to F in the first u-l

1
. visits and which fires vertex v, to its effective enabl- . ‘

ing number A, at the u*" visit. . The sequence F; A\is u.

visits long and greedy at each visit. The effective erabl-
gt s

ing numbers of all vertices of G except vertex v, after
F;‘ .l?(.ecutes from M., are greater than or equal to those ; ¢ i
after the first u visits of F from M,. Thus, if F fires o ‘
3ertex v,  d ® i, af the (u+1)=" visit, then we may legal- ’ :

ly construct the firing sejquence ,F’;“ defined -f:'y they ) 1
relation’

-3 - ; |

Fyo* & r;v§3' , - 2.3 : !

.wher‘e A;‘*"is the effective enabling numbér of vertex v,
at the ‘(u+1‘)"‘ visit. . The +iring sequence Fg"" visits
verticés in the same order as the first u + 1 visits of F
and it is greedy at each visit. Since the vertex v, is not
fired to its effective enabling number at the u*" visit in
F, it follows that' v, will be visited at least once after

the u*"™ visit in F, Clearly, v, ¢ v,”. So, F must be at

least u + 2.visits long. In other words, & ) u + 2.

A~

Now, two cases may arise; F either returns ta vertex

+

vy or visits ‘some other vertex v,, k # i,5 at the (u+s2)*"
visit.




Case {1 If F returns to v, at the (U+2)*" visit, then

fi\r'ing vari‘mg v, 9} the (u+1)*" visit must have increased

:

i‘.he eHectiv.e enabling number of vertex v, since, by hy-—
pothesis, F has minihum—scattnr and, therefore, does not

visit vertices redundantly. &o, the graedy firing sequence - o

Fu+1

9
must have reenabled it after firing vertex v, at the

. ‘ x .
which Jleft vertex v, disabled after the u“"™ visit

ey

(u+1)*" visit and, ther‘efo{*e. it is legal to construct th/ .

seguence F;*‘“’ defined by the relation

i

Fgo? @ F;"vi‘*",' 4 (2.4) o

-

where A\Y'"2 is the effec:tiqve enabling number of vertex v, at

the (u+2)*" visit., A\
. \\ P
Come 21 If F fires vertex 'V,, k #0NJ at the (w2)=" ~
visit, then by the previous argument, we may legally con~
struct the. sequence F;*’ defined by the relation
Fg™™ & Fyov¥™T, . (2,5)
where Al'*Z {s the sffective enabling r:n%ber of vertex v, at S
the (u12)=" visit. @ .
In either case, FY*= visits vertices in the same D e

9 )
" order as the first u + 2 visits of F and it is greedy at

each visit. By r-epeated‘ application of the above construc—
tion, we will arrive at a sequence F; - F'q executing I,
from M, in which each visit of a vertex fires the vertex to

its corresponding effective enabling number.ll

- 38 -




8ince the construction described in the proof of the

I3

above ° theorem applies to any minimum—scatter firing

sequence executing E, from M,, we have the .following

“'\__\
corollary.
. , Jf
Corollary 2.3,11 For every minimum-scatter firing sequence

F executing I, from M, on a marked graph G, there is a
greedy minimum-scatter firindxféquence Fg executing I, from

»
A -
M, which visits vertices in the same order as F does.B

This theorem implies that if we employ a greedy firing
policy ét each vertex visjited when executing some firing—
count vector, then it is possible to execute that: vector

1 ~

with minimum scatter by visiting the verticés praperly. In
other words, we Eannat obéain a firing chuence with less
scatter by leaving a vertex effectively annblod‘ after
visiting and firing it, than we can by firing it<{u its
ef;ective enabling number at that visit. However, being
less than gr;edy at each visit when firiné vertices may
lead to unnecessary séattlr whil.. searching for <firing
sequences, as illustrated by the firing sequences abén’bc‘
and a®*bac* for the marked graph of Figure 2.2. There-

fore, this is sufficient grounds for employing the qreggy

firing policy at esach vertex whilq searching for a minimum—

' scatter firing sequence. ’ o .

The +firing sequence ca“b~ac™ for the marked graph of

 ’Figure 2.2 shows. that arbitrarily applying the greedy ver-

-




N\

tex-firing policy over the vertices of a graph may not

' produce minimum-scatter firing sequences. / Thus, along with

the greedy vprtnx—firinb policy, som vertex-visiting
policy is needed to characterize an algorlithm which gener-
ates a minimum-scafter legal fir{ng seq encﬁ. Ug pursue
this further for g’neral graphs. First we‘pbtain results

for marked graphs with different topological properties.

2%4 Minigum—~Scatter Firing Sequances
This section examines the problem of deterTininq a
hinimum—scattnr‘ ?irinq sequence executing a gi#cn sxecut-
able firing-sount vector +from a given lﬁitill marking on
‘ < |
marked graphs with different topological complexities. It

is shown that any exe able firing-count vector, from a
-  id

‘ given initial marking/on an ' acyclic marked qraph,‘ always

\ N
possEssSes a zegp—scattcr firing sequence. This is shown to

be true for the simple directed circuit but not for a
general topology with di;ected‘circuits. " Graphs in which
all the- directed . circuits are vertex disjoint are then

examined. Anlalqorithm is given for each case.
' |

2.4.1 Marked Acyclic Directed Graphs

By definition, an acyc¢lic directed. g%aph has no
directed circuits. /Thus. on an‘acyclic marde graph G, a

marking M,. is reachable from an initial markiqq M. if and

only if KVL is satisfied by the differ’en/tul markings. In:

an acyclic directed graph, there is at‘leis one vertex

- 40 -
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A . |
with zero in-degree called a source and at least one vertex o é
with zero out—-degree called a sink. A marked graph with ﬁf'
the acyclic property mgst, there?gra. possess at least one
source and at least one sink. A sqﬂrce is independently
firable since, by definition, it haks no input edg;s. Thus,

» <

a firing traversal need only visit sources once.

,The acyclic property of an acyclic marked graph can be dﬁy

1

used to generate a minimum—scatter firing sequence between

two markings with an executable firing—~count vector. 1f a
source is located, it can be fired to its firing number and

removed from the graph:l This source is guaranteed. in

- 1 N

acyclic graphs. After removing this source from the graph,
4

the resulting subgraph must also have the acyclic property '

4

and the procedure can then be recursively apblied until all
vertices have been removed. This is just a topological sort
[469]1 applied to the vertices of the acyclic graph. Let

ViyVaytee v, be the iabels assigned to the vertices of an

acyclic marked graph G according to* a topolagical ~ sort, &
then . "
. 5
vI'vZ= eee VI Co(2.6)  f "

is a zero-scatter firing sequence for a given executable ‘
L

firing—ddunt vector £ & [0,,0.,°°%,0,1%. Thus, we have the

following theorem. ¢

Theorem 2.4: A zero-scatter firing sequence exists for any ‘!

.given executable firing-count vector on any acyclic marked v

graph.® ') Jg ' ,




-t"‘"

>~

\

- vector.

Equation 2.1 that

5

Figure 2.3 illustrates the procddure for an acyclic

marked graph. The initial marking is irrelevant during

topological sort. So, i minimum—-scatter firing sequence can

~ , .
be obtained from the underlying graph and the firing-count

7 ]

2.4.2 The Marked Directed Circuit

scatter firing sequence b-tue.h.two markings on a marked

a

directed circuit with a legally executable, minimum firing-

count vector. Let n be the number af vnrti&es of a simplé
marked directid circuit C.. Pick any vertex of C and label

it vo. Traverse the circuit'irom:vertex Voy in the circuit

. direction, labeling- -the vertices v,, v,, e+, v__,. Also,

since the circuit has n edges, let e, denote the edge

incidentrinta vertex v,, for j € {0 1,00%,n-1}. Let M, and
H;‘ be the initial and final markings of C, respectively,

v

a&d 1et [, be the corresponding mipimum firing-count vec-

'

tor. Since Eg is assu@édAtd»be executable, it follows from

<y

. . </
n-1 n—1{
ot T Mote) = Y M (e)) = 1, (2.7

i=0 i=0

where <. is the 'circuit toksn-count. Hence, .any two
mnrkihgs' on C are mutually reachable . if and only i+ tqgé

have the 'same cir:uit'tok-n count.

&

. -
. ; .
.

We next consider the problem of generating a minimum-

o'-
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Obtaining a minimum-scatter gpquence
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Thegrem 2,51 A zero-scatter firing sequence exists between
any two reachable markings on a simple marked directed

circuit C. ‘ «

Proof: Observation 1 in éection 2.2 guarantees the exist-
ence of at least one datum vertex. Without VIO“ of general-
ity, lét Vo, be a datum, ,;nd let e, = (v, _,,v,) and e, =

(vo,y,v,) be the two edges incident on v,y If we remove v,

v

from the circuit C, the resulting subgraph is acyclic aqd'

Theorem 2.4 guarantees the existence of a zero-scatter
sequence. for the firing-count vector [o,,02.%*,0,_,3%.
Clearly, this is also a zero—-scatter firing sequence for

the vector E,, since o, = 0.8

Specifically, the firing ééquchQ defined by
n-1 !
Fe T viiisiamee s, (2.8)
J=i

-

where i is the index of 9qy.datum vnétcx of C, is always
executable and has zero scatter. This séqu-n;c is obtained
by starting at a datum vertex and ‘sporting the circuit
vertices in the order djctated'by the circuit. Any ver-

3

tices with zero firing count éan be neglected. Figure 2.4

"illustrates the construction of such a sequence.

2.4.3 Vartex-Disjoint Marked Directed Circuits

To extend the result for a simple marked directed

rcuit to the case in which all the directed circuits are

- 44 -
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. {
vertex disigint, we Ffirst note that the existence of a !
datum vertex in the circuit is not guaranteed if other ' 1
ver$i::3'::S/present in the graph. Thus, it may be neces; :
s‘ﬁ? to fire every vertex of a diru&ted ciﬁcuit in a marked
graph. Since the vertxéos of a dirécted circuit C are
restricted to at most v firings per visit, scatter may .
cccué. As an immediate consequence of Theorem 2.4, direct- " ’
ed :ir:uité are the only cause of scattef in a minimun-
scatter firing sequence. - )

Assgming‘ that the firings of the vertices, of a marked .
directed circuit Cy which is v;rtex disjaoint with any other ;
directed circuit in a marked graph G, ;re restricted only
by the markings on ihe circuit edges, we tan analyze C

v .

independently for a minimum-scatter subsequence. All ver-

-

tices of G, except those of C, Ean be rghoved. The result- |
ing subgraph is C with a corresponding set of ffring T

numbers. One of two cases must occur. Either a vertex of

C with .a zero firing number exists or it doms not. The |
" former case reduces to the previous problem aﬁd'zero scat-
tér is possible in the subsequence for C by removiﬁg the
vertex with a zero firing'number and topologically sorting "
" the resulting acyclic graph.' In the latter case, & zero-
S?atte subsequence 6ay still be poasible but.this is 'nnﬁ
generally tr&e(

w
at this point,the question af.scatter in a subsequence

for the circuit can be answered by examining the disabling ¢
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numbers of the circuit Q-rticns. 'if any disabling number
is zero, then a zero—scatter subsequence is pos‘ible'start—
ing at that vertex. This fnllows from the fact that after
this vertex is fired to its effective enabling number, its
firing ‘number becomes zero and it can be removed from C,
resultxng in the acyclic case discussed prev;ously. Thus,
" we' are left with the problem of finding a minimum-scatter
firing squence}of C wheﬁ the scatter is nonéero. We first
solve this problem ln& then show huﬂ th;: solution can be
used to construct migimum~séatter s;qunncus in the‘ case

r

where ‘all the directed circuits of G age vertex-disjoint.

In the following, whenever it is used as a vertex or

-edge index, the notation (i+j) will denote addition of the

R 1

integers i and-j, mndufo n, whére n.is the number of ver-
tices of C. Also, the notation (3) will represerit 3 mod(n).
With C labeled as in the previous subsectzon, we def;ne a
cyclic fxrxng sequence of C, of lcngth 2, as one with the

!

form

TTV:u*;—z,' (2.9
J=1 : :

/ )

where x, YO,V i€ {1,2.-:-,!}. Expressing 2 as qgn + r,
where the quotient q £ |4/n], and the remainder r § (),

the cyclic sequence can be written as

t

By O= o a z N x O '
TR I L 1V AU bl KL L 2 sASREPRNE T X LY o SPP (2.10)

and has scatter 2 - n if & ) n.




Iheorem 2.6: Every minimum nonzero—scatter firing sequence

Fo of a disjoint directed circuit € in a marked graph G, is

cyclic. A
' “

Progf: Consider an -rbitrnryiminimum nonzero-scatter firing
sequence F. of thevertices {vo,vis***yv.._,} Of a disjoint
directed circuit € in a marked graph G. The vertices are . S 1

”
-assumed to be cyclically labeled. Let F. be written as

[ o |

Fe & T xS*, - (2.11) \

. j-'l ~
where x, is the vertex visited at the j*" visit and o, is
the number of times x, is fired at the ij*" visit. . Since F.
has naonzero scatter, let v, be the first vertex of C which

repeats in F_; Let p and t denote the first and second ‘ , )

visits of v, in Fc, respectively. The following statements ’ ' a

hold for F.:
® X Xpme19®""9X,.—y @re distinct,

'.t"P-_(.n!,

® Viu-1> € {x_p}

- ) '
t-1

L]
Jwpe1

The Ffirst statement follows from t?e hypothesis that v, is
. tha first vertex which rnpcnts'in Fee . The second statement
follows from the first and the fact that there are only n
vertices in C, The last statement must be true if F. is a
minimum-scatter firing sequencey otherwise, it is pﬁ:sible’

to construct anqthgr legal firing scquﬁncn F¢ by absorb-




ing the t*" visit into the p*" -visit, ;etulting in a

sequence which has less scatter than F..

Identify the maximal set of visits {tu}h_i satisfying

the following properties: ‘ -

at p+1Ct, ¢t-1,Vue€ {1,2,%2,h}, C ,
.b' xtu B Viu—ury Yu€ {112v"'vh}1

‘Cl tL.: ( tu, YVu € {1'2'0-.'},_1}. . | . . \ . . -

Thus, F. has the farm

- . AN
« A o N .
Fe = xx‘"x,.'-’.’vf""vfﬁtm"V?.'ffz»"V:Ein"vftxzh'"xz'-
A

. 12) N ’ '_,., =

Two cases of interest are considered.

Case'1s (k = h) ¥ (k + 1), a | ‘ c

In this case, .  is independen% of the firing of v, at the ‘
pe"  visit. Thus, we may construct another lagal firing

sequence FZ by concatenating the visits {fu}:_‘, in tﬁe '

order in which they appear in F., and placing them

immediately hefore the p*"™ visit, After this rearrange- i

. ment, the p*" and t*" visits may be grouped together as . !

vEete ot ‘the (h+p)*" visit of FL. The constructed se-

quence FL will have the form

: -1 O +ix Lo
CFE o= xTteeenERT VNI, e oviEZ,, ViR VER TR e e st

(2.13) .

and is 2 - 1 visits long. This construct?oﬁ would reduce
the scatter in F. but since F. has minimum scaftlr, this is

not possible. In ather words, Case 1 cannot occur.

- 49 -




A

o : 47
Case® 2t (k — h) = (k + 1)y i.@ey, h = n -9,

e

In this case,the second statement holds with equality. That
is, t -~ p = n and so, {xtu}‘- {v,u,u,}:::; Thus, the subse-
quence from the p*" to the t*" visit in F. is a cyclic

firing(travernal of\C with the form .

v

L o3 ¢ s O = o e T '
Vuﬁvx::-n)V(s:::°"V<5::-1)Vup*n- (2.14) -

)
Now, we may assume that the firing of v(k;t, at th? (p+§)‘"
visit depends on the firing of V. .._., at lthe (pri-1)°="
visit and the subsequence from the pE" to the t=" visit in
Fe Eannot be reduced as in Case 1. Furthermore, since Ve
is assumed to be the first vertex of C which rip-pt: in Fc

and all n vertices of C are present in the subsequence, if

follows: that p nfﬁf S0, v, must be the first vertex :'

visited in the firing sequence F.. Thus, t = n + 1 and F.

has the form

o1 O X A o Arve1 Knez Xa
Vi Ve m e 13 Va2 " ® Vi nan—3Vi Kpez ®eeXp . (2.15)

Specifically, C;se 2 must\occur between nearest visits
"of any vertex which repeats in Fg./-Otherwise, a redqétjon
would be possible. Nuarest-visits of any vertex of €, in
Fey must neﬁessarily be n visits apart. From this cbserva- ¢

tion and the fact that the first n visits of Fc are cyclic, . !

it follows that F. must be cyclic.ll

This result, along with the fact that we need only

examine greedy firing sequences, a&allows us to immediately

- :o - ) \\i>




‘conclude that we may obtain a minimum-scatter firing }rﬂ‘
sequence F. for a disjoint directed circuit € in a marked ‘ _f
graph G by éxamining all tzg greedy cyclic firing sequences

of C which execute a given firing-count vector E. .Th-re is

exactly one such sequence starting at each legaliy firable -

vertex v, of C at M. Since there can be at most ﬁ ver-

tices of C which are legally firable under a marking of C,

this probleh is at most n times as complex as.the problem

of determining one cyclic firing sequence of C.

Specifically, the gready cyclic firing sequence F_,
executing the firing-count vector L = [o,,0,, *** .0, _,1%,

from an initial marking M, of C, is uniquely determined by

its starting vertex v.. Since we need only consider the

case where o, is nonzero for each vertex v, € C, it follows
that F_. is at least n visits long for each firable vertex
vie € C at M,. The first n visits of F¢, the cyclic firing

sequence starting at v,., are

!

X K=z oA a ' .
Vi ' Vik+13Vimsz? ***'Viken—-1>1 - (2.16) !

where the «,’'s are computed accbrding to ¥he recursive
relation

xs £ min{a‘“¢,-,,.Ho;e‘ﬁ,,-,,) + ®e 2ty J = 243,000,n,
whéﬁe

x, 2 M (e)).

Here, we have assumed that the disabling number aof vertex

v, is nonzero under the marking Mg. Othervwise, a zero-

- =y -




scatter firing sequence exists stnrt1ﬁg at vertex v,, given
By thclabove definition, where o, is replaced with o o, .1,
for all j € {1,2,¢*¢,n}. Let I = [0,,0,,2°2,0,_,1" be the
firing-count vector corresponding to the first n visits of
F¢ and let‘E” 8 [of,0%y00e,0%_,1° = L ~ L’ be the residual
firing-count vector. Note that the firing-count vector L’

is mome cyclic permutation of Co,,x_.,***,a,_ 1%,

Theorem 2,71 1f the firing numbers ¢,, i = Oy1,°¢+,n~-1, of
a marked direéted circuit C .are expressed modulo thé cir-
cuit fokgn count . as o, = q,vc + r,, where the quotient

Q. & |o,/tc} and the remainder r, f o,mod(r.), then
g, — g, £1, Vi, Vi€ {0,1,000,n-1}. (217

Propf: Consider any two firing numbers o,,0, of a marked
directed circuit C with a cir;uit token count r.. First,
we make the fbllowjng claim.‘ Any two firing numﬂers O, 40y
of a’'marked directed circuit € can diffe; by at mast ~. in

every firing-count vector realizing every marking reachable

from an initial markfné of C. That is,
lo, — o, € vy Vi, ¥ §-€ {O,1,00e,n~1}. (2.18)

1§ v, is adjacent to v;, then the difference ¢, - o, is

plus or wminus the change in the marking aon the edge con-

necting them. This change can be at most v in either

direction. If v, is .not adjacent to v,, then the

difference o, — ¢, can be expressed as the sum of the
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differential markings along the directed path in the cir-
cuit from'v1 to v,. Agaiﬁ.zthis difference can be at most

Tc; thus establishing the claim.

Expressing the firing numbers ¢, ,o0, modulo T,
0, = Q\Tc +Pr,, 0O, ®=Q,Tc + I,. (2.19)

If q, ¥ q,, then, without loss of generality, let q‘.) Qye

Then,

L

1f, contrary to the statement of the theorem, q, ) q, + 1,

’

) 2vc. Clearly, we must have (r, - r,| ¢ v,

|

i

. ‘ 4
- - o, o, = (g, ~ qultc +r, - r,. ) - (2.20) ai
then (q;~q;)rc ;
|

& ‘since 0 { r,,r, { Tc - 1. Sao, it follows that

s S

o, — o, m (q, - Q,lrc +r, —Pr; ) T, (2.21)
cantradicting the claim established above.B

Thecrem g.Bl'The residual firing numbers have the property

[y

o8 ) 0%uess 3 Ouizy ) **e ) 0%uanay 2 Ol

4,
Proof: Asasume, without loss of generality,that k = 0. Then,

.

we must show that o3 ) of ) eev ) o, ) 0. The firing

‘numbera ¢, satisfy the system

]

O, = Oyes = M_(@,.,) ~ Mol@,.,), § = Ogl,eee,n-1, (2.22)

~ The first n - 1 of these equations form an independent set

yhich can be written as
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Oyer = 05 + Mole,.,) - M (e,.,), j = 0,1,°0¢,n=-2. (2,23)

14  this system of nquntions is solved in terms of o,, the
- firing numbers are

k K *
oL m oo+ Y Molm,) = Y M (e,), k = 1,2,000,n-1. (2.24)
j-1 - J=1

Recursively applying the relation defining the «,’s,

k-1 '
a, = min{o,_,y, T Mole}, k = 1,2,00e,n, (2.25)
i=0

Since o, = a,, .5y fOr k = 0,1,%e6 n~1, wa have

)’

. k , ot
of = o, = min{o., YL Mote,)}, k = 0;1,000,n-1 (2.26)
=0 S
or,
k
of = max{o, ~ ¥ Mo(e,),0}, k = 0,1,00en-1. (2.27)
j=0 .. .

-

Substituting the solution for o, in (2.24) ‘%nto (2.27)
gives

k ' -

or = max{o, -~ Motley) - ¥ M_(e,),0}, k = 1,2,000,n-1 (2,28)°

=1

Siﬁcn;the markings are nonnegative vectors, it follows that

the numbers defined by

“0 £ 0o -~ Moley,),

k _ L
B, 8 Bo.— L M-(e,), k = 1,2,see,n"1, " (2.29)
i=r ‘ : A

;
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have the property 8, ) A... for k = O,1,°°*,n-2, Thus ,
- 4 '
the residual firing numbers o/ = max{ﬁu,o},'Jfor k = 0,1,

*se .n—~1, must have the property

L

04 ) ot ) o% ) see ) o¥ . ) O. (2.30)

Since this result is independent of the vertex labeling, we
have

) Cluvry 2 Oz, 2 oo ) 0 inas ) O, (2.31)

for the residual fir;ng,nhmberl o correspoﬁding ;b the

firing sequence F%.B

To completely characterize the qrqedy? cyclic <+iring

sequence FY, two cases need to be considered. '

-

Canm 1t 0/, -1, = O.

Q
>

Here,‘vnrtai Viuen—1, May be removed ¥roh C and Theqrem 2.4

guarantees the existence of a zero-scatter firing sequencel

]

‘executing E” on the resulting acyclic subgraph. The number

of visits needed to execute E” is just fhe number . of

“

‘nonzero entries in E”.

Case 2% o0'lv s> ¥ 0.

-

In this case, all residual firing numbers are qg?zero and

the greedy cyclic firings of the vertices of C have placed

all <. tokens on edge e,.

fired' at most v. times per vigit, each vertex v, must be
. ¢
visited at least q, timlsA&n order to execute oy, where q,

- 5% _ . :

Since any vertex of C can ' be -




. [

@ |ov/tc|. Since Qiu.n-., is & minimum in {q.}, then the
.antire circuit;must be traversed at least q....-., times to

execute L. Each traversal will have the form

- Tc, ,Tc Tc Tc
Yu Yeius+rrVinaezr *°* Viken-213 (2.32)

N Al

and ‘the f;rinq count E“ remaining after 9 (u.n-i1, suéh‘

\ Vs -
traversals, is'outiinnd by lgptractinq Qinen—-1>Tc from sach

entry in E¥, 1f Q¢k+n-2, i ze@ro, then L = L and such a

traversal is not possible. Clearly, the residual firing
}

numbers £ satisfy the property of Thlércmﬂz.a. Therefare,

o = (Qu = Qiusm—1:'% *+ P, is a maximum o¥. From Theorem
l‘
2:7 and Theorem 2.8, we have Gu = Qeuen—a> 1" and,

therefore, vertex v, need not be visited more than twice to.

-
o 3

execute o, At this point, the number of visits needed to
Cx

pl

exe;ute L may be counted. ,Specifically." two visits are

required for each ¢ greater than v. ‘and one visit is
N 'y . ]

L4 ¥ - .
required - for each nonzero oY less than or equal to <.

Thus, the number of visits neéded to execute E™ is the

i

Lo . 9
number of nonzera entries in I plus the number of entries

in I greater than r.. Let w be the number of entries in

¥ greater than 1, where 0 ( W { n-1,
: et

¢

In either case, the firing sequence FX may be formal-=

ly written as ‘ . .

Fe g F.FzFx (2.33)
where '
ol _o% o Oiurn—1>
F, & v, Vcizr:)V¢;:;?’"fV‘::;:tt,"

o

| AL Tc T (h+n—1)>
F. & [Vu Vqux>V¢u¢2>."Vckwnf:>]q' ” ’

.
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e



. oﬁera;ion of repeating the sequence L[] x times.

Tc Tc P ausw) S tuswerd P iuememd ’
Fo @ v T ooy b s Vs Ve slTe i P oeev (B350, (2.34)

and the visits of the form v, are not present in Fy, if

w=0. In equation (2.34), the symbol () refers to the

The problem remains to determine k.

The ‘above results are summarized in the following

theorem, where

len(FZ) = Jength of Fg in visits, “

N

$.... & min{|oV/vc]},
ES 4
n, # numhér of nonzero entries in L%,

N= 2 number of nonzero entries in L,

N> & pumber of nonzero entries greater than vc in L%,
Theorem 2,9

1) 1 0% v.._,, = O, then len(F%) = n + n,. ' C

ii) If.0%u sy ) O, then len(F2) = (s,.,.+1)n + n, + n5. N

fﬁe following algorithm determines a vertex v, which
should be fi;ud first to arrive at a legal minimum-scatter
firing sequence ' FZ for a disjoint directedtpircuit C (one
in yhich vertex firings are restricted only by the tokens
on its edges) in a marked graph G, given an executable
firing-count vector, :from an initial marking M, of G..
Correctness of the algorithm(follows from Theorem 2.9. Ve

assume that the disabling numbers and, hence, the firing

>
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9
numbers are all nonzero. Let L be the firing ébunt vector
for the circuit vertices. Let C benlabcgod as in the

previous subsection.
1 ithm :

Step 11 For esach lmgally firable vertex v, of C at M,

obtain 21”, as follows:

j ’ t
.-
Cisssrmoacn B Min { z "o(.:t+usmodtn))1°'u+.,>moa(n:}!
k=0
) .
4~ s .
Ola+srmoatn: & Flivgrimoains =~ Ot essmoacnyy (2.35)

for j = O,l,eee¢.,n-1. This step is of complexity 0(n?).

Stap 2 Eor each of the Bi” v-céors generated in GBtep 1%,
the residual firing number otf-1,,°,.n,l is a minimum one
and ;" is a maximum one. Now, ict Amin = |Fmin/Tc|s whére
the resipﬁal count o,.,. = mén{at:_,,mna‘n,}. obtain a1l pi”
vecto;: by reducing all firing numb-fl 03; in each 81" by
Qs T I+ any of the :im vectors contain zero cntrias..
then proceed to Steﬁ 3. Otherwise, proceed to StJB 4,

Btlﬁ 31 From among all the Bi& vectors, pick any one of

them having a maximum number of zero entries. Let. this

b
vector be £k'. Stop.

ry

. Step 41 From among all the Eim vectors pick any‘ one of

them having a maximum number of gntrios less than or oquai

to r«. Let this vector be tkm. StoJ.

At termination of this algorithm, the vertex v, is the

f
1
L]
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first vertex .in the minimum—-scatter firing sequence of C as

‘defined before. The minimum-scatter firing sequence F_. can

be determin?d from the vectofs Ek”. htk% and the number
Qmsny OF by starting at vertex v, and traversing the cir-
cuit in its direction, firihb @ach vertex to its effective
enabling number, and updating the effective enabling .num—
bers, until all effective cnaslinq numbers for the circuit
are zero.. It is wasy to see that,oach step in the above

algorithm is of complexity O(n*), and the overall complex-

ity of this algorithm is 0(n<),

Figure 2.5 is used to illustrate the steps involved in

the "above algorithm. i1t is assumed that this directed

circuit C is a subgraph of some marked draph G, which is
vertex disjoint with all other directed circuits in G. The
minimum firing-count vector £ = Lo , o, ac,'ad, Ot afi“ =
(23,24,24,21,22,221%*. There are four legally firable ver-

tices of C at M,. Step | produces the following:

I* = [2,3,3,6,7,72%, I* = (21,21,21,15,15,151°,
.t = t7,1,1,4,5,51¢, tb” -'t16.23,23.17.17;173*}
9’ =~[6.7,7,3,4,4]',‘ 9 = r17,17,17,18,18,1813%,
I® = [3,4;4,;,1,1]é, -£®*" = £20,20,20,14,21,211%,

The minimum residual firing number is 14. Since «+. = 7,

then q.... = 2. Thus, step 2 yields the vectors:

E2” = [7,7,7,1,1,13%
A\ ] [ ] 1 ] , v ]

tP” = [2,9,9,3,3,31¢,

M“l‘\l A - %9 - ,

et bt e < e




) ' / Figure 2.5 (a)
The initial marking Mo

N . «\ )

”

. : _ Figure 2.5(b) C '

L o ., The final marking M,. . — ‘



:d!" Lo [3‘3'3g4‘4‘41t’ -

£* = 16,6,6,0,7,73%.

Sinc- t'm is the only reasidual vector ;fth a zero entry,
the greedy cyclic firing sequence sxscuting L, starting ;t
vertex &, is a minimum-scatter firing sequence leading from
Mo to M, 5, From Thearem 2.9, the length of fhis sequence

is 23 gnd the‘scattcr is 17, Thcfminimum firing sequence is
Fc = wfab*c*d’(e”f7a”’b"c’d” 1%e” f"a*b*c*. (2.36)

The above algorithm could be used to find a minimum-—
scatter legal <firing sequence for a marked graph G, in

which all directed circuits are vertex-disjoint, as fol-

lows. First, identify all the directed circuits and con—

dense them (691, The resulting subgraph G is acyclic.
Let v,,v.,%¢e,v, . be the labals assigned to the vertices of

G’ according to a topological sort. Then, the sequence

Faq = F,F_FseeeF,,. . (2.37)

»
is & minimum-scatter firing sequence for G, where F, is the

minimum—-scatter subsequence, determined as before, if the

vertex v, corresponds to a condensed directed circuit.

Otherwise, F, @ vf’. Implementing the above procedure
3 .

involves the ?olldwinq steps: '

* Ferforming a depth-first search to determine all the
disjoint circuits. The complexity of this is O(m + n) (691,
where m is the number of edges and n is the number of

'

-1 -
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vertices in the graphj ;\

* Condensing the directed circuits and performing a topo-
loqi;al sort on the resulting condenwsed graph. IThis can
also be achiﬁved by means of a_Z-pth—*irst le;rch;

* Applying Algorithm { to each directed clrcuit.' This is
of complexity O(n?);

* The overall complexity of implementing the above proce-

‘dure is 0(n®).

2.3 On Minimum—Scatter Firing Sequences for a General;6raph

We now outline an approach for determining ] nimum—

'qcattar_ f%ring sequences in the case of any genefal . graph

and then show that tﬁe compLénlty of this proﬁlcm reduceas
to that of the corr;sponding praoblem for.the case of a
strongly~-connected qraph; Consi&cr & marked directed graph
G = (V4,E), where V is the vartex set and E is the edge net.
Let G, = (V,,E,), G5 = (Vo,E;), *¢+, G, = (V_,E,) be the
itronqu-ionn.ctod components of G. Then, it is known that
the sets V;Vz,oct,v..fqrm a parﬁition nf V [69]. Let G’ be

the graph obtained by contracting (short~-circuiting) all

the edges in sach of the strongly-connected components and

remaving the resulting self loops. Then, it is known that
G’ has no directed circuits. et the vertex set of ﬁ' be
denated by {x‘.x,,--O,xF}. Assume that x, corresponds to G,
and’ without loss of generality, let a topological loht of
G’ assign number i to vertex x,. Thén. it is easy to see

that the sequence

- &2 -




F = F,FoeeeF, (2.38)

is a minimﬁm-lcattcr firing liquencc of G, where F, is a
minimum-scnttnr firing sequence of G,. This follows from
the fact that after executing F,F.e<sF,_,, the firings of
th¢~v¢rt1cn| of G, are restricted only by the tokeﬁé of the

edges E, of G,. Note that the problem considered in Sec—

tion 2.4.3, concerning vertex-disjoint marked directed

’

circuits, is, in fact, the special case where each G, is a

directed circuit. The problem of determining a minimum—

scatter firing sequence for a general graph involves the

following steps:

* determine all strongly-connected components of G [69];

<

* obtain the condensed graph G’}

* perform a topological sort of the vertices of G’}

connected component of G, and then

¢ a minimum-scatter #iring sequence F, of G'is given by
F -.anz""ru- : ' (2.39)

where F, is the minimum-scatter subsequence of the strong-

- ly-connected component corresponding to the %" vertex in

‘the topologically-sorted vertex set of G’ .

"We now establish an upperbound on the enabling number
u, of any vertex v, under any marking reachable from a live
initial marking M, on a strongly-connected graph G. In a

»

strongly—:onnecthd directed graph G, sach edge e, belongs

-.63 L]

find a minimum-scatter firing sequence for each strongly-
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' passing through vertex i.

to at'lnist one directed circuit. 8ince thg\ciécuit token
count of all directed circuits of G must remain invariant
under . any lagal sequc%ce of vertex fir;nqs, the number of
kbkcns an ahy edge e, of a directed circuit can be no more
tﬁan that ciréuit's token count. Extending this restric-—
tion to all directed circuits containing edge e, implies
that the token count on edge e, cannot exceed the minimum
circuit token count of all directed circuits’ containiﬁg
edge e,. Let v‘lbe“@he terminal vertex of edge e,. Now,
every circuit containi;g edge e, also contains vertex v,.
Thus, the enabling nupbur d, of vertex v, cannct exceed the
minimum circuit token count of all directed ci:;uits con—
taining edge e,. Abply{ng this argument to all  edges
incident into vertex v, implies that £h! enabling number uj\ -
of any vertex v, in a stronaly—connlcted graph G cannoz\

excead the minimum circuit token count of all directed:

circuits'containing vertex v,. 50,

u, ¢ min{v,,}, vi € {1,2,°°+,n}, (2.40)
J .

&

where «r,, is the token count of the j*" directed circuit

+
v
-

We may use this result to determine a lowerbound on

v

the scatter of any firing sequence of a marked graph G.

¢

‘Gince . it is shown that only the strongly-connected compon-

ents of G need be toﬁsidcred, we present the result for a

S

strongly-connected graph. Let v, denote the bound on the




enabling number u, of vertex v,, as defined above. Clear—

ly, vertex v, can be fired at most v, times per visit.

Thus, Qertex v, must be visited at least r&‘/r;T times to
execute o, . If n is the number of vertices with a nonzero
firing count ¢, in a strongly-connected graph G then for
ahy legal firing sequence F executing I, we have

. )
scatter(F) ) ¥ fo,/t,] - n. ‘ (2.41)
i=1

2.6 8Btructure of the Reachability Problem ‘
for (0,1)-Capacitated Marked Graphs - DU T

Many classjcal results in graph theory are equivalent

to the maximum—flow minimum-cut theorem of network ‘li;ff

theory [69]. These resgsults include Tutte’s characterization

of . maximum matchings in general graphs, Hall‘’s theorem on
bipartite matching and Memnger’s theorems on connectivity.
Equivalence among these problems is established ‘by con-
structing appropriate (O.I)fconnunication ncéuorks which
permit flows‘of values of only O or {1 on mach of its edges. e
This equivalence has made'possible'the.desiqn 6# e*fici-ntA
algorithms +for matching and connectivity analysis because
efficient algorithms~ are available for computing maximum
ffowé in (O,1)-communication n-two;ks. These pioneering
works have provided the motivation for the study prelgnted
in this section.

A.marked graph is called a (0,1)-capacitated marked

graph if under any marking on the graph, the number pf

- &% -~
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tokens allowed on each edge of the graph is equal to O or
qual to 1. in this section, we study the structure of the
reachability problem on (0,1)-capacitated marked graphs and
derive a purely graph~theoretic characterization of this

probl em. P

Consider a (0,1)-capacitated marked graph G = (V,E)

with a specified marking "a‘ We define a transformed graph

G_ = (Va,Ea) as follows:

i) G and Ga have the_same underlying undirected grapﬁ;
and

ii) If we denote by e, the edge of Ga corresponding t6
the edge e in G, then the orientatién of e, is

opposite to that of e if M_(e) = 13 otherwise e, and e

have the same orientation.

.

As an example, a (0,1)-capacitated marked graph G with
two ‘markings Ha and "b and the correspoﬁdinq transformed
graphs Ga and Gb are shown in Figures 2.6(a), (b)), (c), (d)

and (e), respectively.

Lemna 2,11 A (O 1)—capacitated marke& graph G has no dead-
locks under marking Ha if and only if the transformed graph

is acyclic.

Proof: A dead—subgraph in G is a circuit € ‘which is of one

of the following forms:

i) Cis ; token-free directed circuit of G

-

- &b -
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Figure 2.6(a)

Graph‘G

Figure 2.6(b)

Marking H.




Figure 2.6(c)

Marking‘ﬂb

Figure 2.61(d)

Transformed graph G.
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x } ii) C is a directed circuit of G in which all of the
ndgesxare saturated (that is, the number of toughs : !

| on each edge of C is unity)

. . . ©1d4i) C ip‘n circuit of G in which all the edges in one
D : ’ direction are token—free and thosé in the oppasite -
L : direction are saturated. |

1f we denote by C, the circuit in G, gonfesponding to a

st b

r ' circuit C in' G, then it is easy to see from the definition
., = . . -
\

of Ga that C. is a directed circuit if and—anly if C is of

one of the threeﬂiﬁrms mentioned above. + ‘'Thus, G, is acyc~

a
lic if‘an& only if G has no dead-subgraphs.@

Thnorém 2.10: A (0,1)-c.pacitatéd marked gréph G is live if

g T
-

) . . {
- . and only if the transformed graph Ga is acyclig.
U

o ' " Proofi Proof follows from Ledma 2.1 and the fdbt\that G is ‘ ‘3 :
_— : . . . !

no d-ad-lub‘-aphs (Theorem 1.1).0

r f
L ) '

Lo o lﬁvé i and only ;f it has

N

. . - Meonsider ‘any two markings M; and Mbton a (0,1)~capaci~
< ' M & R
, L * tated marked graph G. Let G-_und 6, denote the correspond-

. ing transformed 'graphs, respectively. As beforc,/the edges
L : in G, and Gb.wﬁich correspond to the edge e it G . will be

. “' . ‘. . . R
J .de?uted by e‘_and 4 respectively. Similar notation will

‘used to dehote the corresponding circuits. Let”’

,REV(Ma,Mb) = {eéie. and S have gpposing or;eqtations}.
. '. For egample, with respect to thi markings M‘ and "b- of

) Figure 2.4(b) and 2.6(c) Lot




—t L

REVM_ M) = {(1,2),(1,4),(1,5),(2,4),(5,8)}.

" Consider a ’circuit C in G and define an arbitrary
. circuit orientation on C. The same orientation will be

assigned to the corresponding circuits C.,and Cb. Let

.

o= {e.le.'e REV(M_,M ) ,e_  follows the orientation of C.}

C: - {eltea € ﬁEV(H.,Nﬁ).e. opposes the orientation of C‘}.

In the following,- the phrase “contribution of A,(e) =

M, (@) - M_(@)” will refer to the quantity A, if e has the

! same'orientntion as that of C; otherwise, it.uill refer to

the quantity ~b,.(e).
. Qr 1s

i) For any edge @ € C, the contribution of A,(e) to
' '

Cis positive if and only if'a. € CYy

€

fe ii) For any edge e € C, the contribution of A,(e} to C

is'negative ifpgnd only if L € C. .
' ' S

roof ‘)1
s '\. . .
Necessity: Consider any sdge @€ € C such that the contribu-
tion of A.(e) toC is positive. Then, either one of the
following two cases should occur: ,
i [ ‘ /
1) M (e) = 0, M,(e) = 1 and @ has the same orientation
~ a" ‘

asythat of Ci




ii)\ﬁ.(!) = 1, Mb(e) = O and ® has an orientation oppo-

site to that of C.

In either of these two cases, e, €C". | - Y

~

Bufficjencys Consider any edge e such that . € C*. Then,

-ithcr‘o# the following two cases lhouldibccur:

i) M.(e) = 0O, Nb(e) = | and e has the same orientation
' |
as that of the ci#cuit C;

i1) M (e) = 1, M (e) = O and the orientation of e is

apposite to that of C.
In either of these two cases, the contribution of A.(e) to

C is positive.

Broof of statement ii) follows along the same lines as

abgve.R

Theorem 2.12:1 Consider a (0,1)-capacitated marked graph G.
Let M, and hb be two live markings on G. M, is reachable

from M_ if and only. if, for every circuit C in G
Icgl = icgl.

Progof: By Theaorem 1.3, "b is reachable from H. if and only

3 .

if, the differential markings A,(e)’'s satisfy KVL in(?f By

.Theorem 2.11, the differential ﬁarktnqs satisfy KVL {n G i€

¢

and only if, for each circuit C in G

7/

Izl = ic ..

i
|
i
1
|
!
{
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Note that a vertex v is enabled in G under the markiﬁg

H.tif and only if v is a sgurce in G‘.‘ Furthermore, firing

v in G corresponds to reversing the orientations’ of all the

‘sdges }ncjdcnt on.v in G‘. Thus, we may define Tiring a

source in G‘ as the operation of reversiﬁg the orientations
of‘all thé edges incident oﬁ thaﬁ sou3c¢. In view of these
obseré;tions, ‘T wWe can Eonclud! from Theorem 2.12 that the
acycli¢c graph Ga can be transformed into the acyclic graph
Gb through a seguence of source firings if and only i+ fhe

condition of this theorem is satisfied.

An easy consequence of Theorem 2.12 is stated next.

Corollar 2,18 1f M is reachable from M, on G, then

REV(M_,M ) is a cut in G,. : _ o e

v

Proofs First note that REV(M_,M ) has an even number of

‘common wedges with every circuit in G.. It is well known

[69]1 that such a subset of mdges is a cut in G;.l

i

At this point, we wish to draw attention to a related
work on the concept of similarity introduced and studied in
[66]1. Consider a directed graph G. The operation of revers-—

ing the orientations of all the edges incident on a vertex

v in G is called switching the vertex v in G | [661. thé

- that, whereas' firing is done only at & source vertex,
: L

switching is permitted at any vertex. ' Two'directcd graphs

a

similar if ;Pd ny if bne can be transformed into the
. ) . s

4
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G and Gb having the same underlying undire;t;d graph are S
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other through a sequence of switchinds. It has been proved

in LC[&6l14 that G. and Gb are similgr. if and  only if

REV(M M) is a cut in G,- Now, note from Corollary 2.12.1

tha; ghis necessary and sufficient condition for similarity

is only a necessary condition for reachability of M, from

H.. As in [64], we can also design, 'using depth~first—

search, algorithms to test the reachability of M, from M
f\ ' &

_and construct a sequence of source firings leading G‘° to

-+

Gb.

Finally, we wish to paint\out that Gafni and Bertsekas
{671 have introduccd d.ttinatipn oriented icycliq directed
graphs in their study of a rnutiné problem in computer
communicaé&an. networks. An acyclic diroqtad gra;h jin

short, ADG) with a special vertex (called the destination)

is destination oriented if for every vertex there exists a

| directed path originating at @hil vertex and tirmintinq at

the destination. The problem consdidered in [17] is the

following. Given a connected destination disoriented aDG,

transform it to a destination coriented ADG by reversing the
ol 4 . *

orientations of some of its edges.. Gafni and Bertsekas

have developed distributed algorithms for this prablem.

The fact that this problem is closely related to the prob-

lem considered in this section sugpests the possibility of
designing efficient distributed alﬁorithml for the reacha-

T+

bility problem on (0,1)—capacitatoﬂ marked graphs.

~e
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2.7 Summary

}

In this chabter, we first gave an algorithmic proof to
the ' reachability theorem on marked graphs. We have also

sxtended this proof to cover the capacitated case.

-

We then introduced the concept of scatter in a +firing

) -nqﬁoncn. Usgng the notion of a greedy fiFinq policy, we

- have presented algorithms for generating mipimum-scatter

A
firing sequences for different classes of graphs. More

v .
specifically, we have considered' three cases: acyclic
directed graphs, directed circuits and graphs in which all
directed circuits are vartex-disjoint. We have pointed out

that in the general case, this problem reduces to that of

determining a ‘minimum-scatter firing sequence for a

strongly—conne;icd graph.

Al

Finally, we have presented a purely graph~theoretic
;haracterfzation of the reachability problem on {0,1)~

capacitated marked graphs. The relationship between this

" work and the results presented in [66], [671 have been

pointed out. Thi's relationship suggests the possibility of .

designing efficient distributed algorithms for the reacha-

¢ bility problem on (0,1)-capacitated marked ;Plphl-

-
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Chaptef 3 ’ -

; MAXIMUM-WEIGHT MARKINGS\ IN MARKED GRAPHS:
ALGORITHMS8 AND INTERPRETATIONS BASED ON THE SIMPLEX METHOD

&

In this " chapter, we define and study the maximum-
weight marhing;probl;m on a marked graph. Our studyA is
based on a linear-programming formulation of the problem.
We develop an algorithmic solhtioﬁ to'thp problem based on
the simplex method of linear programming. A we dgvclép
our mgin algorit;m, we ?ffcr interpretations, in terms of
marked graph operations, to those which one sncounters in

the theory of linear proqrnmmiﬁg. Our study covers live

as well as nonlive capacitated marked graphs.
N ‘

3.1 The Maximum—-Weight Marking Problem

Given a marked graph G = (V,E) with an initial marking
Moy we ‘consider the problem of obtaiqinq an M € R{M,)
which :igywmiximum or minimum in some snn;c. An obvious
objective is simply z M(e), the tokep count of G under M,
In fact, a snlutioneté this jproblom for live," stronﬁly-
connected marked graphs can be found in [4], where the

authors employ a circulntion-flow'cppronch for solving its

dual.

v

In what follows, we generalize this problem by intro—
ducing a per token weight W(e) associated with esach wedge

e € E which represenfs the weight or cost of one token

\

¢

- %6 - "
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residing there. Then, the product W(elM(e) {s t%. w;ight of
M(e) tokens residing on edge e and the quantity z W(e)M(a)
is the weight of M on G. Thus, we focu‘ on the. maximum—
neiqpt marking problem

maxmize WM ‘ (3.1)
M € R(M,)

, where W is the row vector of edge weights. The minimiza-

tion problem is equivalent to (3.1) with -W replacing W.
In the éollowing section, we then Qo one step furthe% ‘nnd
consider a capacitated wxtension of this problem in which
aﬁ upperbound is lpdci{ind on the token count on wesach
edge. We would like to point out that Fh- problem ofldoter-
mining a maximum-weight marking in a mqu-d grapgh is equiv-—
alent to the problem of &etérmining a'maximum marking in a
computation graph when the input guantum, the output quan-
tum and the threshold of each edge of the computation graph

.are all equal to unity [31.

Our discussion beginsﬂuith a linear-programming formu—
lation of the maximum—-weight marking problem based on the
reachability theorem, namely Theorem 1.3. Let T be a
spanning tree of G and let T be the corresponding cospan-—
ning tree of G. Let B, be the fundamental-circuit matrix of
G with respect to the tree T. Let Z; be the vecior B:Mo.

The rqachability theorem provides a circuit-theoretic _char—.

. 1 . . .
‘acterization of the reachability set of M, on G. I1f we

relax or neglect the dead-gubgraph condition of the theorem

°

’
R
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by considering live marked graphs only, then clearly, the
mhxtmum—noight marking problem is equivalent to the linear
‘program

. maximize WM . -

subject to B,M = Zs, | ' (3.2)
M) o,

v

-1t is not obvious how to incorporate the dcad-subqriph

..condition into this linear—-program format since the dead-

'

subgraph conditiop invelves the firing counts of the vert-
ices of G and Program 3.2 is stated in M only. For this
reason, we will focus first on'th; live class of problems

characterized by (3.2). We consider in Section 3.2, an

"alternative formulation of Problem 3.1 in terms of the

vertex firing numbers which is:equivalent to (3.2) for the

live class of problems and which captures the nature of the .

‘

nonlive case presented in Sections 3.3 and 3.4.
3.1.1 Basic Markings

Central to the methods of linear programming, namely

- the simplex method and its v-riants, is the concept of a

basic.solution to a consistent, underspecified system of

" independent, linear equations. For such systems, it is

always possible 'to express a subset of the variabl-k;
cailed basic variables, explicitly in terms of the remain-
ing nonbasic varjables, implying the existence of many
solutions to the system by virtq; of the fact that we  may
freely spgcify values fér the nonbasic variables and com-

- 78 -
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pute' the associated basic variables. Only such systems
renq;r the optimization problem nontrivial. If we specify
zero ' values for the nonbasic variables then we obtain a
basic solution - one in which only basic variables may have
nonzero values. The fundamental theorem of linear program-—
ming [70] It.t!; that if a 'linear program has an optimal
solution then it has a basic optimal sofﬁtipn. This can be
proved rigourously using ﬁhn properties of convex polyhe-
dra, however, as Chvatal points out in [701, the fundamen-
tal theaorem of linear programming follows easily after
proper developm;nt of the simplex method. Since our intént

.

is to apply the simplex method to Prbgram 3.2, the fundA—

mental theorem of linear programming becomes our spring-

board into the analysis.

Any assignment of the variables in a 1linear program
which satisfies all of its constraints constitutes-a reas-
ible solution. Besides the circuit equations, Program 3.2
has the nonnegativity constraint M } O. Thus, any nonnega-
tive solut{on to B,M = 2725z is a feasi@le_:olution of (3.2).
The feasible solutions of (3.2) are in one to one corres-

pondence with the elements of R{M,).

The -implﬁx method e#aminel anly basic Teasible
solutions during its search of an optimal one. Hence, we
must define a basic marking. In order to do so, we must
know &hat constitutes a set of basic or nonbasic variables.

This becomes bbvious once we examine the fundamental cir-

- 79 -
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cuit matrix B,. The canonical or echelon form of a funda-
mental-circuit matrix implies that the cospanning tree
variables can be expressed in terms of the spanning tree
variables and hence, the cospanning tree variables become
‘the basic variables \and the tree variables become the

nonbasic variables. Thus, we have the following definition.

4

A marking M pf G is called a basic marking if there
4t

exfsts a token—free spanning tree of G under M.

In order to apply the simplex mcfha&, we must obtain a
b;s;c feasibfe solution of (3.2). From the marked graph
point of view, it is not even clear‘ that there exists a
basic marking M € R(M,). Indeed, as can be easily ‘seen,
thene. may be no basic marking reachable from M,, if M, is
not live on 6.4 However, as we will prove, it is always
possible to obtain a basic M € R{(M,) for the live class Df

prablems.

P

g

Generally, in a linear-programmiﬁg problem, we are
f‘ﬁ?d with the subproblem of obtaining a basif fe*sible
solution }n order to start the simplex method. It should bhe
obvious that since M, € R(M,), then M, is a feasible solu-
tion of (3.2). '1f My is also basic then we can start sim-

Y

plex with M,. Otherwise, it seems reasonable that knowledge

\

of a feasible solution of (3.2) should help us +find a

basic feasible solution of (3.2). Indeed, thias is the case

as | we will demonstrate after introducing the notion of a

R ars
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diakoptic transition. Let us assume for now that M, is

basic with token—free spanning tree T.

~

‘3.1.2 Tokens and Flows

[

In the following, we illustrate the structure of the
maximum-marking problem and f@? relation to the transship-

ment problem of network flow theory.

The vector Z; is an Iinvariant of the eqguivalence
class R(Mo) with respect to T, for obvious reasons. Every

M € R(M,) satisfies B,M = ZIs, The k*" component of ZIs

‘is an invariant of the k*" fundamental circuit. It is

simply the~glgebraic sum of the tokens in the k" fundamen-
tal circuit when traversed in the direction of its defining

chord. This number must be the same for every M € R(M,).

Lemma 3.11 Z5x ) O when Mg 25 basic with tree T.

. ) . . -
Proof: When M, ;%ith spanning tree T, all tokens

reside on the chords of the cospanning tree T. Since each
chord defines exactly one fundamental circuit and each

fundamental circuit contains only one chord, lthen the in-

variant of each fundamental circuit is just the token count

on the defining chord which is nonnegative.B

€

Before illustrating the structﬁre of this prdblem, we
‘ L]
introduce one more definition. The cost or weight of a

fundamental cutset is defined as the algebraic sum of its

edge weights with respgct to the forward orientation of the
. “w /‘ w

v
P

/_ ‘-61-'.\\- ..,
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e




cutset. In other wordg; a cutset’s weight is'ihe sum of its /
forward edge weights minus the sum of its backward edge

weights. Note that this dnfiniti;n is dual to that of a

circuit invariant. If K= K, U K_ is a cutset with.forward

edge set K, and backward edge set K_, then we shall denote

the weight of K Qﬁder the weighting W of E as

WK) = T wiel - zw(e)Q/' (3.3)

e€k, e€K : ‘

ano;e formulating this pfoblem’s dual, let us elimi-
nate the chord (basic) varisbles from the objective to
ébtain an eguivalent objective in terms of the branch
nonbasic) Qariables only. | To do' this, we need the basic

dictionary (701, which is readily available from the canon-

cal form of thé constraints. The partition is as follows'’ |

-

¥ .
maximize J = cw;,w,n[n;] = WMz + W M,

.
, subject to

[Is B,TJ[N;] = Mz + B,,Mr = 25, M ) O, 3.4y '
. M. ‘

where the subscript T denotes the cospanning tree, the = °
subscfipt T denoteg the spanning tree and Iy is a unit or
identity matrix of dimension IT|. The basic dictionary Qs

simply -

My = Zz - B,.M.. . ¢ (3.5)

eplacing the cospanning tree marking M5 with its diction-

ary, in the objective J, gives % ~ ‘ . , )
I'd - ‘.\ ‘ o

@
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o
- ,J -‘W;(Z$ - B, M) + wr“vv

- WsZlz + Wy = WsB, M,

Qo
Al

= Wiz + WM. . (3.6)

'

The number WsZ:z is the value of the originhl objective J

under the marking Mg since the tree y%riables are all zerao.
) ‘ s ’ .

Thus, an equivalent objective for our optimization problem

‘ .
.

is *

where ‘ a - .
’ . (‘\O e . Ny . . ‘
* W e tw.-r" W-,-J, .0

Ay
Ws & 0, and

V)

€2

- &8 W, - WsB, 4. o : ’ e
- , .
iy . <

We wmee from.the ekpression- for J and . ¥ that.we cén

increase their values hfwincraasing, by an 'apprapriatc

amount, the token count on any trce'odgn.with-a correspond-

.

."ing positive coefficient in W,. The elements of W are the

familiar rolntfvc—cost coefficients from he s}mpiex_

EF

!

. method. It is easily seen that the objective J or J

o

cannot be‘increased by increasing valués of tree yarlqbles

/ . ' ’ o

if W, £ O and hefice, M is optimal i and only if W, ¢ O.

or 3 i: The relative branch costs are the associated

v

fundamental-cutset weights, .

. ¢

Progfi The relative-cost végionvuf the tree is |

éﬂ@wT = Wy - w%B;T! ' ' e 7

J g Um, . LB .

'— 83 L] . "'@f . . -t

o,




s
v Transpost ng,. S L BRI
N . o ‘ _ . o e ‘- . e
I . . .
. WI = WD - Bo, W, > . .
LY ' ° N ~ ‘3"“ e 7 - -h_\‘: il
' P - I,w* - BY Wk, N , " - .
s \ B Y
S ‘ -”t—a tr 1o J[ws];\,
. ~. *
\\ ' !
N S ; ) - . .
N - Q‘wt-m N i
. Tt . L
‘ ) Transposing again, - /7 ) . ‘1\
4 WV, = wa ’
- > . . . TN A
h where Q, is the fundamentek—dutsét matrix of G with respect
) to the tree T.B v -
N . . ﬂ -
) \. [} ( . . .
. . This result enables us to tr.nslate the algebraic
* N criterxun for optimalxty.. WT £ 0, into a §tructural cri-
\Jterlon for aptimal:ty, namely, all fundamental cutsets of T
- have nonpositive weight, and exploit this qtructurnl prop-
. . “arty of .an optimal solution in an efficient graph algo-
. - . . ‘@
rithm. First, let us obtain the dual of this problem.
> ; We may state the primal as
maximize wn. ‘ ) ,
subject to B,M = i.,, Mo, (3.8)
. ] - o '
and the dpal [701 as
o A o
“4 ' minimize F3Zs,. \ oo ' ) :
. - - subject to FzB, » W, C (3.9
' ) ?\\\— ~ k"
¢ . 4 oo .
That this is a minimum-cost flow problem is not aob-
\\: ‘ ¥ vious in this form. However, when we partition the prablem

.~ B84 ~

'y
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i . 4 canonically, we ébtain - ‘
|4 " \" - v
. o N S o
minimize FzZx, : ,
subject to FxlIs-B,,1 l [WT,W,J = [0 NTJ. (3.10)

This decomposes to -

-~

mtninizc Fsls, s ’ »
. subject .to FzB,+ 2 WT. Fz ) O. ' ' (3.11) b

Adding slack -variables (one for each branch _of T),‘ we |

- obtain " ’
AN o ;

L
minimize FziZx, - o
subject to F5B.y - F+ = W,, F5,F;+ } O. ‘ (3.12)

: Let F = (F3,F,J] and Z = [2$,233% = [Z£,0%1%, then the dual

program is

minimize FZ, '
e . lubjcct to Fai = -y, F ) 0, (3.13)°

7 -
A -

This i®s a minimum-cost 4low problem since. the con-

straints aFg seen to be flow-conservation equations (cur-

Lo

rent equations) of G. The vector -, is\alsupﬁly vector.

or, .equivalently, ﬁ, is a demand vector whaose components
B AN

~ correspand to commodity demand for a node or group of nodes

v

defined by the corresponding branch in T.. This problem is

well known in nctwork optimization theory and it can \be
so0lved . eff:cxently using the network simplex method E7OJ N

which exploits the structure ipherent in the flbw problem.

Lol
\

E ve could, . tﬁerefore, specify a. dual procedure for solving
s ‘ ?
the maximum-weight marking .prabiem by a direct analogy with

T




bl

]

F"
the network simplex algorithm [70]. However,. attacking the .

maximum-marking problem from scratch leads us to interes- L
*

ting interpretations, concepts and results, . : i
~3.1.3 Diakeptic Tinnlitioﬁi\

) : A N
For expositional convenience, we shall extend the
Eoncept of enablement to a subgraph of G and thus gntru&uce

the ndtiun of a diskoptic transition in a marked graph, . 0

. o Lets.nna§=v—5beapq:7ionofv and let (S,5)
denote the cut <5,5), U (5,5)_ nsisting of the forward

. cut edges (S5,5), directed from S to & and the backwird

o n il e

cut edges (S,5). directed from 5 to S. Let G(5) be the
subgraph induced on § by removing (S,5) from G.. Similarl;,
let G(S§) be the subgraph induceé\on §%>by removing (Sﬂg).“
from G. I# G(%) and Gfg) are both connected, then ‘5'§’ is

called a cutset of G. Let us assume (5,5) is an ‘arbitrary

cut of G.

oA »

Ve define the enabling numbers of G(S) and Gg§> as

: W(G(S)) & min_{Mer}  Gae ‘
=€(S,5)_
and ' » o . Co
. !
H(G(S)) 2 ain_{M(e)}. .43, 15)

, L.\\ e€(s,8). , l

An elementary diakoptic firing of a vegtex—induced

subgraph G6(¢) of a mprked graph G is any legal firing

sequence confined to yertices in G(s) which. fires each
et > ¥

-

¢
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/ﬁ vertex 1in-G(es) exactly once. Note that thi://d:;;nition . .

~

.includea subgraphs G(*) consisting of dxsjoini components.
. -
Iheorem 3.2 (Diakoptic-Transit on Theoram) & 'An',elementary ‘ i:
diakoptic 4iFing of a vertex-induced subgraph G(S) ‘of a
ma%ked graph G is legal under a live marking M if and only

‘if H{G(S)) ) O,

. . /

Proofi First, we note that the markings of G(5) and G(5)
are unaffected by the diakoptic firing of G(5) since .ver-
tices in. § are not fired andQeach vertex in § is fired
exactly once. The only edges of G whose markings change in
an elementary diakoptic firing of G(S) are edges of (S,5).
Each edge uf'ﬁ5,§>- loses one fﬁken and each edge of ¢s,5),

‘" gains one token. By hypothesis, p(G(s)) » O and so.'qgach‘

edge @ € (5,5). has at least one token. Further, the edges

of (5,5)., play no role in determini;g the legality of a

firing sequence confined to ver@ices in S..Hencet all edges ', /

in the cut <¢8,5) may ‘be- removed from G, i;olating G(S)

fram- G(§{ and so, we need only show fh;t there exists a

legal firing sequence of any marked qraﬁh G from a live

markihg M which fires each vcrfcx of G exactly unce; re-

turniég to M. This question has already been rgsolved in

r41. However, we-f;Fesont an alternate proof which is

easily extendable for the capacitated case.

Let G(E;) be the token-free subgraph of G under ™

induced by the token-free edge set E, = {e|M(e) = 0}.

|
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Property 11 G(E,) ig acyclic. //
Property 21 A source in G(E,) is an enabled vertex in G

under M, s, r

\

oy

" Property 1 <{ollows from the livnnels\of M. That is, G has

no token-free Qirected circuit; under ﬁ. Pboperty 2 follows
from the observation that a source of G(E,) is either a

source: 0f G or a vertex of G with at least one . token on

v

each edge incident into it under M. In either case, &

source of G(E,/™~is an enabled vertex of G under M. Since

e

G(E,) {& acyclic, it contains a source and hence, G '‘con-

tains an enabled vertex v under M, Firing this vertex v

" . )
results in a new marking of G obtained by subtracting one

‘token from each edge incident into v and adding one token

P

to each edge incident out of v. Sincte v has .been fired and
each edge incident out of v has at least one token then v
may be removed from G. The above argument recursively

applies to the resulting subgraph of G since it is another

live marked graph for which an_elementary diakoptic=firing -

sequence is sought,ll . /

As nated in the proof of Theorem 3.2, an elementary
diako&tic £irin§ of a subgraph G(S) affects the marking of
G only on edges of the cut (5,5). Specifically, one token

is subtracted from all edges of (5,5) incident into G(S)

\and one token is added to all edges of (S,§) incident out

of G(S). Thus, we may view the state—transition process

diakoptically. That is, we may consider G{(S5) as a super—

|
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" supernodes or clq?ters at a time, ignoring the actual

LN «
. , Co ‘
node of G. This {'s the essence of the sbove theorem. It
{

tells us that we can move from marking to marking by firing

firing sestsggq involved within the cluster since the theo- i

L

rem guarantees its existence.

‘3.1.4 A Diakoptic-Reachability Theorem

. '
. \J

‘fhe diakoptic~transition theorem for live marked
graphe provides us with a diakoptic-reachability thqprém s

:".F‘
every refth e marking from an initial marking of a live

for such casgs. The interesting aébect of this is that
marked gr;ph G defines its own unigue diakoptic™ firing
sequence leading from the.initial marking to Ehat marking.

Ve nowuprocéed tu?develop this result, ! -

Let G = (V,E) be a marked graph on vertex set V, nge'
set E and live initial marking M. Let M, € R(M,) and, as

before [51, . let E, = [00,02,0¢¢,0%1% be the mini , —
v r-_”___‘__#_,.’_———/ O

. ’___,_,(M>' ’
nonnegative solutiaon to AL = M, - Moy where A is the — - T

incidencé‘matrix of G. Ideﬁtify the entities defined by the

following algorithm.

k&0 A
While [, 2 (o%,0h,evs,0h]" # O do
Begin g . '
8., & {viet » 0} . - .
G, ¢ G(S8,) ' . |
%, & min {o“} ' .
. v € §, ' '
e ol - Xuy YV Vv € S,
e "{o,v\oeé."
- k& k-+ 1 o -
"End | ’ . !
r &k 0

o

N R N ¥
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) f hgo:gm 3.} (Diakuptic—k.achnbility Thuorcm):The diakoptic—-

fxring sequence defined by the exprossxon

‘ L ‘ r-1 /

. . * .m ) . nkah . ;

) ) / : ’ ‘(-oﬂ{‘t ° /
\/ " . of length r ( n-1 legally transforms Ml into M, on G,
uhere ‘G, X denotes x, successive element ry diakoptic fir-
I
. . . inqs of G,.. \ 2/

‘ i ¥ \

T Proof: First, let us recall thaﬂ\n'#iakoptic firing of a

U
B

vertex induced subgraph G(S) of a %arhed graph G affects

. Q the marking of G on edges of the cuf ¢6,5) only. Also, for -

S ‘a live G, a diakoptic firing of G(S) is legal if and only

. ‘
if p(Gs)) ) o. Thus, we need only show that x, ( w(G,)

2

for 0 ( k ( r-1. VWe demonstratd/that ¥o £ H(G,) and then

deduce that x, { u(G.) for 1 L/k { r-1.

./

let‘(S.,Ski‘ and ¢5,,8.). dé;ote"the forward and backward
/

Fraom the state equation, / we have M,(e) = M (e) + o7 - o5,
: for every edge & = (1,)) € E. Now, by definition, o = 0,
v i € §,. So, M, (e) - "M (@) -”o'f, Ye=(i,j) € (5,,8,)_.
\Impos1ng.nonnégativi}4 on M,, we obtain oS (M (e), Ve =
(iy3) 6 (55,85) . /éy definition, :E?,\\!J € sc,‘, and,
" therefore, ;t fﬁl}éws that x, ( Mo(e), V. & ec(§°,§;3-. ‘Thé

)

/
enabling number of G_, is simply

Lo L/

-0 -

- 8., far 0 {/k ¢ r-1. Further, as before,

edge sets of the cut (Sk,§z), respectively,for 0 ( k ( r-1, -




'7 ~
w -
o t
. N =
~ } w”
e T MG = min _{M.(e)}

'@E(S, 4,5,

- and it follows that. x, ( u(G.). To deduce that the k+i*"

N

. -
diakoptic firing is lngnf‘giVQn that the first k diakop-

tic firings are legal, we need merely note that E,_ is the
minimum nonnegative sclution to AL = M,_ - M., whqr& M, is
the marking of G after the first & diakoptic firings. Thus,

the abov¢(ar§ument.is true when 5,, x,, Mo and L, are

replaced,ﬁith Sey Xuy M, and L, , respectively.B

3.1.5 Obtaining a Bamic Marking in R(M,)

i

»

with the notion of a diakoptic transition Qstlblilhéd,

we describe an algorithm for obtaining a basic ™ € R(M,)

‘when M., is live on G. We assume- that G'is connected.

t

Suppose that, by some means, we have obtained an

oo A\ .

M € R(M,) such that the subgraph G(S), induced over saome
subset of vertices S, haxa token—free spanning tree T

under M. Since G is connected, (S5,8) # 0. Since G is live

under M, G(S) is also live under M. 1If (S,5)_ # 0 then

fire 6(8) diakoptically p = u(G(S)) times. This transi-

tion is legal and results in a marking M’ abtained from M
by subtracting y tokens from each edge in (5,5). and
addxngvu tokens to each edge in <(5,8),. If u is not equal

to zero, then at least one edge e = (i,j) € (S,§). is

token-free under M’ and since the marking of G(S) is

unaffected by the diakoptic firing of G(S), then T is also

p . , N

§
!
i
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tokén-free under M. Clearly,:this is the case when y = 0.

. Thus, the tree T U {e} is a token-free spanning tree of

LGS U2} under M€ RM,). If (B,5). = 0 then <(5,5), #

¢ and sn,.by similar reasoning,we may birc G(§), diakoptiC*
ally, u{§(§)) ’times. This transition is also légal and
results in the marking ﬁ' obtained from M by subtracting
u(G(§)2 gokens from each edge in (5,5),. at ieast one

edge e = (i,j) € (S,§), is taoken—free under M and so,

T U {e} is a token-free spanning—-tree of G(S U {i}) under

M€ R(M,). Hence, we have an algorithm. Ve simply start

with 8 = {v} for any vertex v € G and with T = 0.

2

The following algorithm will generate a basic marking
M, reachable from a live marking No, for, a connected marked

graph G.

1. Set T = @, M = M, and 5§ = {v}, for any v € V,
. While IS] ¢ Vi do ' ’
1§ <(S,S5). 2 0" ’
Then 2
Begin
. Compute g 2 p(G(S)) under M.
Fire G(S) g times, updating M. ™
TETU {e} and 8 ¢ 84U {i}, .
where e = (i,j) is a token—free edqge of
¢5,8)_ under M.
End
El se
Begin . _
Compute u & u(G(S)) under M.
. Fire G(8) u times, updating M.
T&TU {e} and 5§ ¢ 5 U {j},
where e = (i,j) is a token—free edge of
(8,5), under M. '

-

End

3./St6p. M is a basic marking in R(M,) with the token-free

spanning tree T.
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_We way  modify this d(qorithm by inqluding. as’’ many
token-free edges as possible at each iteration, 'so lﬁhq as

’,

a circuit does not Gorm.(
) . N ) T A

3.1.6 Piyofinq and Diakoptic Firing

N
Next, let us interpret the fundamental ocperation of

simplex, pivoti‘g, in terms of 'vertex firing. This mugi\be
baféible s;qce simpléx moves from marking to marking . by '[
pivoting and each‘sucb movement must be characterized by
some legal vertex-firing sequence. Pivoting is quite easi~—
ly interp;eted in terms of a firing sequence, as the fol-

lawing definitions and discussion illustrate. . ) !

Each pivot of simplex selects one nonbasic variable
(tree branch) with a corresponding positive relative cost T
(fundaméﬁtal—cutset weight), and sexchanges it with one
basic variable (eospanning tree chord). 1f no such exchange
isg bossible (all relative braﬁé: costs are nonpositive)
then we have an opt}mal marking. Let us examine the de-—

tails of this branch-chord exchange.

Llet b = (u,v) be the branch of T that has been
selected to enti? the baéis (cospanning tree), where b is

wincident out of ventex u and into vertex v. Now, breaking i ;

the branch b splits T into exactly two fragments, T. and
T., where u € T, and v € T_. Let S be the set of vertice;,
that T, spans and then T_ spans § =V - 5. The fundamen—
tal cutset of G that b defines is simply }s,§>. Thus,

Al
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. since b 5as been selected to leave the tree and enter- the
cotree, then W((S,5)) » 0 because the relative cost of

brfanch b is the weight of (S5,5). b a

'

Let this first pivot move the state from M, to, say

- M, Simplex moves from one basic feasible solation to

another basic feasible solution‘'with each pivot. Thus, 4bn

\‘/ ~ M, to be basic, it must also possess a token—-free spanning
-tree T,. To ensure M, is a basic marking, we must select a

chord from T so as to reéonnect the fragments T, and T_.

\ire only edges of G which caonnect vertices in T, to ver-

txées in T, are edges of (8,58). Hence, we must exchange b

with one of the chords in its fundamental cutset., When the
exchange is maye, the cutset associated with the new tree

Ibranch‘is the same cutsia associated with b in the original

tree, but 1ts orientation is now defined by the new branch. .

\

. 4 Now, we must determine a selection fule and the update

procedure. :

W ‘I
This is. where the diakoptic property of the state-

s |
trangition process is useful in explaining the pivot opera-

 { , tion. Let u = p(G(S)), We knaw +Rat G(S) can be legal-

ly, diakoptically fired 4 times and this subtracts H -

tokens from each edge of (5,5)_ and adds 4 tokens to each

edge of (8,5),. Tﬁis operation increases the objective

function WM by an amount pW((5,8)). This. is exactly the

pivot operation of simplex. . If g = O then we are exper—

iencing dEQenera;y.

o«
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' Now, at least one edge d € (5,5)_.is token—free under

M,. 1 there are more, then each token-{ree edge in (5,5).

+

is a candidate for leavifg the basis. Let-us disregard the’

‘possi?f}ity of more than one leaving candidati, for now, by

assuming that d is unique in each pivot. However, we must

consider degeneracy as this is aﬁ integer programming prob-’

lem. Then, the basis exchange is denoted by the expreasions

T, =J‘T~ + {b} - {d} and T, = T - {b} + {d}.

Inatead of computing the relative branch costr'gssaci—
;ted with the branches of T, from scratch, we would rather
have a method that transforms the relatiQe cost vector of T
into the\relative branch costs of T,. This would be compu-
tationally efficient if the relative costs of T, can bhe
obtained from\t of T through 'a reasonably simple'trans-
form;tion. This looks like a fruit{ul:gpproach since T and
T, differ in only two edges, 'Indeed; this is the case, ag

the following theorem illustrates,

‘8ince the relative branch costs are the corresponding

. ~

fundamental-cutset weights, we must transform the fundamen-—

tal-cutset weights of T into those of T,., Now, T + {d}
eontains exactly one circuit C, whose bri;ntation is de-
fined by the orientation of chord d. The branch b is a
member of C and follows the circuit direction. A momént’s
reflection will ascertain that the only fundamental cutsets

r -~
affected by the transformation

T, =T+ {a} - {b}
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are those associated with edges of C (think of the column

' L4

associated with d in Q,). Therefore, we need only update

the relative costs associated with C, in mdvxng from T to

|

t
.

) ) ’ /,—v“\ AN ] |
T,. . ) L] \
A

Thegrem 3.4t  The relative-cost vector ¥, of T, =T~ \ .

" {b} + {d} i% equal to the relative-cost vector W of T

‘ ) o
minus W((S;5)) on all forward edges of C plus W({(5,5)) on
/

all ﬁac%?#%d edges of C. )

Proaf:/ The reéult is trud for edges b and d since they are
in he same difection with respect to C and the relative

sts of both b and:d decrease by W((S,5)) when they ex-

change roles. Let (x,y) be an edge of C other than b and

‘d, let (8.,5.) denote its fundamental cutset in T, and let

(51,5!) denote its'fundamental cutget in T,. There are four
cases to conkider. s
o | | -

In this case, 8 C §, and 8! =§,_ - 8. Therefore, we

~
may write the weight of the new cutset as
W(B81,5%)) = WI(S,-S,(V-81US)),
- = W((S, -5,V-5,.)) + W((5,-5,8)), >

WIS, ,V-5,)) .~ W((S,V-5,)) - W((5,5 -8)),

WIS, .5, - w(«§,8).

—rt

Case 11 (x,y) € Tf and follows the orientation of C.

Case 21 (x,y)..€ T_ and opposes the orientation of C.

In this case, S, C§ and 8! = 5, U'S. Clearly, Shis

\
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; . will lead to . ' *
’ . E . ’ ‘* . '
- I P . _
\ J W(SL,EIN = wi(s,,B.0. + wis,En.
: (Y ' ’ L‘\ v = ‘T, \g
S S %
, ‘ﬁ\‘fgﬁ"' €ase 31 (x,y) "€ T, and follows the orientation of C.
- o /( . ' Here, §. C S and S! = §_ U §, which will yield '

‘ v
3 N &

Wi(S2,82)) = Wwi(s, 8.0 + W((E,s),
14

= WS, 6.0 - w(s,8n.
‘ l,_%” »

e —

.
IS [

Case &) (x,y) € T, and opposes the orientation of C.

" Now, we have & C S, and S)'= 5, -~ §, which leads
&

to the expression

W((S:,B)) = W(<(S,,5.)) + w(¢s,5n.8 @

.
-

This theorem implies that we may treadt the. relative

. .
costs as currents or flows, because, as we mov¢é¥ram tree
to tree 'or mare appropriately from one cospanning tree to

andther. the 'relative coste always satisfy the sahe nodal

.

w eguations. Thus, we may now(state the basic step of our

algorithm. Fimst,™ compute the n-1 funddmentél cutset

weights by inspéction, and establi;h avcurrent I,(b) on

each Brancﬁ b ofﬁlhe initial spanning tree T, = T, equal to

ité corresponding fundamental-cutset weight w(¢s,5)). Set

. : .
Ioid) = 0, for all chords of thé initial cospanning tree

' 1 - ' .

To = T. We have avoided the problem of degeneracy so far,

,but we must SP:ZQ“Y ané anticycling rule fo‘rv completeness,

issuming degeneracy is ngt present, then the k*" basic step

-
of the algorithm is v -
. &
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Locate a branch b € T, with a positive current I, ,(b).
I+ no such branch exists, then M, is optimal;

Computeeu = p(G(5)) under M, 3

Fire G(8), u times, That is, subtract u tokens from
all backward edges of (5,5) and add yu tokens to all
forward edges 6f ¢(S,5), ito yield M. .,

Augment the current flowing in C. That is, subtract

‘I.(h) flow ‘units from all forward .pdoges of € and ‘add

I.(b) flow units to all backward edges of C to yield

 SUP
‘ ¢

Let T,., = T, + {6} - {d}, Tu-s = T ~ {6} + {d}.

s an sxample, to illustrate pur-maximum—weight mark-

’”

ing algorithm, consider the marked graph with marking Mg

" shown in Fighre 3.1¢a). In Figure 3.1(b) is shown a basic
. .

\; maruing M, reachable from M.. M, is obtained +Fr Mo-
" f) ‘ ' through the'eequencb of diakopiic firipgs G?G;GZGEEQS G3GS,
| . where the 5dbgﬁaph; are‘induced'on the vertex sets
. PO : . o
S, = fi}. ‘ S, -
- " ) s. = {1, 9}, : /} =T
) ) s, = {8, 2, 9}, ‘
. . ; - - Sa= {1, 2, 4, 9}, .
- S, = {1, 2, 4, 5, 9}, ' .
. 8= {1, 2, 4, 5, 8, 7}, \
- A s, = {1, 2, 4, 5, 7, B, 9}, ,
' .. 'S = {1, 2, 3, 4, 5, 7, 8, 9},.
) ‘respectiVbly. ¢
3 The relative costs associated wilh the brancﬁes defin-
ing M, are as shown in F?gur‘ev:&.t(b). ' Note the relative
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Figure 3.1 (a)

‘\N{ ' Marking ‘Mo’

3
L]
rejative
weight — 3 ’
/ et}
branch

,' A basic marking M, € R(M,) : )

Figure 3.1(b) -

¢
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costs for the chords are all zero.

) . /
It can'be seen that the relative cost for the branch
. ‘ 8,9) is grqatér than zera; One chard‘ts,b),in the funda-
mental cﬁtset of this branch has a minimuq marking. JThus,
we have to excpangei}?;?) with (5,6). This requires firing
the subgraph on the vertex set {6,7,8} 4 times, and we
get the‘ new basic marking M. shown in Figure 3.1(c). !

. 6 . .
" Upddting the relative costs as described in Section 3.1.6,

-

we get the relative costs of the bhranches defined by M, as

VR ‘ ‘shown in Figure 3.1 (c).

Continuing the algorithm, we obtain the maximum-weight

marking M. shown \in Figure 3.1(d). This is _achiéved g A

through the sequence of diakoptic' firings G ({7h e «{1,2,3,
' 4
4 o 4,5,6,7,9}). 1t may be noted from Figure 3.1(d) that all

« _the relative costs are nonpositive indicating that Ms is|an

~ ¢

optimum marking. The weight of this optimum marking is 50.

v ' !

, . 3.1.7 The Gresdy Firing Sequence

c

; S Let. S, be the subset of V examined in the kt" step of

aur algorithm in.Section 3.1.6. If the algorithm termin- T
dtes in a basic maximum marking in r steps, for some in-
stance of a maximum marking prablem, then its execution oo

specifies the greedy legal firing seguence F,, defined by

' r 2 o e
F.. = T (G(S. K, Yol (3,169
\ k=1 ‘ ’ :
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Figure 3.1(c) - .
! , # new tasic marking My € R(Mo) - T
' * ;‘
: -
[ S
i _
, Figure 3.1(d)
AN ' .
" A maximum-weight marking Ms € R(M) g
. N
' “ \ ~ 101 - ‘




o

where u, is the enabling number of G(S5,) at the k*™ step.
The seqhence F. is considered greedy because simplex fires
a 'subgrnph as much as possible in each pivct.‘ Simple
ex;mplns illustrate that gimpllx does not ncc‘i:arily exe-
cute a firingkseqpence with minimum firing count, in maving
froTlMO to a maximum marking M GNR(HO).‘Nnr does it hé{p in

constructing a minimum—scatéer firing sequence.
J ™
Each null firing of a subgraph G(S,) in'thé sequence

1

F,. corresponds to a degenerate pivot, Qe define the pro-

gress sequence associated with F,. as

v

/)
p(F,) = ﬁlnk'wusk,in, g = 1,2, ees, p. (3.17)
=

The number p(F_.) represents the progress made in the subse-
" . . . 3

[}

quence F_ of ?, consisting of the first q,firings in F...
In the absence of degeneracy, ‘the pragress sequence in-

creases monotonically with q and, in such a case, the

. <

algorithm must terminate in a maximum marking. However, in

t

the presence of degeneracy, a bound on'r may not exist;

i.e., F may contain an infinite number pf null firings

representing the cycling phenomenon that is associated with

EP{B algorithm. UWe can prevent cyaling by employing an
5 . '

anticycling pul, such as Bland;s least ;u
However, there exists an even simpler anticycling rule due

to Curiningham [701 for the dual algorithm. This leads us to

canjecture‘ﬁfhe existence aof an nquaily— legant dual count-




- AN

erpart of Cunningham’s anticycling rule for the Alqérithm

we have described. ‘ s ’ - . \\\\\
— ) ! ’ o C

3.1.8 Boundedness - .

The conditions gaverning problem boundedness follow as!
an masy afterthought. * /

.- Suppose - that simplex encounters & directed cutset
»

(,8), defined by branch’ b of spanrfing trae T, at some ’

g e

pivot, for somé instance .of a maximum-weight marking prob-
leﬁ. Then the enabling number of G(Sf is undefined. G(5)
is a diakaoptic source. That is, G(S) can be diakoptica\iy - | //
fired an indefinite number of times. Every diakoptic fir— . J
ing  of G(S) increases the marking on each edge of <s,§>..‘ /

© 8ince b has been selected to enter the basis W((§,5» » 0. /

"Thus; the problem is unbounded. Boundedness of the maximum- /
‘weight marking problem is characterized in the following - / i

theorem. - ’ / S

Theorem 3,81 The weight of a marking WM is bounded on R(Hof , i
if and only if G does not contain a positive—weight dirqét—

/ .
.ead cutset. ' C? e

Proofr: Necessity follows from the above argument. Suffi~
ciency follows +from the nimplek,methodm I+ 6 does not
comtain a positivereibht directed cutset, then siMplex

cannot encounter one at any pivot. With a carreét anticyc-

ling strategy, simplex must then locate a finite maximum




'

. 3 M i '
after a 4inite‘number,6f pivots since it examines - a: finite

set. & ' " ’ ‘ .

Note that the boundedness condition for the marking M y
of a mqued graph, follows as a special case of Theorem 3.5
when W = [1,1,ees 117, Thus, we have the following corol-

lary. T .

‘ : ‘

gg;gll@:x;ngLli The marking of a marked graph G is bounded

over R(M.) if and only if G is strongly connected.® ,

3.2 ﬂuximum—chdht Marking for a Capacitated Marked Graph

L]

The results of the pruviuﬁs sections are extended to ¢ 1

:

’ cbver capacitated marked graphs. The motivation for this
,fstems from the queueing-network model. In any real system,

the queues associated with {he edges of the marked graph - . . f

[

must havg fin{te length and this can be taken into account

- using a'capacitated marked graph. N e

-

A’ ’ - . .
¢ Recall that a capacitated marked graph is a mark-

Yo
ALY

ed graph G = (V,E) inrphich for emach edge @ € E, a lower-—

bound L(e) and an upperboun,d'U(e) are qpecifigd on the

token count M(e).

iy

The .introduction of lowerbounds puts the pr blem in

-

its most general +form and does no complicate atters

significantly.” We make the usual con 'sﬁency assumption

Lte) { U(e),V ®@ € E which we denote in \ vector format as

(f L £U. We make the further assumption /L ( U since if¢

H 4




¢ o

. : oy .
L{e) = U(e) for some edge & = (i,j) € E then vertices i and

J @re dead in eviry markinglof G. In otHher words, the

& — vertices i and j are not enabled under any marking ' reach-—

able from M_. . ﬂ&@%

} As before, let us relax the dead-subgraph condition in
the reachability theorem by considering live prablems anly.

Then, for capacitated markgdiqraphs, Program 3.2 is equiva-

A
LY

lent to the linear ﬁroqram
- l)
maximize WM .
subject to B,M = ’ {3.18) .
L M < U, v

ok

[ . We need onlyfuutl}ne the extensions from this point.
) ’ . i . .

S
3.2.1 Basic Markings

!

A cospanning tree still :knstituta- a basig since the
équaéion constrainte are circuit -qultions'of G. However
we must modify our definition of a basic marking. To this

end, let M € R(Mo), Recall that an edge e € E is called

depleted under the marking M it M(e) = L(e). SGimilarly, an

. v >
‘"@edge- # € E is saturated under M if M(e) = U(e). So, we
define a basic marking in these terms:

a

A marking M of G is called a basic marking if there - . ;
'exiéts "a spanning tree of G camposed solely of branches

that are either depleted or saturated under M.

’ ‘ . .
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3.2.2 Diakoptic Transitions . : '

-

[ -

We must establish a diakoptic—transition theorem for

the Elass qf live problems an capacitated marked graphs.

. We, recall that the enabling number of a vertex induced

subgraph G(S) of G under M is defined as

#(6(8)) & min{ min_{M(e) - L(e)}, min {u(e) - M(e)}},
e€(s,8). e€(S5,5), (3.19)

-

Theoram I.631 4n elementary diakoptic firing of G(8) is
. : y
legal if and only if p(G(S)) ) O. ‘ '

Proof: Again, the proof/ follows from <the reachability
theorem for capacitated marked graphs (Theorem 1.5). , How—

ever, we can provide a.¢onstructive procedure similar to

that in the proof of Theorem 3.2. As in the proof of this

theorem, we need only prove that there exists a legal
firing sequence of any capacitated marked graph G from a

live marking M which fires each vertex of G exactly once,

¢

returning to M.

[

[}

anstruct a graph G from G by'l open—circuiting all
edges of G which are neither depleted nor saturated under M

and reversing the direction of all saturated edges under M.

Property 13 G’ is acyclic.-

5

Property 21 A source in G’ is bn enabled vertex in G under

.

N

4s in the proof of Theorem 3.2, Fraoperty 1 follows
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from the liveness a?sumption since, by definition, a dead-
subgraph in G under M is represented by a directea circuit
! in G’'., Property 2 follgﬁs fram the observation that any .
source of G’ is a‘vertex of G with no depleted input edges
inq no saturated output eages under M. Properties 1 and 2
imply that G hQS“an enabled vertex v under»M.. Aféer vertex
v fires, it has ﬁo depleted output edges and no saturated
. 1npu€ edges and hence, it may be removed from G since the
/bdges incident og it do not rastrict/éhe remaining wse-
quence, Again, as in the proof of Theorem 3.2, the above .,
argument applies. to the remaining subg:?ph aﬁd proof is i

‘ established by recursion.il

3.2.3 Obtaining a Basic Marking in R(M.)

v e

we show, by construction, that it is possible to ’ x
obtain a basic marking M € K(M.), as de{ined for a capaci-
tated marked graph, using the notion of a diakoptic.transi-

tion. . -

1f G is connected and U is finite then it is clear
from the definition that the enabling number of any sub- g
graph G(5) of G is always defined. However, to present the B
result in it most general form, we assume that U may have

) infinite entries.

To simplify the algorithm description, we define thg\
input and output enabling numbers of a subgraph G(S) under

M as
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L.

bR

U, (G(S)Y) & { -
, min_{M(e) - L(e)} otherwise
e€(5,5) _ N

@ if <5,8). =0

\\ .
and : -~

o if (5,5,

’ ¢ ,
H, (G(8)) & {
‘o min_{U(e) - M(e)} otherwise,
!:(S Sr,

~
e med

PR l‘,,:?”
respectively." Then, u(G(8)) 2 min{u, (6(S)), u.(G(SH}.
R

Using these definitions, the following algorithm constructs

& basic marking M € R(M,), for a capacitated marked graph G

.= (V,E).

1. Set M= M,, T =0 and § = {v} for any v € V.
2. While [S| (¢ |V] do

Bagin ' !
He & (. 46(8)), u., & uol(G(5)) and u € mxn{u,,ua}
under M.

I 4 ¢
_ Then
Begin
Fire G(5) u times, updat:ng M.
I€ 4, < Mo
Then T ¢ T U {e} and 8 €5V {1},
where e = (i,j) € (S, S)_ 'with M(ef = L(e)
Else T ¢ T U {e} andS s u {i},
where e = (i,j) E ($,5), with M(e) = Ule).
End
Else
Begin _ (
# & p(G(S)) under M,
Fire G(5) u times, updating M.. :
T«TU {e} and S ¢« 58U {5},
where e = (i, j) € (8,5), with M(e) = L{e).
End '
End

3. Stop. M is a basic marking in R(M,) with spanning tree
T. ‘

i

IY.2.4 Conditions for Optimality

N -

‘As usual, (5,5) denotes the fundamentgl cutset de-

/ .
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I3

“fined by branch b € T. Optimality is characteﬁized in the

N
following definition.

1)

A basic marking M € R(M,) with basis T is maximum
over R(M,) if and only-if W((5,5)) ) O for every satur-
ated branch b = (i,5) €T and W((5,8» (0 tor evary

. Ly
depleted branch b € T, where i € S and j € §,

, N !

. ’ ) . To ®establish that this is indeed a sufficient condi- - :

tion +for optimality of a basic marking M € R(M,), we need ' ;

only substitutéﬂthe corresponding basic dictionary into the

objective from which we conclude that the objective cannot
be ancreased by effecting a change in the marking M(h) of

any branch b € T and that the current value of the objec-~-

e o

f
tive 1s an upperbound on WM over R(M_). Hence, such a

basic marking is optimal.
y

3.2.5 Pivoting and Diakoptic Plring(,
We may restate the optimality condition as follows.

A basic marking M € R(M,) is maximum over R(M,) if
“ ‘ and only if T contains no depleted branch b = (iy3) with

W({5,8) » 0 and no saturated branch b = (i,j) with

;

W((5,8)) ¢ 0, where i € S and j € B. : ‘ )

Hence, we may use the method described in Section
3.1.6 to achieve an optimal basic marking with some slxéht

modifications, From the abave condition, a branch b € T
L

" is a candidate for ente;ing the basis if it is depleted and

¢

\ ' -t
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wt(s,§>) ) Oor if it is‘sﬁtuiated and W(<S,§)) { 0,
™ 4 ’ '(

Now, if the entering branch bl is depléted, then

W((5,5) > 0 indicates that firing G (&) will increase the
‘ objective. Similarly,-¥ok a saturated branch S, w(}s,§>r {v
.0 iqpicates that firing ‘G(§3 will increase the objective.
Hence, the piyot operation follows. If the entering
branch b is depieted theﬁi we fire G(8) u(G(S)) times.
Otherwise, we fire G(8) p(G(5)) times. The ﬁrogréqg_g;hiev- | o
"ed in the pivot is u(G(S{)w((S,é)) 20 if b is depf&ted or
u(G(E)Iw(«8,5%) > 0 if b is saturated. The basis exchange
o is easily 5eén. The greedy diakoptic firing of G(S) or G(5) ) . ¢
; either depletes or saturates at least one chard d € (§,5). /Tz

‘BEach depleted or saturated ¢chaord d € SS’§), after a pivot,

.

is a candidate for leaving the basis.' In general, there may . .
be multiple depleéed chords and/ér multiple saturafed ’ X
chords cu@peting for the leaving variable. This represents |
a degenerate b;sis and we cannot simply ignore the m&lti-
pljsity by selecting any cindidate at random, as this can
lead to cycling iﬁ the algorithm. However, since the de-~
ta1@$ of degeneracy are subtle,we shall assume that simplex-
- willi not encounter a degenerate basis and note that there

exists a number of antiqyc{ind techniques which are applic- . !

-

abhle to general LP pro@lems. Hence, the assumptjon uniquély

specifies a chord  d € (5,8) which is either depleted or
saturated after the pivot. Again, the basis exchaﬁge is

denoted as T ¢ T + {} - {d}, or equivalently, T.¢ T =~ {p} '
+ {d}. . .
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The relative-cost coefficients are updated in exactly
the same manner;as in the untapacitated case. This 1is

intuitively obvious since the capacities restrict the mark-

ings of G and are in no relation with the weights.
3.2.6 Boundedness

The boundedness condition‘follows from arguments simi-~
lar to those used in the uricapacitated case and is summa-— . s

rized in the following theorem.

Y

In!occm 3.7t The ocbjective WM is bounded ov-r R(M,) if an&

-

%

only if G contains no p051t1ve-wexght directed cutset (S S)

with Ule) = o for all e € (S S).I

3.2.7 Alternative Formulation of the Problem

e B N L W

We now present an alternative formulatton of the maxi-

i

mum-weight marking problem, which is suitable for studying

the nohlive case.

P Let o, & W{i},v-{i})» denote the weight of vertex ‘

i € V. The row vector of vertex weights 1l = [0, is then
v Qe WA, (3.20)

w?ere A is the incidence matrix of G. The number o, repre-

sents the gain achieved in the objective WM each time

vertex i is fired.: Thus, if the initial marking M, has an
objective value J, = WM, ' and vertex i is fired o, times,
resulting in a marking M with an objective value J = WM,

- ¥
-, jﬁf -
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then the number a‘o; is the incrﬁase, Jd - Joy achieved in-

o : _:,’ﬂ ' N
the 'objective, in moving. from Mo to M. /SBince J, is fixed,

\

then maximizing J - J -xt equivalent to maxxmxzing Jd. In

fact, mult1ply1ng the state equation by W gives

WM = WM, '+ QF, (3.21)

™,

4
where L[ is the firing-count vector realizing M from M.

Hence, we may replace the objective WM Qith'the equivalent

4

v

relative objective QL.

e
4

Using the state equation, M = H°‘+‘A‘t. we may  pose

the feasiﬁility condition for.a marking M of G in terms of
’ $

the fir;ng numbers. That is, 'L (M ( U means L ( M, + AL ¢

~

-U. Thus, the maximum-weight marking prablem may be stated

with, the alternative linear program

m.ximizo Qr

subjcct to L ~M, ¢ A*B LU - Mo {3.?2)~‘

The special case of Program 3.22 ‘when L(#) = 0 and

U(e) = o0, for afl 2 € E, namely

maximize QI .
" msubject to AL ) -M,,

\

represents the uncapacitated broblem;

‘Note that [ is not explicitly restricted in either of

these brograms and that for any solution E, we can obtain
R

the minimum nonnegaf#&e solution E_.

o
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‘3.3 Maximum-Weight Markings for Nonlive Marked Graphs

1

It should be easy to see that the dead—%ubgraﬁh condi-
@ . ]
tion in the reachability theorem can be incorporated into

the alternative formulation of the maximum—weight, mafking

. .

.

problem as follows: Let D be the set of all vertices in G
belonging to a dead-subgrapﬁ at M,. By definition, no

vertex in;ﬁ“caﬁ fire at any M € R(M,). Thus, we need merely

fix the firing count of each vertex i € D a zero. Then,"

” .

for any marked graph G, the maximum—weight marking problem

may be stated as

-

v

- maximize QF co :
subject to L - M, ¢ A*E (U - M., (3.23)¢
o, = 0, ¥ i € D.

-

The above‘prngrid can be simplified as follows. Con-

sider the subgraph G(D{ of G. Since each vertex i E~D is
. u ,

,. dead then the marking of G(D) cannot change in any legal

firing sequence of G from M,. That is, M(e) = M, (e),
N . A

Ve€GD, VYMEKM,. Thus, all vertices in D may be

short-circuited togetier .into a single dead vertex d and

then the sel f-loops induced on vertex d may be removed. To -

% ’

incorporate the dead—dubgraph coandition, we simply fix ou =

o,

0 and sclve the prablem for the reduced graph. The set D ‘i%*

is easy to identify.

3.4 Structure of the Alternate Formulatign -1

;

Program 3.23 is posed in terms of the firing counts

*

4

- us -

]

T T — -

.
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. / o ' :
- . . - !
and not in terms of markings as in’ the pFevious sections.

Py

So it might appear that the methods of Sections 3.1 and 3.2

canhox'be used to s(udy (3.23). This is not so. We now
‘-‘demonstrltn that the maximum-weight marking problem for a
nonlive marked ghnph can be formulated as an auxiliary .
caphcitatéd maximum-weight marking problem which implicitly :
incorporates explicit restrictions on thg firing numbers‘as b
expliciﬁ\res&rictipnl on the markings, Qnd hence, that the
methoq;‘discusscd thus far are applicable to Bonlive prob-

lems as well, ' . . L ﬁﬁ

v To simplify jour presentation, ‘we consider only the

maximum-weight marking prpblem for nonlive uncapacitated

- . ‘ marked graphs. The linear program fo‘b of this problem is

the speciQI case o*_Pﬁogram 3.23, namely, ‘ ) '
A roo. .

hY

) . maximize QL - . :
\\\\ e subject to A“L ~Mo , (3. 24)

) ~Mo : .
v o =0, Vi €D,

Tﬁe first step in solving this problem with ‘E‘—

'plex is to convert the inequality constraints to équa}ity

constraints by introducing slack vgriables. It is emasy to.

. see that the column vector of slack variables for Program
R .

J.24 is the final marking M‘ that [ realizes froﬁ Mo. Thus,

" incorporating slack variables in Program 3.24 yields the

equivalent program ‘ ' , , .

maximize QT s
T n ‘ . subject to AL - M = ~-M,,
. ’ ' ‘ e, =0, ¥i€D,

- . “
- N
/‘ - ¥
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! ~ .
or B : ‘ ‘ // i
, maximize QF ' , . ‘
N , ‘subject ta M - AL = M, . (3.25) s '
. o, = 0, Vi €D, i
o Using the unit or identity matrix I, of dimension m, we may . .
then organize Program 3.25 as
‘ " maximize QF ' '
subject to (I, -A*] [;l] =M, ) (3.26) -
¢, =0, Vi€D \ - '
, .
Now, construct an auxiliary graph 3 from the origi-
~ nal graph G by introducing an artificial reference vertex
external to G and then connecting each vertex in G ta this
; reference vertex with an artificial edge. Formally, define -
the auxiliary qraph é = (0,&) for the original graph G =
a {V,E) according to '

1

<>

g vu {r), ‘ (3.27)°

g EUTY, . i (3.28)

>

where r is an artificial refersnce vertex sxternal to G and

| o o ™ ¢ {ale = (i,r), i €V} (3.29) ‘

5

is a star tree consisting of artificial edges directed into
, , the artificial reference. In fact, ™* is a spanning tree of
G,K‘andtconsequéntlyq E is a caspanning tree of é. Hence, !

!
each édge of G defines a fundamental circuit a# 3. ‘Let

ﬁ, be the fundamen{al-circuit matrix of é defined by

its cospanning tree E. Then, “the canonical form of ﬁ, i§ ¢ \

o ‘ S | - 118 -




is a basic @aﬁhing of é with basis E and cobasis T*.

v

£1,. ﬁ,“J.‘ It is easy to see that

i

(,, j | » " 3.
B, . T -at (3.30)

2

and hence, (I, -A%*]1 is tﬁe fundamental-circuit matrix ﬁ,

‘of 8 with respect to the tree/cotree partition (T*,E) of

&. The solution to Program 3.26 follows easily from this
point onwards. . The vector I is a vertex associated vari-
able. However, we may unify the notions of veritex variables

and wedge variables to some qQQFQG. tﬁrqugh the use of the

- unique auxiliary graph ’a' associated with evary graﬁh G.

From the above discussion, it is apparent that we may ..

construci an auxiliary problem ?or any instance of Pro-

gFam 3.24 as follows.

”

Defina an initial marking ﬁg of é according to

A Mo(e) if e € E;
Mo(e) & {4 . *
oifee€T, )

or simply,.

Fa(E) & Mo, -

foa™ g0, - . e (3.31)

»

where §_(E) is the restriction of M, to E. Note that #,

3
Now clearlyy the dead—-subgraph constraint is a special
. {

case of the more general explicit upper and 1owerbounding

of I. Specifically, the constraint o, =0, vi € D is a

J ¥
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1l

special case of the constraint 8, (o, (u,, Vvi €V,

wherﬂ £, and u, are the lower bounds: and uppertounds,”

’

respectively, on the firing count o, of vertex i € V.

Define an upperbound 0 on the marking ﬁ of é according

' ]
to
R L 1f ® €E o
Ute) 2 / " (3.32)
U, if ® €ET and e = (i,r),
where
0if 1 €D . .
u‘ g (3- 33)

wif i €D &vVv-D.

Define a weighting U of & as
oo {

- I
Wie) & "
, @, if e €T and e = (i,r),

v

. or simply,

A
W(E) & 0O,

@™ g a. . (3.34)

We- define ‘the auxiliary program associated with Program-

a

3.26 as

maximize Qﬁ

subject to o . . (3.35)

¥

om
I~ X>
~ X

>
-

E J
A
™M

where f is a marking of E. : ce .

-

Our intent, now, i® to demonstrate that a solution to

the auxiliary program yields a solution to the 'original

S - R -

1
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problem and vice-versa. In ut@nr-uords, we proceed to

demonstrate that Programs 3.26 and 3.35 are QQuivalnng.

Let ﬁ(ﬁa) denote the solutian space’ of the con-
straints in Program 3.35 and, . as usual, lef'R(Mo) denote

the reachability set af M, on G. ‘

!

4

. {
A A L

Consider any f € Ri(M,). Clearly, M is a feasible solu~ !
¢

A A A A A ,
tion to Program 3.35. Let £ @ [0,, 02y **e, 0., ¢,.1% be any

’

. A_A A A . A . s
solution to AL =M - M,, where A is the incidence matﬁng.

A A . A A A ’ » . A
of G. We .have M(e) = M (@) + 0, — 0., Ve € T . Since My(e)
\ s

) * A A A * : .
=0, Ve€T , then M(e) =0, ~¢., Ve € T . Imposing

A A A
nonnegativity on f yields 3, -o. 20, Ve € ™ or o~ { o4, ‘
; - ) .

vV i€V, Hence, 32 = 0 in the minimum nonnegative solution

N A A N A W A « Atl\ A A Ao
. Eo w lo,~0.y OCa=0y**e, 0,0~y 01" Of AL = M - M, and o, =

fiter, v e.€ ™. Since A ¢ U, then 67 ¢ u,, Vi €V or o° =

o, Vi € D.

I we let ' ' ) ‘ .

“Eg £ LoD, 02, ees, 0°1%, (3.36)

v
o L

£

t&en we can see that
/
8%, = fIE) ~ Ao(E) = H(E) - Mo,
This means that M = fE) and E, as defined in (3.36)
constitutes a feasible solution of Program 3.2&. Further-
more, this solution of (3.26) corresponding to ﬁ is
unique since 3? = 0 for at least one valﬁe of i € V.
Thﬁs, it. follows'zhat each ie;siblg_solutioh f o¥'(3.35)

~
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LN . . defines a unigue feamible solution of (3.26). Further, the

1
objective values cnrrespénding to these solutions are both ) t‘

é - equal to QL,. But, QL. = WM - WM,.

Starting - from any <feasible solution o(* (3.24) and
v >

.« . ‘;striE}ng the’nbovn arguments, we can show that each such ‘ |

"
—

feasible solution defines a unique feasible solution of
(3.35), and the corresponding objectives are both eqﬁll. ' o

‘ o M’V/Iggse discussions proveif?e following.

F4

Theorem 3.8t Frograms 3.26 and 3.35 are equivalent.ll ‘l“

The equivalence proved in the above theorem demon-

' strates that the maximum~weight marking problem for nonlive
. ékarkgd graphs possesses the same structure as that for the ) o
i

¢

live marked graphs.

3.5. Summary
v o A
) ‘ , {
In this chapter, we first presented a linear program—'
ming formul ation of .the maximum-weight @Arkinq problem on
* live, marked graphs. We have described the details of an i
algorithm (based on the simplex method) ‘to obtain a maxi- " f
hum—weight‘ marking. The concepts of basic markings and : '
diakoptic firings'have been defined. It is shown that each . !
pivot in the simplex method corresponds to a diakoptic

firing. An algorithm requiriﬁg anly vertex firings is given

to construct a basac feasible marking from .a given initial

marking. In addition to construcfing‘a-maximum—ueight mark-

= )
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ing, our algorithm constructs a firing sequence ieading

-

from the initial marking to a maximum-weight marking. How-— “

ever, this fimng sequence may nrt have minimum scatter as
defined in Chapter 2, We have also established the diakop-

‘tic—reachability theorem,
R we have given details of an algorithm to construct  a
maximum~weight marking in the case of capacitated marked
graphs. ’Finaliy; a formulation of the problem is given in
terms of ¥irin§ counts only. Using this formulation, we
have studied the maximum-weight marking pngbfem for the
.nonlive class aof problems. We have shown ‘that the mnximum;A

by

weight marking problem’ hde the same structure in the cases

of both live and nanlive graphs.

f

One important advantage of the linear;prcgramding
formulation of a problem is that it makes sensitivity
anqlﬁ;is of the problem easy. Thus, our formulations would

facilitate the study of the effects of small changes in the

initial markings on the. optimal soldtion.
o
. We conclude by again pothinq aut that thg problem of
determining the makimum resource requirements in the compu-
tation graph madel o?lkarp and Miller {31 reduces to .the
maximum-weigbt marking prablém in the case wheré the input

and the output quanta as well as thé threshold of each edge

of the computation graph are egual.
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Chapter 4

STRUCTURE OF THE SUBMARKI NG—RE’ACP‘B ILITY PROBLEM

0

The reachability problem studied in Chapter 2 concerns

L

determining whether or not a given marking M is a member o#A
the reachability set R(M,) of a given.iAitial marking M, of
a mérked graph G. The reachability theorem due to Murata
st provgdes a circuit-theoretic characferizatiqn of R(M.)

faor a marked graph G. This theorem has allowed us to solve

. dif*erent\ problems related to reachability for marked

grabhs. .In ‘this chapter, we explore a geﬁerulization of
the reachability pFoblem called the submar%ing-rwachab}lity
praplem introduced .and studied by Ku?agai, Kodama ‘and
Kitagawg [&1. Whereas, in the reachability problem, a
4i;al marking is completely specified or specifiead aon each
edge of G, in the submarking—reachaﬂility proﬁlem, a final"
marking is specified only on a gubset o; the edges of' G and
no marking is specified for the remaining eddes. . The
submarking-reachability probiem concerns determining wheth-
er. or not there exists a'marking with the specified +final
takgn ‘distfibuticn in the reachable space of a given~ iri-
tial marking of a marked graph G. Tﬁis generalization
introduces degrees of freedom into the reachability \Brob—
lem. The reachahility problem is the special case of the

5ubmar&ing—reachéb31ity problem when the final marking isg

specified aﬁ all edges of G, leaving no degrées of freedom.

- 12) -
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In théir pioneering work, Kumagai; Kodama and Kitagawa [&1° ;

have proviﬁed an approach for the study of thé su?marking—
reachability problem and have described an algarithm for
eonstructing a marking with the specified tinal subﬁarking, ‘ Tr
that is réachable fram an initiql ‘marking, whenever it

exists, However, their study does not fully expose the

léructure?of the problem.  As a resulf, extension of their -

approach to the'itudy of the submarkiﬁg-reachability prob- i .

( ~,

"In this chapter, we formulate the submarking-reacha- o

lem for the capacitated case has not been easy [71.

bility problem as a linear program and demonstrate how to

solve this  problem after reducing it to an equivalent

smaller problem by relaxing the feasibility constraints and
by introducing an intermediate state. We then define the

‘ -

submarking-reachability problem for 'capacitated marked

graphs and show that a gimilar reduction and soclution
techniqué applies‘tn the capaci£ated case. As we shall see
in’ Chapter S, this”approﬁch enables us to establish the
‘link between the uub%arking-re‘chability problem and a

feasibili{y testing problem in operations research. . »

)

4.1. Formulation of the Problem

We are given a marked graph G = (V,E) with an 1initial
marking M_. The edge set is partitioned into the control-
led set E. for which a final marking M, (E.k-%s :specified

and the remaining edges constitute the free set E- for

=122 -




} | which a final marking M, (E,) is not speéifieq. The partfk"h
. tioning of E into E. and E,. partitio -V 1into V. and V.-,

where V. is the set of all vertfces of G incident to an - ’

edge of E. and V,. = Ji- Vc. The vertices in V. are called

[N

the controlled vertices and those in V. are called the free ' 7 ’ -

vertices. The incidence matrix A of G partitions as fol-

L
lows.

O
Ec E-

0 Arr (V5

As an example, Figure 4.1(¢(a) illustrates a marked

graph G with an initial marking M,. Here, edges are number-

N ol
od 1,2,3,4,000,44, T ‘final submarking 1s shown in Figqure
4.1¢(b). The tolled edges are drawn as heavy lines to

di%tinguish them from the remaining free edgés. The con-

T N B A A0 ek e i 3 M o @ S T

trolled vertex set V. = {a,b,*+s,s} and the free vertex set Con gg

V- = {t}. l

Let [ = tté,tﬁlt be a firing~count vector assotiated
with V, partitioned according to V. and V,, respectively.
Every executable £ on G from the initial marking M, results

‘in  a marking .M given by the statefkquation‘ M= M, + A®L.

Partitioning the state equation accordiﬁgly gives

. M(Ec) = Mo(Eo) + At L., (4.1)

MIE,.)

(I

Mo(E.) + A%, E. + 85,I, . (4.2)

&
v

The submarkiﬁé‘reachability problem is to decide
» .
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v

whether or not M, (E.) is reachable from hm and if say

'

determine the minzmum'iiringﬁcount‘vector I leading froﬁ Mo

to some marking M for which M(E.) = M, (E_) and M(E..) is

.feasible; i.e., M(E,) } 0. As usual, the minimum finiqu”

count vector realizing such an M from M, must satisfy tﬁe
dead—sﬁbqrdph' conditioH " of the reachability theorem of
Chapter 2. Since the dead-subgraph condition must be satis-
fied and can be checked easily after M is known.’ then we
may simply neglect the'dead—;ubgraph restéiction for now by
considering live problems only. At first, this seems as if
it could be computationally difficult if there exist multi-

ple markings M satisfying Equations 4.1 and 4.2. HoweveF,

by fuhther 'specifying that M should be the nearest such

marking to M., in the sense that the minimum firing-count

vector realizing M from M, is minimum among  all minimum

firing-count vectars realizing such a marking from M;, we
render the solution to the submarking—-reachability problem

'unique. I the minimum firing~count vector réalizing the

nearest M, whenever it exists, does not satisfy the dead-
subgraph condition of the reachability theorem,. then, nor
will any other. Thus, we may state the submarkiﬁg—reacha—

bility problem for live marked graphs as the linear prngrah

v s

[

minimize I

N\ subject to
A AZcEe = ML (EL) — Mo (EL),
N\ AZ;Lc + ARpL, ) ‘"g(gr) ’ :
N £ 2o, R (4.3)

\\ r n
\ b :
in which the notation “minimize L” means minimize ¥ ¢,.

N iw]l

-
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4.2, Btructure of the Problem \ ) A

(////‘ 3

Let us investfq;te the sgructurc of Program 4.3. The

edge induced subgraph G. = G(E.) = (V.,E.) ﬁay coﬁsisf of -
a number of maximally-connected subgraphs or components and
consequently, the ;qunlity constraints in (4.3) decompose
. into dissoint subsystems - one for each component of G..
Let G. consist of r components GL = (Vi,EL), GZ = (VZ,ET),

see, G = (VZ,ET). Thus, the incidence matrix of G has the

following structure ‘ ' - . !
‘. ) Ex EZ E& EC  Er-
\ M ’- e ' -y
' | ' Qéc B ‘ vi
AZ. o VZ
1 " ACF v
. . A<:¢: V: )
a = o ‘ © o (4.4)
Acc Ve .
. o . Apr | Vo 4 :
L- . - . ‘

© 'and "hence, the equality constraints in (4.3) decompose to
, (AL *EE = M (EZ) = Mo(EL), k = 1,2,%00,r, (4.5)

+ Where AZ_ is the incidence matrix of GX = (VX,EX) and L% is

the firing-count vector associated with V..

[

~To illustrate this sfructure, Figure 4.2 shows the
controlled subgr;ph Gc -'(VC;E;) of the graph G = (V,E)
shown(in Figure 4.1,. ocbtained by simply removing the free
-‘\edges and free vertices from G. Each of the isolated

portions of G. is a maximally~-connected subgraph or compo-

nent of G..
\
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. ' The solution to each subsystem in (4.5) is unique to

with:n‘_nn'additive canstant, if it exists. Each one ‘of :
these‘subsystems corraesponds to an independent reachability
problem on tge carresponding controlled component. Clearly,

S " 1 Mg (E%) is not indeqendently reachable from M,(EZ) Qﬁ any -
component GX = (VX,EX) of G. = (V_,Ec), then M (E.) is not
reachable from M, on G. Thus, in order to solve the.sub—

marking reachability problem, we must first solve a number

of reachability subproblems,

Assuming that (4.5) has a solution, let ﬁz denote the
minimum nonnegative sojution for the k*" subsystem. Clear-

A
ly, L& leads from M (EL) to M, (EY). Each ﬁé contains at

least one zero entry and every\solutjon to the k*" sub-

sygtem in (4,.5) Ean be expresséd as
EY = £% 4 Crestus®®o,rudt (a6
[= . [ ‘k! “t 3 Ui (1X|V¢u:() L]

for some scalaﬁ canstant v.. As an éxample, we have given

T in Figure 4.2 (the controlled subgraph) the compizj::j of
ﬁ within the corresponding vertices. In order to"obtdin a -
“uniform npotation, let w = |V.{ and conéidér each free
vertex ’i € V. ;g_a trivial cont;olled component of G with -
na controlled edges. Thus, its minimum firing—count vector‘f
ﬁ; = [¢,1%¥ = 0 and, obviously, any firing count of vertex ;.

can be expressed as I} = ﬁ; + [r:1%, with v, = 0o,. Qe'now

have a r; for every controlled component of G, including

the trivial components. Let f. = C(E2)e, (B2)% 0o, (Fmr®at

4-128-
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‘ !? solution to the Program 4.3; otherwise, Mis an infeasﬁble

denote the vector of ﬁ;'vecters, let Er = ttﬁéit,(ﬁi)?;---,
A ) -
(£2)*1* = 0 and let £ = c£:,£53%. Then, any solution to

-

(4.3) can be expressed as

. ~

E=¢f + kI, L (4.7)

where K is a bhinary matrix of size (n x (r + w)), whose :

(i,j)*" entry is 1 if vertex i of G is in component j of G

and O otherwWise. The column vector
‘ ' R S N LT SO L 4.8

has arf entry 14 for eacﬁ component i of G. We now proceed
to pose (4.3) in terps of I, with £ fixed. _ :

3

4.3 Reduction of the Frablsm

. ' _ N !
Having obtained ﬁ, let us take G to the marking

o~ &~
’

M reachable from M., through a possibly illegal firing

t

dequence;exgcuting £. Thus,
Mo=n, +ak. - (4.9)

Clearly, M(E.) = M,(Ec). If M(E,) ) O, then £ is the unique

- state. Suppose éhat M is infeasihle. Then, our approach is

to pull G out of and move it to a feasible state Mof G
thraugh additional/ firings or determine that this is not -
possible. A=ssuming such a feasible state M is reachable, - _
~ ‘ pd RN
gfthen, we can write M as - ‘ »//// . ‘
- // .
oA ! _~ P . I,
M= M, + AS(E + KI'), \\S¥<;\ <
~ //‘—v—/
~
- 130 - '
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. = M, + a%xr, " (4.10)

Since we require that M(E.) = My (EL) it follows that M(EL)

‘= M(Ec). So, we get from (4.10),

(AL )T, = 0, k' = 1,2,0008 1, 4.11)
where g
Fu = CruaTus®® T l®. (4.12)
kN

But, (4.11) is satisfied for any arbitrary value of v,.

Thus, in any firing sequence leading from M to the
-isggﬁble state M, all thg vertices in each component G
will be fired an equal number of timés, namely v, times.
8o, we may consider such a firing sequence as a sequence of
diakoptic firings. During this firing process, the markings

y -

on' the edges in G¢ are not alteréd and only those on the
remaining edge% may change. So, we need to chus our atten-
tion on the edges wonnecting different components including
the triQial components. This suggests thit we di;ect our
attention 6nly to the contracted graph & obtained by

" short-circuiting all the vertices within each caomponent

and removing all the edges of E..
‘ ®
The graph é may have free-edge'self—loops. 1f any of
these self-loops has a negative marking under M then Pro-
gram 4.3 is infeasible since the state of a self~laop can
never change under a subgraph firing. This simple observa-

tion implies that "we may remove all self-loops from G and

proceed from there, provided all self-loops are feasibly

1

>

v e e Adhom =




v

marked under M. Thus, assume & is free of.sel*-loeps.‘ﬂ(so,

.
~

N
[ may contain parallel edges. Let E,;, denote the set of
. y
all edges directed from vertex i € & to vertex j € 8. For
sach edge e € E‘,} we have M(e) = M(e) + Ts = *3. Thus, the!
f¢easibility condition is i
. = v, ) ~Mie), V @ € E,,. ST Bk
Clearly, feasibility is satisfied for all e €E,, if and
only if . ' . - : , Y
v, = v, ) max {-M(e))}. ' - (4,14
‘ eie ELJ ’ i » ! ‘\
Therefore, for any i and j, i ¥ j, we may remove all the T
pgrallel\edges, ‘except the maximally marked one, that is,

‘the one for which the right~hand side of (4.14) is\opt%in-

ed.
\

't this point & has no self-Yoops nor parallel edges. ‘_ :,‘
I+ & is disconnected  then the problem brugks into smllleﬁ }
subproblems. Hence, we assume G is connected. With.the-con—
tractéd grfph established, let us refax\ the notation to
help. simplify our presentation. That is,from this point on, ) ) '
let X denote the incidence matrix of -& and let M and M mean
the s§he as before, but for edges of g oniy. The Program

1

4.3 reduces to .

minimize I N . . ‘
-subject to A®r ) -M, - (4.15)
Fo. | S S




" We wish to emphasize the fact that in the above

/

o /
formulation of the submarking-reachability problem, we do

not distinguish between the firings of. the control led‘
components, namely, the GY's, and the firings of the free
vertices. Alsa, in any firing sequence leading‘ from M to
the feasible state ‘M. firing a vertex of & corresponds to’

a diakoptic firing of the corresponding component in &,

Reiurning to our example, Figure 4.3 illustrates the
contraction of the marked graph. Figure 4.3(a) showe the
marked graph of Figure 4.1 in state M. The number within

4

%

3

|

each veri:ex v of G is the firing count ¢, of that vertex’ xn . : 3
the minimum solution of Equation 4.05. Figure 4.3(b) shows ’

. the graph which results after shqrt—circuitinq the vertices

\ within each componant. All self-loops are feasiblly marked ‘.
and Figure 4.3{c) shows _the contracted graph & with the’

reduced intermediate state ﬁ, obtained by removing all

sel f~loops and all but minimally—marked paral l_ell edges.
4.4. A Solution to the Submarking—Reachability Problem

As wtated previou.ly,‘ if M ) 0, then the solution
- to (4.15) .is r =0, T&a we are interested in the case -~ .
where ﬁ } O. With this in minﬁ, we proceed as follows.
Let G = (G,E).. Let p,, depote a dir*efted path leading
from vertex i € U to vertex § € G. Also, let p,, denote

a'directed circuit through vertex i € v. Clearly, if we -~

sum the inequality constraints in (4.15) ilong any dirécted
' T y
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. . F. '
circuit p,, = {(i‘u,),(u,,uz),O-{ (u,,,i)} € G, we obtain
. ‘ ' \ " e
T = TU: * Tu; - 7.l.l:_- Hoved Tuh-; Tu + TUh Tl -z ie)
“ ' e €p,,

Thus, a necessary condition forn the existence of a

’ [
solution to (4.15) is simply

4

(e) -0y V directed cirfuits C in'3. (4.16)

)
€

n X

Y \

L
L

v

In other words, for the existence 'of a solution to (4.15),

it is necessary that every directed circuit in é has a

)

nonnegative token count.

y, We now establish a éimple lowerboundfon the residual

T}ang count v, of the contracted cohpon nt GZ. If we sum
. - ° & '

the  constraints in Program 4.15 along a directed path
P, B {G,u),y (W uz)y ooe, (U ,,u.), €U, ,i0} €& leading
from vertex i €V to vertex 3 e v through the intermediate

vertices {u,,u., ***, u,.}, then we nbtaln

)

-1, 2 —z Mo

Ty ~ Ty, + ‘(‘ul = Tus toaney '(.-uh_
: € p,y

or simﬁfs,

Ts — Ts 2 —2 Mte 4.17)

e €p,,

)

-

and hence, v, ) v, - 2 Me). Imposing th% nonnegativity re—
.quirement on I'y namely v, ) 0, we Dbtaxn(the following.

Lemma 4.11 v, ) max{o, -} M(e)}, vV p.s € 6.0 '
. e € p,,

RSPV

B et

|
|
!




>

r -4
.

Using this lowerbound on the residual firing numberq.

‘we establish the solution to (4.15), whenever it exists, in .
g -~

the following btheorem. Co

-

Ihgorum~4.1;(Submnrking~Rinchnbllity Theorem): Let the to-
kén‘count. of every directed circuit in G be nonnegative
under M. I# d,, denotes the shortest distance irom”verteg
i€ a.to vertex j € E, under ﬁ(g), then the unique solut{on

to (4.15) is given by ‘ ’

v, & max{0, -min{d,,}}, Vi € V. (4.18) :
3 D]

Proof: Let p,, denote a shortest-path +from vertex i to

vertexij in G, under M(E), with distance d,, = 3 Mle). We
e epl.’ ' ¢
must prove feasibility and optimality of the solution .

o -

(4.18). Note that the assumption that [ unde#oﬁ has no dir-= -
ected circuit of negatiQe token count guarantees that all
.the shortest distances exist and they satisfy the trianglé

inequality. Thus, d,, + d,, ) d,. for distinct i,j, and k.

Feasibilityl We prove the feasibility of ' (4.18) by showing
that such an assignment, whénever’it exists, results in a '
feasiblé iinél marking of G. WE‘pPDVE.tHiS.bY a;seriesjéf
\contraéictions. Assume that the;assignments‘indicated in

1

(4.18) do not correspond to a feasible final marking o} a.

¢

Then, there K exists at least aone edge e = (i,j) élﬁ such

that . :)

.= v, ( Ate). (4, 17

- 138 - BN
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Now, consider the assignments of v, and 7, as in (4118).'
o, .

There are four cases to consider.
= .

Case 1t min{d,.} ) 0, min{d,.} ) O.
. 3 . -

. . L 0 ‘ .
In thie'case, v, = v, = O. Since d,,, 2 0, V¥V k €V, it

follows that d,, ) 0. However, with r} = ¢, = 0, assump-

tion (4.1%9) implies Mce) ( 0, cantradicting that d,, )} 0.

’ I
O ¢ ' .
Case 21 '}nm{d‘.} » 0, min{d,.} ¢ O.
. 15

occur an vertex v € V for the assignment of v,. That is,

In this case, . = 0. Let the minimization in (4.18) l
. - © vertex v is a closest one to the vertex j in G under the !
. . P '

N intermediate marking M. By hypothesis, d,, ) 0, V.k € v and

< 1

. . specifically, d,_ ) O. The triangle inequality property of

the shortést distanceshrequires that d, . i‘ﬁ(e) + d,.. Com-
bining this with the requirement'd,v ) 0 implies that M(e)
+\d4v_l,9 or é,: 2 -M(e). Horevé;, the assumption(4.19) es-
C ] — . téblishes the contradiction by requiring that d,_ ¢ ~M(e).

] L

] L]

o

Rt

5 Cane_31 ‘min{a‘h} ¢ 0, mindd,.} 2 0. o
% Proof in this‘case follows aglin Case 2.
| o o
,,i y ‘ Case 41 ﬁin{u‘;} < 0, min{d,k} ¢« o
Pl . i
L " Let the minimitafinn in. (4.18) occur onh vertex u Ehg

, and vertex v € V for the assignments of v, and r,, respec-

- o
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B

u o

‘. : N ? !
tively, where possibly u = v. Then vertex u is a closest
cne to vertex i and vertex v is a closest one to vertex j.

Thus, 'd,, { d,., ¥ k.€V and, specifically, d,. ( d,..

The triangie inequality property requires that d,_, ( M(e)

+ d, . Hence, d,. ¢ M(e) + d,_. Finally, assumption (4.1%)

implies d,. ) M(e) + d,_, establishing the contradiction.

Thus,‘we have established the feasibility of the solu-

tion (4.18) to Pragram 4.15.

Optimalitys With the feasibility of (4.18) established,
optimality of (4.19) follows from Lemma 4.1.8

‘ The existence conditions follow sasily as a corollary

' Y
of Theorem 4.1./
orolla 4 t The solution of program (4.19) defined in
Theorem 4.1 exists if and only if . ¥ M(e) 2 0 for all dir-
’ ~ e €C .
ected circuits of G. °
Proof: The existence of solution (4.18) is predicated on
the existence of the shortest distances ‘which, in turn,
exist if and only if no negativeLlength diree&gg circuit is

present in G under M.8 ! S

A vertex of G is called a datum vertex of E if 1t
need not be fired in reaching the nearest feasible ‘marking
of a, whenever it exists., & datum vertex is character-

A

ized in the following Corollary of Theorem &.1.
Corollary 4.1.2: 4 vertex i €V is a datum vertex of G

- 140 -
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'if and only i¥ ¥ M(e) ) O for all directed paths p,, from
e €p,, '

~o

verte: i in G.

Prooti From Theorem 4.1, 1, =0 if and only if d,, )

6, v i€ V which is clearly equivalent to the cunditinn

3
¥

Y fe )o,vp,, €6, vi€EV.N
e € p,,

Finally, we have the following.

Corgllary 4,1.3: If the salution to Program 4.15 exists,

then % has at least one datum uﬁder ﬁ.d

Proof: Consider any vertex i. Let u be a vertex closest

to''i so that d,_, (d,., fOr v € V. We claim vértex u is  ,

a datum. If not, then d_,, (O foF some. jJ € 0. Since d,

{d,,, we get, using the triangle inequality, d,. é d,y ¢

d,., +d.,. So, d., } O, contradicting the assumption d,,

0..

An interesting consequence of the above Corpllary is
‘that at least one ¢, = 0 in the solution (4.18) to Program

4.15. ‘ )’ »

We can now construct the solution to the 5ubmarking—
reachability praoblem by combining the component solutions
with the solution to the reduced problem. The mi nimum
firing-count vector realizing the overall solution is de-
fined as e

E=E + K o (4.20)

) 141 ~




where £ is the minimum nohnegative solution of (4.5) and T

. . . i
R is the solution to (4.15) as defined by Theorem 4.1. The

i ' corresponding final marking of G is simply
M= M, + A°E. (4,21)

Returning to our example, we have shown,. again, the Vm
cpntracted graph in Figure 4.4, Here the weights on the
edges refer to the token counts. To calculate ¢,’s, we
first obtain the shortest distances between all pairs of
vertices usihg Floyd’s Algorithm [69]. These distances are:

given below in matrix form. ’

i 1 2 3 4 S & 7 8 -9
‘E — -
. 1 (o] -1 (] -4 -8 -12 -5 -1 3
! . ,
2 2 0 1 -3 -7 -i1 -4 ~-10 4
3 2 4] 0 -3 -4 =11 -4 ‘-1t 4
4 5 q 5 © -4 -8 -1 -6 B |
[d,,1 = '
. -9 0 ] 0 o0 o] -4 3 q 00
' 6| w w ] 0 9 o 7 8 o .
v :
7 o ] © 00 2 -2 0 1 0
B L] 00 o0 ] 4 0 7 0 (]
9 |-2 -3 -3 -6 ~10 -14 -7 -14 o]

L . d

]

Using this matrix we get v,’s as follows:

. =12, = =11, 5 =11,
. Ta = 8, rTs = 4, Te = Oy

T> =2, tad0, ¢, =14,

3
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Figure 4.4

{

The contracted graph G redrawn ’

A feasible marking of the contracted graﬁh

Figure 4.5

]
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In Figurg,Afﬂwm\gb have indicated v,’s within the circles

- —

representing the vertices. The marking shown in Figure 4.5

is- a' feasible marking of the contracted graph reachable

from the marking shown in Figure 4.4, and it is obtained
using the v,’s shown in Figure 4.4. Using the marking in

Figure 4.5, the specified final marking on the controlled

-~

rdges, the intermediaté’markinq of the free—-edge self-loops

and computing the final marking on the paﬁallel edges that

were removed, we obtain the feasible marking in Figure 4.6.

-

The firing numbers realizing this marking are within indi-

cated circles in this figure.

4.5, The Capacitated Submarking-Rna:hnbility Problem

¥

it

In Chapter 2 the rgachaﬁility theorem for uncapacitat-

~@#d graphs was easily extended for capacitated . marked

graphs., Similarly, the results in Chapter 3 for the maxi-
mum—weight marking ﬁroblem oﬁ uncapacitated graphs were
easily extended for capacitated graphs. In this section, we
show how the 5ubmark1ng-reachabxlxty theorem (Theorem 4.1)
of Section 4.4 also extends easxly for capacitated marked

graphs.

Again, recall that a capacitated marked graph is a
marked graph G = (V,E) with an integer lowerbound L(e) and
an 1nteger upperbound Ule) specified on the token count

M(e) of each edge @ € E. 'A feasible marking M of G is one

satisfying L(e) ( M(e) ( U(e), Ve €EE or simply, L {( M ¢ U
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in cqumn-yecior.format. Ve assume that L ( U. The capaci-

, tated submarking-reachability problem is defined in a fash-

ion similar to the uncapacitated version, Th? graph G is

marked with a feasible initial marking .M, and the edge set

Q

Eis partitioned into controlled edges E. and free edges E.

S e = v

induced by specifying a final fn;sib{e submarking M (E.)
“for G. Thus, the problem partitions as described in Sec-

tion 4.2. | o 3 /

. N Ve
-

As usual, we will consider live marked graphs first

and note that the arguments expressed in 3Séétjqn 4.1 are

, ’ N ' .
also valfy in the context of the capacitated submarking- ﬁ
' | : reaﬁhability problem.. Using Equations 4.1 and 4.2 and the
feasibility requirement, the capacitated submarking-reacha-

bility proBlem is equivalent to the linear program

minimize £ g
subject to : ' :
AScEc = M (EL) = M (Ec), ) r
L(ES)-Mo(E.) € AS:Lc + ASL, { U(E-)-Mo(E,), .
L))o, . (4.22)

!
. g - g
where L(Er§ and U(E,.) denpta the lowerbound'anq upperbound %

vectors associated with M(E,).

, 4.5.1’Structu3l. Decomposition and Reduction of iho Problem

The topoldgical partitioning of the marked graph is

exactly as described in Section 4.2.. The incidence matrix
. .

4 of G has the form shown in Equation 4.4. The decomposi-

tioﬁ into subproblems is exactly as described in Section

T%Wf'
v = 146 -
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4.2. This section may be referred to for details. We simbly

mention here that to solve the capacitated submarking-

reachability problem, we must first solve a number of . o

capacitnted‘reachability,subproblems;
Once the soclution to the ctapacitated reachability
- subproblems has' been obtained, reduction of the capacitat-

ed submarking-reachability problem follows exactly as des—

cribed in Seéﬁion 4.3, where we need only clarify how to
handle parallel edges which may form when the controlled i

components of G are contracted.

" In the notation of Section 4,2, let ﬁ denote the
minimum solution, when it exists, to the capacitated reach-

.. ability &ubproblems and let M g M, + Afﬁ be the corres-

ponding intermediate state. If L g“ﬁ £ Ur{;hen ﬁ is the
“unique solution to (4.22). Otherwise, we simply ﬁave a
state ﬁ reachable from Mo which violates the feésibility
o o condition. Let & = (V,E) denote the contracted ’graph

which results after contracting the controlled components

! ' of G and removing the self;)oopé which form in this eon- ;
traétion. Note tﬁat if any free-pdge self-loop is not
§e§sib1y marked, then (4.22) is infeasible. Let E,, denote
the set of all eﬁbes directed from vertex i € V to vertex
i € V.. The feasibility condition is

C::i/ Lia) -~ M(e) ¢ 1, ~ 7, { Ule) - Fi(e), Ve €EE,,,

which is clearly covered by the single constraint
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max {L(e)~M(e)} (v, = v, £ min {Q(a)—ﬁ(e)}. (4,23)
e €EE,., - « €E,.,
At this‘puint, .a significant difference arises’ Pe*
tween the capacitated and uncapacitated problems. Although
‘the constraint (4.23) reduces to the consérqint (4, 14) when
L(e) =0 aqd U(e) = 0, V@ € E ln? it is alwayslgonsistenﬁ
as defined, the covering constraint (4.23) may :not be
;onsistent in general.‘ Specifically, wheﬁ some edges are
"figﬁtely upperbounded, there is no guarantee that
’;‘Qr

max {L(e)-M(e)} ¢ min {Ute)-F(e)} (4.24)
E.e E‘J e e ElJ \

‘;—.5“"”'“
since tﬁe'maximization and the minimization in (4.24) will,
in general, occur on distinct edges. Clearly,-lf condition
(4.24) is not satisfied for any set of parallel edges
E,, C E, then M.(E.) is not reachable from M, on .6 and

hence, when reducing the capacitated submarkiﬁg-reachabil-
ity problem, we must further test the consistency Eondition
(4.24) for all paral{-l edge sets E, ; which forp uheﬁ the’

controlled components of G are contracted.

Assuming (4.24) ig satisfied for all parallel edge
sets E,, C E, we, must resolve an ambiguity which may arisg
in removing parallel édgeé. Clearly, if both the minimiza-
tion and the maximization in (4.23) occur on the same edqge
e € E,, then edge e represents a most eonstralning edge of
E,, since its associated inequality is equivalent to condi-
tion (4.23)‘and thué, all edgeslof E,,Ibut.edge e may be
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removed from G. . The ambiguity arises when the maximiza-
tion pccurs on, say, edge e_ € E,, and the mnimization
ucc&rs an same o£her edge, say, e, € E, ,, e, # e,.. Clear-
ly, all edges of E,, but e, and e, may be removed from G.

The problem is that neither edge e, nor edge e, alone

suffices to represent inequal{ty {4.23). The obvious next

step is to replace thé pair of :hges {eL, eu} with a
single artificial- edge, say, e, which daoes represent
(4.23), 1+ H(e,) = M(e,), then we may simply define L(ea)
8 Lie)), U(ga) & Ule,)  and Miea) = Fi(e,) = H(e,) and
replace E, , wi£h the artificial ‘edge e.. The apparent

difficulty with this approach arises when .ﬁ(eL) * ﬁ(eu),

which 1s the general case. We simply need an artificial

edge e, which will represent inequality (4.23) and this can’

be achieved by defining the parameters and intermediate
state of edge e, as
fad
L(e,) @8 max {L(e)-M(e)},
e €EE,_,

Ute) & min {Ute)-titer },
‘e € E,,

Mien.) & O. ‘ (4.25)

Clearly, 1if all edges in E,, are replaced with an artif-
icial edge e, whose parameters and state under. M are as

defined in (4.25), then the inequality associated ‘with edge

én is exactly the constraint (4.23). Hence, parallel edge§:7

—————

present no real difficulty in extending our solution to the

capacitated problem. The important point is that the
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existence o# a ;olution to the capacitated submarking-
reachability problem is also contingent upon the satisfac-
tion of condition (4.24), whereas, the corresponding condi-
tion is always satisfied for the uncapacitated submarking-—

reachability problem.

!

Following ‘the notation of Section 4.3, the  reduced

praoblem ;s then expressed as the linnar‘pragram
+

¢

minimize T a oA ~
subject to L(E)-M(E) ( A*TI
ryo

-

uEr =M &), (4.26)

£
9
where A is the incidence matrix of G = (G,E) which may
contain artifici;q’edges as described above.

4.5.2 A Solution to the Capacitated Submarking—Reachability
Problem

.

‘We now proceed to solve Program 4.26 using our solu-
tion to Program 4.15. I+ L(E) < M(E) < U(ﬁ).theh it is easy

to see that the solution to (4.26) is simply I' = 0. There—

+ore,r we consider the case when ﬁ(E) is not a feasible .

marking of %. Again?gﬁlet p,, denote a directed path froaom
vertex i € 8 to vertex j € E and p,, denote a directed cir-

cuit through vertex i € . Summing thée inequalities in

(4.25) along a directed circuit p,, = {{i,u,),{u,uz),oee,

(U, yu) s (u,,,13} in G through the vertices {i,u,,us,*es,

=
u,.} gives

¥ (Lier - Me)) ¢
e € p,, '
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a

T =Ty, Y Ty, T Tun YT YT, T Tuat Tun 7.7+ & _

1

T Ule) - Me) J '
e €Ep,, \ '

or simply ; ¢

, Trw ¢ ThHe ¢ ¥ uwe, (4.27)
. e € p,, e € py, ."e_ Paa . '

-

. -
as a necessary candition for the existence of a solution

to (4,24) and, aa expected, a sufficient condition is
YL ¢ THe ¢ Y ue, ,
. e € C e.€ C e €C

for every directed circuit C in G.

-~

We establish the,solution to (4.26) by first trans-
forming this’ inEEjii/:;uivalcnt uncapaci tated auxiliary
problem ‘aqd invoking Theorem 4.1. The solution follows

‘easily once (4.24) is written in the canonical form 13

minimize I’ ~
subject to AT )
-A°TI" )}

ra

frjetme

}
C px £
~ -
mame2
ut
- -

(
( , L
. : "(4.28)

O

Now, if A ig the inci&:hcé matrix of a dire:te& graph
"G, then -A is the incidence matrix of the éraph G’ obtained
by reversing the directions of all edges of G. Hence, -A is
- the incideakg ggtrix of the graph &’ obtaxned by reversing
the directions of ‘all edges of §. Let B/ 2 {ti,ir1¢j,i) €

£} depote the edge set of the reversed graph &’ g (V,B,

[

r
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Construct the matrix A 8 [Al-A) by horizontally concatenat-

L o ing A and -A. Define a column vector N of dimgnsion 2|EI as
- “ - -

NE ) @ UE - R, | (4.29)
ki d i i i ! \
Then, program (4.28) is equivalent to theqa¥xiliary.program
by v

“ @
[N ’ \ l,

~

Q

, S minimize I' ‘ R '
subject to AT
. o r
f . : . ?
. «The matrix A is the incidence matrix of the auxiliary

~N, : \ - . (4.30)

-

B % ' s graph & 2 GUG = tV,E UE) obtained by superimposing G’
T ‘ oﬁ . For each edge e € é., the mar&ing N(e) is defined as
- iﬁ (4.29). Clearly, in &tructure, Progqam 4.39 is gquiva—
lent to Program 4.15. Thus, pf least from this point on,
the capaéitéted submaFk:ngFreachability problém reduces to

an, equivalent uncapacitated pﬁoblqm on & larger graph. Ba,

we state the solution to Y4.26),gassuﬁing it exists, in the

following thedrem.” Proof of correctness follows from that

-

of Theorem 4.1. , ey h : ' ®

Thlurlm_4.2| Let 6 have no directed ciréuft of negative ta-

ken ﬁount undeF‘the’mgrkfng N. If a‘, denotes the shortgpt

distance from vertex i to vertex j in the auxiljary »giaph

!
~

&= (G,ﬁ) 2 (V,E v .E)  under N; then. the unique 7plution

to (4.30) and, hence, (4.26) is given by

. . 2 max{o, fmjn{a,,}}, viev.n (4.31)

1" v

L
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%

Corollery 4.2.1s The solution of Program 4.26, as given in

(4,31) exists if and only if Y N(e) ) O for every directed
DA : e €C '
circuit € in G. 8B

t

As in the uncapacitated case, we can combine the

solutions for the controlled components with the solutions
L]

for (4.30) and qbtain the firing .oumbers realiZing the

specified final marking from the given initial marking.

S [
‘e

4.6 Summary
”

.

In this chapter we have studied the structure of the
- J ¢

suﬁmarking*reachability’problem on_markaed_graphs. We first

formul ated tﬁe problem as a linear prograh and demonstrated

how to solve thig after reducing it ﬁg an equivalent

smaller problem by relaxing the feasiﬁility constraiﬁts'and

by introducing an intermediate state. We then shawed that

o

a similar reduction-and solytion technique applies to- the

capatitated case also. Our approach in this chapter has,

thﬁé, resulted in a unified treatment of the submarking-
. vy - A

<Turé§chability problem for both Eapacitated and uncapacitated

cases.” As we will see in the next chapter, this approach

enables us to see the 1link between the  submarking-

reachabiiity problem and a femsibility testing problem in’

* .

' operations research and motivates the need for an

algorithmic solution.

‘ ' | g‘ : | - ' . A

<
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Chapter 5

SUBMARKING REACHABILITY AND NETWORK PROGRAMMING

* ) .

.The transshipment problem £70] is ;ne of the exten-
sively étudied problems in operations research. The netwark
simplex method for qo}ving this problem is a very efficient
one and is well discu;éed in the literature. As a result,

)

if a problem is foraulated in a form dual to that of the
transshipment probl em, thun; usua;ly; it is converted to
the equivalent transshipment problem and the solution is
cbtained using the netwujk simplex method. The network
simplex method involves two phases. In the first phase,
the feasibility of the transshipment problem is tested and
if it is feasible, a basic feasible solution is obtained.
r"!‘hu.-‘ éécond phase starts with this .basic feasible ;olution
. and proceeds with optimization, It should be noted that
the feas;;ility phase also requires the solution of a
tfansghipﬁent praobl em. This is 80 because we need a basic
feas;ble solution to start the second phase. ~ If feasibil-
ity alone is tdo be tested, then we can achieve that by
solving a maxipum—flow problem on the given network. How—
ever,“ any feasible solution obtained by this approach may

not be basic which is very esé.ntial to start the second

phase of the network simplex method.

“In this chapter, we first point out the equivalence

i

between the submarking-reachability problem considered in

-
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the previous chapter and the problem of testing feasibility

of the dual tjgpansshipment problem. We present\an algorithm
for this problem, prove its correctness and termination
whenever a solution exists and finally, establish its com-

.

plexity.

5.1 Submarking Reachability and Network Programming

-Given a graph G = (V,E) on n vertices and m edies. Let
A denote the incidence matrix of G.  Then, the dual trans-
-hipmcns problem is as follows
maximize QF

subject to AL
| o

~M,y s (5.1)

2
r 0,

’
where I is a column vector of dimension n-and 2, called the
welight vector, is a row vacto(,'also of‘dimensién n. Note
that @ and M, are specified.

\ . .
The above problem can also be formulated as

maximize WM . - . v

subject to B,M = Zs, , (5.2)
‘ Mo, ‘ : * .
.\ : where . B, is a fundamental—circuit matrix of G and M is a

" > - : -
column vector of dimension m and ‘W' is & row vector of .

dimension.m. Here, Z; and W are specified.
First, we note\tha; the constraint part of (S5.1) is
« - * ' L

&




- N + -
. ' N
x . b

exactié\,the same as that of the Program 4.15, So, if we

laok ppon M, as an inifigl markng of G‘ and I as a firing-
count vector, then the'problnm 0f testing feasibility of
(5.1) is exactly the same as the problem of dgtermining &
s set of firing numbers fgr the vertices of G which transform
Mo, which may 'be an infeasible marking, to a feasible mark-

v

<o . ing M. Here, we consider ill the edges of G as free edges,

On the other hand, suppose the dual transshipment ,

H " prob)gm appears as in (5.2)+% Then, we can identify each
entry of I; as a marking on the corresponding chord of the
cospanning tree which defines the fundamental-cingiit mat-—

~r rix B,. Again, testing the feasibility of (5.2) reduces

T

. ta the problem of determining firing numbers which trans-—-

form 25 to a feasible marking M.

The above discussion shows that testing the feasibili-

| . ty of the dual-transshipment problem is the same as the

submarking-reachability problem, where we are required to

take G from an infeasible marking to a feasible one.

The feasible solution obtained as above may not be

‘basic. But, we can convert it to a basic one using the

L ’
/

\\\ algorithm presented in Section 3.1.85.

5.2 Algorithm REACH o B

| .
The equivalence shown in the previous section under-

lines the importance of designing an efficient algbrithm‘to

s0l ve Program 4. 15. The salution to this problem is given
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£
in Theornm.4.1. ‘All thqt we neead is to dg:xgn an algorithm
to determine v,’s as given in this theorem. -We propose the
fol}owing algorithm for this purpose.. )
7 | ' “
algorithm REACH:
i
Let M be the given initial marking of the graph G.
While there exists an edge e = (i,j) € Erwith M(e) ( O do
Fire vertax i, -M(e) times, updating M. (
N
The rest of this section is concerned with the proof

of correctness and termination of the algorithm and its

complexity hnglysis.
L

5.2.1 Proof of Correctness and Termination

In the following, the length 2(P,,) of a directed path

P,, in G will refer to the sum of the markings under M of

all the edges in P, ,. r,’s jene as defined in. Theorem 4.1.
By the size of P,,, we refer/ tg the number of edges in P,,.

Also, d,, is the length of a shortest path from i to j.

Theorem S.1s" I¢ 7, » o\\- lgarithm REACH fires vertex i at

least v, times.

Proof: We prove the theorem by showing that if there exists
. ' ’

a directed negative-length path P,,, then Algorithm REACH

fires i at least [2(P, )| times, 'Proof is/gy induction’on

the size of P,,.

W Al

Clearly, the result is true if the size of P,, is 1.

© - 87 - :
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Assume the result to be true for all negative-length

L}

AN directed paths of size ( k. Consider any negative-length

. directed path F,, of size k+i. Let (j’4i) be the last

edge in P, ,. !
I ‘Cas®e 19 Marking M(3’,3) ) O. - ‘

In this case, &(P,,.) = Q(P,,) - M(j’,3) ¢ ©O. But,

P,,. is a path of size k. Hence, by the induction hypathe-

hY

N\,

&P, ,. 01 ) 18¢(P, ) I
#
times. ' \\\

Case 2t Marking M(j’,j) ¢ O, \

\

‘ T In this case, ot some step during the execution of
° AN

sis, vertex i will be fired at least N

N

Algorithm REACH , vertex 3’ will have been fired at least N -
M3’ 431 times, Let M be the marking at that step.

Then, M (j’,j> ) O.

Assume that the vertices { and j’ have been fired ¢,
and o,. times in reaching M’ from M. We shall denote the k

length of P,, under the marking M’ with 2/(P,,). Clearly,

-

‘r,. )Y IM(3’,iYli. There is nothing to prove if o, )

18(P, ,) |." So, assume that o, ¢ [R(P,,)}. Then,

2 (P,,.) = Q(P,,.) + o, — 0,.

j~

AP, ,.) + o, = IMUJ’ )]

2(P,,) + o, ¢ O.
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So, under the marking M, the length D;AP,,. is negative.
But, P,,. is of size k. Hence, invoking the induction

ﬁypothesis. we find that vg;tex i will be fired at least

12¢P, )| ~ ¢, times after M’ has been reached. Thus, the

algorithm will fire i at least |2(P,,)| times starting from

M.B
Recall that a vertex i is called & datum in G if under
the initial marking M there exists no negutfve—length di-—

racted path originating at i. In other words, o, = if i

is a datum.

Next,' we note that, at each step, Algg ithm REACH
examines an edge and perfor;s an appropriate vertex firing
operation. So, this algorithm may be considgred as perform-—
ing a sequence of vertex—firing operationl; Let M, denote

the marking 0f G at the end of the it" step or it firing

operation. Thus, Algor?thm-REACH. starting at M, takes G

‘through a seduence of markings M,, M., eee, M ,eee, In ﬁhe

following, d%’ will refer to the length of a shortest path

from i to j in G under marking M,.. Thus,

)

T

= max {O.Xr@_i"n {aii*h.

Similarly, 2“(P,,) will refer to the length of‘P‘, under

M,..

Consider any vertex i for which ¢, 0.. Then, let i’

denote a vertex such that v, = |d,,. |. As we have seen in
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Gectian 4.4, each such i’ is a datum vertex. Finally, we

b .

; note that firing a vertex i affects only the value of ¥, in 5
| . :
f . the new marking. So, if the vertices v,,s¢¢,v, have been

fired 0,,0,4%%%,0, times to take G to the marking M., then

under M, ,

¢

Che )

\ i e, —0,, Vi EV. T . 3
. . ;

Furthermore, for sach i, vertex i’ continues to be a

datum of i under all the markings generated by A%gorithm

REACH. Thus; i’

€D

s } o,

then - . . .

. et o= dly (5.4)

‘1§ "' = 0, then vertex i is a datum under marking M,.
These crucial properties of Algorithm REACH prave the fol-

lowing.
Theorem $,21 Algorithm REACH never fires a datum.® ) ' .

Theorem $.3: I G has no negative-length directed circuits
. under marking M, then Algorithm REACH terminates in a
finite number of steps dfter firing every vertex i exactly

. ' v, times.

Egggin By Theorem S.1, Algorithm REACH fires each vertex i !
at least ¢, times, By Theorem 5.2, a datum is never fired

in this algorithm. This means that each step results in

B¢

i
| -
i ” N o - 160 -
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reducing ‘the value of exactly one . fhus. all the v,'s
will eventually be éeduced to zero, orn equivalently, every
vertex i will be fired exactl; a total of v, times in no
more than .E v, steps, When all the v.,’s reduce to zero,
then in tazlresulting marking there will be no edges with

negative tokens and Algorithm REACH will terminate.B

5,2.2 Complexity Analysis of Algorithm REACH

~t

To bound the number of computational steps required by -

flgorithm REACH, we implement the algorithm as follows.

First, order the edges as e,}n,,---,em, where m is the
number of edges-in G. .Now, execute ihe nlq&rithm by first
examining e,, then e, and =0 on, and firing the vertices
the appropriate number of times. After the first such
sweep, perform addi tional .sweeps. . until an entire sweep

results in no firings.

1

Theorem 5.4: Assume that G has no negative-length directed‘
circuits under the initial marking M. Consider an;’vertex i
for which v, ) 0. 1If the size aof the path P,,. is‘k, then
the vertex i will have been fired v, times at the end of

the R*" sweep. (Note: i’ is a datum vertex and 19¢P, ..}t =

Tae)

A .
Propf: Let P,,. = i,i,,i,*®*,1i,.,,i’. At the beginning of
the first sweep, the marking on the edge (i, _,,i’) is

-r . Alsb,v i’ is never fired. So, at the end of the

a

tu—1

A

- 1461 -
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first sweep, vertex i, _, will hhye been fired Tiuos times.
At the beginniﬁgfof the second sweep i, ., is a datum and
the marking on the edge (i, ,,i,_,) uill.be P So,
during this sweep vertex i, - will be fired Tipon times.
Repeating these arguments, we can see that at the end of

the k*" sweep, vertex i will have been fired v, times. B

Theorem 5,51 If G has no negative-length directed circuits
under M, then Algorithm REACH- will- terminate in no more

than n sweeps, where n is the number of vertices in G.

Proo#f: Each directed path P,,. in G is of éize { n-1.
So, by Theorem 5.4, each vertex i will be fired a total of
Y., times in no more than n-1 sweeps and the theorem fol-

lows. B

During each sweep, m edges are cxlmjned. Examining an
edge requires comput{pg the valu; of its current marking
and '+iring a vertex. These operation; take constant time.
Thus, eaéh sweep takes O(m) time And, hence, we have the

following theorem.

Theorem 35,63 Complexity of Algorithm REACH is O(mn), if G
has no negative-length directed circuits under the. initial

marking M.B

As an example, it may be verified that Afgorithm REACH

when applied to the graph G of Figure 4.4 terminates in the

feasible markihg shown in Figure 4.5. The number of times

each vertex is fired by Algorithm REACH are shown in. Figure
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-




v B

UWe now show how to incorporate, in Algorithm REACH, a

mechaniam to detect the presence of a negative-length
directed circuit in the graph under a éiven initial

marking.

We associate with each vertex i a label denoted as
LABEL (i). To begin with, the label of every vertex is set

edual to zero. Every time an msdge (i ,j) with a negative

marking is encountered and, as a result, vertex i is fired,

we update LABEL (i) setting it equal to j. 1f,  during the
n*" sweep, the label of any vertex, say i, changes, then it
indicates the presence of a negative-iength directed cir-

cuit. This directed circuit can be obtained by tracing the

label values starting at i.

- 5.3 Summary

v

In this chapter, we have pointed out the'equivalenco

I3
M

between the submarking-reachahility problem and the problem
of testing feasibility of the dual transshipment problem.
We have presented an algorithm called Algorithm REACH to
solve this problem. We have also established the cnrrecf—
ness, termination and complexity of the algorithm. It is
possible to incorporate in Algorithm REACH a mechanism to
detect infeasibility of the given praoblem. Starting from a
‘feaéible solution obtained by Algorithm éEACH, we can get a
basic feasible solution using the algorithm presented in

4
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Section 3.1.5. Since the complexity aof the latter algo—
r;thm is 0(n®), we conclude that the':ompltxity‘of’testing
feasibility of a dual tranashipment probiem is O(mn). This
;s in contrast to the'tomplexity 0(n~) of testing the

feasibility of a transshipment problem by the maximum—-flow

algorithm presented in (711,

- 164 -




s e s e

(L

S N——

[

Chapter &6

DISTRIBUTED ALGORITHM REACH

2

" The advances in computers and communications have made

° feasible the design of a network of processors coupled
togetper with communication links. Such sy;tems are refer-
red to as distributed systems. The interconnection of the
pﬁucessnrs in a distributed system is often modeled by a
graph.{ Thus, associated with each distributed system is a
graph whose vertices represenf the processors and whose
edges représen: communication links interconnecting the
procegséﬁs. Each processor has information about the links
attached fo it. Thé global properties that are to  be
comput;d in the system can be formally expressed as graph
prohlems which should be solved in the above model of
computation. Algorithms for comﬁuting the 'propcrtius of
qgraphs in the above model o+ éomdutation are refurrcdyto as
distridbuted algorithms. In short, distrlbutoa conputiiq i;

concerned with the design of algorithms in which the pro-

cessors associated with the vertices make use of the local

4

information and cooperate with their neighbours to compute,

the desired properties. Distributed algorithms for several
graph problems have been reported in the literature L6713,

£72] e« [78].

In this chapter, we distribute Algorithm REACH (of

Chapter S), that is, we obtain a distributed version of
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REACH,. ‘ Ve shal‘-l' use the terms “vertex” and ,"naéﬂe” it{tgr— 6

i

changeably since this is’'a éﬁmmon prpctice in distributed 3

computing literature. .

6.1 On Distibuting Algorithm REACH

We may recall that the broblem that Algorithm' REACH
snlves is the following. Given a-directed graph G wﬁth a
given initial marking é which may not be nonnegative,
take G to a nonnegative marking using a sequence of vertex M§
firing .operations. Aigorithm REACH will produce a solu- ;‘
+ tion,  whenever it exists, which requires a minimum number

- of firing' operations. As we have pointed out in Section

% 5.2.2, we can also include in this algorithm a mechanism to

detect the presence of a negative-length directed circuit ' o

in G which implies infeasibility of the problem. To dis- .
2 o .
tribute this algarithm, we pose the problem on an intelli-

gent graph. An Intelligent qraﬁh is a graph whose nodes
have précessing capabilitsgs (intelligen:e)'gnd can comﬁun—
icate with each adjgcent node by passing messages over the . . R
links. UWe assume thaé transmission over the links is
.errar—-free or, at least, that there is a retransmission
strategy which én;ures message transﬁission and reception.

-~
Each input edge of‘node i is assigned a number from 1

| through d7 (i), Qhere d (i) is the in-degree of node i.
Similarly, w®ach outbut edge of node i is numbered froml 1
through d*(i), where d*(i) is the out-degree of node. i.

8

With this numbering scheme, In_Edge(k) and Out _Edge (k)

co ‘ L |

]
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" directed from i to j.

o

denote tﬁi k*f input or output edge of a node,. respective-.

ly. Also, a node j adjacent’ to node i will be referred to
as an out-peighbour of i if the edge cbnnecting i and j is
The in-neighbour of i ix similarly

bt v
defined. . ’ -

‘The independence property of the vertex firing opera-

tion of 'Algorithm REACH implies’ that this algorithm is

& 8

highly amenable to distributfoﬂ.(,The candition under which
a vertex is eliéible for firing is determined solely by the
m;rkings an its output edges, This local condition ﬁeans
tha(t an intelligent node can triggerﬁts own fir'ir).g by

examining its output edge markings. Having done o, an

intelligent node must then communicate th&.fﬁnformation to

its feighbouring nodes so that they‘tan ;eéct accordingly.‘

Let‘us‘!Kfmine this idea a little more closely, To illus-—

trate tHe dzgree of concﬁrrency present, consider fhe unre-—

-

stricted version of Aigorithm REACH, that is, when there

are no negative-length directed éir:uftg present in G

v §

under M; It‘;f ci;ar that nodes need only keep tyfack of
the ﬁarkings on their,output ig?es. The colleckive data
sﬁructures form a 6artiti6n;of the edge set of ,G and,
.hence, all 6arkings are a£counted for in a distribated
senéef Sintte feasibility is guaranteed then esch node
s{mp]y”‘fire; whenever ‘it de@ects,a ngg;tive mqufnd on ‘one
of its cqtjrt edges. {ﬁ 19139 s0, it upd?tes its own data

structures and then informs each of its neighbouring nodes

at the- other end of its input edges that it has ' fired.




Wt

T * Theorem 5.4 guarantees that firing will eventually stop and

when it does, we have a solution (in a distributed seq&s).

The operation of the algorithm is totally asynchronous. To
avoid unnacéssary communication, an intelligent node i will

determine o

N

.. ¢ g max{0, -min {M(2)}}, . ' .
. e € EY . v

o : B . 4

where E; 2 {e = (i,j)1(i,i) € E} is the set of output édges
of node i. 1§46 ( 0, node i will qoi react but will res-
pond to messages from néighours. Alternatively, if ¢ ) 6,
then node i }g eligible for %iring ¢ times. Node i then
N fires by accumulating the‘f;ming coupt and addinq d tokens

td each of 1ts output edges. _If then broadcasts the fact

that it has fired ¢ times to each of its in-neighbours.

‘When a node i receives such a message from one of its out- {
neighbnurs, say node j, then node i must update its record
of the marking on edge (i,j) by simply subtracting ¢ tokens

,
2 @ from edge (i,j), where ¢ is in the message’from node ' j,

<
telling node i how many times nade j fired. Thus, messages

always flow against the edge directions. It ' does %Pt

matter which of 'a nade’s in—nﬁighbouri is first informed of

&' naode’s firinb nor does it matter in which sequence the

>

?in;neighboure are informed. All that mattprs’is that theyA ..

B

: ' are all evéntuhrly informed of the node’s firing. Remarkab-
~ly; this chaos will always terminate in a solution if there

are no neg&iive—length directed circuits in the graph. This
Lo v ' ; '

! e ¢

‘ ' H

/
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is simply a praoperty of the algnrithh. It is independent

of ‘nny distributed architecture. To obtain the general
i : ‘distributed version of Algorithm REACH, that‘is, with in-
feasibility detection capability, we must. enforce some
glabal firing control mechanism so a? gu invoke a cessation
of activity whenever certain conditions are met, indicafing.
. the presence of a negative-length djrectéd circuig.
In order to devise such a control, we shall first-
consider, in the following section, a sequential implemen-
tation of Algorithm REACH which incorpcraérs a mechanism to

detect a negative-length directed circuit.

6.2 Negative-Length Circuit Detection in Algorithm REACH N
v B : .

i ' . In Section 5.2, we pointéd out how we can incorporate,

! 1 Algorithm REACH, a mechanism to detect the presence of a

2 ) négativeflength directed circuit. This was based on an.
‘ implementation .of REACH which uses the concept of a sweep. '
. However, this implementation is not an approﬁriatn choice
: if we wish to distribute‘REACH. We now describe another
- implementation which is quite amenable +or distributing.

This implementation requires searching the given graph in a

depth-first fashion and is déscribed beldw.

To bagin with, we label all the vertices “new”. We
then select a new vertex, say, vertex r shch that it has at
least one input edge (i,r) with negative token count. wé

label vertex r “old” and starf-thg search traversing the

’

ISEOU .
—
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edge (i,r) in the direction from r to i. In pther words,

our traversal of an edge is in a direction opposite to its

orientation, After reaching i, we fire it so that the

- token count an edge (i,r) becomes zerao. The vertex i is

then labelled “old”.’ The ’karch nowAcontinues frém i,
looking for an input edge with a negative token count. If
no such edge is present, we label i “new” and return (back-
tra&k) to r along the edge (1,r). The search resumes at r
and looks for an input edge with negative goken count. Note
that as we traverse the graph from r, we create a directed
path of zero length terminating at r. The general step of
the algoraithm is'as follows.

»

a

Suppose we have reached a vertex v ¢ r after travers-
ing an edge (v,y) with negative token count. Then, we first
fire v so that the token count on (v,y) becomes zero. One

H

of the following cases will now arise.
i} vertex v is old;

In this case, we have detected. a negative-length

d1rgcted circuit. Algorithm REACH terminates here,

ii) vertex v is new;

-

In this case, we label v “pld”. The search then con-
tinues at v, looking for an input edge with neg*éiva token
count. If no such edge is present, the search labels vertex

v “new” and returns (backtracks) to y. Search now resumes

L 4

-
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rat y fooking for an input edge with negative token count.

Suppose the search returns to r and finds no input

e edge with negative token count, In this cese, Algorithm |
REACH terminates 1 all the edges in the graph have

nonnegative onen counts. Other;ise, we pick another : ~

vertex, say r’, and stari the search at this vertex.

7

The above implementation of REACH iE\FUitE simple and '_‘
is very useful in designing a distributed version of this
;lgorithm. However, . we should point out that tﬁis
?mpleméntation does not help ug in getting a good bound én
the numbervof steps required to e;ecute REACH. This was ‘

—

tHe reason we preferred the implementation 5resented in

Section 5.2 for the sequential case. -

s

6.3 Distributed Algorithm REACH

In this section, we present a distributed version of

Algorithm REACH.

Let G = (V,E) be the directed graph respresenting the

given proﬁlem and let M be the initial infeasible marking
&

of G. A node i € V with

min {M(e)} (O
e € E}

1s called an activator. Otherwise, node i is called a

nonactivator. Each &Ctivator initiates a firing wave con-
sisting of informatioq relating to its initial firing and

* ¢
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4ll the subsequent firings induced by this firing through-

!
| |
out the graph. It is clegr that all firing wava? eventuglly ! '
subside when G contains no negative-length directed cir- §
cuit{ From this point of view, the distributed Algorithm
‘REACH can be visUalizé& as a number of toncurrent firing
waves, each initiated by one of the activators. From the
iﬁdepondence property of firings;‘ it'sﬁould be clear that
theﬁe concurrent firing waves interfere with one another
constructively, from tﬁe point of vieﬁ of gétting closer to
the answer, simply because the total number of firings,

nxgcuted by Algorithm REACH is independent of the order in

which nodes fire. There is no real need to associate or

identify a wave with any particular activator in the unre-—

¢

stricted case because after activators fire, we simply

i
f

P ébta}n a new group of activators, some of which may have
been previous activators and since termination is guaran-
teed, then eventually, all nodes become nonactivators.
Identifying a wave with an a:tiva}or. is an sasy way to

Lo ‘ "Sinpcorporate some distributed control in our distributed
algorithm which would help us detect a n;gative—lenqth
directed circuit. .It‘ may be noted that th extent of a
pavé’s propagation is not unique for an instance of a
_problem. ' The extent of a particular wave’s propagation {
thraugh G is'definedtonly through the actual seqhence of_

" event® which occur in_each‘execgtion of the algorithm, for

p) an jnslance of a problem, The waves inter;ern with one

another as they propagate, It is this interaction between N
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the different waves that makes complexity analysis of the

algorithm very difficult. However, an int.restﬁﬁg aspect
of this interaction is that it is a beautiful example of

blind cooperation toward a common goal.

In ‘order to incorporate a negative-length directed

circuit detection mechanism into our distributed algorithm,

consider the possibilit& of guiding the propagation of each

firing wave emanating from an activator in such a way that

a4 node can, at some point, detect the existence af a

negative~length directed circuit. In the sequential case,

we guided Algorithm REACH in a depth-first fashion. We now

present a distributed implementation of this technique. In

our implementation,” we incorporate an echo mechanism to

cooperate with the wave mechanism.

'J ' .
Let 8 C V be the set of all ‘firing-wave activators in

-

G Lnder M. - As we have stated before, each activator w € §
;;tivates wave w. Each wave propagates vi; a single wave
massag;. Cooperutihg with each wave is a unique ech@uwhich
propagates via'a single echo message in a direction oppo-
site to the direction of its associated wave. The ecﬁo‘il
simply an acknowledgement scheme. Simply put, an echo is
expected - in return for sach wave that is transmitted. By
controlling the way in which the wave propagates and the
way iﬁ ?hich the echo raturns.ﬂ we can incaorporate our
depth-guided negative-length directed-circuit detection

‘mechanism; Echo w is said to be pcndfnq on edge (i,j) € E,

- N

3
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at node j, whenever node j is cxpécting the echo w message

from node 1 in return for the wave w message transmitted

from node j to node i along link (i,j). Echo w is said to

be pending at‘nod; i if echo w is pending on any input -dgev

of node i. Echo w is said to be pending Trom node i if mcho

w is pending on any output ®dge of node i.

Suppose that node w activates a firing wave. A node

i ®w is said-to be participatipg in wave w if aﬁho wis
pending from node i. An activator w participates in its own
wave from its creation until its cessation. A node can
’participaté in up ton firingrwavaﬁigtmuftaneously. a n;de
i is said to be‘activcly'partiéibating in wave w"whenever
echd w is bénding at node i. An actively participating
node 1 is one which fires iﬁ respoﬁse to a wave that it is
participating in. Wave w is said to ebdb at node i whenever
node i does not fire in response to wave w upan receptioﬁ
of (he wave w ﬁessage from some out—neighbour. Hence, we
‘say that‘h'node‘is'pl:siv¢1y partxcipaking in wave w when
it is barticipating in wave w and wave w ®wbbs at node i. A
node passively pprfic{pating in wave w reflects wave}wh by
emitting an echo w message, Echo messages always'origin;te
at a paSsive;y participating node and are repeated at
actively pérticquting nodes, ultimately terminating at tge
correspaonding wave activqiur. The details of the depth-
gui ded Qave propagation are described belog. Note that a

naode can be actively parti;ipating in some waves and pas-

.
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sively participating in other waves simul tansously. ' Also,

a node may actively or passively participate in the same
wave more than once. Indeed, this is why the complexity of
thies technique is difficult to track. But leaving éomplex—
ity analysis aside for now, 1t is the simplicity of this
technique an& its correctness whigh is interesting. Wave w
is said éa be in stage k at node’ i if echo w is péﬁding on
tpe k*™ input edge of node i. " Note that wave w can be in
stage 'k ‘at node i more than once. Clearly, if a node 1§
receives a wave w nessage when wave w is currently in some
stage k at node i, then node i has dctect.d.the presence of

a directed circuit. The wave w message that node i’ sent

k*" input mdge has been transmifted around . a

out on its
directed‘ circuit back to node i on one of its output edges
(i,3). Upon reception of the wave w message at node i
while ncae i is currently participating in wave w, node i
tests for the presence of a negative-~-length dirccted' cir-
cuit by examining the marking on edge (i,j) after reacting
to node ji’s request for wave w. 14 node i‘’s record of the '
marking on edge (i,j) is nonnegative, then all is well so
far and node i emits an echo w message to node j which it
will later receive again. as the echo w pending on fts ke
input edgg. , 1% node ﬂidetnrmines that its record of the

marking on edge (i,j) is negative then node i has detected

a negative-length directed circuit. This is true even ‘if

4lother waves interfere with this wave along the direcfed

circuit around which the wave has propagated. 1€ lanything
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is profound here, it is this property of algorithm REACH.
Uhen & node 1 detects a negative-length directed circuit, ‘a
solution 1s impossible and the activity shoula "begin to
cease. This can be accomplished by flooding the network
with a message informing all nodes of this condition. We

shall take another approach by propagating this ill~-condi-

tion information in the echo messages.

The wave initiated by node w is said to have
successfully terminated when echo w is not'pendiﬁg on any
input edge of w. . The algonithm is/said to have terminated
successfully when all the waves have terminated lﬁccessful—
l;. I+ the wave w terminates su;cessiully. thnn/node‘w may
broadcast this information io all other nodes. © This addi-
tional broadcast from each node will'keep all the nodes
informed of the status of the algorithm, that is, whether

or not it has tprminated.l

6.4 Node Protocols for Distributed REQCH

-

In this section, we sketch an implementation of the

-

distrlbutGJQAIQDPithm REACH described in Section 6.3. Tha.
distributed algorithﬁ is presented as a homogeneous
ca)lectiop of cammunicéting siquential procedures which is
executed by the node? of an intelligent gfaph. in the
presentation, we absiract away from the details of poiﬁt-

to-point link control by ichrpnrating an assumed send and

receive protocol pair at each node.
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The order in.which received messages are processed is
irrelevent §rom~tpe point of view of correctness. Thus, we
may " and will assume that messages received at a. node are
queued into & “received” buffer where they are \pruceésed
sequentially by.fhe node processor. We implement'éh- pro-

tocol by having messages act as procedure 1nv9catxons. An

i

cadministrative procedure (wh;cb is not described here in

»

ldetalll processes messages in the “received” buffer by

g
N

ekamining a message’s type and invoking the appropriate
péocedure. We define three types of messages, namely wave,
icho and”tilt messages; and we define three procedures for
each node, namely a wave procedure, an echo procedure and a

tilt procedure. When a node receives, say, a wave message,

> ther it simply invokes its resident wave procedure with

the parameters carried in the message. Note that a tilt

. +
message will be generated whenever infeasibility of the
. 7ot .

g
probleq 15 detected.

1 .
.

In our prétocol degscription, we assume that each node

maintains the following data structures,

(Concur%ent Depth-First-Search Version) )

;
¥

N is the number of nodes in the network.

Node_Id € {1,2;---.N} ‘is thii\nodu's identification
number.

Out_Degree is the number of edges incident ‘out of this
node.

Out_Edge(k), V k € {1,2,%¢¢,0ut_Degree} 1dent1fies the
k*" adge incident out of this node. ‘

In_Degree is the number of edges incident into. this

S
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node. ’

-

In_Edge(k), V k € {1,2,%0¢,In_Degree} identifies the
k*"" edge incident into this node.

y éé{l,2,---} is this node’s accumulated firing count.

Mk) € {1,2,%2+}, ¥ k'€ {1,2,++,0ut_Degree} is the

current marking on the k"

node,

edge incident out of this

Wave_Edge(w) € {1,2,+¢+,0ut_Degree}, v w € {1,2,0¢+,N}
is the edge incident out of this node on which the
most recent w wave message was received.

Bit(w) € {True, False} V w € {1,2,+++,N} indicates
whether or not this node is currently participating in
the w wave.

To begin with, M), ¥V k € {1,2,°++,0ut_Degree} is the

initial marking on the k*" putput edge.

To "ignite” the firing process, each initiation of a
problem invokes a Wake_Up procedure at each'néﬁé. ‘A node
must not respond to messages from other nodes ghtil it has
executed its Wake_Up procedure. Procedure Wak is list-
ed below. Procedure Wake Up initiates a nod%ng count

(y ¢ 0) and the bit map (Bit ¢ (False, False, eee, False)ﬁ

indicating which waves a node is participating in for a new

- problem and wakes up by making a transition to the Awake

state. Then, the minimum mark]ng on a node’s output eages
is Jeterhined. I+ th;t marking is negative then the node
fires by recording vy and updating the markings on its
output edges. It then identifies itself as participating
in its own firing wave (Bit(Node_Id) ¢ True), snd  sends &

wave message carr¢ing its node identification and the num-

T ber of times it fired upon awakening'alnng its logically-

.




.and sinks in G. Also, G is strongly connected. Note that

first i%put edge. 1+ a8 node determines that all of igs
output edges are nonnegatively marked, then Wake Up termin-
ates leaving the node in the Awake state to respdﬂd to

"

incoming messages.

Procedure Wake_Up;‘

Begin
y ¢ 0; ‘ :
For w ¢ 1 to N do Bit(w) ¢ False; . '
‘ State ¢ Awake; '
min ¢ 0; \
" For k € 1 to Out_Degree do If M(k)<(min Then min & M(k)} : l
I¥ min ( O ' . f
Then i ' o |
Begin . '
y ¢ —min; For k¢#1 to Out_Degree do M(k)¢ M(k) +/y
Bit (Node_Id) ¢(True; . v
, Send (Wave (Node{ Id, y), In_Edge(1)); ‘ '
’ . End : . \ ,

End {wake_uUp}
4

4

We are assuming that mach node has at least one input

edge and one output edge. That is, there are no sources

this is not a restriction of Algorithm REACH. ‘ We are
assuming a strongly-connected toéclogy for simplicity. We : !
can permit any topology. If a node is a source then it can !
participate in waves including its own but all waves epb‘lt '
a source simply because [Jsource represents . an in¥inite \
token supply. Alternative a 9ink cannot be an activator

or a participator beqause i€ has no outpuﬁ edges.‘ Th;s is
consistent with our Qnderstanding of a sink as a datum o;

the graph. 807 without loss of generality, we sp311 assume'

that each node can activate a nontrivial wave as wéll as

participate in waves activated by other nodes. In other




words, we assume that our intelligent graph is® strongly

v

connected. %

Each wave message is a packet carrying the fields

., Wave_Number and Delta: Wave Number id a static fxeld .

~ . -t ®

.carrying the Node_Id of the node which activ;ted the, wave

and is fixed for the dur;tgon of its qxistencé. Delta is a

dynamic field which indicates the number of times a node

. ' has fired in participating in’ the wave.. We assume“that the

receiver appends the identification of the.edge ‘on wh{ch a’ .
wave message was received ‘to the wave message as a third ,‘

field Wave_Edge. ° When the administrator processes a gave °

message, it simply calls Procedure Wave li%ted,below. SRR

1

- Procedure wave(wave _Number, Delta, Wave_Edge);

L o * Begin -y :
' , M(Wave Edge) ¢ M(Wave_Edge) — Delta; ~ N
Lo " I+ M(Waye_Edge) ¢ O C

- / Then | . o .
? ' If éor Bit (Wave_Number) o
Then . o e, ,
| Beagin : .
Del ¥a ¢ —M(Nav& _Edge)s; . e
For k ¢ 1 to Out_Degree do : . .
. M(K), & M(k) + Deltas ° : N .
y € y + Delta; : ‘ . \\
Bi t (Wave_Number) ¢ Trueg - .

v

e ' State ¢ Awakey
Wave_Edge (Wave_Number) & wave _Edges
Delta(Wave_Nurber) F Del tas;

: o Send (Wave (Wave Number, Delta), In_Edge(1)) . - « 1o

’ . . End 0¥ oy . : % ! i

. " : Else ; , ‘ Ca
g Begin : . : - '
State ¢ Tilteds : ‘ /Ewh- .

. 1f Wave_Number s Nnde m v :

J \ , co . Then Send(Tilt(wave beﬁi«Wave Edge)) o
! End N o

Else Send(Echo(Wave Numberé, anE Edge) e . ) '

:"’) . End {Wave} ; Q

. '
¢ 3 2
, . .
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Procedure WaQe first decrement% the marking on ¢he
o edgg on whjcéf;he message :Eszréceived and then cheqks
7 yﬂether‘ﬁor' not \tqis'has made the marking on. that edge
neg:}ive. If s;,‘thén it examines the bit map to determine

- whether or notﬁit is already participating in the wave. If

e it fg not already participatiz& in. the wave, then it pro- . (\
- ] b

ceeds to participate in the wave by firing. just enough te
A . T
maintain nonnegativity of the marking on its output edge

. and' identifying itself as a participant in the wave. ‘It
then. records the num?e: of times it fired in response to }
the wave “message and the edge on which the wave message ™ X
i arrived fug,futuré reference and then it r%peats the wave ’ %
messaqge bQ sending the wave message with 1ts updated Delta - §
:

field to the node adjacent to it an In_Edge(1). I Prace-
| : ' ) dure Wave determines that the node is currentl; participat- ~ ' ; 1
ing in the wave identified by Wave Number then it has

qetected the presence.of a neéative—length direcg;d ciE— \J
2 2 cu{t, as” described in Sécfion 6.3, and makes a transition ’

to the Tilted state. If the wave *as activated by some : \
other node, tﬁen procedure wave sanq; a tilt m?ssage back

to the,ddjacent node from which the wave message was sent

R along Wave_Edge.”

3 Y -

£ the markiﬁg on Wave_ Edge remains nonnegative when

v’/ ) N
. prosedure $weve respands .to a wave message, then that wave
v .~ }y o ebbs \f the node and procedure wave sends an echo meésage
5 : 4

’ ' N Bick to the adjacent node which sent the wave message along
R , . Wave _Edge.

ol
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e ' Echo messages are processed with‘}rocedure Echo listed
below. An echo message carries only the Wave_Number field

identifying the waye associated with the echo.. We assmume

that the receiver appeﬁﬁs the indentification of the edge
on which the echo was received t6. the echo'messaég as a
- 3

thond 4i§1d Echo_Edge. Procedure Echo +irst determines

> whether or not the associated wave has completed’ all stages

-

H ' ’ at the node by‘simply examining, the Echo_Edge field of the
F . | #cho méssage; 1f an echo is received on the last inbut
A In;Edge(In-Degrees‘then that wave has completg& all stages.

Otberwise,_ the wave associated with this echo must enter

the next stage at the node.

N
N v N
' ‘ \ (
i

Procedure Echo(Wave_Number, Echo_Edge); A
Begin . ) .
If Echo.Edge # In_Edge(In_Degree) ////
Then' | ; s
-Begin .
Delta & Delta(Wave_Number); - ‘ '
Send (Wave (Wave_Number ,Delta),In_Edge(Echo_Edge+1))
End . ' -
Else BN
R - Begin o

Bit {Wave _Number) ¢ False;
I¥ Wave_Number # Node_ld

o Then AR . '
' - Send {Echo (Wave_Number) ,Wave_Edge (Wave_Number))
Else Lo
Begin

v Flag ¢ False;
: . For w ¢ 1 to N do Flag ¢ Flag OR Bit(w);

o End
End
End {Echa}

’

.
- ! ! 4

When Procedure Echo determines thgt a wave must enter

the next stage it recalls the number of times that it fired

—
~
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, , - ) 4
for that wave (Delta{(Wave_Number)) and sends-a wave message v

carryinqg this recalled information to the adjacent node

along the logically-next input edge !n_Edﬁe(Echo_Edqe + .

When Prbcedure Echo determines.that a wave has completed

all then it identifies-itself as not

A

participating in the wave (Bit(Wave_Number) ¢ Falsé) and if

stages at the ‘node,

it is not the activator of the wave, then it serls an echo

message carrying the associated wave number to the adjaceﬁt

node along the edge upbn which this wave message was

recejved‘ (Wave_Edge(Wave_Number)). Otherwise, the wave

terminates and it makes a transition to the Finished state. N

. Tilt messages carry only the identification

i
of ‘khe ' %
j
i

wave which resulted 1n the detection of a’ negative-length

. 4 > B
directed circuit. Upon invocation, Procedure Tilt makes a

transition to' the Tilted .state and if it is .not the

activator of the associated wave, then it simply sends the

tilt message to the adjacent node along the edge on which

the wave message arrived (Wave_Edge(Wave.Number)). Thus,

instead of pursuing the remaining stages of a tilted wave,

.the tilt message simply prcpaga£e§ to the activator of

.

titted wave where it terminates.

the |

Procedure Tilt(Weve_Numgil);
Begin
State ¢ Tilted; ' ’ \
If Wave_Number # Node Ild . '
Then Send(Tilt (Wave Number) Wave_Edge (Wave_Number))
End {Tilt}

Algorithm REA[H terminates when all nbdeskreach the
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Finished state or 'when any node reaches the Tilted state @ °

and informs all the others.

. e

6.5 Bummary . :
- ' ’
In this chapter, We have given a 'distributed version

of Algorithm REACH of Chapter 5. We have described the dif-

ferent node protocols whiqﬁiconstitute Distributed REACH.

’

A ﬁquer of distributed algorithms for several graph

A

problems ha;;\ﬂeén'stuﬁied in the literature. Among these

"is the problem of computing a maximum flow in a transport

network which arises as a subprobleﬁ in ‘several network
optimizatién problems. Qhereas the maximﬁm—*low problem is
useful in\ testing the.feasibility of the trqnssh;pment
proﬁlem, the submarking-reachability problem is useful in
testiné the feasibility of the dual transshipment proﬁlem.
It is in this context that DistribLted REACH; presented in
this thapter, derives its importance. An important uéeﬁ
problem is to study the message cumplexity of this ;lgb—
rithm. We expect.further study of this algorithm will throw
muqﬁ light on digtributing the simplex method for the dual

L

transshipment problem.

~
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Chapter 7

REACHABILITY AND SEQUENCING IN STATE GRAPHS

~

) * hoH '
In this chapter, we ?xudy certain prnble&s on state
graphs dual to some of those considered in the previous
: 1Y

chapters on marked graphs. More specifically, we givg a

reachability theorem for state gqraphs. We study the

3

extreme-execution problem. UWe aliso iﬁtroduce aﬁd stgﬂy the

subsequence-executability problem.

———

7.1 Reachability }p,sggt- Graphs

Recall tﬂat a Tinite—state graph ,is a directéﬁ grqpﬁ
G = (V,E) with vertex set V, edge set E, a nonnegative-
integer state vector M, assocjated with V, called the
mcrkiné‘or token distribution of G, and a -state-transition
function de(n), mapping M into a néw marking M, resulfing
from firing edge @ € E. Vertices of G are called places or

states and edges of G are called transitions.” The transi-
tion furiction removes ane taken from the initial pléace of
edge e and puts one taken on the terminal place of edge e.

Since the resulting marking-must be nonnegative, the only

enabled transitions under a marking M are those whose

initial places contain at least one token. Thus, tokens

simply move ahout from place to place and, therefnge, the °

marking of a fimite-state graph 15 conservative. The

finite-state graph is equivalent to a closed queueing

i
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'7.1.1 Reachability and Extreme Executions

-~ . : '
/
= ‘ o
: ~ { }
detwork with a single customer class circulating within it,
i

In this section, we first show that the set of all

+

" firing-count vectors 'éiwegn an initial marking and a

reachable final marking is characterized bf a system of
network equations. We then define the extreme—execution
problem and demonstrate ite equivalence sp the transship-

u

ment problem of operations research. ,

w 4

T

Let A denote the incidence matrix of G, [ denote a

Jiring-count vector of the edges of G, whase components

record the numbgrséof Fimes tha\corresponding transitjons
(ire, and M, be ;n initial marking of the vertices of G. A
f;rlng—count vecto; I is considered executable from a
mafking "P if and only if there exists a lggal sequencé aof

{tirings from'Mo, wthe'fihing—count vector is E. Every

executable £ fraom M, Eesults in a marking M defined by the

TS et s s« Sy 0

" state equatjon

M s.M, — AL. ’ (7.1)
b
AN

The marking M, .then, is said to be reachable from the
initialr'marking Mo Lettind Anddenote the differential_

maFking M - M., we obtain the equations chaﬁacterizing the

~ ’ \ i } .
set of all firing-count vectors transforming M, into M,
namely '_ ¢

AL =" b, (7.2)

s = 186 = *
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As'$n<examplg, a state graph with two Qackinqs Mo and
< & M, is shown in'Figure 7.1. For tHis example,",‘ “Bp = Mg—M, =
B - ‘ . / coa
S s c d e : / '
, 2 -1 -2 -21. o / - :
o . - - ’/ '
/ . ‘
Equation 7.2 is a mathematical statement of the intui-«
tive observation that transition fxrlngs in a state graph
T behave que a flaw. = In f;ct, viewing éha state—-transi tion ’
N :
" process in  a state graph ps a token ' flow provides good
. ) ! : -
i 1

\ insight into  the execution propenties of finite-state "

A //
“ . /

t
N / . ' : i
qgraphs. We will pursue this approach in what follows. / ﬁ
! Let n = IVI and let m = |E]|. //The system of  equatians . |

, ' in (7.2) is a dependent one 917ce each equation in this ’ ;

system can be expressed as minqs the sum of the remaining
I / -

n—1 equations. The remaining ﬁ“l equations thgn consti tute

an independent system. Hsﬁce, we need only delete one

; equatlnn from (7.2) to obtal% an independent system. How-/

___ﬂﬁﬂ___,_¥~,.~,_,Q¥EF1*~ba+nre*—d!T!fTﬁﬁ'hn/equat1on, .we must ascertain a7

~ equivalgnt dependence in/the right-hand side.. I1f we sum

all equations in (7.2)./<he left-hand side vanishes. Clear-

/
ly, consigtency requires that the right—~hand side must

also vanish. This gé always the case in the finfke-sygte

!

graph since its marwing is conservative. In other wnrdé, G

/

/
can neither gain‘ﬁ#kens nor lose tokens and, hence, tq net

/ ;‘\\
token increase at any place in G is equal ta the nét/ ken
~ /o ==
f\> decrease in th%/kest of G. Thus, in viewing a finite-state :

graph as a tokén-flow network, we interpret places with a \

| YA o -/
. | ' / "“97? N /
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posxti@g, zern, or negative b; entry as a token sink,
intermediate place, or token :ource.’respectlvely. Conser-
vation ensures that the total‘tokeﬁ suppIQ equals the total

~
token demand. Hénce, let’ us assume that this condition

%
holds for A -and choose any vertex as a reference, delete
the corresponding row from the i1ncidence matrix A4 and

denote the resulting truncated incidence matrix of G with

the same symbol A. Also, let A . deriote the differential

4 ‘

marking of the remaining n-1 places obtained by deleting

the reference entry from A..

We may associate a peF unit cost or weight W(e) with

3

each edge e € E,'representing the cost of firing transition

e once. In formulating the problem, we are assuming that

7/
the same cost W(e) is incurred each time transition e

fires. Under this assumption, clearly, the expreséion

' Z Wie)E(e) represents the cost of executing the firing-—
e
count vector EL. The extreme-execution problem is to deter-—

mine a firing~count vector I which has minimum or maximum

ctost, among all such Qéctors leading G fragm an initial
mar&ing M-, to a final"marking M. Note that Z W(e)L(e)' is
not, in general, the total executign time s?nce this ex—
pression cannot accounl for concurrency among firings., In
the sequential case of the atate graph, namely the . state
machfne (a state graph with a single token), . tﬁe'objective
2 (e)Efe) is exactly the execution time for any execu-—

e .
tion of I from Mo when each transition e € E takes UW(e)
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seconds to fire, every time it does.
1 ‘ (\ '
Let U be a row vector of trangition welights. We may
now state the extreme-execution problem ?or a state graphy G
as the equivalent linear program
- ‘ . ' >
: minimize or maximize WL
“ subject to AL = -4,
: T )y o. (7.3»

f : The minimization problem in (7.3) 1s equivalent
to the t;ansshipment prablem or mihimdm—costosxn91Efccmpod—
ity flow problem of operations research. This 15 exactly
. dual to the extreme—marking brbblem"of Chapfer 3, for a

marked graph, and the networknsimplex method may be used to

splve this problem. .

The reachahility préblem‘jor finite-state graphs re—

P
duces to the problem of obtaining a feasible solution to.
the ronstraints in (7;3). The justification for this
statement follows easily from the token—-flow network inter—
. pb, pretation. That. is, if a feasible solution to the con—

straints 1in “;7.3) does not exist, then clearly M is not
. “ reachablé from Mo. Oon the pther hand, 1f a feasible solu-—
tion does exist, then the answer to the reachability ques-
tion is in the affirmative since a flow schedule‘satlsfy(ng
the transshipment constraints is always implementable.
Thus, we st%te, without proof, the reachability theorem for

state graphs. Proof follows from the network simplex methdﬂj

[701.
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Theorem 7.1 (Reachability Theorem for State. Graphs): A mark-—

> ® pd
ing M i< reachable from an imtial marking M, of a state

graph G = (V,E) 1f and only if G does not contain a direct- - ™~
ed cutset <s,§>0, S CV, with ; .
\ r ' - ) )
Tmary ) LMo (7.4)
- i €8 i €S8 - '

7.1.2 Basic Legal Executions
¥

N

Let T and T dencte a spanning tree of ‘G and its

corresponding cospanning tree, respectively. Arrange th
»

ctolumns of A so that the first n-1 columns correspond to
" the branches of T and the remaiming m -~ n + 1 columns to

| ’ the chords of T. Ar;;:kan'ge Wand I in the same fashion.
. ' .

Then, Frogram 7.3 partitions into the following problem

minimize or maximize WE = W, L. + Uzlx
| subject to A, + ALz = -4,
' : ) I = (LL,E3)* ) O. (7.5

‘The matrix A, is nonsingular, hasq a triangular permu-
tation and is unimodular. We may solve the matrix con-

.

straint in (7.5) for the tree variables in terms of the
cospanning variables.  Thus, dual to the extreme-marking
problem, in the extreme—execution problem the spanning-tree

variables become the basic variables and the cospanning-

. !
tree variables become the nonbasic variables. First, multi- j

' plying both sides of the matrix constraint in (7.5) by az* °
leads to an equivalent canonical statement of this con-

» straint, namely
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A;‘A;&T# AT'AsL3 = -ATA, - (7.6),

I e (7.7)

;jg | ’ ' QL = -AT’ (7.8)
where Q¢ is the funpamental-cufset matrix of G w}th respect
to the spanning tree T. We shall call A&; & A;'A the funda-
mental differrn;inl marking with respect to T. Each entry
in A, is the di %erent1a1 marking of a subset of places
deflned'by the cor »sponding branch in T. Equation 7.8 is
,s{mply a transformed version of the matrix constraint

AL = ~b. Solvfng (7.7) for the tree variables 1n terms of

the cospanning variables yields the dictionary

. Ly = =&AL - Q,.3L5. ‘ (7.9

A basic legal execution of a fipite-state graph is
any iegal transit;on—firing sequence, leadiné from,;h in-
i{ial marking to a reachable final marking, in wh%ch all
firings are confined to the branches of some spanning tree
of the graph. Let us call the subgraph of G consisting of .
all and only those edges which fire 1n a legal execution,
the executed subgraph. Thus, the executéd subgraﬁh of a’

basic legal execution is a forest.

Now, if A, ( O, then we get a basic feasible solution
’ N . e
to the gonstraints in (7.3) by simply setting Ez = O in
the Dictionary 7.9 to obtain the tree solution I, = —A....!
i

The set of all legal firing sequences executing this basic

feasible firing-count vector constitutes a class of basic
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legal "executions of the.finite-state graph with respect to
et N
. / \

the spanning tree T. I1¢ A, L 0, then we are faced with the

. \ problem of obtaining a basic feasible solution ta (7.5).

Thdét is, we must determine s spanning tree T of G for which

A7'A ( 0. This initialization problem can be formulated as?

a similar transshipment problem and, as such, may be solved

El

. in the same fashion as”t&e'nriginal problem is solved.
' v : .

¢

Thus, wé' will éssume that a basic feasible solution is at
hand. . e

1

Returning tao the markings M, and M, in Figure 7.1, a

basic feaéible'snlution for (7.9) is given as

] . . E(e,) = 2,

:(E:) = 1’3

g E Eles) = 4,w=
[} .
2(e4)°- 2. J

3

Firing the edges e,, e., ex and e, in this order, the

requiref number .of times, takes G ffgm M, to M,.

- .

Substituting the basic dictionary for the tree vari-

4

.- ables in the objéctive of (7.5), we get

WE = W,.(-4; — Q. 5L3x) + WsE3,

= ~W, A, + Wy - W.Q,5) L5,

~W A, + WsEs. (7.10)
. "

St : , R
The development from this point on is exactly dﬁai to that

\ (]

for the extreme-marking problem and, thus, it will not be

f
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B &
X « = /.
] a
L€ . > , .
. * [T
3 * .
dﬁaboratud upon here, except to highlight the dual con-
ot e ‘ \*" N ~ T
p; ™~ cepts.; First] we note that in this problem, Uz is the™
s : M -
. relative-~cost vector of the cospanning tree T and -W, A,
: is the cost of our basic feasible{solution. Hence, we have
N ——— - ' ' > '
20 : ) the following definition and thearem.
-— o . ¢ . i
7 -
+ “ . , ot
» The cost or weight of a fundamental circuit C is the
v T . .
- algebraic sum of the weights in C, when traversed in the
' direction 'of its defining chord. ip other . words, the
N .

circuit weight is the sum of the foéward weights minus the

sum of the backward weights, ) . N

Theorem 7,21 The relative chord costs dre the fundamental-

circutrt ﬁeights-ll . g b
Y A

-

The proof of this theorem can be established in the same

-

fashion as the proof of the dual theorem, namely Theorem

. 3-4, for marked graphs.

The impbrtant implication qf'the network—-+flow ;ntlr—
pretatioﬁ of the extreme-execution problem is that there
exists a 'bA;ic legal exécution of a finite-state graph
betwean‘anﬁin{tial marking and‘any reéchable final marking.
d1s0, note that in a basic legal execution, firings are

, all confined to the bragches of a spanning tree.

\ N

i

” ¥ We conclude this‘:ectian by a@aid’pointing out that

the extreme—execution.pﬁdblem’4or the state graph is gual

to the gxtréme—mdrking'problem for the’marke& graph. Fur-
» . - . ’ &f

’ . -
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,‘7.2-Thq Subsequence-Executability Problem

thermore, whereas in the case of a marked graph no more
than (n—-1) firing counts are nonzero in the minimum nanneg-
‘ative executable firing-count vector, in the case of a

state graph, no’  more thah (n-1) edges need be fired to

reach any reachaﬁle state from any initial state.

-

!

In the subscqucncc-lxocutnbi}ity problem, we are given
a finite-state graph Nith. an init}al marking M, and a
reachable final marking M. The firing count L. is specified
on a subset of edg;s E. called the controlled set. " The
reya;ning edges E - Eg constitute the Tres set E,.. The
problem is to dete%mine.the minimum firing-count vector of
E, if it exists, leading from M, to M which fires the

contrblled set E. as prescribed by I_.

1

As in the submarkinq—reacﬁab%lity problem, the ﬁnci—

2

. dence matrix A of G d%rtiyions into

Ec E- | h
Ace. Aoy Ve

A =
0 Ary (Vi

and, hence, the state equation becomes .
hak

Occle + Aol = '?cg R ) (7.11)
" Bpplp = =B, ' . k7-i2)

3

where the notation.should be obvious. ! Since L. is spacif-

i
!
i




ied, we must then, obtain a solution to the following

linear program, if one exists,

minimize W. L. A \ ; —
; . subject to A . L. = ~b. — Acclcy
) Arrzr = =4, ] ‘ \ 1 .
£, ) O. (7.13)
. &b . \ i
3 - \

The solution toc this problem may be obﬁ\ined by reduc-

. ing 'the finite-state graph in a dual fashion to that used

; to reduce the submarking-reachability problem. We fire the

a

controlled edges E. by the prescribed number of times  and

. take 6 to the not necessarily feasible internediate state
. !
ﬁ, defined by the transfarmation

H\~i - 4

\ 0 Mo = Moo - AccEe '  (7.14)

1 i = M o L 7am

‘ Clearly, from state ﬁ, edges in E. must nét be fired in
. }
reaching M since they have been coﬁpletgly fired, in maving ((>

to M. Therefore, in the state ﬁ, we may. open-circuit

"all controlled edges and remove them from G. Also, the

N ’ differential marking associated with the controlled pﬂhcgs
Vo ts modified to A. = Bc + AccLc. The differential marking
. of the free places does not change, i.e., B, = A, So, the -

‘subsequence-reachability problem reduéeé to the following

linear program

o r

minimize W I, .
subject to AL, = -4, o -
I ) 0, o (7.16)

L - . °
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where & is the incidence matrix of the reduced graph, a
ig'£he intermediate differential marking and W, 1s the cosk.
vector associated with the free transition firings. Program
7.164 is a transshipment problen. Thus, the subsequence;
executability problém reahcés to the extreme-execution

[}

problem‘&hich may be sélved by the nethFkisimplex method.
7.3 SBummary

. < R s
Lo In this chapter we have presented formulations of
~certain problems on state graphs which highlight the
duality between the state graph and the marked gfaph. We

Baye shown that the reachability\praoblem on the ﬁtate graph \

is equivalent to the problem of testing feasibility of a |

» . \ 3
transshipment problem. UWe have defined the extreme-execu- )

.tion problem for a state graph and formulated it as a,
BN ’
transshipment problem. This formulation has led us to

'define a basic legal execution and establish that a state ;

graph can be taken from one stéte to a reachable state ‘by‘~

, firing only the edges of an appropriate tree. ' Finally, we

« . have defined the subsequence-executability problem and have
shown that this problem is also equivalpnt to a transship-

. ment problem.




Chapter 8
S8UMMARY AND PROBLEMS FOR FURTHER STUDY
X .

- 1

¢

In  this chapter, we summarize the main contributions

of this thesis.lnd point out a few praoblems for Cfuture

study. o '

LY

g8.1 Summary

in this thesis, we have been concerned withlnn algor-

ithmic study af certain issues relating to the reachability

) - ? L]
.and seguencing problems for markeg graphs and state graphs.

Most of the results presented in fhis thesis are based on
. ( N

linear-programming formulations aof -the relevant problems.

Qur -study of problems related to marked graphs bas been

Apreéented in Chapgers 2 to 6. We have studied state qrabhs

in Chapter 7.

i
il

.In Chapter 2, we first qéve an algorithmic proof  ta

the reychability theorem on marked graphs. Ve have also

extended this proof to cover the capacitated case. e thln,

introduced the concept of ascatter in a firing seqguence.

Using the notion of a greedy firing polity, we have pre-.
sented algorithms for generating minimum—scatter <firing

-saquences for different classes of graphs. More specifical~

lyy, we ‘have considered three cases: acyclic directed
. \ .- ' y
graphs, directed cirtuits and graphs in -which all directed

circuits are vertex.disjoint. We have pointed out that in

I4
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the general case this problem reduces to that of determin-
ing a minimum-scatter firing seguence for a strongly-con-

nected graph. Finally, we have presented a purely graph-

theoretic characterization of the reachability problem an

»

(O,1)-capacitated marked graphs. The relationship between
this work and the results presented in Ebbi and [67]1 has
Qeen pointed out. - This relationship’suggests’tha possibil-—
ity of degigning efficient distributed algorithms for the‘

reachability problem on (O,l)—cnpacitatéd marked graphs.

[

) In Chapter'3, we first presented a linear-programming
formul ation pf the maximum-weight marking préhlem on live.
marked graphs. We h;ve described the details of an algor-
tthm (based on the simplex method) to obtain a maximum-
weight marking. The concepts of -a b;sic markin% and dia-

koptic firings have been defined. We have shown that each

pivot in the simplaﬁ method corresponds to. a diakoptic

1

firing. An algorithm regquiring uﬁly vertex firings has
been given to construct a basic feasible marking reachable

from a given initial marking. In addition to constructing

" a maximum-weight marking, our algorithm constructs a firing

sequence leading from the initial marking to 'a maximum—

weight mar;ind. We have also established the diakoptic
< ‘ .
reachability theorem. -~ We then presented details
algorithm tao construct & paximum-weigﬁt marking in

of capacitated marked.graphs. Finally, & formulation of

U 4




5

Using this formwlation, we have studied the maximum—weight

marking problem for the nonlive class of problehs. We have
shown thqt'the maximum-weight marking problem has the same

structure in the cases of both live and nonlive graphs.

\One important advantgge of the 317near—programming
formulation of a problem is that it makes sensitivity
analysis of the problem easy. Thus, our formulations in
Chapter 3 ‘would facilitate the study of the effects of

small changes in the'initial markings on the optimal solu-

tion. We have also pointed out, in Chapter 3, that the

problem of determining the maximum resource requiréments in:

the computation graph model of Karp and Miller [3] reduces

to the maximum-weight marking problem in _ the case where the,

input and the output quanta as well as the threshold of

A d

each edge of. the computation graph are equal.

‘Y‘\ e
ing~reachability problem on marked graphs. Using a linear-

programming forhulation, we have presénted an appqda:h

which exposes the strﬁcture of the problem and . unifies the

study of this prpblem for both capacitated and uncapacitat-.

ed graphs. We have shown that the submarking-reachability

prublem‘”reduces to the problem of taking a graph from an

infeasible mari?ng to a feasible marking throdgﬁ a sequence

of, possibly illegal, vertex firings.

\

In Chapter 5, we first pointed out the equivalence

- 200 ~

_In Chapter 4, we studied the 'structure of the submark-;
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between the:submarking-reachability problem .and the problem
' i

of testing feasibility of the dual transshipment ﬁroblnm.

We then gave an algorithm, called Algoriﬁhm REACH, to solve

»

this feasibility testing problem and, hénce, the submark-

'

ing-reachability problem. Proof of correctness and termin-
ation of this algorithm have been presented. We have shown
that the complexity of the algorithm is O(mn), wherem is

the number of edges and n .is the number of vertices in the
' '3

given graph. This is in contrast to the complexity 0O(n™)

of the well-known MPM algorithm [71] which can be used to

test the. feasibility of the transshipment problem.

In Chapter &, we distributed Algorithm REACH. Ve
preserfed several procedures constituting thig ‘distributed
algorithm, The place of this diléributed algoritpm in the
context - of distributed aléorithms for other graph problems
as well as the possibilities it opens up for ;istributinq

general network optimization problems have been pointed

Y
out.

~

. P v

\

In Chapter 7, we studied certain problems on state
- graphs dual to some of those discussed ,  in  the earlier

chapters on harked graphs. We have \§Q9!9’A€Bat the

reachability problem in the case of state graphs reduces to

-~ \

the problem - of testing feasibi!ify of, the trangsshipment

i

problem. We have defined the extreme-execution proflem for
a state graph and formulated it as a transshipment prjblem.

This formulation has led us to define a basic

- 2081 -~
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execution And establish that a state graph chn be taken

from one state to a reachable state through a sequence. of

o

f1r?ngs ‘whi¢h are all confined to the edges o+ an appropri- !

ate spanning tree. Finally, we defined the suﬁsequance-
reachability problem and showed that it is alsu equivalent

to the transshxpment problem,

8.2 Problems For Further Study

LY .
e now point out a few problems which require further ;
$% P , {

.Qtudy! These problems arise as a result of our

_? investiéations in this thesis.

1. In Chapter 1, we have given polynomial algorithms to

design miniﬁum-scatter firing sequences for certain classes

of marked grapﬁs. We have shown that in the general case

‘ the probiem reduces to that of determininé minimum—scatter t
‘sequences for strongly-connected grnphs.‘\ It appears‘thag

_ the general problem is of exponential ';omplexity. An
important open problem ig to determine whether a pnlynom1a1
algorxthm exists for the mxnimum-scgtter problem in ' the
case of strungly-cnnnécted grapﬁs pnd, if not, prove that
the problem is NP-Complete. Ca
2. We have shoun in Chapter 1 that the reachability problem
on (O,1)-capacitated marked graphs is equivalent to the
problem of transforming a given acyclic graph into .another

\ one using a sequence of source vertex firings. An  easy

.problem in this context is to determine and characterize

" - 202 =
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the exact sequence of vertex firings which might transform
one acyclic graph i1nto another. 1t seems that such a

sequence can be constructed using a depth-first-search of

the given graph. ve have also pointed out in Chapter 2
that similar probléﬁ?i‘\possibly less general ones, have
arisen in seemingly different contexts [&6] and L6731, In

[67] a distributed algorithm has been given.to transform a

destit7kion—disoriented acyclic graph to a destination—

'nﬁtg:ted acyclic graph. Thi

application to a routing/prablem in computer communication

work has been motivated by an

networks. A related (| and interesting open problem is to

design a distributed lgorithm to transform an acyclic

graph into another one using appropriate vertex firing

protocols. It appears that study of this problem along the

lines of [67) might provide considerable insight into this

problem and also prove useful in generalizing the results

‘ Cdin 671 .

-

3. Avoiding the cycling phenomenon which results from de-—
generacy is an important problem in linear programming.

Several anticycling rules have been reported in the litera-

F3

ture. For the transshipment problem, a very ingenious anti-
cycling rule due to Cunningham {701 which takes advantage

v

of the structure of the problem is now available. However,
such a simple rule is not available for the dual transship-
ment problem. Thus, an important open problem 15 to devise

an elegant anticycling rule for the dual transshipment

problem. A solution to this problem will bexa major funda-

1 . ’
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mental contrﬁbutlon to network optimization theory.

b 4, Computing a maximum flow'ié a transport network is a /
very important prob;em in operations research}‘ 1ts import-

. ance is due to the fact that this problem arises as a
subproblem if several network optimization problems. Also, i
geyeral graph problems can be shown to be eguivalent to the
max i mum—f1 ow probleg on (O,})—capacitated transport net-
works. In fact, as we have‘pnintedAout earlier in Chapters
5 and by tésting feasibility of a traqsshipment problem J

)
reduces to computing a maximum f;kw in an appropriate

. PPN

’ transport network. In view of these general applicatiaons,
the maximum-flow problem has atf;;cted considerable atten-

tion in the literature. The MPM algorithm [71] for this.

o s . Sk

problem is known to have the best complexity of G(n™).
Current efforts’are to obtain efficient distributed proto-
colsvfor this problenm. AlgorjtthREACH, presentad in Chap-
ter 5, is of complexiéy O(mn; ;nd q#ﬁ be used to test
feasibility of the dual transshipment problem., The distrib-
uted ver51on‘of‘;hi§ algorithm has been presented in Chap-
ter 6, ﬁn imﬁortant ﬁrobiéprwhich requires further study E
'is  to determing the message compléxity of this distributed
algérithm. & further study ;f this problem is expected to

provide more insight into the nature of the dual transship-

ment problem which has not received much attention in . the

i
i
i

operations research literature.
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