National Library
of Canada

Acquisitions ana
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontano

Bibliothéque nationale
du Canada

Direction des acquisttions el
des services bibliographiques

395, nie Wellington
Ottawa {Ontano)

K1A ON4 K1A ONd

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproducticn possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Youw fie Ve st

(A bl Nole sttt

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a confeéré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

RECURSIVE QUERY OPTINIZATION IN DEDUCTIVE
DATABASES VIA PROOF-TREE TRANSFORMATIONS

INARIMA ASHRAT

A THESIS
In
THE DEPARTMENT
or

C'oMPUTER SCIENCE

PRESENTED IN PARTIAL PULPILLMENT OF THE REQUIREMENTS
IFor THE DEGREE OF MASTER OF COMPUTER SCIENCE
CoNCorDIA UNIVERSITY

MoONTREAL, QUEBEC. CANADA

APRIL 1996
© Karima Asurar. 1996

Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Weliington Street
Ottawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ortaro)

Yo e VOt iefdeei e

Our i Notre oteren e

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
metire des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protéege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent * étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10819-8

Canada

Abstract

Recnrsive Query Optimization in Dedactive Databases via Prool Fiee

[ransfotmations

Narima A<hrat

A central guestion in deductive datebases is the efhicent processine, of recursive queties,
which are harder to compute than nonrecursive queties X poswertul torm ol tecurave queny
optimization is to deteet whether the recursion is veals o1 bownded A recursne query
is said to be bounded if there is an o priot number b such that bk aterations ol the tale
application suffice to compute the least fixpoint. regardless of the contents of the database
It is I-bounded if the number & is 1. Detection of hounded programs resulis in elimination
of recursion from the (parts of) given program. When o gquery program s known 1o he
bounded. the sophisticated optimization theory developed for relanional databases can he

exploited for processing the query efliciently,

Reduction of “arity™ of the recnrsion inoa given program is also a usefub form of query
optimization. Indeed. linear recursion is much easier and faster to evatuate than nonlimean
recursion. Linearization is an optimization technique which attempts to transform nonlinea
recursive programs into equivalent lincar programs, Ty gencral, lincanization techniques do
not preserve the stages of derived tnples with respect to a hottom up lixpoint evaluation
Stage Preserving Lincarization is a linearization technigue which results inan equivalent

linear program without increasing the number of stages

Typically. in database applications. the relations ate required to satislv antegrity constramte,
such as functional dependencies. Thus query optitmization in the presence of integnty
constraints is of considerable interest giving tise to Scmantie Query Opling alion. an active

topic of research.

In this thesis. using the well-known Proof-Tiee Transformation technigue a< i hasic toal.
we have studied two different recursive query optimization problems: [-Boundcduess and
Stage Presereing Linearizabdity. The contributions of this thesis indude detection of |

boundedness for a certain class of recursive programs consisting, of two ocourrences of the

il

tecurive predicates i the tale bodies. Such programs are called bilincar <Saps (for smgle
tecunive pale programs). Tnoonr study we aloo consider tecursive programs whose input
OB hnown to satishy a set of functional dependencies. We develop a syntactic characteri-
zation of o cubstantial clise of bitinear <itups that are -bounded. and provide a linear time
aleonthin lor testing 1 bhoundedness for this class. We extend our resalts: algorithm. and
s complexity above to the case where it is hnown that the input databases to the gquery
program satisly o given set of functional dependencies. We also show the applications of

Prool Tree Transformation technque for the detection of Stage Preserving Linearization,

Detecting | bounded programs is of practical interest since knowing, that a nonlinear pro-
r I o I -

eran v 1 hounded can lead to @ diamatic reduction in the query processing complexity.
Stage Preserving Lincarization resabts in significant improvement in efficiency of evalnation

compared to other linearization tedhiniques that do not preserve stages,

Acknowledgments

I wonld lihe to express sincere gratitude to my thesis sapervisor B v S (Tahey 1 ake
mananan for his dedicated supervision in the tesearch and preparation ol this theas 10 has
been a pleasnre working with Prol Lakshmanan Despite havime o very b sohedule, he
alwayvs had time for discussions and exchange of weas T rhank b for sincne co apetation

and collaboration.

Fam grateful to my family for their nnconditional support. motivation and conntles, wacn
fices. Tt is my hononr to dedicate this thesis to my brother Feroz Ashoat, who mspied e
to join the Master’s program ot Concordia University and has alwass motivated e 1o do

my hest,

[also would like to thank my colleagne Subramanian Iver for everyday help and vanoue

discussions,

Lastly. I like to thank the Computer Science Departinent stafl for their co operation and

help throughont my affiliation with the University.

Several research grants supported me financially during mv years as a praduate tadent
and I would like to gratefully achnowiedee the following srants, Natural SAences and gy
neering, Rosearch Couneil of Canada (NSERCY and Tonds pour Ls Tonmation de Cherchenrs,

ot I'Aide a la Recherchie (FCAR) of Quehec.

Vv

Contents

List of Figures

Introduction

1.1 Deductive Databases .

1.2 Previons Werk

L3 Scope of this thesis o0 000

[.1 Oreantzathion of the thesis

Preliminaries

2.0 Svintactic Structure of Datalog Programs .

2.2 Class of Datalog, Programs studied

te

Basie Notions and Convertions Used

te

Least Fixpoint of Datalog, Programs
2.0 Prool-"Frees and containmmoent

26 Assumptions Lo,

The Problem Studied

vi

9

10

20

3.1

33

3.1

R(‘M‘.Il(ll lupl(

Contuiibution made by this Thesis

Boundedness -\ introducthion

On Stage Preserving Lincarizability |

Proof Tiee Transtormations

3.5.0 0 Mool tree transformations assocated wirth | houadediess

3.5.2 0 Proof tree transformations associated with Sp hneanzalaliny

4 Applications of Proof-tree Transformations to t-boundedness

(R

1.2

1.3

11

A Stenctmal Characterization of T Boundedness wsimg, proof trees
Svntactic Properties of Bilinear sinups
Svutactic Characterization for | bonndedness

Sumimary

5 1-Boundedness with Functional Dependencies

Incorporating undtional Dependendies

An efficient Mgorithin to Chase Prool trees

Syntactic Characterization of 1-Boundedness in Presence of 11
Tosting, 1-Boundedness .

301 AVegraph Representation of the sirups

5.1.2 Linear time Mgorithm for Testing | boundedness

6 Stage Preserving Linearizability

vii

1]

LR

(Y

64

01

71

61 Intraduction

~

(T

6

-

Compati-on

OHo Summary

71 butme Researdh

Bibliography

Concluding Remarks and Future Research

viil

Proot Tree ‘Transtormations associated with Sp-linear izability oL

~1
N4

76

X0

81

N

82

List of Figures

I Fhe five fundamental prool trees,

2 Proof Trees with DB subgoals

3 Prool-Tree Couventions.

! Lelt Transformation Rule Corresponding to | houndeduess

3 The Tundamental Proof-"Tree Transformation Rules Sp hneanzabhiy

6 () Left linear tree (B)..(1)) Fonr possible trees obtained by transdonmation
from the tiee ol (N). wort. to | boundedness

7 Showing Proofl Tree transformation lor 1 Bonndedness

8 AVegraph representation for the bilinear sivup «

9 (a) The bad tree Iy (b)) Shows sood trees

10 (a) Squash Transformation. (b).(c) yand 1., 5wt to Lxample 612

[T Showing the tree transformation w.a Fransitive closare program

Chapter 1

Introduction

1.1 Deductive Databases

In recent vears there has been comsiderable interest in the Database community 10 extend
relational database systems and to improve the expressive power of database systems. One
ol the many proposals s to augment the Relational Database systems with logic-based query
ingnages The rosult is sometimes called a Deductive database. bocause of the case with
which Smplicit information can be “dedneed™ from the facts stored in the relations. The
field of Deduetive Database is concerned with developing logic query programming svsteims

that can manipulate large gnantities of data efliciently.

A Deduetive Database consists of two types of relations or predicates - the base relations
and the derread relations. The set of all base relations forms part of extensional database.
EDB. which is equivalent to traditional relational database. The set of derived relations
form the intensional database. TDBL in which. the derived reiations are deduced from the

base and derived relations using, the sets of rules defining them.
A rule delining & derived predicate Ly is a function free. Horn clause of the form:
Lo-Lyo oo Lyowhere Ly oo Ly, are cither IDB or KD B predicates.

A finite set of rules forms a Query Program.

Recursion in Deductive Databases
Deductive Databases extend the expressive power ol telational database svstems by addine
recursion. Indeed. conventional relational querny lanenaces ke relational aleebia or then
cominercial connterparts like SQL cannot express tecursine quettes Dedinetinve databose
query laneuages ke Datalog dlow gqueries to he wntten i o i the lorm ol pdatabuasa)
logic programms. usually expressed in o Proloe Iihe santay 1 g L constder the tollow e, oo
recursive query proetam ftom [20] consisting ot the roles

ro s huystNOY Y - lihkesg N Y) and

ryshaystNOY Y trcndgt N) hags(BVY)
These rules deline the relation buysC XY) meamng person v buvs object Y n torme ol
the relations Lbes(NVOY Yo trendy(V) oand the telation bhaygsitselt The gueny prosgaan above

is recarsire sinee it defines the telation huys in terms ol tsell and 1o predicates

Recursive Query Optimization

The presence of recursion i the query programs is a sontce obicreased exprecave power and
higher complexity of query processing Indeed. eflicient query processms and optinnzation
is one of the most extensively rescarched 1opic i deductive databases (see Banallon and

Ramakrishnan [3]. Cenvet all [1] for surveys).

uery Optinization can be regarded as the process of translormine o queny program ()
into an equivalent query program Q' which can be evaluated more ethicientiv - Q)" houkd

be equivalent to @ in the sense that Q and Q7 have the same answer for every datalnee

instance,

Since, the source of difficnlty in evaluating Datalog quenes s their tecursive natare the i
line of attack in tryving to optimize such query is to eliminate recursion. Eatenave rescarch
hias shown that in some cases. the recursion emploved by a guery program can be redundant
and it is guite possible to reduce the arity of recmsivity, o even better elunmate at A
classic example of such reenisive query optimization is when, o nonhneat! program can bhe
transformed into an equivalent linear tecnisive progiam of even o DONTCOUrave propsan
Optimization of the former typeis called lincarecation whereas optinization ol w recurave

program into a nonrecursive program is relecred to as boundedness Lransformalion

[t is well known that recognition of honndeduess and lineatizabihity s an unportant op
~

timization problemn. It has been proved from varions stadies that evaluation of bounded

YA recursive progran s called nonlincar provided therc s wmons than one poour sve predioats an e body
of the recursive rul-

ot even hnear tecursive programs is considetablv more efficent than that of (nonlinear)

FTeCUIsSIveG progtaln,

Boundedness
One form of query optimization for Datalog is the recosnition of the case when an apparently
tecursive query is i fact equivalent 1o o nowrecunisive query. cndependont of The conlents of

the databuse.

Recognition of bounded progiams is o very posetful form of recursive query oprimization in
dednctive database since (1) evaduation of nontecursive gqueries is cheaper and (i) it makes
avatlable the powerful opteaization technigues well developed for relational databases to

such quenes,

Indeed. 1t can be shown that the apparently recursive “buyvs™ program (1ules ry and 1
abovey s in fact oquivalent 1o the following non-recursive program: {ro @ buys(N.}Y') -
Lo sSON Y Yooy shuys(N Y) o tiondy(N) ekes(WY)). Programs in which recursion ean

bhe oliminated in this manner are said to be bounded.

Consider another example which defines a nonlinear recursive program .., . .

Example 1.1.1

ro - pl A WA WITEN WS RS (A W WP OO

P p(N NN) - p(VoN D) pl N X)L NN b Y). a

))
The above program Py, in fact, is an example of a doubly recursive program as it has
exactly two occurences of the recursive predicate pin the body of the rmle. The subgoals
c.a.bare (EDR) database predicates. On the other hand. the predicate p corresponds to an
intensional database (1oB) (deriead) predicate since it is intensionally defined in terms of

other predicates.

The above program is an example of a f-bounded program. This means it is equivalent to
the following nonrecursive program P,,,. obtained by replacing both ocenrrences of the

recursive predicate pin ry by the exit predicate .

ro: UV Voo N) - (YL Ve XD
rees pCN NGO s (VO D) (DN N) a(Y LX) B X

Sinee optimization of nonrecursive queries is a classcal problem tor which powettal tech
nigues have been developed iu relational database theors detection of (1 Yhounded query
prograts opens up the possibility of using snch techniques tor any query against soch

programs.

1.2 Previous Work

Substantial amount of work has been done in recursive query optimization In the sequel,
we will refer only to selected works which are relevant to our study of howndedness and
linearizability in recursive progrims. which are two major approaches to query mdependent
program optimization. eri et al. [5] survevs numerons strategios for efhicient processing,
ol recursive queries. This also was the topic of a 1ecent PhD thesis in the departiment |23
A common theme of all these strategies is that they are quety dependent, and attempt
to push selection in the query inside the recursion using vatious approaches, By contrast,
the kind of query program optimization studied iu this thesis is query independent program
transformation. which is inherently more challenging. s can be seen helow | many problems

in this regard either have a high complexity or are nndecidable.

Firstly. it has heen proved by Gaifinan et al. 7] that the general problem of detecting,
boundedness and linearization is undecidable. foannidis [10]. and Naughton [20] are some
carly works on boundedness reporting some positive results, Various surveys and accounts
of numerons deaidability and undecidability 1esults on houndedness have been reported in

[30]. Kanellakis and Abiteboul [12]. and Hillebrand et al. [4).

On the specific problem of 1-boundedness. Kanellakis {11] has shown that detecting |
boundedness is NP-hard even for linear sitnps defining o predicate of arity fonr. Saraiva
[27] has tightened this result 1o more restricted classes of linear situps. e also gives o
polynomial time algorivhim for testing [-boundedness ol lincar situps with no repeating,
stthgoals. The proposed algorithm is hased on the idea that testing | houndedness roduces
to two 2-containment tests. Wood [31] has recently given asyntactic ciaracterization and
linear time algorithm for detecting !-boundedness for a subelass of linear situps with some

restrictions.

For works dealing with more general problems of optimization (e.g.. recursive redundaney

and proof-tree removability) see Nanghton [21] and Lakshmanan and Herpsandez {11 The

latter alvo considers the eflect of functional dependencies on proof-tiee removability of
athgoals (and hence boundedness). Numerons studies have aloo been done 1o take into
atconnt the effect of semantic knowledee in the lorm of intearity constraints for some of
the above aptinnzation problems (g Sagiv [25). Lakshmanan and Hernandez [] ete). Tt
has been shown that the presence of diflerent types of data dependencies can be used for
mote eflicient gquery processing. Sagiv [25] has shown that notion of nniform equivalence
ol datalog progrians can be applied 1o minimize datalog programs whose input databases

satisfy o set of tuple senerating dependencies,

Lxtensive work lias been done on the problem of linearczation. Tor certain restricted class
ol hilinear recursive programs. Zhang et al. [32] and subsequently Saraiva [26] have studied
the problem ol detocting ZY 1 -hincarizalnhiy. a specific way of performing linearization. by
replacing exactly one of the recursive subgoals of the sirup by the exit predicate. Ramakrish-
nan et al. [21] proves several prool-tree transformation theorems and shows their application
to commutativity of rules and ZY T-linearizability. They show that when the EpB subgoals
are allowed torepeat, ZY7L lincarizability is NP-hard. and may be undecidable. Saraiva [27]
among, othor things tightens this NP-hardness result to more restricted classes of sirnps.
Finally. in our most recent work [I7]. we address the problem of detecting stage presere-
my lrnearezabidity and also show its application for the detection of f-boundedness for the
class of bilinear situps with distinet Epss. The detection techuigue above uses a uniform
approach based on the notion of homomorphic tree embeddings [17]. We also show that
stage preserving, linear programs obtained using our technique cau he evalnated much more

efliciently as compared to other linearization technigues which do not preserve stages.

1.3 Scope of this thesis

The goal of this thesis is to develop an efficient query optimization algorithm to detect
redimdant reenrsion in bilinear recursive rules. Specifically. we focused our study on the
development of two powerlul optimization technique @ 1-Boundedness and Stage Preserving

lincarizabhity.

We have considered the problem of deteeting 1-boundedness for a certain class of recursive
programs consisting, of one recursive rule and a nonrecursive rule. Such programs are
termed as serups (for smgle recursive rale programs). Specifically. we consider sirups when

the recursive rule contains, two occurences of the recursive predicates in the rule body. Such

o1]

situps are called belenear simps Tnour study we also consider secursinve programs w hose

input FDB is known to satisty o set of tunctwonal dependendies

Our results are based on Proof” Free Pquivalences and also on dentiliving, Svatactic Prop
erties of such reenesive programs We develop a syntactic charactenization ol a substantial
class of bilinear sirups that are 1 bounded. and provide o hinear time aleorithm lor testine,
[-boundedness for this elass. When the input pon to o datalog proeran is constrained by
integrity constraints. the property of houndedness s atlected. a program wlhich m seneral
is not bounded, may become bonnded wnder given mtegrity constraints, We extend o
results, algorithm. and ity complexity above to the case where it s known that the input

databases to the query program satisly a given set ol functional dependencies

In addition. a nawe oplnnczation tochogue called Stage Preseremg incare abaity s also
presented in this thesis. We diseuss how linearization can hielp in gquery optignzation Phe
exact contributions are enmmerated in Section 3.2 In the test of this section, we provide

an informal exposition of the contributions made by this thesis.

Lot I be a datalog program and D an inpnt database (Eps) to P Then the output ol I
on D is the least fixpoint of P and Do obtained by iterative applications of the rales of 1
on the facts in D and those generated in previous itetations, antil the process saturates,
When the output can be obtained in a fixed number of iterations b ende pendent ol the ipul
database Do the program is said to be k-bounded. 1-boundidie ss corresponds 1o the spedial
case when b = [, This thesis establishes a syntactic characterization ol o ctain class ol
I-honnded datalog programs and develops a linear time algonthm for detecting them. | he
thesis also extends the characterization and the algorithm to the case when the input 1o

the datalog program is constrained by a set of functional dependendios.

Previous techuiques for linearizing nonlinear teenrsive programs have ignored the e
at which the output is computed by the original program and its equivalent linearized
program. In this thesis. we propose a linearization technigue which ensures that for any
input database D, any fact derived by the equivalent linear program in no more iterations

than by the original program.

fi

1.4 Organization of the thesis

1he necessary backeround for the development of the thesis is presented in Chapter 2. It
includes the fundminentals of dedudtive databases. Chapter 3 introduces the topie of the the-
sis and also liste the research contributions made by this thesis. Proof-tree transformations
for the detection of 1-bonudedness and sp-linearizability is briefly introduced. Chapter 1is
dedicated to the applications of prool-tree transformations to recognizing I-boundeduess.
The main result regarding the detection of I-houndedness as well as the svutactie char-
acterization of 1 boundedness is also presented in this chapter. In Chapter 5 we study
I boundedness in the presence of functional dependencies. The complete syvutactie charac-
tetization of 1 bhoundedness in presence of FDsis also inclnded in this chapter. In Chapter
S owe also presert an algotithm based on the complete characterization of 1-boundedness.
Chapter G deals with the applications of proof-tree transformations to sp-linearizability.
Condlusions are given in Chapter 7 with suggestions for some possible future research di-

rections.

Chapter 2

Preliminaries

This chapter contains a review of the basic concepts needed for the deselopment ol the
thesis. Notions from deductive databases are deseribed flirst. This inchades syntax and
semantics of the Datalog programs. Different types of the prool tiees are also prosented
in this chapter. We then introduce some of the fundamental notions. conventions, anil

notations that we shall employ in this thesis,

2.1 Syntactic Structure of Datalog Programs

Datalog is a database query language based on the rule-based logic programming, pavadigm
It has been developed to deseribe deductive databases. Discussions of the hasics ol dedudtive
databases can be found in the text-books by Ullman [28.29]. A complete suivey on Datalog,

appears in Ceri et al. [5] as well.

A typical Datalog program consists of Horn-clause tules. A rule has the form Ly, L.

L,. where each L, is a literal of the fonn s, (f..... fe) such that s s a predicate symbol
and 4, are terms. A termis either a constant ora vatiable. Ly is called the head of the ule
and Ly. ... L, represents the body of the rude, Clauses with empty body are called faels

Intuitively. a 1ule may be thought of as a tool for deducing new facts,

Example 2.1.1 The rule in datalog to rcpresent the “qrand-parent™ pelation can be apridlen

as grandpar(X. Z):- parend(X.Y). parenl(Y. Z).

Here the subgoals grandpar. patent are predicate symbols grandpar (N Z) as the head.
whereas porenl(X Y) parenl(Y . Z) represents the hody of the rule. Eacl parent predicate
reprosents a database lation storing the child-paront facts. A crample of a fact a0 the
parcunl rclation could o paront(hob. johu). A tuple grandpar(X Z) would be true iff the

coupnelion parent(. N Y) and parent(Y. Z) are facts i the parent 1elation. a

The logic database consists of two components: the crte nsional database (EDB). containing,
asel of ground ladts (stored as relations) and the e nsconal database (1DB). containing a
set of deductive tales. In the example above parent is the LbR relation whereas grandpar

is an 1bB predicate,

A ruleis (directly) recarsive il the head predicate appears in the body as well. The arity
of tecnrsivity is the mimber of times the head predicate appears in the body of the rule. A
rule is Lonear i the arity of the recursivity in the rule is 1. Norlincar rules have more than
one occurence of the recursive predicate in the rule body. The rule defining the relation
“praudparent”™ is nonrecursive. An example of a query program which defines a recursive

relation is as follows:

Example 2.1.2 The vule in datalog o represent the “aneestor™ relalion can be writlen as

aneestor(N A - anecstor(XN Y), parent(Y. 7).

Here the subyoal ancestor s recursioe, since an the body of the rulc the predicate aneestor
appoars as wll o the above case, the recursiee vule is Linear sinee, the predicate anee stor
appears only onec in the body of the recursive rulc. The predicate parvent s an ©oB predicale.

O

2.2 Class of Datalog Programs studied

Weshall consider logie query programs 1 consisting of one recursive rule and a nonrecur-
sive (also called exit) rule. Suel programs are termed as sirups (for smgle recursive rule
programs). We shall in particular. be interested in those sirups where the arity of recursivity
of the recursive rule is 20 Such sirups are called bilinear sirups. A general representation

of such programs is as follows.

ros pCN N (YL LU X))
T 110A WIRUNA U RS 7T I'DRPINS R I 711 § SDRV § A 1Y A TN U)o (Voo V).

The subgoals e ap. oo Lan, correspoud to 1 ob predicates, while pis au o predicate. The
sithgoal ¢ appearing in the nonrecursive rule is known as the cadf predicate Tu the weentsive
rule ry. there are two ocenrrences of the recusive predicate poand such o tale s called
hilincarrecursive rule Por convenience, we nse the sy mbaols p,oand p, (lor “lett™ and =nght™)
to denote these two ocenrrences. The class of programs we consider consists ol hilinean
sirups with multiple but distinct voy predicates in the tule bodies 1t should e noted 1hat
repeating LB subgoals arte a source of high complexity for many optimtzation problems
including (1-)boundedness. conjunctive query containment. and ZN 1 neanzabilite (see
Ramakrishnan et al. [21]). Therefore the class of bilinear sitaps we consider s in some
sense maximal. Unless otherwise specified. onr subsequent reletence 1o programs i this

thesis refers to programs in this class.

. asic Notions and Conventions Usec
2.3 B Notions and C t Used

We shall now introduce some fundamental terminologies and conventions of logic progaims
which will be used extensively in this thesis. The variables Ny 000N, whicloappear in the
rule heads are called distinguished variables (dv's) those that appear only in rale bodies
are called non-distinguished variables (ndv's): an ndy that appears in mote than one sub
soal is called a shared nde (sndv): finallv. an ndv which ocenrs in only one subgoal is o
dangling variable (dndv). Non-distinguished variables are existentially quantified over the
rile body in which they appear. whereas distinguished variables wre nmversally quantified.
Two subgoals s and 1 ave related provided they share an sudv. Given o sabgoal s s b will
denote its Lth argument. and var(s o) represents the vartable appearing at position 7 in
the predicate s. E.g.. rar(ay 2 1) = 1"y in the sirap 1 above, Finallv, we say that oo dv \,

prvolsin pe (pe) i this variable oceurs in the argument peocr (p, 20).

An example is provided to demonstrate the above notions of logic programs.,

Example 2.3.1 [28] The program given blow de fines paths consisting of alleinatig 1od
and blue ares, begenning with a red are,

This specific crample has been chosen to dlustrate a roprescndaliee instance of the class of
programs we have studicd. The rule ry as the erat rules vy represcnls the recursioe rale,
redare and blucare are the BB rdlations, redare(X.Y) (blucare(X.Y)) wmaans that the

edge from the node X 1o Y s red (blue). path 1s the \DB (recursioc) prodicate, e Hi

)

tule 1y there are tweo occurences of the recarsive predicale path. s deserihed abore such

recarseee rules are hilivear,

2o palh (N X) vedare(Ny Y y).
tr s palh(Ny X) patCN U) blucara (U V) path(V.X).

The variables Xy Xy are the de™s, all the other variables are snde’s. The predieate Wueare

s tclated lo both the occnrronces of rcearseee predecale pathe bleeare @ 1 = 1. a

2.4 Least Fixpoint of Datalog Programs

It is well known that the semantics of query programs in datalog follows the classical least
Jirpornt scmantees emploved for Horn clanse logic programs (see Ullman [28]. Lloyd [18]).
The least fixpoint may be computed by iteratively applving the following operation nntil
no new facts can be detived for any predicate: In each iteration. apply the rules in the
progran to generate (new) facts for the tng predicates defined by the programe: in applying
the tales, use the telations in the database for the Eps subgoals and the relations derived

so far for the tns subgoals oceurring in rule hodies.

To define the above notions more formally. consider a datalog program P and a database
(tbp) D Let (D) denote the set of facts obtained by one application of the rulesin £ to
the facts in Do Then the fixpoint computation of 12 w.r.t. the database D can be expressed
as follows, Let YDy = p. prtyp)y = pD)yu PP"(D)). Finally. the least fixpoint
is given by P (D) = U

with the facts in the database and uses the deductive rules toinfer new tuples. The two

cox D). This evaluation is called bollor-up becanse it starts
well hnown bottom-up evaluation techniques are: 1) Naive evaluation and 2) Semi-naive
evalnation. In the Naive evaluation technique, the tuples derived at each iteration is applied
repeatedly to the deduetive rules to infer the entire set of derived relation(s) again. The
iterative process terminates when the two consecutive derived relations obtained in two
conseentive iterations are the same. Semi-naive evaluation is also a bottom-up technique,
although it i~ designed to climinate redundaney in the evaluation of tuples at different
iterations. This method uses a smarter iterative approach than the naive evaunlation. It
tries to cut down on the number of duplications of the derived tuples as follows: At each
iteration. instead of computing entire relations, it only evaluates the differential of the head

predicate. It is well known that both the approaches evalnate the same least fixpoint. upon

termination.

For all references purposes in this thesisowe use the sema naive evaluation technugie as our

standard.

2.5

Proof-Trees and contaimmnent

We deline o proof-trec generated by o program I 1o be any tree obtamed by top down

oxpansions of the goal p(X .. .00 V) using 2eto or more applications ol the recarsive le

ri. The Tevel in a proof-tree s connted frome top dow n with the 1oot bemg lovel 00 The

five fundamental ty pes of prool-trees used extensively in onr study are as tollows:

the proof-tree T obtained by expanding p(Ny... .. X)) using, the tecnresive rule ey (See
Section 2.1). In Ty the left occurrence of the subgoal pis denoted py while the righ

occurrence of pis denoted p,.

the tree Ty, rp corresponding to an expansion of p(.N 00N,) using, #p and anexpan
sion of py nsing, ry. For case of reference. cadh of the subgoals of T, 4y at level 2 will
be identified with the subseript £ The two ocenrrences of poat level 20l 1, 74 will be

respectively referred to as py and py, .
the prool-tree T3 which is symmetric to 1y, 4.

the proof-tree T, obtained from Ty by expanding bhoth p,oand p, using the recapsive
rule 1. For ease of reference. each subgoal of the loft (right) subtrec of Iy at evel 2
will be identified with a subscript € (r). The occurtences of pat level 2 of 1, will
be respectively referred o as poop o prseand p,,o These are the only leaves ol 1

involving the predicate p.

the tree Ty s obtained from 1, by (a) merging the nodes cortesponding 1o pg and
printoone, and (h)identifying the nodes pyand p,,oas well as the nodes pe, and g,

and (¢) identifying the node a, and a,. for cach edb subgoal «.

Fig. | shows proof-trees of the form Ty 00T, g0 Togne and 1oy, g in schematic form. In

the proof-trees, we suppress the EDB subgoals. for convenience,

)T,

\ pA
P” plr prl prr
(@ T,
Ap p
P /p\ P Pi
Py P P./\PJ
(C) Tnglu (d) TI‘(ﬂ

where P,~PJ-P;€ {pude Py Dyl

Figure 11 The five fundamental proof-t rees.

13

N

Py

(e)

squash

Py

r, r «“, oy r, ", " o,
-
Yy L “a “u L% ’.. s o
the tree 1, The tree l |,
rPeNgy. LA D)
Id ”, “, @

Lhe tree 1,

Figure 2 Proof-Trees with EDB subgoals

Conventions relevant to Proof-trees: .\s mentioned in the above definition we sabscript
the various ocenrences of subgoals in lovel 2. of 1, g (15) with Cand rorespectively, Given
a subgoal s, the label of s in the tree Iy o (Fogie) at devel 2008 5, (s,). Specifically, if s
is the subgoal py o then the label of the node corresponding to p, in the lelt (right) subtree
is piy (ped). Notice that we choose the label of the node in the right subtrec 1o be p,,
rather than p,, since the node in question is obtained by expanding p, (using r1) and then
comsidering the node corresponding to the instance of p, in the expansion. The labels ol
the nodes occurring, at level 1in T3, 54 (1) ,,0¢) have exactly the same lahel as the varions
subgoals of the rule r. Instances of ndv’s that appear in dilferent expansions of proof trees
are distingnished using subscripts also. More precisely, let 17 be any ndv that appears in
the body of the recursive rule ri. Then the instance of I that appears in level 2 of 1y, 4
(T yne) is denoted Uy (U2). T heeping with this. we observe that if an argument position
s cicarries an ndv U then when pe is expanded we rewrite Chis ndv as U with the result

that s @ ¢ will carry U Similarly. s, 20 will carry 1750 Hereo s as an arbitrary subgoal,

Fig. 2 shows the proof-trees of the form Ty T and 1. with mps predicates in

schematic form. T'he following example illustrates onr conventions related to proof trees,

Example 2.5.1

o plY 1o X0 Xy) o (X Y0 Xy).

reop(X g X0 X)) - p(VoVLE) p(X o VoS) a(U V) WX, Xy).

Fig. 3 shows the proof-tree Ty corve sponding to this program as el as our conoenlions for
the labels of the various nodes of Ty, Here, we dircet the reader’s allte ntion meainly lo e

notations and corcventions used, {1

PX XX,

N

pV.V.U a(UV) hx Xy o P 6VS)

//\\ /

PV V) VLU g VVS) p b)) a(Vy) b(X.8) p (V.55

Vignre 3: Prool-Tree Conventions,

Giiven a sirup 2 with the recursive rule ry. we label the proof-tree T generated by ry as

ri(’T). Yor example if the proof-tree under consideration is Ty, 5o then we label it as (T3, 4¢).

Proof-Trees as Conjunctive Queries

Intuitively, a prool-tree can be viewed as a conjunctive query as well as a scheme for
computing (the set of taples cortesponding to its root). Given a proof-tree . we can
associate a conjunclive query with S, defined as the logical conjunction of all the subgoals
occurring at the leaves of . In the same spirit. any rule of a logic query program can also
be viewed as a conjunctive query. For example. the tree Ti g in Fig 2 can be viewed as
the conjunctive query p — ap & a, & - Lap L ayg & oap & pie & per & pr. For
simplification, we omit the & and understand it implicitly. and we use :- instead of — for

uniformity with the prolog svatax followed for the rules.

Example 2.5.2 For the tree Ty given in Figure 3, the conjunctive query represenlation of
the tree Ty for the recursive rule 1s given by
I'|(’I‘~»).' [)(.\.|..\.2..\.).- [)“(‘ B ‘] l |) (I/((1.) l)/(‘ U)]),‘,.(".‘rl..‘)'l). II(U.").

,)(.\ 1. - ,;).]l,—;(D ‘2. (f-z . (Ir((rz. "2), br(.\'z.S). [),-,-(". "2. 52). a

For a conjunctive query @ and a database D. we denote by Q(D). the relation computed

by (Q on D. We recall the following definitions from the literature (see Ullman [29]).

Definition 2.5.1 Ll Q) and Q; be two conjunctive queries. We say that Qy is contained

in Q. denoted Qy C Q. if for every database D consisting of relations for the predicates

15

oceuring o the body of Qy and Q.. QuD)Y & QD). Qy ts cquivalent to Qo wweritlen
N =Qxif Q1 CQrand), C (4.

Recall the least fixpoint semantics of datalog progrims. T'wo datalog programs Hand N
are equivale nt iff for every input database D, they produce the same ontputoie 17 (D)

=N~ (D).

Definition 2.5.2 [28] Consider any hweo conpunctive querres Qy and Q)

Ov: 1=y
Qg.‘ H -Gy, (r'k.

We define a symbol mapping ne. from Q2 lo Qy as a mapprog from the variables i (), to
those in Q0 such that for cach de X, (X)) = N4 symbol mappiog mes saud 1o be a
contaimment wapping (c.m.) of (W)= 1. and for o= 120000k therc s some y such thal

m(() =J,.

A svmbol mapping m can be extended to subgoals and hence to rules in obvions manner We
follow the notation m : s—{ (or m(s) = {) to indicate that the can. e maps the subgoal s
to the subgoal £. Similarly, we extend this notation to prool trees also. g Ty B gy would
mean there exists a c.n. which maps the tree Ty to Iy, g We recall the following, classical

result from [6].

Theorem 2.5.1 For conjunctive queries Q. Qo Qy CQu if and only of there s a conlain-

ment mapping frone (Jo to (). H

C‘ontainment, mappings play an important role in the study of many optimization problems
for logic queries. A special case of containment arises when one ol the subgoals i a con
junctive query is redundant. More precisely. in a query Q@ © ¢ . g Yy 1 subgoal
q. is redundant provided it is equivalent to the query QF = g retf v iyt ot
obtained from Q by removing the subgoal g, This semantic notion is captured using, the

notion of a subsumption mapping as follows,

Definition 2.5.3 Let Q be a conjunctive query as defined aboec, Then a subgoal g, of () s
subsumed by a subgoal q, prowded there 1s a symbol mapping (call d subsumption wapping)

m satisfying the following conditions:

16

(1) e vs an adentity on all de’s as well as o all cariables not occarving gz (1) there s

a fucd g, such thal for cack arqument position g, keom(reai(q, 2 k) = rai(qg, ¥ L
T he following result is straightforward.

Proposition 2.5.1 Ll Q be a conpunetive query as defined aboee. Then a subgoal g, of Q

ts redundant off there s some subgoal g, .) £ 0 sucl that g, es subsuneed by g,

Proof. Tollows from the definitions of subgoal tedundaney and subswmption mapping. O

We (an use subsumption to eliminate some degenerate cases with respect to testing |-
lal ta)

honndedness. as suggested by the following fact.

Fact 2.5.1 Supposc v a bidiear sirup one of the recursive subgoals pyop, s subsamed by

the other, Thon the sorup s cquavalont to a linear sirup.

The significance of this fact is that I-boundeduess for linear sirups is well studied and
efficiently testable eharacterizations already exist for them (e.g. see Wood [31]). Our
overall objective being o linear time test for I-boundeduess for given bilinear sirups. a more
important issue is whether we can test I-houndedness of limearsirups (obtained as above) in
hucar tone, 1 will be shown in Thearem 1.3.2 that onr technigue for testing 1-boundedness
tor bilinear sirups can be directly applied for linear sirups (keeping the same complexity of
linear time). Iu view of this, it suflices to consider only bilinear sirups where neither p, nor

peosuhsumes the other.in the sequel.

\ Sunctional dependeney (D) over a relation ris a statement of the form X — Y. where
X and Y are set(s) of attributes. A relation » whose attributes inclnde X U Y satusfies the
FD X — Y provided V1, .1, € r. (,[X] = 1,[X] = £[Y] = 1,[Y]. In this thesis. we will
find 1t convenient to use the notation a @ {#..... ik}—Jj for FDs. Here. iy ...y denote
the arguments of the predicate a. Given a set of FDs Foa database D salisfies F.oprovided
for cach FD r:X — Y in . the relation rin D satisfies X — Y. Here. X and Y denote
a sot ol indices and an index respectively. We let SUI(F) denote the set of all EbBs that

satisfv I,

1) . . .
Fhus, a swosumption mapping is a speaal hind of contamment mapping

2.6 Assumptions

Throughout this thesis. we shall consider hilinear situps of the form given in Section 2.1,
For simplicity. we will often suppress the arguments of the predicates in programs and will
represent them schematically. Unless otherwise specified. we assnme that the sirups we

consider satisfy the following conditions.

(i) The exit predicate does not appear in the recursive rule awd that the (BpB) subgoals are

distinet,
(1) The arguments occuring in the head predicate are distinet variabloes.

(iii) The rules are range restricied. o, all variables appearing in the head appear in the

body as well.
(iv) pe and p, do not subsume each other.

For studying I-boundeduess. we assuwme the sirups satisfy the conditions above, For sp

linearizability. we make the following additional assummption.
(v) None of the subgoals poopeopis pire pror.pry is identical 10 the head p.

Remarks: (1) Assumption (i) is a common assumption made with many optimization prob
lems. Indecd. in many of these problems. relaxing this assumption makes the problem
NP-hard. In this sense. it seems to represent the bonndary hetween polvnomial time com
plexity and NP-hardness (on these problems). Examples of such problems indude ZY°TF
linearizability (see Zhang et al. [32]. Saraiva [26]. and Ramakrishnan et al. [21]). bounded
ness (.. see Kanellakis and Abiteboub [12] and Hillebrand et al. [9]). and k boundedness
(see Kanellakis [11]. Saraiva [27]). Indeed. the elassical problem of conjunctive query con
tainment. which is polvnomial when the subgoals are distinet4, hecomes NP complete when
subgoals are allowed 1o repeat. Thus. the class of bilinear sirups we focus on s in some
sense maximal. (2) Nssumption (i) is a standard one in studies of Query Optimization.
(3) Nssumption (iii) ensures that the program computes a finite least fixpoint when all the
EDB relations are finite. (1) Assumption (iv) is made to weed out degenerate cases: indeed,
in this case, the program is sp-lincarizable and is equivalent to the linear program {0170 p
sopftealoocoak O po- o} where p#tois pooor peodepending on which one subsames the

other, (See Section 1.3). As discussed before, -boundedness of linear sirups is alicady well

It is sufficient for the subgoals in the contained query to he distinet

I

studied and we will show our linear time algorithm for testing 1-boundedness developed in
this thesis can be applied for linear sirups too. (5) I Assumption (v) were violated. the
sitnp would trivially be sp-linearizable. Notice that this type of redundancy can be checked
by a (linear time) inspection of the sirup. so there is no loss of generality in making this

assurnption.

19

Chapter 3

The Problem Studied

This chapter introduces the topic of onr thesis and adso defines the problems we have studied.
This is followed by a brief section to introduce | hboundedness and prool tree transforma

tions. In addition. a detailed list of contributions made by this thesis has also been inelnded,

Motivation

Deductive database query languages like Datalog extend the traditional relational database
langnage by allowing recursive queries to be expressed as well. Althougl the presence
of recursion truly makes the language quite powerful, gquery processing now hecomes g
challenging task. Aund therefore. it comes as no surprise that query optimization is one of

the most researched topic in deduetive databases,

In recent vears. a lot of interesting query optimization techniques have been proposed. 1t
has been shown that.in many cases. it is quite possible to reduce the arity of recursivity
Two powerful forms of recursive query optimization in deduetive databases are tranforming,
a non-linear program into an equivalent linear program and translormng a recursive pro
gram into an equivalent non-recursive program. Optimization of the former type is called

lincarization whereas the latter one is reforred to as boundodness transtormation,

20)

3.1 Research Topic

Our area of 1esearch relates to recursive query optimization. Specifically. we foensed nur
study on the development of two powerful optimization techniques. For the class of bilinear
sirups identified in Section 2.2 we have studied the problem of detecting 1-Boundedness and
Stage Preserving Lincarizability, s informally explained in Section 1.3, Stage Preserving,
linearizability is a new concept of lincarization introduced by us. Compared to existing,

forms of lincarization. it has the advantage of improved efficiency.

3.2 Contribution made by this Thesis

A brief summary of our contributions is as follows:

Research Contributions

The contributions made by this thesis is in the area of recursive query optimization tech-
niques. Specifically. we focused our study on the development of two powesful optimization

techuiques: 1T-houndedness and sp-linearizablity.

Our results can be listed as follows:

e Syntactic Characterization for the detection of I-boundedness in bilinear sirups.
e A\ lincar time algorithm for the detection of 1-boundedness.

o .\ preprocessing algorithm for chasing FDs.

o Characterization of [-boundedness in presence of functional dependencies.

e An almost linear time algorithin for the detection of I-boundedness in presence of

functional depeudencies.
o Development of a new Linearization technigue called Stage Preserving Linearization.

o The identification of { unique proof-tree transformations rules with respect to sp-

linearizability.

Publications Resulting From This Thesis

1) Our work on 1-boundedness appears in the paper [16].

2) Our work on Sp-linearizability was fiest published in the prestigious 101V LICS Conler
ence [17].

3) A\ full version of above work appears in [15].

3.3 Boundedness - An introduction

The notion of boundedness will be formally defined in this section.

Definition 3.3.1 A program P s bounded if the re crists a wuniber b such that for all input
EDBs D, P (D) = PH(D). We say that P s 1-bounded eractly when P (D) 1PY(D), Jor
all input oy D,

In terms of the bottom-up fixpoint computation techniques of query evaluation {see Ullinan
[29]) boundcdness means that the gaery can be computed by a fised nomber of ierations
independent of the contents of the EbB. The special case of -boundedness arises when one

iteration of the fixpoint procedure is sufficient to find all answers to the given query,

Consider for instance. the following bilinear sicap P, repeated from Example 11,1,

Example 3.3.1

ro s X1 X Xa) - (X7 Xaw Xop).
P p(N e X Xa) = p(Vo X UYL pUl X, Ny al Xy, Xy, b1 X).

It can be shown useng the technigue devcloped i ths the ses that the aboee progream s 1-
bounded. This means it is equivalent to the following nonecearsive program P,,,,,,,,. oblamed

by replacing both occurrences of the recursice predecate poee ey by the cail prodieale o

ro: p(X1. X2 Xy) = (X1 X2 Xoy).
P X X Xo) = e (VoX) (X0 X, al Xy X)) WX). 3

Iu our study we also consider recursive programs whose input £pg is known to satisfy a set

of functional dependencies. To see the effect of FDs on I-boundeduess, indeed o program

22

that 15 not 1 bounded can become T-hounded in the presence of FDs.

Fixample 3.3.2
(irecn a program Poand the FDF = {a 0 1—2}.

'y :/l(X B .\"g. \5) .- ’(.\'1..\’2. .\-';).
PP TS W S WP R R 7 (0 WO L N DT U WO WS 1 0 /1 YR B Y

I can be ocrificd that o the abscnec of the guean FD the program is not 1-bounded. However.
we wll show an a later scction that the presence of additional knowledge provided by the FD

Fodeod makes this program 1-bounded. |

3.4 On Stage Preserving Linearizability

Since the concept of sp-lincarizability requires many advanced notions and since this concept
will not he used before Chapter 6. we defer a formal definition of this concept until that
chapter. Hete, we give an intuitive desceription of the underlyving ideas and explain them

with an example.

As remarked in Chapter 10 previously studied technigues for linearizing bilinear sirups did
not tahe into acconnt the “rate”™ at which facts in the ontput of a datalog program are

computed. \s a simple example. consider the bilinear transitive closure.

Example 3.4.1 Conseder the program P,

g . /)(\'|. \g) .- l(.\'1. _»)
(N XD = (XYL 2D 2L XD,
Itis well known that P s equivale nt to the following program Q. the fomiliar linear de finition

of ransilive elosure.,

ro s NN = (NN D).
NN = () p(20X

Fhe techmque that inearizes PP oanto a program Q is called ZY T-lincarizability [22]. [26].

Consider an EpB D, consisting of a relation for e. In general, for a fact pla.b) computed by

23

Q on D inn aterations, B computes the same fact o [logan | terations Thus consude ring
bottom-up cvaluations of I' and Q. while less work may be done by Q per tteration (heeanse
of incarity and applhicabiity of scvoral «flicient strategies). the total number of e rations

needed i Qs cvaluation s siguificantly more than that for {°.

The central idea in sp-linearizobility is to linearize nonlinear recutsion in 4 manner that
does not increase the number of iterations needed to compute the ontput, See Pxample

G.1.1 and 6.1.2 to see how sp-linearization woths.

3.5 Proof-Tree Transformations

This section briefly introduces the 6 different types of proof tree transtormations that we
have studied in detail with respeet to the detection of L-boundedness and sp linearizability.
These proof-tree transformations play a central role in the stady and prool of ouwr result.
The general idea of proof-tree transformations have been studied ecarlier by Ramakrishinan
et al. [24]. We have used this knowledge as a basis in our study of -bowundedness. Besides,

in order to attach sp-linearizability. we have introduced 1 unique transtormation rules.

The idea behind proof-tree transformation is the following. Suppose we want to show o
program I’ is equivalent to another program . One way to show this is by showing that each
of the infinitely many proof-trees generated by P2 (which are essentially conjunctive gqueries)
is contained in some proof-tree generated by Q. ‘This in turn can be done by showing thit
every proof-tree generated by I can be transformed into a prool tree generated by (@ which
contains the former. How can we have a uniform techuique for transforming infinitely many
proof-trees” Rather than consider each of them in tarng can we have lew peneral pattern
driven rules for trausforming trees such that the undesirable trees (those generated by 17) can
be transformed into desirable ones (such as those generated by Q) by repeated applications
of these rules? This problem is addressed by Proof-Tree Transformation rales, In the next
two subsections. we identify the transformation rules appropriate for 1 boundedness and

sp-linearizability. These will be used and explored in greater detail in subsequent chapters,

21

Pr=pPy_ 1D, =P, 0R Py OR P,=DPu P,=D, OR Py

Pigure 1 Left Transformation Rule Corresponding to I-houndedness.

3.5.1 Proof-tree transformations associated with 1-boundedness

There are exactly two transformation rules associated with 1-bonndedness: Ty, 5y — [
and e =~ o We refer 1o these two types of trausformations as right and e ft
transformations respectively, Fig @illustrates left transformation whereas the case for the
tight transformation is svimetrical. I addition. for cach type of above transformation it

can be shown that thereis a came oy Ti— T g0 om0 Ty— Ty respectively.

The left and right transformations play a significant role in the sufficiency proof of 1-
boundedness. We can show that using these transformations. any arbitrary proof-tree can

he transformed to a f-level trees which in fact represents a I-bounded tree.

3.5.2 Proof-tree transformations associated with Sp-linearizability

There are four additional types of proof-tree transformations associated with sp-linear-
izability: Iy — I Ty — Tpeo To = Ty and Ty — T 0. Figure 5 illustrates these
transformations and also indicates the mapping relationship between the (subtrees of) the

original trees (and those of) the transformed troes,

In order to transform anv arbitrary tree to a sp-linear tree. it is suflicient to use anv one of
A A I A

these | prool-tree transformations.

The next chapter is dedicated to explain the details associated with the application of
Proof- I'ree transformations to 1-boundedness. Chapter 6 provides additional details for the

application of Proof-Tree transformation for sp-linearization.

- AN
/"'\/\ D, %
ﬂ/\ A p,/\lx

p

Figure 5: The Fundamental Prool-Tree ‘Transformation Rules

26

N

Sp linearizidatity.

Chapter 4

Applications of Proof-tree

Transformations to 1-boundedness

Qur goal in this chapter is to develop an efficient technigue for detecting I-bonndedness of
bilinear sirups. For the class of bilinear programs we develop a structural characterization of
[-boundedness. This result is based on containment mappings between proof-trees. Specifi-
cally. we show that o bilinear programis I-bounded exactly when the proof-trees Ty, 5. T, yhe
corresponding, to the program (see Section 2.5 for the definitions) are hoth contained in the

proof-tree Iy of the program.

Aicimportant issne that we came across while developing the technigque based on proof-
frees, was to show the equivalence between an arbitrary proof-tree and a proof-tree of
height 1. To solve this problem we introduced the proof-tree transformation technique.
As mentioned in the previous chapter, one of the major application of this technique is in
the tranformation of an arbitrary proof-tree to I-bonnded tree. The exact details of the
alporithm is present in the sufficieney proof of the main result. While the above resnlt in
itsell is complete, it does not lead to an efficient algorithm. To overcome this restriction.
we develop an elegant svatactic characterization of 1-bouundedness for the case when there
are no functional dependencies. The significance of the syntactic characterization is that
it leads to a linear time algorithm. Secondly, we will show in the next chapter that the

characterization can easily be adapted for the case when functional dependencies are known.

4.1 A Structural Characterization of 1-Boundedness using

proof-trees

In this section we develop a characterization of | boundedness of biltmeat sivups e tetms
of their proof-trees. The significance of this result is that it reduces the semantic notion ol
L-bonndedness to an easily testable characterization in terms of conjunctive guery contain
ment. The latter prablem is completely captured using containment mappings 10 will follow
from the proof of the main theorem present in this section that in connection with cach of
the containments Ty, 7 C I'y and 1 € 1y onldy three fundamental types of containment
mappings arise. We shall exploit this knowledge in the next section to develop a syutactic
characterization of when these containments will hold (iethout explicitly considering any

containment mappings).

Our main theorem of this section provides necessary and suflicient conditions lor a nlinear

strup to be -bounded.

Theorem 4.1.1 Let Il be a Wlincar program as defined carlcr. Then Woas f-bounded of

and only if the proof-trecs 1y, g and Uy are both contamed in 1y

Proof. There are two parts for the prool of the above theorem. In the necessity proof we
show that a bilinear sirup is -bounded provided the proof-tiees Fr g and Ty ave hoth
contained in Ty. For this direction of proof. we directly apply the definition ol 1 honndeduess
to support our argument. For the proof of sufficieney we first show that we have to consider
only Hdifferent cases of containment: Normal Case i) and ii). Partial Casecand Total Switeh
case. For convenience, we indicate each category of ¢ m. by specifving it only for p,oand
pr- We lollow the notation s—f (m(s) = 1) to indicate that the containement inapping
m maps the subgoal s to the subgoal £ Similarly, we extend this notation to proof trees
also. E.g. Ty—11 g would mean there exists a can. which maps the tree Ty toly, gy We
then proceed by showing the applications of the proof-tree transformations toillustrate the

transformation of an arbitrary proof-tree to a I-honnded tee.

(=) Suppose 1l is I-bounded. By definition. this implies that 10 () 1Ny, o/ 1o
D. Let T be any database for the predicates cortespouding to the leaves of Ty, gy Cor 1y,
Consider the Eps D obtained from I by replacing the input relation corresponding to p by

the corresponding iupnt relation for e. It is not hard 1o see that (i) Yy 1) and (i

T o) 1 (D). By L-boundedness. 11 (D) € HY(D). which implies T, ;(T) C Ty(I).

Since £ s arbitrary. we have Ty g0 © Ty The argnment for showing 7T, ., € 1) is similar.

(<) Let Ty 1y Then there must be a come from Ty to 1, 5. Indeed. we can show

that there exists o cane oy o Ty =T, gy satisfving one of the following, conditions.

. Narmal Case s (1) o) = poeimi(pe) = pe

Normal Case (1) omlpe) = po-one(pe) = por
2.0 Paptial Switeh Case = nn(pe) = oo n(pr) = py
3. Total Switeh Cuse : mlpe) = piy e pe) = pa

We will next show that it is sufficient to consider the above 3 cases of c.m. to capture the
containment Ty, o © 17, For all other types of com. from Ty to Ty, g we can show formally
that either i) the mapping implies a subsumption between the recursive predicates orii) we

can always constrict another can. satisfving one of the 3 conditions above.

Consider any can. 2 Ty — 1, g which does not correspond to any of the | types of c.m.
listed above. The following cases arise with respeet to patterns of possible containment

mappings from 7y to 1y, g4
Case Lopo—p,op,—p, where p, € {piropeopir }.

For each can. e of this category. we shall show that there is a subsumption mapping m’

showing that p, subsumes py.

Consider the mapping m’ which coincides with m on the variables in p, and is an identity
on all othier variables. To show that ' is a subsumption mapping. we need to show (i) it is
an identity on all dv's and (i) e/ (p)) = pe.and n(s) = s, for every subgoal other than p;
ol the sirup. The only non-trivial case for (i) is an ocurrence of a dv X, in some argument
petd. Suppose nd(p:g) = peo j # X, This however would imply e is not an identity
on the dv X, a contradiction. For (ii). first observe that w/(pi) = p. by construction. It is
also casy to see that for every subgoal s urrelated to p,. n'(s) = s. Consider a subgoal <

related to p,. Let p,ori= sy = U, where U is an udv. The following cases arise.

Case 1. s is an £DB subgoal.

29

We show that p, 0 = [0 Suppose to the contrary p, @ Z 2 U0 We shadl dernve
a contradiction. We first show m(s) = s Suppose to the contrary migs) ~ Then
m(s):j =~)= owhercas (p) 8= pocr 2 Lpca contradiction Thus, m(s) s,

However.in this casecm(p) ce=p, e =/ 20 = m(s)) s~ a contradiction

In view of the above, we conclude that whenever an ndv { ocenrs in Mot and a g Tor some
EDB subgoal a. p, 10 = 17 which shows that for all vpi subgoals @ telated 1o p, o n’(a) o

[t only remains to show that w/(p,) = p,. This is addressed by the nevt case,

(Case 1.2, s is the 1B subgoal p, .

In this case p, 0 = pooj = U0 Suppose m(p,y = poo Vhew mgp) Mt

Uy # m(p) 20 = peosasa contradiction, sinee mis a com. Suppose then m(p) p,,
Sinee medis a e m(pe) 0= pe o= mp) g o= ooy bet op,ota VAR BT
implies 3k such that py ok = Z and py 2) = Vo Howevers since a(p) pyo ths imphes
m(Ny = m(ps) = po2j = U a contradiction, since npeis o cone Thus, we mnst have
m(p,) = pe. This implies neis an identity on the variables inop,. This by the constiudtion

of i/ implies that w’(p.) = p. as well. This completes the proofl of Case 1,
Case 2. pe—pir and p.—py,.

Let mn be the c.m. conforming to the above pattern We shall show that there exists a
c.n. my conforming to Normal Case (1) or (ii). Let a he any s subgoal related 1o p, o say
peci=a:j=anndv {’, Then since m(p) = pooatis trivial 1o see that m{a) o, Now,
consider p.. Sinee m(pp) = py.owe have that whenever p, c0 - N0 Hesuch that p b0\,
and poco = Xy Howevers sinee mi(py) = pyo o we mnst have py, oo Vo which imphes

Ptk = Xpoand henee k= .
(*) That is. whenever p, 10 = X, we must have p, 0y =\,
(**) Besides. for every ndv {7 ocenrring in poom(0) = Ly since mlpr) piy

Now consider the mapping i, such that my coincides with e on variables oconrnmg iy
(thus it maps p, to pg,) and it maps a variable oceurting at an argument of a subgoal s 10

the variable oceurrip o

2 at the corresponding argument of s, for every subgoal of 1) that 1,

refated to pyt oy is an identity on all other variables, “To complete the prool for thiv cane,
we need to show that g is a com. Notice that g, is certainly of type Normal Case () o)

(i) depending on whether p, is related to p, or not

30

Virst. observe that for oll £os subgoals @ which are unrelated to pooomg(a) = a. by con-
srnetion To show my s a can We need to show (i) ey is anidentity on all dv's and (i1)

whenover s = Hog then mgds) ce = (1) 2y,

For (i). let X, be a dv occurting in any subgoal argument s @ g0 10 s s poonn(py) 0y =
iy gy =pu:y =N Waispomdp) g =po i j = X,oinviewof (7). The case where
sis an Ebi subgoal unrelated to pyois trivial since in this case m(s) = s This leaves the
case where s is an L subgoal related 1o p, . In this case (74) implies m(s) # s and henee
mls) s Since mris aocans mg(s) g = sy = 500y = X, This completes the proof

ol (1).

For (). suppose s 0 = £ : g where s and £ are any subgoals of the sirup. By the proof of
(i). the ouly non-trivial case is when the shared variable is an ndv. IThoth are Epg subgoals.
cither ey (s) = s and e (1) = 1o or mg(s) = s and e, (1) = t,. depending on whether they
are related to p, or not. In either casecmg(s) 20 = (1) . Suppose s is p,. If £ is an EDB
suhgoal, by constinction. we have m(pi) = po and () = . which will gurantee that
m(s) 0= () 1y Suppose s peo Again. the construction eusures m(p) = piy and
m(p,) = peyowhich will preserve the enality g (s) 20 = my(t) @ j. Finally, suppose s is p;
and 1 is an EbB subgoal. fo this case. either m(p) = p,oand ng (1) = Loor my(py) = pu,
and my (1) = o depending on whether s (and hence #) is related to p, or not. Again, in

cither ovent. the equality m(s) : 0 = n (1) @ J is preserved. This was to be shown.
Case 3, py—pir and p,—p,,.

Let e be the can. conforming to the ahove pattern. First. let us establish some properties
of . (1) Since mi(p,) = pip. it is trivial 1o see that for cach EDB subgoal s related to p,.
mis) = & (2) Let 1 be a subgoal related to poosay poc o =10y = an udv {7, Suppose
m(t) = 1. Since wm(p) = pio. we must have po o0 = UL This implies {7 must occur
in pr.. making ¢ related to p.. We have already shown in this casc m(t) = £, (3) Since
m(pe) = po, = m(p,). we have that (a) cach dv Xy oceurring in p, must oceurin the position
pe s b and (b)) whenever a dv X, oceurs in a position p, @ g0 3k such that p, kA = X, and
posg = Neo By (a)o we have that in this case py 2 = X0 Thus, whenever p, 0 j = X, we

must have poo 0 = X, cimplving poo2j = X,

Consider the mapping 1, which sends py to pyye and all subgoals s related to py to s and
all subgoals ¢ unrelated 10 pe to themselves. ey corresponds to Normal case (i) or (i)

depending on whether p, is related to p, or not. We need only show that my is indeed a

31

P P
Pn P
(A)
/”\ |
Pu P Pu P Pi Pr P Pu
n) (C) (D) (E)

Figure 6: (\\) Left lincar tree (B)...(E) Four possible trees obtained by transfonmation from
the tree of (\\). w.r.t. to I-boundedness,

c.1.

(i) Let s 0 = X,. Il & is an Ens subgoal unrelated to poomg(s) oo - 500 X TS isan
EDB subgoal related to po. then g (s) =8 00 = m(s) 0 Since misa om0 N,
Suppose s is p. This case readily follows from (3) above. The Tast is where sis p,. Now,
mi(p:) = pr oor pi,. depending on whether p, is related to p,oor note The former ease is

trivial. while the latter one follows from the fact that wm (p) - mlp) - i,

(1) Let s : 7 =1 : 7 = an ndv ', If both are subgoals. either g (s) s and e, (1) !
or mi(s)y = s and wn (1) = . In both cases. the equality (s} - mlty g s
preserved. Suppose s is poo IEEis an EbB subgoal. by (2). m(t) -y I .
Clearly. poy, ¢ = Uy This implies mg(s) 20 = mg(1y @y W is the b subgoal p, . then
e peY it =t = Uy =piy g = na(pe) g Lastly et s be p,and 1 he an tni subpgoal.

This is trivial. sinee wy(pe) = oy, = i pe) and g (0) ~ 4y = () and ncis o oo

To summarize the arguments, to test whether Ty, 0 © Ty it is suflicient to test for the
existence of a c.m. conforming one of the mapping patterns Novmmal Case (1) or (ii). Partial
Switch. or Total Switch. \Whenever a c.m. not conforming to these patterns holds. either
one of py. pr subsumes the other, or another o, conforming to one of the above patterns

exists as well. This completes the first part of sufficiency proof.

32

Proof Tree Transforinations Technique

Fig. 6 depicts the proof-tree transformations induced by the c.m. m, corresponding to each
of the above patterns of subgoal mapping. Duallv. it can be shown that there is a c.n,
m, 2 Ty=1, o with similar properties as above, and that there are tree transformations
induced by o, which are symimetiical to the ones induced by . As introduced in Chapter

B we refer to these two types of transformations as le fland right transformations respectively.

Tocomplete the proof. we will prove that using these proof-tree transformations repeatedly
we can show that an arbitrary proof-tree generated by the sirup ryp can be reduced to a
prool t1ee of height 1o while preserving equivalence. This is made precise by the following

alporithm.

Algorithm 4.1.1 (An Algorithm for Proof Tree Transformations)
(Input :} Aw arbitvary proof-tree S gencrated by the sivup 11, with the root goal p(Xy, .. X)),
[Output:] v Proof tree of heght 1.

[Method:] Repcatedly apply I ft and right transformations to S in a “bottom-up™ manner

untd no longer possible.

repeat

repeat
Apply teft transformations:
For all subtrees S, of S of the form Ty, ;p where pyyeoand py, are leaves,
(p, can b the root of any sublree)
transform S, info a subtree of the form Ty, using
the appropriate Ie fl transformation from Fig. 2

until § has no subtrees of the aboee form.

repeat
Stdlarly. apply Right transformations in « symmetrical manner:
For all subtrces S, of § of the form Ty g where pep and p. are leaves,
(e can be the root of any subtree)

transform S, into a subtree of the form Ty, using

33

/\ /\ (c)Thetree § ;

by p,

(a) Thetree S (b) Thetree S ,

Figure 7: Showing Proof Tree transformation for 1-Boundedness

the appropriate right transformation.
until S hits no sublrces of the abore form,

until S has no subtrecs S, of the form Ty 0.

Applying the above proof-tree transformation procedure to the prool tree 8. we can show
that (i) the procedure successfully transforms § into a proof-tree 55 of the torm 1, (with

root p{Xy...... X,))cand (1) 8 is contained in the resulting tree 5.

In order to prove (i). notice that any proof-tree of height | shonld have either a subtyee
of the form T3, o with py and peeoas leaves or asubtree of the form 1, with poand p,,
as leaves, Every time a left / right transformation is applied. the number ol subtiees of
the form Ty or T g1 is reduced by one and the transtormed tree is alwayvs a prool tiee
for p(.Xy...... Y,) It follows that the procedure will indeed terminate, lee “up hehind a

resulting proof-tree of height 1 i.e. it is of the form 77.

For (ii). we have the following inductive argument. Suppose that the tree S s obtained

from S by aleft transformations as suggested in Fig. 7. Let w10 =T, g4 he the associated

31

can. Let Ty, gy be the subtree of 510 which the left transformation is applied converting
T it Ty Cand hence § 10 .57). We say a variable Z in Ty, ;¢ (1)) corresponds to a
variable W oin 1y, " (1)) provided whenever Z occeurs inan argument of a predicate a.
W oocours in the same argument of the corresponding predicate occurence in Ty g (T7).
For a tree T (which is essentially a conjunctive gquery). let pars(T) denote the set of all
variables appearing in T, Since 1, ¢/ (1)) is an instance of Tp, 44 (1T7). there exists a
substitution ¢ vurs('l},f,)—ow:r.s('l},f,') such that # maps each variable in vars(Ti, 54) to
the contesponding variable in vars(1y, ;,"). Now. consider the binary relation 0! defined as
my' = 07 Vo, 08, We claim that ' is a can. from Ty 10 Ty, g showing 1j, 74/ is contained
in Iy, Hothis is trned then wy’ can be easily extended into a mapping. say m: S;—.S5
such that m coincidos with e, on all variables appearing, in 77" and is an identity on all
other variables in 9. I is straightforward to see that m is then a com. from 5y to S, as
required. Thus. to complete the proof of (ii). it suffices to show that mn// defined above is a
c.m. Notice that to be a can.. first of all. " must be a funetion. We directly prove below

that g’ is a com.
() Own every dv X,. e is ancidentity. e m/'(X,) = X,.

Let X, ocenr at any argument in T/ say s @) = X,. where s is any (not necessarily
EDB) predicate. This implies the argument s ¢ in the body of the sirup must contain an
occurrence of some dv, say Xg. implying, that the pair (X,. X)) is in 7', Now. since
is an identity on all dv's, n, (X)) = Xi. Finallv. by the definition of inverse. (X)) = X,
This shows (a). Notice that the argument above implies that we’ maps cach dv to itself,

and to no other variable,
(b) Forevery ndv Vo ooccurring in 1\, me,” maps it to a unique variable in Ty 7.

Suppose without loss of generality that the ndv V7 oceurs in two (not necessarily distinet)
argument positions, sav s v and £ :j. Two cases arise. depending, on how s tiand ¢ @ j

happen to share a common ndv,

Case | The arguments s/ and :j in the sirup body carry some dv's.say s ;1= X and
{1 = X, and the oceurrence of the recnnsive predicate p at the root of the subtree T3/

carries the same ndv V' oat the positions p b and p :m.

In this case, the pairs (V..Xg) and (V. .X,,) are both in €71, As before. these pairs also
belong to the composition 871 o my. Finally, 8 contains the pairs (X, V) and {X,.17) by

the definition of inverse. implying that m (V) = V. This proves claim (b).

35

Case 2. The arguments st 2 and £ 17 in the situp body contain the same ndv, sav [,

In this case, (V.)€ 071, In fact. it is not hard tosee that this is the only pairin 01 with
the first component V. Now . since m, and 6 are functions. it is straightforward 1o see that

my" maps V1o a unique variatle. again implying, claim (b).

From claims (a) and (b). it follows that ne/ is a function and is an identity on all dv's. By

the construction of ' it is obvious that for every leaf subgoal s in 1Y o /(5) is a0 leal
. g I R .) . . e . s

subgoal of I,z This implies m, = 1V— 13, 4" is indeed e Phis was to e shown. The

proof of sufliciency is complete, O

It follows from the tree transformations above that any fact p(N0 V) which can be
derived using more than 1 application of the recursive rule in 1 (preceded by an application
of the exit rule) can be obtained (using | application of the exit rule followed by) one

application of the recursive rule. Thus. 11 is 1-bounded.

Discussion: Theorem 11,1 gives a direet method to test 1 houndedness of bilinear sirup.
We however emphasize that a direet application of the above theotem will not vield a
polynomial time test becanuse of the exponentially many possible ways of mapping the
EDB nodes in one tree (17) to the other (Ty, g or Typype). Thus an efficiently testable

characterization is necessary.

To conclude this section. we give a few examples to illustrate the idea bhehind Theorem
L1 In order to demonstrate the different cases of containment mappings. we have chosen
3 specific examples which illustrates the Normal, Partial, and Total Switch, identilied in

Thercom -1.1.1.

Example 4.1.1 (An erample of normal case)
Ghrocne a belenear program Y. consisteng of the rales:

Iy [)(‘\-l . .\>2. \;) S ((.\’1 . .\—2. ,\";). and
ry (X XXy - p(VLX) p(U X X)) al X V) B Y).

Consider the proof-tree Ty and 1y, g0 gencrated from L:

"l(’[‘l) : [)(.Xl. \2 .)(.'5) J- [I(.X] K ‘\’1). [)(”, X, .X'g}, (l(.\'| . V) b/, \ZJ
r](’[‘l,jg) . [)(Xl, .\'2. .\'3) J- [)“’(Xl, V|. X;),]M‘r(l/’| . \z X). llt(qu Vl) ,'I(I/| . "’).
(U Xy X)), a(X, V), b X).

36

In ths crample, we widl use the stractural characterization of 1-boundedness as queen
Theowenm 441 o proce thal the queen prograne X is 1-bounded. We will first illustrate the
contmmment mapping from Ty g0 to Ty More speetfically, we aill show thal S salisfies the
contaiment mapping for Normal Case i) from Ty, g0 to Ty, We have already secn from the
proof of Theorcm 41,1 that the subgoal mapping corresponding to Normal Case 1) maps p,
of the tree Ty Ao pyy of the tree Ty g Incaddition, all subgoals related to p,oalso map o
the corresponding subgoals present in the level 2of tree Ty, g0 The rest of the subgoal follow
tbentity wapping. Nolreo that in this crample the subgoal a is related to p,. there fore the
DB subyoal a must meap Lo ag din the tree Ty, g0 To show the e ristenee of such a containme nt
mapping., we cnhist the resalting vaviable mapping my frome Ty fo Ty e om0 (X)) = X

(X)) = Xgomy (Ny) = Nygooo (VY= Vi and g (U) = 1.

Nert, we wdldl show that 1, s also contained a0 Ty For this particular program. the
containment Uy 0 Ty s quite senvldar to Ty, 5 C Ty 1t follows the normal case i) also. The
resulting variable mapping from Ty to Ty, is as follows: e 2 (X)) = Xm0 (X)) = X

my, LN = XNy, (V) =V, and m, (U7) = Uy

Sinec, hoth the containments hold, using Theoram f.1 1 we can conelude X is 1<bounded. O

The next example will illustrate @ i) that 15,5, C© Ty by satisfyving partial switch case.
it} the proof-tree transformation technigque by the construction of the can. nf showing 'l},/,'

C Y o a tree of height 3.

Example 4.1.2 Let us recwt Frample 3.3.10. Consider the proof-tvees 1y and Ty, g ge nee -

aled by 1.

I'|(I‘l)I [I(.\'|. .\'J..\’:() J- [)(". \.v() . [)((’. .\'2. .\'1). (I(.\'|..\-_)). 1)(1". .\-2).
I'|(l‘(,_[,) .]I(_\]. \‘g \;) S [i”(‘-|. \3 ,'l)]);,(1'|. .\'3.('). (l;(". .\'_3). 1);(l'|. .\'2).
PN XN o) a(XL Xy). b X)),

1) At can be verified that there eists a containme nt mapping salisfying partial switeh case
Jrom Lyg to 1y such that pp — pyy.opr — peoa — a.and b — b, The symbol mapping m,
Jrom Iy to Iy, g s as follows: m, (X)) = X0 (X)) = Xooon(Xg) = Xg.oo (V) = U
and m, () = U. Henee we conelude Ty, g0 C T

1) Consider a le ft hnear proof-tree S obtained as a result of e rpanding the recursive predicate

pe of the given rule vy 3 times. Lt Ty g be the left linear tree to which the proof-tree

37

transformations il be applicd. Iy s the I-leved tree corpespondimg to 1, 1. b thas e rample
we will constract the mappimyg m,' to show that the tree S of height 3 can be reduced to S,

a proof-tree of height 2.

1'1('1‘[,‘“’) SpVONL U)o (Ve XU p (s Nl A (Vo N 0N,
ol N U), a(V. Xa). b1y,).

l'|(.r|’) N]I” \'_:. () S]h("]. .\-_b. ll) [),(l'|. _:(). ll(". _-) ’l(l'l. _')
As proved in the suflicie ney proof of the Theorcm (.0 F w, = 07V om o d.

Step 1) We first construct 8=Y to represent the 1-1 mapping from the variables of 1Y to the
corresponding variables of iz 070 = {0V VoV N O/ G U N U

Step 2) The contamnme nt aapping m:l'y — Iy, g0 has alrcady beon qreen aboee.
Step) 0: Tyge — Topd ={ Uy /UL N /Vo N/ NN UL/ Y

Step 4) m' = {N/ X, VUV /V U JU DUV s the voquered mapping to show that 1" «
’]vh f{’. i)

Remark: The prool of Theorem 11,1 can be used further to construct the mapping cotre
sponding to 5 C 5. where S) is the tree obtained as aresult of petforming, 1 left translon

mation on S.

We will deponstrate a more complicated example of proof tree transtormation technigue.
The next example has been chosen specifically to demonstrate the case when 6 1 is not &

function.

Example 4.1.3 Consuder the sirup
P (X N N Y X)) (Y N VL NV (NN N LY) (Y).
The corvesponding trees Ty and 1y, gy are as follows:

P) p(N 1 X X X0 X)) = pl N X N N V) (X0 X X X W), af X)),
PTh) pOX 1 X X Xao Xa) 5= pid X0 N X X V) pi (X0, XL X X 1),
ar(V) p(Xy X2 Xy X g W)L al X4,

In order to demonstrate the proof-tree transformation tochmgue wih vespeet Lo this caample,

3%

wo wldl erpand the recursiee rade 3 lLanes Lo oblam a proof-trec of height 3. Now consider
the tree 1y, 4" and TV where Ty g s the boltom-most e ft linear tree, whereas T 1s the

corre spondimg 1-leecl tree with respect to 1, 4,

(T g) N o X X X V) - p (N X N X 2) (N N X X 12)0 al (V7).
PN N N N) a(V)

I‘|('/l;l) N /l(.\'|..\'z..\'|.,\'_g. ‘|) [)(.\'2..\'|..\"g..\-.;.”'l). II(").

We nert constract the eon. uy’ showag 'y, ¢/ TV 071 corresponding to mapping T to T,
s AN NN N)V VNN W WV NS The came oy STy =T, 44 08 as fol-
lows: {V =W, the rest of the variables (X ... N5 W) Jollow an identity mapping}. The
mapprig @ from Ty, g lo Ty g sends {X /X0 X /X0 XN/ N W /W0 X /NG W/ X5/
Vo Fenally the e, from TV Qo 1y, g 1s given by = 0 Yoo, Therefore. m,” ={17—1V,.

and identity on (NN, N WLUV)) a

Example 4.1.4 lllustrates the can. for Total Switeh case:
Gven a bilincar prograw 3, wilh the followmng rules:

g . [I(.\,l. \2 \; \1) J- (.\'| . \z .\'3. \1)
P pCN LN N) Y VN L) p(N U X V) a(Y e Yy

The corvespondmg teces Ty and 1y, ¢y generated by 3 are:

r(E)) N NN LX) - (NG VX)) (Y U X V) a(Y L X)),
l'|(I'[,fp) : [I(.\|. \‘3 AY §e \|) J-]’H(‘\.l- "l- .\';5. l"]) [);,-(.\-3. (-]. .\—1. "|) (l(38 ()
[A ST A CTRR A0 N TA ST WO B

Phes e ramnple satisfics Total Switeh case sinee the containment mapping me maps the subgoal
P o peeand pyoto py. The corrcsponding symbol mapping sends V' — Uy, U — V) and all

the de's to dentify mapping. a

Thus using, various examples. we have illustrated the technique based on proof trees and
containment mappings to detect I-boundedness. Qur next objective is to capture the notion
of proof tree containment (and hence 1-boundedness) by identifving the svntactic character-
istics of I-bounded sirups. Iu the next section we develop some of the syntactic properties

which are necessary before presenting our next result.

39

4.2 Syntactic Properties of Bilinear sirups

sSome of the fundamental syutactic properties developed follows next - We will also introduee

a lemma which will be helpful in the proof of main results,

Definition 4.2.1 We say po saves a variable 7 occurring moo 0o where oo pyoorp,,
f Ak such that o 2k also carries Z and pyoi= Noopeois dv saving of of saves cecery de
oceurring tnoatsclfo We say that p, preserves a subgoal s related to o of cocry de ocearnng
in s also occurs i p, oand s saved by po Intuiticedy, of poosaves a variable /7 oceurring
in pyteeg then it means py 0wl carry 70 When peoas de-sacing, o unplie s Vi,
Pt =N, 2 py 0 =N, peocopies and saves a de X oceuring mop, o proveded)k
such that p, ok = X, and pi2 0 = X W say pe projects an arqument of p,otn posihion
iooprovided p,2iis a de. Farther, pye projects cqual arqumants of p, in positions © and |,
provided p, 2 i = Xy and pe) = Xy for somc koand ey ad py 2 b poom Intuihiedy,
this implies, po o0 = poj.o Al the notions above are de fincd for p, o a sondar manner,

tl
The following example makes these definitions conerete.

Example 4.2.1 Conside v the following recursive rule rp. We amll use vy do dlustrale

some of the above syntactic properties.

P (N XN N) YN XU) (N VY)l N LN)

The recursive predicate pg s dvo-saveng i thes crample, sinec il savcs cocry dv occuring m
itself. Notice that ¢ very dv which occurs i pe occupics the ith position. pgoalso prescrms
the related 0B a. as the do's { X, X} both appear 11 pg and the y are saved as well Wi
say p; projects the argument V7 present e p, 22, sinee py 22 - X 0 Sumdar avrguinent can
be made for p, 3. In additton, pe projeats cqual arguime nts of p, s positions 2 and 3, s
P2 =Xop 3= X and p22 = pe 3. This will isnply iy 22 and pgy 23 will haoe the

same argurnent V. (1

Definition 4.2.2 Leta € {f.r}. Then by & we denote dts complement, de fined as o - ¢
ff o = € and vice versa. In a bilincar sivup 1, we say thal the subgoals py and p,oin the
body (of the recursive rule) have matehing ndv-patterns provided the following conditions

are satisfied.

10

{.oanarguent p,ooof poocarries a dode if and only of the corre spondireg argume nt p, 0

of p, carries a doide,

Lowhenercr an arqument pgoc carrvies an onde UL there crists an arqgument pe 2y such
that o carvie s an nde V7 (here wre may possibly heave [= j. inowhich case. we must
have V= V) and furthe pXECU appears inp, ke iff Voappears inp— 2k, for o =(.r.

{n addition. of U # V" abocc, then neither of UN appears cnoany edb subgoal.

A the converse of the pre vious condition holds,
We next present the technical lemma.

Lemma 4.2.1 Suppose st arc any two rclated EpB subgoals of a bilinear sirup 1 and

s Ty—Ty s anvy e Thenoither in(s) = s and m(t) =1 or m(s)= s and m(t) = 1.

Proof. Follows direetly from the definition of a cm. G

As a consequence of Lemma 1210 any two related DB subgoal present in the sirup will
always map together to the respective subgoals of level 1(2). In addition. it is obvions that
DB subgoals which are related 1o p, will always map to the corresponding subgoals in level
2 of the proof tree T3, 5 whereas for subgoals which are not related. there (always) exists

an identity mapping, from 1y to 1y, g4

In the next section. we shall develop an elegant characterization of I-boundedness leading

to an eflicient algorithm,

4.3 Syntactic Characterization for 1-boundedness

The objective of this section is to develop a syntactic characterization of 1-bounded bilincar
sirups. We develop a characterization of 1-boundedness and extend it in such a way that
I-boundedness in the presence of functional dependencies to be satisfied by the EDB can
also be captured. Tu a subsequent chapter. we shall develop a lincar time algorithm for

testing 1-boundedness, based on our characterization.

\We next present the main theorem which gives a complete characterization of I-boundedness
for bilinear sirups. We use various syntactic properties of bilinear recursive sirups developed

earlier in the previous section to present our result,

41

Theorem 4.3.1 (Syntactic Characterization of l-boundedness) Let 10 be a by
lincar sieap. and et 1y, g and Iy be the proof trees gonerated by Woas defined carlicr, Then

Tuge © Iy i 11 satisfies one of the followimyg conditions.,

I peas dre-saving and p, preserees cecry subgoal which s velated to p,.

2owhsnever p, has a dnde U oceurving inarquments p Pt cither pyoprogects
equal arguments of p, i positions iy. Hoooor pe has some nde Voal the positions p,
een-. Procoteswchenever pos carvics either a de or an sndv, p, saves that arquinent,

Aoopyoand p, satisfy the following conditions:

(a) pr saves cvcry de occurring inop,oand peocopies and saves coery de ocewrrieg i
Pre
(b) i prescrecs cvery edh subgoal related Lo p,. and

(¢) pi and p. have matching nde-patterns.

Proof:

It will be shown in the proof of this theorem that the semantic notion of T-bonndeduess (as
given in Theorem J.1.1) is exactly captured by the syntactic conditions given in ‘Theorem
L3.1. Moreover, in the sufliciency proof. it will be shown that the 3 conditions given in
the theorem corresponds to the 3 types of contaimment mapping: Normal Cuse, Partinl
Suntch. and Total Switch. However. in the proof of necessity we will show that eachi of the

conditions given in Theorem -L3.1 is necessary for a consistent e..

(=)
We shall show that the 3 conditions respectively imply the existence of a can. from T 10

Tic 11 corresponding to Normal Case., Partial Switeh, and Total Swdteh, showing, 1y, ¢ ¢ 1.
left I 5 5 /

Coundition_I. Consider the symbol mapping m Ty =1, g corresponding 1o the following,
assignment of subgoals: m(pr) = pis mls) = s for adl subgoals s which are related to py;
and m(s) = s. for all subgoals s nurelated to pe. Clearly, o conforms to one of the patterns
Normal Case (ii) or (i). depending on whether p, is related 10 pe or not. To complete the

proof. we need to show that wis indeed a consistent c.m.

(i) Let X, be a dv oceurring in any subgoal argument position. say s : 5. H s is a4 subgoal

unrelated to peo (X)) = m(s i) = m{s) : ¢ = X, trivially. On the other hand, if s is

42

cither ps or a subgoal 1elated to pe it follows from condition 1 that s, 10 =X, as well. In

other words, m(N,) = m{s i) = ms)1i= s 00 = X, as required of a cau.

{ii) Let sof be any two (not necessarily distinet) subgoals sharing an ndv, say s 17 = ¢ :
7 = U By Lemma 1210 we may assume at least one of .t is an b8 subgoal. In this case.
cithor mi(s) = s and 1wty = 4. or m(s) = s and m(1) = (. depending on whether s.t are
related to poor not. Tn this cases we trivially have m(s) 06 = m{t) @ j. as required of a

consistent ¢.m.

This was required 1o he shown.

Condition 2. Consider the symbol mapping m @ Ty — 13, ;¢ corresponding to the following
assignment of subgoals: () = pip.and m(s) = s for all other subgoals s, Clearly.
conforms to the pattern Partial Swdeh. We need to show the symbol mapping e is indeed

a consistent ¢.m.

(i) Consider a dv X, occurring in any subgoal argument.say s : j = X,. The only non-trivial
case is when s is po In this casel condition Y implies pi, 2 j = X,. Thus, e is an identity

on all dvs.

(i) Consider any two (not necessarily distinet) subgoals s.f sharing an ndv. sayv s 1= ¢ :
J o= U By Lemma L2010 we may assume at least one of st is an idb subgoal. Suppose
sois ope 0 s different from so then U is an sndv. and by condition 2. py @ ¢ is saved
by p,oimplyving g, 08 = U, Sinee ¢ is different from p,. m(t) = t. and hence we have
wmpe o)y =m(pe)io=pe i = = m(t:)= m(t): 4. I {is also pe. then the same ndv
U appears in positions p, 2@ and pyo: g By condition 2. either p, saves these arguments
or carries the same ndv, say 1V in its corresponding positions p, @ i.p, 1 j. In either case,
m(pe sty =m(pe) i =pep i t= et Jo=mpe): j = mpe 2 j). Finally, the case where

neither of sof is pp is trivial,

We have shown that in this case there is a consistent c.an. conforming to the Partial Switeh

pattern,

Condition 3. Cousider the symbol mapping m @ Ty —1T}, 4, corresponding to the following
assignment of subgoals: m(p) = pir. m(pr) = prs m(s) = s, for every subgoal s which is
related to peor perand m(s) = s. for all remaining suboals s. Clearly, m conforms to the

lotal Switch mapping pattern. We need to show nz is indeed a consistent c.m.

43

(1) Consider an occurrence of any dv.say s 20 = V0 Por the sake of non tiniality, assume
s iseither pyope.or a subgoal related to one of these, It s p, (2, then condition 3 implios
Por ot = X (poo2 0= X)) s is an BDB subgoal related to p.osince p preserves s,
Senr= X0 Finally if s is related 1o pe. then by the condition of matehing nds patterns

between p, and pr. s must be related to poas welll in which case, again 5, 00\,
(W) Let s i =12 =anndv . (s and { are not necessrily distinet.)

Case Lo and ¢ are the same subgoal. 1F s is an BEbw subgoal, it is trivial 1o see that
m(s): 6= m(): 4. s is poor p, o then by the condition ot matehing ndv pattorns. we

have that m(s): 7 = m(l): J.

Case 2. & and ¢ are distinet subgeals. By Lemima L2010 wo may assume at least one of them
is an IDB subgoal. Suppose sis po I Cis an Epp sugboal, then it is casy tosee we(p, 1)

m(p)it=pei=Aj=mt): g =m(l:). His p, then by the condition of matching,
ndv-patterns, it is clear that wm(p 2 &) =m(p)ci=pey o= po g m(p,) g mip, 2)).

Similar arguments apply when tis p, (and s is any subgoal).

It follows that in all cases. e isindeed a consistent com. showing 15, ¢ 1y, This completes
LR NN 1 |

the proof of sufficiency.

(=): Suppose Ty, ge C Ty By Theorem L1 we know that thereis o caneome s Iy <1 gy
conforming to one of the mapping patterns Normal Case (i) or (i), Pactead Swideh, or Tolal
Switeh. We shall show that ecach wapping pattern implies one of the thiee conditions in the

hypothesis of the theorem.

Normal Case (i) or (ii). (1) Assume pyis not dv-saving. This implies 1y such that pooy

Xoobut peecj# X, Sinece m(p) = peeathis implies mi(X)) £ X, contradiction.

(2) Suppose now that py does not preserve some sabgoal s related ot and et s b py
e = . This means 3 such that s 0) = XN, but s, 0y AN Wanls) som(li)y ', but
also. m(U) = m(pe cm) = () m = po 2 = Uy LU o contiadicvion, I omi{s) s,

m(N) = m(s:) =m(s): j =51y £ X, againa contradidion,

Partial Switch. (1) Suppose a dndv 7 appears in the positions pyzoope . g0 /g and (i) p,

does not project equal arguments of p, in positions ¢ and j.and (i) p, does not cany the
same ndv in the positions p. :iand p.:j. Then pez i = poo jowhile we(p0) mlpy)

=it Fopee s = mlpe) sy = m(py i j). making moinconsistent as a .

41

(2) Suppose p catties o dveosav o0 = Nowlndh is not saved by peo I this case

pio 2 70N This will make o inconsistent as o can since mitpy) = p,.

(33) Suppose p, shares an ndv with another subgoal sosay p, o0 =0) = 0 oand p, does not
sive this argament. Vhis implies poco A0 Wmls) = sothen () = (s . g) = 1 and
also e (L) el 20y < pyy v A0 Cmakine i nconsistemts [m(s) = s, then () = 1.
I this case. lor consisteney, we mst have py oo = Upowhich implies p, 00 = 10 However,

sinee wm(p,) pom(d) U £ a conttadiction

Total Switch (1) Suppose p, does not preserve some subgoal related 1ot Let p, c0 =
;U T m(s) - sowe mnst have w0) = U Cwhich is possible only if p, ceis adv Tn this
case. sinee m(py) poe(py try = e Upcand soocis not anidentity on some dvoa
contradiction. So m(s) = s and since p, does not preserve s, 3k suchi that s 0 b = X, and

sk AN Cagain leading to a contradiction tot he fact that e is & ¢ m.

(2) Suppose p, does save some dv occurrence i py. Phis implies 3 sueh that p,o0 gy = A
and po, 2y A N This will foree 1o be o non-identity on the dv X,. which is impossible.
Similariy. if p, does not copy and save some dv ocenrrence in p, o then 3 such that p, @ j =

Noobut pyy 2 N0 Aeaing a contradiction will resalts since m(p,) = poi.

(:4) Suppose now that poand p, do pot have matching ndv-patterns. We need to consider
the thiee conditions in the definition of matching ndv-patterns.

(i) Suppose p, 0 carries o dudv. say Dowhile p, 20 does not. Then p,:cis cither a dv or
an s ndv. I p, cris advs then since migp,) = poyo it is easy to see inconsisteney will result
i the mapping . So suppose p, 20 = s) = Lo where s is any other subgoal. As argued
nnder (1) above, it is casy to show that () = & which implies (7)) = 7. However,
since m(p,) = poaowe have that () = Dy # T 0a contradiction. Similarly. we can show
that whenever p,oce carries o dodv, so must p, 2o,

(it) Suppose condition 2 of matching ndv-patterns concerning sndv’s is violated. Let p,

p = U beansndv, 100 is shared with an edb subgoal s, say at position s @ . then condition
2ol matehing ndvy patterns implies that p, @ ¢ must also carry this sndv {0 Suppose
oo AU Tu this casecm(p) = po 2 implving (0) # Uy Thow mi(s) # 5,0 and henee
m(s) = soimplying) = U0 This is possible only if p, 20 s o dve which in tern will
mahe e inconsistent since g, 2 is not a dve X similar argument would show that whesiever
port = sy =lop =0 aswelll Suppose now p, cdi=poj= U0 MWp,rg # peie
then an inconsisteney Will result sinee m{py) c 0= poe 20 # poo2 g = m(p) . Further. if

p.oog o= peosris adve then aninconsisteney will result because of the total switclh mapping

15

pattern. Consequently. p, 0 = poc = some wdv, say VN straehtfonwand extension
of this argument will show that whenever p, - & [owe must have po A Vooand
vice versa. Pinallve suppose 7 appears inan edb subgoal, sav at s 2o Then as argned
above, we can ~how (s) = 50 This implies w0y Uy Howeverosinee m(p) - py, and
m(p,) = poowe mnst have ()Y = 4y 2 D oa conteadiction. The above argument can be
svinmetrically applied from p, to p, just as above. Fhis shows the necessity ot all conditions

in the delinition of matching ndv-patterns. Phis completes the prool of the theoren. i

Discussion:

We will revisit Example LI L L2 and L1 onee again to verily g o 1) nsing, the
svintactic conditions given in Theorem 1310 Recall that in Section 1 1owe have alieady
demonstrated Ty, pp © Ty for cach of the above example (using stractural charactetization
as preseuted in Theorem L11), Using the syntactic conditions this time, we sall show the

same conclusion.

Example 4.3.1 (Normal ('ase)
We will reviset Erample f. 1.1 to illustrate the syutachie conditions satisficd by the soup. 1t
can be verified thal Novmal Cuse 1) is satisficd witle vospeel Lo pyosince poas de-saving aid

it also preserves the rdlated subgoal a. Thes unplecs 1y 1. tl

Example 4.3.2 (lotal Swilch Casc)

We will revisit Erample $.1.4. The syntactie conditions for Total Swdel case can be verificd
as follmes: a) p, saves the de's (X0 Xy) occuring v py (b)) poocopics and sa vos coery doe
ocenring in pe. (¢) pe and pg have watehong ndv-paitcrps, siec the sudos U are ieolved i
an ndv-cycle of lenght 2. Sinee, pyoand peosatisfy all the neecssary and sufficicnt condilons

Jor Total Sweteh. we conelude Ty, 70 €T, '

For the noxt example we will use the svntactic conditions of ‘T heorem 1301 1o test the
containment for both directions: Ty, 5 © Ty and Ty < iy The purpose of this exerdise

is toillustrate that the sirup P introduced in Example 3.3 105 1 bounded

Example 4.3.3 (Partial Switeh Case) Let ws rovesed Faample [1.2

I this erample. the subgoals p.. b are related to py sonee they share e sudv U widh pg. The

EDB a is not rdlated o any predicate. Applying the syrdactic condilion wilh ospect o py

16

Jirst. ot can be vorificd that the condition for normal case fails sinee py docs not preseree p,.
However, the condilion for parhial swidel case is salisficd sinee p saves all the sndves and
des of py. As scow o caample {01220 the corvesponding symbol mapping my from Ty to 1j, 4,
s as follows: (X)) = Ny (X)) = XNooond Ny) = XNy, (V) = Uy and i, (U7) = U
In vicw of thes, Ty g0 T 1.

I the other dircelion of conlamment testing, normal case as salisfied sinec p, s de-saving
and ol prescrves the velated subgoals peo b Honee 0 © 1 and the contamnme nt mapping
my frow Ty to 'l maps the variables as follows: 0, (Xy) = Xpom (X)) = XNpom (X)) =
N, (V) - Voand w, (U) = Uy Sinee U S and Ty, 50 C Ty we conelude that the

geeen sorap s -bounded, a

Before closing this section. we shall show that our characterization for bilinear sirups can

Just as well be used for testing I-boundeduess of Tinear sirups.

Theorem 4.3.2 Let 1V be the linear sivap de fining a predicate po Then 11 is 1-bounded iff
the recursive subgoal pon the body of the sirap 15 dv-saving and it preserves all subgoals

related 1o il

Proof. First. notice that 1L is I-bounded iff’ the proof-tree T, obtained by expanding p
twice is contained in the proof-tree T with one expansion of p. Now. it is clear that the
only mapping pattern possible for a potential c.m. from Ty to Ty is for leafl corresponding
to pin 17 to be mapped to the leafl in 75 corresponding to p. Further. whenever a is an
EnB subgoal related to po the subgoal a in 1) must be mapped to a, in T, which oceurs at
level 2. The rest of the proof follows identical lines to those adopted for Normal Case of

Theorem 1.3.1. a

In view of the linear time algorithm given in Section 5. 1.2, Theorem -1.3.2 implies we can also
test F-houndeduess of inear sirups without repeated edb subgoals in linear tirne. Through-
out this thesis. we assume that in the bilincar sirups we consider. neither of py. p, subsumes

the other. The above observation shows that this is not a restrictive assumption.

To conclude this section an example is given demonstrating the techuique presented in
Theorem 1.3.2.

Example 4.3.4 Consider the following lincar sirup oy,

A7

ro: p(N XL N) - e (N N VD
TR 10 WA WU WS BE 7T TR RO WP D77 B R B Y T AR WS

We il show that oy, s -bounded. Lo prove our resalts, we wdl apply the syntaetn
conditions for Normal case grecn in Theorene [2300 and follow a somdar technigue as wsed

i the detection of 1-boundedness for bilimear sirups.

I is quite casy to check that Normal Case 1) s satisfied. sinec poas de-saving and ot also

preserces the vclated subgoal a. Thus Ty, o0 C 1y o0y, 08 bounded. (1

4.4 Summary

The problem of detecting I-boundedness for bilinear sivups was considered in this chapter,
Our first result on t-boundedness was based on containment mappings and proot tiees,
We identified the 3 different cases of containment mappings which atise with respeet to |

houndedness. Proof tree transformation technigne was described which redoces an arbitiary
tree to a tree of height 1. For the reason of efficiency. we also justified the need for syntactic
conditions for capturing I-boundedness. An elegant charactetization hased an syntactic
conditions was developed for bilinear sirups. [t will be shown in the Section 5 1.2 that
the syntactic characterization leads to a linear time algorithm. To conclude this chapter,
we also showed that our syntactic characterization can be used to detect | honndedness of

linear sirups as well,

X

Chapter 5

1-Boundedness with Functional

Dependencies

it has been hnown that the presence of different tvpes of data dependencies can be used for
eflicient query processing. Various carlier studies have shown that queries can be further
optimized using the semantic knowledge of the given programs. Funetional dependencies
defined on the base relations provide crucial information which can be exploited to increase
the efliciency of the programs. Our objective in this chapter is to study the influence of

I'Ds on I-boundedness.

We have already disenssed the problem of detecting I-bonndedness in the previous chapter.
[n this chapter, we will address the problem of detecting bilinear sirups which are I-bounded
on all input databases which satisfy a given set of functional dependencies (FDs). We have
already illustrated in Example 3.3.2 that datalog programs that are not (1-)bounded could
boecome 1-bounded in the presence of 'Y's. We develop a methodology for detecting such
bilinear sirups. The technigue is based on preprocessing the bilinear sirnp with respect to
the given Functional dependencies and identifving the minimal extensions necessary 1o the

basic syntactic characterization of Section 1.3 in order to account for the FD's.

Since our overall objective is not only to characterize 1-boundedness, but also to develop a
lincar time test for it, we must address the following questions. (1) How to preprocess the

situp so as to incorporate the effect of FDs on 1-bonndedness. (2) How to do the above

49

preprocessing o lencar fane? (3) What are the modihcations to the sy ntactie chatadctenza

tion of Section 1.3 1o take acconnt of D"

Our investigation reveals that we can use the ehase procedure developed i dassical database
theory hy Maier et al. [19] to preprocess and hence to incorporate the effects ot F'Ds We
then show that the syntactic charactetization developed in the preceding secnion can he

used with winor modifications 1o detect T-bonndedness,

The organization of this chapter is as follows, In Section 500 we fliest review the basi
chase algorithm to incorporate the FDs into the sirups Some relevant results on Fhs aud
chase are also discussed in this chapter. In Section 52 we develop an eflident algorithm
for chasing proof-trees. The overall time complesity for this aleornthm is almost linear in
the size of the proof-tree and the input Ds. The extended svatactic characterization ol
I-boundedness is defined in Section 5.3, Finally. in Section 5002 the mam result ol this

thesis. testing of t-boundedness in linear time is presented

Throughout this chapter, we assume that Fis a set of FDs on the ton predicates of the
given program. Since FDs on the exit predicate will not inflnence the chase of proof trees

(see helow), we only consider FDs on the other predicates.

5.1 Incorporating Functional Dependencies

Our primary goal in this section is to develop a procedure to incorporate the effects of F s
into the given sirnp This issue has been investigated several times i the eatlier literatare,
We settle this issue by making use of the clhase procedure, Tndeed | the chiase proceduie has
been extensively used in dependency theory as well in the context ol several query opt
mization problems (e.g.. see Ullman [25]. [20} and Maier [19]). O idea s 1o chase the
proof-tree Ty, g generated by the sirup and then consider the problem of testing whether

the chased proof-tree 17, s contained in the proof tree of height 10001,

We now deseribe the idea behind the chase, as applied 1o proof trees, The following, algo

rithm describes the basic method. without regard toits time complexity.

o0

Algorithm 5.1.1 (Algorithm for chasing Proof trees)

Input: A preofdrec of the form Ty, g gencrated by a bilinear sirup. and a sct of FFDs on the

LB predicates of the sorap.
Output: The chascd proof-tree 1y, 4y .

Notes: (1) We lct Args and arg denole a set of arguments and an argument respeetivedy.
(2} Stnee we consider bidincar sirups with distinet BB subgoals and consider only FDs
on BB prodicale s, subgoals s 0 bddow wdldl neecssardy be Bos. wth one of theme at level

Pand the other at leedd 2,
begin
repeat

Whenever there are subgoalds s and t corvesponding to the same predicate, s at level
oand 0 oal lovdd 20 such that Args — arg s an qrven D oon this predicate, and
sl Args] = [Vrgs]. but slarg] # tlarg]. cquate these two arguments, replacing all

oceurrence s of the varviable appearimg in tjarg) by the varable appearing in s[arg).
until no change to the proof-tree

end

The next example shows an illustration of the chase procedure as deseribed in Algorithm
L

Example 5.1.1 (Bevisit Frample 3..4.2)

Consulder the following bilincar reeursive sirup P together with the FD F = {a: 1—2}.

o .]!(\|. .\'_». \() J- f(.\'|. .\.2. \g)
r 2])(.\|. A\ 2 \;) - [)(\| 1, \;)])(.\'1. .\-3. ”) ll(.\'l. I, .\'1).

It can be verified using the trce Ty g and Ty (queen below) that in the absenec of the qiven

FD the progran is not 1-hounded.

IR AR A YT SNA T IS T ST | RO W T SRR WY | IR TR O LR U
ST YO0 I TG WA WV WS S Y AT | P W P A A W L I L IR T Y A U L 1 IR
7 G WP WS | AR 7T DA S DR WO

Fhere fore, we procecd with the proprocessing of the trec Ly, ppowith vespeet to the 1D
Applyg the Mgordhm 500 with respeet to Ly g and the DL we oblam the chased
proof-tice 1, ¢ .

TR AT TV T O\ WA WA WS Ry 770 U WO § R WS T /7 GA WIS A B | R YT A W S MR R AR
Pel N N (N N

Notice that an the vesulting chased proof-trec, all the occurcnces of the vaviable W, gt

cquated o W because of the FD F = {a:1—=2}. r
The extended definition of containment in presence of 'Ds follows next

Definition 5.1.1 Let (1. Q2 be any congunctive queries and It Fobe a sl of alogrity
constraints on the CpB inputs to Qy.Qu. Then we say that Qy s contamed c0 Qg 1elative
to the inteqrity constramts I denoted Qy Cpe Qo provided, for all .ow npuls D salisfymg
the integrity constramits I, (Q (D) C Q4(D).

A direet application of the above definition to the prool-tiees Iy, ¢ and 1y leads us to the
] I f |

following result.

Theorem 5.1.1 Let Wl be a bilinear s'vup, I a set of FDs on the gow predicates of W, and
T g the proof-tree obiained by applying Mgorithin 500 1o T g0 Thew Ty 0 p 1y ff
Tugd CTi.

Proof. Consider any s D.input to 1y, . 1t {ollows from the chase that whenever two
atoms s.tin D corresponding to the same EpB predicate are used in detiving an ontput
tuple using Ty, s . the atoms s f necessarily satisfy all FDs in Foapplicable 160 this Lon

predicate. For otherwise. they wounld not unify with the corresponding subgoals in 1y, 4,

as the chase procedure implies. Let D' be the maximal subset of D such that D’ satisfies

the FDs £ s straightforward to show from the above that 7y, 1 (D'y = 14, 5/ (D).
(<=): Suppose & is any EbB satisfving the FDs FThen 1, () = Ty 1 (E) C TH(E).

(=) Suppose & is any £DB and & be its maximal snbset which satisfies the FDs F. Then

as shown above T, (&) = 13, 1 (&7). However, Ty, 1 (') ST THE) C TH(E). a

Discussion: Theorem 5.1.1 gives a direet approach to test for the coutainment of proof-
trees in presence of functional dependencies. It shows that containment testing between the
proof-trees 1, g and T in presence of functional dependencies can be reduced to that of
testing whether the chased proof-tree 13, ¢ is contained in I'y or not. Recall that the simple
chase algorithin given carlier in this section can be used to generated the proof-tree Ty, 5.
however it would not be eflicient if implemented as such. Sinee our main objective in this
chapter is to develop a simple yet efficient technique for testing containment in presence of

FDs. therefore Theorem 5.1 elearly defines the necessity for an efficient chase algorithm.
To conclude this section an example is given demonstrating the technique introduced in
Theorem 5.1.1.

Example 5.1.2 Consider the bilincar recursive program P and the FDD F = a:1—=2,

P p(N e Noe X)) - pUN I X pOY L X 1), a(X L1 X).

For the sirup PP we have already scen the construetion of the proof-tree Ty, 1" using the
chase algorithm in Erample 5.1.1. In this erample we will illustrate using the result given

im Theorcm 5.0.1 that Ty, 5 Cpe T
PP O N) - (TG (Y Y) a (Y LX)

P e) PUXT N 2 X)W XL e (X I IE), g (X 1),
P X1 Xa V). a(X, V. X,).

Indeed. it can be verified that the containment Ty, 1" C Ty goes through by mapping all the
vartables of I'y to adentity. This implies Ty, 5y Cp Ty, Similar preprocessing is required for

showing Iy C T4

Quverall, the symbol wapping for both the dircetions of contamments sends W« W, X,
— N X — N Xy — X Heneeo we have shown that the green sirup as -bounded in

presence of the qreen DI t

We will move on to next section where we will develop an efficient algotithin for chasing,

the proof-tree 1, ¢/ to incorporate the given functional dependencies |

5.2 An efficient Algorithm to Chase Proof trees

In this section. we develop an algorithm for chasing proof-trees of the form 1y, 7 (o1) n)
in time almost lincar' in the size of the tree and the inpnt FDs. This result in itsell is quite
significant. Since. the fastest known algorithm for chasing F'Ds in the literature (prior to

our resilt) has a exponential time complexity,

Our algorithm for chasing proof-trees of the form 1, py or T, Tollows next.

Algorithm 5.2.1 (Chase(ll, F))

Input: A bilinear sivup P, and a set of extensional 1'D’s I,
Quiput: The proof-tree Ty, g which is Ty, g chased with vespeet o Foand Wowhieh s 1

incorporating the «ffect of any do’s that gt cquated during the chase of Iy, .
Assumption: |RHS.of _FD| = 1.

Data structure:

CHASABLE . CHASED : slore scts of argumiends cureently “chasable ™, and thase chased
so far. respectively,

TREE : Awarray that storcs the proof-tree Ty, g0 (or T).

COUNT ¢ Awarray of integer, rangeng over the #Ds in 1

Foran FD [= a:Args — arg, COUNT[f] = [Args-CHASED| = the number of argumnents
i the LIS of the FD wh ich have not been chased so far.

LIST : An arrvay of lists, ranging over the distinet vareables in the sivup;

For a variable V, LIST[V] = a list of FDs whose LIS ineludes V.o We say the LIS of a

"The exact time complexity is QQn3(m)) where meis the input size of the problem and 3 s an extremely
slow growing function.

FD a{iy,....& }—j includes a variable V provided for some | < £ < k. a:p carries the

varaible 'V in the sirap body.

Mcthod: The ke y idea in the algorithm is thal to carry out the chase correctly (and e fliciently)
the only information that is required al any stage is which sets of arguments carry an
identical variable as a result of the chase so far. We represent the effect of chase on Ti, g,
by storing the argumends of subgoals in the form of equivalence classes. Two arquments are
in the same class cractly when they are supposed to carry an identical variable as a resull
of the chase. We use the well-known Disjoint-Sect-Union-Find algorithin to maintain the
progression of the chase (sce [2]). We use the following instructions from that algorithin:
UNION(S),5:,.5) and FIND(r). In the algorithm below. we assume without loss of

generality that Ty, gy is to be chased with respect to I

Begin
(1) Construet Ty, o and store it in TREL;
(2)if I'= ¢ then return (TREE) and erit.
(4) Inilialization :
o (a) inilialize CHASABLE , CHASED lo ¢;
o (b} forcach argument a : i do
LIST [azi] := nil:
end {for}:
o (¢) for cach FFD f= a:Args — arg in I do
COUNT[f] := |Args|;
for ecach i in Args do
add f to LIST[a:i];
if var(a:i) = var(a;:i) then
CHASABLE := CHASABLE {a:i}:
end {for}:
end {for}:
e (d) for cach distinet variable V in TREE d o
construct a tree with one node (also its root) labelled V.
end {for}:
(4) Chasing :
while CHASABLE# ¢ do
choose any argument a:i in CHASABLE;

41}
3]

end.

delete uzi from CHASABLE:
add a:i to CHASED:
for cach FD f= a:\rgs — arg in LISU[(var(a:})] do
COUNT[f]:= COUNT[f] -1:
if COUNT[f]=0then
if FIND(var(a,:arg)) # FIN D(varfa:arg)) then
begin
UNION(var(a;:arg).var{a:arg), X):
add a:arg to CHASABLL:
¢ ndd
end {for}
end while

(5) Ide ntification of usndv’s

for cach argument s:i of the sirup do
if (s:i has an ndv) and (FIND(var(s:i)} = FIN D (var(s::i))) then
conclude s:i carrics a usndv;
end {for}
(6) Ide ntification of dv’s that got equated :

for cach equivalence class of arguments S do
enumerale the variables (in the oviginal Ty, g) corrcsponding lo 5.
conclude that two de's X, and X, get equated during the chase
cractly when both appear in the enwme ration corre sponding

to the same class S,

end {for}

We remark that from the point of view of testing 1-boundedness. the most important outputs

expected from Algorithm 5.2.1 concern the following information: (i) which arguments of

the original sirup carry a usndv; (ii) which dv’s got equated during the chase of 1y, ¢4 (or

Trighe as appropriate). Using item (i), we can casily rewrite the original sirup 11 into the

modified sirup 11" as follows. Suppose 5 is a set of distinet dv’s that got equated during

the chase. Pick an arbitrary representative of .S, say the dv X,. Then uniformly replace all

occurrences in the sirup (both head and body) of any dv in .S by the dv X,. Repeat this

procedure for each maximal set of dv’s that got equated in the chase. The resulting sirup

is the reguired program [I'. The main idea at this point is that (the algorithm based on)
Theorem 4.3.1 can be applied to test if the original sirup is 1-bounded w.r.t. the FDs F.

We now prove

Theorem 5.2.1 Algorithin 5.2.1 correctly chases the proof-tree Ty gy (or Trgny as appro-
priate). In particular, (i) an argument s 21 in the original sirup 11 carries a usndv w.r.t.
the FDs Fiff Algorithi 5.2.1 says so; (ii) two dv’s X, X, get equated during the chase iff

the y both belong Lo the same cquivalenee elass at the end of Algorithm 5.2.1.

Proof. We first remark that the termination of Algorithm 5.2.1 follows from the facts that
(a) The mumber of arguments is finite. (b) no argument enters CHASABLE more than once,
and (¢) cach argument in CHASABLE is chosen (and processed upon, and deleted) at most

once,

The correctness (pertaining to (i) and (ii) in the theorem) can be proved by observing
the following. Initially, cach equivalence class contains just one (distinct) variable which
indicates the state where no variable has been equated to any other. That is, Ty s is not
chased at all. It is clear from the algorithm that two variables are put in the same equivalence
class (Step (1) see the UNION instruction) exactly when these variables appear in a pair

of arguments which get equated in the chase. From this, (i) and (ii) readily follow. a

We make use of the following function to characterize the time complexity of Algorithm
5.2.1. Let ao be the function defined by @(0) = 1 and a(n) = 2¢(*=D _for n > 0. As pointed
out in Aho et. al. [2] o is extremely fast growing function. The “inverse” g of a is defined
by setting #(n) to be the smallest number & such that a(k) > n. Clearly, 3 is an extremely
slow growing function. In the following theorem, the input size m refers to the size of II

and I as measured by the space needed to write down the sirup I and the FDs F.

Theorem 5.2.2 Algorithm 5.2.1 takes time O(mp(m)) where m is the size of the input to

the algorithm.

Proof. It is not hard to see Steps (1)-(3) take time O(m). Specifically. in Step (3), each
argument in each FD is visited once and operations requiring constant time are performed
after each such visit. This only leaves Steps (1)-(6). For Step (4), notice that no argu-

ment of the sirup enters CHASABLE more than once. Furthermore, at any stage, for

57

each argument in CHASABLE. the COUNT of cach FD whose LHS includes this argu-
ment is decremented. The overall time needed for this step, from start untit CHASABLE
becomes empty. is proportional to the size of description of the FDs in /. By using the
DISJOINT-SET UNION-FIND algorithm with path compression (see [2]). the FIND and
UNION instructions can be efficienctly implemented. Notice that the number sf times these
instructions are invoked is proportional to the number of arguments in the sivup 1. This
number is no more than m and the above UNION-FIND algorithm, we can guarantee that
a sequence of e FIND and UNION instructions can be performed in time e/ rd(m). where
c.c’ are both coustants, and ¢ depends on e. By maintaining a count for each argument
of the sirup carrying an ndv. we can decide if the ndv is an sndv. Then Step (5) can be
performed in time proportional to the number of arguments of the sirup. It is casy to see
Step (6) takes time no more than the number of distinet variables in the sirup. Thus, the

overall time complexity is O(mp@(m)). r

In this section, we have assumed the exit predicate ¢ does not satisfy any non-trivial FDs.
When e does satisfy some FDs, some of them could be induced on the 1o predicates,
Determination of the induced FDs is orthogonal to the problem studied in this paper.
Whenever induced FDs are known. they could be incorporated in the chase (Algorithm
5.1.1). Unfortunately, determination of induced FDs is undecidable in general (Abiteboul

and Hull [1]). Positive results for sirups are proved in Hernandez ot al. [S].

5.3 Syntactic Characterization of 1-Boundedness in Pres-

ence of FD’s

In this section we will present the main result regarding the detection of 1-houndedness
in presence of FDs. The strategy we employ makes use of the syntactic characterization
developed in Section 1.3 with the following modifications. Firstly. we need to strengthen
the notion of related subgoals to reflect the idea that certain sndv’s do not change hetween
levels | and 2 in Tj, g This is because of F'Ds. (See Example 5.1.1.) Secondly, when 13, 4
is chased. it is possible that two dv’s get equated. We then need to test the containment of

such a tree in T7.

Definition 5.3.1 We call an sndv U occurring in a subgoal arguinent s @ i unchanging
(usndv) provided s : i = 4 : 1 = U, in the chased tree Ty g0 A stdlar de finition applies

c
w.r.l. Trzght .

We finally modify the notion of relatedness as follows.

Definition 5.3.2 We say that two subgoals s 1 of a sirup are related promded the y shaie

an ndv wlich is not unchanging wn the contert of Ty, 10" (Trgne')

Notice that depending on the coutainment that needs to be tested (el © Ty or

Ty’ S T7), the appropriate notion of relatedness should be used.

The next example clarifies tne notion of usndvs and relatedness,

Example 5.3.1 Consider again the hlinear sivap green in Feample 5.1.1 In the sirup ry.
the variable W is an usndv sinee in the resulting chased proof-tree Ty poa:2 = a4 02 =
W. Notice thal, as a result of the chase algorithm, the FD IF = {a: 1—2} makes (all) the
ocenrences of Woin level and 2 equal ie py 22 =py 22 ~pp 23 =pp 3 =a:2 =ap:2

= W. This can be verified using the tree 13, ¢ given in brample 5.1.1.

In addition, none of the subgoals in the sirup is velated lo cither pe or p. (in the sense of

Definition 5..3.22). sinee the only snde contributing to relatedne ss with pe and pe is an usndv,
0

The next example illustrates another complication that can arise when we want to test if

Tip STy
Example 5.3.2 (Demonstrates the casc where two dv's get equated).

Consider the following sirup Q@ and the FD F = {a:1—2}.

o ,')(.\71 \ -\.2. .\';;) J- ((.\'[. .\'2. .\‘;{).
e pCN N X)) - o XS V)L p(Y Y V) (YL XL V).

For this erample also. it can be verified using the syntactic characterization of 1-boundedness
presented i Section §.3.1 that the sivup is not 1-bounded in the abscnee of the FID F. The

respeclive proof-tres s Ty and Ty g are given below for verifications,

l‘g(rl‘l) :])(-\'l- .\"u .\.;;) ;-])(.\'|. .\'3, ‘). [)(.\’1 . .\’2. ‘). (l(.\'],z\—z. ‘/)
vl T g) - pON G Xoo X)) 2= pee(X VOV per (X0 X, V1), ae(X X, 1),
pe(X1 X2 V), a(Xy X2, V).

59

We apply the chas. procedure given iv Mlgorithie 511 whieh vesults in 1y, 5 with the de

Xy equated to Xy,

(T) s POXL X2 X2) = 1 (N0 VD) pr(N N V) (N N V),
pr(X 1 Xa V) a(Np Xa).

Sinee, in this erample two dv's get equate . we have to show that vy(1y, g0) (with the cquated
dv’s) C ro(Ty). 1

The next proposition suggests how .uch containments can he tested.
le)

Proposition 5.3.1 Let Qy and Qy be two conyunctive querics de finmg a prodicate p
(N1vooo o X)) such that the body of Qs contains an cquality of the form N, = XN,. i / j.

Then Q) C Q2 iffox,=x,(Q1) € Q.

Proof. Follows from the observation that for any input Eps D, and any tuple € (D),
i = 1) 3

Our final result outlines the test for 1-boundedness in the presence of FDs. Suppose that
when the proof-tree Ti, ;¢ generated by a bilinear sirup 1Lis chased w.r.t, the given FDs 1
some pair of distinct dv’s X,. .Y, of I get equated. We can rewrite 1 into another sirnp 1
by replacing all occurrences of X, by X, thro .ghout the program (both the resursive rule
and the exit rule). We say that Il' incorporates the effect of the dv’s equated during the

chase of Tj, 74.

Theorem 5.3.1 (Synutactic Characterization of 1-boundedness with FDs)

Let 11 be a bilincar sirup and F a sct of FDs on the ¥nB prodicates of 10 Lot 1 be
the sirup obtained from Il by incorporating the effect of any distinet dv’s that were cqualed
during the chase of Ty, p¢. The -t Ty g S Ty iff W satisfics onc of the Jollowing syntactic

conditions.

1. pr is dv-saving and p; presecroes o very subgoal which is relatod to py.

2. whenever pp has a dondv U occurring avarguments pp: iy, ... pe oy, cither pooprojeels
equal arguinerls of py ine positions §y...., i, or p, has some ndo Voal the posilions
Prt fla. o Pr b bk whenever ppi i ocarrics either a do oor an sndo (which s not a
usndv), p, saves that argument; whencoer pp @ i carvies a usndv, cdher pe i = p. 2

o1 pr . 1 saves that argument.

60

Ao peoand p. salisfy the following conditions:

(a) p, saves cocry dv occurring in peoand pe copies and saves every dv occurring in
Pr-

() pe prescrocs every EdB subgoal related to pg. and

(¢) pe and p; have matching ndv-pattcrns.

Remark: Notice that the syntactic conditions in Theorem 5.3.1 are identical to those in
Theorem 4.3.1 except for a minor modification to the conditions associated with the Partial

switch case. The following example demonstrates the need for this modification.

Example 5.3.3 Consider a bilincar program ¥ and the FD F = {a: 1—2}.

Iy .]l(.\'|, \) ,\':;) Je l(.\'|. \2 .\':;)~ and
ry [)(.\'|, .\-2. .\':;) ’-]l(\| (/, .\'2),])(.\'1 AL \;) (l(.\'l . U)

It can be verified that in the presence of the FD I T © Ty, The eam. (which is
the wdentity mapping !) corresponding to this containment falls in the Partial switch case.

Notice that the usndve U in py 22 is not saved by p.. Instead. U also occurs in p, 2 2. a

Proof of Theorem 5.3.1. Consider first the case where no pair of distinet dv’s gets
equated during the chase of Ty, 5. In this case. the only changes to the characterization of
containment are (i) the way the notion of relatedness is defined and (ii) the modifications
to the conditions corresponding to the partial switch case.. We can justifv these changes
as follows. (i) Suppose s, 1 are any subgoals of the sirup. Suppose the only ndv’s shared by
them are unchanging. Then in any c.m. from Ty to Ty g, s can map to s or 8¢ indepen-
dently of whether 1 maps to { or {;. More precisely. mapping s to s (or s¢) will not exert
any constraint on where ¢ must be mapped. and vice versa. (ii) It is straightforward to see
ihat every c.m. must be an identity on usndv’s. For a c.m. corresponding to the partial
switch case, a usndv {7 occuring in py 2 @ will also occur in p, : ¢ iff the condition 2 in the
theorem is satisfied. Also notice that the only change needed tc account for the effect of
usndv’s on c.nls associated with the Normal cases and the Total switch case is completely
captured by the notion of relatedness, given in Definition 5.3.2. From these observations, it
is straightforward to show that 7y, 5y Cp 1y iff Tj, 1, € Ty (by Theorem 5.1.1)iff TI’ (which

i Il in this case) satislies one of the syntactic conditions (1) - (3) in Theorem 5.3.1.

61

Now. suppose the dv's X, and X, get equated during the chase of Ly g By Proposition
A3 Tyt ST il Ty gt C ox,=x, (1) il Iy generated by 11 3s contained in D (abso
generated by I and chased w.r.t. F). The replacement of X, by X, will affeet the conditions
of whether (i) p, is dv-saving. (11} p, saves the dv's in pe. (i) pe copies and saves the dv's
in pr.and (iv) p, preserves the subgoals related to it. Notice that in 1, pe (p,) saves an
occurrence of X, iff it saves an(y) occurrence of the dv X,. From this it tollows that the
proof-tree Ty, ¢t corresponding to 11" (or equivalently to 1) is contained in the proof-tree

17 corresponding to 11 i 11 satisfies one of the syntactic conditions in Theorem 53,1, 1)

Finally. we will complete the example 5.3.2 by showing, containment ry(ay . v, (Th,) ¢
r{Ty) for the sirup Q.

Example 5.3.4 Continaation of Erample 5.0.2

To show containment in presence of equated s,

Recall the proof-trces Ty and 13, ¢ generated by the sorup Q.

I'z(’l‘l) : [)(.\'|. .\’2. \;) J-])(\1 .\';;. ‘) [)(\| ,\'_:. ‘) ll(.\'|. _3 ‘)
ro(Tiepe) o pCX 1 Noo X)) = pa (N VU V00 e (N X V) ae (Y N),
Pl X No V) a(XN X, L),

Using Proposition 5.3.1, we show that 1y, 10" is contained in Ty proveded the contammenl

mapping my Ay — T gt sends Xy to Xoo Voto Vyand the do’s XX, to wdentity.

The contaimment Ty, 1 C Ty can also be verified using the syntactic conditions of Theoram
5.9.0. The result shows that the sirup Q satisfics the condiions for Partial swideh case from

Tiege to'1. B

5.4 Testing 1-Boundedness

In this section. we shall provide an algorithin for testing I-boundedness of hilinear sirups.
The algorithm is general enongh to be applicable to the case where the Lo input to the
prograin is known to satisfy a set of functional dependencies. The algorithm makes use
of the characterization of Theorem 5.3.1 and 5.1.1. It should be remarked the conditions
in these theorems are always sufficient for bilinear sirups to he L-hounded. They are both

necessary and sufficient when the sirup has no repeated Eng subgoals. We shall show that

62

I} :2 P;:3 Bl p 2 b :3 a:l a:2 a3

r

~

Figure 8: AV-graph representation for the bilinear sirup ¢

the algorithm takes time linear in the size of description of the program. Our result is in
some sense optimal beeause when the EpB subgoals are allowed to repeat the complexity

becomes NP-hard even for linear sirnps [F].

The remainder of the section is organized as follows. The A V-graph representation of the
sirup is deseribed in Section 50101 Some basie notations used in the algorithm are also
introduced in this section. Section 5.-0.2 deseribes the linear time algorithm for the detection

of F-houndedness.

5.4.1 AV-graph Representation of the sirups

Our algorithin mahes nse of a representation of the sirup in the form of an argument /
vartable graph (AV-graph). The notion of AV-graph used here is a minor variant of the one

introdnced by Naughton [20].

Construction of an AV-graph for bilinear sirup : Au A V-graph of a sirup r is a (undi-
rected) graph (/(r) whose nodes are the arguments (of predicates) and variables appearing
in the body of ro (/(r) contains an edge (s : 1. 7). For an argument s : ¢ and a variable 7

Just in case Z appears in the argument s @i is r's body.

It follows from the construction of the AV-graph that it takes no more than linear time in

the size of the sirup.

Example 5.4.1 Considor the following sirap ¢, consisting of the rules
ro AN N0 NG - (VLN YY) and

63

P pt N NN - e NG D (N VN) (N N).

The XV-graph representation of « as shown by Fig. .

We will introdnee some simple votations which will be used in the algorithm. We denote
by sndres(s) the set of sndv’s (which are not uswdv’s) appearing in the subgoal s. The set
containing all the sndvas present in the sirup is labelled by snde — st We represent the sel

of subgoals related to p, as rel(py).

5.4.2 Linear time Algorithm for Testing 1-boundedness

In this section we shall give an algoritlum which will test if o given nonlinear sirup is 1
bounded in time Lincar in the size of the sivup. This is quite significant since in general
testing, 1-boundedness is NP-hard even for linear situps. To our knowledge ours is the first

positive (7.e linear time) result on I-boundedness of nonlinear sirups.

Before presenting the algorithm. a note concerning its use. a bilinear sirnp is to he tested
for I-bonndedness. then Algorithm 5,011 can be applied directly. In this case, the set of
usndv’s (considered throughout the algorithm) is taken to be empty. If the objective is to
test 1-boundedness relative to i set of F'Ds on the EpB predicates of the sirnp, then we first
chase the sirnp as well as the proof trees Ty go and T, ppe nsing, Algorithm 5,20 Notice that
Algorithm 5.2 identifies the usndv’s in the situp hody w.r.at. each of the proof trees 1, 4

and Trpypt-

We next present the algorithm in schematice form.

Algorithm 5.4.1 (Testing bilinear sirups for 1-boundedness)

Input: A bilincar sirup v of the form
X X)) (L Uw)e cocag (Vi VD)o pY o Yo pOW o W) -
gether with ar crit rule p(Xy, V) -e(Xyo ool Y.

The sirup r es vepresented in the form of an AV-graph (:(r).

Output: A deciston as to whether the above program is 1-bounded.

61

Method: Test cacl of the conditions o the Theorem 5.3 0w d. the contammment 1y, ;0 C Ty
Sinmlurly test the condittons corresponding o Ty, C Ty The program o 1-bounded

tf both le sls suceced.
begin
“First test if 1., C 1,7

Step (0) Initialize the flags: vormal := trac: partial_swtel = truc: total_switeh := trae:
/t These flugs keep track of which of the conditions i Theorem 5.3.1 of any, apply
Jor the contammand 1,70 C 1y They will be updated and inspected e oontually. */

Step (1)
1.1) Identify dndv’s and sndv’s
for rach ndr V do
if (Vi) (Vij)e Gir) and s # 1
/Y e Voappears in two diffe rent subgoal arquinents */
then V' is a sndp
else it s a dndr.
end {for}
Lrelude from the sudv-set any ndv classified as usndve by Agorithm 5.2
(if appplicable).
1.2)) Identify subgoals related to p, and p, :
Tuitiadize vel(ps) o be cmpty:
hutialize S to sndes(pe):
Initiadly all nodes and edges of G{r) arc unmarked:
repeat
while 5 # o do
pick any snde Voin S:
for cach unmarked edge (V.s:i) € G(r) do
mark this cdge:
relip,) == rel(pe) U {s}:
5 = SU sndv's(s)
end {for}:
dedete V' from S:
end {while}:
until (no change to rel(p,) or (S = ¢):

Smmlovly, compute rd(p,), the set of subgoals related to p,:

Step (2) Test the conditions for the Normal Case (i) and (ii):

foreach dr X, do

forcach edge (X,. s2j) € G(r) do
if s=p, or ~ € rdd(p,) then
ifpo:v £\, then
normal = false:

end {for}

end {for}

if normal then goto Step(6):

Step (3) Test the conditions for the Partinl Switch Case:

for cach arqument p, 210 of p; do
Let py ot carey the variable 7
il Z ts a de or sndv then
begin
if p, 11 # ade then
partial_switelt = false;
else if p, 11 = Xy and p, - k # 7 then
partial switeh 1= false:
end
else if / 15 a usndv then
hegin
if p. : 1 # Z then
if p. : 1 # a dv then
partial switeh = false:
else if p, :i = Xy and p, . 1 # 7 then
partial switeh = false:
cnd
else /* in this casc. Z is a dude t/
begin
Let Sy = A{priay..... peocig) be the sot of all arquiments
of pe where Z appears:
Test if eether
(a) an identical ndve, say Woappears in all coriesponding

arquine nls of p. or

66

(h) for each i, € {iy.....i}.
pe i, carrics a dv Xi. where (e {1

if neither is true then partial switeh
e nd

end {for}

= false:

if partial _switeh then golo Step(6)
Step (1) Test the conditions for the Total Switch Case

4.1) Test if pposaves the do's inp; :
for cach dv X, do
tf 3 an edge of the form (X,.ps
if p. 1 j # a dvthen
total _suiteh = false;

: j) € G(r) then

else if p,: j = Xy and py . k # X, then
total _switeh = false;
end {for}

4.2) Test if pr copics and saves coery doin p,

for cach dv X, do

if 3 an cdge of the form (X,, pr : j) € G(r) then

if [V edge of the form (X, pr:j) € G(r) :pe:j # Xi] then
total_switeh = false:
end for

4.2) Test whether pp preserves cvery subgoal related to it;
Simnilar to Step (2).
4.4) Test if pe and p. have matching ndv-patterns:
(a) Test if p, matches pe’s dv-patierns:
for cach ndv U appearing in ps : i do
if (' is a dudo then
begin
Let V obe the variable occuring in p,. @ i:
if V' is not a dnde then
total _switch = false:
for cach edge (U.pe: k) € G(r) do
if (Vip,:h) & G(r) then
total_switch := false;

-

67

end {for}
end
else if {" is a sndv then
if U appears in an £by subgoal then
begin
for cach edge (U.py: k) € G(r)do
if p, : & # U then
folal switeh = false;
end {for}
end
else /* U is a sndv not appearing in an Loy subyoul */
begin
if p, 11 # asndv then
total _switeh = false:
else
begin
Let poi =V,
if V oappears in s then
total_switeh = false;
else
be gin
for cach edge (U, pr: k) € G(r) do
if p, : & # Vithen
total _switeh = false;
end {for}
for cach edge (Vipe 2 k) € (1) do
if p, i I # U/ then
total_switeh = false;
end {for}
e nid
end

(h) Similarly, Test if pe malehes p.’s matehing ndo-patterns:

Step (5) if normndl, partial switch, or total_switeh is true then conelude Ty, 7 © T else

return ("programn is not 1-bounded”).

(8

Step (6) Perform the tests corresponding lo the containment Tryne C Tho of both contain-

ments hold, conelude the prograrm is [-bounded.

end.

As seen in Algorithin 5.1.1, we have adapted the conditions given in Theorem 5.3.1 into an
clegant, algorithm, The AV-graph representation of the sirup used in the algorithm makes a
useful contribution to the actual efficieney of the computation. Since our characterization
is based on identifying the syntactic properties of the sirup, the data structure provided by

the AV-graph makes the traversal of node and arguments quite efficient.

NO'TES: Afterinitializing the 3 flags corresponding to Normal case, Partial case, and Total
case in Step (0), we constriuet the set snde — set to identify the sndvs present in the sirup.
Those ndvs which are not present in sndp — set are dndvs. Remark that if FDs are given
then the modified definition of related (as given in Definition 5.3.2) should be used. The
purpose of the exercise to construct the sndv — sel is to identify which are the sndvs which
contribute to relatedness to pe in Step 1.2, Before, the syntactic conditions corresponding to
the 3 cases can be applied directly, we need to identify the subgoals which are related to pr.
Step 1.2 performs this computation. Using the constructed set sndv — set(py). it traverses
the edges corresponding to each sndv present in sndvs(py) and at the same time adds the
subgoals which are visited during the traversal to rel(pr) to represent those subgoals which

are related to pp.

Step (2) tests for the condition for Normal case. For each dv X, present in p; or in the
snbgoals related to pe, it is checned whether pe saves that X; or not. In this way the

condition for dv-saving and subgoal preservation is verified.

Step(3) For each argument position 7 in pe, if ps:iis a dv or a sndv, then the condition
for partial switch case in the algorithm verifies that p, : { saves that argument. As given in

Thereom 5.3.1, the check for dndvs is also performed.
Step(1) verifies various conditions with respect to Total Switch case.

Step (5) Checks the value of the flag whether one of the three containments holds or not

i.e 13,0 € 1. The algorithm is aborted in case the containment Ty, C Ty fails the tests.
Step (6) is performed when the containment for Ti.y C Ty has tested positive from previous

69

step. In Step (6) thes test for Normal, Partial and Total Switch case is done for the direction
Tru/h! - Tl-

Conclusion: The sirup is declared -bounded iff both containments hold.

We next have

Theorem 5.4.1 Algorithm 5.0.1 correetly detcrmenes if a bilincar sorup s -bounded. It

runs ine time linear in the sizc of the sirup.

Proof. The correctness is a direct consequence of Theorems 5.3.1 and 5.1.1. We shall
show that the time complexity is proportional to the number of edges in the AV graph of
the sirup. Since this latter number is inear in the sirup size, the result will follow. Step
0 is trivial. Step L1 takes time proportional to the sum of degrees of the ndv nodes of
G(r). This in turnis upper bounded by the number of edges in ((r). Step 1.2 takes time
proportional to the sum of degrees of the sndv nodes in (/(r). Step 2 takes no more time
than the sum of degrees of the dv’s of the sirup r. The time for Step 3 is the number of
arguments of pe times the time spent for each argument. If the argument carries a dv or
an sndv. the time spent is constant. Il it is a dudv, the time spent is proportional to the
degree of this node in (7(r). Thus, the overall time for Step 3 is upper bounded by the
mar{n, Ly is o dudodeg(V)}, where nis the arity of p. Steps 1.1 and 1.2 take time no more
than proportional to the sum of degrees of the dv nodes in ((r). Step L3 is very similar
to Step 2 and has an identical upper bound on the time. For Step 4.1, each of (a) and (b)
take time at most proportional to the sumn of degrees of nodes corresponding, to the ndv's
appearing in pr and p.. The remaining steps are trivial. Step 6 corresponds to a similar
test for the other direction of containment. Since no step of the algorithm takes more than

O(n) time, Algorithm 5.<0.1 has a time complexity O(n). [

70

Chapter 6
Stage Preserving Linearizability

The issue of linearization has been studied earlier in the literature. However, the focus
has been to linearize programs without much concern with the evaluation efficiency of
the resulting, lincar program. In this chapter, we focus our attention to the study of a
linearization technique which is based on the idea that the resulting linear programs should

not increase the amount of work done to evaluate the programs.

We study the problem of Stage Preserving Linearization (sp-linearization) for a class of
bilincar sirups with multiple (but distint) £pBs. The linearization techuique we propose in
this chapter is based on proof-tree transformations technique. We identify 6 different kinds
of proof-tree transformations which lead to sp-linearized programs. Using these transforma-
tions we are able to identify several unique class of programs as linearizable. Such equivalent

linear programs caunot be obtained using previously known techniques.

The organization of this chapter is as follows. In Section 6.1 we will formally introduce the
notion of Stage Preserving Linearization. The associated proof-tree transformations will
be presented in Section 6.2, In Section 6.3 we include an informal comparison between sp-
linearization with ZYT-linearization. This section will also be supplemented with arguments
supporting the conjecture that the work done per iteration is much less with sp-linearized
programs, than those obtained via other linearization technigue<. We wil! conclude with a

short summary of this chapter.

Remark: With respect to the study of Stage preserving Linearization we have developed

svatactic conditions (corresponding to the different kinds of proof transformations) and also

a polynomial time algorithin. These contributions are bevond the scope of this thesis. The

complete results regarding the Stage preserving Linearizability appear in [17], [15).

6.1 Introduction

Before we can formally define Stage Preserving Linearization., we need to introduce the

following terms. Recall the least fixpoint semantices introduced in Chapter 1.

Definition 6.1.1 The stage of a tuple in a bottom-up firpoint evaluation is the nnmmum
numbe r of iterations needed to produce that tuple. By the closure ordinal of « program 1

w.rd. D owe mean the smallest m such that 1NM(D) = 11 D).

Remark: In this paper, we will consider semi-naive evaluation as our basic model of evalu-

ation for defining the stage.

Informally, Stage Preserving Linearization (sp-linearization) means that the nonlinear pro
gram can be replaced by an equivaleni linear program without increase the stage of each

derived tupl- 1. to a bottom-up fixpoint evaluation.

The formal definition of Stage Preserving Linearizaiion follows.

Definition 6.1.2 Let 11 be any program and X be any cquivalent lincar progrean oblamed
Jrom .o as a result of any proof-tree transformation. Theon we say thal this ransformation
preserves stages provided for every derived tuple p(l), s stage w.rd, Y and D s no maore
than its stage w.r.t. W and D. In particular. when a lincarizalion prescrocs stages, e
say that it is stage preserving and that the original non-linear program s stage preserving,

linearizable (sp-linearizable).

Notice that the definition of sp-lincarizability does not iimpose any restrictions on the form
of the equivalent program X. In particular it does not say anything about the number of
rules in X, We will exploit this point in the next section to demonstrate, that the original
nonlinear (sp-linearizable) could be equivalent 10 one of the four different Kinds of sp-linear
programs, depending on the particular type(s) of proof-tree transformation(s) involved w.r.t

that nonlinear program.

72

Example 6.1.1 Conside > the followmg nonlnecar sirup R.

I'y! [I(.\'| s .X’z. .\.';) - ('\'l . .\'2, .X';).
DX X2 Xo) o a(ll X)) b(X 1. X2). e(3W. X), plX 1 VoW) p(X UL Xy).

This program is not equivalent to any lincar program oblainable using the well-known ZYT-

Lnearization teehnique, o.q., the programs {ry, ri-left} and rg,vy-right}y corvesponding to
y 0 " g 0: 7Tt !

program R. Howevcr, ol can be shown using the results of this paper that this program s

sp-lincarizable ai:d is cquivalent to the following Uncar program §.

ry. [)('\'lv .\'2. .\'3) J- l(.\—|. .'\'2, .\';g).
Fr-loft: pOX 1, Nao X)) o a(U0 X)) 00X X)) e(WV, X)), (X, VW) p(UX, UL X))
ry-right: p(X1..X, X)) - a(lT, X)), (X, X))o e(WW, X))o pOX 0V) e (Y U, X))

Four different kinds of Sp-linear Programs

Let us consider the four types of linear programs which can be derived from the original
program . Reeall that sp-lincarizability of P involves being (stage-)equivalent to not one
fixed type of linear progiam but to one of a number of possible linear programs. depending,

on the conditions satisfied by P.
Consider a bilinear sirnp P, given in schematic form:

P={r0: p = ¢
reeopoi— peproaloo. ak}.

We first identify these linear programs and state when P can be expected to be cquivalent

to each linear program.

(l) (),,,’[” = {,‘() . P - (;
"Iln,ht: P - v'».,”-_”l‘..”ul‘.}.
() Quy =A{r0: p - «

Pl poi—= pogaloo ak}.
;)(s,)ruuul:{l'()i p =«

I.lr,_:/hl: D v - '«"[".‘”l""v(l,f:
rligc: pot= pleali . ak}.

(4) quuash = {70 o pL— el

rlr,yhl : p - (;‘.])r.(ll.....(ll\'I
rligger p o= pioepialol ak:
Tlyquask © Pt — proal.o .ak} where pr is obtained from p; and p,.

It has been shown in [17]. [15] that a nonlinear program P is sn-lincarizable il it is equivalent

to one of the four types of linear programs listed above.

We say that P is right-limearizable if it is eqquvalant to the linear program Q, ,n,. Similarly
we say P is left-lincarizable if it is lincarizable using, the program Qy sr. Certain kinds of
sp-linear programs contain both the left-linear as well as right-linear rules. Such tvpes of
linear programs are called mixed-linear. The program Q4.4 is an examplc of such a linear
program. In this case. we say that P2 is mired-lincarizable. Finally, if P is equivalent to

Qsquash then we cay Pis squash-lincarizable.

An example of Squash-linearizable program is given next.

Example 6.1.2 (Squash-lincarizable Prograim)

r0: eor(P,C, D) - com(P,C, D).
rl:er(P,C, D) -ert POEEY, pre(F.C), eor(P.GU Y, pre(H, DY,

Here the (erit) predicate com(P.C, D) says thai I’ s an tmacdiate prevagquisite to ol €7
and D; the predicate pre(F, (") states that I is an oncdiale prorvequisite 1o C; finally, the
recursive predicate e_r(P.C, D) asserts that P s a common prercquisile to the courses ¢
and D. This program is a non-linear (bilincar) serup. 1t can be shown wsing the toehnwgue

devcloped in this paper that tus program s cquvalent Lo the followng linear programe Q.

rO; e_r(P.C, DY - com(P.C.D).

Plighe: ecr(P,COD) - com(Pole, 1) pre(ECYoee(CP GO, pre(IE, D).

rlges er(PC DY - eor(POEE), pre(l, Cyocom (PG, pre(l, D).

rloguash: r(P.C DY - eor(PolEI), pre(FC) o pre(HL D).]

Notice in particular the rule vl 0o, and the recursive predicate er(PO, We say that
c_r (P, E,) is obtained by “squashing” together eor (P, R F)and eo(P G0) in the body

of the original rule ry.

p p
/\ |
Pi/\ pl/?\ ; /\p / \

Figure 9: (a) The bad tree Ty () Shows good trees

P,
/\ /\
Pu Dir Pri P

*

"he nonlinear program given in Example 6.1.2 is squash-linearizable whereas the program

given in Example 6.1.1 is mixed-linearizable,

6.2 Proof Tree Transformations associated with Sp-linear-

izability

In this section we will identify the different types of proof-tree transformations which lead to
sp-linearzable programs. Proof tree transformations play a central role in Stage Preserving
Linearization. In order to lincarize an arbitrary nonlinear tree T,,,. a transformation rule
I'— 1" must satisfy the following two conditions. as shown in [21]: (i) 7 C 77 (i) it should be
possible to transform an arbitiary tree 75, into a linear tree by finitely many applications
of the rule I'— 7. Condition (i) makes sure that there is a valid mapping from 77 to T.
with the result that the set of tuples which could be derived using T could equivalently be
derived using, I, Condition (ii) checks the finiteness of the tree transformation procedure

e it imposes a condition to discourage transformation rules from reproducing previously

st

obtained trees again.

Recall from Chapter 3 (Section 3.5) various proof-tree transformations and the notion of
good and bad trees. In this section. we will identity the set of good trees which lead to
a stage preserving transformation. ig. 9 shows the good and the bad trees wat 1o Sp
linearization. Notice that we consider the tree s as a bad trees o represents non lineanty
since hoth the recursive predicates have been expanded further using the recursive rule.
The criteria to lind “good tree™ are quite simple. "Good tree™ represent the set of all those
trees which (i) are linear (i) are “stage preserving™ with respect to the original nounlinear
tree 15,

The set of lincar trees which could be obtained from Iy conld be either a one level tree o
it may have 2-levels. Within the one-level trees the only possibility is a tree of the form
1. .\ tree of the form Iy trivially satisfies the above 2 conditions. With respeet 1o linear
two-level trees a “good tree”™ will represent a tree with maximum one recursive predicate
expanded. The different types of proof-trees which falls undor this category ae @ (1) The
right Tinear tree Trpypy. (2) The left linear tree Iy, ¢ (3) Squash-hinear trees 1t can he veritied
that cach of these trees is linear in nature: and they are “stage preserving™ sinee the height

of these trees is equal or less than that of 1.

Fig. 10 is intended 1o serve as representative example of proofteee transiormation w.r.

sp-linearization.

6.3 Comparison

[n this section we shall do an imformal comparison between Stage preserving Linearization

and the well known linearization techunique, ZY T linecarization.

Recall from Chapter 1. Section 1. that ZY°T Lnearization is o spedific way ol lincarizing,
nonlinear recursive programs. by replacing exactly one of the recursive subgoals of the sitap
with an exit predicate. The class of nonlinear programs for which the 2YT technigque is ap

licable consists of bilinear sir ith single 1 although this wi bsequently extended
plicable consists of bilinear sirups with single Eon. al'honugh this was subsequently extenda
to multiple EDB subgoals. However. in our case we consider o larger cluss of programs, «on
sisting of bilinear sirup: with multiple (but distinet) oss. ZYT-lincarization techuigue ises
only ihree different kinds of proof-tree transformations to linearize progriams. In compari

son. the scope of our result is much broader in the sense that we consider 4 diflerent types

T6

3 P

/pl\ /pr\ ¢
3 /\
7] Pu Pu P P” prr
(a)
C_nP.C,D)
C_vP,EF) P(E.,C) p(H.D) C_r(P,G,H)

C_«(P.EILFl) pEIl.E) pHILF) C_n(P,GIl.HI) ﬂ\\

C_r(P.E2,F2) p(E2,G) p(H.G2) C_r(P, G2,H2)
(b)

C_r(P,C.D)

C_r(P.EH) pE.C) p(HD)

C_r(P.EL.F1) pELl.E) p(H2,H) C_r(P.G2,H2)

(©)

Figure 10: (a) Squash Transformation. (b).(¢) T2 and Tyy,q,n W.r.t to Example 6.1.2

An example of Non-Sp. linearizable program

p(X.Y) p(X.Y)

N
p(X,U) p(U.Y) e(X, Ul pULY)

N\

c(ULLU) p(U.Y)
p(X,Ul) p(UlL,U) p(U,U2" p(U2,Y) /\

e(U,U2) p(U2.Y)

e(U2)Y)

e(X,Ul) e(UL,U) e(U,U2) e(U2)Y)

Figure 1t: Showing ithe tree transformation w.r.t ‘Transitive closure program

of proof-tree transformations. Corresponding to these tranformations | diflerent kinds of

linear programs can be obtained.

The study of stage preserving linearizability has been a great challenge and has led to
the discovery of programs which cannot be identified nsing previonsly known techuiques of

linearization (¢.¢g.mixed-linecar and squash linear program..).

Finally. for every nonlinear sirup I for which an equivalent sp-lincar program M is obtained,
it can be shown that for an arbitrary input database (edb) Do the stuge of each derived
tuple when the program 1 is evaluated on D is no more than its stage when I is evalnated
on D. We refer to this aspect by sayving that the stage is preserved by this linearization
technique. In contrast. a technigne such as ZY'F-lincarization does not preserve the stape
in general. F.g.. when the bilinear transitive closure program {ro 00NN ,) 0 (X Xy),
ry XL XY) - (XL Z) 020X ,)) s transtormed into its Tinear equivatent {ry 10X\)
=X X rpleft (XX ,) - e (XL Z) H(Z0 X)) this transtormation does not preserve
the stage of every derived tuple lor ¢ Indeed. the stage of a derived taple based on (semi
naive evaluation of) the linear program for transitive closure can be as Jong as the lenpth
of the longest path whereas for the non-linear version, the fixpoint will be reached in oa
logarithm of this length. Thus. measured from the stage of a tuple derived using the non
linear program. there can be an exponential increase i the stage of that tuple when it s

derived nsing the linear program for trausitive closure.

™

Example 6.3.1 The wdll-kuown transiiee elosure program falls under the category of ZY T-
lincarized programs. For a trce of height 20 we llustrate using Fig. 11 that the resulting

transformed trce has a greater haght. o

We shall now give an informal argument to show that each iteration based on the sp-
linearized program 1., involves less work than a similar iteration based on a original
nonlinear program . More specifically. we will show that the number of iterations needed
to reach a fixpoint using 1,1, is less than or equal to the munber of iterations needed nsing
Il (See footnote V) For clarity, we shall present the argument nsing the example programs
P and Q. The ideas can be generalized to an arbitrary non-linear sirup which is linearized
nsing our technique. Using appropriate abbreviations and using a generie notation for joins
and projections. we can express the computation inside the loop of a bottom-up iteration
hased on P and Q as follows. We shall assume a semi-naive evaluation model for both.
for convenience. (Reeall the processing involved in semi-naive evaluation: Starting with
a relation obtained using the exit rule; the recursive rule is fired repeatedly. new tuples
generated are added to the result. This process continues until no new tuples can be

obtained.)

In the expresion below, Step(1) represents the processing involved to derive new tuples.

whereas Step(2) keeps the updated result of all the tuples generated so far.
Bottom-up iteration based on P:

(DACR:=7[(CRea Poa ACRoa P)U(AC R PoaCRea P)| = CLR,;
(2) = C_RUANCI:

Here, we understand the arguments of projection and join implicitly (as suggested by the
riles in the corresponding program) since they are inessential to our analysts. We can

rewrite the above computation into the following equivalent one:

ACR:= 7[(Coa Pra MO R o P)U ((CR = () ea P e AC LR va P)U
(AC R PoaC o PYWU (AC R P a(CR=C)a P)) - CLR:
C.R:=C_RUAC_E:

We will refer to the four components in the expression for AC_R above as C'y,....Cy

respectivelv, Now, the computation in the bottom-up iteration loop based on Q can be

"Formally, this means that the closure ordinal of H s < the closure ordinal of 11, w.r.t. every input
database D

expressed as follows:

ACRK == 7[(Cea £ 00 ACR 0a PRYU(ACR 0 PR a3 Coea PO (XC R 3 PR e
PR)-C.R: C.R:=C.RUAC_R:

We will refer to the three components in the expression for XC.R avove as Dy, D, D,
respectively. Now. Dy Dy are identical to 'y Cy respectively. Thus it remains 1o compare
the complexity of Dy with that of of (U (. Under typical assumptions, it can be shown

that the complexity Dy is much less than that of (1, Uy,

Finally, we will see that every non-linear sivup {ro. i} that is linearized by oni technigne is
replaced by a subset of the rules {rgori-left. ri-rights rp-squash}. Since stage is preserved,
the total number of iterations needed by the transtormed program to evaluate auy query
is no mcre than needed by the original non-linear program. By the argument above, the
amount of work done in each iteration based on the linear program is less than the per
iteration work done by the non-linear program. Thus, lincarization while preserving the

stage achieves significant savings in the cost of query evaluation.

Conclusion: It was shown that a linearization that preserves stages achieves a substantial
improvement in query processing efficiency without the aid of additional techniques during,
evaluation. Finally, several techniques developed for mixed lincar recursions [22, 13 can be

taken advantage of when evaluating specific queries against the transformed linear program.

In conclusion. we remark that ZY T-linearization and Sp-linearization ofler complementary
(and overlapping) ways of linearing nonlinear sirups, and implementations can take advan

tage of both.

6.4 Summary

In this section we introduced the fundamental notions regaading Stage Preserving Lin
earization. The main idea behind the stage preservition was briefed. Relevant prool tree
transformations were identified. Using varions examples we showed the different kinds of
sp-linear programs that could result using our technique. We showed that stage preserving,
linearization results in significant improvement in the evalwation efficiency. An informal

comparision was also done between sp-lincarization and Z2Y'T linearization.

Chapter 7

Concluding Remarks and Future

Research

Important forms of query optimization in deductive databases are based on recognizing
whether the recnrsion in a query program is essential. If it is not, and if this can be rec-
ognized, then the gquery program can be replacerd by an equivalent non-recursive program,
which can be subsequently optimized using the powerful optimization techniques developed
for relational databases. In this thesis we focused on oue such optimization technique, 1-
boundedness. In addition. a brief introduction to a novel technique of linearization was
also addressed. Our contribution included a syntactic characterization and a linear time
algorithm for the recognizing 1-bounded bilinear sirups (with or without functional depen-
dencies) We also identified the relevant proof-tree transformation - for both I-boundedness
and sp-linearizability. We also established the advantages of sp-linearization compared with

previonsly studied linearization techuiques such as ZY T-linearization.

7.1 Future Research

There are several open directious to pursue in order to extend the optimization problems
we have studied. It would be interesting to investigate the following problems relevant to
bonndeduess in future. (1) FDs constitute only one source of semantic knowledge. How can
we take advantage of other integrity constraints and extend the results into a general scheme

for semantic query optimization? (2) In the literature, positive results on (k-)boundedness

31

have mostly concentrated on single recursive rule programs. Ao important question there
fore is how this theory can be extended to programs with many recursive rules. (3) What
can we say about 2-boundeduess (more generally k-bonndeduness) ol bilinear sirups? An
interesting start to look into the solution of this problem would to use the insights and

hnowledge gained from the study of I-boundeduess. to characterize h boundedness for k-

L.

In the direction of extending the work on lincarization, further researeh areas inel, les the
possibility of lincarization of higher order recursions. aud the lincarization of programs
with multiple recursive rules. Several interesting problems remain open which are specilic
to sp-linearization: (1) Can we characterize bilinear recursions which can be linearized nsing,
mixed lincar rules (without necessarily preserving stages)? (3) Can we acconnt for the eflect
of semantic knowledge in the form of integrity constraints (c.g. functional dependencies) in

recognizing sp-linearizability?”

It is our hope that the framework of proof tree transformations studied o this thesis will

offer a useful tool with which such optimization problems can be attacked.

X2

Bibliography

[1] Abitebounl. Serge and Hull, Richard. Data functions. datalog and negation. SIGMOD.

(2]

03]

[1]

5]

[6]

[9]

Iite rnational Conforcnee on Managament of Data, 17(13):1 13 153, September 1988.

Aho. AV. Hoperoft, J.E.. and Ullman. J.D. The design and analysis of computer

alyorithms. Reading, Mass.; Don Mills. Ont.: Addison-Wesley Pub. Co.. 1971,

Bancillion, F. and Ramakrishnau. R, An amateur’s introduction to recursive query-
processing, strategios. In Proc. ACM SIGMOD International Conferenec on Manage -

menl of Data, pages 16 52, 1986.

Cerio S., Gottlob, G.oand Tanca. L. What vou always wanted 1o know about datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Enginec ring.

[(1). March 1989,

Ceri, 5., Gottlob, G, and Tanca. L. Logie programming and Dalabases. Berlin, New

York: Springer-Verlag., 1990.

Chandra. ALK and Merlin. P.ML. Optimal implementation of conjunctive queries in
relational databases. In Proc. 9th Annual ACM Symp. on the Theory of Computing.

pages 77 90, 1977,

Gaifman, Hoo Mairson. H.. Sagive Y. and Vardi. M.Y. Undecidable optimization prob-
lems for database logic programs. Techuical report, IBM Research Report RJ H583

(76702), Yorktown Heights. New York.. April 3 1987,

Hernandez. Hectoro J.o Gonzalez, Nugustin, and Lakshmanan. Laks V.S, Testing im-
plications of functional dependencies in linear sirnps. Technical report. Coucordia

University, Montreal, Canada. December 1991,

Hillebrand., G.G.. Matrson. H.G., and Vardi. M.Y. Tools for datalog boundedness. In
Proc. ACM symp. PODS, pages 1 12, 1991.

83

[10]

[11]

[12]

[13]

[14]

[15)

[16]

[18]

[19]

[20]

21]

loannidis. Y.E. A time bound on the materialization of some recursively defined views.

In Proe. 11th Int. Conf. of Very Large Data Bases, pages 210 226, 1985,
pag

Kanellakis. P. Logic programming and parallel complexity. In Foundations of Dedue-
tive Databases and Logic Programming. pages 517 386, TISK,). Minker ed., Morgan

Khaufmann.

Kanellakis. P.and Abiteboul. S. Database theory colnmn: Decdiding bounded recursion

in database logic programs. SIGACT News, 2001):17 23, 1989,

Kemp. D.B.. Ramamohanarao. k.. and Somogyi. 7. Right-, left- and multi-linear rule
transformations that maintain context information. In Proc. (6th VLD Conf., pages
235212, 1989,

Lakshmanan. Laks V.S, and Hernandez, . Structural query optimization: .\ nuilorm
framework for semantic query optimization in deductive databases. o Proe, 1M

Symp. PODS. pages 102 1011 Denver, ('O, 1991,

Lakshmanan. L.V.S.. Ashrafl, K.. and Han. J. Homomorphic trees embeddings and their

applications to recursive program optimization, July 1993, Submitted to a technieal

journal,

Lakshmanan, L.V.S and Ashrafl. Karima. Detecting -bonndedness of non hineas
database logic programs in linear fime. January 1991, Submitted toa technical jonimal,

Revised in July 1995,

Lakshmanan. L.V.S.. Ashraf, Karima. and Han, Jiawei. Homomorphic tree embed
dings and their applications to recursive program optimization. o Sth Aunaal TEEL

Symposwumn on Logie in Compulcr Sercnee (LICS) pages 341 3530 1993,

Llovd. J. W. Foundations of Logic Programming. Springer Verlag, second edition,
1987.

Maier. D, The Theory of Relational Databases, Computer Science Pross. Rockville,
Maryvland, 1983,

Nanghton. J.F. Data independent recursion in deductive databases, T Proe 5t ACH

Symp. PODS. pages 267 279, 1956,

Naughton. J.F. Redundancy in function free recursive inference tnles. In Proe. of the

IEEE Symposium on Logic Programiing. 1956,

¥l

[22] Nanghton. J.F., Ramakrishnan, R.. Sagiv. Y., and Ullman. J.D. Efficient evaluation
of right-. left-. and multi-linear rules In Proe. ACM SIGMOD 89 International Con-
Jorcnee on Manage e nt of Data, pages 380 391, 1990,

(23] Premchand Sakumaran. Nair. Optimization of Logie Queries in Knowledge Base Sys-
tems, PhD thesis, Departinent of Computer Science. Concordia University. Montreal.

Quebec, Canada, 1989,

[21] Ramakrishnan. R., Sagiv. Y., Ullman. J.D.. and Vardi. M. Proof-tree transformation

theorems and their applications. In Proe. 8th ACM Symp. PODS. pages 172-181. 1989,

[25] Sagiv. Y. On optimizing datalog programs. In Proc. 6th ACM SIGACT-SIGAMOD-
SIGART Symp. on Principles of Database Systems. 1987,

[26] Saraiya, Y. Linearizing nonlinear recursions in polynomial-time. In Proe. 8th ACM
SIGACT-SIGMOD-SIGACT Symp. of Principles of Database Systems. pages 182-189,
F989.

[27] Saraiva. Y. Poivnomial-time program transformations in deductive databases. In
Proc. 9th ACM SIGACT-SIGMOD-SIGCACT Symp. on Prineiples of Database Systems.
pages 132 11 1990,

[2%] Ulhman, J.D. Prineples of Database and Knowledge - Base Syste ms, volume 1. Computer

Science Press, Maryland, 1989,

[29] Ulhman, J.D. Principles of Database and Knowledge - Base Systems. volume 11 Com-

puter Science Press, Maryland, 1989.

[30] Vardi. M.Y. Decidability and undecidability cesults for boundedness of linear recur-
sive queries, In Proe. 7th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 341 351, 1938.

[31] Wood. P.T. Syntactic characterizations of 1-bounded datalog programs. In Interna-

tional Confervence on Deductive and Objeet-Oriented Databases. 1991,

[32] Zhang. W.. Yu, C.T., and Troy. D. Necessary and sufficient conditions to linearize
doubly recursive programs in logic databases. ACM Transactions on Database Systems.

pages 271 2030 1990.

5

-~

