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Abstract

Regional Projection Transformation and Its Systolic
Implementations

Xiang Cheng

One difficulty in making pattern recognition systems practically feasible, and
hence more popularly used, is the requirement of computation time. Most pattern
recognition algorithms have been regarded computationally expensive. Parallel pro-
cessing has been used as an effective way to solve this problem. With the advance
of VLSI technology, it is possible to put thousands of electronic components on one
silicon chip. This not only reduces the cost of processors, and increases the commu-
nication speed, but also makes immense impact on the algorithm design. It requires
algorithm designer to take full advantage of pipelining and parallelism provided by
VLSI architecture in algorithm design in order to reduce computation time. Such
VLSI oriented algorithm design has been applied to a wide range of areas including
pattern recognition. Numerous parallel algorithms and VLSI architectures have been
proposed to solve various problems in pattern recognition.

Feature extraction plays an important role in pattern recognition system design.
In order to improve the system performance, various feature extraction approaches
have been proposed and widely used in pattern recognition. However, these ap-
proaches still encounter great difficulty in dealing with multicontour patterns includ-
ing compound patterns and patterns with holes in them.

In this thesis, a new approach called regional projection transformation (RPT) is
proposed to solve these kind of problems. This approach simplifies the recognition
of an image by transforming it into an integral object. It is very useful in processing
patterns containing unconnected patterns, patterns with isolated noises or patterns
with internal contours.

iii




To further reduce the computation time, a parallel regional projection transfor-
mation is presented. Its implementations on different systolic architectures are also
studied. The proposed parallel regional projection transformation has time complex-
ity of O(N) compared with O(N?) of the sequential RPT approach.

Experiments show that quality of features extracted by RPT is better than other
approaches in processing multicontour patterns. Encouraging results have also been

achieved when this approach is used to recognize Chinese characters mixed with
English characters and numerals.

iv
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Chapter 1
Introduction

In most applications of recognition technology, the dimensionality of feature space
tends to ve very large. The number of dimensions may be up to several hundreds.
This great dimensionality is a major cause of the cost and practical limitations of
recognition technology. Consequently, the selection of a stable and representative
set of features, and the reduction of the dimensionality of the feature space play an
important role in recognition system design. It not only affects the system recogni-
tion rate, but also the system efficiency. Feature extraction is one of the techniques
to overcome these problems. Feature extraction reduces the dimensionality of fea-
ture space by concentrating the information in the image into a few highly selective
features. It finds wide applications in pattern recognition, computer vision, image
processing and other areas.

According to the manner in which features are derived, feature extraction methods
can be classified into three categories: local feature method, global feature method
and structure feature method. Local feature method uses the limited extent of the
region to compute each feature. Although this method is a general one and is equally
applicable to both character recognition and general shape recognition, its ultimate
accuracy is expected to be limited. Structure methods assemble a model of a pattern
based on the structure which exists in the pattern. By examining the way how the
pattern is structured, the pattern is recognized. Although this approach is effective
for some kinds of patterns (like Chinese characters) which contain rich structure
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information, it is very difficult to be extended to general applications. The global
feature method employs a global transformation to summarize the information in the
input image. An ordered subset of the transform coefficients is taken to be the feature
vector. By considering the image as a whole, it treats the input more abstractly than
local feature method. It is also more tolerant of local variations. As a general method,
it can be used in recognizing any kind of patterns.

Projection methods are a subclass of global transformations. The main character-
istic of these methods is the compression of the data through a projection. Black pixel
counts are taken along parallel lines through the image area to generate marginal dis-
tributions. The distribution may be of local features as well as simple pixel densities.
One dimensional transforms can also be applied to further summarize the projection.
Projection methods have been widely used in Chinese character recognition as well
as shape recognition {135, 46, 49, 90, 48, 2].

However, when these methods are used to process following patterns:

(1) compound patterns which contain unconnected subpatterns;
(2) patterns with isolated noise;

(3) patterns including internal contours.

it will still encounter great difficulty due to (1) more contours to deal with; (2)
relations between isolated parts have to be carefully established; (3) more complicated
feature extraction; (4) more time required for processing, etc.

In this thesis, a new approach called regional projection transformation (RPT)
is proposed to solve these kind of problems. RPT is a transform based on regional
projections which concentrate the compound pattern into an integral object with only
one outer contour and no internal contours. The basic principle of the RPT is that all
pixels of a pattern are projected onto some base lines termed projection bases such
as horizontal, vertical, diagonal, etc, and a contour chain is extracted from projected
integral pattern for further processing.

Since the advance of VLSI technology, it is possible to put many hundreds of
thousands of gates to be placed on a single silicon chip. This not only reduces the cost
for processors and increases the communication speed, but also makes an immense
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impact on the computer architecture, and algorithm design. With VLSI technology,
we can build special VLSI chips by implementing algorithms directly in hardware.
Such specially designed VLSI chips are usually attached to host machines. They
solve problems more efficiently by taking advantage of pipelining and parallelism in
algorithms. In the last decade, such VLSI oriented algorithm design has attracted
a lot of attention. It has been applied to a wide range of areas including pattern
recognition and image processing.

The essential parallelism in proposed RPT facilities its implementation using VLSI
architecture. In this thesis, we also propose two parallel RPT approaches and discuss
their implementations using different systolic architectures. One is based two dimen-
sional mesh architecture, the other uses a linear processor array. Both of parallel RPT
approaches have time complexity of O(N) comparing with O(N?) when uniprocessor
is used.

We also conduct experiment to evaluating the features extracted by the RPTs.
We applied this approach to recognizing a large set of characters which contain many
compound patterns. Encouraging results have been obtained and they will also be
reported in this thesis.

This thesis is organized as follows:

In Chapter 2, we first give a concise literature survey on VLSI oriented algorithm
design, and its application to pattern recognition and image processing. We also give
a review of various feature extraction methods that have been proposed.

Chapter 3 introduces two regional projection transformations, the DDRPT and
HVRPT. First, a theoretical analysis of the compound and integral patterns are dis-
cussed. Then, DDRPT and HVRPT are described and analyzed. The pattern trans-
formed by these two transformations possesses several important properties which
can simplify contour processing. These properties are presented and proofs of two
theorems are also given in this Chapter.

In Chapter 4, we first discuss the parallelism existing in both DDRPT and HVRPT.
The essential parallelism in DDRPT and HVRPT facilities its implementation using
systolic architecture. Compared with O(/N?) time complexity in sequential approach,
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both parallel DDRPT and HVRPT have the time complexity of O(N). In this chap-
ter, a parallel contour processing algorithm with constant time complexity and its
systolic implementation will also be described.

Chapter 5 presents a combinatory parallel approach termed regional projection
contour transformation (RPCT) as a further improvement of the parallel RPT pro-
posed in Chapter 4. The advantage of RPCT over RPT is that using RPCT, regional
projection and contour processing can be done concurrently, yielding a high degree
of parallelism. A systolic architecture using a linear array has been designed based
on the canonical mapping methodology described in [75]. When N/2 element vector
is used to process a pattern with the size of IV x N, it can speed up the recognition
process considerably by reducing the complexity to O(N) from O(N?) in uniprocessor
case.

In Chapter 6, we will show the results of evaluating the features extracted by the
RPTs. An important theorem will be introduced to estimate the quality of features
extracted. This theorem is used to evaluate the DDRPT and HVRPT comparing with
other approaches, such as, cell histogram(CH), crossing counts and shading(CCS),
and elastic partitioning (EP).

Chapter 7 concludes the thesis with a summary of this research and the discussions
about the future research work.




Chapter 2

Literature Survey

2.1 VLSI Systems

Very-large-scale integration (VLSI) technology makes a great progress in development
of fast operation and low power consumption switching elements and vastly increase
the density of the circuit. It has promised the availability of building millions of
switching elements on a single silicon chip. In addition, high density also assures
high performance and high reliability [85, 64]. As mentioned by Mead [85], VLSI
electronics presents a challenge not only to those involved in the development of
fabrication technology, but also to computer scientists and computer architects. The
ways in which digital systems are structured, the procedures used to design them, the
trade-offs between hardware and software, and the design of computational algorithms
will all be greatly affected by the coming changes in integrated electronics.

The impact of VLSI on the computer architecture and computer technology has
been discussed in several articles {101, 31, 102, 11, 118]. It has created a new archi-
tecture horizon in implementing parallel algorithms directly on hardware. Special-
purpose VLSI chips can function as peripheral devices attached to a conventional host
machine.

The algorithm suitable to be implemented by systolic architectures should have
the following properties (85, 64, 36):

o It only require a few different types of processing elements.

5
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o The data and control flow have to be simple and regular.

¢ The algorithms should have the ability to perform the operations with high

degree of space and time concurrency by using extensive pipelining and multi-
processing techniques.

Kung has done some pioneer work with the concept of systolic algorithm [69, 61,
65]. The definition and the detail description of systolic algorithm can be found in
[65, 69, 78).

Several basic geometry structures are suitable to make the systolic implementation
of algorithms, they are as follows [61] :

L.

One-dimensional linear arrays (Figure 1(a)): This is the simplest way of con-
necting processors and corresponds to the classical concept of pipeline compu-
tation.

. Square arrays (Figure 1(b)) : It is natural for problems involving matrices, such

as graph problem defined in terms of adjacency matrices, numerical solutions
to discretized partial differential equations.

. Hexagonal arrays (Figure 1(c)) : It enjoys the property of symmetry in three

directions and eliminates a possible separate loading or unloading phase for pro-
cessors, hence it can substantially reduce the complexity of processing elements.

. Trees (Figure 1(d)) : It supports logarithmic-time broadcast, search, or fan-in,

which is theoretically optimal. The drawback is that the processors at high
levels of the tree may become bottle-necks of the majority if communications

are not confined to processors at low levels.

. Shuffle-exchange networks (Figure i(e)) : Assume that a network has n = 2™

nodes, where m is an integer and that the nodes are named0,1,2,-:-,2™—1. Let
tmim-1°- % denote the binary representation of any integer i,0 <i < 2™ -1,
the shuffie function is defined by:

S(imim-l ce tl) = im-—l e ilim
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and the exchange function is defined by :
E(tm e 't'gi‘) = im e 2'2;1

The network is called a shuffle-exchange network if node i is connected to node
S(1) for all Z, and to node E(i) for all even i. By using the exchange and shuffle
connections alternately, data originally at two nodes whose names differ by 2 can be
brought together for all i = 0,1,-.-,m — 1. This type of communication structure is
common to a number of algorithms. It is shown that the bitonic sort of n elements
could be carried out in O(logn) steps on the shuffle-exchange network when the
processing elements are capable of performing comparison exchange operations. But
it has a very low degree of regularity and modularity, and has wires of various lengths,
this can be a serious drawback for VLSI implementation.

Table 1 gives the examples of systolic algorithms [78]. Table 2 gives a partial list
of problems for which systolic solutions exist [62].

There are many articles discuss the systolic implementations for particular ap-
plications. The systolic implementation of signal and image processing algorithms
have been discussed in [78]. [142] describes a liner systolic array capable of evalu-
ating a large class of inner-product functions used in signal and image processing.
These include matrix multiplication, multidimensional convolutions using fixed or
time-varying kernels, as well as various nonlinear functions of vectors. [62] gives the
new designs of special-purpose devices for filtering, correlation, and discrete Fourier
transform. A novel systolic algorithm for performing the two-dimensional convolution
operation is introduced in [61). A chip performing the two dimensional convolution
in signal and image processing is described in [63]. Denoting by u, the cycle time
of the basic cell, the chip allows convolving a k x k window with an n x n image in
O(n%u/k) time, using a total of k* basic cells. [73] describes a systolic array for the
computation of n-dimensional convolution for any positive integer n. The systolic
array utilizes a second level of pipelining by allowing the processing elements them-
selves to be pipelined to an arbitrary degree.
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(a). One-dimensional linear array

(d). Tree

(b). Square array
— EXCHANGE
(e). Shuffle-exchange
(c). Hexagonal array network

Figure 1: Computational structures.
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Table 1: Partial list of problems having systolic solutions

[ COMMUNICATION GEOMETRY | EXAMPLES

Matrix-vector multiplication
FIR Filter
Convolution
DFT
Carry pipelining
1-DIM linear arrays Pipeline arithmetic units
Real-time recurrence evaluation
Solution of triangular linear systems
Constant-time priority queue,
on-line sort
Cartesian product
Odd-even transposition sort
Dynamic programming for optimal
parenthesization
2-DIM square arrays Numerical relaxation for PDE
Merge sort
FFT
Graph algorithms using adjacency Matrices
Matrix multiplication
2-DIM hexagonal arrays Transitive closure
LU-Decomposition by Gaussian
elimination without pivoting
Searching algorithms
Queries on nearest neighbor, rank, etc.
Trees NP-Complete problems
Systolic search tree
N Parallel Function Evaluation
Shuffle-exchange networks FFT
Bitonic sort
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Table 2: Examples of systolic algorithms

Signal and image processing

FIR and IR filtering and 1-D convolution
2-D convolution and correlation

discrete Fourier transform

interpolation

1-D and 2-D median filtering

geometric warping

Matrix arithmetic

matrix-vector multiplication

matrix-matrix multiplication

matrix triangularization (solution of
linear systems, matrix inversion)

solution of triangular linear systems

solution of Toeplitz linear systems

QR-decomposition (least squares computations,
covariance matrix inversion)

singular value decomposition

eigenvalue problems.

Non-numeric applications

data structure-stack and queue, priority
queue, searching, and sorting.

graph algorithms-transitive closure, minimum
spanning trees, and connected components

geometric algorithms-convex hull generation

language recognition-string matching and
regular expressing

dynamic programming

polynomial manipulation-multiplication,
division, and greatest common divisor

integer greatest common divisors

relational data-base operation

10
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One-dimensional systolic array for performing two or higher dimensional convolution
and resampling is presented in [72]. [74] describes the development of a wavefront
based language and architecture for a programmable special-purpose multiprocessor
array. The hardware and the languages lead to a programmable wavefront array
processor (WAP). The WAP blends the advantages of the dedicated systolic array
and the general purpose data-flow machine. Two VLSI structures for the computa-
tion of the discrete Fourier transform are presented in [7]. A .etwork which is able
to compute, in parallel, the FFT’s of arbitrary partitions in power of two of the N
input elements is described in [6]. [117] surveys nine designs for VLSI circuits that
compute N-element Fourier transforms. The designs exhibit an area-time tradeoff.
The probiem of finding a greatest common divisor (GCD) of any two nonzero poly-
nomials is fundamental to algebraic and symbolic computations, as well as to the
decoder implementation for a variety of error-correcting codes. The efficient VLSI
solutions to both the GCD problem and the extended GCD problem are discussed
in [10]. [63] reviews issues in the design of special-purpose VLSI chips in general,
and suggests VLSI designs for polynomial multiplication and division, which are ba-
sic functional modules in algebraic computation. A new class of partitioned matrix
algoritbms is developed in [51]. The following four matrix computations are shown
systematically partitionable into submatrix operations, which are feasible for direct
VLSI implementation.

¢ L-U decomposition of a dense matrix
¢ Inversion of a triangular matrix
e Multiplication of two compatible matrices

o Solving a triangular system of equations.

[26] presents a method for the design of problem-size independent VLSI systolic
array with limited /O bandwidth. VLSI algorithms partition problems have been
investigated in {37, 20]. [89] proposes a solution for mapping an arbitrary large QR
algorithm into smaller VLSI array processors. [99] describes a matrix multiplication
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algorithm on a linear array of processing elements. VLSI array design under constraint
of *mited I/O bandwidth of the host system or the computing array is discussed in
[81]. The area-time complexity of sorting is analyzed under an updated mode of VLSI
computation. Using the new mode, [117] briefly describes thirteen difterent designs
for VLSI sorters. A class of designs of a new interconnection network, the proposed
cube-connected cycles (PCCC), which can implement stable bitonic sorting is given
in [5]. A new VLSI architecture which allows many problems to be solved quite ef-
ficiently on chips with very small processing areas is proposed in [54]. The sorting
problem is discussed in more detail. The VLSI chip which consists of a mesh of trees
is proposed in [8]. Two classical algorithms, i.e., merge sort and bitonic sort, are
modified to efficiently solve the external sorting problem using this chip. The VLSI
implementation of a Reed-Soiomon encoder using Berlekamp’s bit-serial multiplier
algorithm is described in [50]. The VLSI implementation of Reed-Solomon decoder is
proposed in [59]. A family of VLSI circuits is presented to perform open convolution,
i.e., polynomial multiplication [4]. A combinational limit to the computing power of
VLSI circuits is discussed in [124]. In [131], several methods for computing the FFT
in hardware are reviewed. Pipeline structures for Cooley-Tukey algorithm and the
Good prime factor algorithm are presented. Two interconnection networks for par-
allel processing, namely the orthogonal trees network and the orthogonal tree cycles
are described in [91]. An improved niin-cut algorithm for partitioning VLSI network
is described in [58]. [129] describes asynchronous and clocked control structures for
VLSI based interconnection networks. In [96], a VLSI network for the multiplication
of two N-bit integers, for vary large N. The network, which is based on the discrete
Fourier transform, has an extremely regular mesh structure, and thus all wires have
approximately the same length. [9] shows that addition of n-bit binary member can
be performed on a chip with a regular layout in time proportional to logn and with
area proportional to n. [114] describes a residue multiplier having a 48 — 73 bit dy-
namic range, capable of performing 10 M multiplications. [141] presents two systolic
architectures for performing the product-sum computation AB -+ C in the finite field
GF(2™) of 2™ elements, where A, B, and C are arbitrary elements of GF(2™). The
application of VLSI to database has been described in [68, 110]. Systolic priority
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queues problem is described in [77]. [94] describes a dictionary machine that is suit-
able for VLSI implementation. The machine supports the operations of SEARCH,
INSERT, DELETE, and EXTRACTION on an arbitrary ordered set. A binary tree
machine which can handle all the dictionary machine and priority queue operations
as well as some other data queries is given in [109]). [56] shows that a machine in
which the processors are interconnected as a binary tree can support all the dictio-
nary and priority queue operations as well as some other data queries. The PSC, a
programmable systolic chip, is a high performance, special-purpose, microprocessor
intended to be used in groups of tens or hundreds for the efficient implementation of
a broad variety of systolic arrays is described in [35, 34]. In [67], two important issues
in systolic array designs are addressed: How is fault tolerance provided in systolic
arrays to enhance the yield of wafer-scale integration implementation? And, how are
efficient systolic arrays with two levels of pipelining designed? [71, 66] describe 32-
bit floating-point systolic array processor which was built at CMU. Using off-the-self
integrated circuits. It can operate at a rate of 1000MFLOPS and perform various
transformations. [15] proposes an array structure which is programmable by a host
machine and uses control buffers to broaden the scope of executable algorithms. In
{143], orthogonally-connected, reconfigurable square arrays are proposed for pattern
analysis and image processing. Highly parallel VLSI computing structures consist
of many processing elements operating simultaneously. In order for such processing
elements to communicate among themselves, some provision must be made for syn-
chronization of data transfer. [33] provides a spectrum of synchronization models;
based on the assumptions made for each model, theoretical lower bounds on clock
skew are derived, and appropriate of best-possible synchronization schemes for large
processor arrays are proposed. The area-efficient layouts problems are discussed in
(78]. Area-time complexity of the discrete Fourier transform is studied with respect to
a new model of computation appropriate to VLSI technology [115]. Optimal layouts
for the shuffle-exchange graph and other networks are presented in [76]. Area-time
tradeoff for matrix multiplication and related problems in VLSI models have been
shown in [105]. (1] shows that the communication considerations alone dictate that
any VLSI design for computing the 2n-bit product of two n-bit integers must satisfy
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the constraint AT? > ?a’, where A is the area of the chip and T is the time required
to perform the computation. Area-time bounds on VLSI circuits for context-free
language recognition, for the evaluation of propositional calculus formula and for set
quality and disjointness questions are described in [9]. A class of matrix arithmetic
networks is proposed [53] for implementing the feature extraction algorithm and for
generating linear discriminant vectors in pattern classification. The new algo.rithms
for two important combinatorial problems, dynamic programming and transitive clo-
sure, are proposed in [47]. These algorithms are suitable for direct implementation
in VLSI. The recognition of regular languages with programmable building-block is
described in [39]. A systolic array for the Minimum-Distance Classification (MDC)
which is capable of computing L;, L, and L., metrics is presented in [80]. A sys-
tolic array for the MDC of string is also described. Four VLSI designs for a line
and curve detection chip are presented in [27]. Each method is based on Ontanari’s
dynamic programming algorithm. The VLSI implementation of hierarchical scene
matching is described in [22]. [3] describes one- and two-dimensional pattern match-
ing oriented systolic array processors that support, respectively, the detection of all
repetitions in a string ¢ and the statistics of all substrings of = with and without
overlap. The linear classifier algorithm which can be computed using systolic arrays
at the word and bit levels is described in [123]. [25] presents two VLSI architectures
for the recognition of context-free languages and finite-state languages. The VLSI
implementation of Earley’s algorithm is described in [24]. The error-correcting recog-
nition algorithm has also been simulated on a triangular VLSI array. Two algorithms
which can recognize general context-free languages without restriction on the length
of the input strings are proposed in [21]. Algorithm partition and parallel processing
(using multiple chips) are also indicated . A two-level pipelined VLSI systolic ar-
chitecture for pattern clustering is proposed in [92]. The architectures for two kinds
of pattern matching: string-matching and dynamic time-warp pattern-matching are
described in [18]. The algorithm partition problems are discussed and the formal
verifications of the proposed VLSI architectures are also given. [21] proposes a VLSI
architecture for dynamic time-warp recognition of hand-written symbols. Algorithm
partition problems and verification of the proposed architecture have been solved.




CHAPTER 2. LITERATURE SURVEY 15

The advantages of three-dimensional circuits are studied by comparing sample three-
dimensional realizations of certain common families of circuits, namely, permutation
networks, FFT circuits, and complete binary trees, with the families’ optimal two
dimensionai realizations [104]. Many books about VLSI systems have been published
(85, 64, 102, 98, 122, 119]. There are so many books and articles about VLSI systems,
such that the above list is only a part of them.

2.2 VLSI Design Methodology

How to design VLSI architecture systematically has attracted much attention of many
researchers. [75] introduces a graph-based mapping methodology for mapping homo-
geneous and heterogeneous computational graphs onto systolic arrays. [32] proposes
a mathematical formalism for the synthesis and qualitative analysis of con-, utational
networks that treats data and control in the same manner. [130] presents an overview
of an extension to a mathematically based methodology for mapping an algorithmic
description into a concurrent implementation on silicon. [130] presents a formalism
for describing the behavior of computational networks at the algorithmic level. [74]
uses wavefront concept to perform the transformation of algorithms into VLSI struc-
tures. [100] present a formal notation and semantics to describe the performance
of VLSI systems. [37, 87, 88] present the method of designing algorithms for VLSI
systolic array. The mapping procedure is based on the mathematical transformations
of index sets and data dependence vectors. [60] describes the method mapping algo-
rithms to VLSI implementation, in particular, the loop reindexing transformation is
used. [12] presents a geometric representation of array computation. [70] proposes an
algebraic representation, together with a semantics for VLSI algorithm designs. The
paper demonstrates its use in the design and verification of systolic algorithm. [100]
presents a formal model of linear array processors suitable for VLSI implementation
as well as graph representation of programs suitable for execution on such a model.
(86) gives a general theory for characterizing and realizing algorithms in hardware. In
(79], systolic arrays are characterized by three classes of parameters: the velocities of
data flows, the spatial distributions of data and the period of computation. [22, 19]
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propose the space-time démain expansion approach to VLSI and the computational
model based on this approach. [38] gives a summary on systematic approaches to the
design of algorithmically specified systolic arrays.

2.3 PRIP Real-Time Computing .

Information scientists have long recognized that: “one picture is worth a thousand
words”, and over the last decade, extensive research and development has been de-
voted to pattern analysis and image understanding by computers, practical applica-
tions of such computers include the processing of biomedical images for diagnosis;
the recognition of characters, fingerprints, and moving objects; remote sensing, in-
dustrial inspection; robotic vision; military intelligence; and communications data
compression [44].

Many mathematical method have been offered for solving pattern recognition
problems, but all are primarily either decision theoretic (statistical) [28] or syntactic
(structural) [40]. A block diagram of a pattern recognition system based on this gen-
eral point of view is shown in Figure 2[45). Table 3 summarizes the major pattern
recognition approaches [45]. A block diagram of a decision-theoretic pattern recogni-
tion system and a block diagram of a syntactic pattern recognition system are shown
in Figure 3 and Figure 4 respectively [45]. A typical image analysis system consists
of four processing stages as depict~d in Figure 5 [52)].

One difficulty in make PRIP systems practically feasible, and hence more pop-
ularly used, is the requirement of computing time and storage. The situation is
particularly serious when the patterns to be analyzed are quite complicated [42].

The existing system architectures for PRIP can be classified into three categories:
SIMD array processor, pipelined vector processor and MIMD multiprocessor systems
(41]. There are several books about computer architectures for PRIP (30, 97, 43].

The advent of VLSI technology has triggered the thought of implementing many
image processing and pattern recognition algorithms directly in hardware chips. VLSI
structures offer high speed and high reliability - both of which are essential to real-time
DRIP tasks. Many VLSI algorithms and their implementation have been developed
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for PRIP [11, 116, 10, 63]. These are very important to the real-time computing of

PRIP.
PATTERN DECISION MAKING/
PATTERN AN STRUCTURAL CLASSIFICATION/
REPRES, DESCRIPTION
Figure 2: Pattern recognition system.
Table 3: Pattern recognition approaches
PATTERN DECISION MAKING IN TERMS
APPROACH REPRESENTATION | OF SIMILARITY CRITERIA
 Template matching Raw data Direct matching

[ Decision theoretic

Feature vector

Discriminant function,

minimum distance,
nearest neighbor,

maximum likelihood,
ﬂ minimum Bayes risk, etc.
Syntactic String Parsing
Tree error-correcting parsing,
Graph string matching,

tree matching

graph matching

error-correcting graph matching.
etc.
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PATTERN| pATTERN FEATURE CLASSIFICATION
——— ————>{ CLASSIFICATION >
EXTRACTION | yrerop
e USSR S —  S— RECOGNITION|
ANALYSIS 1

PATTERN FEATURE
—_—> LEARNING
SAMPLES SELECTION

Figure 3: Decision-theoretic pattern recognition systems.

PATTERN REPRESENTATION
PATTERN | DECOMPOSITION PRIMITIVE STRUCTURAL | CLASSIFICATION
— OR > (AND RELATION) -] ORSYNTACTIC -

SEGMENTATION RECOGNITION . ANALYSIS | AND DESCRIPTION
RECOGNITION |
ANALYSIS
T, (AND RELATION) CRAMMATICAL
— AMATIC
SAMPLES SELECTION INFERENCE

Figure 4: Syatactic pattern recognition system.
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l RAW IMAGE
PREPROCESSING
l SEGMENTED IMAGE (* pROCISING
FEATURE
EXTRACTION )

l FEATURE VECTOR

FEATURE
CLASSIFICATION
PATTERN
RECOGNITION L CLASSIFIED PATTERN
STRUCTURAL
ANALYSIS

l DESCRIPTION
AND INTERPRETATION

Figure 5: Image analysis system.
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2.4 Feature Extraction Methods

Feature extraction is applied in order to concentrate the information in the image
into a few, highly selective features. The selection cf a stable and representative set
of features is the heart of pattern recognition and image processing processing system
design.

Features can be generally divided according to the manner in which they are
derived. Features which can be derived by local transformations, with little or no
regard for the inherent structure of the pattern are called local features. Similarly,
method which derived features by global transformations, again with little or no
regard for structure are called global features. All other methods pay some attention
to the structure of the pattern, and their features are thus classified as structure
features.

2.4.1 Local Feature Methods

Local feature methods are distinguished by their relative ignorance of the structure
of patterns, and the limited extent of the region used to compute any one feature.
Within the category of local features, we find the pixels themselves, the so-called
“cellular features”, and polygonal approximation of the component boundaries. As
the name implies, the pixel feature simply uses the raw pixel data as the feature
vector. Cellular features replace each pixel or group of pixels in the image with the
result of a local transformation. Polygonal approximation involves fitting a chain
of line segments to the outside of the connected regions representing the input, and
using list of line segments as the feature vector.

In general, a cellular feature consists of a regular subsampling of the input image,
with some local feature being computed at the center of each sample region.

The simplest local feature method uses the pixels themselves as the feature vector.
The system merely registers the input image with a template representing the average
or “ideal” character in each category, and performs a comparison, or inner product,
pixel by pixel. An in-depth study of template matching was carried out by {108].
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Figure 6: The directional segment strength feature.

Other local features which have been used include line element gradient, direc-
tional segment strength, stroke count, and stroke domain. The line element gradient
feature [140] can be considered to be a special case of the directional segment strength
feature. The stroke domain feature [135] is a special case of the stroke count feature.

The basic idea of directional segment strength [93] is to encode at each pixel po-
sition the distance one may travel in each of the eight main directions from that
(black) pixel without encountering a white pixel. The line element gradient simply
records whether or not it is possible to move to the neighboring element in each of
eight directions. The directional segment strength feature is shown schematically in
Figure 6, where the feature is the length of each of the eight rays extending from the
pixel being examined represented by the square.

The stroke count feature counts the number of strokes crossed by a ray from the
current point to the edge of the character frame in each of four or eight directions
(Figure 7). In [120], strokes are only counted if they are approximately perpendicular
to the ray. The stroke domain feature records the existence of strokes both above and
below the background element being considers, or to the left and right. As such, it is
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(a). locations of pixels A and B.

2] 3]
[0]A] 0] 2181}
1 1]

1]

(b). stroke count features for those two pixels.

Figure 7: The stroke count feature,

a summary of the information available from the stroke count, and may be derived

as follows:
1, ifceg>0
dy=
0, otherwise -

d ={ 1, ifcacg>0 }
’ 0, otherwise
where d, and d, are the horizontal and vertical domain features, respectively, and
ca,¢B,cL and cp are the stroke counts above, below, to the left and to the right.
{93, 120] describes a cellular feature which is calculated on a 7x 7 grid. The feature
consists of eight values at the sample point, Being the strength of line segments which
are perpendicular to a ray extending from the sample poini in each of the eight main

directions (Figure 8), where black squares in the feature grid indicate the direction
in which there is a perpendicular edge. This feature is a good indicator of the stroke
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Figure 8: The background cellular feature.

structure of the character. In (140], four pixel maps are formed. A line segment
direction (horizontal vertical, left diagonal, right diagonal) is associated with each
map, and a pixel appears in a map only if it is a member of a line segment with the
correct orientation. The map of each directional feature (Figure 9 and Figure 10)
is then repeatedly blurred to remove the effects of slight positional variations. The
input pattern is then compared with a standard template using correlation matching.
This work is expanded by suggesting the addition of reciprocal feature [139]. This
enhancement replaces background pixel elements by values representing the directions
in which the element is enclosed. In [137], directional pixel maps like those of [140] are
used. Projection profiles are applied to recursively segment the pattern horizontally
and vertically. Within each cell in this adaptive grid, a normalized pixel density is
recorded for each stroke segment direction. This feature is then blurred and matched
with a similarly derived template.

[55] describes a method which uses varying amounts of stroke direction information
in a number of different projections. Stroke count, stroke direction, stroke domain
and corner feature are extracted. Distributions are formed by horizontal and vertical
projections of two halves of the image along 12 scan lines. The projections of the
various features are concatenated to form the feature vector. Comparisons are made
using correlation matching.
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Figure 9: An example Chinese character, “tree”.

T
(a). horizontal (). vertical
(c). left diagonal (d). right diagonal

Figure 10: The decomposition of the character into four directional feature maps.
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Figure 11: Polygonal approximation of the character in Figure 4..

{144] gives a brief review of cellular features, and introduces the Quartic-Corner-
Code (QCC) feature. This feature encodes the shape of each corner of the pattern in
terms of an octal number which represents the external profile of the stroke(s) in that
corner. The authors then propose to use a combination of directional stroke density
(DSD), identification of “over-long” strokes, a peripheral area measure and a stroke
density feature to perform fine classification.

Rather than attempting to thin and extract strokes, polygonal approximation
represents the perimeter of the black areas of the image with a closed chain of straight
line segments (Figure 11) [136]. The advantages of this method is that preprocessing
is therefore simplified. Disadvantages include that individual segments in the polygon
convey less information than segments of a stroke. This means that the system must
be quite tolerant of changes in the length, location, and even existence of a polygonal
segment. Yet it must still be able to discern patterns whose categories differ only by
the length or location of one stroke.

Another polygonal method, introduced earlier by [134] allows strokes to be split
or joined according to a set of rules, so that the stroke configuration in the template
can be matched. Perimeters of strokes are approximated by (clockwise) directed line
segments. A dynamic programming scheme is used to modify the image data so that
it matches a template as closely as possible.

[133] also uses border polygons to describe the shape of pattern components. In
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order to simplify the matching step, the pattern is divided into several horizontal
strips before extraction of the polygons is performed. This increases resolution and
reduces the possibility of incorrect matchings. Fuzzy attributes are used to store the

pattern templates, and fuzzy matching is used in the comparison step.

2.4.2 Global Feature Methods

This category contains methods which employ a global transformation to summarize
the information in the input image. An ordered subset of the transform coefficients is
taken to be the feature vector. Projections are a subclass of global transformations.
They are 1D transformations of 2D data. In that these methods ignore the inherent
structure of image, they are similar to the local methods, but by considering the image
as a whole, they treat the input more abstractly. While being more tolerant of local
variations, the transformation has the potential disadvantage that it may suppress
th2 very feature that is needed to distinguish a similar pair.

Global transformations which have been applied to Chinese character recognition
include the 2D varieties of the Fourier, Hadamard, and Hough transformations as
well as the Rapid transformation [125, 17].

The main characteristic of projection methods is the compression of the data
through a projection. Black pixel counts are taken along parallel lines through the
image area to generate marginal distributions. The distributions may be of local
features as well as simple pixel densities. In [135], three projections are used in
combination: pixel density, directional stroke density, and stroke domain. The pixel
density profile feature is shown in Figure 12. Directional stroke density counts the
pixels in strokes which are aligned with the scan line. Three types of stroke domain
are defined by the relationships between neighboring stroke: open, enclosed vertically,
enclosed horizontally, and closed.

Several different kinds of projection feature have been used simultaneously in [46],
[49]. [90) use the projections of three features, each taken in eight different directions.
These are stroke density function (SDF), the direction contributivity density (DCD),
and the peripheral direction contributivity (PDC). SDF simply counts the number of
strokes crossing each of 12 lines vertically, horizontally, and in the two main diagonal
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Figure 12: Pixel density (projection) profiles taken in the four primary directions
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directions. This feature can be refined by considering each half of the image (split
perpendicular to the scan lines). DCD assigns a direction to each stroke, and assigns
the stroke direction to each pixel on the stroke. Marginal distributions are taken
along 16 scan lines in each of eight directions for each of the four stroke directions.
PDC features are formed by assigning stroke directions to pixels and selecting just
pixels on the first, second, or third stroke encountered by the scan line. The marginal
distribution of such pixels is then taken along 16 lines in eight different directions.
In [48] the DCD feature is further refined into Global (G-DCD) and Local (L-DCD)
features. In the global form, the scan lines run entirely across the input image. In
addition, the angle of the stroke edge in taken into account so that proportional
contributions are taken from a stroke which does not align with any of the four axes
(horizontal, vertical, and the two diagonals). In the local form, the image area is
subdivided into 64 (8 x 8) subareas, and the DCD is computed on each of these
In this case, the directional contribution for each subarea is recorded in four values
(horizontal, vertical, left-diagonal, right-diagonal). [2] presents an improvement on
the Directional Stroke Density method, by adding two more “global features”, which
count the number of right angle features in each of four orientations and the number of
each of three types of domain (converging, diverging, parallel). Finally, they introduce
the Configuration Feature (CF), which summarizes the average and difference angles
of the horizontal and vertical stroke pairs surrounding each background domain.

Several different 2D transformations have been applied to the pattern recognition
problem. [84] describe a recognition method which uses iocal transformations to
remove nonlinear distortions. Local areas in the input image are Gaussian-sampled
and then summarized by transforming them using 2D Hermite polynomials as basis
vectors. In (23], a quantized version of the Hough transform, which is called the
ChainCode Transform, is studied. Due to the summarizing nature . the transform,
it is more tolerant of noise and directional variations than transforms with continuous
output maps.
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2.4.3 Structure Feature Methods

The third category of features considered is that of structural features. S.ructural
methods assemble a model of the pattern based on the structure which exists in some
potterns. The construction is usually bottom-up: from pixel data, line segments
or arcs are located: line segments are assembled into strokes; strokes are assembled
into pattern components; Pattern components are assembled into a pattern [83]. By
examining the way, in which these elements are combined, we get, in essence, a
derivation for the pattern. Usually, the derivation is unique; the pattern can thus
be identified. The main types of structural feature which have been investigated are
Jeature points, or simply strokes, stroke sequence, and cure approzimation.

Feature points are defined to be the virtual points of intersection, endpoints, and
points of maximum curvature above a certain threshold (Figure 13). At an intersec-
tion point, it is sometimes useful to determine which pairs of stroke segments meeting
there are continuations of one another in the same stroke. Some methods have been
proposed to try to determined this. This general method involves the extraction of
so-called “feature points” from the input image. This is a rather primitive method
from the standpoint of abstraction: an input is characterized by points at which the
curvature of the boundary exceeds a certain threshold. O!Ler feature points may be
extracted by local operations. Following extraction, the extrema in the input pattern
are matched with the extrema in each standard pattern.

[145] describes a system based on feature points derived from stroke data. Pa-
rameters which describe curvature, orientation, length, etc. are included with the
feature points that represent the stroke endpoints. A fuzzy-query database is used
to implement inexact matching. In {57), the midpoint of a stroke is considered to be
another feature point. They add two global features, Direction Code Distribution and
Feature Point Distribution, to stroke data. Input data are thinned, and endpoints,
junctions, and inflections are extracted, and stroke segments thus determined. Stroke
segments meeting at a junction are connected if the cosine of the angle between them
is less than a fixed threshold. Strokes are encoded by direction, length, and midpoint
coordinates. [82] describes a recognition method using layers of feature points. Clas-
sification is done according to the features in the outer two layers and the number
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Figure 13: Examples of feature points, indicated by circles.

of intersections lying within those. Another method using fuzzy stroke matching is
described by [138]. Character component structure and the maximum horizontal and
vertical stroke densities are used for preclassification. Strokes are then extracted with
respect to members in the subset of categories identified by preclassification. [14] in-
troduce the idea of a fuzzy-attribute graph (.FAG), which combines the ideas of an
attributed graph with those of fuzzy set theory. They define an operation which com-
putes the degree of matching between two FAGs, and construct a recognition system
based on this idea.

Several researchers have concluded that a sequence of stroke types is a useful
feature. [146) describe a method for extracting an ordered sequence of strokes from
connected subpatterns. The order is inferred from prior knowledge, and the relation-
ships between connected components can be easily encoded. In [48], preselection is
performed using Diiectional Contributivity Density. Then strokes are extracted from
the input image according to each of the 20 or so candidate patterns. A distance mea-
sure is calculated, taking into account position and angle differences between input
and reference strokes.
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Some researchers have found that the information conveyed by a set of line seg-
ments is not adequate for recognition. To overcome the difficulty of obtaining a
consistent segmentation when presented with the curved strokes in these patterns,
they have proposed methods to encode strokes as curves rather than as sequences
of line segments. [107, 106] investigated the application of splines to pattern repre-
sentation. Their method improves on polygonal approximation by replacing straight
line segments with smooth spline curves. Rather than force the whole boundary of
the pattern to be represented by one spline, critical points are identified (at the in-
tersections and ends of strokes, for instance), and separate splines are run between
each neighboring pair. After the splines are calculated, additional critical points may
be determined at regions of high curvature, and the spline segments affected are
recalculated.



Chapter 3

Regional Projection

Transformation

Projection transformations have been proposed and widely used in feature extractions
(135, 46, 49, 90, 48, 2]. However, they still encounter great difficulty in dealing with
compound patterns containing unconnected patterns and patterns with isolated noises
such as those shown in Figure 14.

In the following sections, we propose a new approach called regional projection
transformation (RPT). This approach concentrates a compound pattern into an in-
tegral object without internal hole. Since the pattern transformed from the RPT
contains only one outer contour, it not only makes the contour analysis method be-
come applicable, but also simplifies the process.

We can construct a pattern recognition system using the regional projection trans-
formation (RPT) illustrated in Figure 15. Such system consists of four phases:

(1) Regional projection transformation (Rl"T),
(2) Contour processing,
(3) Transformation of numerical features.

(4) ISOETRP decision tree.

They can be described briefly below.

32
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Figure 14: Examples of compound pattern.
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Figure 15: Block diagram of the recognition system using the RPT.
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First, a compound pattern has been concentrated into an integral object. Two
concentration transformations: (1) diagonal - diagonal regional projection transfor-
mation (DDRPT), and (2) horizontal - vertical regional projection transformation
(HVRPT) have been proposed in this approach. The patterns transformed by these
two schemes are called DDRPT pattern and HVRPT pattern respectively. They pos-
sess several important characteristics which facilitate contour analysis. Although the
shapes of both DDRPT and HVRPT patterns have been changed, they still contain
essential information for their identification. This can be evaluated by n-th moment
and experimental results. After the first phase, an integral pattern is generated,
and the existing parallel algorithms of contour processing such as those described
in 13, 29, 121, 132] can be applied. In this paper, an eight-neighbour technique is
used to extract the contour. In the sequel, a contour chain is collected. It can be
considered as a cycle function to which a parallel orthogonal transformation, such
as FFT [16], can be applied to produce the numerical features to be classified by
the ISOETRP decision tree (112]. This thesis will emphasize the first phase of the
recognition system, i.e. regional projection transformation which plays a key role in
processing compound objects.

A theoretical analysis of the compound and integral patterns will be discussed
in the next section. Two RPT’s, the DDRPT and HVRPT, will be described and
analyzed in Section 2. The patterns transformed by these two transformations pos-
sess several important characteristics which can simplify contour processing. These
characteristics will also be presented in Section 2.

3.1 Integral Pattern and Compound Pattern

A digitized pattern ) is composed of a finite set of pixels, @ = { ay, a3, ..., a, },
which can be viewed as a weighted graph [103).




CHAPTER 3. REGIONAL PROJECTION TRANSFORMATION 35

3.1.1 Weighted Graph (WG)

Definition 3.1.1.1 Let Q = { ay, 03, ..., a, } be a pattern. The structure of a
pattern can be represented by a finite undirected graph termed by weighted graph
(WG), which consists of a set of vertices V, a set of edges E, a function f from E to
{{u,v}u,v € V,u,v are adjacent}}, and a set of weights D(E), such that

WG = {V,E,D(E)},
V = {u,,vg,...,v,.} = {al,ah'"’aﬂ}y
E = {ee3,....,em}, D(E) = {D(31)9D(32)""’D(em)}’
fle) = {v;, v}, D(e) =50, Vi(vi € Q). (1)

Equation (1) implies that each pixel o; of the pattern § is a node v; of the WG,
and edges e;’s are connected among all pairs of adjacent nodes. Each edge e;={v;, v}

is weighted with a distance between its endpoints D(e;)=1;,%.

3.1.2 Pattern Graph (PG)

Definition 3.1.2.1 A WG is called a pattern graph (PG) if all edges with a weight
higher than § have been removed from the WG such that

PG ={V,E,D(E)}, D(E)={D(e;)] D(e:)<6} @)

where, 6 is a threshold depending on the structure of the specific pattern.

3.1.3 Integral Pattern and Compound Pattern

Definition 3.1.3.1 A pattern is called integral pattern if its PG is connected.
Otherwise it is termed as compound pattern.

In fact, compound patterns can be classified into two types: (1) unconnected
pattern which is composed of several parts, (2) noise-patch pattern where several
isolated patches of noise are embedded in it. By the above definition, Patterns in
Figure 14 are compound patterns. Recognizing such compound patterns is much
more difficult than the integral ones. To avert this problem, a compound pattern will
be transformed into an integral object by the proposed method.
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3.2 Regional Projection Transformation (RPT)

The basic principle of the RPT is that all pixels of a pattern are projected onto some
base lines termed projection bases such as horizontal, vertical, diagonal, etc. It makes
sense to concentrate the compound pattern into an integral one. Projection technique
has been used to carry out this function.

Let f(z,y) be a pattern, and R stands for an area of the pattern. Assume that
f(z,y) = 0 lies outside the pattern. §[...] denotes a delta function, which is everywhere
zero except where its argument is zero, and whose integral from -co to co equals one.
t = zsing — ycosy gives the Euclidean distance of a line from the origin. If the
projection angle from the x-axis is ¢, the projection can be defined as follows {95]:

p(p,t) = ZR:f(w, y)b[zsing — yeosp —t]. (3)

Once the entire area R has been broken into several smaller regions R;, i =

1,2,...,k, the projection can be divided into several sub-projections which will take
place in these regions such that

p(p,t) = Zk:p.-(tp.-,t.-)

=1

k
22 filz,y)8i{zsing; — ycosp; — L. (4)

=1 R;

3.2.1 DDRPT

The area of a pattern is divided into 8 sub-regions, R; i = 1,2,...,8. The projection
bases are two diagonals (i.e. 45° and 135°), all pixels in the pattern are concentrated

onto these two diagonals as shown in Figure 16. The eight sub-regions are symbolized
by A,B,C, D, E, F, G, and H such that

8 .
Top = UTobo
=1

= A(180°,y) U B(210°,z) U C(270°, ) U D(0°,y) U (5)
E(0°,y)V F(90°,z) UG(90°,z) U H(180°,y),
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Figure 16: DDRPT.

where, Tpp and THp stand for the transformation of the whole pattern and the

sub-transformation i respectively. In the concrete, B(270°, z) - C(270°,z) denote sub-

transformations for sub-regions starting from B counter clockwise until C respectively.
From equation (3), 8 sub-projections can be calculated as follows:

N
B(210°,z) = Y. f(=,y) for :c=-1y-,—IY-+l,...,N
= 2’2
N . N
Cc(210°%z) = Y f(zy) for £=0,1,2,...,—
y=N-z 2
0 - N
F0°,z) = Y flz,y) for z=0,1,2,...,5-
y=0
N-z .
G(90°,z) = > f(z,y) for z-—-l—v-,ywi—l,...,N
y=0 2°2
N
AMSy) = X fley)  for y=2, 041N
z=y
=g NN
D(0°,y) = Y f(z,y) for y=-2—,—2-+1,...,N (6)
=0
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v
EQy) = 3 fzy) for y=0,1,2,...,%
=0
N N
H(180%y) = Y. f(=,9) for y=0,1,2,...,5
z==N-y

Definition 3.2.1.1 Let Spp be a pattern transformed from DDRPT defined by
equations (5) and (6), and R be a set of projection bases ® = {8y, 5,...,fn}. A
DDRPT pattern Ppp can be represented by

Ppp =SppUR. (7

Here, n = 4, i.e. the projection bases are four segments of the diagonals (45° and
135°).
Several DDRPT patterns can be exemplified by Figure 18(b).

3.22 HVRPT

Similarly, the area of a pattern is also divided into 8 sub-regions, symbolized by P,
QR S,T,U,V, and W. But the bases onto which the pixels to be projected differ
from that of the DDRPT. In this scheme, all pixels in the pattern are concentrated
onto horizontal and vertical lines, i.e. y = N/2 and z = N/2, as shown in Figure 17.

Tyv = P(225°,t)U Q(225°,t)U R(315°,¢) U S(315°,£)U
T(45°, ) U U(45°, ) U V(135°,£) U W(135°,¢), (8)

where, Tyy stands for the transformation of the whole pattern, R(315°,t) - @(225°,)
denote sub-transformations for sub-regions starting from R counter clockwise until Q

respectively. 8 sub-projections can be calculated below:

N/2

R(315%t)= Y_ f(=, V2t —z+ -12!) for t=0,1,2, ,—1;-,-
z=0
NJ/2

S(315°,t) = Z f(:c,1—2v- V2t -1z) for t=0, 1,2,...,-12!
z=0
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Figure 17: HVRPT.

N/2 N
T(45%1) = Y f(=z,z + V2t) for t=0,1,2,..., =
z=0 2
N/2 N
U(45°,t) = Zf(a:,z - \/2—t) for t=0, 1,2,...,?
z=0
N N N
V13, = Y fa 5~ V2t—z) for t=0,1,2, g 9)
z=N/2
ud N N
wass,t)= Y f(=, Vot-z+ =) * for t=0,1,2,...,—
z=N/2 2 2
y N N
P(225°,t)= Y. f(z,z—V2t+ 3)  for t=0,1,2,.,5
z=N/2
Y N N
Q(225°,t) = 2 flz,z+V2+ =) for t=0,1,2,...,—
x=N/2 2 2

Definition 8.2.2.1 Let Qyv be a pattern transformed from HVRPT defined by
equations (8) and (9), and R be a set of projection bases ® = {f,,56s,...,0:}. An
HVRP pattern Pyy can be represented by

Pyy =Suv U R. (10)
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(a) ®) (c)

(a) Original patterns
(b) DDRPT pattems
(c) HVRPT patems

Figure 18: Examples of DDRPT and HVRPT patterns.

Here, n = 4, projection bases are two segments of horizontal (y = N/2) and two
segments of vertical (z = N/2).
Several HVRPT patterns can be exemplified by Figure 18(c).

3.2.3 Characteristics of DDRPT and HVRPT Patterns

A couple of very important characteristics of the DDRPT and HV RPT patterns
can be presented in the following theorems, which play a major role in solving the
multiple contour problem.
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Theorem 3.2.3.1 Either DDRPT pattern or HV RPT pattern does not contain
any hole in it.
Proof: First, we prove the case of the DDRPT pattern. A DDRPT pattern
Ppp consists of 8 sub-patterns P4 - Py, such that Ppp = PAUPgU P U Pp U
Pg U Pr U Pg U Py. Furthermore, these eight sub-patterns are generated by eight
sub-projections given by equation (6). Each sub-projection is made along either a
horizontal or vertical line. For instance, the sub-pattern P¢ is made by C(270°, z) =
}_':LLN__, f(z,y), for £=0,1,2,..., g— It reveals that all pixels in area C are projected
onto a diagonal along the horizontal line which produces no interval on the horizontal
direction. Thus no hole exists in sub-pattern Pc. Similarly, sub-patterns Pg, Pp
and Pg do not contain any hole in them, since sub-projections in areas B, F and G
produce no intervals on the horizontal direction. Meanwhile, no intervals along the
vertical direction occur in areas A, D, E and H after projecting all pixels along the
vertical. Subsequently, the whole DDRPT pattern does not contain any hole because
all the sub-patterns do not contain any holes.

The case of the HV RPT pattern resembles that of DDRPT.

a

Theorem 3.2.3.2 Either DDRPT pattern or HV RPT pattern is a connected pat-
tern

The proof is straightforward, it is omitted here.

Although contour analysis has been amenable to shape recognition, it still has a
great difficulty dealing with the multiple-contour problem which occurs in two cases:

(1) Compound patterns including unconnected patterns and patterns with
isolated noise;

(2) Patterns with internal contours.

The first case can be solved by Theorem 3.2. According to it the compound
pattern is concentrated on an integral object to which the contour approach becomes
applicable.

The second case can be handled according to the characteristic stated in Theorem
1. The pattern transformed from the DDRPT and HV RPT contains only one outer
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contour. It makes sense to simplify the process.




Chapter 4

Parallel RPT and Its Systolic

Implementations

Many pattern recognition and image processing algorithms have been regarded com-
putationally expensive. For example, a two-dimensional convolution with a general
4 x 4 kernel would require 16 multiplications and 15 additions to be performed for
generating each output pixel. To perform this convolution on a 1000 x 1000 image at
the video rate would require the computing power of over 100 MIPS. If the kernel is
larger or the dimensionality higher, even more computation power would be required.
Consequently their utility in real-time applications is often restricted. With advances
in VLSI technology, design ar.d implementation of VLSI systems for pattern recog-
nition and image processing have received a lot of attention [42]. Since numerous
problems in pattern recognition and image processing ace highly regular computa-
tions and offer parallelism in a natural fashion, VLSI architecture and algorithms
are need to employ these advantages and efficiently solve these problems in real-time
applications. In this chapter, the parallel DDRPT and HVRPT approaches and their
implementations on a two dimensional mesh architecture will be described. A parallel
contour processing algorithm and its systolic implementation will also be discussed.

43
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4.1 Parallelism in RPT

4.1.1 Parallelism in DDRPT

According to the discussion in Chapter 3, the projection bases used in the DDRPT
are two diagonals, and all pixels in a pattern are to be concentrated onto the two
diagonals along different projecting directions. The whole pattern has been divided
into 8 sub-areas and projection of it can be expressed by 8 sub-projections as shown
in equation (5) and (6). Examining equation (5) and (6) finds that the computations
of these 8 sub-projections are independent of each other, each of which only needs
the values f;(z,y) of pixels (z,y) within their own sub-areas such that

fi=z,v)€R;, R CR,

R = {A(p,t), B(p, 1), C(w, t), D(,t), B, 1), F(ip,1), G(p, t), H(p,t)}.

Therefore, these computations can be done simultaneously. Moreover, because the
computation of each sub-projection is the summation of values f;(z,y) of pixels (z,y)
in the same row or column (depending on projection direction of the sub-area). The
summations of f;(z,y) of different rows or columns within the same sub-area can also
be done in a parallel fashion. These parallelisms can be described as follows.

algorithm 4.1.1.1

Cobegin
Procedurei (i = A, B, C, D, E, F, G, H);
Coend;
Procedure i (i=A,B,C,D,E,F,G,H)
Begin
Parfor j = M; to Mz do
Begin

for k = M; to M, do
Along the vertical direction of Z(Z=X or Z=Y)

axis, pixel (x,y) in the sub-area i is
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concentrated onto the segment LLi

with inclination of o

End
End

|

< %

nononwon
o Q==

X

y
M¢={ N-

N

N

]
|

,B,C,H

4.1.2 Parallelism in HVRPT

l—:— i=AB,D,G

(0 i=D,EF,G
X =B
Ma=4y i=A
N-x i=C
| N-y i=H

0° i=DE

o= 90° i=F,G

180° i=AH

270° i=B,C

The same consideration can also be applied to the HVRPT. Projections take place
simultaneously in eight sub-areas P, Q, R, S, T, U, V and W . Two horizontal and
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vertical lines (i.e. z = N/2 and y = N/2) are projection bases. The parallel HVRPT
approach can be described by the following algorithm:

Algorithm 4.1.2.1
Cobegin

Procedurei (i=P, Q,R,S, T, U, V, W );
Coend;

Procedure i (i=P,Q,R,S,T,U,V,W)
Begin
Parfor x = M, to M; do
Begin
for y = M3 to M, do

Along the vertical directions of diagonals,
pixel (x,y) in the sub-area i is
concentrated onto Z axis

with inclination of @

End
End
where,
,_ [ X i=PSTW v _f 0 i=RSTU
“1lY i=QRUV LY i=PQVW
N :_ i= w
=% R,S,T,U My = 2: : T,U,V,
N i=PQV,W N i=PQRS
315° i=RS
M, = ¥ i=TUVW aol ¥ i=TU
*“1IN i=PQRS 135° i=V,W

225° i=P,Q
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4.2 Systolic Implementation of Parallel RPT

According to the parallelism of the DDRPT and HVRPT, the implementation on
a systolic architecture for them is described in the present section. The proposed
systolic architecture has the following features: (1) pipelining and multiprocessing
techniques are used to perform the computation simultaneously by each pixel; (2)
both computation and communication between processing elements are very simple
and regular.

First, some definitions that will be used in the following sections are described
below:
Definition 4.2.1 In a two dimensional pattern, for pixel (x, y), its neighbours
(x+17Y)’ (x+1,Y+l)v (X’Y"'l)’ (x"le"'l)’ (x'laY)’ (x’lv}"l)? (x: Y’l) and (x+17Y'1)
are symbolized by Bo, 81, B2, B3, B, Bs, Be, Br in counter-clockwise respectively such
that

/ﬂow ( (z+1,y) \
B (z+1,y+1)
ﬂ2 (:z:,y+1)
Bs (z—1,y+1)
Ba = (z-1,9)
Bs (z—1,y-1)
Pe (z,y—1)

\ 4 | (z+1,y—1) J

Pixel §; is called the ith neighbour of pixel (x,y).
Definition 4.2.2 In the two dimensional binary pattern, a pixel is called inner pixel
if the following condition is satisfied:

(f(z,¥) =1) N (Viz0.2,4,6(f(B:) = 1))

It implicates that its own value and all values of its four neighbours By, B2, B4, Fs,
are “17s.

A pixel is called an outer pixel if the following condition is satisfied:

(f(=,9) = 0) N (Viz0.2,4,6(f(8:) = 0)).
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It means its own value and all values of the above four neighbour pixels are “0"s.
Definition 4.2.3 A pixel is an edge pixel if the following condition holds:

(f(z,y) = 1) N (3iz02,46(f(B:) = 1)) N (Jiz02.46(f(i) = 0)).

It means that the value of itself is “1”, and values of its four neighbour pixels (x+1,y),
(x-1,y),(x,y+1) and (x,y-1) are neither all “0”s nor all “1”s.
Definition 4.2.4 For an edge pixel (x,y), if f(80) = 0, it is called forward edge pixel
(FEP). If f(B4) = 0, then pixel (x,y) is called backward edge pixel (BEP).
Definition 4.2.5 For an edge pixel (x,y), if f(82) = 0, it is called upward edge pixel
(UEP) , and if f(Bs) = 0, pixel (x,y) is called downward edge pixel (DEP).
Throughout this paper, it is also assumed that the size of the two dimensional
patternis N x N, and N is odd. If N is even, to make N odd without losing generality,
an additional row and column will be added, and values of “0” will be set to these

additional pixels.

4.2.1 Machine Model

The proposed systolic architecture, as shown in Figure 19, is not only amenable
to the DDRPT and HVRPT but also to parallel contour processing. It is a two-
dimensional mesh-connected processor array, consisting of N X N processing elements,
one processing element will process one pixel in a two dimensional pattern. There
are control signal lines and data buses connecting adjacent processing elements. Each
processing element can send or receive data from its éight neighbours through buses.
It is assumed that all operations in the system are controlled by the system clock.

The internal structure of each processing element is shown in Figure 20. It has an
arithmetic and logical unit (ALU) to perform computations, a control unit to control
operations of ALU and a register group (RG).

The RG consists of 21 shifting registers (SR) which are divided into the following
four types:

(1) Value register Pl ,: It is used to store value f(x,y) of pixel (x,y).

(2) Neighbour registers R[k] (0 < k < 7): They are employed to receive values from
its eight neighbour processing elements PE’s which correspond to its eight neighbour
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Figure 19: Processor array.

Arithmetic and
\ Logical Unit
Reglster ( ALU)
Group
(RP) Control Unit
(CU)

Figure 20: The internal structure of processor element.
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pixels Bo, B1, B2, Ba, B4, Bs, Bs, Br.

(3) Type registers Rugp, Rpep, Rrep and Rpgp: They are used to indicate the
types of the edge pixels. The contents in registers Rygp, Roep, Rrep and Rggp denote
upward, downward, forward and backward edge pixels respectively. "’hey will be used
in parallel contour processing.

(4) Contour-chain registers Ren[k], and Rex[k] (1 < k < 4): They record pixels
that will be adjacent to pix.! (x,y) in the contour chain.

Besides, corresponding to pixel (x,y) in a pattern, each processing element has
its own coordinates (x,y) in the processor array. In the following sections, Ry, will

be used to denote the register R ( R € {R[0] ~ R[7], Rugp, Rsep, Roep, Rrep, PI} in
PE,,.

4.2.2 Systolic Implementation of Parallel DDRPT

It is assumed that all pixels have been loaded into the processor array and the value
f(x,y) of pixel (x,y) is stored in the register PI,, before the computation begins.
As discussed in Section 4.1, the projections can be carried out simultaneously in
different columns (sub-areas : B, C, F, G) and different rows (sub-areas : A, D,
E, H). In our algorithm, such projections are implemented by the concentrations of
all pixels towards the projection bases (i.e. two diagonals) from different projecting
directions. This procedure consists of the following three steps described below:

(1) After computation has begun, the content of register PI,, in processing ele-
ment PE,, is sent counter projection direction to its adjacent processing element in
its area.

(2) For each processing element, the content received from its neighbour processing
element is checked. If it is “0”, the content of register P, , will be sent to the adjacent
processing element along the projecting directions in its area, then PI, , will be reset
to “0”. Otherwise, a value of “0” will be sent to the neighbour processing element.

(3) After receiving the data sent from its neighbour processing element along
the projecting direction, an “OR” operation will be performed in processing element
PE,y using this data and the content of register Pl,, as operand, and the result will
be put back to the register Pl,, .
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Figure 21: Data flow of parallel DDRPT.
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After the above procedure has iterated N times, the concentration processing can
be accomplished. All pixels will concentrate towards the projection bases along the
projecting directions.

The data flow in parallel DDRPT is shown in Figure 21.

To explain clearly the implementation of the concentration process on a processor
array, the concentration in sub-area C is used as an example which 1s presented as
follows:

Step 1: After computation has begun, for every processing element PE, y in sub-
area A, the content of Pl,, is sent to register Ry y41(6]. Then, FE,, is checked, if
R.y[6] =0, PE,, sends the content of Pl,y to Ry,_1[2], and PI,, =0; otherwise, it
will send 0 to R, ,_,[2].

Step 2: Operation R,;[2]V Pl is executed in PE, y, the result is sent into PI,,.

Step 3: After repeating the above procedure N times, the concentration com-
pletes. All pixels in sub-area C are moved towards the concentration base LL1.
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Similar procedures can be used to implement the concentrations in other sub-areas.

The behaviour of each processing element is described in the following algorithm:

Algorithm 4.2.2.1
This algorithm is executed by each PE,, in parallel.
Begin
Fori=1to || do
Begin
send ( P,y ,m);
receive (R[q),q) ;
If R[q] = 0 then
send (Plyy,q);
else
send (0, q) ;
receive ( R[m] , m) ;
Pl;y « R[m] Vv Pl,, ;

End
End
where
0 PE,, € areas A,H ' 0 PE,, € areas D,E
me 2 PE,, € areas B,C q= 2 PE,, € areas F,G
4 PE,, € areas D,E 4 PE,, €areas A\H
6 PE,, € areas F,G 6 PE,, € areas B,C

Assume that the following operations can be completed within a time unit, in

each processing element:

(a) All data passing operations between processing elements,

(b) Arithmetic and logical operations.

The time complexity of algorithm 4.3 can be calculated in the following manner:
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Figure 22: Data flow of parallel HVRPT.
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Concentrations of pixels can be done simultaneously not only in different sub-areas
of the entire pattern but also in different columns or rows within the same sub-region,
since such concentrations within a sub-area are performed along columns (areas B,
C, F, G ) or rows (areas A, D, E, H). Therefore, the time complexity of algorithm 4.3
is O(N).

4.2.3 Systolic Implementation of Parallel HVRPT

The proposed processor array can also be used to implement parallel HVRPT. As
discussed in Section 4.1, projections in HVRPT are also carried out by concentrating
all pixels towards the projection bases from different projection directions in eight sub-
regions. Its systolic implementation is similar to that of parallel DDRPT algorithm
except the directions of data flows and control flows. An example of data flow for it
is shown in Figure 22. The projection bases are changed to z = N/2 and y = N/2in
HVRPT, the directions of the projection are 45°, 135°, 225° and 315°.
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The behaviour of each processing element for implementing the parallel HVRPT
can be described as follows.

Algorithm 4.2.3.1
This algorithm is executed by each PE,, in parallel.
Begin
Fori=1to |¥] do
Begin
send ( Pl;, ,m);
receive (R[q),q) ;
If R{q) = 0 then
send (Plcy , q) ;
else
send (0,q);
receive ( R[m] , m) ;
Ply + Rfm] Vv Pl,, ;
End
End
where

1 PE,y € areas P,Q
3 PE,, € areas R,S

5 PE,y€areas T,U
7 PEyy € areas V,W

PE,, € areas T, U
PE,, € areas V,W
PE,, € areas P,Q
PE,y, C areas R, S

- Oy W

Similarly, the time complexity of algorithm 4.4 is also O(N), since pixels can be
processed simultaneously not only in different sub-regions of whole object, but also
in different concentration lines within each sub-area.
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4.3 Parallel Contour Processing

As stated in the previous sections, after concentrating all pixels of a pattern towards
the base lines by either the DDRPT or HVRPT, a condensed object that contains
only single boundary can be obiained. Although the existing contour processing
algorithms such as [13, 29, 121, 132] can work on this type of patterns, a simpler
one is competent for such simple contour. Thus, a new parallel contour processing
algorithm which is much simpler than others has been developed and its systolic
architecture has also been designed. They will be described in this section.

The contour of a pattern can be expressed by a chain consisting of edge pixels
described in definitions 4.3 - 4.5. Using a processor array proposed in Section 4.2,
all edge pixels based on definition 4.3 can be easily extracted. But such edge pixels
will appear in a random order. We still have to find the relationships among them
within the pattern and construct a chain that keeps the relationships of adjacent
pixels in the pattern. In this section, a parallel algorithm is proposed which carries
out both contour extraction and chain establishment. The proposed algorithm has
the following feature : each processing element PE, y in the two dimensional processor
array only needs local data (the contents of PI registers in its neighbour processing
elements) to identify the adjacent pixels of pixel (x,y) in the contour chain within
constant time units.

The main operations which are performed during contour tracing in the proposed
algorithm can be presented below:

(1) Distinguishing the type of pixel.

In each processing element PE, ,, the content of its register Pl (i.e. f(x,y), the
value of pixel (x,y)) is sent to its eight neighbour processing elements. Values of its
neighbour pixels are also received from its eight neighbour processing elements. They
are stored in the registers Ry (0] ~ R y[7]. According to the definitions in Section
4.2, the type of pixel (x,y) can be identified by these values and the content of register
Pl in each processing element PE, .

(2) Establishing chain consisting of the edge pixels.

If a pixel (x,y) is an edge pixel and belongs to type k (here, k € { FEP, BEP,
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UEP, DEP }), then the following procedure is executed in processing element PE,,
to find the neighbours of pixel (x,y) in the chain.

If pixel (x,y) belongs to the type of UEP, for processing element PE,,, first, the
values of its neighbours will be checked counter clockwise starting the 4th neighbour
B4, until the value of one of its neighbours with “1” has been found. Then, the values
of other neighbour pixels will be checked clockwise from B4, until another neighbour
pixel with value “1” has been found. These two pixels are neighbours of pixel (x,y)
in the contour chain.In the sequel, the coordinates of them will be recorded.

In the case that pixel (x,y) belongs to other types, a similar procedure can be
used to search its adjacent pixels in the contour chain except that the starting points
differ according to the different types, i. e. starting from f, in DEP, fg in BEP, 3,
in FEP. Because all values of neighbour pixels have been sent to PE,, and stored in
registers Ryy[0] ~ Ry,[7] in turn in the first operation, the above search procedure
can be performed in PE,, by checking the contents of these registers.

An example of parallel extracting contour and establishing chain is illustrated in
Figure 23.

The behaviour of each processing element during contour tracing is described in

the following procedure, the code is executed by each processing element PE,, in
parallel.

Algorithm 4.3.1
/* STEP (1) : Distinguish type of each pixel */
Cobegin
for m =0,1,2,3,4,5,6,7 do
Begin
send (PI[i,j], m);
receive (R[m],m) ;
End /* for m */
if R[0] A R[2] A R[4] A R[6] A P1[i,j] = 0 then
Router = 1;
if R[0] V R[2] v R[4] V R[6] V PIfi,j] = 1 then
Rineer = 1 ;



if Router V Rineer = 0 then

Redge =1;
if (R[4]=0) and ( Regge = 1) then
Rygp =1 ;
if (R[0]=0) and ( Regge = | ) then
Rpep =1 ;
if (R[2] = 0)and ( Regge =1 ) then
Reep =1
if (R[6] = 0) and ( Reqge = 1) then
Reep = 1;
Coend
/* STEP (2) : find a chain with clockwise direction */
Cobegin

for k = UEP,DEP,FEP and BEP do
if Ry =1 then

Begin
m=p;
while (R[m] = 0) do
Begin
m=m+1;
if m = 8 then
m=0;
End
Rienter =m
m=p;
while (R[m] =0 ) do
Begin
m=m-1;
if m =-1 then
m=7;

End;
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Ryexit =m ;
End
Coend
where,

0 k=DEP

_J 2 k=FEP

P=)4 x=uEp

6 k=BEP

The time complexity of the proposed parallel contour processing algorithm can be
computed as follows :

Time complexity = time units needed for step (1) + time units needed for step
(2) = O(17) + 4 x O(10) = O(c).
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Figure 23: Contour extraction.



Chapter 5

Parallel RPCT and Its Systolic

Implementation

In chapter 4, we discussed the parallel regional projection transformation approach
and its systolic implementation. This approach consists of two steps. First, it con-
centrates a compound pattern into an integral object through the projection. Then
a parallel contour processing algorithm is used to collected the contour chain of the
pattern. However, these two steps are actually independent of each other, these two
operations can be done concurrently, yielding a higher degree of parallelism. In this
chapter, we introduce a combinatory parallel approach called regional projection con-
tour transformation (RPCT), which is the further improvement of parallel RPT. We
also discuss its systolic implementation on a linear processor array using a systematic
methodology called canonical mapping methodology proposed in [75].

5.1 Systolic Array for DDRPCT

To achieve the highest performance of computation, systolic architecture must be
carefully designed. In this study, a canonical algorithm-array mapping methodology
has been used [75). It consists of three steps:

(1) DG design - mapping algorithm to DG;
(2) SFG design - mapping DG to SFG;

60
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Algorithm

Figure 24: Block diagram of algorithm-array mapping approach.

(3) Array processor design - mapping an SFG into an array processor.

The key concept of this approach can be summarized in a block diagram illustrated
in Figure 24.

5.1.1 Algorithm-Array Mapping in Sub-DDRPC ¢‘C’

In order to design an efficient systolic architecture, the data dependencies in the
computations must be carefully investigated, and a dependence graph (DG) is used.
The DG is a graph that shows the dependence of the computations that occur in an
algorithm.

A DG for sub-DDRPCT in sub-region ‘C’ is shown in Figure 25(a), where sub-
region ‘C’ has a size of -"2! X % This is a locai DG, since all its nodes are dependent
on the neighboring nodes located on the lines with 90° only, it contains no global
communications in it.

To determine a valid array structure for an algorithm, one straightforward design
is to designate one processing element (PE) for each node in a DG. However this
design generally leads to very inefficient utilization of the PEs, since each PE can be
active only a small fraction of the computation. In order to improve PE utilization,
it is often desirable to map the nodes of the DG into a fewer number of PEs. To
achieve this, it is useful to map the DG first into an intermediate form termed signal
flow graph (SFG).

A SFG is a directed graph consisting of nodes and edges weighted edge delays. The
nodes model cornputations and the edges model communications. A complete SFG
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description includes both functional and structural description parts. The functional
description defines the behavior within the nodes, while the structural description
specifies the interconnection between the nodes. Hence, the SFG can model the
implementation, in time and space, of a computation described by a local DG. To
obtain this implementation, the DG is mapped into the SFG.

DG-SFG Mapping in Sub-DDRPCT ‘C’

The DG-SFG mapping consists of two phases, processor assignment and scheduling,
which are described briefly as follows:

Processor Assignment:
1) Assigning the nodes in the index space of the DG to particular nodes of the SFG.
2) A criterion might be to minimize communication of data between processors.

3) A projection method can be applied, in which nodes of the DG along a straight
line are assigned to a common PE.

4) The projection maps the DG into a lower dimensional lattice of points, known as

the processor space.
5) Mathematically, a linear projection is often represented by a projection vector d.
Scheduling:
1) Scheduling the order in which these nodes are to be computed.
2) A criterion might be to minimize total computing time.

3) A schedule function represents & mapping from the N-dimensional index space of
the DG into a 1-D schedule (*ime) space.

4) A linear schedule i ".ased on a set of parallel and uniformly spaced hyperplanes
in the DG.
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(a) DG, (b) SFG, and (c) VLSI architecture

Figure 25: Algorithm-array mapping in subdiagonal-diagonal RCPT’C’.
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5) Mathematically, the schedule can be represented by a column schedule vector &,
pointing to the normal direction of the hyperplanes.

In this study, algebraic approach has been used [75]). In general, it involves three
steps: (1) node mapping, (2) arc mapping, and (3) input/output mapping.
1 Node mapping

This mapping assigns the node activities in the DG to the processors. For any
projection direction, a processor space is orthogonal to the projection direction. A
processor array can be obtained by projecting the index points to the processor space.
Given a DG and a projection vector J‘, the most likely used schedules for the SFG
projection are (1) default schedule, (2) recursion schedule, (3) systolic schedule, and
(4) optimized schedule [75]). In this thesis, a default schedule is used, which can be
defined below.
Definition 5.1.1.1 Let X be a hyperplane vector of a DG, da projection vector, a
schedule is called a default schedule if the following condition is satisfied:

Ad=0

which implicates that the hyperplanes are orthogonal to the projection direction. In
other words, the normal direction of hyperplanes is parallel to the projection direction.
Consider the DG of sub-DDRPCT ‘C’ as shown in Figure 25(a), the projection

vector J, schedule vector § and processor basis 8 are computed as follows:

Since the default schedule has been used, the schedule vector is parallel to the pro-
jection direction
" 0
§= .
-1

The processor basis 8 is orthogonal to J, i.e.

ATd=0
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ﬂ=[;}

Therefore, the node mapping can be obtained

z 1 T z
g [v]=[0] [yJ:hL
2 Arc mapping

This operation maps the arcs of the DG to the edges € of the SFG. The arcs
in the DG are replaced with edges € associated with zero/nonzero delay D(€) in its

and it can be calculated as

corresponding SFG. The number of delays on each edge depends on the number of
time steps needed.

In the x direction: °

pE)] _[a1[o] _[o-1]fo] _[o
& | s ]lo] |1t o ]lo] {o

In the y direction:

pE)] [&#][o] _[o-1][e] |1
& | (67| -1] [1 o j[-1] |o

3 Input/output mapping

After euch node of the DG has been projected to a PE, considering each in-
put/output data is connected to some nodes, it is possible to attach the input/output
data to their corresponding processors. The SFG node position S and time T'(y) for
input/output can be computed.

Input:
-T.-('y)7= éq'q-zw__.o-—l?-a:w_-lq
S ] AT L) [t oo )l-1) L=
Output:
'To('y)q=5”'7-:-='0—17'z-1___-17
| S _ﬂT ! 1 0 -1 K

Once the above mappings have finished, a SFG for sub-DDRPCT in sub-region
‘C’ can be obtained as shown in Figure 25(b).
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Systolic Architecture for Sub-DDRPC ¢C’

From this SFG, a systolic architecture with linear array can be designed as Fig-
ure 25(c). The input data flow f(z,y) is shown in this figure, the output Pc(z,y) of
the array is

Po(z,y) = (P, P3, ..., PE, ...,Pé’!)

According to the following theorem, it is clear that the coordinates of the partial
contour points of the sub-DDRPCT pattern can be represented by such outputs.
Theorem 5.1.1.1 Let Pi(z,y), i = 1,2,..., -’} be outputs of the processors of the
systolic array shown in the above. The values of coordinates of the points in the
partial contour of sub-DDRPCT ‘C’ can be described by these outputs, such that

r=1
y=(N=-i)+Tin... f(z,9)

Proof: From the systolic array shown in Figure 25(c), the output of each PE can
be listed below:

Pi(z,y) : P(z,y) { (11)

PE, : P(l,;n) n=N-1
N-1

PE; : P(2,y2) y2=(N"2)+ Z f(21y)
y=N-2 .
N-1

PE; : P(3,y3) p=(N=-3)+ Y. f(Bv)

y=N-3

............................ : (12)

N-1
PE; : P(i,y,-) y.'=(N—i)+ Z f(isy)

y=N-i

oooooooooooooooooooooooooooo

N
PEy : P(5.yy) wg= ( ) +,§ f( ¥)
From the above list, a claim about the general formula in sub-region ‘C’ can be written
as

PE; : P(z,y) { (13)

(N - ") + 2y=N-| ('1 y)
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Now, the induction proof is used to verify the above claim.
(a) Basis : The case k=1. Immediately the output of processing element PE,
can be calculated by
PE, : 2, =1, y1=N-1

(b) Induction Hypothesis : Assume in case of k, the output of processing
element PE; is presented by

PE,H.] . T = k

N-1
Y = (N,,T k)+y=§_k f(z,y) (14)
) i

(c) Induction Step : From Figure 26 and the above hypothesis given in equation
(14), we have

PEy : 241 = Xie+1

= k+1
Ykl = Ypp Vi
= (B-1)+@i+96)
N-1
= (N=k-=1)+( _;kf(z,y)w)
P Nt
= (N=k=1)+ ) flz,9)+ Y flz.)
y=N-k y=N-k-1
N-1
= (N=(k+1))+ 3 f(=zy)
=N—(k+1)

We have assumed the theorem to hold for PE;; we have shown it to hold for
PE, (the basis); and we have proved under these conditions, that it holds for PE,;.

Therefore, it holds for all PEs.
a
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Figure 26: The proof of Theorem 5.1.1.1

5.1.2 Systolic Architecture Design for Sub-DDRPCTs ‘D’-
‘B’

A DG for sub-DDRPCT in sub-region ‘D’ is shown in Figure 27(a). This is also a

local DG, all its nodes are dependent on the neighboring nodes only, it has no global
communications in it.

To achieve an efficient VLSI architecture, the DG is mapped into an SFG by
an algebraic transformation. Consider the DG of sub-DDRPCT ‘D’ as shown in
Figure 27(a), a default schedule is used, the schedule vector is parallel to the projection

direction. The projection vector d and schedule vector 3 are computed as follows:

[
0 0

The processor basis 8 is obtained orthogonal to d:

BTd=0 = fB= o]
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| ©
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(a) DG, (b) SFG, and (c) VLSI architecture

Figure 27: Algorithm-array mapping in subdiagonal-diagonal RCPT’D’.
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1 Node mapping

2 Arc mapping
In the x direction:

B HIBERINEY

In the y direction:

-]

3 Input/output mapping

il
—
=
)
—
—
[— 2
| I
i
—
(=T —
[ S

Input:
(T ] _ [T ][] _[ro][2] [1]
L& LTy Loty L]
Output:
-T.,('y)._ aT -_Pl O-Pl-_Fl-
| % ] LA flv] Lo 1]ly] [y

Once the above mappings have finished, a SFG for sub-DDRPCT in sub-region
‘D’ can be obtained as shown in Figure 27(b).

From this SFG, a systolic architecture with linear array can be designed as de-
picted in Figure 27(c). The input data flow f(z,y) is shown in this fignre, the output
Pp(z,y) of the array is

. N
PD(ma y) = (Pll)s Plz)""! bv“vPl; )

According to the following theorem, it is clear that the coordinates of the partial
contour points of the sub-DDRPCT pattern can be represented by such outputs.

e e
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Theorem 5.1.2.1 Let Pj(z,y),i = 1,2,..., 1,! be outputs of the processors of the
systolic array shown in the above. The values of coordinates of the points in the
partial contour of sub-DDRPCT ‘D’ can be described by these outputs, such that

r=X-(i-1)-T5" flzy)

—E4Gi-1) 19)

P : P(z, y){
Proof: An induction method has been used to prove this theorem.
(a) Basis : The case k=1. Immediately the output of processing element PE,
can be calculated by

N & N
PEI: 1=—2- —2—

—gl f(z’2+1)v n=

(b) Induction Hypothesis : Assume in case of k, the output of processing
element PE; is presented by

Yo(k-1)

PE, : =z, = (—'—(k—l z—-:l f(zv.'l)
z,‘ }.
W= SH(K-1) (16)

(c) Induction Step: From Figure 28 and the above hypothesis given in equation
(16), we have

PEyy @ ey = Thyy —Tin
= @-1-(s1-9)
& (k-1)

= ((——(k 1))-1)~( };1 f(z,y) ~6)
¥-(k-1) L-(k~1)

= (——Hl—l) ( Z fz,y) - % f(z,9))

z=5~k
N L ((k-1)+1)
= (F-¢-D+)-C T )

Yet1 = W+l
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Figure 28: The proof of Theorem 5.1.2.1
= (%+(K—-l))+l
N
= ?'}-((K——l)-i-l)
0

Similarly, for Sub-DDRPCT's in sub-regions ‘E’-‘B’, the following theorem can be
presented:
Theorem 5.1.2.2 Let Pi(z,y) - Pj(z,y) be a point in the partial contour of sub-
regions ‘E’ - ‘B’ respectively. The values of these coordinates are described below:

P : P(z,y){ . = J0)
y=1
4 z=i
PF P(%y){ y=1i-— ‘-l f(i,y)
i e=84(-1)
PG’ P(xg ){ - (I—V-—-1+ 1) Z:%-'—l f(zay) (17)




CHAPTER 5. PARALLEL RPCT AND ITS SYSTOLIC IMPLEMENTATION 73

N N
P;’ : P(z’y){ z;iN l) Zz=N-c f(z’y)
(N | 2 N-1

) r= (-2---}-3—1)*-2::1!_,._‘_, f(zay)
Py : Pz, ?

A (xy){y:-.l—zv--l-(l—l)

: z=5+(i-1)
Py : P(z, N

B (:L' y){ y:(%’-+2—1)—25=—é+;_1 f(zsy)

Proof: The theorem can be proved similarly as the proofs of the above theorems.
An induction proof can be used.
0

5.1.3 Contour Chain for DDRPCT Patterns

A chain of the contour for a DDRPCT pattern can be obtained by connecting the eight
outputs of all sub-regions A - H. As described in Figure 29(a), eight groups of input

data, fA(x’y)a Is(=z,y), fol(z, ), fo(z,y), fE(-’F,y), fr(z,y), fG(z’y) and fﬂ(a"’y)’
are sequentially read in the processor array, see Figure 29(a). For each group, the

output data is obtained at different PEs. They may either be output sequentially
or fetched in parallel through an output bus. In Figure 29(a), the outputs of the
DDRPCT are fetched in parallel through an output bus. They are sent to a queue
with size of 4(N-1) in the following order:

Pi~P, = P§~P}
Pf~P, = PL~P§
Pi~Pf = PL~PF
PL~GE = P ~P}

Ly

(18)

In the sequel, the chain of the contour for a DDRPCT pattern can be obtained
from the queue.
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W

pE1[pE2[PE3] [eEi] [PEX PE1]|PE2|PE3| |PEi PEI:-]-I
Output bus
4(N-1) Queue ——®1 4(N-1) Queue
(a) (b)

(a) for diagonal-diagonal RPCT
(b) for horizontal-vertical RPCT

F'gure 29: Contour chain of a RPCT pattern obtained from a queue.
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5.2 Systolic Array for HVRPCT

Resembling the DDRPCT, an algorithm-array mapping has been used to design a
systolic architecture for HVRPCT. In this section, the sub-HVRPCT 'R’ is exploited
as an example to describe how a systolic array can be designed to implement the

HVRPCT.

5.2.1 Algorithm-Array Mapping in Sub-HVRPCT ‘R’

A DG for sub-HVRPCT in sub-region ‘R’ is shown in Figure 30(a). This is also a
local DG, all nodes of it are dependent on the neighboring nodes located on the lines
with 315° only. As well it has no global communications in it.

To achieve an efficient VLSI architecture, the DG is mapped into an SFG by
an algebraic transformation. Consider the DG of sub-DDRPCT ‘R’ as shown in
Figure 30(a), a default schedule is used, the schedule vector is parallel to the projection

direction. the projection vector d and schedule vector 3 are computed as follows:

) [

The processor basis 3 is obtained orthogonal to d:

ﬂTti:O = ﬂ=[i]

) T
dMEHIMES
y 1 y
2 Arc mapping

HNHEE RN MY

3 Input/output mapping

1 Node mapping
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IR
A

As shown in Figure 30(b), an SFG for sub-HVRPCT in sub-region ‘R’ can be
obtained by assigning the nodes in the index space of the DG to particular nodes of
the SFG, and scheduling the order in which these nodes are to be computed.

From this SFG, a systolic array can be designed and described in Figure 30(c),
where N=10 is taken as an example to simplify presentation. According to the fol-
lowing theorem, it is clear that the coordinates of the partial contour points of the
sub-DDRPCT pattern can be represented by the output Pg(z,y) of the array, i.e.

Input:

Pr(z,y) = (PL, P}, ..., P}, ..., P¥)

Theorem 5.2.1.1 Let Pj(z,y),i = 1,2,..., % be outputs of the processors of the
systolic array shown in the above. The values of coordinates of the points in the
partial contour of sub-DDRPCT ‘R’ can be described by these outputs, such that

PI.! . P(a:,y) { r= (%’-) - Ez+y=N+t’-l f(zt y) (19)

y= %‘ + (= 1)+ Lopy=nNtiz1 f(z,9)

Proof: The proof of this theorem resembles the proofs of the above theorems. An
induction proof can be used. To save space, it is omitted here.
a

5.2.2 Systolic Architecture Design for Sub-HVRPCTs ‘S’-
‘Q’

Similarly, for Sub-HVRPCTs in sub-regions ‘S’-‘Q’, the following theorem can be

presented:
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(a) DG, (b) SFG, and (c) VLSI architecture

©

Figure 30: Algorithm-array mapping in subdiagonal-diagonal RCPT’R’.
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Theorem 5.2.2.1 Let P§(z,y) - Py(x,y) be the points in the partial contours of
sub-regions ‘S’ - ‘Q’ respectively. The values of these coordinates are described below:

i zT=1i- Z,+y=¥+i f(za y)
P; : P(zx,

s : Pz y){ ¥ =Y+ oty fz,9)
z=i+3T, n f(z,y)
y= %,' - 2:—,,:15"-—.‘ f(l','y)
T = % - 2:-y=i—1 f(:t, y)
y=i-— Zz-—y:i-—l f(za y)
2 =5+ Topy=ttsi F(@:9)
y= i - E;-}-y:%-{-i f(z’ y)
g=(E+i-1)+Toryensicr f(2,9)
y= %,' - Ez+y=N+i—l f(z) y)
z=%+i-1)+ Lzy=i1 f(2,¥)
y
T

(20)

=0+ Teopmica f(z,9)

= %,' + 2y-z=i—l f(za y)
y= (%f_ +i— 1) + Zy-z:t’—l f(a:,y)

Proof: The theorem can be proved similarly as the proofs of the above theorems.
a

5.2.3 Contour Chain for HVRPCT Patterns

A chain of the contour for a HVRPCT pattern can be obtained by connecting the
eight outputs of all sub-regions P - W. Eight groups of input data, fp(z,¥), fo(z,y),
fr(2,9), fs(=,y), f1(z,9), fu(z,y), fv(z,y) and fw(z,y), are sequentially read in
the processor array, see Figure 29(b). For each group, the output data are obtained at
different PEs. They may either be output sequentially or fetched in parallel through
an output bus. In Figure 29(b), the outputs of the HVRPCT are sent sequentially to
a queue with size of 4(N-1) in the following order:

N
PE~P, = Pi~P, =

e ———— -
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PE~PL = PP} =
PL~Pf = PL~P} = (21)
PL~G§ =3 Pi~P).

In the sequel, the chain of the contour for a HVRPCT pattern can be obtained
from the queue.

5.3 Characteristics of RPCT Approach

The proposed RPCT approach has two major merits: (1) Patterns transformed by
the RPCT contain only one outer contour which can greatly simplify multi-contour
processing problems; (2) RPCT combines projection operation and contour tracing,

hence it can speed up computation.

5.3.1 Characteristics of RPCT Patterns

A very important characteristic of the DDRPCT and HV RPCT patterns can be
presented in the following theorem, which plays a major role in solving the multiple
contour problem.

Theorem 5.3.1.1 Either DDRPCT pattern or HV RPCT pattern has unique outer
contour with it.

Proof: First, we prove the case of the DDRPCT pattern. A DDRPCT pattern
Ppp consists of 8 sub-patterns P4 - Py, such that Ppp = P4UPgUP;UPpUPgUPrU
PgU Py. Furthermore, these eight sub-patterns are generated by eight sub-projections.
Each sub-projection is made along a horizontal or vertical line. For instance, the sub-
pattern Pg is made by C(270°,z) = ¥ . f(z,y), for z=0,1,2,..., 5. It reveals
that all pixels in area A are projected onto a diagonal along the horizontal line which
produces no interval in the horizontal direction. Thus no hole exists in sub-pattern
Pc¢. Similarly, sub-patterns Pg, Pr and Pg do not contain any hole in them, since
sub-projections in areas B, F and G produce no intervals in the horizontal direction.
Meanwhile, no intervals along the vertical direction occur in areas 4, D, E and H

\,
N
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after projecting all pixels along the vertical. The whole DDRPCT pattern does not
contain any hole because all the sub-patterns do not contain any holes. Subsequently,
the DDRPCT pattern has only one outer contour.
The case of the HV RPCT pattern resembles that of DDRPCT.
a
Although contour analysis has been amenable to shape recognition, it still has a

great difficulty dealing with the multiple-contour problem which occurs in two cases
[113]:

o Compound patterns including unconnected patterns and patterns with isolated
noise;

e Patterns with internal contours.

However both cases can be handled according to the characteristic stated in the
above theorem. The pattern transformed from the DDRPCT and HVRPCT con-
tains only one outer contour. It makes sense to simplify the process.

5.3.2 Time Complexity

The time complexity of the proposed parallel RPCT algorithm can be computed as
follows :

T=Tpp+Tuv+Tc
where,
o Tpp stands for time units needed for DDRPCT A - H. Pixels in each sub-area,

pi € R;, have different projection paths. The longest one must be considered
when the time complexity is computed.

o Tyv denotes time units needed for HVRPCT P - W. The longest path in each
projection must also be considered in HVRPCT.

¢ Tc indicates time units needed for outputting contour chain from queue.
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Top

Tuv

Therefore

+ 4+ + 0

o+ 4+ 4+ 1

max (time for sub-DDRPCT A) + max (time for sub-DDRPCT B)
max (time for sub-DDRPCT C) + glgg(time for sub-DDRPCT D)
glgg(time for sub-DDRPCT E) + max (time for sub-DDRPCT F)
max (time for sub-DDRPCT G) + max (time for sub-DDRPCT H)
8 x -12! =4N.

max (time for sub-HVRPCT P) + max (time for sub-DDRPCT Q)
max (time for sub-HVRPCT R) + max (time for sub-DDRPCT 8S)
max (time for sub-HVRPCT T) + max (time for sub-HVRPCT U)
max (time for sub-HCRPCT V) + max (time for sub-HVRPCT W)

N
8)(—2——-4N.

time for moving contour chain of DDRPCT from queue

time for moving contour chain of HVRPCT from queue
2 x 4N =8N.

T = 4N +4N + 8N = O(N)




Chapter 6
Evaluation and Experiment

In this chapter, an important theorem will be presented to estimate the quality of
features extracted. It will be used to evaluate the DDRPT and HVRPT comparing
with other approaches, such as, Cell histogram (CH), Crossing counts and Shading
(CCS), and Elastic partitioning (EP) [111, 126, 127].

Suppose a target pattern set contains m classes, each class has L different intrinsic
distortions, and each distortion has ¢ samples. The distribution model of patterns

with intrinsic distortions has been developed in [126] which can be presented below:

L
P(z) = ) Pipi(z) (22)

=1

where k = 1,2, ..., L stand for different intrinsic distortions, P and p; are the a priori
probability and distribution density of the k-th distortion. Let m(™ be the n-th
moment of the overall distribution, m{") be the n-th moment of the k-th distortion,
and suppose the ezpectation of the k-th distortion is py,

Theorem 6.1 If a feature extraction method is resistant to intrinsic distortion, the

ratio

("f)* (23)
and

(T (21)
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should be small.
Proof: More generally, (22) can be rewritten by

F(z)= "i P Fy(z) (25)

where F;, and Fi(z) are the feature distribution functions of the overall pattern class
and k-th intrinsic distortion respectively. Without loss of generality, we suppose P(z)
or F(z) has been centralized such that
/ * ¢P(z)dz = 0. (26)
—00

The characteristic function ®(t) of F(z) can be represented as [128]

d(t) = j ” et dF(z). (27)
—00
Similarly, the characteristic function ®x(t) of Fi(x) can be described as

a(t)= [ *dFiz), k=1,2,.,L (28)

in general, Fi(z)’s have not been centralized.
By a straight forward computation, the n-th moment of the overall distribution
denoted by m™ can be derived from the following formula:

m» = / ” t/dF(z)

10
= 752 ()li=o
19k E
= Fa g )
Let aﬁ") be the n-th moment of the k-th distortion, which is not necessarily a central

moment, we have

L
m™ =% Pa™, n=1,2,.. (29)
k=1

Suppose the ezpectation of the k-th distortion is uy,

Br = / zdFi(z)
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then

) = /(z—m+m)"dFk(z)

= § e 8),3, [(@ - muy*dFi(a) (30)
! ) n—s
= ’z_%(r_;_;'_{;),m m{®

where mk) denotes the s-th moment of a sample within the k-th distortion. To

facilitate classification, the quantity of mk ) should be relatively much smaller than
()

Pk, i.e. the smaller the ratio of (ﬂ“lk—)% is, the better the features are. It is obvious in

Fig. 31.

From (30) we can conclude that if g is much larger than m{")’s then

ai = (31)

by combining equations (29) and (31), we can further conclude that m(™ is much
larger than m( Vs, This implies that the overall moment is much larger than those
due to various intrinsic distortions, i.e. the smaller the ratio of (—h)- is, the better
the features are. It can also be justified in Figure 31.

a

In feature space, relations between the 1-moment of mg) , k and af) can be illus-
trated graphically in Figure 31. All samples within an intrinsic distortion construct
a Normal-distribution region with center c;. All these regions within a class create a
larger region with center cs;. The moment mm denotes the distance from a sample
to the center c; in the k-distortion. The moment a( ) indicates the distance from this
sample to the center cj; while uj stands for that between these two centers.

The values obtained from (23) and (24) have been used to assess the features ex-
tracted by the TRP’s. Four methods, Cell histogram (CH) [127], Crossing counts and
Shading (CCS) [126], Elastic partitioning (EP) [111] and TRP, have been compared
by means of the n-th moment in this study. The values of 2-nd - 5-th moments are
computed for these methods with their results illustrated in Tables 4 - 7.

In Tables 4 - 7, the smaller the values, the better the features. It is obvious that
the features extracted from the proposed method are much better than that of others.
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Figure 31: Relations among three moments.

Table 4: Values of the 2-nd moment for different methods

CH method | CCS method | EP method | TRP method
@ 8w 2.95 2.01 1.81
("‘i:’)% 7.21 2.14 1.63 1.13

Table 5: Values of the 3-rd moment for different methods

CH method [ CCS method | EP method [ TRP method
(mo) | 249 0.82 0.67 0.56
(™ ST 0.68 0.54 0.36
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Table 6: Values of the 4-th moment for different methods

CH method | CCS method | EP method | TRP method
_(_z*i'_’ 1 6.62 2.11 1.86 1.19
_L.,"'—h:) 1 5.64 1.73 1.45 0.97

Table 7: Values of the 5-th moment for different methods

86

CH method | CCS method | EP method | TRP method
(ma)} 1.86 0.68 0.48 0.19
EHET 047 0.27 0.08

The features from the DDRPT and HVRPT have been used to recognize a large
set of characters which contain a lot of compound patterns. The features have been
sent to the ISOETRP classifier [127]. In this way, the global decision is accomplished
by a series of local decisions made at various levels of the tree. It is suitable for
recognizing large data sets such as Chinese characters. When the number of pattern
classes, n, in the given problem is very large, the decision making time needed by a
simple stage classifier has an order O(n). This can be minimized to O(log n) in the
tree classifier, where each pattern class corresponds to one or a few terminal nodes
and the height of the tree is in the order O(log n). This is especially significant in
the recognition of large character sets. The primary principle of this classifier will be
described below.

In conventional clustering, each object is simply a point in the data space or
feature space. While in the tree classifier design, a cluster, or a subgroup, contains a
number of pattern classes instead of simple point. Consider that each pattern class
occupies a region in the feature space. This region can be determined according to
the distribution density of the pattern class and must be large enough so that the
probability for the patterns of this class falling in this region is near 1.

At the first stage, the root node is the only internal node to be developed, which
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contains all pattern classes. ISOETRP is applied to each undeveloped internal node
to produce two types of nodes: (a) a terminal if it contains only one pattern class,
(b) an undeveloped internal node if it contains more than one class. The process
continues until all internal nodes have been developed.

This process is rather local due to the reason that when an internal node is being
developed, other nodes are not considered. The tree search in the recognition phase is
also rather local, which causes error accumulation. In order to eliminate the locality
of the tree, we have to improve the tree search as well as the tree design. The solution
is tree global training.

(1) Number of features used at each node.

Suppose each pattern class has the covariance matrix }_; and mean vector M;.

It exists in the ellipsoidal region. The pattern space §; for the i-th class can be
described as

Q = {X|(X - M)} f;l(x - M) < a} i=1,2..,n

where X is a pattern which belongs to this class, a is a threshold which is as large as
possible under the following condition:

NN =¢, i#j  ij=1,2..,n

P is probability which depends on a as well as the pattern class distribution. When
it is Gaussian, -
P = P(a,m)

where m is the dimension of the feature space. P values corresponding to different
m’s and a’s are calculated and listed in Table 8.

The larger a is, the nearer P is to 1. While for the same value of , the larger m
value is, the smaller P is.

In the present study, eight features were used at each node and a was detected
as 3.8. Usually, the more features are used at each node, the easier it is to separate
pattern class groups in generating new nodes. A higher recognition rate of the tree
can also be expected, but the tree may take up more memory.
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Table 8: The p(a, m) values

a 250 275 300 320 340 3.60 380 4.00
m=1 | 0.9878 0.9941 0.9975 0.9983 0.9991 0.9996 0.9999 0.9999
m=2 | 0.9559 0.9769 0.9888 0.9991 0.9968 0.9982 0.9990 0.9996
m=3 | 0.8996 0.9439 0.9709 0.9830 0.9907 0.9951 0.9975 0.9987
=4 | 0.8185 0.9807 0.9390 0.9637 0.9789 0.9886 0.9939 0.9968
m=5 | 0.7174 0.8180 0.8905 0.9310 0.9584 0.9760 0.9868 0.9931
=6 | 0.6039 0.7278 0.8262 0.8849 0.9276 0.9561 0.9747 0.9864
m=7 | 0.4888 0.6269 0.7469 0.8248 0.8832 0.9270 0.9560 0.9745
m=8 | 03705 0.5225 0.6574 0.7510 0.8278 0.8870 0.9287 0.9577
m=9 | 0.2849 0.4209 0.5630 0.6688 0.7699 0.8299 0.8943 0.9320
m=10 [ 0.2058 0.3276 0.4682 0.5789 0.6851 0.7752 0.8466 0.9000

(2) Collect possible coming classes.

After the tree has been designed by clustering, global training is applied to the
tree. The first step is to do fuzzy logic search or any heuristic search. For each pattern
class, all terminals it may reach are found and output. The second step is for any
specific terminal to collect all classes, which may reach this terminal [127].

(3) Similarity defining.

Suppose for terminal Z, all possible coming classes have been collected. Suppose
the classes other than Z are

YL, Y, .., Y

For each feature f , compute the minimum Mahalanobis distance

dy = min {I—Z-—_—Y-;f-}
i=12,..k | oz0y,
where Z and Y; represent the corresponding class centers, and ¢z, oy, the correspond-
ing class deviations. The m features with smallest minimum Mahalanobis distances
are selected as similarity measures at this terminal.
After the similarity for each terminal has been defined, the tree can be modified
with these new similarity measures to complete the global training process.
Encouraging results have been achieved in an experiment of recognizing Chinese
characters mixed with English characters and numerals. The recognition rates are
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Table 9: Recognition results

number of characters | 1000 2000 3000
error rate 0.08% | 0.10% | 0.13%
rejection rate 0.12% | 0.29% | 0.54%
recognition rate | 99.80% | 99.46% | 99.28%
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shown in Table 9. Several examples of the ambiguous pattern pairs in this experi-

ment are illustrated in Figure 32, where the patterns in pairs (a) through (e) were

misrecognized in the first search but correctly recognized in the second search, the

patterns in (f) were misclassified in both searches.
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(a) - (¢) : the pattemns were misrecognized
but correctly recognized in the second search;
{f) : the pattemns were misclassified in both searchs

Figure 32: Ambiguous character pairs.




Chapter 7
Conclusion

Feature extraction is an important technique in pattern recognition, computer vision
and image processing. In this thesis, we proposed a new approach called “regional
projection transformation” for feature extraction. Two concentration transformation
algorithms are discussed: 1) diagonal-diagonal regional projection transformation
(DDRPT), 2) horizontal-vertical regional projection transformation (HVRPT'). This
approach simplifies the recognition of an image by transforming it into a unique outer
contour. It is very useful in recognizing multicontour patterns including compound
patterns and patterns with holes in them, which are difficult to be processed by
current projection techniques.

To further reduce the computation time, we also study the parallelism of proposed
regional projection transformation, four parallel algorithms are developed. We also
discuss their implementation on one dimensional linear array and two dimensional
mesh architectures. These parallel algorithms have time complexity O(N) comparing
with O(N?) in their sequential algorithms.

To evaluate the quality of the features derived by diagonal-diagonal RPT and
horizontal-vertical RPT, we conduct experiments and use DDRPT and HVRPT to
recognize a large set of characters which contain a lot of compound patterns and make
comparison with other approaches. In the following, we make some observations based

on our experimental results, and point out several future research directions.
1. Features extracted from the proposed RPT approach are much better than other

90



CHAPTER 7. CONCLUSION 91

methods such as cell histogram (CH), crossing counts and shading (CCS), elastic
partitioning (EP).

2. A good performance can be obtained when this approach is used to recognize
Chinese characters mixed with English characters and numerals. We can get

more than 99% recognition rate.

3. This approach is very effective in recognizing compound patterns which consist
of several isolated parts, or isolated noise, it is a general approach and can be

used in different applications apart from character recognition.

For the proposed regional projection transformation, further research can be con-
ducted in the following directions.

1. To evaluate the performance of the approach in different applications such as

machine parts recognition, finger print recognition, etc.

2. The systolic architectures proposed in this thesis is based on the such assump-
tion that the size of pattern to be recognized is equal or less than the processor
array size. When the pattern size is larger than processor array size, we can
consider to use algorithm partition technique to further modify the paraliel ap-
proaches in this thesis, and implement parallel RPT approaches on fixed-size
systolic architectures.
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