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Mathematical Programming Models )
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. . Sheng Huang
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3

This thesis is a study on stability of conve:}a.thgmatical programming models.

' The models are expressed in terms of decision variables z and parameters 8. Roughly

speaking, the regions of stability are chunks of the parameter space, where the

feasible-set point-to-set mapping is cqntinaﬁ;;i’ﬁ.:funétiﬂn of 8. Moreover, in these

regions, the set of optimal solutions and the optimal value function are continuous.

. The original contribution of the thesis is discovery of seve1.'al new regidns of
stability for convex mathematical programming models. We also show how various
fesults from perturbed convex programming and input optimikation cagbe extended”
overl the new regions. These ;xtensi'ons include reformulations of certain optimality _
conditions and new c_onditionp for validity of a marginal value formula. We also

study the continuilty of the Lagrange multiplieré.
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- ; c .. “ ) .
INTRODUCTION C-
L 2

>

This thesis is concerned with thel stability of convex mathematical prograriming

0

models in input optimization. The mathematical programming models we will

s

consider are of the form

\ , min f°(z,9)
' (2)

- .

L - f (a: #) <0, H€ qo'é {i,...,m}

oeI" .

¢

where ‘all functions f*: R™ RP —+ R are-continuous and f*(-,0) : R* — R are

convex, 1€ {O} U (p The set Ic RP is assumed-cogvex . ‘Suth a model is termed _

. convéx Note that. for a ﬁxed parhmeter 0e I (P,0) is a usua.l » program

N - - s [ 'J{\-ll'— ' / '
N - . : v N ’ 7 ’ ' - . .
. ‘ minfo(z) . L. ,,.,/} .

o (P) s.t. E . ‘: . . e
~ : " § ,
o i. ' - I *
/ f ' (z) <0, t € 4 . . T
- The models are considered as ‘fr}pu't-douput system. The ‘iiﬁput” is the para
~vector § and “output” is the feasible set F(0) = {:z: € R : f(x, 0)?‘% € },
- set of optimal solutlons F(o) = {z(a)}, and the optimal value f fo) = f°(.'c(0) 6)
anamly, we study situations wheA the output {F(0) F(0) f(0)Yisa contmuous
- ( function of the input. (Forr)na.l definitions are given in thé text belew) '
» ' \ -
v
! o A
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Regxons of stablhty are chunks of the parameter space where the,(bove output

triple is continuous. The‘bptuna.l Cralue functlon f (0) is optlmlzed over such reglon§
starting from some 6° € I, until an optmtal mput” 0* and’an “optimal rea.llzatlon

(P, 0*) of the mathematical modx_el'zP, 6) is achitved. (See [48, 50]) Ndte that
(unlike in usual mathematical [')ro_g" ing) the optimal input o* depelnds on the
initial input 6°, from where, the m-inimiza.tion of f(ﬂ) started. This is the subject

of the se-called “ input optimization”.

R’egic,'ms of stability are also of interest outside input optimization, e.g., in linear

prggramming, in data envelopment anglysis, and in the study of random decision

The thesis is orgahized as follpws. We begin with Chapter 2, where the relevant

background material on point-to-set mappings is recollected. In Chapter 3, we

. ideﬂtify three new regions of stability and also show that two familiar sets are

regions of si'.a.bility under weaker hypotheses than previously known. Also, we give a

necessary condition for sta.bilfty for an arbitrary region.of stability under somewhat

“vyeaker gssumpt.ions tha.n those given ifi the literature. Then we turn our attention

to opf:imality conditions in Chapter 4. First we show tha’nt the optimality condition ’

for an optiniak input from [4{ 46] extends to two of the new regions. An interesting
observation is that an input constraint qualification is not. required for optimality

conditions stated over a subset of a new region of stability denoted by H(6*). This

subset includes some well-known regdions from the literature such as W(6*), and

V1(6*) [36, 48, 50]. In Chapter 5, continuity of the restricted Lagrangian multiplier

S50
functions is established on any region, of stability under an additional assumption.

Here we also show that the previously known necessary conditions for differentiable

. functions extend to the region of stability H(6*). In.Chapter 6, we shéw that the
‘o

lq;PWn optimality conditions for bi-convex models (43, 45, 48]) and the marginal

value formula’ ([43, 45, 48]) can be extended to the new regions of stability. In
. .

+
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Chapter 7, we give a schematic comparison of all presently used regions-of stability

in the literature and compare them with the ones introduced in this thesis. R turns
b . b

out that-our newwegions of stability are among ’t}}e latgest ones presently available.

At this point we also discuss some applicationé/ of regions <;f stadﬁfi?y and input
optlmxzatlon, espegially in data envelopment a,na.lysw L[S]) Fmaﬂy, we pose several
open q.uestxons. It should be pomted o'ut that by fixing the para.meter 8, our results
recover many recen 'a.nd classical results i m convex programming, e g , from [1,

5, 12,°33]. -

t

~-Some of the results of this thesis are to appear 1} the article: “ New regions of

stability i in input optimization ? that flas been accepted for publication in Aphkace
/ -

Matematiky [19]. T

{4
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N L Chapter 2
[ “* '. . R . ~

Mathematical Background

2.1-Point-To-Set Mappiigs

: Z — X between two topological vector spaces is a

A point-to-set mapping

mappmg which assocxate a subset of X with each point of Z. The properties of

. pomt-to—set mappings have been studied from a number of dxfferent viewpoints
(See, e.g., [7, 18, 40, 41].) PR AN
*‘The study of such mappings has been motivated by numerous applications in
different ﬁelds Zangwill [40, 41] seems to ha/evbeen the ﬁrst to fully exploit the *
idea of point-to-set mappings in the field of mathematical progra.mmmg %

The purpose of this section is to recollect- properties of point-to-set mappings

relevant to the study of mathematical brogramming problems.

2.1 Definition. Consider the point-to-set maﬁping I': Z — X, between two vector
spaces Z and X. Let S be a subset of Z and 6* € S. Then T is lower semicontinuots

A (ls.c.) at 6* re]a’ﬁve to S, if for eVery open set A C X such that AN r'(6*) # 0,
i there exi:s*ts a neighborhood N(6*) such that ANT(6) # @ for every 6 € N (0*) ns.,

2.2 Deﬁmtlon. Consider the pomt-to-set mappmg T:2Z2— X let S be a subset

. of Z and 6* € S. Then T is upper semicontinuous (u.s.c.) * relativé fo S, if for
. every open set A C X such that T'(6*) C A, thefe exists a neighbarhood N (8*) of
6* such that T'(8) C A, for every 6 € N(6%)." ' ' )
2.3 Definition. Th.e point-to-set mapping I' : Z — X is continuous at §* relative
to’S, Jf T is both lower and upper semicontinuous at §*.
~ The above definitions are introduced by Berge (7). Similar definitions were given
l . by Hogan [18] as follows. |

- . N -

o
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2.4 Definition. The point-to-sét mapping I' : Z — X is open;at:-0* relative to S,

if given any sequence 0¥ € S, 6% —'6* and z* & T'(6*), there exists an integer m and

»

a sequence {x"; C X such thgt z* € I'(0%) for each qz m,and ¥ — z*, ¢

2.5 Definition. The point-to-set mapping T : Z — X is closed at 6* relative to S,
if given any sequénce 0k € S,0% — 0*%ind z* z* € T'(6%) such that i¥ —4 2", it follows

- : . -
that z* € T'(6*)., ¢

~ 0,’

P

2.6 D'eﬁmtlon The point-to-set ;pappmg 22— Xis contmuous at §* relatwe

>

to S, if it is both open and closed at §*. .

' [ . - \_\ Ld - . N ’
. The terms “lower” and “d’pper semlcontmuous” have ' meanings s:mxlar to “open”

and: “closed” pomt-to—set ma.ppmgs, respectwely It was shown lzy Hogan [18] that -

some of these definitions. are in fact eqmvalent under fairly weak assumptions.
E , o ~
2.7 Theorem. The point-to-set mapping I' : 2 — X is lower semicontinuous at

v !

. * : "
3 "“
2.8 Deﬁnltlon. The pomt-to—set mapping I‘ Z—Xis umformly compact at 0*

v relative to S, if there is a ne:ghborhood N (0*) of 0* such that the closure of the set

.

B - U ro ".

. oeN(a* .

is compact. )
S ) ) .
2. 9 Theorem. Suppose that a point- to—set mapping T:2 - Xis umformly

compact at §*, Then both I‘(B*) is compact and T is upper sem:contmuous at 0* iff .
T is closed at 0*. - ’ © .
" { 'D . ) : ‘
Further, if I‘ is lower semi nt‘muous at each point- of Z, then T is lower semi-

contmuous inZ. If T is upper sermcontmuous at each point of Z wuth I'(6) being

?

compact, then we say that I' is upper semlcontmuous in Z. T is continuous in .Z , if

- it is both lower and upper semicontinuous in Zp

A

X ' 5

1

A} ~



S .
2.2 Input Optimization

-

v Input optimizatioh:deals with mathematical programming models of the form
L L
min fo(x,ﬂ)' .,
. () , .
” (P,0) ‘ T 1 2 ‘
. /o, .
4 ’ . ' \ ..
_ o N ~/(2,0) <0, i€p={1,..,m}
- R ’ ¢ V
o

Here the-function f* :R"™ x R&’ ~ R are assumed to be continuous and f*(-,0)

'

R™ R are assumed to be convex for every OEYRP ,# € {0}U; I C RP isaconvex

set. Note that, for a fixed vector 6, the model (P, 8) is a usual convex program.

N

With each 0 € T we associate the triple (output) ¥ - ‘ ’
) . ‘ »
" | . F(6) ={z€ R : f'(=,0) <0,i € p}
the feasible set,”
E(0) = {2(0)} ’
_the set of all c;ptimal solutions Z(4), and -
the optimal ilaJue.' E L ’ C

. o ' ’ . . . . '
We will study perturbations of the output {F(d), F(éj ,f(6)} in a neighborhood *

« N(6*) of an arbitrary byt fixed §*€ I. In many models describing real-life situations . <

" (typically in’ﬁ1ﬁlti~objgac:tive models, but also in linear i)rogramming) , “‘continuity” |
of the outpuﬁ is not g\ua?antee;l for arbitrary ‘perturbation[sin a neighborhood of 6*.

R t Kl . M N .
v (See., eg.; [5,47).) - L.
' . ! . .
However, the continuit'y-;is preserved on “regions of stability”.
s T 6 .




analysis such as ( defined for each 0 € I)

The regions of stability can be expressed in terms of constructive objects of convex

. e (0)={icp:z€ F(0) = [(z,0)=0)
called the minimal index set of active constraints (See |5, 44, 48]) and the corre-

sponding set in R"/:

F=(0) = {z € R": [*'(,0) = 0.i ¢ o™ (0))

_ These objects have been studied and one can calculate them, at least for analytic

convex function (See [5]). We recall that the classical Lagrangian, associated with

(P,0), is - ‘
‘ -
. . L(z,u;0) = 0(1: 0) Lu.]'(x,0).
W ' ' !
We will also use the “restricted” Lagrangians

L<(z,u;0) = fo(x,‘ﬂ) 4 )_: ux.f'ir.'O) '

' - 2 ' % ' 1o (0)
and . . ’
' LE(z,w0) = [O(z.0).4 ) u,f'(=,0)
! 7 . 1™ (6%) )

« S A , . ' ] .
for some 0* € R". (See, c.g., [44, 53, 55].) Here 7' (0) A e\ (Wolv ‘

q(0) = card p<(8) and let R% denote the nonnegative orthant of R9. Restricted
. cor

Lagrangians are used in éharapt’crimtionn of optimality and in stability. In partic-
ular, we recall the following result ( {36, 44]) “Consider the convex model (#,0) at

some ar})itr;ary 6. Then 'z*(0) < F~(6) is an optimal solution if, and-only if there,

exists & nonnegative vector function u® . u‘(‘O) ¢ B3 wuch that'
L<(z°(0),u;0) < L*(£°(0),u* 0) L (z,u*;0)

for‘tverﬁ € R"(’) andz € F~ (0) "

Throughom this thes;a we will alwaya assume that the sct of optimal wlutiom

is non-empty and bounded. The objective functions with this property deserve a

special name :

*

s |
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2. 10 Definition. [48] An objective f°(z,0), in tbe convex model (P,6), is said to -
be- reahstw at 9* e I if F(ﬂ*) # 0 and bounded.

Let us recall the classical condition of conve;c prbgramxniﬁg known as “ Slater’s
condition”. It is said that Slater’s condition holds for the contraints of the model
(P, 0), if there exists a point £ € R® such that f '(%,0) <\0, for every ¢'€ g; ﬁnder ¢
this condition ©=(0) is an empty set, F=(0) = If" and the restricted Lagrangians

3

become the usual classical Lagrangians.

w? /




CHAPTER 3 ‘
/\_ TER

-

Regions of Stability

3.1 Basic Results on Stability

Stability in mathematical programming has been considered by many authors fror:rl
ndiﬂ:erent points of view (Seé,.e.g., (3, 4, 5, 6, 11; 13, 14, 22, 31, 32, 57].) A construc-
tive approach to ;‘t.\ability of convex modelé has been Tecently developed in a series
of papers by Zlobec and his collcagues and students (c.g. [43 44, 45, 46, 47, 48, 50,
52, 54, 56].) A basic notion in this approach is a “ region of sta\)iliw”. In order (to

introduce and study this notion, let us first recollect some basic facts, -
. - \ | ,
3.1. Theorem. [5,6] Consider the convex model (P,0) at 0 —~ 0* € I. Then the

fqllowing statements are cquivvalcnt.

(i) -The point-to-set ‘rrnapping F:0 - i'(Of is continuous at 0* (in the sénse

of Definition 2.3)

(ii) For evéry realistic objective function f® there exis{s a .neighborhood

N(0*) of 6* such that both
‘ ‘ 13(0) # O for every 0 ¢ N(0*), and i
| 0‘6 N(0") and § — 0* ==> 17’(3) is boundé«‘l ‘and all its h’rﬂpit points are in
- F(er) ;
v (iii) For every realistic objccﬁ'yc function [ there exists-a neighborhood
N(O'j of §* such that both , .
F(0) # @ for every 6 € N(0*), and .

8¢ N(6°) and 6 — 6* imply that f(9) -+ f(8*).

The above th@mdu three dptions for the definition of stability. For our

‘definition we shall use the first one. ~ S .

” - 9
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3.2 Definition. [43, 54, 56] Consider a convex model (P,0) at 8 = ¢* € I with a
realistic objective function f°. We say that the model is stable in a region S C I C
RP at 0* € S if the point-to-set mapping F : § — F(@) is continuous at 6* .over S.

In particular, we say that the model is stable at 0*, if one can specify S = N(6*).

k]

In order to establish continuity of F : § — F(8), it is enough to fifrd condition for

lower semicontinuity of F. This is a consequence of the following lemma (See,.e.g.,

2,7, 18, 20, 21].)

-

3.3 Lemma. Consider the convex model (P, 8),where all functions f* : R™ x It;’." —

R;i € p are continuous. Then the mapping T : § — F(0) is closed in I

In view of Theorem 3.1 and Lemma 3.3, in order to construct regions of stability,

it is sufficient to find conditions that guarantee lower semicontinuity of the point-

to-set mapping F at 8* over S.

The following theorem gives us three “ classical” regions of stability. (For all .

il

three regions the mapping F : § — F(0) is lower semicontinuous. )

3.4 Theorem. [43, 53, 56] Considef the convex model (P, 6) at some 6*. Then the

following sets are regions of stability at §* for every realistic objective function.

M(6%)={0: F(a*r) C F(0)} ,

V(6*)={0: F~(6*) C F7(8), and f‘(z, ) <0,Vz € F(6%),1 €'<;=(0*) \(p=(0)}

W(0) = {0: F=(6*) C F=(0) and p=(¢") = o= (0)).

To simplify the notation we denote by

Ry(67) = {0:07(0") = o= (6)} |

Ral8*) = {0 £(2,0) <0,Yz € F=(6), i € p=(6") \ 0=(0)}

Ra(0) = {6: 1'(z,) < 0,¥z € F=(0*),i € =(0") \ 0= ()} -
C R) = {0: £i(z,0) S OVz € F(8Y),i € p=(6)\ = (0).

10

)



_ e

If F= : §-— F=(0) is lower semicontinuous at 6*, then Rl(b*) and Ry(6*) are
regions of stability d& 6*. (See (37, 48].)

It was shown in [34] that there exists ’g neighborhood N(6*) of 6* such that

: F=(6) = F=(0) '

for every § € N(6*) N Ry(0*). Here F=(0) = {z : f¥(z,0) <0, € p=(6*)}. Asa

matter of fact . .

T . ~ .
Ry(6*) = {0 : fi(z,0) <0,¥z € F=(8),i € p=(6*)} = {0: F=(0) = F=(0)} .
" Let s note that M(6*), V(6*) and Ry(0*) are generally inc.orﬁparable, while
W(0*) c V(6*) and Ry(0*) C Ra(0*). ( Also see Section 7.1.) However, since
it is usually easier to calculate W (6*) than V (6*)and R,(0*) than Ry(0*), we will
occasionally state our results also for W(0*) or R,(0*) or the Jollowing subsets of

the region of stability V' (6*). "

e

Vi(0°) = {0 F=(6) ¢ F=(0)} N Ra(0")

Va(0%) = 0 : F=(0*) = F*(0)} nR(0°) o
Vs(0') = {8: F=(0) = FT(0)} N Rs(0") R

(See, e.g., '[4§g 50]')



3.2 New Regions of Stabilit};

Take a 6* € T and denote

20 = {0: F(8*) C F=(0)} 0 R(#?)

H(6*) ={0: f*(z,0) SO,Yz € F(6*),5 € p=(6*)} |

-

Note that the latfer can also be written as .
H(0™) ={0: F(0*) c F7(0)}

o ,
where F~(4) is defined in Section 3.1.We claim that these two sets are regions of ,,A,/
stability. Since Z(6*) is a subset of H(6*), it is enough to show that H(6*) is 7 ’

region of stability. ' S

— -

/.-._.r' -
4

3.5 Theorem. Consider the convex mode}LP, 0) at some 6= 0*, where F(0*‘) # 0.
. N A

s -
Then H(6*) is a region of stabilityat 6* for every realistic objective function.
; ) ‘ | .
' Proof It is enough to show that the point-to-set mapping F : § — F(0) is lower -

semicontinuous at 8*, relative to the set H(8*). If this were not true, then there

would exist an open set 4 C R such that

ANF(e*) # 0
l‘\
but -
ANF(O5) =9 - -
. // %
. for a sequence 6* € H(6*),6* — 6*.-Now, choose an arbitrary I
: - ‘ f , /T
: : ! o . &€ relint {An F(6%)}. //
N //I
+ Clearly - - .
| T <o iep(ev)
: A

12 -
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d hence. B S
N <' / . ' . 1 3
F(2,6%) <o, i € p<(0%) (3.2)

for all sufficiently large k’s. In particular, since~0" €H (‘0*),‘

fi(g,0) <0,  icp=(6")

»
‘
{

' This'with (3.2) implies that
‘te F(0%)

which contradicts (3.1). 1 $

/
/

Since

/ - F@)c FE(0*) c F=(0)

[z, 0) <0, VzeF(0*)ieo=(0*)\e=() -

for ,e’v//ery 0*:5 V(6*) and
/ L - ‘
/ b F(6*) c F(0) c FZ(0)
/' for § € M(8*), we note that. H{0*) is a bigger region of stability than y(d‘) and

V(6*), ie.

1)

(M(E") UV (")) © 1Y),

Also, it is'easy to show that

(M(0°)uV(67)) C Z(6°). | »
The construction of V(8*) suggests that R(0*) inay be a region of stability ,
under the uiu'm;')_tion on lower semicontinuity of the mapping F=. Unfortunately,

as the following'e;umple shows, this is n;t enough. )

13
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_ . 8.6 Example. (Communicated by Sempfe)

* Consider the constriants

fl=|z,-8]<0
f? =z~ 0z, <0

fP=2,-2<0

' * ‘ ' f4=_z230°

_around 6* = 0. Suppose that 4 is taken from 6 € I = [0, 1].

Here

-
-

i F(0)={(:2):15zz‘52}

for 8§ > 0, while

t

So the mapping F is not lower semicontinuous at 8*. But

,F(o*)={(£2) 10< 22 <2} .

f=(o)={(f2) 22 € B

‘ for every @ > 0, clearly the mapping F= is lower semicontinuous, and .

v 1?4(9*) =[0,1]. ®

-0

A

% ’

Hawever, the conjecture is valid with the additional assumption that the feasible
. . N "1‘, .

set F(8*) has interior points. The latter is typically satisfied in the so-called - “

lexicéographic optimization ", In this kind of optimization Slater’s condition cannot

be satisfied. (See [5, 47, 48].)

’

&

N

e

3.7 Theorem. Consider the convex model (P,0) at some § = 6*. If F(6*) has

non-empty interior and if the point-to-set mapping F= is lower semicontinuous at

0*, then R4(0*) is a region-of stability at 0* for every realistic objective function.

14
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Proof The result is proven by contradiction. Suppose that the mapping F is not .
lower semicontinuous at 6*. Then there “exists an open set A, such that -
I . ANF(6*) #0

i

but °
ANF@*) =0 - (3.3) .

for a sequence 0% € R4(6*),6% -+ 0*. Now choose an arbitrary
te int {ANF(0%)}.
Clearly o ‘ ‘ -
.- | COf(3,0%) <0, iep<(6*)’
»w ) ’ o
and further, by continyity ' ‘ "

@) <o, ieps(e) (34)

__for all sufficiently large k's. Since £ € F(0*) and 9* € R,(6*), it follows that .
~ " n

T @<, ierm(0) b

which, together with £3.4) gives

|
' s

Fi(2,8%) <0, 1€ p<(6¥ L (38)

2 o 1 "“: .
This means that z ¢ F=(6*). ( Otherwise, ie F”(ﬂ").and (35) would Smx;ly
2 € F(0%), contradicting (3.3). ) .Since F(0*) has interior, we can place a small

open ball B(£), centered at 2, inside A.n F(0*), such that

'y

B(&) N F=(0*) = @ ' - (3.6)

) : te F(€') c F~(6°)

) Y —




!

ans hence . . pe

B(2)n F=(6*) 0 | @)

_Therefore, now we l;axfe an open set B(:’iz)s\ﬁh that (3.7) holds but, for a;.séqpeﬁce

0% — o* also, (3.6) holds. This contradicts the assumption on lower semicontinuity
' Yy <
of the mapping F=<. § .

‘

It was shown in the literature that R;(8*) and Ry(6*) are regions of stability if

the mapping '~ is lower semicontinuous. ( (37, 48]:) The construction of Z (6%)

suggests that also R2(0*) may be a region of stability under somewhat weaker

hypothesls Unfo; tunately the weaker _hypothesis is not easy to verify.

/

3.8 Theorem. Consider the gozive;t model (P,0) at some § = 0*. If for every

open set £ and A N F(6*) #9, the? exists a neighborhood N (0%) of 6* such that

AN F- (6) # 9 for every 0 € N(6*), then Rg(ﬂ*) is a region of stability at 6* for

every rea]zstzc objectwe function.

Proof We will show that F is lower semicontinuous at §* over Rz(6*).

First we choose an arbitrary
£ € relint {F(6%)}
Clearly B ‘ ‘ '

Fi(e,09 <0, i€ p<(8) (38)

By the assumption, there exists z* = z*(9¥) € F=(6*) such that z* — 2. Now /by

joint continuity (3.8) gives : | i " ; _

F(ak,0% <0, iésa<'(0*) | o (3.9)

. .
But 6% € R,(6*), it follows that

[

fi(zk’olé) <0 i€ p<(9k) .

.16
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also, z¥ € F=(6*). Hence . .

3 i‘ \‘ - k W k .
| z~ € F(6%)

'w;ich is what we want to show. |

As we not‘ed earher, the new condltxon is somewhat restrictive. However, it is

satisfied if F- is lower semlcontmuous or F (0*) C F=(8). It can be shown that if

F(0*) has non-empty interior and the new condition is satisfied, then R4 (0*) is a

reglon "of stabxht;y? o

Now we show 'E;aexamples that the new regions of stabxhty given in this section

are indeed larger than the ones known in the literature.

3.9 Example The £0110ng example shows that there exists situations where

(0*) uVv(6*)} C Z(6*) with a  strict inclusion. ;

Consider a convex model thh the two constraiits )
3

\l N L ft=-z+0+1<0 ’ ,

f*=max{0,z -0} —z+0<0

around 0* =0

Since F(ﬂ) =[0+1, oo) we have

f M(FTNO 1 [1,00) € [0+ 1,00)} = (~o0,0)].

’

'. Further :
., v L em(0) = 2)
. for every #, ;vhile/ ‘ S g \ |
‘ F3(6) =16, 00)
Hence .

V(6") = (0:(0,00) C |8, %)} A\ R = {~c0,0]

,\"'17‘



But the new région of stability is bigger: |
! i " ] "
200 = {8 : [Lyoo) € [B,00)} = (00, 1]

) ) . o . -0 \\‘ '
(Using Z(6*) we conclude that the model is, in fact, stable at 6* for every realistic

[ ,

objective function.) O

3.10 Example. The example below shows that Z(6*) C H(0*), with a strict jnclu-

sion. T
) A
Consider
fl=—60%z+4|z|-x<0 ’
fP=—(0-1-(@0~1))c=6)+|t-0-(z-08) <0
around §* = 0. Rr every 6, F(6) = [6,00) N [0,c0), but . :
o ( {1}, 6=0

p=(0) =3 {2}, 62>1 .
@, 0<1W¢q)

" 0,), 6=0 _ - . "
F=(0)={ [6,00), 062>1 '
' Lo, - 8<1(6#£0).
\ Therefore H(6*) = {0 : f*(z,0) < 0,Vz'e F(6*);i € p=(6*)} = R, while 2(6*) =/

{0:F(6) c FE@0)} nH(#*) = (~o0,1)

One might think that in a neighborhood N (6*) of 6*, M (6*) is the same as H(6*).
We will show by example that this may not be the éase,q even if the feasible sel F(6*)

is compact.

3.11 Example. The example below shows that F(6*) is compact, but. M(6*) C

H(0*) with a strict inclusion.
[

L

Considér a convex model with the two corstraints

s b

fd=—c+0+1<0

'f”-—-‘zs&r
* v a

‘ - 18
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A

around * =0

 Since F(0) =1{8 +1,100), it’s clear®at F(6*) = 1, 00) is compact and _
N . ! 7

w

2 ‘ M(6*) = {6 [1,100] C 6 +1,100]} = (—00,0]

" Further

o=(6) =0
for every 4.
" Hence H(0*) =R
%

3.3 A Necessary Cogditiop for Stability

. ¢ ' / -
A necessary condition for stability was proved in {31, 50] for path-connected region

of st;xbility. Now we show its validity for an arbitrary region' of stability.

3.12 Theorem. Consider the convex model (P, 0) at some 0 =0* € 1. Let S be an

arbitrary region of stabxhty at 0* for every realistic ob_;ect:ve functxon Then there

* exists ane:ghborhood N(6*) of o~ sich that S .

.-

~

f
p=(0) C p=(6%)

for every § € N(ﬂ*) ns. a

proof is \'lmal So, we suppose that p<(0*) =p \ " (0*) #0 and that the claim is

not true. There is an index j ¢ p=(6*) and a sequence 0 € S, gk = 0% such, that .

R

’ . ' C .
fi(z,0F)=0" . ] ' (3.10),

for all z € F(0*). It is clear that ) :
] N '

a .

A}

o

f1(2,0") #0

T 9. %

G
<
3
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for some £ in F(6*), since 5 ¢ ¢=(6*). Therefore : :
fi(3,0%)y<0 . - (3.11)

-

.¥ . sincet€ F(0*)
By fower semicontinuity of F: 8 — F(6), (3.11) implies .

o . , “ ‘

fi(z*,6%) <0 - (3.12)

for Some 6% € S,0% — 6* and z* € F(0*), z* — . It is clear that (3.12) contradicts
- (310 m ' a3 |

’

By using the above theorem, many results in the litgrature can be restated on an
arbitrary region of :stabil\ity instead of a path-connected one.

. ) The above theorem is used in proof of optimality condition later. Also, it has a

nice economic interpretation (50].

N\ « ' Q !
( . 3_.‘3 Example The following example shows that there exists not-path-connected
. ‘region of stability. - . ’ ' — '
i . » ,
) . . ) o B < \ . v
2 '\Consider a convex model with one constraint ’ . .
. ‘ ) . a1 1
‘ N . f ?ﬂl@t]—z-!—hm-a—go
: — around 6* = 0. Here Osin% is defined to be 0.
. We find that - ‘ ‘
, . ‘ F(0*)=[0,00) . .
v o, - . : . '
and . . ! B
. . =09 = {1
- v (6) = {1}
Phis Co \ .

T E@)= 0P <OV e PO )

, ={0:05in-1-_<_0}‘
y ={0: % €.((2k + )7, (2k + 2)x],k > oyu{o: % € [2kn, (2k + 1)7],k <0}
to | S

° J

Pk

Y
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- CHAPTER 4
Optimality Conditions for Convex Models

g

4.1. Characterizing an Optimal Input ’ ) S

1

Optimality cond:xtions f;;r a convex model are state;i in the literature mostly for the (
regions of stability M (6*),V (6*) and Z(6*), e.i., [44, 46, 48]. We fiow extend W
wonditions to the larger region of stability H(6*). First we recall the notions of an

£

“ optimal input ” and an “ input constraint qdalification ” (abbreviation : 1CQ).

4.1 Definition. [44] Consider the convex model (P,0) at some 6* € I witlc/
realistic objective function. We say that 6* is a.IocaIIy optimal input for the model,

with r‘espectqto a region of stability $(0*), if
' <7

f(6%) < f(6)
for every § € N(6*) N S(6*), where N (0*) is some neighborhood of 8*. The cor-

a respondmg _program (P,6*)is a IocaIIy optunal realization and f (0*) is a Iocally
N

. optlmal value of the model (P, 0)

Reca.ll that the optunal input 0* depends on the choice of the initial input 6°, In

. order to formulate a necessary condition for optlma.lly, we generally need an ICQ

-n

4.2 Definition. [46] An mput constraint quahﬁcat:on for the convex model (P, 8)
at 0* € I, with respect to a region of stability 5 (6*), is a condition on the constraints

of the model with the property that for every 6 € N(6*) N §(0*), where N (0*) is a

N

neighb&rbood of 8%, the system

P <fey -
(C,6) | im0 <0 iep<(e7)
L 4 zeF=(#") -

22 Yo ,
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v

is inconsistent. § -

1

For some rgﬁions of stability, such as -

W(e*) = 0: F=(6) € F=(0),0%(0") = p=(O)}

.
and

g

Vi(6*) = {o: F=(0*) C F=(0) and f'(z,0) <O Vze F=

4

)i € p=(0)\ p=(0))

it is. easy to show that the system (C,0) is always mconsmtent at an optlmal input

9*. (Clearly, the system (C,6*) is also mconsxst.ent for cvcry mathematical program

¢

(P36*) at an optnmal solution z = 1(0') ) We wnll now show that the system (C, 6) |

is mconsxstent also for the set

-

H(0°) = {0 fi(2,0)-< 0,YE € F=(0*),i € p*(6%))

which is a bigger region of stability than W(0*) ahd V;(0°).

4.8 Theorem. Consider the convex model (P,6) and an optimal input 0 ¢ l..

with respect to the region of stability H(0*). Then there c&n‘a;a a neighborhood

N(6%) of 6* such that for every 0 € N(0*)nH,(6*) the s_;'stcm (C,8) is inconsistent.

Proof If ihe‘re:n'xlt zv\erc not true, thei tiwrg would exist ok ¢ 1,(6°), 6* -+ 0°

and zF € F=(8*), such that (C, 0) is consistent. Hence

]

1°(z*,0%) < f(0°)

¢

-’ L]
S

By the definition of H, (0‘), we have

4
we .
' L°

Bl

Hse |
S

f'(2*.6") <0, i)

Pt <0, icp(?)

R TR Y
(4.2)
- S (4.3)
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The two relations (4.2) and (4.3) imply z* € F(6*). We have a contradiction to
(4.1), since §* is an optimal input. i ’ i | =y
Note that Example 3.9 also shows that V;{6*) C H; (6*) with a strict inclusion, -
since Hi (%) = R while V3(8*) = (~oo,1]. | Can
. An I C‘Q guarantees the existence of a “ sad?e point{ for the “ restricted La-
Li(zu;0) = Oz, 00+ Y. wfi(s,0).
1€p<(6*) '

One such ICQ, for the region of st;bility Z(6*), is the following condition:

-grangian ”

»

“ For every § € N(6*) n S(6*), where N(6*) is a neighgrhood of 6*, and for
every = € F=(0*) such that

-

fi(z,0) <0, i€p<(6* L

it follows that

fi(z,07) <0, iep<(6*)"
."

This condition is referred to as ICQ1 in [46, 48]. ICQ1 is le for the region of
» . , w o

stability Z(0*) was proven in [19]. We will now show that ICQ1 is ICQ also for -
the region of stability H (*). o | :

4.4 Lemma. Consider the convex model (P,6) at an optimal input 6* € I with

respect to the region of stability H(ﬁ*). Then I CQlisI CQ'.

. Proof Suppose that the condition ICQ1 holds, but not ICQ. Then there exist a -
sequence 8% € H(6*),0% — 0* and z* = z*(0%) € F=(*) such that

fo(z*,6%) < f(6%) T (4.4)
> . ) .
4
. fi(zF,0%) < 6, i€ @5(0*)" o : (4.5)
o4 |

N



Since ICQ1 holds, (4.5) implies
fi(z*,0%) <0, i€p<(6%)

and hence z* € F(6*). On the other hand, 6* € H(0*) implies *

N

fi(zk,6%) 20, §ep=(0%)

which together with (4.5) gives z* € F(0*). Since 0* is a locally optimal input, we
have a contradiction to (4.4). 1 '

An optimality condition over the iegiop of stability H(0*) follows:

kJ

. 4.5 Theorem. Consider the convex model (P, 0) with a realistic objt;ctivo fun’clion
at some 0* € I. Suppose that 68* is a locally optimal input with respect to the.
region of stability H(6*) and that the condition.ICQI is satisfied at 6* with respect
. to H(0*). Let Z(6*) be a corresponding optimal solution. Then there exists a

neighborhood N(6*) and a non-negative vector function X'
!

o : N(0*) N H(6%) ~ RI®D
such that , whenever 6§ € N(6*)n H(6*),
) LE(E(8%),w;6°) < LE(E(0°), €(6°);:0%) < LE(z,9(6);0) (4.0)

for every u € R{"") ( the non-negative orthant in R9) whero q(0*) is the cardi-

nality of ¢<(6*)) and every z € F=(8*)

Proof Since ICQ1 is indeed 1CQ for H(8*), the result is an immcdia&e conse-
quernce of, say, [48, Theorem 7.4]. § N

&
The importance of Theorem 4.5 is that a necessary condition for an optimal input
is now stated over a larger region of stability than Z(6*). Of course, the result also,
holds under some more rmtricgive ICQ's such as 1CQ2 or Slater's condition. (see

[46].)

25
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' ’Thk above result is also suf_ﬁcfent fdr optimality’ if the saddle-i)oint‘ inequa.lify
holds for every z € F=(6) (See [44] for detiil's.)
It is easy to show that (4.6) is true for every u € R?,_(a.) and every z € F(0%), if
we replace ICQ by the following condition : '
“ For every 6 € N(0%) ns (6*), where N(6*) is a neighberhood of 6%, the

system

£2(=,0) < F(6*)

fi(z,0) <0, i€ p<(6¥)
z€ F(6*)

is inconsistent:.”'

Let us note that the above system is in::onsistent if ICQ is satisfied. So the
above result is mo;'e general than Theorem 4.5. On the other hand, the set F= (6%)
- can be often constructed, so Theorem 4.‘5 seems more useful. Note that, when
lSla(.'ter’s condition holds, then L< becomes the usual Lagrangia;l,‘F=(0*) = R™

and we recover the classical saddle point characterization of optimality in convex

programming of the Karush-Kuhti-Tucker type (See (1, 12, 27, 33 ].).
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4

4.2. Modified Input Constraint Qualifications

Recently, a new kind of ICQ’s referred to as * modified input constraint qualifica-

tions " (MICQ), has been introduced in [35]. .o N

4.6 Definition. Consxé‘er the convex model (P, 0), wuh a realzst:c !bjcctzvc func-
tion at some 6* € I, and let S (6*) be a region of stability of 6*. A condition on the
-constraints of the model (P, 8), with the property that for every § € N(6*)nS(6°),

where N(0*) is a neighborhood of 8*, the system

1°(=,6) < f(6*)

(Mc,0) : fi(z,0) <0, §€p<(6*)

z € F=(0)

is inconsistent, is called a modified input constraint qualification.

The following three conditions can be verified to be MICQ’s : There is a neigh-
borhood N (6*) of 6* such that for every 0 € N(0*)nS(0*) :
MICQ1: “f‘(z,b) <0,1 € p=(0") \g'p== () for every z € F"'-ﬁo)"‘ ;
MICQ2 : “p=(0) = p=(0*)"; | -
MICQ3 : “ The constraints f*,1 € p~(6*) do not depend on 6”.
B;' using an MICé, a new necessary condition for an‘)optimal input was stated

in [35] for an arbitrary region of stability as follows :

4.7.Theorem. Consider the convex model (.P,8) with a realistic objective function

_ at some 0* € I. Let 2(0*) be a corresponding optimal solution and let 5(0°) be an

grbitrary region of stability at 0°. If 6* is a locally optimal input Cchu'vc to S(6*),

and if 8 modified input constraint qualification holds at.8* relative to S(8°), then

there exists a neighborhood N(0*) of 6* and a non-negative vector function
v U:N(e%)n S(a') R

27, )
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such that , whenever 0 € N(6*)n S(6*),
L(2(0),ui0") S LS(H0),U(0)0%) S IS, U(0):0)  (47)

for every u € R‘i(o') and every z € F=(0) 1

It’s easy to show that (4.7) is true for every u € R‘_',_(a.) and every z € F(0),
without assuming that MICQ is satisfied. Therefore, the above result is more

general than Theorem 4.7, but the information on F=(0) is more readily available

than for F(6). -« . . .
Also note that Theorem 4.7 doesn’t require the region of stability S to be path-
connected. . ”
7 -

4.3 A Complete Charaterization of Optimality o ’
Recently, a complete characterization of an optimal input without any ICQ or MICQ
whatever was given in [34] for convex models. This characterization alsq uses the

restricted Lagrangian LT, the same saddle-point inequality as in Theorem 4.5, but

it is restricted to z's belongirig to the sets
FZ(0) = {z: f*(z,0) < 0,i € p=(6*)} ‘

as 0 € N(6*) n S(6*). Since p=(8) C <p=(0*)’for every 8 € N(0*) N 'S(6*), where |
N(6*) is' a neighborhood of 6* and § (6*) is an arbitrary region of stability (see

Section 3.3 for details.), we note that , for such ¢'s

‘FO)c F=(0)c F=(6) ~ - . (48)°

For the proof, see Froposition 2.2 of [34].
Howeyer, F=(6*) and F=(0) are generally incomparable. The complete charac-
terization follows. The novelty here is that the set S is not assumed to be path-

connected, as assumed in [34]. - s

28
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4.8 T.&xeorem. Consider the convex model (P, 6) with a realistic objective function

such that, whenever § € N(0*) n_ S(6*),

v

at some 0* € I. Denote by Z(8*) a corresponding optimal solution. Then 8* Is
a locally optimal input with respect to a regioﬂ of stability S(6*) if, and only if ,

there exists a neighborhood N (6*) of 6* and a non-negative vector function

A: N(e*)n S(6*) — R

LE(5(6%), u;6%) < LE(2(6°), A(6°);0*) < LE (=, A(0); 6)*
for every 'uE Ri(o.) and every z € F7(0). &

,‘ Note that A, ® and U are three essentially different mappings.

Remark: The optimal input 8*, a;.nd the corresponding optimal solutions (6*),do
not necessarily cortespond to the optimal solution-of the c;mcsponding “usual”
prograuP(P) (wsing substitution z = (z,0)). Every optxmal solution 2* = (z*,6%)

of (P) contims an optimal input 0*, but there is optimal input 6* such thﬂ gt =

'. (z(6*), 0*) is not an optimal for (P)

»



,M'- , ;\ “ ! <

. CHAPTER 5

~ Continuity of the Lagrange Multipliers

. and

Necessary Conditions for Differentiable Functions

5:31 Continnity of the-t;hree Lagrange Multiplier Functions

I , )
I*/l‘dr a fixed 0, consider the restrictedxagrangians .

*

‘L<(x,u;0) f°(z,6) + z u,f’ (z,6)

{“\) ' “ ‘) | t€¢<(9) d

and

Li(z,uif) = 2,0+ D wif'(z,0)

p \ i€p<(6*)
The corresponding La.grimge multipliers to (5.1) is

US(0) = {430 i € p<(0)}.

(5.)

' (5.2)

S

But when (5.2) is used in the three necessary conditions-for an optimal input, we

get three Lagrange multipliers

" 8(0) = {94(0) : V€ p<(67)}

.and

3

Now we dlscuss the continuity of ®(6) first.

AB) = {X(6) :4 €p<(6")}
{ " ’

\ ; U(0) = {ui(0) : i € p<(6%)}. -

s

On the regions of stability, we have p<(6*) C p<(8) for every Oina nenghborhood

N(6*) of 6*; (See (13] and Theorem 3.12). Therefore it follows that @(6) is a subset

of U<(). It is known that U <(0) is genera]ly discontinuous on regions of stability,

and so is ¢(6) (See [36, 38, 45]).

" 30
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However, if F= is lower semicontinuous at 8%, then ®(4) is continuous over the '

region of stability Rz(0*). (See [38]) Continuity is also proven on

1]

Vi(87) = {0.: F=(6*)  F=(6)} N Ry(0*)

-(See [36]) (
In this section we will establish the continuity of ®(6) on every subset of an
' a.rbit'rary region of stability, provided that \

.

F(6*) = F=(6*) (53)

‘Thé condition (5.3) looks somewhat restrictive. In particular, if Slater’s condition
holds at 8*, then F;(O*) = R" and the condition holds only for unconstrained ,
models. However, another extreme case is when'the feasible set is determined only
by linear egualtions, in which case the condition is trivially satisfied. A more general

situation, where (5.3) holds, is described by the example below. g
P - .
5.1 Example.

Consid{exi convex model with only one constraint

fl=le-(1+6)z <0

A ‘ - /.
around § = 6* = 0. ) ™
Here F(0) = [0,60) for every 8, but
" (1} ife=0
o 0 —_
©=(0) { 0 if0#£0
and hence . . N
. 0 " =0 "
~ F=(0) =.{[ roo) 0
R f8#£0 .
7 . 7
The point-to set mapping F= is lower semicontinuous at §* and - \ ' S ,/ -
R(y={oy> \ ,
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‘at 6* then, for an arbitrary sequence 6 c s (0*) 0% — 6*:

- . - rd

Hence the result from the literature (such as Theorem 6.1 [48]).on continuity of the
Lagrange multiplier function ®(0) is not usefu} here. However, since the requirement
(5. 3) is satisfied, and int F(ﬂ*) # 0, we are able to establish contmmty\on every
region of sta.blhty, say, R4(0 )=R.. - rl~

The result on continmty of the Lagrange multlpller function follows. It is a new

- B,

result (forthcomlng in [19].).

5.2 Theorem. Consider the convex model (P,f) at some 6* € I with a realistic
objective function and let F(6*) = F= (6%). IS (0*) is an arbitrary region of stab:hty '
§
(i) The sequence ®(6%)is bt‘gnded for aII sufficiently large k’s and
(i) the set of aI—I limit points of ®(8%), as 8% — ¢*, is nonem‘pty and it is

contained in ®(6*).

Proof (i) This ‘sta.i:ement,holds for any reéion of stability, as one can see from
fle proofs of Theorem 3.1 [35] or Theorem 2.1 [37].
" This statement also holds fo;' the other two Lagrange multiplier functiqn'A and
U. The prc;of is essentially the'sa.nib. N

Since both sequence {¢:(0%) : i € p<(0*)} and {£(6*)} are bounded (the first
by (i), the second because S (9*) is a region of stability) as_'ok — 0%, there exists a
subsequence {#%°} of {6*} such that {¢;(6**) : { € ©<(0*)} and {F(0**)} are con-
vergent. We claim that ¢,-(0"‘") — ¢i(0%),4 6 p<(6*). Without loss of generality,
we start the proof with 0¥ = ¢*. From the familiar saddle point chara.cte‘riz.:«xtion
of optimality we have " .

OGRS wfiE0k),0%) < floh) (5.4)
iesaf(e*)

for every v;-> 0,1 € go<(0") and 4 : . SR

f(ak) < f°(:c 0%) + Z ¢,(a'=) filz, o") ,(5:5)
:ep*‘(o") o
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_ .i'or-every z € F=(6*). First , by @ecxfymg ) ‘ . ‘:__ d
‘ . ‘ o, s
vi=0, i€p<(0*)\p<(6") ‘ |
) 2 . - . ’ .:
in (5.4), we can replace the summation by i € ¢<(6*).In the limit-g* — 6*, (5.4)
gives . | o L e° : | :
o), 6%) + D -uif(2(67):6%) < f(6°) (5.6)
‘EV< (0‘) -
for every v; > 0,1 € p<(f). Thisis t.he left-hand side of the saddle—pomt inequality

at 6*. On the other hand, since for every z € F(¢*) we have

v

i(z,6%) <0, i€p<(*)\ (")
it follows that the right hand side of (5.5) can be modified as follows

f(0F) < LE(z, 0(6%);0%) : (5.7)
for every € F(6%)> Now we choose an-arbitrary = € F(0*). Since j0" is c!'f}?en .
from. a region of stability S(6*), the mapping F is lower semicontinuous at §* with

. respect to S(6*). Therefore there exists a;’sequence zk = zk(Qk) € F(0*) such that

k

zF — z as 0% — 0*. The inequality (5.7) gives in the limit .0

RN

JO) S LS o) (58)

49 s

b

~ for every z € F(ﬂ*) (Here 4:(0*) is an arbltrary lim:t point of thc sequence o(0%)
that generates the above 6% € S(0*) 6k — 6. ) Smce F(0 ) —J""(O"), the
inequality (5.8) also holds for every z € F"(G")._ This is the nght-}.mnd mde of
the saddle-point inequality at 8*. So we can .conclude that the limit point ¢(6*) of ‘
H(8*), as 0% € S(6*),6% = 6%, is indeed in B(6"). B

Following dfﬁnition 2.2 (see also Berge [7]), w:é ci.nﬁ r‘efc‘:rmulat..e Theorem 5.2 as-

follows - o S

. , o
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" isemicontinuous at b* over S(6*). \

»

’
\J

5.8 Theorem. " Consider the convex model (P,8) at some 6* € I with F*(6*) # 0

and bounded and let F(§*) = F=(6*). If S(6*) is an arbitrary region of stability
at a IocaHy(:)ptimaI inp\ut 6%, then the_pojni-to-set map ® : § — &(0) is upp?r

Recently, a different condltlon for the continuity of ®(0) was gwen in [35] The
condition F(6*) = F= (0*) can, be omitted, while the requirement is replaced by
an input constraint qualiﬁcatioq. Also, continuity of the Lagrange multipliers U
andL A, ap;;earin'g' in Theorqem 4,7 and 4.8 respectively, was considered in '[35]. The

conditions for continuity are different from those for ®, but the proof is similar. Let

K]

_us recall the results for the sake of comparision.

5.4 Theorem.L{&’S] Consider the convex model (P,0) with a realistic objective

.function-’at a locally optimal input 6* € I with respect to a éegion of stability S(6*).

If the pt;int-to;set mapping 7, : 0,— FZ=(0) islIower semicontinuous at §*, relative

}o S (é*), then the point-to-set mapping A : 6 — A(6) is upper semicontinuous.

5.5 Theorem. [35] Consider the convex model (P,0) with a realistic ahjective
function at a locally bptima] input 8* € I with respect to a region'of stabi]itjr S(6%).

If tite point-to-set mapping ~y : 0 — F=(0) is lower semicontinuols at 6*, relative

ta S(6*), then the point-to-set mapping U : 0 — U (0) is upper semicontinuous.

b N

Note that’ the set of Lagrange multiplier A(f) and U(6) are comparal;le for 6 €

:N (6*)n S(6*), where N(6*) is a neighborhood of 8*. Since on the region of stability

S(6*),0=(8) C ©=(6*), it follows that F;=(9) C°F=(6) and hencg,U(6) C A(6).

o

Al
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5.2. Necessary Conditions for Models with Differentiable F\;npggrgi_' e T
By using the upper gemicontinuity of the three kinds of Lagrange multipliers, which
were discussed in Section 5.1, necessary conditions for differentiable functions were
proven on particular subsets of an arbitrary region of stability S(6*) (See Section
5 of [35] for details ), such as “ 1

$1(6*) = {0: F(0%) C FZ(0)} n S(0%) S
and : . ' v

52(6*) = {0: F(6") C F=(0)} n S(0")
It is clear that §y(0*) C H(6*) and it is also easy to show that S3(0%) <" H(0%),

' since R2(6*), R¢(0*) and H(6*) are among the “ largest " regions of stability and
. . -
{6:F(6*) c FE(0)} N {Ra(0*) U Ry(0%)} ¢ H (0%}
We will now show that two results _fro‘m {35]Uremain valid over the region of
- stability H(6°). ' I
v We need mo}e notation. We use a part of the unit balls in P defined by
" B(e*) = { -0 o( $(0%),0 4 0%}
| o) """ " "
and
A CoBt) = {28 cac mer).0 0
T e '

k]

where 5(0") is an arbitrary region of stability. We denote by B the derived net of '
. :

B, i.e,, the set of all limit points as 8 C H(0°),0 7 0°,0 +0°. Also :

(B°)* - {u:uTb >0, Vb B}

!

is called the polar of 1. ¥
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v
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* H(6*). Then

~— -
' ~ ~

5.6 Theorem. Consider the convex ﬁodel (P, 8) at some 6* el with a realistic,

. obJectlve function. Let {£(6*), A(6*)} be a unique corresponding saddle pomt and

Iet the functxons f‘(z(o*), 31,7 € {0} U <(8*) be differentiable . Let the pomt-to-
set mappmg Yo i 0 — F,;‘ (6) be lower semicontinuous at 6* relative to H(8*). If 6*

is a locally opimal input with respect to H(¢*), then

VLS (E(6%), A(0%); B)a=er € (B8}

Proof Since H (0*)‘ has the property of Sy(8*), the proof is exactly the same as

that given in [34].

5.7 Theorem. Consider the convex model (P,§) atsomef* € I with a realistic
objective function. Suppose that 6* is a locally optimal input wzth respect to H{6*)
and- 'Suppose that a modified input constraint quahﬁcatton holds at 0~ relative to
H (0*.) . Let {Z(6*), U(G*)} be a unique correspondmg saddle point and let the
functions f7(%(6*),-),j € {0} N p<(6*) 'be differentiable. "Also assume that the

pomt-to-set mapping F= : § — F=(0) is lower semicontinuous at 0* relative to

ToLE(E0*),U(6%); ) lo=o- € {BY(02)}.

Proof Since H(6*) has the property of S5(6*), the provof is the same as that
ngen in [35]. '

Faor the sake of completeness, Let us recall another necessary condition whxch was

"obtained in the presence of an’ [CQ and no assumptions.on F= or ~, are needed.

N éee [35] for the proof ).

5.8 Theorem. Consider the convex model (P,0) at some 6* € I with a realistic

objective function. Suppose that 6* € I is a locally optimal input Witherespect to

a region of stability S(6*) and suppose-that an input constraint qualification holds

 at 0* relative to S(6*) . Let {z(6*),®(6*)} be a unique correspondfng saddle point
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and let the functions f’ (‘5(0*), )i € {o}n ;o< (6*) be differentiable. Then -

. Coo
VoL (2(6%), 8(6%);8)lo=e- € {B°(6")}*.
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- , CHAPTER 6 \

Optimality Condijtions fgr Bi-Convex Models
- and
a Marginal Value Formula

¢

\

6.1 A Necessary Condition for Bi-Convex Models
. . ‘ /

The necéssary condition for an optimal input for general convex models can be

stgengthehed for bi-convex models , i.e., for the models (P, ) where both f*(-,8) :

R™ - Rand fi(z,): RP - R,i € {0}nyp are convex functions. The result, given

below, was proven in [19] for a subset of the region of stability Z(6*), namely for’

Y

. Z,(6*) = {0 : F(6*) € F=(0)} n By (6).
Following the ideas from [50], we use a part of the unit ball B = B(6*) in RP defined
by . _ v ‘
‘ -0~ ’ * - * *
B={”T_—0T“:0€N(0)0Z1(0),0750} ‘
for some fixed neighborhood N(6*) of 6*. The polar of B? is defined in Section 5.2.

We also need a condition on indices of the constraints, known as the “ index

condition ” (See [48, 49] ). First we denote by

(2(6),0") ={icp: fi(#(6%),6*) = 0}

« the set of active constraints for 6* at the optimal solution Z(6*). We recall that, for

~

differentiable functions, the index condition is ’said to hold at 6*, with resl;ect toa’
region of stability S(6*), if , | Fe
(IND) {0<(0) 0 p(E(8%), 0%} € p<(6)
for all but possible finitely many k’s, for every sequence 6% € S (6%),0% — 6*.
To simplify the notation, we introduce the abbreviation
g(6) = L3 (2(6%), @(6*); 6)

Y

where (£(6*), #(6*))’is a restricted saddle point. Note that g(0) is a convex function.

i
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6.1 Theorem. Consider the bi-convex model (P, 6) at 0 = 6* € I with a realistic
objective function. Suppose that the corresponding saddle point {Z(8*),4:(8") : ¢ €
©<(6*)} of the above restricted Lagrangian is unique and that the index condition
(IND) holds relative tq Z1(6*). We also assume that the point-to-set mapping F™
is lower semicontinuous at 6* and that all functiémsl T5(£(8%),0),7 € {0} U p<(6*)

\\
are differentiable at 6*. If 6* is a locally optimal input with respect to Z(6*), then
Veg(6*) € (B%)*.

Proof In the proof we use the fact that Z;(6*) C R;3(0*) and the result on
continuity of the restricted Lagrange multipliers’ with res)g::ct to the set R, (0%).
(See [50] ) So, take an arbitrary | € B°. This point is generated by some ¢* ¢

1Z,(0%),0F — 6*. By the contmuxty of Lagrange multlphcra, there exist u,(0%) —

‘N ii(6%),4 € p<(0*). For t}ns sequence 0% define -
m L BN = LSEO),a0)00) - LEEE)E0) - (1)
* and, us{ng the gradient inequality for g(0), we find that .
(va(6*), 0" ] 6*) > L<(2(0%),u(0%); 0*) ~ g(0*) + E(0*)  ~ (6.2)
now we invoke the estimate
F(0) ~f(0°) < L¥(z,5(0);0) - LE(3(0°), i0") (3

holding for every z € F=(0) and v € R‘i(ﬁ.), as it is known from [43]. Using the )
" fact that 8¥ € Z,(0*), we note that ‘

£(6°) € F(0%) c F=(0%).
So we can specify z = £(6%) and v = &(0*) in (6.3) and (6.2) now gives

(Vg(6*),6% - 6%) > f(8*) - f(6°) + E(6*) > E(6") (6.4)
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for all sufficiently large k’s, because §* is a locally optimal ingut. Hence

. 01: __‘0* E(ak) .
. : ) k > 5
Vol o= o) 2 o o1 (6.5
. "\ Let us note that .
(0%) = D [Ele") - a:(6%))7*(E(6*), 6%) |
. . (6.6)
i€p=(6%)
> ) [a(6*) — i:(6%)]£*(2(6*), 6"
i€p= (6% )np(2(6*),0*) :
. since the terms with nonactive indices are nonnegativle. Now the index condition

guarantees non-hegativity of the limit when &k — oo of the right-hand sidé term in
(6‘.5). This, together with continuous differentiability property of the differentiable -
- convex Ifunctic;n g(6), gives the desired result. i ‘
A .result of the above kind was proven in the literature (See [49,50]. ) but only
for the‘region of stability V;(6*) which is a subset of Z, (0*)'.

6.2 Example. The following example, which is from Section 3.2, shows that one

may have V1(6*) C Z,(0*) with a strict inclusion.

Consider a bi-convex model with the two constraints

ff=0+1-z<o0

f2=maz(0,z-0)+0-2<0

for every 8, F(8) = 8+ 1,00), 0= (8) = {2} and F=(8) = [0, c0)
Therefore

) Vl(ﬂ* -—(—O0,0] ' » '
while - o - o
° Z,(6*) = (~o0, 1].
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As we see that the above necessary condition for optimality requires the “ index
condition ”. It’s easy to find examples which show that the index condition is not
satisfied, though it is satisfied when “ Slater’s condition ” holds. Now we are going
to state a necessary condition without the index condition. The condi,tion/

“All functions.f*(£(6*),8), i € {0} Up<(6") are differentiable at §*."  (6.7)
can also be omitted , but these two requirement‘s are replaced by the following two
conditions: |

“All functignsf(i(ﬂ*),ﬂ), t € {0} Up(Z(0*),0*) are differentiable at 6*.” (6.8)
and - o

“For every fixed path 8% € S(0*),0% — 6* the limit

ok — 0~
lim ————— =1 ; 6.9
e*es(e) 105 — 0| ' (69)
ot —o*
exists.”
The necessary condition for optimality follows
>

6.3 Theorem. Consider the bi-convex model (Pf) at 8 = 0* € I with a realistic
objective function. Suppose that the corresponding saddle point {Z(0*),4:(0*) : 1 €
©<(0*)} of the restricted Lagrangian is unique. We also assume that the point-to-
set mapping F= is lower semicontinuous at 0* and that conditions (6.8) and (6.9)

are satisfied. If 0* is a locally optimal input with respect to Z,(0*), then
Veg(0%) € (B%)*.

Prdof Follow the same proof as given in Theorem 6.1 and arrive at the inequality

E(6%) 2 > [,(0°) - @,(0%)) (2(0%), 0%)
1€p< (0*)Np(2(6°),6*)
Dividing both sides by |0 — 8*|| , now condition (6.8) and (6.9) guarantec non-
negativity of the limit when & — oo of the right-hand side term. This, together
with continuous differentiability property (of the differentiable convex function)

g(0), gives the desired result.
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6.2 A Sufficient Condition for Bi-Convex Models

A sufficient condition for an optimal input was proven in the literature f?r the regidn

of stability M; (0*) UV,(6*) (See [48, 50].) We will now show thf the resulf remains

¢

valid for the region of stability
S3(6*) = {0 : F(0) c F=(6*)} n S(6*)

where S(0*) is an arbitrary region of stability.
Denote by B = B(6*) the set

B = (gm0 € ) UV} 10 2.7)

A sufficient condition for optimality follows

#

. 6.4 Theorem. Consider the differentiable bi-convex model-(P,8) with a realistic

/

‘objective function at 8 = §* € I. Suppose that the corresponding saddle point

{£(6%),5(6%) : i € ©<(6*)} is unique. I

VoLS(5(0%),5(0%); )lomsr € int {B°@)}* ~ (6.10)

+ then §* is an isolated locally optimal input over the region of stability Ss(6*).

Proof First we invoke the estimate |
£(6) - £(6*) > L<(%(0),u;0) — LE(z, a(6%); 6*)

holding forrevery z € F=(6*) and u € Ri(o.), as it is given in [Lemma 4.3 of [50}).

Specifying u = (u;) E‘Rﬂ_(o) as follows

‘ e { #(6%) i€ p<(6¥) , .
: =10 i€ p<(8) \ p<(6%). '\\/ )
we find that, for every 6 € S3(6*) and every z € F=(6*), “

f(6) - f(6*) > LE(2(9),5(6%); 6) — LS (=, d(6*); 6%) . " (6.11)
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If § € S(6*), then 5(6) & F(6) C F=(6*). After specifying = = 5(d) in (6.11) we
‘obtain

7(6) - 7(6%) 2 LE((0),5(0°):6) — LE(2(6), 5(6°);6%)

‘ /‘and further, by the gradient inequality,
Y F(0) - F(0") 2 (e LE(2(0), 5(6%); 0)lle=s- 0 - 6°)

Finally, let §° € S3(6*) and ¢* - 9*, then Z(6°) — Z(0*), as ¢ ~+ 00, by u'niqucncm
of Z(6*) and since S3(8*) is a region of stability. All functions [1,0),1¢ {0}uep
are convex and diﬁgrentiable, so the gradient is a continuous funotion in z. Let’| .

be in the set BO. Then, for a subsequence {8}, we find that o

f i 109 - )

>0
[ =0l

by (6.10). Hence () > f(6") for 0 € Sg(6*) N N(0°),0 # 0*, where N(8*) is some
nexghborhood of 6*, by continuity of f (9) in a region of stab:hty

6.6 Example. Example 3.11 also shows that one may havc (M (6*) uVqt0°)} ¢

S3(8*) with a strict inclusion.

~ We find ‘ _
' My(6%) = {0: F(0) C F=(6*)} n M(6*) = {~1,0]
and o ’ .-
Val6%) = {0: F=(0*) = F=(0)) 0 R6%) = {0°)
. while | | | |

et

Sa(O")-—{O F(O)CP (0° ))ﬂS(O)*[ LY

for S(6*) = H(8*).
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6.3 A Marginal Value Formula

The marginal value formula (i.e., the path derivative of the optimal wlue function)
was first proven in the literature in the absence of Slater’s condition on the region

of stability V3(8*) (See [43,45,49].). Here we extend its validity to the five different

regions: \
Z,(0%) ={0: F(6) c F= (0*)} N Z,(6*)
25(0%) = {9 F(8) € F=(0*) C F=(6)} n Rs(¢")
Rs(0%) = {0: F(6) C F(6*)} N Rs(6%)
Rg(6*) = {0: F(6) C F=(6*)} N Ry(6%)
and

Ha(6*) = {0 F(6) C F(6*)} n H(6%)

Note that V3(6*) C {Zg(()*) N Z3(6*)} but, generally, V3(6*) is different from
R5(6*), Rs(6*) and H2(6*). However, some extra assumptions are needed for the.
extension : The point-to-set mapping F= willl always be assumed lower semicon-
tinuous at 6*; also, for R5(*), we havé to assume that int F(6*) # @ ‘(in which case
R3(6*) C R4(6*) is indeed a region of stability ) also, for R5(¢*) and H; (0*), we
have to assume that F(6*) = F=(6*) ( in order to apply Theorem 4.3 ).

Two crucial arguments used, in deriving the marginal value formula, are :
(i) Continui#y of the restricted Lagrange multiplier function ®(f) and
(ii) Showing that z = Z(6%) € F(6*) implies z € F=(8*). The latter argument is
'obv1ously valid for the above five regions , so we verify validity only of the contmulty
argument : The argument is valid for Z,(0*) because

Z5(6%) C 2,(6%) C R(6%)

\

and ®(0) is continuous on Ry(6*), under the lower semicontinuity assumption on

F=, (See [37, Theorem 2.1].) Since Rs(6*) C Ra(8*), and the latter is a region of
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. stability, if F= is lower semicontinuous and if F(0*) has interior points, it follows
that Rs(0*) itself is a x)egion of stability. The additional assumption F(0*) = F=(6*)
on Rs (0*) and H(6*) guarantees continuity of $(6), by our Theorem 5.3. The re-
gion Z3(6*) enjoys contmmty because Za(0*) C Vy(6*) and cont.mmty is established
on V;(6*) in [36 Theokem 3. 1]. Note that F= is lower semicontinuous on Z3(6*), be-

> cause of the requirement F=(6*) C F= (0) Finally, Rg(0*) C R,y(6*) C R3(6*) and
) contix;uity, being estalblished on R2(0%), guarantees continui!ty of Re(0¥), provided,
of course, tha.i'. F= is lower semicontinuous.

To simp}ify notation, we use again the a.bbrevia.tion g(0) for t*}:eLan.grang'ian LS
at z = Z(0*) and u = @(6*). v
66 Theorem. Consider the bi-convex model (P,6) atf = 6* € I with a realistic
objective function. Suppc;se that the corresp%nding saddle point {Z(0*), 4;(6*) :4 €
©<(6*)} is unique and that the index condition (IND) holds at ()\‘)'“with respect to
a region of stability S(6*) = Z;(6*),1 =230r S(6*) = Ri(6*),i=5,6 or S(é*) =

H;(ﬂ*) and it.is assumed that the mapping F= is lower semicontinuous at 6*, and
in the case of Rg(6*), that F(6*) has an interior point, and that F(0*) = F=(0*) on
R5(6*) and H, (0*). Also, suppose that f(z,-),i € {0} Ugo!(O‘)'are differentiable . -
functions in S(6*) N N(0*), where N(6*) is some neighb;)rhood of 0*, and that the
derivatives g f*(z,0)|g=0- ,1 € {0} U<(6*) are continuous functions in x at £(6*).

Then for every fixed path 6% € S(6*),60* ~» 0* such that the limit
ok — o0*

. | o"élsw') 6% — 0+] ! (6.12)
’ . ok —6*
exists , we have | |
SRR { () o {ul S
‘ \ ' . adim [[o% — 0+]| = (Vg(0"),1) | (613)

o"esy')
o —o* {
Proof Take a sequence 8% € 5(0*),8% — 0* such that the limit | in (6.12) exists.

Without Joss of generality , we can assume that for this sequence
ui(6%) — 6i(6*), - i€ p<(8°)

\
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\by.the continuityﬂ argumerit given prior to the theorem. We now follow the proof of

Theorem 6.1 and arrive at the inequality

(Vo) 05~ 0) 2 fiO) - 0 £ B@H) - (64)

for all sufficiently large k's . This gives an ui>per bound for f (6%) - f (6. A lower

-

bound is obtained from the estimate

Y
ba

F0¥) - F(0) > LS(E(0%), i 0%) - L3 (@ a(0)50) © (6.14)
valid for every z € F=(f*) and every u € Rj',_(o), where ¢(6) = card p<(f). (See
[43].) .Here we can specify z = Z(8%) € F(6%) c F=(6*), by the second argument

1

given prior to the theorem, and

(= .
, : { @:(0%), ifiep<(¥)
. Uy = :

0, if § € p<(0%) \ p<(6%).

Now t,he lower bound

-

©F(0%) = (8%) > (VLS (£(6%), 5(6%); ) omer, 6% — 6*)
follows from (6.15), convexity of g(6), and the gradient inequality applied to g(6)
. o \
at 8*. Therefore, after division by ||0 — 6*||,

f(6%) - 7(6*)
2 e e

ok — 6"
k

Y

<r=raky =fan : 0k_q*
2 (VL3 (B(6*),2(0°): 0) =0 Te—pey)

P g

Hence, by continuity properties of both the Lagrangian multiplier functions and
contraints, the marginal value formula (6.13) is obtained in the limit. B
Similarly to theﬁecessa.ry condition for optimality given in Section 6.1, we will

derive a marginal value formula without the index condition.
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6.7 Theorem. Consider the bx-convex model (P,6) at 0 =6* € I w:th a realistic
objectxve functlon Suppose that the correspondmg saddle point (:c(o*),u.(O') 1€
- (0*)} is unique and that, condition (6.8) holds, where 5(6%) = ?.(0*),: =2,30r
5(0*) = Bi(#*),§ = 5,6 or S(6*) = Ha(6*] and it is assumed that the mapping F=
is lower semieontieuous at 8%, and in the case of Rs(6*), that F(6*) has interior
,pomts, and that F(0*) = F= (6*) on R5(0"') and Hi(6*). Also, suppose that the
- denvatxves Vaf‘(z, 0)'0__,0-,: € {0!} Up<(8*) are continuous functions in x at £(0*).

Then for every fixed path 0% € S(B*.),o"‘ — 0* such that the limit

o ‘é as
0 "'0* N I '
li e v | . .
- ores(e) [16% = 0]
0% 0" i
-* exists , we have oo Ve
‘ . *a~0k_~0i"‘ ° . -
im A = oty

Pes(e’) |0k —

AT ‘
Proof Follow the same proof as given in Theorem 6.6 and arrive at the ine.qual/’/y

(Va(*),0% — 0% > Foh) — (0] + E(o¥)
. . (

k4

for all sufﬁcnently large k’s The pomt now is to show the non-ncgatlvxty of the

limit when k — oo of E(¢*). This was shown in Theorem 6.1 by using the index
condition. It was also shown in T}’leorem 6.3 by using condltion (6.8). The rest of

> the proof is exactly the same as gwen in Thco:em 6.6. &

Note that the index condition is diffcr”er}t from condition (6.8) ; therefore Theorem

» 4 v

6.7 is differént from Theorem 6.6. ) .
‘ ) K i N
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\ ‘ CHAPTER 7 -
\ ! ‘.
L i
Comparison o{Re‘giOns of Stability 5
. .
and
Selected Applications
.‘ K
e
\7 .1, Comparison of Regions of Stabflity | \
In order to ¢ompare all presently used regions of stability, we will first recc;'llect
them all hefe. . ‘ . (\
. If the point-to—set‘mappiné 1(7'= : 0 = F=(0) is lower semicontinuous, then vjve |
know tha.t the following sets_are regions of stability
' Ri(6*) = {0:0=(0") = 0=(0)}
\ . Ral0) = {0: FZ(0) = F=(0)) ‘
, ‘ : 5 ,
Re(0) = {0: FO)C F=@) RO, -
2 ‘ = oo
K F= ié“i;)wer semicontinuous and int F(0*) # @ , then alo -
o o Ra(0) = {0:.f(z,0) S0,Vz€ F(0*),i c p=(8*) \ o= ()} ¥
C Ba(6*) ={0: fi(2,0)< 0,¥z € F(6*),i € p=(6%) \p=(0)}
, : Rs(6%) = {0: F(8) C F(6*)}n Rs(6*)." . .
: . ) i /
N are regions of stability. . IR o A
: « ST




S

The following sets are regions of asta’bili_ty without-any assumptions

M(6*):= {8 : F(6*) C F(9)}
My (0%) = {0 : F(6) C F~(6*)} n M(6")
© W(6*) ={0: F=(6") C F=(0)} N Ry(0°)
V() = {0: F=(6) € F=(6)} N Ry(0%)
V,(6%) = {0 : F=(0*) ¢ F=(0)} N 33(0*3 '
Va(0) = {0 F=(0) =F={0)} 1 Ra(0")
X Vilo") = 0: F(0) = @) 0 la0%) /
‘QMﬂ::M:F=Mﬂ<£F:wﬂrUQMWL
2(6%) = {0: F(6*) c F=(0 }nlao)k
- Z2,(0%) = {0 : F(6*) € F=(0)} N Ry(0
' 2(6%) = {0 F(0) ¢ F~(0%)) 1 23(0°)
Z5(6%) = {07 F(8) C F=(0*)} n Ra(0°)
¢ H(0*)={0: F(0") C F7(0))
Hy(0%)={0: Fs(o*) C F7(0)}

" H,(6%) ={0:F(0)c F(0 )}nn(o ). .
4

All these presently used regions of stability are corﬁpa;c(l by inclusion below. The
arrows. mean inclusion. Thus M; — M means M, C' M, etc. The sets in the *

diamond shapes” are regions of stability under the additional assumption that the

point—to—set ihapping F=:0 — F=(0) be lower semicogtinuous at 0°, The séts with -

-an astensk are regions of st.ablhty if, in addition to lower scm:contmunty of F*=, the

feasible set F'(6*) has nonempty lntcnor Some regions are generally incomparable,

- such.as M and V. Among “ smallest regions of stability are Rq and W, while some,

of the “ largest " ones are Rz, R4 and H.

\
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7.2 Applications 6f Region of Stability

Regions of stability often have simple economic interpr‘eta.tion;.. For exaniplc con-

sider the linear program

max (c,z:)

s.t.

7

Assume that all the elements of A and b are positive. The region of stability M{0°)

consists of all perturbation that increase the feasible set, i. e., local increases of
. {

\ .
b; and decrea,sés of a,, > 0. Economically, this may mean, that purchasing extra

units of energy" (cxp'ansion) and improvement of the efficiency of the machiies are

»

“ stgble ™ processes in an economic development. More about this and related

economic principle, the reader can find in {48).

\

~Recently, stability of the efliciency tests in data envelopment éimlyni‘s (DEA) was
established in [8]. In this section, we will translate some of the results on stability

region into the framework of DEA,

' - , .
. Data envelopment analysis was initiated by Charnes ,Copper, and Rhodes [9)

and it has been successfully used in many situations with not-for-profit entities.

(See ,e.g., [9, 25).). Recently, it was shown in (8] that the cﬂicie;\c,y Lenta P DEA

are indeed.stable for every perturbation in the convex hulls of the input and output
. Y
data.  This suggests that the'cause of possible discrcpanciq;: between the estimated

»
inefficiencies and the real-life situations, should be sought in deficiencies of the

»

s

' (anal}rtically underscribable ) data generators and not n@aurily in DEA.

The primal form of tgc Charnes-Cooper cfficiency test can be formulated an fol-

lows ‘ : - ' ) /
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Eﬁ‘/’)‘ (@)

s.t.
(v, X)=1
(z,Y)) < (1, X%), i=1,..,N-

@ <X

T 2 €e,

y2ee’

for some unspeclﬁed small e > 0. Here e is the vector of Mector X' € R™

is cons1dered as \mput » (X >0, but X* # 0)'and Y* € R* as “ output ”
(Y >0),i=1,.,N. (X ‘,Y") are the empirical points. After substitution
. o . | :
X=) 06X, ) 6;=1, 6;>0,i=1,..,N
i=1 =1

and - )
N N
Y=Y o'y, Y 6'=1, 6'>0i=1,.,N.
. f.=1 ' =1 ‘
The above program becomes the - bi-linear model > -

t

N ! .
min f"‘ =~ ZB,;’(Y',::)

Za iy)—1<0

“““ =1
N . 4
——ZO'X‘,y)+1<O
. - i=1
' (BL,8,¢) R (y z) ~ (X*.y)<o:—1 N

NS - zo (Y, ,-,;) Z 0:(X
fN+3+t = —x; +€ <0, $ = 1,...,
‘ .fN+3+'.st+i

=—y;+€ t=1,..,m
! P Y
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Hence the entire (z,y) € R™t* is 1dentxﬁed as an x in (BL,9, 0') 0 and & are fixed
and each restricted to the region

N |
d={0€RV:) 6;=1, 0,20,i=1,.,N}.

=1

It was shown i [8] that )
0= (0,0) = {1,2)

for every (8,0') € I x I, the symbol “ x " denotes the Cartesian product. and that
the point-to-set mapping

= (0,0') — I (0,0)

. s lower semicontinuous. Hence it follows that - .
e .
’

R,(ﬂ),é’) =1 x1,
is a region of stability at every (6,0') € I x I .

Correspondmg to Theorem 6.1 of |48], also convergence of the restnctcd Lagrungc
multiplier functions ¢ over the set I x I was established by [8]. We will now show
that some of the important rcsults in mput optmnmtlon can be translated into the
framework of DEA. . ‘ ’

Since p=(0,0') = {1,2}, for every (0:0') ¢ I x I, it follows that F,"{0,8')
F=(0,6'). Also, a modified input constraint qualification holds at 8* relative to
Rgeﬂ*), it follows that Tﬁeorem 4.7 i8 a specidl case of 'I‘hco'rcm 4.8. when we ntn;tc
the corresponding results over the set 1 x I. “Morcovor the set of Lagrange mul-
tlpllers A(#) and U(0) given in 1 Section 5.1 comcndo-s and the point-to-set mapping
v+ : (6,8') — F[(6,0') is lower semicontinuous. Therefore the convergence of the

1

other two Lagrange multiplier functions over the set J » [ follown

~ 7.1 Theorem. Consider the model (BL,0,0') at some (6,0') ¢ 11 mlh a realintic
objective function and an arbitrary sequence (0, 0’) 151 (0,0) +(6,6).
Then o \

[N
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(i) The sequence of the corresponding Lagtange multipliers

-~

A(B,0') = U(8,8") = {ui(6,0') :i =3,.., N + 3 +5+m}

is bounded and
(ii) the set of all limit points of U(0,0'), as (6,0') — (8,8'), is non-empty

and is contained in.U 6,6"). n*

It is also easy to show that the neccssary conditions for both convex and bi-convex

models can be stated over the region of stability

S(6,8) = {(6,0) : F(6, &) C F=(0,8)} NI x I,

while a sufficient condition for bi-convex model and the fnafginal value formula can

be stated over the set ¥

S(6,8) = {(6,0') : F(6,6') ¢ F=(8,8)}nIx1I

Since our regions of stability aré independent of fhe objec(tive function, the re-
sults obtained for single;objective input optimization can be exte;lded to the multi-
objective situation in a rather straightforward manner. (For details see [47].). Re-
cently regions of stability were also used for random decision systems with complete
connections. (See [42]). Other applications include linear modelling and goal pro-

gramming. (See [10, 52].)
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Open Questions

In this théis, we have studied the stability in finite dimensional space. Different .
stability questions in infinite dimensional spaces have been considered by many
authors. (See, e.g. ; (15, 23, 24, 26, 39, 58].) Some regions of stability, have been
indentified in infinite dimensional spaces, under some hypotheses (Soc 139, 42].). Our ’
regioﬁ of stability H (6*) is one of the largest regions of stability presently known,
but it.is easy to construct exampleé in one dimension which show that the point-
to-set mapping F 0 — F(8) is lower semicontinuous for every 0 \‘vhilc' H({0*) / I
Therefore, in some situations one may possibly construct a larger region of stability

A than H(0*) or the “ largest " region of stability. Development of' numerical tethods
" for calcu_latiné regions of stability and in input optimization is a topic suggested for
future research. \

All our results are stated for ﬁnitc-dimcnsipnal spaces and for N;}wcx models, the
extension to abstract optimi.zatjon (e-g., semi-inﬁr;ito and irxﬁr:ito xfmgr::\mming) or
to generalize nvex and nonconvex models are directions for future rm«-;uch. Also,
possible co{nd:éons between input o;;tiniizatioh and other optimization arcas (e.g.,
intéger programming models, optimal control theory, nonsmooth "mmlyuin ) remain

open for research. -
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APPENDIX
© Survey of New Results

Here all new results are listed
1. Theorem 3.5 : H(6*) is a region of stability.
2. Theprerﬁ 3.7: R4(0*) is a region of stability, provided that F= is lower semicon-
tinuous and F(ﬂ*) has non—;am_pty interior: ' ‘
3. Theorem 3.8: R,(0*) is a region of stability Junder a weaker hyl;othésis.
ti. THeorem 3.12: A necessary condition for stability is true for an arbitrary region
of stability.
5. Theorem 4.3: ICQ is satisfied over H,; i@»* ).
6. Theorem 4.5: An optimality‘conditi(;}n is true over H (0*)4.
7. Theorem 5.2:, 'fhe Lagrange multiplier function (0) is continuous oveg an-arbi-
trary region of st;bility, provided that F(0*) = F=(6*).
8. Theorem 5.6 : A neccary condition for differentiable function is true over H(6*).

9. Theorem 5.7: Another necessary condition for differentiable function is true over

H(6%).

10. Theorem 6.3 : A necessary condition for bi-convex model is true without the

index condition.
11. Theorem 6.4: A sufficient condition for bi-convex model is true over S3(6*).

12. Theorem 6.6: The marginal value formula is valid over five different regions of

§
LY

stability. \
13. Theorem 6.7: The marginal value formula is valid without the index condition.
14. Theorem 7.1: Convergence of two Lagrange multiplier,functions over the set

Ix].
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