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ABSTRACT

Ridge Estimators

Felice du Berger

When the method of least squares is applied to a regression model where the
independent variables are nearly collinear, very poor estimates of the regression
coeflicients result. The variance of the least squares estimates will be considerably
inflated and the length of the vector of least squares estimates will be too long on
average. This implies that the absolute value of the parameter estimates will be
too large and that they will be very unstable. That is, given a different sample,
the magnitudes and signs may change considerably. A procedure for obtaining
stable and accurate parameter estimates, when the independent variables are nearly
collinear, is ridge regression, originally proposed by Hoerl and Kennard (1970 a b).
Ridge estimators are biased estimators which achieve a reduction in variance by
adding a small amount of bias to the estimation process. This thesis is a review of
the various properties of ridge estimators. In addition, several new ridge estimators
are proposed which are non-stochastic as they depend only on the eigenvalues of
the X'X matrix. A simulation is conducted which compares the performance of

the new ridge estimators with other established non-stochastic ridge estimators.
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Chapter 1

INTRODUCTION

Consider the following standard linear regression model
= BO + ﬂlxi,l + ﬂ2xi,2 +-- ‘,szi,p + €iy fori = 1, ceeyny (11)

where y; isthe ¢ —th of n observations on the dependent variable, f,...,08,
are unknown regression coefficients, z;; are observations on the p regressors,
and ¢; is an unknown random disturbance term. In matrix notation, we may write

model (1.1) including all n observations as
Y=X0+¢, (1.2)

where Y isa (n x 1) vector of observable variables, X isa (n x [p+1]) matrix
of known constants the first column of which is the unit vector, g isa ([p+1]x 1)
vector of unknown regression coefficients, and ¢ isan (n x 1) vector of unknown
random errors.

The usual assumptions of the above model are that

1) X is a non-stochastic matrix of regressors,

2) X has full column rank, i.e.,, Rank( X )= [p+ 1],

3) e is unbiased,ie., E(¢; )=0 where E denotes the expectation operator,

4) e)s are uncorrelated, ie., E( ¢, ¢; ) =0fori #j,
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5) e!s have identical variance,i.e., E( &, &, )= o2 fori=1,...,n.

Given such a model and the above assumptions, the problem will be to estimate
the unknown coefficient vector 8 . A well known estimator of B , when the
distribution of ¢ is unknown, is the least squares estimator which minimizes the

sum of squared errors denoted by Q .

Minimizing
Q=(Y-XB)(Y-XB)
(1.3)
=1"Y - 23X'Y + §'8B,
by differentiating @Q with respect to # and equating to zero, we have
2Q
__=2"l_r _2-rlr= .
55 X'Xp XY =0, (1.4)
giving, for B = b, the least squares normal equations denoted by
X'Xb=X'Y. (1.5)

Now since X isof rank [p+1], (X'X) is a positive definite invertible matrix.

Solving equation (1.5) for b gives the least squares estimator
b=(X'X)"1X'Y. (1.6)
The estimator b minimizes @ since
_319_ =2X'X, (1.7)
0 p?

is a positive definite matrix. Using the estimator b, we havenowa predictor of the

disturbance vector ¢ , denoted by the residual vector e, where e =Y — Xb . The

2




sum of the squared residuals will provide an unbiased estimator of the disturbance

variance o? . To see this consider

e'e = (Y — Xb)(Y — Xb)
=(Y - X(X'X)"'X'Y)(Y - X(X'X)"' X'Y)
=Y'(I- X(X'X)' X'Y(I -~ X(X'X)"' X")Y
=Y'(I - X(X'X)"'X")Y -
=(XP+e)(I - X(X'X)'X'Y(XB +e)

=e'(I - X(X'X) ' X")e,
where I is the identity matrix, and (/ — X(X'X)~!'X') is an idempotent matrix

such that

X(I-XX'X)'XY=(I-XX'X)X")X =0. (1.9)
Now taking expectations of both sides, and using Theorem A3 from Appendix A
we have

E(e'e) = Tro?(I - X(X'X)'X") = o¥(n - [p+1)), (1.10)

where Tr denotes the trace operator. Thus we have the following unbiased esti-

2

mator of o“ given by

t

, €e
—ig —, 1.11
== (1.11)

where v = n — Rank X.

If we were to further assume that the disturbances follow a normal distribu-
tion, we could use the method of maximum likelihood to estimate the parameters

B and o? . The likelihood function of the disturbances ¢; is given by
L(c? |e) = —-—I——e.'cp(—-—l—-e'e) (1.12)
(2r0?)% 202" 7
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or equivalently

L@ 1Y) = —rerp(~(Y ~XB)(Y - XB)),  (1.13)

(2m0?)

taking the In of the likelihood function we have
o L(*f|¥)= - ln2r - Zlno? - ,-,71;2-(}"}' —28X'Y + B X'XB). (1.14)

The maximum likelihood estimates of ¢% and 8 are given by the simultan<ous

solutions of the equations

5‘%(ln L(c?, 8|Y) = _E%(_zx'y +2X'Xp) =0, (1.15)

n

)
azilln L(o%81 V)] =~ + E%T(Y — XB)(Y — XB) =0, (1.16)

giving the estimates

B=(X'X)'X'Y  and o= Z Xpy(Y - XB)

- (1.17)

That § and 0? determine a maximum is confirmed by the Hessian matrix of the

likelihood function evaluated at 8 = # and ¢? = o2 given by

H(in L(o2, 3| Y)] = (’%x o ) (1.18)
2o

which is negative definite. Thus when normality of the disturbance vector is as-
sumed, the maximum likelihood estimator of 8 is identical to the least squares
estimator b . The assumption of normality is required for tests of significance on

the estimated parameters.




Sampling Properties Of The Least Squares Estimator b .

Since b is a linear function of the random vector Y , it is a random vector

with expectation
Elb = E[(X'X)'X'Y)]

= E[(X'X)"'X'(XB +¢)]
=E[f+(X'X) 1 X'¢] (1.19)
=B+ (X'X)'X'E[e]

Thus b is an unbiased estimator of 3.

The covariance matrix of &, denoted by V() , is given by
Vbl = E[(b — E[b])(b - E[b])']
= E[((X'X)'X'Y = B)( (X'2) 1X'Y — B)]
=E((B+(X'X)"'X'e - B)( B+(X" V) X'e — B)]
(1.20)
= E[(X' X)) X'ee' X(X' X))
= (X'X)"'X'E[ee') X (X' X)?
=} X'X)™.
Recall that an estimator 6, is called the best linear unbiased estimator of 3,
in short 6 is BLUE of f, if € is a linear unbiased estimator of f , having
minimal variance in the class of linear unbiased estimators of 8 . With respect to

the least squares estimator b, we have the following theorem.

Gauss-Markov Theorem: Given model (1.2), the least squares estimator

b= (X'X)"'X'Y, is the BLUE of 4.




To prove the theorem, we have only to consider a linear unbiased estimator of
B , say
b=((X'X)'X' + AY, (1.21)
where A is any ([p+ 1] x n) non-stochastic matrix. Thus we have
Bb] = ((X'X)'X' + A)E[Y)
=((X'X)'X' + A)XP (1.22)
=B+ AXp,

and since b is unbiased, we must have AX8 =0 for all 8, implying AX = 0.

Hence

(b=p) = ((X'X)'X' + A)Y -8
=((X'X)"'X'+ A)(XB+¢e)-B
(1.23)
=B+ (X'X) ' X'e + AXB+ Ac -
=((X'X) X'+ A)e.
The covariance matrix of b is thus given as
E((b- B) (b~ B)'] = E[( (X'X)™' X' + A)ee’'((X'X)7' X' + A)
=[(X'X) T+ (X'X)IX'A + AX(X'X)™! + AA') (1.24)
=o?(X'X)? + 044"
But AA’ is a positive semi-definite matrix, which shows that the covariance matrix
of b is the covariance matrix of b plus a positive semi-definite matrix. Thus if
b has minimum variance, then A =0 and b =b. Hence b has the minimum

variance of all linear unbiased estimators of 3 .




Coeflicient Of D etermination.

A useful measure of how well the fitted values §; correspond to the observed

values y; is the sample multiple correlation coefficient 2 given by

- Ve (i - (i =)
- 9o G- 7R (1.25)

A uscful theorem whichrelates the total sum of squares about the mean (SSTO)
to the sumof squared error (SSE) and the sum of squares due to the regression (SSR))

18
Theorem 1.1:
n n n
Y wi-9)% =) (wi-)% + Y (8 -0 (1.26)
i=1 =1 i=1

Proof: The equation is often denoted by

SSTO = SSE+ SSR. (1.27)
Considering
Y = PY where P=X(X'X)"' X', (1.28)
we have
V'Y =Y Py =Y'Py=Y'Y. (1.29)
differentiating Y i (yi —fo — BiXit — -+~ BpXip)* with respect o B¢ we have

one of the normal equations for b, namely

n

=2 (vi —ho- BiXu— - =B X;p)=0 (1.30)

1=l




an(ye - §i)=0. (1.31)
Thus -
Zl(y. -9 i} i — i)' + Zj;(fu— 7)% (1.32)
since ) ) ) "
;(y- - %)@ E(y. 9§ by (131) (139
-0 by (1.29).

Another useful measure of how well estimated observations fit the actual ob-
servations is the coefficient of multiple determination (R?) which has the following

identity

R = ‘ % = 5570 (1.34)

Proof : From (1.31) j = ¢ so that

Z(yi -G —
i=1
= _(ui- (& -7)
r::l (1.35)
= Z(yi ~0i + 9i - §)(Gi - )
i=1

n
=0+ (5i— 9
1=]

Hence

Yi(yi =)@ -9) :
e (vi = 7)? ZL:(!‘/.- -9)4]
D y) z.-.(y. 7)Y

R=

and it follows that




PSRN
R = __-___—-gzgf’ - 32 (1.37)

Centering and Scaling,.

Without loss of generality, we will assume from this point that the X and ¥
matrices are centered and scaled to unit length so that the matrices X'X and
X'Y are in correlation form. The coefficients of the centered and scaled data are
often called beia coefficients. Denoting the least squares estimator of the raw data
by b and the centered and scaled data by b* , we may always return to our

original coefficients by using the identities

Sy

bt = (=2 .
J J ij) (1 38)
and
P
b =7- D bz, (1.39)
Jj=1
where
n —\2 n 9
2 _ (yi~ ) 2 _ (Xij - Xj)
sy-g———n_l ,sxj_;——————n__l , (1.40)

and X; denotes the j — th column vector of X . From this point on we will
drop the superscript s and be using centered and scaled data along with the

corresponding beta coefficients denoted by & .




Mean Squared Error.

A measure of how close the estimator b is to f§ called the mean squared

error, is the average squared distance from b to 3, defined by
MSE b = E[(b — B8)'(b - B)]. (1.41)

An estimator with a low MSE will be close to the true parameter vector 8 .

The MSE of b is
MSE b= E[(b- B8)'(b- )]

= E[f+(X'X)7' X'e - B)(B+(X'X)"' X'c - B))
= E[e’X(X’X)”(X'X)“X's]‘ (1.42)
= oI X (X'X)" (X' X)"1 X"
= o Tr[(X' X)),
and since (X'X) is symmetric positive definite, we have (X'X)~! = GA~!G
where

A= diag (M, Azy.ees Ap) (1.43)

are the eigenvalues of X'X and G 1is the ( p x p ) matrix of orthonormal

eigenvectors such that G'G =GG’ =] and X'X = GAG'.Thus we have
T (X' X)! =o?Tr(GATIG)

P
=UZZ/\,-_1 . (1.44)
1=1
And since
E[(b—B)(b— ) = E[b'b—2¥'+ B'A]
= E[b'b) - B'B (1.45)

—_ 0.2 XP:'\:'—I)

=1
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we also have that

P
Et] = g8+ o) A7 (1.46)
o

If we assume the disturbances are normaly distributed we also have [Seber 1977

p.16]
Var (b — ) (b~ B)] = 2¢* TH{X(X'X) 2 X")*

= 20’4T1'(X'X)—2 (1.47)

=204 ZP:A,-—z.

=1

Problem Of Ill-Conditioned Data.

In the sequel, we will consider the eigenvalues of X'X in the following order
Amaz =M 2 Ag 2+ 2/\p=/\min>0 .

Now if X'X , in the form of a correlation matrix, is the identity matrix, the
least squares estimator b is a good one in terms of MSE . This is the ideal
situation, where the columns of X are perfectly orthogonal, and from (1.46) we

have

E('b)=8'8+0"p (1.48)

However problems arise if the X'X matrix is "ill-conditioned”, where near
multicollinearities between the regressors in the X matrix will cause some of the
eigenvalues of A to be very close to zero and very small compared to the largest
eigenvalue. One measure of ill-conditioning is given by the condition number (4)
of the X'X matrix defined by

= Amaz (1.49)

'\min

11



The usual rule of thumb is that condition numbers less than one hundred correspond
to weak dependencies and numbers greater than nine hundred are associated with

moderate to strong dependencies [ Belsley, D.A., Kuh, E., Welsh, R.E. 1980, p. 104).

One consequence of this near-multicollinearity from (1.46), will be that the
expected squared distance from bto 8 will be very large, making the least squares
estimates too large in absolute value. Another consequence from (1.44), will be in-
flated variances of the estimates often accompanied by incorrect signs. To illustrate,

consider the two parameter case. The least squares normal equations are

X'Xo=X"Y (1.50)
= ) )= L
[7‘12 1 by ray )’ (1.51)
where
"N, - X)X =X
rig = — z'?'(\"_, - ‘Z( 2~ X2) T (1.52)
(Z;:](‘Xll = -\l) Z,=1(Xn2 —‘X2) )
Now
1 -1
(X'X)!'= ( o 12 ) (1.53)
1-7{s l"l"x:

Thus as X; and X, become more collinear |r;2 |— 1, and

1 + 1

Var(b;) = o? — 00, and MSE b = o?( )= oo, (1.54)

The least squares estimates are

Ty —T2yT12
by = [y =27

1-riz (1.55)
—T1yT12 + T2y
by = 5
1-r{,

12
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Thus the coefficients become very large in absolute value, may even change sign,

and have inflated variances as |rj2 | — 1.

In general for the p variate case, the diagonal elements of the (X'X)™!

matrix are the variance inflation factors (VIF') where

forj =1,...,p, (1.56)

VIF; = (X'X)j = 7= 7

where r? is the is the coefficient of multiple determination from regressing X; on

all other remaining regressor variables.

Proof: Let X; be the j-th column of X and X, bethe X matrix with the

j-th column omitted. Then from [Searle 1971 p.27] we have

oy [ XoXo XoX; ) A4 B]
X'X = (.\';.\'o X ] i (1.57)
A"+ A-IBIWB'A™! ~ATIBW
1y -1 _
(X'X) ' = ( _Wrpa- W (1.58)
where
W=(D-B'A"'B)!. (1.59)
Considering only W we have
W= (XX, - X;Xo(_\"’,k'o)‘].\':,.\’,)'1
= (X[ — X,(X, X)X, 14,)"
= (XU = X (X]X,) X - Xo( X0 Xo) T X1IX,) ™ (1.60)

= (1%, = Xo(X,X,) " X0X,1X; ~ Xo(XoXo) X0 X))

= ([X; - Xoi’]l[XJ - Xoi’])—l,

13




giving the SSE when X; is regressed on X, ,and b is the corresponding vector of
parameter estimates for this artificial regression. Assuming X has been centered

and scaled and using
1- R? = E?:l(zj — 5:)')2
T Liele, - 35)?
_ SSE;
~ SSTO;’

from analogy with Theorem 1.1 we have the desired result.

(1.61)

Here r? is the coefficient of multiple determination from regressing X; on

all other remaining regressor variables. Thus the higher the multiple correlation in
this artificial regression, the lower the precision in the estimate of the coefficient
bi . The general rule of thumb is that if any VIF exceeds five [Gunst, Mason, 1980
p-295], one should be concerned that the i-th regressor variable has a strong linear

association with the remaining regressor variables.

Thus the least squares estimator , when the X matrix has strong collinear-
ities, will give unstable parameter estimates. This is a serious problem when the
objective of the regression analysis is parameter estimation, model specification, or
prediction beyond the range of the data base [Gunst, Mason, 1980 p. 311]. In all
the above cases, the true theoretical model must be correctly specified and correct
parameter estimates are required. In these cases, the option to drop the variables

causing the collinearity is not available.

Ridge Regression.

To control the problem of inflated variances and unstable parameter estimates

14



associated with least squares estimates applied to ill-conditioned data, Hoerl and
Kennard (1970 a,b) suggested the ridge estimator, which is a biased estimator, given
by

blk) = (X'X + kI)V'X'Y, k>0. (1.62)

Their idea was to trade a small biasfor a large reduction in variance to get estimators
that would be more stable, have correct signs, and reduced variances in spite of ill-
conditioned data. The ridge estimator had the additional advantage that it could
portray the sensitivity of the estimates to the ill-conditioning of the data with the
ridge trace. The ridge traceis a plot of the ridge coefficients with respect toincreases
in the biasing parameter k . A typical ridge trace will show the least squares

estimates at k£ = 0, and for positive values of k around zero, the ridge coefficients
change rapidly, reflecting the coefficient instability due to multicollinearity. However
as k increases, variances reduce, and the coefficients become stable. Hoerl and
Kennard suggested selecting the ridge parameter k , corresponding to the point

where the coefficients begin to stabilize in the ridge trace.

Example Of Ordinary Ridge Regression.

As an example of Ridge regression applied to ill-conditioned data we use a
subset of data from Theil {1971) p.456. The raw data is given in following Table 1.

The least squares estima'es for the raw data are

Y; =124 - 017X, +112X;; R%*=.976 (1.63)

15




TABLE 1: Raw Data.
Index  Aggregate  Aggregate Income Aggregate Income Year

Consumption From Profits From Wages
i Yi ‘Yll Xi2
1 41.9 12.4 28.2 1921
2 45.0 16.9 32.2 1922
3 59.2 18.4 37.0 1922
4 50.6 19.4 37.0 1923
5 52.6 20.1 38.6 1924
6 55.1 19.6 40.7 1925
7 56.2 19.8 41.5 1926
8 57.3 21.1 42.9 1927
9 57.8 21.7 45.3 1928
Means 51.74 18.82 38.15
Standard 5.59 2.79 5.35
Deviations

These estimates are unacceptable as they imply the bankruptcy of the wage earner.

In particular, if income (b)) decreases by one dollar, consumption increases by 17

cents. Also, when wage income increases by one dollar, consumption increases by

1.12 dollars.

TABLE 2: Standardized data.
i Xa X
-0.62 -0.82 -0.66
-043 -0.24 -0.39
-0.16 -0.05 -0.08
-0.07 -0.07 -0.08
-0.05 0.16 -0.03
0.21 0.09 0.17
028 0.12 0.22
035 0.29 0.31
0.38 0.37 0.47

The standardized least squares beta coefficients are given as

Y; = —0.09X;; +1.07X;2 R?=.976 (1.64)

16




with
ri2= 094
SSE= 0.024
SSR= 0.976
Al = 1.94
A= 0.06
¢ = 34.11
VIF, = 9.03
VIF, = 9.03

TABLE 3: Ridge coefficients.
kb b, SSE

.00 -09 1.07 .024
.01 -00 098 .025
.05 017 0.78 .036
.08 0.23 0.71 .042
.12 028 0.65 .049
.20 032 0.57 .060
.56 0.33 045 .099
.70 032 041 .127
1.0 029 036 .171

Although the condition nuinber ¢ = 34.11 does not indicate any strong depen-
dencies in the X'X matrix, we have from r;; = .94 a high correlation between

Xi and X; making our VIF’s exceed the recommended guidelines.

The biasing parameter k = 0.08 was chosen from table 3 corresponding to the
point where the coefficients begin to stabilize without severely increasing the sum

of squared error SSE. The standardized ridge regression estimates are yiven as
Y; =.23X; +.71X;;  R*=.958 (1.65)

and using the identities (1.38) and (1.39), we have the ridge estimatesat k=

.08 , for the raw data as

17




Y, = 1485+ 46X;; +.74X;; (1.66)

These estimates are now acceptable since for an increase in income, consump-
tion increases by .46 cents, and for an increase in wages by one dollar, consumption

increases by .74 cents.

Justification Of Ridge Regression.

The main theoretical justification for ridge regression is the Hoerl and Kennard

(1970a) Existence Theorem which states that there exists a k > 0 such that
MSE b(k) < MSE b. (1.67)

In general, the main objective in ridge regression is to obtain point est:iuates of
parameters that have a smaller mean square error than the least square estimates,
have reduced variances, and have correct signs and magnitudes. A constrained
least squares interpretation of the ridge estimator was given by Hoerl and Kennard
(1970a). That is, b(k) minimizes the residual sum of squares subject to a constraint
on the length of the estimated coefficient vector. A Baysian interpretation of ridge

regression was given by Lindley and Smith (1972). If

(Y | B) ~ N(XB,0%I) and B~ N(0,031), (1.68)

then b(k) is the bayes estimator where k = 0%/0% .

These interpretations however do not explicitly define an appropriate k value

to use in a specific application. The acceptable range of k values, where the ridge

18




estimator dominates the least square estimator in mean square error depends on
the unknowns B and o2 . The Bayes interpretation of ridge regression yields a
k value that is the ratio of two unknown variances. The constained leas! r.quares
approach does not define a specific k¥ value in practice, since an explicit constraint
on the length of the coefficient vector is unknown in most applications. As a re-
sult, several algorithms have been proposed, using the data to select the biasing
parameter k . Since the improvement of (k) over b is dependent on unknown
parameters, Monte Carlo experiments are conducted to compare the ridge and least
square coefficients in terms of mean square error. Many independent simulations
have compared least squares and ridge type esiimators. In particular Hoerl, Kenna-d
and Baldwin (1975), Dempster,Schatzoff, and Wermuth (1977), Lawless and Wang
(1976),Gibbons (1981) and Gunst and Mason (1978) concluded that ridge type es-
timators are superior to least squares in the face of ill-conditioned data. However,
there is wide spread disagreement about the optimum ridge estimator. The diffi-
culty here is that no one rule is superior under all conditions and the scope of the
results is limited to the experimental designs and parameter values considered in
the simulation. In spite of these difficulties, ridge regression has become a popular
technique for problems where the data is ill-conditioned and accurate parameter
estimates are required. In particular, some recent applications of ridge regression
have been in criminology (Liu and Bee 1984), economics (Gapinski 1984), mor-
tality estimates (Lawrence, Marsh 1984 ,, .obust regression (Askin, Montgomery
1080), subset selection techniques (Hoerl,Schunemeyer, Hoerl 1986), and principle

component regression ( Baye, Parker 1984).
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Chapter 2

ORDINARY RIDGE ESTIMATOR

Ordinary ridge regression, as introduced by Hoerl and Kennard (1970 a),
amounts to adding a biasing constant & (0 < k < 00) to the diagonal of the
X'X matrix before inverting it for least squares estimation. The ordinary ridge
estimator is simple and designed to handle the problem of near multicollinearity
between the regressors in the X matrix. The ordinary ridge estimator, denoted

by b(k) , is defined by the following equation
(k) = (X'X + k)™ XY, (2.1)

for k> 0 and has the following properties.

1) b(k) i3 a linear transform of the ordin least squares estimator b =
ary

(X'X)'X'Y where b(0) = b and limgoo b(k)= 0.

2) b(k) isa biased estimator depending on the unknown parameter vector f.

Explicitly, the bias of b(k) is given as
BIAS b(k) = [Eb(k) — f] = —k(X'X + kI)~' 8. (2.2)

3) The mean squared error of b(k) a measure of how close b(k) is to the true

parameter vector B, denoted by MSE b(k) is given by
! 2 . Ai k2 3 af
—] - I’.‘ - = : : . .
MSE (k) = E(b(k)-p)(b(¥)-B) = ;———(A‘_ Tt ,Zl:—_(»\.- i 29
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The first term is the sum of the variances of b(k) and is a monotonically
decreasing function of k . The second term is the total squared bias of b(k)

and is a monotonically increasing function of & .
4) MSE 50) =MSE b, and limg—.o, MSE (k) = '8 .
5) There exists a k >0 such that MSE b(k) < MSE b.

6) For k> 0,b(k)'b(k) < b'b making the squared length of b(k) less than b for

k>0.

7) The sum of the squared residuals, given by
B(k) = (Y = XB())'(Y — Xb(k)) (2.4)

1s an increasing function of F .

8) b(k) minimizes the sum of squared residuals on the sphere centered at the

origin whose squared radius is b(k)'b(%) .
Proofs:

Property 1:
b(k) = (X'X +kI)7'X'Y

=(X'X+ X' X(X' X)) X'Y

=(X'X + k7' X'Xb (2.5)
= (X'X)"MX'X + kD)™ 'b

= (I +kX'X)" 1) 1b.
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Thus

5(0) = (I +0I)~'b = b. (2.6)

To evaluate limg_.o, b(k) , we use the following identity
T+(X' X)) ' =T-KX'X + kD)7, (2.7)

which can be verified by premultiplying both sides by (I + k(X'X)~!). Thus,
b(k) = (I + k(X'X)"1)"1b
=[I-kX'X + kD' (2.8)
=b—(k7IX'X + 1),
and taking the limit we have
kli{lgo b(k) = kli{xgo[b -k X'X + 1)1
=b-(0X'X + 1) (2.9)
= 0.

Hence, the ordinary ridge estimator b{k) shrinks the least squares estimator b to

the null vector as k£ — co.

Property 2:
BIAS b(k) = E(b(k)) - B
=E(I+ kX' X)) b~ p
=E(I-KX'X 4+ kI)6— 8
(2.10)
=([ - KX'X +kI)")E®b) -8
=(I-kX'X+kI))B-8
= -KX'X + kI)™'p.
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Property 3:

MSE b(k) = E[(b(k) — B)'(b(k) — B)]

= E[(b(k) ~ E(b(k)) + E(b(k)) - B)'(b(k) — E(b(k)) + E(5(k)) - B)]

= E[ (b(k) — E(b(k)) )'(b(k) — E(b(k)) )]
+ (E(b(k)) - B (E(b(k)) - B),

where the cross product term is zero since

E(b(k) - E(b(k)) ) = 0.

Now the first term is the total variance of b(k) where
[6(k) — E(b(K))] = (I + k(X' X)) = (I + k(X' X)) 7B
=+ kX'X)™) (b= 5)
=+ KX'X)") (X' X)IX'Y - B)
=T+ HX'X)) (X' X)X (XB +e) — B)
= (I+ X' X)) B+ (X'X)7 X'e - B)
=T+ k(X'X)™) X' X) ' X'e
=(X'X(I+KX'X)") ' X'e
= (X'X + k)" X'e.
So for the first term we have
E[(b(k) — E(b(K)) )'(b(k) — E(b(k)) )]
=E('X(X'X + kI)™N(X'X + kI)71X"e),

(2.11)

(2.12)

(2.13)

(2.14)

the expected value of a quadratic form in e. Using Theorem A3 from Appendix A
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we have

EEe'X(X'X + k)" (X'X + k1)1 X'e)

= To(X(X'X + kI)"H(X'X + kI)"' X' Var(e))
=¢? Tr[(X'X + k)Y X'X + k)71 X' X]
2 . 1 , (2.15)
=0 Tr[G(A + kI)"'G'G(A + kI)~'G'GAG']

=02 Tr[(A + kD) V(A + kI)7A]

2 - Ai

="
Here G is the orthionormal matrix of eigenvectors which diagonalizes X'X , such
that G'G=1 and GAG' = X'X where A =diag(A1,)z,...,A,) is the diagonal
matrix of eigenvalues of X'X. For the squared bias term, letting a = G'8, we

have

(E(b(k)) — B)'(E(b(K)) - B)
=(=k(X'X + kD)718)(-KX'X + kI)716)
=k2B'"(X'X + kD)"N(X'X + k)18
=k*B'G(A+ kI)7!G'G(A+ kI)IG'B (2.16)
=k%a'(A + k1) 2«
P 2
=k? ; (—/\—%-)3
Thus combining our variance wnd bias terms we have

MSE b(k) = E(b(k) - B)'(b(k) - B)

Ld A P a? (2.17)
.2 ? 2 i
= ;;(f\ﬁk)z * .-E._-:l(/\i+k)"

Considering the total variance term we have

]
A
2 § __.'____ > 0. 2.18
Y i=1 (Ai + £)%’ fork 2 (218)
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Since A; > 0 for all i, each element (A; + k) is positive and there are no
singularities in the sum, and for k =0 we have 023 %_, A7, Thus the first term
is continuous. Considering

d 02 Z?:l Ai

4
\;
2 i
7% O+ k) = -20 ‘él m <0 (2.19)

we conclude that the total variance is monotone decreasing.

Now the squared bias term
Ry i (2.20)

is also a sum of rational functions, none of which having any singularity points, and

at k =0 the squared bias is zero. Hence the second term is also continuous. For

k >0 we have
P 2 P 2
RS % 5% (2.21)
; (Ai + k)2 ;(-‘)—;+1)2

making each term monotonically increasing. Thus the squared bias, being a sum of

monotonically increasing functions, is monotonically increasing.

Property 4:
MSE b(k) = o2 5~ N py o
(k) =o ;m+ ;m (2.22)
At k=0 we have
P
MSE 5(0) = 0 > A;! = MSE (b). (2.23)

=1
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Now as k — oo we have

A P a?
2 3
hm MSE b(k) = lxm o Z()\ gy +kli‘n;°§.(._+_l);
P
=0+ Z a?
, = (2.24)

=da
=d'GG'a
= f'p.

Property 5: Considering the MSE b(k) = MSE b, at k=0, and for & > 0,
the two terms in MSE b(k) are continuous decreasing and increasing functions
respectively. Consequently, if we can show that their always exists a k > 0 such
that the dikMSE b(k) < 0 then the theorem is proved. We require a k > 0 such

that

d Ai (ka —a?)

Now if (ka? —0%) <0 forall i then k< g—; for all . choosing

o o o
0<k< <= < (2.26)
(Vlznax a? o"rznin
we have a positive k < 3—%’:— such that
MSE {(k) < MSE b. (2.27)
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Property 6: For k > 0 we have

b(k)'b(k) = b'(I + k(X' X)) T+ k(X'X)" )b
=G+ kAD)'G'GI + kA™Y)IG'D

=a[(A + kDATH(A + KDATY)
22
(z\ + k)z

(2.28)

=a'a=bGG'b=10b.

Property 7:

¢(k) = (Y — Xb(k))'(Y — Xb(k))
= (Y — Xb+Xb— Xb(k))'(Y — Xb+ Xb— Xb(k))
= (Y - XbY(Y = Xb) + 2(Y — Xb)' X (b— b(k)) + (b — b(k))' X' X (b — b(k))
= (Y - Xb)(Y - Xb)+2Y'(I - X(X'X) X"\ X (b - b(k))
+ (b — b(k))' X' X (b~ b(k))
= (Y - Xb)'(Y — Xb) + 2Y"(X = X)(b—b(k)) + (b - b(k))' X' X (b ~ b(k))
= (Y = Xb)'(Y — Xb) + (b — b(k))' X' X(b - b(k))
= (o) + KV (X' X + kDT X'X(X'X + kI)7'b
= $(o) + k2V'G(A + kI)"'G'GAG'G(A + kI)'G'b

= ¢(o) + k? ’(A + k1)

a? )
= do + K Z(A Ti7

(2.29)
where the second term is a monotonically increasing function of & .
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Property 8: Let B be any estimator of 8. We minimize
F=(Y -XB)(Y - XB), subject to B'B = R?.
As a Lagrangian problem this is to
Minimize F = (Y - XB)(Y — XB) + k(B'B ~ R?)

where k is the multiplier, giving

oF
o = 2 V'Y —2B'X'Y + BX'XB + kB'B - kR?)

=-2X"Y +2\'XB +2kB=0

when
(X'X +i)B=X'Y
with solution
B =bk)=(X'X +EDIX'Y.

Since
OF
0B?

=2(X'X + L) ispd. for k>0

we have the minimum at

b(k)=(X'X + kD)X'Y.

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

Property & is the Existence Theorem and uses the MSE criterion. In general,

given two competing estimators of a parameter vector w say W;,W, , if the

MSE 1V, < MSE W,

(2.37)

then W) is the preferred estimator. A stronger criterion is based on the matrix

mean squared error, denote by MTx\ISE , which is defined as

MTxMSE b = E(b — 8)(b - B8)'
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Say by and b, are two competing estimators of the parameter vector 3 .
If

MTxMSE b; — MTxMSE b, =II a p.d. matrix, (2.39)

then b, is the preferred estimator. Letting Tr denote the trace operator, we
note that Tr(MTxMSE b,) = MSE b, . Using the stronger criterion of MTxMSE,

Theobald(1974) gave the following theorem

MTXMSE b — MTxMSE b(k) = I a p.d. matrix (2.40)
if
o<kl (2.41)
<KSKS = .
- B

Proof: Consider
WMSE (b) — WMSE (b(k))
= E(b- )W (b~ 8) — E(b(k) - B)YW(b(k) — B)

= Tr[E(b - B) W (b - B8) — E(b(k) — B) W(b(k) — B)]

(2.42)
= TeWI[E(b - B)(b - B)' — E(b(k) — B)(b(k) — B)']
= TrW[MTxMSE (b) — MTxMSE (b(k))]
= TrWII,
where by Theorem A2 in Appendix A,
TtWA > 6 for ap.s.d. matrix Wif A is a p.s.d. matrix. (2.43)

Using
MTxMSE (b(k)) = E[(b(k) — B)(b(k) ~ B)], (2.44)
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we have

MTxMSE = E[(b(k) — E(b(k)) )(b(k) — E(B(k)) )]
+ (E(b(k)) — BYE(b(k)) — B)'
=} (X' X + k)X X(X'X +kI)™!

+ X' X + kDT8R (X' X + kD)7,

and
MTxMSE (b) = e?(X'X)™?,

giving
IT = MTxMSE (%) — MTxMSE (4(k))

=} (X'X) - [0 X'X + kD) X' X(X'X + kD)7
+ (X' X + kD)7 38(X'X + kI)™]

=(X'X + kD) oX(X'X + k(X' X) ™ (X'X + kI)
— X' X - BRI X' X + kI)!

=(X'X +kD)QUX'X + kI)7?,
where

Q= [03(X'X + kI)X'X) " NX'X + kI) ~ > X'X — k240,

Expanding the first termin @ we have
A X'X + DX X)) N X'X + kI)
=o?(I+ X' X)) X'X + kI)

=0} (X'X +2kI + *(X' X))

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

Now since (X'X +kI)™! is positive definite, an equivalent condition for II to be

positive definite is that @ be positive definite, where @ can now be written as

Q =*X'X + o%2kI + o2k X'X)"! = X' X — K288’
k
= [k X'X)™ + o*2k(I ~ 5= BB ],

30

(2.50)




and since 0%k?(X'X)~! is positive definite a sufficient condition is that
ko, .
I — —f(4" ap.s.d. matrix (2.51)
202
Using Theorem A1l from Appendix A, this is equivalent to

k< (2.52)

Theobald’s result, for B'8 = 3_7_, o2,,, is 2 times shorter than the Hoerl
and Kennard acceptable k < ;&’i—; . This discrepancy is removed if we consider that
the MTxMSE criterion is stronger than the MSE criterion. Further, the MTxMSE
criterion is more general since it is also equivalent to the weighted mean square

error criterion, denoted by WMSE , wlere
WMSE b = E(b - 8)'TV (b - B), for W a p.s.d. matrix (2.53)

This equivalence is stated explicitly in the following theorem given by Theobald

(1974),

Equivalence Theorem. Let two estimators b; and b; be given. The

following two statements are then equivalent:
MTxMSE b, — MTxMSE b; = A a p.s.d. matrix (2.54)

WMSE b; — WMSE b; > 0, for W a p.s.d. matrix (2.55)

The condition that 0 < £ < %;— is sufficient for superiority of b(k) but

not necessary. In practice, this condition may be too conservative. Swindel and
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Chapman (1973) gave the following sufficient and necessary condition for the supe-
riority of the ordinary ridge estimator b(k) over least squares using the MTxMSE

criterion.

Theorem 2.1:

MTxMSE b — MTxMSE b(k) = A a p.d. matrix , (2.56)
iff
O<k< 2 (2.57)
| min(0,€) |’ ’

where £ denotes the minimum eigenvalue of
rl yry—1 lBﬂ'
(X'x)!' - o (2.58)

Considering that the minimum eigenvalue of (X'X)~! is given by A7' and the

single non-zero eigenvalue of B’ is given by f'B , we have
E= AT - — (2.59)

The ratio %'f- is the signal to noise ratio (SNR). Thus if the SNR is sufficiently
small to make £ positive, any k in the interval (0,+00) will make b(k) superior
to b under the MTxMSE criterion. Conversely, if the SNR is sufficiently large
to make £ negative, then a small biasing parameter k (0 < k < T%T) will be

appropriate to make the ridge estimates b(k) superiorto b.




Chapter 3

OPERATIONAL ORDINARY RIDGE ESTIMATORS

Up to this point we have not considered how the biasing parameter k¢ should
be selected. Much of the controversy surrounding ridge regression revolves around
this question. Part of the problem stems from the fact that the acceptable intervals
for k, depend on unknown parameter values. We define an acceptable interval for k
to be the interval where (%) dominates b under the MSE or MTxMSE criterion.
Many researchers believe that it males intuitive sense to use the least squares
estimates of 02 and B to estimate the maximum acceptable k. However, this
introduces the problem that if stochastic values are used to estimate k, the MSE or
MTxMSE gains ,which assume a fixed &, are no longer guaranteed. In particular,
any ridge estimator which depends on the random vector Y , will be a function
of the sample data and thus be stochastic. It will not have the same properties as
a ridge estimator based on fixed & . Nevertheless, many independent simulations
have demonstrated the overall good performance of many different stochastic ridge
estimators under the MSE criterion. With these criticisms in mind, we will review
various proposals for selecting the biasing parameter k for use in the ordinary

ridge estimator b(k) .

The Ridge Trace.

Introduced by Hoerl and Kennard (1970b), the ridge trace is one of the simplest

and most widely used methods to select the k parameter for ordinary ridge re-
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gression. The ridge trace is a two dimensional plot of the ridge coefficient estimates
b(k); on the vertical axis with k on the horizontal axis. One curve or trace is
made for each coefficient. The plot may include the residual sum of squares ¢(k)

for corresponding k values. Hoerl and Kennard suggested the following procedure
to select k from the ridge trace. Choose the smallest & where the coefficient
magnitudes have reached their correct signs, are collectively stable, and the ¢(k)

has not increased significantly. Brown and Beattie (1975,p.27) give the folluwing
guideline to use the ridge trace. Select k where the last ridge coefncient attains
its maxin.»m value after having obtained its correct sign. Here correct sign will be
the sign at k = 0.9 or the largest appropriate k for the problem in question.
One of the criticisms of the ridge trace method is chat k is selected from a vi-
sual inspection of the random beta cocfficients, makiag k stochastic(Coniffe, Stone,
1973). Another problem is that the ridge trace will have a stability region even for
perfectly orthogonal data. Finally, there is no guarantee that the & value selected
will be in the acceptable interval. In answer to the first two of the above mentioned
criticisms Vinod(1976a) suggested a m scale trace to be used in conjunction with

an index of stability of relative magnitudes (ISRM).

The M Scale Trace and ISRM

Vinod (1976a) suggested a rescaling of the horizontal axis to overcome the
problem of stability in the ridge trace even for perfectly orthogonal data, where
X'X = I. The m scale trace is identical to the ridge trace except that the
horizontal k axis is compressed to the interval [0,p] where p is the number of
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coefficients to be estimatea. The rescaled horizontal axis is now the m axis, where

=p Z =p- Z 6i (38.1)

i=1
where §; = UT%FT , is called the i-th shrinkage factor.

For the case where the X'X matrix is perfectly orthogonal we have X'X =TI
and A; =1, fori =1,...,p. In this situation, there is no need for ridge regression
as the least squares estimates b will be stable, have correct signs, and the problem
of inflated variances will not exist. Howecver, the ridge trace will be unreliable as it

will still have a region of stability. To see this consider

A
W\ 1 oy H ] /i
b(k) = GAG'b = Gdiag (/\i " k) G'b (3.2)
taking the derivative with respect to k we have
db(k ) ( Ai )
——= = —Gdiag G'b
dk ) (i +k)? (3.3)
= —;;Var(b(k))
and in the orthogonal case we have
db(k) 1
—Jr Cdldg <(1 k)z) G'b
1
———GIG'b 3.4
T+ k)2 (3.4)
b
(1 +4)?

making the absolute value in the change of b(k) a decreasing function of k. On

the other haad, the m scale trace does not have this property since

dm d L 2 ¥
dk " dk (” ) 26‘) =L it (3.5)
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and considering that

db(k) _ db(k) dk _ i}
am = dk am = 0o Vax(b(k)) (Z oy +L)2) l (36)

when Aj=1,¢=1,...,p wehave

db(k)  -b (1+k? b
dm ~ d+k?2 p  p (37)

showing that the rate of change of b(k) is not a function of m . Thus in the case
of orthogonal data the m scale trace will have p straight lines converging to 0
at m = p . Each line or trace will have intercept at the least squares estimates

b(0); = b; , and siope —b;p~!

. In the usual case of ill-conditioned data, the m

scale trace will show rapidly changing ridge coefficients around m = 0 . However
as m increases the lines will straighten out. The stable region of the m scale
trace begins at the point when all the coefficients begin to imitate the straight
line behavior of the perfectly orthogonal case. Thus we could select the smallest
m or k at the point where the coefficients become straight lines ccnverging to
zero. In practice we would calculate the p shrinkage factors §; for a range
of k values and thus calculate m . Hoerl and Kennard recommended that the
ridge trace be truncated at k = 1. In the case of severly ill-conditioned data any
activity outside this range could be missed. The finite range of the m scale
trace would not have this problem. Another advantage is that it could be used to
trace the generalized ridge estimates once a rule is given to determine the different
k; . Finally the m scale, where m stands for multicollinearity aliowance, has the
following interpretation. Suppose the eigenvalues of a two parameter model were

A1 = 10,; = .001 . Geometrically the data could be viewed as a very flat ellipse

with most of the spread in the major axis and the least part in the minor axis.
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From the relative smallness in A, we could view the data as being roughly one-
dimensional, allowing for the loss of m =1 dimensions due to reulticollinearity.
Thus the multicollinearity allowance m gives the rank deficiency in the X'X
matrix.

Vinod’s (1976a) index of stability of relative magnitudes (ISRM), is a non-
stochastic measure of stability from which k& or m can be selected without
the use of any plot. Essentially it quantifies the concept of relative stability of
coefficients. The index is non-stochastic as it depends only on the eigenvalues of the

X'X matrix. The ISRM is derived by considering the sum of squared differences

between
- —bVar(b(k
=5 ana ZYRIOR) o SR (3.8)
023 dm

for the orthogonal and non-orthogonal cases respectively.

We define
P . P s
3 = G2 = . .
L Lo 9

The sum of squared differences is given as

(<) _ by’ (vt )

023 4 0‘23 P
' (Var(b(k)) I\' (Var(b(k)) I
=b Day-vee —_— L))
023 4 023 p
=} (Gdiag(av\'-l)G' N GGI)' (Gdlag(&/\rl)G' _ pelel )
3 > = -
=G (M _ {)' (diag(a,-A,.") en (3.10)
g p 3 ?
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as a simplification we cancel a?p~? giving

2
2 -
ISRM = Z( ’;2/\_1-1). (3.11)

t-l 3

In practice one cvaluates ISRM for a range of k values and selects k at the
first local minimum or at a prespecified reduction, say 50% of the ISRM at k=0.
Vinod recommends this selection rule to keep the bias small since ISRM's global
minimum will emphasize stability without regard to bias. Winston and Churchill
(1978) conducted a simulation and found that the ISRM gave k values which
tended to be too large. Vinod (1979) rejected their results because of a deficiency
in their simulation. Thus the mn scale trace us.d in conjunction with the ISRM
will overcome the problems of stochastic & and unreiiable stable region of the ridge

trace.

The Hoerl-Kennard-Baldwin Estimator.
Hoerl, Kennard , and Baldwin (1975) suggested the following mechanical rule

to determine the biasing parameter £ given by

S
kunp = ——ﬁ—gg (3.12)
i=1"14

where

2= (¥ = Xb)(Y = Xb") /v (3.13)

is the usual least squares estimate of 02, b are the least squares beta estimates,
and v =n-—p for the no intercept model or v = n—-p—1 otherwise . Many

independent simulations have shown the overall good performance of this estimator.
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Considering the first order condition for a minimum of the i —th component of

the MSE b;(k) we have

d d [ )io?+ k*a?
b0 = 3 ()
(3.14)
_ 2Mi(—0r+ kal) 0
- (Ai + k)3 -
at
2
o
k= a—?- (3.15)

Consider p different biasing parameters, each given by equation (3.15) . Now the

harmonic mean of these p optimal &; will give

b= =
i=1 %
p

o?

Pl oF
2
_po (3.16)
(a0}
_ _pdo?
T o'G'Ga

po?

BB

Using the ordinary least squares estimates s?, b for 0%, B respectively we have

2
L
kukp = %,-b- (3.17)

In a later paper, Hoerl and Kennard (1976) suggested an iterative version of

their biasing parameter since b'b tends to overestimate A'B. Specifically they
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suggested the following sequence of estimates of 8 and k.

oo B3
K= b'b
Mo P8

b'(k0)b(k°)
o P

B E)B(T)

(3.18)

kl p32

= b (k- )b(kt-1)"
For the above sequence of estimates Hoerl and Kennard recommended the following

stopping rule.

kit — p

If — <207!3, where T = Tr(X'X)~!/p (3.19)

then the iteration should stop at b(47) .

They cite simulation studies where this termination rule performed well. An-
other stoppir:g rule used by Gibbons (1981) is to apply a 10~* convergence criterion
to the successive k values and default to least squares if convergence is not ob-
tained by 30 iterations. We notc that the unstandardized ridge coefficients b;(k)
can always be derived from the standardized ridge coefficients , here denoted by

bi(k) using the following identities

bi(k) = b—'(:,)i, fori =1,2,...,p, (3.20)
and
bo(k) =7 — by (k)71 — bo(k)T2 ~ - - - = by(k)Zp, (3.21)
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where
2 _ o (i — %)
S? = ,§=1: T (3.22)

and z; denotes the j —th column of the unstandardized X matrix.

The Lawless and Wang Estimator.
Lawless and Wang (1976), using a Bayesian approach, suggested the following

mechanical rule to select the biasing parameter k .

ps?

D 3.23
?:l ’\iatz' ( )

krw =

where a = G'b are the standardized uncorrelated least squares estimates of a =

G'B ,and s? is the least squares estimate of o? .

The McDonald-Galarneau Estimator.
McDonald and Galarneau(1975) considered the expected squared length of the

least squares estimates b to derive their estimator. Since
E'b) =8'8+ o*Tr(X'X)™? (3.24)

they considered the following unbiased estimate of the squared length of the un-
known coefficient vector §'8, given as
P
Q=bb-s2) N (3.25)
=1
Taking expectations of both sides we see that

p
E(Q)=fB8+c'To(X'X) —=a?) N'1=p48 (3.26)

i=1
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Their idea is toselect k at such a value that b'(k)b(k) = Q. To use their estimator,

we evaluate
| '(k)b(k) - Q | (3.27)

for a range of k values and select k corresponding to the minimum absolute

difference. In the case that b'b — 52 5°F_. AT! < 0, select k =0.

i=1"%

The SRIDG Estimator.
Dempster, Schatzoff, and Wermuth (1977) considered the MSE (k) to derive

their estimator SRIDG. Considering that the MSE b(k) is minimized when

d (ka}-a?) _
< MSE b(k Z il (3.28)

they suggested evaluating

I.a (k) -3 )

for a range of k values and selecting that value of & associated with the observed

minimum.

The RIDGM Estimator.
Dempster, Schatzoff, and Wermuth (1977) taking a Bayesian approach, sug-
gested another mechanical rule to select the biasing parameter. For this estimator,

we select k so that

a 2
__.__‘__.___ =Dp, where 0 = —. (3.30)
;'Z 2 + 82’\1' l) B k




The Lindley and Smith Estimator .
Taking a Bayesian approach, Lindley and Smith (1972) suggest the following

procedure to estimate k = Z . Suppose § ~ N(0,03I) , and ¢ and o} are

o
I
independent each having an inverse chi-squared distribution; that is, vn/o? ~ x?
and vgng/aj ~ x35. From the mode of the posterior distribution , the following

equations are used to select & .

brs = (X'X +(s*/s3)I)7' XY,

2=+ (Y ~ Xbrs) (Y — Xbrs))/(n+v +2), (3.31)

sf, = (vgng + V sbrs)/(p + vg + 2).
An initial estimate of bpg is b. From this estimate, we find s? and s%. The
proceedure is repeated until convergence is obtained. Gibbons (1981) uses a 10~*
convergence criterion for k = s?/ sf,, which defaults to least squares if convergenceis
not obtained. If the estimates are not sensitive to small positive values of v and ng
they can both be set to zero in which case bys is similar to b(k)yxp iterated

estimator.

The above rules and their properties have been studied primarily though the
use of Monte Carlo experiments. Other independent simulations by Miller and
Tracy (1984), Gibbons(1981), Winston and Churchill(1978), and McDonald and
Galarneau (1975) have been conducted and have shown the overall superior perfor-
mance of various estimators. The problem with such comparisons across simulations
is that no one rule can be shown superior to least squares under all conditions. Fur-
thermore, any results from a particular simulation holds only for that experimental

design and the parameter values considered.
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Chapter 4

DOMINANCE FOR STOCHASTIC k

The MSE or MTxMSE conditions for the dominance of the ordinary ridge
estimator over the least squares estimator considered so far all imply a fixed k .
However most of the operational ridge estimators use the stochastic estimators
band s2. We will consider here two such estimators and give conditions for there

dominance over least squares.

Consider the following operational ridge estimators. The Hoerl,Kennard, and
Baldwin (1975) estimator, where the biasing parameter k is given by

ps? 2

kg =t = 2

a'a’

(4.1)

and the Lawless and Wang (1976) estimator, where k is given by

ps ps?

» P Y] ‘
I Aiad a'Aa

kow = (4.2)

Both these choises for k are stochastic as they depend on the random least squares
estimates s and a . However, we can also consider them to be members of the

double h class family of k£ given by

hiee
a'Wa+ haele

k=k W, hy, hy = (43)

where Y -Xb=e, W = diag(w,;, w,,...,w,) isa given diagonal matrix, h;, hy

are arbitrary scalars, and s? =e'e/ v where

L - { n-p, for no intercept model; (4.4)

n-p—1, otherwise.
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Now for W =1, hy =p/v, hy =0 we have
Ee'e  ps?
_ v Yl
kCnppw 0= o = =

giving the Hoerl Kennard and Baldwin estimator.

For W=A, h,=p/v, hy =0 we have

Eele ps?

k(A oy 0 = G= = SF St
1= 1

the Lawless and Wang estimator.

In terms of shrinkage factors 8,/()\; + k) , we have

Ay
- hie'e
’\' + a'Wathge'e

a'Wa+ hye'e + %'\-._Le'e - %e'c
a'WWa+ haele + -}‘,Le'e
-’,'(',Le’e
a'Wa+ (-ie- + hz)e'e]
[ _ hy.e'e
a'Wa+ hyele’’

where hy; = h,z\,-_l, hy; = hlf\;l + Ny .

Considering our ridge estimators, we have

b(k) = (X'X + k)1 X'Y

= (X'X + kD)7 X'X(X' X)) X'Y

= G(A+ kI)"'AG'b
= GAG'b
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and since G'b(k) = a(k) = AG'b = Aa, we may write our operational ridge

estimators as members of the double h class family of estimators denoted by

apuc = a(W,hy,hg) = Aa (4.9)
where
A= diag(S,,Sg, s ,3,,) (4.10)
and
o
§i={1- hiic’e ]. (4.11)

a'Wa+ hojele

Hence the i—th element of the a(DHC) estimator is given by

hiie'e ] _

a(DHC), = ba; = [1 - dWa+t hpiele

(4.12)

Vinod and ('.lah (1981) give the following theorems for the BIAS , and MSE of the
double h class estimators. Their derivation, based on IKadane’s (1971) small sigma

expansion, is given in Appendix B.

Theorem 4.1: The asymptotic expansion of the bias of the double h class

ridge estimator, up to order o2 ,is given by
E ' — hl -1
(a(DHC) — a), = —‘—ﬁw\, a; (4.13)

when h; >0 and 8= %‘-2—‘-"- is a weighted non-centrality parameter.

Theorem 4.2: The asymptotic expansion of the MSE of the double h class

ridge estimator, up to order o* is given by
2 h . ; "W
E(a(DHC) - a)? = ‘,’\— + %—0-‘,— [a? (41:—_ + (v +2) - 25‘7-‘5], (4.14)
) ] 1
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where hy; = hlz\,-_l, and w; is the i-th diagonel element of W .,

Using theorem 2 we can write the MSE of the DHC estimators as

Vhl

462
— 20'Wa'TrA™?

MSE (a(DHC)) = o*TrA™ + — [4a' WA 2a + hy(v + 2)a'A 2 a

(4.15)
=o?TrA™! + -Z—g%-a’/\_za
[h (v +2) oa’A"2Wa a'Wa
1 L) — &L

-2 _
aA? (a'A‘2 WaTtA 2)] :

Considering the MSE criterion for dominance over least esquares, we have

MSE (a) — MSE (a(DHC)) > 0 (4.16)

vh, -
when '—20'/\ 201

40
[Ra(v+2) —2

A 2 Wa, a'Wa (4.17)

aA—2n (a’A‘7Wa

Using the relation min i:g: is the minimum value of ) in det(A — AB) Rao p.

TrA~? - 2)] <.

74, this is equivalent to
0< by < -glu'—ml[min(/\?)Tr(A"z) -2}, (4.18)
(v +2) '

for min(AH)TrA~2> 2. (4.19)

Thus we have the following acceptable range for the kygxp estimator

o P
- 2 -2y _
0< h< v +2)[,\1‘, g('\‘ ) -2, (4.20)
and for kiw wehave
0</ 2% _(z2 ; ATy -2
<< (u+2)[ Y B (4.21)

=1
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Tb~ condition

for min(A$)TrA=2 > 2, (4.22)

implies p > 2. S'uce h, is not included in condition (4.18), the results hold for
any hy > 0. That hy > 0 will ensure that the moments of the i-th component of

apHc exist, since the denominator a'Wa + hy;e’e will always be defined.
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Chapter &

RECENT DEVELOPMENTS IN SELECTING %

In this section we will review some new proposals to select k. In particular we
will consider a bootstrap method to select %k, some non-stochastic or deterministic

biasing parameters , and an algorithin to select the optimal biasing parameter.

A Bootstrap Method to Select #&.

Delaney and Chatterjee (1936) proposed a new ridge estimator where the bias-
ing parameter k is selected using a combination of cross-validation and bootstrap
replications. The procedure is computationally intensive and implemented as fol-
lows. Assume a population of n obscrvations on p regressors and one predictor
variable. A sample of n observations with replacem..t is taken giving a single
bootstrap sample. Using this smuple. the ridge regression estimates are computed
for a selected range of * values, say &k from 0 to 0.1 in steps of 0.002.
The observations which were exclided from this sample are then predicted from
the estimates obtained. The procecure is then repeated for a large number I of

bootstrap samples. Denoting the prediction vector of the missing observations as

gnl(kg)v (5°1)

where ni denotes the number of missing observations in the ¢ —th bootstrap
sample, and ¢ denotes the g—th value of the k parameter. The corresponding

vector of actual observations for the missing observations in the i — th bootstrap
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sample is denoted as
YUni. (5.2)

The mean square error of prediction MSEP for the i —th sample and the g—th

k parameter is defined as

Y .Y — N5 . — .
MSEP,‘(ICg) = (ym(kg) ymlgym(kg) ym) (5'3)
forg =1,2,...,G. (5.4)

Assuming we have ¢ bootstrap samples, i = 1,2,...,I, a final average MSEP

for each ky is given by
S (MSEP(%,))ni

: 5.5
ST (5.5)
forg =1,2,...,G. (5.6)
The bootstrap choice of the ridge parametar k& will be kg where
! 2 = min(MSEP(k,)). (5.7)

The authors carried out a simulation and also illustrated their technique on
two sets of previously published data. For their simulation they used the following
values for the signal to noise ratio SNR = #'8/0%, and condition number ¢ of

the X'X matrix .
$ =425 100 2,500 10, 000

SNR =149 25400

B'8 =416 100 900

From their simulations they gave the following results.
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1)

2)

3)

4)

The bootstrap, MSEP outpeiformed kygp estimatorin 91% of the models
and outperformed the least squares estimates b in 70% of the models »nder

the MSE criterion.

Using the criterion of minimum MSEP , the estimators in order of preference

were the Bootstrap, HKB, and LS.

In cases where the data is collinear and the ridge method does not give a better
predictive model the bootstrap estimator will have its minimum MESP at
k = 0 indicating the least squares estimates b will give the best performance

under the MSEP criterion.

For each choice of k a mecasure of uncertainity is provided by the standard

error of prediction given by

i (MSEP(ky) - MSEP(k,))? (58)

I-1

1=1

A Deterministic Ridge estimator.

Lee (1986) conducted a simulation to compare some non-stochastic rules to

select the biasing parameter & for the ordinary ridge estimator b(k). From his
results he concluded that the biasing parameter k = ), was the best performe..
In particular, if the condition number of the X'X matrix, defined as ¢ = A /),,
where max(A;) = Ay 2 A2 2 -+ 2 A, = min()\;) > 0 are the eigen values of

the X'X matrix, was at lcast 1000 then this estimator dominated the least
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squares estimates b for the entire range of parameter values considered. The four

deterministic ridge rules are given as follows,

R2: k=),
R3: k= /Xy s

Ra: k= /A3,

Lee considered the i — th component of the MSEb(k) given as

02/\,' + kZQ?

MSE(b,(k)) = TR

(5.9)

Defining the efficiency of the ¢ — th ridge estimator relative to the i — th

least squares estimator as

_ MSEb, _ E(b - fi)?
"= NISE by(k) . E(b(F) - Bi)E (5.10)

Lee gives the following theorem which provides a sufficient condition that the ridge

estimator be more efficient than least squares .

Theorem 5.1: If k is chosen deterministically and

/\|a? -1 .
7-<1+2/\,k ,fort=1,2,...,p, (5.11)

thenn, > 1, foralli. (5.12)

Proof: If

J 2 2
_ _MSEb % (MAE) (5.13)

5P



then 2kA,0? +k%0? > k2 \a; (5.14)
2); dia?
or T +1> 7— (5.15)

Considering this criterion for dominance, R2 gives the widest possible range
for the condition (5.11) to be satisfied. Thus we would expect R2 to have the best
performance in simulation. Lee considered three models with condition numbers
given by ¢ =54, 924, 1397 . The SNR was varied from 1 to 10,000. The various
estimators were compared with the least squares estimates under the MSE and

PMSE criterion, where
PMSE b= E(b-8)X'X(b- B). (5.16)

Of all the estimators, R2 dominated the least squares estimates under the MSE
criterion for all values of ¢ and SNR considered with the sole exception of one
case where ¢ = 54 and SNR = 10,000. Under the PMSE criterion, R2
performed the best as long as SNR < 400, and ¢ > 54. In light of these

observations, Lee recommendecd the usc of
k= p, (5.17)
over all the other estimators, espccially when ¢ > 1000.
An Algorithm for Optimuin Ridge parameter Selection.

Lee (1987) suggested a computational procedure to find the optimal & using

the least squares estimates in the minimization of the MSE or PMSE . The
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procedure uses the Newton-Raphson method to minimize the functions. Considering

P 2A +k2 2
MSE b(k) Z R pvysid

5.18
2\ + K2a?) 519

(Ni + k)2

14
PMSE b(k) = ZA (o
=]

if we replace o? and 0? by their least squares estimates a? and s? we have the

following estimates to minimize

5 PLs2\ + k2a?
O ED ppais

1=1 (/\ + k)2
5, 4 K7 (5.19)
. (s +
falk) = ;,\ O T I
Lee gave the following algorithm to minimize f,(k)
Step 1. Set k° =0 and i =0.
Step 2. Compute ki*! from
Fr (ke
P =t - L) (5.20)

Fic)
Where fJ'-(k), f}'(k) for j = 1,2. arc the first and second derivatives of fj with

respect to k.

Step 3. If

A k< 6 (5.21)

for a given § >0 stop. Otherwise set i =141 and go to step 2.

Although no proof of the convergence of (5.20) is available, Lee found the

algorithm converged in all his simulations, with 4, = 10~%, under 15 iterations.
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His algorithm gave a ridge estimator which was dominant over least squares under
the MSE and PMSE criterions for condition numbers ranging from 50 to

1400. His paper includes a FORTRAN program to compute the optimal k.




Chapter 6

GENERALIZED RIDGE ESTIMATORS

The singular value decomposition (SVL) ~f the matrix X is often used to
simplify analysis of the generalized ridge estimators. The SVD of the matrix X is
given by X = HAYG' where H is the (n x p) matrix of eigenvectors corresponding
to the non-zero eigenvalues of the W' X' matrix, standardized so that H'H = I,
A¥ isthe square root matrix of the cigenvalues of the X'X matrix, and G is the

(p x p) matrix of eigenvectors corresponding to the eigenvalues of X'X such that

GAG'=X'X, and G'G=1.

Using the SVD we can write X'X = GATH'HAYG' = GAG,

and
Y =Xp+¢

= Hi\'lfa 4 €.
Hence the least square estimates of a = G'( , denoted by a , are given by
a=(AYH'HAT)'AYH'Y
= A'AYH'Y (6.2)

=A"TH'Y,

and since Ga = b we have the least squares estimator as b = GA~3$ H'Y.
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Using the SVD for the ordinary ridge estimator, we have
bk) = (X'X + kI)7'X'Y
= G(A + kI)"'G'GAYH'Y
= G(A + kI)"'AG'GA™'ATH'Y (6.3)
=G(A+kI)"'AG'Ga
= GAG'b.
Here A = diag(6;,62,...,6,) and 6, = A;/(XA;+ k) are the shrinkage factors. We

note that for any fixed positive k and declining eigenvalues Ay 2 A2 2 -« 2 Xp >

0, we have

> S>>
>A1+l\‘—/\g+k— _Ap+k

1 > 0, (6.4)

with the smallest shrinkage for the minor axis A, .

For the variance of the least square estimator & we have

Var(b) = o?(X'X)™!

=o’GATIG
(6.5)
= G Var(a) G'
= Var(Ga).
Noting that
Var(a) = odiag(A7!, A71,. ., 00, (6.6)

we see that covariance matrix of a is diagonal making the components of a;
uncorrelated. Also, since 0 < /\i" < /\2" <... < A;‘ , we have that 0 < Var q; <
Var a2 < --- < Var a,. Hence Var(a,) = ¢2);! is the uncorrelated component

P

with the largest variance. Using the property of declining shrinkage factors §;
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(6.4) , we also see that &, is the smallest shrinkage factor corresponding to the

component with the largest variance.

The generalized ridge estimator, introduced by Hoerl and Kennard (1970), is
similar to the ordinary ridge estimator where each diagonal element of A is
augmented by a positive k; . Thus the diagonal matrix A is augmented by the
diagonal matrix K = diag(ky,ks,...,k,) before inverting for least squares. The

generalized ridge estimator of 8 for the model

Y=X8+¢, ¢~(0,0%1) (6.7)

is given by
L) =(X'X +GKG')1X'Y, (6.8)
where K = diag(ky, ..., kp). (6.9)

To derive the generalized ridge estimator of 8 we use the SVD of the matrix

X in the model (1.2) giving

Y = HAG'B+¢

(6.10)
= HAYa + g,
where the least square estimates of « , given by
a=(ATH'HAY)TAYH'Y
(6.11)

= (A)'ATH'Y,
is augmented by the matrix ' before inversion giving the generalized ridge esti-

mator
a(K) = (A + K)'AYH'Y, (6.12)
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of the uncorrelated components a .
With respect to b(I{) we have
() = Ga(K)
=G(A+ K)'ATH'Y
=G(A + K)"'G'GAYH'Y

=(X'X + GKG')"' X'Y.
We may also write
WI) = G(A+ K)'AYH'Y

=G(A+ K)TAG'GA™IAYH'Y
=G(A+ K)"'AG'GA™%H'Y

=GA+ K)"'AG'S

= GAG'D,
where
A = diag(6y, 62,...,6p),
and
A, )
— =1,2,...,p.
. (/\‘ +]‘-‘)’l 1, ) ' D

(6.13)

(6.14)

(6.15)

(6.16)

Comparing with (6.3) we can sce that the ordinary ridge estimator is a special case

of the generalized ridge estimator wherc all k, = k.

The MSE Of The Generalized Ridge Estimator.
To derive the MSE of the estimator (LK) we consider
WK)=(X'X 4+ GKG)'X'Y
= GAG'D,
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with

E(b(K)) = GAG'8, (6.18)
BIAS (b(IV)) = E(b(K)) - 8
(6.19)
= G(A - I)G'B,
and
[B(K) — E(b(I))] = GAG'b — GAG'S
(6.20)
= GAG'(b - B).
Using

MSE b(K) = E[b(K) — E(b(K))]'[W(K) ~ E(b(K))] + [E(b(K)) — BI'[E(b(K)) - B],
(6.21)

we have for the first term

E[B(R) - E(W(K))])[b(IX) — E(b(K))]
= E[(b—B)GAG'GAG'(b - B)]
= Tr[GAG' GAG Var(b)]
E(b - 3)YGAG'GAG'E(b —
+ E( ) (b—B) (6.22)
=’ Te[(X'X)"'GAYG)

o? Zp:,\,"o',-’
1=1

2 . A
-7 ;p\,+k.>2'

For the second term in the MSE we have
( BIAS (b(K)) )= g'G(A - DG'G(A-1)G'B

=d'(A -1 a

a?k?
’\t + ki)2 .

0'2(5‘_ - 1)2 (623)
(

60



Combining (6.22) and (6.23) we have

ZS_‘ A P 2k2
MSE b(K) = ¢ 2 OrEP Z(,\ s (6.24)

Showing that the MSE of b(K) is similar to MSE of b(k) except for the differing

k,‘ values.

The MTxMSE of the Generalized Ridge Estimator.

Using the results of the equations (6.19) (6.20) and (2.38) we have
MTxMSE b(K) = E[GAG'(b - 3)(b - B) GAG']

+G(A - I)G'BB'G(A - )G
= GAG'Var(h)GAG' + G(A ~ Dad'(A - )G (6.25)
= 0’?GAG'GA™'G'GAG' + G(A - Daad'(A - DG

=o’G[AAT'A + 073 A - Dad' (A - DG

Considering the conditions for dominance of b(K) over b under the MTxMSE

criterion, and using MTxMSE b = 02GA~!G' we have
II = MTxMSE b — MTxMSE H( I{')

=0?GA™ - AATTA —073(A = Nad'(A = )]G

=0?GAT = (A + K)'AA+ K)' —07%(A + K)"'Kad' K(A + K)7YG'
=d’GA+K) A+ K)A" A+ K)~ A -0~ %2Kad'K|(A+ K)~'G’

= 0?G(A+ K) M A+ 2K+ KA~ = A - 072 Kad' K|(A + K)'G'
=0’G(A+ K)T'K[2K~' + A~ — 0 2ac/|K(A + K)1G'

=G(A + K) K[ T |K(A + K)-'6",
(6.26)
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where T = [03(2K~? + A~!) - aqa']. Letting K be a diagonal matrix of positive
conztants, we have that G(A + I')"!' K is positive definite, and we need only to
ensure the T is positive definite for II to be positive definite. We will consider
the following theorems and corollaries of Chawla (1988) such that the generalized

ridge estimator would improve on the least squares estimator under the MTxMSE

criterion.

Theorem 6.1: A necessary and sufficient condition that the generalized ridge

estimator is better than the least squares estimator , under MTxMSE , is given by

AR+ AT ) e <ol (6.27)

Proof: We have
I, ap.d matrix (6.28)
iff T=[*2K""'+A7")—ad']lis ap.d. matrix. (6.29)

Now for any square positive definite matrix 4 we have by definition that ¢'Ac > 0

for all non-zero conformable ¢ vectors. Thus T is positive definite
iff [e?2h'+ A7) ~ad] ¢>0, (6.30)
for all non-zero (p X 1) vectors ¢ . Equivalently we have
do?2K~ ' + A7) e > dadc, (6.31)

or

(6.32)




Now (2K-!+ A1), being positive definite, has an inverse. Dividing both sides of
(6.32) by o/(2K-1 + A~')'a we have the equivalent inequality

o? caa'c

. 3
SR TF A Ta ~ F@RTF A (CET + A1) Ta (6:33)
Using Theorem A4 (ii) from the appendix, we have
o? cad'c
> . .

TR A Ta > 12 ST F A ealGRT ¥ A) T (&)

Using the inequality on the left hand side we have that T is a p.d. matrix
iff 02 > a’(2R "'+ A7) " Ma. (6.35)

Corollary 6.1: A sufficient condition that the generalized ridge estimator

improves on the least squares estimator under the MTxMSE criterion is that
a'Aa <ol (6.36)
Proof: Considering that T = [¢*(2KN ! + A™!) — aa'] is  a p.d. matrix if
0*A~' —aa'is apsd. matrix, (6.37)
we have the equivalent condition that
d(e?A™ —ad')e > 0, (6.38)

for all non-zero (p x 1) vectors c . Thus we have

ca?A™le > Jad'c, (6.39)
or
o? daa'c
21>  ————— .
a'Aa T T dA-leca’Aa’ (6.40)

63




where

caa'c

— 1w -1
T e 1 when ax A7'c. (6.41)
Thus if
-’
>1 .
aAa — (6.42)
or
o’ > o' Aa, (6.43)

then we have a sufficient condition that T andso II ,be a p.d. matrix .

Corrollary 6.2: A sufficient condition that the generalized ridge estimator

improves on the least squares estimator under the MTxMSE criterion is that

a'Ka < 202 (6.44)

Proof: If [202K ! —aa']is ap.s.d. matrix then
T =[c?2K~' + A™') - ad]is a p.d. matrix. (6.45)

Using the same procedure as in the previous corollary, if

[20) ™! — aa']is  aps.d. matrix, (6.46)
then by definition
c'[20* K~ — ad'lc > 0, (6.47)
or
20K~ 'e > dad'c. (6.48)

64



e

This is equivalent to

252 caa'c
— 212 ———— 6.49
a'ka ™ “dKN-'cad'Ka' ( )

where the right hand side attains a maximumat a o K~'c. Thusif 202 > o’ Ka

then we have a sufficient condition that II be a p.d. matrix .

Theorem 6.2: A necessary and sufficient condition for II to be positive
definite is that

6,>1, i=1,2,...,p, (6.50)
where the 8]s are the roots of the equation
det(A~! —aa's™? ~f2K~1) =0. (6.51)

Proof: If

2K~ + A" —aa'c7?)is a p.d. matrix (6.52)
then for a p.d. matrix Q@ we also have that
Q2K ' +A™ " ~aa'0c7%Qis a p.d. matrix. (6.53)
Let @ be such that
Q2K7'Q =1, and Q(A™' —aa's7})Q =0 (6.54)

where

0 = diag(8,,6,,...,6,) (6.55)

and each 6; is a root of equation (6.51). Then we have

Q2K '+ A" ~aa'c7?YQ =140, is ap.d. matrix (6.56)
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iff
6, > -1for:1=1,2,...,p. (6.57)
To see that a p.d. matrix @ exists with the required properties, we have
det (A" —aa'oc™? - 92K~ =0

& det ((%I{)"I(A“ - aa'a*)(%x)i — 6N =0

_ . (6.58)
& det (19'(51:)’:(/\—l _ aa'a-2)(§1<)*1> - 6P'P)
=det (0-6I) =0,
where P is a matrix which diagonalizes the symmetric matrix
S T 12yl ¥
(=K)2(A7" = aa'c™%)(=K) (6.59)
2 2

normalized so that P’P = I . Hence the roots of equation (6.51) are given by the
roots of det (@ — 8I) =0 which are O = diag(6;,0,,...,8,) . For the matrix

Q@ , setting Q@ = (%I\')%P will give a  a p.d. matrix with the required properties.

GG
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Chapter 7
A BAYESIAN APPROACH TO RIDGE ESTIMATORS

Within the classical approach to the linear regression model, we assume the
parameter vector # to be a vector of fixed constants. Conversely, the Bayesian
intcrpretation of the linear model takes the parameter vector 8 to be a random
vector with some known prior distribution function. This distibution expresses the

state of knowledge about f hefore the sample data is to be analyzed.

To derive the Bayesian estimator of /3 we begin with the prior distribution of
B denoted by f(f) , and the probability model f(Y |8) = L(8|Y) where L
denotes the likelihood function for 3 given the data Y . Using Bayes Theorem

where

Y | B)F(B)
GO (1)

we may derive the posterior distribution of 3 given Y denoted by f(8|Y). In

f(B1Y)=

general the marginal distribution of 17, given by

ﬂy>=/quﬁﬁmwa (7.2)

is treated as the normalizing constant. Thus we have

f(Y 1 8)f(B)
f¥)

x f(Y'| B)/(8) (7.3)
x L(B|Y)F(B).

f(B1Y)=

From the mean or mode of the posterior distribution we have the bayes estima-

tor of G . In the case that there are other unknown parameters, so-called nuisance
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parameters, in the posterior distribution, they are intergrated out and the bayes

estimator of B will be the mean or mode of the marginal posterior distribution.

Thus

B=EQB|Y)= /B BF(B|Y)ds, (7.4)

is a bayes estimator of 3 .

In particular, let ¥ ~ N(Xf,0%I) for known o?. The likelihood function of

B, o for a given data set Y is given as

L(B,0%|Y)
= Gyt gzl ~ XA - X9)

(7.5)
) (2”)1* —ezpl- (= XY(V = X8) + (8= D) X'X(8 — D)

1 - -
o eIP[—;;;((ﬂ — b)Y XX (4= )],
since za7(Y ~ Xb)'(Y — Xb) does not involve 8, it is treated as a constant of

proportionality.

Assuming the random vector 4 hLas the following prior and known covariance

matrix,

4~ N(By, o), (7.6)

we may write the likelihood function as

L(B,5"2| ¥) = ———capl=57(8 ~ fo)2™'(8 = o)

(27)

1 (1.7)
o e‘l'p[—ﬁ(ﬁ = Bo)Y ™8 - Bo)),

which is multivariate normal with prior mean vector fy . Using Bayes Theorem,
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the posterior is proportional to the likelihood times the prior and is given as
FBIY)x L(B|Y)f(B)

1 1y ! v 10-—-1 (7.8)

o eopl~ 57 (8~ 0 X' X (B = b) + (B ~ Aoy (8 - o).

Considering the two quadratic forms in the exponent we have
(B-b)X'X(B—b)+(B —fo)2'(B - Bo)
=BX'XB+VX'Xb-28'X'Xb+ B'Q7' B+ By~ 8o — 28'Q7 o
=A(X'X+0"H)F-20(X'Xb+ Q' 6o) + BeQ7 By + ' X' Xb
=A(X'X+Q ) -28'"(X'Y + Q" H)X'X+ Q) (X' Xb+9715)
+(X'Xb+927" Go)

(7.9)
(X'X +Q°" )XY + 07X Y+ Q7 ) (X' Xb+ Q7 bo)
—(X'Xb+ 07 6)
(X'X +Q ) XX+ )XY+ Q7 ) (X'Xb+ Q7' fo)
+ By Bo + b' X' XD
=(B-yYa (8- +C

where
= (XY 4+ Q)X X+ Q7 6)
(7.10)

0= (X'V+07 N,
and since

C* =407 6 + VX' Xb-(X'Xb -7 )
(7.11)
(X'X+QH X' X+ Y'Y + 07 ) (X' Xb+ Q7 Bo),

has no B term it is treated as a constant of proportionality. Thus the posterior

density B can written as

FBIY) e.rp[-—-;i—z-(ﬂ _BYRTI(B - bY), (7.12)
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which has a multivariate normal distribution with mean vector 6* . Thus our bayes

estimator of § is given by
B=E@|Y)=b=(X'X + Q7)Y X'Xb+ Q" 5). (7.13)

More generaly, if the prior of 8~ N(f, a?,Q) , then the bayes estimator of g is

given by

. 1. | T | 1
b =(;2-A'X+;g$2 1) ‘(?X'xub—%n 180)

.1, b ociyv=r 2 2, 1 1 o1

= (=X X+I¥§Q )Tlete T (X Xb+¥9 Bo) (7.14)
2 2

= (X'X + Q) (X' Xb+ 0 §y).
% 9

Thus the ordinary ridge estimator has the following Bayesian interpretation. If
B~ N(0,03I), and Y ~ N(XB,o%I) (7.15)

then,using equation (7.14), the posterior mean of B is given by

2
b = (XY + TN (X'Xb)

ag
T3

, (7.16)
= ([ + :—;—z-(.\”X)“]"b,
J

02

which s the ordinary ridge estimator with k = %y . Thus the Bayesian interpretation
I

of the estimator b(k) assumes a prior mean vector of zero and a prior constant

variance of o} for each component of 4.

For the generalized ridge estimator we would consider the prior

3~ N0 :GK1G), (7.17)
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and

Y ~ N(XB, %) (7.18)
Then the posterior mean, bayes estimator of 3 , would be
b =[X'X + GKG'|X' X5, (7.19)

which is the generalized ridge estimator . Unfortunately, it is usually the case that

2

o?, and 0% are usually unknown.

Lawless and Wang (1976) proposed the following operational estimator of
2

o
b= —, (7.20)
F
given by
2
PE
biyw = =5———s . .
L ST (7.21)
Assuming that
a ~ N(0,03]), (7.22)
they argued that unconditionally, the expectation of )a? is given by
E(\a?) = E[E(\d* | )]
= E[Var(/\?a, | o) + E(/\:}a. | @;)?
o? o
=\ +E(\ad) (7.23)

o' + \’zu‘(,\%a,) + E(/\;“ra.')2

Thus

=p+ Y5 (7.24)




since X'X is in correlation form, Tr{X'X) =p.

Using the relation that

P 2 2
Z; E(%) 1= g% (7.25)
they choose the operational biasing parameter
2
b 720
to be a reasonable estimator of
:—B (7.27)

In numerous simulations, Lawless and Wang (1976), Wichern and Churchill
(1978), Galarneau (1981), the Lawless and Wang estimator has performed well

with respect to the least squares estimator .

The Lindley and Smith Estimator .

Taking a Bayesian approach, Lindley and Smith (1972) proposed the following

estimator of k = %2- . Here the prior for J is given as 3 ~ N(O, a%I) yand Y ~
N(XB,0%I) where 0% and 0§ are both nnknown. Assumingthat o? and o3 are
independent each having an inverse chi-squared distribution; that is, vg/o? ~ x2
and vgng/oh ~ x2g, they give the posterior distribution of B, o2, and 0% as
proportional to

()R epl— (v + (Y = XBY(Y = XP) )]

7.28)
- vag+2 1 (
x (0,29) 3(p+ f’+')rf.r])[-;'7(’/ﬂ775 +4'8 )}

205
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From the mode of the posterior distribution , the following equations are used to

select k.
brs = (X'X +(s¥/s3))7' XY, (7.29)
8 =[un+ (Y - Xb.s) (Y — Xbs))/(n+ v +2), (7.30)
sp = (vang + b sbLs)/(p + vg + 2). (7.31)

To use this estimator, begin with &k = ;’;- = 0 in (7.29). Use the initial estimates
I}

brs =b in (7.30) and (7.31) to obtain s? and s% . The procedure is repeated until
convergence is obtained. Gibbhons (1981) uses a 10~* convergence criterion for
k = s%/s}, which defaults to least squares if convergence is not obtained. When
the solution is insensitive to small positive values of v and vy , they can both be

set to zero.




Chapter 8

THEORETICAL AND OPERATICINAL
GENERALIZED RIDGE ESTIMATORS.

Estimating The Acceptable Range Of K

We define the acceptable range for k to be the interval that the following
inequality holds

MSE b(k) < MSE b. (81)

Using this definition, we define the acceptable interval of k to be given as
0 <k < kyyuxe (82)

For example, using Theobalds (1974) 1esult, for the ordinary ridge estimator, where

K = kI, we have the following acceptable interval where
MSE s - \SE (k) > 0, (8.3)
if
0 <k < kpaxs (8.4)
where
I"max = Qaz/ﬂ'ﬂ, (85)

In the case of the genecralized ridge estimator however, we have a separate

acceptable interval for each &, given by

0 <k < kymax (8.6)
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Correspondingly, the shrinkage factors given by & = Ai/(Xi + ki) will also have

separate acceptable ranges given by

Simin <8 < 1. (8.7)

Now the MSE of the least squares estimator is unchanged if we are using the

canonical model end uncorrelated components since
MSE b =E[(b— B8)(b- B)]
=E|[(b - 3)GG'(b - B)]
=E(G'b - G'8)'(G'b- G'B)] (8.8)
=E[(0 - o) (e~ )]

=MSE «.

Considering the difference in MSE between the least squares estimator and

the generalized ridge estimator of the uncorrelated components a we have

MSE a — NSE o( I\')

P X 14 p (89)
=a2 ) AT —at ) AT =) aF (6 - 1)
=1 =1 1=1
In terms of the individual uncorrelated components a; we have
MSE a, — MSE «,(K)
=02/\‘7l — 02/\;"6‘2 —a?(&,- - 1)2
(8.10)

=021 - 68) — (6 — 1)
=(1 —-6,-)[02,\,"(1 + 6;) — 0?(1" 6i)] > 0.
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Considering the second factor we have

MSE a; — MSE «a;(K) > 0,
if
Si[o AT + ] > —aA + A,

or
a? o227 402 - g2

6 >
' o227 4 o

Now since §; = X;(A; + k;)~! is non-negative we set

p 0, if a? < 0?A];
t,min = _ _aq? .
1 m, otherw:se.

Thus our minimum shrinkage factors are given by

202

6i,min = [max(o, 1 - m)l’

giving our acceptable k; from

b. . — A'
t,min = ()\‘ + ki,max).
Thus we have
g = [oo if of < o?A7;
BT 20%(a? - 02A71)"),  otherwise.

This result was given by Vinod (1978).
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=1 —20%(0? + M\a?).

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)
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Optimal Values of IU for the Generalized Ridge Estimator.

The optimal values for the biasing parameters K will be those values wkich
minimize the MSE a(I). We will consider the MSE a(I() in terms of the shrinkage

factors 6; where

MSE a(K) = E[(a(K) — a)'(a(K) — )]
=g? Z SIATT + i(&,- - 1)%al.

Thz first order condition for a minimumn of the i — th component of MSE a( K) is

(8.18)

that its derivative with respect to o, be zero. We note that

dMSE a,(K) _ dMSE a;(X) dé;

dk d6,- dk

M
when S—A—Si}-:l—a (1) =0, smce—— :,aé 0.
o

=0,

(8.19)

Th dMSE a '1( ) ] + ) 6 1 d ()
_____._._1\_._1 — (7' 6,/\, -‘( i ) i
) (8.2 )

= 6202271 +2a) - 2a? =0
giving the first order condition for a minimum to be

6 = a¥(a* A7 +a2)!

Loe N, n;" . -
=af([g'i'/r](0‘f\;’+a?)) 1
p 8.21
- \2( ( )(0_ /\ +a2)) ( )
2
a

The corresponding optimal MSE values for k; are given by using the relation

2
= /\.’(-Z-?- + /\,’)_1, (8.22)

and solving for k; giving

b, = —. (8.23)




Methods To Select The 4, Parameter Of The

Generalized Ridge Estimator.

Hoerl and Kennards First Iteration .

Using the least squares estimates of o2 and § to estimate the optimal kis ,

we have

(Y

)
I

alm

Lol ]

(8.24)

Hoerl and Kennards Iterative Proceedure

To estimates the optimal k,, Hoerl and Kennard (1970 a) suggested the fol-
lowing procedure to compute k, . Since the least squares estimator a tends to
overestimate « they recommended un iterative procedure. Beginning with the

initial estimates

2

Q=

k= = fori=1,2,...,p, (8.25)

(I:

the first iteration generalized ridge estimator are computed from
oK% = (A + K9G’ X'Y, (8.26)

where

K° = ding(F9,k3,. .., kg). (8.27)

These initial generalized ridge estimnator a( /\?) are then used to revise he estimates

of k; where
52

3 . ) =
k! = m forz_1,2,...,p (828)
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at the (§ — th + 1) iteration we have
a(K?) = (A+ K 'G'X'Y (8.29)

where

2

S .
kf:mforz=1,2,...,p- (8‘30)

The iterative process should continue until stable parameter estimates result. The

final generalized ridge estimator 0(L\') are obtained by the relation

b(K) = G'a(K). (8.31)

Hemmerle’s and Brantle’s estimator.

Considering that E(a? — s*A7") = a? , we have the following rule to select k;

s? .
foy = 3T (8.32)

Hemmerle’s Fully Iterative procedure

for Generalized Ridge estimates.

Hemmerle (1975), showed that Hocrl and Kennards iterative procedure for
estimating the biasing parameters &, has an explicit closed form solution so that in
general, iteration is unnecessary. Hocking (1976) showed that Hemmerle’s result is

to choose a shrinkage coefficient ¢; such that

L .
e = { 0 lf T; < 4, (8.33)

5 +1.25-(1/72)], otherwise.
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where

a(l), = ¢,a, for a = G'}, (8.34)
and
2y.
r? = “';\'. (8.35)

Here 7; is the t-statistic associated with the : — th regressor. Thus if the t-statistic
is smal!, the corresponding generalized ridge estimate will be set to zero. However, if
the t-statistic is large, the ridge coefficient will be a fraction e, of the least squares
coefficient. In shcrt, this means that insignificant coefficients will be shrunk to
zero while che significant coefficicnts will be reduced less severly. Hemmerle noted
that the fully iterated generalized ridge estimator may give a poor fit through
the introduction of too much bias. This led him to consider a modification of his
shrinkage fractions e, , taking into account a constraint on the total reduction of

R? | His modified shrinkage fractions ¢, are given by

fi=1-ym(l-¢,) (8.36)

where m is the ratio of the allowable loss in R? if e; is used. Hocking, et.
all. (1976) objected to the use of the modified shrinkage fractions é; since they

would force all a(K'); to be non-zero and thus retain the strong influence of a small

eigenvalue on the variance inflation factors.
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Chapter 9

DOMINANCE FOR STOCHASTIC K

In this chapter we will review the conditions for MSE dominance of a few
generalized ridge estimators. In particular the results from Vinod, Ullah, and
Kadyala (1979) for the double f class generalized ridge estimator, and the results

from Dwivedi, Srivastava, and Hall (1980) will be considered.

Double f class Generalized Ridge estimators.

We define an operational estimator. to be any formula for the biasing parameter
k,, which does not depend on unknown parameters. Thus for the generalized ridge

estimator, we have the following operational k;.

Hoerl and Kennard (1970) first iteration, where

~

(Ninrer) = (9.1)

_QMI «

Vinod (1977), proposed the following operational k;, based on his upper bound.

. 252
(Kup) = et (9.2)

Hemmerle and Brantle (1978) suggested the following operational k; , derived
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by minimizing an unbiased estimatc of MSE given by

s?

(1\’111})1 = —_—.
a? - s2); !

(9.3)

Another operational k, , given by Vinod (1977), based on Stein’s unbiased

estimate of MSE is given by

(I\’v ), = (9.4)

The above operational &, arc all stochastic since they are functions of the least

square estimates s?, a® . However they are also members of the double f class

family of k; given by

(Kprc) = (K p,)0 = L (93)
DFCh = 2 e = a? _ f2s2,\lj'1 ! .

where fi, fo are arbitrary scalius. Thus

2
(I\.I,U)l = ~—2 (96)
«?
gives Hoerl and Kennards first iteration.
K 2" (9.7)
(Ko = =g .
gives Vinod’s upper bound.
. s?
(Kya) = = (9.8)

2)\~1°
al — 2]




gives Hemmerle and Brantle estimator.

252

Ky5), = ———.
(K2.2), a? — ‘..7.32/\,7'l

gives Vinod’s unbaised estimator.

Using (Ky, r,)i we may write the shrinkage factors §; as

Ay

=y

Ay
- </\,+ —1['—;47—,7-)

A,
- </\, + —*,fi—)

Al fa3?
_ (/\,(:;" — f28? + f1s? - flsz)
Aa? = fas? + fis?
=(1- fis” ).
A+ (fi = fa)s?

Considering our generalized ridge estimator 6 K') we have
(K)=(X'X+GLKG) X'y

= G(A+ K)7'G' XYy

=G\ + ) E X' X (X' X)Xy

=G(A+ K)'G'GAG'd
= GAG'h

= GAa,

(9.9)

(9.10)

(9.11)

a(K) = G')(K) = G'Ga = Aa. Thus the family of double f-class estimators is

given by
a(DFC) = a(K)y, f, = Aa,
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where
A =(liag((§,,52,...,5p), (9:13)

and

2 f132
6,' = 1] - y
/\1a? +(f1 _f2)32

for arbitrary scalars f;, f; and uperational k, . Since the MSE b(K) = MSE a(K)

(9.14)

the MSE properties of the double f-class estimator will be considered through the

i —th uncorrelated component a(DFC) given by

2 f132
D 1= Oy = - 3 .
a(DFC) d,a 1 N (i = )5 a (9.15)

Now at f; =0, we have

0

a(DFC), = a(0, f3), = [1 - Aal = frs?

la, = a; (9.16)

and the double f-class estimator reduces to the least square estimator a, at f, = 0.

At f, = f, we have

: fis®
oDF), = alf i = 1= 5o

=[on-£2]

14

(9.17)

and since a; may be zero, the moments of any order do not exist for the double

f-class estimator when f; = f, .

Vinod, Ullah, and Kadyala (1979) gave the exact expressions for the bias and
MSE of the double f-class gencralized ridge estimator using confluent hypergeo-

metric functions. From these exact expressions they derive asymptotic expressions
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for the bias and MSE for large non-centrality parameter given by ©; = Xia? /202

Their approximations of the bias and MSE expressions are given in the following

two theorems.

Theorem 9.1: The asymptotic expansion for the exact bias of a component

of a(DFC) , up to the order of o? , or ©]! is given by

fia fraio? fio?
2@: = /\.'t;? T T Nag (9.18)

E(a(DFC)-a), = -

from here we can see that the double f-class estimator will be biased in a direction

opposite the sign of «, .

Theorem 9.2: The asymptotic expansion of the exact MSE of a component

of a(DFC) , up to the order of o* , or 72 is given by

2 _ 00 _hdf fra?
E(G(DFC) - 0’) /\ -— + 102 ( ) 'l] + S@?(l/) [3A1 - 2(f1 —fg)Agl, (919)
where
A=A +2) (9.20)
Asr = 2—-*-.——[/‘-1 (v + 4) + 31/] (921)

and (f; — f2) > 0 for the existence of the Bias and MSE . Both theorems assume

a2
a large non-centrality parameter O, = %‘- Substituting for the non-centrality

parameter we can write E(a(DFC) - a)? as

fro? _1 + fio8

/\"30,!2( ‘ 4/\3( )[3Al —z(fl —fZ)AZ]

2

+
2
=—+ fiP A + P2Ay = fi(fi = f2) P- P4As,

MSE o(DFC); =

g
X

(9.22)
g
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where

1= (l/)/\2 2
30°

P = oer
6

Py = Uj’; - (9.23)

(r+2

P )
W)

= fi(v +4) + 3(v),

and P;>0fori=1,2,...,4. Now MSE q; = -‘i.- , so the double f-class estimater

will dominate the least squares estimator if
MSE a; — MSE a(DHC). =-fil 4, - fiPy Ay + f](f] - f2)P3P4A3 >0, (9.24)

or equivalently if

. . A1 P+ P,
filfi = f2) > fl—ﬁ'< P, ), (9.25)
filhi = f2) > h——(e +3/2), (9.26)

for A3 > 0. We may further simplify the inequality by assuming large n and fixing

f1 to be positive. This gives

A, filv +2)+ 2n n f1+..
_ . 9.27
A3 Py fl(//+4)+3n(1/+2) fi+3 (9.27)
so our condition for dominance over lcast squares, for large n, is given by
S+ 2)
— (0,+ 3/2) < (fi = fa). 9.28
(L2032 < (- o) (9.28)

Considering the Hoerl and Kennard (1970) first iteration choice f; =1, f2 =0

the condition for superiority ove: the least squares estimator for large n becornes

(O, 3/2)% <1, (9.29)
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which will not hold since ©, > 0.

Hemmerle and Brantle’s choice f, = f =1 or Vinod’s choiceof f; = fop, =2
would give an infinite MSE . In the present context of large n the condition for

dominance over least squares estimator becomes
3
(0, +3/2)Z <0 for fi=fo=1, (9.30)
4
(@. +3/2)-5 <0 for f1 = fz =2, (931)

neither condition being true since @, > 0.

For Vinod’s upper bound choice f; =2, f; =1 the condition for dominance

becomes

(O, + 3/2)% <1, (9.32)

which again is not possible.

A favorable region of the parameter space for large n is given by

0, < (fi - f-)éff.i : g) - g (9.33)
Fixing f) =1, fo must satisfv
0, < —% - %fz, (9.34)
or
20, < -% - g'fz. (9.35)
Considering
20, = “;A (9.36)




to be the true unknown value of the corresponding F statistic given by

\a?
Fi=2t Ry, (9.37)

Y

Vinod and Ullah (1981) suggest replacing 2©; with a tabulated Fy ,, of the F
statistic and solving for f, giving the condition

_3(Fa l,u) +1

f2 < 3 ) (9.38)

which will provide an operational generalized ridge estimator that will have a lower
MSE than the least squares estimator for (1 — a)100% of the region along each
dimension of the parameter space for large n. These conditions for dominance have
the drawback however that they require the assumptions of large n, and large

non-centrality parameter O, .
Finite Sample Properties ¢f a Ridge Estimator.

The results of Dwivedi,Stivastava, and Hall (1980) , apply to the Hoerl and

Kennard first iteration, where

’u', = —. (9.39)

In particular, they derived the first and sccond moments of the estimator using the

following assumptiors.

a~ N(a,a?A71), (9.40)
2 = Ve N ) (9.41)
o o
’/.5‘2 2
p = 0_2 ~ XV’ (9'42)



where p is independent of z,,

'2
2P of : 9.43
p —*) (9.43)

o )
where F' is the noncentral F with non-centrality parameter '\—;‘;'J- They write the

i-th uncorrelated generalized ridge estimator as

R by
(a(K)ukrr)i = Aoy = (I—_*_—%';')ai

(A ) _ o (B
- /\,af-{r-s'l T VA \ et + 82

-

_a ({;A,a?)___a_( z} )
VA i:_,‘“i.}..:';_’,. Vil + £ (9.44)
0 ( 23 )(u(zf-i-p))
7 T 6T
_0 ( s )[u:?-}-up—l'p-i-p]_l
VA (2 +0) v(z} +p)
o 2} v -1 p -1
= — : 1- ,
([ (EhEE)]
and since
17—~ 1 P
= <1, 9.45
(“)) (9.45)
we have
R o z v —=1; P \j
I ; | = —— . i 7
(a(K)ukri) \/XT((5I+P))]§;{,( ” ) (z?+p)
N , (9.46)
_ _Z r/—l 23
e Ml
Similarly for the second moment about the crigin we have
@K )} = (=t ]
aK)uxrn)i = 3 (o)l - ](2 >)
AVIEE RS = v=ly P i
A,-((:?+p)z)§,“+ @) e
ol X v—1y, 2%p
——;_‘Z(J+l)( v )((Z?-I-,O)H'z).




Taking the expectations of both moments we have |

E(a(K)ukrr)i] = Z(" — 1y (9.48)

Bl oy

F+ppt?

Dwivedi, Srivastava, and Hall showed that the expectations, for z; ~ N(©,1) and

E[(a(K)HKF'I)?] = gA..‘_ Z(J + 1)(1’ : l)JE[(z Z?P’ ]. (9.49)

independent p ~ x2, with integers m,q,r are given by

[ 2" p? ] zq-r+’5"-r(q+.;i)e—‘r
G+or (%) (9.50)
. m y m 2y .
y ir(q_r.*.?.}.——ia‘-’ﬂ-)l"(] +_;ﬂ) (%)J for even m
o Tlg+j+ 285G +5) at

29-r+m=}Qr(g + £)e~F

or = -
r(z)
oo (9.51)

y Zr(q—r+j+1+ﬂ'v}’-’)1‘(j+1+%) (%)
Tlg+j+1+2)T(G+3) 3!

for odd m
i=0

Thus they derived the first and sccond moments of (a(K)ygrr)i from which
they evaluated the BIAS and MSE for differing values of ©; = i\j;‘;}- and v. From

their results they gave the following ol.servations.

1) Theefficientcy of a relative to («(N) 7 Fr)i given by MSEﬁgg‘:"“)‘ x100is

ia? e Qs
a function of v and the non-centrality parameter ©; = '\—;‘;‘- which is unknuwn.

2) Thei—th component of the generalized ridge estimator (a(K)y i rr);i is biased

in the direction opposite to «; .

3) The absolute value of the relative BIAS , where the relative bias is given as

E((«"(I\')HKN)& - 0‘:‘), (9.58)

44
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is a decreasing function of © and an increasing function of v .

4) The i — th component of the generalized ridge estimator (a(K)gkrr);i will
dominate the least squares estimator a; under the MSE criterion when the

e
non-contrality parameter @; = =51 < 2,

c
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Chapter 10

DEVELOPMENTS IN GENERALIZED RIDGE ESTIMATORS

A Pre-Test Estimator.

Using the results of Dwivedi, Srivastava, and Hall (1980), Srivastava and Giles
(1984 ), developed a pre-test generalized ridge estimator . In particular they use

the result that the Hoerl and Kennard first iteration estimator, given by

2

" /\ S
a(HKFI), = ma,- , where k; = Z° (10.1)
el <2,

will dominate the least squares estimator a; if ©; =

Under the same assumptions used by Dwivedi et.al.,, Srivastava and Giles

(1984), proposed the statistic

2
2? Ly a?);
W = g = 32 .
( ) (a?/\i + Vsz)’ (10.2)

dtp Ny
which has a non-central beta distribution, with non-centrality parameter ©; = '\—;-';'?-,
given by
—oi = (O TG +5+%) i1 -1
o (W)=e"" . : wi—i(1-w)i-1, 10.3
They suggest the following test of the hypothesis that
(10.4)

MSE a(HKFI); < MSE aq;.
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The pull and alternate hypothesis arc given by
Hy:0,<2,  H,:0;>2 (10.5)
Using the test statistic W , the rejection criterion is to reject Hp if

W > W,, (10.6)

where
Wa
/ LTIV = (1 - a), (10.7)
0

for a given significance level « .

Thus they define their pre-test generalized ridge estimator to be

. o 2l .
a(PTGRE); = { WHEFD, i rorimy < Wi (10.8)
a;, otherwise.

For this estimator they dcrive the BIAS and MSE , showing that they are
functions of v, ©, a. For different values of ©, v, and «, they evaluate the
relative BIAS, and relative MSE of the PTGRE. Concerning the relative efficiency,
they evaluated the PTGRE with respect to both the least squares estimator and
the HKFI generalized ridge estimator for different values of ©, v, a. The main

results of their study are given as follows.

1) The HKFI generalized ridge estimator dominated the least squares estimator
and the PTGRE in terms of MSE when ©; < 2 . However, when ©O; is

relatively large, the PTGRE outpeiformed the generalized ridge estimator .
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2) The loss in efficiency by using PTGRE over generalized ridge estimator is
very small for ©; < 2. For larger values of the non-centrality parameter the

efficiency gain can be as large as 30% .

3) The PTGRE is biased is the direction opposite in sign to that of the corre-

sponding parameter «; .

4) For a significance level of « = .05 , the PTGRE dominates the least squares
estimator over large parts of the parameter space, and its efficiency with respect
to the least square estimator is hetter than or only slightly worse than the

efficiency of the HKFI estimator.

5) The main advantage of the PTGRE is that a significance level o can be
attached to the hypothesis that the HKFI generalized ridge estimator is in the

correct non-centrality interval.

The results of Dwivedi, Srivastava, and Hall (1980), showed that the HKFI
generalized ridge estimator would dominate the least squares estimator a; if ©; <
2. However the problem was how to test that the HKFI generalized ridge estimator
was in the correct non-centrality interval. The PTGRE provides an answer to this
problem by using a test of the hypothesis ©; £ 2 which is equivalent to a test that

MSE a(HKFI); < MSE q; .
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An Almost Unbiased Ridge Estimator.

Singh, Chaubey, and Dwivedi (1986), used a Jack-knife proceedure to develop
a generalized ridge estimator which has a reduced bias. In particular, considering

the canonical form of the model (1), we have
Y =X3+¢

XGG'B+e (10.9)

=Za +e¢,

where Z'Z=A, Z=XG isa (n x p) matrix of non-stochastic regressors such

that lim,; . _Z_:TZ. is finite. Now
BIAS o(K) = —=K(A + K)'a = 0(%), (10.10)

under the assumption that (Z'Z)~! isof order 1.

Let Z; be the matrix Z with its i-th row, denoted by z; , deleted, and Y; be
the observation vector with its i-th observation deleted. The ridge estimator, with
its i-th observation deleted is given as

a(K)_,=(2/Z,+ K)'Z}Y;
=(2'2 - 212, + K)"1 2L, (10.11)

= (4 -252)"Y(2'Y - zy1),
where A = A+ K and from Theorem A5 in the appendix we have

-1, .14-1
a(K)-; = (A7 + é—z'-ﬁ-é—)(Z'Y —~ 2;9;), where w; = z{A“z

1 - wg
A~ lziy,  A7lmyawg  AT'2;2lATY2'Y ATlziwy
=alK) - L -
a(\) 1 —w; + 1 - w; + 1 — w; 1 - w;
A7vz o,
= oK) + 25 () - )
1
A~z
- a(r) - 25
]

(10.12)
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The weighted pseudo-values are then given by
Qi =a(K) + n(1 — w;)(a(K) = a( K)-i), (10.13)

providing the weighted jacknife estimator of a as

71=n9-i-
n

= a(K)+ A Z'(Y - Za(K))

[2I — A7 AJa(K)

[2I = [I — A7 K] Ja(K)

(10.14)
= [I + A7 K] Ja(K)
=[T+A"TK]))[47 Aa
=[I+A'K]|[I-KAYa
=[I-(A7'K)? Ja.
So that the
Bias & = —(A~'K)2a = 0(%) , (10.15)

is of a smaller order in magnitude than a(K') . Considering the difference in total

squared bias, we have
p
) [ BIAS %a(K') - BIAS 3]
i=1
=d A" ' KK A 'a - a' (47K ) a (10.16)

=adA7'K[ [ - (AR KA a > 0,
showing that the total squared BIAS in a is smaller than a(K).

The jack-knife technique offers a method in providing confidence intervals for

b depending on the property that
. !
vn(b— B) = N(0,0°S~"),where L= lim (-)-(;1—) (10.17)

n—0o0
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Using a consistent estimator for the Var b given by
Ve—1 i(q- - b)(Qi-b) (10.18)
n(n —p) o ' ! ’ )
the confidence interval for b; is given by
bi {1~ -f;—;n - P)Viir (10.19)

where #(1— §;n—p) isthe upper § x 100% point of the student’s t-distibution.

Improved Ridge Estimator.

In a later paper Singh and Chaubey (1987), suggested the following improved

ridge estimator a(K) , given by
a(K) = La + La(K), (10.20)

where L = diag({;.{;.....1;) is ap.s.d. matrix . (10.21)

The constants [; are unknown where 0 <!, €1,L =I-L and the lis are
chosen such that the i-th component of the MSE a@(J{) is minimum.

Considering the BIAS and Var of the estimator a(/) we have
() = La+ LAa

= -L+LA]a (10.22)
=[I-L(I-A)a
= [I — f,.’l]a,
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giving

BIAS @ = ~LAa, and Vara=o%(I - LA)A™Y(I - LA).

Considering the i-th component of the MSE of @ we have
2
MSE a(K), = ‘7’\7[(1 — [;5)%) + a2,
]

taking the minimum with respect to /; gives

- » 2
OMSE 8K): _ g02521, - Za(1 - 1896 =0,

when
I- _ ft(’\: + kt)
k(N k)
where t,-=-g-; , and k>4 foro<l, < 1.

(10.23)

(10.24)

(10.25)

(10.26)

By comparing the MSE of a(L\') with «(/) and &, the authors show that

1) The improved ridge estimator has smaller MSE and Bias than the generalized

ridge estimator for k, #¢,.

2) The improved ridge estimator has a larger Bias but smaller MSE than the

almost unbiased ridge estimator for 62 # '—.-i*;\-:-

Using operational versions of their estimators a simulation was conducted which

demonstated the overall superior performance of the improved ridge estimator.
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Chapter 11

DETERMINISTIC RIDGE ESTIMATORS.

Using model (1.2) in canonical form we have
Y =Za+e, (11.1)
where
Z=XG, 2'Z = A=diag(A1,As,..., \p), and A; 2 X 2022, >0, (11.2)
Consider the class of generalized ridge cstimators given by
a(K) = (A +K) A, for I = diag(ky, ke,... kp), ki > 0. (11.3)

When all the biasing parameters &, arc chosen to be the same we have the ordinary

ridge estimator.

Of the many ridge rules that have heen proposed to select the biasing parameter
k; , many have the problem that they depend on the unknown values of 8 and o2.
Many reserchers opt for the operational versions of their rules using the stochastic
estimates b and s2. However this opens up new problems since the MSE properties
of the ridge estimators are only valid for fixed non-random ks . The purpose of
this chapter is to consider some deterministic ridge estimators which depend only
on the eigen values of the X'X matrix. Several new estimators are proposed and

their performance, under the MSE criterion, is investigated in a simulation.
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Six ridge estimators.

The following six ridge rules were considered in this study. Rule R5 was sug-
gested by Conniffe abd Stone (1973) and rule R1 was suggested by Lee (1986). The

other four estimators are considered lere for the first time.

Rl: k; = Ap

R2: k; = —‘{é‘-

R3: k; = %/\,,

R4: ki = (VX + V3, - V)
RS: k; = VX

R6: k; = ), if 3t < 50,

else, k, =pxA,
Models considered in the simulation.

There are three basic models considered in this study. The first, denoted by
model 1, is the four factor mode]l Hald(1952). Model 2 is a ten factor model Gorman

and Toman (1966). Model 3 is a fiftcen factor model McDonald and Schwing (1973).

The parameters of the models are listed below.

MODEL 1
p= 4
n= 12

A = 2.2357, 1.5761, .1866, .0016 .

¢ = 1397
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MODEL 2
p= 10
n= 36

Ai = 3.6923, 1.5418, 1.2927, 1.0457, .9719, .6587, .3574, .2197, .1513, .0681.

¢= 54
MODEL 3
p= 15
n= 60

Ai = 4.5272, 2.7547, 2.0545, 1.3487, 1.2277, .9605, .6124, .4729, .3708,
2163, .1665, .1275, .1142, .0460, .0049.

¢ = 924

Using the guidelines of Belsley,I{uh, Welsh,(1980) p. 104 , condition numbers
less than 100 are indications of wcak dependencies and condition numbers greater
than 900 will correspond with moderate to strong dependencies. Thus, model 2

without any other information will be considerably less ill-conditioned than model

1 or 3.

Simulation design.

To obtain a set of coefficients, p random numbers {a,}! are chosen from a
uniform distributionon (0, 1) . The cocfficients are subsequently normalized to unit
length such that Y%_ a? =1. In all the models, six different values of o? are
considered making the signal to noise ratio (SNR) = %'f‘- range from 1 to 10,000.

In particular we have
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0”2 = 125100 400 2500 10,000

SNR = 125100 2500 10,000

For each of the models and the SNR's considered, 1000 different replicates were

generated by first selecting als and then obtaining the estimates via

2
a,-~N(m,§—), i=1,2,....p. (11.4)
Each of the estimators R1 to R6 was then computed componentwize using
A
: (11.5)

a(l), = (m)ai

where k; is determined by using the rules R1 to R6, respectively. The simulation

was programmed with the MAPLE4.2 package and is included in Appendix C.

Evaluation Criterion.
For each estimator, including least squares given by RO, the sum of squared

error is computed using

L(Ri) = i‘(a(m); — ), (11.6)
=

where a(Ri); is given by equation (11.5). As an estimate of the MSE , we use the

average squared error over the 1000 replicates given by

1000 .
M(Ri)= )" %Ra’gi. (11.7)

]=

The average sum of squared error is reported in tables 1 to 3.
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A measure of the relative improvement obtained by using a specific ridge esti-

mator is given by
M(Ri)

RM(Ri) = )

x 100, (11.8)

where M(R:) is the average sum of squared error of a specified ridge estimator
and M(RO) is the average sum of squared error of the least squares estimator.

The relative impr.ovement over least squares is reporied in tables 4 to 6.

The true MSE for the least squares estimator a , given by

n
a2 AT, (11.9)
1=

is used as a check on the adequacy of the simulations.

Results of the Simulations.

1) The potential improvement of the ridge estimators is greatest when the condi-

tion number is large and the SN is small.

2) None of the ridge estimators outperform the least squares estimator in all
situations. In particular, all the ridge estimators perform quite poorly when
the condition number is low ¢ = 54 , and the signal to noise ratio is high

SNR > 2,500 .

3) The ridge estimators R2, R4, RS, and R6, which perform very well in low SNR

regions, perform poorly in high SNR regions.

4) The ridge estimators R1, and R3, which are not the best performers in low
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SNR regions, outperform least squares even in high SNR regions, as long as

the condition number is high, say ¢ > 900 .

5) From a conservative point of view, good performance in worst possible situa~

tions, the best all round ridge estimators are R1 and R3.

Conclusion.

None of the estimators considered here out perform least squares over all pa~-
rameter values considered. The estimator R3outperforms Rlin regions where the
SNR is high, say SNR > 2,500 , and in the case where the condition number is
less than 900, R3 is the recommended estimator since it performs the least poorly
in high SNR regions, eve . thongh cxceeding least squares. However in situations
where the condition number of the correlation matrix is high, say ¢ > 900, an
indication of a serious rmulticollinearity problem, the ridge estimators R1 and R3
outperformed least squares in every case. From the results of this simulation, ei-
ther of these deterministic ridge estimators are recommended for problems where the
condition number is high, and R 3 is the recommended estimator for problems with

low or medium condition numbers.
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TABLE 1: Average sum of squarecl error- 4 factor model.

SNR
RULE 1 20 100 400 2,500 10,000

RO 62533 2501 625 1.5 .25 .06
R1 16102 645 170 .53 .19 .08
R2 6.09 58 99 .60 .50 .22
R3 40248 1606 401 1.01 .18 .04
R4 4,08 50 58 62 .50 .19
R5 1.91 53 .61 .70 .61 .36
R6 3104 143 65 47 .35 .08

TABILE 2: Average sumof squared error- 10 factor mmodel.
SNR
RULE 1 25 100 400 2500 10,000

RO 3351 13 3¢ .08 01 0
R1 1581 .68 .18 .06 11 05

R2 9.56 .56 17 .10 26 .16
R3 2595 104 .26 .07 02 0
R4 811 44 20 .15 278

R5 3.99 43 34 .33 48 0B
R6 1276 .63 .16 .06 20 .1

TABLE3: Average sumof squaed error- 15 factor rmodel.

SNR
RULE 1 25 100 400 2,500 10,000

RO 26061 1042 261 6o .10 .03
R1 10308 412 106 .27 .05 .03
R2 3881 145 4 .21 .10 13
R3 23798 951 238 .59 .09 .02
R4 17.55 88 34 .25 .16 21
RS 5.96 61 40 43 .36 43
R6 4397 184 b5 .20 .08 15
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TABLE 4 Relative improveinent over least squares - 4 factor model.

SNR.
RULE 1 25 100 400 2,500 10,000

RO 100 100 100 100 100 100
Rl 26 26 27 34 % 73

R2 1 2 9 38 198 345
R3 64 64 64 65 70 70

R4 1 2 9 40 201 306
RS 0o 2 10 43 243 578
R6 5 6 10 30 138 135

TABLE5: Relative irnprovernent over least squares - 10 factor model.

SNR
RULE 1 25 100 400 2,500 10,000

RO 100 100 100 100 100 100

Rl 47 50 ¥ 76 791 1538
R2 29 42 3l 119 1928 4862
R3 M 78 18 7 172 277

R4 24 33 59 17T 2047 4495
i 11 32 101 38 3544 9907
R6 38 47 48 69 1469 3187

TABLE6: Relative improvernient over least squares - 15 factor model.

SNR.
RULE 1 25 100 400 2,500 10,000

RO 100 100 100 100 100 100
R1 40 40 40 42 45 98
R2 13 14 17 32 100 502
R3 91 91 91 )\ 91 91
R4 7T 8 1 Kh] 156 823
RS 2 6 15 66 346 1648
R6 17 18 21 31 80 568
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APPENDIX A

Theorem A1 : Let 7 beidentity matrix of order (n X n) and g an (n x1)

vector. Then

I-gg'is a psd matrixiff g'g < 1. (1)

Proof: Let C be an orthonormal matrix such that C'C =1 and

[C'g) =[a,0,...,0}. (2)

Now I - gg¢'is a p.s.d. matrix

iff C'lI —¢41C, aps.d. matrix, (3)
i.e., when
a? 0 0
0 0 ...0 _
I-y . . . . a p.s.d. matrix, 4)
0o 0 0

which is equivalent to

a®=Tr[C'gy'C] =¢'g < 1. (5)

Theorem A2 : Asymmetric (pXxp) matrix D is a p.s.d. matrix iff
TiCD > 0 for all psd. C. (6)

Proof: Let

P
D= PAP = > APP, )

t==1]
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where A = diag(\;,...,Ap) is the diagonal matrix of eigenvalues of D , and
P = (P, P,,...,P,) is the corresponding matrix of orthonormal eigenvectors, where

PP!' = I. Now P
Tr(CD) = Tx(C Y, MP.P!)
i=1
P
= Tf(z A, CP.P})
= (8)
= Ti(C)_ NPICP)

1=1

p
= Y A\P/CP,
=1

and each P/CP;2 0 forall p.s.d. C. Also, if Dis a p.s.d. matrix then all A; are

non negative. Thus
Ti(CD) > 0for any C a ps.d. matrix. (9)
Conversely, if Tr(C D) 2 0 for a p.s.d. matrix C, consider
C =PPr, forj=1,2...,p (10)

Then we have

14
Tr(CD) = To{P, P> \iP;i P))]
=1
')

=1

= /\’

20, forj=12,...,p
making D a p.s.d. matrix. (12)

Theorem A3 : If A isasymmetric (nxn) matrix and ¥ an (n x 1)

random vector with E(Y) = y and Var(}¥')=Z then
E(Y'AY) = trace( AZ) + u’ Ap. (13)
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Theorem A4 : For any two column vectors X, and Y of real elements
i)
(X'Y)? S (X'X)Y'Y), (14)
with equality when and only when aX + bY = 0 for real scalars a, and b.
ii) for A= B'B, then

(XY S X'AXY'A7'Y  if A™! exists (15)

with equality when X oc A—!Y"

Proof:

i) The quadratic form in «, b, given by
(aX 4+ bY)(aX 4+ 0Y ) = a®?X'X + 2abX'Y + b2Y'Y, (16)
is non-negative, so the
det (‘;‘,fi ;‘%) >0, or (X'Y) < (X'X)(Y'Y), (17)

where the equality is atained when the determinant is zero which implies that

aX +bY =0.

ii) Let U= (B"'YY, V=DBX andusing Adion U, V we have
(X'F)? < Y'A-IYX'AX (18)
and when X «x A=Y we have

(V'AITY? = (F'A-'Y)(Y' A7YY), (19)
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Theorem A5 : Given a square non-singular (p x p) matrix M ,and a p

dimensional column vector Z , then

M-1ZZ'M-!

(M-22')y'= M1+

Proof: Multiply both sides by (M — Z2Z').
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APPENDIX B

Kadane’s Small ¢? Expansion.

For the model
Y = XB+ ou, ou~ N(0,0%I), u~ N(0,I) (1)

we write € = ou to take explicitly into account the magnitude of the variation in
e . When o issmall, the model is good in the sense that the variation in Y; is
small. However when o is large, the model is not well explained by X as the

variation in Y; is large. Thus the small sigma assumption implies that the model

has a good fit.

Kadane’s (1971) small sigma expansion for the moments of an estimator in-

volves
1) Assuming o to approach zcro.
2) Expanding the sampling error ( 3 — B) of the estimator in higher orders of o .
3) Taking term by term expectations of the sampling error expansion.

As an illustration, consider the sampling error of the i-th component of the

double h class estimator given by
(apHC — @)i = 6ia; — a;

=(1-

a'Wa + hy,e'e %~ e
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To write the sampling error in terms of o, we use the model

Y=X3+o0ou
=XGG'B+ou (3)
=Za + ou.
Giving
a=(2'2)"'2'Y
=(2'2)"'2'[Za + oy} (4)
=a+0A" 12,
and
a; = o, + a/\,‘IZ,fu, (5)

where Z; is the i-th column of Z .

Considering
e=Y-Zau
=Y-2(2'2)"'2'Y
(6)
=(I-2(2'2)"'2")Y
= MY, where Al =(I - 2(2'2)712"),
we have
ee= Y'Y

=(Za+ou)A(Za + ou) (7)
= o2u'Mu, since Z2'M = 0.

For the denominator in (a) we have
hye'e + dWa=(a+ oA~ Z'v)W(a + oA~ Z'u) + hyio*u' Mu

=a'Wa +0[2a' WA~ Z'] + o' ZA'WA™2 Z'u + hoju' Mu]

=a'Wa+o[4] +0*B] =g,
(8
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where

A=2WA™Z2'v andB = u'ZA" WA~ 2'u + hoju'Mu. (9)

Thus we may write equation (2) os

2’ ] R .—l !
(aDHC_a)i =a'+a/\'—lz:u_0' 11l AI'U(C!"*‘UA' Z'u)

’Wa-i-aA+a?B o
-1 oA + o’B
=0l 1Z'u-— o2 b M u(a; + oA Ziu)—— 'W [1 W].
(10)
Using the following expansions, for small sigma
I+RT'=1-R+R—..., and 1+R)?=1-2R+3R*~--.., (11)
we have
1 1 ( a.4+azB+ 024?24+ 20%AB + o4 B? ]
g ‘Wa a'Wa (a'Wa)? B (12)
1 [1 904+02B)+ (02.42+203AB+0432) . ]
g2 'Wa o' Wa («'Wa)? )

Thus we have for equation (10) , collecting terms up to o? and taking expectations

othy;u'Mua;

E(apyc — a),-:E[a'/\,—lZ:u - T a ]
. 1

= —o'zhl,'[u]a,-—-——a,wa (13)

3 hl/\,-'lua,-

26 !

where
a'lWa

= 57 and v = Tr(M) . (14)
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Similarly for the i-th component of the squared sampling error we have

o?hyu' Mu(a; + a/\,-"IZ:u)]2
g
= E[o*(\[' Z/u)? - QGSA;'IZ,fuhl.-u’Mua,%

E[(apuc — @)i)® = EloA;[' Z/u -

1 (15)
_— 20’4(1\,-_12:11)2’1],11'1\4‘“3
2oV (u' Mu)(a? + 20,07 Zlou + a* (N[ Z[u)?) );2-]
Collecting terms up to o* and taking expectations we have
E[(apuc — a)i]* = E[e*(A]'Z!u)? - 26° 271 Ziuhy v Mua; 1 [1- oA ]
! i RS B ‘o' Wa aWa
1
- 204(/\"Z'u)"’lzl,u’]\lua e
+ b} ot (' Mu)? ]
= 02\ 2E(Z!u]?
+40* A7 by i WAT E(Z]u, Z'u)E’(u'Mu)( 'V:’ 2

—20' A7) —— 'W E(Zu)?E(u'Mu)
+ h?,o%a? ' E(u']\!u)
2 WadT M
2 1 i
=0 /\ +4U /\ hll '—(—'—-v‘—/—a)T

, h
AP ELLIN W

a'Mla™!

@,
+h2-a‘———,W v(v + 2)
o? uh,. 2,4 Wii aWa
T 402[ (4—'+hh("+2)) 2 by ],

(16)
where MZ = 0, making u'Mu, and Zu independent [SeLer p.33], E(u'u) =
LE(W'Mu) =v, E(uWMu)? = v(v+2), and u'Mu~ x2.
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APPENDIX C
% program runsimt
% overall job calling sequence
% for a maple4.2 interactive session.
% note ** has replaced the maple hat command
writeto(‘t1a‘);
!date;
writeto(‘terminal');
read siml;
read sim2;
read sim3ff;
writeto(‘m110*);
read simpri;
writeto(‘terminal‘);
writeto(‘t1b*);
ldate;
writeto(‘terminal‘);
writeto(‘t2a‘);
ldate;
writeto(‘terminal‘);
read siml;
read simd4;
read sim4;
writeto(‘m210');
read simpri;
writeto(‘terminal‘);
writeto(‘t2b*);
!date;
writeto(‘terminal‘);
writeto(‘t3a‘);
!date;
writeto(‘terminal‘);
read siml;
read sim55;
read sim5;
writeto(‘m310¢);
read simpri;
writeto(‘terminal‘);
writeto(‘t3b*);
!date;
writeto(‘terminal‘);
quit;
% program genl0, genl00, gen?200, gennum=1000
% calls fll of standerd normal variables
% the sample genl0 is given below

aa:=array (1..10, 1. 1, |
[-.1925298938)],
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[-.3443982579),
-.05780795793],

1.360936501],

-.1562774456),

.07838367178],

1.048381610],

.3076559117|,

1210047933,
-.4796100917]});

% program siml which generates each random number using a random generator
and the central limit theorem.

yin:=proc()

local k,a;

rl:=rand(1001);

a:=0;

for k from 1 to 50 do

a:= a+ (r1()/1000);

od;

a:= ((a/50)- .5)*((12x50)*x(1/2));

end;

% program sim2, which gencrates the regression coefficients
% sim44, and sim55 are identical oxcept the size of the
Y parameter vector changes.

with(linalg,mulcol,multiply,transpose);
nsl:=array(1..1,1..6);
bll:=array(1..4,1..6);

iden:=array(1..6,1..6,((1,0,0,0,0.0], [0,10,0,0,0)lb [0,0,1,0,0,0], [0,0,0,1,0,0],
(0,0,0,0,1,0],

(0,0,0,0,0,1] |);

r2:=rand(1001);

for jfrom 1to0 6 do

sl:=0;

for i from 1to 4 do -
b11[j,j]:=r2();

sl:=sl + b1lfi,j]**2;

od;

iden(j,j:= 1 / (evalf(s1*%(1/2)));

od;

:=transpose(b11);

bl:=multiply(iden,t);

bl:=transpose(b1);

% program sim3fF, which gives the mse matrix model 1
% except for pararmneter differences for the vector dimensions
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% identical to

% program simd, which gives the msc matrix model 2

% program sim3, which gives the mse matrix model 3
with(linalg,mulcol,multiply,transpose);

readlib(evalm);

fmss1:=array(1..7,1..6);

genmat:=proc()

11:=2.2357; 12:=1.5761; 13:=.1866; 14:=.0016; ssl:= 1; ss2:= 1/25; ssdi= 1/100;
ssdi= 1/400 ssb:= 1/2500 ss6:= 1/10000

sl:=array(1..4,1..6,[

[(ss1 /ll)**(l/z),(ss2 [11)%%(1/2),(ss3/11)%%(1/2),(ss4/11)%x(1/2),(s85/11)+x(1/2),
(ss6/11)xx(1/2)],

((ss1 /12)+%(1/2),(ss2 /12)%+(1/2),(ss3/12)+*(1/2),(s54/12)%x(1/2),(ss5/12)++(1/2),
(ss6/12)*x(1/2)],

[(ss1 /13)%x(1/2),(ss2 /13)*x(1/2), ) ) ) ),(ss5/13)xx(1/2),
(ss6/13)%x(1/2)),

(ss1 /14)#x(1/2),(ss2 /14)%x(1/2),(ss3/14)x*(1/2),(ss4/14)#x(1/2),(s55 /14)%x(1/2),

(5s3/13)%%(1/2),(ss4/13)x*(1/2

(ss6/14)x+(1/2)] ]);
slkO:=array(1.4,1..1,[
/1],

1/12 ],

1/13 ],

1/14] Iy
slkS:=array(1.4,1..1,[
M1/(11 + 11%x(1/2))],
12/(12 + 12%%(1/2))],
13/(13 + 13%x(1/2))],
14/(14 + 14xx(1/2))] ]);
slkl:=array(1..4,1..1,
11/(11 + 14)],

12/712 + 14)].

13/(13 + 14)],

14/(14 +14)] ]);
s1kZ:=array(1.4,1..1
11/(11 + 11%=(1/2) /
12/(12 + 12%%(1/2) /
13/(13 + 13%%(1/2) /
14/(14 + 14%%(1/2) /
s1k3:=array(1.4,1..1,
11/(11 +.25 x4 )],
12/(12 + .25 + 14 )],
13/(13 + .25 * 14)],
14/(14 +(.25 % 14 ))] ]);Ib s1k6:=array(1..4,1..1
11/(11 + 14 ),

12/(12 + 14 )),

13/(13 + 14)),

14/(14 +(4 * 14))] ]);
slk4:=array(1.4,1..1
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(117011 + 11%x(1/2) * (11xx(1/2) + M=*x(1/2) - 11x%(1/2) )/ 11 )],
(12/(12 + 12%x(1/2) * (11#x(1/2) + 14%%(1/2) - 12+x(1/2) )/ 11 )],
13/(13 + 13%x(1/2) * (11x%(1/2) + l4x#(1/2) - 13%x(1/2) )/ 11 )],
145.(14 + 14%%(1/2) * (114x(1/2) + 14%%(1/2) - 144x(1/2) }/ 11 )] ]);
gem"nat();

#read gen10=1=10, gen100=1=100,gennum=1=10C0;
readnum:=proc()

# read numbers into | by 1 vector aa

#and suppress output

read gennum ;

# read gen200 ;

end;

readnum();

#from this file are read the random numbers for aali,j]lb # call the proc to read
numbers into aafl,1] # genl must correspond with 1

1:=1000 ;

b:=array(1..1,1..1); c:=array(1..1.1..1);

#proceedure init begin

init:=proc(vv,num)

for v from 1 to 1 do

vv([v,1}:=num;

od;

end;

# call init(vector,csalar) to make a | by vecior of scalarslb
# this section assumes the matrices hl,s1,s1k1 exist.

for j from 1 to 6 do # number j are for different sigma values

mk0s1:=0;

mk1sl:=0;

mk2s1:=0;

mk3s1:=0;

mk4sl:=0;

mk5sl:=0;

mk6sl:=0;

for i from 1 to 4 do

# number i is for the number of paramctersof the k-i-th ridge rule

mk0:=0;

mk1:=0;

mk2:=0;

m . J:=0;

mk4:=0;

mk5:=0;

mk6:=0;

# new section
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slm:=array(1..1,1..1,{[evalf(s1[i,j})]});
blm:=evalf(b1[i,j]);

init(b,blm);

blv:=b;

tl:=evalm( aa * slm ) ; tt:=transpose(t1);
ts:=evalm( tt * t1); mkO:=evalf(ts[1,1]);

#
# slklmm:=transpose(slkl);

slklmm:=array(1..1,1..6,([s1k1[i,1], s1k2[i,1],s1k3[i,1],

s1k4[i,1], s1k5[i,1], s1k6[i,1]] ]); one:=array(1..1,1..6,[[1,1,1,1,1,1}]);
blvv:=evalm(blv &=* one );

tl:=evalm( ( aa * slm + blv ) &x slklmm - blvv); tt:=transpose(t1);
ts:=evalm( tt * t1);

mkl:=evalf(ts[1,1]);
mk2:=evalf(ts(2,2]);
mk3:=evalf(ts(3,3
mk4:=evalf(ts[4,4
mk5:=evalf(ts[5,5
mk6:=evalf(ts[6,6

?

)
);
);
)

.

# save the total mse of .he i-th parameter with the k-th ridge rule.
mk0s1l:=mk0s1 + mkO0;
mklsl:=mklsl 4+ mkl;
mk2s1:=mk2sl + mk2;
mk3sl:=.ni+1 + mk3;

mk4sl:=mk4sl + mk4;

mk5sl:=mk5sl 4+ mk5;

mk6sl:=mk0sl + mk6;

od;

# save the sum of the i-th mse’s for the k ridge models and j-th sigma.
fmss1[1,j]:=mkO0s1;

fmssl
fmss1
fmss1
fmss1
fmssl
fmss1
od;

1,_1:]
27.”
3,]
4,@1
5,.!
6,_]

()

:=mk1sl;
:=mk2s1;
:=mk3s1;
:=mkds];
:=mk5s1;
:=mk6s1;

% Program simpri prints final simalation results
% and places them in files m110,m210,m310
%program simpri

# the number of simulations is
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I;

# the 1-st and 4-th eigenvalues are
11;

14;

# the s1 matrix is
op(sl);

op(s1k0);

op(s1k1l);

op(s1k2);

op(s1k3);

op(s1k4);

op(s1k5);

op(s1ke);
mss2:=proc( );
fmss2:=array(1..7,1..6);
for j from 1 to 6 do

for i from 1 to 7 do
fmss2(i,j):= fmssl1[i,j] / fmss1[1.j];
od;

od;

end;

mss2();

op(fmss1);

op(fmss2);

% program finpri given below takes the results and gives table form

mle:=array(1..7,1..6,

[625326.8679, 25013.07391, 6253.263679, 1563.317105, 250.1307391, 62.53268679),
(16102%.3807, 6448.963130, 1702.026523, 534.9231971, 186.8019881, 45.95174361]
i6094.937723, 575.8532760, 554.238G390, 597.8689901, 496.0307056, 215.5002021)
[402481.4383, 16059.91512, 4014.137248, 1014.029380, 175.7172826, 43.82166012)
[4076.424790, 497.4142485, 545.6494288, 619.1639179, 501.7587064, 191.0993283]
]

[1906.138127, 526.8373482, 612.6921680, 703.4211462, 608.7053657, 361.6419283]

’
[31043.66351, 1425.080085, 646.9335743, 469.9119516, 345.1793275, 84.30588395)
i

rmle:=array ( 1.. 7,1 .. 6,
[1.000000000, 1.000000000, 1.000000000, 1.000000000, 1.000000000, 1.000000000)

(2575011389, .2578236946, .2771818956, .3421719083, .7468173995, .7348435829]

*
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[.00974680289, .0230220914, .0386313288, .3824361597, 1.983085755, 3.446200910]
i.6436336882, .6420608350, .6419262395, .6486395989, .7025017526, .7007800619]
E.00651887036, .0198861703, .0872582735, .3960577901, 2.005985782, 3.055991004]
i.00304822681, .0210624791, .0979795047, .4499542313, 2.433548823, 5.783246281]
i.04964389842, .0569734087, .1034552660, .3005864582, 1.379995632, 1.348189056]
Di

m2e:=array(1..7,1..6,]

[33512.01768, 1340.480706, 335.12017G8, 83.78004425, 13.40480706, 3.351201768]
i15813.44086, 675.8723988, 180.7702152, 63.27904912, 106.0779372, 52.21045123]
i9556.213403, 561.3732958, 172.4882063, 99.67060614, 258.4612015, 162.9256304]
i25948.81066, 1039.456442, 259.9021641, 66.30642820, 22.98933295, 9.296572744]
t8109.315440, 442.5543301, 197.1795526, 148.5092553, 274.3613076, 150.6479100)
i3585.418997, 426.5726930, 339.3315113, 333.6004887, 475.0890378, 331.9932514]

?
[12763.91089, 634.3872178, 161.2671853, 57.45315767, 196.8735911, 106.8037172]

s

rm2e:=array ( 1 .. 7,1 .. 6,

[1.000000000, 1.000000000, 1.000000000, 1.000000000, 1.000000000, 1.000000000]
i.4718737323, 5042015120, .5394190733, .7552097815, 7.913425141, 15.57962034]
i.2851578050, 4187850622, .5147055243, 1.189670011, 19.28123250, 48.61707581]
i.7743135883, 7754355862, 7755491370, .7914346285, 1.715043928, 2.774101170}
i.2419823097, .3301459903, .5883846042, 1.772608938, 20.46738206, 44.95339894]
)

[.1069890518, .3182236724, 1.012566640, 3.981860975, 35.44169160, 99.06692715]

L
[.3808756313, 4732535239, .4812219510, .6857618444, 14.68679036, 31.87027359]
1);

m3e:=array(1..7,1..6,[

[260613.7532, 10424.55007, 2606.137532, 651.5343822, 104.2455007, 26.06137532)
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i103082.3977, 4124.123933, 1050.162992, 274.9267871, 47.15435076, 25.59536866]
i33809.03589, 1447.410371, 446.4341GCS, 206.8424743, 104.3721331, 130.8807550]
i237979.2583, 9513.727400, 2377.017748, 593.8980623, 94.97559143, 23.76951519)
i17552.98684, 877.1581388, 342.5517770, 248.3404327, 162.4984674, 214.4466660]
t5962.831776, 613.8941629, 401.2586748, 430.4695093, 360.4415714, 429.5058129]

?
[43974.25225, 1842.705221, 554.1261910, 203.2579423, 83.62891725, 148.1190733]
)i

rm3e:=array(1..7,1..6,(
[1.000000000, 1.000000000, 1.0600000000, 1.000000000, 1.000000000, 1.000000000]

i.3955370599, .3956164923, 4029576256, 4219681948, .4523394338, .9821188769)
i.1297285177, .1388463158, .1713010773, .3174697759, 1.001214752, 5.022020265]
i.9131492693, 9126271480, .9120845384, .9115375620, .9110761692, .9120591257)
i.06735249627, .0841435009, .1314404067, .3811624367, 1.558805573, 8.228524526]
i.02287995819, .0588892718, .1539668072. .6607011404, 3.457622334, 16.48055053]

[.1687334291, .1767659236, .2126235412, .3110680985, .8022304722, 5.683471094]
D;

msr:=proc{mm);
for j from 1 to 6 do
for i from 1 to 7 do
mm(i,j):= round(mmfi,j] / 10);
od;

od;

end;

msr(mle);
op(mle);
msr(m2e);
op(mz2e);
msr(ma3e);
op(m3e);
fmsr:=proc(mm);
for j from 1 to 6 do
for i from 1 to 7 do

—
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mmli,j]:= round(mm(i,j] * 100);
od;

od;

end;

fmsr(rmle);

op(rmle);

fmsr(rm?2e);

op(rm2e);

fmsr(rm3e);

op(rm3e);
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